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Introduction

Quantum scimus gutta est, ignoramus mare
What we know is a drop, what we do not know is a sea
(Latin sentence)
This book (volume 1) is about how to understand the reason for existence of molecules, which
the Earth, Nature, and ourselves are composed of.

Reality and its images

Have you ever seen the Milky Way on the night sky? An exceptional and breathtaking experi-
ence! You feel yourself looking at a great mystery, as if standing on the shores of the Universe,
of something beyond our imagination of space and time. The warmth of the campfire flames
and the cold of the night, the Moon, the Milky Way, and the stars — all that offered a wonderful,
unique, and puzzling spectacle that, for millennia, challenged our ancestors’ imagination and
posed the Big Questions: what do we see and who are we?

The Greek philosopher Plato (427-347 BC) was already aware that looking at the sky is like
looking at shadows of some unknown Reality seen on the wall of a cave (lit by a campfire
at its entrance), Fig. 0.1. It is our senses that connect us and the “shadows” somehow to this
mysterious Reality, which we call the Universe. We feel the Universe’s presence, while at the
same time we are part of it — a fascinating thing by itself. Can we understand what happens
around us and in us? Many people, among them Plato, suspected that what we see exhibits a
kind of order or regularity, and that maybe we can understand it. It is moving for me to feel the
spiritual link between the Academia founded by Plato in the sacred piece of land of Academos
in Athens and all of us in all universities of the world, who are seeking the truth, among them
you, my friend, who are reading these words. Usually after painful work, if we are lucky, in a
flash of enlightenment a secret of Nature may be disclosed before our eyes, a great feeling —
our prize, the most precious one.

Sensory operations are the direct result of interactions, both between molecules and between
light and matter. All of these phenomena deal with chemistry, physics, biology, and even psy-
chology. In these complex events it is impossible to discern precisely where the disciplines of
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Fig. 0.1. Plato’s cave. A caveman is able to see only some shadows on the cave wall. The shadows are
produced by an unknown Reality and a fire outside the cave.

chemistry, physics, biology, and psychology begin and end. Any separation of these domains is
artificial. The only reason for making such separations is to focus our attention on some aspects
of one indivisible phenomenon. Sight, hearing, smell, taste, and touch — are these our only links
and information channels to the Universe? How little we know about it! To feel that, just look
up at the sky. A myriad of stars around us point to new worlds, which will remain unknown for-
ever (because of distance). It is true that by ingenious spectrometry we have serious grounds to
believe these stars are built from the same kind of matter we have around us. This bold conclu-
sion was questioned quite recently, since we do not have the slightest idea what kind of particles
represent 90% of the matter that does not shine (black matter). This pertains to the macroscale.
On the other end, imagine how incredibly complicated the chemistry of (unconditional) mater-
nal love must be, the most beautiful phenomenon in the Universe! Science is a certain response
of humans to reduce the Unknown, but it cannot answer all legitimate questions a human being
may ask when sitting at a campfire. Science is able to discover laws of Nature, but is unable
to answer a question like: why does our world conform to any laws at all'? Such questions go
beyond science.

We try to understand what might be really around us by constructing in our minds a kind
of simplified picture, which represents to some extent Reality. It contains seemingly essential
elements, being devoid of those elements that we think are irrelevant. These pictures we call
models. Any model relies on the one hand on our perception of reality (on the appropriate scale
of masses and time) emanating from our experience, and on the other hand on our ability to

L “The most incomprehensible thing about the world is that it is at all comprehensible” (Albert Einstein).
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abstract by creating ideal beings. These ideal beings seem to be close to the concept of ideas
(“forms”) that Plato loved most. Many such models will be described in this book.

It is fascinating that man is able to magnify the realm of his senses by using sophisticated tools,
e.g., to see quarks sitting in a proton” or to discover an amazingly simple equation of motion®
that describes both cosmic catastrophes, with intensity beyond our imagination, and the flight
of a butterfly. A water molecule has exactly the same properties in the Pacific Ocean as on
Mars or in another galaxy. The conditions over there may be quite different from those in our
laboratory, but we assume that if these conditions could be imposed in the lab, the molecule
would behave in exactly the same way. We hold out hope that a set of universal physical laws
apply for the entire Universe.

The model of these basic laws is not yet complete or unified. Thanks to the progress and im-
portant generalizations of physics, much is currently understood. For example, forces with
seemingly disparate sources have been reduced to only three kinds:

+ those attributed to strong interactions (acting in nuclear matter),
» those attributed to electroweak interactions (the domain of chemistry, biology, as well as

B-decay),
« those attributed to gravitational interactions (showing up mainly in astrophysics).

Many scientists believe other reductions are possible, perhaps up to a single fundamental inter-
action, one that explains Everything (quoting Feynman: “the frogs as well as the composers”).
This assertion is based on the conviction, which seems to be supported by developments in
modern physics, that the laws of Nature are not only universal, but also simple.

Which of the three basic interactions is the most important? This is an ill-conceived ques-
tion. The answer depends on the external conditions imposed (pressure, temperature) and the
magnitude of the energy exchanged amongst the interacting objects. A measure of the en-
ergy exchanged (A E) may be taken to be the percentage of the accompanying mass deficiency
(Am) according to Einstein’s relation AE = Amc?. At a given magnitude of exchanged ener-
gies some particles are stable. Strong interactions produce the huge pressures that accompany
the gravitational collapse of a star and lead to the formation of neutron stars, where the mass
deficiency Am approaches 40%. At smaller pressures, where individual nuclei may exist and

2 A proton is 101 times smaller than a human being and nevertheless in 1970 Jerome Friedman, Henry Kendall,
and Richard Taylor were able to take a proton’s photograph. They have shown us three quarks and unknown
electrically neutral matter that binds the quarks together (“gluons”)!

Acceleration is directly proportional to force. Higher derivatives of the trajectory with respect to time do not
enter this equation, neither does the nature or cause of the force. The equation is also invariant with respect to any
possible starting point (position, velocity, and mass). What a remarkable simplicity and generality (within limits;
see Chapter 3)!



Introduction

undergo nuclear reactions (strong interactions*), the mass deficiency is of the order of 1%.
At much lower pressures the electroweak forces dominate, nuclei are stable, and atomic and
molecular structures emerge. Life (as we know it) becomes possible. The energies exchanged
are much smaller and correspond to a mass deficiency of the order of only about 10~7%. The
weakest of the basic forces is gravitation. Paradoxically, this force is the most important on the
macroscale (galaxies, stars, planets, etc.). There are two reasons for this. Gravitational interac-
tions share with electric interactions the longest range known (both decay as 1/r). However,
unlike electric interactions’ those due to gravitation are not shielded. For this reason the Earth
and the Moon attract each other by a huge gravitational force® while their electric interaction
is negligible. This is how David conquers Goliath, since at any distance electrons and pro-
tons attract each other by electrostatic forces, about 40 orders of magnitude stronger than their
gravitational attraction.

Gravitation does not have any measurable influence on the collisions of molecules leading to
chemical reactions, since reactions are due to much stronger electric interactions.’

Ten degrees only

Due to strong interactions, protons overcome mutual electrostatic repulsion and form (to-
gether with neutrons) stable nuclei, leading to the variety of chemical elements. Therefore,
strong interactions are the prerequisite of any chemistry (except hydrogen chemistry). However,
chemists deal with already prepared stable nuclei® and these strong interactions have a very
small range (of about 10~ c¢m) as compared to inter-atomic distances (of the order of 10°8
cm). This is why a chemist may treat nuclei as stable point charges that create an electrostatic
field. Test tube conditions allow for the presence of electrons and photons, thus completing the
set of particles that one might expect to see (some exceptions are covered in this book). This has
to do with the order of magnitude of energies exchanged; under the conditions of our chemical
reactions, the energies exchanged exclude practically all nuclear reactions.

4 With a corresponding large energy output; the energy coming from the fusion D + D — He taking place on the

Sun makes our existence possible.

In electrostatic interactions charges of opposite sign attract each other while charges of the same sign repel each
other (Coulomb’s law). This results in the fact that large bodies (built of a huge number of charged particles) are
nearly electrically neutral and interact electrically only very weakly. This dramatically reduces the range of their
electrical interactions.

Huge tides and deformations of the whole Earth are witness to that.

It does not mean that gravitation has no influence on reactants’ concentrations. Gravitation controls the convection
flow in liquids and gases (and even solids) and therefore a chemical reaction or even crystallization may proceed
in a different manner on the Earth’s surface, in the stratosphere, in a centrifuge, or in space.

At least on the time scale of chemical experiments. Instability of some nuclei is used by nuclear chemistry and
radiation chemistry.
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On the vast scale of attainable temperatures’ chemical structures may exist in the narrow tem-
perature range of 0 K to thousands of K. Above this range one has plasma, which represents
a soup made of electrons and nuclei. Nature, in its vibrant living form, requires a temperature
range of about 200-320 K, a margin of only 120 K. One does not require a chemist for chemi-
cal structures to exist. However, to develop a chemical science one has to have a chemist. This
chemist can survive a temperature range of 273 450 K, i.e., a range of only 100 K. The reader
has to admit that a chemist may think of his job only in the narrow range of 290-300 K, only
10 K.

Grand unification and mission of chemistry

Suppose our dream comes true and the grand unification of the three remaining basic forces
is accomplished one day. We would then know the first principles of constructing Everything.
One of the consequences of such a feat is a catalog of all the elementary particles; maybe the
catalog will be finite,' hopefully it will be simple. We might have a catalog of the conserved
symmetries (which seem to be more elementary than the particles). Of course, knowing such
first principles would have an enormous conceptual impact on all the physical sciences. It could
create an impression that everything is clear, because science is complete. Even though such
structures and processes are governed by first principles, it would still be very difficult to predict
their existence by such principles alone. The resulting structures would depend not only on the
principles, but also on the initial conditions, complexity, self-organization, etc.!! Therefore, if
it does happen, the Grand Unification will not change the goals of chemistry.

Organization of the book
TREE

Any book has a linear appearance, i.e., the text goes page after page and the page numbers
remind us of that. However, the logic of virtually any book is nonlinear, and in many cases can
be visualized by a diagram connecting the chapters that (logically) follow from one another.

9 Millions of degrees.

10 None of this is certain. Much of elementary particle research relies on large particle accelerators. This research
resembles discerning the components of a car by dropping it from increasing heights from a large building.
Dropping it from the first floor yields five tires and a jack. Dropping from the second floor reveals an engine
and 11 screws of similar appearance. Eventually a problem emerges: after landing from a very high floor new
components appear (having nothing to do with the car) and reveal that some of the collision energy has been
converted to the new particles!

The fact that Uncle John likes to drink coffee with cream at 5 p.m. possibly follows from the first principles, but
it would be very difficult to trace that dependence.

11
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Such a diagram allows for multiple branches emanating from a given chapter, particularly if
the branches are placed logically on an equal footing. Such logical connections are illustrated
in this book as a TREE diagram (beginning of the book). This TREE diagram plays a very
important role in our book and is intended to be a study guide. It is used to lead the reader
in a certain direction; from the TREE diagram, the reader can observe what this direction is,
why he/she needs this direction, what will follow, and what benefits he/she will gain after
such study. If studying were easy and did not require time, a TREE diagram might be of little
importance. However, the opposite is usually true. In addition, knowledge represents much
more than a registry of facts. Any understanding gained from seeing relationships among those
facts and methods plays a key role.'” The primary function of the TREE diagram is to make
these relationships clear.

A thick line in the center of the TREE diagram separates volume 1 (bottom part) from volume 2
(upper part).

The use of hypertext in information science is superior to a traditional linear presentation. It
relies on a tree structure. However, it has a serious drawback. Sitting on a branch, we have
no idea what that branch represents in the whole diagram, whether it is an important branch
or a remote tiny one, whether it leads further to important parts of the book or whether it is
just a dead end, and so on. At the same time, a glimpse at the TREE diagram shows us that
the thick trunk is the most important structure. What do we mean by important? At least two
criteria may be used. Important for the majority of readers, or important because the material
is fundamental for an understanding of the laws of Nature. I have chosen the first.'? Thus, the
trunk of the TREE diagram corresponds to the pragmatic way to study this book.

The trunk is the backbone of this book.

» It begins by presenting postulates, which play a vital role in formulating the foundation of
quantum mechanics.

» Next, it continues with the Schrodinger equation for stationary states, so far the most im-
portant equation in quantum chemical applications, and

 the separation of nuclear and electronic motion (through the adiabatic or Born—-Oppenheimer
approximation, the central idea of the present book and chemistry in general).

12 This advice comes from antiquity: “knowledge is more precious than facts, understanding is more precious than
knowledge, wisdom is more precious than understanding.”

For example, relativity theory plays a pivotal role as a foundation of the physical sciences, but for the vast
majority of chemists its practical importance and impact are much smaller. Should relativity be represented
therefore as the base of the trunk, or as a minor branch? Contemporary inorganic chemistry and metallo-organic
chemistry concentrate currently on heavy elements, where relativity effects are important. We have decided to
make the second choice, to not create the impression that this topic is absolutely necessary for the student.

13
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» It then develops the mean-field theory of electronic structure, and
 finally, it develops and describes methods that take into account electronic correlation.

The trunk thus corresponds to a traditional course in quantum chemistry for undergraduates.
This material represents the necessary basis for further extensions into other parts of the TREE
diagram (appropriate for graduate students). In particular, it makes it possible to reach the
crown of the TREE, where the reader may find tasty fruit. Examples include the theory of
molecule—electric field interactions, as well as the theory of intermolecular interactions (in-
cluding chemical reactions), which form the very essence of chemistry. We also see that our
TREE diagram has an important branch concerned with nuclear motion, including molecu-
lar mechanics and several variants of molecular dynamics. At its base, the trunk has two thin
branches: one pertains to relativity mechanics and the other to the time-dependent Schrodinger
equation. The motivation for this presentation is different in each case. I do not highlight rel-
ativity theory for the reasons already explained. The time-dependent Schrédinger equation is
not highlighted, because, for the time being, quantum chemistry accentuates stationary states. I
am confident, however, that the 21st century will see significant developments in the methods
designed for time-dependent phenomena.

The TREE helps tailoring your own book

The TREE not only serves as a diagram of logical chapter connections, but also enables the
reader to make important decisions, such as the following:

» the choice of a logical path of study (“itinerary”) leading to topics of interest, and
« elimination of chapters that are irrelevant to the goal of study.'* This means tailoring the
reader’s own book.

Of course, all readers are welcome to find their own itineraries when traversing the TREE, i.e.,
to create their own reader-tailored books. Some readers might wish to take into account the
suggestions for how the book can be shaped.

Minimum minimorum and minimum

First of all, the reader can follow two basic paths:

*  Minimum minimorum, for those who want to proceed as quickly as possible to get an idea
what quantum chemistry is all about, following the chapters designated by (A). I imagine
readers studying material science, biology, biochemistry, or a similar subject. They have
heard that quantum chemistry explains chemistry, and want to get the flavor and grasp the
most important information. They should read only 47 pages.

14" 1t is, therefore, possible to prune some of the branches.
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Minimum, for those who seek basic information about quantum chemistry, e.g., in order to
use popular computer packages for the study of molecular electronic structure. They may
follow the chapters designated by the symbols A and A. One may imagine here a student
of chemistry, specializing in, say, analytical or organic chemistry (not quantum chemistry).
This path involves reading approximately 300 pages plus the appropriate appendices (if
necessary).

Other proposed paths consist of the minimum itinerary (i.e., A and A) plus special excursions,
which are termed additional itineraries.

Additional itineraries through Volumes 1 and 2

Those who want to use the existing computer packages in a knowledgeable fashion or just want
to know more about the chosen subject may follow the chapters designated by the following
special signs:

large molecules (L),

molecular mechanics and molecular dynamics (),

solid state chemistry/physics (B),

chemical reactions (0),

spectroscopy (),

exact calculations on atoms or small molecules'> (¢),

relativistic and quantum electrodynamics effects (»), and

most important computational methods of quantum chemistry ().

Special itineraries

For readers interested in particular aspects of this book rather than any systematic study, the
following suggestions are offered.

Just before an exam, read in each chapter the sections “Where are we,” “An example,” “What
is it all about,” “Why is this important,” “Summary,” “Questions,” and “Answers.”

For those interested in recent progress in quantum chemistry, we suggest sections “From
the research front” in each chapter.

For those interested in the future of quantum chemistry, the sections labeled “Ad futurum”

in each chapter, and the chapters designated by (d) are proposed.

15 Suppose the reader is interested in an accurate theoretical description of small molecules. I imagine such a PhD

student working in quantum chemistry. Following their itinerary, they have, in addition to the minimum program
(300 pages), an additional 230 pages, which gives about 530 pages plus the appropriate appendices, in total
about 700 pages (in Vol. 1 and Vol. 2).
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» For people interested in the “magical” aspects of quantum physics (e.g., bilocation, reality
of the world, teleportation, creation of matter, tunneling) we suggest sections with the label
(X0).

The target audience

I hope that the TREE structure presented above will be useful for those with varying levels of
knowledge in quantum chemistry, as well as for those whose goals and interests differ from
traditional quantum chemistry.

This book is a direct result of my lectures at the Department of Chemistry, University of War-
saw, for students specializing in theoretical rather than experimental chemistry. Is this the target
audience of this book? Yes, but not exclusively. In the beginning I assumed that the reader
would have completed a basic quantum chemistry course'® and, therefore, in the first version
the basic material was omitted. However, that version became inconsistent, devoid of several
fundamental problems. This is why I decided to explain, mainly very briefly,!” these problems
too. Therefore, a student who chooses the minimum path along the TREE diagram (mainly
along the TREE trunk) will obtain an introductory course in quantum chemistry. However, the
complete collection of chapters provides the student with a set of advanced topics in quantum
chemistry, appropriate for graduate students. For example, a number of chapters, such as those
on relativity mechanics, global molecular mechanics, solid state physics and chemistry, elec-
tron correlation, density function theory, intermolecular interactions, and theory of chemical
reactions, present material that is usually accessible in monographs or review articles.

My goal — ideas of quantum chemistry

In writing this book I imagined students sitting in front of me. In discussions with students I
often see their enthusiasm, their eyes showing me a glimpse of curiosity. First of all, this book
is an acknowledgment of my young friends, my students, and an expression of the joy of being
with them. Work with them formulated and influenced the way in which I decided to write this
book. When reading textbooks one often has the impression that all the outstanding problems in
a particular field have been solved, that everything is complete and clear, and that the student is
just supposed to learn and absorb the material at hand. In science the opposite is true. All areas
can benefit from careful probing and investigation. Your insight, your different perspective or
point of view, even on a fundamental question, may open new doors for others.

16 Say, at the level of PW. Atkins, “Physical Chemistry,” sixth edition, Oxford University Press, Oxford, 1998,
Chapters 11-14.
17 Except where I wanted to stress some particular topics.
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Fostering this kind of new insight is one of my main goals. I have tried, whenever possible,
to present the reasoning behind a particular method and to avoid rote citation of discoveries. I
have tried to avoid details, because I know how difficult it is then for a new student to see the
forest through the trees. I want to focus on the main ideas of quantum chemistry.

I have tried to stress this integral point of view, and this is why the book sometimes deviates
from what is normally considered as quantum chemistry. I sacrificed, not only in full conscious-
ness, but also voluntarily, “quantum cleanness” in favor of exposing the interrelationships of
problems. In this respect, any division between physics and chemistry, organic chemistry and
quantum chemistry, quantum chemistry for chemists and quantum chemistry for biologists,
and intermolecular interactions for chemists, physicists, or biologists is completely artificial,
and sometimes even absurd.'® T have tried to cross these borders by supplying examples and
comparisons from the various disciplines, even from everyday life, by incorporating into inter-
molecular interactions not only supramolecular chemistry, but also molecular computers, and
particularly, by writing a “holistic” (last) chapter about the mission of chemistry.

My experience tells me that the new talented student who loves mathematics courts danger.
They like complex derivations of formulae so much that it seems that the more complex the
formalism, the happier the student. However, all these formulae represent no more than an
approximation, and sometimes it would be better to have a simple formula. The simple formula,
even if less accurate, may tell us more and bring more understanding than a very complicated
one. Behind complex formulae usually hide some very simple concepts, e.g., that two molecules
are unhappy when occupying the same space, or that in a tedious iteration process we approach
the final ideal wave function in a way similar to a sculptor shaping his masterpiece. All the
time, in everyday life, we unconsciously use these variational and perturbational methods — the
most important tools in quantum chemistry. This book may be considered by some students as
“too easy.” However, I prize easy explanations very highly. In later years the student will not
remember long derivations, but will know exactly why something must happen. Also, when
deriving formulae, I try to avoid presenting the final result right away, but instead proceed
with the derivation step by step.'” The reason is psychological. Students have a much stronger
motivation knowing they control everything, even by simply accepting every step of derivation.
It gives them a kind of psychological integrity, very important in any study. Some formulae
may be judged as right just by inspection. This is especially valuable for students and I always
try to stress this.

In the course of study, students should master material that is both simple and complex. Much
of this involves familiarity with the set of mathematical tools repeatedly used throughout this

18" The above described itineraries cross these borders.
19 Sometimes this is not possible. Some formulae require painstaking effort to be derived. This was the case, for
example, in the coupled cluster method on p. V2-157.
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book. The appendices provide ample reference to such a toolbox. These include matrix algebra,
determinants, vector spaces, vector orthogonalization, secular equations, matrix diagonaliza-
tion, point group theory, delta function, finding conditional extrema (Lagrange multipliers,
penalty function methods), and Slater—Condon rules, as well as second quantization. I would
suggest that the reader review (before reading this book) the elementary introduction to matrix
algebra (Appendix A) and to vector spaces and operators (Appendix B). These appendices are
often used throughout this book.

The book contains numerical examples in many places. Their goal is always a semiquantitative
description of a phenomenon, not so much the description of this particular system. This is
because 1 prefer to get a trend of changes, also an order of magnitude of the things to be
illustrated rather than highly accurate numbers. My private conviction behind this approach
is quite strange and unusual: Nature is so rich (think of all elements as possible substitutions,
influence of neighboring atoms that could modify the properties, using pressure, etc.), that there
is a good probability of finding a system exhibiting the phenomenon we got in our calculations...
Well, at least we hope there is.

One more thing: Writing this book, I imagined students sitting in a lecture hall. The tone of this
book should bring to mind a lecture, in interactive mode. To some, this is not the way books
are supposed to be written. I apologize to any readers who may not feel comfortable with this
approach.

I invite cordially all readers to share with me their comments (piela@chem.uw.edu.pl).

Your own computations are easy

On the web page www.webmo.net the reader will find a possibility to carry out his/her own
quantum mechanical calculations (free up to 60 seconds of CPU time). Nowadays this is
a sufficiently long time to perform computations for molecules even with several dozens of
atoms. This web page offers the most powerful professional computer programs. The programs
calculate millions of integrals needed, but the reader does not see them. Using this tool is
straightforward and instructive. I propose the reader to check this immediately.

Web annex

The role of the annex is to expand the readers’ knowledge after they read a given chapter. At
the heart of the web annex are the links to other people’s websites. The annex adds at least four
new dimensions to the book: color, motion, an interactive mode of learning, and connection to
the web (with a plethora of possibilities to go further and further). When on the web, the reader
may choose to come back (automatically) to the annex at any time.
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How to begin

It is suggested that the reader start with the following.

Study the TREE diagram.

Read the table of contents and compare it with the TREE.

Ask yourself what your goal is, i.e., why would you like to read such a book?
Choose a personal path on the TREE; the suggested itineraries may be of some help.
Become acquainted with the organization of any chapter.

20

Chapter organization

Once an itinerary is chosen the student will cover definite chapters. All the chapters have the
same structure, and are divided into the following sections.

Where are we

In this section the reader is made aware of his/her current position on the TREE diagram. In
this way, they know the relationship of the current chapter to other chapters, what chapters
they are expected to have covered already, and the remaining chapters for which the current
chapter provides a preparation. The position shows whether he/she should invest time and
effort in studying the current chapter. In this section a mini-TREE is also shown indicating
the current position.

An example

Here the reader is confronted with a practical problem that the current chapter addresses.
What is it all about

In this section the essence of the chapter is presented and a detailed exposition follows. The
recommended paths are also provided.

Why is this important

Not all chapters are of equal importance for the reader. At this point, the reader has the
opportunity to judge whether the arguments about the importance of a current chapter are
convincing.

20

This choice may still be tentative and may become clear in the course of reading this book. The index at the end
may serve as a significant help. For example, a reader interested in drug design, which is based in particular on
enzymatic receptors, should cover the chapters with A (those considered most important) and then those with A
(at the very least, intermolecular interactions). He/she will gain the requisite familiarity with the energy which
is minimized in computer programs. The reader should then proceed to those branches of the TREE diagram
labeled with [ (large molecules). Initially the reader may be interested in force fields (where the abovementioned
energy is approximated), and then in molecular mechanics and molecular dynamics (#). It is true that our
students might begin this course with only the @ labels. However, such a course would leave them without any
link to quantum mechanics.
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What is needed

This section lists the prerequisites necessary for the successful completion of the current
chapter. Material required for understanding the text is provided in the appendices at the
end of this book. The reader is asked not to take this section too literally, since a tool may be
needed only for a minor part of the material covered, and would therefore be of secondary
importance.

Classical works

Every field of science has a founding parent. They identified the seminal problems, intro-
duced basic ideas, and selected the necessary tools. Wherever appropriate, these classical
investigators and their most important contributions are mentioned.

The chapter’s body

The main body of each chapter is presented in this section.

Summary

The main body of a chapter is still a big thing to digest and a student may be lost in the
logical structure of each chapter.”! A short summary assures the student of the motivation
for presenting the material at hand and explains why one should expend the effort and pain,
what the main benefits are, and why I have attached importance to this subject. This is a
useful point for reflection and consideration. What have we learned, where are we heading,
and where will this knowledge be used and applied?

Main concepts, new terms

New terms, definitions, concepts, and relationships that have been introduced in the chapter
are listed here.

From the research front

It is often ill-advised to present state-of-the-art results to students. For example, of what
value is it to present a wave function consisting of thousands of terms for the helium atom?
The logistics of such a presentation are difficult to contemplate. There is significant di-
dactic value in presenting a wave function with only one or a few terms where significant
concepts are communicated. However, the student should be made aware of recent progress
in generating new results and how well they agree with experimental observations.

Ad futurum

What is the prognosis for future developments in this area according to the author? These
are often perplexing questions and the reader deserves an honest answer.

Additional literature

The present text offers only a general panorama of quantum chemistry. In most cases there
exists an extensive body of literature, where the reader will find more detailed information.

This is most dangerous. A student at any stage of study has to be able to answer easily what the purpose of each
stage is.
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¢ Questions
In this section the reader will find ten topics, each containing four yes-or-no questions
related to the current chapter. Sometimes the choice will come down to the truth or an
absurdity, and the answer will come easily.

* Answers
Here the answers to the above questions are provided.
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The Magic of Quantum Mechanics

Imagination is more important than knowledge. Knowledge is limited.

Imagination encircles the world.
Albert Einstein

Where are we?

We are at the beginning of all the paths, at the base of the TREE.

An example

Since 1911 we have known

that atoms and molecules are Charles Augustin de Coulomb (1736—
built of two kinds of parti- 1806), French military engineer, one of
cles: electrons and nuclei. Ex- the founders of quantitative physics. In

1777 he constructed a torsion balance for
measuring very weak forces, with which
he was able to demonstrate the inverse
square law for electric and magnetic
forces.

He also studied charge distribution on the
surfaces of dielectrics.

periments show the particles
may be treated as point-like
objects of certain mass and
electric charge. The electronic
charge is equal to —e, while
the nuclear charge amounts to
Ze, where e = 1.6 - 1071 C
and Z is a natural number.'

In quantum chemistry and, therefore, also in the present book these facts will be taken for granted. However,
they are intriguing by themselves. Just a few questions: why is the electric charge quantized (in e units)? Why
do all electrons have the same charge and mass? Why is the experimental |e| the same for electrons and protons
(within the accuracy of 10-20)7 Up to now science is unable to answer these questions (there are some important
attempts; see, e.g., A. Staruszkiewicz, Acta Phys. Polon., 33(2002)2041).

Ideas of Quantum Chemistry
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2 Chapter 1

Electrons and nuclei interact according to the Coulomb law, and classical mechanics and electrody-
namics predict that any atom or molecule is bound to collapse in a matter of a femtosecond, emitting an
infinite amount of energy. Hence, according to the classical laws, the complex matter we see around us
should simply not exist at all.

However, atoms and molecules do exist, and their existence may be described in detail by quantum
mechanics using what is known as the wave function. The postulates of quantum mechanics provide
the rules for finding this function and for the calculation of all the observable properties of atoms and
molecules. These calculations agree extremely well with experiments.

What is it all about?

History of a revolution () p.5
Postulates of quantum mechanics (A) p. 18
The Heisenberg uncertainty principle (A) p. 41
The Copenhagen interpretation of the world ("X) p. 46
How to disprove the Heisenberg uncertainty principle? Einstein—Podolsky—

Rosen’s recipe ("X) p. 47
The life and death of Schrodinger’s cat ("X p. 49
Bilocation ("X) p. 50
The magic of erasing the past ("X p. 53
A test for common sense: the Bell inequality ("X p. 54
Photons violate the Bell inequality () p- 57
Teleportation ("X p. 59
Quantum computing (*X) p. 62

Any branch of science has a list of postulates, on which the entire construction is built.” For quantum
mechanics, six such postulates have been established. The postulates have evolved in the process of
reconciling theory and experiment, and may sometimes be viewed as nonintuitive. They stand behind any
tool of quantum mechanics used in practical applications. They also lead to some striking conclusions

2 And which are not expected to be proved.



The Magic of Quantum Mechanics 3

concerning the reality of our world, for example, the possibilities of bilocation and teleportation. These
unexpected conclusions have recently been experimentally confirmed.

Why is this important?

The postulates given in this chapter represent the foundation of quantum mechanics, and justify all that
follows in this book. In addition, our ideas of what the world is really like acquire a new and unexpected
dimension.

What is needed?

e complex numbers (necessary),

» operator algebra and vector spaces, p. 595 (necessary),

e angular momentum, p. 665 (necessary),

* some background in experimental physics: black body radiation, photoelectric effect (recom-
mended).

Classical works

The beginning of quantum theory was the discovery, by Max Planck, of the electromagnetic energy
quanta emitted by a black body. The work was published under the title “Uber das Gesetz der Energie-
verteilung im Normalspektrum,” in Annalen der Physik, 4(1901)553. % Four years later Albert Einstein
published the paper “Uber die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen
Gesichtspunkt” in Annalen der Physik, 17(1905)132, in which he explained the photoelectric effect
by assuming that the energy is absorbed by a metal as quanta of energy. % In 1911 Ernest Ruther-
ford discovered that atoms are composed of a massive nucleus and electrons in “The Scattering of the
o and B Rays and the Structure of the Atom,” in Proceedings of the Manchester Literary and Philo-
sophical Society, IV, 55(1911)18. % Two years later Niels Bohr introduced a planetary model of the
hydrogen atom in “On the Constitution of Atoms and Molecules,” in Philosophical Magazine, Series 0,
vol. 26(1913). % Louis de Broglie generalized the corpuscular and wave character of any particle in
his PhD thesis “Recherches sur la théorie des quanta,” Sorbonne, 1924. ¥ The first mathematical for-
mulation of quantum mechanics was developed by Werner Heisenberg in “Uber quantentheoretischen

3 Or “On the Energy Distribution Law in the Normal Spectrum” with a note saying that the material had already

been presented (in another form) at the meetings of the German Physical Society on October 19 and December
14, 1900.
On p. 556 one can find the following historical sentence on the total energy denoted as Uy: “Hierzu ist es
notwendig, U nicht als eine stetige, unbeschrinkt teilbare, sondern als eine diskrete, aus einer ganzen Zahl von
endlichen gleichen Teilen zusammengesetzte Grosse aufzufassen,” which translates as: “Therefore, it is necessary
to assume that U does not represent any continuous quantity that can be divided without any restriction. Instead,
one has to understand that it is a discrete quantity composed of a finite number of equal parts.”
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Umdeutung kinematischer und mechanischer Beziehungen,” in Zeitschrift fiir Physik, 33(1925)879. %
Max Born and Pascual Jordan recognized matrix algebra in the formulation in “Zur Quantenmechanik,”’
in Zeitschrift fiir Physik, 34(1925)858, and then all three expounded a coherent mathematical basis
for quantum mechanics in the famous “Dreimdiinnerarbeit” entitled “Zur Quantenmechanik. 11 pub-
lished in Zeitschrift fiir Physik, 35(1925)557. % Wolfgang Pauli introduced his “two-valuedness” for
the nonclassical electron coordinate in “Uber den Einfluss der Geschwindigkeitsabhdngigkeit der Elek-
tronenmasse auf den Zeemaneffekt,” published in Zeitschrift fiir Physik, 31(1925)373. The next year
George Uhlenbeck and Samuel Goudsmit described their concept of particle spin in “Spinning Elec-
trons and the Structure of Spectra,” Nature, 117(1926)264. % Wolfgang Pauli published his famous
exclusion principle in “Uber den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit
der Komplexstruktur der Spektren,” which appeared in Zeitschrift fiir Physik B, 31(1925)765. % The
series of papers by Erwin Schrodinger “Quantisierung als Eigenwertproblem”, in Annalen der Physik,
79(1926)361 (other references in Chapter 2) was a major advance. He proposed a different mathematical
formulation (from Heisenberg’s) and introduced the notion of the wave function. % In the same year Max
Born, in “Quantenmechanik der Stossvorgdnge,” which appeared in Zeitschrift fiir Physik, 37(1926)863,
gave an interpretation of the wave function. % The uncertainty principle for position and momentum
of a particle was discovered by Werner Heisenberg and described in “Uber den anschaulichen Inhalt
der quantentheoretischen Kinematik und Mechanik,” Zeitschrift fiir Physik, 43(1927)172.% A similar
uncertainty between energy and time has been proved in 1945 by the Russian physicists Leonid I. Man-
delshtam and Igor E. Tamm in “The uncertainty relation between energy and time in nonrelativistic
quantum mechanics,” J. Phys. (USSR) 9(1945)249. % Paul Adrien Maurice Dirac reported an attempt
to reconcile quantum and relativity theories in a series of papers from 1926-1928 (references in Chap-
ter 3). % Albert Einstein, Boris Podolsky, and Natan Rosen proposed a (then a Gedankenexperiment
or thought experiment, now a real one) test of quantum mechanics in “Can quantum-mechanical de-
scription of physical reality be considered complete?,” published in Physical Review, 47(1935)777. %
Richard Feynman, Julian Schwinger, and Shinichiro Tomonaga (independently) developed quantum elec-
trodynamics in 1948 (description of the electromagnetic forces), which in 1973 has been supplemented
by David Gross, Frank Wilczek, and David Politzer by creating the theory of the strong interactions,
what is known today as chromodynamics % John Bell, in “On the Einstein—Podolsky—Rosen Paradox,”
Physics, 1(1964)195 reported inequalities which were able to verify the very foundations of quantum
mechanics. % Alain Aspect, Jean Dalibard, and Gérard Roger in “Experimental Test of Bell’s Inequal-
ities Using Time-Varying Analyzers,” Physical Review Letters, 49(1982)1804 reported measurements
which violated the Bell inequality and proved the nonlocality and/or (in a sense) nonreality of our world.
% The first two-slit interference experiments proving the wave nature of electrons have been performed
in 1961 by Claus Jonsson from Tiibingen Universitit in Germany and published in “Elektroneninter-
ferenzen an mehreren kiinstlich hergestellter Feinspalten,” in Zeitschrift fiir Physik, 161(1961)454],
while the experimental proof for interference of a single electron has been presented by Pier Gior-
gio Merli, Gianfranco Missiroli, and Gulio Pozzi from University of Milan (Italy) in the article “On
the Statistical Aspect of electron interference phenomena,” American Journal of Physics, 44(1976)306.
% Charles H. Bennett, Gilles Brassart, Claude Crépeau, Richard Jozsa, Asher Peres, and William
K. Wootters, in “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels,” in Physical Review Letters, 70(1993)1895, designed a teleportation experiment, which has
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subsequently been successfully accomplished by Dik Bouwmeester, Jan-Wei Pan, Klaus Mattle, Man-
fred Eibl, Harald Weinfurter, and Anton Zeilinger, in “Experimental Quantum Teleportation,” in Nature,
390(1997)575.

1.1 History of a revolution

The end of the 19th century saw itself as a proud period for physics, which seemed to finally
achieve a state of coherence and clarity. Physics at that time believed the world consisted of
two kingdoms: a kingdom of particles and a kingdom of electromagnetic waves. Motion of par-
ticles had been described by Isaac Newton’s equation, with its striking simplicity, universality,
and beauty. Similarly, electromagnetic waves had been accurately described by James Clerk
Maxwell’s simple and beautiful equations.

Young Planck was ad-
James  Clerk  Maxwell

(1831-1879), British physi-
of studying physics, be- cist, professor at the
University of Aberdeen,
Kings College, London,
and Cavendish Professor in

vised to abandon the idea

cause everything had al-
ready been discovered. As

Leon Lederman wrote®:
“The physics was elegantly
packed in a box and tied
with a bow.” This beautiful
idyll was only slightly in-
complete, because of a few

Cambridge. His main contri-
butions are famous equations
for electromagnetism (1864)
and the earlier discovery of
velocity distribution in gases
(1860).

annoying details: the strange black body radiation, the photoelectric effect, and the mysteri-
ous atomic spectra. Just some rather peripheral problems to be fixed in the near future by the
omnipotent Newton—Maxwell machine...

As it turned out, they opened a New World. The history of quantum theory, one of most revo-
Iutionary and successful theories ever designed by man, will briefly be given below. Many of
these facts have their continuation in the present textbook.

4 L. Lederman and D. Teresi, “The God Particle,” Dell Publishing, 1993.
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1900 — Max Planck

Max Karl Ernst Ludwig Planck (1858-1947),
German physicist, professor at the universi-
ties in Munich, Kiel, and Berlin, first direc-
tor of the Institute of Theoretical Physics in
Berlin. Planck was born in Kiel, where his fa-
ther was a university professor of law. Max
Planck was a universally talented school pupil,
then an outstanding physics student at the Uni-
versity of Berlin, where he was supervised by
Gustaw Kirchhoff and Hermann Helmholtz.
Music was his passion throughout his life,
and he used to play piano duets with Einstein
(who played the violin). This hard-working,
middle-aged, old-fashioned professor of ther-
modynamics made a major breakthrough as

one of the most outstanding people I have ever
known (...) In reality, however, he did not un-
derstand physics. During the solar eclipse in
if in an act of scientific desperation. In 1918 LA 02 613750 G2 G, GO a8 Ve a7
Planck received the Nobel Prize “for services li§ht bending in the gravitational field will be
rendered to the advancement of Physics by his ~ confirmed. If he understood the very essence of
discovery of energy quanta.” Einstein recalls the general relativity theory, he would quietly
jokingly Planck’s reported lack of full confi- go to bed, as I did” (cited by Ernst Straus in
dence in general relativity theory: “Planck was ~ “Einstein: A Centenary Volume,” p. 31).

Black body radiation

Max Planck wanted to un-
derstand black body radia-
tion. The black body may

John William Strutt, Lord Rayleigh
(1842-1919), British  physicist,
Cavendish Professor at Cambridge,
contributed greatly to physics
(wave propagation, light scattering
theory — Rayleigh scattering). In
1904 Rayleigh received the Nobel
Prize  “for his investigations of
the densities of the most important
gases and for his discovery of argon
in connection with these studies.”
©The Nobel Foundation. kind of electromagnetic ra-

be modeled by a box with
a small hole (Fig. 1.1). We
heat the box up, wait for

the system to reach a sta-
tionary state (at a fixed

temperature) and see what

diation (intensity as a func-

tion of frequency) comes
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out of the hole. In 1900 Rayleigh and Jeans® tried to apply classical mechanics to this problem,
and calculated correctly that the black body would emit electromagnetic radiation having a
distribution of frequencies. However, the larger the frequency the larger its intensity, leading to
what is known as ultraviolet catastrophe, an absurd conclusion. Experiment contradicted theory
(Fig. 1.1).

(a) black body

'

4 » experiment

I A classical theory
) 1 (ultraviolet catastrophe)

2N
J’go
]

L 1 1 L »

14

Fig. 1.1. Black body radiation. (a) As one heats a box to temperature T', the hole emits electromag-
netic radiation with a wide range of frequencies. (b) The distribution of intensity as a function of
frequency v. There is a serious discrepancy between the results of classical theory and the experiment,
especially for large frequencies. Only after assuming the existence of energy quanta can theory and
experiment be reconciled.

At a given temperature 7 the intensity distribution (at a given frequency v, Fig. 1.1b) has
a single maximum. As the temperature increases, the maximum should shift towards higher
frequencies (a piece of iron appears red at 500°C, but bluish at 1000°C). Just like Rayleigh
and Jeans, Max Planck was unable to derive this simple qualitative picture from classical the-
ory — something had to be done. On December 14, 1900, the generally accepted date for the
birth of quantum theory, Planck presented his theoretical results for the black body treated
as an ensemble of harmonic oscillators. With considerable reluctance, he postulated® that
matter cannot emit radiation otherwise than by equal portions (“quanta”) of energy hv, pro-
portional to the frequency v of vibrations of a single oscillator of the black body. The famous
Planck constant 4 followed soon after (h = 6.62607 - 10~3* Js; but in this book, we will use

5 James Hopwood Jeans (1877-1946), British physicist, professor at the University of Cambridge and at the Insti-
tute for Advanced Study in Princeton. Jeans also made important discoveries in astrophysics (e.g., the theory of
double stars).

6 He felt uncomfortable with this idea for many years.
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a more convenient constant’ A = %). It is exactly this hypothesis about energy quanta that
led to the agreement of theory with experiment and the elimination of the ultraviolet catastro-

phe.

1905 — Albert Einstein

Photoelectric effect

The second worrying problem, apart from the black body, was the photoelectric effect.® Light
knocks electrons’ out of metals, but only when its frequency exceeds a certain threshold. Clas-
sical physics was helpless. In classical theory, light energy should be stored in the metal in
a continuous way and independent of the frequency used, after a sufficient period of time,
the electrons should be ejected from the metal. Nothing like that was observed. Einstein in-
troduced the idea of electromagnetic radiation quanta as particles, later baptized photons
by Gilbert Lewis. Note that Planck’s idea of a quantum concerned energy transfer from the
black body to the electromagnetic field, while Einstein introduced it for the opposite direc-
tion with the energy corresponding to Planck’s quantum. Planck considered the quantum

as a portion of energy, while for Einstein, the quantum meant a particle.'’ Everything be-

Known as “h bar.”

Experimental work on the effect had been done by Philipp Eduard Anton Lenard (1862-1947), German physicist,
professor at Breslau (now Wroctaw), Ko6ln, and Heidelberg. Lenard discovered that the number of photoelectrons
is proportional to the intensity of light, and that their kinetic energy does not depend at all on the intensity,
depending instead on the frequency of light. Lenard received the Nobel Prize in 1905 “for his work on cath-
ode rays.” A faithful follower of Adolf Hitler, and devoted to the barbarous Nazi ideas, Lenard terrorized
German science. He demonstrates that scientific achievement and decency are two separate human character-
istics.

The electron was already known, having been predicted as early as 1868 by the Irish physicist George Johnstone
Stoney (1826-1911), and finally discovered in 1897 by the British physicist Joseph John Thomson (1856—1940).
Thomson also discovered a strange pattern: the number of electrons in light elements was equal to about one
half of their atomic mass. Free electrons were obtained much later (1906). The very existence of atoms was
still a hypothesis. The atomic nucleus was to be discovered only in 1911. Physicists were also anxious about
the spectra of even the simplest substances such as hydrogen. Johann Jacob Balmer, a teacher from Basel, was
able to design an astonishingly simple formula which fitted perfectly some of the observed lines in the hydrogen
spectrum (“Balmer series”). All that seemed mysterious and intriguing.

10° 1t is true that Einstein wrote about “point-like quanta” four years later, in a careful approach identifying the
quantum as a particle. Modern equipment enables us to count photons, the individual particles of light, but the
human eye is also capable of detecting 68 photons striking a neuron.
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came clear: energy goes to electrons by guanta and this is why only quanta exceeding some
threshold (the binding energy of an electron in the metal) are able to eject electrons from a

metal.

Gilbert Newton Lewis (1875-1946), the great-
est American chemist, who advanced Ameri-
can chemistry internationally through his re-
search and teaching. In a 1926 article in Na-
ture Lewis introduced the name of the “pho-
ton.” He also developed an early theory of
chemical bonding (“Lewis structures’) based
on counting the valence electrons and form-
ing “octets” from them. The idea that atoms
in molecules tend to form octets in order to
complete their electron shells turned out to be
surprisingly useful in predicting bond patterns
in molecules. A drawback for this concept extremely clever concept rather than of a co-
is that it was not closely connected to the ideas  herent theory. Lewis also introduced a new def-
of theoretical physics. It is an example of an inition of acids and bases, which is still in use.

1911 — Ernest Rutherford

Rutherford proved experimentally that atoms have a massive nucleus that is very small when
compared to the size of the atom. The positive charge is concentrated in the nucleus, which is
about 10~!3 cm in size. The density of the nuclear matter boggles the imagination: 1 cm? has
a mass of about 300 million tones. This is how researchers found out that an atom is composed

of a massive nucleus and electrons.

In 1905, the accuracy of experimental data was too poor to confirm Einstein’s theory as the only one which could
account for the experimental results. Besides, the wave nature of light was supported by thousands of crystal
clear experiments. Einstein’s argument was so breathtaking (...particles???) that Robert Millikan decided to
falsify experimentally Einstein’s hypothesis. However, after 10 years of investigations, Millikan acknowledged
that he was forced to undoubtedly support Einstein’s explanation “however absurd it may look™ (Rev. Modern
Phys., 21(1949)343). This conversion of a sceptic inclined the Nobel Committee to grant Einstein the Nobel
Prize in 1923 “for his work on the elementary charge of electricity and on the photo-electric effect.”
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1913 — Niels Bohr

Niels Hendrik Bohr (1885-1962), Danish
physicist, professor at Copenhagen University,
played a key role in the creation and interpre-
tation of quantum mechanics (see the end of
this chapter). Bohr was born in Copenhagen,
the son of a professor of physiology. He grad-
uated from Copenhagen university and in 1911
obtained his doctorate there. Then he went
to Cambridge to work under the supervision
of J.J. Thomson, the discoverer of the elec-
tron. The collaboration did not work out, and
in 1912 Bohr began to cooperate with Ernest
Rutherford at the University of Manchester. In
Manchester Niels Bohr made a breakthrough
by introducing a planetary model of the hy-
drogen atom. He postulated that the angular
orbital momentum must be quantized. Using
this, Bohr reproduced the experimental spec-
trum of hydrogen atom with high accuracy. In

Twwww

ad

FYY YT VYWY YYVYY

LA A o A & A A A b & AN

1922 Bohr received the Nobel Prize “for his
investigation of the structure of atoms.” In the
same year he became the father of Aage Niels
Bohr — a future winner of the Nobel Prize
(1975, for studies of the structure of nuclei). In
October 1943, Bohr and his family fled from
Denmark to Sweden, and then to Great Britain
and the USA, where he worked on the Man-
hattan Project. After the war the Bohr family
returned to Denmark.

The model of the hydrogen atom

Atomic spectra were the third great mystery of early 20th-century physics. Even interpretation
of the spectrum of the hydrogen atom represented a challenge. At the age of 28 (in 1913) Bohr
proposed a simple planetary model of this atom, in which the electron, contrary to classical
mechanics, did not fall onto the nucleus. Instead, it changed its orbit with accompanying absorp-
tion or emission of energy quanta. Bohr assumed that angular orbital momentum is quantized
and that the centrifugal force is compensated by the Coulomb attraction between the electron
and the nucleus. He was able to reproduce part of the spectrum of the hydrogen atom very
accurately. Bohr then began work on the helium atom, which turned out to be a disaster, but he
was successful again with the helium cation'' He*.

Niels Bohr played an inspiring role in the development and popularization of quantum me-
chanics. His Copenhagen Institute for Theoretical Physics, founded in 1921, where many young
theoreticians from all over the world worked on quantum mechanical problems, was the leading

11 Bohr did not want to publish without good results for all other atoms, something he would never achieve.
Rutherford argued: “Bohr, you explained hydrogen, you explained helium, people will believe you for other
atoms.”
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world center in the 1920s and 1930s.'? Bohr, with Werner Heisenberg, Max Born, and John von
Neumann, contributed greatly to the elaboration of the philosophical foundations of quantum
mechanics. According to this, quantum mechanics represents a coherent and complete model
of reality (“the world”), and the discrepancies with the classical mechanics have a profound
and fundamental character,’> and both theories coincide in the limit # — 0 (where 4 is the
Planck constant), and thus the predictions of quantum mechanics reduce to those of classical
mechanics (known as Bohr’s correspondence principle).

1916 — Arnold Sommerfeld

“Old quantum theory”

In 1916 Arnold Sommer-
feld generalized the Bohr
quantization rule beyond

Arnold Sommerfeld (1868-1951),
German physicist, professor at the
Mining Academy in Clausthal,
the problem of the one- then at the Technical University
electron atom. Known as of Aachen, in the key period
1906-1938, was professor at
Munich University. Sommerfeld
considered not only circular (Bohr-
herent theory of general ap- like) orbits, but also elliptical ones,
plicability. As a matter of and introduced the angular quan-
tum number. He also investigated
X-rays and the theory of metals.
The scientific father of many Nobel
for every periodic variable Prize winners, he did not get this
(like an angle), an inte- distinction himself.

“old quantum theory,” it
did not represent any co-

fact, this quantization was
achieved by assuming that

gral is equal to an inte-
ger times the Planck con-

stant.!*

Sommerfeld also tried to apply the Bohr model to atoms with a single valence electron
(he had to modify the Bohr formula by introducing the quantum defect, i.e., a small change in

the principal quantum number; see p. 232).

12' John Archibald Wheeler recalls that, when he first came to the Institute, he met a man working in the garden and

asked him where he could find Professor Bohr. The gardener answered: “That’s me.”

The center of the controversy was that quantum mechanics is indeterministic, while classical mechanics is de-
terministic, although this indeterminism is not all it seems. As will be shown later in this chapter, quantum
mechanics is a fully deterministic theory in the Hilbert space (the space of all possible wave functions of the
system), its indeterminism pertains to the physical space in which we live.

Similar periodic integrals were used earlier by Bohr.

13
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1923 — Louis de Broglie

Louis-Victor Pierre Raymond de Broglie
(1892-1987) was studying history at the Sor-
bonne, carefully preparing himself for a diplo-
matic career quite natural in a princely fam-
ily. His older brother Maurice, a radiographer,
aroused his interest in physics. The First World
War (Louis did his military service in a radio
communications unit) and the study of history
delayed his start in physics.

He was 32 when he presented his doctoral
dissertation, which embarrassed his supervi-
sor, Paul Langevin. The thesis, on the wave
nature of all particles, was so revolutionary,
that only a positive opinion from Einstein, who
was asked by Langevin to take a look of the

dissertation, convinced the doctoral commit-
tee. Only five years later (in 1929), Louis de
Broglie received the Nobel Prize “for his dis-
covery of the wave nature of electrons.”

Waves of matter

In his doctoral dissertation, stuffed with mathematics, Louis de Broglie introduced the concept
of “waves of matter.” He postulated that not only photons, but also any other particle, has,
besides its corpuscular characteristics, some wave properties (those corresponding to light had
been known for a long, long time). According to de Broglie, the wave length corresponds to
momentum p,

>

p:

where / is again the Planck constant! What kind of momentum can this be, in view of the fact
that momentum depends on the laboratory coordinate system chosen? Well, it is the momentum
measured in the same laboratory coordinate system as that used to measure the corresponding
wave length.

1923 — Arthur Compton'”
Electron—photon scattering

It turned out that an electron—photon collision obeys the same laws of dynamics as those
describing collision of two particles: the energy conservation law and the momentum con-

15 Arthur Holly Compton (1892-1962), American physicist, professor at the universities of Saint Louis and
Chicago. He obtained the Nobel Prize in 1927 “for the discovery of the effect named after him,” i.e., for in-
vestigations of electron—photon scattering.
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servation law. This result confirmed the wave-corpuscular picture emerging from experi-
ments.

1925 — George E. Uhlenbeck and Samuel A. Goudsmit
Discovery of spin

Two Dutch students explained an experiment (Stern—Gerlach) in which a beam of silver atoms
passing through a magnetic field split into two beams. In a short paper, they suggested that
the silver atoms have (besides their orbital angular momentum) an additional internal angular
momentum (spin), similar to a macroscopic body, which besides its center-of-mass motion,
also has a rotational (spinning) motion.'® Moreover, the students demonstrated that the atomic
spin follows from the spin of the electrons: among the 47 electrons of the silver atom, 46 have
their spin compensated (23 “down” and 23 “up”), while the last “unpaired” electron gives the
net spin of the atom.

1925 — Wolfgang Pauli'’
Pauli exclusion principle

Pauli postulated that in any system two electrons cannot be in the same state (including their
spins). This “Pauli exclusion principle” was deduced from spectroscopic data (some states were
not allowed). It turned out the corner stone of understanding chemistry.

1925 — Werner Heisenberg

Matrix quantum mechanics

A paper by the 24-year-old Werner Heisenberg turned out to be a breakthrough in quantum
theory.'® He wrote in a letter: “My whole effort is to destroy without a trace the idea of or-
bits.” Max Born recognized matrix algebra in Heisenberg’s formulation (who, himself, had not

16 Caution: identifying the spin with the rotation of a rigid body leads to physical inconsistencies.

17" Pauli also introduced the idea of spin when interpreting spectra of atoms with a single valence electron. He was
inspired by Sommerfeld, who interpreted the spectra by introducing the quantum number j =1/ + %, where the
quantum number / quantized the orbital angular momentum of the electron. Pauli described spin as a bivalent
nonclassical characteristic of the electron in W. Pauli, Zeit. Phys. B, 3(1925)765.

On June 7, 1925, Heisenberg was so tired after a bad attack of hay fever that he decided to go and relax on the
North Sea island of Helgoland. Here, he divided his time between climbing the mountains, learning Goethe’s
poems by heart, and (despite his intention to rest) hard work on the spectrum of the hydrogen atom with which
he was obsessed. It was at night on 7 or 8 June that he saw something — the beginning of the new mechanics. In

18
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yet realized it) and in the same year a more solid formulation of the new mechanics (“matrix
mechanics”) was proposed by Werner Heisenberg, Max Born, and Pascual Jordan.'”

1926 — Erwin Schrodinger
Schrodinger equation

In November 1925, Erwin Schrodinger delivered a lecture at the Technical University (ETH)
in Zurich, in which he presented the results of de Broglie. Professor Peter Debye stood up and
asked the speaker:

Peter Joseph Wilhelm Debye, or more ex-
actly, Peter Josephus Wilhelmus Debye
(1884-1966), Dutch physicist and chemist,
professor at the Technical University (ETH) of
Zurich (1911, 1920-1937) as well as at Gottin-
gen, Leipzig, and Berlin, won the Nobel Prize
in chemistry in 1936 “for his contribution to
our knowledge of molecular structure through
his investigations on dipole moments and

beautiful town to the end of his life). His mem-

on the diffraction of X-rays and electrons in
gases.” Debye emigrated to the USA in 1940,
where he obtained a professorship at Cornell
University in Ithaca, NY (and remained in this

ory is still alive there. Professor Scheraga re-
members him as an able chair in seminar dis-
cussions, in the tradition of the Zurich seminar
of 1925.

“You are telling us about waves, but where is the wave equation in your talk?” Indeed, there
wasn’t any! Schrédinger began to work on this and the next year formulated what is now called
wave mechanics based on the wave equation. Both formulations, Heisenberg’s and Schrédin-
ger’s,”" turned out to be equivalent and are now known as (nonrelativistic) quantum mechanics.

later years he wrote in his book “Der Teil und das Ganze”: “It was about three o’clock in the morning when the
final result of the calculation lay before me. At first I was deeply shaken. I was so excited that I could not think
of sleep. So I left the house and awaited the sunrise on the top of a rock.” The first man with whom Heisenberg
shared his excitement a few days later was his schoolmate Wolfgang Pauli, and, after another few days, also with
Max Born.

L ordan, despite his talents and achievements, felt himself underestimated and even humiliated in his native
Germany. For example, he had to accept a position at Rostock University, which the German scientific elite used
to call the “Outer Mongolia of Germany.” The best positions seemed to be reserved. When Hitler came to power,
Jordan became a fervent follower.

20" And the formulation proposed by Paul A.M. Dirac.
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1926 — Max Born

Statistical interpretation of wave function

Max Born (1882-1970), German physicist,
professor at the universities of Gottingen,
Berlin, Cambridge, and Edinburgh, born in
Breslau (now Wroctaw) to the family of a
professor of anatomy. Born studied first in
Wroctaw, then at Heidelberg and Zurich. He
received his PhD in physics and astronomy
in 1907 in Géttingen, where he began his
swift academic career. Born obtained a chair
at the University of Berlin in 1914, and re-
turned to Gottingen in 1921, where he founded
an outstanding school of theoretical physics,
which competed with the famous institute of

Schrodinger’s formulation of quantum me-
chanics, Born proposed the probabilistic inter-
pretation of the wave function. Despite such

Niels Bohr in Copenhagen. Born supervised
Werner Heisenberg, Pascual Jordan, and Wolf-
gang Pauli. It was Born who recognized, in
1925, that Heisenberg’s quantum mechanics
could be formulated in terms of matrix al-
gebra. Together with Heisenberg and Jordan,
he created the first consistent quantum
theory (the famous “Dreimdnnerarbeit”). After

seminal achievements, the Nobel Prizes in the
1930s were received by his colleagues. Finally,
when in 1954 Born obtained the Nobel Prize
“for his fundamental research in quantum me-
chanics, especially for his statistical interpre-
tation of the wave-function,” there was a great
relief among his famous friends. ©The Nobel
Foundation.

Max Born proposed interpreting the square of the complex modulus of Schrédinger’s wave
function as the probability density for finding the particle.

1927 — Werner Heisenberg
Uncertainty principle

When analyzing a hypothetical microscope observation of an electron Heisenberg concluded
that it is not possible to measure simultaneously the position (x) and momentum (p,) of a
particle with any desired accuracy. The more exactly we measure the position (small Ax), the
larger the error we make in measuring the momentum (large Ap,) and vice versa.



16 Chapter 1

1927 — Clinton Davisson, Lester H. Germer, George Thomson®'

Electron diffraction

Davisson and Germer, and Thomson, demonstrated in ingenious experiments that indeed elec-
trons do exhibit wave properties (using crystals as diffraction gratings).

1927 — Walter Heitler, Fritz Wolfgang London
The birth of quantum chemistry

Walter Heitler and Fritz Wolfgang London convincingly explained why two neutral atoms (like
hydrogen) attract each other with a force so strong as to be comparable with the Coulomb forces
between ions. Applying the Pauli exclusion principle when solving the Schrédinger equation is
of key importance. Their paper was received on June 30, 1927, by Zeitschrift fiir Physik, and
this may be considered as the birthday of quantum chemistry.”

1928 — Paul Dirac
Dirac equation for the electron and positron

Paul Dirac’s main achievements are the foundations of quantum electrodynamics and construc-
tion of the relativistic wave equation (1926-1928) which now bears his name. The equation
not only describes the electron, but also its antimatter counterpart — the positron (predicting
antimatter). Spin was also inherently present in the equation.

1929 — Werner Heisenberg and Wolfgang Pauli
Quantum field theory

Two classmates developed a theory of matter, and the main features still survive. In this theory,
the elementary particles (the electron, photon, and so on) were viewed as excited states of the
corresponding fields (the electron field, electromagnetic field, and so on).

2L Clinton Joseph Davisson (1881-1958), American physicist at Bell Telephone Laboratories. He discovered the
diffraction of electrons with L.H. Germer, and they received the Nobel Prize in 1937 “for their experimen-
tal discovery of the diffraction of electrons by crystals.” The prize was shared with George Paget Thomson
(1892-1975), son of the discoverer of the electron, Joseph John Thomson, and professor at Aberdeen, London,
and Cambridge, who used a different diffraction method.

22 The term “quantum chemistry” was first used by Arthur Haas in his lectures to the Physicochemical Society of
Vienna in 1929 (A. Haas, “Die Grundlagen der Quantenchemie. Eine Einleitung in vier Vortragen,” Akademis-
che Verlagsgesellschaft, Leipzig, 1929).
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1932 — Carl Anderson™
Discovery of antimatter (the positron)

One of Dirac’s important results was the observation that his relativistic wave equation is sat-
isfied, not only by the electron but also by a mysterious unknown particle, the positive electron
(positron). This antimatter hypothesis was confirmed by Carl Anderson, who found the positron
experimentally, a victorious day for quantum theory.

1948 — Richard Feynman, Julian Schwinger, Shinichiro Tomonaga™"
Quantum electrodynamics

The Dirac equation did not take all the physical effects into account. For example, the strong
electric field of the nucleus polarizes the vacuum so much, that electron—positron pairs emerge
from the vacuum and screen the electron—nucleus interaction. The quantum electrodynamics
developed by Feynman, Schwinger, and Tomonaga accounts for this and similar effects, and
brings theory and experiment to an agreement of unprecedented accuracy.

1964 — John Bell

Bell inequalities

The mathematician John Bell proved that, if particles have certain properties before measure-
ment (so that they were small but classical objects), then the measurement results would have
to satisfy some inequalities which contradict the predictions of quantum mechanics (further
details at the end of this chapter).

1982 — Alain Aspect

Is the world nonlocal?

Experiments with photons showed that the Bell inequalities are not satisfied. This means that
either there is instantaneous communication even between extremely distant particles (“entan-
gled states™), or that the particles do not have some definite properties before the measurement
is performed (more details at the end of this chapter).

23 More details in Chapter 3.
24 All received the Nobel Prize in 1965 “for their fundamental work in quantum electrodynamics, with fundamental
implications for the physics of elementary particles.”
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1997 — Anton Zeilinger

Teleportation of the photon state

A research group at the University of Innsbruck used entangled quantum states (see p. 48) to
perform teleportation of a photon state,”” that is, to prepare at a distance any state of a photon
with simultaneous disappearance of this state from the teleportation site (details at the end of

this chapter).

1.2 Postulates of quantum mechanics

All science is based on a number of postulates. Quantum mechanics has also elaborated a
system of postulates that have been formulated to be as simple as possible and yet to remain
in accordance with experimental results. Postulates are not supposed to be proved; their jus-
tification is efficiency. Quantum mechanics, the foundations of which date from 1925-1926,
still represents the basic theory of phenomena within atoms and molecules. This is the do-
main of chemistry, biochemistry, and atomic and nuclear physics. Further progress (quantum
electrodynamics, quantum field theory, elementary particle theory) permitted deeper insights
into the structure of the atomic nucleus, but did not produce any fundamental revision of
our understanding of atoms and molecules. Matter as described at a nonrelativistic’® quan-
tum mechanics level represents a system of electrons and nuclei, treated as point-like particles
with a definite mass and electric charge, moving in three-dimensional space and interact-
ing by electrostatic forces.”’ This model of matter is at the core of quantum chemistry; see
Fig. 1.2

The assumptions on which quantum mechanics is based may be given in the form of the follow-
ing Postulates I-VI. For simplicity, we will restrict ourselves to a single particle moving along
a single coordinate axis x (the mathematical foundations of quantum mechanics are given in
Appendix B on p. 595).

25 M. Eibl, H. Weinfurter, A. Zeilinger, Nature, 390(1997)575.

26 Assuming that the speed of light is infinite.

27 Yes, we take only electrostatics, that is, Coulomb interactions, into account. It is true that a moving charged
particle creates a magnetic field, which influences its own and other particles’ motion. This however (the Lorentz
force) is taken into account in the relativistic approach to quantum mechanics.
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Fig. 1.2. An atom (molecule) in nonrelativistic quantum mechanics. (a) A Cartesian (“laboratory”)
coordinate system is introduced into three-dimensional space. (b) We assume that all the particles
(electrons and nuclei) are point-like (the figure shows their instantaneous positions) and interact only

by electrostatic (Coulomb) forces.

Postulate | (on the quantum mechanical state)

The state of the system is described by the wave function ¥ = W(x, t), which depends
on the coordinate of particle x at time . Wave functions in general are complex functions
of real variables. The symbol W*(x, t) denotes the complex conjugate of W(x, ¢). The

quantity

p(x, 1) =W*(x, )W (x,1)dx

(a, b) on the x axis is given by Fig. 1.3b.

(1.1)

gives the probability that at time t the x coordinate of the particle lies in the small
interval [x, x + dx] (Fig. 1.3a). The probability of the particle being in the interval

The probabilistic interpretation of the wave function was proposed by Max Born.”® By anal-

ogy with the formula mass = density x volume, the quantity W*(x, r)W(x,t) is called the

probability density that a particle at time ¢ has position x.

28 M. Born, Zeitschrift fiir Physik, 37(1926)863.
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(CUNT7RNE (0) g2 |

—-\ - o
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Xy x o a b * -
dr=0.001 .
probability = |#(xg,te) |*dx probability =/ ¥ o) |2dx

Fig. 1.3. A particle moves along the x axis and is in the state described by the wave function W (x, t).
(a) The figure shows how the probability of finding a particle in an infinitesimally small section of the
length dx at x¢ (at time t = 1) is calculated. It is not important where exactly in section [x, x 4+ dx]
the number xq really is, because of the infinitesimal length of the section. In the figure the number
is positioned in the middle of the section. (b) The figure shows how to calculate the probability of
finding the particle at t =ty in a section (a, b).

In order to treat the quantity p(x,t) as a probability, at any instant ¢ the wave function must
satisfy the normalization condition

/OO W, W (x, ) dx = 1. (1.2)

—0

All this may be generalized for more complex situations. For example, in three-dimensional
space, the wave function of a single particle depends on position r = (x, y, z) and time, W(r, t),
and the normalization condition takes the form

/OO dx/oo dy /OO dz¥*(x,y,z, )W (x,y,z,1) z/lIJ*(r, NHY(r,1)dV =
flll*(r, DY@, t)dr=1. (1.3)

For simplicity, the last two integrals are given without the integration limits, but they are
there implicitly, and this convention will be used throughout the book unless stated other-

wise.

For n particles (Fig. 1.4), shown by vectors ry, 12, ...r, in three-dimensional space, the interpre-
tation of the wave function is as follows. The probability P that, at a given time ¢ = 1y, particle
1 is in the domain Vi, particle 2 is in the domain V>, etc., is computed as
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Fig. 1.4. Interpretation of a many-particle wave function, an example for two particles. The number
[ (ry, 13, to)|2dV1dV2 represents the probability that at ¢ = #p particle 1 is in its box of volume d V)
shown by vector ry and particle 2 in its box of volume dV; indicated by vector r5.

P=/ dV1/ de.../ dV,V*(r1,ra, .0, t0)V(r], 12, ..., 10)
Vl V2 n

E/ drlf drz.../ dr,V*(r1,r2, .0, t0) W (r1, 2, ...I,, to).
Vi Va n

Often in this book we will perform what is called normalization of a function, which is required
if a probability is to be calculated. Suppose we have a nonnormalized function™ v, i.e.,

foo Y(x, )" Y(x,t)dx =A, (1.4)

with 0 < A # 1. To compute the probability ¥ must be normalized, i.e., multiplied by a normal-
ization constant N, such that the new function W = N1 satisfies the normalization condition,

1= [% W*(x,)W(x,1)dx = N*N [%_¢*(x, )Y (x,1)dx = AIN|*. Hence, |N| = ﬁ
How is N computed? One person may choose it equal to N = ﬁ, another as N = —ﬁ, a
third as N = ¢!98% __and so on. There are, therefore, an infinite number of legitimate choices

\/X ’
of the phase ¢ of the wave function W(x,t) = ei‘ﬁﬁx//. Yet, when W*(x, )W (x, 1) is cal-
culated, everyone will obtain the same result, %w*x//, because the phase disappears. In most
applications, this is what will happen and therefore the computed physical properties will not
depend on the choice of phase. There are cases, however, where the phase will be of importance.

29 Eq. (1.3) is not satisfied.
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Postulate 11 (on operator representation of mechanical quantities)

The mechanical quantities that describe the particle (energy, the components of vectors
of position, momentum, angular momentum, etc.) are represented by linear operators
acting in the Hilbert space (see Appendix B). There are two important examples of
the operators: the operator of the particle’s position x = x (i.e., multiplication by x, or
X = x-; Fig. 1.5) and the operator of the (x component) momentum p, = —ih%, where
i stands for the imaginary unit.

Mechanical Classical Operator acting
quantity formula on f
. ~ p def
coordinate X ifExf
~ def . i
momentum Dx P fE —1h%
component
o 2 2 A~ def 2
— mv> _ p° < _n
kinetic energy T=% =5 Tf=—5-Af

Fig. 1.5. Mechanical quantities and the corresponding operators.

Note that the mathematical form of the operators is always defined with respect to a Cartesian
coordinate system.’" From the given operators (Fig. 1.5) the operators of some other quantities
may be constructed. The potential energy operator V = V(x), where V (x) (the multiplication
operator by the function 1% f = V(x)f) represents a function of x called a potential. The ki-

:&2_ 2 22

T = T am A and in three

netic energy operator of a single particle (in one dimension) T

dimensions

~D ~2 ~2 A2 2

A + + h

(L ¢ M Ty N (1.5)
2m 2m 2m

where the (ubiquitous in this book) Laplacian operator A is defined as

02 92 92
ATtz (10

and m denotes the particle’s mass. The total energy operator, or Hamiltonian, is the most fre-
quently used:

30 Although they may then be transformed to other coordinates systems.
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H=T+V. (1.7

An important feature of operators is that they may not commute, i.e., for two particular operators
A and B it may happen that AB— BA # 0. This property has important physical consequences
(see below, Postulate IV and the Heisenberg uncertainty principle). Because of the possible
noncommutation of the operators, transformation of the classical formula (in which the com-
mutation or noncommutation did not matter) may be nonunique. In such a case, from all the
possibilities one has to choose an operator which is Hermitian. The operator A is Hermitian if
for any functions i and ¢ from its domain one has

f Y (x)Ag(x) dx = / [AY ()" (x)dx . (1.8)

Using what is known as Dirac notation, Fig. 1.6, the above equality may be written in a
concise form:

(WIAg) = (Ay1g) . (1.9)
/ v*opdr = (Y|o) Scalar product of two functions
/ z//*Ad) dr = <1// |A¢> or <1//|A|¢> A matrix element of the operator A
Q = |y ) (Y| Projection operator on the direction of the vector ¥
1= V) (Wl Spectral resolution of identity.
Its sense is best seen when acting on function x:
X =2 i) (Wil x) = 2ok W) (Yl x ) =
Zk |k ) ck

Fig. 1.6. Dirac notation.

In Dirac notation’! (Fig. 1.6) the key role is played by vectors bra: (| and ket: | ), denoting
respectively ¥* = (y| and ¢ = |¢). Writing bra and ket side by side as (| |¢) denotes (V|¢),

31 s deeper meaning is discussed in many textbooks of quantum mechanics, e.g., A. Messiah, “Quantum Mechan-
ics,” vol. I, Amsterdam (1961), p. 245. Here we treat it as a convenient tool.
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or the scalar product of ¢ and ¢ in a unitary space (Appendix B), while writing it as [¥) (¢|
means the operator Q = |{) (|, because of its action on function £ = |£) shown as Q& =

V) (Dl & = [V) (9]§) = cr, where ¢ = (¢[§):

* (¥|¢) denotes a scalar product of two functions (i.e., vectors of the Hilbert space) i and
¢, also known as the overlap integral of ¥ and ¢,

. (1// |A¢>, or <zﬁ |A |¢>, stands for the scalar product of two functions: ¢ and Aq&, or the matrix

element of operator A,

. Q = |) (¥ | means the projection operator on the vector ¢ (in the Hilbert space),

» the last formula (with {1} representing the complete set of functions) represents what is
known as “spectral resolution of identity,” best demonstrated when acting on an arbitrary

function x:

X = 1) Walx) =Y _ 1¥n) .
k k

We have obtained the decomposition of the function (i.e., a vector of the Hilbert space) x
on its components |1%) cx along the basis vectors |{) of the Hilbert space. The coefficient
cr = (Yrlx) is the corresponding scalar product, the basis vectors iy are normalized. This
formula says something trivial: any vector can be retrieved when adding all its components
together.

Postulate 11l (on time evolution of the state)

TIME-DEPENDENT SCHRODINGER EQUATION
The time evolution of the wave function W is given by the equation

oW (x,1)

— HVU(x,1), 1.10
a7 (x,1) (1.10)

ih

where H is the system Hamiltonian (see Eq. (1.7)); H may be time-dependent (energy changes
in time, interacting system) or time-independent (energy conserved, isolated system). Eq. (1.10)
is called the time-dependent Schrodinger equation (Fig. 1.7).

When H is time-independent, the general solution to (1.10) can be written as

\Il(x,t):chllln(x,t), (1.11)

n=1

where W, (x, t) represent special solutions to (1.10) that have the form

W, (6, 1) = P (x) e T (1.12)
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W (x, 1g)
)
HWY (x, 1)
2

lh (%)t:m

)
W(x, to+dt) = W(x, 1) — L HWdr

Fig. 1.7. Time evolution of a wave function. Knowing W (x, t) at a certain t = fop makes it possible to

compute HW(x, 1y), and from this (using Eq. (1.10)) one can calculate the time derivative % =

—%. Knowledge of the wave function at time t =g, and of its time derivative, is sufficient to

calculate the function a little later (t = #o + dt).

and ¢, stand for some constants. Substituting the special solution to (1.10) leads to”? what is
known as the time-independent Schridinger equation:

SCHRODINGER EQUATION FOR STATIONARY STATES

HYn=Eny,, n=12 ..., 0. (1.13)

. —iLn, o, —ifny E E
32 p@¥nled) e R ipy, () 28 = i (o) (—i Em)e TR = Epyne™ . However,
N N E En,
HWY, (x,t) = Hyy(x)e Tl =t Tn’Hl/fn (x), because the Hamiltonian does not depend on ¢. Hence, after

. E
dividing both sides of the equation by ¢™* 71 one obtains the time-independent Schrédinger equation. There-
fore, the stationary state ¥, (x) exp(—i %t) is time-dependent, but this time dependence comes only from the

factor exp(—i %I). When, in the future, we would calculate the probability density W,*W,, we would not need

the factor exp(—i %t), but its modulus only, whereas ‘exp(—i %t)’ =1 for any value of ¢. The time depen-

dence through exp(—i E—h”t) means that, as the time goes on, function ¥, is multiplied by an oscillating complex
number, which however never attains zero. The number oscillates on a circle of radius 1 within the complex
plane. For example, limiting ourselves to the angles m - 90°,m =0, 1,2, 3, ..., in the time evolution of a sta-
tionary state, function v, (x) is multiplied by 1, i, —1, —i, ..., respectively. It is a bit frustrating though that the
frequency of this rotation w = E—ﬁ” depends on number E,;, because this number depends on yourself (you may
add an arbitrary constant to the potential energy and the world will be functioning exactly as before). This is true,
but whatever you compare with experiment you calculate W W, which annihilates the arbitrary constant and
we get as time dependence exp(—iwt) with w = @ Already at this point one can see that such oscillations
might be damped by something, preferably of frequency just equal to w. We will show this in detail in Chapter 2,
and indeed it will turn out that such a damping by oscillating external electric field represents the condition to
change the state W), to W, (and vice versa).
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The equation represents an example of an eigenvalue equation of the operator; the functions v,
are called the eigenfunctions, and E,, are the eigenvalues of the operator H (we have assumed
here that their number is equal to co). It can be shown that E,, are real (see Appendix B, p. 595).
The eigenvalues are the permitted energies of the system, and the corresponding eigenfunctions
W, are defined in Eqs. (1.12) and (1.13). These states have a special character, because the
probability given by (1.1) does not change in time ™’ (Fig. 1.8):

pn(x, 1) =Wy (x, )Wy (x, 1) dx = ¥, (X) Y (x) dx = pu(x). (1.14)

Therefore, in determining these states, known as stationary states, one can apply the time-
independent formalism based on the Schrodinger equation (1.13).

Postulate 1V (on interpretation of experimental measurements)

This postulate pertains to ideal measurements, i.e., such that no error is introduced through im-
perfections in the measurement apparatus. We assume the measurement of the physical quantity
A, represented by its time-independent operator A and, for the sake of simplicity, that the sys-
tem is composed of a single particle (with one variable only).

The result of a single measurement of a mechanical quantity A can be only an
eigenvalue a; of the operator A.

The eigenvalue equation for operator A reads
App =ardp, k=1,2,.... M. (1.15)

134

The eigenfunctions ¢y are orthogonal”™ (cf. Appendix on p. 595). When the eigenvalues do

not form a continuum, they are quantized, and then the corresponding eigenfunctions ¢x,

33 Thereisa problem though. Experiments show that this is true only for the ground state, not for the excited states,

which turn out to be quasistationary only. These experiments prove that in the excited states the system emits
photons until it reaches the ground state. This excited states instability (which goes beyond the nonrelativistic
approximation our book is focused on) comes from coupling with the electromagnetic field of the vacuum, the
phenomenon ignored in presenting the postulates of quantum mechanics. The coupling is a real thing, because
there are convincing experiments showing that the vacuum is not just nothing. It is true that the vacuum’s mean
electric field is zero, but the electromagnetic field fluctuates even in the absence of photons (the mean square of
the electric field does not equal zero).

If two eigenfunctions correspond to the same eigenvalue, they are not necessarily orthogonal, but they can still
be orthogonalized (if they are linearly independent; see Appendix K, p. 697). Such orthogonal functions still
remain the eigenfunctions of A. Therefore, one can always construct the orthonormal set of the eigenfunctions
of a Hermitian operator.

34
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Fig. 1.8. Evolution of several starting wave functions ¥ (rows a-d) for a system shown as | ¥ (x, 1)|? for
three snapshots r = 0, 1,2 (columns). In all cases the area under |W(x,1)|? equals 1 (normalization
of W(x,1)). Cases (a) and (b) show |W(x,1)|* as time-independent - these are stationary states,
satisfying the time-independent Schrodinger equation. Contrary to this, in cases (c) and (d) function
W (x, 1)]? changes very much when the time goes on: in a translational motion with shape preserving
in case (c) |W(x,1)|? and irregularly in case (d). These are nonstationary states. The nonstationary
states always represent linear combinations of stationary ones.
k=1,2,..., 00, satisfy the orthonormality relations>:
00
I, when k=I
>k ’ )
xX)p1(x)dx = = (k|l) =6 = 1.16
| o= ol = i = {O’ when k21 (1.16)

35 If ¢y belong to continuum they cannot be normalized, but still can be made mutually orthogonal.
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where we have given several equivalent notations of the scalar product, which will be used
in the present book, and d;; is known as the Kronecker delta.

» Since eigenfunctions {¢y} form the complete set, the wave function of the system may be
expanded as (M is quite often equal to co)

M
V=) i, (1.17)
k=1

where ci are in general complex coefficients. For ¢ and ¢; normalized and all ¢ chosen to
be mutually orthogonal, one gets, after multiplying the equation by>° ¢, and integrating,

ck = (klY) . (1.18)

From the normalization condition for ¥ we have®’

M
> cia=1. (1.19)
k=1

According to the postulate, the probability that the result of the measurement is ay
is equal to ¢} c.

If the wave function that describes the state of the system has the form given by (1.17)
and does not reduce to a single term Y = ¢, then the result of the measurement of the
quantity A cannot be foreseen. We will measure some eigenvalue of the operator A, but
cannot predict which one. After the measurement is completed the wave function of the
system represents the eigenstate that corresponds to the measured eigenvalue (known as the
collapse of the wave function). According to the postulate, the only thing one may say about
the measurements is that the mean value a of the quantity A (from many measurements) is
to be compared with the following theoretical result®® (Fig. 1.9):

36 We have singled out some particular m and therefore a sequence of equalities holds, i.e., (¢ |¥)
YLy ck (bmldk) = YLy cidin = cm form = 1,2, ..M.

T (wly) =1= 0L, 2 fer (@lon) = Loy s = TiL, cfer.

¥ (yidv) = (S aglAXi ad) = SIS calplde) = LI SN caa @)
21}:’:1 Z[Ai1 creagdy = Z/l{w:1 ¢y cxay.- In case of degeneracy (a = a; = ...) the probability is cfcx +cfe; +....
This is how one computes the mean value of anything. Just take all possible distinct results of measurements,
multiply each by its probability, and sum up all resulting numbers.
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(w1dv)

ccray = ———.

{(Wly)

(1.20)

If we have a special case, ¥ = ¢ (all coefficients ¢; = 0, except cx = 1), the measured
quantity is exactly equal to a,. From this it follows that, if the wave function is an eigen-
function of operators of several quantities (this happens when the operators commute;
see Appendix B), then all these quantities when measured produce with certainty the
eigenvalues corresponding to the eigenfunction.

» Eqgs. (1.18) and (1.20) show that the more the eigenfunction ¢y corresponding to ay re-
sembles the wave function ¥ (a large |(¢r|¥)| and therefore also |(¢k|1/f)|2), the more
frequently the eigenvalue a; will be measured.

A
E If = !?1, then measurement gives always E]
If W=U,,| thenmeasurement gives always E,
A
—— E2=2 H?Z=E2 !Fz

If #=3% +%F %, then the mean value is

E =(uAv)= 3)E1+(§PEr=}+3=

7
7

— results of measurements —

— E=1

mean value of measurements =7/4

A
H g’1=E 1 E‘l

Fig. 1.9. The results of measurements of a quantity A are the eigenvalues of the operator A.

Postulate V (spin angular momentum)

Spin of elementary particles. As will be shown in Chapter 3 (about relativistic effects) spin an-
gular momentum will appear in a natural way. However, in nonrelativistic theory the existence

of spin is postulated.”’

39 This has been forced by experimental facts, e.g., energy level splitting in a magnetic field suggested two possible
electron states connected to internal angular momentum.
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An elementary particle has, besides its orbital angular momentum r X p, an internal
angular momentum (analogous to that associated with the rotation of a body about its
own axis) called spin S = (S, Sy, S;). Two quantities are measurable: the square of
the spin length, |S|? = Sf + S% + SZZ, and one of its components, by convention, S;.
These quantities only take some particular values |S|> = s(s + 1)1%, S, = mgh, where
the spin magnetic quantum number my; = —s, —s + 1, ..., s. The spin quantum number
s, characteristic of the type of particle (often called simply its spin), can be written as
s = n/2, where n may be zero or a natural number (“an integer or half-integer” num-
ber).

The particles with a half-integer®’ s (e.g., s = % for electrons, protons, neutrons, neutrinos) are
called fermions, the particles with an integer s (e.g., s = 1 for deuterons, photons*'; s = 0 for

mesons 77 and mesons K) are called bosons.

Enrico Fermi (1901-1954), Italian physicist,
professor at universities in Florence, Rome,
New York, and in 1941-1946 at the Univer-
sity of Chicago. Fermi introduced the notion
of statistics for the particles with a half-integer
spin number (called fermions) during the Flo-
rence period. Dirac made the same discovery
independently, hence this property is called
the Fermi—Dirac statistics. Young Fermi was
notorious for being able to derive a formula
from any domain of physics faster than some-

one sent to find it in textbooks. His main
topic was nuclear physics. He played an im-
portant role in the atomic bomb construction at

University of Chicago. Fermi was awarded the
Nobel Prize in 1938 “for his demonstration of
the existence of new radioactive elements and

Los Alamos, and in 1942 he built the world’s
first nuclear reactor on a tennis court at the

for results obtained with them, especially with
regard to artificial radioactive elements.”

40" Note the length of the spin vector for an elementary particle is given by Nature once and for all. Thus, if there

is any relation between the spin and the rotation of the particle about its own axis, it has to be a special relation.
One cannot change the angular momentum of such a rotation.
41 The photon represents a particle of zero mass. As a consequence one can show that, instead of three possible m

one has only two: ms = 1, —1. We call these two possibilities “polarizations” (“parallel” and “perpendicular”).
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(a) spatial coordinate x acquires any value (b) spin coordinate acquires one of two values
XER:
- ' @—»
* o=-1/2 o=1/
(c) A 4
a(o) B(o)
1f--mmmmmmmemees * @ - 1

. f - : >~

! o : Lo

o=-1/2 o=1/2 o=-1p o=1/2

Fig. 1.10. Main differences between the spatial coordinate (x) and spin coordinate (o) of an

electron. (a) The spatial coordinate is continuous: it may take any value being a real num-

ber. (b) The spin coordinate o has a granular character (discrete values): for s = % it can

take only one of two values. One of the values is represented by o = —%, the other by o =

%. In (c), two widely used basis functions, «(0) and B (o), are shown in the spin space,

respectively.

The magnetic*” spin quantum number m, quantizes the z component of the spin angular mo-
mentum.

Thus,

a particle with spin quantum number s has an additional (spin) degree of freedom, or
an additional coordinate — spin coordinate o. The spin coordinate differs widely from
a spatial coordinate, because it takes only 2s + 1 discrete values (Figs. 1.10 and 1.11)
associated to —s, —s +1,...,0, ..., +s.

Most often one will have to deal with electrons. For electrons, the spin coordinate o takes
two values, often called “up” and “down.” We will (arbitrarily) choose o = —% and o0 =

+1.

42 The name is related to energy level splitting in a magnetic field, from which the number is deduced. A nonzero
s value is associated to the magnetic dipole, which in magnetic field acquires 2s + 1 energetically nonequivalent
positions.
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electron
spin

Fig. 1.11. Diagram of the spin angular momentum vector for a particle with spin quantum number

s = % The only measurable quantities are the spin length +/s(s + 1) = \/gh and the projection of
the spin on the quantization axis (chosen as coincident with the perpendicular axis z), which takes
only the values —s, —s + 1, ..., +s in units A, i.e., S; = —%h, %h, which means m; = —% ormg = —I—%.

The my may be chosen as the spin coordinate o of the electron, therefore o € [—%, +%] Since the

x and y components of the spin remain indefinite, one may visualize the same by locating the spin
vector (of constant length /s (s 4 1)i) anywhere on a cone surface that ensures a given z component.
In the case of s = % one has 2s + 1 =2 such cones, which are shown in the figure. They form an angle
of 70.52° =70°31’, so the opening cone angle of each of them is equal to 54.74° = 54°44’.

According to the postulate (p. 29),
Satyendra Nath Bose (1894—

1974), Indian physicist, pro-
fessor at Dakka and Cal-
cutta, first recognized that
particles with integer spin
number have different sta-
tistical properties. Einstein
contributed to a more de-
tailed description of this
statistics.

the square of the spin length is
always the same and equal to
s(s+ DRz = %hz. The maximum
projection of a vector on a cho-
sen axis is equal to %h, while
the length of the vector is larger,
equal to /s(s + 1)h = gh. We

conclude that the vector of the

spin angular momentum makes

an angle ¢ with the quantization axis, with cosf = % / @ = % From this one obtains*’

6 = arccos % ~ 54°44’. Fig. 1.11 shows that the spin angular momentum has indefinite x
and y components, while always preserving its length and projection on the z axis.

43 In the general case, the spin of a particle may take the following angles with the quantization axis: arccos ——2
g ) p p y g ang q : 61D

formg=—s,—s+1, ..., +s.
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Spin basis functions for s = % One may define (see Fig. 1.10c) the complete set of orthonormal
basis functions of the spin space of an electron:

1

_1 —1
(o) = 1 for 0_21 and B(o) = 0 for o 21
0 for o=—3 1 for o=—5

or, in a slightly different notation, as orthogonal unit vectors**:

|a>=((1)), Iﬂ)=((1)>.

Orthogonality follows from («|8) =), a(0)*B(0) =01 + 1-0 = 0. Similarly, normalization
* *
means that (¢|o) =) a(0)*a(0) =« (—%) o (—%) +a (%) o (%) =00+11=1,etc.

We shall now construct operators of the spin angular momentum.

The following definition of spin operators is consistent with the postulate about spin.

Sy = %fwx,

Sy = lhoy,
S, = %ﬁaz,

where the Pauli matrices of rank 2 are defined as
o — 0 1 o — 0 —i o — 1 0
Y\tro) T \i o) TF7\0 -1 )
Indeed, after applying S’Z to the spin basis functions one obtains
1 1 1 0 1 1 1 1
Z<0>_§h<o —1) (o)_§h<o>_§h|°‘>’
. (0 1./1 0 0 1 0 1
sap=5.( 1 )=31(o %) (V)=3n( 5 ) =3

Therefore, functions o and g represent the eigenfunctions of the S‘Z operator with correspond-
ing eigenvalues %h and —%h. How to construct the operator S*? From Pythagoras’ theorem,
after applying Pauli matrices one obtains

ZSA)
g
1
>

44 In the same spirit as wave functions represent vectors: vector components are values of the function for various
values of the variable.
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Wolfgang Pauli (1900-1958), German physi-
cist, professor in Hamburg, at the Technical
University of Zurich, and at the Institute for
Advanced Studies in Princeton (USA), son of
a physical chemistry professor at Vienna and
a classmate of Werner Heisenberg. At the age
of 20 he wrote a famous 200-page article on
relativity theory for Mathematical Encyclope-
dia, afterwards edited as a book. A year later
Pauli defended his doctoral dissertation under
the supervision of Sommerfeld in Munich. The  Nobel Prize in 1945 “for the discovery of the
renowned Pauli exclusion principle was pro-  Exclusion Principle, also called the Pauli Prin-
posed in 1924. Wolfgang Pauli received the ciple.”

o2 a1 I AY R
S|a)=S(0 =(82+82+8)( , )=
0 1 01 n 0 —i 0 —i n
1ol Lio)Uio i o )JUi o
1
0

4 1 0 1 0

0 —1 0 —1
1h2 I+1+1 0+0+0 1 _ghz 1 0
4 0+0+0 1+1+1 0) 4 0 1

(1))

The function |B8) gives an identical result. These are therefore the pure states. One should,
however, remember that a particle can be prepared also in a mixed spin state, which is a common
procedure in the modern nuclear magnetic resonance technique.

Therefore, both basis functions & and 8 represent the eigenfunctions of $2 and correspond to
the same eigenvalue. Thus, the definition of spin operators through Pauli matrices gives results
identical to those postulated for S? and S;, and the two formulations are equivalent. From Pauli
matrices, it follows that the functions « and § are not eigenfunctions of §x and S’y and that the
following relations are satisfied*”:

45 The last three formulae are easy to memorize, since the sequence of the indices is always “rotational,” i.e.,
X, V23X, Y3 2y enne
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[§%,8.1=0,
8., 8y1=ihs,,
[Sy, 8.1 =ihS,,
[S2, S:1=ihS,,
which is in agreement with the general properties of angular momenta*® (see the appendix on
p. 665).

The |) and |B) functions form a complete basis set and represent the eigenfunctions of the 52
and §Z operators. It does not mean however that they are the only spin states possible for the
particle. As usually in quantum mechanics the particle (electron, proton, etc.) may exist in a
mixed spin state

Y =ala)+b|B), (1.21)

with the coefficients a and b satisfying the normalization relation |a|2 + |b|2 = 1. This state
still represents an eigenfunction of 3‘2, because Szw = S’Z(a ) +b18)) = as? loe) + bS2 |B) =
[% <% + 1) hz] (ala)y +b|B)) = [% (% + 1) hz] ¥, but is not an eigenfunction of S’Z : 3}1// =
S.(ala)+b1B)) =aS; ) +bS; |8) = athla) —bLh|B) # const . When performing a mea-
surement of S; for the particle in state ¢ each time we will obtain however only one of two
values: either %h (with the probability la|?) or —%h (with the probability |b|?). Thus, after
repeating many times the measurement we would get the mean value of S;. According to
Eq. (1.20) this result should agree with the number calculated in quantum mechanics, i.e.,

(13:0) = (acc+ bBIS. (ace + b)) = a> L1+ lal (~ 51 = S nclal® = 1P,

Spin of nonelementary particles. The postulate on spin pertains to an elementary particle. What
about a system composed of such particles? Do they have spin? Spin represents angular mo-

46 Also, note that the mean values of Sy and Sy are both equal to zero in the o and S states, e.g., for the « state one

(B ()

This means that in an external vector field (of direction z), when the space is no longer isotropic, only the
projection of the total angular momentum on the field direction is conserved. A way to satisfy this is to recall
the behavior of a top in a gravitational field. The top rotates about its own axis, but the axis precesses about
the field axis. This means that the total electron spin momentum moves on the cone surface making an angle of
54°44’ with the external field axis in the « state and an angle 180° — 54°44’ in the B state. Whatever the motion,

it must satisfy (alS‘xa> = <a|.§ya> =0 and (ﬂl&ﬂ) = (ﬂIS'y,3> = (. No more information is available, but one
may imagine the motion as a precession just like that of the top.
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mentum (a vector) and therefore the angular momentum vectors of the elementary particles
have to be added. A system composed of a number of elementary particles (each with its spin
s;) has as an observable the square

IS = S(S + 1)A?
of the total spin vector
S=s;+s+..8y
and one of the components of S (denoted by S;):
S;=Mgh, forMsg=-S,-S+1,...,8,

where the number S stands, just as for a single particle, for an integer or half-integer nonneg-
ative number. Particular values of S (often called simply the spin) and of the spin magnetic
number Mg depend on the directions of vectors s;. It follows that no excitation of a nonelemen-
tary boson (that causes another summing of the individual spin vectors) can change the particle
to a fermion and vice versa. Systems with an even number of fermions are always bosons, while
those with an odd number of fermions are always fermions.

Nuclei. The ground states of the important nuclei '>C and '°0 correspond to S = 0, while those
of 13C, N, and !°F have § = %

Atoms and molecules. Does an atom as a whole represent a fermion or a boson? This de-
pends on which atom and which molecule one considers. Consider the hydrogen atom, com-
posed of two fermions (proton and electron, both with spin number %). This is sufficient to
know that one deals with a boson. For similar reasons, the sodium atom with 23 nucleons
(each of spin %) in the nucleus and 11 electrons moving around it also represents a bo-
son.

Let us consider two electrons and add together two electron spin vectors, 1 +$>. Then the max-
imum z component of the spin angular momentum will be (in A units) |Mg| = mg; + mg =
% + % = 1. This corresponds to the vectors sj, S, called “parallel” to each other, while the
minimum |Mg| = myg| + mg = % — % = 0 means an “antiparallel” configuration of s; and s;
(Fig. 1.12).

The first situation indicates that for the state with parallel spins S = 1, and for this S the pos-
sible Mg = 1,0, —1. This means there are three states: (S, Ms) = (1,1), (1,0), (1, —1). If no
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(a) two electrons
singlet, M,

two electrons
triplet, M =+1

two electrons
triplet, M.=0

(b)

Fig. 1.12. Spin angular momentum for a system with two electrons (in general, particles with s =
%) The quantization axis is arbitrarily chosen as the vertical axis z. Then, the spin vectors of the
individual electrons (see Fig. 1.11) may be thought to reside somewhere on the upper cone that
corresponds to my = %, or on the lower cone corresponding to m; = —%. For two electrons there are

two spin eigenstates of $2. One has total spin quantum number § = 0 (singlet state); the other is
triply degenerate (triplet state), and the three components of the state have S =1and S; =1,0, -1
in i units. (a) In the singlet state the vectors s; and sp remain on the cones of different orientation,
and have opposite (“antiparallel”) orientations, so that s; + s = 0. Although their exact positions on
the cones are undetermined (and moreover the cones themselves follow from the arbitrary choice of
the quantization axis in space), they are always pointing in opposite directions. (b) The three triplet
components, corresponding to S = 1, differ by the direction of the total spin angular momentum
(of constant length /S (S + 1)h = +/2h). The three directions correspond to three projections Mgh
of spin momentum, i.e., i, =, 0. In each of the three cases the angle between the two spins equals
@ =70.52° = 70°31’ (although in textbooks - including this one - they are said to be “parallel,” in
fact they are not; see the text). In case of Mg = 0 the z axis and the two spins are in the same
plane.

direction in space is privileged, then all the three states correspond to the same energy (triple
degeneracy). This is why such a set of three states is called a triplet state. The second situation
witnesses the existence of a state with S = 0, which obviously corresponds to Mg = 0. This

state is called a singlet state.
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Let us calculate the angle w between the individual electronic spins:

ISI> = (51 +82)% =57 + 53 + 251 - 82 =57 + 55 + 251 - 52C08 W =

: 1+1 .2+2 ! 1+1 ! 1+1h2 =
2 \2 22 2 (2 cosw=

3 3 3
(5 + Ecosw) B = 3 (1 + cosw) h?.

SINGLET AND TRIPLET STATES

For the singlet state ISI>=S(S+1)h2 =0, hence 1 + cosw = 0 and w = 180°. This
means the two electronic spins in the singlet state are antiparallel.

For the triplet state IS|?> = S (S + 1) k2 = 2h2, and hence % (1 4+ cosw) i* = 2K2, ie.,
cosw = %, or w = 70.52°; see Fig. 1.12. Despite forming the angle v = 70.52° the two
spins in the triplet state are often said to be “parallel.”

The two electrons which we have considered may, for example, be part of a hydrogen molecule.
Therefore, when considering electronic states, we may have to deal with singlets or triplets.
However, in the same hydrogen molecule we have two protons, whose spins may also be “paral-
lel” (orthohydrogen) or antiparallel (parahydrogen). In parahydrogen the nuclear spin is S =0,
while in orthohydrogen S = 1. In consequence, there is only one state for parahydrogen (M5 =
0), and three states for orthohydrogen (Ms = 1,0, —1).*’

Postulate VI (on the permutational symmetry)

Unlike classical mechanics, quantum mechanics is radical: it requires that two particles of the
same kind (two electrons, two protons, etc.) should play the same role in the system, and there-
fore in its description enshrined in the wave function.** Quantum mechanics guarantees that
the roles played in the Hamiltonian by two identical particles are identical. Within this philos-
ophy, exchange of the labels of two identical particles (i.e., the exchange of their coordinates
X1, Y1, 21,01 < X2, 2, 22, 02, or in short, 1 <> 2) leads, at most, to a change of the phase ¢ of
the wave function: v (2, 1) — ¢'®y (1, 2), because in such a case | (2, 1)| = | (1, 2)| (this
guarantees equal probabilities of both situations). However, when we exchange the two labels

47 Since all the states have very similar energy (and therefore at high temperatures the Boltzmann factors are
practically the same), there are three times as many molecules of orthohydrogen as of parahydrogen. Both states
(ortho and para) differ slightly in their physicochemical characteristics.

48 Everyday experience tells us the opposite, e.g., a car accident involving a Mercedes does not cause all copies of
that particular model to have identical crash traces.
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once more, we have to return to the initial situation: ¥ (1,2) = e/®y (2, 1) = €/%e%y (1,2) =
(ei‘f’)2 ¥ (1,2). Hence, (ei¢)2 =1, ie., % = +1. Postulate VI says that el = +1 refers to
bosons, while ¢'® = —1 refers to fermions.

The wave function ¥ which describes identical bosons (i.e., spin integer particles)
1,2,3,..., N has to be symmetric with respect to the exchange of coordinates x;,
Yi» Zi» 0i and xj, y;, zj, 0j, i.e, if x; < xj, yi < yj, zi < 2j, 0; <> 0}, then
v(,2,.. 0, jy e Ny =9 (1,2, ..., j, ..., i, ..., N). If particles i and j denote identi-
cal fermions, the wave function must be antisymmetric, i.e., (1,2, ...,i, ..., j, ..., N) =
—(1,2,..,J,c0siy e, N).

Let us see the probability density that two fermions (particles 1 and 2) occupy the same po-
sition in space and, additionally, that they have the same spin coordinate (xi, y1,z1,01) =
(x2,¥2,22,02). We have v(1,1,3,4,...N) = —y¥(1,1,3,4,...,N), hence (1,1,
3,4,...,N) =0 and, of course, |¥(1,1,3,4, ..., N)|2 = 0. We conclude two electrons of the
same spin coordinate (we will sometimes say “of the same spin”) avoid each other. This is
called the exchange or Fermi hole around each electron.*” The reason for the hole is the

49 Electrons represent fermions (s = % o= +%, - %) and therefore there are two forms of repulsion among them:
a Coulomb one because of their electric charge, and the one between same spin electrons only, which follows
from the Pauli exclusion principle. As will be shown in Chapter V2-3, the Coulomb repulsion is much less
important than the effect of the Pauli exclusion principle.

Positions of the nuclei determine which parts of the space are preferred by electrons (just because of the
electron—nucleus Coulomb attraction): the vicinity of the nuclei. However, considering one such part (a par-
ticular nucleus), the probability of finding there electrons of the same spin coordinate is negligible (from the
Pauli exclusion principle together with the continuity condition for the wave function). However, the Pauli ex-
clusion principle does not pertain to the electrons of opposite spin coordinates; therefore two such electrons can
occupy the same small volume even despite the energy increase because of their Coulomb repulsion. Hence,
we have a compromise of two opposite effects: the electronic pair is attracted by a nucleus (proportionally to
the nuclear charge), but the interelectronic distance should not be too small, because of the electron—electron
Coulomb repulsion. A third electron seeking its low energy in the vicinity of this nucleus has no chance: be-
cause its spin coordinate is necessarily the same as that of one of the electrons. The third electron therefore has
to leave this area, even at the expense of a large increase in energy, and find another low (Coulomb) energy
region, maybe together with his colleague of the opposite spin (thus forming another electron pair). This picture
does not mean one is able to discern the electrons — they play the same role in the system; this is guaranteed by
the antisymmetry of the wave function. Therefore, we will not know which electrons form a particular electronic
pair, but only that there are two of them in it and they have the opposite spin coordinates.

Let us turn to molecules. For electrons, which are very weakly bound (valence electrons) a space with Coulomb
attraction of rwo nuclei might be a good choice (we will see this in Chapter 8). This space may also be shared
by two electrons of the opposite spins, since this is still better than to send the partner elsewhere in space.

Thus, already at this stage we foresee a fundamental role of electron pairs (the opposite spin coordinates within
the pair) leading to the electronic shell structure in atoms and molecules and to chemical bonds in molecules.



40 Chapter 1

antisymmetry of the electronic wave function, or in other words, the Pauli exclusion princi-
ple.””

Thus, the probability density of finding two identical fermions in the same position and
with the same spin coordinate is equal to zero. There is no such restriction for two
identical bosons or two identical fermions with different spin coordinates. They can be
at the same point in space.

This conclusion sounds incredible, especially for the atomic or molecular bosons, and is related
to what is known as Bose—FEinstein condensation, which represents however an experimental

fact.”!

Does it mean that we may pack, say, 50000 bosonic atoms in a single point? It seems
like saying that one may place 50000 couples in a single tent without any problem whatsoever.

In principle you can, but you are certainly asking for troubles.

In the Bose—FEinstein condensate the bosons (alkali metal atoms) are in the same place, but in
a peculiar sense. The total wave function for the bosons is, to a first approximation, a product
of identical nodeless wave functions for the particular bosons (this ensures proper symmetry).
Each of the wave functions extends considerably in space (the Bose—Einstein condensate is as
large as a fraction of a millimeter), but all have been centered in the same point in space. An
exact wave function is not product-like and the individual bosons will avoid each other within
the Bose—Einstein condensate at least because they are composed of identical fermions, and the
latter ones have to obey the Pauli exclusion principle.

Among the above postulates, the strongest controversy has always been associated with Postu-
late IV, which says that, except some special cases, one cannot predict the result of a particular
single measurement, but only its probability. More advanced considerations devoted to Postu-
late IV lead to the conclusion that there is no way (neither experimental protocol nor theoretical
reasoning) to predict when and in which direction an excited atom will emit a photon. This
means that quantum mechanics is not a deterministic theory.

50" The Pauli exclusion principle is sometimes formulated in another way: two electrons cannot be in the same state
(including spin). The connection of this strange phrasing (what does electron state mean?) with the above will
become clear in Chapter 8.

Shown to happen by Eric A. Cornell, Carl E. Wieman, and Wolfgang Ketterle (Nobel Prize 2001 “for discovering
a new state of matter”).

51
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The indeterminism appears however only in the physical space, while in the space
of all states (Hilbert space) everything is perfectly deterministic. The wave function
evolves in a deterministic way according to the time-dependent Schrédinger equation
(1.10).

The puzzling way in which indeterminism operates will be shown below.

1.3 The Heisenberg uncertainty principle

Consider two mechanical quantities A and B, for which the corresponding Hermitian operators
(constructed according to Postulate 11), A and l§, give the commutator [A, é] — AB— BA =

iC, where C is a Hermitian operator.’” This is what happens for example for A = x and B =
P« Indeed, for any differentiable function ¢ one has [x, py]¢ = —xih¢’ +ih(x¢p) = ih¢, and

therefore the operator C in this case means simply multiplication by #.

From axioms of quantum mechanics one can prove that a product of errors (in the sense
of standard deviation) of measurements of two mechanical quantities is greater than or

equal to % <[A, B]>, where ([A, é]> is the mean value of the commutator [A, B].

This is known as the Heisenberg uncertainty principle.

Werner Heisenberg did not provide any formal proof; instead he carried out a Gedankenexper-
iment (an ideal thought experiment) with an electron interacting with an electromagnetic wave

(“Heisenberg’s microscope”).

The formal proof goes as follows.

52 This is guaranteed. Indeed, C=—i [A, B| and then the Hermitian character of C is shown by the follow-
ing chain of transformations: <f|ég> = —i <f| [A, é] g> = —i <f|(141§ - éA)g) =—i <(1§A - Aé)ﬂg) =
(~iCAB - BA)F1g)=(C11g)
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Werner Karl Heisenberg (1901-1976) was
born in Wiirzburg (Germany), attended high
school in Munich, and then (with his friend
Wolfgang Pauli) studied physics at Munich
University under Sommerfeld’s supervision.
In 1923 he defended his doctoral thesis on
turbulence in liquids. Reportedly, during the
doctoral examination he had problems writ-
ing down the chemical reaction in lead bat-
teries. He joined the laboratory of Max Born
at Gottingen (following his friend Wolfgang)
and in 1924 the Institute of Theoretical Physics
in Copenhagen, working under the supervi-
sion of Niels Bohr. A lecture delivered by
Niels Bohr decided the future direction of his
work. Heisenberg later wrote: “I was taught
optimism by Sommerfeld, mathematics in Got-
tingen, physics by Bohr” In 1925 (only a
year after being convinced by Bohr) Heisen-
berg developed a formalism, which became the
first successful quantum theory. Then, in 1926
Heisenberg, Born, and Jordan elaborated the
formalism, which resulted in a coherent theory
(“matrix mechanics”). In 1927 Heisenberg ob-
tained a chair at Leipzig University, which he
held until 1941 (when he became director of
the Kaiser Wilhelm Physics Institute in Berlin).
Heisenberg received the Nobel Prize in 1932
“for the creation of quantum mechanics, the
application of which has, inter alia, led to the
discovery of the allotropic forms of hydrogen.”
In 1937 Werner Heisenberg was at the height
of his powers. He was nominated professor and
got married. However, just after returning from
his honeymoon, the rector of the university
called him, saying that there was a problem.
In the SS weekly, an article by Professor Jo-
hannes Stark (a Nobel Prize winner and faithful
Nazi) was about to appear claiming that Profes-
sor Heisenberg is not such a good patriot as he

pretends, because he socialized in the past with
Jewish physicists. Soon Professor Heisenberg
was invited to the SS headquarters at Prinz Al-
bert Strasse in Berlin. The interrogation took
place in the basement. On the raw concrete
wall the scoffing slogan “Breathe deeply and
quietly” was written. One of the questioners
was a PhD student from Leipzig, who had once
been examined by Heisenberg. The terrified
Heisenberg told his mother about the problem.
She recalled that in her youth she had made the
acquaintance of Heinrich Himmler’s mother.
Frau Heisenberg paid a visit to Frau Himmler
and asked her to pass a letter from her son to
Himmler. At the beginning Himmler’s mother
tried to separate her maternal feelings for her
beloved son from politics. She was finally con-
vinced after Frau Heisenberg said “we mothers
should care about our boys.” After a certain
time, Heisenberg received a letter from Himm-
ler saying that his letter “coming through un-
usual channels” has been examined especially
carefully. He promised to stop the attack. In
the post scriptum there was a precisely tailored
phrase: “I think it best for your future, if for the
benefit of your students, you would carefully
separate scientific achievements from the per-
sonal and political beliefs of those who carried
them out. Your faithfully, Heinrich Himmler”
(after D. Bodanis, “E = mc?” Fakty, Warsaw,
2001, p. 130) ©The Nobel Foundation.
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Recall the definition of the variance, or the square of the standard deviation (AA)2, of mea-
surements of the quantity A:

(AA)? = (A%) — (A)2, (1.22)

where (X) means the mean value of many measurements of the quantity X. The standard
deviation A A represents the width of the distribution of A, i.e., the error made. Eq. (1.22) is
equivalent to”"

(AA)? = ((A — (A))?). (1.23)

Consider the product of the standard deviations for the operators A and B, taking into account
that (i1 ) denotes (Postulate IV) the integral (\I’ |u|\IJ) accordlng to (1.20). One obtains (denoting
A=A —(A) and B= B — (B); of course, [A, B] = [A, B))

(AA)? . (AB)? = (W| A2W) (W |B20) = (AW |AV) (BY|BY),

where the Hermitian character of the operators A and B is used. Now, let us use the Schwarz
inequality (Appendix B) (fil f1)(/f2].f2) > [{f1l f2)|*:

(AA)? - (AB)? = (AV| AV (BY|BY) > |(AW|BY) 2.
Next,
(AV|BY) = (V| ABY) = (V[{[A, B] + BAYW) =i (W|C V) + (V|BAV)
=i (U|CW) + (BY|AV) =i (W|CWV) + (AW |BY)*.
Hence,

((W|CW) = 2i Im{(AV|BY)}.

w|cw ‘(wéw)‘
This means that Im{(.AII!|B‘~I!)} , which gives |(.A\IJ|BII!)| >— - Hence,
. U|CWw)|?
(AA)? - (AB)? = [(AV|BY))? > % (1.24)

or, taking into account that |(¥|CW)| = [(¥|[A, B]W)|, we have™*

AA-AB> %|<xp|[A,é]w)|. (1.25)

33 Because ((A — (A))?) = (A% — 2A(A) + (A)2) = (A?) — 2(A)? + (A)% = (A%) — (A)%.
54 This particular result was used later by Mandelshtam and Tamm to derive the energy-time uncertainty — an
analogy to the Heisenberg uncertainty principle; see p. 100.
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There are two important special cases.

(a) C = 0, i.e., the operators A and B commute. We have AA - AB > 0, i.e., the er-
rors can be arbitrarily small. Both quantities therefore can be measured simultaneously
without error.

(b) C = A, as in the case of £ and ;. Then, (AA) - (AB) > %

In particular, for A=3%and B = Dy, if quantum mechanics is valid, one cannot determine
the exact position and the exact momentum of a particle. The sense of this statement is the
following: even if it may happen that we get as a result of a measurement the exact position and
the exact momentum of the particle, by repeating many times the measurement (in order to be
sure about the error made) we are unable to get zero standard deviation (error) for position and
energy measurements. When the precision with which x is measured increases, the particle’s
momentum has so wide a distribution that the error of determining p, is huge.” Fig. 1.13 shows
why the Heisenberg principle does not represent any mystery, but is a natural consequence of
the wave nature of particles. Also, the principle does not rely on any putative perturbation of
position or momentum of the particle during measurement.

The power of the Heisenberg uncertainty principle is seen when it is used for estimation, just
from scratch, of the size of some systems.

Example 1 (Size of the hydrogen atom). How on earth this can be estimated from virtually no
information? Let us see.

We assume that the electron moves, while the nucleus does not.”® Whatever the electron does
in the hydrogen atom, it has to conform to the uncertainty principle Ax - Ap, > %
the most compact state we may expect the equality Ax - Apy = %i We may estimate Ax as

the radius r of the atom, while Ap, = \/ (p2) = (px)?* = \/ (p?)—0= \/ (p2). Therefore, we

i.e., in

have an estimation r - ( p)%) = %, or . /( p%) = % The total energy may be estimated as the

<p2) 2 <P§+P§+P§> 2 302 2

sum of the kinetic and potential energies: E = 5 — & = +—5"—+ — & = =5 — - Now,
m r m r 8mr r
L : . dE 32 & 2_ 31
let us find the minimum of E(r) as its probable value: = =0= —2g"5 + 5, or e” = 77—

55 There is an apocryphal story about a Polizei patrol stopping Professor Heisenberg for speeding. The very serious
man asks: “Do you know how fast you were going when I stopped you?” Professor Heisenberg answered: “I have
absolutely no idea, Herr Oberleutnant, but I can tell you precisely where you stopped me.”

56 Note that by the momentum conservation law the nucleus moves 1840 times slower than the electron. This
practically means the electron moves in the electric field of the immobilized nucleus.
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Fig. 1.13. lllustration of the Heisenberg uncertainty principle in case of a single particle moving on
the x axis. (a1) [W(x)|? (i.e., the probability density distribution of finding the particle) as function
of coordinate x. The width of this distribution is related to the expected error of determining x. The
curve is narrow, which means the error in determining the particle’s position is expected to be small.
The wave function W (x) can be expanded in the infinite series W(x) = Zp cpexp(ipx), where p de-
notes the momentum. Note that each individual function exp(ipx) is an eigenfunction of momentum,
and therefore, if W(x) =exp(ipx), a measurement of momentum would give exactly p. If, however,
W (x) =}, cpexp(ipx), then such a measurement yields a given p with the probability lepl?. (a2)
lcp|? as function of p. As one can see a broad range of p (large uncertainty of momentum) ensures
a sharp |W(x)|? distribution (small uncertainty of position in (a1)). Simply the waves exp(ipx) to
obtain a sharp peak of W (x) should exhibit a perfect constructive interference in a small region and a
perfect destructive interference elsewhere. This requires a lot of different p’s, i.e., a broad momentum
distribution. This means that a small error in determining the particle’s position is necessarily asso-
ciated with a large error in determining the particle’s momentum (Heisenberg uncertainty principle).
(b1, b2) The same is shown, but this time a narrow p distribution gives a broad x distribution. The
Heisenberg uncertainty principle has nothing mysterious in it and does not represent a unique feature
of quantum mechanics. If one wanted to construct from the ocean waves (of various directions and
wave lengths) a tall water pole in the middle of the still ocean, one would be forced to use many wave
lengths to get the constructive interference in one spot and destructive interference in all the others.

Hence, we have an estimation, r = %m% =0.75 - ag, where ag = 0.529 A (as will be shown in
Chapter 4, Eq. (4.41), p. 232) is known as the “Bohr first orbit radius of the hydrogen atom.”
Thus, just from the Heisenberg uncertainty principle we got a value, which has the correct order

of magnitude!

We have an important result.
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The Heisenberg uncertainty principle prevents atoms from collapsing (the electron
falling down to the nucleus, x = 0, Ax = 0, its energy would be equal to —o0), which
would mean a catastrophe in the Universe (emission of an infinite amount of energy).
The principle also gives a correct order of magnitude for the density of matter.

Example 2 (Size of nucleus). How large is an atomic nucleus? Well, again we may estimate
its size from the Heisenberg uncertainty principle knowing only one thing: that the binding
energy per nucleon is of the order of 8 MeV. We are now in the realm of nuclear forces acting
among nucleons. It seems therefore our task is extremely difficult. We just ignore all these
extremely complex forces, considering instead a single nucleon moving in a mean potential,
bound with the energy E = 8 MeV, and therefore its kinetic energy has to be of the same order
of magnitude. We focus on this kinetic energy®’ of the nucleon assuming simply that E =

2 2
% = lapr) From this we calculate <(Ap)2> = Ap = /2my E and, using the Heisenberg

2my
uncertainty principle, we have the uncertainty of the nucleon’s position as a = %

_ h

T 2/2myE’

Calculating this in atomic units (k. =1, e = 1, m = 1, where m is the electron mass) we get
__h 1 _ ~10-13 :

a= 2/imnE — 32 TS0 103616102 0.0000152 a.u. .1(.) . cm, 100,000 times sm.aller

than the hydrogen atom. Experiments confirm our number: this is indeed the order of magnitude

of the sizes of atomic nuclei!

1.4 The Copenhagen interpretation of the world’®

The picture of the world that emerged from quantum mechanics was “diffuse” with respect
to classical mechanics. In classical mechanics one could measure a particle’s position and mo-
mentum with a desired accuracy,’” whereas the Heisenberg uncertainty principle states that this
is simply impossible.

Bohr presented a philosophical interpretation of the world, which at its foundation had in a
sense a nonreality of the world.

57
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We are interested in the order of its magnitude only.

Schrodinger did not like the Copenhagen interpretation. Once, Bohr and Heisenberg invited him for a Baltic Sea
cruise and tried to indoctrinate him so strongly that Schrodinger became ill and stopped participating in their
discussions.

This is an exaggeration. Classical mechanics also has its own problems with uncertainty. For example, obtaining
the same results for a game of dice would require a perfect reproduction of the initial conditions, which is never
feasible.

59
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According to Bohr, before a measurement on a particle is made nothing can be said
about the value of a given mechanical quantity, unless the wave function represents an
eigenfunction of the operator of this mechanical quantity. Moreover, except this case,
the particle does not have any fixed value of mechanical quantity at all.

A measurement gives a value of the mechanical property (A). Then, according to Bohr, after
the measurement is completed, the state of the system changes (the so-called wave function col-
lapse or decoherence) to the state described by an eigenfunction of the corresponding operator
A, and as the measured value one obtains the eigenvalue corresponding to the wave function.
According to Bohr, there is no way to foresee which eigenvalue one will get as the result of
the measurement. However, one can calculate the probability of getting a particular eigenvalue.
This probability may be computed as the square of the overlap integral (cf. p. 29) of the initial
wave function and the eigenfunction of A,

1.5 How to disprove the Heisenberg principle? The
Einstein—Podolsky—Rosen’s recipe

The Heisenberg uncertainty principle came as a shock. Many scientists felt a strong imperative
to prove that the principle is false. One of them was Albert Einstein, who used to play with
ideas by performing some (as he used to say) ideal thought experiments (in German Gedanken-
experiment) in order to demonstrate internal contradictions in theories. Einstein believed in the
reality of our world. With his colleagues Podolsky and Rosen (“EPR team”) he designed a spe-
cial Gedankenexperiment.*" It represented an attempt to disprove the Heisenberg uncertainty
principle and to show that one can measure the position and momentum of a particle without
any error. To achieve this, the gentlemen invoked the help of a second particle.

The key statement of the whole reasoning, given in the EPR paper, was the following: “If,
without in any way disturbing a system, we can predict with certainty (i.e., with probability
equal to unity) the value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity.” In other words, the quantity to be measured has a
particular, albeit maybe unknown, value. EPR considered a coordinate system fixed in space and
two particles: particle 1 with coordinate x; and momentum p,; and particle 2 with coordinate
X7 and momentum py3, the total system being in a well-defined total momentum, P = p,1+
Px2, and a well-defined relative position, x = x| — x. The meaning of the words “well-defined”
is that, according to quantum mechanics, there is a possibility of the exact measurement of the

60 A. Einstein, B. Podolsky, N. Rosen, Phys. Rev., 47(1935)777.
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two quantities (x and P), because the two operators X and P do commute.®! At this point,
Einstein and his colleagues and the great interpreters of quantum theory agreed.

We now come to the crux of the real controversy.

The particles interact, then separate and fly far away (at any time we are able to measure exactly
both x and P). When they are extremely far from each other (e.g., one close to us, the other
one millions of light years away), we begin to suspect that each of the particles may be treated
as free. Then, we decide to measure p,;. However, after we do it, we know with absolute
certainty the momentum of the second particle py» = P — py1, and this knowledge has been
acquired without any perturbation of particle 2. According to the above cited statement, one
has to admit that py, represents an element of physical reality. So far so good. However, we
might have decided with respect to particle 1 to measure its coordinate xi. If this happened,
then we would know with absolute certainty the position of the second particle, xo = x — x1,
without perturbing particle 2 at all. Therefore, x, as py2, is an element of physical reality.
The Heisenberg uncertainty principle says that it is impossible for x, and p,»> to be exactly
measurable quantities. Conclusion: the Heisenberg uncertainty principle is wrong, and quantum
mechanics is at least incomplete.

A way to defend the Heisenberg principle was to treat the two particles as an indivisible total
system and reject the supposition that the particles are independent, even if they are millions of
light years apart. This is how Niels Bohr desperately defended himself against Einstein (and his
two colleagues). He said that the state of the total system in fact never fell apart into particles 1
and 2, and still is in what is known as an entangled quantum state®” of the system of particles
1 and 2, and

any measurement influences the state of the system as a whole, independently of the
distance of particles A and B.

This reduces to the statement that measurement manipulations on particle 1 influence the results
of measurements on particle 2. This correlation between measurements on particles 1 and 2 has
to take place immediately, regardless of the space that separates them.®® This is a shocking and

61 Indeed, £ P — P% = (&) — £2) (a1 + Px2) — (Px1 + Px2) (F1 — F2) =

[X1, Px1] = [X2, P2l + [£1, Px2] — [X2, Pyl =—ih+ih+0—-0=0.

To honor Einstein, Podolsky, and Rosen the entanglement of states is sometimes called the EPR effect.
Nevertheless, the correlation is not quite clear. One may pose some questions. The statement about the instanta-
neous correlation between particles 1 and 2 in the EPR effect cannot be correct, because the measurements are
separated in the space—time manifold and the simultaneity is problematic (see Chapter 3). What is the laboratory
fixed coordinate system? How is information about particle 2 transferred to where we carry out the measurement
on particle 1? This takes time. After that time particle 1 is elsewhere. Is there anything to say about the separation
time? In which coordinate system is the separation time measured?
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nonintuitive feature of quantum mechanics. This is why it is often said that quantum mechanics
cannot be understood. One can apply it successfully and obtain an excellent agreement with
experiment, but there is something strange in its foundations. This represents a challenge: an
excellent theory, but based on some unclear foundations.

In the following, some precise experiments will be described, in which it is shown that quantum
mechanics is right, however absurd it looks. Before that let us consider a cat.

1.6 The life and death of Schrodinger’s cat

The abovementioned paper by Einstein, Podolsky, and Rosen represented a severe critique of
quantum mechanics in the form it has been presented by its fathers. After the appearance of
the article, Erwin Schrodinger published a series of works®* showing some other problematic
issues in quantum mechanics. In particular, he described a Gedankenexperiment, later known as
the Schrodinger’s cat paradox. According to Schrodinger it shows some absurd consequences
of quantum mechanics.

Here is the paradox. There is a cat closed in an isolated steel box (filled with air). Together with
the cat there is a Geiger counter in the box (protected from the cat). We put in the counter a bit
of a radioactive substance, carefully prepared in such a way that every hour two events happen
with the same probability: either a radioactive nucleus decays or no radioactive nucleus decays.
If a nucleus really decays, it causes ionization and electric discharge in the counter tube, which
in turn results in a hammer hitting a glass capsule with hydrocyanic acid (HCN) gas, which
kills the cat. If one puts the cat in for an hour, then before opening the box, one cannot say the
cat is dead or alive. According to the Copenhagen interpretation, this is reflected by a proper
wave function W (for the box with everything in it), which is a superposition of two states with
equal probability amplitudes: one state corresponds to the cat being alive, the other to the dead
cat. The function ¥ describes therefore a cat in an intermediate state, neither alive nor dead,
just in the middle between life and death, which, according to Schrodinger, would represent a
totally absurd description. Einstein joined Schrodinger enthusiastically in this mockery from
the Copenhagen interpretation, adding in his style “an even better” idea about how to kill the
cat (gun powder instead of cyanide). All in all, in this way an atomic-scale phenomenon (decay
of a nucleus) can result in some drastic events in the macroscopic world. If, after an hour, an
observer opens the box (“measurement” of the state of the content of the box), then according
to the Copenhagen interpretation, this will result in the collapse of the corresponding wave
function and the observer will find the cat either alive or dead. This is the crux of the paradox.

Since the early days of quantum mechanics many scholars were trying to rationalize the para-
dox, always relying on some particular interpretation of quantum mechanics. In one of the

64 E. Schrodinger, Naturwissenschaften, 23(1935)807, 823, 844.
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interpretations, quantum mechanics does not describe a single system, but rather an infinite set
of systems. We have therefore plenty of cats and the same number of boxes, each of them with
the same macabre gear inside. Then, the paradox disappears, because, after the boxes are open,
in 50% of cases the cats will be alive and in 50% they will be dead. In another interpretation it
is criticized that Schrodinger treats the box as a quantum system, while the observer is treated
classically. In this interpretation not only Schrédinger plays the role of the observer, but also the
cat, and even the box itself (since it may contain a camera). What happened may be described
differently by each of the observers, depending on what information they have about the whole
system. For example, in the cat (alive or dead) there is information what has happened even
before the box is open. The human observer does not have this information. Therefore, the col-
lapse of the wave function happened earlier for the cat than for the observer! Only after the box
is open it will turn out for the cat and for the observer that the collapse happened to the same
state.

Hugh Evereth stepped out with another, truly courageous, interpretation. According to Evereth
we do not have our single Universe, as most of us might think naively, but a plethora of uni-
verses coexist, and in each of them some other things happen! When the box is open, the state
of the box is entangled with the state of the observer, but then a collapse of the wave function
happens, and in one of the universes the cat is alive, but in the other one it is dead (bifurcation).
These two universes evolve independently (“parallel universes”), and they do not know about
each other. Similar bifurcations happen massively in other events; hence, according to Evereth,
the number of parallel Universes is astronomic.

The quantity of possible interpretations, large differences among them, and desperate charac-
ter of some of them indicate that the problem of understanding quantum mechanics is still
unsolved...

1.7 Bilocation

Assume that the world (stars, Earth, Moon, me, table, proton, electron, etc.) exists objectively.
One may suspect this from everyday observations. For example, the Moon is seen by many
people, who describe it in a similar way.®> Instead of the Moon, let us begin with something

65 This may indicate that the Moon exists independently of our observations and overcome importunate suspicions
that the Moon ceases to exist when we do not look at it. Besides, there are people who claim to have seen the
Moon from very close and even touched it (admittedly through a glove) and this slightly strengthens our belief in
the Moon’s existence. First of all, one has to be cautious. For example, some chemical substances, hypnosis, or
an ingenious set of mirrors may cause some people to be convinced about the reality of some phenomena, while
others do not see them. Yet, would it help if even everybody saw? We should not verify serious things by voting.
The example of the Moon also intrigued others; cf. D. Mermin, “Is the Moon there, when nobody looks?”, Phys.
Today, 38(1985)38.
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simpler: how is it with electrons, protons, or other elementary particles? This is an important
question because the world as we know it — including the Moon — is mainly composed of
protons.°® Here one encounters a mysterious problem. I will try to describe it by reporting
results of several experiments.

Following Richard Feynman,’’

imagine two slits in a wall. Every second (the time interval
has to be large enough to be sure that we deal with properties of a single particle) we send an
electron towards the slits. There is a screen behind the two slits, and when an electron hits the
screen, there is a flash (fluorescence) at the point of collision. Nothing special happens. Some
electrons will not reach the screen at all, but traces of others form a pattern, which seems quite
chaotic. The experiment looks monotonous and boring. Just a flash here, and another there. One
cannot predict where a particular electron will hit the screen. But suddenly we begin to suspect

that there is some regularity in the traces (Fig. 1.14).

A strange pattern appears on the screen: regions with high concentrations of traces are separated
by regions of low concentration. This resembles the interference of waves, e.g., a stone thrown
into water causes interference behind two slits: an alternation of high and low amplitudes of
water level. Well, but what has an electron in common with a wave on the water surface? The
interference on water was possible, because there were two sources of waves (the Huygens
principle) — two slits.

Common sense tells us that nothing like this could happen with the electron, because, firstly,
the electron could not pass through both slits, and, secondly, unlike the waves, the electron has
hit a tiny spot on the screen (transferring there its energy). Let us repeat the experiment with
a single slit. The electrons go through the slit and make flashes on the screen here and there,
but there is only a single major concentration region (just facing the slit) fading away from the
center (with some minor minima).

This result should make you feel faint. Why? You would like the Moon, a proton, or an electron
to be solid objects, wouldn’t you? All investigations made so far indicate that the electron is a
point-like elementary particle. If, in the experiments we have considered, the electrons were to
be divided into two classes, i.e., those that passed through slit 1 and those that passed through
slit 2, then the electron patterns would be different. The pattern with the two slits had to be the

66 In the darkest communist times a colleague of mine came to my office. Conspiratorially, very excited, and
occasionally looking over his shoulder, he whispered: “The proton decays!!!” He just read in a government
newspaper that the lifetime of a proton turned out to be finite. When asked about the lifetime, he gave an
astronomical number, something like 1030 years or so. I said: “Why do you look so excited then and why all this
conspiracy?” He answered: “The Soviet Union is built of protons, and therefore is bound to decay as well!”

67 After Richard Feynman, “The Character of Physical Law,” MIT Press, 1967.
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(a)

Fig. 1.14. Two-slit electron interference pattern registered by Akira Tonomura. (a) 10 electrons. (b)
100 electrons. (c) 3000 electrons - one begins to suspect something. (d) 20000 electrons - no doubt,
we will have a surprise. (e) 70000 electrons - here it is! Conclusion: there is only one possibility -
each electron went through the two slits (according to J. Gribbin, “Q is for Quantum: An Encyclopedia of
Particle Physics,” Weidenfeld and Nicolson, 1998).

sum of the patterns corresponding to only one open slit (facing slit 1 and slit 2). We do not have
that picture.

The only explanation for this interference of the electron with itself is that with the two
slits open it went through both.

Clearly, the two parts of the electron united somehow and caused the flash at a single point on
the screen. The quantum world is really puzzling. Despite the fact that the wave function is de-
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localized, the measurement gives its single point position (decoherence). How could an electron
pass simultaneously through two slits? We do not understand this, but this is what happens.

Maybe it is possible to pinpoint the electron passing through two slits? Indeed, one may think
of the Compton effect: a photon collides with an electron and changes its direction, and this
can be detected (“a flash on the electron”). When one prepares two such ambushes at the two
open slits, it turns out that the flash is always on a single slit, not on both. This cannot be true!
If it were true, then the pattern would be of a noninterference character (and had to be the sum
of the two one-slit patterns), but we have the interference. No. There is no interference. Now,
the pattern does not show the interference. The interference was when the electrons were not
observed. When we observe them, there is no interference... Somehow we perturb the electron’s
momentum (the Heisenberg principle) and the interference disappears.

We have to accept that the electron passes through two slits. Maybe it only pertains to the
electron, maybe the Moon is something completely different? A weak hope. The same thing
happens to protons. Sodium atoms were also found to interfere.°® A sodium atom, of diameter
of a few A, looks like an ocean liner when compared to a child’s toy boat of a tiny electron
(almost 42 000 times lighter). And this ocean liner passed through two slits separated by thou-
sands of A. At the end of 1999 similar interference was observed for fullerene,®” a giant Cgg
molecule, about one million times heavier than the electron. It is worth noting that after such
adventure the fullerene molecule remained intact: somehow all its atoms, with the details of
their chemical bonds, preserved their nature. There is something intriguing in this.

1.8 The magic of erasing the past

John Archibald Wheeler was not completely satisfied by the description of the hypothetical
two-slit experiment, if it were performed at an astronomically large scale. Indeed, there was
something puzzling in it. Suppose we have the two slits far away from us. A photon goes
through the slit region, then flies towards us for a long time, and finally arrives to our screen. At
large numbers of such photons, we obtain an interference picture on the screen that witnesses
each photon went through two slits. However, when a photon passed the slit region, leaving the
slits behind and heading towards us, we had plenty of time (say, of the order of a billion of
years) to think. In particular, we might have an idea to replace the screen by two telescopes,
each directed on one slit. In a similar situation we never observe half of the photon in one
telescope and half in the other one: there is always a photon seen in one telescope only. The

68 To observe such phenomena the slit distance has to be of the order of the de Broglie wave length, A = A/ p,

where / is the Planck constant and p is the momentum. Cohen-Tannoudji lowered the temperature to such an
extent that the momentum was close to 0, and A could be of the order of thousands of A.
69 M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw, A. Zeilinger, Nature, 401(1999)680.
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telescopes allow us to identify unambiguously which slit the particular photon passed through.
Therefore, we may divide all such photons into two classes (depending on the slit they were
through), and their distribution cannot be interference-like; it has to be bullet-like (it is a sum
of distributions of both classes). And now we have a paradox.

Quantum eraser

Our decision (taken after the photons passed the slits) to replace the screen by the tele-
scopes visibly changed the way the photons have been passing the slits. The problem is
that the photon’s decision must have been anticipating our action by some billion years
or $0.

This strange behavior (for a much shorter time scale) has been confirmed experimentally’’ in
2007. Well, this is a kind of drama. How may such a thing happen, however absurd it looks?
Nobody knows. Let us put that clearly: it seems there is something fundamentally wrong in
our current understanding of the world. Therefore, it is perhaps more safe to limit ourselves to
strict physical measurements rather than telling pure science-fiction-like stories about traveling
particles and their decisions anticipating situations that will happen in some billion years. Note
also that we have “changed the past” only in a very special sense, since we are speaking here
about two separate experiments: one with the telescopes and afterwards the other one with the
screen. This is not like undoing an airplane catastrophe that has already taken place, but rather
like changing something before the catastrophe takes place in order not to have it come.

1.9 A test for common sense: the Bell inequality

John Bell proved a theorem in
1964 that pertains to the results of
measurements carried out on par-

John Stuart Bell (1928-
1990), Irish mathematician
at Centre Européen de
la Recherche Nucleaire
(CERN) in Geneva. In the
1960s Bell attacked an
old controversy of locality
versus nonlocality, hidden
variables, etc., apparently
exhausted after exchange of
ideas between Einstein and
Bohr.

ticles and some of the inequalities
they have to fulfill. The theorem
pertains to the basic logic of the
measurements and is valid inde-
pendently of the kind of particles
and of the nature of their inter-

action. The theorem soon became

70y, Jacques, E. Wu, F. Grosshans, F. Treussart, Ph. Grangier, A. Aspect, J.-F. Roch, Science, 315(2007)966.
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very famous, because it turned out to be a useful tool allowing us to verify some fundamental

features of our knowledge about the world.”!
\detector B

rotatable
launching gun

two bars in flight

detector A

Fig. 1.15. Bell inequalities. A bar launching gun adopts stochastic positions (of equal probability)
when rotating about the axis. Each time the full magazine of bars is loaded. The slits also may be
rotated about the axis. The bars arrive at slits A and B. Some will go through and be detected behind
the slits.

Imagine a launching gun (Fig. 1.15) which ejects a series of pairs of identical rectangular bars
flying along a straight line (no gravitation) in opposite directions (opposite velocities). The axes
of the bars are always parallel to each other and always perpendicular to the straight line. The
launching machine is constructed in such a way that the probabilities of all orientations of the
bars are equal, and that any two launching series are identical. At a certain distance from the
launching machine there are two rectangular slits A and B (the same on both sides). If the bar’s
longer axis coincides with the longer dimension of the slit, then the bar will go through for
sure and will be registered as “1,” i.e., “it has arrived” by the detector. If the bar’s longer axis
coincides with the shorter axis of the slit, then the bar will not go through for sure, and will
be detected as “0”. For other angles between the bar and slit axes the bar will sometimes go
through (when it fits the slit), sometimes not (when it does not fit the slit).”?

71 The description given below follows the line shown by W. Kotos, Proceedings of the IV Castel Gandolfo Sym-

posium of John Paul II, 1986.
Simple reasoning shows that for a bar of length L, two possibilities, “to go through” and “not to go through,”

L
7

72

are equally probable (for a bar of zero width) if the slit width is equal to
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Having prepared the launching gun (our magazine contains 16 pairs of bars) we begin our
experiments. Four experiments will be performed. Each experiment will need the full magazine
of bars. In the first experiment the two slits will be parallel. This means that the fate of both
bars in any pair will be exactly the same: if they go through, they will both do so, and if they
are stopped by the slits, they will both be stopped. Our detectors have registered (we group the
16 pairs in clusters of 4 to make the sequence more transparent):

Experiment I (angle 0)
Detector A: 1001 0111 0010 1001
Detector B: 1001 0111 0010 1001

Now, we repeat Experiment I, but this time slit A will be rotated by a small angle o (Experi-
ment II). At slit B nothing has changed, and therefore we must obtain there exactly the same
sequence of zeros and ones as in Experiment 1. At slit A, however, the results may be different.
Since the rotation angle is small, the difference list will be short. We might get the following
result:

Experiment II (angle o)
Detector A: 1011 0111 0010 0001
Detector B: 1001 0111 0010 1001

There are two differences (highlighted in bold) between the lists for the two detectors.

Now for Experiment III. This time slit A comes back to its initial position, but slit B is rotated by
—a. Because of our perfect gun, we must obtain at detector A the same result as in Experiment 1.
However, at B we find some difference with respect to Experiments I and II:

Experiment III (angle —«)
Detector A: 1001 0111 0010 1001
Detector B: 1001 0011 0110 1001

There are two differences (bold) between the two detectors.

We now carry out Experiment I'V. We rotate slit A by angle « and slit B by angle —c«. Therefore,
at detector A we obtain the same results as in Experiment II, and at detector B the same as in
Experiment III. Therefore, we detect:

Experiment IV (angle 2ar)
Detector A: 1011 0111 0010 0001
Detector B: 1001 0011 0110 1001
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Now there are four differences between detector A and detector B. In Experiment IV the number
of differences could not be larger (Bell inequality). In our case it could be four or fewer. When
would it be fewer? When accidentally the bold figures (i.e., the differences of Experiments II
and III with respect to those of Experiment I) coincide. In this case this would be counted as
a difference in Experiments II and III, while in Experiment IV it would not be counted as a
difference.

Thus, we have demonstrated the following.

Bell inequality:
NQu) <2N(a), (1.26)

where N stands for the number of measurement differences. The Bell inequality was
derived under assumption that whatever happens at slit A does not influence what hap-
pens at slit B (this is how we constructed the counting tables) and that the two flying
bars have, maybe unknown for the observer, only a real (definite) direction in space (the
same for both bars).

It would be interesting to perform a real experiment similar to Bell’s to confirm the Bell in-
equality; see the following section. This opens the way for deciding in a physical experiment
whether

« eclementary particles are classical (though extremely small) objects that have some well-
defined attributes irrespective of whether we observe them (Einstein’s view), or

» elementary particles do not have such attributes and only measurements themselves make
them have measured values (Bohr’s view).

1.10 Photons violate the Bell inequality

French scientists from the Institute of Theoretical and Applied Optics in Orsay published the
results of their experiments with photons.”* The excited calcium atom emitted pairs of photons
(analogs of our bars) which moved in opposite directions and had the same polarization. After
flying about 6 m they both met the polarizers — analogs of slits A and B in the Bell procedure. A
polarizer allows a photon with polarization state |0), or “parallel” (to the polarizer axis), always
to pass through, and always rejects any photon in the polarization state |1), or “perpendicular”
(indeed perpendicular to the above “parallel” setting). When the polarizer is rotated about the
optical axis by an angle, it will allow to pass through a percentage of the photons in state |0) and

73 A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett., 49(1982)1804.
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a percentage of the photons in state |1). When both polarizers are in the “parallel” setting, there
is perfect correlation between the two photons of each pair, i.e., exactly as in Bell’s Experiment
I. In the photon experiment, this correlation was checked for 50 millions photons every second
for about 12 000 seconds.

Bell’s experiments II-IV have been carried out. Common sense indicates that even if the two
photons in a pair have random polarizations (perfectly correlated though always the same — like
the bars), they still have some polarizations, i.e., maybe unknown but definite (as in the case of
the bars, i.e., what E, P, and R believed happens). Hence, the results of the photon experiments
would have to fulfill the Bell inequality. However, the photon experiments have shown that the
Bell inequality is violated, but still the results are in accordance with the prediction of quantum
mechanics.

There are therefore only two possibilities (compare the two points at the end of the previous
section):

a) either the measurement on a photon carried out at polarizer A (B) results in some instanta-
neous interaction with the photon at polarizer B (A), and/or

b) the polarization of any of these photons is completely indefinite (even if the polarizations
of the two photons are fully correlated, i.e., the same) and only the measurement on one of the
photons at A (B) determines its polarization, which results in the automatic determination of
the polarization of the second photon at B (A), even if they are separated by millions of light
years.

Both possibilities are sensational. The first assumes a strange form of communication between
the photons or the polarizers. This communication must be propagated with a velocity exceed-
ing the speed of light, because an experiment was performed in which the polarizers were
switched (this took something like 10 nanoseconds) after the photons started (their flight took
about 40 nanoseconds). Despite this, communication between the photons did exist.”* Possibil-
ity (b) as a matter of fact represents Bohr’s interpretation of quantum mechanics: elementary
particles do not have definite attributes (e.g., polarization).

As aresult there is dilemma: either the world is “nonreal” (in the sense that the properties
of particles are not determined before measurement) and/or there is instantaneous (i.e.,
faster than light) communication between particles which operates independently of how
far apart they are (‘“nonlocality”).

This dilemma may make everybody’s metaphysics shiver.

74 This again is the problem of delayed choice. It seems that when starting the photons have a knowledge of the
future setting of the apparatus (the two polarizers).



The Magic of Quantum Mechanics 59

1.11 Teleportation

The idea of teleportation comes from science fiction and means:

* acquisition of full information about an object located at A,
e its transmission to B,

» creation (materialization) of an identical object at B, and

* at the same time, the disappearance of the object at A.

At first sight it seems that this contradicts quantum mechanics. The Heisenberg uncertainty
principle says that it is not possible to prepare a perfect copy of the object, because, in case
of mechanical quantities with noncommuting operators (like positions and momenta), there is
no way to have them measured exactly, in order to rebuild the system elsewhere with the same
values of the quantities.

The trick is, however, that the quantum teleportation we are going to describe will not violate
the Heisenberg principle, because the mechanical quantities needed will not be measured and
the copy, based on their values, will not be made.

The teleportation protocol was proposed by Bennett and coworkers’>

Zeilinger’s group.’® The latter used the entangled states (EPR effect) of two photons described
77

and applied by Anton

above.

Assume that photon A (number 1) from the entangled state belongs to Alice, and photon B
(number 2) to Bob. Alice and Bob know this and introduce a common fixed coordinate system.
Both photons have identical polarizations in this coordinate system. Let us assume that the
state of the two photons is the following superposition’®: |00) 4 |11), where the first position
in every ket pertains to Alice’s photon, the second to Bob’s.

Now, Alice wants to carry out teleportation of her additional photon (number 3), which is in
an unknown quantum state

Prele = al0) + b|1)

5 CH. Benneth, G. Brassard, C. Crépeau, R. Josza, A. Peres, W.K. Wootters, Phys. Rev. Letters, 70(1993)1895.

76 Then at the University of Innsbruck (Austria).

77 A UV laser beam hits a barium borate crystal (known for its birefringence). Photons with parallel polarization
move along the surface of a cone (with the origin at the beam—surface collision point), the photons with perpen-
dicular polarization move on another cone, the two cones intersecting. From time to time a single UV photon
splits into two equal energy photons of different polarizations. Two such photons when running along the in-
tersection lines of the two cones, and therefore not having a definite polarization (i.e., being in a superposition
state composed of both polarizations), represent the two entangled photons.

78 The teleportation result does not depend on the state.
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(known as qubit), where a and b stand for unknown coefficients’” satisfying the normalization
condition a? + b% = 1. Therefore, the state of three photons (Alice’s: the first and the third
position in the three-photon ket, Bob’s: the second position) will be

Vst = [100) + [11)][@]0) + b|1)] = @]000) + b|001) + a|110) + b|111). (1.27)

Note that Alice might decide to measure the polarization of her two photons (1 and 3) and
send her results by telephone to Bob. This, however, will not help Bob to construct the state
¢rele Of his photon. Indeed, if Alice’s result were |00) or |01), Bob would only know that his
photon’s state is |0). If Alice communicated |10) or [11) Bob’s photon state would be |1). He
knew that sometimes he may get |0) and sometimes |1) even without any phone call, even from
his girlfriend.

Alice is however a very smart girl. She prepares herself for teleportation of the qubit ¢yee
(corresponding to her photon 3). The crux of the procedure will be to use such experimental
optical devices, which transform the initial three-photon state Vart to a very special final state
Weinal. Alice’s measurement results (in the state Yana) will be linked unambiguously to Bob’s
knowledge of what he is supposed to do with his photon (using some optical devices) in order
to get the ¢l State, which means z‘eleportal‘ion80 of Grele-

To this end Alice prepares first a device called the XOR gate.®!

Table 1.1. The XOR gate changes the state of the steered
photon, only when the steering photon is on.

Steering | Steered before XOR Steered after XOR
10) 10) 0)
10) 1) 1)
1) 10) 1)
1) 1) 10)

What is the XOR gate? The device manipulates two photons; one is treated as the steering
photon, the second as the steered photon (see Table 1.1). The device operates (the operator
AXOR) as follows: if the steering photon is in state |0), then no change is introduced for the

79 Neither Alice nor Bob will know these coefficients up to the end of the teleportation procedure, but still Alice

will be able to send her qubit to Bob!

At the same time, Alice’s abovementioned measurements will cause the collapse of her ¢)e, Which means the
disappearance of ¢ele, cf. p. 28.

81 Abbreviation of “eXclusive OR.

80
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state of the steered photon. If, however, the steering photon is in state |1), the steered photon
will be switched over, i.e., it will be changed from O to 1 or from 1 to 0.

Alice chooses the photon in the state ¢rele as her steering photon 3, and photon 1 as her steered
photon. After the XOR gate is applied, the state of the three photons will be as follows:

AxORVstart = @]000) + b|101) + a|110) + b|011). (1.28)

Alice continues her preparation by using another optical device, called the Hadamard gate,
which operates (Agaq) on a single photon and does the following:

1
0) > — (|0) + [1)),
|>—>\/§(|>+|>)

1
1) > —(10) — [1)).
|>_>f2(|> 1)

Alice applies the Hadamard operation to her photon 3, and after this the three-photon state is
changed to the following:

wﬁnal = AHadAXOR 1/fsta.rt =

%[a|000)+a|001)—|—b|100)—b|101)+a|110)+a|111)+b|010)—b|011)]:
1
E[IO (al0) + b[1)) 0) + 10 (a|0) —bI1)) 1) — |1 (al1) +b|0)) 0) +[1 (a|l) — b|0)) 1)].

(1.29)

We have a superposition of four three-photon states in the last row. Each state shows the state
of Bob’s photon (number 2 in the ket), at any given state of Alice’s two photons. Finally, Alice
carries out the measurement of the polarization states of her photons (1 and 3). This inevitably
causes her to get (for each of the photons) either |0) or |1). This causes her to know the state of
Bob’s photon from the three-photon superposition (1.29):

« Alice’s photons 00, i.e., Bob has his photon in state (a|0) + b|1)) = ¢rele,
» Alice’s photons 01, i.e., Bob has his photon in state (a|0) — b|1)),
» Alice’s photons 10, i.e., Bob has his photon in state (a|1) 4 5|0)),
* Alice’s photons 11, i.e., Bob has his photon in state (a|1) — b|0)).

Then Alice calls Bob and tells him the result of her measurements of the polarization of her
two photons.



62 Chapter 1

Bob knows therefore, that if Alice sends him |00) this means that the teleportation is
over: he already has his photon in state ¢! If Alice sends him one of the remaining
possibilities, he would know exactly what to do with his photon to prepare it in state ¢rele
and he does this with his equipment. The teleportation is over: Bob has the teleported
state ¢rele, Alice has lost her photon state ¢rele When performing her measurement (wave
function collapse).

Note that to carry out the successful teleportation of a photon state Alice had to communicate
something to Bob by a classical channel (like telephone).

1.12 Quantum computing

Richard Feynman pointed out that contemporary computers are based on the “all” or “nothing”
philosophy (two bits: |0) or |1)), while in quantum mechanics one may also use a linear combi-
nation (superposition) of these two states with arbitrary coefficients a and b: a|0) + b|1). Would
a quantum computer based on such superpositions be better than a traditional one? The hope
associated with quantum computers relies on a multitude of quantum states (those obtained
using variable coefficients a, b, c, ...) and the possibility of working with many of them using
a single processor. It was (theoretically) proved in 1994 that quantum computers could factor-
ize natural numbers much faster than traditional computers. This sparked intensive research on
the concept of quantum computation, which uses the idea of entangled states. According to
many researchers, any entangled state (a superposition) is extremely sensitive to the slightest
interaction with the environment, and as a result decoherence takes place very easily, which is
devastating for quantum computing.®” First attempts at constructing quantum computers were
based on protecting the entangled states, but, after a few simple operations, decoherence took
place.

In 1997 Neil Gershenfeld and Isaac Chuang realized that any routine nuclear magnetic reso-
nance measurement represents nothing but a simple quantum computation. The breakthrough
was recognizing that a qubit may be also represented by the huge number of molecules in
a liquid.*® The nuclear spin angular momentum (say, corresponding to s = %) is associated
with a magnetic dipole moment (Chapter V2-4) and those magnetic dipole moments interact
with an external magnetic field and with themselves. An isolated magnetic dipole moment has

82 1t pertains to an entangled state of (already) distant particles. When the particles interact strongly the state is

more stable. The wave function for H, also represents an entangled state of two electrons with opposite spins,
yet decoherence does not take place even at short internuclear distances. As we will see, entangled states can
also be obtained in liquids.

83 Interaction of the molecules with the environment does not necessarily result in decoherence.
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two states in a magnetic field: a lower energy state corresponding to the antiparallel configu-
ration (state |0)) and a higher energy state related to the parallel configuration (state |1)). By
exposing a sample to a carefully tailored nanosecond radio wave impulse one obtains a rota-
tion of the nuclear magnetic dipoles, which corresponds to their state being a superposition
al0) + b|1).

Here we present a prototype of the XOR gate. Take chloroform,** 13CHCI3. Due to the inter-
action of the magnetic dipoles of the proton and of the carbon nucleus (both either in parallel
or antiparallel configurations with respect to the external magnetic field) a radio wave impulse
of a certain frequency causes the carbon nuclear spin magnetic dipole to rotate by 180° pro-
vided the proton spin dipole moment is parallel to that of the carbon.®> Similarly, one may
conceive other logical gates. The spins change their orientations according to a sequence of
impulses, which play the role of a computer program. There are many technical problems to
overcome in the quantum computers “in liquid”: the magnetic interaction of distant nuclei is
very weak, and decoherence remains a worry and for the time being limits the number of
operations to several hundred. However, this is only the beginning of a new computer tech-
nology. It is most important that chemists know the future computers well — they are simply
molecules.

Summary

Classical mechanics was unable to explain certain phenomena: black body radiation, the photoelectric
effect, and the stability of atoms and molecules as well as their spectra. Quantum mechanics, created
mainly by Werner Heisenberg and Erwin Schrodinger, explained these effects. The new mechanics was
based on six postulates:

* Postulate I says that all information about the system follows from the wave function vr. The quantity
|¥|? represents the probability density of finding particular values of the coordinates of the particles
the system is composed of.

*  Postulate II allows mechanical quantities (e.g., energy) to be ascribed to operators. One obtains the
operators by writing down the classical expression for the corresponding quantity, and replacing
momenta (e.g., py) by momenta operators (here, p, = —i Bax)

¢ Postulate III gives the time evolution equation for the wave function v (time-dependent Schrodinger
equation, H v = zh ) using the energy operator (Hamiltonian H). For time- -independent H one

obtains the time- 1ndependent Schrodinger equation H Y = E for the stationary states.

84 The nuclear magnetic resonance operations on spins pertain in practice to a tiny fraction of the nuclei of the

sample (of the order of 1:1 000 000).

85 This is indeed consistent with the XOR gate logical table, because for the parallel spins (entries: 00 and 11) the
output is 0 (meaning: transition), while for the opposite spins (entries: 01 and 10) the output is 1 (meaning: no
transition).
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Postulate IV pertains to ideal measurements. When making a measurement of a quantity A, one can
obtain only an eigenvalue of the corresponding operator A. If the wave function ¥ represents an
eigenfunction of A, ie., (Alﬂ = a/), then one obtains always as a result of the measurement the
eigenvalue corresponding to v (i.e., a). If, however, the system is described by a wave function,
which does not represent any elgenfunctwn of A, then one obtains also an eigenvalue of A, but there
is no way to predict which eigenvalue. The only thing one can predict is the mean value of many
(w1dv)
measurements, which may be computed as a = IR
Postulate V says that an elementary particle has an internal angular momentum (spin). One can
measure only two quantities: the square of the spin length s (s + 1) > and one of its components
mgh, where mg = —s, —s + 1, ..., +s, with spin quantum number s > 0 characteristic for the type of
particle (integer for bosons, half-integer for fermions). The spin magnetic quantum number m, takes
2s + 1 values, related to the 2s + 1 values of the (granular) spin coordinate o .
Postulate VI has to do with the symmetry of the wave function with respect to different labeling
of identical particles. If one exchanges the labels of two identical particles (we sometimes call this
the exchange of all the coordinates of the two particles), then for two identical fermions the wave
function has to change its sign (antisymmetric), while for two identical bosons the function does not
change (symmetry). As a consequence, two identical fermions with the same spin coordinate cannot
occupy the same point in space.

Quantum mechanics is one of the most peculiar theories. It gives numerical results that agree extremely
well with experiments, but on the other hand the relation of these results to our everyday experience
sometimes seems shocking. For example, it turned out that a particle or even a molecule may somehow
exist in two locations (they pass through two slits simultaneously), but when one checks that out they are
always in one place. It also turned out that

either a particle has no definite properties (“the world is unreal”), and the measurement fixes them
somehow, or/and

there is instantaneous communication between particles however distant they are from each other
(“nonlocality of interactions”).

It turned out that in the Bohr—Einstein controversy, Bohr was right. The Einstein—Podolsky—Rosen para-
dox resulted (in agreement with Bohr’s view) in the concept of entangled states. These states have been
used to experimentally teleport a photon state without violating the Heisenberg uncertainty principle.
Also the entangled states stand behind the idea of quantum computing: with a superposition of two states
(qubit) a|0) + b|1) instead of |0) and |1) as information states.

Main concepts, new terms

antisymmetric function (p. 39) delayed choice (p. 53)

axis of quantization (p. 32) Dirac notation (p. 23)

Bell inequality (p. 54) eigenfunction (p. 19)
bilocation (p. 52) eigenvalue problem (p. 26)

decoherence (p. 52) entangled states (p. 47)



The Magic of Quantum Mechanics

65

EPR effect (p. 47)

experiment of Aspect (p. 57)
Gedankenexperiment (p. 44)
Heisenberg uncertainty principle (p. 44)
Hilbert space (p. 598)
interference of particles (p. 52)
locality of the world (p. 54)
logical gate (p. 59)

mean value of an operator (p. 29)
measurement (p. 26)
normalization (p. 21)

operator of a quantity (p. 22)

qubit (p. 59)

“reality of the world” (p. 54)
Schrddinger’s cat (p. 49)
singlet state (p. 37)

spin angular momentum (p. 29)
spin coordinate (p. 29)
stationary state (p. 26)
symmetric function (p. 39)
symmetry of wave function (p. 39)
teleportation (p. 59)

time evolution equation (p. 24)
triplet state (p. 37)

Pauli exclusion principle (p. 40) wave function (p. 19)

Pauli matrices (p. 29) wave function collapse (p. 28)

quantum eraser (p. 53)

From the research front

Until recently, the puzzling foundations of quantum mechanics could not be verified directly by exper-
iment. As a result of enormous technological advances in quantum electronics and quantum optics it
became possible to carry out experiments on single atoms, molecules, photons, etc. It is possible nowa-
days to carry out teleportation across the Danube river. Even molecules such as fullerene were subjected
to successful interference experiments. Quantum computer science is just beginning to prove that its
principles are correct.

Ad futurum

Quantum mechanics has been proved in the past to give excellent results, but its foundations are still
unclear.®® There is no successful theory of decoherence that would explain why and how a delocalized
state becomes localized after the measurement. It is possible to make fullerene interfere, and it may be
that in the near future we will be able to do this with a virus.®’ It is interesting that fullerene passes
instantaneously through two slits with its whole complex electronic structure as well as nuclear frame-
work, although the de Broglie wave length is quite different for the electrons and for the nuclei. Visibly
the “overweighted” electrons interfere differently from free ones. After the fullerene passes the slits,
one sees it in a single spot on the screen (decoherence). It seems that there are cases when even strong
interaction does not make decoherence necessary. Stawomir Szymarnski presented his theoretical and
experimental results®® and showed that the functional group —CDj3 exhibits a delocalized state (which

86 A pragmatic viewpoint is shared by the vast majority: “do not wiseacre, just compute!”
87 As announced by Anton Zeilinger.
88 S. Szymariski, J. Chem. Phys., 111(1999)288.
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corresponds to its rotation instantaneously in both directions, i.e., coherence) and, which makes the thing
more peculiar, interaction with the environment not only does not destroy the coherence, but makes it
more robust. This type of phenomenon might fuel investigations towards future quantum computer ar-
chitectures.

Additional literature

“The Ghost in the atom: a discussion of the mysteries of quantum physics,” P.C.W. Davies and
J.R. Brown, eds, Cambridge University Press, (1986).

Two BBC journalists interviewed eight outstanding physicists: Alain Aspect (photon experiments), John
Bell (Bell inequalities), John Wheeler (Feynman’s PhD supervisor), Rudolf Peierls (‘“Peierls metal-
semiconductor transition”), John Taylor (“black holes”), David Bohm (“hidden parameters’), and Basil
Hiley (“mathematical foundations of quantum physics”). It is most striking that all these physicists give
very different theoretical interpretations of quantum mechanics (partially covered in the present chapter).

R. Feynman, “QED - the Strange Theory of Light and Matter,” Princeton University Press, Prince-
ton, (1985).

Excellent popular presentation of quantum electrodynamics written by one of the outstanding physicists
of the 20th century.

A. Zeilinger, ‘“Quantum teleportation,” Scientific American, 282(2000)50.

The leader in teleportation describes this new domain.

N. Gershenfeld, I.L. Chuang, “Quantum computing with Molecules,” Scientific American, 278(1998)66.

First-hand information about nuclear magnetic resonance computing.

Ch. H. Bennett, “Quantum Information and Computation,” Physics Today, 48(1995)24.

Another first-hand description.

F. Wilczek, “A Beautiful Question. Finding Nature’s Deep Design,” Penguin Press, London, 2015.

An attempt to sketch a generalized pattern of all interactions. In my opinion, the value of this book relies
on two features. First, the author is a cofounder of chromodynamics (Nobel Prize in 2004) — the deepest
theory of what we see around. Second, he makes an enormous effort to describe the topic in the simplest
way possible, in addition discovering an amazing beauty of the (up to now) deepest pattern of Nature.
One feels also a kind of a charming mystic-like enchantment by the internal beauty of Nature.
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Questions

1.

In order to calculate the expectation value A of a mechanical quantity A for a system described by
the wave function ¥, one has to:
a. express A in terms of coordinates and momenta, and then insert into A the most probable
values of those.
b. express A in terms of coordinates and momenta, and then replace in A the momenta by their
operators.
c. express A in terms of coordinates and momenta, replace in A the momenta by their operators

thus producing operator A, and then compute the integral A = <1ﬁ|A1ﬂ>.

d. impossible, if Y does not satisfy the time-independent Schrodinger equation.
For a Hermitian operator A:

a. < f IA f > is real for any function f.
b. <¢|A1ﬁ> = <w|A¢> for any functions ¥, ¢ of class Q.
c. <¢|A1ﬁ> = <1ﬁ|A¢> for any functions ¥/, ¢.

d. its eigenfunctions form a complete set of functions.
For a Hermitian operator A with eigenfunctions v, n = 1,2, ..., and eigenvalues a, (/iwn =
anYm):

a. ay, isreal.

b. 1, cannot take the value 0.

c. 1, may be a real function.

d. it may happen that v, = 0.

~

For a Hermitian operator A with eigenfunctions ¥, n = 1,2, ..., and eigenvalues a, (Al//n =
an¥y):
a. 1, must be real.
b. must be (V| ¥m) = Smn- .
c. if ¢¥1 and v, are some eigenfunctions of A, ¢ = c1¥| + c2¥» is necessarily an eigenfunction
of A.
d. one can orthonormalize the set of eigenfunctions and in this way create such a set {1}, for
which (Y, [ ) = 8m4~
For a Hermitian operator A with the orthonormalized eigenfunctions v, n = 1, 2, ..., any function
¢ of class Q can be expanded into the series ¢ = Z cn¥n, where ¢, are some complex numbers:
n
a. ¢ must be normalized.
b. the above expansion ¢ = Z ¢y ¥, cannot be finite or infinite.
n

cn = (Ynld).
cn = (P|Ym).

H represents the time-independent Hamiltonian of the system, E stands for energy:

a. the time-independent Schrédinger equation H Y, = E ¥, has zero, a finite number, or an
infinite number of solutions ¥,,, depending on the system under study.

b. the solutions {y,} of the Schrodinger equation H Y, = Epyr, form a complete set of the basis
functions.

c. the solutions {1, } of the Schrodinger equation A Y, = E, ¥, form a complete set of the basis
functions and are orthonormal.

o
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d.

the solutions {v,} of the Schrodinger equation A Y, = E, ¥, form a complete set of the basis
functions, which may be chosen to be orthonormal.

7. H represents the Hamiltonian of the system, x, ¢ stand for the spatial (x) and time (¢) coordinates,
respectively, and E stands for energy:

a.

b.

d.

H V(x,t)= ih% represents the evolution in time of the wave function W (the equation is
known as the time-dependent Schrodinger equation).

If H is time-independent, the solution of the time-dependent Schrodinger equation reads as
W(x,t)= Zzozl cnWn(x, 1), where W, (x, t) are the stationary states and ¢, are constant com-
plex numbers.

Any stationary state has the following time dependence: W, (x,?)
Yy (x) exp(—i %t), where V¥, (x) satisfies the time-independent Schrodinger equation H Y, =
Enn.

The probability density p corresponding to the wave function W,(x,?)
Y (x) exp(—i %I) is time-independent.

8. For two electrons:
a. any two-electron wave function has to be symmetric with respect to the exchange of the space
and spin coordinates of these two electrons.
b. the angle between two electron spins in the singlet state is equal to 180°.
c. the electron spins in the triplet state are parallel.
d. there are three triplet states that differ by total spin projection on the quantization axis.
9. In the Heisenberg uncertainty principle, AA, AB stand for the standard deviation determined for
the measured quantities A and B:
a. if A and B commute, the errors made when measuring A and B may be arbitrarily small.
b. if AB# BA, then AAABS L.
c. ifAand B commute, AAAB > 0.
d. one cannot make measurements with the calculated standard deviations AA and AB both
equal to zero.
10. For the space (x, y, z) and spin (o) coordinates for an electron:
a. real numbers x, y, z determine the position of the electron in space, o takes only two real
values.
b. there are two quantities that are measurable for a particle’s spin: its length being a constant
equal to \/g h and one of the coordinates (chosen as z), which may take one of two values: %h
and — % h.
c. the measurable quantities for a particle’s spin S are its Sy, Sy, S; components, which may take
one of the two values: %h and — % h.
d Y ,a(0)B(o)=0.
Answers

1c, 2abd, 3ac, 4d, Sbc, 6abd, 7abcd, 8bd, 9abc, 10abd



The Schrodinger Equation

When the solution is simple, God is answering.
Albert Einstein

Where are we?

The postulates constitute the foundation of quantum mechanics (and also the base of the TREE trunk).
One of their consequences is the Schrodinger equation for stationary states. Thus we begin our itinerary
on the TREE. The second part of this chapter is devoted to the time-dependent Schrodinger equation,
which, from a pragmatic point of view, is outside the main theme of this book (this is why it is a side
branch on the left side of the TREE).

An example

A string, a fundamental constituent of many musical instruments, vibrates after it is excited, creating
a series of standing sound waves of well-defined frequencies (related to the string length) which then
propagate in the air. Physicists of the beginning of the 20th century were puzzled by a similar phe-
nomenon exhibited by atoms. However, the atoms (also molecules) emitted electromagnetic waves but
also of well-defined frequencies (known as their spectra, see Fig. 2.1), and nobody knew how this might
happen and why. It turned out that only quantum mechanics (not classical mechanics) was able to solve
this puzzle; the key is to solve the all important Schrodinger equation — the subject of the present chapter.
The Schrodinger equation for atoms and molecules describes standing waves, which is why it is also
known as the wave equation.1 Thus, atoms and molecules may be viewed as the musical instruments of
the Universe.

What is it all about?

Symmetry of the nonrelativistic Hamiltonian and the conservation laws (5¢) p. 72

e Invariance with respect to translation
* Invariance with respect to rotation

1 From theory of music.

Ideas of Quantum Chemistry
https://doi.org/10.1016/B978-0-44-464246-2.00010-0 69
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N, and N,
=

Oxygen

h atom

—__ Sunlight

500 600 700 nm
wavelength

Fig. 2.1. Have you ever seen the fascinating aurora borealis? It is mostly green, but also pink and red,
changing all the time. Only quantum mechanics is able to explain this beauty. It turned out that the
corresponding emission spectrum comes mainly from the nitrogen molecule, the nitrogen molecule
cation (upper panel, lower boreal altitude, pink and red colors of the aurora), and the oxygen atom
(mostly green, lower panel). The striking feature of this picture is that the emitting objects exhibit
a certain number of sharp monochromatic light lines of various intensities. The lines correspond to
different wave lengths. Why do N, N;, and O behave similarly to musical instruments like, e.g., the
violin, which also emits waves (in this case acoustic) with some well-defined values of wave lengths?
The colors of the aurora are explained in detail when one solves the Schrédinger equation for Na, N;‘,
and O. The equation is also known as the wave equation, the same that describes the violin string
vibrations.

* Invariance with respect to permutations of identical particles (fermions or bosons)
e Invariance of the total charge

*  Fundamental and less fundamental invariances

* Invariance with respect to inversion — parity

* Invariance with respect to charge conjugation

* Invariance with respect to the symmetry of the nuclear framework

*  Conservation of total spin

* Indices of spectroscopic states

Schrodinger equation for the stationary states (A) p. 87

¢ Wave function of class Q

e Boundary conditions

* Ananalogy

e Mathematical and physical solutions

Time-dependent Schrodinger equation (A) p. 96

*  Evolution in time

*  Time-dependent mechanical properties
e Mean energy is conserved

e Symmetry is conserved

*  Energy-time uncertainty principle
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*  Meditation at a water spring
* Linearity

Evolution after switching a perturbation () p. 104

*  Time-independent perturbation — the two-state model

*  Oscillating perturbation — the two-state model

*  Short-time perturbation — the first-order approach

*  Time-independent perturbation and the Fermi Golden Rule
*  Oscillating perturbation and the Fermi Golden Rule

The time-independent Schrodinger equation is the one place where stationary states can be produced as
solutions of the equation. The time-dependent Schrodinger equation plays the role of the “equation of
motion,” describing the evolution of a given wave function as time passes. As always for an equation
of motion, one has to provide an initial state (starting point), i.e., the wave function for r = 0. Both
the stationary states and the evolution of the nonstationary states depend on the total energy operator
(Hamiltonian). If one finds some symmetry of the Hamiltonian, this will influence the symmetry of the
wave functions. At the end of this chapter we will be interested in the evolution of a wave function after
applying a perturbation.

Why is this important?

The wave function is a central notion in quantum mechanics, and is obtained as a solution of the
Schrodinger equation. Hence this chapter is necessary for understanding quantum chemistry.

What is needed?

* Postulates of quantum mechanics, Chapter | (necessary),

*  matrix algebra, Appendix A, p. 589 (advised),

e center-of-mass separation, Appendix J, p. 691 (necessary),

e translation versus momentum and rotation versus angular momentum, Appendix F, p. 665 (neces-
sary),

e Dirac notation, p. 23 (necessary),

* two-state model, Appendix D, p. 655 (necessary),

* Dirac delta, Appendix E, p. 659 (necessary).

Classical works

A paper by the mathematician Emmy Noether, “Invariante Variationsprobleme,” published in Nachrichten
von der Gesellschaft der Wissenschaften zu Gottingen, 1918, p. 235-257, established a monumental link
between the conservation laws for the energy, momentum and angular momentum and the symmetry
properties of space and time. % Four papers by Erwin Schrodinger, which turned out to cause an “earth-
quake” in science, i.e., Annalen der Physik, 79(1926)361, ibid. 79(1926)489, ibid. 80(1926)437, and
ibid. 81(1926)109, all under the title “Quantisierung als Eigenwertproblem,” presented quantum me-
chanics as an eigenvalue problem (known from the developed differential equation theory), instead of an
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abstract Heisenberg algebra. Schrodinger proved the equivalence of both theories, gave the solution for
the hydrogen atom, and introduced the variational principle. % The time-dependent perturbation theory
described in this chapter was developed by Paul Dirac in 1926. Twenty years later, Enrico Fermi, lectur-
ing at the University of Chicago, coined the term “The Golden Rule” for these results. Since then, they
are known as the Fermi Golden Rule.

* sk ok

2.1 Symmetry of the nonrelativistic Hamiltonian and the conservation laws

From classical mechanics it follows that for an isolated system (and assuming the forces
to be central and obeying the action-reaction principle), its energy, momentum, and an-
gular momentum are conserved.

Imagine a well-isolated
space ship observed in a
space-fixed coordinate sys-

Emmy Noether (1882-1935),
German mathematician, infor-
mally professor, formally only

the assistant of David Hilbert tem. Its energy is preserved,

at the University of Gottingen
(in the first quarter of the 20th
century, women were not allowed
to be professors in Germany).
Her outstanding achievements
in mathematics meant nothing
to the Nazis, because Noether
was Jewish (people should be
reminded of such problems) and
in 1933 Noether was forced to
emigrate to the USA (Institute for

its center of mass moves
along a straight line with
constant velocity (the total,
or center-of-mass, momen-
tum vector is preserved), and
it preserves its fotal angu-
lar momentum.> The same
is true for a molecule or
atom, but the conservation
laws have to be formulated

Advanced Study in Princeton). in the language of quantum

mechanics.

2 That is, its length and direction. Think of a skater performing a spin: extending the arms sideways slows down
the rotation, while stretching them along the axis of rotation results in faster rotation. But all the time the total
angular momentum vector is the same. Well, what happens to the angular momentum, when the dancer finally
stops rotating due to the friction? The angular momentum attains zero? No way. This is simply impossible. When
the dancer increases its angular velocity, the Earth’s axis changes a bit its direction to preserve the previous
angular momentum of the total system (the Earth plus the dancer). When the dancer stops, the Earth’s axis comes
back towards its previous position, but not completely, because a part of the angular momentum is hidden in the
rotation of molecules caused by the friction. Whatever happens, the total angular momentum has to be preserved!
If the space ship captain wanted to stop the rotation of the ship which is making the crew sick, he could either
throw something (e.g., gas from a steering jet) away from the ship, or spin a well-oriented body fast inside the
ship. But even the captain is unable to change the toral angular momentum.
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Where do the conservation laws come from? Emmy Noether proved that they follow
from the symmetry operations, with respect to which the equation of motion is invari-

ant.’

Thus, it turned out that invariance of the equation of motion with respect to an arbi-
trary:

— translation in time (time homogeneity) results in the energy conservation principle;
— translation in space (space homogeneity) gives the fotal momentum conservation prin-
ciple;

— rotation in space (space isotropy) implies the total angular momentum conservation
principle.

These may be regarded as the foundations of science.* The homogeneity of time allows one
to expect that repeating experiments give the same results. The homogeneity of space makes it
possible to compare the results of the same experiments carried out in two different laboratories.
Finally, the isotropy of space allows one to reject any suspicion that a different orientation of

our laboratory bench changes the result.

Conservation laws represent most precious information about our system. It is not important
what happens to the isolated system, what it is composed of, how complex the processes taking
place in it are, whether they are slow or violent, whether there are people in the system or
not, or whether they think about how to cheat the conservation laws; nothing can violate the

conservation of the energy, momentum, or angular momentum.

Now, let us try to incorporate this into quantum mechanics.

In case of a one-parameter family of operations 8.8 g = .§'a+ g, €.g., translation («, B stand for the translation
vectors), rotation (¢, B are rotational angles), etc. Some other operations may not form such families and then
the Noether theorem is no longer valid. This was an important discovery. Symmetry of a theory is much more
fundamental than symmetry of an object. The symmetry of a theory means that phenomena are described by the
same equations no matter what laboratory coordinate system is chosen.

Well, to some extent. For example, the Universe does not show exact isotropy, because the matter there does not
show spherical symmetry. Moreover, even if only one object were in the Universe, this very object would itself
destroy the anisotropy of the Universe. We should rather think of this as a kind of idealization (approximation of
the reality).
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All symmetry operations (e.g., translation, rotation, reflection in a plane) are isometric, i.e.,
U™ =U""and U does not change distances between points of the transformed object (Figs. 2.2
and 2.3).

The operator U acting in three-dimensional Cartesian space corresponds to the operator
u acting in the Hilbert space; cf. Eq. (C.2), p. 608. Thus the function f (r) transforms
to f’ =U f=f (U 'r), while the operator A transforms to A’ = U AU™! (Flg 2. 3)
The formula for A’ differs in general from A, but when it does not, i.e., A’ = A, then U
commutes with A.

(a) (b) i

dflxy)

) foe) f'y = f(07'r)

X X

X'

Fig. 2.2. (a) An object is rotated by angle «. (b) The coordinate system is rotated by angle —«. The new
position of the object in the old coordinate system (a) is the same as the initial position of the object
in the new coordinate system (b).

Indeed, then A=UAU! , 1.e., one has the commutation relation AU=U A, which means that
U and A share their eigenfunctions (Appendix B, p. 595).

Let us take the Hamiltonian H as the operator A. Before writing it down let us introduce
atomic units. Their justification comes from something similar to laziness. The quantities
one calculates in quantum mechanics are stuffed up by some constants: h = %, where
h is the Planck constant, the electron charge —e, the electron (rest) mass mg, etc. These
constants appear in clumsy formulae with various powers, in the nominator and denomina-

tor (see Table of units, p. 763). One always knows, however, that the quantity one com-
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A PNUNDN

y aAf)=aauaf

Fig. 2.3. A schematic view from the Hilbert space of functions f(x, y). The f and Hf represent, in
general, different functions. Rotation (by «) of function Hf gives function L{(Hf) and in conse-
quence, is bound to denote the rotation of f (i.e., Uf) and the transformation UH U~ Uofthe operator
H. Indeed, only then UHU' when acting on the rotated function, i.e., Z/Alf gives Z/A{I-AIZ/AFI(Z/Alf)
Zfl(ﬁf) i.e., the rotated result of the Hamiltonian action. Because oFZ](ﬁf) (Z/{H)(Uf) when
verifying the invariance of H with respect to transformation I, it is sufficient to check whether U H
has the same formula as H, but expressed in the new coordinates. Only this UH will fitto f expressed
in the new coordinates, i.e., to LA{f This is how we will proceed shortly.

putes is energy, length, time, etc., and how energy, length, etc., are expressed in h, e, mo,
etc.

ATOMIC UNITS
If one inserts h =1, e = 1, mg = 1, this gives a dramatic simplification of the formu-
lae. One has to remember though that these units have been introduced and, whenever

needed, one can evaluate the result in other units (see Table of conversion coefficients,
p- 764).

The Hamiltonian for a system of M nuclei (with charges Z; and mass my, I =1, ..., M) and
N electrons, in the nonrelativistic approximation and assuming point-like particles without any
internal structure,” takes in atomic units (a.u.) the following form (see p. 22):

5 No internal structure of the electron has yet been discovered. The electron is treated as a point-like particle.
Contrary to this, nuclei have a rich internal structure and nonzero dimensions.
A clear multilevel-like structure appears (which has to a large extent forced a similar structure on the correspond-
ing scientific methodologies):
* Level I. A nucleon (neutron, proton) consists of three (the valence) quarks, clearly seen on the scattering
image obtained for the proton. Nobody has yet observed a free quark.
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H=T,+T,+V, 2.1)

where the kinetic energy operators for the nuclei and electrons (in a.u.) read as

NI'—‘

Mo
j{:;;;- (2.2)

I=1

N
Z A;, (2.3)

i=1

NI'—‘

where the Laplacians are

9 97
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and x, y, z stand for the Cartesian coordinates of the nuclei and electrons indicated by vectors

R; =(Xy,Y;, Zy) and r; = (x;, yi, zi), respectively.

e Level II. The strong forces acting among nucleons have a range of about 1-2 fm (1 fm = 10715 m).
Above 0.4-0.5 fm they are attractive, at shorter distances they correspond to repulsion. One does not
need to consider their quark structure when computing the forces among nucleons, but they may be
treated as particles without internal structure. The attractive forces between nucleons practically do not
depend on the nucleon’s charge and are so strong that they may overcome the Coulomb repulsion of
protons. Thus nuclei composed of many nucleons (various chemical elements) may be formed, which in
mean-field theory exhibit a shell structure (analogous to the electronic structure, cf. Chapter 8) related
to the packing of the nucleons. The motion of the nucleons is strongly correlated. A nucleus may have
various energy states (ground and excited), may be distorted, may undergo splitting, etc. About 2000
nuclei are known, of which only 270 are stable. The smallest nucleus is the proton, the largest known so
far is 299Bi (209 nucleons). The largest observed number of protons in a nucleus is 118. Even the largest
nuclei have diameters about 100000 times smaller than the electronic shells of the atom. Even for an
atom with atomic number 118, the first Bohr radius is equal to 1{—8 a.u., or 5- 10713 m, still about 100
times larger than the nucleus.

*  Level IIl. Chemists can neglect the internal structure of nuclei. A nucleus can be treated as a structureless
point-like particle and using the theory described in this book, one is able to predict extremely precisely
virtually all the chemical properties of atoms and molecules. Some interesting exceptions will be given at
the end of Chapter 6.
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The operator 1% corresponds to the electrostatic interaction of all the particles (nucleus—nucleus,
nucleus—electron, electron—electron)®:

7,7, M N Z N N 1
_ = S 2.4
ZZ|R1—RJ| ZZIPi—R1|+ZZII‘i—I‘j| .

I=1J>1 I=1i=1 i=1 j>i

or, in a simplified form,
M M M N N N

. VAYA, Z; 1
I ILLIE 3) D ) R 23)

I=1J>1 I=1i=1"" i=1j>i Y

If the Hamiltonian turned out to be invariant with respect to a symmetry operation U (transla-
tion, rotation, etc.), this would imply the commutation of U and H. We will check this in more
detail below.

Note that the distances Ry, r;;, and r;; in the Coulombic potential energy (2.5) witness about
assumption of instantaneous interactions in nonrelativistic theory (infinite travel speed of the
interaction through space).

2.1.1 Invariance with respect to translation

Translation by vector T of function f (r) in space means the function U fmy=f (0 _1r> =
f (xr—T),1i.e., an opposite (by vector —T) translation of the coordinate system (Fig. 2.4).

The transformation r' = r + T does not change the Hamiltonian. This is evident for the poten-
tial energy V, because the translations T are canceled out, leaving the interparticle distances

.. . 9 do 9 __ 9x 0 __
unchanged. For the kinetic energy one obtains - = ) 574> = 55+ = a , and all the

o=X,y,2Z
kinetic energy operators (Egs. (2.2) and (2.3)) are composed of the operators having this form.

The Hamiltonian is therefore invariant with respect to any translation of the coordinate
system.

There are two main consequences of translational symmetry:

6 We do not include in this Hamiltonian tiny magnetic interactions of electrons and nuclei coming from their spin
and orbital angular momenta, because they are of relativistic nature (see Chapter 3). In Chapter V2-4 we will be
interested just in such small magnetic effects and the Hamiltonian will have to be generalized to include these
interactions.
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7 Ty

fxy)

Fig. 2.4. A function f shifted by vector T (symmetry operation 7A"), i.e., Tf (x,y) in the coordinate
system (x, y) is the same as function f (x', y’) in the coordinate system (x', y') shifted by —T.

» No matter whether the coordinate system used is fixed in Trafalgar Square or in the center
of mass of the system, one has to solve the same mathematical problem.

» The solution to the Schrédinger equation corresponding to the space-fixed coordinate sys-
tem located in Trafalgar Square is W,y, whereas Wy is calculated in the body-fixed
coordinate system (see Appendix J) located in the center of mass at Rcys that moves in
the space-fixed coordinate system with the (total) momentum pcjs. These two solutions
are related by7 V,n = Yoy exp(ipcm - Rey). The number N =0, 1,2, ... counts the
energy states after the center-of-mass motion is separated.

This means that the energy spectrum represents a continuum, because the center of mass
may have any (nonnegative) kinetic energy p% y/ (2m). If, however, one assumes that
pcum = const, then the energy spectrum is discrete for low-energy eigenvalues for atoms
and molecules (see Eq. (1.13)).

This spectrum corresponds to the bound states, i.e., those states which do not correspond to
any kind of dissociation (including ionization). Higher energy states lead to dissociation of
the molecule, and the fragments may have any kinetic energy. Therefore, above the discrete
spectrum one has a continuum of states. The states Wy will be called spectroscopic states.
The bound states Woy are square integrable, as opposed to W, y, which are not because of
function exp(ipR¢,,), which describes the free motion of the center of mass.

7 This follows from the separation of the center-of-mass motion (Appendix J) and noting that exp(ipcas - Rcar)
represents a solution for the motion of a free particle (Chapter 4).
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2.1.2 Invariance with respect to rotation

The Hamiltonian is also invariant with respect to any rotation in space U of the coordinate
system about a fixed axis. The rotation is carried out by applying an orthogonal matrix transfor-
mation® U of vector r = (x, y, 2)T that describes any particle of coordinates x, y, z. Therefore,
all the particles undergo the same rotation and the new coordinates are ' = Ur=Ur. Again,
there is no problem with the potential energy, because a rotation does not change the inter-
particle distances. What about the Laplacians in the kinetic energy operators? Let us see. We
have

k=1 k=1 k = i=1
225 (57 -
P e o dx; dxk ax} 0xk
3 3 3 3
9 3 5 -
220 Uzk)( Ujk>=ZZZ< k)( Uk>—
i=1 j=1k=1 <8 ’/ 8X; i=1 j=1k=I d l/ ox N
3 3 3
o))
ZZ 95/ UirUy
== <8xlf Bx} — J
3 3 2
d d ad
N 8[]: :A/
2350 ()~ Sty

Thus, one has invariance of the Hamiltonian with respect to any rotation about the origin
of the coordinate system. This means (see p. 665) that the Hamiltonian and the operator
of the square of the total angular momentum J? (as well as of one of its components,
denoted by fz) commute. One is able, therefore, to measure simultaneously the energy,
the square of the total angular momentum as well as one of the components of the total
angular momentum, and (as will be shown in Section 4.9) one has (r and R denote the
electronic and the nuclear coordinates, respectively)

J2Wy (r,R) = J(J + DE?Wy (r, R), (2.6)
J. Wy (r,R) = M;hVy (r,R), 2.7

where J =0,1,2...and My =—-J,—J +1,...+ J.

8 UTZU_I.
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Any rotation matrix may be shown as a product of “elementary” rotations, each about the

x, y, or z axis. For example, rotation about the y axis by angle 6 corresponds to the ma-
cosd 0 —sin6

trix 0 1 0 . The pattern of such matrices is simple: one has to put in some
sinf 0 cosé

places sines, cosines, zeros, and ones with the proper signs.” This matrix is orthogonal,'’ i.e.,

UT = U~!, which you may easily check. The product of two orthogonal matrices represents an

orthogonal matrix; therefore, any rotation corresponds to an orthogonal matrix.

2.1.3 Invariance with respect to permutation of identical particles (fermions and
bosons)

The Hamiltonian also has permutational symmetry. This means that if someone exchanged
labels numbering the identical particles, independently of how it was done, he/she would always
obtain the identical mathematical expression for the Hamiltonian. This implies that any wave
function has to be either symmetric (for bosons) or antisymmetric (for fermions) with respect

to the exchange of labels between two identical particles (cf. p. 39).

2.1.4 Invariance of the total charge

In addition to the energy, momentum, and angular momentum, strict conservation laws exist
exclusively for total electric charge and the baryon and lepton numbers (a given particle con-
tributes +1, the corresponding antiparticle —1).'! The charge conservation (whatever happens)
follows from the gauge symmetry: total electric charge conservation follows from the fact that
a description of the system has to be invariant with respect to the mixing of the particle and

antiparticle states, which is analogous to rotation.

Clockwise and counterclockwise rotations and two possible signs at sines cause a problem with memorizing the
right combination. In order to choose the correct one, one may use the following trick. First, we decide that what
moves is an object (e.g., a function, not the coordinate system). Then, you have to have this book in your pocket.
In Fig. 2.2a one sees that the rotation of the point with coordinates (1, 0) by angle 6 = 90° should give the point
(0, 1), and this is ensured only by the rotation matrix: ( C?S 6 —sinf )
sinf  cos6

10 And therefore also unitary (cf. Appendix A, p. 589).

1 For example, in the Hamiltonian (2.1) it is assumed that whatever might happen to our system, the numbers of
the nucleons and electrons will remain constant.
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2.1.5 Fundamental and less fundamental invariances

The conservation laws described are of a fundamental character, because they are related to the
homogeneity of space and time, the isotropy of space, and the nondistinguishability of identical
particles.

Besides these strict conservation laws (energy, momentum, angular momentum, permutation of
identical particles, charge, and baryon and lepton numbers), there are also some approximate
laws. Two of these, parity and charge conjugation, will be discussed below. They are rooted
in these strict laws, but are valid only in some conditions. For example, in most experiments,
not only the baryon number, but also the number of nuclei of each kind is conserved. Despite
the importance of this law in chemical reaction equations, this does not represent any strict
conservation law, as shown by radioactive transmutations of elements.

Some other approximate conservation laws will soon be discussed.

2.1.6 Invariance with respect to inversion — parity

There are orthogonal transformations which are not equivalent to any rotation, e.g., the matrix
-1 0 0

of inversion 0 —1 0 |, which corresponds to changing r to —r for all the particles,
0O 0 -1

does not represent any rotation. If one performs such a symmetry operation, the Hamilto-

nian remains invariant and |Wox (—r, —R)|> = |Won (r, R)|2. This is evident, both for 14 (the

interparticle distances do not change) and for the Laplacian (single differentiation changes

sign, double does not). Two consecutive inversions mean identity operation: Woy(r, R) =

exp(iar) Won (—r, —R) = [exp(ia)]*Won (r, R). Hence, [exp(i)]> = 1, exp(ir) = %1 and one

has

Yoy (—r, —R) = IYoy (r,R), where Il e {1, —1}.

Therefore,

the wave function of a stationary state represents an eigenfunction of the inversion op-
erator, and the eigenvalue can be either [1 =1 or Il = —1. This property is known as

parity (P).

Now the reader will be taken by surprise. From what we have said, it follows that no molecule
has a nonzero dipole moment. Indeed, the dipole moment is calculated as the mean value of the
dipole moment operator (as usual in quantum mechanics, see Postulate IV in Chapter 1), i.e.,
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n= <\IION |11\D0N> = <W0N| (Zl qi ri) lIf()N>, where g’s represent particles’ charges. This integral

12

will be calculated very easily: the integrand is antisymmetric with respect to inversion '~ and

therefore u = 0.

Is therefore the very meaning of the dipole moment, a quantity often used in chemistry and
physics, a fairy tale? If HCI has no dipole moment, then it is more understandable that also Hp
does not. All this seems absurd.

Let us stress that our conclusion pertains to the tofal wave function, which has to reflect the
space isotropy leading to the zero dipole moment, because all orientations in space are equally
probable. If one applied the transformation r — —r only to some particles in the molecule (e.g.,
electrons) and not to others (e.g., the nuclei), the wave function will show no parity (it would be
neither symmetric nor antisymmetric). We will introduce the Hamiltonian in Chapter 6, which
corresponds to immobilizing the nuclei (the adiabatic or Born—Oppenheimer approximation)
in certain positions in space, and in such a case the wave function depends on the electronic
coordinates only. This wave function may be neither symmetric nor antisymmetric with respect
to the partial inversion transformation r — —r (for the electrons only). To give an example,
let us imagine an HF molecule in a coordinate system, its origin being in the middle between
the H and F nuclei. Consider a particular configuration of the 10 electrons of the molecule;
all close to the fluorine nucleus in some well-defined points. One may compute the value of
the wave function for this configuration of electrons. Its square gives us the probability density
of finding this particular configuration of electrons. Now, imagine the (partial) inversion r —
—r applied to all the electrons. Now they will all be close to the proton. If one computes
the probability density for the new situation, one would obtain a completely different value
(much, much smaller, because the electrons prefer the fluorine, not the hydrogen), so we have
no symmetry or antisymmetry. No wonder therefore that if one computed u = (\IJON|;1\IJON>
with such a function (integration is over the electronic coordinates only), the result would differ
from zero. This is why chemists believe the HF molecule has a nonzero dipole moment.'? On
the other hand, if the molecule taken as the example were B, (also ten electrons), then the two
values have to be equal, because they describe the same physical situation. This corresponds,
therefore, to a wave function with definite parity (symmetric or antisymmetric), and therefore,
in this case g = 0. This is why chemists believe molecules such as H», B,, and O, have no
dipole moment.

12 Yoy may be symmetric or antisymmetric, but |lIION|2 is bound to be symmetric. Therefore, since D _; g;1; is
antisymmetric, indeed, the integrand is antisymmetric (while the integration limits are symmetric).
13 What therefore they do measure? The answer will be given in Chapter V2-4.
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Product of inversion and rotation

The Hamiltonian is also invariant with respect to some other symmetry operations, like chang-
ing the sign of the x coordinates of all particles, or similar operations which are products of
inversion and rotation. If one changed the sign of all the x coordinates, it would correspond to
a mirror reflection. Since rotational symmetry stems from space isotropy (which we will treat
as “trivial”), the mirror reflection may be identified with parity P.

Enantiomers

A consequence of inversion symmetry is that the wave functions have to be eigenfunctions of
the inversion operator with eigenvalues I'T = 1, i.e., the wave function is symmetric, or IT = —1,
i.e., the wave function is antisymmetric. Any asymmetric wave function corresponding to a
stationary state is therefore excluded (“illegal”). However, two optical isomers (enantiomers),
corresponding to an object and its mirror image, do exist (Fig. 2.5).'4

(b) ‘f’
(a) :E; (c)
L

9 mirror images °
(enantiomers)

Fig. 2.5. Example of chirality. (a) A molecule’s central atom with four different side groups (A, B, C,
and D) in a nonplanar configuration. (b) The same molecule after applying the inversion operation

(with respect to the central atom). (c) An attempt at superposing the initial and the transformed
molecules by rotation, to get matching, fails. (a) and (c) as well as (a) and (b) represent an example
of a pair of enantiomers. Each of these isomers, after reflection in a mirror (like, e.g., the central
atom-BC plane), becomes identical to its partner.

14 The property that distinguishes them is known as chirality (your hands are an example of chiral objects). The
chiral molecules (enantiomers) exhibit optical activity, i.e., polarized light passing through a solution of one
of the enantiomers undergoes a rotation of the polarization plane always in the same direction (which may be
easily seen by reversing the direction of the light beam). The enantiomeric molecules have the same properties,
provided one is checking this by using nonchiral objects. If the probe were chiral, one of the enantiomers would
interact with it differently (for purely sterical reasons). Enantiomers (e.g., molecular associates) may be formed
from chiral or nonchiral subunits.
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We ask in a pharmacy for D-glucose. Strangely enough, the pharmacist is fully cooperative and
does not make trouble. We pay a small sum and he gives us something which should not exist'”
— a substance with a single enantiomer. We should obtain a substance composed of molecules
in their stationary states, which therefore have to have definite parity, either as a sum of the
wave functions for the two enantiomers D and L (IT = 1, cf. Appendix D on p. 655, Case ),
i.e., ¥4 = ¥p + Y, or as the difference (I1 = —1), i.e., ¥v_ = yp — Y. The energies cor-
responding to ¥4 and i_ differ, but the difference is extremely small (quasidegeneracy). The
brave shopkeeper has given us something with the wave function = N (¢ +¥_) = ¥p (as
result of decoherence), which therefore describes a nonstationary state.'® As we will see in

a moment (p. 107), the approximate lifetime of the state is proportional to the inverse of the

integral <1ﬁD|I:I ¢L>. If one computed this integral, one would obtain an extremely small num-

ber.!” It would turn out that the pharmacy could safely keep the stock of glucose for millions
of years. Maybe the reason for decoherence is interaction with the rest of the Universe, maybe
even interaction with a vacuum. The very existence of enantiomers, or even prevailing of one
of them on Earth, does not mean breaking parity symmetry. This would happen if one of the
enantiomers corresponded to a lower energy than the other.'®

15
16
17

More exactly, should be unstable.

Only ¥+ and —_ are stationary states.

This is seen even after attempting to overlap two molecular models physically (Fig. 2.5), they do not match. The
overlap of the wave functions will be small for the same reasons (the wave functions decay exponentially with
distance).

This is what happens in reality, although the energy difference is extremely small. Experiments with S-decay
have shown that Nature breaks parity in weak interactions. The parity conservation law therefore has an approx-
imate character.

With no preference for any of the enantiomers, one of them may spontaneously increase its concentration until
100%, i.e., with a complete elimination of the other one (0%)! Is something like that possible at all? It seems it
contradicts common sense, since one of the enantiomers won, while the other lost, whereas their chances were
exactly equal!

This phenomenon occurs in reality if autocatalysis is involved. The key information is the following: in such a
system a large random and self-augmenting fluctuation is possible. Indeed, let us imagine just for simplicity 50
molecules of D and 50 molecules of L together with a certain number of molecules N (let us call them “neutral”),
with the following possible reactions (giving equal chances to D and L):

18

D+L— 2N
D+N— 2D
L+N—2L.

The last two reactions (of autocatalytic character) represent in fact inducing an enantiomer (“forcing chirality”)
through interaction of N with a molecule of a given enantiomer. No preference of D or L is assumed in this
induction. Nevertheless one of the enantiomers will defeat the other one! To explain this, let us assume that
the elementary reactions 1, 2 or 3 of the individual molecules form a random chain in time, like, for example,
1,2,2,3,1,3,.... If the chain starts by the first reaction, we have a situation similar to the starting one (49 : 49
instead of 50 : 50, in number of D:L molecules). If, however, the chain starts by chance from the second reaction,



The Schrodinger Equation 85

1000000000000 000000000000000(

REPUBLIQUE DS CUINES

5 a Poste Guinéenne 2008

=

=
lland @
(X XX N X|

0000000000000 00CF0

a

-
20000000000 0COCRROOOOOOO

d
9000000000000 00000

Chen Ning Yang (b. 1922) and Tsung Dao
Lee (b. 1926), American physicists, professors
at the Advanced Study Institute in Princeton,
predicted in 1956 parity breaking in the weak
interactions, which a few months later was
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confirmed experimentally by Madam Wu. In
1957 Yang and Lee received the Nobel Prize
“for their penetrating investigation of parity
laws, which led to important discoveries re-
garding elementary particles.”

2.1.7 Invariance with respect to charge conjugation

If one changed the signs of the charges of all particles, the Hamiltonian would not
change.

there will be a 51 : 50 preference of D, while when the third reaction takes place one will have 50 : 51 preference
of L. In the last two cases we have a deviation from the equal chances of two enantiomers (fluctuation). Suppose
we have the second case, i.e., 51 : 50 preference of D. Note that now, when continuing the reaction chain at
random, the chance for reaction 2 to happen is greater than the chance of reaction 3. It is seen therefore that
any fluctuation from an “equal-chances situation” has a tendency to self-augment, although there is always a
chance that the fluctuation disappears. The racemic mixture (with the important N molecules though) represents
therefore an instable system. Sooner or later there will be a transition (first mild but then more and more violent)
from racemate to the absolute prevailing of one of the enantiomers. Their chances were and are equal, but just
by chance one of them won.

Sometimes random processes may lead to large fluctuations. For example, Louis Pasteur was able to crystallize
the crystals of one enantiomer and the crystals of the other enantiomer from a racemic solution. This is possible
not only without Louis Pasteur, but also without any human, just spontaneously. Suppose that two such pieces
of crystals were created where the primordial life was to be started, and that afterwards a volcano explosion took
place, in which the volcanic lava covered (or even destroyed) one of the crystals, eliminating it from anything
that happened later on (e.g., the chiral induction during biological evolution). This simple argument, proposed
by Leszek Stolarczyk, is worth to be considered in discussions on how it comes that in living nature there is a
strong preference for one chirality.
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This therefore corresponds to exchanging particles and antiparticles.'” Such a symmetry oper-
ation is called the charge conjugation and is denoted as C symmetry. This symmetry will be
not marked in the wave function symbol (because, as a rule, we have to do with matter, not
antimatter), but we will remember it. Sometimes it may turn out unexpectedly to be useful (see
Chapter V2-5, p. V2-367). After Wu’s experiment, physicists tried to save the hypothesis that
what is conserved is the CP symmetry, i.e., the product of charge conjugation and inversion.
However, analysis of experiments with decay of K mesons has shown that even this symmetry
is approximate (although the deviation is extremely small).

2.1.8 Invariance with respect to the symmetry of the nuclear framework

In many applications the positions of the nuclei are fixed (clamped nuclei approximation, Chap-
ter 6), often in a high-symmetry configuration (cf. Appendix C, p. 605). For example, the
benzene molecule in its ground state (after minimizing the energy with respect to the positions
of the nuclei) has the symmetry of a regular hexagon. In such cases the electronic Hamilto-
nian additionally exhibits invariance with respect to some symmetry operations and therefore
the wave functions are the eigenstates of these molecular symmetry operations. Therefore, any
wave function may have an additional label: the symbol of the irreducible representation”” it
belongs to.

2.1.9 Conservation of total spin

In an isolated system the total angular momentum J is conserved. However, J = L + S, where
L and S stand for the orbital and spin angular momenta (sum over all particles), respectively.
The spin angular momentum S, being a sum over all particles, is not conserved.

However, the (nonrelativistic) Hamiltonian does not contain any spin variables. This
means that it commutes with the operator of the square of the total spin as well as with
the operator of one of the spin components (by convention the z component). Therefore,
in the nonrelativistic approximation one can simultaneously measure the energy E, the
square of the spin S2, and one of its components: S;.

19 Somebody thought he had carried out computations for benzene, but he also computed antibenzene. The wave

functions for benzene and antibenzene are the same.
20 Of the symmetry group composed of the symmetry operations mentioned above, see Appendix C.
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2.1.10 Indices of spectroscopic states

In summary, assumptions about the homogeneity of space and time, isotropy of space, and par-
ity conservation lead to the following quantum numbers (indices) for the spectroscopic states:

* N quantizes energy,

* J quantizes the length of total angular momentum,

* M quantizes the z component of total angular momentum,
« [I determines parity:

Wy s mn(r, R).

Besides these indices following from the fundamental laws (in the case of parity it is a little too
exaggerated), there may be also some indices related to less fundamental conservation laws:

» the irreducible representation index of the symmetry group of the clamped nuclei Hamilto-
nian (Appendix C),
« the values of S? (traditionally one gives the multiplicity 25 + 1) and S..

2.2 Schrodinger equation for stationary states

It may be instructive to see how Erwin Schrédinger invented his famous equation (1.13) for
stationary states ¥ of energy E (H denotes the Hamiltonian of the system),

Hy =Ev. (2.8)

Schrédinger surprised the contemporary quantum elite (associated mainly with Copenhagen
and Goéttingen) by a clear formulation of quantum mechanics as wave mechanics. January 27,
1926, when Schrodinger submitted a paper entitled “Quantisierung als Eigenwertproblem’”'
to Annalen der Physik, may be regarded as the birthday of wave mechanics.

Most probably, Schrodinger’s reasoning was as follows. De Broglie discovered that what peo-

ple called a particle also had a wave nature (Chapter 1). That is really puzzling. If a wave is

involved, then according to Debye’s suggestion at the November seminar in Zurich, it might be

possible to write the standing wave equation with i (x) as its amplitude at position x, i.e.,
&y

2 _
V5 + oty =0, (2.9)

2l Quantization as an eigenproblem. Well, once upon a time quantum mechanics was discussed in German. Some
traces of that period remain in the nomenclature. One is the “eigenvalue problem or eigenproblem,” which is a
German-English hybrid.



88 Chapter 2

Erwin Schrodinger (1887-1961), Austrian
physicist, professor at Jena, Stuttgart, Graz,
Breslau, Zurich, Berlin, and Vienna.

In later years Schrodinger recalled the Zurich
period most warmly, in particular, discussions
with the mathematician Hermann Weyl and the
physicist Peter Debye. In 1927 Schrodinger
succeeded Max Planck as the Chair of Theoret-
ical Physics at the University of Berlin, and in
1933 he received the Nobel Prize “for the dis-
covery of new productive forms of atomic the-
ory.” Hating the Nazi regime, he left Germany
in 1933 and moved to the University of Ox-
ford. However, homesick for his native Austria
he went back in 1936 and took a professorship
at the University of Graz. Meanwhile, Hitler
carried out his Anschluss with Austria in 1938,
and Schrodinger, even though not a Jew, could
have been an easy target as he had fled Ger-
many because of the Nazis. He emigrated to the
USA (Princeton), and then to Ireland (Institute
for Advanced Studies in Dublin), worked there
till 1956, and then returned to Austria, where
he worked at Vienna University until his death.
In his scientific work as well as in his personal
life Schrodinger did not strive for big goals;
he worked by himself. Maybe what character-
izes him best is that he was always ready to
leave having belongings ready in his rucksack.
Among the goals listed in the preface of this
textbook there is no demoralization of youth.
This is why I will stop here, limit myself to
the carefully selected information given above
and refrain from describing the circumstances
in which quantum mechanics was born. For
those students who read the recommendations
in the Additional Literature, I provide some
useful references: W. Moore, “Schrodinger:
Life and Thought,” Cambridge University
Press, 1989, and the comments on the book
given by P.W. Atkins, Nature, 341(1989),
also  http://www-history.mcs.st-andrews.ac.
uk/history/Mathematicians/Schrodinger.html.

ERWIN SCHRODINGER 1887-1961

REPUBLIKOSTERREICH

Schrodinger’s curriculum vitae found in
Breslau (now Wroclaw):

“Erwin Schrodinger, born on Aug., 12, 1887
in Vienna, the son of the merchant Rudolf
Schrodinger and his wife née Bauer. The family
of my father comes from the Upper Palatinate
and Wirtemberg region, and the family of my
mother from German Hungary and (from the
maternal side) from England. I attended a so-
called “academic” high school (once part of
the university) in my native town. Then during
1906-1910 I studied physics at Vienna Univer-
sity, where I graduated in 1910 as a doctor
of physics. I owe my main inspiration to my
respectable teacher Fritz Hasenohrl, who by
an unlucky fate was torn from his diligent stu-
dents — he fell gloriously as an attack comman-
der on the battlefield of Vielgereuth. As well
as Hasenohrl, I owe my mathematical educa-
tion to Professors Franz Mertens and Wilhelm
Wirtinger, and a certain knowledge of experi-
mental physics to my principal of many years
(1911-1920) Professor Franz Exner and my
intimate friend R.M.F. Rohrmuth. A lack of ex-
perimental and some mathematical skills ori-
ented me basically towards theory. Presumably
the spirit of Ludwig Boltzmann (deceased in
1906), operating especially intensively in Vi-
enna, directed me first towards probability the-
ory in physics. Then, (...) a closer contact with
experimental works of Exner and Rohrmuth
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oriented me to the physiological theory of col-
ors, in which I tried to confirm and develop
the achievements of Helmholtz. In 1911-1920 1
was a laboratory assistant under Franz Exner
in Vienna, of course, with a 4%—year—long
pause caused by war. I have obtained my ha-
bilitation in 1914 at the University of Vienna,
and in 1920 I accepted an offer from Max Wien
and become his assistant professor at the new
theoretical physics department in Jena. This
lasted, unfortunately, only one semester, be-
cause I could not refuse a professorship at
the Technical University in Stuttgart. I was
there also only one semester, because in April
1921 I came to the University of Hessen in
succession to Klemens Schrafer. I am almost

ashamed to confess that at the moment I sign
the present curriculum vitae I am no longer a
professor at the University of Breslau, because
on Oct. 15 I received my nomination to the Uni-
versity of Zurich. My instability may be recog-
nized exclusively as a sign of my ingratitude!”

Breslau, Oct. 5, 1921.
Dr Erwin Schrodinger

(Found in the archives of the University of Wroctaw
(Breslau) by Professor Zdzistaw Latajka and Pro-
fessor Andrzej Sokalski, translated by Andrzej Kaim
and the Author. Since the manuscript was hardly
legible due to Schrodinger’s difficult hand-writing,
some names may have been misspelled.)

where v stands for the (phase) velocity of the wave and w represents its angular frequency (w =
2mv, where v is the usual frequency) which is related to the wave length A by the well-known
formula®”

v=—. 2.10
w/ . ( )
Besides, Schrodinger knew from de Broglie, who had lectured in Zurich about this, that the
wave length A is related to a particle’s momentum p through A = i/p, where h = 27 h is the
Planck constant. This equation is the most famous achievement of de Broglie, and relates the
corpuscular (p) character and the wave (1) character of any particle.

On the other hand the momentum p is related to the total energy (E) and the potential energy
(V) of the particle through p? = 2m(E — V'), which follows from the expression for the kinetic
energy T = mTUZ = p2 /(2m) and E =T + V. Therefore, Eq. (2.9) can be rewritten as
2
% + %[2m(E — Wy =0.
The most important step towards the great discovery was the transfer of the term with E to the
right-hand side. Let us see what Schrodinger obtained:

@2.11)

(2.12)

22 In other words, v = % or A =vT (i.e., wave length is equal to the velocity times the period). Eq. (2.9) represents

2
an oscillating function ¥ (x). Indeed, it means that % and v differ by sign, i.e., if ¢ is above the x axis, then

it curves down, while if it is below the x axis, then it curves up.
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This was certainly a good moment for a discovery. Schrodinger obtained a kind of eigenvalue
equation (1.13), recalling his experience with eigenvalue equations in the theory of liquids.>”
What is striking in (2.12) is the odd fact that an operator _%dc;_?z amazingly plays the role of
the kinetic energy. Indeed, keeping calm we see the following: something plus potential energy,
all that multiplied by ¥, equals total energy times . Therefore, clearly this something must be
the kinetic energy! But wait a minute, the kinetic energy is equal to % From this it follows
that in the equation obtained, instead of p there is a certain operator ih% or —ih%, because

only then does the squaring give the right answer.

Would the key to the puz-
zle be simply taking the
classical expression for to-

Hermann Weyl (1885-1955), Ger-
man mathematician, professor at
ETH Zurich, then the University of

Gottingen and the Institute for Ad-
vanced Studies at Princeton (USA),
expert in the theory of orthogo-
nal series, group theory, and dif-
ferential equations. Weyl adored
Schrodinger’s wife, was a friend of
the family, and provided an ideal
partner for Schrodinger in conversa-
tions about the eigenvalue problem.

tal energy and inserting the
above operators instead of
the momenta? What was
the excited Schrodinger
supposed to do? The best
choice is always to begin
with the simplest toys, such
as the free particle, the par-

ticle in a box, the harmonic

oscillator, the rigid rotator,
or the hydrogen atom. Nothing is known about whether Schrédinger himself had a sufficiently
deep knowledge of mathematics to be able to solve the (sometimes nontrivial) equations re-
lated to these problems, or whether he had advice from a friend versed in mathematics, such as
Hermann Weyl.

It turned out that instead of p, —i h% had to be inserted, and not i h% (Postulate II, Chapter 1).

2.2.1 Wave functions of class Q

The postulates of quantum mechanics, especially the probabilistic interpretation of the wave
function given by Max Born, limit the class of functions allowed (“class Q”, or “quantum”).

Any wave function

» cannot be zero everywhere (Fig. 2.6a), because the system is somewhere in space;

2 Very interesting coincidence: Heisenberg was also involved in fluid dynamics. At the beginning, Schrodinger
did not use operators. They appeared after he established closer contacts with the University of Gottingen.
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(a) 1.0f (b) 1.0 (C) 1.0f
0.5 0.5 .S
NO NO NO
-2 -1 1 2 -2 -1 1 2 -2 -1 1 2
-0.5 -0.5 -0.5
-1.0 -1.0 -1.0

) I

Fig. 2.6. Functions of class Q (i.e., wave functions allowed in quantum mechanics) - examples and
counterexamples. A wave function (a) must not be zero everywhere in space; (b) has to be continuous;
(c) cannot tend to infinity even at a single point; and (d) cannot tend to infinity. (e,f,g) Its first
derivative cannot be discontinuous for an infinite number of points. (h,i) It must be square integrable,
and (j,k,I,m) it has to be defined uniquely in space (for angular variable 6).

» has to be continuous, (Fig. 2.6b); this also means it cannot take infinite values at any point
in space24 (Fig. 2.6¢,d);

24 If this happened in any nonzero volume of space (Fig. 2.6d) the probability would tend to infinity (which is
prohibited). However, the requirement is stronger than that: a wave function cannot take an infinite value even
at a single point (Fig. 2.6¢). Sometimes such functions appear among the solutions of the Schrodinger equation,
and they have to be rejected. The formal argument is that, if not excluded from the domain of the Hamiltonian,
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Fig. 2.6. (continued)

* has to have a continuous first derivative as well (everywhere in space except isolated points
(Fig. 2.6e,f,g), where the potential energy tends to —o0), because the Schrédinger equation
is a second-order differential equation and the second derivative must be defined;

«  has to have a uniquely defined value in space” (Fig. 2.6j,k,l,m);

o for bound states has to tend to zero at infinite values of any of the coordinates
(Fig. 2.6h,i,k,m), because such a system is compact and does not disintegrate in space; in
consequence (from the probabilistic interpretation), the wave function is square integrable,
ie., (V|¥) < oo.

the latter would be non-Hermitian when such a function was involved in < f |H g> = <I:I fl g>. A non-Hermitian
Hamiltonian might lead to complex energy eigenvalues, which is prohibited.

5 At any point in space the function has to have a single value. This plays a role only if we have an angular
variable, say ¢. Then, ¢ and ¢ + 2 have to give the same value of the wave function. We will encounter this
problem in the solution for the rigid rotator.
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2.2.2 Boundary conditions

The Schrodinger equation is a differential equation. In order to obtain a special solution to such
equations, one has to insert the particular boundary conditions to be fulfilled. Such conditions
follow from the physics of the problem, i.e., with which kind of experiment we are going to
compare the theoretical results. For example:

» for the bound states (i.e., square integrable states) we put the condition that the wave func-
tion has to vanish at infinity, i.e., if any of the coordinates tends to infinity, ¥ (x = o0) =
Y(x =—00)=0;

« for cyclic systems of circumference L, the natural conditions will be ¥ (x) = ¥ (x + L) and
Y’ (x) =¥/ (x + L), because they ensure a smooth matching of the wave function for x < 0
and of the wave function for x > 0 at x =0;

« for scattering states (not discussed here) the boundary conditions are more complex.’®

There is a countable number of bound states. Each state corresponds to eigenvalue E.

An energy level may be degenerate, that is, more than one wave function may correspond to it,
all the wave functions being linearly independent (their number is the degree of degeneracy).
The eigenvalue spectrum is usually represented by putting a single horizontal section (in the
energy scale) for each wave function:

Ej

An analogy
Let us imagine all the stable positions of a chair on the floor (Fig. 2.7).

Consider a simple chair, very uncomfortable for sitting, but very convenient for a mathematical
exercise. Each of the four legs represents a rod of length a, the “seat” is simply a square built of
identical rods, and the back consists of three such rods making a C shape. The potential energy
of the chair (in position i) in gravitational field equals mgh;, where m stands for the mass of
the chair, g is gravitational acceleration, and h; denotes the height of the center of mass with
respect to the floor. We obtain the following energies, E;, of the stationary states (in units of

mga):

26 JR. Taylor, “Scattering Theory,” Wiley, New York, 1972 is an excellent reference.
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Fig. 2.7. The stable positions of a chair on the floor. In everyday life we most often use the third
excited state.

»  The chair is lying on the support: Eg = %.

*  The chair is lying inclined, so the support and the seat touch the floor: E1 = %

» The chair is lying on the side: E, = % Note, however, that we have two sides. The energy is
the same for the chair lying on the first and second side (because the chair is symmetric), but
these are two states of the chair, not one. The degree of degeneracy equals two, and therefore
on the energy diagram we have two horizontal sections. Note how naturally the problem
of degeneracy has appeared. The degeneracy of the energy eigenstates of molecules results
from their symmetry, exactly as in the case of the chair. In some cases, one may obtain an
accidental degeneracy (cf. p. 233), which does not follow from the symmetry of an object
like a chair, but from the properties of the potential field, and is called dynamic symmetry.”’

» The chair is in the normal position: E3 = 1.

There are no more stable states of the chair and there are only four energy levels (Fig. 2.7).
The stable states of the chair are analogs of the stationary quantum states of Fig. 1.8a,b, on
p- 27, while unstable states of the chair on the floor are analogs of the nonstationary states of
Fig. 1.8c,d. Of course, there are plenty of unstable positions of the chair with respect to the
floor. The stationary states of the chair have more in common with chemistry than we might
think. A chair-like molecule (organic chemists have already synthesized much more complex
molecules) interacting with a crystal surface would very probably have similar stationary states
(Fig. 2.8).

27 See the original works C. Runge, “Vektoranalysis”, vol. 1, p. 70, ed. S. Hirzel, Leipzig, 1919, W. Lenz,
Zeit. Physik, 24(1924)197, and L.1. Schiff, “Quantum Mechanics,” McGraw Hill, 1968.
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Note that a chair made by a very impractical cabinet maker, a fan of surrealism (in our analogy
a strange chair-like molecule: just another pattern of chemical bonds, i.e., another electronic
state), will result in a different set of energy levels for such a weird chair. Thus, we see that the
vibrational levels depend in general on the electronic state.

crystal
surface

Fig. 2.8. A quantum mechanical analogy of the stable positions of a chair on the floor. A stiff molecule
Ci0Ho with the shape shown above, when interacting with a crystal surface, would acquire several
stable positions similar to those of the chair on the floor. They would correspond to some vibrational
states (the molecule would vibrate about these positions) of a given electronic state (“the same bond
pattern”), which in this analogy would correspond to the fixed structure of the chair.

2.2.2.1 Mathematical and physical solutions

It is worth noting that not all solutions of the Schrodinger equation are physically ac-
ceptable.

For example, for bound states, all other solutions than those of class Q (see p. 595) must be re-
jected. Also, the solution v, which does not exhibit the proper symmetry, even if [ |> does, has
to be rejected as well. In particular, such illegal, nonacceptable functions are asymmetric with
respect to the label exchange for electrons (e.g., symmetric for some pairs and antisymmetric
for others). Also, a fully symmetric function would also be such a nonphysical (purely mathe-
matical) solution. They are called mathematical, but nonphysical, solutions to the Schrodinger
equation. Sometimes such mathematical solutions correspond to a lower energy than any phys-
ically acceptable energy (in such a case they are called the underground states).
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2.3 The time-dependent Schrodinger equation

What would happen if one prepared the system in a given state {r, which does not represent a
stationary state? For example, one may deform a molecule by using an electric field and then
switch the field off.”® The molecule will turn out to be suddenly in state ¥, which is not its
stationary state. Then, according to quantum mechanics, the state of the molecule will start to
change according to the time evolution equation (time-dependent Schrédinger equation)

A 0
Ay =in??. (2.13)
ot

The equation plays a role analogous to Newton’s equation of motion in classical mechanics.
In Newton’s equation the position and momentum of a particle evolve. In the time-dependent
Schrédinger equation the evolution proceeds in a completely different space — in the space of

states or the Hilbert space (cf. Appendix B, p. 595).

Therefore, in quantum mechanics one has absolute determinism, but in the state space.
Indeterminism begins only in our space, when one asks about the coordinates of a parti-
cle.

2.3.1 Evolution in time

As seen from Eq. (2.13) knowledge of the Hamiltonian and of the wave function i at a given
time ¢t = 0 (left-hand side) represents sufficient information to determine the time derivative of
the wave function (right-hand side). This means that we may compute the wave function after
an infinitesimal time dt as follows:
A ' Ay =11 Sy
W+¥ f—‘ﬁ—% Ydr = +(_lﬁ) 1,

where we have set dr = ¢/N with N (natural number) very large. Thus, the new wave function
results from action of the operator [1 + (—i ﬁ)[fl ] on the old wave function. Now, we may
pretend that we did not change any function and apply the operator again and again. We assume
that H is time-independent. The total operation is nothing but the action of the operator

lim [14 (—i——) AV
—]— .
N—o0 Nh

Please recall that ¢* =limy_ oo[1 + %]N.

28 We neglect the influence of the magnetic field that accompanies any change of electric field.
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Hence, the time evolution corresponds to action on the initial ¢ of the operator
exp(— 1),

v = exp(—%ﬁ)w. (2.14)

uantit epris efined through the Taylor expansion e/ = +A+ A2+ ...
Quantity expA is defined through the Taylor exp A=14A+A%)2

Our result satisfies the time-dependent Schrodinger equation® if H does not depend on time
(as we assumed when constructing ¥").

30 31

Inserting the spectral resolution of the identity~" (cf. Postulate II in Chapter 1) one obtains

V() = exp(—i%mwa —0)= exp(—i%ﬁ) Z W) (Wl @)= (2.15)
=Y cuexp(—iT Elva), (2.16)

where ¢, = (¥, | (0)) are some time-independent coefficients. This is how the state ¢ (known
as wave packet) evolves. Note that the only time dependence is in the exp(—i%En) factors.
Function ¢ will be similar to one or another stationary state ,,, more often to those ¥, which
overlap significantly with the starting function [ (0)] and/or correspond to low energy (low
frequency). If the overlap (i, |¥ (0)) of the starting function ¥ (0) with a stationary state v, is
zero, then during the evolution no admixture of the i, state will be seen in ¥ (), i.e., only those
stationary states that constitute the starting wave function ¥ (0) contribute to the evolution of

V().
2.3.2 Time dependence of mechanical quantities

Let us take a mechanical quantity A and the corresponding (Hermitian) operator A. Let us
check whether the computed mean value (the normalization of the wave function i is assumed)

29 One may verify inserting v into the Schrodinger equation. Differentiating v’ with respect to ¢, the left-hand

side is obtained.

The use of the spectral resolution of the identity in this form is not fully justified. A sudden cut of the electric
field may leave the molecule with a nonzero translational energy. However, in the above spectral resolution one
has the stationary states computed in the center-of-mass coordinate system, and therefore translation is not taken
into account.

30

31 We used here the property of an analytical function f that for any eigenfunction 1, of the operator H one has

f (19 Y = f(En)Yy. This follows from the Taylor expansion of f (I:I ) acting on eigenfunction .
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A= <A> = <1// () |A Oy (t)) depends on time. The time derivative of <A> reads as (we use the

. g B
time-dependent Schrodinger equation Hy = ifi7;)

# ~ (i) +{n| 2alv)+ <w|§%w> -
<—%ﬁw|ﬁw>+<w|[%fi]w +<w|A(—%>ﬁw>=
o A¢|A¢>+<¢| [%A] z/f>— {widAv)=
i) (o] A~ 1 (wiadv) -
L]} o [24]5) =)+ (3

It is seen that

the mean value of a mechanical quantity in general depends on time through two com-
ponents: the first contains the mean value of the commutator [I:I , A] —HA - AH , the
second one represents the mean value of the time derivative of the operator (the Ehren-
fest theorem):

d<A> T 3 .
= (A A])+(5-A). 2.17
dr h <[ + <8t > @17
Thus, even if A does not depend on time explicitly (%A = (), but does not commute

with H , the expected value of A, i.e., <A), is time—dependent.32

32 Eq. (2.17) looks a bit suspicious. The quantity <% A) is certainly a real function as the mean value of a Hermitian
operator, but what about ‘ﬁ H, A|) with this imaginary unit i ? Well, everything is all right, because the operator
[I:I, A] is anti-Hermitian, i.e., <1//| [I:I, A] 1//> =— (I:I:I, A:| 1//|¢>. This, however, means that <1//| [I:I, A] 1//) =
- <w| [I:I, A] 1//>* and, therefore, for the complex number z = <1//| [I:I, A] 1//> = <[I:I, A]> we have z +z* =0.

Bl

Therefore, ([ﬁ A]> is necessarily an imaginary number of the type ib, with real b, and %([I:I A]) =1ijp=

-7 is for sure a real number.
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2.3.3 Mean energy is conserved

For any isolated system H # f(t), and when we take A = H, both terms are equal to zero and

we get @ =0.

The mean value of the Hamiltonian is conserved during evolution.

2.3.4 Symmetry is conserved

The time-dependent Schrddinger equation says the following: we have the wave function at
time t = 0 (i.e., ¥ (x,0)). If you want to see how it will look like at time ¢, you just have to

apply to function ¥ (x, 0) an evolution operator exp(—i %t) =U(t) and you get the answer:
U (1) (x,0) = ¥ (x, ). That s it!

There remains, however, a small problem: how will the function ¥ (x, t) be related to ¥ (x, 0)?
What kind of question is this? This will be in general just another function (well, it will,
however, preserve the normalization condition and the mean value of the energy). It is as if
somebody asked about evolution of an Arabian horse. It will preserve its weight (analog of
the normalization), and it will move with the same kinetic energy (analog of conserving to-
tal energy). Let us, however, consider some more subtle features. For example, is it possible
that at r = 0O, the horse is in a symmetric state,”> while after a while (action of U (1)) we get
an asymmetric state of the horse, like such one which has a tendency to bend its head to the
right?

Let us consider a symmetry operator R that commutes with H : RH = HR. Let us assume that
the initial state v (x, 0) exhibits a symmetry, i.e., satisfies the following equation:

ﬁw(x,O)zexp(ia)w(x,O), (2.18)

where « represents a certain real number.** The symmetry is guaranteed in such a case, because
the modulus of the transformed function (which decides about probability) does not change:

33 This means that the horse in its movements does not prefer its right (left) side with respect to its left (right) side.

This does not mean that taking a picture of such a horse results in a perfect symmetry on the picture. Such a
state means only that after taking very many such pictures and after superposing all of them to get one picture,
we see a perfectly symmetric creature.
34 If this symmetry operation means
* an arbitrary time-independent translation of the coordinate system, say along the x axis, we have o ~
Px (px means the x component of the momentum, see Appendix F on p. 665) and py represents a
constant of motion, i.e., does not change;
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|RY (x,0)] = [exp(ia)y (x, 0)] = |exp(ia)| - |¥ (x,0)| = 1 - [ (x,0)| = [y (x,0)|. This sym-
metry is characterized by the value of . What can we say about the symmetry of the final state?
Let us see.>> We have

~ A

Ry (x,1) = RU @)Y (x,0) = éexp(—i%z)w(x, 0) = exp(—i%z)ﬁz/f(x, 0) =

A A

exp(—i %t) exp(ia)y(x,0) =exp(ia) exp(—i %t}lﬁ(x, 0) =expio) ¥ (x,t).

Thus, the final state exhibits at any time ¢ the same symmetry (due to the same value of ), i.e.,

ﬁW(x,t) =exp(ia)y(x,1). (2.19)

Evolution in time can make the symmetry of the wave function neither appear nor dis-
appear. The symmetry is conserved.

2.3.5 Energy-time uncertainty principle

Besides the Heisenberg uncertainty principle (p. 41) there is another relation of this kind
connected with the time evolution of the wave function described by the time-dependent
Schrédinger equation. This new inequality is known as the energy-time uncertainty. It will
be derived below following Mandelshtam and Tamm.>®

The first ingredient will be the general Eq. (1.25) derived on p. 43,
1 A A
AA-AB = S[(VI[A, BIY)],
which pertains to two standard deviations AA and A B (errors of measurements of quantities A

and B), whereas A and B stand for the quantum mechanical operators corresponding to A and
B.

* an arbitrary translation on the time axis, we have o ~ E (E stands for the total energy) and E is also a
constant of motion;

¢ for an arbitrary rotation of the coordinate system, say, about the z axis, we have o ~ J; (J; denotes the
z component of the angular momentum, see Appendix F on p. 665) with J; as a constant of motion.

35 Note that from RH = HR also follows that Iéexp(—i%t) = exp(—i%t)lé (please recall the definition of

exp(—i %t) through the Taylor expansion).
36 LI Mandelshtam, I.E. Tamm, J. Phys. (USSR) 9(1945)249.
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Now, we choose as A the total energy E (i.e., A is identical to the Hamiltonian, A=H ), and
we assume that H does not depend on time. However, even if H does not depend on time, AE
may not be zero. This is because of Eq. (2.15), p. 97, where we have evolution of i in time:

V) =Y anexp(—iz Elv)

n

with ¢, = (¥, |¥(0)), and we see that the mean value of the energy is?’

E=(A)=(0Ov©) =YY crch expl—i (En = EnlEn (Gl = Y la E

n

Therefore, after noting that the coefficients ¢, do not depend on time, we see that in quantum
mechanics, for an arbitrary quantum state \r, only the mean value of energy (not energy E
itself) remains constant,”® so E = const. In other words, what we measure as energy will be in
general one of the E, values (according to Postulate IV, p. 29), with the probability of such a
measurement equal to |c, |2 (note that these probabilities are time-independent).

Now, what about the time dependence of the mean values <I§> of other quantities B, that do

not depend on time explicitly, i.e. = 0? Their mean values <1§> in general change in time,

* at
since from Eq. (2.17) we have

Bty (fa)-sfinaeo-ifins) e

Therefore, we have two cases:

A A d(B
. [H , B] =0, ie., H and B commute; therefore ( > =0 and < ) = const, i.e., the corre-
sponding mean values stay constant;

A A N R d(B TN
. [H, B] # 0, i.e., H and B do not commute; therefore Q = ’ﬁ<[H, B]> # 0, therefore

A

<B> vary in time.

In the first case AE - AB > 0, which means the measurement errors of energy £ and B can be
made arbitrarily small.

37 We have chosen {¥} as the orthonormalized complete set and v is ensured to be normalized.

d(A )
38 The same is seen also from Eq. (2.17). Indeed, we have Q = ‘yf =3z <[H H]> —|—< > 04 0 =0, which

means again E = const.
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In the second case, using Eq. (1.25) for A = H we have

AE-AB> ‘([H E]H 2\

(5]

Dividing (for the second case) both sides by —+ one gets

N —

AB h

AE-——=>—.
d(B> 2
dt

The quantity % has the dimension of time. It is the time that elapsed till the change of <1§>

d
reaches its singfe standard deviation (A B). We have

h
AE - Atg > > (2.21)

Note that here At does not represent any error in determining time. It is rather a time associ-

ated with recognizing that (1§> changes, because its change goes beyond its error bar AB. The

faster <l§> is changing, the shorter Atp needs to reach the change that amounts to A B. Among

all B, we have to choose the shortest Azp (let us denote it by A¢). Even for such choice of time
we should have

AE - At

v

NS

, (2.22)

which is known as the energy-time uncertainty principle. Its meaning, however, is fundamen-
tally different from the canonical position-momentum uncertainty of Heisenberg (At is not any
standard deviation of time).

Practical applications of the energy-time uncertainty are related to several distinct situations.
Their general feature is connected to time-dependent states i that evolve among smaller or
larger numbers of stationary states of different discrete energies. If their number is large/small,
also AE is supposed to be large/small and, from the energy-time uncertainty principle, it fol-
lows that At becomes small/large. A short At means a substantial departure from the initial
state going on. In this spirit one links a long or short lifetime Az of a system to its sharp or
diffuse energy distribution (A E). The expression (2.22), treated as equality, may be used as the
relation between the energy uncertainty A E and lifetime At of the system (Fig. 2.9).
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AE At~ Y2 4

energy

1 large AE — short lifetime

small AE — long lifetime

Fig. 2.9. The energy-time uncertainty principle.

2.3.6 Meditations at water spring

In chemistry one assumes (tacitly) that two molecules, say, a water molecule created in a chem-
ical reaction a millisecond ago and a water molecule from the Oligocene (i.e., created, say,
more than 23 millions years ago), represent identical objects. How could we know this?

In liquid water the molecules are subject to intermolecular interactions, which complicates
things. Let us consider the same molecules, but isolated in outer space. It is “generally believed”
that even a molecule created a millisecond ago (not speaking about one from the Oligocene)
had enough time to achieve the ground state via emission of photons. If this is true, we can
consider them as described by identical ground-state wave functions.

What about 1 femtosecond (10~ s) instead of one millisecond? Well, very probably the first
molecule would be in a nonstationary state®” and it would have no time for emitting photons.
These two molecules would be different (distinguishable).

Let us consider larger molecules, e.g., two molecules of hemoglobin in the interstellar space,
created by two different methods a femtosecond ago.*’ With the probability very close to 1,
these two molecules would be created in two different conformational states. Now, both states
evolve in time. Even if they would lower their energies and reach the same ground state by
emitting photons, this would take virtually an infinite amount of time due to the plethora of
kinetic traps (metastable conformations) on their trajectories within the configurational space.
These metastable conformations are separated by quite important energy barriers, difficult to
overcome. The hemoglobin molecules, unlike the water molecule, will in general have a long

39 Single vibration in molecule is a matter of femtoseconds.
40" This example looks surrealistic, but science relies on questions of the type “what if?”.
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memory of their initial states. Thus, we see that all systems evolve, but the evolution time spans
an incredibly large time scale.”’

Well, let us come back to water aggregates (treated as large molecules) formed by a net of
hydrogen bonds, like those in liquid water. As shown by Margarita Rodnikova the hydrogen
bond network in liquid water exhibits a kind of elastic properties,*” i.e., behaves like molecular
aggregates with some stability. What about the lifetime of such aggregates**? A contemporary
approach to this problem is just ignoring it or saying arbitrarily that liquid water has no memory.

It would be certainly more appropriate to leave the answer to experiment.**

2.3.7 Linearity

The most mysterious feature of the Schrodinger equation is its linear character. The world is
nonlinear, because the effect is never strictly proportional to its cause. However, if ¥{ (x, ¢) and
Y2 (x, t) satisfy the time-dependent Schrodinger equation, then their arbitrary linear combina-
tion also represents a solution.*

2.4 Evolution after switching a perturbation

Let us suppose that we have a system with the Hamiltonian HO and its stationary states WIEO),
which form the orthonormal complete set*®
A0y = gDy, (2.23)
0 E©
¥ (x,1) = ¢ (x) exp —~i——t ). (2.24)

where x represents the coordinates, and ¢ denotes time.

41 Think of a shell visible in a rock, or the rock structure itself. These structures have been created many millions

years ago, but evolve so slowly that we see them today.
42 ML.N. Rodnikova, J. Phys. Chem. (Russ.), 67(1993)275.
43 One has to define somehow the lifetime (“memory”). It could be, e.g., the relaxation time 7, after which the
root mean square deviation from the starting structure (in atomic resolution) exceeds, say, 1 A. If the structure
is stable, t is large and the memory of the molecular aggregate is also large.
Some water aggregates bound by the hydrogen bonds have for sure very large lifetimes. How can I know this?
Simply I have seen my footprints on the snow. They certainly represented nothing else but structures exist-
ing only because of the hydrogen bonds. These structures did not disappear in a femtosecond, but were there
for many hours. Interestingly, when the temperature was raised by a few degrees (above 0°C) my footprints
disappeared in an hour... Did they disappear instantaneously upon melting?
45 Tndeed, H (c1 Y1 + cav2) = ct Hyry + 2y = c1ih 500 4 ¢yin 202 — ipdlanditeaya),
46 This can always be ensured (by suitable orthogonalization and normalization) and follows from the Hermitian

44

character of the operator HO,
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Let us assume that at time ¢ = O the system is in the stationary state w,i?).

At t = 0 a drama begins: one switches on the perturbation V (x,¢), which in general
depends on all the coordinates (x) and time (¢), and after time t the perturbation is
switched off. Now we ask a question about the probability of finding the system in the
stationary state 1//(0).

After the perturbation is switched on, wave function xﬁ,(,,o) is no longer stationary and begins to
evolve in time according to the time-dependent Schrodinger equation (I:I O 4 \7) = ih%.
This is a differential equation with partial derivatives with the boundary condition ¥ (x, t =
0) = qb,&? ) (x). The functions { ,50) } form a complete set and therefore the wave function that
fulfills the Schrodinger equation v (x, ) at any time can be represented as a linear combination

with time-dependent coefficients c, i.e.,

Y=Y P (x.1). (2.25)

n=0

Inserting this into the left-hand side of the time-dependent Schrddinger equation one ob-
tains

(A0 +0)y =Y e (A0 +P)u® = e (B0 + V) 9.
n

n

whereas its right-hand side gives

(0) .
lh— = lhz |: ©_ acn :| = EZ[ (0) <_%Er(;0)) %50):| =
Z [ihw(o)_” + an(O)w(O)i|
"ot AR

n

Both sides give

Sabu® = (in% ) v

Multiplying the left-hand side by %50)* and integrating results in
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9
Z Cn Vi = mﬁ (2.26)

fork=1,2, ..., where

Vip = (¢,§°>|\7¢,§°>>. 2.27)

The formulae obtained are equivalent to the Schrodinger equation. These are differential equa-
tions, which we would generally like, provided the summation is not infinite.*’ In practice,
however, one has to keep the summation finite.*® If the assumed number of terms in the sum-
mation is not too large, then in the computer era solution of the problem is feasible.

2.4.1 Time-independent perturbation — the two-state model

For the sake of simplicity let us take the two-state model (cf. Appendix D, p. 655) with two
orthonormal eigenfunctions ‘¢§0 > =|1) and ’¢(0)> |2) of the Hamiltonian HO

4 0 0
A9 =EV 11 1+ EP 12) 2]
with the perturbation (to ensure V is Hermitian)

V=0l|l)2]+v*2) (1], (2.28)

. . . 0 v
with the corresponding matrix V = ( o0 )
This model has an exact solution (even for a large perturbation V). One may introduce various
time dependencies of V, including various regimes for switching on the perturbation.

The differential equations (2.26) for the coefficients ¢ (¢) and ¢ (¢) are (in a.u., wy; = Eéo) —
0
EY)
(ionit) =i dcy
cvexp (—iwyt) =i—,
2V exXp 21 Y

(Gwm1) .0c
C1V€EX L =1—.
jvexp (iwyi Y

47 In fact only then the equivalence to the Schrodinger equation is ensured.
48 This is typical for expansions into the complete set of functions (the so-called algebraic approximation).
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Now we assume that v is time-independent and the initial wave function is |1), i.e., ¢1 (0) =1,

¢2 (0) = 0. In such a case one obtains*’
1 .21 .
¢1(t) = exp(—i ~wn1) [cos(avt) i sm(avt)] , (2.29)
2 2av
i B! .
c(t) = ——exp(i Ea)zlt) sin(avt), (2.30)
a
where a = /1 + (%)2 Fig. 2.10 shows how the weights |¢;(¢)|*> and |c2(¢)|*> change in

time for various time-independent perturbation strengths. One may conclude, that a time-
independent perturbation is unable to switch completely the two states that differ in energy.
The switching is possible for the case of degeneracy only.

Two states — degeneracy

One of the most important cases corresponds to the degeneracy wr; = Eéo) — E 50) =0,
(Fig. 2.10a). One obtains a = 1 and

c1 (t) =cos(vt),
¢ (t) = —isin (vt).

A very interesting result. After applying symmetric orthogonalization (Appendix K), the func-
tions |1) and |2) may be identified with {p and i1 for the D and L enantiomers (cf. p. 84)
or, with the wave functions 1s, centered on the two nuclei in the H;r molecule. As one can see
from the last two equations, the two wave functions oscillate transforming one to the other with
an oscillation period T = 27” If v were very small (as in the case of D- and L-glucose), then
the oscillation period would be very large. This happens to D- and L-enantiomers of glucose,
where changing the nuclear configuration from one to the other enantiomer means breaking a
chemical bond (a high and wide energy barrier to overcome). This is why the drugstore keeper
can safely stock a single enantiomer for a very long time.”" This may not be true for other
enantiomers. For example, imagine a pair of enantiomers that represent some intermolecular
complexes where a small change in the nuclear framework may cause one of them to transform
into the other. In such a case, the oscillation period may be much smaller than the lifetime of
the Universe, e.g., it may be comparable to the time of an experiment. In such a case one could
observe the oscillation between the two enantiomers.

49 Use, e.g., Mathematica software. Let us check the conservation of normalization (i.e., its time indepen-
. 2 PN) W 2 12 ) 4?2 _
dence): |c1(¢)|” + |cp(2)|” = cos“(avt) + Qav)? sin“(avt) + -7 sin (avt) = cos”(avt) + 2av)? sin“ (avt) =
cos?(avt) + sin?(avt) = 1.
50

No longer, however, than the expiration date.
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(a) degeneracy (b) V= wyl4
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Fig. 2.10. The two-state model with the time-independent perturbation v. All panels show the time
dependence of |c(r)|* (dotted line) and [c2(¢)|? (thick line) according to Eqs. (2.29) and (2.30)
obtained for the initial conditions ¢1(0) =1 and ¢2(0) = 0. Panel (a) corresponds to the double
degeneracy of the energy level. Panel (b) is for the perturbation v much smaller than the energy gap
between the two energy levels (hwy1 = wy1 in a.u.). Panel (c) corresponds to perturbation v being
equal to the energy gap. No transition to state 2 takes place during the time evolution. Panel (d)
shows the same as panel (c), but for a larger perturbation (v = 2w21). As one can see, the gap does
not count much for a large perturbation v (one has to do with quasidegeneracy) and, therefore, we
have oscillations that practically (not exactly) resemble those shown in panel (a).

2.4.2 Oscillating perturbation — the two-state model

It is interesting what happens to the wave function as time goes on, when a perturbation varying
with time as exp(iwt) is switched on. Eq. (2.28) has to be modified to (the second term has an
exp(—iwt) time dependence to ensure the operator (2.31) is Hermitian)

V = v[exp(ior) |1) (2| + exp(—iwt) |2) (1]], (2.31)

with [1) = © and |2) = ¢”.
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Inserting such a perturbation into Egs. (2.26) results once again in Eqgs. (2.29) and (2.30), but
this time with replacing wy; — wy1 — w. Assuming function |1) as the starting one means
c1(0) =1, ¢3 (0) = 0 and therefore solution (2.32) takes the form
1 (w2 —w) |
c1(t) =exp| —i= (w21 —w)t || cos(avt) + i —————=sin(avt) |,
2 2av

o) = —i exp [11 (] — w) t] sin(avt),
a 2

where this time a =4/1 + (%)2 A numerical example is demonstrated in Fig. 2.11.

a 104~
|of? *
08 .

% resonance

[ g
06 . K w= (,()21

041 . Q

02f . .

(b) 10fws,

off-resonance
W= Y4 wy,

Fig. 2.11. The two-state model with the (time-dependent) oscillating perturbation of frequency w,
other parameters are as in Fig. 2.10b for a time-independent perturbation. At the start time t =
0 the coefficients ¢1(0) = 1 and ¢2(0) = 0 are assumed. The panels (a) and (b) show the weights
le1 ()7 (dashed line) and lea ()7 (solid line) as functions of time. Panel (a) pertains to the resonance
(w = w21) case, while panel (b) shows what happens for an off-resonance situation (in this case
® = 0.75 wy1). Note that only in the resonance case one obtains a full exchange of the two states
during oscillations.
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Two states — resonance case
For w = w7 (the energy of the photon matches the energy level difference) we obtain

c1 (t) =cos(vt),
cy(t) = —isin(vt), (2.32)

) Q)
1 2

i.e., the system oscillates between state , with period 27” and none of these

states is privileged®! (Fig. 2.11a).

and state

It is intriguing to see that for oscillating perturbation in the case of two levels of different
energies we got exactly the same behavior as in the case of ...degenerate levels! It looks
(Fig. 2.12) as if the two levels became indeed of equal energy (degeneracy) after the
resonance photon energy is counted to one of them depending on absorption or emission.

2.4.3 Short-time perturbation — the first-order approach

If one is to apply first-order perturbation theory, two things have to be ensured: the perturba-
tion V has to be small and the time of interest has to be small (switching the perturbation on
corresponds to + = 0). This is what we are going to assume from now on. At ¢t = 0 one starts
from the m-th state and therefore c¢,, = 1, while other coefficients ¢, = 0. Let us assume that
to the first approximation the domination of the m-th state continues even after switching the
perturbation on, and we will be interested in detecting the most important tendencies in time
evolution of ¢, for n % m. These assumptions (they give first-order perturbation theory>?) lead
to a considerable simplification of Egs. (2.26):

9
Vi = ih% fork=1,2...N.

51 Such oscillations necessarily mean that the energy of the system changes periodically: after time t = g—v the

system absorbs a photon of energy Awj, from the electromagnetic field, and then, again after 7, emits the same
photon, then again absorbs, emits, etc.; this scenario repeats periodically (excitations and deexcitations). Such
behavior is possible only because of a continuous supply of photons from the field given by Eq. (2.31). If the
system interacted with a single photon instead of the field (2.31), the excited state would change to the ground
state and the photon in the form of a spherical wave expanding to infinity (equal probability of detecting the
photon in any spot on a sphere). If we had only our system in the Universe and the Universe were limited by
a mirror, the photon would finally come back to the system, causing its excitation, then again emission, etc.,
similarly as in our solution. However, our Universe is not limited by a mirror and the photon spherical wave
would expand to infinity without finding any obstacle. There would be no chance for the photon to come back
and the atom would not be excited.

52 For the sake of simplicity we will not introduce a new notation for the coefficients ¢ corresponding to the

first-order procedure. If the above simplified equation were introduced to the left-hand side of Eq. (2.26), then

its solution would give ¢ accurate up to the second order, etc.
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Fig. 2.12. The two-state model in the time-dependent Schrodinger equation. In panel (a) it is shown
what happens when the two states correspond to the same energy (degeneracy) and the perturba-
tion is time-independent. It turns out (see the text) that the wave function oscillates in time between
two component states with the oscillation period 27”, where v represents the two-states coupling
constant. Panel (b) shows what happens for the wave function when the two states differ in en-
ergy (by hwz1), and the coupling between the two states oscillates with the frequency w (it is of the
form vexp(iwt)). For w = w1 (resonance) one has a very special behavior: the solution of the time-
dependent Schrodinger equation looks exactly as in the case of degeneracy (related to panel (a)). It
looks as if a degeneracy of the two states is achieved, after the lower state absorbs a photon of the
resonance energy hw,|.

In this, and the further equations of this chapter, the coefficients ¢, will depend implicitly on
the initial state m. The change of ¢, (¢) is therefore proportional to V. A strong coupling for
the expansion function 1//,50) (i.e., the system becomes a bit similar to that described by w,go))
corresponds to large values of the coupling coefficient Vj,,, which happens when function wlfo)
resembles function \71#,510) . This represents a strong constraint both for w,go) and V; only some

special perturbations V are able to couple effectively two states,’” such as w}EO) and w,ﬁ,o).

53 First of all, there must be something in V which influences the particles of the system, like, e.g., electric field
interaction with electrons of an atom. If the atom stays spherically symmetric, there is no coupling with the
field. Only making a shift of electrons we get some interaction, proportional to this shift. Therefore, roughly
speaking, V is in this case proportional to the shift x of the most weakly bound electron. Let us assume that

we start from w,(,,o) (describing this electron, we neglect the other electrons), which is a spherically symmetric

function. Therefore, &w,ﬁ?) ~ X - (spherically symmetric) and the most promising function %50) would be of

the py type, since only then the integral Vi, would have a chance to be nonzero. But still, if w,&lo) and 1//,50)
correspond to different energies, they have their phase factors multiplied in the integrand, which results in their

product oscillating in time with the frequency wy,, = (E ]EO) —E ,(,? )) /h. The only way to damp these oscillations
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The quantity Vj,, depends on time for two or even three reasons: firstly and secondly, the sta-

tionary states w,;o) and w,EO) do have a time dependence, and thirdly, in addition the perturbation

1% may also depend on time. Let us highlight the time dependence of the wave functions by in-
troducing the frequency

0 0
E}E)_E'(n)
h

Wrm =
and the definition

v = (67 1V 10).

One obtains

_r iogmt _ %
3. Vkm € o
Subsequent integration with the boundary condition cx (7 = 0) = 0 for k # m gives

T

c (1) = —% f dt Vi (1) €' (2.33)
0

The square of ¢ (t) represents (to the accuracy of first-order perturbation theory) the probabil-
ity that at time t the system will be found in state 1//,50). Let us calculate this probability for a
few important cases of perturbation V.

2.4.4 Time-independent perturbation and the Fermi Golden Rule

From Eq. (2.33) one has

T . .
i ; i e'@kmt — ] e'@kmt — 1
t
ck (T) = — < Vkm /dl e'mt = — —ypy——————— =~V —————. (2.34)
h / h iWkm horm

(making Vj,, having a substantial value for any ¢) is to use V, and therefore x, oscillating itself, preferably with
the same frequency to damp effectively. It is like to damp oscillations exp(i g, t) we have to have 1% oscillating
as exp(—iwy,t), because these factors when multiplied give no oscillations. The last conclusion is independent
of the nature of V. Therefore, even from such a simple reasoning, to change quantum states we have to use light
frequencies which match the difference of the corresponding energy levels.
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Now let us calculate the probability density Pk |cx|? that at time 7 the system will be in state
k (the initial state is m). We have

(—1+cos wkmt)2 + sin® wpm T (2 —2coswy,T) .

PE (7) = [vim|? T = [t T
m m
1 2 m 2 n
o |2 (4sin” £425) e |2i(sm )
m m
(o’ R ()

In order to undergo the transition from state m to state k one has to have a large vy, i.e., a large
coupling of the two states through perturbation V. Note that probability P,’,‘l strongly depends
on the time 7 chosen; the probability oscillates as the square of the sine when 7 increases, for
some 7 it is large, for others it is just zero. From Appendix E, p. 659 one can see that for large
values of T one may write the following approximation™* to P,f,,:

P (0) = o P58 (2 ) =

2nt 2nt
= ok 8 @1n) = T okl (B — E).

where we have used twice the Dirac delta function property that § (ax) = %

As one can see, Pn]j is proportional to time, which makes sense only because time 7 has to
be relatively small (first-order perturbation theory has to be valid). Note that the Dirac delta
function forces the energies of both states (the initial and the final) to be equal, because of the
time independence of V.

A time-independent perturbation is unable to change the state of the system when it
corresponds to a change of its energy.

A very similar formula is systematically derived in several important cases. Probably this is
why the probability per unit time is called, a little poetically, the Fermi Golden Rule’”:

FERMI GOLDEN RULE
Pk 2
wh= P @ e %3 (E«)) E<°)) (2.35)
T

54 Large when compared to 27 /wy,,, but not too large in order to keep the first-order perturbation theory valid.
55 E. Fermi, “Nuclear Physics,” University of Chicago Press, Chicago, 1950, p. 142.
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2.4.5 Oscillating perturbation and the Fermi Golden Rule

Let us assume a time-dependent periodic perturbation

V(x,t)=0(x)et.

Such a perturbation corresponds, e.g., to an oscillating electric field’® of angular frequency w.

Let us take a look at successive equations, which we obtained at the time-independent V. The
only change will be that Vj,, will have the form

Vi = (7 1V90) = vime! @ instead of - Vi = (179 = vime ",

The whole derivation will therefore be identical, except that the constant wg,, will be replaced
by wkm £ w. Hence, we have a new form of the Fermi Golden Rule for the probability per unit
time of transition from the m-th to the k-th state:

THE FERMI GOLDEN RULE
rk 2
wh =@ e %5 (E,EO) —EO ha)) . (2.36)
T

Note that V with exp(+iwt) needs the equality £ ,EO) +hw = E,S? ), which means that E ,EO) < E,(,? )
and therefore one has emission from the m-th to the k-th state. On the other hand, V with
exp(—iwt) forces the equation E ,EO) — ho = E,(,? ), which corresponds to absorption from the
m-th to the k-th state.

Therefore a periodic perturbation is able to make a transition between states of different
energy.

56 In the homogeneous field approximation, the field interacts with the dipole moment of the molecule (cf. Chap-
ter V2-4)

Vix,t)= V(x)eiiwt — _ﬁ,gezl:iwt’

where € denotes the electric field intensity of the light wave and /i is the dipole moment operator.
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Summary

The Hamiltonian of any isolated system is invariant with respect to the following transformations (oper-
ations):

* any translation in time (homogeneity of time);

* any translation of the coordinate system (space homogeneity);
* any rotation of the coordinate system (space isotropy);

e inversion (r — —r);

» reversing all charges (charge conjugation);

* exchanging labels of identical particles.

This means that the wave function corresponding to a stationary state (the eigenfunction of the Hamilto-
nian) also has to be an eigenfunction of the:

*  total momentum operator (due to the translational symmetry);

* total angular momentum operator and one of its components (due to the rotational symmetry);

* inversion operator;

e any permutation (of identical particles) operator (due to the nondistinguishability of identical parti-
cles);

« $%and S‘z operators (for the nonrelativistic Hamiltonian [p. 77] due to the absence of spin variables
in it).

Such a wave function corresponds to the energy belonging to the energy continuum.’’ Only after separa-
tion of the center-of-mass motion one obtains the spectroscopic states (belonging to a discrete spectrum)
Wy s.m.1 (r,R), where N =0, 1, 2... denotes the quantum number of the electronic state, J/ =0, 1, 2, ...
quantizes the total angular momentum, M;, —J < M; < J quantizes its component along the z axis,
and IT = =1 represents the parity with respect to the inversion. As to the invariance with respect to per-
mutations of identical particles, an acceptable wave function has to be antisymmetric with respect to the
exchange of identical fermions, whereas it has to be symmetric when exchanging identical bosons.

The time-independent Schrodinger equation H ¥ = E has been “derived” from the wave equation and
the de Broglie formula. Solving this equation results in the stationary states and their energies. This is the
basic equation of quantum chemistry. The prevailing weight of research in this domain is concentrated
on solving this equation for various systems.

The time-dependent Schrodinger equation H Y= ih%—"f represents the time evolution of an arbitrary
initial wave function. The assumption that translation in time is a unitary operator leads to preserving
the normalization of the wave function and of the mean value of the Hamiltonian. If the Hamiltonian
is time-independent, then one obtains the formal solution to the Schrédinger equation by applying the
operator exp(—%’ﬁ ) to the initial wave function. The time evolution of the stationary state qb,(,? ) is most
interesting in the case of suddenly switching on the perturbation V. The state is no longer stationary and
the wave function begins to change as time passes. Two cases have been considered:

57 Because the molecule as a whole (i.e., its center of mass) may have an arbitrary kinetic energy. Sometimes it

is rewarding to introduce the notion of the quasicontinuum of states, which arises if the system is enclosed in a
large box instead of considering it in infinite space. This simplifies the underlying mathematics.
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* time-independent perturbation and
* periodic perturbation.

Main concepts, new terms

atomic units (p. 74)

algebraic approximation (p. 106)
baryon number (p. 80)

bound state (p. 93)

charge conjugation (p. 85)
dipole moment (p. 82)

dynamic symmetry (p. 94)
enantiomers (p. 81)

energy-time uncertainty (p. 100)
Fermi Golden Rule (p. 113)
first-order perturbation theory (p. 110)
functions of class Q (p. 90)
gauge symmetry (p. 80)
invariance of theory (p. 80)
inversion (p. 81)

lepton number (p. 80)
mathematical solution (p. 95)
mirror reflection (p. 81)
molecular symmetry (p. 86)

periodic perturbation (p. 114)
physical solutions (p. 95)

rotational symmetry (p. 79)
Schrodinger equation (p. 87)

space isotropy (p. 79)

space homogeneity (p. 77)
spectroscopic state (p. 78)

spin conservation (p. 86)

stationary state (p. 87)

symmetry C (p. 86)

symmetry of the Hamiltonian (p. 72)
symmetry P (p. 81)

time evolution operator (p. 97)
time-independent perturbation (p. 112)
translational symmetry (p. 77)
two-state model (p. 106)

wave function evolution (p. 96)

wave function “matching” (p. 93)

From the research front

The overwhelming majority of research in the domain of quantum chemistry is based on the solution of
the time-independent Schrodinger equation. Without computers it was possible to solve (in an approxi-
mate way) the equation for H;’ by conducting a hall full of secretaries with primitive calculators for many
hours (what a determination). Thanks to computers, such problems became easy as early as the 1960s.
Despite enormous progress in computer science, until the end of the 1980s the molecules studied were
rather small when compared to expectations of experimentalists. They could be treated only as models,
because they usually contained some substituents theoreticians were forced to consider irrelevant. The
last years of the 20th century were marked by the unprecedented delivery by theoreticians of powerful
high-tech efficient tools of quantum chemistry to other specialists: chemists, physicists, etc., but also to
those who were not active in these field. The software computes millions of integrals and uses sophis-
ticated mathematics, literally the whole arsenal of quantum chemistry, but users need not know about
it. It is sufficient to make a mouse click on a quantum chemistry method icon.’® Despite such progress,

381 hope all students understand that a quantum chemist has to be equipped with something more than a strong
forefinger for clicking.
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the time-dependent Schrédinger equation is solved extremely rarely. For the time being, researchers are
interested mainly in stationary states. The quality of results depends on the size of the molecules inves-
tigated. Very accurate computations (accuracy ~ 0.01 kcal/mol) are feasible for the smallest molecules
containing a few electrons, less accurate ones use first principles (ab initio methods) and are feasible for
hundreds of atoms (accuracy to a few kcals/mol). Semiempirical quantum calculations®” of even poorer
accuracy are applicable to thousands of atoms.

Ad futurum

The numerical results routinely obtained so far indicate that, for the vast majority of chemical problems
(yet not all, cf. Chapter 3) there is no need to search for a better tool than the Schrodinger equation. Future
progress will be based on more and more accurate solutions for larger and larger molecules. The appetite
is unlimited here, but the numerical difficulties increase much faster than the size of the system. However,
progress in computer science has systematically opened new possibilities, always many times larger
than previous ones. Some simplified alternatives to the Schrodinger equation (e.g., such as described in
Chapter V2-3) will also be more important.

Laser it pulse and the dawn of new chemistry

Undoubtedly methods based on the time-dependent Schrédinger equation will also be developed.

The perturbation given by Eq. (2.31) leads in the resonance case to periodic oscillations given by

Eq. (2.32). This means that starting from the pure wave function v (x,0) = ’1&1(0)> = |1), after time

% = % we will get ¢ (x, %) = )1//2(0)> = |2), which is the pure upper state. The situation, however, con-

tinues to change and, after the next time section %, the system comes back to ¢ (x, T) = )w1(0)> =11),
etc. This coming back is, however, not always desirable.

Chemists are already aware (see Chapter V2-6, p. V2-495) that what some other chemists used to see
as chemical reaction products, is nothing else but reactants’ excited electronic state, which became sta-
bilized by some displacement of the nuclei (as the new ground state). This means that the traditional
chemistry might be replaced in the future by knowledge on how to excite the reactants by using laser
pulses in such a clever way that at the end one gets 100% pure products. Thus, the light may serve as
an additional reactant, applied in the form of a sum (superposition) of the precisely planned laser pulses.
These laser pulses would differ in frequency, intensity, polarization, duration, starting time, and time
profile. Their role will be to change the reactants’ wave function to the products’ wave function.

As a prototype of this kind of action, one may imagine such a laser pulse, that in the two-state model
transforms the lower-energy state to the higher-energy state with 100% yield (as the final result). To this
end let us construct a perturbation of Eq. (2.31) that provides a very special v as a function of time,
instead of a constant. The new v = vps(t), where s(¢) is the time profile, makes from the laser infinite

3 In such calculations many integrals are approximated by simple formulae (sometimes involving experimental
data), the main goal of which is efficiency.
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1.0} x pulse =

s(t)
0.5

VVUU UVV

coswt s(t)

-1.0

Fig. 2.13. A precisely tailored m pulse at the resonance frequency (transforming the initial stationary
state of the system to the desired finite stationary state) will represent a basis for the future state-to-
state chemistry.

wave (like cos wt) a finite laser pulse of the electric field (multiplication of the oscillatory function by a
bell-like profile® —~, Fig. 2.13). The role of the time profile is to ensure that the wave function changes

from the pure ‘1//1(0)> = |1) to the pure ‘1//2(0)> = |2) as it was before, but this time without any further

oscillations. The weights |c| (1)) and |c2(1)|? monotonically decrease and increase from 1 to 0 and from
0 to 1, respectively. Whatever the shape of s is, in order to have the 100% efficiency, one has to have®’

Lvol
h

s(t)dt = mr, which explains the name “m pulse.”
o0

Of course, the  pulse procedure will fail (forbidden transition) when vg = 0. This may happen because
of what is known in spectroscopy as selection rules®” (cf. Appendix C). However, in many cases the
7 pulse procedure is allowed by the selection rules, thus creating a possibility for steering structural
changes including chemical reactions, even chains of such reactions (by applying more complex laser
pulses). Fig. 2.14 shows how such a steering could be achieved even without any quantum mechanical
analysis (such an analysis made either a priori or a posteriori could be of great help anyway). The idea
is to establish a fast feedback between the laser pulse series parameters and the internal parameters of

60 The laser pulse time profile may have various shapes, e.g., it can be a single Gaussian function exp(—
t—1y
Iy

PRV
@ 0120) )
of width o and centered at #y or sin? (7 ) in the section [#, 7 7] (O elsewhere; 7 is the beginning and 7 ¢ the
end of the pulse), etc.

o0
61 More generally, % s(t)dt =2n+ 1)z forn =0, 1,2, ... also does the job of 100% transformation; see

P. Saalfrank, “Theoretis??ze Chemie I11: Dynamik und Spektroskopie,” Universitit Potsdam, 2008/2009, p. 83.

The selection rules follow ultimately from the conservation laws, which have to be satisfied (for allowed tran-
sitions) and cannot be violated (as would be the case in transitions that are forbidden). Technically, for the
forbidden transitions one gets a zero transition intensity, because of the symmetry properties of wl(o) and 1//2(0)
and/or lack of coupling between, e.g., the electric field of the electromagnetic wave and the system dipole mo-

ment operator (cf. Appendix C, p. 605).

62
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the neural network analyzer (or of another kind of optimization) in order to be able to keep improving
the set of the laser parameters.®’

starting parameters of the
laser pulse series

the laser pulse application

in the reaction
/ chamber

a corrected set
of the laser pulse spectral
parameters analysis of the
A product

\ 4

neural s o
product’s yield targe
network @ no F‘ sufficient? m"

learning

Fig. 2.14. Future laser chemistry with feedback.

How extensively could this future chemistry really be applied? Now I would like to ask my reader to give
a chance to a bit of fantasy. Around us we see a spectacle of wonders: plants, animals, humans, and their
functioning and interactions. This complicated world exists because plants are able to harvest photons
coming from the Sun in a sophisticated coupling of & pulses, electronic rearrangements, vibrational and
structural changes, and chemical reactions. What happens next is a masterpiece of Nature that leads to its
incredible wealth we see around. My writing and your reading would not be possible without photons.
Thus, no doubt, my friend, the steering by photons is feasible. We are only at the beginning of this
adventure.

It seems that at the essence of science is the fundamental question “why?” and a clear answer to this
question following from a deep understanding of Nature’s machinery. We cannot tell a student, “well,
this is what the computer says,” because it implies that the computer understands, but what about you
and me? Hence, interpretation of the results will be of crucial importance (a sort of Bader analysis, cf.
Chapter V2-3). Progress here seems to be rather modest for the time being.

Additional literature

R. Feynman, “The Character of Physical Law, Cox and Wyman,” Ltd, London, (1965).

The best recommendation is that the Feynman books need no recommendation.

63 The neural network approach belongs to what is known as artificial intelligence. Its idea is to couple a certain
number of input gates (of any nature) with a number of output gates (any input gate i connected with each
output gate j with a link of weight w; ;). A “learning procedure” based on some teaching examples results in the
successful set of w;; (with the necessary nonlinearity of such a procedure). This set can then be used to predict
the outputs for other examples.
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J. Ciostowski, in “Pauling’s Legacy: Modern Modelling of the Chemical Bond,” Elsevier, Theor. Com-
put. Chem., 6(1999)1, eds. Z.B. Maksi¢, W.J. Orville-Thomas.

A concise presentation of the symmetry requirements.

P. Saalfrank, ‘“Theoretische Chemie III: Dynamik und Spektroskopie,” Universitit Potsdam,
2008/2009.

A precise and clear presentation of molecular spectroscopy from the perspective of the time-dependent
Schrodinger equation.

Questions

1. The conservation laws in physics:
a. can be derived from invariance of the physical equations with respect to a symmetry operation.
b. Emmy Noether derived the conservation of energy from the homogeneity of time.
c. the conservation of angular momentum follows from the homogeneity of space.
d. the conservation of total momentum follows from the homogeneity of space.
2. In atomic units:
a. the Planck constant is assumed to be equal to 1.
b. the electron rest mass mq = 1, the electron charge is equal to 1.
c. the electron rest mass mo = 1, the electron charge is equal to —e = —1, % =1.
d. the electron rest mass mg = 1, the electron charge is equal to —e, where e =1, h=1.
3. For enantiomers A and B (A#B):
a. the interaction energy of AA is the same as BB and AB.
b. the interaction energy of A with a chiral molecule C is the same as that of B with C.
c. anonchiral molecule when interacting with a chiral molecule may become chiral.
d. one may create a chiral complex uniquely from some nonchiral molecules.
4. For functions of class Q:
a. if Y (x) € Q, then fj';o ¥* (x) ¢ (x) dx cannot be 0.
b. if ¥ (x) € O, then [T y* (x) ¢ (x)dx = 1.
c. ify(x) € Q, then [T y* (x) ¥ (x)dx < oo.
d. ify (x) € O, then [Ty (x)dx < 1.
5. For the time-independent Schrodinger equation H v =Ey:
a. H isthe operator of the total energy represents a Hermitian operator.

b. E and vy must be real.
c. Eisreal.

d [y Y @da=1.
6. For the time-independent Schrodinger equation H Yn = Epn:
a [T () Y (X) dx =S
one can choose such eigenfunctions of H that fj;o (x) A Ym (x)dx = E,Spm-

b
c. one can choose such eigenfunctions of H that are orthonormal.
d. if Ey # Ep, then (Y| m) =0.
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7. For the time-dependent Schrédinger equation HY = ihaa—‘f:
a. if H does not depend on time, its solution reads as ¥ (x, t) = exp(—i %t)lﬂ(x, t =0).
b. HU =i h% is satisfied, only if H does not depend on time.
any function ¥ (x, ) = Zn cn¥p exp(—i E—{Z), with the time-independent ¢, and v, satisfying
Hyr, = E, Yy, satisfies the time-dependent Schrodinger equation.

) _,

d. for any mechanical quantity A one has -~ = 5 <[ﬁ , A]>
8. In the two-state model (time-independent perturbation v, two orthonormal states with energy gap

w21):

a. atime-independent perturbation is unable to change the state of the system.

b. when the energy level is doubly degenerate, the period of the oscillation is T = %

c. when w1 =0, one gets oscillation between the two states.

d. for large and time-independent |v| as compared to w», one obtains a quasiresonance of the
two energy levels.

9. In the two-state model (oscillating perturbation v with frequency w, two orthonormal states with

energy gap wz1):

a. in case of resonance one obtains the same coefficients c1(¢) and c(¢) as in the case of degen-
eracy and the time-independent v.

b. the resonance appears at w = w»].

c. if w # wy) the starting wave function does not change in time.

d. at the resonance w = w1, the coefficients ¢ (¢) and c>(¢) do not change anymore.

10. The Fermi Golden Rule:

a. has been derived by Dirac.

b. pertains to the probability of changing the state due to perturbation applied.

c. a time-independent perturbation enables transition from the state of higher energy to a state
of lower energy.

d. atime-dependent periodic perturbation may change a state to another state of different energy.

Answers

labd, 2cd, 3cd, 4ac, Sac, 6bcd, 7ac, 8bcd, 9ab, 10abd






Beyond the Schrodinger Equation

The only reason for time is so that everything does not happen at once.
Albert Einstein

Where are we?

The problems considered in the present chapter are shown as a small side branch at the base of the
TREE.!

An example

Imagine yourself sitting with your friends in your brand-new luxurious red car made on your very special
order with an extravagant feature: unlimited speed.” The manual says proudly, its exclusive quantum
mechanical construction is based purely on the famous Schrodinger equation, in which ¢ = oco. Your
colleagues are sure your car is much better than the corresponding cheap relativistic model for everybody.
Well, it turned out recently® your nonrelativistic wonder car would be able to make only a unpleasant
sound indicating dead battery. The reason would be a large relativistic effect in the electric potential
difference between the lead electrode and the lead dioxide electrode. Your nonrelativistic battery would
attain only something like 20% of the voltage the relativistic battery your colleagues have in their cars.
Well, I presume you will enthusiastically agree with the author (together with millions of car drivers and
passengers all over the world), that indeed there is a need to abandon the nonrelativistic theory and quest
for a more accurate one.

Now, still another argument. Copper, silver and gold — many people would want to know everything
about them (especially about the latter). The yellow shine of this metal has hypnotized humanity for
centuries. Few people know that the color of gold, as calculated assuming infinite velocity of light,
would be silver-like.*

L' This chapter owes much to the presentation given by L. Pisani, J.-M. André, M.-C. André, E. Clementi,

J. Chem. Educ., 70(1993)894-901, as well as to the work of my friends J.-M. André, D.H. Mosley, M.-C. André,
B. Champagne, E. Clementi, J.G. Fripiat, L. Leherte, L. Pisani, D. Vercauteren, M. Vracko, Exploring Aspects of
Computational Chemistry: vol. I, Concepts, Presses Universitaires de Namur, p. 150-166 (1997), vol. II, Exer-
cises, Presses Universitaires de Namur, p. 249-272 (1997).

2 Of light.

3 R Ahuja, A. Blomqvist, P. Larsson, P. Pyykko, P. Zaleski-Ejgierd, Phys. Rev. Letters, 106(2011)18301.

4 p Pyykko, Chem. Rev., 88(1988)563; also P. Pyykko, ibid., 97(1997)597.

Ideas of Quantum Chemistry
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The Schrodinger equation fails especially for heavy elements. Here is an example of three diatomics:
Cup, Aga, At (Zeu =29, Zag =47, Zau =179).

Bond length (A) Cu Ag Au

Nonrelativistic calculations  2.26 2.67 2.90
Relativistic calculations 2.24 2.52 2.44
Experimental results 2.22 2.48 2.47

The heavier the element, the larger is the error of the nonrelativistic approach. This is a huge discrepancy
for such a quantity as bond length.

What is it all about?

A glimpse of classical relativity theory (» 4) p. 127

e  The vanishing of apparent forces

e The Galilean transformation

*  The Michelson—Morley experiment

*  The Galilean transformation crashes

*  The Lorentz transformation

* New law of adding velocities

*  The Minkowski space—time continuum
»  How do we get E =mc??

Towards relativistic quantum mechanics (> ¢) p. 144
The Dirac equation (» $X) p. 147

*  The electronic sea and the day of glory

*  The Dirac equations for electron and positron

*  Spinors and bispinors

e What next?

* Large and small components of the bispinor

*  How to avoid drowning in the Dirac sea

*  From Dirac to Schrodinger — how to derive the nonrelativistic Hamiltonian?
*  How does spin appear?

*  Simple questions

The hydrogen-like atom in Dirac theory (» ¢) p. 159

»  Step by step: calculation of the ground state of the hydrogen atom within Dirac theory

5 J.-M. André, M.-C. André, “Une introduction & la théorie de la relativité classique et quantique a l’'usage des
chimistes,” Namur, 1999, p. 2.
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Towards larger systems (> ¢) p- 166
Exploring beyond the Dirac equation... (» ¢X) p. 170

e The Breit equation
* A few words about quantum electrodynamics

The greater the velocity of an object, the greater the errors in Newton dynamics. Electrons have greater
velocity when close to nuclei of large electric charge.® This is why relativistic corrections may turn out
to be important for heavy elements.

The Schrodinger equation is incompatible with special relativity theory. This has to be corrected some-
how. This is far from being solved, but progress so far shows the Schrodinger equation, the spin of a
particle, etc., in a new light.

Why is this important?

The subject of the present chapter addresses the very foundations of physics, and in principle has to
be treated on an equal footing with the postulates of quantum mechanics. The Schrodinger equation of
Chapter 2 does not fulfill (as will be shown in the present chapter) the requirements of relativity theory,
and therefore is in principle “illegal.” In the present chapter, Dirac’s attempt to generalize the Schrodinger
equation to adapt it to relativity theory will be described. If one assumes that particle velocities are small
compared to that of light, then from this more general theory one obtains the Schrédinger equation. Also
the notion of spin, which was introduced as a postulate in Chapter 1, follows as a natural consequence of
the relativistic theory. One may draw the conclusion that the present chapter addresses to “the foundations
of foundations” and therefore should occupy a prominent position in the TREE, instead of representing
a small side branch (as it does now). However, the relativistic effects, even if visible in chemistry, do not
play an important role in the case of the light elements (almost the whole of organic chemistry as well as
almost the whole of biology). This is why I have chosen a rather pragmatic (“nonfundamentalist”) way
of presentation. This chapter is mainly for those readers who are interested in:

e “the foundations of foundations,”
*  very accurate calculations for small atoms and molecules,
* calculations for systems containing heavy elements.

What is needed?

*  The postulates of quantum mechanics (Chapter 1, necessary),

6 This is easy to estimate. From Appendix H on p. 683 it follows that the mean value of the kinetic energy of an
electron described by the 1s orbital in an atom of atomic number Z is equal to T = %Zz (in a.u.). On the other

hand, for a rough estimation of the electron velocity v, one may write T = '"TUZ This results in the expression
v = Z valid in a.u., while the velocity of light ¢ = 137.036 a.u. The largest Z known hardly exceeds a hundred. It
is seen, therefore, that if an atom with Z > 137 existed, then the 1s electrons would attain velocities exceeding the
velocity of light. Even if this calculation is nothing but a rule of thumb, there is no doubt that when Z increases a
certain critical Z value is approached (the so-called relativistic mass effect).
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* operator algebra (Appendix A, p. 589, necessary),
» vector and scalar potentials (Appendix G, p. 673, necessary).

Classical works

In 1881 the American physicist Albert Michelson and in 1887 Albert Michelson with Edward Morley
carried out some experiments showing that the speed of light is the same in the directions perpendicular
and parallel to the Earth’s orbit, i.e., the Earth’s orbital velocity did not change the speed of light with
respect to the Earth. The results were published in the American Journal of Science, 22(1881)120 under
the title “The Relative Motion of the Earth and the Luminiferous Aether” and ibid., 34(1887)333 (with
the same title). % In 1889 the Irish physicist George Francis FitzGerald made the conjecture that if all
moving objects were foreshortened in the direction of their motion, this would account for the strange
results of the Michelson—Morley experiment. This was published in Science, 13(1889)390 with the title
“The Ether and the Earth’s Atmosphere.” % The revolutionary special relativity theory (that explained
this in detail) was developed by Albert Einstein in an article entitled “Zur Elektrodynamik bewegter Kor-
per,” published in Annalen der Physik (Leipzig), 17(1905)891. % The article is based largely on the
ideas of the Dutchman Hendrik Antoon Lorentz, who independently of FitzGerald proposed the Lorentz
transformation (of space and time) in 1904. The transformation accounted for the contraction of moving
objects, as predicted by FitzGerald. The paper “Electromagnetic Phenomena in a System Moving with
any Velocity less than that of Light” was published in Proceedings of the Academy of Sciences of Amster-
dam, 6(1904)809. % The German mathematician Hermann Minkowski realized that the work of Lorentz
and Einstein could best be understood using a non-Euclidean space of the space and time variables. His
first paper on this subject was “Die Grundgleichungen fiir die elektromagnetischen Vorgdnge in bewegten
Korper,” published in Nachrichten der koniglichen Gesellschaft der Wissenschaften zu Gottingen (1908).
% The Soviet physicist Vladimir A. Fock derived the first relativistic wave equation for a particle (pub-
lished in Zeitschrift fiir Physik, 39(1926)226); then the German Walter Gordon did the same and also
published in Zeitschrift fiir Physik, 40(1926)117. Finally, a similar theory was proposed independently
by the Swede Oskar Klein in Zeitschrift fiir Physik, 41(1927)407. The Austrian Erwin Schrodinger also
derived the same equation, and this is why it is sometimes called “the equation with many fathers.” % A
more advanced quantum mechanical theory (for a single particle) adapted to the principles of relativity
was given by the British Paul Adrien Maurice Dirac in several articles in Proceedings of the Royal Soci-
ety A (London) entitled “The Fundamental Equations of Quantum Mechanics,” 109(1926)642, “Quantum
Mechanics and a Preliminary Investigation of the Hydrogen Atom,” ibid. 110(1926)561, “The Quantum
Theory of Radiation,” ibid. 114(1927)243, “The Quantum Theory of the Electron,” ibid. 117(1928)610,
and “The Quantum Theory of the Electron. Part I1,” ibid. 118(1928)351. % An extension of relativistic
quantum theory to many-electron problems (still approximate) was published by the American Gregory
Breit in Physical Review with the title “The Effect of Retardation on the Interaction of Two Electrons,”
34(1929)553, and then in two other papers entitled “Fine Structure of He as a Test of the Spin Interac-
tion of Two Electrons,” ibid. 36(1930)383 and “Dirac’s Equation and the Spin-Spin Interactions of Two
Electrons,” ibid. 39(1932)616. % In 1948 the Americans Richard Feynman and Julian Schwinger and
the Japanese Shinichiro Tomonaga independently invented quantum electrodynamics (QED), which suc-
cessfully combined quantum theory with the special theory of relativity and produced extremely accurate
results.

* sk ok
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3.1 A glimpse of classical relativity theory
3.1.1 The vanishing of apparent forces

The three principles of Newtonian’ dynamics were taught us in school. The first principle, that a
free body (with no acting force) moves uniformly along a straight line, seems to be particularly
simple. It was not so simple for Ernest Mach though.

Mach wondered how one recog-
Ermest Mach (1838-1916),

Austrian physicist and phi-
losopher, professor at the
of the first principle of Newton Universities of Graz, Prague,
dynamics is the following. First, and Vienna, godfather of
Wolfgang Pauli. Mach inves-
tigated supersonic flows. In
nate system x, y, z to the Uni- recognition of his achieve-
verse, and then remove from the ments the velocity of sound
in air (1224 km/hour) is
called Mach 1.

nizes that no force is acting on a
body. The contemporary meaning

we introduce a Cartesian coordi-

Universe all objects except one, to
avoid any interactions. Then, we
measure equal time intervals using a spring clock and insert the corresponding positions of the
body into the coordinate system (we are thus there with our clock and our ruler...). The first
principle says that the positions of the body are along a straight line and equidistant. What
a crazy procedure! The doubts and dilemmas of Mach were implanted in the mind of Albert
Einstein.

This Bern Patent Office employee also knew about the dramatic dilemmas of Lorentz, which
we will discuss in a moment. Einstein recalls that there was a clock at a tram stop in Bern.
Whenever his tram moved away from the stop, the modest patent office clerk asked himself
what the clock would show if the tram had the velocity of light. Other passengers prob-
ably read their newspapers, but Einstein had questions which led humanity on new path-
ways.

Let us imagine two coordinate systems (each in 1D): O “at rest” (we assume it inertial®)
while the coordinate system O’ moves with respect to the first in a certain way (possibly very

For Newton’s biography see Chapter 7.

That is, in which the Newton equation is satisfied. A coordinate system associated with an accelerating train is
not inertial, because there is a nonzero force acting on everybody in the train, while the acceleration with respect
to the train coordinate system is zero.
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Albert Einstein (1879-1955), born in Ulm
(Germany), studied at ETH, Zurich. He is con-
sidered by many as the greatest genius of all
time. As a teenager and student, Einstein re-
jected many social conventions. This is why he
was forced to begin his scientific career at a
secondary position in the Federal Patent Office.
Being afraid of his supervisor, he used to read
books hidden in a drawer (he called the drawer
the “Department of Physics”).

The year of his 26th birthday was particularly
fruitful (“miraculous year” 1905). He pub-
lished three fundamental papers: about relativ-
ity theory, about Brownian motion, and about
the photoelectric effect. For the latter, Einstein
received the Nobel Prize in 1921. After these 1933, because of menacing persecution due to
publications he was appointed professor at the his Jewish origin. Einstein worked at the In-
University of Zurich and then at the Univer- stitute for Advanced Study in Princeton in the
sity of Prague. From 1914 Einstein headed the USA. He died there in 1955. According to his
Physics Institute in Berlin, which was founded will, his ashes were dispersed over America
specially for him. He emigrated to the USA in  from the air.

complicated). The position of the moving point may be measured in O giving the number x
as the result, while in O’ one gets the result x". These numbers are related one to another (7 is

time) as follows:

X' =x+ f(@). 3.1)

If a scientist working in a lab associated with the coordinate system O would like to calculate
the force acting on the abovementioned point body, he would get a result proportional to the
acceleration, i.e., to %. If the same were done by another scientist working in a lab in O’,
then he would obtain another force, this time proportional to the acceleration computed as
% = % + ‘57{. The second term in this force is the apparent force. Such apparent forces
(from the point of view of an observer on the ground) one encounters in lifts, on a carousel,

etc.
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Let us note an important consequence: if one postulates the same forces (and therefore
the same dynamics) in two coordinate systems, f(¢) has to be a linear function (because
its second derivative is equal to zero). This means that a family of all coordinate systems
that moved uniformly with respect to one another would be characterized by the same
description of phenomena because the forces computed would be the same (inertial
systems).

Physics textbooks written in the two laboratories associated to O and O’ would describe all the
phenomena in the same way.

The linearity condition gives x” = x 4 vt. Let us take a fresh look of this equation: x’ represents
a linear combination of x and ¢, which means that time and the linear coordinate mix together.
One has two coordinates: one in the O coordinate system and the other in the O’ coordinate
system. Wait a minute! Since the time and the coordinate are on an equal footing (they mix
together), maybe one may also have the time (¢) appropriate for (i.e., running in) the O and the
time (¢) running in the O’ coordinate system?

Now follows a crucial step in the reasoning. Let us write in a most general way a linear
transformation of coordinates and time (the forces computed in both coordinate systems
are therefore the same):

x' = Ax + Bt,
t'=Cx + Dt.

First of all the corresponding transformation matrix has to be invertible (i.e., nonsingular),
because inversion simply means exchanging the roles of the two coordinate systems and of the
observers flying with them. Thus, one has

x = Ax' + Bt,
t= C_‘x’ + Dt/.

Next, A has to be equal to A, because the measurements of length in O and O’, i.e., x and x/,
cannot depend on whether one looks at the O coordinate system from O’, or at O’ from O.
If the opposite were true, then one of the coordinate systems would be privileged (treated in a
special way). This, however, is impossible, because the two coordinate systems differ only in
that O’ flies from O with velocity v, while O flies from O’ with velocity —v, but the space
is isotropic. The same has fo happen with the time measurements: on board O, i.e., ¢, and on
board O, i