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Introduction (2)

Whatever we know results from our interaction with the Big Thing, which we call the Universe
(and which is largely unknown). What we do know until now, however, seems to support the
view that the Universe itself operates through interaction of some small objects known as ele-
mentary particles and that this interaction itself can be described in a mathematically consistent
way. As usual, physics may have problems with what the word “elementary” really means, but
for the purpose of this book we may safely accept a less rigorous “elementariness,” in which
we have to do with nuclei and electrons only. To explain chemistry at the quantum level (which
is usually more than satisfactory for chemical practice) it is sufficient to treat all nuclei and
electrons as point charges that interact electrostatically (through the Coulomb law).

“Ideas of quantum chemistry” is composed of volumes 1 and 2. They are aimed to be au-
tonomous (1 on basics, 2 on some specialized topics) for economical as well as ergonomical
reasons, but at the same time interrelated and tied by several aspects (topics, structure, logical
connections, appendices) thus forming an entity.

“Ideas of quantum chemistry” Volume 1: From quantum physics to chemistry focuses on mak-
ing two important approximations with the goal of being able to explain the very basics of
chemistry. The most important is the concept of the molecular three-dimensional structure (re-
sulting from the Born—Oppenheimer approximation, Chapter V1-6). A second approximation
made assumes that each electron is described by its own wave function (“electronic orbital,”
Chapter V1-8). To arrive at these approximations within the nonrelativistic approach we first
exploit the fact that even the lightest nucleus (proton) is more than a thousand times heavier
than an electron. As a consequence the Born—Oppenheimer approximation allows one to solve
the problem of electronic motion assuming that the nuclei are so heavy that they do not move,
i.e., they occupy certain positions in space. The orbital approximation means that any electron
sees other electrons’ motion averaged. From this, however, follows that a moving electron does
not react to some particular positions of other electrons, which looks as if they did not see each
other’s positions.

By making approximations of this kind, we have arrived at a (“minimal’’) model of the molecule
as an entity that has a distinct spatial shape (“‘geometry”) and is kept together because of the
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chemical bonds between pairs of neighboring atoms. Using the minimal model we were able
to explain why chemical bonds can be formed. Such a system of bonds is stable with respect
to relatively small deviations off the equilibrium molecular geometry (“chemical bond pattern
stays unchanged”) defined as those positions of the nuclei which ensure the lowest electronic
ground-state energy of the system (potential energy surface [PES] for the motion of the nuclei).
Larger deviations move the system towards other chemical bond patterns (still within the same
electronic ground state'), which may also have their stable Born—Oppenheimer equilibrium
structures. The atoms vibrate about their equilibrium positions, while the molecule as a whole
flies in space along a straight line and keeps rotating about its center of mass.

Thus, any molecule can be treated to a first approximation as an object, small, but similar
to the objects we encounter in everyday life. It has a stable albeit flexible three-dimensional
architecture, we may speak about its details like left- and right-hand side, its front, its back,
etc. This picture represents the very foundation of all branches of chemistry and biology as
well as a large portion of physics. Understanding chemistry would be extremely difficult, if
not impossible, without this crucial picture. We have to remember, however, that the reality is
more complicated than that, and this is a simplification only, an extremely fertile and fortuitous
approximation.

The minimal model works usually with an error of about 1% in total energy and equilibrium
atom—atom distances. This seems at first sight as satisfactory, and it is for a big portion of
chemistry. However, the model fails spectacularly for several important phenomena, like de-
scription of metals, dissociation of a chemical bond, ubiquitous and important intermolecular
interactions, etc.

“Ideas of quantum chemistry” Volume 2: Interactions improves the minimal model of a
molecule by taking into account the electron—electron mutual correlation of motion (Chapters 2
and 3) as well as the molecule’s interaction with the external world: in a crystal (Chapter 1), in
external electric and magnetic fields (Chapter 4), and with other molecules (Chapters 5 and 6).

The author is convinced that chemistry faces currently the challenge of information processing,
quite different to this performed by our computers. This perspective, addressed mainly to my
young students, is discussed in the last chapter (Chapter 7) of this book, which differs very
much from other chapters. It shows some exciting possibilities of chemistry and of theoretical
chemistry, and poses some general questions as to where the limits are to be imposed on de-
velopment science in order to be honest with respect to ourselves, to other people, and to our
planet.

The idea of orbitals is not only a simple and fruitful description of molecules within the mini-
mal model. Most importantly, the orbital model provides also a map of ideas and a vocabulary,

1 Higher in energy scale are excited PESs.
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which are used beyond the orbital model, in any more sophisticated theory. Strictly speaking,
in any advanced theory introduced in volume 2, there is no such thing as a definition of elec-
tronic orbital, but still the “orbital language” is most often used in this more complex situation,
because it is simple, flexible, and informative.

Volume 1 may be viewed as independent of volume 2, i.e., volume 1 is autonomous, if the
minimal model of chemistry is the reader’s target. The opposite is not true: volume 2 relies on
volume 1, mainly because it needs the minimal model as the starting point. To keep volume 2 as
autonomic as possible the orbital model (the Hartree—Fock theory) is briefly repeated (mainly
Appendices A and B).

TREE

Any book has a linear appearance and the page numbers remind us of that. However, the logic
of virtually any book is nonlinear, and in many cases can be visualized by a diagram connect-
ing the chapters that (logically) follow from one another. Such a diagram allows for multiple
branches emanating from a given chapter, if being on equal footing. The logical connections are
illustrated in this book as a TREE diagram, playing an important role in our book and intended
to be a study guide. An author leads the reader in a certain direction and the reader expects
to be informed what this direction is, why this direction is needed, what will follow then, and
what benefits he/she will gain after such a study.

A thick line in the center of the TREE separates volume 1 (bottom part) from volume 2 (upper
part).

The trunk represents the present book’s backbone and is covered by the content of volume 1.

« It begins by presenting the foundation of quantum mechanics (postulates).

« It continues with the Schrodinger equation for stationary states, so far the most important
equation in quantum chemical applications, and

» the separation of nuclear and electronic motion (through the adiabatic approximation, the
central idea of the present book and chemistry in general).

+ It then develops the orbital model of electronic structure.

The trunk thus corresponds to a traditional course in quantum chemistry for undergraduates.
This material represents the necessary basis for further extensions into other parts of the TREE
(appropriate for graduate students). The trunk makes it possible to reach the crown of the TREE
(volume 2), where the reader may find tasty fruit.

XXiii
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The TREE helps tailoring your own book

The TREE serves not only as a diagram of logical chapter connections, but also enables the
reader to make important decisions, such as the following:

» the choice of a logical path of study (“itinerary”) leading to topics of interest, and
« elimination of chapters that are irrelevant to the goal of study.” This means tailoring the
reader’s own book.

All readers are welcome to design their own itineraries when traversing the TREE, i.e., to create
their own reader-tailored books. Some readers might wish to take into account the suggestions
for how Ideas of quantum chemistry can be shaped.

Minimum minimorum and minimum

First of all, the reader can follow two basic paths:

*  Minimum minimorum, for those who want to proceed as quickly as possible to get an idea
what quantum chemistry is all about, following the chapters designated by (A) (only 47
pages, volume 1).

*  Minimum, for those who seek basic information about quantum chemistry, e.g., in order to
use popular computer packages for the study of molecular electronic structure. They may
follow the chapters designated by the symbols A and A in volumes 1 and 2. One may
imagine here a student of chemistry, specializing in, say, analytical or organic chemistry
(not quantum chemistry). This path involves reading approximately 300 pages plus the
appropriate appendices (if necessary).

Other proposed paths consist of the minimum itinerary (i.e., A and A) plus special excursions,
which are termed additional itineraries.

Additional itineraries

Those who want to use the existing computer packages in a knowledgeable fashion or just want
to know more about the chosen subject may follow the chapters designated by the following
special signs:

e large molecules (1),
» molecular mechanics and molecular dynamics (#),
e solid state chemistry/physics (B),

2 Ttis, therefore, possible to prune some of the branches.

XXIv
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chemical reactions (0),

spectroscopy (),

exact calculations on atoms or small molecules (),

relativistic and quantum electrodynamics effects (»),

most important computational methods of quantum chemistry (Q).

Special itineraries

For readers interested in particular aspects of this book rather than any systematic study, the
following suggestions are offered.

To control the main message of the chapter: “Where are we,” “An example,” “What is it all

29

about,” “Why is this important,” “Summary,” “Questions,” and “Answers.”

For those interested in recent progress in quantum chemistry, we suggest sections “From
the research front” in each chapter.

For those interested in the future of quantum chemistry we propose the sections labeled
“Ad futurum” in each chapter, and the chapters designated by (d).

For people interested in the “magical” aspects of quantum physics (e.g., bilocation, reality
of the world, teleportation, creation of matter, tunneling, volume 1) we suggest sections

with the label (X).

Your own computations are easy

On the web page www.webmo.net the reader will find a possibility to carry out his/her own
quantum mechanical calculations (free up to 60 seconds of CPU time). Nowadays this is a
sufficiently long time to perform computations for molecules even with several dozens of atoms.






Electronic Orbital Interactions
in Periodic Systems

Beauty of style and harmony and grace and good rhythm depend on simplicity.

Plato
Where are we?
We are on the upper left branch of the TREE.
An example
Polyacetylene! represents a practically infinite polymeric chain: ---—-CH=CH-CH=CH-CH=
CH-CH=CH- - -. There is no such a thing in Nature as a truly infinite system.” Yet, if we exam-

ine larger and larger portions of a homogeneous material, we come to the idea that such quantities
as energy per stoichiometric unit, electron excitation energy, vibrational frequencies, etc., depend less
and less on system size. This means that a boundary region (polymer ends, crystal surface) contri-
bution to these quantities becomes negligible. Therefore, these (known as intensive) quantities attain
limit values identical to those for an infinite system. It pays to investigate the infinite system, because
we can use its translational symmetry to simplify its description. Well, this is what this chapter is all
about.

The discovery of conducting polymers (like polyacetylene) was highlighted by the Nobel Prize 2000 for Hideki
Shirakawa, who synthesized a crystalline form of polyacetylene, as well as Allan G. MacDiarmid and Al-
lan J. Heeger, who increased its electric conductivity by 18 orders of magnitude by doping the crystal with
some electron acceptors and donors. This incredible increase is probably the largest known to humanity in
any domain of experimental sciences (H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger,
Chem. Soc. Chem. Commun., 578(1977)).

That is, a macromolecule. The concept of polymer was introduced to chemistry by Herman Staudinger.

Ideas of Quantum Chemistry
https://doi.org/10.1016/B978-0-44-464248-6.00009-0 1
Copyright © 2020 Elsevier B.V. All rights reserved.



2 Chapter 1

Herman Staudinger (1881-1965), German
polymer chemist, professor at the University
of Freiburg, received the Nobel Prize in 1953
“for his discoveries in the field of macromolec-
ular chemistry.” However strange it may sound
now, as late as in 1926 the concept of polymers
was unthinkable in chemistry. It will be encour-
aging for PhD students to read that a professor
advised Staudinger in the late 1920s: “Dear
colleague, leave the concept of large molecules
well alone: organic molecules with a molec-
ular weight above 5000 do not exist. Purify
your products, such as rubber, then they will

What is it all about?

Primitive lattice (H)

Wave vector (H)

Inverse lattice (H)

First Brillouin zone (FBZ) ()
Properties of the FBZ (H)

A few words on Bloch functions (H)

e  Wavesin 1D
e Waves in 2D

Infinite crystal as a limit of a cyclic system (H)

*  Origin of the band structure
*  Born-von Kdrmén condition in 1D
*  k dependence of orbital energy

A triple role of the wave vector (Hl)
Band structure (H)

*  Born-von Kdrmén boundary condition in 3D
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crystallize and prove to be lower molecular
substances.”

p-6
p-8
p. 11
p. 14
p. 15
p. 15

p. 22

p. 26
p. 26

e Crystal orbitals from Bloch functions (LCAO CO method)

* SCF LCAO CO equations
e  Band width

* Fermi level and energy gap: insulators, metals, and semiconductors
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Solid state quantum chemistry () p. 40

*  Why do some bands go up?

*  Why do some bands go down?

*  Why do some bands stay constant?

*  More complex behavior explainable — examples

The Hartree-Fock method for crystals (H) p. 53

*  Secular equation

* Integration in the FBZ

*  Fock matrix elements

e T[terative procedure (SCF LCAO CO)
* Total energy

Long-range interaction problem (H) p. 58

*  Fock matrix corrections
* Total energy corrections
e Multipole expansion applied to the Fock matrix
e Multipole expansion applied to the total energy

Back to the exchange term (H) p. 68
Choice of unit cell (%) p. 71

*  Field compensation method
e The symmetry of subsystem choice

If a motif (e.g., a cluster of atoms) associated with a unit cell is regularly translated along three different
directions in space, we obtain an infinite three-dimensional periodic structure (translational symmetry).
In 2D (Fig. 1.1a) this means that having a single (special) type of tiles (unit cells) we have been successful
in tiling the complete two-dimensional space. One of the consequences is that the five-fold symmetry
axes have to be absent in the atomic arrangements in such crystals. It turned out that a vast majority of
real crystals can be reliably modeled using this idea. There were efforts in mathematics to design some
nontranslational complete tilings. In 1963 it was first shown that for a number N = 20000 of square tiles
such a nontranslational tiling is possible. This number has been gradually reduced and in 1976 Roger
Penrose proposed covering by N = 2 kinds of tiles (see Fig. 1.1b). Then, Daniel Shechtman discovered®
that there are substances (known now as quasicrystals) that indeed show five-fold symmetry axes (also
other translationally forbidden symmetry axes). The reason why quasicrystals exist in Nature is quite
simple: some strong short-range interactions force unusual five-ligand complexes. It is remarkable that
the discovery of quasicrystals has been preceded by ancient artists (Fig. 1.1c¢).

When applying the Hartree—Fock method to such periodic infinite objects one exploits the translational
symmetry of the system, e.g., in calculating integrals. It would be indeed prodigal to compute the in-
tegrals many times, the equality of which is guaranteed by translational symmetry. When translational
symmetry is taken into account, the problem reduces to the calculation of the interaction of a single unit

3 He received the 2011 chemistry Nobel Prize for “the discovery of quasicrystals.”
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(@)

Fig. 1.1. Translational symmetry in crystals and its lack in the quasicrystals despite a perfect long-
range order. (a) Translational symmetry in the NaCl crystal build of Na™ and CI™ ions. (b) The
Penrose tiling as an example of a quasicrystal, no translational symmetry. (c) A medieval Arabian
mosaic as an example of a long-range nontranslational order.

cell (reference, labeled by 0) with all other unit cells, the nearest neighbor cells being most important.
The infinite size of the system is hidden in the plethora of points (to be taken into account) in what is
known as the first Brillouin zone (FBZ). The FBZ represents a unit cell in what is called inverse lattice
(associated with a given lattice reflecting the translational symmetry).

The electronic orbital energy becomes a function of the FBZ points and we obtain what is known as
a band structure of energy levels. This band structure decides the electronic properties of the system
(insulator, semiconductor, metal). We will also show how to carry out the mean-field (Hartree—Fock)
computations on infinite periodic systems. The calculations require infinite summations (interaction of
the reference unit cell with the infinite crystal) to be made. This creates some mathematical problems,
which will be also described in the present chapter.

Why is this important?

The present chapter is particularly important for those readers who are interested in solid state physics
and chemistry. Others may treat it as exotic and, if they decide they do not like exotic matter, may go
directly to other chapters.

The properties of a polymer or a crystal sometimes differ very widely from those of the atoms or
molecules of which they are built. The same substance may form different periodic structures, which
have different properties (e.g., graphite and diamond). The properties of periodic structures could be
computed by extrapolation of the results obtained for larger and larger clusters of the atoms from which
the substance is composed. This avenue is however noneconomic. It is easier to carry out quantum me-
chanical calculations for an infinite system® than for a large cluster.’

4
5

The surface effects can be neglected and the units the system is composed of are treated as equivalent.
Sometimes we may be interested in a particular cluster, not in an infinite system. Then it may turn out that it is
more economic to perform the calculations for the infinite system, and use the results in computations for the
clusters (e.g., R.A. Wheeler, L. Piela, R. Hoffmann, J. Am. Chem. Soc., 110(1988)7302).
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What is needed?

*  Operator algebra (Appendix V1-B, p. V1-595, necessary),

* translation operator (Appendix V1-C, p. V1-605, necessary),
*  Hartree—Fock method (Chapter V1-8, necessary),

*  multipole expansion (Appendix G, p. 613, advised),

*  matrix diagonalization (Appendix V1-L, p. V1-703, advised).

Classical works

At the age of 23, Felix Bloch published an article “Uber die Quantenmechanik der Elektronen in Kristall-
gittern” in Zeitschrift fiir Physik, 52(1928)555 (only two years after Schrédinger’s historic publication)
on the translational symmetry of the wave function. This has also been the first application of LCAO
expansion. % A book appeared in 1931 by Leon Brillouin entitled Quantenstatistik (Springer Verlag,
Berlin, 1931), in which the author introduced some of the fundamental notions of band theory. % The first
ab initio calculations for a polymer were carried out by Jean-Marie André in the paper “Self-Consistent
Field Theory for the Electronic Structure of Polymers,” published in the Journal of the Chemical Physics,
50(1969)1536.

1.1 Primitive lattice

Let us imagine an infinite crystal, e.g., a system that exhibits the 3D translational symmetry of
the charge distribution (nuclei and electrons). The translational symmetry will be fully deter-
mined by three (linearly independent) basis vectors®: a1, a», and a3, having the property that
a; beginning at any atom extends to the corresponding nearest-neighbor identical atom located
in the crystal. The lengths of the basis vectors ai, a», and a3 are called the lattice constants

along the three periodicity axes.’

A lot of such basis sets are possible. Any choice of basis vectors is acceptable from the point
of view of mathematics. For economic reasons we choose one of the possible vector sets that
give the least volume parallelepiped® with sides a1, a>, and a3. This parallelepiped (arbitrarily

Not necessarily perpendicular though; they determine the periodicity axes.

As shown on p. V1-514, a symmetry of the nuclear framework does not guarantee the same symmetry of the
electronic charge distribution computed using a mean-field method. We may cope with the period doubling as
compared to the period of the nuclear framework (cf. BOAS, p. V1-514). If this happens, then we should choose
such lattice constants that ensure the periodicity of both nuclear and electron distributions.

‘We are, however, interested in the smallest unit cell.
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shifted in space,” Fig. 1.2) represents our choice of the unit cell,'” which together with its

content (motif) is to be translationally repeated."!

¢ /¢ ¢

¢ &,‘ ‘,t

Lk % £t

N

Fig. 1.2. Periodicity in 2D. We choose the unit cell (the parallelogram with vectors a; and a») and
its content (motif) in such a way as to reproduce the whole infinite crystal by repeating the unit
cells through its translation vectors R; = njay + naay with integer ni, ny. In 3D, instead of the
parallelogram, we would have a parallelepiped, which would be repeated by translation vectors
R; =nja 4+ n2a; + n3as with integer ny, na, n3.

Let us now introduce the space of translation vectors R; = Zi’ﬁl nijaj, where n;; are arbitrary

integer numbers.

The points indicated by all the translation vectors (“lattice vectors”) are called the crys-
tallographic lattice or the primitive lattice or simply the lattice.

9 The choice of the ori gin of the coordinate system is arbitrary, the basis vectors are determined within the accuracy
of an arbitrary translation.

10 An example of a jigsaw puzzle shows that other choices are possible as well. A particular choice may result
from its convenience. This freedom will be used on p. 14.

The motif can be ascribed to the unit cell (i.e., chosen) in many different ways provided that after putting the cells
together, we get the same original infinite crystal. Let me propose to disregard this problem for the time being
(as well as the problem of the choice of the unit cell) and to think of the unit cell as a space-fixed parallelepiped
with the motif that has been enclosed in it. We will come back to this complex problem at the end of the present
chapter.

11
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Let us introduce the translation operators T(Ri) defined as translations of a function on which
the operator acts by vector R; (cf. Chapter V1-2 and Appendix V1-C on p. V1-605):

TR)f(r)= f(r—Ry). (1.1)

The function f(r) = f(r — 0) is centered in the neighborhood of the origin of the coordinate
system, while the function f(r — R;) is centered on the point shown by vector R;.

The crystal periodicity is reflected by the following obvious property of the potential energy V
for an electron (V depends on its position in the crystal):

Vir) =V —-R)), (1.2)

for any R;. The equation simply says that the infinite crystal looks exactly the same close to the
origin 0 as to the point shown by any lattice vector R;.

It is easy to see that the operators f(R,-) form a group (Appendix V1-C, p. V1-605) with
respect to their multiplication as the group operation.'”'? In Chapter V1-2 it was shown that
the Hamiltonian is invariant with respect to any translation of a molecule. For infinite systems,
the proof looks the same for the kinetic energy operator, the invariance of V is guaranteed

12 ndeed, first a product of such operators represents a translational operator:
TRNTR)f() =TR)f(r —R) = f(r—R; —Ry) = f(r — (R +Ry)) =
=T R, +Ry) f ().
Therefore,
TRDT Ry =T(R; +Ry). (1.3)
The second requirement is to have a unity operator. This role is played by f(O), since
TO) f(r)=f@r—0)=f(r). (1.4)

The third condition is the existence (for every T(Ri)) of the inverse operator, which in our case is T(—Ri),
because

TR)T(-R)=T®R; —R) =T(0). (1.5)
The group is Abelian (i.e., the operations commute), since

TRPTRY =TR; +R)=TRy + R =TR)TRy). (1.6)
13 Besides the translational group, the crystal may also exhibit what is called the point group, associated with
rotations, reflections in planes, inversion, etc., and the space group that results from the translational group and
the point group. In such cases, a smaller unit cell may be chosen, because the whole crystal is reproduced not
only by translations, but also by other symmetry operations. In the present textbook, we will concentrate on the
translational symmetry group only.
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by Eq. (1.2). Therefore, the effective one-electron Hamiltonian commutes with any translation
operator:

HT®R;)=T®R,)H.

1.2 Wave vector

Since f(R,-) commutes with the Hamiltonian, its eigenfunctions also represent the eigen-
functions of the translation operator'* (cf. Chapter V1-2, p. V1-87, also Appendix V1-C on
p. V1-605), i.e., in this case Hyr = Ey and T(R))¥(r) = ¥(r — R;) = A, ¥ (r). The sym-
metry of V requires the equality of the probability densities

Y@ =R =1y, (1.7)
for any lattice vector R;j, which gives |AR; |> = 1, and therefore we may write
IR, =exp(—ifk,), (1.8)

where QRj will be found in a moment."”

From equation T(R DY (r) =Ar ; ¥ (r) it follows that
AR;AR; = AR 4R (1.9)
because
T(R; +R)Y(r) = AR, +r, ¥ (V). (1.10)
However,
TR; +R)Y (@) =TRHTR)Y (1) = hg, T (R)Y (1) =
= AR; AR, ¥ (T).
Since this relation has to be satisfied for any R; and Ry, it is sufficient to have
Or; =k-Rj, (1.11)

because a multiplication of A by A corresponds to adding the exponents, which results in adding
vectors R, which we need to have. The dot product k - R ; for simplicity will also be written as
kR;.

14" The irreducible representations of an Abelian group are one-dimensional. In our case (translational group) this

means that there is no degeneracy and that an eigenfunction of the Hamiltonian is also an eigenfunction of all
the translation operators.
The exponent sign is arbitrary, we use “—” following a widely used convention.
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CONCLUSION:

The eigenfunctions of the one-electron Hamiltonian and the translation operators corre-
spond to the following eigenvalues of the translation operator: Ar; = exp(—ikR;),

where the vector k characterizes the function, not the direction of R;. In other words, any
one-electron wave function (crystal orbital) which is the eigenfunction of the one-electron
Hamiltonian could be labeled by its corresponding vector K, i.e., ¥ (r) — k().

BLOCH THEOREM

The value of such a function in the point shifted by the vector R; is equal to

Yk(r — R;) = exp(—ikR ;) Yk (r). (1.12)

Felix Bloch (1905-1983), American physicist
of Swiss origin, from 1936-1971 professor at
Stanford University. Bloch contributed to the
electronic structure of metals, superconductiv-
ity, ferromagnetism, quantum electrodynam-
ics, and the physics of neutrons. In 1946, inde-
pendently from E.M. Purcell, he discovered the
nuclear magnetic resonance effect. Both sci-
entists received the Nobel Prize in 1952 “for
the development of new methods for nuclear
magnetic precision measurements and the dis-
coveries in connection therewith.”

)
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of the Nobel Prizes

This relation represents a necessary condition to be fulfilled by the eigenfunctions for
a perfect periodic structure (crystal, layer, polymer). This equation differs widely from
Eq. (1.2) for potential energy. Unlike potential energy, which does not change upon a lat-
tice translation, the wave function undergoes a change of its phase acquiring the factor
exp(—ikR;).

Any linear combination of functions labeled by the same Kk represents an eigenfunction of any
lattice translation operator and corresponds to the same k. Indeed, from the linearity of the
translation operator
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?(Rz)(01¢k(r) + 2y (1) = c19k(r — R) + oY (r — Ry) =
= c1 exp(—ikRy) gk (r) + c2 exp(—ikR) Y (r) =
= exp(—ikRy) (c19x(r) + c29k(1)).

Let us construct the following function (called a Bloch function) from a function yx(r),
which in the future will play the role of an atomic orbital (in this case centered at the ori-

gin):
¢(r) = exp(ikR))x(r—R;),
J

where the summation extends over all possible R}, i.e., over the whole crystal lattice. The func-
tion ¢ is automatically an eigenfunction of any translation operator and may be labeled by the
index '’ k.

Our function ¢ represents, therefore, an eigenfunction of the translation operator with the same
eigenvalue as that corresponding to ¥. In the following very often i will be constructed as a
linear combination of Bloch functions ¢.

A Bloch function is nothing but a symmetry orbital built from the functions x (r — R;).

A symmetry orbital is a linear combination of atomic orbitals that transforms according to an
irreducible representation I' of the symmetry group of the Hamiltonian (cf. Appendix V1-C).

16 Indeed, first

T(R)$(x) =T Ry Y _exp(ikR))x(r—R;) =Y exp(kR)TR)x(r—R;) =
J J
= Zexp(ikRj)x(r—Rj —R)).
J

Instead of the summation over R s let us introduce a summation over R jr= R i+ R;, which means an identical
summation as before, but we begin to sum the term up from another point of the lattice. Then, we can write

> exp(k(Rj — R))x (r — R ;1) = exp(—ikRy) Y exp(ikR ;) x (r —R;/) =
J J
=exp(—ikRy)¢ (r),

which had to be proved.
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In order to obtain such a function we may use the corresponding projection operator (see
Eq. (VI-C.13)).

There is also another way to construct a function ¢ (r) of a given k from an auxiliary function
u(r) satisfying an equation similar to Eq. (1.2) for the potential V

TR)u(r) =u(r —R;) = u(r). (1.13)
Then, ¢k (r) = exp(ikr)u(r). Indeed, let us check
T(R)¢k(r) = T (R;) exp(ikr)u(r) = exp(ik(r — Rj)u(r — R;) = exp(—ikR )¢y (r).
(1.14)
1.3 Inverse lattice

Let us now construct the so-called biorthogonal basis by, by, b3 with respect to the basis vectors
ai, a;, asz of the primitive lattice, i.e., the vectors that satisfy the biorthogonality relations

b,‘ a; =27T5[j. (1-15)

The vectors b; can be expressed by the vectors a; in the following way:

b =27 a, (s—l)ﬁ, (1.16)

Sij=a;-a;. (1.17)

The vectors b1, by, and b3 form the basis of a lattice in a three-dimensional space. This
lattice will be called the inverse lattice. The inverse lattice vectors are, therefore,

i=3
K; =Y gjibi, (1.18)
i=1
where g;; represent arbitrary integers. We have K;R; = 2w M;;, where M;; are integer
numbers.
Indeed,

[=3 k=3

1=3 k=3
K;-Ri=) gubi- Y niar=y_ Y nixgjibi-ap= (1.19)

=1 k=1
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[=3 k=3 =3

=) nigjiQ@m)du = 2m) Y nugji =27 Mjj (1.20)

=1 k=1 =1

with n;k, g1, and therefore also M;; as integers.

The inverse lattice is composed, therefore, from the isolated points indicated from the
origin by the vectors K. All the vectors that begin at the origin form the inverse space.

Let us see how we obtain the inverse lattice (1D, 2D, 3D) in practice.
1D

We have only a single biorthogonality relation: by a; = 27, i.e., after skipping the index ba =
2. Because of the single dimension, we have to have b = 27” (;—’) where |a| = a. Therefore,

the vector b has length 27” and the same direction as a.

2D

This time we have to satisfy: bya; = 27, byay = 27w, byar =0, bya; = 0. This means that
the game takes place within the plane determined by the lattice vectors @ and a,. The vector
by has to be perpendicular to a;, while by has to be perpendicular to a1, their directions as
shown in Fig. 1.3 (each of the b vectors is a linear combination of a@; and a; according to
Eq. (1.16)).

3D

In the three-dimensional case the biorthogonality relations are equivalent to setting

21

by=a) x a3 —, (1.21)
|%
2

br=a3 xa; —, (1.22)
|%
2

bs;=a| xa; —”, (1.23)
\%

where
V=a; (ay x az) (1.24)

is the volume of the unit cell of the crystal (Fig. 1.4).
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)

b,

Fig. 1.3. Construction of the inverse lattice in 2D. In order to satisfy the biorthogonality relations
(1.15) the vector by has to be orthogonal to az, while b, must be perpendicular to a;. The lengths of
the vectors b and b, also follow from the biorthogonality relations by - a; = b, - a =2m.

J

a

a)xaz=area"i

Fig. 1.4. The volume V of the unit cell is equal to V = a - (area of the base)i = a - (a2 x a3).
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1.4 First Brillouin zone (FBZ)

As was remarked at the beginning
Léon Nicolas Brillouin

(1889-1969), French physi-
cist, professor at the
Sorbonnne and College de
France in Paris, after 1941
in the USA: at the Univer-
sity of Madison, Columbia
University, Harvard Uni-
versity. His contributions
included quantum mechan-
ics and solid state theory
(he is one of the founders of construct it (Fig. 1.5).
electronic band theory).

of this chapter, the example of a
jigsaw puzzle shows us that a par-
allelepiped unit cell does not rep-
resent the only choice. Now, we
will profit from this extra free-
dom and will define the so-called
Wigner—Seitz unit cell. Here fol-

lows the prescription for how to

Fig. 1.5. Construction of the First Brillouin zone (FBZ) as a Wigner-Seitz unit cell of the inverse lattice
in 2D. The circles represent the nodes of the inverse lattice. We cut the lattice in the middle between
the origin node W and all the other nodes (here it turns out to be sufficient to take only the nearest
and the next nearest neighbors) and remove all the sawn-off parts that do not contain W. Finally we
obtain the FBZ in the form of a hexagon. The Wigner-Seitz unit cells (after performing all allowed
translations in the inverse lattice) reproduce the complete inverse space.

We focus on a node W, saw the crystal along the plane that dissects (symmetrically) the distance
to a nearest neighbor node, throw the part that does not contain W into the fireplace, and then
repeat the procedure until we are left with a solid containing W. This solid represents the
FBZ.
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1.5 Properties of the FBZ

The vectors k, which begin at the origin and end in the interior of the FBZ, label all
different irreducible representations of the translational symmetry group.

Let us imagine two inverse space vectors k' and kK” related by the equality k” = k' 4+ K,
where K; stands for an inverse lattice vector. Taking into account the way the FBZ has been
constructed, if one of them, say, k', indicates a point in the interior of the FBZ, then the second,
K”, “protrudes” outside the FBZ. Let us try to construct a Bloch function that corresponds to
k”. We have

¢ =Y exp(K'R)x(xr—Rj) = exp(i(k +K)R;)x(r—R;) = (1.25)
J J
=exp(iKst)Zexp(ik/Rj)X(r—Rj)= (1.26)
J
=exp(i2nMsj)Zexp(ik/Rj)X(r—Rj)= (1.27)
J
=Y exp(ikR))x(r—R)) = . (1.28)

J

It turns out that our function ¢ does behave like corresponding to kK’. We say that the two vectors
are equivalent.

Vector k outside the FBZ is always equivalent to a vector from inside the FBZ, while
two vectors from inside of the FBZ are never equivalent. Therefore, if we are interested
in electronic states (the irreducible representation of the translational group is labeled
by k vectors) it is sufficient to limit ourselves to those k vectors that are enclosed in the
FBZ.

1.6 A few words on Bloch functions
1.6.1 Waves in 1D

Let us take a closer look of a Bloch function corresponding to the vector K,

$(r) =) _exp(ikR))x (r —R)), (1.29)
j
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and limit ourselves to one-dimensional periodicity. In such a case, the wave vector k reduces
to a wave number k, and the vectors R can all be written as R; = ajz, where z stands for the
unit vector along the periodicity axis, a means the lattice constant (i.e., the nearest neighbor

distance), while j =0, £1, 2, .... Let us assume that in the lattice nodes we have hydrogen
atoms with orbitals ¥ = 1s. Therefore, in 1D we have
$e(r) =) _exp(ikja)x (r —ajaz). (1.30)

J

Let me stress that ¢y represents a function of position r in the three-dimensional space; only
the periodicity has a one-dimensional character. The function is a linear combination of the
hydrogen atom 1s orbitals. The coefficients of the linear combination depend exclusively on
the value of k. Eq. (1.28) tells us that the allowed k € (0, 27”), or alternatively k € (=7, 7). If
we exceed the FBZ length 27”, then we would simply repeat the Bloch functions. For k =0 we
get

¢o=Y exp(0)x(r—ajz) = x(r—ajz), (1.31)
J J
i.e., simply a sum of the 1s orbitals. Such a sum has a large value on the nuclei, and close to a
nucleus ¢ will be delusively similar to its 1s orbital (Fig. 1.6a).

The function looks like a chain of buoys floating on a perfect water surface. If we ask whether
¢o represents a wave, the answer could be that if any, then its wave length is co. What about
k = 77 In such a case

qﬁ%(r) = Zexp(ijﬂ)x(r —ajz) = Z(cosnj +isinmj)x(r—ajz) =
J J
=) (1) x(r—ajz).

J
If we decide to draw the function in space, we would obtain Fig. 1.6b. When asked this time, we
would answer that the wave length is equal to A = 2a, which by the way is equal to'” |2k—”| There
is a problem. Does the wave correspond to k = Z or k = —Z? It corresponds to both of them.
Well, does it contradict the theorem that the FBZ contains all different states? No, everything
is OK. Both functions are from the border of the FBZ, their k values differ by Z’T—u (one of the
inverse lattice vectors), and therefore both functions represent the same state.

Now, let us take k = 5. We obtain

Se(r) = ;exm?)x(r —ajz)= ;(cos%j) i sin(%j))x(r —ajn) (13D

17 1n the preceding case the formula A = 27” also worked, because it gave A = oo.
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Fig. 1.6. Waves in 1D. Shadowed (white) circles mean negative (positive) value of the function, the
coefficients multiplying the hydrogen 1s orbitals are given within the gray stripes. Despite the fact that

the waves are complex, in each of the cases (a)-(f) we are able to determine their wave length.
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with some coefficients being complex numbers. For j = 0 the coefficient is equal to 1, for
j = litequals i, for j =2 it takes the value —1, for j = 3 it attains —i, for j =4 it is again
1, and the values repeat periodically. This is depicted in Fig. 1.6c. If this time we ask whether
we see any wave there, we have to answer that we do, because after the length 4a everything
begins to repeat. Therefore, A = 4a and again it is equal to 27” = 2X Everything is OK, except
that humans like pictures more than schemes. Can we help it sétfnehow? Let us take a look
of ¢ (r) which corresponds to k = —7-. We may easily convince ourselves that this situation
corresponds to what we have in Fig. 1.6d.

Let us stress that ¢_; = ¢’ represents another complex wave. By adding and subtracting ¢ (r)
and ¢_;(r) we receive the real functions, which can be plotted and that is all we need. By
adding %(qbk + ¢—_x), we obtain

| |
5@t =) cos(x(r —ajn). (1.33)
J

while %(qﬁk — ¢_p) results in

1 .
5 O =60 =) _sin(G)x(x —ajn). (134)
J
Now, there is no problem with plotting the new functions (Fig. 1.6e,f).'®

A similar technique may be applied to any k. Each time we will find that the wave we
see exhibits the wave length A = 27”

1.6.2 Waves in 2D

Readers confident in their understanding of the wave vector concept may skip this subsection.

This time we will consider the crystal as a two-dimensional rectangular lattice; therefore, the
corresponding inverse lattice is also two-dimensional as well as the wave vectors Kk = (ky, ky).

Let us first take k = (0, 0). We immediately obtain ¢, as shown in Fig. 1.7a, which corresponds
to infinite wave length (again A = 27 which looks as “no wave” at all.

18 And what would happen if we took k = Z XL, with the integer m < n? We would again obtain a wave with the
wave length A = 27”, i.e., in this case A = 7> 2a. It would be quite difficult to recognize such a wave computed at
the lattice nodes, because the closest wave maxima would be separated by n2a and this length would have been

covered by m wave lengths.
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Let us try k = (%, 0). The summation over j may be replaced by a double summation (indices
m and n along the x and y axes, respectively); therefore, R; = max + nby, where m and n
correspond to the unit cell j, a and b denote the lattice constants along the axes shown by the
unit vectors x and y. We have

ok = Z exp (i (kyma + kynb))x (r — max — nby) =

mn

= Zexp(inm)x(r — max — nby) = Z(—l)’”x(r — max — nby).

mn mn

If we go through all m and n, it is easily seen that moving along x we will meet the signs
+1,—1,4+1,—1, ..., while moving along y we have the same sign all the time. This will corre-
spond to Fig. 1.7b.

This is a wave.

The wave fronts are oriented along y, i.e., the wave runs along the x axis, in the direction
of the wave vector k. The same happened in the one-dimensional cases, but we did not
express that explicitly: the wave moved along the (one-dimensional) vector k.

Exactly as before the wave length is equal to 27 divided by the length of k. Since we are at the
FBZ border, a wave with —k simply means the same wave as for k.

If we take k = [3, 0], then
fk= exp <i (k,ma + kynb))x(r — max — nby) =
mn

= Zexp(m—m))((r — max — nby).
mn 2

This case is very similar to that in 1D for k = 7-, when we look at the index m and k = 0,
and when we take into account the index n. We may carry out the same trick with addition and
subtraction, and immediately get Fig. 1.6c,d.

Is there any wave over there? Yes, there is. The wave length equals 4a, i.e., A = 27”, and the

wave is directed along vector k. When making the figure, we also used the wave corresponding
to —Kk; therefore, neither the sum nor the difference corresponds to k or —k, but rather to both
of them (we have two standing waves). The reader may guess the wave length and direction of
propagation for ¢ corresponding to k = [0, 3;].
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Let us see what happens for k =[Z., 7]. We obtain

bk = Z exp (i (kyma + kynb) x (r — max — nby) =

= Zexp (i (mm + nn))x (r — max — nby) =
mn

= Z(—l)m‘”‘)( (r — max — nby),
mn

which produces waves propagating along k. And what about the wave length? We obtain'’

L__ 2 2ab
o J2 12
JE+@E2 Valtb

(1.35)

In the last example there is something that may worry us. As we can see, our figure corresponds
not only to k; = (%, 7) and ko = (=7, —7), which is understandable (as discussed above),
but also to the wave with k3 = (—7, 7) and to the wave evidently coupled to it, namely, with
ks = (%, —7%)! What is going on? Again, let us recall that we are on the FBZ border and this
identity is natural, because the vectors k, and ks as well as k; and k4 differ by the inverse
lattice vector (0, 2—’T), which makes the two vectors equivalent.

1.7 Infinite crystal as a limit of a cyclic system
1.7.1 Origin of the band structure

Let us consider the hydrogen atom in its ground state (cf. p. V1-232). The atom is described by
the atomic orbital 1s and corresponds to energy —0.5 a.u. Let us now take two such atoms. Due
to their interaction we have two molecular orbitals: bonding and antibonding (cf. p. V1-511),
which correspond, respectively, to energies a bit lower than —0.5 and a bit higher than —0.5
(this splitting is larger if the overlap of the atomic orbitals gets larger). We therefore have
two energy levels, which stem directly from the 1s levels of the two hydrogen atoms. For three
atoms we would have three levels, for 102 023

atoms we would get 10°” energy levels, which would

19" The formula can be easily verified in two limiting cases. The first corresponds to @ = b. Then, A = a+/2, and this
agrees with Fig. 1.7e. The second case is when b = oo, which gives A = 2a, exactly as in the one-dimensional
case with k = %. This is what we expected.
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be densely distributed along the energy scale, but would not cover the whole scale. There will
be a bunch of energy levels stemming from 1s, i.e., an energy band of allowed electronic states.
If we had an infinite chain of hydrogen atoms, there would be a band resulting from 1s levels,
a band stemming from 2s, 2 p, etc., so the bands might be separated by energy gaps.

How dense would the distribution of the electronic levels be? Will the distribution be uniform?
Answers to such questions are of prime importance for the electronic theory of crystals. It
is always advisable to come to a conclusion by steps, starting from something as simple as
possible, which we understand very well.

Fig. 1.8 shows how the energy level distribution looks for longer and longer rings (regular
polygon) of hydrogen atoms. One of the important features of the distribution is that

the levels extend over an energy interval and are more numerous for energy extremes.
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Fig. 1.8. Energy level distribution for a regular polygon built from hydrogen atoms. It is seen that the
energy levels are located within an energy band, and are closer to one another at the band edges. The
center of the band is close to the binding energy in the isolated hydrogen atom (equal to —0.5 a.u.).
Next to energy levels the molecular orbitals are shown schematically (the shadowed circles mean
negative values). R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures”,
VCH Publishers, New York, © VCH Publishers. Reprinted with permission of John Wiley&Sons, Inc.

How do the wave functions that correspond to higher and higher-energy levels in a band look?
Let us see the situation in the ring H,, molecules. Fig. 1.8 indicates that the rule is very simple.
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The number of nodes of the wave function increases by one when we go to the next level (higher
in the energy scale).”’

1.7.2 Born—von Kdrmdn condition in 1D

How is it in the case of a crystal? Here we are confronted with the first difficulty. Which crystal,
and of what shape? Should it be an ideal crystal, i.e., with perfectly ordered atoms? There is
nothing like the perfect crystal in Nature. For the sake of simplicity (as well as generality) let us
assume, however, that our crystal is perfect indeed. And what about its surface (shape)? Even
if we aimed at studying the surface of a crystal, the first step would be the infinite crystal (i.e.,
with no surface). This is the way theoreticians always operate.”!

One of the ingenious ideas in this direction is known as the Born—von Kdrmdn boundary
conditions. The idea is that instead of considering a crystal treated as a stick (let us
consider the one-dimensional case), we treat it as a circle, i.e., the value of the wave
function at one end of the stick has to be equal to the wave function value at the other
end. In this way we remove the problem of the crystal ends, and on top of that, all the
unit cells become equivalent.

The same may be done in two- and three-dimensional cases. We usually introduce the Born—von
Kéarman boundary conditions for a finite N and then go with N to co. After such a procedure is
carried out, we are pretty sure that the solution we are going to obtain will not only be true for
an infinite cycle but also for the mass (bulk) of the infinite crystal. This stands to reason, pro-
vided that the crystal surface does not influence the (deep) bulk properties at all.>” In the ideal
periodic case, we have to do with the cyclic translational symmetry group (Appendix V1-C
on p. V1-605). The group is Abelian and, therefore, all the irreducible representations have
dimension 1.

20 They are bound to differ by the number of nodes, because this ensures their mutual orthogonality (required for
the eigenfunctions of a Hermitian operator).

People say that when theoreticians attack the problem of stability of a table as a function of the number 7 of its
legs, they do it in the following way. First, they start with n = 0, then they proceed with n = 1, then they go to
n = 00, and after that they have no time to consider other values of n.

We circumvent the difficult problem of the crystal surface. The boundary (surface) problem is extremely impor-
tant for obvious reasons: we usually have to do with this, not with the bulk. The existence of the surface leads to
some specific surface-related electronic states.

21

22



24  Chapter 1

Theodore von Karman (1881-1963), Amer-
ican physicist of Hungarian origin, director
of the Guggenheim Aeronautical Laboratory
at the California Institute of Technology in
Pasadena. Von Kdrmén was also a founder of
the NASA Jet Propulsion Laboratory and fa-
ther of the concept of the first supersonic aero-
plane. On the Hungarian stamp one can see the
famous “Kdrman vortex street” behind an air-
plane. He was asked by the father of the young far less exciting than that of a banker. Theodore
mathematical genius John von Neumann to von Kédrmdn did not accomplish this mission
persuade him that the job of a mathematicianis  well (to the benefit of science).

Let us assume we have to do with N equidistant atoms located on a circle, the nearest neighbor
distance being a. From the Bloch theorem, Eq. (1.12), for the wave function i we have

W (N) = exp(—ikaN)y (0), (1.36)

where we have assumed that the wave function i corresponds to the wave vector k (here, in
1D, to the wave number k), the translation has been carried out by Na, and as the argument
of the function ¢ we have (symbolically) used the number (0, 1, 2, ... N — 1) of the atom on
which the function is computed.

The Born—von Karman condition means

v (N)=v(0), (1.37)
or
exp(—ikaN) =1. (1.38)
From this it follows that
kaN =2n J, (1.39)
where J =0, =1, 2, .... This means that only some k are allowed, namely, k = 27”%

The Bloch functions take the form (cf. Eq. (1.29))
> _explikja)x;. (1.40)
j

where x; denotes a given atomic orbital (e.g., 1s) centered on atom j. The summation over j
in our case is finite, because we only have N atoms (j =0,1,2,..., N — 1). Let us consider
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J=0,1,2,..., N — 1 and the corresponding values of k = 27”% For each k we have a Bloch
function; altogether we have, therefore, N Bloch functions. Now, we may try to increase J and

take J = N. The corresponding Bloch function may be written as

Zexp(ian)Xj=ZXj, (1.41)
j J

which turns out to be identical to the Bloch function with k = 0, i.e., with J = 0. We are
reproducing what we already have. It is clear, therefore, that we have a set of those k that
form a complete set of nonequivalent states; they correspond to J =0,1,2,...N — 1. It
is also seen that if the limits of this set are shifted by the same integer (like, e.g., J =
-3,-2,-1,0,1,2,..., N — 4), then we still have the same complete set of nonequivalent
states. Staying for the time being with our primary choice of the set, we will get N values
of k € [0, 27”%], ie., ke {0, 27”%, 27”%, 27”%} Those k values are equidistant. When
N — 00, the section to be divided attains the length 27” Hence

the nonequivalent states (going with N to infinity) correspond to those k’s that are from
section [ O, 27”] or shifted section [— %, +%], called the FBZ. From now on we will adopt
this last choice, i.e., [—%, +%]. We are allowed to make any shift, because, as we have
shown, we keep the same nonequivalent values of k. The allowed k values are distributed
uniformly within the FBZ. The number of the allowed k’s is equal to co, because N = 0o
(and the number of the allowed k’s is always equal to N).

1.7.3 k dependence of orbital energy

Note that the higher energy of a molecular orbital (in our case they are identical to the Bloch
functions), the more nodes they have. Let us take the example of benzene (N = 6, Fig. 1.8)
and consider only those molecular orbitals that can be written as linear combinations of the
carbon 2p,, where z is the axis orthogonal to the plane of the molecule. The wave vec-
tors” (k = 27”%) may be chosen as corresponding to J =0,1,2,...,5, or equivalently to
J=-3,-2,—-1,0,4+1,+2. It is seen that J = 0 gives a nodeless function,”* J = +1lead to a
pair of the Bloch functions with a single node, J = %2 give a pair of the two-node functions,
and finally J = —3 corresponds to a three-node function.

It has occasionally been remarked in this book (cf., e.g., Chapter V1-4), that increasing the
number of nodes” results in higher energy. This rule becomes most transparent in the present

23
24

In this case this is a wave number.

We neglect here the node that follows from the reflection in the molecular plane as being shared by all the

molecular orbitals considered.

25 Thatis, considering another wave function that has a larger number of nodes.
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case (see Fig. 1.8). A nodeless Bloch function means all the contacts between the 2p orbitals
are w bonding, which results in low energy. A single node means introducing two nearest
neighbor w antibonding interactions, and this causes an energy increase. Two nodes result in
four antibonding interactions, and the energy goes up even more. Three nodes already give all
the nearest neighbor contacts of antibonding character and the energy is the highest possible.

1.8 A triple role of the wave vector

As has already been said, the wave vector (in 1D, 2D, and 3D) plays several roles. They are the
following:

The wave vector k tells us which type of plane wave arranged from certain
1. objects (like atomic orbitals) we are concerned with. The direction of k is the
propagation direction, the wave length is A = %

The wave vector may also be treated as a label for the irreducible representation
of the translational group.

In other words, k determines which irreducible representation we are dealing with (Ap-
pendix V1-C on p. V1-605). This means that k tells us which permitted rhythm is exhibited
by the coefficients at atomic orbitals in a particular Bloch function (permitted, i.e., ensuring
that the square has the symmetry of the crystal). There are a lot of such rhythms, e.g., all
the coefficients equal each other (k = 0), or one node introduced, two nodes, etc. The FBZ
represents a set of such k, which corresponds to all possible rhythms, i.e., nonequivalent
Bloch functions.’® In other words, the FBZ gives us all the possible symmetry orbitals that
can be formed from an atomic orbital.

The longer the k, the more nodes the Bloch function ¢y has: |k| = 0 means no
nodes, and at the boundary of the FBZ there is the maximum number of nodes.

1.9 Band structure
1.9.1 Born—von Kdrmdn boundary condition in 3D

The Hamiltonian H we were discussing represents an effective one-electron Hamiltonian, its
form not yet given. From Chapter V1-8, we know that it may be taken as the Fock operator.

26 That is, linearly independent.
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A crystal represents nothing but a huge (quasiinfinite) molecule, and assuming the Born—von
Karman condition, a huge cyclic molecule.

This is how we will get the Hartree—Fock solution for the crystal — by preparing the
Hartree—Fock solution for a cyclic molecule and then letting the number of unit cells N
go to infinity.

Hence, let us take a large piece of crystal — a parallelepiped with the number of unit cells
in each of the periodicity directions (i.e., along the three basis vectors) equal to 2N + 1 (the
reference cell 0, N cells on the right, N cells on the left). The particular number, 2N + 1, is
not very important; we have only to be sure that such a number is large. We assume that the
Born—von Kédrmén condition is fulfilled. This means that we treat the crystal like a snake eating
its tail, and this will happen on each of the three periodicity axes. This enables us to treat the
translational group as a cyclic group, which gives an enormous simplification to our task (no
end effects, all cells equivalent). The cyclic group of the lattice constants a, b, ¢ implies that
(cf. Eq. (1.38))

exp (ikxa(2N + 1)) =1, (1.42)

exp (ikyb2N +1)) =1, (1.43)

exp (ik,cQN + 1)) =1, (1.44)
which can be satisfied only for some special vectors k = (ky, ky, k) satisfying

_271 Jy

_ , 1.45
T a4 2N +1 (145)
k=2 D (1.46)
YT b 2N+ 1 '
= _& (1.47)
e 2N+ 1 '

with any of Jy, Jy, J; taking (2N + 1) consecutive integer numbers. We may, for example,
assume that Jy, Jy, J; € {—=N,—N +1,...,0,1,2,..., N}. Whatever N is, k will always sat-
isfy

T
—— <k < —, (1.48)
a a
b4 b4
—— <ky < —, 1.49
, k<7 (1.49)
T T
—— <k, < —, (1.50)
c c
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which is what we call the FBZ. We may therefore say that before letting N — oo

the FBZ is filled with the allowed vectors K in a grain-like way, the number being equal
to the number of unit cells, i.e., (2N + 1)3. Note that the distribution of the vectors
allowed in the FBZ is uniform. This is ensured by the numbers J, which divide the axes
ky, ky, k; in the FBZ into equal pieces.

1.9.2 Crystal orbitals from Bloch functions (LCAO CO method)

What we expect to obtain finally in the Hartree—Fock method for an infinite crystal are the
molecular orbitals, which in this context will be called the crystal orbitals (COs). As usual we
will plan to expand the CO as a linear combination of atomic orbitals (cf. p. V1-499). Which
atomic orbitals? Well, those which we consider appropriate’’ for a satisfactory description of
the crystal, e.g., the atomic orbitals of all the atoms of the crystal. We feel, however, that we
are going to suffer a big defeat trying to perform this task.

There will be a lot of atomic orbitals, and therefore also an astronomic number of in-
tegrals to compute (infinite for the infinite crystal) and that is it, we cannot help this.
However, if we begin such a hopeless task, the value of any integral would repeat an
infinite number of times. This indicates a chance to simplify the problem. Indeed, we
have not yet used the translational symmetry of the system.

If we are going to use the symmetry, then we may create the Bloch functions representing the
building blocks that guarantee the proper symmetry in advance. Each Bloch function is built
from an atomic orbital y, i.e.,

¢k=(2N+1)—%Zexp(ikR,)X(r—Rj). (1.51)
j

The function is identical to that of Eq. (1.29), except it has a factor (2N + 1)_%, which makes
the function approximately normalized.”®

Any CO will be a linear combination of such Bloch functions, each corresponding to a given
x. This is equivalent to the LCAO expansion for molecular orbitals; the only difference is

27 As for molecules.
28 The function without this factor is of class 0, i.e., normalizable for any finite N, but nonnormalizable for
N = oco. The approximate normalization makes the function square integrable, even for N = oco. Let us see. We



Electronic Orbital Interactions in Periodic Systems 29

that we have cleverly preorganized the atomic orbitals (of one type) into symmetry orbitals
(Bloch functions). Hence, it is indeed appropriate to call this approach the LCAO CO method
(linear combination of atomic orbitals, crystal orbitals), analogous to the LCAO MO method
(cf. p. V1-503). There is, however, a problem. Each CO should be a linear combination of the ¢k
for various types of x and for various k. Only then would we have the full analogy: a molecular
orbital is a linear combination of all the atomic orbitals belonging to the atomic basis set.”

It will be shown below that the situation is far better.

Each CO corresponds to a single vector k from the FBZ and is a linear combination of
the Bloch functions, each characterized by k.

There are, however, only a few Bloch functions — their number is equal to the number of the
atomic orbitals per unit cell (denoted by w).*"

It is easy to show that, indeed, we can limit ourselves to a single vector k. Imagine this is false,
and our CO is a linear combination of all the Bloch functions corresponding to a given k. Then,
it is of all the Bloch functions corresponding to the next K, etc., up to the exhaustion of all the
allowed k. When, in the next step, we solve the orbital equation with the effective (i.e., Fock)
Hamiltonian using the Ritz method, then we will end up computing the integrals <¢k|f ¢k/> and

have

<¢k|d)k) =(2N+ 1)_3ZZexp(ik(Rj —Rj/))/)((r—Rj)X(l'—Rj/)dT:

JoJ

=QN+1)~3 Z Zexp (ik(Rj —R;»)) / x@®x(r—R; —R;j»)dr,

joJ

because the integral does depend on a relative separation in space of the atomic orbitals. Further,

(dlo) = Y exp(ikR;) / X)X (r —R))dr, (1.52)

because we can replace a double summation over j and j’ by a double summation over j and j” = j — j’ (both
double summations exhaust all the lattice nodes), and the latter summation always gives the same independent
of j; the number of such terms is equal to (2N + 3. Finally, we may write (¢ |¢)) = 1+ various integrals. The
largest of these integrals is the nearest neighbor overlap integral of the functions y. For normalized x each of
these integrals represents a fraction of 1. Additionally the contributions for further neighbors decay exponentially
(cf. p. V1-735). As a result, (¢x|¢k) is a number of the order of 1 or 2. This is what we have referred to as an
approximate normalization.

Indeed, for any k the number of distinct Bloch functions is equal to the number of atomic orbitals per unit cell.
The number of allowed vectors, K, is equal to the number of unit cells in the crystal. Hence, using the Bloch
functions for all allowed k would be justified, any CO would represent a linear combination of all the atomic
orbitals of the crystal.

30 Our optimism pertains, of course, to taking a modest atomic basis set (small ).

29
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(@x|dx)- For k # K such integrals are equal to zero according to group theory (Appendix V1-C
on p. V1-605), because F transforms according to the fully symmetric irreducible representa-
tion of the translational group,’' while ¢ and ¢y transform according to different irreducible
representations.’” Therefore the secular determinant in the Ritz method will have a block form
(cf. Appendix V1-C). The first block will correspond to the first k, the second to the next k,
etc., where every block®® would look as if in the Ritz method we used the Bloch functions cor-
responding uniquely to that particular k. The conclusion is the following: since a CO has to be
a wave with a given K, let us construct it with Bloch functions, which already have just this type
of behavior with respect to translation operators, i.e., have just this k. This is fully analogous
with the situation in molecules, if we used atomic symmetry orbitals.**

Thus, each vector k from the FBZ is associated with a crystal orbital, and therefore with
a set of LCAO CO coefficients.

The number of such CO sets (each k — one set) in principle has to be equal to the number of
unit cells, i.e., infinite.>> The only profit we may expect could be associated with the hope that
the computed quantities do not depend on k too much, but will rather change smoothly when k
changes. This is indeed what will happen, then a small number of vectors k will be used, and
the quantities requiring other K will be computed by interpolation.

Only a part of the computed COs will be occupied, and this depends on the orbital energy of
a given CO, the number of electrons, and the corresponding K, similarly to what we had for
molecules.

The set of SCF LCAO CO equations will be very similar to the set for the molecular
orbital method (SCF LCAO MO). In principle, the only difference will be that in the
crystal case we will consequently use symmetry orbitals (Bloch functions) instead of
atomic orbitals.

31
32
33
34

Unit cells (by definition) are identical.

Recall that k also has the meaning of the irreducible representation index (of the translational group).

The whole problem can be split into independent problems for individual blocks.

A symmetry atomic orbital (SAO) represents such linear combination of equivalent-by-symmetry atomic orbitals
that transforms according to one of the irreducible representations of the symmetry group of the Hamiltonian.
Then, when molecular orbitals (MOs) are formed in the LCAO MO procedure, any given MO is a linear combi-
nation of the SAOs belonging to a particular irreducible representation. For example, a water molecule exhibits
the symmetry plane (o) that is perpendicular to the plane of the molecule. An MO which is symmetric with
respect to o contains the symmetry atomic orbital 1s, + 1sp, which is symmetric with respect to o, but does not
contain the symmetry atomic orbital 1s, — Lsp.

Well, we cannot fool Mother Nature! Was there an infinite molecule (crystal) to be computed or not? Then the
number of such sets of computations has to be infinite full stop.

35
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That is it. The rest of this section is associated with some technical details accompanying the
operation N — o0.

1.9.3 SCF LCAO CO equations

Let us write down the SCF LCAO CO equations as if they corresponded to a large molecule
(Bloch functions will be used instead of atomic orbitals). Then the n-th CO may be written as

Yn(0,K) =Y cqn(K)y (r, ), (1.53)
q

where ¢, is the Bloch function corresponding to the atomic orbital x,, i.e.,

$(r.K) = 2N + 1) > exp(ikR ) x4, (1.54)
j

with xJ = x,(r —R;) (forg =1,2, ..., w).

The symbol qu means the g-th atomic orbital (from the set we prepared for the unit cell
motif) located in the cell indicated by vector R; (j-th cell).

In the expression for v, we have taken into account that there is no reason whatsoever that the
coefficients ¢ were k-independent, since the expansion functions ¢ depend on k. This situation
does not differ from that which we encountered in the Hartree-Fock—Roothaan method (cf.
p. V1-506), with one technical exception: instead of the atomic orbitals we have symmetry
orbitals, in our case Bloch functions.

The secular equations for the Fock operator will have, of course, the form of the Hartree—
Fock—Roothaan equations (cf. Chapter V1-8, p. V1-505):

w
Zcqn[qu — &nSpgl =0
qg=1

forp=1,2,..., 0,

where the usual notation has been applied. For the sake of simplicity, we have not highlighted
the k dependence of ¢, F, and S. Whenever we decide to do this in future, we will put it in the
form F, (K), Sy (K), etc. Of course, &, will become a function of Kk, as will be stressed by the
symbol ¢, (k). Theoretically, the secular equation has to be solved for every k of the FBZ.
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Therefore, despite the fact that the secular determinant is of rather low rank (w), the infinity
of the crystal forces us to solve this equation an infinite number of times. For the time being,
though, do not worry too much.

1.9.4 Band width

The number of secular equation solutions is equal to w, and let us label them using index n. If
we focus on one such solution and check how ¢, (k) and v, (r, k) are sensitive to a tiny change
of k within the FBZ, it turns out that &, (K) and i, (r, K) change smoothly. This may not be true
when k passes through the border of the FBZ.

The function &, (K) is called the n-th electronic band.

If we traveled in the FBZ, starting from the origin and continuing along a straight line, then
€1, €2, ..., etc., would change as functions of k and we would be concerned with several energy
bands. If ¢, (k) changes very much during our travel over the FBZ, we would say that the n-th
band has large width or dispersion.

As shown on p. 22 for hydrogen atoms, an energy band forms due to the bonding and antibond-
ing effects, the energy splitting being of the order of the overlap integral between the nearest
neighbor 1s atomic orbitals. If instead of hydrogen atoms, we put a unit cell with a few atoms
inside (motif), then the story is similar: the motif has some one-electron energy levels (orbital
energies), putting together the unit cells makes these energy levels change into energy bands,
and the number of levels in any band is equal to the number of unit cells, or the number of
allowed k vectors in the FBZ.

The band width is related to interactions among the unit cell contents, and is roughly
proportional to the overlap integral between the orbitals of the interacting unit cells.

How do we plot the band structure? For the one-dimensional crystal, e.g., a periodic polymer,
there is no problem: the wave vector k means the number k changes from —7 to 7, and we
plot the function &, (k). For each n we have a single plot, e.g., for the hydrogen atom the band
€1 collects energies resulting from the 1s atomic orbital interacting with other atoms, the band
&7 those from 2s, etc. In the three-dimensional case we usually choose a path in the FBZ. We
start from the point I" defined as k = 0. Then, we continue to some points located on the faces
and edges of the FBZ surface. It is impossible to go through the whole FBZ. The band structure
in the three-dimensional case is usually shown by putting the described itinerary through the
FBZ on the abscissa (Fig. 1.9), and ¢, (k) on the ordinate. Fig. 1.9 shows an example of what
we might obtain from such calculations.
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Fig. 1.9. (a) FBZ for four regular layers of nickel atoms (a crystal surface model), four characteristic
points in the FBZ are shown. (b) The band structure for this system (for a particular itinerary within
the FBZ). We see that we cannot understand much: just a horrible irregular mess of lines. All the band
structures look equally clumsy. In spite of this, from such a plot we may determine the electrical and
optical properties of the nickel slab. We will see later on why the bands have such a mysterious form.
R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures”, VCH Publishers,
New York, © VCH Publishers. Reprinted with permission of John Wiley&Sons, Inc.

1.9.5 Fermi level and energy gap: insulators, metals, and semiconductors
Insulators

How many electrons do we have in a crystal? The answer is simple: the infinite crystal contains
an infinite number of electrons. But infinities are often different. The decider is the number of
electrons per unit cell. Let us denote this number by ny.

If this means a double occupation of the molecular orbitals of the unit cell, then the corre-
sponding band in the crystal will also be fully occupied, because the number of energy levels in
a band is equal to the number of unit cells, and each unit cell contributes two electrons from the
abovementioned molecular orbital. The bands that come from the valence orbitals of the motif

are called valence bands. Therefore,
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doubly occupied orbitals of the motif, related usually to the inner electronic shells, lead
to fully occupied bands. Accordingly, singly occupied orbitals lead to bands that are
half-occupied, while empty (virtual) orbitals lead to empty bands (unoccupied, or con-
duction bands).

The highest occupied crystal orbital is known as the Fermi level; it is equivalent to the HOMO
of the crystal.36 The HOMO and LUMO levels, fundamental as always, decide about the chem-
istry of the system, in our case the chemical and physical properties of the crystal.

The gap between the HOMO and LUMO of the crystal means the gap between the top
of the occupied valence band and the bottom of the conduction band (Fig. 1.10). When
the gap is large we have to do with insulators.

(b)

STy 9P -

energy gap
insulator semiconductor metal

Fig. 1.10. Valence bands (highest occupied by electrons) and conduction bands (empty). The electric
properties of a crystal depend on the energy gap between them (i.e., HOMO-LUMO separation).
(a) A large gap is typical of insulators. (b) A medium gap means a semiconductor. (c) A zero gap is
typical of metals.

Metals, one-dimensional metals, and Peierls distortion

A partially filled band may lead to the situation with the band gap equal to zero.

36 We sometimes find a thermodynamic definition of the Fermi level, but in this book it will always be the highest
occupied crystal orbital.
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A metal is characterized by having empty levels (conduction band) immediately (zero
distance) above doubly occupied valence ones.

Metals, because of the zero gap, are conductors of electric current.’’

The conductivity of the metallic systems is typically orientation-independent. In the last
decades two-dimensional and one-dimensional metals (with anisotropy of conductivity) have
been discovered. The latter are called molecular wires and may have unusual properties, but
are difficult to prepare for they often undergo spontaneous dimerization of the lattice (known
as the Peierls transition).

As Fig. 1.11a shows, dimerization
makes the bonding (and antibonding) ef-
fects stronger a little below (and above)
the middle of the band, whereas at the

Rudolph Peierls (1907-
1995), British  physi-
cist, professor at the
universities of Birming-

band edges the effect is almost zero
(since dimerization makes the bonding
as well as antibonding effects cancel

ham and Oxford. Peierls
participated in the Manhat-
tan Project (atomic bomb)

as leader of the British
group.

within a pair of consecutive bonds). As a
result, the degeneracy is removed in the
middle of the band (Fig. 1.11b), i.e., a
band gap appears and the system undergoes metal—insulator transition (Fig. 1.11c). This is why
polyacetylene, instead of having all the CC bonds equivalent (Fig. 1.11d), which would make
it a metal, exhibits alternation of bond lengths (Fig. 1.11e), and it becomes an insulator or
semiconductor.

To a chemist, the Peierls transition is natural. The hydrogen atoms will not stay equidistant in
a chain, but will simply react and form hydrogen molecules, i.e., will dimerize like lightning.
Also the polyacetylene will try to form 7 bonds by binding the carbon atoms in pairs. There is
simply a shortage of electrons to keep all the CC bonds strong; there are only enough for every
second, which means simply dimerization through creating = bonds. On the other hand, the
Peierls transition may be seen as the Jahn—Teller effect: there is a degeneracy of the occupied
and empty levels at the Fermi level, and it is therefore possible to lower the energy by removing
the degeneracy through a distortion of geometry (i.e., dimerization). Both pictures are correct
and represent the thing.

37 When an electric field is applied to a crystal, its energy levels change. If the field is weak, then the changes may
be computed by perturbation theory (treating the zero-field situation as the unperturbed one). This means that
the perturbed states acquire some admixtures of the excited states (cf. Chapter V1-5). The lower the energy gap,
the more mixing takes place. For metallic systems (gap zero), such perturbation theory certainly would not be
applicable, but real excitation to the conduction band may take place.
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Fig. 1.11. The Peierls effect has the same origin as the Jahn-Teller effect in removing the electronic
level degeneracy by distorting the system (H.A. Jahn, E. Teller, Proc. Roy. Soc. A, 161(1937)220). The
electrons occupy half the FBZ, i.e., —g—a <k< zn—a, with a standing for the nearest neighbor distance.
The band has been plotted assuming that the period is equal to 2a, hence a characteristic back fold-
ing of the band (similarly as we would fold a sheet of paper with band structure drawn, the period
equal to a). (a) Lattice dimerization, shown by little arrows, amplifies the bonding and antibonding
effects close to the middle of the FBZ, i.e., in the neighborhood of k = :I:g—a. At the same time close
to k = 0 there is a cancellation of the opposite effects: within bonding (bottom) and also within anti-
bonding (top) interactions. (b) As a result, the degeneracy at k = 7 is removed and the band gap
appears, which corresponds to lattice dimerization. (c) The system lowers its energy when undergoing
metal-insulator or metal-semiconductor transition. (d) The polyacetylene chain, forcing equivalence
of all CC bonds, represents a metal. (e) However, due to the Peierls effect, the system undergoes
dimerization and becomes an insulator. R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in
Extended Structures”, VCH Publishers, New York, © VCH Publishers. Reprinted with permission of John
Wiley&Sons, Inc.
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Fig. 1.12. Solitons and bipolarons as a model of electric conductivity in polymers. (a) Two phases of
polyacetylene separated by a defect. Originally the defect was associated with an unpaired electron,
but when a donor, D, gave its electron to the chain, the defect became negatively charged. (b) The
energy of such a defect is independent of its position in the chain (important for charge transporta-
tion); in reality the change of phase takes place in sections of about 15 CC bonds, not two bonds as
suggested in (a). Such a situation is sometimes modeled by a nonlinear differential equation, which
describes a soliton motion (“solitary wave”) that represents the traveling phase boundary. (c) In the
polyparaphenylene chain two phases (low-energy aromatic and high-energy quinoid) are possible as
well, but in this case they are of different energies. Therefore, the energy of a single defect (aro-
matic structures-kink-quinoid structures) depends on its position in the chain (hence, no charge
transportation). However, a double defect with a (higher-energy) section of a quinoid structure has a
position-independent energy, and when charged by dopants (bipolaron) can conduct electricity. The
abovementioned polymers can be doped either by electron donors (e.g., arsenium, potassium) or
electron acceptors (iodine), which results in a spectacular increase in their electric conductivity.

Polyacetylene (Fig. 1.12a,b), after doping, becomes ionized if the dopants are electron ac-
ceptors, or receives extra electrons if the dopant is an electron donor (symbolized by D in
Fig. 1.12). The perfect polyacetylene exhibits the bond alternation discussed above, but it may
be that we have a defect that is associated with a region of “changing rhythm” (or “phase”):
from®® (= — = — =) to (— = — = —). Such a kink is sometimes described as a soliton wave
(Fig. 1.12a,b), i.e., a “solitary wave” first observed in the 19th century in England on a wa-
ter channel, where it preserved its shape while moving over a distance of several kilometers.

38 This possibility was first recognized by J.A. Pople, S.H. Walmsley, Mol. Phys., 5(1962)15, 15 years before the
experimental discovery of this effect.
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The soliton defects cause some new energy levels (“solitonic levels”) to appear within the gap.
These levels too form their own solitonic band.

Charged solitons may travel when subject to an electric field, and therefore the doped poly-
acetylene turns out to be a good conductor (organic metal).

In polyparaphenylene, soliton waves are impossible, because the two phases (aromatic and
quinoid, Fig. 1.12¢) differ in energy (low-energy aromatic phase and high-energy quinoid
phase). However, when the polymer is doped, a charged double defect (bipolaron, Fig. 1.12¢c)
may form, and such a defect may travel when an electric field is applied. Hence, the doped
polyparaphenylene, similarly to the doped polyacetylene, is an “organic metal.”

Controlling the metal Fermi level — an electrode

The Fermi level (i.e., HOMO level) is especially interesting in metals, because there are ways
to change its position on the energy scale. We may treat the metal as a container for electrons:
we may pump the electrons into it or make the electron deficiency in it by using it as a cathode
or anode, respectively. Having a tunable HOMO level, we decide if and when our reactant (i.e.,
the electrode) acts as an electron donor or electron acceptor! This opens avenues like, e.g.,
polarography, when scanning the electrode potential results in consecutive electrode reactions
occurring whenever the electrode Fermi level matches the LUMO of the substances present in
the solution. Since the matching potentials are characteristic of the substances, this is a way of
performing chemical identification together with quantitative analysis.

Semiconductors

An intrinsic semiconductor exhibits a conduction band separated by a small energy gap
(band gap) from the valence band. (See Fig. 1.13a.)

If the empty energy levels of the dopant are located just over the occupied band of an intrinsic
semiconductor, the dopant may serve as an electron acceptor for the electrons from the occu-
pied band (thus introducing its own conduction band), and we have a p-type semiconductor,
Fig. 1.13b. If the dopant energy levels are occupied and located just under the conduction band,
the dopant may serve as an n-type semiconductor, Fig. 1.13c.

Among these three fundamental classes of materials (insulators, metals, and semiconductors),
the semiconductors are most versatile as to their properties and practical applications. The
metals just conduct electricity, and the carriers of the electric current are electrons. The metals’
conductivity spans only one order of magnitude. The insulators are useful, because they do not
conduct electric current at all. In contrast to the metals and the insulators, the conductivity of
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Fig. 1.13. Energy bands for semiconductors. (a) Intrinsic semiconductor (small gap). (b) p-type semi-
conductor (electron acceptor levels close to the occupied band). (c) n-type semiconductor (electron
donor levels close to the conduction band).

semiconductors can be controlled within many orders of magnitude (mainly by doping, i.e.,
admixture of other materials). The second extraordinary feature is that only in semiconductors
the conductivity can be tuned by using two types of the charge carriers: (negative) electrons
and (positive) electron holes. The results of such tuning depends on temperature, light, and
the electric and magnetic fields. In contrast to metals and insulators, the semiconductors are
able to emit visible light. All these features make it possible to tailor functional semiconductor
devices with versatile electric and photonic properties. This is why in practically any electric
or photonic equipment a semiconductor device is operating.

Additional reasons why organic metals and semiconductors are of practical interest include
their versatility and tunability (precision) offered by the kingdom of organic chemistry, easy
processing typical of the plastics industry, the ability to literally bend the device without loosing
its properties, and last but not least low weight.

What kind of substances are semiconductors? Well, their most important class can be derived
directly from a section of the Mendeleev periodic table (the first row shows the group number,
Table 1.1): (1) IV-IV semiconductors: the elemental semiconductors C, Si, Ge, as well as the
compounds SiGe, SiC, (ii) III-V semiconductors: GaS, GaN, GaP, InP, InSb, etc., (iii) II-IV
semiconductors: CdSe, CdS, CdTe, ZnO, ZnS, etc.

1.10 Solid state quantum chemistry

A calculated band structure, with information about the position of the Fermi level, tells us a lot
about the electric properties of the material under study (insulator, semiconductor, metal). They
tell us also about basic optical properties; e.g., the band gap indicates what kind of absorption
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Table 1.1. A “semiconductor sec-
tion” of the Mendeleev periodic ta-

ble.
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spectrum we may expect. We can calculate any measurable quantity, because we have at our
disposal the computed (though approximate) wave function.

However, despite this very precious information, which is present in the band structure, there
is a little worry. When we stare at any band structure, such as that shown in Fig. 1.9, the
overwhelming feeling is a kind of despair. All band structures look similar, well, just a tangle
of plots. Some go up, some down, some stay unchanged, some, it seems without any reason,
change their direction. Can we understand this? What is the theory behind this band behavior?

1.10.1 Why do some bands go up?

Let us take our beloved chain of hydrogen atoms in the 1s state, to which we already owe so
much (Fig. 1.14).

“ODODODODODOD T
*00...000...BOO0...O e
CDDDDDDOOOOOO 1w
*OO0O0O0OOOOOO e

Fig. 1.14. The infinite chain of ground-state hydrogen atoms and the role of bonding and antibonding
effects. (a) All interactions are bonding. (b) Introduction of a single node results in an energy increase.
(c) Two nodes increase the energy even more. (d) Maximum number of nodes - the energy is the
highest possible.
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When will the state of the chain have the lowest energy possible? Of course, when all the atoms
interact in a bonding, and not antibonding, way. This corresponds to Fig. 1.14a (no nodes of
the wave function). When in this situation we introduce a single nearest neighbor antibonding
interaction, the energy will for sure increase a bit (Fig. 1.14b). When two such interactions
are introduced (Fig. 1.14c), the energy goes up even more, and the plot corresponds to two
nodes. Finally, in the highest-energy situation all nearest neighbor interactions are antibonding
(maximum number of nodes, Fig. 1.14d). Let us recall that the wave vector was associated
with the number of nodes. Hence, if k increases from zero to 7, the energy increases from
the energy corresponding to the nodeless wave function to the energy characteristic for the
maximum-node wave function. We understand, therefore, that some band plots are such as in
Fig. 1.15a.

1.10.2 Why do some bands go down?

Sometimes the bands go in the opposite direction: the lowest energy corresponds to k = 7,

the highest energy to k = 0. What happens over there? Let us once more take the hydrogen
atom chain, this time, however, in the 2 p, state (z is the periodicity axis). This time the Bloch
function corresponding to k =0, i.e., a function that follows just from locating the orbitals 2 p,
side by side, describes the highest-energy interaction — the nearest neighbor interactions are
all antibonding. Introduction of a node (increasing k) means a relief for the system — instead of
one painful antibonding interaction we get a soothing bonding one. The energy goes down. No
wonder, therefore, some bands look like those shown in Fig. 1.15b.

1.10.3 Why do some bands stay constant?

According to numerical rules (p. V1-503) inner shell atomic orbitals do not form effective linear
combinations (crystal orbitals). Such orbitals have large exponential coefficients and resulting
overlap integral, and therefore the band width (bonding versus antibonding effect) is negligible.
This is why the nickel 1s orbitals (deep-energy level) result in a low-energy band of almost zero
width (Fig. 1.15¢), i.e., staying flat as a pancake all the time. Since they are always of very low
energy, they are doubly occupied and their plot is so boring, they are not even displayed (they
are absent in Fig. 1.9).

1.10.4 More complex behavior explainable — examples

We understand, therefore, at least why some bands are monotonically going down, some up, and
some stay constant. In explaining these cases, we have assumed that a given CO is dominated
by a single Bloch function. Other behaviors can be explained as well by detecting what kind of
Bloch function combination we have in a given crystal orbital.
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Fig. 1.15. Three typical band plots in the FBZ. (a) 1s orbitals. Increasing k is accompanied by an
increase of the antibonding interactions and this is why the energy goes up. (b) 2p; orbitals (z denotes
the periodicity axis). Increasing k results in decreasing the number of antibonding interactions and the
energy goes down. (c) Inner shell orbitals. The overlap is small as it is, and therefore the band width
is practically zero.
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Two-dimensional regular lattice of hydrogen atoms

Let us take a planar regular lattice of hydrogen atoms in their ground state.>” Fig. 1.9 shows the
FBZ of a similar lattice. We (arbitrarily) choose as the itinerary through the FBZ: '-X-M-T".
From Fig. 1.7a we easily deduce that the band energy for the point I" has to be the lowest, be-
cause it corresponds to all the interaction bonding. What will happen at the point X (Fig. 1.9a),
which corresponds to k = (j:%, 0) or k = (0, j:%)? This situation is related to Fig. 1.7b. If
we focus on any of the hydrogen atoms, it has four nearest neighbor interactions: two bonding
and two antibonding. This, to a good approximation, corresponds to the nonbonding situation
(hydrogen atom ground-state energy), because the two effects nearly cancel each other out.
Halfway between I" and X, we go through the point that corresponds to Fig. 1.7c,d. For such
a point, any hydrogen atom has two bonding and two nonbonding interactions, i.e., the energy
is the average of the I" and X energies. The point M is located in the corner of the FBZ, and
corresponds to Fig. 1.7e. All the nearest neighbor interactions are antibonding there, and the
energy will be very high. We may, therefore, anticipate a band structure of the kind sketched in
Fig. 1.16a. The figure has been plotted to reflect the fact that the density of states for the band
edges is the largest, and therefore the slope of the curves has to reflect this. Fig. 1.16b shows
the results of the computations.*’ It is seen that even very simple reasoning may rationalize the
main features of band structure plots.

Trans-polyacetylene (regular one-dimensional polymer)

Polyacetylene already has quite a complex band structure, but as usual the bands close to the
Fermi level (valence bands) are the most important in chemistry and physics. All these bands
are of the 7 type, i.e., their COs are antisymmetric with respect to the plane of the polymer.
Fig. 1.17 shows how the valence bands are formed. We can see the principle is identical to that
for the chain of hydrogen atoms: the more nodes, the higher the energy. The highest energy
corresponds to the band edge.

The resulting band is only half-filled (metallic regime), because each of the carbon atoms of-
fers one electron, and the number of COs is equal to the number of carbon atoms (each CO
can accommodate two electrons). Therefore, the Peierls mechanism (Fig. 1.11) is bound to
enter into play, and in the middle of the band a gap will open. The system is, therefore, pre-
dicted to be an insulator (or semiconductor) and indeed it is. It may change to a metal when
doped. Fig. 1.17 shows a situation analogous to the case of a chain of the ground-state hydrogen
atoms.

39 A chemist’s first thought would be that this could never stay like this when the system is isolated. We are bound
to observe the formation of hydrogen molecules.

40 R, Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures,” VCH Publishers,
New York, 1988.
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Fig. 1.16. (a) A sketch of the valence band for a regular planar lattice of ground-state hydrogen atoms.
(b) The valence band as computed in the laboratory of Roald Hoffmann for a nearest neighbor dis-
tance equal to 2 A. The similarity of the two plots confirms that we are able, at least in some cases, to
predict band structure. R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Struc-
tures”, VCH Publishers, New York, © VCH Publishers. Reprinted with permission of John Wiley&Sons,
Inc.

Polyparaphenylene

The extent to which the COs conform to the rule of increasing number of nodes with energy
(or k) will be seen in the example of a planar conformation of polyparaphenylene.*' On the
left-hand side of Fig. 1.18 we have the valence 7 orbitals of benzene:

« first, the lowest-energy nodeless*> doubly occupied molecular orbital ¢,

» then, we have a doubly degenerate and fully occupied level with the corresponding orbitals,
¢ and ¢3, each having a single node,

* next, a similar doubly degenerate empty level with orbitals ¢4 and @5 (each with two nodes),

» and finally, the highest-energy empty three-node orbital @g.

4l J.-M. André, J. Delhalle, J.-L. Brédas, “Quantum Chemistry Aided Design of Organic Polymers,” World Scien-
tific, Singapore, 1991.
42 Besides the nodal plane of the nuclear framework.
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Fig. 1.17. (a) 7 band formation in polyenes (N stands for the number of carbon atoms) with the
assumption of CC bond equivalence (each has length a/2). For N = 0o this gives the metallic solution
(no Peierls effect). As we can see, the band formation principle is identical to that which we have seen
for hydrogen atoms. (b) Band structure. (c) density of states D(E), i.e., the number of states per
energy unit at a given energy E. The density has maxima at the extremal points of the band. If we
allowed the Peierls transition, at k = £ /a we would have a gap. J.-M. André, J. Delhalle, J.-L. Brédas,
“Quantum Chemistry Aided Design of Organic Polymers”, World Scientific, Singapore, 1991. Reprinted with
permission from the World Scientific Publishing Co. Courtesy of the authors.

Thus, even in the single monomer we have the rule (of energy increasing with the number of
nodes) fulfilled.

Binding phenyl rings by using CC o bonds results in polyparaphenylene. Let us see what hap-
pens when the wave number & increases (the middle and the right-hand side of Fig. 1.18). What
counts now is how two complete monomer orbitals combine: in-phase or out-of-phase. The
lowest-energy m orbitals of benzene (¢;) arranged in-phase (k = 0) give point I', the lowest
energy in the polymer, while out-of-phase, point k = Z, the highest energy. At k = Z- there is a
degeneracy of this orbital and of @3 arranged out-of-phase. The degeneracy is quite interesting
because, despite a superposition of the orbitals with the different number of nodes, the result,
for obvious reasons, corresponds to the same number of nodes. Note the extremely small dis-
persion of the band which results from the arrangement of ¢;. The figure shows that it is bound
to be small, because it is caused by the arrangement of two molecular orbitals that are further
away in space than those considered so far (the overlap results from the overlap of the atomic
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Fig. 1.18. Rationalizing the band structure of polyparaphenylene (7 bands). The COs (in the center)
built as in-phase or out-of-phase combinations of the benzene m molecular orbitals (left-hand side).
It is seen that energy of the COs for k =0 and k = 7 agree with the rule of increasing number of
nodes. A small band width corresponds to small overlap integrals of the monomer orbitals. J.-M.
André, ). Delhalle, J.-L. Brédas, “Quantum Chemistry Aided Design of Organic Polymers”, World Scientific,
Singapore, 1991. Reprinted with permission from the World Scientific Publishing Co. Courtesy of the

authors.



Electronic Orbital Interactions in Periodic Systems 47

orbitals separated by three bonds, and not by a single bond, as it has been). We see a similar
regularity in the conduction bands that correspond to the molecular orbitals @4, ¢5, and ¢g. The
rule works here without any exception and results from the simple statement that a bonding
superposition has a lower energy than the corresponding antibonding one.

Thus, when looking at the band structure for polyparaphenylene we stay cool: we understand
every detail of this tangle of bands.

A stack of Pt(ll) square planar complexes

Let us try to predict*’ qualitatively (without making calculations) the band structure of a stack

of platinum square planar complexes, typically [Pt(CN _)4217]00. Consider the parallel eclipsed
configuration of all the monomeric units. Let us first simplify our task. Who likes cyanides? Let
us throw them away and take something theoreticians really love: H™. This is a little less than
just laziness. If needed, we are able to make calculations for cyanides too, but to demonstrate
that we really understand the machinery we are always recommended to make the system as
simple as possible (but not simpler). We suspect that the main role of CN™ is just to interact
electrostatically, and H™ does this too (being much smaller). In reality, it turns out that the
decisive factor is the Pauli exclusion principle, rather than the ligand charge.**

The electronic dominant configuration of the platinum atom in its ground state is*

Xe)@f 1454%6s'. As we can see, we have the xenon-like closed shell and also the full closed
subshell 4 f. The orbital energies corresponding to these closed shells are much lower than the
orbital energy of the hydrogen anion (they are to be combined to). This is why they will not
participate in the Pt—H bonds. They will of course contribute to the band structure, but this
contribution will be trivial: flat bands (because of small overlap integrals) with energies very
close to the energies characterizing the corresponding atomic orbitals. The Pt valence shell is
therefore 5d°6s'6p° (for Pt°) and 54%6s°6p° (for Pt>T), the latter we have in our stack. The
corresponding orbital energies are shown on the left-hand side of Fig. 1.19a.

Let us choose a Cartesian coordinate system with the origin on the platinum atom and the four
ligands at equal distances on the x and y axes. In the Koopmans approximation (cf. Chap-
ter V1-8, p. V1-544) an orbital energy represents the electron energy on a given orbital. We
see that because of the ligands’ pushing (Pauli exclusion principle operating), all the platinum

43 R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures,” VCH publishers,
New York, 1988.

44 When studying complexes of Fe?t and Co?t (of planar and tetrahedral symmetry) it turned out that splitting the
d energy levels by negative point charges (simulating ligands) has been very ineffective even when making the
negative charges excessively large and pushing them closer to the ion. In contrast, replacing the point charges
by some closed shell entities resulted in strong splitting.

45 Xe denotes the xenon-like configuration of electrons.
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Fig. 1.19. Predicting the band structure of (PtHi_)w, monomer analysis. (a) Left-hand side. The Pt
atomic orbitals of Pt>T ion (eight valence electrons): four doubly occupied 5d orbitals and empty 6s
and 6p orbitals. Right-hand side of (a): four ligand (L=H™) atomic orbitals (symmetrized as shown in
(b)). Center of (a): mixing of the orbitals when forming PtHi_. Most important orbital interactions
are: mixing of the empty d,>_ 2> with the ligand occupied C combination, mixing of the empty p, and
py orbitals with the ligand doubly-occupied two B combinations and mixing of the empty s orbital
with the ligand doubly-occupied A combination (see (b)). This results in four low-energy doubly
occupied ligand-like orbitals (center, bottom) and four doubly occupied platinum atomic 5d orbitals
(center), while 5d,2_,» (mostly platinum centered) is the monomer’s LUMO (of high energy, because
it protrudes right across to the ligands). R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in
Extended Structures”, VCH Publishers, New York, © VCH Publishers. Reprinted with permission of John
Wiley&Sons, Inc.

atom orbital energies will go up (destabilization; in Fig. 1.19a this shift is not shown, only a
relative shift is given). The largest shift up will be undergone by the 5d,>_ > orbital energy,
because the orbital lobes protrude right across to the ligands. Eight electrons of Pt will there-
fore occupy four other d orbitals*® (5dxy, 5dxz, 5dyz, 5d32_,2), while 5d,2_ 2 will become the
LUMO. The four ligand atomic orbitals practically do not overlap (long distance) and this is
why in Fig. 1.19a they are depicted as a quadruply degenerate level. We organize them as the
ligand symmetry orbitals, and they are shown in Fig. 1.19b: the nodeless orbital (A), two single-
node orbitals (B) corresponding to the same energy, and the two-node orbital (C). The effective
linear combinations (cf. p. V1-503, what counts most is symmetry) are formed by the following

46 Of these four the lowest-energy will correspond to the orbitals 5dy, Sdy;, because their lobes just avoid the
ligands. The last two orbitals 5dxy and 5d3.2 2 =5d 2,2 +5d 2_y2 will go up somewhat in the energy
scale (each to a different extent), because they aim in part at the ligands. However, these splits will be smaller
when compared to the fate of the orbital 5d >_ > and therefore, these levels are shown in the figure as a single
degenerate level.

y
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Fig. 1.20. Predicting the band structure of (PtH?f) . (a) The Bloch functions fork =0and k =T
oo

corresponding to the atomic orbitals 6p; (o-type orbitals), 5dyy (3-type orbitals), S5dy, (m-type
orbitals, similarly for 5dy;), and 5d;,2_,2 (o-type orbitals). (b) The band width is very sensitive

to the overlap of the atomic orbitals. The band widths in (PtHﬁ_> result from the overlap of
o0

the (PtHif) orbitals. R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Struc-

tures”, VCH Publishers, New York, © VCH Publishers. Reprinted with permission of John Wiley&Sons,
Inc.

pairs of orbitals: 6s with A, 6p, and 6py with B, and the orbital 5d,>_ > with C (in each case
we obtain the bonding and the antibonding orbital); the other platinum orbitals, 5d and 6p_,
do not have partners of the appropriate symmetry (and therefore their energy does not change).
Thus we obtain the energy level diagram of the monomer in Fig. 1.19a.

Now, we form a stack of PtHi_ along the periodicity axis z. Let us form the Bloch functions
(Fig. 1.20a) for each of the valence orbitals at two points of the FBZ: k =0 and k = % The
results are given in Fig. 1.20b. Because of large overlap of the 6p, orbitals with themselves,
and 3d;,>_,> also with themselves, these o bands will have very large dispersions. The smallest
dispersion will correspond to the 5dyy band (as well as to the empty band 5d,2_2), because
the orbital lobes of 5dyy (also of 5d,_2) are oriented perpendicularly to the periodicity axis.
Two bands 5d,, and 5dy, have a common fate (i.e., the same plot) due to the symmetry, and a
medium band width (Fig. 1.20b). We predict therefore the band structure shown in Fig. 1.21a.
It is to be compared (Fig. 1.21b) with the calculated band structure for (PtHi_)oo. As we can

see, the prediction turns out to be correct.
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Fig. 1.21. Predicting the band structure of (PtHi_) . (a) The predicted band structure. (b) The
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computed band structure (by Roald Hoffmann) for a = 3 A. R. Hoffmann, “Solids and Surfaces. A
Chemist’s View of Bonding in Extended Structures”, VCH Publishers, New York, © VCH Publishers. Reprinted
with permission of John Wiley&Sons, Inc.

1.11 The Hartree—Fock method for crystals

1.11.1 Secular equation

What has been said previously about the Hartree—Fock method is only a sort of general theory.
The time has now arrived to show how the method works in practice. We have to solve the
Hartree—Fock—Roothaan equation (cf. Chapter V1-8, pp. V1-506 and 31).
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The Fock matrix element is equal to (noting that (x 1£ |f qu /) =F 1%/ depends on the dijj‘erence47

between the vectors R; and R;/)

Fpg= QN+ 173> exp (ik(R; —R))(xj 1Fx)) = (1.55)
i

=" exp(ikR))Fyj. (1.56)
j

The same can be done with S, and therefore the Hartree-Fock—Roothaan secular equation
(see p. 31) has the form

> epn®0( Y expGRR ) (Fp (&) — £, () S () ) =0, (1.57)
J

p=1

forg=1,2,...0.

The integral S, equals

Spg= D exp(ikR;)Sps. (1.58)
j

where the summation goes over the lattice nodes and S?,Jq = ( X,? | X(; > In order to be explicit, let

us see what is inside the Fock matrix elements F,% (k). We have to find a dependence there on
the Hartree—Fock—Roothaan solutions (determined by the coefficients ¢, ), and more precisely
on the bond-order matrix.*® Any CO, according to Eq. (1.53), has the form

V(. k)= 2N + 1)73 DS cqnk) expikR)) X7 (). (1.59)

g9 J

where we promise to use such ¢, that v, are normalized. For molecules the bond-order matrix
element (for the atomic orbitals x, and x,) has been defined as 2 ¢ piczi (the summation is
over the doubly occupied orbitals), where the factor 2 results from the double occupation of the

47 As a matter of fact, all depends on how distant the unit cells j and j’ are. We have used the fact that F exhibits

crystal symmetry.
We have met the same in the Hartree—Fock method for molecules, where the Coulomb and exchange operators
depended on the solutions to the Fock equation (cf. p. 484).

48
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closed shell. We have exactly the same for the crystal, where we define the bond-order matrix
element corresponding to atomic orbitals X(j and x é as

Py =22N + 17 3" ¢pn(k) exp(ikR))cgn (K)* exp(—ikR;), (1.60)

occupied

where the summation goes over all the occupied COs (we assume double occupation, hence
factor 2). This means that in the summation we have to go over all the occupied bands (index
n), and in each band over all allowed COs, i.e., all the allowed k vectors in the FBZ. Thus,

FBZ

Pl =202N +1)73 Z >~ cpn®)cga (k)* exp (ik(R; — R))). (1.61)
k

This definition of the P matrix is exactly what we should have for a large closed shell molecule.
The matrix element has to have four indices (instead of the two indices in the molecular case),
because we have to describe the atomic orbitals indicating that atomlc orbital p is from unit
cell /, and atomic orbital g from unit cell j. It is easily seen that qu depends on the difference
R; — R}, not on R; and R; themselves. The reason for this is that in a crystal everything is
repeated and the 1mportant thmg are the relative distances. Thus the P matrix is determined by
all the elements P,,;

1.11.2 Integration in the FBZ

There is a problem with P, because it requires a summation over k. We do not like this, because
the number of the permitted vectors k is huge for large N (and N has to be large, because we
are dealing with a crystal). We have to do something with it.

Let us try a small exercise. Imagine we have to perform a summation ) f(k), where f rep-
resents a smooth function in the FBZ. Let us denote the sum to be found by X. Let us multiply

X by a small number A = (2‘1/\/Fff)3 , where Vgpz stands for the FBZ volume. Then we have

FBZ

XA=)" fIA. (1.62)
k

In other words, we just cut the FBZ into tiny segments of volume A, their number equal to
the number of the permitted k’s. It is clear that if N is large (as in our case), then a very good
approximation of X A would be

XA = f (k) dk. (1.63)
FBZ
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Hence,

_@N+1)?

f (k) dk. (1.64)
Vrez JrBZ

After applying this result to the bond-order matrix we obtain

FBZ

/ Zcpn(k)cqn(k) exp (ik(R; — R))))dk. (1.65)

lj
Py =
pa
VEipz

For a periodic polymer (in 1D: Vppz = 27”, A= 1) we would have

=Nt

Pl = % / > cpnlk)egn(k)* exp (ika(l — j))dk. (1.66)

1.11.3 Fock matrix elements

In full analogy with the formula on p. V1-506, we can express the Fock matrix elements by
using the bond-order matrix P for the crystal as follows:

Fpy=Tpg =Y > ZuV)p (Ah)+ZZP’h ——( 1), (1.67)
h u

where P satisfies the normalization condition*’

49 The P matrix satisfies the normalization condition, which we obtain in the following way.
As in the molecular case the normalization of COs means

1= (Y (0, W)W (1, K)
=N+ D733 epn)* cqn () explik(R; — RIS,
pq jl
= QN+ D70 pn (9 cqn B explik(R; — R))ISHT
rq jl

. 0j
- Z Zc,,n (K)*cgn (k) exp(ikR ;) S 7
pPq j

Now let us do the same for all the occupied COs and sum the results. On the left-hand side we sum just 1, and

therefore we obtain the number of doubly occupied COs, i.e., ng(2N + 1)3, because ng denotes the number of

doubly occupied bands, and in each band we have in 3D (2N + 1) allowed vectors k. Therefore, we have
FBZ

N +13 =33 (3 Z ¢pn(K)* g (k) exp(KR) ) S}

pg j on

:ZZE(QN-F 12 PJYsOT,

rq j
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ZZPJO SV =2, (1.68)

where 2ng means the number of electrons in the unit cell.

The first term on the right-hand side of Eq. (1.67) represents the kinetic energy matrix element

, 1 .
Tpy = (xpl=581%), (1.69)

the second term is a sum of matrix elements, each corresponding to the nuclear attraction of an
electron and the nucleus of index u and charge Z,, in the unit cell 4, i.e.,

VAL = Ol — 1), (1.70)
Ir — Al

where the upper index of y denotes the cell number, the lower index denotes the number of the
atomic orbital in a cell, the vector AZ indicates nucleus # (numbering within the unit cell) in unit
cell i (from the coordinate system origin), and the third term is connected to the Coulombic
operator (the first of two terms) and the exchange operator (the second of two terms). The
summations over & and / go over the unit cells of the whole crystal and are therefore very
difficult and time consuming.

The definition of the two-electron integral

i1 = [ andraden @) roxde (1.71)

is in full analogy to the notation of Chapter V1-8 and Appendix V1-N (p. V1-707).

where from (1.61) after exchanging p <> g, j <> [ we have

FBZ

" B '

P‘;P =22N+1) 3 Z Z an(k)cpn(k)* exp (lk(Rj — Rl))

noK
And then
0 FBZ
Pyp =20N + n=? Z Z cqn(K)cpn (K)* exp (ikR;).
n Kk

Hence,

ZZPJO Oq—2”0

rqa j
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1.11.4 lterative procedure (SCF LCAO CO)

To solve Eq. (1.57) one uses the SCF LCAO MO technique as applied for molecules (Chap-
ter V1-8) and now adapted for crystals. This particular method will be called SCF LCAO CO,
because the linear combinations (LCs) of the symmetry atomic orbitals are used as the expan-
sion functions for the COs in a self-consistent procedure (SCF stands for self-consistent field)
described below. How does the SCF LCAO CO method work?

«  First (zeroth iteration) we start from a guess>" for P.

» Then we calculate the elements F % for all atomic orbitals p, g for unit cells j =0, 1,2, ...
Jmax- What is jmax? The answer is certainly nonsatisfactory: jma.x = 00. In practice, how-
ever, we often take jm.x as being of the order of a few cells,”! most often we take Jmax = 1.

»  For each k from the FBZ we calculate the elements F,, and S, of Egs. (1.56) and (1.58),
and then solve the secular equations within the Hartree—Fock—Roothaan procedure. This
step requires diagonalization®” (see Appendix V1-L, p. V1-703). As a result, for each k we
obtain a set of coefficients ¢ for the COs and the energy eigenvalue ¢, (k).

»  We repeat all this for the values of k covering in some optimal way (some recipes exist) the
FBZ. We are then all set to carry out the numerical integration in the FBZ and we calculate
an approximate matrix P.

« This enables us to calculate a new approximation to the matrix F, and so on, until the
procedure converges in a self-consistent way, i.e., produces P very close to that matrix P
which has been inserted into the Fock matrix F. In this way we obtain the band structure
&, (k) and all the corresponding COs.

1.11.5 Total energy

How do we calculate the total energy for an infinite crystal? We know the answer without
any calculation: —oo. Indeed, since the energy represents an extensive quantity, for an infinite
number of unit cells we get —oo, because a single cell usually represents a bound state (negative
energy). Therefore, the question has to be posed in another way.

How to calculate the total energy per unit cell? Aha, this is a different story. Let us denote
this quantity by E7. Since a crystal only represents a very large molecule, we may use the

50
51

The result is presumed to be independent of this choice.

The “nearest neighbor approximation.” We encounter a similar problem inside the F' I(’)ﬂji’ because we somehow
have to truncate the summations over 4 and /. These problems will be discussed later in this chapter.

Unlike the molecular case, this time the matrix to diagonalize is Hermitian, and not necessarily symmetric.
Methods of diagonalization exist for such matrices, and there is a guarantee that their eigenvalues are real.
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expression for the total energy of a molecule (p. V1-506). In the three-dimensional case we
have

ZuZy
i (1.72)
uv

1 T | '

QN +1)°Er =5 ZZP;,Q(hl,ﬁq + Fpg) + 5 > 7
rq 1 lj uv
where the summation over p and g extends over the w atomic orbitals that any unit cell offers,
and / and j tell us in which cells these orbitals are located. The last term on the right-hand side
refers to the nuclear repulsion of all the nuclei in the crystal, #, v number the nuclei in a unit
cell, while /, j indicate the cells (a prime means that there is no contribution from the charge
interaction with itself). Since the summations over / and j extend over the whole crystal, we
have

1 0. 0i : 1 '\ Z.Z

3 3 0,0 0 3 utv

(2N +1) ET=5(2N+1) § :E Poplhpy + Fpyl+ 2N + 1) EE E 07 (1.73)
rq j j uv uv

because each term has an equal contribution, and the number of such terms is equal to 2N +
1)3.

Therefore, the total energy per unit cell amounts to

Z,7
=
Ry

/
ET=%ZZP;§(1J},{,+F%)+%ZZZ (1.74)
P4 j o ou v

J

The formula is correct, but we can easily see that we are to be confronted with some serious
problems. For example, the summation over nuclei represents a divergent series and we will
get 4+o00. This problem appears only because we are dealing with an infinite system. We have
to manage the problem somehow.

1.12 Long-range interaction problem

What is left to be clarified are some problems about how to go with N to infinity.”? It will be
soon shown how dangerous this problem is.

53 Let me tell you about my adventure with this problem, because I remember how as a student I wanted to hear

about struggles with understanding matter and ideas instead of some dry summaries.

The story began quite accidentally. In 1977, at the University of Namur (Belgium) Professor Joseph Delhalle
asked the PhD student Christian Demanet to perform a numerical test. The test consisted of taking a simple
infinite polymer (the infinite chain - - - LiH-LiH-LiH- - - had been chosen), to use the simplest atomic basis set
possible and to see what we should take as N, to obtain the Fock matrix with sufficient accuracy. Demanet first
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We see from Eqs. (1.67) and (1.74) that thanks to the translational symmetry, we may treat each
k separately, but infinity continues to make us a little nervous. In the expression for Fo g W€
have a summation (over the whole infinite crystal) of the interactions of an electron with all the
nuclei, and in the next term we have a summation over the whole crystal of the electron—electron
interactions. This is of course natural, because our system is infinite. The problem is, however,
that both summations diverge: the first tends to —oo, the second to +oco. On top of this, to
compute the bond-order matrix P we have to perform another summation in Eq. (1.65) over the
FBZ of the crystal. We have a similar, very unpleasant, situation in the total energy expression,
where the first term tends to —oo, while the nuclear repulsion term goes +o0.

The routine approach in the literature was to replace the infinity by taking the first neighbor in-
teractions. This approach is quite understandable, because any attempt to take further neighbors

ends up with an exorbitant bill to pay.”*

1.12.1 Fock matrix corrections

A first idea we may think of is to separate carefully the long-range part of the Fock matrix
elements and of the total energy from these quantities as calculated in a traditional way, i.e., by
limiting the infinite-range interactions to those for the N neighbors on the left and N neighbors
on the right of cell 0. For the Fock matrix element we would have

Fpi = Fpa(N) + Cpl (N), (1.75)

took N =1, then N =2, N =3 — the Fock matrix changed all the time. He got impatient, took N =10, N =15
— the matrix continued to change. Only when he used N = 200 did the Fock matrix elements stabilize within the
accuracy of six significant figures. We could take N = 200 for an extremely poor basis set and for a few such
tests, but never in good quality calculations as their cost would become astronomic. Even for the case in question
the computations had to be done overnight. In a casual discussion at the beginning of my six-week stay at the
University of Namur, Joseph Delhalle told me about the problem. He also said that in a recent paper the Austrian
scientists Alfred Karpfen and Peter Schuster noted that the results depend strongly on the chosen value of N.
They made a correction after the calculations with a small N had been performed. They added the dipole—dipole
electrostatic interaction of cell 0 with a few hundred neighboring cells, and as the dipole moment of a cell they
took the dipole moment of the isolated LiH molecule. As a result the Fock matrix elements changed much less
with N. This information made me think about implementing the multipole expansion right from the beginning
of the self-consistent Hartree—Fock—Roothaan procedure for a polymer. Below you will see what has been done.
The presented theory pertains to a regular polymer (a generalization to two and three dimensions is possible).
54 The number of two-electron integrals, which quantum chemists positively dislike, increases with the number of
neighbors to take (V) and the atomic basis set size per unit cell (w) as N 3w*. Besides, the nearest neighbors are
indeed the most important.
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where C% (N) stands for the long-range correction, while for F 1% (N) we assume interactions
with the N right and N left neighbors of cell 0. They are calculated as follows:

h=+N . I=h+N
OI(N) = Z (—ZZMV,S),;(A’;H > Zplh< ( |l ))) (1.76)
u I=h—N rs
. # I=h+N
c,o,{,(N)=Z(—Zz ACO R el (il ) (1.77)
h u I=h—N rs

where the symbol Zz means a summation over all the unit cells except the section of unit cells
with numbers —N,—-N +1,...,0,1,... N, i.e., the neighborhood of cell 0 (“short-range”).
The nuclear attraction integral®>

0j AR 0 J
Vpg (A)) = , 1.78
pq (Ay) (Xf’||r—(Au+haz)||X”’) (1.78)
where the vector A,, shows the position of the nucleus u in cell 0, while AZ = A, + haz points
to the position of the equivalent nucleus in cell / (z denotes the unit vector along the periodicity

axis).

The expression for C % (N) has a clear physical interpretation. The first term represents inter-
action of the charge distribution — Xg(l)* an (1) (of electron 1, hence the minus sign) with all

nuclei>®

except those enclosed in the short-range region (i.e., extending from —N to +N). The
second term describes the interaction of the same electronic charge distribution with the fotal

electronic distribution outside the short-range region. How do we see this? The integral (?f; | Z]ls)

means the Coulombic interaction of the distribution under consideration — x p(l)>‘< 7 (1) with its
partner distribution — x;’ h2)* S(2), does it not? This distribution is multiplied by P f and then
summed over all possible atomic orbitals r and s in cell / and its neighborhood (the sum over
cells [ from the neighborhood of cell h), which gives the total partner electronic distribution
— Zf:ZJr% Y s P”‘ Xr h(2)*x (2) This, however, simply represents the electronic charge dis-
tribution of cell 4. Indeed, the distribution, when integrated, gives (Just look at Eq. (1.68))

5 ZJF% >, PISI = 2p. Therefore, our electron distribution — (1)* g (1) interacts
electrostatically with the charge distribution of all cells except those enclosed in the short-
range region, because Eq. (1.77) contains the summation over all cells 4 except the short-range
region. Finally,

53 Without the minus sign in the definition the name is not qulte adequate.
56 See the interpretation of the integral —V,; (Ah) =—(x D (r) %hl | xq] (r)).
u
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the long-range correction to the Fock matrix elements Cgé (N) represents the Coulombic

interaction of the charge distribution — Xg(l)* qu (1) with all the unit cells (nuclei and
electrons) from outside the short-range region.

In the C% (N) correction, in the summation over /, we have neglected the exchange term
S Y P”‘(Oh 7). The reason for this was that we have been convinced
that Psorh vanishes fast with h. Indeed, the largest integral in the summation over [ is
—1 SHEY POh(Oh lsq ) This term is supposed to be small not because of the integral (9 |?,§ ),
which can be quite important (like, e.g., ((I)f; |(I),’; - )), but because of Psorh. We will come back
to this problem.”’

1.12.2 Total energy corrections

The total energy per unit cell could similarly be written as
Er = Er(N) + Cr(N), (1.79)

where E7(N) means the total energy per unit cell as calculated by the traditional approach, i.e.,
with truncation of the infinite series on the N left and N right neighbors of cell 0. The quantity
C7(N) therefore represents the error, i.e., the long-range correction. The detailed formulae for
Er(N) and Cr(N) are the following:

| I=tN 1IN Z, Z
Er(N) = Z > Pl (hiy + Fpg(N)) + (1.80)
—N pq ]——N u
#
CT(N>=%ZZP’° Cra(N) +3 ;(ZZP,{SZ[ (Ah]+zz R )
] Pq J Pq u
(1.81)

where from F % we have already separated its long-range contribution C% (N), sothat C7(N)
contains all/ the long-range corrections.

57 Matrix element Psorh, i.e., the bond-order contribution from the atomic orbital product yg (1) X (1)* pertaining
to distant cells 0 and %, seems to be a small number. This will turn out to be delusive. We have to stress, however,
that trouble will come only in some “pathological” situations.
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Eq. (1.81) for C7(N) may be obtained just by looking at Eq. (1.80). The first term with C% (N)
is evident®; it represents the Coulombic interaction of the electronic distribution (let us recall
condition (1.68)) associated with cell O with the whole polymer chain except the short-range
region. What, therefore, is yet to be added to E7(/N)? What it lacks is the Coulombic interaction
of the nuclei of cell O with the whole polymer chain, except the short-range region. Let us see
whether we have it in Eq. (1.81). The last term means the Coulombic interaction of the nuclei
of cell O with all the nuclei of the polymer except the short-range region (and again we know
why we have the factor %). What, therefore, is represented by the middle term>”? It is clear that
it has to be (with the factor %) the Coulombic interaction of the nuclei of cell 0 with the total
electronic distribution outside the short-range region. We look at the middle term. We have the
minus sign, and that is very good indeed, because we have to have an attraction. Further, we
have the factor %, and that is also OK; then we have ZZ’ and that is perfect, because we expect

a summation over the long range only, and finally we have 3, >" qu,ﬁ’ > [ —Zy V,?;; (AZ)],
and we do not like this. This is the Coulombic interaction of the total electronic distribution of
cell 0 with the nuclei of the long-range region, while we expected the interaction of the nuclei

58 The factor % may worry us a little. Why just %? Let us see. Imagine N identical objects,i =0,1,2,..N — 1,
playing identical roles in a system (like our unit cells). We will be interested in the energy per object, E7. The
total energy may be written as (let us assume here pairwise interactions only)

NET_ZE + Y Eij,

i<j

where E; and E;; are the isolated object energy and the pairwise interaction energy, respectively. Since the
objects are identical, we have

/
NEp =NEg+ - ZE,]_NEO+ Z ZE,] :NEO+%N > Eoj |-
i,j i J J

where the prime means excluding self-interaction and the term in parentheses means the interaction of object 0
with all others. Finally,

’
1
ET:E0+§ ZEOJ s
J

where we have the factor before the interaction of one of the objects with the rest of the system.

59 As we can see, we have to sum (over ) to infinity the expressions 1% pq»> Which contain qu (but these terms decay

very fast with j and can all be taken into account in E7 (N)) and the long-range terms, the Coulombic interaction
of the electronic charge distribution of cell 0 with the nuclei beyond the short-range region (the middle term in
C7(N)). The argument about fast decay with j of the kinetic energy matrix elements mentioned before follows
from the double differentiation with respect to the coordinates of the electron. Indeed, this results in another
atomic orbital, but with the same center. This leads to the overlap integral of the atomic orbitals centered like

those in X,Q Xq] Such an integral decays exponentially with j.
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of cell 0 with the electronic charge distribution of the long-range region. What is going on?
Everything is OK. Just count the interactions pairwise and at each of them reverse the locations
of the interacting objects — the two interactions mean the same. Therefore,

the long-range correction to the total energy per cell Cr(N) represents the Coulombic
interaction of cell O with all the cells from outside the short-range region.

We are now all set to calculate the long-range corrections C% (N) and Cr(N). It is important to
realize that all the interactions to calculate pertain to objects that are far away in space.’® This
is what we have carefully prepared. This is the condition that enables us to apply the multipole
expansion to each of the interactions (Appendix G).

1.12.3 Multipole expansion applied to the Fock matrix

Let us first concentrate on C% (N). As seen from Eq. (1.77) there are two types of interac-
tions to calculate: the nuclear attraction integrals V,% (Aﬁ) and the electron repulsion integrals
((I),hrléls). In the second term, we may use the multipole expansion of % given in Appendix G
(p. 615). In the first term, we will do the same, but this time one of the interacting particles
will be the nucleus indicated by vector Afj. The corresponding multipole expansion (in a.u.; the
nucleus u of charge Z, interacts with the electron of charge —1, ny =n; =00, S =min(k,[))
reads

ng n; m=+S

Z _ 1
SN SN AR M 1M ), (1.82)
k=0 [=0 m=-—S

60" Let us check this. What objects are we talking about? Let us begin from C% (N). As seen from the formula,

one of the interacting objects is the charge distribution of the first electron Xg( * X({ (1). The second object
is the whole polymer except the nuclei and electrons of the neighborhood of cell 0. The charge distributions

Xg(l)* X; (1) with various j are always close to cell 0, because the orbital Xg(l) is anchored at cell 0, and such
a distribution decays exponentially when cell j goes away from cell 0. The fact that the nuclei with which the
distribution Xg(l)* X,ﬁ (1) interacts are far apart is evident, but less evident is the fact that the electrons with
which the distribution interacts are also far away from cell 0. Let us have a closer look at the electron—electron
interaction. The charge distribution of electron 2 is th 2)* Xsl (2), and the summation over cells & excludes
the neighborhood of cell 0. Hence, because of the exponential decay there is a guarantee that the distribution
th 2)* Xf, (2) is bound to be close to cell £, if this distribution is to be of any significance. Therefore, the charge
distribution x,h 2)* Xf, (2) is certainly far away from cell 0.

Similar reasoning may be used for C7(N). The interacting objects are of the type Xg(l)* xé (1), i.e., always
close to cell 0, with the nuclei of cell /, and there is a guarantee that /4 is far away from cell 0. The long distance
of the interacting nuclei (second term) is evident.
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where R stands for the distance between the origins of the coordinate system centered in cell O

and the coordinate system in cell 4, which, of course, is equal to R = ha. The multipole moment
(k,m)

operator of electron 1, M, " (1), reads as

M (1) = —rf B (cos 6a1) explimeanr), (1.83)
while
M w) = Z,rL P (cos6,) explimepy) (1.84)

denotes the multipole moment operator of nucleus u computed in the coordinate system of
cell 7. When this expansion and the expansion for % are inserted into Eq. (1.77) for C 2Jq (N),
we obtain

ng n; m=+S

Coh (N) = ZZZ > AwmiR™ ("+l+1)<(xp|M<’<m>(1) %)

h k=01=0m=-S
) X .
[ DM A + i ay1xgd)-
u

I'=h+N
~(, /
> Y PR 1))
I'=h—N rs

ng n; m=+S§

_ ZZZ Z Aty R (0 g (1% ).

h k=0 1=0 m=—S§
I'=h+N

[ oM@+ 30 SR )i |

I'=h—N s

Let us note that in the square brackets we have nothing but a multipole moment of unit cell h. In-

deed, the first term represents the multipole moment of all the nuclei of cell /2, while the second

term is the multipole moment of electrons of unit cell 4. The latter can be best seen if we recall
=h+N U'h ghl’ I'=+N 1’0 ¢ol’

the normalization condition (1.68), i.e., Zl/ N s Pt St =2 "N D ors P Sry = 2no,

with 2n¢ denoting the number of electrons per cell Hence, we can write

m=+S

b (N) = ZZZ > A R™EHED (O mE™ ()Y ME™ (), (1.85)

h k=01=0 m=—S
where the dipole moment of cell % is given by

=h+N

M(l””)(h)=[ZM,§l’m)(Aﬁ)+ Z SR @] ase)

I'=h—N 75§
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because the summation over u goes over the nuclei belonging to cell 4, and the coordinate

system b is anchored in cell /2. Now it is time to say something most important.

Despite the fact that M©"™ (k) depends formally on A, in reality it is h-independent,
because all the unit cells are identical.

Therefore, we may safely write that M) (h) = M),

Now we will avoid a well-hidden trap, and then we will be all set to prepare ourselves to pick
the fruit from our orchard. The trap is that Ay, depends on 4. How is this? Well, in the Ay
there is (—1)!, while the corresponding (—1)¥ is absent, i.e., there is a thing that is associated
with the 2/-pole in coordinate system b, and there is no analogous expression for its partner,
the 2-pole of coordinate system a. Remember, however (Appendix G), that the z axes of both
coordinate systems have been chosen in such a way that a “shoots” towards b, and b does
not shoot towards a. Therefore, the two coordinate systems are not equivalent, and hence one
may have (=1, and not (—1)¥. Coordinate system a is associated with cell 0, the coordinate
system b is connected to cell A. If & > 0, then it is true that a shoots to b, but if & < 0 their
roles are exchanged. In such a case, in Ay;j;») we should not put (— l)l , but (— l)k. If we do this

then in the summation over % in Eq. (1.85) the only dependence on £ appears in a simple term
(ha)—(k+l+l)g

It appears, therefore, to be a possibility of exactly summing the electrostatic interaction
along an infinite polymer chain.

Indeed, the sum
o0
S o EHED = k14 1), (1.87)
h=1

where ¢ (n) stands for the Riemann zeta function, which is known to a high accuracy and avail-

able in mathematical tables.°!

61 For example, M. Abramovitz, I. Stegun, eds, “Handbook of Mathematical Functions,” Dover, New York, 1968,

p. 811.
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Georg Friedrich Bernhard Riemann (1826-
1866), German mathematician and physicist,
professor at the University of Gottingen.
Nearly all his papers gave rise to a new math-
ematical theory. His life was full of personal
tragedies, and he lived only 40 years, but nev- " . ;,-,M':
ertheless he made a giant contribution to math- %ﬁ'&‘-— :
ematics, mainly in non-Euclidean geometries

(his geometry plays an important role in the integrals (Riemann integral), and in the theory
general theory of relativity), in the theory of of trigonometric series.
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1826 - 1866

Deutsche Post Q
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The 1nteract10ns of cell 0 with all the other cells are enclosed in this number. When this is
inserted into C q(N ), we obtain

0 oo 00 0 o (k—|—l+1)
J _ j( )
M =3 Y Ut .89
k=0 [=0
where
m=+S
0j(k,1) m k I (k+D! 0 (ksm) o+ (1m)
U —)"[(~1 1 M mam, 1.89
ol m:ZS< e I PITE (1.89)
N
AV =cm) =Y h (1.90)
h=1

Note that the formula for C % (N) represents a sum of the multipole—multipole interactions.
The formula also shows that

electrostatic interactions in a regular polymer come from a multipole-multipole interac-
tion with different parity of the multipoles,

which can be seen from the term® [(—1)F 4+ (= 1)].

62 The term appears due to the problem discussed above of “who shoots to whom” in the multipole expansion. What

happens is that the interaction of an even (odd) multipole of cell 0 with an odd (even) multipole on the right-hand
side of the polymer cancels out with a similar interaction with the left-hand side. It is easy to understand. Let
us imagine the multipoles as nonpoint-like objects built of the appropriate point charges. We look along the
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According to the discussion in Appendix G, to preserve the invariance of the energy with respect
to translation of the coordinate system, when computing C % (N) we have to add all the terms
withk + 1+ 1 =const, i.e.,

Chl(N) = Z

n=3,5,.

(n) n—1

ZUOJ(” —=LD (1.91)

The above expression is equivalent to Eq. (1.88), but ensures automatically the translational
invariance by taking into account all the necessary multipole-multipole interactions.®?

What should we know, therefore, to compute the long-range correction CS{] (N) to the Fock
matrix“? From Eq. (1.91) it is seen that one has to know how to calculate three numbers:
U,?f](k’l), a ", and A%). The equation for the first one is given in Table 1.2, the other two are
trivial, A is easy to calculate knowing the Riemann zeta function (from tables): in fact we have
to calculate the multipole moments, and these are one-electron integrals (easy to calculate).
Originally, before the multipole expansion method was designed we also had a large number of
two-electron integrals (expensive to calculate). Instead of overnight calculations, the computer

time was reduced to about 1 second and the results were more accurate.

1.12.4 Multipole expansion applied to the total energy

As shown above, the long-range correction to the total energy means the interaction of cell 0
with all the cells from the long-range region multiplied by % The reasoning pertaining to its
computation may be repeated exactly in the way we have shown in the previous subsection. We
have, however, to remember a few differences:

«  what interacts is not the charge distribution x° » Xq’ but the complete cell O;

+ the result has to be multiplied by 5 for reasons discussed earlier.

periodicity axis. An even multipole has the same signs at both ends, an odd one has the opposite signs. Thus,
when the even multipole is located in cell 0, and the odd one on its right-hand side, this interaction will cancel
out exactly with the interaction of the odd one located on the left-hand side (at the same distance).

63 Indeed, Z;’ oj(n —I-1D) _ [(3(]](rl72,1)+U2{](n73,2) +UOJ(On 1

k+l+1=n except Uy, 0] (-1, 0) . This term is absent, because it requires calculation of M (0’0), i.e., of the charge
of the elementary cell, Wthh has to stay electrically neutral (otherwise the polymer falls apart), and therefore
MO0 =, Why, however, does the summation over n not simply represent n = 1, 2, ...00, but contains only
odd n’s except n = 1? What would happen if we took n = 1? Look at Eq. (1.88). The value n = 1 requires
k =1 = 0. This leads to the “monopole—-monopole” interaction, but this is 0, since the whole unit cell (and one
of the multipoles is that of the unit cell) carries no charge. The summation in (1.91) does not contain any even
n’s, because they would correspond to k and / of different parity, and such interactions (as we have shown before)
are equal to 0. Therefore, indeed, (1.91) contains all the terms that are necessary.
64 L. Piela, J. Delhalle, Intern. J. Quantum Chem., 13(1978) 605.

, 1.e., a review of all terms with
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Table 1.2. The quantities U*) for k 41 < 7 necessary for calculating the most important long-
range corrections to the Fock matrix elements UOJ *D and to the total energy per unit cell U;k’l). The
brackets [ ] mean the corresponding Cartesian multlpole moment. When computing the Fock matrix

correction, the first multipole moment [ ] stands for the multipole moment of the charge distribution

ng'q/, the second to that of the unit cell. For example, U©2 for the correction C%(N) is equal to
/ I'=+N 4 / . .

Ol (XCu ZuBag — ) = 20 =N Yo PO P 1322 = r2(xD)), while U2 for Cr(N) is equal to 0,

because [ 1] means the charge of the unit cell, which is equal to zero. In the table only U’s for k <[ are

given. If [ <k, then the formula is the same, but the order of the moments is reversed.

UoD k+l1+1=n
3 | U0 =132 -1
UMD =20x](x] + 2[y1[y] — 4[z][z]

5 | U0 = 113524 - 302212 + 3r4)
U3 =4(213r%z — 5231+ 3[x1[5x2% — r2x] + 3[y1ISyz* — r?y]
U2 =31322 - 21322 - 2] - 24[xzllxz] - 24[yzllyz] + 31x% = y21x? = y21 4+ 6Lxyllxy]

7 | U©9 = 1[1][23120 — 3152472 + 105z%r% — 5/
v = ——[z][632 —7023r2 + 15214
+ Bxi2izts — 1422002 + xr*] 4+ Byl21z4y — 1422972 + yr]
UCH = 21322 - r21[352% — 30222 4 3r4] = 30[x2](723x — 3xzr?] = 30[y2](723y — 3yzr?]
+ B2 x% = yH722 (62 = y2) = P2 (2 = D)1+ 15[y 1[72%xy — xyr?]
UG = —10[523 — 3z2r2)[523 — 3272 + %[522)6 —xr?)[52%x —xr?+ 21522y — yr21(5z%y — yr?]
—45[zx2 — zy2][zx2 — zy2] — 180[xyzllxyz] + %[x3 — 3xy ][x — 3xy ]
+ 303 = 32yl - 3x2y]

Finally we obtain
(k+1+1)

Ay
(kl)
CT(N) ZZ ak+l+1 s (192)
25000
where
m=+8 N
D _ k n_ (k+DI=D (ko) g (L.m)
Ul —m;S((—n D) MM (1.93)

Let us note that (for the same reasons as before)

interaction of multipoles of different parity gives zero
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and this time we have to do with the interaction of the multipoles of complete cells. The quan-
tities U;k’l) are given in Table 1.2.

Do the Fock matrix elements and the total energy per cell represent finite values?

If the Fock matrix elements were infinite, then we could not manage to carry out the Hartree—
Fock—Roothaan self-consistent procedure. If E7 were infinite, the periodic system could not
exist at all. It is, therefore, important to know when we can safely model an infinite system.

For any finite system there is no problem: the results are always finite. The only danger, there-
fore, is summation to infinity (“lattice sums”), which always ends with the interaction of a part
or whole unit cell with an infinite number of distant cells. Let us take such an example in the
simplest case of a single atom per cell. Let us assume that the atoms interact by the Lennard-

Jones pairwise potential (p. V1-406), E = ¢ [(2—0)12 -2 (?)6], where r means the interatomic

distance, ro means the equilibrium distance, and ¢ denotes the depth of the potential well. Let
us try to compute the lattice sum Y j Eoj, where Eo; means the interaction energy of the cells
0 and j. We see that, due to the form of the potential, for long distances what counts is the
uniquely attractive term —2¢ (2—0)6. When we take such interactions which pertain to a sphere
of the radius R (with the origin located on atom 0), each individual term (i.e., its absolute value)
decreases with increasing R. This is very important, because when we have a three-dimensional
lattice, the number of such interactions within the sphere increases as R>. We see that the de-
cay rate of the interactions will finally win and the lattice sum will converge. We can, however,
easily see that if the decay of the pairwise interaction energy were slower, then we might have
had trouble calculating the lattice sum. For example, if, instead of the neutral Lennard-Jones
atoms, we took ions of the same charge, the interaction energy would explode to co. It is ev-
ident, therefore, that for each periodic system there are some conditions to be fulfilled if we
want to have finite lattice sums.

These conditions are more severe for the Fock matrix elements because each of the terms
represents the interaction of a charge with complete distant unit cells. The convergence depends
on the asymptotic interaction energy of the potential. In the case of the multipole-multipole
interaction, we know what the asymptotic behavior looks like, i.e., it is R~O+H+D = p=(+D,
where R stands for the intercell distance. The lattice summation in an n-dimensional lattice

(n=1,2,3) gives the partial sum dependence on R as R — R"=!=1 This means that®®
g p P RITT

in 1D the unit cell cannot have any nonzero net charge (/ = 0), in 2D it cannot have a
nonzero charge and dipole moment (/ = 1), and in 3D it cannot have a nonzero charge,
dipole moment, and quadrupole moment (I = 2).

65 L.Z. Stolarczyk, L. Piela, Intern. J. Quantum Chem., 22(1982)911.
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1.13 Back to the exchange term

The long-range effects discussed so far result from the Coulomb interaction in the Fock equa-
tion for a regular polymer. There is, however, also an exchange contribution, which has been
postponed in the long-range region (p. 58). It is time now to reconsider this contribution. The
exchange term in the Fock matrix element F% had the form (see (1.67))

__ZZP”I (1.94)

hi rs

and gave the following contribution to the total energy per unit cell:

Eexen = Z Eexch (])a (1-95)

J

where the cell O—cell j interaction has the form (see (1.81))

Eexen(j) = —7 Z > Pl PO (1.96)

h,l pqrs

It would be very nice to have the exchange contribution E...;(j) decaying fast when j
increases, because it could be enclosed in the short-range contribution. Do we have good
prospects for this? The above formula shows (the integral) that the summation over / is safe: the
contribution of those cells / that are far from cell O is negligible due to differential overlaps of
type x p(l)* Xl(l) The summation over cells # is safe as well (for the same reasons), because
it is bound to be limited to the neighborhood of cell j (see the integral).

In contrast, the only guarantee of a satisfactory convergence of the sum over j is that we
hope the matrix element qu p decays fastif j increases.

So far, exchange contributions have been neglected, and there has been an indication that sug-
gested this was the right procedure. This was the magic word “exchange.” All the experience of
my colleagues and myself in intermolecular interactions whispers “this is surely a short-range
type.” In a manuscript by Sandor Suhai, I read that the exchange contribution is of a long-range
type. To our astonishment this turned out to be right (after a few numerical experiments). We
have a long-range exchange. After analysis was performed it turned out that

the long-range exchange interaction appears if and only if the system is metallic.
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A metallic system is notorious for its HOMO-LUMO quasidegeneracy; therefore, we began to
suspect that when the HOMO-LUMO gap decreases, the P,{I(,) coefficients do not decay with j.

Such things are most clearly seen when the simplest example is taken, and the hydrogen
molecule at long internuclear distance is the simplest prototype of a metal. Indeed, this is a
system with half-filled orbital energy levels when the LCAO MO method is applied (in the
simplest case: two atomic orbitals). Note that, after subsequently adding two extra electrons,
the resulting system (let us not worry too much that such a molecule could not exist!) would

model an insulator, i.e., all the levels are doubly occupied.®®

Analysis of these two cases convinces us that indeed our suspicions were justified. The bond-
order matrices we obtain in both cases (see Appendix D, p 595, S denotes the overlap integral
of the 1s atomic orbitals of atoms a and b) are

P=(1+$5"'4d ] forH,, (1.97)
P=(1-5H""(57)) forH;. (1.98)
67

We see”’ how profoundly these two cases differ in the off-diagonal elements (they are analogs
of P}y for j #0).

In the second case the proportionality of P‘{.,(,) and S ensures an exponential, therefore
very fast, decay if j tends to oo, in the first case there is no decay of Pq];,) at all.

A detailed analysis for an infinite chain of hydrogen atoms (w = 1) leads to the following
formula®® for Pq],? :
; 2 j
P/Y = = sin(=). 1.99
= ( > ) (1.99)
This means an extraordinarily slow decay of these elements (and therefore of the exchange

contribution) with j. When the metallic regime is even slightly removed, the decay gets much,
much faster.

66 Of course, we could take two helium atoms. This would be also good. However, the first principle in research is

“in a single step only change a single parameter, analyze the result, draw the conclusions, and make the second
step.”
Just en passant, a second principle also applies here. If we do not understand an effect, what should we do? Just
divide the system in two parts and look where the effect persists. Keep dividing until the effect disappears. Take
the simplest system in which the effect still exists, analyze the problem, understand it and go back slowly to the
original system (this is why we have H, and H%_ here).

67 L. Piela, J.-M. André, J.G. Fripiat, J. Delhalle, Chem. Phys. Lett., 77(1981)143.

68 LI. Ukrainski, Theor. Chim. Acta, 38(1975)139, q = p = 1 means that we have a single 1s hydrogen orbital per
unit cell.
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This result shows that the long-range character of the exchange interactions does not
exist in reality. It seems to represent an indication that the Hartree—Fock method fails in
such a case.

1.14 Choice of unit cell

The concept of the unit cell has been important throughout the present chapter. The unit cell
represents an object that, when repeated by translations, gives an infinite crystal. In this simple
definition almost every word can be a trap. Is it feasible? Is the choice unique? If not, then
what are the differences among them? How is the motif connected to the unit cell choice? Is
the motif unique? Which motifs may we think about? As we have already noted, the choice of
unit cell as well as of motif is not unique. This is easy to see. Indeed Fig. 1.22 shows that the
unit cell and the motif can be chosen in many different and equivalent ways. Moreover, there
is no chance of telling in a responsible way which of the choices are reasonable and which are
not. And it happens that in this particular case we really have a plethora of choices. Putting no
limits to our fantasy, we may choose a unit cell in a particularly capricious way (Figs. 1.22b
and 1.23).

|
|

T

-

a

Fig. 1.22. Three of many possible choices of the unit cell motif. (a) Choices | and Il differ, but both
look “reasonable.” (b) Choice Il might be called strange. Despite this strangeness, choice Ill is as
legal (from the point of view of mathematics) as | or Il.

Fig. 1.23 shows six different, fully legitimate choices of motifs associated with a unit cell in
a one-dimensional “polymer” (LiH)s,. Each motif consists of the lithium nucleus, a proton,
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;“0 (LiH X, X,)
a
/—/H

X, X,

I @ S—0— (0,0,00)
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Vi | @ o—i m (34,0,0,0)

Fig. 1.23. Six different choices (I-VI) of unit cell content (motifs) for a linear chain (LiH)eo. Each cell
has the same length a = 6.3676 a.u. There are two nuclei, Li** and H*, and two Gaussian doubly
occupied ls atomic orbitals (denoted by x; and x2 with exponents 1.9815 and 0.1677, respectively)
per cell. Motif | corresponds to a “common sense” situation: both nuclei and electron distribution
determined by x1 and x2 are within the section (0,a). The other motifs (11-VI), all corresponding to the
same unit cell (0,a) of length a, are very strange. Each motifis characterized by the symbol (k, [, m, n),
which means that the Li nucleus, the H nucleus, x1, and x2 are shifted to the right by ka, la, ma, na,
respectively. All the unit cells with their contents (motifs) are fully justified, equivalent from a mathematical point
of view, and, therefore, “legal” from the point of view of physics. Note that the nuclear framework and the
electronic density corresponding to a cell are very different for all the choices.

and an electronic charge distribution in the form of two Gaussian 1s orbitals that accommodate
four electrons altogether. By repeating any of these motifs we reconstitute the same original
chain.

We may say there may be many legal choices of motif, but this is without any theoretical
meaning, because all choices lead to the same infinite system. Well, this is true with respect to
theory, but in practical applications the choice of motif may be of prime importance. We can
see this from Table 1.3, which corresponds to Fig. 1.23.

The results without taking into account the long-range interactions depend very strongly on the
choice of unit cell motif.
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Table 1.3. Total energy per unit cell E7 in the “polymer”
LiH as a function of unit cell definition (Fig. 1.23). For each
choice of unit cell this energy is computed in four ways:
(1) without long-range forces (long range = 0), i.e., unit
cell 0 interacts with N = 6 unit cells on its right-hand side
and N unit cells on its left-hand-side and

(2), (3), (4) with the long range computed with multipole
interactions up to the a™7, a3, and a~7 terms, respec-
tively. The bold figures are exact. The corresponding dipole
moment pu of the unit cell (in Debyes) is also given.

Unit cell Long range I —Er

| 0 6.6432 | 6.610869
a3 6.6432 | 6.612794692
a3 6.6432 | 6.612794687
a’’ 6.6432 | 6.612794674

I 0 —41.878 6.524802885
a3 —41.878 6.612519674
a™d —41.878 6.612790564
a’ —41.878 6.612794604

1l 0 —9.5305 | 6.607730984
a3 —9.5305 | 6.612788446
a=d —9.5305 | 6.612794633
a7 —9.5305 | 6.612794673

\% 0 22.82 6.57395630
a3 22.82 6.612726254
a™d 22.82 6.612793807
a7 22.82 6.612794662

v 0 —90.399 6.148843431
a3 —90.399 6.607530384
a>d —90.399 6.612487745
a’’ —90.399 6.612774317

Use of the multipole expansion greatly improves the results and, to very high accuracy,
makes them independent of the choice of unit cell motif, as it should be.

Note that the larger the dipole moment of the unit cell, the worse the results with the short-range

forces only. This is understandable, because the first nonvanishing contribution in the multipole



Electronic Orbital Interactions in Periodic Systems 73

expansion is the dipole—dipole term (cf. Appendix G). Note how considerably the unit cell
dependence drops after this term is switched on (a~3).

The conclusion is that in the standard (i.e., short-range) calculations we should always choose
the unit cell motif that corresponds to the smallest dipole moment. It seems however that such
a motif is what everybody would choose using their “common sense.”

1.14.1 Field compensation method

In a moment we will unexpectedly find a quite different conclusion. The logical chain of steps
that led to it has, in my opinion, a didactic value, and contains a considerable amount of opti-
mism. When this result was obtained by Leszek Stolarczyk and myself, we were stunned by its
simplicity.

Is it possible to design a unit cell motif with a dipole moment of zero? This would be
a great unit cell, because its interaction with other cells would be weak and it would
decay fast with intercellular distance. We could therefore compute the interaction of a
few cells like this and the job would be over: we would have an accurate result at very
low cost.

There is such a unit cell motif.

Imagine we start from the concept of the unit cell with its motif (with lattice constant a). This
motif is, of course, electrically neutral (otherwise the total energy would be +00), and its dipole
moment component along the periodicity axis is equal to u. Let us put its symbol in the unit
cell (Fig. 1.24a).

Now let us add to the motif two extra (i.e., fictitious) point-like opposite charges (+g and
—q), located on the periodicity axis and separated by a. The charges are chosen in such a way
(g= %) that they alone give the dipole moment component along the periodicity axis equal to
—u (Fig. 1.24b).

In this way the new unit cell dipole moment (with the additional fictitious charges included)
is equal to zero. Is this an acceptable choice of motif? Well, what does acceptable mean? The
only requirement is that by repeating the new motif with period a, we have to reconstruct the
whole crystal. What will we get when repeating the new motif? Let us see (Fig. 1.24c).

We get the original periodic structure, because the charges all along the polymer, except the
boundaries, have canceled each other out. Simply, the pairs of charges +¢g and —g when located
at a point result in nothing.
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@ I K |
a

(b) I H |

+q —q

Fig. 1.24. Field compensation method. (a) The unit cell with Iength a and dipole moment > 0. (b)
The modified unit cell with additional Fctltlous charges (|g| = £) which cancel the dipole moment.
(c) The modified unit cells (with ' = 0) give the original polymer when added together.

In practice we would like to repeat just a few neighboring unit cell motifs (a cluster) and then
compute their interaction. In such case, we will observe the charge cancellation inside the clus-
ter, but no cancellation on its boundaries (“surface”).

Therefore we get a sort of point charge distribution at the boundaries.

If the boundary charges did not exist, it would correspond to the traditional calculations of the
original unit cells without taking any long-range forces into account. The boundary charges
therefore play the important role of replacing the electrostatic interaction with the rest of
the infinite crystal, by the boundary charge interactions with the cluster (“field compensation
method”).

This is all. The consequences are simple.

Let us not only kill the dipole moment, but also other multipole moments of the unit
cell content (up to a maximum moment), and the resulting cell will be unable to interact
electrostatically with anything. Therefore, interaction within a small cluster of such cells
will give us an accurate result for the energy per cell.

This multipole killing (field compensation) may be carried out in several ways.’

Application of the method is extremely simple. Imagine unit cell O and its neighbor unit cells
(a cluster). Such a cluster is sometimes treated as a molecule and its role is to represent a bulk

69 L. Piela, L.Z. Stolarczyk, Chem. Phys. Letters, 86(1982)195.
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crystal. This is a very expensive way to describe the bulk crystal properties, for the cluster sur-
face atom ratio to the bulk atom is much higher than we would wish (the surface still playing an
important role). What is lacking is the crystal field that will change the cluster properties. In the
field compensation method we do the same, but there are some fictitious charges at the cluster
boundaries that take care of the crystal field. This enables us to use a smaller cluster than before
(low cost) and still get the influence of the infinite crystal. The fictitious charges are treated the
same way in computations as the nuclei (even if some of them are negatively charged). How-
ever artificial it may seem, the results are far better when using the field compensation method
than without it.

1.14.2 The symmetry of subsystem choice

The example described above raises an intriguing question, pertaining to our understanding of
the relation between a part and the whole.

There are an infinite number of ways to reconstruct the same system from parts. These ways
are not equivalent in practical calculations, if for any reason we are unable to compute all the
interactions in the system. However, if we have a theory (in our case the multipole method)
that is able to compute the interactions,’” including the long-range forces, then it turns out the
final result is virtually independent of the choice of unit cell motif. This arbitrariness of choice
of subsystem looks analogous to the arbitrariness of the choice of coordinate system. The final
results do not depend on the coordinate system used, but still the numerical results (as well as
the effort to get the solution) do.

The separation of the whole system into subsystems is of key importance to many physical
approaches, but we rarely think of the freedom associated with the choice. For example, an
atomic nucleus does not in general represent an elementary particle, and yet in quantum me-
chanical calculations we treat it as a point particle, without an internal structure, and we are
successful.”! Further, in the Bogolyubov'> transformation, the Hamiltonian is represented by
creation and annihilation operators, each being a linear combination of the creation and annihi-
lation operators for electrons (described in Appendix C, p. 587). The new operators also fulfill
the anticommutation rules, only the Hamiltonian contains more additional terms than before. A
particular Bogolyubov transformation may describe the creation and annihilation of quasiparti-
cles, such as the electron hole. We are dealing with the same physical system as before, but we

70
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With controlled accuracy, i.e., we still neglect the interactions of higher multipoles.

This represents only a fragment of the story-like structure of science (cf. p. V1-76), one of its most intriguing
features. It makes science operate, otherwise when considering the genetics of peas in biology we have had to
struggle with the quark theory of matter.

Nicolai Nicolaevitch Bogolyubov (1909-1992), Russian physicist, director of the Dubna Nuclear Institute, out-
standing theoretician.

72
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look at it from a different point of view, by considering it composed of something else. Is there
any theoretical (i.e., serious) reason for preferring one division into subsystems over another?
Such a reason may be only of practical importance. Any correct theory should give the same
description of the total system independently of subsystems we decide to choose.

SYMMETRY WITH RESPECT TO DIVISION INTO SUBSYSTEMS

The symmetry of objects is important for the description of them, and therefore may be
viewed as of limited interest. The symmetry of the laws of Nature, i.e., of the theory
that describes all objects (whether symmetric or not), is much more important. This has
been discussed in detail in Chapter V1-2 (cf. p. V1-77), but it seems that we did not list
there a fundamental symmetry of any correct theory: the symmetry with respect to the
choice of subsystems. A correct theory has to describe the total system independently of
what we decide to treat as subsystems.

We will meet this problem once more in intermolecular interactions (Chapter V1-5). However,
in the periodic system it has been possible to use, in computational practice, the symmetry
described above.

Our problem resembles an excerpt found in “Dreams of a Final Theory” by Steven Weinberg’?
pertaining to gauge symmetry: “The symmetry underlying it has to do with changes in our point
of view about the identity of the different types of elementary particle. Thus it is possible to have
a particle wave function that is neither definitely an electron nor definitely a neutrino, until we
look at it.” Here also we have freedom in the choice of subsystems and a correct theory has to
reconstitute the description of the whole system.

An intriguing problem.

Summary

* A crystal is often approximated by an infinite crystal (primitive) lattice, which leads to the concept
of the unit cell. By translationally repeating a chosen atomic motif associated with a unit cell, we
reconstruct the whole infinite crystal.

*  The one-electron Hamiltonian is invariant with respect to translations by any lattice vector. Therefore
its eigenfunctions (crystal orbitals) are simultaneously eigenfunctions of the translation operators
(Bloch theorem) f"(R )Pk (r) = ¢ (r — Rj) =exp (—i kR j) ¢k (r) and transform according to the
irreducible representation of the translational group labeled by the wave vector k.

*  Bloch functions may be treated as atomic symmetry orbitals ¢ =3 ; exp (ikR;) x (r — R;) formed
from the atomic orbital x (r). Their symmetry is determined by k.

73 Pantheon Books, New York (1992), Chapter 6.
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The crystal lattice basis vectors allow the formation of the basis vectors of the inverse lattice. Linear
combinations of them (with integer coefficients) determine the inverse lattice subject to translational
symmetry.
A special (Wigner—Seitz) unit cell of the inverse lattice is called the first Brillouin zone (FBZ).
The vectors k inside the FBZ label possible nonequivalent irreducible representations of the transla-
tional group.
The wave vector plays a triple role:

it indicates the direction of the wave, which is an eigenfunction of T(R ;) with eigenvalue

exp (—ikR;);

it labels the irreducible representations of the translational group;

the longer the wave vector k, the more nodes the wave has.
In order to neglect the crystal surface, we apply the Born—von Kdrmdn boundary condition: “instead
of a stick-like system we take a circle.”
In full analogy with molecules, we can formulate the SCF LCAO CO Hartree—Fock—Roothaan
method (CO instead MO). Each CO is characterized by a vector k € FBZ and is a linear combi-
nation of the Bloch functions with the same k.
The orbital energy dependence on k € FBZ is called the energy band. The stronger the intercell
interaction, the wider the band width (dispersion).
Electrons occupy the valence bands, the conduction bands are empty. The Fermi level is the HOMO
energy of the crystal. If the HOMO-LUMO energy difference (energy gap between the valence and
conduction bands) is zero, we have a metal; if it is large, we have an insulator; if it is medium, we
have a semiconductor.
Semiconductors may be intrinsic, n-type (if the donor dopant levels are slightly below the conduction
band), or p-type (if the acceptor dopant levels are slightly above the occupied band).
Metals when cooled may undergo what is known as the Peierls transition, which denotes lattice
dimerization and band gap formation. In this way the system changes from a metal to a semiconduc-
tor or insulator. This transition corresponds to the Jahn—Teller effect in molecules.
Polyacetylene is an example of a Peierls transition (“dimerization”), which results in shorter bonds
(a little “less-multiple” than double ones) and longer bonds (a little “more multiple” than single
ones). Such a dimerization introduces the possibility of a defect separating two rhythms (“phases”)
of the bonds: from “double-single” to “single-double.” This defect can move within the chain, which
may be described as a solitonic wave. The soliton may become charged and, in this case, participates
in electric conduction (increasing it by many orders of magnitude).
In polyparaphenylene, a soliton wave is not possible, because the two phases, quinoid and aromatic,
are not of the same energy, excluding free motion. A double effect is possible though, a bipolaron.
Such a defect represents a section of the quinoid structure (in the aromatic-like chain) at the end of
which we have two unpaired electrons. The electrons, when paired with extra electrons from donor
dopants or when removed by acceptor dopants, form a double ion (bipolaron), which may contribute
to electric conductance.
The band structure may be foreseen in simple cases and logically connected to the subsystem or-
bitals.
To compute the Fock matrix elements or the total energy per cell, we have to calculate the interaction
of cell 0 with all other cells.
The interaction with neighboring cells is calculated without approximations, while that with distant
cells uses multipole expansion. Multipole expansion applied to the electrostatic interaction gives
accurate results, while the numerical effort is dramatically reduced.
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* In some cases (metals), we find long-range exchange interaction, which disappears as soon as the

energy gap emerges. This indicates that the Hartree—Fock method is not applicable in this case.

*  The choice of unit cell motif is irrelevant from the theoretical point of view, but leads to different
numerical results when the long-range interactions are omitted. If all interactions (including the
long-range ones) are taken into account, the theory becomes independent of the division of the

whole system into arbitrary motifs.

Main concepts, new terms

band (p. 21)

band gap (p. 35)

band structure (p. 26)

band width (p. 32)
biorthogonal basis (p. 11)
bipolaron (p. 37)

Bloch function (p. 10)

Bloch theorem (p. 10)
Born—von Karman boundary condition (p. 23)
cyclic group (p. 24)
conduction band (p. 35)
crystal orbitals (p. 28)

energy gap (p. 33)

Fermi level (p. 33)

field compensation method (p. 74)
first Brillouin zone (p. 14)
Hartree—Fock method (p. 51)
insulators (p. 35)

intrinsic semiconductor (p. 35)
inverse lattice (p. 11)
Jahn—Teller effect (p. 35)
lattice constant (p. 6)

LCAO CO (p. 31)

From the research front

The Hartree—Fock method for periodic systems nowadays represents a routine approach coded in several
ab initio computer packages. We may analyze the total energy, its dependence on molecular conforma-
tion, the density of states, the atomic charges, etc. Also calculations of first-order responses to the electric
field (polymers are of interest for optoelectronics) have been successful in the past. However, nonlinear

long-range exchange (p. 68)
long-range problem (p. 56)
metals (p. 35)

motif (p. 6)

multipole expansion (p. 61)
multipole moment (p. 62)
n-type semiconductor (p. 38)
Peierls transition (p. 35)
primitive lattice (p. 6)

p-type semiconductor (p. 38)
quasicrystal (p. 4)

Riemann zeta function (p. 63)
SCF LCAO CO (p. 55)
soliton (p. 37)

symmetry of division into subsystems (p. 75)
symmetry orbital (p. 10)
translational symmetry (p. 6)
translation operator (p. 6)
translation vector (p. 6)

unit cell (p. 6)

valence band (p. 35)

wave vector (p. 8)
Wigner-Seitz cell (p. 14)

problems (like the second harmonic generation, see Chapter V1-4) still represent a challenge.
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Ad futurum

Probably there will be no problem in carrying out the Hartree—Fock or DFT (see Chapter V1-3) calcu-
lations soon, even for complex polymers and crystals. What will remain for a few decades is the very
important problem of lowest-energy crystal packing and of solid state reactions and phase transitions.
Post-Hartree—Fock calculations will be more and more important, taking into account electronic correla-
tion effects. The real challenge will start in designing nonperiodic materials, where the polymer backbone
will serve as a molecular rack for installing some functions (transport, binding, releasing, signal trans-
mitting). The functions will be expected to cooperate (“intelligent materials,” cf. Chapter V1-7).

Additional literature

R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures,” VCH
publishers, New York, 1988.

A masterpiece written by a Nobel Prize winner, one of the founders of solid state quantum chemistry.
More oriented towards chemistry than Levin’s book. Solid state theory was traditionally the domain of
physicists, some concepts typical of chemistry as, e.g., atomic orbitals, bonding and antibonding effects,
chemical bonds, and localization of orbitals were usually absent in such descriptions.

J.-M. André, J. Delhalle, J.-L. Brédas, “Quantum Chemistry Aided Design of Organic Polymers,”
World Scientific, Singapore, 1991.

A well-written book oriented mainly towards the response of polymers to the electric field.

Questions

1. The Bloch theorem (where ¢y (r) stands for a crystal orbital, R; is a lattice vector, and k is a wave
vector):
a. pertains to the eigenvalue (corresponding to ¢ ) of the translation operator by a lattice vector.
b. Ik = [d(r —R))|.
c. |pk(r)|* exhibits the same symmetry as the potential energy V (r).
d. if ¢k (r) corresponds to the wave vector K, then ¢ (r — R ;) =exp (—i k-R j) ¢k (r).
2. The FBZ:
a. means the smallest unit cell of a primitive lattice.
b. means a smallest motif to be repeated in a crystal.
c. does not contain in its inner part any pair of equivalent wave vectors.
d. the wave vectors that correspond to the surface of the FBZ differ by an inverse lattice vector.
3. A function ¢ corresponding to the wave vector k:
a. for k = 0 the function ¢y, built of 1s atomic orbitals, does not have any nodal planes.
represents a wave with the front perpendicular to k.
the larger |k|, the greater the number of nodes.
has to be a CO.

go o
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4. ACO:
a. represents any linear combination of the atomic orbitals of the atoms the crystal is composed
of.
b. is characterized by its wave vector k.
c. with k =0 corresponds to the lowest energy for a given electronic band.
d. two crystal orbitals that differ by any inverse lattice vector are identical.
5. An infinite polyacetylene chain:
a. represents a conductor.
b. exhibits an alternation of the CC bond lengths.
c. exhibits a nonzero energetic gap between the valence band and the conduction band.
d. conducts the electric current thanks to the solitonic defects that result from donor or acceptor
doping.
6. The band width increases if:
a. one goes from the COs that correspond to the inner electronic shells to the COs corresponding
to valence electrons.
b. one increases a pressure.
c. the distance between atoms gets larger.
d. the atomic orbitals overlap more.
7. A semiconductor:
a. exhibits a small energy gap.
b. has about a half of the conductivity of copper.
c. has the energy gap equal to zero.
d. conducts electricity, but only in one direction.
8. The Fermi level:
a. represents an electronic energy level from which removing an electron needs the least energy.
b. has the energy corresponding to the HOMO orbital of the crystal.
c. means the mean energy of the occupied electronic states.
d. is the lowest energy of the conducting band.
9. The dipole—quadrupole interaction per unit cell in a regular polymer is:
a. 0.
b. equal to the difference between the dipole—dipole and quadrupole—quadrupole interactions.
c. equal to the mean value of the dipole—dipole and quadrupole—quadrupole interactions.
d. asum of the interactions of the dipole of the unit cell 0 with the quadrupoles from beyond the
section of cells — N, ...N.
10. The unit cell dipole moment in a regular polymer:
a. is uniquely defined for an electrically neutral polymer.
b. does not depend on the position of the cell with respect to cell 0.
c. must be equal to 0, otherwise the total dipole—dipole interaction energy would be equal to co.
d. does depend on the choice of the unit cell.
Answers

la,b,c,d, 2¢,d, 3a,b,c, 4b,d, 5b,c,d, 6a,b,d, 7a, 8a,b, 9a,d, 10b,d



Correlation and Anticorrelation
of Electronic Motions

God does not care about our mathematical difficulties, he integrates empirically.
Albert Einstein

Where are we?

The main road on the trunk leads us to the right-hand side part of the crown of the tree.

An example

As usual let us consider the simplest example: the hydrogen molecule. The normalized Hartree—Fock
determinant with double occupancy of the normalized molecular orbital ¢ reads as

— Z)ZL‘@(D 91 (2) :L‘ p(ra(or) @@r2)a(or)
' V2| 2D 0202 2] @) B(o1) @) (o) |

The key quantity here is | rg F (1, 2)|2, since it tells us about the probability density of the occurrence of
certain coordinates of the electrons. We will study the fundamental problem for the motion of electrons:
whether the electrons react to their presence.

Let us ask very important questions. What is the probability density of occurrence of the situation when:

e electron 1 has a position (x1, y1, z1) and the spin coordinate o7 = 1/2, while electron 2 has spin
coordinate 0o = —1/2 and its space coordinates are (x2, y2, z2)? Let us calculate the (conditional)
probability density of finding such situation. We have

2
[WruF (1,2)) = [‘P(1)<ﬂ(2) %{a (01) B (02) — ,3(01)0!(02)}1| =

| 2
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Now imagine that electron 1 changes its position but along an orbital contour surface ¢ = const. The
distribution of the probability density %constz(p2 (x2, ¥2, 22) of electron 2 does not change a bit, although
electron 2 should move away from its partner, since the electrons repel each other. Electron 2 is not
afraid to approach electron 1. The latter can even touch electron 2 and it does not react at all. For such a
deficiency we have to pay through the high average value of the Hamiltonian (since there is a high average
energy of the electron repulsion). The Hartree—Fock method therefore has an obvious shortcoming.

* we leave everything the same as before, but now electron 2 has spin coordinate oo = 1/2 (so this
is the situation where both electrons have identical projections of spin angular momentum')? What
will the response to this change be of | rpyF (1,2) |2 as a function of the position of electron 2?

Again we calculate

1 1 1 1 1\.7?
[WrHF (1, 2)|2 = |:C0”Sl @ (x2, y2,22) E{a (§> B <§) - B (§> o <§)}:| =

1 2
|:c0nst @ (x2,¥2,22) E{l x0—0x 1}] =0.

We ask about the distribution of the electron of the same spin. The answer is that this distribution is
everywhere equal to zero, i.e., we do not find electron 2 with spin coordinate % independently of the

position of electron 1 with spin coordinate % (in whatever point on the contour line or beyond it).

The second conclusion can be accepted, since it follows from the pairing of the spins,” but the first
conclusion is just absurd. Such nonsense is admitted by the Hartree—Fock method. In this chapter we
will ponder how can we introduce a correlation of electronic motions.

We define the electronic correlation energy as

Ecoret =E — ERpF,

where E is the energy entering the Schrodinger equation3 and ErpyF is the restricted Hartree—Fock
energy.* One has to note that the Hartree—Fock procedure takes into account the Pauli exclusion principle

1 we may ask: “How come?” After all, we consider a singlet state, hence the spin projections are opposite. We will

not find the situation with parallel spin projections. Take it easy. If, in fact, we are right then we will get O as the
density of the respective conditional probability. Let us see whether it will really be so.

And this is ensured by the singlet form of the spin part of the function.

This is the rigorous nonrelativistic energy of the system in its ground state. This quantity is not available experi-
mentally; we can evaluate it by subtraction of the calculated relativistic corrections from the energy of the total
ionization of the system.

Usually we define the correlation energy for the case of double occupancy of the molecular orbitals (the RHF
method, see Chapter V1-8). In the case of open shells, especially when the multideterminantal description is
required, the notion of correlation energy still remains to be defined. These problems will not be discussed in this
book.
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and therefore also the correlation of electrons of the same spin coordinate. Hence, the correlation energy
Eorer 1s defined here with respect to the “Hartree—Fock level of electron correlation”.

What is it all about?

The outline of the chapter is as follows:

*  First we will discuss the methods which explicitly (via the form of the suggested wave function)
allow the electrons to control their mutual distance (“a correlation of motions”).

* In the second part of the chapter the correlation will be less visible, since it will be accounted for by
application of linear combinations of the Slater determinants. First we will discuss the variational
methods (VB, CI, MC SCF), and then the nonvariational ones (CC, EOM-CC, MBPT).

Size consistency requirement p- 87

VARIATIONAL METHODS USING EXPLICITLY CORRELATED WAVE FUNCTIONS (4)

Correlation cusp condition p. 91
The Hylleraas CI method p. 93
Two-electron systems p. %4

e Harmonium — the harmonic helium atom
*  High accuracy: the James—Coolidge and Kotos—Wolniewicz functions
¢ Neutrino mass

Exponentially correlated Gaussian functions p- 101
Electron holes p. 102

¢ Coulomb hole (“correlation hole”)
*  Exchange hole (“Fermi hole™)

VARIATIONAL METHODS WITH SLATER DETERMINANTS (A 4©0)

Static electron correlation (A) p. 112
Dynamic electron correlation (A) p. 112
Anticorrelation, or do electrons stick together in some states? (¢) p- 118
Valence bond (VB) method (A) p- 126
* Resonance theory — hydrogen molecule

*  Resonance theory — polyatomic case

Configuration interaction (CI) method (AQ) p. 134

*  Brillouin theorem
*  Convergence of the CI expansion
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Example of H,O

Which excitations are most important?

Natural orbitals (NOs) a way to shorter expansions
Size inconsistency of the CI expansion

Direct CI method (¢)

Multireference CI method (¢)

Multiconfigurational self-consistent field (MC SCF) method (A ¢Q0U)

Classical MC SCF approach (A)
Unitary MC SCF method (4)
Complete active space (CAS SCF) method is size-consistent (¢©QU)

NONVARIATIONAL METHODS WITH SLATER DETERMINANTS (A 4®)

Coupled cluster (CC) method (4<)

Wave and cluster operators

Relationship between CI and CC methods
Solution of the CC equations

Example: CC with double excitations
Size consistency of the CC method

Equation of motion (EOM-CC) method (¢)

Similarity transformation
Derivation of the EOM-CC equations

Many-body perturbation theory (MBPT) (¢)

Unperturbed Hamiltonian

Perturbation theory — slightly different presentation

MBPT machinery — part one: energy equation

Reduced resolvent or the “almost” inverse of (E(()O) — HO)
MBPT machinery — part two: wave function equation
Brillouin—Wigner perturbation theory
Rayleigh—Schrodinger perturbation theory

Mgller-Plesset version of Rayleigh-Schriédinger perturbation theory (A Q)

Expression for MP2 energy
Is the MP2 method self-consistent?

p. 142
p. 143

p. 144

p. 149

p. 159

p. 162

p. 169
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*  Convergence of the Mgller—Plesset perturbational series
*  Special status of double excitations

NONVARIATIONAL METHODS USING EXPLICITLY CORRELATED WAVE
FUNCTIONS (4)

Mogller—Plesset R12 method (MP2-R12) p- 176

*  Resolution of identity (RI) method or density fitting (DF)
e Other RI methods

In chapter V1-8 we dealt with the description of electronic motion in the mean-field approximation. Now
we use this approximation as a starting point towards methods accounting for electron correlation. Each
of the methods considered in this chapter, when rigorously applied, should give an exact solution of the
Schrodinger equation. Thus this chapter will give us access to methods providing accurate solutions of
the Schrodinger equation.

Why is this important?

Perhaps, in our theories, the electrons do not need to correlate their motion and the chemistry will be still
all right?

Unfortunately, this is not so. The mean-field method provides, to be sure, ca. 99% of the total energy of
the system. This is certainly a lot; in many cases the mean-field method gives quite satisfactory results,
but it still falls short of treating several crucial problems correctly. For example,

* Itis only because of electron correlation the hydride ion (H™) exists and the noble gas atoms attract
each other (in accordance with experiment, liquefaction of gases).

e According to the Hartree—Fock method, the F; molecule does not exist at all, whereas the fact is that
it exists, and is doing not bad (bonding energy amounts to about 38 kcal/mol).’

* About half the interaction energy of large molecules (often of biological importance) calculated at
the equilibrium distance originates purely from the correlation effect.

e The RHF method used to describe the dissociation of the chemical bond gives simply tragic re-
sults (cf. Chapter V1-8, p. V1-511), which are qualitatively wrong (here the UHF method gives a
qualitatively correct description).

We see that in many cases electronic correlation must be taken into account.

What is needed?

e Operator algebra (Appendix V1-B, necessary),

5 Yet this is not a strong bond. For example, the bonding energy of the Hy, molecule equals 104 kcal/mol, that of
HF 135 kcal/mol.
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*  Hartree—Fock method (Chapter V1-8, necessary),

* eigenvalue problem (Appendix V1-M, p. V1-705, necessary),

e variational method (Chapter V1-5, necessary),

e perturbation theory (Chapter V1-5, recommended),

*  matrix diagonalization (Appendix V1-L, p. V1-703, recommended),
* second quantization (Appendix C, p. 587, necessary).

Classical works

The first calculations with electron correlation for molecules were performed by Walter Heitler and Fritz
Wolfgang London in a paper “Wechselwirkung neutraler Atome und homdopolare Bindung nach der
Quantenmechanik,” published in Zeitschrift fiir Physik, 44(1927)455. The covalent bond (in the hydro-
gen molecule) could be correctly described only after the electron correlation has been included. June
30, 1927, when Heitler and London submitted the paper, is the birth date of quantum chemistry. % The
first calculations incorporating electron correlation in an atom (helium) were published by Egil Andersen
Hylleraas in the article “Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tief-
sten Terms von Ortho-Helium,” Zeitschrift fiir Physik, 54(1929)347. % Later, significantly more accurate
results were obtained for the hydrogen molecule by Hubert M. James and Albert S. Coolidge in the ar-
ticle “The Ground State of the Hydrogen Molecule,” Journal of the Chemical Physics, 1(1933)825, and
a contemporary reference point for that molecule are papers by Wtodzimierz Kotos and Lutostaw Wol-
niewicz, among others an article entitled “Potential Energy Curves for the X =B 3%+, C', States of
the Hydrogen Molecule,” published in Journal of Chemical Physics, 43(1965)2429. s Christian Mgller
and Milton S. Plesset in Physical Review, 46(1934)618 published a paper “Note on an Approximation
Treatment for Many-Electron Systems,” where they presented a perturbational approach to electron cor-
relation. % The first calculations with the multiconfigurational self-consistent field (MC SCF) method
for atoms were published by Douglas R. Hartree, his father William Hartree, and Bertha Swirles in the
paper “Self-Consistent Field, Including Exchange and Superposition of Configurations, with some Re-
sults for Oxygen,” Philosophical Transactions of the Royal Society (London) A, 238(1939)229, and the
general MC SCF theory was presented by Roy McWeeny in the work “On the Basis of Orbital Theo-
ries,” Proceedings of the Royal Society (London) A, 232(1955)114. % As a classic paper in electronic
correlation we also consider an article by Per-Olov Lowdin, “Correlation Problem in Many-Electron
Quantum Mechanics,” in Advances in Chemical Physics, 2(1959)207. % The idea of the coupled cluster
(CC) method was introduced by Fritz Coester in a paper in Nuclear Physics, 7(1958)421 entitled “Bound
States of a Many-Particle System.” % Jifi Cizek introduced the (diagrammatic) CC method into electron
correlation theory in the paper “On the Correlation Problem in Atomic and Molecular Systems. Calcula-
tion of Wavefunction Components in Ursell-type Expansion Using Quantum-Field Theoretical Methods,’
published in the Journal of Chemical Physics, 45(1966)4256. % The book edited by Oktay Sinanoglu
and Keith A. Brueckner “Three Approaches to Electron Correlation in Atoms,” Yale Univ. Press, New
Haven and London, 1970, contains several reprints of the papers which cleared the path towards the CC
method. % A derivation of the CC equations for interacting nucleons was presented by Herman Kiim-
mel and Karl-Heinz Lithrmann, Nuclear Physics A, 191(1972)525 in a paper entitled “Equations for
Linked Clusters and the Energy Variational Principle.” % Werner Kutzelnigg in a paper “rj2-Dependent
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terms in the wave function as closed sums of partial wave amplitudes for large I, published in Theo-
retica Chimica Acta, 68(1985)445 was the first to introduce the explicitly correlated wave functions in
perturbational calculations for atoms and molecules.

¥ sk sk

Size consistency requirement

The methods presented in this chapter will take into account the electronic correlation. A par-
ticular method may deal better or worse with this difficult problem. The better it deals with it,
the more convincing its results are.

There is however one requirement which we feel to be a natural one for any method that pre-
tends to be reasonable. Namely,

any reliable method when applied to a system composed of very distant (i.e., non-
interacting) subsystems should give the energy, which is a sum of the energies
for the individual subsystems. A method having this feature is known as size-
consistent.®

Before we consider other methods, let us check whether our fundamental method, i.e., the
Hartree—Fock method, is size-consistent or not.

Hartree—Fock method

As shown on p. V1-490, the Hartree—Fock electronic energy reads as (the summations go over
the occupied spin orbitals) E}, . = Y2V (ilAli) + 5 Y540y [(ij1ij) — (ij1ji)], while the total
energy is £, . = E'y . + Vyn, where the last term represents a constant repulsion of the nuclei.
When the intersubsystem distances are infinite (they are then noninteracting), one can divide
the spin orbitals |i),i = 1,2, ...N, into nonoverlapping setsi € A,i € B,i € C, ..., where i € A
means the molecular spin orbital |7) is localized on subsystem A and represents a Hartree—
Fock spin orbital of molecule A, etc. Then, in the limit of large distances (symbolized by lim,

Vp stands for the operator of the interaction of the nuclei of molecule B with an electron,

6 The size consistency has some theoretical issues to be solved. One may define the subsystems and their distances
in many different ways, some of them quite weird. For example, one may consider all possible dissociation
channels (with different products) with unclear electronic states to assume. Here we consider the simplest cases:
the closed shell character of the total system and of the subsystems. Even this is not unique...
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while lim Vy,, = Y 4 Viun 4, With Vy, 4 representing the nuclear repulsion within molecule A,
Epr(A) denotes the Hartree—Fock energy of molecule A), we have

SMO SMO

hmEHp_ththt —hmZ[ljllj (ijlji)] +1limV,, =
i,j=1

SMO SMO SMO
DTS Gy +1im > i) Y Vili) Z [Gijlij) = (i1 i)+
A i€A i€A B#A leA
SMO
—hm Z [(jlij) — l]|]z]—|—ZV,mA—
icA,jeB
SMO SMO
SO ilhtiy + 0+ 5 Z [(ijlij) — (ij1ji)]+0+ Vana | =D Enr(A).
A i€eA leA A

The zeros in the above formula appeared instead of the terms that vanish because of the
Coulombic interaction of the objects that are further and further from one another. For ex-
ample, in the mixed terms 5 ZleA JeB[(l]|l]) (ij|ji)] the spin orbitals |i) and |j) belong
to different molecules, and all integrals of the type (ij|ij) vanish, because they correspond to
the Coulomb interaction of electron 1 with the probability density distribution ¢ (1) ¢; (1) in
molecule A with electron 2 with the distribution qﬁj (2) ¢; (2) centered on molecule B. Such
an interaction vanishes as the inverse of the AB distance, i.e., goes to zero in the limit un-
der consideration. The integrals (ij|ji) vanish even faster, because they correspond to the
Coulombic interaction of ¢ (1) ¢; (1) with ¢;? (2) ¢; (2) and each of these distributions itself
vanishes exponentially if the distance AB goes to infinity. Hence, all the mixed terms tend to
Zero.

Thus,

the Hartree—Fock method is size-consistent.

We have learned, from the example given at the beginning of this chapter, that the “genetic
defect” of mean-field methods is that they describe electrons that ignore the fact that they are
close to or far from each other (Fig. 2.1a,b).
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(b) |

Fig. 2.1. Absence of electronic correlation in the helium atom as seen by the Hartree-Fock method.
Visualization of the cross-section of the square of the wave function (probability density distribution)
describing electron 2 within the xy plane provided electron 1, the nucleus at (0, 0, 0), is located in a
certain point in space. (a) At (—1,0,0). (b) At (1,0, 0). Note that in both cases the conditional probability
density distributions of electron 2 are identical. This means electron 2 does not react to the motion of
electron 1, i.e., there is no correlation whatsoever of the electronic motions (when the total wave
function is the Hartree-Fock one).

VARIATIONAL METHODS USING EXPLICITLY
CORRELATED WAVE FUNCTIONS

2.1 Correlation cusp condition

The explicitly correlated wave function (we will get to it in a moment) has the interelectronic
distance built in its mathematical form. We may compare this to making the electrons wear
spectacles.” Now they avoid each other. One of my students said that it would be the best if the
electrons moved apart to infinity. Well, they cannot. They are attracted by the nucleus (energy
gain), and being close to it, are necessarily close to each other too (energy loss). There is a
compromise to achieve.

Short distances are certainly most important for the Coulombic interaction of two charges, al-
though obviously, the regions of configurational space connected with the long interelectronic

7 Of course, the methods described further also provide their own “spectacles” (otherwise they would not give
the solution of the Schrédinger equation), but the spectacles in the explicitly correlated functions are easier to
construct with a small number of parameters.
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distances are much larger. Thus the region is not large, but very importantly, within it the “col-
lisions” take place. It turns out that the wave function calculated in the region of collision must
satisfy some very simple mathematical condition (called correlation cusp condition). This is
what we want to demonstrate. The derived formulae® are universal, they apply to any pair of
charged particles.

Let us consider rwo particles with charges ¢; and g; and masses m; and m; separated from
other particles. This makes sense since simultaneous collisions of three or more particles occur
very rarely in comparison with two-particle collisions. Let us introduce a Cartesian system of
coordinates (say, in the middle of the beautiful market square in Brussels), so that the system
of two particles is described with six coordinates. Then (atomic units are used) the sum of the
kinetic energy operators of the particles is

1 1
i——Aj. @2.1)

T=—
2m;

Tosio Kato (1917-1999) was an outstand-
ing Japanese physicist and mathematician. His
studies at the University of Tokyo have been
interrupted by the Second World War. After
the war he obtained his PhD at the same uni-
versity (about convergence of the perturba-
tional series), and then the title of professor in
1958.

In 1962 Kato became professor at the Univer-
sity of Berkeley, California. He admired the
botanic garden over there, knew a lot of Latin
names of plants, and very much appreciated the
Charles Linnaeus classification of plants.

Now we separate the motion of the center of mass of the two particles with position vectors
r; and r;. The center of mass in our coordinate system is indicated by the vector Rcy =

(Xcm,Yem, Zem), ie.,

Rey = ——— L1, (2.2)

Let us also introduce the total mass of the system M = m; + m;, the reduced mass of the

mim;j . . .. e .
T and the vector of their relative positions r =r; — r;. Introducing the

two particles u =

8 T Kato, Commun. Pure Appl. Math., 10(1957)151.
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three coordinates of the center of mass measured with respect to the market square in Brussels
and the x, y, z coordinates which are components of the vector r, we get (Appendix V1-J on
p- V1-691, Example 1)

) 1 1
T=——Acy — —A, 2.3
g lem o (2.3)

92 92 92
Acy = + + , 24
M OXE, vE, | 0ZE, ey

92 R

_ (2.5)

o Toyr T

After this operation, the Schrodinger equation for the system is separated (as always in the
case of two particles, Appendix V1-J) into two equations: the first describing the motion of
the center of mass (seen from Brussels) and the second describing the relative motion of the
two particles (with Laplacian of x, y, z and reduced mass ). We are not interested in the first
equation, but the second one (Brussels-independent) is what we are after. Let us write down the
Hamiltonian corresponding to the second equation,

! 2i4;

H=——A
2,u+r

(2.6)
We are interested in how the wave function looks when the distance of the two particles r
becomes very small. If r is small, it makes sense to expand the wave function in a power
series’ of r, i.e., Y =Co+Cir+ Cor?+....Letus calculate Hr close to r = 0. The Laplacian
expressed in the spherical coordinates has the form

1o ,0 1 9 0 1 32
=—=—r"— —sml—+ —————,
r2or or r2sin6 06 00 r2 sin20 3(]52

Since we have assumed the function to be dependent on r only, upon the action of the Laplacian
only the first term gives a nonzero contribution.

9 Assuming such a form we exclude the possibility that the wave function goes to +00 for » — 0. This must
be so, since otherwise either the respective probability would go to infinity or the operators would become
non-Hermitian (cf. p. V1-90). Both possibilities are unacceptable. We covertly assumed also (to simplify our
considerations) that the wave function does not depend on the angles 6 and ¢. This dependence can be accounted
for by making the constants Cyp, C1, Cy the functions of 6 and ¢. Then the final results still holds, but for the
coefficients C and C| averaged over 6 and ¢.
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We obtain
. 1 .
fry = (——A+—q’qj)¢= @)
21 r
1 190 ad
— —(5—r*—+.)(Co+Cir+ Coar’ + ) + (2.8)
2 r+dr or
19) (Co+ Crr + Car +..2) 2.9)
,
1 /2C
=0———+6C+ 12C3r + ... (2.10)
2u\ r
qiq;
+Co—r + C1qiqj + C2qiq;r + ... 2.1D)

The wave function cannot go to infinity when r goes to zero, while in the above expression we

have two terms (—ﬁ 2% and Cp @) which would then “explode” to infinity.

These two terms must cancel each other.

Hence, we obtain
Cy
Cogiqj = o (2.12)

This condition is usually expressed in another way. We use the fact that ¥ (r = 0) = Cp and
(%—lf)r:o = (| and obtain the cusp condition as

Iy
(5, )r=0=1qiq; ¥ (r =0).

» The case of two electrons
In the case of two electrons we have m; =m; = 1, hence u = % and g; = qj = —1. We get
the cusp condition for the collision of two electrons as

oy 1.
(G )r=0=3¥(r=0)

or (introducing variable r = 15 together with particles’ position vectors r; and r»)
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the wave function should be of the form

1
Y =¢@,r)[l+ 52 +...1

where + ... means higher powers of 5.
o The nucleus—electron case
When one of the particles is a nucleus of charge Z, u >~ 1 and we get

a
(a_w)r:O =—Zy(r=0).
r

Thus

the correct wave function for the electron in the vicinity of a nucleus should have an
expansion Y = const(1 — Zr,1 + ...), where r,1 replacing r is the distance from the
nucleus.

Let us see how it is with the 1s function for the hydrogen-like atom (the nucleus has charge
Z) expanded in a Taylor series in the neighborhood of » = 0. We have 1s = N exp(—Zr) =
N1 —Zr+...). It works.

The correlation cusp makes the wave function not differentiable at r = 0.

2.2 The Hylleraas CI method

In 1929, two years after the birth of quantum chemistry, a paper by Hylleraas'’ appeared,
where, for the ground state of the helium atom, a trial variational function, containing the in-
terelectronic distance explicitly, was applied. This was a brilliant idea, since it showed that
already a small number of terms provide very good results. Even though no fundamental diffi-
culties were encountered for larger atoms, the enormous numerical problems were prohibitive
for atoms with larger numbers of electrons. In this case, the century-long progress meant going
from two- to ten-electron systems. This, however, changed recently.

10 EA. Hylleraas, Zeit. Phys., 54(1929)347. Egil Andersen Hylleraas arrived in 1926 in Géttingen, to collaborate
with Max Born. His professional experience was related to crystallography and to the optical properties of
quartz. When one of the employees fell ill, Born told Hylleraas to continue his work on the helium atom in the
context of the newly developed quantum mechanics. The helium atom problem had already been attacked by
Albrecht Unsold in 1927 using first-order perturbation theory, but Unsold obtained an ionization potential equal
to 20.41 eV, while the experimental value was equal to 24.59 eV. In the reported calculations (done on a recently
installed calculator) Hylleraas obtained a value of 24.47 eV (cf. contemporary accuracy, p. V1-173).
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In the Hylleraas-CI method'' the Hylleraas idea has been exploited when designing a method
for larger systems. The electronic wave function is proposed as a linear combination of Slater
determinants, and in front of each determinant ®;(1,2,3,..., N) we insert, next to the vari-
ational coefficient c¢;, correlational factors with some powers (v, u, ...) of the interelectronic
distances (r,,, between electron m and electron n, etc.). Then we have

Y= cAlry . ®i(1,2,3,... . N)], (2.13)
i

where A denotes an antisymmetrization operator (see Appendix V1-N, p. V1-707). If v; =
u; = 0, we have the CI expansion, i.e., = Zi c;®; (we will discuss it on p. 134). If v; #0
or u; # 0, we include a variationally proper treatment of the appropriate distances ry, or ry;,
i.e., correlation of the motions of the electrons m and n, or k and [, etc. The antisymmetrization
operator ensures the symmetry of the wave function with respect to the exchange of any two
electrons. The method described was independently proposed in 1971 by Wiestaw Woznicki'?
and by Sims and Hagstrom.'? The Hylleraas-CI method has a nice feature, in that even a short
expansion should give a very good total energy for the system, since we combine the power of
the CI method with the great success of the explicitly correlated approaches. Unfortunately, the
method has also a serious drawback. To make practical calculations, it is necessary to evaluate
the integrals occurring in the variational method, and they were very difficult to calculate. It is
enough to realize that, in the matrix element of the Hamiltonian containing two terms of the
above expansion, we may find, e.g., a term 1/ry2 (from the Hamiltonian) and ri3 (from the
factor in front of the determinant), as well as the product of six spin orbitals describing elec-
trons 1,2, 3. Such integrals have to be computed and the existing algorithms were inefficient.
A big progress in this field has been made in recent years thanks to the resolution of identity
(RI) technique, which will be described later on (p. 177).

2.3 Two-electron systems
2.3.1 Harmonium — the harmonic helium atom

An unpleasant feature of the electron correlation is that we deal either with intuitive concepts
or, if our colleagues want to help us, they bring wave functions with formulae as long as the

I, configuration interaction.

12, Woznicki, in “Theory of Electronic Shells in Atoms and Molecules” (ed. A. Yutsis), Mintis, Vilnius, 1971,
p- 103.

13 1S, Sims, S.A. Hagstrom, Phys. Rev. A, 4(1971)908.
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distance from Cracow to Warsaw (or longer'#) and say: look, this is what really happens. It
would be good to analyze such formulae term by term, but this does not make sense, because
there are too many terms. Even the helium atom, when we write down the formula for its
ground-state wave function, becomes a mysterious object. Correlation of motion of whatever
seems to be so difficult to grasp mathematically that we easily give up. A group of scientists
published a paper in 1993 which can arouse enthusiasm. They obtained a rigorous solution of
the Schrodinger equation for harmonium — a helium-like atom with harmonic electron—nucleus
attraction (described in Chapter V1-4, p. V1-244). For some particular spring force constant,
one gets an exact analytical solution,'” the only one obtained so far for correlational problems.

Note that the exact wave function (its spatial partl(’) is a geminal (i.e., two-electron function),
1.€.,

W (r, 1) =N (1 4 %1’12) e 1(ri+3). (2.14)

Let me be naive. Do we have two harmonic springs here? Yes, we do (see Fig. V1-4.27,
p. V1-244). Then, let us treat them first as independent oscillators and take the product of
the ground-state functions of both oscillators: exp[—}1 (r12 + rzz)]. Well, it would be good to
account for the cusp condition ¥ = ¢ (r1, r2)[1 + %rlz + ...] and take care of it even in a naive

way. Let us just implement the crucial correlation factor (1 + %rlz), the simplest that satisfies

the cusp condition (see p. 92). It turns out that such a recipe leads to a rigorous wave function'”!

From Eq. (2.14) we see that for r{ = r» = const (in such a case both electrons move on the
surface of the sphere), the larger value of the function (and eo ipso of the probability) is obtained
for larger r1>. This means that it is most probable that the electrons prefer to occupy opposite
sides of a nucleus. This is a practical manifestation of the existence of the Coulomb hole around
electrons, i.e., the region of the reduced probability of finding a second electron: the electrons
simply repel each other. They cannot move apart to infinity since both are held by the nucleus.

14 Thisisa very conservative estimate. Let us calculate — half jokingly. Writing down a single Slater determinant

would easily take 10 cm of space. The current world record amounts to several billion such determinants in
the CI expansion. Say, three billion. Now let us calculate: 10 cm x 3 X 10°=3x101%cm =3 x 108 m =
3 x 10° km = 300000 km. So, this is not from Warsaw to Cracow, but from Earth to the Moon.

15§, Kais, D.R. Herschbach, N.C. Handy, C.W. Murray, G.J. Laming, J. Chem. Phys., 99(1993)417.

16" For one- and two-electron systems the wave function is a product of the spatial and spin factors. A normalized

spin factor for two-electron systems Lz {a (1) B (2) — B (1) @ (2)} guarantees that the state in question is a singlet
(see Appendix V1-R, p. V1-731). Since we will only manipulate the spatial part of the wave function, the spin
part is the default. Since the total wave function has to be antisymmetric, and the spin function is antisymmetric,
the spatial function should be symmetric, and it is.

As a matter of fact, only for a single force constant. Nevertheless, the striking simplicity of that analytic formula
is most surprising.

17
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The only thing they can do is to be close to the nucleus and to avoid each other — this is what
we observe in Eq. (2.14).

2.3.2 High accuracy: the James—Coolidge and Kofos—Wolniewicz functions

One-electron problems are the simplest. For systems with fwo electrons'®

we can apply cer-
tain mathematical tools which allow very accurate results. We are going to talk about such

calculations in a moment.

Kotos and Wolniewicz applied the Ritz variational method (see Chapter V1-5) to the hydrogen
molecule with the following trial function:

1 M
v ="eh)p) ~a@pM)] Yol @1, + 22, D),
i
= i ki i 1 i (215)
i(1,2) = exp(— A —Aggl ey nf (%12)
-(exp(B1 + Bi) + (~ 1! exp(— By — Bp)).,
where the elliptic coordinates of the electrons with index j = 1, 2 are given by
Taj + Ipj
£ = % (2.16)
n; = % 2.17)

where R denotes the internuclear distance, r,; and rp; are nucleus—electron distances (the nuclei
are labeled by a, b), r12 is the (crucial to the method) interelectronic distance, c¢;, A, A, B, B
are variational parameters, and n, k, [, m, u are integers (smaller than selected limiting val-
ues).

The simplified form of this function with A = A and B = B = 0 is the James—Coolidge'”
function, thanks to which the later authors enjoyed the most accurate result for the hydrogen
molecule for 27 years.

18 Fora larger number of electrons it is much more difficult.
19 HM. James, A.S. Coolidge, J. Chem. Phys., 1(1933)825. Hubert M. James in the 1960s was professor at Purdue
University (USA).
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Wtodzimierz Kotos (1928-1996), Polish
chemist, professor at Warsaw University and
the tutor of the present author. His calcu-
lations on small molecules (with Roothaan,
Wolniewicz, Rychlewski) were of un-
precedented accuracy in quantum chemis-
try.

The Department of Chemistry of Warsaw
University and the Polish Chemical Society
established the Wtodzimierz Kotos Medal ac-
companying a Lecture (the first lecturers were:
Roald Hoffmann, Richard Bader, and Paul Lutostaw Wolniewicz (born 1930), Polish
von Ragué Schleyer). In the Ochota quarter in  physicist, professor at the Nicolas Copernicus
Warsaw there is a Wlodzimierz Kotos Street.  University in Torus.

Kotos and Roothaan,”? and later on Kotos and Wolniewicz,!

as well as Kotos and Rychlewski
and others,”” applied longer and longer expansions (computer technology was improving fast)

up to M of the order of thousands (see Table 2.1).

As can be seen from Table 2.1, there was a competition between theoreticians and the experi-
mental laboratory of Herzberg. When, in 1964, Kotos and Wolniewicz obtained 36 117.3 cm™!
(Table 2.1, bold face) for the dissociation energy of the hydrogen molecule, quantum chemists
held their breath. The experimental result of Herzberg and Monfils, obtained four years ear-
lier (Table 2.1, bold face), was smaller, and this seemed to contradict the variational principle
(Chapter V1-5, i.e., as if the theoretical result were below the ground-state energy), the foun-
dation of quantum mechanics. There were only three possibilities: either the theoretical or
experimental results are wrong or quantum mechanics has internal inconsistency. Kotos and
Wolniewicz increased the accuracy of their calculations in 1968 and excluded the first possibil-
ity. It soon turned out that the problem lay in the accuracy of the experiment.”> When Herzberg

20" W. Kolos, C.C.J. Roothaan, Rev. Modern Phys., 32(1960)205.
21 For the first time in quantum chemical calculations relativistic corrections and corrections resulting from quan-
tum electrodynamics were included. This accuracy is equivalent to hitting, from Earth, an object on the Moon
the size of a car. These results are cited in nearly all textbooks on quantum chemistry to demonstrate that the
theoretical calculations have a solid background.

The description of these calculations is given in the review article by Piszczatowski et al. cited in the table.

At that time Herzberg was hosting them in Canada and treated them to a home-made fruit liquor, the latter event
considered by his coworkers to be absolutely exceptional. This is probably the best time to give the recipe for
this exquisite drink, which is known in the circles of quantum chemists as “kolosovka.”

Pour a pint of pure spirit into a beaker. Hang an orange on a piece of gauze directly over the meniscus. Cover
tightly and wait for two weeks. Then throw the orange away — there is nothing of value left in it, and turn your

22
23
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Table 2.1. Dissociation energy of Hy in the ground state (in cm™!). Compar-
ison of the results of theoretical calculations and experimental measurements.
The references to the cited works can be found in the paper by K. Piszczatowski,
G. tach, M. Przybytek, J. Komasa, K. Pachucki, B. Jeziorski, . Chem. Theory and Com-
put., 5(2009)3039. The figures in parentheses mean the error in units of the last
digit reported. Bold numbers are used to indicate the values connected with the
Herzberg-Kotos-Wolniewicz controversy.

Year Author Experiment Theory
1926 Witmer 35000

1927 Heitler-London 231004
1933 | James-Coolidge 36104
1935 Beutler 36116(6)

1960 Kotos-Roothaan 36113.5%
1960 Herzberg-Monfils 36113.6(3)

1964 Kotos-Wolniewicz 36117.3
1968 Kotos-Wolniewicz 36117.4%
1970 Herzberg 36118.3¢

1970 | Stwalley 36118.6(5)

1975 Kotos-Wolniewicz 36118.0
1978 Kotos-Rychlewski 36118.12°
1978 Bishop-Cheung 36117.92
1983 Wolniewicz 36118.01
1986 Kotos-Szalewicz-Monkhorst 36118.088
1991 McCormack-Eyler 36118.26(20)

1992 Balakrishnan-Smith- Stoicheff 36118.11(8)

1992 Kotos-Rychlewski 36118.049
1995 Wolniewicz 36118.069
2009 Piszczatowski et al. 36118.0695(10)
2009 Liu et al. 36118.0696(4)

a
b

¢ Upper bound

increased the accuracy, he obtained 36 118.3 cm™! as the dissociation energy (Table 2.1, bold
face), which was then consistent with the variational principle.

attention to the spirit. It should contain now all the flavors from the orange, add some sugar to your taste. Next,
slowly pour some spring water until the liquid becomes cloudy and some spirit to make it clear again. Propose

a toast to the future of quantum chemistry!

Obtained from calculated binding energy by subtracting the energy of zero vibrations
Obtained by treating the improvement of the binding energy as an additive correction to the dissoci-
ation energy
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La s o Yy LAl e o a

Gerhard Herzberg (1904-1999), Canadian
chemist of German origin, professor at the Na-
tional Research Council and at the University
of Saskatchewan in Saskatoon and the Univer-
sity of Ottawa. The greatest spectroscopist of
the 20th century. Herzberg laid the foundations
of molecular spectroscopy, is author of the fun- #9CANADA
damental monograph on this subject, and re- = = Ressssssssssssssssssesscssscacsscas
ceived a Nobel prize in 1971 “for his contri- and geometry of molecules, particularly free
bution to knowledge of the electronic structure radicals.”

The theoretical result of 2009 given in the table includes nonadiabatic, relativistic, and quantum
electrodynamic (QED) corrections. The relativistic and QED corrections have been calculated

assuming the adiabatic approximation and by taking into account all the terms up to (%)3 and the
leading term in the QED (%)4 contribution, some effects never taken into account before for any

molecule. To get an idea about the importance of the particular levels of theory, let me report
their contributions to the Hy dissociation energy (the number in parentheses means the error

in the units of the last digit given). The (%)o contribution, i.e., the solution of the Schrédinger
equation, gives 36 118.7978(2) cm™ 1, (%)1 is equal to zero, (%)2 is the Breit correction (see
p- V1-170) and turned out to be —0.5319(3) cm™!, the QED (see p- V1-175) (%)3 correction
is —0.1948(2) cm™!, while the (1)* contribution is —0.0016(8) cm~!. We see that to obtain

such agreement with the experimental value as shown in Table 2.1, one needs to include all the

abovementioned corrections.

2.3.3 High accuracy: neutrino mass

Calculations like those above required unique software, especially in the context of the
nonadiabatic effects included. Additional gains appeared unexpectedly when Kotos and

others”® initiated work aiming at explaining whether the electronic neutrino has a nonzero

24y, Kotos, B. Jeziorski, H.J. Monkhorst, K. Szalewicz, Int. J. Quantum Chem. S, 19(1986)421.
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mass.” In order to interpret the expensive experiments, precise calculations were required for
the B-decay of the tritium molecule as a function of the neutrino mass. The emission of the

antineutrino (v) in the process of §-decay,

Ty — HeTT + e+ v,

should have consequences for the final quantum states of the HeT™ molecule. To enable
determination of the neutrino mass by the experimentalists, Kotos et al. performed precise
calculations of all possible final states of HeT* and presented them as a function of the hypo-
thetical mass of the neutrino. There is such a large number of neutrinos in the Universe that if
its mass exceeded a certain, even very small threshold value of the order of2 1 eV, the mass
of the Universe would exceed the critical value predicted by Alexander Friedmann in his cos-
mological theory (based on the general theory of relativity of Einstein). This would mean that
the currently occurring expansion of the Universe (discovered by Hubble) would finally stop
and its collapse would follow. If the neutrino mass would turn out to be too small, then the
Universe would continue its expansion. Thus, quantum chemical calculations for the HeT™
molecule might be helpful in predicting our fate (unfortunately, being crushed or frozen). So
far, the estimate of the neutrino mass gives a value smaller than 1 eV, which indicates Universe

. 92
expanSIOH.‘7

25 1

Neutrinos are stable fermions of spin 5. Three types of neutrinos exist (each has its own antiparticle): elec-
tronic, muonic, and taonic. The neutrinos are created in the weak interactions (e.g., in S-decay) and do not
participate neither in the strong, nor in electromagnetic interactions. The latter feature expresses itself in an
incredible ability to penetrate matter (e.g., crossing the Earth as though through a vacuum). The existence
of the electronic neutrino was postulated in 1930 by Wolfgang Pauli and discovered in 1956 by F. Reines
and C.L. Cowan; the muonic neutrino was discovered in 1962 by L. Lederman, M. Schwartz, and J. Stein-
berger.

The mass of the elementary particle is given in the form of its energetic equivalent mc2.

At this moment there are other candidates for contributing significantly to the mass of the Universe, mainly the
mysterious “dark matter.” This constitutes the major part of the mass of the Universe. We know very little about
it.

Recently it turned out that neutrinos undergo what are called oscillations, e.g., an electronic neutrino travels
from the Sun and on its way spontaneously changes to a muonic neutrino. The oscillations indicate that the mass
of the neutrino is nonzero. According to current estimations, it is much smaller, however, than the accuracy of
the tritium experiments.

26
27
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Alexandr Alexandrovitch Friedmann (1888—
1925), Russian mathematician and physicist, in
his article in Zeit. Phys., 10(1922)377 proved
on the basis of Einstein’s general theory of rel-
ativity that the curvature of the Universe must
change, which became the basis of cosmologi-
cal models of the expanding Universe. During
the First World War, Friedman was a pilot in
the Russian army and made bombing raids over
my beloved Przemysl.

In one of his letters he asked his friend

cheerfully, the eminent Russian mathemati- ) .
cian Steklov, for advice about the integration ~€Xactly in the places predicted by the theory.

of equations he derived to describe the tra- 10 get the final proof of my theory I intend to
jectories of his bombs. Later, in a letter to fest it in flights during the next few days.”
Steklov of February 28, 1915 he wrote: “Re- More information can be found on

cently I had an opportunity to verify my theory  http://www-groups.dcs.st-and.ac.uk/~history/
during a flight over Przemysl, the bombs fell Mathematicians/Friedmann.html.

2.4 Exponentially correlated Gaussian functions

In 1960, Boys”® and Singer’” noticed that the functions which are products of Gaussian or-
bitals and correlational factors of Gaussian type, exp(—brizj), where r;; is the distance between
electron i and electron j, generate relatively simple integrals in quantum chemical calcula-
tions. A product of two Gaussian orbitals with positions shown by the vectors A, B and of an
exponential correlation factor is called an exponentially correlated Gaussian geminal,’ i.e.,

AV w2 _p2
g (v 1 A BLay, ay, b) = Ne~ 1 0i=A) g=aa(r;=B) ;=07

A geminal represents a generalization of an orbital — there we have a one-electron function,
here we have a two-electron one. A single geminal is very rarely used in computations’'; we
apply hundreds or even thousands of Gaussian geminals. When we want to find out what the

optimal positions A, B and the optimal exponents a and b are in these thousands of geminals, it

28 SF. Boys, Proc. Royal Soc. A, 258(1960)402.
29 K. Singer, Proc. Royal Soc. A, 258(1960)412.
30 This is an attempt to go beyond the two-electron systems with the characteristic for these systems approach of
James, Coolidge, Hylleraas, Kotos, Wolniewicz, and others.

Ludwik Adamowicz introduced an idea of the minimal basis of the Gaussian geminals (equal to the number
of the electron pairs) and applied to the LiH and HF molecules; L. Adamowicz, A.J. Sadlej, J. Chem. Phys.,
69(1978)3992.

31
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turns out that nothing sure is known about them; the A, B positions are scattered chaotically,*”
and in the @ > 0 and b > 0 exponents there is no regularity either.

Edwin Powell Hubble (1889-1953), Ameri-
can astronomer, explorer of galaxies, found in
1929 that the distance between galaxies is pro-
portional to the infrared shift in their spec-
trum caused by the Doppler effect, which is
consequently interpreted as expansion of the
Universe. A surprise from recent astronomical
studies is that the expansion is faster and faster
(for unknown reasons).

2.5 Electron holes
2.5.1 Coulomb hole (“correlation hole)

It is always good to count “on fingers” to make sure that everything is all right. Let us see how
a single Gaussian geminal describes the correlation of the electronic motion. Let us begin with
the helium atom with the nucleus in the position A = B = 0. The geminal takes the form

2 2 2
gHe=Ne Wi~ e=briy, (2.18)

where N > 0 is a normalization factor. Let us assume>> that electron 1 is at (x1,y1,21) =
(1,0, 0). Where does electron 2 prefer to be in such situation? We will find it out (Fig. 2.2)
from the position of electron 2 for which gy, assumes the largest value.

Just to get an idea, let us try to restrict the motion of electron 2. For instance, let us demand that
it moves only on the sphere of radius equal to 1 centered at the nucleus, so we insertr;y =ry = 1.
Then, gy, = constexp [—brlzz] and we will find out easily what electron 2 likes most. With
b > 0 the latter factor tells us that what electron 2 likes best is just to sit on electron 1! Is it what
the correlation is supposed to mean that one electron sits on the other? Here we have rather an
anticorrelation. Something is going wrong. According to this analysis we should rather take the
geminal of, e.g., the form

2 2 2
QHe = Ne @7 =173 [1 _ e—brlz] )

32 The methods in which those positions are selected at random scored great success.
33 We use atomic units.
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Fig. 2.2. lllustration of the correlation and anticorrelation of the electrons in a model helium
atom. The machinery of the “anticorrelation” connected with the (not normalized) geminal gy, =
exp [—rlz] exp [—r22] exp [—2r122]. (a) Electron 1 has position (0,0,0). (b) Electron 1 is at point
(1,0, 0). It can be seen that electron 2 holds on to electron 1, i.e., it behaves in a completely unphysical
manner (since the electrons repel each other). (c,d) Electron 2 responds to such two positions of elec-
tron 1 in case the wave function represents the geminal gy, = exp [—rlz] exp [—r22] [1 —exp [—2r122]].
(c) Electron 2 runs away (the hollow in the middle) from electron 1 placed at (0,0,0), and we
have correlation. (d) Similarly, if electron 1 is in point (1,0,0), then it causes a slight depres-
sion for electron 2 in this position, and we have correlation. However, the graph is different from
the one in (c). This is understandable since the nucleus is all the time in the point (0,0, 0). (e,f)
The same displacements of electron 1, but this time the wave function is equal to V¥ (r1,r2) =

(1 + %ru) exp[— (rl2 +r22)], i.e., is similar to the wave function of the harmonic helium atom. It

can be seen (particularly in (e)) that there is a correlation, although much less visible than in the pre-
vious examples. (g,h) The same as in (e,f), but (to amplify [artificially] the correlation effect) for the
function ¥ (r1, r2) = (1 4+ 25r12) exp[— (rl2 + r22)], which (unlike (e,f)) does not satisfy the correlation
cusp condition.
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Fig. 2.2. (continued)

Now everything is qualitatively in order. When the interelectronic distance increases, the value
of the gy, function also increases, which means that such a situation is more probable than
that corresponding to a short distance. If the electrons become too agitated and begin to think
that it would be better when their distance gets very large, they would be called to order by
the factors exp [—alrlz] exp [—alrzz]. Indeed, in such a case, the distance between the nucleus
and at least one of the electrons is long and the probability of such a situation is quenched
by one or both exponential factors. For large rq» distances, the factor [1 —exp [—brlzz]] is
practically equal to 1. This means that for large interelectronic distances g g, is practically equal
to N exp [—alrlz] exp [—alrzz], i.e., to the product of the orbitals (no correlation of motions at

long interelectronic distances and rightly so).
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Around electron 1 there is a region of low probability of finding electron 2. This region
is called the Coulomb hole.

The Gaussian geminals do not satisfy the correlation cusp condition (p. 92), because of the
factor exp(—brizj). It is required (for simplicity we write r; = r) that (g—f),zo = % g(r =0),
whereas the left-hand side is equal to 0, while the right-hand side %N exp [—a1 (r; — A)Z]

exp [—az (r = B)z] is not equal to zero. This is not a disqualifying feature, since the region of
space in which this condition should be fulfilled is very small.

The method of Gaussian geminals has been applied in extremely accurate calculations but for
three- and four-electron systems only.>*

2.5.2 Exchange hole (“Fermi hole”)

The mutual avoidance of electrons in a helium atom or in a hydrogen molecule is caused by
Coulombic repulsion of electrons (“Coulomb hole,” see above). As we have shown in this chap-
ter, in the Hartree—Fock method the Coulomb hole is absent, whereas methods which account
for electron correlation generate such a hole. However, electrons avoid each other not only be-
cause of their charge. The Pauli principle is additional reason. One of the consequences is the
fact that electrons with the same spin coordinate cannot reside in the same place (see p. V1-40).
The continuity of the wave function implies that the probability density of them staying in the
vicinity of each other is small, i.e.,

around the electron there is a NO PARKING area for other electrons with the same spin
coordinate (“exchange hole” or “Fermi hole”).

Let us see how such exchange holes arise. We will try to make the calculations as simple as
possible.

We have shown above that the Hartree—Fock function does not include any electron correlation.
We must admit, however, that we have come to this conclusion on the basis of the two-electron
closed shell case. This is a special situation, since both electrons have different spin coordinates
(o = % and 0 = — %). Is it really true that the Hartree—Fock function does not include any
correlation of electronic motion?

34w, Cencek, PhD Thesis, Adam Mickiewicz University, Poznan, 1993; also J. Rychlewski, W. Cencek, J. Komasa,
Chem. Phys. Letters, 229(1994)657; W. Cencek, J. Rychlewski, Chem. Phys. Letters, 320(2000)549.
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We take the H, molecule in the simplest formulation of the LCAO MO method.”> We have
three electrons. As a wave function we will take the single (normalized) Hartree—Fock deter-
minant (UHF, or rather ROHF type) with the following orthonormal spin orbitals occupied:

1 =p10, P2 =18, 3 = o, ie.,

o) $1D 13
Vorr (L2 = ——| (1) 622 23)
V3 s () ¢35 ¢3(3)

Example 1 (The great escape, Fig. 2.3a). We are interested in electron 3, with electron 1 resid-
ing at nucleus a with space coordinates (0, 0, 0) and spin coordinate o1 = % and with electron 2
located at nucleus b with coordinates (R, 0, 0) and oy = —%, whereas electron 3 itself has spin
coordinate 03 = % The square of the absolute value of the function calculated for these values
depends on x3, y3, z3 and represents the conditional probability density distribution for finding
electron 3 (provided electrons 1 and 2 have the fixed coordinates given above and denoted by
10, 20). So, let us calculate individual elements of the determinant ¥y r (1o, 20, 3), taking into
account the properties of spin functions @ and 8 (cf. p. 33). We have

91 (0,0,0) 0 @1 (x3, y3,23)
Youur (lo,20,3) = — 0 ¢1(R,0,0) 0
J3
3 9,(0,0,0) 0 @2 (X3, y3.23)

Using the Laplace expansion (Appendix V1-A on p. V1-589) we get

1
Yunur (lo,20,3) = ﬁ[fpl (0,0,0) 91 (R, 0,0) @2 (x3, 3, 23)

—1 (x3,¥3,23) @1 (R,0,0) ¢ (0,0, 0)].

The plot of this function (the overlap integral S is included in normalization factors of the
molecular orbitals) is given in Fig. 2.3a.

Qualitatively, however, everything is clear even without the calculations. Due to the forms of

the molecular orbitals (S is small) ¢; (0, 0,0) = ¢1 (R, 0,0) = ¢ (0, 0, 0) = const, we get

1
Yvuur (1o, 20, 3) & —const? — x5 (3)

/3

35 Two atomic orbitals only: 1s; = x4 and 1sp = xp, two molecular orbitals: bonding ¢ = «/ﬁ (Xa + xp)

and antibonding ¢ = «/ﬁ (Xa — xp) (cf. p. V1-511); the overlap integral S = (xa|xp)-
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Fig. 2.3. Demonstration of the power of the Pauli exclusion principle, or the Fermi hole formation for
the H, molecule in the restricted open shell Hartree-Fock model (ROHF, a wave function in the form
of a single Slater determinant). The two protons (a and b) indicated by “+” occupy positions (0, 0, 0)
and (2,0,0), respectively, in a.u. The space and spin coordinates (the latter shown as arrows) of
electrons 1 and 2, as well as the spin coordinate of electron 3 (o3 = %), will be fixed at certain values:
electron 2 will always sit on nucleus b, electron 1 will occupy some chosen positions on the x axis
(i.e., we keep y1 =0, z1 =0). In this way we will have to do with a section ¥ (x3, y3, z3) of the wave
function, visualized in the figure by setting additionally z3 = 0. The square of the resulting function
represents a conditional probability density of finding electron 3, if electrons 1 and 2 have the assigned
coordinates. (a) Example 1: electron 1 sits on nucleus a. Electron 3 runs away to nucleus b, despite
the fact that electron 2 is already there! (b) Example 2: electron 1 sits on nucleus b together with
electron 2. Electron 3 runs away to nucleus a. (c¢) Example 3 - a dilemma for electron 3: electron 1
sits in the middle between the nuclei. Electron 3 chooses the antibonding molecular orbital (c1),
because it offers a node exactly at the position of electron 1 (with same spin), thus creating there a
Fermi hole (c2)! (d1) An even tougher case: electron 1 sits at % of the internuclear distance; what
is electron 3 going to do? Electron 3 chooses such a combination of the bonding and antibonding
molecular orbitals that creates a node (and a Fermi hole (d2)) precisely at the position of electron 1
with the same spin! Clearly, with a single Slater determinant as the wave function, electrons with the
same spin hate one another (Fermi hole), while electrons with the opposite spin just ignore each other
(no Coulomb hole).

so the conditional probability of finding electron 3 is

0(3) ~ %const“ [ 3] (2.19)
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Fig. 2.3. (continued)

We can see that for some reason electron 3 has moved in the vicinity of nucleus b. What scared
it so much, when we placed one of the two electrons at each nucleus? Electron 3 ran to be as
far away as possible from electron 1 residing on a. It hates electron 1 so much that it has just
ignored the Coulomb repulsion with electron 2 sitting on b and jumped on it!*® What the hell
has happened? Well, we have some suspicions. Electron 3 could have been scared only by the
spin coordinate of electron 1, the same as its own.

This is just an indication of the exchange hole around each electron.

Example 2 (Another great escape, Fig. 2.3b). Maybe electron 3 does not run away from any-
thing, but simply always resides at nucleus b? Let us make sure of that. Let us move electron 1
to nucleus b (electron 2 already sits there, but that does not matter). What then will electron 3
do? Let us see. We have electrons 1 and 2 at nucleus b with space coordinates (R, 0, 0) and spin
coordinates o] = %, o) = —%, whereas electron 3 has spin coordinate o3 = % To calculate the
conditional probability we have to calculate the value of the wave function.

This time
®1(R,0,0) 0 @1 (x3, ¥3,23) , 1
WUHF (10’2073): = O 1 (R’Oa 0) O = const —Xa (3)
1
V3l 2 (R,0,0) 0 ¢2 (x3,¥3,23) V3

36 In fact it does not even see electron 2 (because of the one-determinantal wave function).
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(c2)

0.0002

0.0000

Fig. 2.3. (continued)

or

o (3)~ %cons‘[“ [ 3] (2.20)

We see that electron 3 with spin coordinate 03 = % runs in panic to nucleus a, because it is as
scared of electron 1 with spin o1 = % as the devil is of holy water.
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Fig. 2.3. (continued)

Example 3 (A dilemma, Fig. 2.3c). And what would happen if we made the decision for
electron 3 more difficult? Let us put electron 1 (o7 = %) in the center of the molecule and
electron 2 (07 = —%) as before, at nucleus b. According to what we think about the whole
machinery, electron 3 (with 03 = %) should run away from electron 1, because both electrons
have the same spin coordinates, and this is what they hate most. But where should it run?
Will electron 3 select nucleus a or nucleus b? The nuclei do not look equivalent. There is
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electron sitting at b, while the a center is empty. Maybe electron 3 will jump to a then? Well,
the function analyzed is Hartree—Fock — electron 3 ignores the Coulomb hole (it does not see
electron 2 sitting on b) and therefore will not prefer the empty nucleus a to sit at. It looks like
electron 3 will treat both nuclei on the same basis. In the case of two atomic orbitals, electron 3
has to choose: either bonding orbital ¢; or antibonding orbital ¢, (either of these situations
corresponds to equal electron densities on a and on b). Out of the two molecular orbitals, ¢;
looks much more attractive to electron 3, because it has a node®’ exactly where electron 1 with
its nasty spin is. This means that there is a chance for electron 3 to take care of the Fermi hole
of electron 1: we predict that electron 3 will “select” only ¢,. Let us check this step by step.
We have

o1 (%,0,0) 0 @1 (x3, ¥3, 23)
WUHF (10’2053)=ﬁ RO 1 (R,O, 0) O =
92 (5.0,0) 0 @2 (x3, y3, 23)
R4 (%.0,0) 0 @1(x3, 3, 23)
0 %1 (R,0,0) 0 =

NG
V3! 0 0

@2 (x3,y3,23)
1

ﬁ‘ﬂl

And it does exactly so.

R
(E 0, O) ¢1 (R, 0,0) ¢z (x3, y3,23) = consty¢a (X3, ¥3, 23) -

In (d1) we give also an example with electron 1 at %R. The result is similar: a Fermi hole over
there (Fig. 2.3d).

Which hole is more important: Coulomb or exchange? This question will be answered in Chap-
ter 3.

VARIATIONAL METHODS WITH SLATER
DETERMINANTS

In all of these methods the variational wave function will be sought in the form of a linear
combination of Slater determinants. As we have seen a while ago even a single Slater deter-
minant ensures a very serious avoiding of electrons with the same spin coordinate. Using a
linear combination of Slater determinants means an automatic (based on variational principle)
optimization of the exchange hole (Fermi hole).

37 That is, low probability of finding electron 3 over there.



112  Chapter 2

What about the Coulomb hole? If also this hole were optimized, a way to the solution of the
Schrodinger equation would be open. However, as we have carefully checked before, a single
Slater determinant does not know anything about the Coulomb hole. If it does not know, then
probably a linear combination of guys, each of them not knowing anything, will not do any
better... Wrong! A linear combination of Slater determinants is able to describe the Coulomb
hole!*®

2.6 Static electron correlation

Some of these Slater determinants are necessary for fundamental reasons. For example, con-
sider the carbon atom ground state, its (triplet) ground state corresponding to the 1522522 p?
configuration. The configuration does not define which of the triply degenerate 2 p orbitals have
to be included in the Slater determinant. Any choice of the 2p orbitals will therefore be non-
satisfactory: one is forced to go beyond a single Slater determinant. A similar situation occurs
if an obvious quasidegeneracy occurs, like, e.g., for the hydrogen molecule at large distances
(see Chapter V1-8). In such a case we are also forced to include in calculations another Slater
determinant. One may say that

what is known as a static correlation represents an energy gain coming from consider-
ing in the wave function (in the form of a linear combination of Slater determinants)
low-energy Slater determinants, which follow from occupying a set of degenerate or
quasidegenerate orbitals.

2.7 Dynamic electron correlation

The dynamic electron correlation means the rest of the correlation effect, beyond the static
one. It corresponds also to occupying orbital energies, but not those related to the degeneracy
or quasidegeneracy of the ground state. As we see the distinction between the static and the
dynamic correlation is a bit arbitrary.

Example of beryllium

Let us take a beryllium atom. The beryllium atom has four electrons (1525 configuration).
Beryllium represents a tough case in quantum chemistry, because the formally occupied 2s

38 Not all linear combinations of Slater determinants describe the Coulomb hole. Indeed, e.g., a Hartree—Fock
function in the LCAO MO approximation may be expanded in a series of Slater determinants (Appendix V1-A)
with the atomic orbitals, but no Coulomb hole is described by this function.
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orbital energy is quite close to the formally unoccupied orbital energy of 2p. In the present
example we will claim this as a dynamic correlation, but to tell the truth it is just between
the static and dynamic correlation. One may therefore suspect that the excited configurations
2s12p! and 2p? will be close in energy scale to the ground-state configuration 2s2. There
is therefore no legitimate argument for neglecting these excited configurations in the wave
function (what the Hartree—Fock method does). Since the Hartree—Fock method is poor in this
case, this means the electronic correlation energy must be large for the beryllium atom.*”

Why worry then about the closed shell electrons 1s2? Two of the electrons are bound very
strongly (1s2), so strongly that we may treat them as passive observers that do not react to
anything that may happen. Let us just ignore the inner shell*” in such a way that we imagine an
“effective nucleus of the pseudoatom” of beryllium as a genuine beryllium nucleus surrounded
by the electronic cloud 1s2. The charge of this “nucleus” is 4 — 2 = 2. Then the ground-state
Slater determinant for such a pseudoatom reads as

1
Wo—ﬁ

where we decide to approximate the function 2s as a normalized Slater orbital*' (¢ > 0)

é-5
2s =,/ —rexp(—{r).
V 3

Since the Hartree—Fock method looks as a poor tool for beryllium, we propose a more reason-
able wave function in the form of a linear combination of the ground-state configuration (2.21)
and the configuration given by the following Slater determinant:

2s(Ma(l) 2s(2)a(2)

2s(DB(L) 25(2)BQR) |’ (2.21)

v _L 2p,(Da(l) 2p,2)a(2)
1_

V2! 2px(B) 2px(DBQ2) |

where just to keep things as simple as possible we use the 2 p, orbital.

(2.22)

Such a function, being a linear combination of antisymmetric functions, is itself antisymmetric
with respect to the electron exchange (as it should be, see Chapter V1-1). Just to grasp the
essence of the problem we omit all other excitations, including 2s> — 2p? with the orbitals

39 This is why we took the beryllium atom and not just the helium atom, in which the energy difference between

the orbital levels 1s and 2s is much larger, i.e., the correlation energy much smaller.
The reasoning below may be repeated with the 152 shell included; the calculations will be a bit more compli-
cated, but the final result very similar.

40

5 .
4l Let us check whether the normalization coefficient is correct: f (2s)2dV = é_f[ j 2 exp(—2¢r)dV =
5

5 5 5
g—n fooo r*exp(—2¢r)dr Jo sin6do fozn d¢ = dne” fooo r*exp(=2¢r)dr = 4;—}54!(2{)7 =1, as it should be.

3
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2py,2p; as well as the excitations of the type 252 — 2s'2p!l. The latter excitation looks as
requiring low energy, and therefore potentially important. However, it will be shown later on
in this chapter that there are arguments for neglecting it (because of a weak coupling with the
ground-state configuration). The x axis has been highlighted by us (through taking 2 p, orbitals
only) for purely didactic reason, because soon we are going to frighten electron 2 by putting
electron 1 in certain points on the x axis (therefore this axis is expected to be the main direction
of escaping for electron 2). We have

3
2py = 4\/5)6 exp(—¢r) =¢x (2s).

The drastically simplified wave function reads therefore as

Vv =0+ Ky, (2.23)

where « stands for a coefficient to be determined, which measures how much of the 2p? con-
figuration has to be added to the 25> configuration in order to describe correctly the physical
behavior of the electrons*” (this is forced, e.g., by the variational method or by a perturbational
approach, see Chapter V1-5). Let us use a perturbational approach, in which we assume g as
an unperturbed wave function. Eq. (V1-5.26) (p. V1-279) says that with our current notation
the coefficient k may be estimated as

(118 Do)
P L (2.24)
Ey— E;

where the energies Ep and E; correspond to the ground-state configuration (o) and the

excited-state configuration (1), while HD stands for the perturbation. Right now we have no

idea what this perturbation is, but this is not necessary since (see Chapter V1-5) <1,01 |HD W0> =
(111 = AOypo) = (11Aw0) — Eo (wrlwo) = (v Avo) = 0 = (v A o), where we have
used that H© Yo = Eoo and (¥1|¥o) = O (the latter because of the orthogonality of 2s and
2px).

It is seen therefore that we have to do with a matrix element of the Hamiltonian calculated with
two Slater determinants containing orthonormal spin orbitals: 2sa, 258, 2pxa, 2py 8, the first

42 We are not intending to get a perfect description of the system, because with such a trial function there is no
chance to solve the Schrodinger equation anyway. We are here rather for grasping a qualitative picture: will it be
a Coulomb hole or not?
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two composing ¥, the last ones present in 1. Hence, all necessary conditions are satisfied for
operating Slater—Condon rule III (Appendix V1-N, p. V1-707). We get

(v11Av0) = @sa25PI2psa 2pc) — (250 25B12p: B2psct) = (250 25B|2prcr2p.f) — 0 =

(25 25|12y ZPX)E/[2S(1)2px(1)]i[Zs(2)2px(2)] dvidv, > 0.

We have got a key inequality,*’ because from Eq. (2.24) and Eq < E it follows that

K <0. (2.25)

Our qualitative conclusions will depend only on the sign of «k, not on its particular value. Let
us make a set of exercises listed below (all distances in a.u.), first with g, then with ¢{, and
finally with ¥ = {9 + x 1. In all of them:

» the nucleus is immobilized at (0, 0, 0);
1

» let us put electron 1, having the spin coordinate o] = 5, at (—1,0,0);
« we will search the probability distribution of finding electron 2 with the spin coordinate
1
02=—7%;

» then, we will repeat the two last points with electron 1 at (+1, 0, 0), i.e., on the opposite
side of the nucleus and at the same electron—nucleus distance;

+ we will compare the two probability distributions; if they were identical, there would be no
correlation whatsoever, otherwise there would be a correlation.

To this end we will need three numbers to be calculated (the three numbers in parentheses

represent x, y, z):
4-5
25(—1,0,0) =2s5(1,0,0) = 3—exp(—§) =A>0,
b4

3 3
2px(17090):§\/§exp(_§)23>07 2px(_170,0)Eg\/g(_l)exp(_g)E_B

Function

We expand the determinant (2.21) for electron 1 being at position (—1,0,0) and obtain a
function of the position of electron 2 in the form™* %A - 25(2). Therefore, the (conditional)

3 The inequality follows from evident repulsion of two identical electron clouds (of electron 1 and of electron 2),

because they sit one on top of the other.
Only the diagonal elements of the Slater determinant are nonzero (the rest of the elements vanish because of the
spin functions), so we get the result right away.

44
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probability density distribution of electron 2 is %Az [2s (2)]2 (Fig. 2.4al). We repeat the same
for position (1,0,0) of electron 1 and get the identical result (Fig. 2.4a2). Conclusion: no
Coulomb hole for the ground-state Slater determinant. Well, this is what we should expect.
However, it may be the result depends on a type of Slater determinant. Let us take the Slater
determinant ;.

Function |

Expanding (2.22) for a fixed position (—1, 0, 0) of electron 1 one gets a function depending on
the position of electron 2 in the form % (—B)-2px(2), and therefore the conditional probability

of finding electron 2 is %BQ [2 Dx (2)]2 (Fig. 2.4b1). Repeating the same for position (1, 0, 0) of
electron 1 we obtain the function % B -2p,(2), butstill we get the same probability distribution,

ie., %BZ [2p+ (2)]2 (Fig. 2.4b2). Once again we obtain no Coulomb hole.

Function r = Yo + kr;

We calculate Y = Yo + «i; for position (—1,0,0) of electron 1 and we obtain a func-
tion of the position of electron 2 in the form =4 - 25(2) + « [%(—3) 2py (2)] with the
corresponding conditional probability distribution of electron 2 as p_(2) = %A2 [25(2))* +
1*B? [2,9)6(2)]2 — kAB - 25(2) - 2px(2) (Fig. 2.4c1). When repeating the same for posi-

tion (1,0, 0) of electron 1 we obtain a different result, i.e., J=A - 2s5(2) +« [%B 2py (2)],

and therefore a different probability distribution: p4(2) = %Az [2s (2)]2 + %KZBZ [2 Dx (2)]2 +
kAB -2s(2) - 2p,(2) (Fig. 2.4c2). So, there is a correlation of the electronic motion. It would
be even better to have this correlation reasonable.* Figures (c1) and (c2) show that indeed the
correlation stands to reason: the two electrons avoid one another if electron 1 is on the left-hand
side and electron 2 is on the right-hand side, and vice versa.

If we did not have inequality (2.25), this conclusion could not be derived. For « > 0, electron 2
would accompany electron 1, which means “a completely nonphysical” behavior. For ¥k = 0
or k = Fo00 there would be no correlation.*® All therefore depends on the coefficients of the
linear combination of Slater determinants. This is the variational principle or the perturbational
theory that takes care the wave function is close to the solution of the Schrédinger equation for
the ground state. This forces a physics-based description of the electronic correlation, in our
case k < 0.

45 An unreasonable correlation would be, e.g., when the two electrons were sticking to one other!
46 All these cases correspond to a single determinant (for k = 0) and ¥| or —y| (for x = £00).
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(a1) - (a2) f

) =) ] o 1 2 3

E =) ] o 1 2 3

Fig. 2.4. A single Slater determinant cannot describe any Coulomb correlation, but a linear combina-
tion of Slater determinants can. The figure pertains to the beryllium atom, with a pseudonucleus (of
charge +2) shown as a large sphere in the center of each figure. All figures show the sections (z = 0) of
the (conditional) probability density distribution of finding electron 2 ((a), upper row - for the single
Slater determinant V; (b), second row - for the single Slater determinant v; (c), bottom row - for
a two-determinantal wave function ¥ = ¥/o + k1), when electron 1, symbolized by a small sphere,
resides at (—1, 0, 0) (left-hand side figures with the symbol 1) or at (1,0, 0) (right-hand side figures
with the symbol 2). Only in the case of the two-determinantal wave function ¥ = 9 4 k1 one ob-
tains any difference between the probability distributions, when electron 1 occupies two positions:
(—1,0,0) and (1,0, 0)! The values k < 0 correspond to mutual avoiding of the two electrons (in such
a case the wave function takes into account the Coulomb hole), ¥ =0 means mutual ignoring of the
two electrons, ¥ > 0 would correspond to a very bad wave function that describes the two electrons
sticking to one another (see the text). In order to highlight the correlation effect in the figure (purely
didactic reasons) we took quite arbitrarily xk = —0.7and ¢ = 1.
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3

(c1)

Fig. 2.4. (continued)

A two-determinantal function ¥ = 9+« 11 with « < O can (in contrast with the single-
determinantal functions 9 and 1) approximate the effect of the dynamic correlation
(Coulomb hole). Of course, a combination of many Slater determinants with appropriate
coefficients can do it better.

2.8 Anticorrelation, or do electrons stick together in some states?"’

What about electronic correlation in excited electronic states? Not much is known for excited
states in general. In our case of function (2.23) the Ritz variational method would give two
solutions: one of lower energy corresponding to k < 0 (this solution has been approximated by
us using the perturbational approach) and one (the excited electronic state) of the form V., =
Yo + «’'1. In such a simple two-state model as we have, the coefficient «’ can be found just
from the (necessary) orthogonality of the two solutions: (Yexc|¥) = (wo + k'Y | Yo + mpl) =
L4 xk™ "™ (Yr1vo) + « (Yolr) =14+ kx™ =0.

Hence «'* = —% > 0. We have therefore «’ > 0 and it is quite intriguing that our excited state
corresponds now to what we might call here an “anticorrelation.” In the excited state we got the
two electrons just sticking to one another! This result certainly cannot be thought as of general
value for excited states. It is probable that in excited electronic states the electronic correla-
tion gets weaker, but according to what we have found in our two-state model, some excited

47 L. Piela, Sci. China Chem., 57(2014)1383.
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states might exhibit the electronic anticorrelation! This indication may be less surprising than
it sounds. For example, the hydrogen molecule has not only the covalent states, but also the ex-
cited states of ionic character (see below). In the ionic states the two electrons prefer to occupy
the same space (still repelling each other), as if there were a kind of “attraction” between them.

Electrons may attract themselves — two rings

Do the electrons repel each other? Of course. Does it mean the electrons try to be as far from
each other as possible? Yes, but the words “as possible” are important. Usually this means
a game between the electrons strongly attracted by a nucleus and their important repulsion
through the Pauli exclusion principle (Fermi hole) together with much less important Coulomb
repulsion (Coulomb hole).

Let us try to simplify the situation. First, let us remove the presence of the nuclei and see what
electrons like without them. Then, while all the time keeping the Coulomb repulsion (“Coulomb
hole”), we will either switch on the Fermi hole by considering the triplet states with the two
electrons having opposite spins or switch off the Fermi hole by taking the singlet states of these
two electrons.

Let us take two coaxial coplanar rings 1 and 2 (of radii R; and Ry, Ry > Rj) with a single
electron on each of them, and with the electron’s position defined by the angle ¢;, for the rings
i =1,2 (Fig. 2.5).

The two electrons repel each other according to the Coulomb law, % The Hamiltonian for the

system reads as

2 32 2 32

H=—e—— — 4V, 2.26
2mR% agof ZmR% 8g0§ ( %
where
V= r% for each electron residing on its ring, 2.27)
oo otherwise.
Let us introduce new coordinates
R2 + R2

o = MPLT 5% (2.28)

2 2
R+ R;
QY =¢1— ¢2. (2.29)



120 Chapter 2

Fig. 2.5. Two electrons in two rings. (a) Two coplanar and concentric rings with a single electron
on each of them, indicated by the angles ¢1 and ¢, respectively. The electrons interact (through
space) by Coulombic force. (b) One can separate a single variable out (similarly to elimination of
the center-of-mass motion) and obtain the Schrédinger equation that describes the relative motion
of electron 1 with respect to electron 2, that is immobilized at the origin (with the only variable left:

Q=91 — ).

‘We obtain
. hZ 82 h2 82 R n
H=— — — ———+V=Hcu(®)+ H (p), (2.30)
2mR? 3¢l 2mR3 3¢5
where
. h? 92
Hepy(d) = — , 2.31
cu(®) 2m (R2 + R2) 892 (e31)
. R (1 1\ 82 2
Ho)=—— [— 4+ )2 L 2.32
@ =" (Rf " R%) 0 232

The solution of the Schrédinger equation with the Hamiltonian # has the form Yem (P) v (p)
with

1 .
Yem (P) = T expli Jem @1, (2.33)
E=Ecm+ E,
I? 5
Ecm = JEus Jem =0,%x1,£2, ..., (2.34)

2m (R? + R3)
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H (9) Y (@) =Enin (). (2.35)

We separate out the @ variable with the Hamiltonian ﬁc m(®) and we are left with Eq. (2.35)
only.

If the Coulombic repulsion were absent, the solutions would be: const, exp(ing), and
exp(—ing),n =1,2, ... which means a nondegenerate nodeless ground state and all other states
doubly degenerate. Note that for all these states |, ((p)|2 is a constant (does not depend on

®).

Now we reconsider the Coulombic repulsion. In fact, after separation, we may treat electron 1 as
sitting all the time at ¢ = 0 and electron 2 (with the coordinate ¢) moving. The eigenfunctions
for this problem lead to the probability densities shown in Fig. 2.6:

» The nodeless ground state yg, which, because of the Coulombic term, will not be a constant,
but have a maximum at ¢ = 180° (i.e., farthest away from electron 1, Fig. 2.6b). The spatial
function is a symmetric function of ¢, so this describes the singlet ground state.

» The first excited state yr; has one node, and this nodal line should be along the straight
line from electron 1 to position ¢ = 180°. This function is antisymmetric with respect to
exchange of the electrons (¢ — —¢), so it represents the triplet state. This state is of low
energy, because it takes care of the Fermi hole; the wave function for electron 2 equals zero
at the position of electron 1.

» The second excited state (y») will also have one node, but the nodal plane has to be orthog-
onal to that of ¥r; (symmetric function, i.e., the first excited singlet) and function ¥, has to
be orthogonal to Yo and 1. The orthogonality to g means it has to have a larger absolute
amplitude at the position of electron 1 than on the opposite site (¢ = 180°). So we see that
already such a low-energy state as i, is of the kind that electron 2 prefers to be closer to
electron 1!

» Similar phenomenon will appear for higher states.

There are excited states with electrons keeping close to one another.

Electrons may “attract themselves” — two boxes

Let us consider two one-dimensional boxes (see Fig. 2.7a), parallel to each other, each of length
L and with an electron inside: electron 1 with position x; in box 1, and electron 2 with position
xp in box 2.
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Fig. 2.6. Two electrons within two rings. The probability density distributions in the low-energy quan-
tum states as a function of ¢ (measuring the position of electron 1 with respect to the immobilized
electron 2). (a) The Coulombic interaction switched off. Every position of electron 1 is equally proba-
ble. (b) After switching the electron-electron interaction on, in the ground state electron 1 prefers to
be on the opposite side with respect to the position of the reference electron 2 (forming the Coulomb
hole, both electrons have the opposite spins [singlet state]). (c) The lowest-energy triplet state results
in the Fermi hole around electron 2 (the node at the position of electron 2). (d) In the first excited
singlet state, electron 1, in spite of a lot of empty space to move and in spite of the Coulomb repulsion
with electron 2, prefers to reside close to electron 2. This is what is termed in the present textbook
anticorrelation.

The Hamiltonian reads as

H=HOY t+v, (2.36)

AO__ o or (2.37)
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®) Le
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Fig. 2.7. Two electrons within two boxes, with the potential energy being the electron-electron in-
teraction. (a) The two boxes (of length L =8 a.u.), with one electron in each of them, are parallel,
separated by the distance a = 2 a.u., everywhere else the potential energy is equal to V = co. The
position of the i-th electron in the i-th box is given by 0 <x; < L, i =1,2. (b)-(g) The probability
density distributions as functions of (x1, x2). (b) The unperturbed ground state (the Coulomb repul-
sion switched off). (c) After switching the electron-electron repulsion on, the ground state (singlet)
as a result of the Coulomb correlation is shown. (d) The lowest triplet state with the Fermi correlation
visible. (e) The first excited singlet shows the anticorrelation: electron 1, in spite of a lot of empty
space to move and in spite of the Coulomb repulsion, prefers to reside close to electron 2. In fact the
largest probability density corre