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Preface

This volume is composed of six chapters covering both fundamental and
applied electrochemistry, as in previous monographs in this series.

The first chapter, by Krischer, provides a detailed analysis of oscilla-
tory processes that arise in the kinetics of certain electrode processes, for
example, in active to passive transitions involving oxide films and in H2

and small organic molecule oxidations. The origin of such periodic
phenomena in electrochemistry has remained obscure for some time.
(Why are steady states not simply attained?) The author gives a thorough
and mathematical treatment of the conditions required for onset of oscil-
lations, including, it is important to note, coupling with resistive elements
of experimental circuits and diffusion. Her review encompasses broader
aspects of periodic phenomena such as those currently being considered
in theories of transition between “order” and “chaos,” part of a new
paradigm in biology and cosmology.

Lasia, in the second chapter, offers a much-needed comprehensive
treatment of ac impedance (“impedance spectroscopy”) as applied to the
study of kinetics and mechanisms of electrode processes. He starts out
with the elements and fundamentals of the subject and develops case
studies for treatment of progressively more complex processes involving
coupling between activation and diffusion-controlled faradaic reactions,
also including pseudo-capacitative elements in parallel relations with the
ubiquitous double-layer capacitance. An extension to the study of electro-
chemical sorption of hydrogen into host cathode metals is also usefully
given. In a forthcoming volume, a second part of this review will be
published, covering practical applications, for example, in corrosion,
industrial electrolytic processes and battery electrochemistry.

Continuing on the fundamental side, Lefebvre, in Chapter 3, revisits
the problem of the significance of stoichiometric numbers in analysis of
mechanisms of multistep electrode processes. He considers both forward
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and backward directions of multi- (two or three) electron-transfer reac-
tions (e.g., as in Al deposition), and the participation of the associated
intermediates. This chapter illustrates the complexity of interpretations of
determined stoichiometric numbers and the limitations that arise in their
application to mechanism analysis.

Chapter 4 by Vijh is on the environmentally related topic of electro-
osmotic dewatering of clays. This subject encompasses interfacial elec-
trochemical and colloid science, and has important applications in
washing clay and sand, the treatment of ores and tailings, and dewatering
of brown coal and peat, as well as in dealing with liquors and wastes from
the electroplating and metal-finishing industries. Geotechnical applica-
tions also arise, for example, in the stabilization of soils in locations where
mudslides occur. Electrochemistry is involved through the high-area
double layers at colloid interfaces and in the provision of the high voltages
at the electrodes that drive the processes of electro-osmosis involved in
the “dewatering” phenomenon.

Magnetic effects in electrolytic processes have always held a special
if somewhat distant interest for electrochemists. In Chapter 5, by Fahidy,
an excellent account is given of the fundamentals of this topic and its
applications, through magnetohydrodynamics, to electrodeposition and
corrosion. Also treated is the basis of the electrolytic Hall effect, which is
essential for understanding how electrohydrodynamic forces act on mov-
ing ions in a magnetic field.

In industrial electrolytic processes, including metal electrodeposition
and preparation reactions, mass transfer and fluid flow are usually of
central importance, especially in scaleup from laboratory-scale experi-
mentation. In the final chapter of this volume, West and co-authors give
the essential aspects of computer analysis and modeling of such processes
in terms of fluid dynamics and mass transfer.

B. E. Conway, University of Ottawa

J. O’M. Bockris, Molecular Green Technology

Ralph E. White, University of South Carolina
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1

Principles of Temporal and Spatial Pattern
Formation in Electrochemical Systems

Katharina Krischer
Abt. Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4 - 6, D-14195 Berlin, Germany

I . INTRODUCTION

The vast body of literature on electrochemical oscillations has revealed a
quite surprising fact: dynamic instabilities, manifesting themselves, for
example, in bistable or oscillatory reaction rates, occur in nearly every
electrochemical reaction under appropriate conditions. An impressive
compilation of all the relevant papers up to 1993 can be found in a review
article by Hudson and Tsotsis.¹ This finding naturally raises the question
of whether there are common principles governing pattern formation in
electrochemical systems. In other words, are there universal mechanisms
leading to self-organization phenomena in systems with completely dif-
ferent chemical compositions, and thus also distinct rate laws?

Modern Aspects of Electrochemistry, Number 32, edited by B. E. Conway et al. Kluwer
Academic / Plenum Publishers, New York, 1999.
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2 Katharina Krischer

In general terms, the occurrence of self-organization phenomena is
tied to two conditions: The system has to be far from thermodynamic
equilibrium, and appropriate feedback mechanisms have to be present.

Obviously, in electrochemical experiments, the first condition is
almost always fulfilled. However, the requirement of appropriate feedback
mechanisms (i.e., appropriate nonlinear evolution laws) seems to consti-
tute a severe restriction on the possible reaction mechanisms that give rise
to pattern formation. From this point of view, it is astonishing that nearly
all electrochemical systems exhibit dynamic instabilities.

The progress achieved in understanding oscillatory behavior in vari-
ous electrochemical systems during the past decade has brought a common
framework to light. In most systems the occurrence of dynamic instabili-
ties is linked to the interplay of electrode kinetics, transport processes
occurring in the electrolyte, and the electrical circuit. Only the first one of
these “ingredients” of the oscillation mechanism depends on the elemen-
tary reaction steps occurring at the interface. In contrast, the other two are
determined by potentiostatic or galvanostatic control and cell design.
Thus, any attempt to understand the physical origin of the instability has
to take into consideration the complete electrochemical system. The
interfacial phenomena themselves have only limited effect on whether the
system has dynamic instability.

The important role that electric circuit plays in dynamic instabilities
was recognized a long time ago, and lately since the famous and much-
cited review article by Wojtowicz² appeared, electrochemical oscillators
have been divided into two categories: those described by “chemical
models” and those described by “electrical models.” In systems belonging
to the latter class, self-organization phenomena arise owing to the proper-
ties of all elements of the circuit, while in chemical models they are caused
exclusively by the properties of the electrode/electrolyte interface. Thus,
chemical models result from mass balance only, and hence the variables
are the concentrations of the reacting species and possibly the state of the
electrode. Electrochemical oscillators belonging to this class can be de-
scribed in exactly the same framework as oscillations in heterogeneous
catalysis*: The rate equations are derived from transport processes of the

*Exceptions here seem to be some metal dissolution reactions; see e.g., Ref. 3.
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reactants to (and possibly also from) the electrode; adsorption, reaction,
and desorption steps; as well as possible changes in the state of the
electrode surface. The electrode potential is kept fixed and thus reduces
to a parameter.

Frequently encountered mechanisms leading to the spontaneous oc-
currence of time-dependent reaction rates in heterogeneous catalysis can
be found in other review articles.4– 7 However, the relevance of chemical
models for explaining the physical mechanism of electrochemical oscil-
lators has been overestimated for a long time, and the hope of learning
much from heterogeneous catalysis about how oscillations arise in elec-
trochemical systems has not been fulfilled. In most cases where chemical
models were proposed in order to explain the temporal behavior of the
system, they were later proved wrong. At present, there are only a few
systems in which experimental results strongly suggest that the instability
is of chemical origin. Among these are iron dissolution from nitric acid 8 ,9

and the electrodeposition of Zn.10  Still debated is whether also the oxida-
tion of Si in acid fluoride solution falls into this category.11–14  However,
with one possible exception,3 the reaction mechanisms are not yet under-
stood for any of the possible candidates in this class.

In electrical models, the instability results from the interaction of the
characteristics of the electrode/electrolyte interface (i.e., the faradaic
impedance) with the additional “external” elements of the electric circuit
(i.e., electrode capacity, electrolyte) and the control device (i.e., a poten-
tiostat or galvanostat). Consequently, the differential equations governing
the temporal evolution of these systems are derived from charge as well
as mass balance. The double-layer potential thus constitutes a variable
evolving in time. All oscillators belonging to this class (which, as it seems,
is the overwhelming majority of the electrochemical oscillators) possess
a negative real faradaic impedance in a certain parameter region. That a
negative slope in the stationary current-potential curve can destabilize an
electrochemical system had been known for many decades. 8 However, it
is only recently and mainly due to work by Koper, partly in collaboration
with Sluyters and Gaspard, that the interplay of this electrical instability
with slow reaction steps or transport processes has been elaborated.15–17

Through this work, a simple model that accounts for surprisingly many
electrochemical oscillators revealed an unexpected wealth of different
dynamic behaviors. Meanwhile, a consistent picture of why and when
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electrochemical systems oscillate has been developed, which naturally
leads to a further division of electrical models into two subcategories,
according to the nature of the slow feedback process.18 –20

However, in spatially extended systems, self-organization in time is,
in general, accompanied by pattern formation in space. An understanding
of dynamic behavior is not possible without taking into account the spatial
degrees of freedom. The first hint that spatial structures may develop at
the electrode/electrolyte interface goes back as far as 1844,21  and intense
research on wave phenomena in electrochemical systems was carried out
during the first half of this century. It was initiated by Ostwald, who
recognized a close relation between electrochemical waves and nerve
impulse propagation.22 As we know today, at a certain level nerve impulse
propagation and chemical waves are in fact described by mathematically
equivalent equations.23 Bonhoeffer and Franck continued Ostwald’s
work.24 –31 They mainly studied activation pulses on iron wires. In view of
the fact that the modern concepts of nonlinear dynamics were not yet
developed, these remarkable experiments were ahead of their time. Pro-
gress in understanding spatial pattern formation had to await the formu-
lation of a theory for temporal self-organization and the development of
new techniques that imaged the electrode/electrolyte interface. Both have
been achieved only recently. Thus, at present, we are in a position to
elucidate the basic mechanism of spatial pattern formation.

The aim of this chapter is to provide a concise discussion of the
current understanding of basic principles governing temporal and spatial
behavior in electrochemical systems exhibiting dynamic instabilities. The
emphasis is on deriving a coherent picture of the theoretical description.
In doing so, a hierarchy is built up of models that successively describe
more complex behavior, starting with bistability in spatially uniform
systems and ending with complex spatiotemporal dynamics. Only electri-
cal models are considered. Furthermore, experimental examples were
chosen for detailed discussion only where the relation between experiment
and model is unambiguous.

Such an approach is neither compatible with a compilation of the
different dynamic behaviors found in one system, because for different
dynamic regimes different levels of the theoretical description are ade-
quate, nor can it cover all the different systems that exhibit instabilities.
Readers interested in an overview of oscillating systems are referred to
the exhaustive review article by Hudson and Tsotsis¹ or an even more
recent review article, which is not as comprehensive, by Fahidy and Gu. 32
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Another contemporary and noteworthy review article by Koper follows
yet another concept. 20 Koper first stresses the importance of the electric
circuit by evaluating, in a rigorous way, the stability of electrochemical
systems by frequency response methods. He then thoroughly discusses the
dynamics of selected examples, including some semiconductor systems,
which are not included in this chapter, with special emphasis on how they
relate to the frequency response theory.

The organization of this chapter can be summarized as follows:
Section II treats temporal models, which are adequate whenever the
system is uniformly parallel to the electrode. It starts with a description of
how bistable behavior arises in electrochemical systems. This constitutes
a comparatively old result. It is, however, thoroughly explained because
it forms the basis of the rest of the chapter. In Sections II.2 and II.3, two
distinct mechanisms are discussed that give rise to simple periodic behav-
ior. In each case, a prototype model is first introduced, which can be
regarded as a minimal model exhibiting the essential features of oscillators
of the respective class. Then, experimental examples that follow this
model are reviewed. Since the second type of oscillators is more complex,
the analysis of the experimental examples includes a discussion of more
realistic models as well as an analysis of the connection of the individual
terms of these “physical models” with the terms in the prototype model.
Section II.3 summarizes the extent of our knowledge for more complex
oscillations, which typically arise in any system belonging to one of these
two categories for certain parameter values.

Section III deals with spatial phenomena. The current state of theo-
retical description is given in Section III.1, and experimental results are
compiled in Section III.2. The organization of these two parts is analogous
to Section II, that is, first waves in bistable media are discussed and then
pattern formation in oscillatory media. Because the investigations of
spatial self-organization are still in their infancy, not all theoretical pre-
dictions have yet been experimentally verified, and many experiments
cannot yet be understood in terms of the underlying physical mechanisms.
Hence this section represents a first approach toward a coherent under-
standing of spatial structures, and a series of open questions is listed at the
end.

In the final section, a summary of what has been achieved so far in
the understanding of electrochemical self-organization is given.
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II. PRINCIPLES OF TEMPORAL PATTERN FORMATION

1. Bistability

As mentioned in the introduction, the electrical nature of a majority of
electrochemical oscillators turns out to be decisive for the occurrence of
dynamic instabilities. Hence any description of dynamic behavior has to take
into consideration all elements of the electric circuit. A useful starting point
for investigating the dynamic behavior of electrochemical systems is the
equivalent circuit of an electrochemical cell as reproduced in Fig. 1. The
parallel connection between the capacitor and the faradaic impedance ac-
counts for the two current pathways through the electrode/electrolyte inter-
face: the faradaic and the capacitive “routes.” The ohmic resistor in series with
this interface circuit comprises the electrolyte resistance between working and
reference electrodes and possible additional ohmic resistors in the external
circuit. The voltage drops across the interface and the series resistance are
kept constant, which is generally achieved by means of a potentiostat.

The current balance of the equivalent circuit readily leads to the
general differential equation for that kind of circuitry:

(1)

where C is the (double-layer) capacitance per unit area, A  is the area of
the capacitor (electrode), and Re is the sum of all (external) ohmic
resistances in series to the working electrode. φD L  denotes the potential
drop across the double layer, and U is the externally applied voltage. The
two terms on the left-hand side (lhs) arise from the two current pathways

Figure 1. General equivalent circuit
of an electrochemical cell with dou-
ble-layer capacitance C, faradaic im-
pedance ZF , series resistance (com-
prising ohmic cell resistance and ex-
ternal resistances) Re . U is the exter-
nally fixed voltage and φDL the poten-
tial drop across the double layer.
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through the electrode; the right-hand side (rhs) represents the current
through Re, which is equal to the total current through the cell.

The steady states of Eq. (1) [i.e., the solutions of Eq. (1) with dφDL/ dt
= 0] can be easily obtained graphically by plotting the characteristics of
the external circuit, the load line, and the current-potential characteristics
of the electrode/electrolyte interface in one graph [Fig. 2(a)]. Obviously,
intersections of both curves are steady states or fixed points of the system,
and from Fig. 2(a) it becomes immediately clear that whenever the
interfacial characteristic is N-shaped, Eq. (1) possesses three stationary
states in a certain range of U and Re.

When analyzing the stability of the steady states of the circuit, one
finds that a steady state, φ 0

DL , is stable, unless

(2)

where ZF denotes the (zero frequency) faradaic impedance. These condi-
tions have been known for a long time and are often discussed in the
literature.8,15,30,33 The first inequality expresses the fact that any unstable
stationary state has to lie on a branch with a negative differential resistance
(NDR) of the current-potential curve. The second inequality implies that
a steady state can only become unstable if the ohmic resistance of the
circuit is larger than the absolute value of the faradaic impedance of the
reaction.

Applying these stability criteria to the situation shown in Fig. 2(a), it
becomes apparent that whenever the middle branch is unstable (i.e., R >e

|Z F|), there are three fixed points, the two outer ones being necessarily
stable (because they lie on a branch with a positive slope). Hence a small
perturbation of the middle steady state will drive the system, depending
on the direction in which the perturbation occurred, to one of the outer
stationary states. This bistability manifests itself in a hysteresis when the
external voltage is varied [Fig. 2(b)]. The border of the bistable region is
formed by saddle-node bifurcations. In general, a bifurcation occurs if the
dynamic behavior of the system changes qualitatively. This is, for exam-
ple, the case if the number or the stability of stationary states or oscillatory
solutions changes. At a saddle-node bifurcation, the first of these cases
applies: two stationary states merge at the bifurcation point, disappearing
when the parameter is changed in one direction and separating when it is
changed in the other direction. In Fig. 2(a), a saddle-node bifurcation
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Figure 2. (a) N-shaped current-poten-
tial curve and load lines (resulting
from the external circuit) for three dif-
ferent values of the external voltage U.
The intersections of both curves are
steady states. The two outer load lines
mark the border of the bistable regime.
(b) Bistable region in a current vs.
external voltage plot referring to the
situation shown in (a). (c) Location of
the saddle-node bifurcation (separat-
ing monostable and bistable regions)
in the U/R e parameter plane. (sn =
saddle-node bifurcation)

corresponds to the degenerate case where the load line and current-poten-
tial characteristic coincide at two points, and the number of fixed points
changes from one to three.

For a given N-shaped current-potential characteristic, there are two
parameters that determine the bistable region, R e and U. In the U/R e

parameter diagram, this region becomes broader while shifting toward
larger values of U for increasing Re , irrespective of the electrochemical
reaction [Fig. 2(c)]. Below we will see that this feature is also encountered
in all more complicated electrical models that describe simple or complex
oscillatory behavior since all of them require an N-shaped polarization curve.

At this point, it appears to be useful to compile the assumptions that
have been implicitly made and which enable us to describe the dynamics
of the system by the evolution equation of the double-layer potential only.
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First, it has been supposed that the faradaic current instantaneously adjusts
to a change in the double-layer potential. This means that all other
quantities that affect the current, such as concentration of the reactive
species and the coverage of adsorbates, are assumed to vary on a time scale
that is much shorter than the time scale on which typical variations of the
potential occur. In other words, all other quantities are assumed to adjust
immediately to their equilibrium values and can be adiabatically elimi-
nated. Second, chemical instabilities have been excluded. In the presence
of chemical instabilities, the current is no longer a unique function of φDL,
and the state of the system is only defined when taking into account
another variable. The absence of chemical instability also implies that a
negative differential resistance can only be realized if the current-potential
characteristics of the interface exhibit the shape of an N (or multiple Ns)
as shown in Fig. 2(a). In contrast, an S-shaped characteristic, being just
one example of another characteristic possessing an NDR, would require
the existence of a chemical instability.

We now review the possible origins of N-shaped interfacial charac-
teristics that are, as we have seen, essential for the occurrence of instabili-
ties in Eq. (1) and also, as will be demonstrated below, in all other electrical
models. Several mechanisms leading to an N-shaped polarization curve
have been discussed in various places in the literature. They were collected
in a concise way by Koper,15 whose representation we follow here.

Generally, the reaction current can be expressed as

where n is the number of electrons involved in the charge-transfer process,
F is Faraday’s constant, A  is the available electrode area, k is the rate
constant, and c is the concentration of the reacting species at the electrode
(i.e., at the location of the reaction).* From the expression for the faradaic
impedance,

*We use the convention that reduction currents are taken to be negative and oxidation currents
positive.
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three origins for a negative differential impedance are possible: (1)
dA/d φDL < 0, (2) dk/dφDL < 0, and (3) dc/dφDL< 0. All three cases occur
in many examples in the literature.

1. The available electrode area decreases with increasing polariza-
tion if a potential-dependent adsorption of a species occurs that completely
inhibits the reaction and the extent of the adsorption increases with
increasing overpotential for the reaction. The most prominent example of
such an “electrode poisoning” is the formation of oxide layers in many
metal dissolution reactions. 34

2. The decrease of the electron transfer rate with increasing polari-
zation can have two different origins: It can be caused by adsorbates that
do not totally inhibit a reaction (in which case 1 would apply) but increase
the activation energy for the reaction. Extensively studied examples are
the reduction reaction of metal ions in the presence of organic agents.35–37

The negative sign of the potential dependence of the rate constant can also
be the result of the potential-dependent desorption of a catalyst. Examples
exhibiting this type of negative resistance are certain irreversible reduction
reactions at Hg that are made reversible in the presence of halides or
halidelike anions such as thiocyanate. 38–42 In these reactions, the role of
the anions is to considerably shift the polarographic wave toward the
reversible half-wave potential. The catalytic effect of these specifically
adsorbing halides is attributed to a surface reaction, such as complexation,
that assists electron transfer. For sufficiently negative potentials, the
anions become desorbed from the electrode, and the catalytic effect is lost.
In this context, the best-studied reactions are the reduction reactions of
In3+ and Ni2+to metallic In or Ni, respectively.

3. The decrease of the concentration of the electroactive species with
increasing potential has to be attributed to double-layer effects. As first
pointed out by Frumkin,43 in dilute solutions the electron transfer rate is
affected by variations of the potential in the double layer in two ways. The
potential in the outer Helmholtz plane, φ2 , is due to the extension of the
double layer not identical to the potential in the solution (at the end of the
double layer), φDL , so that the effective driving force of the reaction is
φD L – φ2 . Furthermore, the concentration of ionic reactants in the
reaction plane, c, is influenced by electrostatic effects and differs from
the concentration just outside the double layer, c0 , by a Boltzmann
term:
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(3)

where z is the (signed) charge number of the electroactive species. Hence,
dc/d φD L can become negative if cations (positive z) are oxidized positive
to the point-of-zero charge (pzc) (i.e., if the electrode is charged positively)
or anions are reduced negative to the point-of-zero charge at low ionic
strength. (For high ionic strength, φ2 becomes negligible.) There are
numerous examples of a negative differential resistance during anion
reduction and cation oxidation in the literature, many of which are
compiled in Ref. 44. The best known of these reactions is perhaps the
reduction of peroxodisulfate, studied primarily by Frumkin and his
school. 45,46

Although they appear evident, two points that are essential for the
further considerations are explicitly mentioned here. First, the finite series
resistance that is necessary to destabilize a steady state implies that the
double-layer potential (in this chapter always denoted as φDL ) differs
considerably from the externally fixed voltage U. We denote as poten-
tiostatic conditions operating conditions under which U is fixed but φDL,
as well as the current, may evolve in time. Systems in which the external
resistance can be neglected (and hence U ≡ φ DL) are called strictly
potentiostatic. [Obviously, in a strictly potentiostatic system, the double-
layer potential does not represent a variable that can vary with time
according to Eq. (1) but reduces to a parameter, and any instability in a
strictly potentiostatic system is of a chemical nature.] Second, recall
that the equivalent circuit describes a galvanostatic system for Re  → ∞
and U → ∞, and thus galvanostatic systems are naturally included in
the analysis.

Finally, before discussing oscillatory behavior, it is worth noting that
a circuit equivalent to that shown in Fig. 1 also arises in semiconductor
physics where a semiconductor device takes on the role of the faradaic
impedance and the other elements of the circuit are electronic ele-
ments. 47,48 Thus interesting parallels can be drawn between the dynamics
of electrochemical and semiconductor systems. Furthermore, stability
criteria derived for the latter can be directly applied to electrochemical
systems. This is especially interesting for the interaction of S- or Z- shaped
current-potential curves with the external circuit, which are not considered
here owing to the presence of chemical instabilities. 49
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2. Simple Periodic Oscillations of Type I: Negative Differential
Resistance Oscillators

(i) Prototype Model and Bifurcation Behavior

So far, it has been assumed that the dynamic behavior of the electro-
chemical system is determined by the temporal evolution of the double-
layer potential only. All other processes affecting the reaction rate were
considered to always be in equilibrium. However, oscillatory behavior
requires at least one additional degree of freedom. In the early literature
on electrochemical oscillations it was conjectured that slow transport of
electroactive species leads to slow variations in their double-layer concen-
tration, and that the latter thus provides the second variable, which in
connection with an N-shaped polarization curve, is sufficient to cause
oscillations of the current density. This suggestion has been corroborated
for cases in which mass transport is dominated by diffusion.39,42,50–56 It
was elaborated for a chemical model by Wojtowicz and Conway,53 who
treated the case of coupling between a diffusion-controlled process with
an electrosorption-oxidation reaction. A general mathematical formula-
tion of the electrical model and a detailed analysis of the dynamic behavior
are given by Koper.15 In this article, oscillators complying with this
mechanism are called negative differential resistance (NDR) oscillators.
First the prototype model of NDR oscillators and its dynamic properties
are introduced, and then some example experiments in which the charac-
teristics of the oscillator are clearly recognizable are discussed.

We consider here a situation where the mass transport of the elec-
troactive species may become rate determining, but all other processes
which control the current-potential characteristics can still adjust rapidly.
Thus, the concentration of the electroactive species, c, becomes time
dependent. Since we allow only for diffusion, its temporal evolution is
given by Fick’s second law [i.e., in the case of a planar electrode, by

with the diffusion coefficient D, and z the spatial
coordinate perpendicular to the electrode]. At the electrode (z = WE), the
concentration obeys Fick’s first law, At a certain
distance from the electrode, it is assumed that the concentration is at a
constant value, cb , its bulk value (constituting the second boundary con-
dition). The concept of the Nernst diffusion layer underlies this idea.

Obviously, we have to deal with a partial differential equation coupled
to our ordinary differential equation [Eq. (1)]. It can be easily shown that
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and

all stationary states are characterized by a linear concentration profile, but
all other solutions can only be obtained through tedious numerical calcu-
lations. However, the basic physical mechanism giving rise to the first
oscillatory instability is maintained when it is assumed that a linear
concentration profile across the diffusion layer adjusts instantaneously
(i.e., that the concentration profile rapidly relaxes to its steady-state
profile). In this case, the partial differential equation reduces to an ordinary
differential equation for the concentration at the electrode surface, and the
prototype equations for NDR oscillators read

(4a)

(4b)

where c now denotes the concentration at the electrode, D is the diffusion
constant, cb is the bulk concentration, δ is the thickness of the Nernst
diffusion layer, and the other symbols have the same meaning as earlier.
Equation (4a) is identical to Eq. (1). The two terms on the rhs of Eq. (4b)
describe the decrease in the concentration at the surface of the electrode
owing to the reaction, and its increase owing to diffusion from the bulk,
respectively. Note that the reaction term is proportional to 1/δ, while the
diffusion term is proportional to 1/δ². Hence, for thin diffusion layers,
which can be realized, for example, by high rotation rates when working
with rotating disk electrodes, replenishing of the concentration becomes
much faster than the consumption through the reaction; in this case, the
concentration in the double layer takes on its bulk value, and we are back
to the bistable system.

For further analysis of Eq. (4), it is advantageous to write the equa-
tions in dimensionless form. Transforming the variables according to

where R is the gas constant and T the absolute temperature, we obtain the
following differential equations:
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(5a)

(5b)

and

For a given k(φ DL), there are three parameters that determine the
dynamic behavior: ε, which describes the ratio of the time scales of
potential and concentration changes; U, the dimensionless external volt-
age; and ρ, the dimensionless external resistance. If k (φDL ) >> 1, diffusion
is the rate-limiting step while k(φ DL) << 1 indicates reaction control.

Conveniently, an investigation of the dynamic behavior of a set of
differential equations starts out with the determination of the fixed points
and their stability. The latter is studied by linearizing the system’s equation
about the steady state and then evaluating the temporal evolution of small
perturbations. Denoting the perturbations by δφDL and δc, in our case the
equations read:

whereby the fixed point is at (φss
DL, css). Solving a linear set of differential

equations is equivalent to calculating the eigenvalues and eigenvectors of
the Jacobian matrix J. The stability of the fixed point is then uniquely
determined by the signs of the eigenvalues of J. It is stable if all eigenvalues
are negative, and unstable if at least one eigenvalue is positive.

Generally, the eigenvalues depend on the system’s parameter and may
change their sign when a parameter is varied. Hence, a vanishing eigen-
value indicates a stability change in the stationary state (i.e., a bifurcation).
In this context, two bifurcations are of particular importance. At a saddle-
node (sn) bifurcation, one real eigenvalue becomes 0, and therefore also
the determinant of J. As mentioned in Section II.1, a saddle-node bifurca-

(6)
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tion is associated with the merging of two stationary states (a saddle and
a node) and hence signifies a multiplicity of steady states.

The second important bifurcation that is connected with a stability
change in a stationary state is the Hopf bifurcation. At a Hopf bifurcation,
the real parts of two conjugate complex eigenvalues of J vanish, and as
Hopf’s theorem57 ensures, a periodic orbit or limit cycle is born. A limit
cycle is a closed loop in phase space toward which neighboring points (of
the kinetic representation) are attracted or from which they are repelled.
If all neighboring points are attracted to the limit cycle, it is stable;
otherwise it is unstable (see Ref. 57). The periodic orbit emerging from a
Hopf bifurcation can be stable or unstable and the existence of a Hopf
bifurcation cannot be deduced from the mere fact that a system exhibits
oscillatory behavior. Still, in a system with a sufficient number of parame-
ters, the presence or absence of a Hopf bifurcation is indicative of the
presence or absence of stable oscillations.

The most important results of the linear stability analysis, Eq. (5), are
compiled. First, consider under what conditions the fixed points

of Eq. (5) are stable. A steady state is stable if Tr (J) < 0 and Det
(J) > 0, where Tr (J) is the trace and Det (J) the determinant of J, and thus
in our case if

(7a)

(7b)

and

The right-hand sides of both inequalities are always positive irrespective
of the values of the parameters [as k(φDL) > 0]. Hence, a steady state (ss)
with a positive slope in the current-potential characteristic,
> 0, is stable, independent of the value of the parameters.

On the other hand, depending on the resistance ρ and the ratios of the
time scales ε, steady states with a negative faradaic impedance can become
unstable. If Det (J) < 0, the stationary state is always a saddle point. From
Eq. (7b) it is evident that provided < 0, the determinant is
negative if the resistance ρ exceeds a critical value, ρcr. At this critical
value, Det (J) = 0, which is the condition for a saddle-node bifurcation.
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Hence, and not surprisingly, just as for the one-dimensional system (Eq.
1), Eq. (5) predicts a bistable behavior for a sufficiently large series
resistance.

However, Eq. (7) reveals that a steady state of the NDR oscillator [Eq.
(5)] can also undergo a Hopf bifurcation, which occurs if  Tr (J) = 0 and
Det (J) > 0. These conditions can be fulfilled if ρ is not too large [otherwise
Det (J) < 0] and ε is sufficiently small. Clearly, the first condition excludes
a Hopf bifurcation under galvanostatic conditions and in fact as becomes
clear later, oscillatory behavior is not possible under these conditions. As
mentioned, a small value of ε means that upon a perturbation of the steady
state, the potential reacts faster than the concentration.

The existence of oscillations can be illustrated in the φDL– c phase
plane (Fig. 3). The two lines represent the nullclines, that is, the solutions
of d φDL/dt = 0 (the φDL nullcline) and dc/dt = 0 (the c nullcline). Any
intersection of the nullclines is a steady state. If the φDLnullcline possesses
a negative slope at the steady state, as in Fig. 3, the vector component that

Figure 3. Nullclines of Eq. (5) for a parameter value at which a stable limit
cycle exists.
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defines the direction in which φ DL changes in the neighborhood of the
steady state points away from it (dφDL/dt > 0 to the left of the φDL nullcline
and d φDL /dt < 0 to the right of it). In contrast, the corresponding vector
component, defining the direction of concentration change, points toward
the steady state (dc/dt > 0 to the left of the c nullcline and dc/dt < 0 to the
right of it). For small ε, the change of φDL is much faster than that of c,
and it is easy to see that the destabilizing dynamics of φDL, together with
a small ε, result in oscillations. Starting close to (but not at) the steady
state, φDL rapidly increases at a nearly constant concentration until the
system has reached a point on the φDL nullcline. Now c slowly increases
(as on this part of the φDL nullcline dc/dt > 0) until the state of the system
reaches the end of the high-potential branch. Here a fast change of the φDL

dynamics sets in again, quickly leading the system to the low-potential
branch of the φDL nullcline on which c slowly decreases. Thus, the system
evolves toward the end of this branch, triggering a fast increase of φDL.

Figure 4. Two-parameter skeleton bifurcation diagram of the NDR oscillator model [Eq.
(5)] in the U/ρ parameter plane. Roughly, the locations of saddle-node (sn) and Hopf (h)
bifurcations divide the parameter plane into regions with monostable, bistable, and oscilla-
tory behavior, respectively.
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Consequently, the system again acquires a state on the upper branch, and
the game starts over.

The results discussed can be found in Fig. 4, where the oscillatory
and bistable parameter regions of Eq. (7) are depicted in the ρ/U parameter
plane. The bistable region, enclosed by saddle-node bifurcations, pos-
sesses exactly the same characteristics as the one-variable model: It has a
V-shaped form that opens toward high values of ρ and U [see Fig. 2(c)].
The curve of Hopf bifurcations encircling the oscillatory region loops
around the tip of the saddle-node V, extending toward values of ρ and U
lower than those of the bistable regime. At the left side of the V, the Hopf
bifurcation line runs very close to the saddle-node curve. In fact, the Hopf
curve ends at a point in the saddle-node curve where both bifurcations
coalesce. At this point, the Jacobian matrix possesses two eigenvalues with
a vanishing real and a vanishing imaginary part, representing a doubly
degenerate situation which is known as a Takens–Bogdanov (TB) bifur-
cation.

The interesting aspect of such higher degenerated bifurcations is that
in general, they possess universal dynamic behavior in their neighborhood,
which also involves global bifurcations that cannot be detected with a
simple linear stability analysis. The existence of global bifurcations can
be deduced from knowledge of the existence of a higher degenerate
bifurcation. For instance, the existence of a TB point ensures, besides the
existence of a saddle node and a Hopf bifurcation, the existence of a
so-called saddle-loop bifurcation. At this global bifurcation, there exists
one curve in phase space that starts and ends in a saddle point. The
formation of such a “homoclinic loop” generates or destroys a limit cycle.
Thus the complete two-parameter bifurcation diagram is much more
complex than Fig. 4 suggests. A detailed analysis15 revealed that it exhibits
qualitatively the same fine structure as the cross-shaped phase diagram
that is often found in chemical oscillators.58 As was shown by Guck-
enheimer, 59 its complete bifurcation structure is very intricate. However,
many bifurcations occur in a tiny parameter region so that it appears to be
very unlikely that the fine structure of the bifurcation diagram can be
resolved experimentally. From this point of view, the skeleton structure
shown in Fig. 4 contains the most important information.

At this point, it is worth noting that besides slow mass transfer, there
are other mechanisms conceivable that lead mathematically to equivalent
equations, and thus can be understood within the same framework. The
common feature of these mechanisms is that in the expression for the
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and

reaction current there appears a time-dependent quantity that does not
depend on the electrode potential. For example, consider a reaction that
takes place via an adsorbed state and let the adsorption process be slow17

but the mass transfer sufficiently fast that the concentration in front of the
electrode is nearly constant. A simple model complying with this mecha-
nism is described by the following dimensionless equations:

(8a)

(8b)

where θ is the coverage of the adsorbate and ka and kd denote the rate
constants for adsorption and desorption, respectively. All other symbols
have the same meaning as before. If desorption can be neglected, the
mathematical structure of Eq. (8) is equivalent to Eq. (5), yielding the same
bifurcation diagram.

(ii) Experimental Examples

It was pointed out earlier that oscillations in NDR oscillators are
linked to three features of the electrochemical system: (1) an N-shaped
steady-state polarization curve; (2) a resistance in series with the working
electrode, which must not be too large; and (3) a slow recovery of the
electroactive species, in most cases due to slow mass transport. Hence, for
every system that was discussed in the context of the possible origin of
N-shaped characteristics, conditions can be established under which stable
limit cycles exist, and for most of the systems mentioned, oscillations were
in fact observed. This unifying approach was first put forth by Koper and
Sluyters, and numerous experimental examples of electrochemical oscil-
lations that can be deduced according to this mechanism are discussed in
Ref. 60.

Here only a few examples are mentioned. There are many systems
described in the literature in which oscillations are connected with the
inhibition of a reaction by a (mostly organic) adsorbate. 35–37,60–62 An
impressive systematic study of oscillations during the reduction of Cu2+

on Hg in the presence of homologous alcohols, phosphonium halides,
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Table 1
Parameters of Current Oscillations Based on the Inhibited Charge

Transfer of Cu2 +/Cu0 (Hg) in the Presence of Different Types of
Inhibitors

Inhibitor

-E t r (di/dE)
without -E t r with without External cinhibitor

R (mV) R (mV) R (µA/V) R (kΩ) ƒ (s–1) (mol·dm–3)

C4 H9 OH 112 152 –5.9 30 1 0.3 cs
a

C5H11 OH 285 320 –2.4 30 3 0.1 cs

C6H13 OH 250 270 –7.8 30 1 0.2 cs

C 7H 15 OH 250 306 –2.8 30 1.3 7·10
C 8H17 OH 240 291 –4.0 30 0.2–0.3 2·10– 4

[(C 6H5)3 ·CH3·P]ClO4 350 438 100 0.3–0.5 2·10– 4

400 –8.55 80 2·10– 4

330 40 4·10– 4

[(C6 H
5

)
3
·C 2H5 ·P] ClO4 350 430 –7.85 100 0.3–0.5 2·10– 4

390 70

[(C4 H9 )4·P] ClO4 250 400 –20.35 40 1 2·10– 4

350 30 1

[(C4 H9
)4 ·N ClO4 300 410 –18.5 70 0.3 2·10– 4

410 60 1

[(C6 H5 )3 ·C 2 H5 ·P]Br 1300 1340 –36  50 0.15 2·10– 4

(C6 H5)2 ·C2H 5·PO 250 300 –15.99 50 0.2 2·10– 4

300 40 0.2
317 30 0.25

(C3H 7)2 ·C6H5·PO 285 350 –20 70 0.2 2·10– 4

(C4H 8)2·C6H5·PO 130 200 –98 60 0.2 2·10– 4

(C2 H5 )2 ·C6H5 ·PO 280 322 –3.97 30 1 4.6·10
– 3

(C8H17 ) 3 ·(CH3 )2 ·PO 250 291 –4.6 30 0.25...0.3310 – 4

Camphor (C10 H16 ) O  375 425 –33 30 0.25 2·10
– 4

Source: After H.-D. Dörfler, Nova Acta Leopoldina, NF 61 (268) 25–49 (1989), with permission of the
author and Leopoldina.

Notes: Transition potentials Et r with and without external resistance, increase di/dE of the dc po-
larographic i /E curves in the potential region di /dE < 0, oscillation frequency ƒ, inhibitor
concentration c. Acting inhibitors: alcohols, phosphonium salts, phosphine oxides, and camphor.
Supporting electrolyte: 0.1 mol 1–l H2SO4 .

a c  = concentration of saturation in mol·dm– 3
s .
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phosphine oxides, and camphor was published by Dörfler.61 A list of
conditions under which these inhibitors induce oscillations is reproduced
in Table 1.61 Though at the time the table was published, the connection
between an N-shaped current-potential characteristic, mass transport, and
the involvement of a series resistor was not yet clearly established, Dörfler
emphasizes that all of the systems exhibit a negative polarization slope
and that a series resistance is necessary for oscillatory behavior. Hence it
can be assumed that the oscillations follow exactly the mechanism out-
lined above.

For two systems, the reduction of S2 O2 –
8 and the reduction of In3+ in

the presence of SCN – at Hg, investigations of the dynamic behaviors of
the systems are detailed enough to allow a rough comparison of experi-
mental and predicted bifurcation behavior. Coinciding bifurcation dia-
grams are a much better indicator of whether a model correctly captures
the essential mechanistic steps than a comparison of the dynamic behavior
at isolated points in parameter space or of oscillation forms. These systems
are set out in more detail below.

Current oscillations during the reduction of multiply charged anions
for which the formation of passivating films could be excluded, such as

Figure 5. Current-voltage curves of a rotating Ag electrode in a solution containing
1 mM Na2S2O8 and 0.5 mM Na2SO4 (pH 5) at three different rotation rates, ƒ, of
the electrode: solid line, ƒ = 5 Hz; long dashed line, ƒ = 20 Hz; short dashed line, ƒ
= 40 Hz. (After Flätgen and Krischer.149 )

(a) Reduction of peroxodisulfate
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S2 O 2–
8 , PtCl

3–
4 , CrO2–

4 , Fe(CN)3–
6 , and S4O2–

6 at low ionic strength, became
famous through the work of Frumkin and his school.45,46,63 Negative to
the point-of-zero charge, the anions are electrostatically repelled. As
explained earlier, at low ionic strength, this gives rise to a negative
differential resistance. In accordance with the fact that this phenomenon
should be independent of the electrode material, oscillations were ob-
served for a variety of metal electrodes, such as Hg, Cu, Au, Pt, and Ag.
In a semiquantitative model based on equations such as Eq. (4), where the
potential φ2 [see Eq. (3)] was determined from the double-layer charge
density, the negative faradaic impedance according to Frumkin’s correc-
tion (see above) was indeed obtained and oscillatory as well as bistable
regions determined.56,64

Figure 6. Coexistence of stationary behavior (between 0 and 1.1 s) and
oscillations (from 2.4 s on) during the reduction of S2O2–

8 at a rotating
Pt electrode, rotation rate ƒ = 20 Hz. Between points a and b the system
was perturbed by enhancing the rotation frequency to about 150 Hz,
triggering the transition from the fixed point to the limit cycle. (After
Wolf et al. 56 with the kind permission of VCH Publishers.)
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Figure 7. Voltammograms of the In
3+

 reduction on an HMDE from
SCN– solution in the presence of an external resistor Re . (a) Re  = 10
kΩ , (b) Re  = 30 kΩ (Electrolyte: 9 mM In

3+
,  5 M NaSCN, pH 2.9, T

= 25 °C.) (From M. T. M. Koper, in Advances in Chemical Physics,
Vol. XCII, I. Prigogine and S. A. Rice, eds., Vol. 161, 1996. Copyright
1996, John Wiley & Sons, Inc. Reprinted by permission of John Wiley
& Sons, Inc.)

Figure 5 shows experimental cyclic voltammograms of the reduction
of S2 O2 –

8 at a rotating Ag electrode for three different rotation rates. For
high rotation rates, which correspond to a thin diffusion layer and hence
to a small value of δ in Eq. (4b), the system exhibits bistable behavior. The
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width of the bistable region becomes smaller and shifts toward more
positive voltages for decreasing rotation rates. Finally, for the slowest mass
transport, the system exhibits oscillations around the branch that has a
negative polarization slope. The dependence of dynamic behavior on the
rotation rate confirms the essential role of mass transfer in the emergence
of oscillatory instability. Furthermore, the experimental δ/U phase dia-
gram was reproduced in the above-mentioned model calculations.64

One of the rare experimental examples demonstrating the coexistence
of a periodic and a stationary solution is reproduced in Fig. 6. The data
were obtained during the reduction of S2 O

2 –
8 at a rotating Pt electrode. 56

Again, the results are in agreement with model calculations.56

(b) Reduction of In
3 +

in the presence of SCN –

The prototype model [Eq. (4)] was originally formulated for the
reduction of In3+ in the presence of SCN– on Hg,33 a system whose
dynamic behavior was thoroughly investigated, first by Tamamushi et
al. 65,66 and de Levie,39 and later in much detail by Koper, Sluyters, and

Figure 8. Line of Hopf bifurcations in the Re /U parameter plane for the In
3+

reduction on an HMDE from SCN–  solution. (Reprinted from M. T. M. Koper,
J. Electroanal. Chem. 409, 175–182, 1996, with kind permission from Elsevier
Science, Lausanne, Switzerland.)
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Gaspard.42,60,67,68 In Fig. 7 two cyclic voltammograms of the In3+/SCN–

system are displayed. The two curves manifest the influence of the series
resistance discussed: The upper voltammogram, in which a small external
resistance is connected in series to the working electrode, exhibits oscil-
latory behavior. Note that the oscillations again occur on the negative
branch of the current-voltage curve, as is typical for NDR oscillators. If a
larger series resistance is used, the oscillations become transformed into
bistable behavior [Fig. 7(b)]. Figure 8 displays the experimentally deter-
mined location of the Hopf bifurcation in the Re/U parameter plane. The
Hopf bifurcations lie on a loop whose orientation closely resembles that
of the calculated bifurcation diagram (see Fig. 4).

3. Simple Periodic Oscillations of Type II: Hidden Negative
Differential Resistance Oscillators

(i) Prototype Model and Bifurcation Behavior

As discussed in the preceding section, a characteristic feature of NDR
oscillators is that they possess only one potential-dependent process, the
electron transfer reaction. Systems of this class oscillate under poten-
tiostatic but not under galvanostatic conditions. When a sufficiently large
series resistance is present, the oscillations occur in the current-voltage
curve around a branch with a negative slope in the steady-state polarization
curve. Another class of electrochemical oscillators is known whose
mechanism involves two different potential-dependent processes. These
systems also oscillate under galvanostatic conditions, and the oscillations
appear around a branch of the steady-state polarization curve having a
positive slope. However, it turns out that under certain conditions, also in
this type of oscillator, the charge-transfer rate, k (φDL), decreases with
increasing potential, and hence dk (φDL)/dφDL < 0. The presence of the
second potential-dependent process ensures that the slope of the steady-
state polarization curve in the region where the oscillations occur becomes
positive. Koper and Sluyters17 used the expression “hidden” negative
charge-transfer resistance to characterize the faradaic impedance behav-
ior. In this chapter we use this term and name this class of oscillators
hidden negative differential resistance (HNDR) oscillators.

First a prototype model of HNDR oscillators is introduced in which
special emphasis is put on the essential mechanistic features of such
oscillators. Thereafter, emphasis is transferred to two especially transpar-
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and

and

ent experimental examples—the oxidation of hydrogen in the presence of
certain electrosorbing cations and anions, and the oxidation of formic acid.

In order to derive the prototype model, consider the following situ-
ation. Assume that an electrolyte contains two species, the electroactive
species, E, which is either oxidized or reduced, and a second species, P,
with a potential-dependent adsorption isotherm. Furthermore, suppose
that the isotherm of P is such that the coverage decreases with increasing
overpotential for the conversion of E, and that the reaction rate of E
decreases with increasing coverage of P. For the moment, this mechanism
might appear somewhat artificial, but in fact as is demonstrated later, there
are many electrochemical oscillators that operate in an analogous way.
The following set of equations represents the simplest formulation of this
mechanism:

(9a)

(9b)

the deviation of the actual coverage from its equilibrium value, and the

For further analysis, we rewrite the equation in a dimensionless form.
Using the following transformations

the equations read:

where θ denotes the coverage of species P and θ0 (φDL) the potential-
dependent equilibrium value of θ. Thus the term [θ0 (φDL) – θ ] represents

rate constant kP determines how fast the coverage relaxes to its equilibrium
value. Equation (9a) coincides with Eq. (4a) with one exception: The
reaction current is proportional to the (time-dependent) free adsorption
sites per unit area (1 – θ). Note that k (φDL) in Eq. (4a) has been termed
kE (φDL) here.

(10a)

(10b)
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and

(11b)

(11a)

with the ratio of the time scales ε = (CRTkp) / (n2 F2 k0) and the dimension-
less resistance ρ = (A n2 F2 R e k ) where k0)/(RT DL) has been written asE

k E ( DL) = k0 k ( DL), k ( DL) (denoting the dimensionless, potential-de-
pendent part of the reaction rate, the dimension being incorporated in the
nonvariable part, k0.

We are interested in the oscillatory solutions of Eq. (10). Hence we
start the analysis of the dynamic behavior of the model by deriving the
conditions for a Hopf bifurcation [Tr (J) = 0 and Det (J) > 0, J being the
Jacobian matrix]:

(The superscript ss indicates that the derivatives are taken at the steady
state.) The first equation requires that dk/dφDL < 0; that is, also in this class
of oscillators, a Hopf bifurcation is linked to a real negative impedance.
Since we assume that the coverage decreases with increasing electrode
potential, d θ/dφDL < 0, the second condition can be simultaneously ful-
filled, depending on the other parameter values. Two of them are worth
discussing. First it can be seen that ε has to be sufficiently small. In
physical terms this means that for oscillations to occur, the adjustment of
the equilibrium coverage θ0 has to take place on a slower time scale than
the changes of the potential. This implies that the zero-frequency imped-
ance becomes positive, and the negative current-potential characteristic of
the fast process manifests itself in a real negative impedance for nonzero
perturbation frequencies.19 From a dynamic point of view, this condition
is equivalent to the requirement that the destabilizing process has to be
faster than the stabilizing one.* Second, in contrast to the NDR model,
there exists no upper threshold of ρ, and thus this mechanism also allows
oscillations to arise under galvanostatic conditions.

The way in which the main ingredients of the model—the N-shaped
current-potential characteristics of the · charge transfer process and the

*This requirement was illustrated for NDR oscillators with the help of nullclines (see Fig.
3).

(
φ

φ
φφ
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inhibition of the reaction through adsorption of another species—interact
is illustrated in Fig. 9. Figure 9(a) displays an example of a combination
of a steady-state polarization curve in the absence of species P (dashed
curve) and an equilibrium coverage of P (solid curve) that admits a Hopf
bifurcation. The crucial feature is that the inhibitor coverage decreases in
a potential region where the polarization slope of the inhibitor-free system
is negative. Figure 9(b) shows how the stationary current-potential curve
is modified in the presence of the inhibitor. The reaction sets in only if the
equilibrium coverage of the inhibitor decreases. Hence, part of the nega-
tive differential resistance of k(φDL) is hidden; only if most of the inhibitor
has become desorbed does the effect of the negative faradaic impedance
become distinguishable.

The dashed line in Fig. 9(b) denotes stationary states that are unstable
under galvanostatic control, and the bars indicate the potential region in
which oscillations occur. The oscillatory region is bordered by a Hopf
bifurcation at low current densities and a saddle-loop bifurcation at high
current densities. At a saddle-loop bifurcation, a limit cycle is destroyed
through a collision with a saddle point, and it is preceded by progressively
prolonged oscillation periods that diverge upon the collision with the
saddle point.

As can be seen from Fig. 9(b), the limit cycle coexists with a stationary
state at high over-potentials. The latter is the only attractor after the
saddle-loop bifurcation. Hence, when the current density is increased
above the value of the saddle-loop bifurcation, the potential jumps to a
steady state far in the anodic region. Once the system has acquired the
anodic steady state, it will stay on this branch as the current density is
lowered until the stationary state disappears in a saddle-node bifurcation.
Although, of course, the sequence of bifurcations depends on the remain-
ing parameters, it is the most frequently observed scenario, usually per-
sisting in a wide range of parameters.

To summarize the typical features of HNDR oscillators, they exhibit
oscillatory behavior on a branch with a positive characteristic under
galvanostatic as well as potentiostatic conditions when a sufficiently large
series resistance is involved. At low current densities, the oscillations
characteristically set in through a Hopf bifurcation; they are predomi-
nantly destroyed by a saddle-loop bifurcation at high current densities;
and they coexist with a stable stationary state at much more anodic values
and hence are associated with a hysteresis.
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Figure 9. (a) Example of a combination of reaction current k(φDL) (dashed curve) in
the absence of an inhibiting species [Eq. (10a), θ = 0] and an equilibrium coverage
θ 0 (φD L) that admits a Hopf bifurcation (solid curve). (b) Stationary polarization curve
of Eq. (10). The dashed line indicates where the stationary state becomes unstable
under galvanostatic conditions. The vertical bars display the amplitudes of the oscil-
lations. sn, saddle node bifurcation; sl, saddle loop bifurcation; h, Hopf bifurcation.
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In an experiment, not all of the features might be clearly visible. In
particular, the increase in period close to the saddle-loop bifurcation often
occurs in such a brief interval that it is easily missed. Furthermore, the
stationary state at high overpotentials commonly lies at such positive
values that undesired side reactions, such as oxidation of the electrode,
take place. Thus, often an experimentalist will avoid crossing the saddle-
loop bifurcation and only investigate the first branch of the diagram.

Just as a negative differential resistance can have different chemical
origins, there are different reaction schemes possible that possess the
characteristic features of HNDR oscillators. Another hypothetical mecha-
nism discussed in the literature 17,19 is the potential-dependent adsorption
of the reactant, that is, the following reaction steps are considered:

where Xsol denotes the species in front of the electrode and Xads the
adsorbed species, which react to form the product P from the adsorbed
state. This mechanism is described by the following equations:

and

(12a)

(12b)

where ka is the rate constant for adsorption. Since the reaction requires
adsorbed species, oscillations become possible if the adsorption constant
k a increases with potential so that the adsorption takes on significant rates
only at potentials at which the rate constant k(φDL) exhibits a negative
slope with respect to potential. In the following paragraphs, two experi-
mental examples with a very transparent mechanism are discussed in
detail.

(ii) Experimental Examples

(a) H 2 oxidation in the presence of electrosorbing metals and halides

The oxidation of H2 on Pt in the presence of electrosorbing metals,
such as Cu2+, Ag +, Cd2+ , or Bi3+, and strongly adsorbing anions, such as



Principles of Temporal and Spatial Pattern Formation 31

Cl– or Br –, constitutes the first experimental example where the impor-
tance of the hidden negative differential resistance for oscillatory behavior
was recognized. 69,70 Furthermore, the individual steps of the oscillation
mechanism can easily be studied separately, allowing assignment of the
essential features of the mechanism. This system therefore represents an
ideal experimental model for illustrating the properties of HNDR oscilla-
tors.

Oscillations during H2 oxidation have been observed under various
conditions since the early 1930s71–74 and have been thought for a long
time to be linked to oxide formation or dissolution of H into the electrode
material. Horanyi and Visy71 were the first to deliberately add different
electrosorbing cations to the electrolyte. They demonstrated that in the
presence of such metal ions, the oscillations are associated with the
underpotential deposition of the corresponding metals. Kodera and co-
workers used the system some years later and proposed a mechanism for
the oscillations that is based on a chemical instability, namely a bistable
adsorption isotherm that is due to attractive interactions between the
deposited metal atoms.7 5 However, from extensive studies on the under-
potential deposition of various metals on Pt, the existence of a bistable
isotherm can meanwhile be excluded. Thus the model has to be rejected.
A convincing mechanism giving rise to the oscillations was proposed
recently by Krischer et al.,69,70 and their argument is presented below.

First, consider the behavior of H2 oxidation under potentiostatic
conditions in a solution with high conductivity, that is, with almost
vanishing ohmic resistance. Figure 10 displays three cyclic voltammo-
grams obtained at a comparatively slow scan rate in three different
electrolytes: (1) H2-saturated sulfuric acid, (2) H2-saturated sulfuric acid
containing a small amount of Cl– ions, and (3) H2-saturated sulfuric acid
containing small amounts of Cl–and Cu2+ ions. In pure sulfuric acid (curve
a), the hydrogen oxidation current is practically independent of potential,
reflecting the large rate constant of H2 oxidation on Pt, which leads to
diffusion-controlled reaction rates at a relatively low overpotential. As can
be seen in curve b, the addition of Cl– causes a considerable decrease in
the current with increasing potential. This negative polarization slope is
attributed to the inhibition of H2 oxidation by specifically adsorbed Cl–

ions. Owing to the negligible catalytic activity of Cu for H2 oxidation, the
additional presence of Cu2+ ions (curve c) finally leads to a nearly
complete suppression of the H2 current cathodic to potentials at which the
underpotential deposition of Cu2+ is completed, that is cathodic to about
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Figure 10. Cyclic voltammograms of a rotat-
ing Pt disk in three different electrolytes and a
comparatively slow scan rate (30 mV/s): (a)
0.5 M H2SO4, H2 sat.; (b) 0.5 M H2SO4, H2
sat., 10– 2 M Cl– ; (c) 0.5 M H 2SO 4 , H 2 sat.,
10–2  M Cl– , 5 × 10– 5 M Cu2+. (After Krischer
et al.69)

400 mV for the conditions of Fig. 10(c). The increase in the hydrogen
current marks the beginning of desorption of the Cu layer, and the current
takes on the value for the Cu-free solution (curve b) if all the Cu has been
desorbed from the electrode. The small hysteresis in the anodic and
cathodic scan in curve c is due to the slow formation of the Cu monolayer
and thus is of a kinetic nature.

When comparing curves b and c in Fig. 10, we recognize two features
which, as discussed earlier, are essential parts of the mechanisms of
HNDR oscillators. (1) The system H2/Cl– /H 2SO4 possesses a negative
faradaic impedance caused by Cl–  adsorption. (2) This negative imped-
ance is hidden at cathodic potentials due to Cu underpotential deposition,
which provides a second potential-dependent process that affects the
reaction rate. A third requirement for oscillations to occur is that the
process leading to the negative impedance occurs on a faster time scale
than the potential-dependent step that hides the negative faradaic imped-
ance. Applied to our example, this means that Cl– adsorption and desorp-
tion should be much faster than Cu deposition and dissolution. Figure 11
nicely illustrates that this is in fact the case.

The three current-potential curves in Fig. 11 were obtained for the
same solutions as in Fig. 10, but at a much faster scan rate. Curves a and
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Figure 11. Cyclic voltammograms of a rotat-
ing Pt disk in three different electrolytes and a
comparatively fast scan rate (200 mV/s). (a)–
(c) same as in Fig. 10. (After Krischer et al.

69
)

b, corresponding to the H2 saturated electrolyte without and with Cl – ions,
respectively, are unchanged, compared with the corresponding ones in Fig.
10, except for a larger contribution of the capacitive current. This suggests
that the relaxation of the Cl– coverage to its equilibrium value can still
follow the change in potential. However, the voltammogram obtained in
the Cu2+ -containing electrolyte changed drastically. During the cathodic
scan, the current-potential curve exhibited a negative slope over nearly the
entire potential range. This means that the area active for hydrogen
oxidation also increased at potentials at which Cu was deposited on the
electrode (indicated by the dashed line). Thus the rate of Cl– desorption
has to be much faster than that of Cu 2+ deposition. Note also that when
Cu stripping has set in, the current decreases a little further, which should
again be attributed to the faster dynamics of Cl–, this time to the fast
adsorption.

When the system is operated under galvanostatic conditions or when
a sufficiently large series resistance is added, pronounced oscillations are
observed around the positively sloped branch in the steady-state polariza-
tion curve. A cyclic voltammogram exhibiting current oscillations is
reproduced in Fig. 12. Typical time series under galvanostatic control,
close to the onset of oscillatory behavior, are shown in Fig. 13(A). Their
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Figure 12. Positive potential scan with Re A = 1062 Ω cm², H2 saturated
0.5 M H2SO4, [Cu2+] = 10-5 M, [Cl- ] = 3 × 10

- 4 
M, scan rate = 2 mV

s– 1. (After Wolf et al.18)

harmonic nature and increasing amplitudes suggest that the oscillations
emerge through a supercritical Hopf bifurcation. Figure 13(B) displays
time series at the high current-density end of the oscillatory region which,
as the progressively longer periods of the oscillations indicate, is an
example of a saddle-loop bifurcation.76*

Figure 14(a) shows simultaneous measurements of electrode poten-
tial and changes in Cu coverage, and Fig. 14(b) shows electrode potential
and changes in the H2 current during oscillations. Cu coverage and H2

current were obtained from rotating ring-disk measurements. 6 9  As one
expects for the slow variable of a dynamic system, the Cu coverage
changes gradually, whereas the potential oscillations possess a relaxation-
like character with steep slopes. In Fig. 14(b) it can be seen that the phase
relation between potential and H2 current can be quite complicated. This
measurement provided key information when the oscillation mechanism
was uncovered. The H2 current exhibits a minimum when the potential
increases steeply (i.e., in parallel with the dissolution of Cu), and a
maximum close to the abrupt decrease in potential (i.e., in parallel with
the deposition of Cu). However, the hydrogen current should be a mono-
tonic function of the free Pt surface. From this response it follows that
anion coverage is essential for the oscillatory mechanism. These two
examples show how valuable phase information on different variables is
for the elucidation of an oscillatory mechanism. For example, the phase
relations measured are in contrast to those in the model by Kodera et al. 75

*Note that from the figure alone, the saddle-loop bifurcation cannot be distinguished from
another infinite period bifurcation, a saddle node with infinite period.57
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Figure 13. (A) Sinusoidal, small-amplitude potential oscillations close to the onset of
oscillations at low current densities during the galvanostatic oxidation of H2 . (a) 50
µA/cm2; (b) 52.5 µA/cm2; (c) 60 µA/cm2. (B) Large-amplitude relaxation oscillations
close to the end of the oscillatory region at high current densities during the gal-
vanostatic oxidation of H2. (a) 120 µA/cm2; (b) 200 µA/cm2; (c) 300 µA/cm2 (potential
given vs. SHE). (After Krischer et al.76)
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Figure 14. (a) Potential oscillations (top) and oscillations of the copper
coverage (bottom) during the galvanostatic oxidation of H2 (5 × 10–5

M Cu2+, 3 × 10 –2 M Cl–, 1440 µA/cm2. (b) Potential oscillations at a
Pt disk (top) and oscillations of the hydrogen current at a Pt ring
(bottom) during the galvanostatic oxidation of H2at a rotating ring-disk
electrode. Note that the hydrogen current at the disk is low if the ring
current is high and vice versa (5 × 10–5 M Cu2+, 5 × 10

–3
M Cl– , 1600

µA/cm). (After Krischer et al.69)
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and thus present further evidence that their model does not represent the
correct mechanism.

Another important test for the validity of a model is its capability to
reproduce phase diagrams in the parameter plane. Here one has to distin-
guish between phase diagrams in a parameter plane spanned by parameters
of the external circuit and those spanned by parameters affecting the
chemical steps. The first type of bifurcation diagram is universal for all
oscillators belonging to one of the two categories discussed in this section
(NDR or HNDR oscillators). Hence they are useful only for categorizing
the oscillator type; they do not provide any information on which chemical
species are essential for the occurrence of oscillations. A phase diagram
of our H2 oxidation system spanned by the external circuit parameters
Re/U is displayed in Fig. 15. In region A, a single stable stationary state
is found; in region B, two stable states coexist; region C marks the
coexistence of oscillations with the stationary state; and in region D, only
oscillations exist. It can be seen that there is a minimum value of Re needed

Figure 15. Regions of different dynamic behavior of H2oxidation in the U/Re parameter
plane; 1 × 10 –5 M Cu2+, 3 × 10–4 M Cl–; (A) a stable stationary state; (B) coexistence
between a stable stationary state at high currents and one at low currents; (C) coexistence
of oscillations at high currents and a stationary state at low currents; (D) oscillations.
(After Wolf et al.

18
)
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to obtain oscillations. The region where oscillatory behavior coexists with
a stationary state broadens with increasing resistance, allowing oscilla-
tions to arise under galvanostatic conditions. Hence, compared with NDR
oscillators (cf. Fig. 4), the parameter region in which oscillations are found
is much larger.

Dynamic behavior has been studied under galvanostatic conditions
as a function of the preset current and the bulk concentrations of Cu 2+,
Cl–, and Br–. Since the latter parameters act on the kinetics of the reaction,
these bifurcation diagrams are useful when trying to identify the chemical
steps of the model. The phase diagrams in the halide concentration/cur-
rent-density plane are reproduced in Fig. 16. It can be seen that the critical
current density for the onset of oscillatory behavior increases with de-
creasing halide concentration. In the Cu2+concentration/current-density
plane, the opposite trend was found. Note also that the Br – concentration

Figure 16. Regions of different dynamic behaviors during the galvanostatic oxida-
tion of H2 in the current density–halide concentration plane. H, small harmonic
oscillations; MMO, mixed-mode oscillations (see Section II.4); R, large-amplitude
relaxation oscillations. (After Wolf et al.70)
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necessary to establish oscillations is 103 times smaller than in the case of
Cl–. This reflects the different adsorption behaviors of these two anions;
Br– is generally adsorbed more strongly and hence up to more cathodic
potentials than Cl–. A correlation of adsorption isotherms of halides and
dynamic behavior was found in single-crystal experiments. 69,77 In the case
of Cl – adsorption on three low-index Pt single-crystal surfaces, the inter-
action between Cl – and Pt was strongest on Pt(100), less pronounced in
the case of Pt(111), and weakest in the case of Pt(110).78,79 In the last case,
no oscillations could be found, whereas single periodic behavior was
observed at Pt(111) and more complex behavior in the case of Pt(100).*

On the basis of these experiments, Wolf et al.70 formulated a model
that reproduces the qualitative features of the system. The variables of the
model are the electrode potential, φDL, and the coverage of the electrode
with metal, θm, and anions, θx, respectively. The change in the potential
follows again from a current balance (where it was assumed that the
current due to anion ad- or desorption is negligible). The temporal evolu-
tion of the coverages is described by the phenomenological rate laws of
the adsorption and desorption of metal ions and anions, respectively:

(13b)

and

where

(13a)

*The missing oscillations of the Pt(110)/Cu2+/Cl– system are clearly linked to the adsorption
behavior of Cl–. The extent to which the different behavior found with Pt(111) and Pt(100)
is due to the different adsorption properties of Cl– has still to be examined.
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and

The bulk concentrations cm and cx are normalized to the standard concen-
tration 1 M, and am , ax symbolize the exponential terms 0.5 nm F/RT and
0.5 nx F/RT, respectively, with nm and nx the number of electrons trans-
ferred during metal and halide adsorption, respectively. The respective
(potential-independent) rate constants are denoted by km and k x .

The equation for the hydrogen current, was derived by the
following considerations: At high anodic overpotentials, the dissociative
adsorption of H2 onto the available free sites is the rate-determining step,
and thus can be expressed as

where denotes the surface H2 concentration and the rate constant
of adsorption. Assuming that the rate of replenishment of by diffusion
is equal to its consumption through the reaction (i.e., that the temporal
change in can be neglected), the H2 current is also given by

where is the H2 bulk concentration. Combining both equations, one
obtains

(14)

The current density associated with the underpotential deposition of a
monolayer metal, im , is obtained from the charge flowing during the
deposition of 1 ML, qmono:

In order to simulate the behavior of galvanostatic systems, the expression
(U – φ DL)/(Re A) has to be replaced by the applied current density.
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Solving for the simultaneous zeros of Eqs. (13b) and (13c) as a
function of the electrode potential, φ DL , yields the adsorption isotherms of
metal and anions. These are shown together with the total steady-state
coverage in Fig. 17(a). In Fig. 17(b) the resulting stationary hydrogen
current and a calculated cyclic voltammogram at a low scan rate are
reproduced. The qualitative features of the corresponding experiments
(i.e., the complete inhibition of hydrogen oxidation at potentials negative
to 0.4 V), the decrease in the oxidation current positive to 0.5 V, and the
occurrence of a kinetic hysteresis are well represented [see Fig. 10(c)].

The model contains all the general features of HNDR oscillators.
Therefore it is not surprising that oscillations are obtained when an anodic
voltage scan is calculated in the presence of a sufficiently large series
resistance [Fig. 18(a)]. Nor is it astonishing that the universal skeleton
bifurcation diagram of HNDR oscillators in the U/Re parameter plane is
reproduced [Fig. 18(b)]. On the other hand, the qualitative agreement of
the location of the bifurcations as a function of current density and metal
ion or anion concentration (Fig. 19) strongly supports the view that the
electrode processes that cause the negative differential charge-transfer
resistance and the slow potential-dependent process are correctly identi-
fied. Observe especially that in the model as well as in the experiment, the
current density necessary to produce sustained potential oscillations is
shifted toward higher values with increasing metal ion concentration and
toward lower values with increasing anion concentration (see Fig. 16).
Furthermore, as is to be expected from the proposed mechanistic role of
metal ions and anions, Eq. (13) possesses only oscillatory solutions if the
anion dynamics are faster than those of the cations, that is, kx > k m . 64

(b) Formic acid oxidation

Another example for an HNDR oscillator is formic acid oxidation.
Formic acid is one of the simplest organic molecules, and very likely it is
an intermediate product during the oxidation of many organic molecules
that are intensively studied in connection with their possible use in fuel
cells. Thus, the oxidation of formic acid has been a “hot topic” for decades.
Oscillatory behavior during formic acid oxidation was observed as early
as the 1920s. 80,81 Today, there is a large body of literature devoted to
temporal oscillations in this system. There has been controversial debate
on the origin of the dynamic instability, although up to the very recent
work by Strasser et al., 82,83 all authors seemed to agree that the autocata-
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Figure 17. (a) From Eqs. (13 b and c) calculated steady-state
coverages of the metal (solid line), anion (short-dashed line), and
total coverage (dot-dashed line) vs. potential. (b) The resulting
stationary hydrogen current density (dashed line) vs. potential and
the calculated cyclic voltammogram. The hysteresis is due to slow
ad- and desorption of copper. (After Wolf et al. 70)

lytic step is of a chemical nature.84–92 However, it appears that most
authors were not aware of the essential role the external circuit can play,
and so none of the studies give the impression that the utmost was done
to exclude an electrochemical instability, that is, the presence of an ohmic
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Figure 18. (a) Calculated positive potential scan for ReA = 1062 Ω cm2 using
Eqs. (13a–13c). (b) Calculated locations of Hopf (h) and saddle-node (sn)
bifurcations in the U/R e parameter plane. (After Wolf et al. 1 8)

potential drop in the control circuit. On the other hand, Strasser et al.
provided evidence that an external resistor is indeed needed for oscilla-
tions to occur under their experimental conditions. At the same time, they
ruled out most of the chemical instabilities proposed as sources for the
oscillatory dynamics by studying a simpler subsystem of formic acid
oxidation. In the author’s opinion, the experiments and conclusions dis-
cussed in Refs. 82, 83, which have many points in common with another
recently proposed model,92 are so convincing that in spite of the diverse
mechanisms proposed in the literature, one can confidently classify the
formic acid oscillator as an HNDR type.
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Figure 19. Calculated locations of Hopf (h), saddle-node (sn),
and saddle-loop (sl) bifurcations in the (a) current density–cop-
per concentration and (b) current density–halide concentration
parameter planes using the galvanostatic variant of Eqs. (13a–
13c); i.e. (u – φ DL)/(R eA) → j tot . (After Wolf et al. 70)

Both above-mentioned models 83,92 are based on the now widely
accepted dual-path mechanism, first proposed by Capon and Parsons93

(F1)

(F2)

where * denotes a free adsorption site. The first path (F1) represents the
direct oxidation of formic acid where adsorbed HCOOH is oxidized to a
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reactive intermediate, most likely • COOHad, which is immediately further
oxidized to the final product, CO2. The indirect path is associated with the
heterogeneously catalyzed dissociation of formic acid to water and ad-
sorbed CO, which blocks the surface sites for further adsorption of
HCOOH. The removal of the “poison” CO proceeds via an electrochemi-
cal surface reaction with a second species.84 An important property of the
species is that it also blocks surface sites for HCOOH oxidation. Strasser
et al. suppose that this species is adsorbed OH, which is formed and reacts
according to the following steps*:

(F3)

(F4)

Okamoto et al. 92 proposed that the second species is water adsorbed
adjacent to CO and that preadsorbed CO is necessary for the adsorption
of the second species. This seems to be a questionable interpretation that
is not taken up in further discussion, although with the exception of the
adsorption term for species 2, the resulting model seems to be mathemati-
cally equivalent to a subset of three equations derived by Strasser et al.83

and discussed later [Eqs. (15b)–(15d)].
The mechanistic counterparts can be easily recognized by comparing

the reaction scheme (F1)–(F4) with the one for H2 oxidation discussed in
the last section. The direct oxidation path (F1) accounts for most of the
oxidation current and thus corresponds to the H2 oxidation current. At
potentials cathodic to OH adsorption, CO slowly poisons the surface
according to (F2); it is removed in reaction (F4). Hence, (F2) and (F4)
play the role of ad- and desorption of the metal ions, respectively. Neglect-
ing the indirect path for a moment, the adsorption of OH (F3), being a fast
process, will lead to a decrease in the oxidation current stemming from
the direct path, and induce a negative slope in the polarization curve, just

*Note that in 1968 Wojtowicz et al.84  were able to directly measure the buildup of OH or O
coverage on a Pd electrode in a single oscillatory cycle and correlate it with the periodic
process. Moreover, they proposed in their chemical model that the electrosorbed OH (or
O), as well as an intermediate product of H.COOH oxidation that is adsorbed at the
electrode, are essential for producing oscillations.
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as the halide ions do in the case of the H2 system. When relating the system
to the prototype model [Eq. (10)], (F1) and (F3) give rise to the N-shaped
polarization curve k(φDL) in Eq. (10a). (F2) and (F4) act like the poisoning
species P [Eq. (10b)]. With this information in the back of one’s mind, the
familiar features of HNDR oscillators are more easily identified.

Consider first a cyclic voltammogram of the oxidation of HCOOH
on Pt(100) in a solution of high conductivity and thus almost vanishing
ohmic resistance (Fig. 20). Starting at the cathodic limit point, the surface
is mainly poisoned by CO for potentials up to about 0.5 V and direct
oxidation is efficiently impeded, leading to a low oxidation current. In
parallel with the onset of OH adsorption, the poison is oxidized and the
current increases owing to the larger electrode area accessible for the direct
oxidation of formic acid. Once CO is removed, an OH coverage builds up
that also acts as a poison for HCOOH oxidation. In the cathodic scan, a
pronounced increase in current is observed at potentials at which OH
desorbs, giving way to a nearly free surface. The subsequent decrease in
current density is partly a consequence of the slow indirect path building
up the CO coverage and partly due to the decreasing overpotential for
formic acid oxidation. Note that the hysteresis in the cyclic voltammogram
is of a kinetic nature. Strasser et al. report a reversible stationary polari-
zation curve exhibiting a maximum at about 0.5 V.

Figure 20. Current-voltage charac-
teristic of the oxidation of formic acid
o n  P t ( 1 0 0 ) .  E l e c t r o l y t e :  1  M
HCOONa, 0.5 MH2SO4, pH 2.6. Scan
rate: 10 mV/s. (Reprinted with permis-
sion from P. Strasser, M. Lübke, F.
Raspel, M. Eiswirth and G. Ertl, J.
Chem. Phys. 107, 979–990, 1997.
Copyright 1997 American Institute of
Physics.)
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When a sufficiently large external resistor is connected in series, the
current oscillates on the branch with the positive polarization slope,
though in a region where OH adsorption takes place (Fig. 21). (Recall that
OH adsorption is the fast process that is responsible for a negative real
impedance in an interval of nonzero frequencies.) The first three time
series shown in Fig. 21(b) were obtained on the anodic scan, the last two

Figure 21. (a) Cyclic voltammogram of formic acid oxidation on Pt(100)
with external resistance (Re = 600 Ω ). Electrolyte: 0.05 M HCOOH, 10–3 M
HClO 4; scan rate: 5 mV/s. (b) Current oscillations after holding the scan at
different potentials U. The frost three time series (from left to right) were
obtained when the potential was stopped during the anodic scan; the remain-
ing two when it was stopped on the cathodic scan. (Reprinted with permission
from P. Strasser, M. Lübke, F. Raspel, M. Eiswirth and G. Ertl, J. Chem. Phys.
107, 979–990, 1997. Copyright 1997 American Institute of Physics.)
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on the cathodic scan. The resemblance of the two sets suggests that the
apparent hysteresis of the branches with the positive characteristics in the
cyclic voltammogram is again of a kinetic nature. In contrast, the hyster-
esis close to the anodic turning point is connected with a true bistability
between a low-current steady state and sustained oscillations.

The chemical reaction scheme (F1)–(F4) was translated into a mathe-
matical model. 83 The variables of the model are formic acid concentration
in the reaction plane, cFA, the coverages of the electrode with carbon
monoxide, θCO, and with OH, θOH, and the electrode potential, φDL . In
contrast to some previously proposed models, the pH in the reaction plane
was assumed to be constant and entered only the reaction constants for a
given bulk solution acidity. The concentration of the radical species
•COOHad was adiabatically eliminated because its oxidation is by far the
fastest process of the scheme. The resulting equations read:

(15a)

(15b)

(15c)

and

(15d)

The temporal evolution of formic acid in the double layer [Eq. (15a)] is
governed by the rate of the oxidation of formic acid via the direct (v direct)
and indirect (vpoison) paths and its replenishment by diffusion. For the latter
it was again assumed that the concentration profile across the diffusion
layer relaxes instantaneously to a linear profile. δ denotes the diffusion-
layer thickness (which is assumed to be constant), DFA the diffusion
constant of formic acid, and cb

FA the bulk concentration of formic acid. A
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proportional constant resulting from the units chosen for cFA  and the rates
vi (see Ref. 83) is defined as a.

The rate for the direct oxidation of formic acid was described by the
following expression where the adsorbed formic acid (HCOOH ad) was
adiabatically eliminated:

where kd and kads  denote the rate constants of reaction and adsorption,
respectively, and α is the symmetry factor. The empirical factor ƒ was
introduced to take into account the observed incomplete blockage of
formic acid oxidation at anodic potentials (see Fig. 20).

The poisoning rate, vpoison, was assumed to be proportional to the
number of free surface sites and the formic acid concentration in the
double layer:

adsorption and desorption of OH (first and last term, respectively), and
the reaction with CO (second term). α is the transfer coefficient. Changes
in the CO coverage [Eq. (15c)] are caused by the poisoning reaction, the
reaction with CO, and desorption of CO. The temporal evolution of the
electrode potential [Eq. (15d)] results from charge conservation. The

where kpoison is the corresponding rate constant.
The time variation of the OH coverage [Eq. (15b)] is given by

faradaic current densities, ji , are connected with the reaction rates, vi , by
ji = nFS t o t vi , where n is the number of electrons exchanged in the reaction
and S tot  is the total number of surface sites per unit area. The total current
j tot  is either a parameter (if galvanostatic conditions are used) or it is given
by jto t  = ( U – φDL)/Re A, with the usual meaning of U, Re , and A.

For sufficiently high series resistance, the model possesses stable
oscillatory solutions. A calculated cyclic voltammogram is displayed in
Fig. 22(a) together with the stationary polarization slope (dashed line).
Clearly, on the one hand, the cyclic voltammogram exhibits the charac-
teristic attributes of self-poisoning oxidation reactions of small organic
molecules. The most important features are a slowly increasing current for
U > 0.5 V, owing to the reactive removal of the poisoning CO in parallel
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Figure 22. (a) Calculated cyclic voltammograms and stationary I/U curve for the formic
acid oxidation model [Eq. (15)]. The anodic and cathodic scans are indicated by arrows.
The dashed line shows the portion of the stationary state curve that corresponds to
unstable steady states. The triangle at U = 0.6 V marks the location of the Hopf
bifurcation. (b) Calculated one-parameter bifurcation diagram of the formic acid model:
steady-state coverage of OH, θ OH, vs. applied voltage U. Solid line indicates a stable
steady state (SS), the dashed line an unstable steady state, and the dot-dashed line shows
the maximum amplitude of stable oscillations. (Reprinted with permission from P.
Strasser, M. Eiswirth and G. Ertl, J. Chem. Phys. 107, 991–1003, 1997. Copyright 1997
American Institute of Physics.)

to the onset of OH adsorption at about 0.5 V, and the occurrence of kinetic
hysteresis in the cathodic region, owing to the small rate of the poisoning
reaction. On the other hand, the typical features of HNDR oscillators can
be recognized. Oscillations occur on the positive branch of the polarization
curve. They emerge at anodic potentials through a Hopf bifurcation and
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are destroyed through the collision with a saddle point (dashed line), that
is, in a saddle-loop bifurcation [Fig. 22(b)]. These two bifurcations, as
well as the saddle-node bifurcations [which occur at the end of the
multivalued steady-state curve in Fig. 22(b)], are plotted in a bifurcation
diagram in the U/Re parameter plane (Fig. 23). Note the agreement with
the diagrams shown in Fig. 15 and Fig. 18(b), as well as the necessity of
a finite-series resistance to observe oscillatory solutions.

Several groups have emphasized that the dynamic behavior of formic
acid oxidation on low-index single-crystal planes exhibits structural ef-
fects. 86,87,91,94  According to these studies, current oscillations were easily
observed on Pt(100); seemed to exist in only a small parameter interval
on Pt(110); and proved to be even more difficult to detect on Pt(111).
Furthermore, on Pt(100), current spikes appeared in the cyclic voltammo-
gram, predominantly on the cathodic scan. In contrast, on Pt(110) they
showed up mainly on the anodic scan, and were often absent on Pt(111),
although oscillations emerged under stationary conditions. Strasser et al.
point out that these differences are in accord with the above-discussed
model. 82,83

There is experimental evidence that the affinity of the individual
crystal planes toward CO varies remarkably, Pt(111) exhibiting the lowest
affinity. This fact is reflected in widely differing rate constants of the

Figure 23. A calculated two-parameter bifurcation diagram for the formic acid model
[Eq. (15)] showing the locations of the saddle-node (solid line), Hopf (dashed line),
and saddle-loop bifurcations (dotted-dashed line). All three curves meet in a Takens–
Bogdanov point close to the cusp. (Reprinted with permission from P. Strasser, M.
Eiswirth and G. Ertl, J. Chem. Phys. 107, 991–1003, 1997. Copyright 1997 American
Institute of Physics.)
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Figure 24. (a) Experimental cyclic voltammogram of formic acid oxidation on Pt (111)
with external resistance Re = 430 Ω . Electrolyte: 0.05 M HCOOH, 10– 3 M HClO4 . Scan
rate: 5 mV/s. (After Strasser et al. 82) (b) Calculated cyclic voltammogram and stationary
current-voltage curve for the formic acid model [Eq. (15)]. A smaller kpoison was chosen
than the one used in Fig. 22(a). The anodic and cathodic scans are indicated by arrows.
The dashed line shows the portion of the stationary state curve that corresponds to
unstable steady states. (After Strasser et al. 83 with permission of the authors.)
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poisoning reaction (F2), and, indeed, when the rate constant of the indirect
path (k poison ) is varied, the different experimental findings on the three
low-indexed Pt surfaces can be reproduced. 83 A comparison of an experi-
mental cyclic voltammogram recorded with a Pt(111) electrode and a
calculated I/U curve with a kpoison  smaller than that used in Fig. 22 is
reproduced in Fig. 24(b).

4. Mixed-Mode Oscillations

In the last section we focused on mechanistic requirements that give rise
to simple periodic oscillations. The statement that more complex dynamic
behaviors have been observed for all electrochemical oscillators is hardly
exaggerated, however. The expression “more complex dynamics” in-
cludes all phenomena whose mathematical description requires at least
three variables. Perhaps the most popular complex behavior is determinis-
tic chaos, of which there are numerous clear-cut examples for oscillating
electrochemical systems in the literature. 67,68,76,90,95–108  More unusual
dynamics have also been found, a spectacular example of which is the period
doubling of a torus. 109 However, in the majority of experimental studies,
and often together with chaotic behavior, the occurrence of mixed-mode
wave forms has been described. 42,67,76,82,85,88,95–97,102,103,110–120 The latter
denotes time series that are composed of alternating small- and large-am-
plitude oscillations. Typically, an individual mixed-mode wave form is
stable over only a small parameter region, and when an experimentally
controlled quantity is changed, intricate bifurcation sequences are ob-
served. 67,96,97,103 These experimental investigations provided valuable in-
sight into the bifurcation structures of a certain class of dynamic systems
and led to several theoretical studies. 121,122

In this chapter, the experimentally observed wave forms are not
reviewed from the point of view of dynamic systems theory. Rather, we
focus on the physical mechanisms that cause complex oscillatory behav-
ior. In general, the phenomena considered require the presence of auto-
catalysis and two negative feedback loops. Recall that simple oscillations
are caused by the interaction of an autocatalytic variable and one negative
feedback variable. Thus it is plausible to look for an additional variable
that introduces a second negative feedback loop into the two mechanisms
considered in the last section.

We discuss an extension of NDR oscillators as studied by Koper and
Gaspard. This mechanism accounts for most of the mixed-mode oscilla-
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tions (MMOs) observed in this class of oscillators. HNDR oscillators do
not seem to possess similarly standardized bifurcation fine structures,
pointing to the different origins of the complex behavior; most of this
behavior is not yet understood from the mechanistic viewpoint. Neverthe-
less, there are some important hints on general features that give rise to
MMOs in HNDR oscillators; these are discussed in Section II.4.(ii). While
an attempt was made to avoid expressions originating from the theory of
nonlinear dynamics, at some places technical terms are inevitable. Ex-
plaining all of them would have resulted in lengthy definitions. Readers
not familiar with them can find easily understandable explanations in the
books by Scott 123 or Strogatz, 57 and in the review ref. 2.

(i) Mixed-Mode Oscillations in NDR Oscillators

(a) A general model

In Section II.2.(i), NDR oscillators are described by two variables:
the electrode potential, which constitutes the positive feedback variable;
and the concentration of the electroactive species in the reaction plane, c,
which is assumed to vary due to the charge-transfer reaction and diffusion
from the bulk electrolyte. In deriving the temporal evolution equation for
c, a steady-state approximation was made for the concentration profile
across the diffusion layer. This latter assumption of a fast-relaxing diffu-
sion layer and, for this reason, a concentration profile that is at all times
linear, represents a questionable simplification. Under oscillatory condi-
tions, the reaction rate has mixed diffusion and reaction control; curved
concentration profiles will be established owing to a delayed response of
the diffusion layer to concentration changes at the electrode. Thus, though
Eq. (5) correctly predicts the occurrence of oscillations as well as the
qualitative location of oscillatory and bistable regions in the parameter
plane, it does not completely represent the qualitative dynamic behavior
obtained when the original partial differential equation is taken into
account. This important fact was recognized by Koper and Gaspard, who
relaxed the assumption of a linear profile by allowing for another degree
of freedom in the diffusion layer. 16,124 They divided the electrolyte into
three parts: a semi-infinite layer for z > δ (with z the coordinate perpen-
dicular to the electrode), where the concentration is equal to its bulk value
cb; a first layer between z =δ and z = δ /2 with the concentration c² ; and a
second layer between z =δ/2 and z = 0 (the location of the electrode) with
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Figure 25. Geometry of the two diffusion-layer
models for a planar electrode.

the concentration c¹ (Fig. 25). The differential equations for c¹ and c² result
from diffusion and reaction fluxes, which are indicated in Fig. 25. Of
course, this concept is not restricted to a planar electrode. Rather, the
equations were first derived for a hanging mercury drop electrode
(HMDE) and thus spherical electrode geometry (and for this reason also
spherical electrolyte layers). Furthermore, using Nernst’s model of a
steady-state diffusion layer, the same equations can also be used to
simulate mass transport to a rotating disk electrode.16 The general set of
equations reads:

(16a)

(16b)

and

(16c)

where the parameters have the same meaning as before and the coefficients
ai are uniquely determined by mass transport and electrode geometry.

A linear stability diagram of the steady states of Eq. (16) in the U/ρ
parameter plane is shown in Fig. 26.* Observe the similarity of the
locations of the Hopf and saddle-node bifurcations in this diagram and in
the corresponding figure of the two-variable version of the NDR oscillator
(see Fig. 4). The dashed lines in Fig. 26 mark the transitions of a node to

*The diagram was calculated for a dimensionless version of Eqs. (16). ρ is, as in Eqs. (5),
the dimensionless resistance.
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Figure 26. Skeleton bifurcation diagram in the U-ρ parameter plane for the model equation
(16). Shown are Hopf and saddle-node bifurcations (SUN = saddle-unstable-node bifurca-
tion) as well as the border of the focus-node transition (dashed line); mixed-mode wave forms
exist close to the dark region (which marks the region where a fixed point is a  Shil’nikov
saddle focus). The phase portraits sketch the linear stability of the fixed point(s). (Reprinted
with permission from M. T. M. Koper and P. Gaspard, J. Chem. Phys. 96, 7797, 1992.
Copyright 1992, American Institute of Physics.)
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a focus, that is, they show where a pair of eigenvalues of the Jacobian
matrix of Eq. (16) becomes imaginary. The dashed region sketches do-
mains where the occurrence of complex dynamics is favored [more
precisely, where Shil’nikov’s condition (see Ref. 16) is fulfilled]. A more
detailed study of the dynamics defined by Eq. (16) indeed reveals very
intricate sequences of higher bifurcations giving rise to MMOs as shown
in Figs. 27 and 28. The time series show how the dynamic behavior
changes when ρ is increased at U = 37. Coming from low resistances, the
steady state undergoes a Hopf bifurcation, giving way to small-amplitude
oscillations. Raising ρ further, relaxation spikes suddenly appear, creating
the fast MMOs, and a further increase in ρ changes the number of large-
and small-amplitude oscillations during one period.

Figure 27. Typical oscillatory time series for the current i for low values of the resistance
(first MMO regime) obtained for Eq. (16). Depicted are a small-amplitude time series, an
MMO state 119 ,  an MMO state 13 ,  and  a  1¹  1²  state. (Reprinted with permission from M. T.
M. Koper and P. Gaspard, J. Phys . Chem. 95, 4945, 1991. Copyright 1991, American
Chemical Society.)
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Figure 28. Typical oscillatory time series for the current i for higher values of the resistance
(second MMO regime) obtained for Eq. (16). Depicted are the MMO states 1¹, 15 , a chaotic
state situated between the periodic states 1¹ and 1², and a period-doubled, small-amplitude
oscillation. (Reprinted with permission from M. T. M. Koper and P. Gaspard, J.Phys. Chem.
95, 4945, 1991. Copyright 1991, American Chemical Society.)

Conveniently, MMOs are characterized by a symbolic notation LS

where L denotes the number of large and S the number of small oscillations
during one period. Thus, the MMOs depicted in Fig. 27 are designated as
119 , 1³, and 1¹1² states. In the notation of the latter state, it is indicated that
one period is built up from concatenated principal states. In fact, in the
simulations, many such concatenated states were found; for example,
between the 1³ and the 1² state, 1³(1²)n states with n going from 1 to 10
were observed. These sequences are called Farey sequences because a
one-to-one correspondence of successive MMO states and the ordering of
the rational numbers, which is conveniently represented in a  Farey tree*

(see Fig. 31), can be established. In general, at low values of the resistance,
the sequences of MMOs obey an incomplete Farey arithmetic.125

*A Farey tree arises in number theory as a scheme for the generation of all the rational
numbers between a given pair of rationals. This proceeds by the so-called Farey addition
of two rationals p/q and r/s which is equal to (p + q)/ (r + s).
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This Farey-sequence MMO regime is separated from a second MMO
regime by a large parameter interval of intermediate ρ values where simple
relaxation oscillations (10 states) exist. A sequence of the latter is shown
in Fig. 28. In this second MMO regime, the transitions between two
periodic mixed-mode states are distinct from the first one. Here, a periodic
state undergoes a period doubling cascade to become chaotic. The transi-
tion from this chaotic state back to the next periodic MMO can either
follow an inverse period doubling sequence or occur through a tangent
bifurcation. 57 The third time series in Fig. 28 is an example of a chaotic
state existing between the periodic states 1¹ and 1².

In concluding this discussion of modeling of MMOs in NDR oscil-
lators, it is worth emphasizing two points: First, MMOs in the model arise
from the coupling of the Hopf bifurcation (present in the two-variable
system) to a slow mode of transport. Hence neither an additional chemical
species nor any chemical or electrochemical reaction step was introduced.
As a consequence, all electrochemical oscillators categorized as NDR
oscillators should, for appropriate parameter values, display MMOs. This
conjecture was verified by Koper and Sluyters for many NDR oscillators
on an HMDE. 60 Second, one might wonder how far the dynamics of this
still very crude truncation are representative of the dynamics of the
original partial differential equation. According to Koper and Gaspard,124

exactly the same qualitative behavior was observed in spatially well-dis-
cretized numerical solutions of the full problem.

(b) Comparison with experiments

Among the large variety of MMOs found in experimental systems,
we focus here on two examples. In the systems chosen, extensive studies
of the dependence of the wave forms on the parameters were carried out,
and the bifurcation sequences obtained displayed a nearly perfect agree-
ment with the predictions of the model.

Equation (16) was originally derived to model the reduction of In3+

from SCN– solution on the HMDE. The bifurcation behavior of this
system is summarized in the two-parameter bifurcation diagram in Fig.
29. 67 Most remarkably, the two distinct MMO sequences of the model also
show up in the experiment. Farey sequences were observed close to the
Hopf bifurcation at low values of the series resistance, whereas at the high
resistance end of the oscillatory regime, periodic-chaotic mixed-mode
sequences were found. Owing to this good agreement of the bifurcation
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Figure 29. Experimentally determined bifurcation diagram for the In3+/SCN
–

system show-
ing regions of stationary, oscillatory, or complex behavior in the V-R plane. The two regions
where the two types of MMOs occur can be seen at the low resistance and high resistance
end of the “oscillation tongue,” respectively. (Reprinted with permission from M. T. M.
Koper, P. Gaspard, and J. H. Sluyters, J. Chem. Phys. 97, 8250, 1992. Copyright 1992,
American Institute of Physics.)



Principles of Temporal and Spatial Pattern Formation 61

Figure 30. A sequence of MMOs measured during the electrodissolution of copper in
phosphoric acid. From (a) to (j) the applied potential was increased in small steps. The
continuous increase in the number of small oscillations relative to the number of large
oscillations during one period is evident. (a) Close to the limiting 10 state, (b) a 4¹ state, (c)
a 3¹ state, (d) a 2¹ state, (e) the 1¹ state, (f) the 1² state, (g) the 1³ state, (h) a 14 state, (i) a
15 state, and (j) an MMO state close to the end of the sequence (the 0¹ state). (Reprinted with
permission from F. N. Albahadily, J. Ringland, and M. Schell, J. Chem. Phys. 90, 813, 1989.
Copyright 1989, American Institute of Physics.)

behavior, the experimental time series, not surprisingly, closely resemble
those of Figs. 27 and 28.67  These results strongly support the idea that the
complex wave forms observed in NDR oscillators arise because of slow
mass transport.

Another most remarkable experimental study in which the two types
of mixed-mode sequences were also observed was carried out by Alba-
hadily et al.,96,97 who studied the electrodissolution of copper in phospho-
ric acid from a rotating disk. Figure 30 shows a series of Farey states
observed in this system, and in Fig. 31, the experimentally observed
mixed-mode states are listed in the structure of a Farey tree. On the high
rotation-rate end of the 10  state, alternating periodic and chaotic behavior
appeared. The first period-doubled oscillation arising from the 1² parent
state is reproduced in Fig. 32 together with the 1² parent state. In Fig. 33,
a two-parameter bifurcation diagram is depicted in which the succession
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Figure 31. A portion of the Farey tree constructed from observed states.
States marked with an asterisk were observed for only four to six cycles. Most
of the states were observed for many more cycles. (Reprinted with permission
from F. N. Albahadily, J. Ringland, and M. Schell, J. Chem. Phys. 90, 813,
1989. Copyright 1989, American Institute of Physics.)

of periodic and chaotic states that is characteristic for the periodic-chaotic
sequences of the second MMO regime is clearly visible.

At this point, it should be emphasized that in contrast to the In3+/SCN–

system in which the physicochemical mechanism is very likely described
by the reaction scheme underlying Eq. (16), the individual reaction steps
that cause the oscillations during Cu dissolution are far from being

Figure 32. Wave forms measured dur-
ing the dissolution of copper in phos-
phoric acid. (a) The subharmonic
(period doubled) of the 1² state. (b)
The 1² state. (Reprinted with permis-
sion from M. Schell and F. N. Alba-
hadily, J. Chem. Phys. 90, 822, 1989.
Copyright 1989, American Institute of
Physics.)
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Figure 33. (a) Experimentally determined phase dia-
gram (during the dissolution of copper in phosphoric
acid) depicting the regions in the parameter plane rota-
tion speed of the working electrode vs. the potential set
at the working electrode, for which different behaviors
were observed. (b) An enlargement of a region in (a).
LS ,  periodic mixed-mode state, L = 1, S = 1, 2, . . . 6;
(LS)², subharmonic of a mixed-mode state; χM, chaotic
mixed-mode state; SS, stationary state; P1, small-am-
plitude periodic oscillations; P2, subharmonic of P1 ; P4,
second subharmonic of P1; χ, chaotic state with small-
amplitude oscillations; TC, approximate location of the
curve at which the transition from small-amplitude
chaos to chaotic MMOs occurred. (Reprinted with per-
mission from M. Schell and F. N. Albahadily, J. Chem.
Phys. 90, 822, 1989. Copyright 1989, American Insti-
tute of Physics.)
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understood. Hence the impression should not be created that there is any
established connection between the mechanism of Cu dissolution and the
individual terms in Eq. (16). However, whatever the “true equations”
describing the dissolution of Cu might be, the agreement between the
experimentally determined and the calculated bifurcation structures tells
us that the mathematical structure of the resulting equations will be very
similar. From this respect we can learn much about the underlying dynam-
ics or phase-space properties of Cu dissolution from Eq. (16).

(c) Mixed-mode oscillations in HNDR Oscillators

Experimental studies of HNDR oscillators exhibit an even richer
spectrum of different transitions between complex wave forms than NDR
oscillators. However, their physical origin is for the most part unknown,
and, accordingly, up to now their modeling has remained an open chal-
lenge. Nevertheless, there are some aspects that are worth discussing in
this context.

Upon deriving the prototype model of HNDR oscillators, it was
assumed that mass transport was fast and thus that the concentration of
the electroactive species in the reaction plane was independent of time.
Whenever this assumption does not hold and mass transport is incorpo-
rated into the mathematical description, the resulting set of equations
contains both oscillator types, the NDR and the HNDR. Consider, for
example, the following extension of the abstract HNDR model (Eq. 10):

(17a)

(17b)

(17c)

Equation (17c) describes concentration changes of the current-carrying
species that are due to reaction and diffusion. It has again been assumed
that the steady-state concentration profile becomes adjusted immediately.
µ is a parameter of O (1) (i.e., the characteristic times of the two slow

and
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variables, θ and c, are of comparable magnitude). Obviously, Eqs. (17a)
and (17c) are (for θ = 0) equal to the NDR prototype model, whereas Eqs.
(17a) and (17b) describe the HNDR oscillator.

In general, the interaction of two feedback loops constitutes the basis
for complex dynamics. Hence also in HNDR oscillators, slow transport
should be taken into account as a possible source of complex oscillatory
phenomena. However, this mechanism should operate only in parameter
regimes in which, or close to which, both suboscillators possess oscillatory
solutions.

Actually, Eq. (15) describing formic acid oxidation allows for a
delayed transport of formic acid (Eq. 15a), and Strasser et al.83 stress the
existence of both oscillator types in their model. They also present
simulations of MMOs that appeared in parameter space close to the line
where the NDR suboscillator [which is obtained when the indirect path-
way of formic acid oxidation, (F2), (F4) is neglected] exhibits a Hopf
bifurcation. These model calculations are reproduced in Fig. 34. The
experimentally observed MMOs are sensitive to the strength of stirring
(which was done with a magnetic stirrer).82 This gives a strong hint that in

Figure 34. From the formic acid model [Eq. (15)] calculated mixed-mode time series for
different values of U. (After Strasser et al.83 with permission of the authors.)
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this case the mechanism sketched above does hold. However, since it is
only expected to generate MMOs close to conditions under which both
suboscillators exhibit instabilities, it does not apply to the variety of
MMOs observed under galvanostatic conditions. No convincing physical
mechanism has been offered so far for these examples.

At the end of this section, two illustrations are given of interesting,
though from the physical mechanistic side, still puzzling, experimentally
obtained bifurcation sequences. Figure 35 shows a typical series of oscil-
lations as observed during the galvanostatic oxidation of H2 in the pres-
ence of Cu 2+ and Cl– ions. When the current density is increased from a
low initial value, the system exhibits a Hopf bifurcation. The emerging

Figure 35. Time series observed during the oxidation of H2 under galvanostatic
conditions for increasing values of the current density. Electrolyte: (a)–(g) 1 M
HClO4, 1.5 × 10–4 M Cu2+, 5 × 10

–5
M Cl

–
, H2 sat.; (h)–(m) 1 M HClO4, 3 × 10–5

M Cu2+, 3 × 10–5 M Cl –, H2 sat. (After Krischer et al. 76)



small-amplitude oscillations [Fig. 35(b)] do not continuously grow if the
current density is increased further, but undergo a sequence of period
doublings to small-amplitude chaos [Fig. 35(d–f)]. From this chaotic
state, a transition to MMOs occurs when the current density is increased
even further. The MMOs manifest themselves by large-amplitude bursts
between the irregular small-amplitude oscillations [Fig. 35(g) and (i)].
These bursts occur in irregular intervals in which the average time between
two bursts continuously shortens with further increases in j [Fig. 35(k–
m)]. As can be seen from Fig. 36, this sequence or related ones were
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Figure 36. Experimental bifurcation diagram of the existence re-
gions of different oscillation forms during galvanostatic H2 oxida-
tion on Pt as a function of the Cu2+ concentration. pN, period-N
oscillation. (A) one stable steady state; (B) small-amplitude oscil-
lations; (C) mixed-mode oscillations; (D) large-amplitude period-1
oscillations. (After Krischer et al.103)
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observed over the whole Cu concentration region in which oscillatory
behavior existed. Krischer et al.76,103 classify this scenario as an “interior
crisis.” This is a general term for a global bifurcation in which a small
chaotic attractor touches the inset of a coexisting saddle point or orbit and
in which a new attractor containing the locus of the former one is
generated.126,127

The second example is again taken from formic acid oxidation. In
Ref. 88 two sequences of mixed-mode oscillations are described which
were found when formic acid was oxidized at an elevated temperature (50
ºC) at a rotating platinum electrode. The interesting aspect here is that the
large amplitudes in the first sequence are as large as the small amplitudes
in the second sequence. Hence, the period-l state that separates the two
sequences corresponds to the 10 state of the first sequence and the 01 state
of the second one.

It seems to be questionable whether these two distinct sequences can
be described by the model discussed earlier. At this point, the reader should
be reminded that although the mechanisms discussed are believed to
represent essential features of the individual systems, all of them are
simplified caricatures of the “true” system. The validity of the simplifica-
tions, of course, changes with the operating parameters, and thus the
potential of a certain model to predict experimental observations depends
on the experimental conditions. In the case of the last example, it was
proposed 20 that a second negative differential charge-transfer resistance,
owing to the formation of higher oxides, plays a role in the second MMO
sequence. Obviously, such a mechanism is not captured in the model (and
also has not yet been experimentally verified).

5. Concluding Remarks

The best-known examples of electrochemical oscillators are reactions
involving the anodic dissolution of a metal in acidic solution. With the
exception of the complex bifurcation scenarios observed during Cu dis-
solution, they have not yet been discussed in this chapter. This is because
their kinetics are much more complicated than those of the examples
reviewed. Thus, despite the fact that oscillatory metal dissolution reactions
have been an intense subject of research over decades, there does not seem
to be a single example where the reaction mechanism is identified unam-
biguously and understood in depth. This is for the most part due to
complicated passivation and reactivation kinetics which involve the for-
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mation and dissolution of macroscopic films. Nevertheless, there are quite
a few examples where evidence, or at least strong hints, exist that in these
cases also the origin of the oscillations is of an electrical nature.

A clear-cut example of oscillatory dissolution of a metal that belongs
to the HNDR type of oscillators is Ni dissolution in sulfuric acid. Early
studies of the current-voltage characteristics under both potentiostatic and
galvanostatic control by Osterwald128,129 as well as very detailed investi-
gations of bifurcation behavior by Lev et al.,100,101 exhibit exactly the
characteristic features of HNDR oscillators, the most important of them
being oscillations around a branch with a positive slope in the polarization
curve and a homoclinic bifurcation at the high-current end of the oscilla-
tory regime (when measured under galvanostatic conditions). Haim et
al.130 propose a kinetic model for this system which reproduces the
qualitative features of the experimental phase diagram. However, the
chemical steps underlying their model are somewhat discrepant in relation
to a mechanism suggested by Keddam et al.131 For a final clarification of
the detailed chemical mechanism, this controversy must be solved. For a
discussion of the differences between both models see also Ref. 20.

For Co electrodissolution in phosphoric acid, Sazou and Pagit-
sas132,133 carried out a systematic study of the dynamic behavior in the
voltage/external resistance parameter plane. The skeleton bifurcation dia-
gram they found is typical for an NDR oscillator; that is, bistability
between stationary states occurs at high values of ohmic resistance,
whereas oscillations are observed at relatively low values of the external
resistance. However, from a chemical point of view, Co dissolution seems
to be among the most complicated metal electrodissolution reactions
because quite a number of different oxide species are involved. Explana-
tions of the dynamics hardly go further than a general statement that the
instabilities are due to the formation of a passive film in combination with
an IR drop.

In the case of the electrodissolution of Cu in phosphoric acid, the
situation is similar. The dynamic behavior was clearly shown to be a result
of a negative slope of the polarization curve in connection with the ohmic
potential drop,134 but a detailed mechanistic model is not available.
However, important steps in this direction were made by Tsitsopoulos et
al.,135,136 who identified the chemical composition of different oxides
being formed under oscillatory conditions, using surface science tech-
niques.
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Finally, in this context, Fe dissolution in sulfuric acid should be
mentioned. For this system, Russel and Newman137 presented data that
clearly show that under their experimental conditions, bistability is caused
by the IR drop in the electrolyte. However, there remains a slight uncer-
tainty because Epelboin et al. found a Z-shaped polarization curve, even
after correcting for the ohmic drop.138

This confronts us with two further points: first, how to determine the
category to which an oscillator belongs, and second, how to proceed in
order to elucidate the essential mechanistic steps. Concerning the first
point, one should always start by doing the utmost to test whether the
instability is of a chemical or of an electrical nature; that is, by reducing
the ohmic resistance as far as possible. Once this has been done for the
electrical oscillators, the bifurcation behavior as a function of the applied
voltage and external resistance for potentiostatic control can be used as a
criterion for assigning a system to one of the two oscillator types.*

Alternatively, as demonstrated by Koper,19,20 stability studies and catego-
rization of electrochemical oscillators can be performed by impedance
spectroscopy. The theoretical foundations as well as the practical approach
of this elegant strategy can be found in Refs. 19 and 20. An example in
which the oscillator type was identified by impedance measurements is
the oxidation of formaldehyde.19,114 However, the strength of this method,
namely, allowing a classification of oscillators without a mechanistic
model, also shows its limits: This method is not any better than the
bifurcation diagrams spanned by the electrical parameters in providing
information on chemical species involved in the oscillations.

The second task of uncovering the essential chemical steps determin-
ing the dynamic behavior is a very difficult problem that cannot be solved
according to a general strategy. If it is possible to measure the time series
of various physical quantities, the phase relation between them can often
be useful. This has been nicely demonstrated in the case of H2 oxidation
[Section II.3.(ii)], where oscillations of potential, copper coverage, and
hydrogen current were measured concurrently. The copper coverage
changed much more slowly than the potential, and thus it could be
concluded that it is involved in the slow feedback cycle. If, on the other
hand, a quantity follows without phase shift, or with a phase shift of 180º,
the species it probes is, at most, necessary to establish the negative

*Or, as in the case of galvanostatic control, it could be a function of the applied current.
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differential resistance in the polarization slope (provided the model is an
electrical one), but it might not be essential139 at all for the oscillations to
occur. Hence, just because the concentration of a species oscillates, it does
not mean that this species is important for the oscillation mechanism.

Besides ring-disk measurements [see Section II.3.(ii).(a)], several
other methods have proved useful for the simultaneous recording of
current (or potential) and a second quantity (e.g., by means of electro-
chemical quartz crystal microbalance measurements,114,117,140,141 elec-
troreflectivity measurements,142 probe beam deflection studies,143

differential electrochemical mass spectroscopy,144 or excess microwave
reflectivity 145 ). In view of the variety of methods that can be used to study
electrochemical oscillations, on the one hand, and the present knowledge
about basic mechanisms leading to oscillatory behavior, on the other, the
author is quite confident that the number of oscillators whose oscillatory
mechanism is understood in some depth will rapidly increase in the near
future. This is especially true for oscillating electro-oxidation reactions,*

where recent progress in the understanding of the formic acid system
should be of much help.

III. PRINCIPLES OF SPATIAL PATTERN FORMATION

Throughout Section II, lumped (i.e., spatially homogeneous) systems
were considered which are based on the idea that different locations of an
electrode react synchronously; that is, any spatial variations in concentra-
tion or potential parallel to the electrode were neglected. This assumption
is a suitable working hypothesis for understanding the conditions under
which a system exhibits temporal instabilities. However, any complete
description also has to incorporate transport processes that may occur
parallel to the electrode and thus represent a spatial coupling. The resulting
partial differential equation may be regarded as being composed of two
parts: the reaction part or local part† that comprises the spatially inde-

*For a survey of oscillating electro-oxidation reactions, see, for example, Table 1 in Ref.
146.

† The expression “reaction part” comes from the analogy with models of homogeneous
chemically active media where the temporal changes result from the reaction kinetics only.
The alternative name “local part” indicates that at a position x0 this part contributes only to
the temporal evolution at x0 but not to that at any other positions, xi.



72 Katharina Krischer

pendent dynamics (i.e., those terms defining the lumped system), and the
spatial coupling terms, originating from transport processes parallel to the
electrode. The interplay of both parts often results in the formation of
spatial patterns, which may be stationary or vary in time. Therefore, the
considerations from the previous section form only a basis for under-
standing dynamic instabilities in electrochemical systems. Any attempt to
obtain a qualitative picture of the dynamic behavior has to take into
account the spatial degrees of freedom. Progress made during the past 5
years has led to important insights into rules governing spatial pattern
formation in electrochemical systems, and these are the topic of this
section.

Section III.1 is concerned with spatiotemporal models, which repre-
sent an extension of the temporal models discussed in Section II. In the
basic model, the electrode is characterized by one spatial dimension,
leading in connection with the electrolyte to a spatially two-dimensional
domain. The emphasis is on the nature of the spatial coupling [Section
III.1.(i)] as well as the impact of the control mode on the spatiotemporal
dynamics [Section III.1.(ii)]. Since both aspects can be seen most clearly
in the spatiotemporal variant of the one-variable model [Eq.(1)], the main
body of Section III.1 deals with bistable systems. Next, spatial symmetry
breaking in NDR oscillators in electrolytes exhibiting an (approximately)
uniform conductivity is considered [Section III.1.(iii)]. The complications
arising in solutions in which conductivity has to be described by a
location-dependent quantity are indicated in Section III.1.(iv). In this
section, the shortcomings of predecessor models are also addressed.
Pattern formation in electrochemical systems is complicated in many
situations in which a parameter of the lumped system becomes a function
of position, and thus homogeneous solutions do not exist at all. This is the
case, for example, whenever an electrode is embedded in an insulator. This
aspect is dealt with for disk electrodes in Section III.1.(v), without,
however, providing a mathematical treatment.

The experimental results are compiled in Section III.2, which starts
with a short description of the methods used to visualize (potential)
patterns at electrode surfaces. First wave phenomena in the bistable regime
and then in the oscillatory regime are reviewed, with the focal point being
on how they fit into the theoretical picture developed in Section III.1.
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1. Models

(i) Bistable Systems under Potentiostatic Control: The Nature of
Spatial Coupling

In all electrical models discussed in Section II, the double-layer
potential is the autocatalytic variable. Hence, any spatial patterns in these
systems should be associated with an inhomogeneous distribution of the
double-layer potential and, for this reason, also with an electric field
component parallel to the electrode in the electrolyte. Thus, different
locations of the electrode are coupled together through migration currents
parallel to the electrode. In other words, if the double-layer potential
changes at one location, migration currents in the electrolyte make this
change felt at other locations across the electrode. Therefore, migration
currents provide the system with the ability to exchange information
between different positions in space. The mechanism by which migration
affects the dynamics can be seen best when considering a bistable system
where all concentrations in the cell can be assumed to be constant in space
and time, and the dynamic behavior can be described by a single variable.

Before deriving the spatiotemporal model, it is worthwhile to develop
a qualitative picture of the effect of the migration currents on front
propagation. Consider a situation in the bistable regime where part of the
electrode is in one steady state and part of it in the other (Fig. 37). The
electric field component parallel to the electrode that exists in the inter-
facial region induces migration currents parallel to the electrode. These
cross currents cause a broadening of the interface that alone would lead
in the end to a flat distribution. However, the reaction part tries to drive
the potential back to the steady state. All positions where the value of the
double-layer potential is above that of the unstable fixed point [indicated
by the dashed line in Fig. 37; see also Fig. 2(a,b)] are driven toward the
upper steady state and all states below this “separatrix” to the lower one.
Hence, the overall effect caused by the interplay of migration and reaction
is the motion of the interface, and the more stable of the two stationary states
(the lower one in Fig. 37) expands at the expense of the other (metastable)
one.

The equivalent circuit of the basic, spatially extended, system as
introduced in Ref. 147 is shown in Fig. 38. The electrochemical cell is
approximated by a one-dimensional electrode with periodic boundary
conditions, while the electrolyte is a two-dimensional, electroneutral
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Figure 37. Development of a potential front from the interplay of local dynamics and spatial
coupling. The solid line is the original profile. The dot-dashed line indicates the homogeniz-
ing effect of the migration currents on the initial spatial profile. The arrows indicate the
reestablishment of the spatial profiles (dotted line) by the local dynamics. The dashed line
indicates the saddle fixed point. Both effects result in the motion of the interface to the left.

medium with conductivity σ. This is a slightly idealized description of a
ring electrode whose circumference is large compared with its width. Each
infinitesimal segment of the electrode, or more precisely of the elec-
trode/electrolyte interface, is described by a parallel connection of a
capacitor with the specific double-layer capacitance CDL and a resistor
having a specific faradaic impedance ZF.

Before studying the properties of the full equivalent circuit, let us
consider the potential distribution in the electrolyte separately. From the
electroneutrality condition and uniformity of concentrations, it follows
that the potential in the electrolyte, φ, obeys Laplace’s equation. Further-
more, according to the equivalent circuit, there is an equipotential plane
at some distance from the working electrode. The physical picture behind
this boundary condition is that either the distance between the working
and reference electrodes is so large that all potential inhomogeneities that
might exist at the working electrode have faded away at the distance where
the reference electrode is located, or, in the case of shorter distances, that
the equipotential plane is established at the end of the double layer of the

*Of course, in order to obtain an equipotential plane in this case, the reaction taking place
at the counter-electrode must have a large reaction constant.
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Figure 38. Equivalent circuit of the basic spatially ex-
tended system. x, direction parallel to the electrode; z,
direction perpendicular to the electrode.

counter-electrode.* In any case, the potential difference between the working
electrode and the equipotential plane is kept constant, and thus the equipoten-
tial plane can be regarded as the location of the reference electrode. Note that
situations in which the reference electrode is placed very close to the working
electrode by means of a Luggin–Haber capillary are not included in such a
description. Here the potential at a point in the electrolyte rather than in a
plane has a constant difference with respect to the working electrode potential,
and different boundary conditions have to be used.

In dimensionless quantities, Laplace’s equation reads

(18a)

with β = (2πw/L ) where φ is the potential in the electrolyte and β is a
geometrical parameter denoting the ratio of the distance between the
working and reference electrodes, w, to the circumference of the working
electrode, L. The direction parallel to the electrode is x, and z represents
the direction perpendicular to the electrode (z = –1

*
is located at the

*This choice of coordinates turns out to be advantageous in all spatially extended models.
Note that it is different from the one in Section II, where the electrode is located at z = 0.
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and

electrode surface). Equation (18a) is subject to the following boundary
conditions:

(18b)

(18c)

(18d)

which corresponds to periodic boundary conditions in x (18b), an equipo-
tential plane at z = 0 (18c), and some given potential distribution at the
electrode (18d).

Mazouz et al. 148 elaborated on the importance of the cell geometry
for potential distribution in the electrolyte [i.e., for the solution of Eq.
(18)], which controls the dynamics of the system. φ is given by the
following series:

(19)

that is, a Fourier series (in the direction parallel to the electrode) whose
coefficients decrease with progressively larger distances from the elec-
trode, proportional to sinh (nβz). Thus the coefficients depend on three
quantities: the wave number n, the distance from the electrode, z, and the
geometrical parameter, β . Accordingly, any inhomogeneous potential
distribution at the electrode (i.e., at z = –1) is damped into the electrolyte
(i.e., decreases for |z | < 1). Furthermore, the damping is more efficient for
short wavelengths (large n) than for large wavelengths (small n), leading
to the delocalization of a structure localized at the electrode. Finally, the
amount of the delocalization depends on the electrode arrangement, which
is characterized by β. These three points are illustrated in Fig. 39, in which
potential profiles at four equally spaced distances from the working
electrode are shown. The potential distribution at the electrode, also shown
in Fig. 39, was chosen as representative of a possible situation in a bistable
regime. It exhibited two levels (corresponding to the two stable states) that
are connected by a narrow interfacial region. Consider first Fig. 39(a),
where the potential distribution was obtained for a large value of β . In this
case, the height of the nucleus drops off strongly into the electrolyte, its



Principles of Temporal and Spatial Pattern Formation 77

(20)

width expanding significantly at the same time. Both effects are less
pronounced for smaller β , that is, a smaller distance between the working
and reference electrodes [Fig. 39(b)]. For vanishing β , they asymptotically
approach a linear decrease of the potential between the working and
reference electrodes without any spreading of the potential inhomogeneity
in the x-direction [Fig. 39(c)].

The electric field components in the x-direction cause migration
currents parallel to the electrode, which leads to a recharging of the double
layer. Thus, the time dependence comes into play through the boundary
condition (18d). The equation governing the temporal evolution of the
double-layer potential results from the charge balance through a “slice,”
w × dx, of the electrolyte as indicated in Fig. 38147:

Figure 39. Potential distribution as a function of x for five locations zi in the electrolyte, and
three values of β. (a) β = 4, (b) β = 0.5, (c) β = 0.1, (zi = –1, –0.9, –0.8, –0.7, and –0.6 (note
that zi = –1 is at the electrode, i.e., the potential distribution chosen). (After Mazouz et al.

148
)
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where σ symbolizes the (dimensionless) specific conductivity of the
electrolyte. The lhs of Eq. (20) describes the capacitive and faradaic
current densities through the interface, and the two terms on the rhs
comprise the migration currents through the three remaining sides of the
slice. The double-layer potential, φDL(x), and the electrolyte potential at
the location of the electrode, φ(x,z = –1), are related by

(21)

which results from conditions of potentiostatic control. As above, U stands
for the externally applied voltage.

Using Laplace’s equation, Eq. (20) can be further simplified to

(22)

and hence the full problem is defined by Eqs. (18), (21), and (22).
As discussed earlier, the equations describing the dynamics of spa-

tially distributed systems are composed of a “reaction part” that defines
the spatially homogeneous solutions and is equal to the equation govern-
ing the lumped system, and a part that defines the spatial coupling between
different parts of the electrode. When comparing the equation describing
the dynamics of the lumped one-variable system [Eq. (1)] with that
describing the dynamics of the double-layer potential of the spatially
distributed system [Eq. (22)], it becomes apparent that the second term on
the rhs of Eq. (22), which takes into account all migration currents in the
electrolyte, contains two contributions: the current flowing through the
electrolyte in a homogeneous situation where the potential varies linearly
with z and is thus equal to , and the
contribution of the cross currents defining the spatial coupling.* Thus it is
useful to reformulate Eq. (22) in the following way:

(23a)

*Note that σ/β = 1/ρ in the notation used in Section II [see, e.g., Eq. (5)]. Here, ρ is expressed
through the specific conductivity σ and the geometric parameter β because these two
parameters define different attributes of spatial coupling.
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(23b)

where the second term of Eq. (22) is split into two parts and the “reaction
part” is lumped into the function g. Therefore the second term in Eq. (23b)
describes the spatial coupling.

In general, the spatial coupling of a system is characterized by two
attributes: its range and its strength. The range of the coupling is a measure
of the characteristic distance over which a change in the state at a particular
position instantaneously affects neighboring parts. The coupling strength
defines the ratio of the characteristic times of the local dynamics and the
spatial coupling. In electrochemical systems, the range of the coupling is
determined by the geometric parameter β , whereas the specific conduc-
tivity σ determines the coupling strength (for a given characteristic time
of the reaction).148 As first emphasized in Ref. 149, under many experi-
mental conditions (if β > 1) the coupling in electrochemical systems is
long range or nonlocal. Thus it differs from diffusive coupling, which is
the dominant coupling type in other chemical systems (e.g., in the
Belousov–Zhabotinsky reaction or in heterogeneously catalyzed surface
reactions). 150 Diffusive coupling is local or short range in the sense that,
instantaneously, only the nearest neighbors are noticeably affected by a
local change in the state of the system. The consequences of nonlocal
coupling on dynamic behavior have been the subject of recent intense
studies and are reviewed below.

For the moment, the properties of Eq. (23) will be examined in more
detail according to Ref. 148. The range of coupling is the result of an
interplay of the potential distribution in the electrolyte and the time
dependence of the double-layer potential. This can be rationalized by
means of Fig. 40, in which the spatial coupling term normalized to unit
strength,

is plotted against position for a rectangular potential profile at the elec-
trode. This potential distribution again leads to a situation in the bistable
regime where a large part of the electrode acquires one of the two steady
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Figure 40. Spatial coupling term in Eq. (23) for three values of β
corresponding to the three potential distributions in the electrolyte shown
in Fig. 39. Solid line, β = 4; long-dashed line, β = 0.5; dashed line, β =
0.1). (After Mazouz et al.148)

states and a small part the other one, both parts being connected by a sharp
interface.

The three curves in Fig. 40 correspond to three different values of β.
The solid curve, obtained for the largest value of β , does not fall off to 0,
even for positions farthest from the interface. Earlier, it was explained that
for large values of β , a structure localized at the electrode strongly
broadens out with progressively larger separations from the electrode.
Hence, far from the electrode (close to the equipotential plane), the electric
field possesses a component parallel to the electrode even at x positions
that are remote from the inhomogeneity at the electrode. Taking into
account that the integral over all cross currents flowing between the
working and reference electrode at a certain position of x, say x0, is decisive
for the recharging of the electrode at x0, it is understandable why the spatial
coupling in electrochemical systems is usually long range. For smaller
values of β, the broadening of the potential distribution into the electrolyte
becomes less pronounced and thus the coupling range decreases, leading
in the limit of vanishing β to local or diffusive coupling (the short- and
long-dashed curves in Fig. 40). Since β is an experimentally accessible
parameter, the coupling range can be deliberately tuned; this is a singular
property of electrochemical systems.

Unfortunately, another peculiar property of electrochemical systems
is that the parameters determining the spatial coupling, σ and β , also affect
the reaction part. This fact impedes a straightforward examination of the
repercussion of the coupling range and strength on dynamic behavior. The
influence of σ and β on local dynamics and spatial coupling can be seen
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and

in Eq. (23), but it becomes even more transparent when rewriting the time
dependence of the double-layer potential in terms of the evolution equa-
tions of the coefficients of its Fourier series expansion:

The Fourier coefficients of φDL and those of φ |
z=–1

[Eq. (19)] are
connected by the potentiostatic constraint [Eq. (21)]:

(24)

Calculating the derivative

in Eq. (23b) by using Eq. (19), and inserting the corresponding Fourier
series for φDL and

in Eq. (23), allows us to write the differential equations for the Fourier
coefficients of Eq. (23) as

(25a)

(25b)

Here the terms ƒj(a i, bi) (i, j = 0, . . . , ∞) are the Fourier components of
the reaction current density, ireac . Owing to the symmetry of the problem,
the equations for the coefficients of the sine modes, bn, are analogous to
those of the cosine modes, an. Therefore, here as well as in the mode
equations given below, they are not listed separately. The “reaction part”



(the dynamics of the homogeneous system) was lumped again into the
function g. In this way, the term defining the spatial coupling [the last term
in Eq. (25b)] is easily discernible. Note that in this formulation, the
different roles that σ and β play are clear: σ only influences the relative
time scales of coupling and homogeneous kinetics and thus defines the
coupling strength. On the other hand, β influences the ratio of the damping
terms of the different modes and thus varying β changes the range of the
coupling Furthermore, it becomes clear that the spatial coupling as a
function of position (see Fig. 40) converges toward a characteristic func-
tion, with a maximum range for large values of β as
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From β = 3, the maximum range is attained (see the solid curve in Fig.
40), which means that in typical electrochemical experiments that are not
carried out with a Luggin–Haber capillary, the coupling range is nearly
maximum.*

In order to analyze the impact of range and strength on pattern
formation, Mazouz et al.148 carried out a computer simulation in which
the dependence of the reaction part g on σ and β was disregarded and only
σ and β in the spatial coupling term were changed. The outcome of this
approach can be seen in Fig. 41. The nine images display x-t plots of
transitions in the bistable regime. The reaction dynamics [the functions g
in Eq. (25)] as well as the initial conditions were identical in each case.
The latter were chosen so that a small portion of the electrode was set in
the high-current steady state and the remaining electrode fraction in the
low-current steady state. Within a column, the coupling strength decreases
from top to bottom and within a row, the range increases from left to right.

First, it is noticeable that in all cases the transition occurs via sharp
interfaces that propagate in time across the electrode. Furthermore, it can
be seen that the coupling strength has a pronounced effect on the width of
the interface as well as on the velocity of the fronts, the interface being
broader and the transition faster for large values of σ . However, the
qualitative shape of the x-t plots remains unaffected within one row. On
the other hand and very remarkably, the coupling range determines the
qualitative behavior of the transition. For small values of β , [i.e., for nearly
diffusive coupling (first column)], the fronts move with constant velocity,

*For the transformation of β into physical quantities, see Eq. [18(a)].
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Figure 41. Gray-scale representation of the spatiotemporal evolution of the potential
at the electrode (z = –1) for different values of coupling strength and coupling range.
The “reaction part” g was kept constant and identical in all nine cases. The coupling
strength decreases from top to bottom (top row, σ = 0.565; middle row, σ = 0.0565;
and bottom row, σ = 0.00565). The coupling range increases from left to right (left
column, β = 0.1; middle column, β = 1; and right column, β = 10). The gray scale
given at the bottom was chosen nonmonotonically for clarity. (After Mazouz et a1.148 )
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as is known for fronts in reaction-diffusion equations.151,152 An increase
in the range causes an accelerated movement of the fronts and, as will be
discussed below, accelerated waves are the outstanding feature of experi-
mentally observed electrochemical waves. The influence of the coupling
range on the width of the interface is comparatively small, and the average
velocity, though of course being larger in the case of the accelerated fronts,
is not affected significantly when β varies.

As explained, in reality a change of the conductivity, σ , or the
geometric parameter, β , would also alter the homogeneous steady state
[see Eq. (25a) or (23a)], making it impossible to verify through experi-
mentation the prediction of the influence of coupling strength and range.
However, it is conceivable for σ and β to be changed simultaneously so
that their ratio and hence the homogeneous steady state is kept constant.
In this case, one would expect to see a superimposition of both the effects
discussed above. This is shown in Fig. 42, where again x-t plots of
transitions in the bistable regime are depicted together with the global
current. When going from left to right, strength and range were increased
so that their ratio was kept constant. For small values of σ and β , the
interface is sharp and propagates with constant velocity. This gives rise to
a linear increase in the global current. For intermediate values of σ and β
[Fig. 42(b) and (c)], the effects of both increased coupling range and
coupling strength manifest themselves in accelerated front motion, faster
transitions, and broader interfaces. In the total current, the accelerated
motion is reflected by a faster than linear increase in the current. As the
coupling range converges to a maximum value for increasing values of β ,
the influence of the increased strength dominates the behavior at large
values of the coupling parameters. Figure 42(d) nicely demonstrates that
large values of the coupling strength oppose pattern formation. The initial
inhomogeneity spreads quickly across the whole electrode. The further
evolution toward the steady state occurs nearly simultaneously over the
whole electrode. In this case, the behavior of the total current is determined
by the autocatalytic reaction component. Examples where conclusions
about spatial structures were drawn from the global current are discussed
in Ref. 153.

To summarize, the important feature of coupling through the electro-
lyte in electrochemical systems is that the spatial coupling is nonlocal or
long range if the reference electrode is further away than about half of the
length of the electrode. The range decreases when an equipotential plane
(e.g., the counter-electrode) is brought close to the working electrode. A
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consequence of long-range coupling is the occurrence of accelerated
fronts, which become asymptotic towards constantly moving fronts with
decreasing coupling range. Increasing the conductivity of the electrolyte
yields, on the one hand, broader spatial structures up to the complete
synchronization of the electrode, and on the other, faster wave movement.

(ii) Bistable Systems under Galvanostatic Control or, with an
External Resistor, under Potentiostatic Control: The Impact of an
Additional Global Coupling

For the homogeneous steady state, it makes no difference whether the
ohmic resistance in the external circuit arises from the electrolyte resis-
tance or from an external resistor deliberately introduced into the circuit.
In a spatially extended system, however, these two sources of ohmic
resistance have to be distinguished. This topic was studied by Mazouz et
al., 154 and their main results are summarized here.

From the appropriate equivalent circuit for a system with an external
resistor, as displayed in Fig. 43, it becomes apparent that a change in the

Figure 43. Equivalent circuit for the basic, spatially one-dimensional
system with an external resistor.
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voltage drop across the external resistor affects all locations of the elec-
trode equally. If the current density increases at a certain location of the
electrode, the larger potential drop across the external resistor makes this
local change in current density felt at every position on the electrode with
the same intensity. This kind of coupling is a global coupling.

Hence, in the presence of an external resistor or under galvanostatic
control, the total spatial coupling is composed of a global coupling
contribution originating from the external resistor, and a nonlocal coupling
contribution arising from the electrolyte. The complex interplay of global
and nonlocal coupling can be elucidated from the equations governing the
enlarged equivalent circuit. The potentiostatic constraint then reads

(26a)

where V is the potential drop across the external resistor and U,  φ DL, and
φ symbolize, as above, the externally applied voltage, the double-layer
potential, and the potential drop in the electrolyte, respectively. The
hitherto undefined quantity V is given by

(26b)

Here γ is a measure of the ratio of the external resistance, RG , and the
electrolyte resistance per unit area, β/ σ; I is the total current. Equations
(18) and (22) remain unaffected by the presence of the external resistor
and hence the complete system is described by Eqs. (18), (22), and (26).
The interaction of the two coupling channels can again be seen better when
these equations are transformed into Fourier space:

(27a)

(27b)
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A comparison between Eqs. (25) and (27) allows us to identify the term
originating from the global coupling with Note that
as the integral over all nontrivial Fourier modes in Eq. (26b) vanishes, the
global coupling only contributes to the dynamics of the homogeneous
mode. The limit of γ → ∞ corresponds to the galvanostatic control mode.
In this limit the global coupling term becomes maximum, namely (σ / β)·a0 .
Hence, galvanostatic control introduces a global coupling into the system
that is given by the product of the electrolyte resistance and the average
double-layer potential, a0 . Varying the external resistance between 0
(corresponding to potentiostatic control without an external resistor) and
∞ changes the strength of the global coupling continuously between 0 and
σ/β .

Since both types of coupling, that through the electrolyte as well as
the global coupling originating from the external resistor, depend on σ and
β, the total coupling depends in a complex manner on these two parame-
ters. This is elucidated in Fig. 44, where the contribution of the total
coupling to the capacitive charging of the double-layer potential is shown
as a function of position for a rectangularlike potential profile at the
electrode. Figures 44(a–c) correspond to three different values of β. This
value is smallest in Fig. 44(a) and largest in Fig. 44(c). For each value of
β, the quantity of the spatial coupling terms was calculated for four
different values of γ. The solid lines were obtained for γ = 0 (i.e., the
potentiostatic case); the long dashed lines were obtained for γ = 1 (i.e., a
case where the electrolyte resistance and global resistance are equal); and
finally, the dotted curve was obtained for γ = 10 as well as for γ = 100,000
[i.e., the (asymptotically) galvanostatic case]. Since σ enters linearly into
both the nonlocal as well as the global coupling term, its variation would
lead to a rescaling of the y-axis for the other parameters given. Hence it
was kept constant at a value of 1.

The implication from Figs. 44(a–c) is that the global coupling has an
impact on pattern formation only if β (i.e., the distance between the
working and reference electrodes) is small, or more quantitatively, if β <
1. For values of β at which the range of the nonlocal coupling through the
electrolyte has almost attained its maximum value the presence of an
external resistor has virtually no effect on the dynamics.

The consequences of a variation in β on the dynamic behavior of a
galvanostatically controlled system are illustrated in Fig. 45. Shown again
are transitions in the bistable region for two different values of σ. For small
σ (first row) and small β (left column), the influences of the two coupling
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Figure 44. Spatial coupling term (see text) in Eq. (27) calculated for
a rectangular double-layer potential distribution for three different
cell geometries: (a) β = 0.05, (b) β = 0.5 and (c) β = 5. In each figure
the spatial coupling has been calculated for four values of γ: γ = 0
(solid line), γ = 1 (dashed line), γ = 10 (dotted line) and γ = 100,000
(dotted line). In all three cases, the curves for the two larger values of
γ are indistinguishable. (After Mazouz et al. 154)

types can be clearly distinguished. The nonlocal coupling alone would
lead to a front propagating with a constant velocity. As the velocity
increases with σ, and σ is comparatively small in this case, the front moves
slowly. Owing to the presence of the global coupling, the front propagation
is accompanied by a homogeneous variation in the electrode. This causes
a homogeneous transition of a part of the electrode to the high-current
state when the front has propagated over only a short distance. With
progressively larger β, the strength of the global coupling decreases. As a
result, instead of causing a homogeneous transition, the global coupling
leads to accelerating fronts at values of β at which the potentiostatic system
would still exhibit fronts traveling with nearly constant velocity. For large
values of β, finally, the behavior is identical to that in the potentiostatic
case. For a value of σ that is ten times larger (second row), the global
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coupling becomes so pronounced for small values of β that the initial
inhomogeneity quickly spreads over the whole electrode and the transition
occurs over the whole electrode at the same time. Fronts become discern-
ible only for larger values of β, although, owing to the high value of the
coupling strength, they possess a broad interface.

An important consequence of the different parameter dependencies
of global and nonlocal coupling is that a variation in β has opposite effects
in galvanostatically and potentiostatically controlled systems: With a
lowering of β in a galvanostatic system, the increase in the strength of the
global coupling tends to synchronize behavior at different parts of the
electrode and thus pattern formation becomes less likely for small values
of β than for large ones. As is evident from Fig. 45, this trend is accom-
panied by faster changes in dynamic behavior. When β is decreased in
potentiostatic systems, on the other hand, the smaller coupling range leads
to an enhanced tendency for pattern formation. Taking into account that

Figure 45. Gray-scale representation of the spatiotemporal evolution of the double layer
potential in a galvanostatically controlled bistable system for different values of σ and β.
The total time of integration is given below each image. The gray scale is the same as in Fig.
41. (After Mazouz et al. 

154
)
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for large values of β, the coupling becomes indistinguishable under both
operational modes, Mazouz et al.154 conclude that under galvanostatic
control, the parameter region in which patterns emerge is smaller than that
under potentiostatic control. However, they also point out that the differ-
ences in the pattern-forming properties of both operational modes vanish
with vanishing σ.

(iii) Waves in NDR Oscillators

can be described in terms of the double-layer potential only, has been
As we have seen earlier, spatial coupling in bistable systems, which

thoroughly investigated, and the properties that determine dynamic behav-
ior seem to be understood. In comparison, an understanding of the spatial
dynamics of oscillatory electrochemical reactions is still in its infancy.
Mazouz et al. presented the first theoretical results. 155 They apply to the
special situation when the conductivity of the electrolyte can be assumed
to be uniform in space and time. This is a restriction, because in the
oscillatory regime, the concentrations of the reacting species are generally
a function not only of time but also of space. Thus the hypothesis of
uniform conductivity is justified only if the transference numbers of the
educts and products negligible (i.e., in the presence of a large excess
of supporting electrolyte).

the potential distribution in the electrolyte, and all results discussed in
In this case, Laplace’s equation still represents a good description of

Section III.1 remain valid. Furthermore, the change of concentration
caused by migration currents of the reacting species can be neglected, and
the appropriate equations (first derived by Flätgen and Krischer147) on
which the calculations are based, read in dimensionless form for the
potential:

(28a)

(28b)

(28b)

(28d)
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and for the concentration

(28e)

(28f)

(28g)

(28h)

(28i)

and

(28j)

with

Equations (28a)–(28f) are exactly the same as those discussed in the
previous section, the only difference being that the concentration at or near
the electrode, c|z=–1, enters the reaction current, ireac , in Eq. (28f) as a
variable. In the equations for the concentration (28g)–(28j), the prototype
equation of the spatially homogeneous NDR oscillator Equation (4a–b)
can be easily recognized. Equations (28g) and (28h) describe at all times
linear concentration profiles across the diffusion layer δ/w, and Eq. (28i)
represents periodic boundary conditions parallel to the electrode. Again,
the time dependence enters the problem only through the boundary
condition at the electrode [Eq. (28j)]. The reaction part of this equation,
being composed of the reaction current, ireac, and diffusion from the end
of the diffusion layer to the electrode (i.e., perpendicular to the electrode),
is familiar from the spatially homogeneous model. The last term represents
an additional spatial coupling, diffusion parallel to the electrode. However,
an estimate by Flätgen 156 shows that the diffusion parallel to the electrode
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Figure 46. (a) Time series of the global current for increasing electrode length L. (L enters
σ and β so that σ /β remains constant). Top to bottom, L = 0.1884, 0.314, 0.3454, 0.4082,
0.4396, 0.5652, 6.28 (w = 0.03). Total time shown: t = 20, t = 50, t = 100, t = 20, t = 30. (b)
Gray-scale representation of the spatiotemporal evolution of the potential at the electrode
corresponding to the first two and last three cases of (a). [In (b) only a section of (a) is shown.]
(After Mazouz et al. 155)
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Figure 46. Continued.

is by far the slowest process in the case of rotating electrodes where a small
diffusion-layer thickness makes diffusional transport to the electrode very
efficient. Hence, when considering pattern formation at rotating ring
electrodes, as experimentally investigated by Flätgen and Krischer, 149,153

diffusional coupling should not significantly influence the dynamics.
Calculations by Mazouz et al.155 confirmed this conjecture, and in the
simulations discussed below, the last term in Eq. (28j) was not taken into
account.

Figure 46 depicts the results of a series of calculations that were
obtained for different values of the electrode length in the oscillatory
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regime close to the Hopf bifurcation. Note that in the dimensionless
equations, the electrode length, L, enters the parameters σ and β so that
the ratio σ/β is independent of L. Furthermore, β was chosen so that the
coupling was almost diffusive. In this parameter regime, a change of L has
a significant impact only on the coupling strength, not on its range. First
consider the time series of the global current depicted in Fig. 46(a). Here
the coupling strength was decreased (the electrode length increased) from
top to bottom. Obviously, in only three cases, the first two time series and
the sixth one, does the current exhibit simple periodic behavior. In all other
cases, more complex oscillations occur. Hence, complex temporal dynam-
ics can be observed in systems with only two variables if spatial instabili-
ties are present.

For the first two and the last three time series of Fig. 46(a), the
corresponding position-time plots are shown in Fig. 46(b). The first two
images demonstrate how the first instability manifests itself, leading to
spatial structures. In both cases, initially a small sinusoidal perturbation
was added at a certain instant of the oscillatory cycle. Clearly, in the first
case, the initial perturbation is damped out and the system relaxes to the
homogeneous oscillation. The second image depicts spatiotemporal be-
havior after the homogeneous solution has just become unstable. The
long-term dynamics can be characterized by a homogeneous oscillation
onto which is superimposed a standing wave. Note that this spatial
instability does not manifest itself in a measurement of the global current.
A further decrease in the coupling strength results in an intricate sequence
of periodic and aperiodic patterns. The third and the last image represent
examples of spatially aperiodic behavior, the fourth one being an example
of a regular pattern with wave number two.

The preliminary results discussed in Ref. 155 indicate that the variety
of patterns becomes less pronounced for parameter values farther away
from the Hopf bifurcation. This seems to be especially true in the region
where the time series possesses a pronounced relaxationlike character.
However, as shown in Fig. 47(b), here all homogeneous solutions also
might become unstable, so that frontlike structures emerge during an
oscillatory cycle. The oscillation of the global current is characterized by
a fast increase in current density followed by a slower relaxation to a
quasi-stationary low current-density state where the system remains some
time before the next cycle starts. A comparison with the spatiotemporal
plot reveals that during the fast increase of the current the spatial picture
closely resembles that obtained in the bistable regime (i.e., an apparent
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Figure 47. Gray-scale representation of the spatiotemporal evolution of the potential at the
electrode (top) and time series of the global current (bottom) in the (a) bistable and (b)
oscillatory regime. (After Mazouz et al.155)

front propagates across the electrode, and the velocity of the front in-
creases with time). During the rest of the cycle, the electrode acquires a
nearly uniform potential distribution that evolves slowly over time. In
comparison, a transition in the bistable regime is depicted in Fig. 47(a).
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This transition differs from the one discussed in Section III.1.(i) insofar
as one of the steady states is a focus (which is, of course, only possible in
a two-variable system), and the current does not monotonically increase
but overshoots its stationary value, toward which it slowly relaxes. Also,
here the increase in current density is accompanied by an accelerated front,
whereas the delayed relaxation of the steady state occurs on a spatially
quasi-homogeneous electrode.

(iv) Extensions of the Model and Alternative Models

Before the model discussed above was published, there were three
other suggestions of how to model spatiotemporal dynamics in electro-
chemical systems. The first attempt at a theoretical description of electro-
chemical pattern formation came from Jorne.157 His model is based on a
chemical instability in the reaction mechanism and only takes into account
the concentrations of the reacting species as dependent variables, not the
potential. This, of course, means that the model is not applicable to any of
the systems exhibiting an electrical instability. This includes the examples
treated by Jorne, 157 namely, anion reduction reactions or cation reduction
in the presence of SCN– . Meanwhile, both oscillators are unanimously
classified as NDR oscillators [see Section II.2.(ii)] and hence their spa-
tiotemporal description requires a different approach.

The other two models, proposed by Haim et al.158 and Koper and
Sluyters,159 become reduced to electrical models in the spatially homoge-
neous case. Hence the double-layer potential is a dependent variable, and
the models contain elements that are also included in the model by Flätgen
and Krischer.147 In this respect, these two models can be viewed as
predecessors of the one presented above. However, each of them contains
physically unreasonable assumptions that lead to results contradictory to
those obtained with the above-discussed model.

Haim et al.158 aim at a description of waves that were observed during
the electrodissolution of an Ni wire in sulfuric acid.160,161 Their starting
point is a lumped system, the behavior of which they had previously
treated in order to simulate the global dynamics of Ni dissolution.130 This
model falls into the category of HNDR oscillators,20 with the variables
being the double-layer potential and the degree of surface modification.
The latter is assumed to be local, and migration currents provide the only
communication channel. The potential distribution in the electrolyte is
presumed to obey Laplace’s equation. Haim et al., however, missed
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including the capacitive fluxes in the charge balance from which they
derive their boundary condition at the electrode. As a consequence,
subsequently derived equations are also incorrect, and the conclusions
drawn in Ref. 158 remain questionable in spite of the apparent agreement
between simulated and experimental results. Obvious discrepancies be-
tween the model by Haim et al. and that discussed above concern the effect
of the control mode on pattern formation. Haim et al. found that the larger
the external resistor, the more pronounced the spatial patterns, whereas
Mazouz et al.154 argue that an external resistor has a synchronizing effect
and thus opposes pattern formation.

Koper and Sluyters’ approach to a general formulation of wave
propagation in systems belonging to the NDR type of oscillators starts
with the current balance between the working electrode and an equipoten-
tial plane at the location x0. Upon deriving the corresponding equation,
they assume a homogeneous current distribution at the equipotential
plane. This is a reasonable assumption only for large distances between
the working electrode and the equipotential plane, but it is not adequate
for shorter distances. In the latter case, the potential distribution at the
electrode does not appreciably widen into the electrolyte [see Fig. 39(c)],
and therefore the current densities are not uniform at the equipotential
plane. In the opinion of the author, however, the main point of criticism
concerns the description of the potential distribution in the electrolyte. The
latter is assumed to vary linearly between the working electrode and the
equipotential plane. As shown earlier, the linear potential profile leads to
a spatially local coupling, mathematically resulting in a formal diffusion
term. Hence this model does not capture the nonlocal nature of the spatial
coupling that proved to be characteristic for spatiotemporal dynamics in
electrochemical systems. In addition, Koper and Sluyters assume that an
equipotential plane exists at the end of the diffusion layer and beyond. In
experiments, potential inhomogeneities are still measured at a distance on
the order of millimeters. In a stirred electrolyte or when a rotating
electrode is used, the diffusion layer has an extension only on the order of
several tens of micrometers. In these cases, besides the failure to describe
the nonlocal nature of the spatial coupling, the coupling strength is
underestimated.

The spatiotemporal model and the simulations discussed so far pro-
vide important insights into the qualitative properties governing the for-
mation of spatial structures in electrochemical systems. However, they are
restricted to a certain geometry, namely, “quasi one-dimensional” ring
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electrodes, and to a uniform conductivity in the electrolyte. When systems
in which the last assumption does not hold are considered, the equations
become much more complicated. The potential distribution can no longer
be derived by Laplace’s equation, and terms involving mixed partial
derivatives, such as (∂ ci /∂x)(∂φ /∂x), add to the complexity of the bound-
ary condition at the electrode. The derivation of the set of partial differen-
tial equations governing the dynamics under these not so favorable
conditions (from a mathematical point of view) are given in Ref. 147. To
date, simulations with this more complicated set of equations have not
been carried out. It is therefore not clear whether the additional terms give
rise to qualitatively new dynamic behaviors, or whether they yield only
quantitative differences. This question is especially important for under-
standing pattern formation in metal dissolution reactions, where the high
current density leads to a large excess of metal ions close to the electrode,
and for this matter, also to a nonuniform conductivity. In the next section,
an attempt is made to interpret some of the phenomena observed during
metal dissolution reactions using the simple model discussed in this
section. One should, however, bear in mind that this interpretation is based
on the expectation that the most dominant features of the model will be
retained also in more complicated environments. Thus, it might turn out
that this picture has to be corrected.

(v) Some Considerations on Pattern Formation at Disk Electrodes

Several experimental studies, most of which will be discussed below,
were carried out with disk electrodes embedded in an insulating material.
In these cases, the dynamics seem to be strongly influenced by the edge
of the electrode. These effects cannot be understood by a straightforward
extension of the one-dimensional case discussed earlier.

From a mathematical point of view, the treatment of spatiotemporal
dynamics on disk electrodes is considerably more difficult than that of the
(infinitesimally thin) ring electrode. Of course, on the one hand this is due
to the additional spatial dimension. Since the direction into the electrolyte
has also to be considered, the problem is spatially three-dimensional.
However, even if this complication is neglected by considering, in a first
step, only the radial and axial directions (i.e., neglecting possible struc-
tures in the azimuthal direction), solving the resulting partial differential
equations is still a challenging task. This is due to the mixed boundary
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condition at the electrode end of the domain, which is sketched in Fig.
48(a). At the insulator, the current density in the axial direction is zero,
and thus

At the electrode, the current flux at a certain position r1  is given by the
sum of capacitive and faradaic current densities. A thorough mathematical
analysis of this problem was carried out by Christoph et al.162  The
following discussion concentrates on the illustration of one qualitative
point that seems to be significant for any wave phenomenon at disk
electrodes.

An important result regarding current and potential distributions at
disk electrodes, pointed out by Newman,163 – 16 5  is that owing to the ohmic
potential drop, a uniform current density and a uniform double-layer
potential cannot coexist. First, consider the primary potential and current
distribution where the electrolyte potential at the electrode constitutes an
equipotential surface. The primary current density is given 165 by

where iavg is the average current density, r is the radial coordinate, and r0

is the radius of the disk. The origin of r is at the center of the disk. Thus
the primary current distribution diverges at the rim of the electrode [Fig.
48(b), solid line].

Newman further showed that when slow reaction kinetics are taken
into account, the distribution of the potential at the electrode becomes
nonuniform. The resulting current distribution, also called secondary
current distribution, becomes more uniform than the primary current
distribution [Fig. 48(b), dashed line]. The discontinuity at the end of the
electrode is eliminated.

The higher current density at the rim of the electrode is to be attributed
to the current flow through the solution beyond the electrode. This can
also be phrased differently: The effective solution resistance at a specific
location of the electrode is a function of the radius.162  At the end of the
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Figure 48. (a) Boundary condition at the electrode end of the spatial domain in the case of
a disk electrode embedded in an insulator. The arrows indicate current flow in the electrolyte.
(b) Primary (solid line) and a secondary (dashed line) current distribution as a function of
the radial position.
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disk (r = 1), the effective solution resistance is at a minimum, whereas it
is at a maximum at the center of the disk.

With this knowledge one can construct a simplified picture of how
location-dependent resistance affects dynamic behavior.162  Neglecting the
spatial coupling through the electrolyte, the differential equation for the
double-layer potential depends on the radial position according to

With this equation the effect of the location-dependent resistance on the
steady states in the bistable regime can be seen easily. The stationary
solutions as a function of the radial position are illustrated in Fig. 49(a),

Figure 49. (a) N-shaped steady-state polarization curve and different load lines referring to
the different effective local electrolyte resistances. The intersections between the polariza-
tion curve and load line are stationary states at a certain radial position when the spatial
coupling vanishes. (b) Coexisting radial profiles of the double-layer potential at a disk
electrode for an electrochemical system with a bistable “reaction part.”
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Figure 49. Continued.

where again the reaction current, i reac , is assumed to possess an N-shaped
polarization curve. At the rim of the electrode (r = 1), the effective
electrolyte resistance becomes so small that it can be neglected altogether.
Hence, at the rim of the electrode, the system is strictly potentiostatic (U =
φ DL). Consequently, it is always monostable. With increasing distance
from the electrode, the slope of the load line becomes smaller, and from
a critical distance on, three steady states exist. Thus, in the central part of
the disk the reaction dynamics are bistable. Putting the uncoupled posi-
tions together results in the two spatial profiles shown in Fig. 49(b). Each
state in the bistable regime is characterized by a spatially inhomogeneous
profile.

The profile in which all positions take on a state on the low current
density branch exhibits only weak spatial variations. The other one pos-
sesses two steep steps that connect the passive states at the rim with the
active states in the central part of the electrode. For the uncoupled system,
the transition from the active to the passive state can occur anywhere
between r = 0 and r = r c r i t (i.e., a whole family of such spatial profiles
exists). When allowing for a finite (but still weak) coupling, only one of
these profiles exists, namely that where relative stability of passive and
active states is equal. It is reminiscent of the interfaces that form during a
transition in the bistable regime on a ring electrode as discussed earlier.
Those, however, are moving in time and hence are only transient phenom-
ena; the long-term behavior always exhibits a homogeneous steady state.
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At disk electrodes, in contrast, profiles connecting steady states on the
active and passive branch constitute, at least in the limit of very weak
spatial coupling, stationary structures.

2. Experiments

(i) Experimental techniques

variable is the potential. Furthermore, the dynamics are crucially deter-
From this discussion we have seen that the main pattern-forming

mined by transport processes and cell geometry. Consequently, experi-
mental studies rely on the availability of methods that do not interfere with
transport processes. Ideally, they probe the potential distribution in the
electrolyte close to the electrode or the double-layer potential. To date,
three methods have been employed in the study of patterns in electrochem-
istry: potential probe measurements, surface plasmon microscopy, and
visible light microscopy.

The major advantage of potential probes is that they directly
measure the local potential in the electrolyte and allow a straightfor-
ward and quantitative interpretation of the data. Besides, they are easy
to operate and inexpensive. Their obvious disadvantage is that they
readily hinder the transport of the reacting species and/or shield the
electric field. This has restricted their use to one-dimensional geome-
tries. 24,28,30,149,160,161,166,167  In many applications, spatial resolution was
achieved with several stationary indicator electrodes. The number of po-
tential probes varied between two and sixteen, yielding a poor spatial
resolution of several millimeters to several centimeters. In contrast, the
temporal resolution is only restricted by the response time of the probes, which
can be easily adjusted down to the microsecond regime (see later discussion).

In an elegant setup, stationary potential probes were used in combi-
nation with rotating ring electrodes (Fig. 50). This setup has the advantage
that the transport of the reacting species is well defined and can be
optimally controlled (as is the case for any rotating electrode). The spatial
resolution is simply achieved by measuring as many points as desired
during one rotation of the electrode. Hence, in this arrangement, the spatial
resolution is restricted by the diameter of the potential probe, which can
be as small as a few micrometers. However, the price for this greatly
improved spatial resolution is a longer response time of the potential probe
(see later discussion). The temporal resolution at a certain location along
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Figure 50. Experimental setup for measuring spatiotemporal pattern forma-
tion on a rotating ring electrode with a stationary potential probe. (After
Flätgen and Krischer.149)

the ring is obviously limited by the rotation rate of the electrode. Since the
rotation rate also determines the dynamic behavior, the temporal resolu-
tion cannot be chosen independently from the dynamic regime. This might
especially become a problem in the oscillatory regime, which typically
occurs at lower rotation rates than the bistable regime.

The potential probes employed so far have all consisted of glass tubes
that were pulled out to a capillary at the tip and contained a reference
electrode inside the tube. As mentioned earlier, the diameter of the tip
restricts the spatial resolution in the second setup. With the patch clamp
technique, 168,169  it is possible to produce capillaries with openings as small
as 0.1 µm in diameter. Ideally, the capillary can be viewed as a parallel
connection of a capacitor and a resistor where the capacitor symbolizes
the glass and the resistor is the solution inside the capillary.156  Hence, the
response time of the probe τ can be roughly estimated by τ = Rprobe  Cprobe.
For a fast response time, a rapid broadening of the thin tip is necessary as
well as high conductivity of the solution inside the capillary. This can be
achieved by filling the tip with agar-agar gel saturated with a salt of high
solubility such as NaCl or Na2 SO4 . The agar-agar gel prevents the elec-
trolyte from being contaminated by the solution inside the tip. In this way,
response times of 10 µs were achieved for a 200-µm probe. In comparison,
a 1 mM electrolyte yields a 0.3-s response time.156

Surface plasmon microscopy170  allows the recording of two-dimen-
sional images of the potential distribution at the electrode and combines
high temporal and spatial resolution with a nonperturbing nature. These
properties, which are optimal for spatiotemporal dynamics studies, are
confronted with two restraints. A quantitative analysis of the data is more
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Figure 51. Experimental setup for studying spatiotemporal patterns by means of SP micros-
copy. WE, working electrode; RE, reference electrode; CE, counter-electrode; and J,
impinging jet. (After Flätgen et al.17 0 )

difficult than in the case of potential probes, and the working electrode
material is restricted to certain metals.

An experimental setup of an SP microscope suitable for spatiotem-
poral measurements in an electrochemical environment is depicted in Fig.
51. The working electrode consists of an Ag or Au film of about 50-nm
thickness that is evaporated onto a glass prism having a high refractive
index. The glass prism permits the excitation of surface plasmons by

*Tadjeddine and Hadjadj171,172  showed that a Ptx Al1-x alloy, which behaves electrochemically
in a way identical to Pt, can also be optically excited and thus is also applicable to SPM
studies.
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p-polarized laser light, which is passed through the prism onto the metal
film at a certain angle of incidence. This arrangement has become known
as the Kretschmann configuration.173 The excitation of SPs occurs in a
narrow interval of the angle of incidence at which the energy and momen-
tum of the incoming photons and SPs match. The SP excitation manifests
itself as a strong decrease in intensity of the reflected laser beam. In an
electrochemical environment, the dispersion relation of the SPs changes
with the potential applied in a certain potential range.

Figure 52 displays two typical resonance curves obtained at two
values of the potential. The curves are clearly shifted relative to each other.
Obviously, if the potential drop is different at two different locations at the
electrode, the intensity of the reflected laser beam at a certain angle of
incidence should be different. Hence, spatially resolved pictures of the
potential distribution along the electrode can be obtained if the laser beam
is broadened and the irradiated part of the electrode is imaged onto a
screen, which can be recorded with any charge-coupled device (CCD).

The fast dynamics of oscillatory electrochemical reactions often
require a temporal resolution considerably better than video frequency. In
the studies discussed in the next section, cameras with a full-frame transfer
architecture that allows the recording of about 1000 frames per second
were used. The spatial resolution is limited by the propagation length of

Figure 52. Reflectivity vs. angle of incidence for two values of the
applied potential. (After Flätgen et al. 178 )
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SPs and thus depends on the frequency of the exciting laser light. For
example, for an He-Ne laser (632 nm), it is about 20 µm.1 7 4 The electrode
is freely accessible, and a defined convection can be achieved by means
of an impinging jet.

The direct observation of waves on electrode surfaces with video
cameras is often possible in metal dissolution reactions where, in general,
different double-layer potentials are connected with distinct thicknesses
of salt or oxide layers. The latter are so pronounced that they possess
visible contrast in the reflectivity. Obviously, this direct imaging is re-
stricted to reactions that are accompanied by drastic changes of the
electrode morphology. Hence, the reactions that are mechanistically the
most difficult ones to understand are the easiest ones to study from an
experimental point of view.

(ii) Fronts in the Bistable Regime

(a) Reduction of peroxodisulfate

Extensive investigations of front propagation in a bistable regime
under potentiostatic control were carried out for the reduction of by
Flätgen and Krischer.149,153  These studies, being the first ones of electro-
chemical waves that are not linked to metal dissolution reactions, provided
ample evidence that (1) spatial coupling occurs through migration currents
in the electrolyte, and (2) the coupling is nonlocal in nature. These are the
coupling attributes that in later theoretical studies proved to be decisive in
accounting for pattern formation in electrochemical systems (see Section
III.1). In this context, it is important to note that in all experiments carried
out so far with this system, no external resistor was used. Furthermore, the
distance between the working and reference electrodes was considerably
larger than the circumference of the electrode, resulting in a maximum in
the nonlocality of the coupling.

A typical transition from the passive to the active state, as measured
with a potential probe and a rotating Ag ring electrode, is reproduced in
Fig. 53. The accelerated motion of the interface immediately leaps to the
eye. It is, according to the explanation given in Section III.1, a conse-
quence of nonlocal coupling. Accelerated fronts were found to be the
characteristic feature in all passive to active transitions. By contrast, during
the much slower transitions from the active to the passive state, often only
faint spatial variations were observed, but no sharp interfaces between
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Figure 53. Spatiotemporal plot of the local potential during a
transition from the passive (low current density) to the active
(high current density) state in the bistable regime of the reduction
of peroxodisulfate. Circumference of the electrode, 3.46 cm.
(After Flätgen and Krischer.14 9 )

these states.153 The fact that the active to passive transition is slower
suggests that the reaction dynamics are slower than in the passive to active
transitions. This, in turn, means that the coupling strength is larger, or, in
other words, the synchronizing effect of the spatial coupling is more
pronounced. Recall that the coupling strength is roughly determined by
the ratio of the characteristic times of local dynamics and spatial coupling.

The average front velocity of the passive to active transitions has been
examined as a function of a series of parameters.149  The most important result
of these studies is that the average velocity was found to increase approximately
linearly with the conductivity (Fig. 54), but did not notably depend on the
concentration of at constant conductivity. From these experiments it
could be concluded that diffusion has no influence on spatial coupling. An
increase in the front velocity with increasing conductivity was also found
much earlier for metal dissolution reactions by Bonhoeffer and Renneberg 24

and also by Franck.28  In all three studies, the average velocity of the
fronts was found to range between a few cm s–1 and m s –1 .

Passive to active transitions, as imaged with the surface plasmon micro-
scope, are depicted in Figs. 55 and 56 (color plate following page 112). In the
first example, the working electrode consisted of an Ag ring having a
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Figure 54. Average front velocity as a function of the electrolyte conductiv-
ity σ. (After Flätgen and Krischer.149 )

Figure 55. SP microscope images of a potential wave on an Ag ring electrode
during the reduction of peroxodisulfate (elapsed time between the images,
4.5 s). (After Flätgen et al.

1 7 0
) A color representation of this figure can be found

following page 112.
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Figure 56. SP microscope images of a potential wave on an Ag disk electrode
during the reduction of peroxodisulfate. (After Flätgen et al.1 7 0 ) A color repre-
sentation of this figure can be found following page 112.

comparatively substantial width. The images shown were recorded in
equidistant time intervals and quite clearly, also in this case where the
electrode can no longer be viewed as quasi one-dimensional, the front
motion is accelerated (Fig. 55).

In the second example, a disk electrode was evaporated onto the prism
(Fig. 56). Here, as well as in all other studies carried out with disk
electrodes, the active phase nucleated at some location along the rim of
the electrode, from where it spread across the surface. In view of the
consideration discussed in Section III.1.(v), this is surprising, because the
electrode rim should always be more passive than the center of the
electrode. Therefore, one would expect that the active phase forms easiest
in the center of the disk, which was also found in simulations.162
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(b) Co electrodissolution

Another system for which Otterstedt et al. have recently carried out
many studies on spatial pattern formation is the electrodissolution of Co
in acidic phosphate solutions.1 6 7 , 1 7 5 – 1 7 7 As for most electrodissolution
reactions of metals in acidic solution, when the potential is varied in the
anodic direction, there is a well-known critical potential, the Flade poten-
tial, at which a sudden decrease in current density to nearly 0 occurs. This
active to passive transition is attributed to the formation of an oxide film
that prevents further dissolution of the metal. In potentiostatic experi-
ments, depending on the other control parameters, bistability or oscilla-
tions are observed in the vicinity of the Flade potential. For all metal
dissolution reactions, complicating factors, such as convection induced by
density gradients due to the high current densities involved and the
complicated kinetics of salt and oxide film formation, come into play.
However, many of the phenomena observed are analogous to that pre-
dicted by the simple spatiotemporal model described earlier. Thus, Ot-
terstedt et al. interpret their results by invoking the spatial coupling
mechanism through the electric field as given in Eqs. (18), (20), and (21).

Figure 57. Top view of the experimental setup used to study waves on
quasi-one-dimensional Co electrodes. (Reprinted with permission from R.
D. Otterstedt, P. J. Plath, N. I. Jaeger, and J. L. Hudson, Phys. Rev. E 54, 3744,
1996. Copyright 1996, American Physical Society.)
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These authors 176 obtained a quasi one-dimensional electrode geome-
try by embedding a Co foil in an epoxy resin so that an area 50 × 0.5 mm
was exposed to the electrolyte (Fig. 57). The counter-electrode was bent
into a rectangle 150 × 100 mm located in the same plane as that of the
working electrode. The reference electrode was placed close to a corner
of the counter-electrode.

Front propagation was studied by initiating transitions from the
passive to the active state by scratching the passive Co electrode slightly
at one end with a glass rod and monitoring the spatial changes with a video
camera. The characteristic behavior turned out to closely resemble that of
the electrocatalytic reaction; that is, the fronts traveled across the electrode
with increasing velocity (Fig. 58).176 Furthermore, the width of the inter-
face increased with time. In Ref. 176, the authors stress the importance of
long-range coupling for the occurrence of acceleration. However, they
argue that this effect acted in conjunction with a second mechanism that
also caused an acceleration. During the transition, the total current in-
creased, leading to a more cathodic potential everywhere along the elec-
trode. This effect in turn resulted in an enhanced rate of dissolution of the

Figure 58. Position-time plot of an accelerating front in
the bistable regime of Co dissolution. (Reprinted from R.
D. Otterstedt, P. J. Plath, N. I. Jaeger, J. C. Sayer, and J.
L. Hudson, Chem. Eng. Sci. 51, 1747, 1996 with kind
permission of Elsevier Science Ltd., Kidlington, UK.)
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oxide layer, which again had an accelerating effect on the front motion.
To the best of the present author’s understanding, the fact that the potential
becomes more positive everywhere along the electrode is nothing more
than a consequence of the basic long-range coupling and therefore does
not represent an additional mechanism.

(c) Other metal dissolution reactions

Finally, some old results from the schools of Bonhoeffer and Franck,
mainly on activation waves on passive iron wires, will be discussed. In
these early studies, very long metal wires with lengths of up to 1 m served
as working electrodes, and again, fronts during the passive to active
transition were investigated. The spatial profiles were recorded with
potential probes. In some studies, the activation front was followed by a
repassivation wave, a behavior that today we know occurs in the excitable
regime.23 A stationary state is excitable if, upon a small perturbation of
the steady state, the system is first driven away from it and only after some
time does it return to the original state.

Regarding the results discussed above, the interesting aspect of these
experiments is that the front velocities took on a constant value. Some data
can be seen in Fig. 59. The first three examples show activation fronts in
the bistable regime of Fe, Au, and Zn dissolution, respectively; the last
two curves display examples of pulses in an excitable regime, again for
metal dissolution reactions. In all examples, two stationary electrodes
were used to probe the local potential. The velocity of the fronts or pulses
were extracted from the time difference at which the transitions were
measured at the two probes. In all five examples, the readings of the two
probes seem to be just time-shifted versions of each other. This indicates
that the structures propagate with constant shape and velocity.

A characteristic property of the model presented above is that the
coupling range changes with the ratio of the length of the electrode, L, and

Figure 59. Potential-time curves measured at two different positions along a metal wire
during (a) Fe dissolution in 1 N H2 SO4 , (b) Au corrosion in 1 N HCl/2 N NaCl, (c) Zn
dissolution in 4 N NaOH, (d) Activity wave of Fe in 12 N HNO3  with successive repassiva-
tion; and (e) passivation wave during Co dissolution in 1.3 M CrO3 + 1 N HCl with successive
reactivation. The distance between the potential probes corresponds to the distance given
under each curve. (After Franck,3 0 reprinted with permission from VCH Publishers.)
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the distance between the working and reference electrodes, w. The larger
the electrode for a given distance between the working and reference
electrodes, the shorter the coupling range. Thus, the coupling becomes
local for large values of L/w, and the resulting waves are typical reaction
diffusion waves, propagating with constant shape and velocity. In view of
the length of the electrode used in the experiments cited above, it is
tempting to interpret the results as confirmation of the predictions of the
model. However, such a conclusion has to be regarded with caution for
several reasons. On the one hand, the exact cell geometry that is decisive
for spatial coupling cannot be reconstructed. On the other hand, although
the authors present evidence that spatial coupling occurs through the
electric field, at least one of the systems, namely, Fe dissolution in nitric
acid and most likely also Co dissolution in CrO3  and HCl, does not belong
to the class of electrical models, and hence it cannot be expected that it
can be described in terms of the model equations (18), (21), (22), or (28).
Finally, as for all metal dissolution reactions, other coupling mechanisms
such as convection or surface tension cannot be excluded a priori.

(iii) Waves in the Oscillatory Regime

(a) Reduction of peroxodisulfate

In Section III.1.(iii), spatial patterns of NDR oscillators in two
different parameter regimes in the oscillatory region were discussed, one
close to the Hopf bifurcation, at parameter values where the system
possesses one steady state and the other in the multistationary regime at
parameter values where the oscillations take on a typical relaxation
character. So far, for S2 O

2 –
8 reduction, there are experiments covering

only the second parameter regime. They were recorded with an SP
microscope, and an example is depicted in Fig. 60 (color plate following
page 112). The global current, shown in Fig. 60(a), clearly resembles the
calculated one of Fig. 47(b): An oscillatory period is characterized by a
sharp increase in current density, a slow relaxation to the original low
level, and a quasi-stationary phase. When relating the spatial behavior
shown in Fig. 60(b) to the global current shown in Fig. 60(a), it can be
seen that a wave emerges at the right lower rim of the electrode as soon
as the current starts to rise, and propagates across the whole electrode
during the fast part of the oscillation period where the current increases.
By contrast, the slow recovery of the current to the initial low value is
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Figure 60. (a) Time trace of the global current during an oscillation (oscillation frequency
was about 2 Hz). (b) SP microscope images of the electrode during the oscillation.
Electrolyte: 2 mM  0.1 mM  and 0.01 M NaOH. (After Flätgen et al. )
A color representation of this figure can be found following page 112.

 Na2 S2O8  Na 2SO4 ,,
178
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accompanied by only faint spatial variations that can hardly be identified
owing to the comparatively high noise level of the data.

Qualitatively analogous behavior, corresponding to the calculated
spatiotemporal pictures of Fig. 47(a), can be found in a regime where the
system is still bistable, but one of the stationary states has become a focus.*

In this case, during the passive to active transition, the current overshoots
its stationary value toward which it relaxes from high current densities
[Fig. 61(a) and the color plate following page 112]. The sharp rise in
current is accompanied by traveling potential waves exhibiting a pro-
nounced interface, whereas during the subsequent relaxation of the cur-
rent, only smooth, radially symmetric spatial structures can be discerned
[Fig. 61(b)]. Hence the characteristic feature of the simulations, namely,
frontlike waves that occur in parallel with the fast increase in current, and
only weak spatial variations during the remaining part of the oscillation
period, are found again in the experiment. However, obviously, the pat-
terns are influenced by the presence of the boundary, and any deeper
analysis of the dynamics has to take into account its effect. In this context,
it again remains unclear why the activation waves start at the rim of the
electrode and not at its center.162

Flätgen et al.178 discuss typical time and length scales in the per-
oxodisulfate system. The fast dynamic of the potential determines the
width of the fronts that accompany the rapid increase in current density.
The latter occurs on the order of 10 ms, and typical interface widths range
between 0.1 and 0.5 mm. The slower changes in concentration determine
the overall period of the oscillation (10–0.5 Hz) as well as the total length
of a wave train. The latter is on the order of centimeters, which is larger
than the diameter of the electrode and causes a quasi-homogeneous
appearance of the electrode during most of the oscillation period.

(b) Co electrodissolution

Otterstedt et al.167,176 also studied waves in the oscillatory regime
during Co dissolution. The oscillations possess a relaxationlike character,
which is typical for oscillations between the active and the passive state
of metal dissolution reactions. They are characterized by long, quasi-
stationary periods of vanishing current density, followed by a sharp

*At these parameter values, the dynamics cannot be described with one variable anymore
and for this reason the example is presented here rather than in the previous section.
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Figure 61. (a) Time trace of the global current during a transition in the bistable regime at
parameter values close to the oscillatory regime (note that the relaxation to the active state
is not completely shown). (b) SP microscope images of the electrode during the transition.
Electrolyte: 1 mM Na2S2 O8, 0.1 mM Na2SO4 , and 0.01 M NaOH. (After Flätgen et al.178)
A color representation of this figure can be found following page 112.
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increase in current and a slower relaxation back to the passive state [Fig.
62(a)]. The spatial picture resembles that of S2O2–

8 reduction shown in Fig.
60 where the oscillation also exhibited a relaxationlike character. A sharp
activation front propagates across the surface in parallel with the increase
in current density, while the electrode surface is nearly homogeneous
during the remaining part of the oscillatory cycle.

When a quasi-one-dimensional ribbon was used as the working
electrode (see Fig. 57), the activation waves emerged at the same time at
the two edges of the ribbon and increased their velocity while traveling
toward the center. The positions of the leading fronts as a function of time
are shown in Fig. 62(b).

When the applied potential was moved close to the Flade potential,
surprising changes occurred in the temporal and spatial behavior. An
oscillation in the total current density exhibited small-amplitude oscilla-
tions that were superimposed on the decreasing part of the oscillatory
cycle [Fig. 63(a)]. Considering spatial behavior, we first note that again
an active region traveled with increasing velocity across the electrode [Fig.
63(b)]. However, the velocity of the front was much slower, so that
repassivation occurred in its wake and a pulselike structure was formed.
Whenever a modulation in the current density occurred, the trailing edge
of the active region accelerated in the reverse direction, that is, into the
repassivated region. In this way, the velocity of the trailing edge was found
to be larger than that of the leading edge. However, the trailing edge did
not travel up to the end of the electrode but died out before the next
modulation occurred. Thus one could also view this complex motion as
the accelerated propagation of an active area that pulsates in width. Close
to the Flade potential, the electrode was activated more easily. Otterstedt
et al. establish a connection between the more favorable conditions for the
reactivation of the electrode and the occurrence of these modulated
waves.167 Finally, it should be noted that all phenomena described here for
the Co ribbon were also found at Co disks.175

An important result of the theoretical description of the electrochemi-
cal patterns discussed above was that the distance between the working
electrode and the equipotential surface has an important impact on the
pattern formation, or more precisely, on the range of the spatial coupling.
In view of this knowledge, it is to be expected that electrode configurations
different from this parallel arrangement of two equipotential surfaces
affect the dynamics in a different way. An experimental setup often
employed in electrochemical experiments is the use of a Haber–Luggin
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Figure 62. Single autonomous oscillation during Co dissolution.
(a) Total current vs. time. (b) Position of the leading edges of the
activation waves vs. time. (Reprinted with permission from R. D.
Otterstedt, P. J. Plath, N. I. Jaeger, and J. L. Hudson, Phys. Rev. E
54, 3744, 1996. Copyright 1996, American Physical  Society.)
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capillary so that the difference in potential between a point close to the
working electrode and the potential of the working electrode is controlled.
Otterstedt et al. demonstrated that the use of a Haber–Luggin capillary
indeed gives rise to wave phenomena that are different from those de-
scribed above, where an equipotential surface parallel to the Co wire can
be assumed to exist at the location of the reference electrode.177

In the experiments described in this paragraph, the Haber–Luggin
capillary was located at the center of a disk or ring electrode, close to its
surface (Fig. 64). With this arrangement, a rotating wave consisting of an
active area in an otherwise passive region was typically observed. The
wave constantly moved around the center of the disk, thereby keeping a
steady shape [Fig. 65(A)]. Thus, the global current density remains
approximately constant [Fig. 65(B)], while at a point close to the rim of
the electrode, the potential regularly oscillates with an amplitude of about
1 V [Fig. 65(C)]. Similar results were obtained with a ring electrode.167

Closer to the Flade potential, the width of the active area started to
oscillate or breathe in a way similar to that of the modulated waves
described in the above experiments. The difference between these two
types of modulated waves is that here the wave constantly rotates around
the center and possesses a localized structure, while in the above experi-
ments it traveled once across the whole electrode and reappeared only after
some time.

Finally, with the reference electrode close to the working electrode,
stationary patterns also formed under certain conditions. They consisted
of an active area in the center of the disk surrounded by a passive ring. The

Figure 64. Experimental setup with
the reference electrode at the center of
a disk (or ring) electrode close to the
surface. RE, reference electrode; WE,
working electrode; CE, counter-elec-
trode. (After Otterstedt et al.177 Repro-
duced by permission of the Royal
Society of Chemistry.)
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Figure 65. (A) Video images of a clockwise rotating wave during Co dissolution. (B) Total
current vs. time. (C) Potential between the working electrode and an additional reference
electrode with a capillary placed at the rim of the working electrode ca. 1 mm away from
the surface. (After Otterstedt et al.

177
Reproduced by permission of the Royal Society of

Chemistry.)
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three patterns described were observed when the Flade potential was
approached from the cathodic side.

The key to understanding the occurrence of these rotating waves
lies in the interplay of the shift in potential of the counter-electrode
when the active area increases, and the radial dependence of the IR
drop between the reference electrode and different positions of the
working electrode. 177 However, a complete explanation of the phe-
nomenon has to await the results of the theoretical treatment of the
problem currently being investigated by Christoph et al.162*

(c) Ni electrodissolution

A much-quoted experiment on pattern formation in electrochemical
systems was carried out by Lev et al.,160,161 while investigating the anodic
dissolution of Ni. In these experiments, the working and counter-elec-
trodes consisted of 10 to 20-cm-long Ni wires that were arranged in
parallel 6 to 12 mm apart. The reference electrode was placed 40 mm
behind the counter-electrode. The local current distribution was recorded
with 16 equispaced microreference electrodes, and the spatiotemporal
dynamics were investigated during four types of global behavior.

During galvanostatic oscillations, the current in one part of the electrode
was always found to be shifted by 180º relative to the other part of the
electrode. This behavior was maintained down to the smallest electrodes
tested, which had a length of 1 cm. An example of these antiphase oscillations,
also referred to as standing waves, is shown in Fig. 66.

When the electrodes are covered with only a thin layer of solution, a
potential gradient along the working electrode can arise, which leads to
chaotic potential oscillations under galvanostatic conditions. In this cha-
otic regime, the current distribution still exhibited the general features of
the antiphase oscillations, but the maximum local amplitude as well as the
period of the oscillations varied from one oscillation cycle to the next.

When an external resistor was incorporated between the working and
reference electrodes, and the system was operated under potentiostatic
conditions, the antiphase oscillations became transformed into traveling
pulses with velocities of about 4.5 m s–1.

*Added in proof: Very recently it was demonstrated that when the reference electrode is
located close to the working electrode a negative global coupling is introduced into the
system that favors pattern formation. (P. Grauel, J. Christoph, G. Flätgen and K. Krischer,
J. Phys. Chem. B 102 (1998) 10264.
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Figure 66. Local current distribution of antiphase oscillations during the dissolution of Ni
under galvanostatic control. (Reprinted with permission of Nature from O. Lev, M. Shein-
tuch, L. M. Pismen, and C. Yarnitzky, Nature 336, 488, 1988. Copyright 1988, Macmillan
Magazines Ltd.)

Finally, transitions in the bistable regime from a stable oscillatory
state to a stationary state were investigated under galvanostatic conditions
(Fig. 67). Quite astonishingly, the transition was not accompanied by a
moving front as in all the other examples discussed so far. Rather, it
occurred with a few enlarging oscillations followed by a huge, long-lasting
modulation of the current. The relatively active side of the electrode first

Figure 67. Local current distribution during the transition from an oscillatory state in the
transpassive region to a state in the oxygen evolution region measured under potentiostatic
operation. (Reprinted from O. Lev, M. Sheintuch, H. Yarnitsky, and L. M. Pismen, Chem.
Eng. Sci. 45, 839, 1990. Copyright 1990 with kind permission from Elsevier Science Ltd.,
Kidlington, U.K.)
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becomes more active, while the other side matches this behavior by a
corresponding decrease of current, followed by a gradual approach to the
new steady state.

This constitutes a very interesting sequence of observations. As
mentioned, Haim et al. 158 reproduced this sequence in a model they
proposed in order to model the spatiotemporal dynamics of Ni dissolution.
Unfortunately, to the best of the present author’s understanding, there is a
problem with the boundary condition at the electrode and thus a definite
explanation is not possible at this stage.

(d) Fe electrodissolution in H2SO4

The most clear-cut examples of the influence of an insulating bound-
ary on spatiotemporal dynamics come from experiments on the dissolu-
tion of iron. In 1969, Pigeau and Kirkpatrick179 presented a sequence of
images in which a wave could be seen that emerged at the rim of a
disk-shaped electrode and propagated toward the center. These radially
symmetric waves constituted passivation waves accompanying the de-
crease in current density during typical relaxation oscillations.

This system was used by Hudson et al.,180 who demonstrated that the
spatiotemporal picture can become more complex when the applied
potential is fixed closer to the Flade potential. The first series of studies
was carried out with disk electrodes embedded in an insulating Teflon
sheet. In Ref. 180, the authors present two series of experiments. In the
first, they reproduced the dynamics of the base oscillatory state as de-
scribed by Pigeau and Kirkpatrick. The time series corresponding to this
state is shown in Fig. 68(A), and difference images of a video sequence
are reproduced in Fig. 69. The activation of the surface, being so fast that
it cannot be resolved in time with a video camera, occurred between
images a and b. Shortly after this, repassivation sets in (image d), starting
from the rim of the electrode and progressing inward in a fairly uniform
manner (images e–h). Up to the next activation, no visible changes on the
surface are discernible. Note that in Fig. 69 as well as in the three
successive figures, difference images are displayed, and thus only the
newly passivated parts can be seen.

Closer to the Flade potential, the radial symmetry is broken, and the
spatiotemporal picture shown in Fig. 70 is obtained. This time, only about
half of the electrode (the lower left-hand side in image a) is activated, and
front formation and propagation occur only on this half of the electrode.
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Figure 68. Current oscillations during anodic dissolution of iron at
(A) –148 mV and (B) –154 mV vs. Hg/Hg2SO4 . (After Hudson et
al. 180 )
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Figure 69. Difference images of successive snapshots of the Fe surface (a) during
the passive state, (b) during the passive to active transition, (c) immediately after
the transition to the active state, (d)–(i) during gradual relaxation to the passive
state for the oscillations shown in Fig. 68(A). The superimposed solid circle
marks the boundary of the iron electrode. Changes outside this boundary are
associated with noise. (After Hudson et al. 180 )

During the second oscillation in time, activation and film growth take
place on the complementary portion of the surface. Thus the time trace of
the complete cycle consists of two current peaks in the time series shown
in Fig. 68(B).*

An analogous behavior was found on ring electrodes.181  Far from the
Flade potential, the complete ring was activated between two images of
the video, and the subsequent repassivation wave formed at the outer and
inner border of the ring; in this way the outer wave appeared slightly before

*In Fig. 68(B), these two peaks have slightly different amplitudes, which is, however,
attributed to heterogeneities of the electrode surface and not to an intrinsic property of the
dynamics because the two halves of the disk should theoretically be exactly symmetrical.
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the inner one. The latter behavior is again most likely a result of the
inhomogeneous potential distribution, which arises as a result of the
metal/insulator boundary. Closer to the Flade potential, a spatiotemporal
period-doubling bifurcation, corresponding to the one described above,
was observed. In every other oscillation of the current density, one half of
the ring participated in the activation-passivation cycle and the other half
in the remaining oscillations (Fig. 71). In these studies, the authors
succeeded in observing yet another spatiotemporal behavior while still
lowering the potential toward the Flade potential. Subtracted images of

Figure 70. Differences of successive snapshots of the Fe sur-
face corresponding to the oscillations shown in Fig. 68(B). One
period consists now of two activation-passivation cycles that
occur on symmetric parts of the electrode. The superimposed
solid circle marks the boundary of the iron electrode. Changes
outside this boundary are associated with noise. (After Hudson
et al. 180 )
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Figure 71. Differences of successive snapshots of the surface during passivation phases of
two successive current oscillations of a period-2 state of the potentiostatic dissolution of an
iron ring electrode. (Reprinted with permission from J. C. Sayer and J. L. Hudson, Ind. Eng.
Chem. Res. 34, 3246, 1995. Copyright 1995, American Chemical Society.)
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the subsequent passivation phases are shown in Fig. 72. During the first
current peak in the time series, the activation to passivation proceeds firstly
on two oppositely placed quadrants; this is followed by an activation to
passivation cycle on the other two quadrants.

The last series of experiments that will be described in this chapter
were carried out with arrays of small circular Fe electrodes embedded in
an insulator.182 The small electrodes were closely packed in different
geometries. The idea behind this setup was that the electrode array should
behave similarly to one large electrode of the same size and geometry.
However, the advantage of using several small electrodes is that a spa-
tiotemporal picture can be obtained by measuring the currents at the small
electrodes. This can be done much faster than with video frequency, and
hence the activation waves could also be spatially resolved. It is interesting
that the activation waves always start in the center of the electrode array,
whereas the passivation waves start, as found with disk electrodes, at the
rim of the array. This behavior is in accordance with the simple picture
developed in Section III.1.(v) for the local dynamics of disk electrodes
embedded in an insulator. There it was argued that the boundary of the
disk is always more passive than the center, and thus the activation waves
should be more likely to start in the center, whereas passivation waves can
be expected to originate at the rim. Also, for array configurations, which
cannot be viewed as a caricature of a disk, Fei et al.182 qualitatively
observed the same behavior. Among these configurations was, for exam-
ple, a quasi-one-dimensional arrangement consisting of 2 × 8 electrodes.
Here the activation waves emerged from the two central electrodes,
whereas passivation started again at the ends. Finally, we note that the
period-doubled states were also found in electrode arrays of various
configurations. Obviously, this bifurcation is a robust phenomenon.

To summarize this section on pattern formation during iron dissolu-
tion, two types of phenomena were consistently observed. First, the
principal propagation of activation and passivation waves seems to be
dictated by the nonuniform potential distribution that arises as a result of
the transition from the conducting electrode to an insulating material.
Second, close to the Flade potential, spatiotemporal period doubling is
observed. In the case of disk or ring electrodes, this bifurcation breaks the
radial symmetry of the electrodes. It remains a challenging task to eluci-
date the origin of this spatial bifurcation.
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3. Concluding Remarks

The discussion of the experimental results in Section III.2 shows that a
fundamental understanding of pattern formation in electrochemical sys-
tems has been achieved. However, it also demonstrates that the present
state represents just a first step toward a complete picture of possible
dynamic behaviors. There are many observations that cannot yet be
explained, for example, the spatiotemporal period-doubling bifurcation
detected during the electrodissolution of iron, the occurrence of antiphase
oscillations during Ni electrodissolution, or the emergence of modulated
waves during the electrodissolution of Co. Nevertheless, these phenomena
seem to be understandable through an extension of the models introduced
in Section III.1.

However, the reader should be aware that there are many other
systems in which different types of patterns have been observed that result
from a qualitatively different kind of coupling. Hence they also require
fundamentally different models from that considered in this chapter. This
first includes convection-induced patterns. These might arise from large
concentration gradients in the solutions or different surface tensions as
found, for example, under certain conditions for anodic metal dissolu-
tion183,184 or for some inhibited charge-transfer processes at Hg elec-
trodes.185 A theoretical analysis of hydrodynamic dissipative structures
can be found in Refs. 186–188. However, growth patterns emerging
during electrodeposition 189–198 also have to be mentioned in this context.
In many of these cited examples, fractal structures were observed.

Another type of pattern was found during the electrochemical code-
position of Ag and In or Ag and Sb. As early as 1938, Raub and Schall 199

reported spiral formation during the deposition of an Ag/In alloy. Almost
50 years later, the related Ag/Sb system was studied by Krastev et
al.,200–203 revealing, besides spiral waves, the occurrence of target patterns
and moving bands. A prime condition for these patterns to develop seems
to be the existence of a convective flow along the working electrode.
Phenomenologically, the patterns closely resemble those found in hetero-
geneous catalysis. Thus the wavelength of the spiral waves is on the order
of 10 µm and the wave speed is a few µm s –1. Recall that the patterns
discussed above, which emerge as a result of migration, possess charac-
teristic wave speeds of cm s –1 to m s –1 and characteristic lengths on the
order of several millimeters to several centimeters.
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IV. SUMMARY

Starting from the knowledge that in most electrochemical systems, oscil-
lations, or more generally speaking, dynamic instabilities, originate from
the electrical nature of the systems, common principles that govern their
spatiotemporal dynamics have been reviewed. The complexity of the
dynamic behavior was chosen as the organizational tool. This approach
naturally distinguishes between spatially homogeneous systems, which
possess a finite number of degrees of freedom, and spatially structured
systems, which are characterized by an infinite number of degrees of
freedom. Within one group, the minimal number of dependent variables
necessary to describe a certain type of behavior serves as a measure of the
complexity of the dynamics.

The simplest manifestation of self-organization in a reacting system
is the occurrence of bistability, that is, the coexistence of two locally stable
homogeneous states. In all electrical models, bistable behavior results
from the interaction of an N-shaped stationary polarization curve with a
sufficiently large ohmic resistor in the external circuit. These two features
also represent the backbone for all more complex forms of self-organiza-
tion where, owing to exactly these two properties of the system, the
double-layer potential takes on the role of the autocatalytic variable.

Simple periodic, spatially homogeneous oscillations may emerge as
a result of two distinct feedback mechanisms. In NDR oscillators, the
feedback loop does not contain an additional potential-dependent process.
Often the feedback process is due to slow transport of the electroactive
species, which is predominantly diffusion. The oscillations appear in a
region where the stationary current-potential curve exhibits a negative
slope, and they require an ohmic series resistance of suitable magnitude
in the circuit. If the resistance is too large, the system exhibits bistability
between two stationary states, and thus systems belonging to this class do
not oscillate under galvanostatic conditions.

In HNDR oscillators, the feedback loop contains a slow, potential-de-
pendent process that acts on the rate of the main charge-transfer reaction.
Oscillations occur around a branch of the stationary polarization curve
with a positive slope, under potentiostatic conditions in the presence of a
sufficiently large series ohmic resistor, as well as under galvanostatic
conditions. The destabilization is again due to a fast negative impedance
process. However, the negative slope is hidden in the stationary current-
potential curve. This is because the slope of the polarization curve is
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dominated by the slow feedback process, which possesses a positive
impedance. Systems in this class exhibit a bistability between a stable limit
cycle and a stationary steady state for large ohmic resistance.

More complex oscillations arise in many cases owing to slow trans-
port processes. For NDR oscillators it was shown that owing to the delayed
relaxation of the diffusion layer upon changes in the concentration at the
electrode, diffusion of the electroactive species introduces two distinct
feedback modes into the system. Also in HNDR oscillators, the occurrence
of more complex oscillations can be coupled to the slow diffusion of
electroactive species. In this case, the enlarged model consists of two
subsystems, one of the NDR type and one of the HNDR type, the complex
behavior arising from their interactions. However, since NDR oscillators
do not oscillate under galvanostatic conditions, this mechanism cannot
account for mixed-mode oscillations or any other complex wave forms
observed under constant current load. To date, no explanation has been
given for the complex temporal behavior encountered under galvanostatic
conditions.

This hierarchy of temporal models that assume uniformity parallel to
the electrode forms the basis for describing the spatiotemporal dynamics
of electrochemical systems. The new elements entering the picture when
spatial degrees of freedom are allowed for are migration currents parallel
to the electrode that, as shown experimentally and substantiated theoreti-
cally, constitute the spatial coupling in the kinds of electrochemical
systems considered here. Since the migration currents depend on the
distribution of potential in the entire electrochemical cell, cell geometry
and especially the arrangement of the electrodes play a decisive role in
spatiotemporal dynamics. Furthermore, the strength of the spatial cou-
pling is proportional to the specific conductivity of the electrolyte and thus
the average propagation velocity of potential waves increases with con-
ductivity.

So far, only a few basic electrode configurations have been investi-
gated in detail. Spatial coupling is long range or nonlocal if the reference
and counter-electrodes are “sufficiently far away” from the working
electrode so that there is an equipotential surface parallel to the working
electrode at the location of the reference electrode. This means that a
change in the state of the system at a particular position on the electrode
has a finite effect instantaneously over a finite characteristic distance from
this position, the coupling range. A consequence of nonlocal coupling is
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the occurrence of accelerated waves in the bistable and oscillatory re-
gimes, as evidenced by many experimental examples.

“Sufficiently far away” has been quantified theoretically for one-
dimensional electrodes, where it was shown that, roughly speaking, the
ratio of the length of the working electrode to the distance between the
working and reference electrode has to be larger than 1. If there exists an
equipotential surface closer to the electrode (provided, e.g., by the counter-
electrode), the coupling range becomes progressively smaller, asymptoti-
cally approaching local, that is, diffusive coupling.

In galvanostatic systems, or more generally, in systems with an
external resistor connected in series with the working electrode, in addi-
tion to the spatial coupling through the electrolyte, there is a global
coupling which has a synchronizing effect on pattern formation. The
strength of this global coupling depends on the total cell resistance, that
is, again on the electrode arrangement.

Typical wave velocities arising from the spatial coupling through the
electric field are on the order of cm s–1 to m s –1, and characteristic
wavelengths are on the order of centimeters. Hence, in most experiments,
one wave train at a time propagates across the surface.

The purpose of this chapter has been to illustrate that considerable
progress has been made in the understanding of temporal instabilities and
of spatial structures, such as the accelerated motion of fronts, and charac-
teristic wave velocities and wavelengths. However, there remain many
open questions, among them bifurcations of the basic patterns in the
oscillatory regime, which are encountered, for example, during Fe elec-
trodissolution or Co electrodissolution, as well as the influence of different
electrode geometries and arrangements on pattern formation. Their solu-
tions represent a challenge for future studies. In this respect, the possibility
of deliberately influencing the patterns by choosing a certain cell design,
electrode geometry, or conductivity is an especially interesting prospect.
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Electrochemical Impedance Spectroscopy and
its Applications

Andrzej Lasia
Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

I. INTRODUCTION

Electrochemical impedance spectroscopy (EIS) or ac impedance methods
have seen a tremendous increase in popularity in recent years. Initially
applied to the determination of the double-layer capacitance1–4 and in ac
polarography,5–7 they are now used to characterize electrode processes and
complex interfaces. This method studies the system response to the
application of a periodic small-amplitude ac signal. The measurements are
carried out at different ac frequencies and thus the name impedance
spectroscopy was later adopted. Analysis of the system response contains
information about the interface, its structure, and the reactions taking place
there. Electrochemical impedance spectroscopy is now described in the
general books on electrochemistry,8–17 specific books18,19 on EIS, and

Modern Aspects of Electrochemistry, Number 32, edited by B. E. Conway et al. Kluwer
Academic / Plenum Publishers, New York, 1999.
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numerous articles and reviews.6,20–31 It has become very valuable in
research and applied chemistry. The Chemical Abstracts database shows
about 1500 citations per year of the term “impedance” since 1993, and
about 1200 in earlier years, and about 500 citations per year of “electro-
chemical impedance.” Although the term “impedance” may also include
nonelectrochemical measurements, and “electrochemical impedance”
may not include all the electrochemical studies, the popularity of this
technique cannot be denied.

However, EIS is a very sensitive technique and must be used with
great care. In addition, it is not always well understood. This may be
because it is often difficult for nonspecialists to understand existing
reviews on EIS and frequently the articles do not show the complete
mathematical development of equations connecting the impedance with
the physicochemical parameters. It should be stressed that EIS cannot give
all the answers. It is a complementary technique and other methods must
also be used to elucidate the interfacial processes. The purpose of this
chapter is to fill this gap by presenting a modern and relatively complete
review of electrochemical impedance spectroscopy, including the mathe-
matical development of the fundamental equations.

1. Response of Electrical Circuits

(i) Arbitrary Input Signal

Application of an electrical perturbation (current, potential) to an
electrical circuit causes a response. In this chapter, the system response to
an arbitrary perturbation and later to an ac signal, is discussed. Knowledge
of the Laplace transform technique is assumed, but the reader may consult
numerous books on the subject if necessary.

First, let us consider application of an arbitrary (but known) potential
E(t) to a resistance R. The current i(t) is given as i(t ) = E (t)/R. When the
same potential is applied to the series connection of the resistance R and
capacitance C, the total potential difference is the sum of potential drops
on each element. Taking into account that for a capacitance E(t) = Q (t)/C,
where Q is the charge stored in a capacitor, the following equation is
obtained:
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(1)

This equation may be solved using either Laplace transform or differen-
tiation techniques.32–34 Differentiation gives

(2)

which may be solved for known E(t ) using standard methods for differen-
tial equations.

The Laplace transform is an integral transform in which a function of
time ƒ(t) is transformed into a new function of a parameter s called
frequency, or F(s), according to

(3)

The Laplace transform is often used in the solution of differential and
integral equations. In general, the parameter s may be complex, s = v + jω,
where j = but in this chapter only the real transform will be
considered, that is s = v. Direct application of the Laplace transform to
Eq. (1), taking into account that

gives

which leads to

(4)

(5)

The ratio of the Laplace transforms of potential and current, E(s)/i(s), is
expressed in units of resistance, Ω, and is called impedance, Z(s). In this
case

(6)
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The inverse of impedance is called admittance, Y(s) = 1/Z(s). These are
transfer functions that transform one signal (e.g., applied voltage), into
another (e.g., current). Both are called immittances. Some other transfer
functions are discussed in Refs. 18, 35, and 36. It should be noted that the
impedance of a series connection of a resistance and capacitance, Eq. (6),
is the sum of the contributions of these two elements: resistance, R, and
capacitance, 1/sC.

For the series connection of a resistance, R, and inductance, L, the
total potential difference consists of the potential drop in both elements:

(7)

Taking into account that [di(t)/dt] = s i(s) – i(0+), and taking i = 0 at t =
0, one obtains the current response in the Laplace space:

(8)

In both cases considered here, the system impedance consists of the sum
of two terms, corresponding to two elements: resistance and capacitance
or inductance.

In general, one can write contributions to the total impedance corre-
sponding to the resistance as R, the capacitance as 1/sC, and the inductance
as sL. The addition of impedances is analogous to the addition of resis-
tances. Knowledge of the system’s impedance allows an easy solution of
the problem.

For example, when a constant voltage, E0, is applied at time zero to
a series connection of R and C, the current is described by Eq. (5). Taking
into account that the Laplace transform of a constant (E0) = E0/s, one
gets:

(9)

The inverse transform of (9) gives the current relaxation versus time

(10)

The result obtained shows that after the application of the potential step,
current initially equals E0/R and decreases to 0 as the capacitance is
charged to the potential difference E0 .
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Similarly, application of the potential step to a series connection of R
and L produces a response given by Eq. (8) which, after substitution of
E(s) = E0/s, gives

(11)

An inverse transform gives the time dependence of the current:

(12)

The current starts at 0 because the inductance constitutes infinite resistance
at t = 0 and increases to E0/R as the effect of inductance becomes negligible
in the steady-state condition.

Other problems of transient system response may be solved in a
similar way. More complex examples are presented, for example, in Refs.
33–34. It should be added that an arbitrary signal may be applied to the
system and if the Laplace transforms of the potential and current are
determined, for example, by numerical transform calculations, the system
impedance is determined. In the Laplace space the equations [e.g., Eqs.
(9) and (11)] are much simpler than those in the time space [e.g. Eqs. (10)
and (12)] and analysis in the frequency space s allows the determination
of the system parameters. This analysis is especially important when an
ideal potential step cannot be applied to the system because of the
bandwidth limitations of the potentiostat.37 In this case it is sufficient to
know i(t) and the real value of the potential applied to the electrodes by
the potentiostat, E(t ), which allows numerical Laplace transformations to
be carried out and the system impedance obtained.

In the cases involving more time constants (i.e., more than one
capacitance or inductance in the circuit), the differential equations describ-
ing the system are of the second or higher order and the impedances
obtained are the second or higher order functions of s.

(ii) Alternating Voltage Input Signal

In EIS we are interested in a system’s response to the application of
a sinusoidal signal; for example, E = E0 sin(ωt), where E0 is the signal
amplitude, ω = 2πf is the angular frequency, and f is the alternating
voltage (av) signal frequency. This problem may be solved in different
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ways. First, let us consider application of an av signal to a series R-C
connection. Taking into account that the Laplace transform of the sine
function L [sin(ωt)] = ω/(s² + ω²)], use of Eq. (5) gives

(13)

Distribution into simple fractions leads to

(14)

and the inverse Laplace transform, taking L–1 [s/(s²+ ω²)] = cos ωt, gives

(15)

The third term in Eq. (15) corresponds to a transitory response observed
just after application of the av signal and it decreases quickly to 0. The
steady-state equation may be rearranged into a simpler form:

(16)

and by introducing tan ϕ = 1/ωRC the following form is found:

(17)

where ϕ is the phase angle between current and potential, ϕ =
atan(1/ωRC). It is obvious that the current has the same frequency as the
applied potential but is phase shifted by the angle ϕ. The value Z has units
of resistance; it is the length of a vector obtained by the addition of two
perpendicular vectors: R and 1/ωC.

2. Impedance of Electrical Circuits

In order to simplify the calculations of impedances, the result obtained for
the periodic perturbation of an electrical circuit may be represented using
complex notation. The system impedance, Z(jω ), may be represented as
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(18)

and the real and imaginary parts of the impedance are Z' = R and Z" =
–1/ωC, respectively. It should be noted that the complex impedance Z(jω)
[Eq. (18)] may be obtained from Z(s) [Eq.(6)], by substitution: s = jω. In
fact, this is the imaginary Laplace transform. The modulus of Z(jω) Eq.
(17)], equals

(19)

and the phase angle between the imaginary and real impedance equals
ϕ = arg  = atan(–1/ωRC). It should be noted that the sign of ϕ between
potential and current, described above for the impedances, is different
from that found between current and potential, Eq. (17). It may be recalled
that in complex notation

(20)
Analysis of Eq. (17) indicates that the current represents a vector of the
length i0  = E0 /Z , which rotates with the frequency ω. Current and potential
are rotating vectors in the time domain, as represented in Figure l(a).
Using complex notation, they may be described by

(21)
These vectors rotate with a constant frequency ω, and the phase angle ϕ
between them stays constant. Instead of showing rotating vectors in time
and space, it is possible to present immobile vectors in the frequency
space, separated by the phase angle ϕ. These vectors are called phasors;
they are equal to = E0  and = I0  exp(j ϕ), where the initial phase shift of
the potential is assumed to be 0 [see Fig. l(b)].

In general, the complex impedance may be written for any circuit by
taking R for a resistance, 1/jωC for a capacitance, and jω L for an induc-
tance and applying Ohm’s and Kirchhoff’s laws to the connection of these
elements. Several examples of this method are presented in the next
section.

(i) Series R-C Circuit

In the case of a series connection of the resistance and capacitance,
the impedance is given by Z(jω ) = R + 1/jωC = R – j/ωC. The result may
be represented graphically using two types of plots: complex plane (also
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Figure 1. Representation of ac signals: (a) rotating voltage and current vectors in
time space and (b) voltage and current phasors in frequency space.

known as Argand or Nyquist plots) and Bode plots. The complex plane
plot is a plot of Z" versus Z', that is, the imaginary versus the real
components, plotted for various frequencies. A complex plane plot for a
series connection R-C (R = 100 Ω, C = 2 × 10–5  F) circuit is shown in Fig.
2. It consists of a straight line perpendicular to the real axis. Other types
of graphs are Bode plots, that is, log Z (magnitude) and phase angle ϕ
versus log ω. They are also shown in Fig. 2. The graph of log Z versus
log ω [Fig. 2(d)] contains one breakpoint or corner frequency. This point
corresponds to the system characteristic frequency ω = 1/RC = 500 s–1  or
a time constant τ = RC = 0.002 s. The phase angle changes from 90° at
low frequencies to 0 at high frequencies. This circuit corresponds to an
ideally polarized electrode in solution, e.g., a mercury electrode-supporting
electrolyte solution.

The complex plane plots may also be obtained for admittances. The
admittance for the series R-C connection equals

(22)

It represents a semicircle on the complex plane plot [Fig. 2(c)]. It should
be stressed that for capacitive circuits the imaginary impedance is always
negative and the imaginary admittance is positive.
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Figure  2. (a) Series connection of a resistance and a capacitance, R = 100 Ω , C = 20 µF.
(b), (c) Complex plane and (d), (e) Bode plots for circuit.
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(ii) Parallel R-C Circuit

For a parallel R-C connection, the total admittance is Y (jω ) = 1/R +
jωC so that

(23)

There are two limits of the impedance: ω = 0, = R and ω → ∞, = 0.
The corresponding complex plane and Bode plots for the same values of
R and C elements as those used in the series R-C model above, are shown
in Fig. 3. The Nyquist plot shows a semicircle of radius R/2 with the center
on the real axis and the frequency at the semicircle maximum equal to:
ω = 1/RC. The circuit’s characteristic breakpoint frequency (the inverse
of the characteristic time constant), as observed in the impedance Bode
graph, is the same as for the series and the parallel R-C circuits. The
complex plane admittance plot represents a straight line parallel to the
imaginary axis [Fig. 3(c)], which is similar to the impedance complex
plane plot for the series R-C connection.

(iii) Series: Rs  + Parallel R-C Circuit

Finally, the impedance of the circuit shown in Fig. 4, consisting of a
series connection of the resistance Rs  with the parallel connection of
Rct -Cdl , is given as

(24)

The corresponding complex plane and Bode plots are also shown in Fig.
4 for Rct =100Ω , Rs = 10 Ω , and Cdl = 20 µF. The main difference between
the circuits in Fig. 3 and Fig. 4 is connected with the fact that in the latter
circuit, at ω → ∞, Z → Rs  and ϕ → 0, owing to the presence of Rs , and for
ω → 0 Z → Rs  + Rct . The frequency corresponding to the maximum of Z"
is still equal to ω = 1/Rct Cdl  = 500 s –1 . In addition, the Bode log Z plot
shows that there are two breakpoints (bends). For comparison, the admit-
tance complex plane plot is also shown in Fig. 4(c).
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Figure 3. (a) Parallel connection of R and C, R = 100 Ω , C= 20 µ F. (b), (c) Complex plane
and (d), (e) Bode plots for circuit.
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Figure 4. (a) Circuit with Rs  = 10 Ω, Rct  = 100 Ω , Cdl  = 20 µF. (b), (c) Complex plane and
(d), (e) Bode plots for the circuit.

3. Interpretation of Complex Plane and Bode Plots

Complex plane (Nyquist) plots are the most often used in the electro-
chemical literature because they allow an easy prediction of the circuit
elements. However, they do not show all details; for example, exactly the
same Nyquist impedance plots shown in Fig. 3 and Fig. 4 may be obtained
for different values of the capacitance C. The only difference between
them will be the fact that the points on the semicircle would correspond
to different frequencies. Nevertheless, Nyquist plots allow an easy relation
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to the electrical model. On the other hand, Bode plots contain all the
necessary information. That is why Bode plots are mainly used in circuit
analysis. Bode magnitude plots may be easily predicted from the circuit
impedance. 33 Let us consider the circuit shown in Fig. 4(a). Its impedance
is presented by Eq. (24). This equation may be rearranged into another
form:

(25)

where τ1 and τ2 are the Bode characteristic time constants. From Eq. (25)
log(|Z|) is easily evaluated:

(26)

In order to construct asymptotic lines in the Bode magnitude plot, the
contribution of each term in Eq. (26) can be considered independently and
then their sum may be easily obtained. Each term log(|1 + jωτ|) has two
limits: when ωτ << 1, i.e., ω << 1/τ, log(|1 + jωτ |) = 0 and when ωτ >> 1,
log(|1 + jωτ |) = log τ + log ω, which corresponds to a straight line with a
slope of 1 and intercept log ω = –log τ.

The graphs corresponding to these lines are shown in Fig. 5. The
breakpoint frequencies in the Bode magnitude plot, Fig 4(d) and Fig. 5,
are ω1  = 1/τ1  = 500 s –1  and ω2  = 1/τ2  = 5500 s –1 . The continuous line is
the sum of the three asymptotes. In this way Bode magnitude graphs may
be constructed for other circuits.

Figure 5. Construction of the Bode
magnitude plot for the circuit in Fig.
4(a) using Eq. (26). The solid line is a
sum of all three contributions.
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The Bode phase-angle graph is shown in Fig. 4(e). The phase angle
is described by

It can be shown that this function has a maximum at

(27)

(28)

which, in this case, equals ω = 1658 s–1 . It should be noted that the
maximum of the phase angle is different from the maximum of the
imaginary part of the impedance, corresponding to the maximum of the
semicircle at Z' = Rs  + Rct /2 at ω = 1/Rct Cdl . The plots of Z' and Z" (or their
logarithms) as a function of log ω are also sometimes shown in the
literature.

II. IMPEDANCE MEASUREMENTS

The dc transient response of electrochemical systems is usually measured
using potentiostats. In the case of EIS, an additional perturbation is added
to the dc signal to obtain the frequency response of the system. The system
impedance may be measured using various techniques:

• ac bridges
• Lissajous curves
• phase-sensitive detection (PSD)
• frequency response analysis (FRA)
• fast Fourier transform (FFT)

Because older techniques are described in detail in Refs. 18, 19, 26, 28,
30, and 31, this chapter focuses on the last three techniques.

1. ac Bridges

This technique was the first used to measure double-layer parameters
(principally of the dropping mercury electrode) and later to measure
electrode impedance in the presence of a faradaic reaction to determine
the kinetics of electrode processes. The use of ac bridges provides meas-
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urements of very good precision. It has been described in detail in Refs.
18, 26, 28, and 38. An ac bridge with potentiostatic control may also be
used. Although this method is slow, because bridge compensation must be
carried out at each frequency manually, it is still used, principally in
precise double-layer measurements.39–41

2. Lissajous Curves

Recording the applied av potential and the resulting ac current on a
twin-beam oscilloscope produces Lissajous curves (in this case an el-
lipse),18,28,30 which may be used to the determine the impedances. Because
of its frequency limitations and sensitivity to noise, this technique is not
currently used in electrochemical measurements.

3. Phase-Sensitive Detection

Phase-sensitive detection is used in lock-in amplifiers, which are inter-
faced with potentiostats.42,43 Only a general idea of these measurements
will be presented here. In this method the measured signal, E1, which is
proportional to the ac current from the potentiostat, is

(29)

where E1, a  is the signal amplitude and ϕ 1 is the phase shift and is multiplied
by a square-wave signal of the same angular frequency ω. The square-
wave signal may be represented as a Fourier series:

(30)

where n is an integer and the amplitude of the square signal is taken as
unity. The resulting signal E1  × E2  equals
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(31)
It contains one time-independent component, depending on the phase
difference of two signals, and is proportional to the amplitude of the
measured ac signal. It reaches a maximum when the phase difference of
the two signals being mixed is 0. The output signal is subsequently applied
to a low-pass filter that averages the signal components having frequencies
above the filter cutoff frequency. It produces a dc signal proportional to
the amplitude. Because the average value of periodic functions is equal to
0, the average value of E1E2 [Eq. (31)], equals

(32)

The disadvantage of the lock-in technique is that it retains contributions
of the harmonic frequencies (2n + 1)ω ref if they are present in the input
signal (e.g., harmonics, noise), although their influence is attenuated by
1/3, 1/5, 1/7, etc. with increasing n. For example, when the frequency in
Eq. (29) is three times the reference frequency in Eq. (30), the average
signal obtained

(33)

is attenuated three times. If the reference signal is synchronized with the
applied signal (they are both generated from the same source), ϕ2 is equal
to 0 and the expressions become simplified.

A schematic diagram of a lock-in amplifier is shown in Fig. 6. The
measured signal is mixed with the reference square-wave signal of the
same frequency and the resulting signal goes through a low-pass filter,
producing an average of all components. The phase shifter allows for
precise adjustment of the reference phase in order to zero the phase
difference ϕ1 – ϕ 2. In two-phase lock-in amplifiers, the measured signal
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is mixed with the reference signal to obtain the in-phase component and,
in addition, with the reference signal shifted by π/2 to resolve the imagi-
nary component.

Lock-in amplifiers operate in the frequency range from 0.5 (lower
limit up to 10 Hz, depending on the manufacturer) to ~ 105 Hz, with a
precision of 0.1 to 0.2%. Modern lock-in amplifiers are controlled by a
microprocessor and permit automated measurements with automatic
range selection.

4. Frequency Response Analyzers

Frequency response analyzers are instruments that determine the fre-
quency response of a measured system. Their functioning is different from
that of lock-in amplifiers. They are based on the correlation of the studied
signal with the reference.44 The measured signal [Eq. (29)], is multiplied
by the sine and cosine of the reference signal of the same frequency and
then integrated during one or more wave periods:

(34)

(35)

and

Such integration recovers the real and imaginary parts of the measured
signal. It can also be shown that all the harmonics are strictly rejected, that
is, correlation of sin(kωt + ϕ ) with sin(ωt) or with cos(ωt) is equal to 0 for
k > 1. The advantage of the correlation process is also reduction of noise
(of arbitrary frequency), its influence decreasing with an increase of the
integration time. Figure 7 shows the attenuation of the output signal as a
function of frequency and the number of integration cycles N. Modern
FRAs carry out all the computations digitally. They have a wide frequency
range (12 decades) and high precision.

Recently, Diard et al.45 studied the effects of electrochemical non-
linearities on impedance measurements using an FRA. They derived
theoretical expressions for the error in impedance measurements using the
odd harmonic test criterion. 46 Measurements of the fundamental and third
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FRA

Figure 7. Frequency response of an FRA averaging filter for different numbers of integra-
tion cycles.44

Lock-in amplifier

Table 1
Comparison of PSD and FRA

Advantages

Very sensitive

Effectively removes noise

Reduces harmonic distortion

Supresses dc noise

Relatively low cost

Disdavantages

Limited frequency range

Slower

Stand-alone readings difficult

Advantages

Faster analysis

Wide frquency range

Removes harmonic distortion

Direct output to external device

Easy stand-alone measurements

Disadvantages

Higher cost

Limited noise removal

Limited sensitivity
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harmonic in the electrode response are sufficient to estimate the imped-
ance error. Evans47 recently compared PSD and FRA, as shown in Table 1.

5. Fast Fourier Transform

It was shown in Section I. 1(i) that the system impedance is defined as the
ratio of Laplace transforms [Eq. (6)], of potential and current. In general,
the transformation parameter is complex, s = v + jω. The imaginary
Laplace transform

(36)

is called the single-sided Fourier transform. Taking the Fourier transform
of the perturbation signal and that of the resulting signal allows determi-
nation of the transfer function, for example, the system ac impedance may
be obtained from

(37)

where F denotes the Fourier transform. The fast Fourier transform pro-
vides a fast and efficient algorithm for computation of the Fourier trans-
form.48 The number of points acquired must be equal to 2k , where k is an
integer.

Certain properties of the FFT technique influence the results.28,48–50

First the Fourier transform defined by Eq. (36) involves integration to
infinity. In practice only data of limited length are transformed, causing
broadening of the computed frequency spectrum. This problem is known
as leakage. It may be minimized by increasing the data record acquired in
the time domain. However, it will disappear when the acquisition time is
exactly equal to an integer multiple of the wave repetition period. That is,
if the data acquisition is terminated at times other than the multiple of the
wave period, sharp discontinuities of the signal are introduced (because
there is no continuity between the last and the first point of the signal),
which causes frequency peak broadening; that is, a distribution of frequen-
cies is obtained instead of discrete values. Therefore, synchronization of
the sampling time with the wave period is necessary.
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Another problem called aliasing is connected with the presence of
frequencies larger than half of the time domain sampling frequency. This
problem may be easily eliminated by ensuring that the sampling frequency
is greater than (or at least equal to) twice the highest frequency present in
the measured signal. In some cases the highest frequencies may be filtered
out by a low-pass filter. This minimum sampling frequency, which is
necessary to get information about the existing signal, is called the Nyquist
sampling rate.

In general, the perturbing signal may have an arbitrary form. How-
ever, in practice, the most often used perturbation signals are50–52(1) pulse,
(2) noise, and (3) sum of sine waves.

(i) Pulse Perturbation

The Fourier transform of an infinite short pulse function: h(t) = Kδ(t),
where δ(t) is Dirac’s delta function, equals H( jω) = K, that is, it contains
all the frequencies with the same amplitude K. Such a function cannot be
realized in practice and must be substituted by a pulse of a short duration
∆ t. However, such a function does not have uniform response in the Fourier
(i.e., frequency) space. The Fourier transform of such a function, defined
as: h(t) = 1 for t = 0 to T0 and h(t) = 0 elsewhere, equals

(38)

Figure 8 presents a graph of the amplitude of H( jω) as a function of
frequency. It is obvious that the amplitude of the higher frequency signals
is attenuated. Therefore, only a limited frequency range may be studied
because the higher frequency response is too small. It was shown50,51 that
even low-level noise significantly disturbs the impedance spectra ob-
tained.

(ii) Noise Perturbation

White noise, that is, noise consisting of a continuous spectrum of
frequencies (or a computer-generated pseudo-random white noise), may
be used as a perturbation signal in practical impedance measurements.50,51

However, single-frequency components obtained by the FFT have rela-
tively low amplitudes and a long data acquisition time is necessary to
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Figure 8. FFT amplitude, |H(jω) , of the pulse function
[Eq. (38)] of duration T0 = 1 s.

obtain reliable results.50,51 Even low noise contamination of the measured
signal leads to significantly disturbed impedance spectra.

(iii) Sum of Sine Waves

This technique was introduced and used extensively by D. E. Smith
and co-workers. 49,50,53,54 In it, the perturbation signal is composed of a
sum of selected sinusoids. The applied signal consists of a fundamental
harmonic frequency f0 and a number of odd harmonics (2n + 1) f 0. This
arrangement is superior to other perturbation wave forms.50 All these
frequencies are applied at the same time and the response to each fre-
quency is found by the FFT. Smith and co-workers used this technique to
study electrode kinetics in the frequency range 10 to 500 Hz. It should be
mentioned that the technique is used in low-frequency impedance analysis
(below 10 Hz) in PAR 273 series potentiostats (software implemented).

Popkirov and Schindler51 have demonstrated that the measured re-
sults may be improved by the appropriate selection of phases and ampli-
tudes of the individual sinusoidal components. First, signal phases may
be optimized to minimize the observed peak-to-peak signal amplitude.
This also allows the amplitudes of the individual components to be
increased by over 30%, maintaining the total amplitude at its initial level
and thus increasing the power of the single-frequency components. A
decrease in the standard deviation of the impedance by 25% was obtained

|
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Figure 9. FFT analysis of the sum of sine wave perturbation; left side, no optimization;
right side, optimization of phases. (a) Perturbation voltage in the time domain. (b)
Perturbation voltage in the frequency domain. (c) Complex plane plots of simulated
impedance spectra with 5% noise added to the current response. Solid lines show response
without noise. 5 1

in that way. The results of such optimization are shown in Fig. 9. An
additional possibility is an optimization of the amplitudes. It is known that
the response of electrochemical cells is different for different frequencies
so that the response is weaker in the low-frequency range and larger at
high frequencies. In addition, higher noise is observed at low frequencies
(for the same perturbation amplitude). When the amplitudes of different
frequencies are optimized, that is, they are selected in such a way that the
response remains nearly constant, the response signal is much less sensi-
tive to noise. An example of such optimization is displayed in Fig. 10.

The main advantage of the FFT technique is that the information is
obtained quickly; therefore it may be used to study impedances evolving
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Figure 10. FFT analysis of the sum of sine wave perturbation; left side, no optimization;
right side, optimization of amplitudes. (a) Perturbation voltage in the time domain. (b)
Perturbation voltage in the frequency domain. (c) Current response with 10% noise added,
presented in frequency domain. (d) Complex plane plots of simulated impedance spectra
with 10% noise added to the current response. Solid lines show response without noise.

51

with time (of course, the impedance must be considered constant during
the time of measurement). The limitation of the FFT technique is that the
response to individual frequencies is usually weaker than that when only
one frequency is used. It should be added that other types of analysis of
system responses were also used, for example, Laplace transform of the
applied perturbation and the response to determine the impedance spec-
tra.28,55–61
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III. IMPEDANCE OF FARADAIC REACTIONS IN THE
PRESENCE OF DIFFUSION

Total electrode impedance consists of the contributions of the electrolyte,
the electrode solution interface, and the electrochemical reactions taking
place on the electrode. First, we consider the case of an ideally polarizable
electrode, followed by semi-infinite diffusion in linear, spherical, and
cylindrical geometry and, finally a finite-length diffusion.

1. The Ideally Polarizable Electrode

An ideally polarizable electrode behaves as an ideal capacitor because
there is no charge transfer across the solution/electrode boundary. In this
case, the equivalent electrical model consists of the solution resistance, Rs,
in series with the double-layer capacitance, Cdl. An analysis of such a
circuit was presented in Section I.2(i).

2. Semi-Infinite Linear Diffusion

In general, it is possible to write the expression for the impedance for any
mechanism. The procedure shown below is general and may be applied to
other processes involving diffusion. For the reaction:

(39)

(40)

the current is described by

where kf and kb are the potential-dependent rate constants for the forward
and backward reactions: kf = ko exp[– αnf ( E – E 0 )] and k b = ko

exp[(1 – α)n f (E – E0 )], ko and E0 are the standard rate constant and
standard potential, respectively, Co(0) and CR(0) are the surface concen-
trations of the forms Ox and Red, α is the transfer coefficient, n is the
number of electrons, and f = F/RT. When a small av perturbation signal,
∆E = E0 exp( jω t), is applied, the current and concentrations oscillate
around steady-state values: i = idc + ∆i, Co= Co , dc + ∆Co , and CR = CR,dc

+ ∆CR, where the subscript dc indicates a parameter that changes only
slowly with time (i.e., either a steady-state term or one that does not change
with ω or its harmonics), and the symbol ∆ indicates a parameter oscillat-
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ing periodically with time. In general, the oscillating potential and the
concentrations may be written as

where  and  are the phasors of the voltage, current, and
concentrations. Because we are interested in the ac components of these
parameters, we can solve equations for ∆E, ∆ i, ∆ C O and ∆CR  only. In
general, the current is a function of the potential and concentrations [Eq.
(40)], and it may be represented as an infinite Taylor series:

It can be seen that because Eq. (40) is linear with respect to the concen-
trations, only first-order derivatives versus concentrations are different
from 0. For small perturbations, it is a good approximation to keep only
the linear terms. This linearization is a fundamental property of EIS;
therefore the amplitudes applied must be small, ∆E< 8/n mV 6 peak-to-
peak, where n is the number of electrons exchanged in the reaction.
Analysis of higher harmonics has also been described.6,7,27,62The deriva-
tives in Eq. (42) correspond to stationary conditions and may be obtained
from Eq. (40):

(43)

(44)

(41)

(42)

In order to find concentrations, Fick’s diffusion equation must be solved
for ∆ C. For semi-infinite linear diffusion, the following equations must be
solved:



Electrochemical Impedance Spectroscopy and its Applications 169

Taking into account Eq. (41) and

(46)

Eq. (45) may be rearranged to

with the boundary conditions

(49)

where, at x → ∞, only a dc concentration gradient exists. After further
rearrangements one obtains

(51)

(45)

(47)

(48)

(50)

which have the following solutions:

(52)

For semi-infinite diffusion B and B' are both equal to 0, to fulfill condition
(50). In order to determine the constants A and A' , the condition at x = 0
must be considered:

(53)

and substituting sO and sR [Eq.(50)], one gets

(54)
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Now it is possible to make the substitutions into Eq. (42), conserving only
linear terms:

(55)

and the faradaic impedance equals (the negative sign arises
from the assumed convention in which the cathodic current is positive):

(56)

The total faradaic impedance, consists of three terms: The first one
comes from the derivative ∂i/∂E and is called the charge-transfer resis-
tance, Rc t; the two others, which are contributions from ∂i/∂ Ci, are called
impedances of mass transfer63–66 in the case of semi-infinite diffusion
it is called a semi-infinite Warburg impedance.

(57)

(58)

(59)

(60)

Assuming that the process is dc reversible, the surface concentrations are
described by the Nernst equation: CO(0)/CR(0) = exp[nƒ(E – E 0)] and Eqs.
(59) and (60) may be written as

(61)
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where σ is the mass-transfer coefficient equal to the sum of the contribu-
tions of the forms Ox and Red:

(62)

Because 1/ = (1 / )(1 – j) , the mass-transfer impedance may be writ-
ten as

(63)

This equation may be also obtained directly by assuming that the charge-
transfer reaction is reversible and calculating the mass-transfer impedance
from

(64)

where, from the Nernst equation, one gets:

(65)

After substitution of Eq. (64) into (65), Eq. (63) is obtained as before.
Assuming that only the oxidized form is initially inthe solution (C O*), the
surface concentrations may be estimated from11

(66)

where ξ = (D / R)1/2 and θ = exp[nƒ(E – E 0
O D )] and ξθ = exp[nƒ(E – E 1/2)] .

Substituting Eq. (66) into (58) the charge-transfer resistance may be
expressed as

(67)
and it has a minimum at

(68)

For the processes for which the transfer coefficient, α, is equal to 0.5, the
minimum of R c t is observed at the half-wave potential. Similarly, the
mass-transfer impedance equals
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(69)

The Warburg impedance has a minimum at E1/2. The mass-transfer imped-
ance is a vector containing real and imaginary components that are
identical, that is, the phase angle ϕ = atan(Z" W/Z' W) = atan(–1) = –45°.
The faradaic impedance is shown in Fig. 11(b) (dashed line). On the
complex plane plot, it is a straight line with a slope of 1 and intercept Rc t.
The total electrode impedance consists of the solution resistance, Rs, in
series with the parallel connection of the double-layer capacitance, Cdl,

Figure 11. (a) Semi-infinite linear diffusion model, R  = 10 Ωs , R = 100 Ω
σ = 10 Ω s – c t , C  = 20 µF ,

1/2 d l
. (b) Complex plane and (c), (d) Bode plots for the model, continuous line,

total impedance; dashed line in (b), faradaic impedance.
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and faradaic impedance [Fig. 11(a)]. This is the Randles model. 64,65,67

Figure 11(b–d) also shows complex plane and Bode plots for the total
electrode impedance in the presence of slow charge-transfer kinetics. It
should be stressed that the Warburg impedance cannot be represented by
a connection of simple R and C elements because of the noninteger power
of frequency (ω–1/2 ) and it constitutes a distributed element that can only
be approximated by an infinite series of simple electrical elements.

When the surface and bulk concentrations are the same, that is, when
the mass-transfer impedance may be neglected, the equivalent circuit
corresponds to that in Fig. 4. In this case a semicircle is observed on the
complex plane plots. In the other limiting case, when the charge-transfer
resistance is neglected (reversible case), a straight line with a slope of 1 is
obtained on the complex plane.

The dependence of the mass-transfer and charge-transfer impedances
on the electrode potential is displayed in Fig. 12. The charge-transfer and
mass-transfer impedances have a minimum at Es [Eq. (68)] and E1/2,
respectively, according to Eqs. (67) and (69).

A procedure for assessing nonlinearities in the Randles circuit,64

based on nonlinear regression analysis, was described recently.68

VanderNoot69has studied poorly separated faradaic and diffusional
processes. He has found that a complex, nonlinear, least-squares regres-
sion is capable of extracting kinetic information from impedance meas-
urements when the ratio of the charge-transfer process time constant tf =

Figure 12. Dependence of logarithms of R ct and
Zw on potential for α = 0.4.
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(70)

(72)

(71)

Rct Cdl to the diffusion process time constant td = R 2
ct/(2σ2), tf / td =

2σ2Cdl/Rct, is lower than or equal to 30.
Armstrong and Firman70 analyzed a mechanism that included two

successive electron-transfer reactions. A general approach to multistep
mechanisms involving soluble species in semi-infinite diffusion was pre-
sented recently by Harrington.71 It allows determination of the number of
breakpoint frequencies on the Bode magnitude plot for an arbitrary
mechanism and, in consequence, for the determination of the reaction
mechanism and kinetics.

This case arises, for example, when working with dropping or hanging
mercury electrodes. Let us consider semi-infinite diffusion to a sphere of
radius r0 with both oxidized and reduced forms soluble in the solution. In
this case Eq. (47) should be substituted by13,14

3. Spherical Diffusion

These equations may be rearranged into a simpler form [Eq. (51)] substi-
tuting and

The solution is

Taking into account that and that at r = r0 (at the
electrode surface), the following solutions are ob-
tained:

(73)

The mass-transfer impedance may be obtained from Eq. (64). Assuming
a reversible dc process, one obtains, similar to the case of linear diffusion:
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(74)

(75)

(76)

(77)

(78)

or

where

The influence of the nonlinearity of diffusion on the observed complex
plane plots is shown in Fig. 13. Spherical mass transfer causes the
formation of a depressed semicircle at low frequencies instead of the linear
behavior observed for linear semi-infinite diffusion. For very small elec-
trodes (ultramicroelectrodes) or low frequencies, the mass-transfer imped-
ances become negligible and the dc current becomes stationary. On the
Bode phase-angle graph, a maximum is observed at low frequencies.

4. Cylindrical Electrodes

An example of cylindrical diffusion is diffusion toward a conducting wire.
Solutions for cylindrical electrodes have been given by Fleischmann et
al. 72,73 and Jacobsen and West.74 The methods presented by both groups
give the same results; however, the latter is simpler. In this case the
diffusion equation is similar to that for spherical diffusion [Eq. (70)]. The
solution is shown here for the oxidized form only:

Rearrangement for the oscillating concentration, using Eq. (46), leads to

Substitution of z = r ( jω/Do)1/2 gives
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(80)

Figure 13. Complex plane (a) and Bode (b), (c) plots for semi-infinite spherical
diffusion; sphericity parameter (a) ∞ linear diffusion, (b) 0.02, (c) 0.05, (d)
0.1, (e) 0.2 s–1/2 ; R s = 10 Ω , Rc t = 100 Ω .

(79)

This is a modified Bessel equation of zero order with the general solution74

where A and B are constants and I0 and K0 are zero-order modified Bessel
functions. Taking into account semi-infinite diffusion conditions, that is

→ 0 when r → ∞ , leads to A = 0. At the electrode surface, r = r0:
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(83)

(81)

(82)

Figure 14. Faradaic (dashed line) and total (continuous line)
impedance for a reversible reaction under conditions of semi-
infinite cylindrical diffusion. Rs = 10 Ω.

where z0 = r0(jω /DO)1/2 and

Then, using Eq. (64) one may get

The function in Eq. (83) may be evaluated using Mathematica, Maple, or
specific subroutines for complex modified Bessel functions. The corre-
sponding complex plane plots are shown in Fig. 14. At low frequencies,
cylindrical diffusion produces a constant imaginary impedance compo-
nent.

5. Disk Electrodes

The solution for disk electrodes was presented by Fleischmann et al.72,73

In this case the differential equation corresponds to diffusion normal and
radial (two-dimensional) to the electrode. They obtained the following
equations describing the faradaic impedance in the case of a slow charge
transfer when only Ox is initially present in the solution, its concentration
being C *

O :
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Figure 15. Faradaic (dashed line) and total (continuous line)
impedances under conditions of diffusion to a disk and a
reversible charge transfer.

(84)

(85)

where a is the disk radius, J1  is the Bessel function of the first kind and
first order, l ² = D/ω, and tanΘ = 1/β². The first term in Z'ƒ  corresponds to
the charge-transfer resistance. The integrals in Eqs. (84)–(85) were given
in Ref. 73 as the functions Φ4  and Φ5  of (a²ω/D) and in a different form
in Ref. 72. At sufficiently high frequencies, the results are similar to those
for linear diffusion whereas at low frequencies, the impedance becomes
real as for spherical electrodes. The complex plane plots for diffusion to
a disk shown in Fig. 15 exhibit a flattened semicircle. Fleischmann and
Pons 72,73,75 also considered diffusion to microring electrodes.

6. Finite-Length Diffusion

In many cases the diffusion is not semi-infinite. This case, for example, is
observed for polymer electrodes, for a thin mercury layer deposited on
surfaces, and for rotating disk electrodes. In such cases, in Eq. (52)
parameters B and B' are not equal to 0. Two cases may be distinguished
for finite-length diffusion, depending on the condition at the boundary
located at a distance l from the electrode:
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(90)

(91)

1. Transfer of electroactive species is possible at x = l, and C(l) = 0,
but dC(l)/dx ≠ 0. This is the conducting or transmissive boundary.
It is observed, for example, in a rotating disk electrode, where the
diffusion layer thickness is determined by the rotation rate.

2. No charge transfer is possible at x = l, that is, dC(l)/dx = 0. This is
the reflecting boundary, observed in conducting polymers.

(i) Transmissive Boundary

In order to determine the constants A, B, A', and B' in Eq. (52),
boundary conditions must be used. The concentration gradients at the
electrode surface are

(86)

which leads to
(87)

(88)

(89)
The surface concentrations are

and substitution into Eq. (64) gives the mass-transfer impedances:

or, assuming that the diffusion coefficients of O and R are the same, this
becomes
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Figure 16. Faradaic (a) and total (b)–(d) impedances for: (a) linear semi-infinite, (b) finite
transmissive, and (c) finite reflective boundaries. Rs  = 10 Ω , Rc t = 100 Ω.

(92)

The faradaic impedance is displayed in Fig. 16(a) and the total impedance
in Fig. 16(b–d). At low frequencies the function tanh(x) ≅ x, and W

becomes real and frequency independent:

(93)
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(100)

The corresponding faradaic and total electrode impedances are shown in
Fig. 16. At low frequencies coth(x) ≅ 1/x + x /3 and W becomes

The imaginary part of the impedance goes to infinity and the real part to
a constant value, which indicates that no charge transfer occurs at low

(99)

(97)

(94)

Therefore the low-frequency limit of the electrode impedance equals

(ii) Reflective Boundary

In this case the boundary conditions at x = 0 are the same as for Eq.
(86) but at x = l they are different, the concentration gradient being equal
to 0:

and

(95)

(96)

They give
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and

(98)

or assuming equal diffusion coefficients:
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frequencies and the electrode behavior is purely capacitive. For these
conditions, the Warburg impedance corresponds to a series connection of
the resistance RW = Z'W  and the capacitance  CW = l / . The limiting
value of the real part of the total cell impedance equals

(101)

The problem of finite-length diffusion in spherical and cylindrical sym-
metry was solved by Jacobsen and West.74

7. Analysis of Impedance Data in the Case of Semi-Infinite
Diffusion: Determination of Kinetic Parameters

In the case of a charge transfer to a diffusing species, ac voltammetry or
ac polarography is usually used and the impedance curves are determined
from a series of ac voltammetric curves registered at different frequencies.
The methods of analysis of such curves are described in the following
sections.

(i) Randles Analysis64,65,67

Experimentally measured ac current or total admittances are func-
tions of the electrode potential. Figure 17 presents the dependence of the
total admittances of a process limited by the diffusion of electroactive
species to and from the electrode and the kinetics of the charge-transfer
process, on the electrode potential. Information on the kinetics of the
electrode process is included in the faradaic impedance. It may be simply

Figure 17. Dependence of real and
imaginary admittances for a diffusion-
kinetic process on the electrode poten-
tial.
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(105)

The parameters Rs and Cdl must be determined in a separate experiment
in a solution containing supporting electrolyte only, keeping the same
distance between the working electrode and the tip of the Luggin capillary
(i.e., to maintain Rs constant). This may be possible when this distance is
large or the solution in the cell is exchanged without changing the
electrode configuration. The other possibility is to extrapolate the admit-
tance (or impedance) from the range where the faradaic impedance is
negligible, that is, from potentials more positive and more negative than
the peak potential. Then the real and imaginary components of the faradaic
impedance are plotted against ω–1/2. They form two parallel lines with
slopes of σ and intercepts of Z'ƒ = Rct  and zero (Fig. 18). The dependence
of R ct  on potential allows the determination of the standard rate constant
and the transfer coefficient.

In order to eliminate the influence of the depolarizer concentration,
one can also evaluate the ratio of the slope to the intercept of the Randles
plot. Proper rearrangement leads to

from which the rate constant as a function of the electrode potential may
be evaluated. At the reversible half-wave potential, this ratio gives directly
the standard rate constant:

(104)

(102)
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determined from the total electrode impedance64,65:

It should be kept in mind that to calculate the impedances from the
admittances, the following equation must be used:

(103)
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(107)

(ii) de Levie–Husovsky Analysis

de Levie and Husovsky76 have proposed a method based on an
analysis of faradaic admittances. The faradaic admittance may be easily
determined from the total impedance:

(106)

The ratio of the imaginary to real faradaic admittances equals

where

(108)

The forward rate constant is easily determined from the dependence of
versus E.

(iii) Analysis of cot ϕ

Another type of determination of kinetic parameters is based on the
determination of the phase angle of the faradaic impedance. From Eqs.
(57), (67), and (69), one may get:

Andrzej Lasia

Figure 18. Dependence of real and imaginary parts
of the faradaic impedance of a diffusion-kinetic proc-
ess on ω–1/2 at a constant potential.
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(110)

or after substitution:
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(109)

It is clear that cotϕ depends linearly on ω1/2  and on electrode potential. It
has a maximum at the potential Es described by Eq. (58). The difference
between the potential of the maximum of cotϕ and E 1/2  allows estimation
of the transfer coefficient α. The potential dependence of cotϕ is shown
in Fig. 19. The maximum value of cotϕ is described by

Figure 19. Dependence of cot ϕ as a function of potential for TiCl4 reduction in an
aqueous H2 C 2O4  solution at various frequencies.77
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while at the half-wave potential it is given by

(111)

(112)

Analysis of cotϕ as a function of ω 1/2, illustrated in Fig. 20, gives access
to the standard rate constant k0.

(iv) Sluyter’s Analysis

Complex plane plots obtained in the case of a slow charge transfer
with semi-infinite diffusion were presented in Fig. 11(a). They represent
a semicircle (at high frequencies) followed by a straight line. General

Figure 20. Dependence of cot φ vs. ω1/2  for TiCl 4  reduction in an aqueous H2 C2O4 solution.
Data from Ref. 77.
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equations describing total real and imaginary impedance were analyzed
by Sluyters and co-workers.26,27,78,79 The total electrode impedance is
given as

where the faradaic impedance is described by Eq. (57). This equation leads
to rather complicated expressions for the real and imaginary parts of the
total impedance:

and

A graphic illustration of these equations is presented in Fig. 11(b).
Although, in simple cases, the process parameters may be obtained
graphically, the best way to analyze the impedances is by the complex
nonlinear least-squares approximation technique. The following parame-
ters may be obtained from such fits: Rs , Cdl , Rct, and the Warburg coeffi-
cient σ.

IV. IMPEDANCE OF A FARADAIC REACTION INVOLVING
ADSORPTION OF REACTING SPECIES

In Section III, reactions of charge transfer to diffusing species in solution
were considered. In this section, reactions involving adsorbed species in
the absence of diffusion limitations will be presented. The latter condition
means that the concentration gradient at the electrode surface is negligible,
that is, the concentrations in solution are large enough and/or currents are
low. Reactions involving one, two and more adsorbed species will be
considered subsequently.

(113)

(114)

(115)
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1. Faradaic Reaction Involving One Adsorbed Species

Let us consider the following reactions:

(116)

(117)

where the index sol denotes species in solution and ads an adsorbed
species. The rates of these reactions may be written, assuming a Langmuir
adsorption isotherm for B, as

(118)

and

(119)

where k 0
i

are the standard rate constants of these two reactions; βi are the
symmetry coefficients; ΓA a n d ΓS are the surface concentrations of the
species A and of free adsorption sites, respectively; aA and aC are  the
surface concentrations of A and C (assumed as equal to the bulk concen-
trations); and E0

i are the standard Red-Ox potentials of these reactions. At
the equilibrium potential, E eq , the net rates of both reactions are null and
the following relations are obtained:

(120)

(121)

where the index 0 indicates equilibrium conditions, and a relation between
surface coverage, and surface concentration was introduced:
Γi = Θi Γ∞ and Γ∞ is the maximal surface concentration. The introduction
of Eqs. (120) and (121) into (118) and (119), and taking into account that

where η is the overpotential,
gives
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(122)

and

(123)

where the following new rate constants were introduced:

(124)

(125)

The total observed current is

(126)

(127)

At the equilibrium potential, the rates of reactions (116) and (117) are
equal to 0, which implies an additional condition:

(128)
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(129)
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(131)

(134)

(133)

that is, there are only three independent rate constants in the system. Under
steady-state conditions, the rate of formation of the adsorbed species B is
the same as the rate of their consumption, therefore

where σ1 = F Γ∞ is the charge necessary for the total surface coverage by
B. In order to calculate the reaction faradaic impedance equations describ-
ing the current, i(η, Θ) [Eq. (127)] and the rate of formation of absorbed
species r1 (η, Θ) [Eq. (129)] should be linearized, giving:

(130)

A model containing higher-order term contributions in Eqs. (130)–(131)
to fundamental harmonic impedances was recently discussed by
Darowicki 80,81 and Diard et al.82 Taking into account that (see Section
III.2)

(132)
one obtains

and

Elimination of from Eqs. (133)–(134) gives the faradaic admittance as
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(135)
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(139)

The first term in Eq. (135) is the inverse of the charge-transfer resistance:
A = 1/R ct. Knowing the faradaic impedance, the total electrode impedance,
may be determined using Eq. (102). The derivatives in Eq. (135) may be
easily evaluated from Eqs. (122), (123), (127), and ) 129):

(136)

(137)

(138)

and

It is evident that parameters A and C are always positive and that B may
be positive or negative, depending on the values of the rate constants.

2. Impedance Plots in the Case of One Adsorbed Species

The faradaic admittance of reactions (116) and (117) is described by Eq.
(135). Analysis of the complex plane plots in such a case was presented
by Cao.83 Bai and Conway 84presented three-dimensional plots for such a
reaction. Two general cases should be considered, depending on the sign
of the parameter B:

1. B< 0
In this case the faradaic admittance may be written as



Andrzej Lasia192

It changes from R–1
ct at very high frequencies to R –1

ct – |B|/C at very
low frequencies. The faradaic impedance is described as

(140)

(141)

where

The limit of faradaic impedance at infinite frequency is also called
the transfer impedance, Rt , while the limit at zero frequency is
called the polarization resistance, Rp :

and (142)

In our case and Rt = Rct . Equation
(140) represents a series connection of the charge-transfer resis-
tance with a parallel connection of the resistance Ra and pseudo-
capacitance Ca . The complete equivalent circuit in this case is
shown in Fig. 21. The observed complex plane plots depend on
the sign of the denominator of Ra .
la. C – Rc t |B| > 0

Figure 21. Equivalent circuit for the case of one adsorbed species: (a) for B < 0 and (b) B
> 0.
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Figure 22. Complex plane plots for the case of one adsorbed species
and B < 0 [Eqs. (139)–(140)]; continuous line, total impedance;
dashed line, faradaic impedance. Parameters used: Rc t= 100 Ω, Ra =

In this case all the elements are positive and the faradaic
impedance represents one semicircle on the complex plane
plots (see Fig. 22). When Ca >> Cdl , the total impedance
represents two semicircles (Fig. 22). When A >> |B| /C the
faradaic impedance is equal to R ct . The complex plane plots
are analogous to those shown in Fig. 4 and represent one
capacitive semicircle.

lb. C – Rct |B| = 0
In this case the faradaic impedance is

Figure 23. Complex plane plot for the case of one adsorbed species,
B < 0 and C – Rc t |B| = 0; continuous line, total impedance; dashed
line, faradaic impedance. Parameters used: Rct = 100 Ω, Ca  = 2 × 10

–3



194

(143)
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which corresponds to a series connection of Rct and Cdl . The
corresponding complex plane plots are presented in Fig. 23.

1c. C – Rct |B| < 0
In this case the parameter Ra is negative and the correspond-
ing complex plane plots are displayed in Fig. 24.

2 . B = 0
When B = 0, the faradaic impedance is real and equals Rc t. One
semicircle is observed in the complex plane plots (Fig. 4).

3. B > 0
In this case the faradaic admittance is given by

with

Ro = C/B and L  =  1/B

and the faradaic impedance by

(144)

(145)

(146)

Figure 24. Complex plane plot for the case of one adsorbed species,
B < 0 and C – Rct  |B | < 0; continuous line, total impedance; dashed
line, faradaic impedance. Parameters used: R ct = 100 Ω, Ra  = –200
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Figure 25. Complex plane plots for the case of one adsorbed species
and B > 0 [Eqs. (144)–(146)]; continuous line, total impedance;
dashed line, faradaic impedance. Parameters used: R ct = 100 Ω, Ro =

which corresponds to the parallel connection of the charge-transfer
resistance with series connection of the resistance Ro and inductance
L [Fig. 21(b)]. In this case Rp = Rct Ro /(R c t + Ro). The equivalent
circuit and the corresponding complex plane plots of faradaic and
total impedances are shown in Fig. 25. Diard et al.85 determined
conditions under which such a low-frequency pseudo-inductive
loop may be found.

The above analysis shows that in the simple case of one adsorbed
intermediate (according to Langmuirian adsorption), various complex
plane plots may be obtained, depending on the relative values of the system
parameters. These plots are described by various equivalent circuits, which
are only the electrical representations of the interfacial phenomena. In fact,
there are no real capacitances, inductances, or resistances in the circuit
(faradaic process). These parameters originate from the behavior of the
kinetic equations and are functions of the rate constants, transfer coeffi-
cients, potential, diffusion coefficients, concentrations, etc. In addition, all
these parameters are highly nonlinear, that is, they depend on the electrode
potential. It seems that the electrical representation of the faradaic imped-
ance, however useful it may sound, is not necessary in the description of
the system. The system may be described in a simpler way directly by the
equations describing impedances or admittances (see also Section IV). In
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a system following the Frumkin adsorption isotherm, discontinuous im-
pedances may be obtained.86

It should be added that for the system involving one adsorbed species
described above, there are two sets of kinetic parameters giving the same
experimental curves.87 In fact, permutation of the kinetic parameters:

and β1  ↔ β2 gives the same values of the dc current,
the charge-transfer resistance, and the parameters B and C. The problem
of identifiability and distinguishability of electrode processes was further
studied by Bertier et al.88–91

The impedance of a more complex process involving coupling
between adsorption and diffusion was studied by Armstrong and co-
workers.92,93

3. Faradaic Impedance in the Case Involving Two Adsorbed
Species

Typical examples of processes involving two or more adsorbed species are
reactions of corrosion or anodic dissolution of metals, oxygen evolution,
etc. In the case of two adsorbed species B and C, the electrochemical
reactions may be written as 84,94,95:

(147)

(148)

(149)

and

The rates of Eqs. (147)–(149) may be expressed with respect to the
equilibrium potential similarly to Eqs. (122) and (123):

(150)

(151)
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(154)

(155)

(156)

(153)

The charge is exchanged in reactions (147) and (148) only; therefore the
total current is given as

The mass balance for Θ1 and Θ2 gives, similarly to Eq. (129):

(152)

where Θ1 and Θ2 are the surface coverages by B and C, respectively, and
rate constants k3 and k–3 are potential independent. From the condition at
the equilibrium potential, v1 = v2 = v3 = 0, the following condition for the
rate constants is obtained (see Eq. 128):

and

Taking into account that r0 , r1 , and r2 are the functions of η, Θ1, and Θ 2,
linearization of Eqs. (154)–(156) and the introduction of phasors gives

(158)

and

(159)

Equations (157)–(159) present a system of three equations with three
unknowns: Θ1 , Θ2 , and The faradaic admittance is determined as
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(160)

where

(161)

(162)

(163)

(164)

and

(165)

where the negative sign before the parameters A, B, and C originates from
the current definition (positive current for reduction). If the reactions
(147)–(149) are written as oxidations, this sign should be omitted. Calcu-
lation of the derivatives shows that parameters A, D, and E are always
positive and parameters D and E may be positive or negative.

The faradaic impedance may be obtained from Eq. (160) as

(166)

The polarization resistance is
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(167)

where ωn is the undamped natural frequency and ζ is the damping ratio of
the system32 expressed as

4.4 . Impedance Plots in the Case of Two Adsorbed Species

The second term in Eq. (166) represents a second-order electrochemical
impedance, 95 and its denominator may be expressed in the following form:

Depending on the value of the parameter ζ, the poles of the second term
of Eq. (167) are real or imaginary. Taking into account Eq. (167), there are
54 theoretically different cases of poles and zeros. They were considered
systematically in Ref. 95. The faradaic impedance may be represented by
many different equivalent circuits, depending on the sign of parameters B
and C and relative values of all the parameters.94 Its complex plane plots
display different forms from two capacitive semicircles through various
capacitive and inductive loops to two inductive loops. In order to obtain
the total impedance, the double-layer capacitance and solution resistance
should be added to the faradaic impedance. Some examples of complex
plane plots of faradaic impedances are presented in Fig. 26.

5.5. Faradaic Impedance for a Process Involving Three or More
Adsorbed Species

Similarly to the case of two adsorbed species presented above, more
complicated cases may be considered. Such a case is often found in
corrosion. 96 Assuming the  existence of three adsorbed species, a system
of equations similar to Eqs. (157)–(159) may be written:

(169)

(170)
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Figure 26.
94

Some examples of the complex plane plots obtained for the case of two adsorbed
species.
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(171)

and

(172)

where Θi are surface coverages of adsorbed species, σi are their charges
necessary for monolayer coverage, and ri are the corresponding mass
balances and relations between adsorbed species, as in Eqs. (155)–(156),
which may be different for different mechanisms. Equations (169)–(172)
are solved using methods for the solution of the system of linear equations
(e.g., Crammer’s method). In the case of three adsorbed species, very
complicated complex plane plots may be obtained. Some examples are
presented in Ref. 96.

A general model of a multistep mechanism involving adsorption and
diffusion was recently given by Harrington. 97

V. IMPEDANCE OF SOLID ELECTRODES

1. Frequency Dispersion and Electrode Roughness

The general model of the ideally polarizable electrode presented in Section
III.1 [see also Eq. (17) and Fig. 2], and that in the presence of a faradaic
reaction [Section III.2, Fig. 4(a)] are found experimentally on liquid
electrodes (e.g., mercury, amalgams, and indium-gallium). On solid elec-
trodes, 98 deviations from the ideal behavior are often observed. On ideally
polarizable solid electrodes, the electrically equivalent model usually
cannot be represented (with the exception of monocrystalline electrodes
in the absence of adsorption) as a series connection of the solution
resistance and double-layer capacitance. However, on solid electrodes a
frequency dispersion is observed; that is, the observed impedances cannot
be represented by the connection of simple R-C-L elements. The imped-
ance of such systems may be approximated by an infinite series of parallel
R-C circuits, that is, a transmission line [see Section VI, Fig. 41(b), ladder
circuit]. The impedances may often be represented by an equation without
simple electrical representation, through distributed elements. The War-
burg impedance is an example of a distributed element.
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Problems similar to those observed on ideally polarizable solid elec-
trodes also arise in the presence of faradaic reactions at these electrodes.
In the next section, various models used to explain solid electrode imped-
ance behavior are presented.

2. Constant Phase Element

Dispersion of the measured complex dielectric constant is known from
dielectric relaxation experiments.18 The complex dielectric constant ε*

may be represented as

(173)

where ε∞ and εs are the dielectric constants determined at ω → ∞ and
ω → 0, respectively, and G(τ) is the time constant distribution function.
When there is only one relaxation time constant, that is,
Eq. (173) simplifies to

(174)

Cole and Cole99 described the observed distribution of relaxation times as

(175)

where φ is a constant between 0 and 1. When φ = 1, there is only one time
constant in the system (no dispersion) and Eq. (173) reduces to Eq. (174).
Equation (175) represents a semicircle rotated by (1 – φ)90° on the
complex plane. This behavior can be explained by Eq. (173) with the
distribution function G(τ) described as

(176)

which represents a lognormal distribution that is a normal distribution of
a function of ln(τ / τ0). An example of such a distribution function is shown
in Fig. 27. For φ = 1, the distribution function becomes the Dirac delta
function.
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Figure 27. The distribution function τG(τ) versus
ln(τ /τ0) according to Eq. (176).

The impedance of the ideally polarizable electrode may be repre-
sented as a series connection of the solution resistance and the double-
layer capacitance, which produces a straight line perpendicular to the real
axis on the complex plane plots. However, on solid electrodes, a straight
line with an angle lower than π/2 is often observed [Fig. 28(a)]. In order
to describe such behavior, a model of distributed time constants, similar
to that used by Cole and Cole,99 was proposed.100 It was supposed101 that
such a distribution may arise from (1) a microscopic roughness caused by
scratches, pits, etc., always present on solid surfaces, which causes cou-
pling of the solution resistance with the surface capacitance; and (2) a
capacitance dispersion of interfacial origin, connected with the slow
adsorption of ions and chemical inhomogeneities of the surface. In such
cases the double-layer capacitance may be expressed in terms of a constant
phase element (CPE). Its impedance is given by

(177)

where T is a constant in F cm–2 sφ –1 and φ is related to the angle of rotation
of a purely capacitive line on the complex plane plots: α = 90° (1 – φ)
[Fig. 28(a)]. Equation (177) may also be written as
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Figure 28. Complex plane plots in the presence of a constant phase element: (a)
ideally polarizable electrode and (b) in the presence of a faradaic reaction.

(178)

and it represents a “leaking” capacitor, which has nonzero real and
imaginary components. Only in the case when φ = 1, one gets T ≡ Cdl and
purely capacitive behavior obtained. In general, Eq. (177) may represent
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(179)

(180)

pure capacitance for φ = 1, infinite Warburg impedance for φ = 0.5, pure
resistance for φ = 0, and pure inductance for φ = –1. Brug et al.100 presented
a method for estimating the average double-layer capacitance, dl, from
the value of T. Assuming that the electrode impedance may be expressed
as a sum of the solution resistance and the impedance of the CPE element,
and using the Cole–Cole formula for the distributed time constants, the
total impedance may be expressed as

where This leads to

which allows the estimation of the average double-layer capacitance in the
presence of the CPE element.

In the presence of the faradaic reaction, assuming that the faradaic
impedance can be expressed as a simple equivalent resistance, the complex
plane plots represent a rotated semicircle [Fig. 28(b)], instead of a semi-
circle centered on the Z' axis.102–104 Similarly, the double-layer capaci-
tance in the presence of the faradaic reaction may be obtained as100

(181)

An example of the application of Eq. (181) to the reduction of protons
and Tris-oxalato ferric ions was presented by Brug et al.100 Lasia and
Rami 87 studied the hydrogen evolution reaction on polycrystalline Ni in
1 M NaOH. They obtained rotated semicircles on the complex plane plots,
and the values of the parameters T and φ were potential dependent;
however, the double-layer capacitances estimated from Eq. (181) were
constant, equal to ~38 µF cm –2 , which is a reasonable value taking into
account some surface roughness. Similar results were also obtained on
rhodium.105

VanderNoot 106 tried to extract the distribution function G(τ) from the
CPE model. He found that the Fourier inversion method is not suitable,
but that the maximum entropy deconvolution works relatively well. How-
ever, because this is an ill-posed problem, the results obtained are very
sensitive to the experimental errors (noise).

Historically, the CPE phenomenon was usually attributed to surface
roughness. Pajkossy et al.101,107 recently studied the origins of the CPE.



Andrzej Lasia206

They found that surface roughness of the order found on polycrystalline
metals could lead to the CPE behavior only at much higher frequencies
than those observed experimentally. They concluded that an increase in
the surface roughness of polycrystalline Pt did not change (even slightly
increased) the φ parameter. However, it was found that the capacitance
dispersion increases markedly with the addition of chloride ions. 101

Experiments carried out on monocrystalline Au(111) and Au(100)
electrodes in the absence of specific adsorption did not show any fre-
quency dispersion. 107 Dispersion was observed, however, in the presence
of specific adsorption of halide ions. It was attributed to slow adsorption
and diffusion of these ions and phase transitions (reconstructions). In their
analysis these authors expressed the electrode impedance as:

where is a complex electrode capacitance. In the
case of a simple CPE circuit, this parameter is However,
an analysis of the ac impedance spectra in the presence of specific
adsorption revealed that the complex plane capacitance plots (C"int vs.
C 'int) show the formation of deformed semicircles. Consequently, Pajkossy
et al. proposed the electrical equivalent model shown in Fig. 29, in which
instead of the CPE there is a double-layer capacitance in parallel with a
series connection of the adsorption resistance and capacitance, Rad and
C ad, and the semi-infinite Warburg impedance connected with the diffu-
sion of the adsorbing species. A comparison of the measured and calcu-
lated capacitances (using the model in Fig. 29) for Au(111) in 0.1 M
HClO4 in the presence of 0.15 mM NaBr is shown in Fig. 30.

A similar analysis of complex impedances obtained from the fre-
quency dispersion on a passive stainless steel was carried out by Devaux
et al.108

Stoynov 109 has extended the CPE model for finite-thickness diffu-
sion. He introduced a bounded CPE (BCP) impedance or finite constant
phase element

Figure 29. Equivalent-circuit model of the
electrode in the presence of adsorption.107
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Figure 30. Nyquist plot of complex capacitances for
Au( 111) in 0.1 M HClO4 in the presence of bromide ions;
Br– concentrations given in the figure; upper three curves
at E = 0.3 V; lower three curves at E = 0.1 V vs. SCE.107

where Rs is the solution resistance. In fact, at high frequencies, Eq. (182)
reduces to a simple CPE [Eq. (177)], and at low frequencies it reduces to
Rs. For φ = 0.5, BCP has a form similar to that of the impedance in the
case of the finite-length diffusion. Just as the CPE represents infinite
diffusion for φ = 0.5, the BCP represents finite-length diffusion for the
same value of φ. Complex plane plots for the BCP element are presented
in Fig. 31. This element has a physical meaning for φ < 0.6.19

3. Fractal Model

Solid surfaces are usually irregular and their detailed geometry is not
known. In order to describe their geometry, the concept of fractal dimen-
sions was introduced. 110 This concept is based on the self-similarity of
surfaces, implying different scaling. The difference between simple and
fractal magnification is shown in Fig. 32.111 Simple magnification only
increases the size of the object while fractal magnification reveals self-
similarity at different scales. Such a magnification process may continue
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Figure 31. Complex plane plots for the bounded thickness impedance
(BCP) for Rs = 100 Ω , T = 0.01 F cm–2 sφ– 1, and different values of
parameter φ.

indefinitely. The line enclosing the object in Fig. 32(c) is the von Koch
line 112,113 ; it is continuous, of infinite length, and is nowhere differenti-
able. It is interesting to note that the observed (measured) length of the
von Koch line is scaled in a complex way: its length depends on the
yardstick used to measure it. In the example in Fig. 32, the object is
magnified three times and the line length is magnified four times. This
leads to the fractal dimension of the von Koch line DH = (ln 4)/(ln 3) =
1.262.111,114 In general, the fractal dimension of the line may be between
1 and 2. Such reasoning may also be used for surfaces for which the fractal
dimensions may be between 2 and 3.

Fractal geometry was introduced to electrochemistry by Le Méhauté
et al. 115 It was shown by Nyikos, Pajkossy, and co-workers113–114,116–122

Figure 32. (a) Images with (b) simple and (c) fractal
magnifications.111
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(183)

(184)

that the fractal geometry of ideally polarizable (i.e., blocking) interfaces
generates a CPE behavior described by Eq. (177) in Section V.2. However,
it should be stressed that, in general, there is no simple relation between
the fractal dimension D H and the parameter φ123 of the CPE, although
higher fractal dimensions lead to smaller values of φ. 114 Fractal theory was
subsequently extended to irregular or quasi-random surfaces lacking
well-defined self-similarity. 119,120 Pajkossy and Nyikos124 carried out
simulations of blocking electrodes with a self-similar spatial capacitance
distribution and found that the calculated impedances exhibited the CPE
behavior. Fractal theory was also tested experimentally using fractal
electrodes prepared by microelectronic techniques.118

Subsequently, fractal theory was extended to faradaic proc-
esses.111,114,117,118,125,126 de Levie111,125 has shown that the impedance of
a fractal electrode, in the absence of mass transfer control, is given as

where the parameter b is given by

where ρ is the solution resistivity and ƒg is a factor depending on the fractal
surface geometry,110 which may be based on von Koch curves,127 Cantor
bars,128–130 Sierpinski carpets,131–133 etc.
homogeneous, φ = 1, ƒg = 1, b = 1 and Eq. (184) reduces to Eq. (112).

98 When the surface is flat and

According to de Levie, 111 Eq. (183) may be applied to fractal electrodes
in equilibrium; that is, in the absence of the dc current, which may
introduce a local interfacial potential difference. When the exact fractal
structure is not known, the parameter b cannot be obtained and the only
parameters accessible are

(185)

Examples of the complex plane plots obtained for fractal electrodes are
presented in Fig. 33. With a decrease in parameter φ, the semicircles
become deformed (skewed). The complex plane impedance plots obtained
from Eq. (183) are formally similar to those found by Davidson and
Cole134 in their dielectric studies. Kinetic analysis of the hydrogen evolu-
tion reaction on surfaces displaying fractal ac impedance behavior was
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Figure 33. Complex plane plots on fractal electrodes for different values
of parameter φ.

carried out by Lasia and co-workers, 135–137 who obtained rate constants
expressed as ki,exp = b1 / φki. In order to compare the intrinsic activities of
such electrodes with that of polycrystalline nickel, the ratio of
k i,exp /C dl,exp = ki /C dl was used. It was found that this ratio has similar
values for Raney Ni and polycrystalline Ni; therefore the intrinsic activity
of these electrodes is similar and the observed increase in activity of Raney
Ni electrodes arises from their very large real surface area.

In general, self-similar fractal surfaces do not exist in the real world.
The fractal models may only approximate random surfaces. In addition,
Eq. (183) for φ = 0.5 is formally identical with the semi-infinite porous
model presented in the next section. The fractal model in the presence of
diffusion is discussed in Refs. 111 and 118. Experimental verifications of
the fractal model were also carried out for some electrodes.118,121,138 It was
also stated that the fractal dimension of the surface may be found from dc
experiments. 114,118,139,140

4. Porous Electrode Model

In electrocatalysis there is great interest in increasing the real surface area
of electrodes. In such cases porous electrodes are used. Because modeling
of real electrodes is difficult, a simpler model is usually used in which it
is assumed that pores have a cylindrical shape with a length l and a radius
r. 24,141–145
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In order to describe the impedance of such electrodes, first a dc
solution must be found. Two cases are considered here: (1) porous elec-
trodes in the absence of internal diffusion and (2) in the presence of axial
diffusion. It is assumed that the electrical potential and concentration of
electroactive species depend on the distance from the pore orifice only and
there is always an excess of the supporting electrolyte (i.e., migration can
be neglected).

(i) Porous Electrodes in the Absence of Internal Diffusion

In this case it is assumed that the concentration of the electroactive
species is independent of the distance along a pore. In the next section we
will see when such an assumption is valid. The axially flowing dc current,
I, which enters the pore, flows toward the walls and its value decreases
with the distance x from the pore orifice (Fig. 34). This decrease in the
current is proportional to the current flowing to the wall:

(186)

where 2πrdx is the surface area of a pore section dx and j is the current
density. Because of Ohm’s law, a potential drop along the pore also occurs:

Figure 34. Pore model.
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(187)
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where ρ is the specific solution resistance and (ρdx/πr²) is the resistance
of the section dx of the solution in the pore. The last term in the parentheses
in Eq. (187) may be called the solution resistance per unit length of the
pore, R = ρ/πr², and is expressed in Ω cm–1. Similarly, the current flowing
through an element dx of the surface area, (2πrdx)j, may be represented
as E/Z, where Z is the impedance of pore walls per unit of the pore length,
in Ω cm. It can be shown that Z = Z el/2πr where Z el is the specific
impedance of pore walls in Ω cm². Zel consists of the faradaic, Zƒ, and the
double-layer impedance: Zel = (1/Zƒ + j ωCd1)

–1.

(a) de Levie’s treatment

de Levie 146 was the first to describe the impedance of porous elec-
trodes. He presented Eqs. (186) and (187) in the following form:

(188)

(189)

Taking the second derivative of Eq. (189) and substituting Eq. (188), one
obtains

(190)

This equation describes changes in the electrical potential as a function of
pore length. de Levie assumed that the impedance of pore walls is
independent of the pore distance (Z is not a function of distance), which
implies that there is no net dc current. The solution is

(191)

where C1 and C2 are the integration constants. Taking into account the
boundary conditions
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and

and

where E 0 is the potential at x = 0, the dc solution is

(192)

(193)

(194)

(195)

The total pore impedance, por , is then obtained as

This equation may be rearranged into

where R Ω,p = ρ l /πr2 and Λ = (2 ρl2/ r) / el. It is evident that the faradaic
impedance of pore walls was assumed to be independent of potential
despite the fact that the potential changes with the pore depth. The faradaic
impedance may be obtained assuming that the Butler–Volmer equation
adequately describes the electrochemical process. Although the original
development was carried out using electrode potential E, a more adequate
representation of impedance would be with respect to the overpotential η:

(196)

Of course, under dc conditions, when ω = 0, el = Rct . For the ensemble
of n pores and in the presence of the solution resistance outside the pores,
the total impedance becomes

(197)
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Figure 35. Complex plane plots for a porous electrode
according to de Levie’s model [Eq. (195)]. (a) General
case [Eq. (195)]; (b) limiting case for shallow pores [Eq.
(199)]; (c) limiting case for very deep pores [Eq. (200)].

Equation (195) predicts the observation of a straight line at 45° at high
frequencies, followed by a semicircle (Fig. 35(a)]. At low frequencies, the
impedance becomes real:

(198)

The behavior of the porous electrode depends on the penetration
depth, λ, of the alternating signal into the pore. This parameter is defined
as Equation (195) has two limiting cases. First,
when and the equation becomes

(199)

where s = 2πrl is the total pore surface area. Equation (199) represents
simply the impedance of a flat electrode having a surface area s. In this
case the ac signal penetrates to the bottom of the pore and the electrode
behaves as a flat one; then its impedance may be described by a semicircle
on the complex plane plot [Fig. 35(b)].

Another limiting case is obtained when the penetration depth is much
smaller than the pore length, λ << l, that is, the pores behave as
semi-infinite channels; then Λ → ∞, coth( Λ1/2) → 1, and

(200)
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In this case the complex plane plot presents a deformed semicircle [Fig.
35(c)]. In such a case, plotting gives a
perfect semicircle.146 Equation (200) is formally identical with Eq. (183)
for the fractal model with φ = 0.5, and these two models are indistinguish-
able.

In further work the impedance of the double layer was substituted by
the CPE:

(201)

An example of porous behavior was presented by Los et al.147 for the
hydrogen evolution reaction on LaPO4-bonded Ni powder electrodes in
30% NaOH. Examples of the complex plane plots are shown in Fig. 36.
Using the complex nonlinear least-squares (CNLS) fit, the parameters Rct,
T, and Cdl were determined.

(b) Rigorous treatment

It is obvious that de Levie’s treatment is an approximation, because
and in consequence are potential dependent. In a rigorous treatment,

Eqs. (186) and (187) should be solved. The second derivative of Eq. (187),

Figure 36. Complex plane plots for LaPO4 -bonded Ni powder electrodes during hydrogen
evolution in 30% NaOH at 70°C.

147
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written using the Butler–Volmer expression for current and overpoten-
tials, is148,149

(202)

Assuming that α = 0.5 and b = 0.5 nƒ, Eq. (202) may be written in a simpler
form as

(203)

The first integration of Eq. (202) gives, taking into account that at x = l,
dη /dx = 0, and η l = η(l ):

(204)

Equation (204) may be solved analytically only for the case of semi-infinite
length of pores and for α = 1/2, 1/3, and 2/3.144 In a general case, it may be
solved numerically. Let us consider now the case of semi-infinite pores,
that is, when the potential at the bottom of the pore drops to 0, ηl = 0. In
this case Eq. (204) may be rearranged to

which has a solution:

(205)

(206)

It may be noticed that Eq. (206) is formally identical with that developed
for the Gouy–Chapman theory of the double layer. Substitution of Eq.
(189) into (205) gives the expression for the steady-state current on porous
electrodes:

(207)
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(209)

which gives, at negative potentials, a Tafel slope of 2 ln(10)/αƒ= 0.118/α
V at 25°C. This result indicates that the Tafel slope on porous electrodes
is double its normal value.

If the potential distribution in pores is known, the pore impedance
may be obtained by numerical summation of the impedances of small
sections, ∆x, of the pore walls, starting from the bottom of the pore:

(208)

where is the specific electrode impedance at the distance x. The
solution obtained may be compared with de Levie’s solution [Eq. (195)].
Complex plane plots obtained for the same conditions using two different
approaches are displayed in Fig. 37.

The analysis of the results indicates that the resistance at ω = 0, Rp

obtained using the correct analysis is twice that found from de Levie’s
equation. In addition, the plot of squared impedances produces a deformed
ellipsoid instead of a perfect semicircle. It has been shown147 that the
CNLS fit of the simulated impedances to the de Levie equation (195) is
not good, there being systematic differences between these two curves.
However, when the CPE is used instead of the double-layer capacitance,
the approximation is good. The values obtained for the parameter φ are
between 0.91 and 0.93.149 In this case the use of the CPE only hides the
inadequacy of the model.

(ii) Porous Electrodes in the Presence of Axial Diffusion

During electrolysis, concentration changes in the pores. This problem
has been addressed in numerous papers.148,150–155 Simplifications such as
assuming totally irreversible reaction kinetics, semi-infinite pores, or that
the concentration gradient in pores is exponential were usually made.
Recently, Lasia156 solved the problem for a quasi-reversible process and
a finite pore length. It was assumed that the electrode process could be
described by the current overpotential equation:
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Figure 37. Complex plane plots for a porous electrode at different overpotentials; pore
parameters: l = 0.05 cm, r = 10 –4 cm, ρ = 10 Ω cm, j 0 = 10 –6 A cm–2 , η0 : (a) 0.025, (b) 0.1,
(c) 0.2, (d) 0.3, (e) 0.4, and (f) 0.5 V; continuous lines, simulated; dashed lines, calculated
using de Levie’s model [Eq. (195)]. 149

where Ci (i = O or R) and C *
i represent surface and bulk concentrations of

Ox and Red, respectively. Assuming that the diffusion coefficients of the
two forms are identical, Eq. (209) can be rearranged into

(210)

where a = CO/C *
O  and m = C*

O /C*
R . The current flowing through the sec-

tion dx of the pore walls is related to the changes in concentration:
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or taking into account diffusion:

which, under steady-state conditions, reduces to

(211)

(212)

(213)

The potential drop in the pore is still described by Eq. (202), with the
current given by Eq. (210). Equations (202) and (213) may be combined
together as

where (214)

Equation (214) has the analytical solution:

(215)

which allows elimination of one variable from Eqs. (202) and (213). In a
general case, the first integration may be carried out analytically and the
next numerically. The derived dependence of η and a as functions of
distance may be used to calculate the impedance.

The value of the parameter v determines whether the porous behavior
is determined by the potential or the concentration drop. When v << 1 V,
the system behavior is determined principally by the concentration gradi-
ent and when v >> 1 V, it is determined by the potential drop. For typical
conditions, D = 10 –5 cm2 s–1, ρ =10 Ω cm, and C * = 10 –3 to 10 –2 M, v ~
10 –5 to 10 –4 V. For these conditions the porous behavior is determined by
the concentration gradient and the potential gradient down pores is negli-
gible. Only for extreme conditions where the solvent or the supporting
electrolyte (at high concentration) undergoes the Red-Ox reaction may the
process be limited by the potential drop in the pores.

In a limiting case when the potential drop in the pores may be
neglected, an analytical solution of Eq. (213) may be obtained:



220 Andrzej Lasia

(216)

where

and (217)

If the dc solution is known, the electrode impedance may be calculated.
As usual, the current [Eq. (212)], must be linearized:

Then the expression for the impedance is obtained as

(218)

(219)

In order to find a solution for the oscillating concentration, Eq. (212) must
be solved for ∆a . Substitution and rearrangement gives

(220)

or

(221)

where

(222)

with the boundary conditions:

and

The analytical solution of Eq. (221) is
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Figure 38. Complex plane plots for a porous electrode in the presence
of a concentration gradient at different overpotentials; l = 0.05 cm,
r = 10 –4 cm, ρ = 10 Ω cm, D = 10 –5 cm2 s– 1, m = 1,  j 0 = 10–7 A cm –2,
C*

O = 0.01 M.

(223)

Now, substitution into Eq. (219) gives the faradaic impedance and using
Eq. (208), the total impedance may be calculated numerically. The pres-
ence of the concentration gradient in the pores produces two potential-
dependent semicircles (Figs. 38 and 39). It should be added that at high
frequencies a small part of a straight line at the angle of π/4 may still be
observed as in Fig. 39, similarly to that in Figs. 35–37.

Figure 39. Influence of the depolarizer concentration on the complex
plane plots for a porous electrode; j0 = 10 –6 A cm –2 , η = 0.2 V;
concentrations in mol cm–3 are indicated in the figure; other parameters
as in Fig. 38.
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(224)

In real cases, the problem is much more complicated, because various
pores are present and in fact the pore size distribution and the exact surface
morphology are not known.

(iii) Other Pore Geometries

For pores of a geometry different from the cylindrical, at high
frequencies where the impedance is determined by double-layer charging,
instead of a straight line, some forms of arc may also be obtained. The
impedance of a V-grooved electrode was studied by de Levie.157 Such
surfaces may be prepared, for example, by abrasion. de Levie described
the impedance of a groove per unit groove length as

where ρ is the specific solution resistance, β is the angle between the
groove wall and the normal to the surface, I0 and I 1 are the modified Bessel
functions of zero and first order, and

(225)

where l is the groove depth (normal to the surface) and Zs is the double-
layer impedance per unit of true surface area. Equation (225) reduces to
the impedance of a perfectly flat surface for β = 90° and to the impedance
of a cylindrical porous electrode for β = 0°. Recently, Gunning158  obtained
an exact solution of the de Levie grooved surface in the form of an infinite
series. Comparison with the de Levie equation shows that the deviations
arise at higher frequencies.

Keiser et al. 159 studied the impedance of arbitrarily shaped pores.
They simulated the complex plane plots in the absence of a faradaic
process (Fig. 40). Instead of a straight line at 45°, observed for cylindrical
pores at high frequencies, different forms of plateaus or a semicircle were
observed.

Eloot et al.160 suggested a new general matrix method for calculations
involving noncylindrical pores, in which the pore is divided into sections
and for each section a transmission line model with constant impedances
is used. Direct simulations of the impedances for porous electrodes were
also carried out using a random walk method.161,162
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Figure 40.
electrode. 159

Calculated impedances for various shapes of a single pore blocking

5. Generalized Warburg Element

Macdonald 18 introduced a generalized finite-length Warburg element
described as

(226)

to describe nonuniform diffusion under finite-length transmission condi-
tions, where Rs is the solution resistance. For φ = 0.5, A0 = l /(R s ),
which represents a finite-length diffusion. Nonuniform diffusion occurs,
for example, when the diffusion coefficient is a function of the distance.
This equation is formally identical with Stoynov’s finite constant phase
element BCP [Eq. (182)]. However, Stoynov109 stated that Eq. (226)
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represents uniform finite-length diffusion and not the nonuniform diffu-
sion case.

A similar equation but containing the function coth was used by Inzelt
and Láng 163 to describe the diffusional impedance of conducting polymers
under reflective conditions [see Section III.6(ii) and Eq. (99)]. An electri-
cal model containing this element accounted well for the impedance
spectra, with a minimum number of free parameters.

Although models including impedance represented by Eq. (226) may
well describe some experimental data, the physical significance of the
parameter A0 for φ < 0.5 is not clear.

VI. CONDITIONS FOR �GOOD� IMPEDANCES

1. Linearity, Causality, Stability, Finiteness

The impedance technique is often applied to electrochemical systems that
have not been studied before. The complex plane and Bode plots obtained
often displayed shapes that had never been encountered previously. Before
starting the analysis and modeling of the experimental results, one should
be certain that the impedances are valid. There is a general mathematical
procedure that allows verification of the impedance data. It was introduced
by Kramers 164 and Kronig, 165 further developed by Bode,166 and later
applied to EIS.18,167–177 During the impedance measurements, a small ac
perturbation is applied to the system. The impedance derived is valid
provided that the four criteria of linearity, causality, stability, and finiteness
are met. 33,169

Linearity: A system is linear when its response to a sum of
individual input signals is equal to the sum of the individual
responses. This also implies that the system is described by a
system of linear differential equations [see e.g., Eqs. (2) and (7)].
Electrochemical systems are usually highly nonlinear and the
impedance is obtained by the linearization of equations [see e.g.,
Eqs. (42) and (130)] for small amplitudes. For linear systems, the
response is independent of the amplitude. It is easy to verify the
linearity of the system: if the impedance obtained is the same when
the amplitude of the applied ac signal is halved, then the system is

•
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•

If the function Z(s) has singularities, then the sum of the residuals
of the poles ai must equal 0:

and (228)

Equations (227) and (228) are mathematical forms of causality.
The system is causal if it does not have any singularities [Eq.
(227)], or the sum of residues is 0 [Eq. (228)]. The physical
meaning of these equations is that the system does not generate
noise independent of the applied signal.

• Stability : The stability of a system is determined by its response
to inputs. A stable system remains stable unless it is excited by an
external source, and it should return to its original state once the
perturbation is removed and the system cannot supply power to
the output irrespective of the input. The system is stable if its
response to the impulse excitation approaches 0 at long times or
when every bounded input produces a bounded output. Mathe-
matically this means that the function does not have any singulari-
ties that cannot be avoided. The impedance Z(s) must satisfy the
following conditions: Z(s) is real when s is real (that is, when
ω → 0) and Re[Z(s)] ≥ 0 when v ≥ 0 [s = v + jω, see Section
I.1(i)]. This last condition ensures that there are no negative
resistances in the system. The impedance measurements must also

linear. In addition, linear systems cannot exhibit hysteresis in their
response at ω = 0.
Causality: The response of the system must be entirely determined
by the applied perturbation; that is, the output depends only on the
present and past input values. A causal system cannot predict what
its future input will be. Causal systems are also called physically
realizable systems. If the system is at rest and a perturbation is
applied at t = 0, the response must be 0 for t < 0. In the complex
plane, the above criterion requires that for t < 0, ω = 0. Moreover,
the integral on and inside a closed path C of an analytic function
(i.e., it has a derivative at each point)178 must be equal to 0:

(227)
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(230)

be stationary; that is, the measured impedance must not be time
dependent. This condition may be easily checked by repetitive
recording of the impedance spectra; then the Bode plots obtained
should be identical.

• Finiteness: The real and imaginary components of the impedance
must be finite valued over the entire frequency range 0 < ω < ∞ .
In particular, the impedance must tend to a constant real value for
ω → 0 and ω → ∞.

2. Kramers�Kronig Transforms

The Kramers–Kronig relations hold provided the four above constraints
are satisfied and (1) allow the calculation of the imaginary impedance from
the real part:

(229)

(2) the real impedance from the imaginary part, if the high-frequency
asymptote for the real part is known:

(3) the real impedance from the imaginary part, if the zero-frequency
asymptote of the real part is known:

(231)

(4) the polarization resistance Rp from the imaginary part:

(232)

or (5) the phase angle from the magnitude (modulus):
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(233)

Similar transformations may also be carried out for admittances. Such
procedures are important when the impedance goes to infinity at low
frequencies (blocking electrodes, CPE, semi-infinite mass transfer, etc.).
The major difficulty in applying the Kramers–Kronig relations is that the
integration must be performed over the whole frequency range from zero
to infinity. However, the impedance results are known only over a finite
frequency range. The discrepancies that arise may be attributed to errors
of integration or to failure to satisfy the four above conditions.

Kendig and Mansfeld 179 used Eq. (232) and supposed that the imagi-
nary impedance is symmetric. They carried out integration between the

and infinity, and multiplied the result by 2. However, their method is
frequency corresponding to the maximum of the imaginary impedance

limited to systems containing one time constant.
Macdonald et al.167–169 and Dougherty and Smedley 177 used a poly-

nomial approximation of the impedance function, followed by analytical
integration of the polynomials. However, extrapolation of polynomials
over a large frequency range may be unreliable. Haili180 extrapolated Z"
as proportional to ω as ω → 0 and as inversely proportional to ω as ω →
∞ and Z' → Rs .

Esteban and Orazem170,171 proposed using Eqs. (230) and (231)
simultaneously to calculate the impedance below the lowest measured
frequency, ωmin , and to continue the integration procedure to three or four
decades of smaller frequency, ω0 . The latter parameter is chosen in such
a way that the real impedance goes to a constant value while the imaginary
impedance goes to 0 at ω0 .

Later, Orazem and co-workers175,181,182 used an approximation to the
experimental impedance by the Voigt model (Fig. 41) followed by a
transformation of the model data. To take into account the inductive loops,
they proposed using negative resistances. This method was used to ap-
proximate the impedance from various circuits containing resistive, ca-
pacitive, and inductive elements; Warburg impedance; CPE; etc. Because
each parallel R-C circuit is transformable, the entire circuit must also be
transformable. In this method the explicit Kramers–Kronig integration is
replaced by the fit to the Voigt model. If the data cannot be well approxi-
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Figure 41. (a) Voigt and (b) ladder models.

mated, it means that they are not transformable. Such an approximation
may be written as

(234)

and

(235)

where τk = R kCk  and M is the number of R-C elements used in the Voigt
circuit to approximate the experimental impedance. The problem with this
approach is the initial selection of Rk and Ck parameters in the complex
nonlinear least-squares approximation, which are unknown. Similarly,
Boukamp and Macdonald 183 proposed an approximation of the experi-
mental impedances using a distribution of relaxation times. They repre-
sented the function G( ) in Eq. (173), written for immittances, as a sumτ
of M discrete delta functions: where g m are
dimensionless weighting coefficients and τ m  are characteristic time con-
stants to be determined.

This method was further modified by Boukamp,184 who also used the
Voigt circuit but with a fixed distribution of time constants τk; that is, the
time constants were defined and the adjustable parameters were Rk .
Parameters τk were chosen as equal to the inverse of the experimental
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angular frequencies ωk, which are usually logarithmically distributed (5
to 10 per decade). Under such conditions, Eqs. (234) and (235) become
linear in the Rk  values and the problem of approximation reduces from
iterative nonlinear to a linear single-matrix inversion. The method is quite
robust with respect to the choice of the distribution and range of τk values.
In practice, six to seven time constants per frequency decade (  τ k  = 1/ ωk)
should be selected to get a good approximation. Through inspection of the
relative residual plots, it is possible to isolate data that do not comply with
the Kramers–Kronig transformations. The sign of Rk parameters is not
important, but the time constants are always positive (by definition); the
negative τ k could mask some non-Kramers–Kronig transformable behav-
ior.

Macdonald 185 proposed another form of the Kramers–Kronig inte-
grals in which integration to infinity and the poles are avoided. In the case
of blocking electrodes, the impedance goes to infinity as ω → 0. For such
electrodes, the admittance Kramers–Kronig transformation could be used.
Alternatively, a suitable parallel resistance could be added to the system
(in such a system the impedance must always be real and equal to this
shunt resistance at ω = 0) and then the transformation of the data ob-
tained 186 can be carried out. In general, Kramers–Kronig transforms
constitute a very sensitive criterion of the validity of the ac impedance
data. An example of such an analysis is shown in Fig. 42.177

It has been shown that instead of Kramers–Kronig transforms, an-
other method involving a coherence function 28,187  could be used to vali-
date the data. The coherence function, γ, is defined as 188,189

(236)

where  is the average input signal power spectrum,  is the average
output signal power spectrum,  is the average crosspower spectrum, the
symbol * denotes the complex conjugate, and Sxx(ω) is the power spectrum
of parameter x as defined by its Fourier transform X:

(237)

The power spectra may be directly obtained using dynamic signal analyz-
ers that measure signals as a function of time and perform the fast Fourier
transform. The coherence function takes values betweaen 0 and 1 and
characterizes statistical validity of the frequency response measurements:
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Figure 42. Impedance spectrum for an Al  electrode in (a) water and (b), (c) its Kramers–
Kronig transforms. 177

it is equal to 1 when perfect coherence exists. This function may be used
when the Fourier-transformed data exist and the Kramers–Kronig trans-
forms are difficult to use (unbounded impedance, truncated data, etc.).

187

3. Nonstationary Impedances

As mentioned earlier, the measured system should be stationary and
should not evolve with time. In practice, such conditions cannot always
be met. For example, corrosion processes may continue during the experi-
ment and change the measured impedance. Such measurements should be
carried out quickly. However, very often the most interesting features are
observed at low frequencies and the experiment may take hours. In such
cases it is possible to follow the evolution of impedances with time at one
frequency and then repeat the experiment many times at different frequen-
cies. 190 In order to use such a method, the initial conditions must always
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be the same. This method was used recently to follow the electrochemical
impedance of a guillotined aluminum electrode. 190 Stoynov et al.191–194

introduced a new mathematical method for nonstationary impedances
involving four-dimensional analysis and rotating Fourier transforms. Al-
though the simulations were carried out, they were not applied in experi-
mental studies of nonstationary systems.

VII. MODELING OF EXPERIMENTAL DATA

1. Selection of the Model

The objective of analyzing EIS data is to elucidate the electrode process
and to derive its characteristic parameters. It should be stressed here that
EIS is a very sensitive technique, but it does not provide a direct measure
of physical phenomena. Other electrochemical experiments (dc, tran-
sients) should also be carried out, together with good physical knowledge
of the system (solution and surface composition, thickness, porosity, the
presence of various layers, hydrodynamic conditions, etc.). Interpretation
of impedance data requires the use of an appropriate model. This is a quite
difficult task that must be carried out very carefully.

The modeling may be classified as (1) physicochemical, proc-
ess, 175,181,195,196  or structural 19,197,198,199

ment,
modeling and (2) measure-

195,196 formal ,19  or mathematical 200,201 modeling. Process modeling
links measured impedances with physicochemical parameters of the proc-
ess (kinetic parameters, concentrations, diffusion coefficients, sample
geometry, hydrodynamic conditions, etc.). Measurement modeling ex-
plains the experimental impedances in terms of mathematical functions in
order to obtain a good fit between the calculated and experimental imped-
ances. In the latter case, the parameters obtained do not necessarily have
a clear physicochemical significance.

Ideally, first the measurement modeling should be carried out. The
number and the nature of the circuit elements should be identified and then
the process modeling should be carried out. Such a procedure is relatively
elementary for a circuit containing simple elements: R, C, and L. It may
also be carried out for circuits containing distributed elements that can be
described by a closed-form equation: CPE, semi-infinite, finite length, or
spherical diffusion, etc. However, many different conditions arise from the
numerical calculations (e.g., for correct solution for porous electrodes, for
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nonlinear diffusion, whether it is to a disk, cylinder, etc.; or for nonuniform
diffusion, nonhomogeneous materials such as conducting polymers). In
such cases a priori model predictions are difficult or impossible to make.
It should be stressed that proper modeling is the most difficult part of the
analysis and is often misunderstood and wrongly interpreted.

Usually an equivalent circuit is chosen and the fit to the experimental
data is performed using the complex nonlinear least-squares technique.
However, the model deduced from the reaction mechanism may have too
many adjustable parameters, while the experimental impedance spectrum
is simple. For example, a system with one adsorbed species (Section IV.2)
may produce two semicircles in the complex plane plots, but experimen-
tally, often only one semicircle is identified. In such a case, approximation
to a full model introduces too many free parameters and a simpler model
containing one time-constant should be used. Therefore, first the number
and nature of parameters should be determined and then the process model
should be constructed in consistency with the parameters found and the
physicochemical properties of the process.

Another problem of data modeling is connected with the fact that the
same data may be represented by different equivalent circuits. 200  For
example, a system containing one capacitive loop (Fig. 4) may be exactly
described by either of the two equivalent circuits shown in Fig. 43. In fact,
the admittance of these two circuits may be written in the general form:

Figure 43. Alternative circuits for the impedance

behavior of a system containing one capacitive loop.
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(238)

where

(239)

or

and these two cases are indistinguishable. Equation (238) indicates that
there is only one time-constant of the system [see Eq. (25)]. Similarly, a
system displaying two capacitive loops (i.e., having two time-constants,
Fig. 23), may be adequately described by the three circuits in Fig. 44. Their
admittance may be written as

Figure 44. Three circuits describ-
ing a system displaying two capaci-
tive loops: (a) ladder, (b) Voigt, and
(c) mixed.
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(240)

The behaviors of these three circuits are also indistinguishable; that is, for
a proper choice of the parameters, they display the same impedance
spectrum at all frequencies.

The circuits most often used in measurement modeling are the Voigt,
ladder, and Maxwell circuits, as presented in Fig. 45. Zoltowski2 0 0 pro-
posed using ladder circuits for measurement modeling, substituting circuit
resistances and capacitances by the CPE elements.

Very often modeling depends on the errors in the experimental data.
Orazem et al. 196 studied the approximation of synthetic data correspond-
ing to the impedance response of a single electrochemical reaction on a
rotating disk electrode under the conditions of nonuniform current and

Figure 45. Typical circuits used in ac modeling; they are experimen-
tally indistinguishable: (a) Voigt, (b) Maxwell, and (c) ladder.18
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potential distribution. The complex plane plot represented a depressed
semicircle. The authors found that the input data could be quite well
approximated by a circuit consisting of a solution resistance in series with
the parallel connection of a resistance and a CPE element (see Fig. 28)
and three other circuits containing two time constants (ladder, Voigt, and
mixed). These authors also studied a more complex case. They stated that
the ambiguity demonstrated above is common to model identification for
all electrochemical measurements and presents the greatest challenge for
the analysis of impedance data. For example, impedance of a porous
electrode may be described by the Voigt circuit with a sufficient number
of R-C elements or by Eq. (195). Development of a proper model requires
knowledge of the chemistry and physics of the system, some prior infor-
mation about it, and a good understanding of the characteristics of the
measured values. Such a model identification procedure should be sup-
ported by a series of measurements at different potentials, temperatures,
concentrations, disk rotation rates, etc.

Stoynov and collaborators 19,197–199  developed mathematical methods
for identifying structures and parameters from impedance data. They also
used spectral analysis, which could identify the number and nature of time
constants existing in the system.

Direct use of equivalent circuits may lead to analysis of more complex
data. For example, for a system containing one adsorbed species, Eq. (139)
may be described by the ladder circuit shown in Fig. 21. The parameters
R a and C a  describing the faradaic impedance [Eq. (141)] are complex
functions of the parameters A, B, and C; while direct use of Eq. (135) leads
to simpler data analysis (i.e., parameters A, B, and C are simpler functions
of the kinetic parameters than the electric parameters Ra and Ca).

2. CNLS Approximations

(i) CNLS Method

After validated data are obtained, one can proceed with modeling. To
do this, a complex nonlinear least-squares (CNLS) program is used.1 8 , 2 0 2 –

2 0 4
This is a nonlinear least-squares fit of the real and imaginary parts, or

the magnitude and phase angle of the experimental impedance and admit-
tance to a given model. In general, the sum of squares:
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(241)

must be minimized, where Z' i and Z"i  are the real and imaginary parts of
the experimental impedances at the frequencies ωi ; Z'i,calc and Z"i,calc are
the values calculated from a given model; w'i and w"i  are the statistical
weights of the data; and the summation runs over all N experimentally
used frequencies. The minimization is most often carried out using the
iterative Marquard–Levenberg algorithm.202,203,205 Because of the itera-
tive nature of the algorithm, the initial choice of the parameters is very
important: they must lie relatively close to the real values, otherwise the
CNLS method may become divergent. Usually a simpler model is used
first; several parameters are determined; then they are kept constant as new
parameters are added; and finally, all the parameters are used as adjustable.
Such a procedure may be tricky and in some cases local minima are found.
In such cases, it is advisable to repeat the approximation starting with
different initial parameter values. If the process converges to another
minimum, the relative values of the weighted sum of squares or χ2 should
be compared. Sometimes very flat minima are obtained, leading to large
values of the relative standard deviations of the measured parameters.

Another problem is connected with the goodness of fit and the number
of free parameters used in the approximating function. The identification
procedure may give the number and nature of the elements in the circuit.
The number of adjustable parameters should be kept to a minimum.
Usually the approximation starts with the smallest possible number of
parameters; then an additional parameter is added and the decrease in the
sum of squares must be compared. Such a decrease must be statistically
important. It may be tested using the F-test for the additional parameter. 206

The addition of some elements in the circuit may be connected with the
addition of more than one parameter. The F-test of the addition of k
parameters to the approximating function is described as

(242)

where S(N – p) is the sum of squares [Eq. (241)] for p parameters and N-p
degrees of freedom, S(N – p – k) is the sum of squares for p + k free
parameters; and N is the number of points. This parameter should be
compared with the function F(k,N – p,α ) for k and N – k degrees of
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freedom, and a level of confidence α, from the statistical tables. If Fe x p  is
lower than F(k,N – k), the hypothesis that the function has p + k parameters
must be rejected. This test should be used with prudence and always the
smallest possible number of added parameters k should be used. It may
happen that when k parameters are added, only the first one increases the
value of Fexp  > F(1,N – 1,α ), although for k parameters Fexp  is also > F(k,N

– k,α ).
In addition to comparing the sum of squares, the experimental and

simulated data should be compared by using complex plane and Bode
plots. The phase-angle Bode plot is particularly sensitive in detecting time
constants. Boukamp 203  proposed to study the residual sum of squares after
subtracting the assumed model values from the total impedance data. If
the model is valid, the residuals should behave randomly. If they display
regular tendencies, it may mean that the model is not correct and further
elements should be added. However, the variations of the residuals should
be statistically important.

Macdonald 207 studied precision of the parameters determined by EIS.
He added noise to the simulated impedance data and used the CNLS
technique to determine the parameters and their standard deviation. Using
this technique, it was possible to determine how the impedance errors are
transferred to the determined parameters, depending on their relative
values. This method allows sensitivity of the parameters to the random
noise to be determined.

(ii) Statistical Weights

The choice of statistical weights in the CNLS fit is very important.
Because the measured impedances may vary at different frequencies over
several orders of magnitude when unitary weights (wi  = 1) are used, only
the largest impedances contribute to the sum of squares S. In such a case,
low time constants may be overlooked. In general, several repetitions of
the experiment allow the standard deviation of each point (σ'i  and (σ"i) to
be determined, and the statistical weights may be obtained as w'i  = (σ'i ) – 2

and w"i  = (σ"i )–2
. Although this is the best approach, such a procedure is

time-consuming and rarely used in practice. Another alternative proposed
by Macdonald 18 was to use proportional weighting, that is, taking weights
inversely proportional to the measured or estimated impedances:
wi  = 1/Zi

 2  or wi  = 1/Z
2
i,calc. Such weighting methods mean that the real and

imaginary parts of the impedance may be independently determined and
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that their precisions are independent. However, in practice, these parame-
ters are often measured using the same sensitivity for both components;
therefore a better weighting procedure may be the use of modulus weight-
ing: w = 1/(Z' 2 + Z "2) .203,208

(243)
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Orazem and co-worker 195,196,209,210 studied the error structure of the
impedances measured using a Solartron frequency-response analysis.
They found that the standard deviations of the real and imaginary imped-
ances are identical and may be described by

i

where α, β, and γ are constant parameters determined for a given instru-
mental system and R m is the value of the current-measuring resistor. Such
an error structure was verified for solid-state and electrochemical systems
under a wide variety of experimental conditions and for errors ranging
from milliohms to megaohms and allowed for better determination of
system parameters.

(iii) AC Modeling Programs

Several programs for EIS modeling are available:

• J.R. Macdonalds’s program, 18,202 written in Fortran, source code
is available. It contains various models already predefined, many
weighting possibilities, and allows for easy modifications of the
subroutines for the model impedance calculations. Fortran is a
language that contains intrinsically complex number calculations,
which facilitates the programming process. Its disadvantage is a
special formatted data input (however, it can be easily corrected).

• Boukamp’s program, 203 written in Pascal and distributed with
EG&G software, is very popular. Equivalent circuits are con-
structed from several predefined elements. However, there is no
possibility of changing the subroutines or introducing new equa-
tions.

• Scribner Associates, Inc. developed a software (Zplot) for data
acquisition and analysis. It is based on Macdonald’s algorithm and
the data analysis has been simplified. It uses a number of prede-
fined circuits without the possibility of modification.
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• Sirotech Ltd. 211 developed software that performs a similar task
and is able to choose the best equivalent circuit.

• Several software packages (often with very limited modeling
capabilities) come with the hardware; for example, from Gamry
Instruments, Inc.: EIS900; BAS-Zahner (Thales); Eco Chemie
BV: Autolab; Tacussel: ZComputer, etc.

• Some other programs have been developed in the literature without
being widely commercialized. 204,212–215

VIII. INSTRUMENTAL LIMITATIONS

EIS measurements should be carried out over a wide frequency range in
order to identify all time-constants in the circuit (usually 10 frequencies
per decade). The highest frequency depends on the potentiostat used
because it may introduce a phase shift at high frequencies and on the stray
capacitance and inductance of the experimental setup (cables, cell, etc.).
A typical range in modern systems is 20 to 50 kHz, although they may
reach megahertz values. With an increase in sensitivity, the potentiostats
tend to slow down and the response on a 10-mA current scale is much
faster than that on 10-µA scale. Much higher frequencies up to 10 MHz
were used by Bara ski et al.216,217 but the experiments were carried out
on ultramicroelectrodes without a potentiostat. Corrections for slow re-
sponse of the potentiostat may be made and the increases the effective
bandwidth by about one order of magnitude. 218 If the response of the
electronic system is linear, the parasitic impedances, and together
with the complex sensibility, (Fig. 46) may be obtained from

where is the measured impedance and is the impedance of the
electrochemical cell. Three measurements—one in the open circuit and
two with two different resistances instead of —allow the determination
of three unknown complex parameters and further correction of the
measured impedance. Such corrections should be repeated at each fre-
quency, and the cable configuration used for calibration should be the
same as for the electrochemical measurements. Schöne and Wiesbeck219
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Figure 46. Equivalent circuit for the
case of a slow response of the poten-
tiostat.

proposed another method involving two working electrodes for high-fre-
quency (≤ 5 MHz) impedance measurements.

The lowest frequency typically used is 10–3 Hz. This limit is con-
nected with the possible changes in the state of the electrode during
long-period measurements. At this frequency, measurements averaged
over five wave periods take 1 h 23 min. Measurement at all frequencies
takes a much longer time. *

The use of FRAs may lead to erroneous results when the frequency
is swept too fast. 30,220 The change of frequency may lead to a transient
regime. If the measurements are performed during this transient, error is
introduced into the results. It depends on the initial phase of the sinusoidal
excitation. It can be neglected when 10 cycles of signal integration and at
least 5 steps per decade are used in measurements. This error becomes
negligible at higher frequencies (> 10 Hz for the Solartron) because of the
internal delay of the measurements at each frequency.

It is relatively easy to get measurements of good precision for imped-
ances between 1 and 105 Ω at frequencies below 5 × 104 Hz. However, for
lower and higher impedances, distortions may be observed. Very high
impedances are found, for example, in measurements of protective coat-
ings on metallic surfaces, and very low impedances are found in molten
salts. The errors for high-impedance measurements originate from the
finite potentiostat input impedance. Such resistance should be at least 100
times larger than the measured impedance; if not, a calibration procedure
is necessary.

Another distortion is observed at very low impedances, correspond-
ing to an inductance in series with the electrode impedance. It is observed
at high frequencies and leads to large positive imaginary imped-
ances. 221,222 This inductance arises from that of the leads and the current

* Comparison of results from log “up” vs log “down” scans of frequency are then useful for
detecting systematic changes of response with time.
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Figure 47. Impedance  diagrams  for  different  distances x between
the  working  electrode  and the Luggin capillary tip in (a) 80% acetic
acid and (b) 100% acetic acid.223
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measuring resistor. Often, such effects may be minimized by shortening
the cables and shielding the reference electrode.

The distance between the working electrode and the Luggin capillary
may also affect the impedance measurements and lead to artifacts. 223  In
principle, an increase in the distance between the Luggin capillary tip and
working electrode should only increase the solution resistance, which
shifts the complex plane plot along the real axis. Figure 47 presents
examples of the complex plane plots obtained at several distances in acetic
acid. Such behavior arises from the contribution of the reference electrode
to the measured impedances and it was explained by introducing the
resistance and capacitance of the reference electrode and a capacitive
coupling between the reference electrode and counter and working elec-
trodes.223 Similar artifacts, observed at high frequencies, are also observed
in highly conducting solutions 224 when the Luggin capillary is located too
close to the electrode surface. These artifacts can be minimized by
inserting a thin platinum wire into the Luggin capillary and the salt
bridge. 224–226

IX. CONCLUSION

Electrochemical impedance spectroscopy has become a mature and well-
understood technique. It is now possible to acquire, validate, and quanti-
tatively interpret the experimental impedances. This chapter has been
addressed to understanding the fundamental processes of diffusion and
faradaic reaction at electrodes. However, the most difficult problem in EIS
is modeling the electrode processes, which is where most of the problems
and errors arise. There is an almost infinite variety of different reactions
and interfaces that can be studied (corrosion, coatings, conducting poly-
mers, batteries and fuel cells, semiconductors, electrocatalytic reactions,
chemical reactions coupled with faradaic processes, etc.) and the main
effort is now being applied to understanding and analyzing these proc-
esses. These applications will be the subject of a second review in a
forthcoming volume in this series.
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Establishing the Link Between Multistep
Electrochemical Reaction Mechanisms and

Experimental Tafel Slopes
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I. INTRODUCTION

The aim of mechanistic studies of chemical reactions is to determine
reaction pathway(s), identifying if possible the rate-determining step (rds)
and the species involved in it. This involves (1) evaluation of the reaction
orders of the various participating reactants, taking into account any
chemisorption effects when the process is heterogeneous; (2) charac-
terization of reaction intermediates and their adsorption behavior, and in
addition in the case of electrochemical reactions, “double-layer” effects;
(3) measurement of steady-state potential versus logarithmic current
relations (known as Tafel plots after the phenomenological relationship
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established by Tafel in 1905), and (4) the determination, where possible,
of the stoichiometric number¹ (v) of the reaction. In the case of a reaction
involving only a single electron-transfer step, the derived Tafel slopes may
be directly related to characteristics of the transition state determining the
reaction rate of the process, specifically β , its symmetry factor, or what
may also be thought of as its electrochemical Brønsted factor.² When a
reaction involves transfer of more than one electron, it is usual for these
to be transferred in discrete steps (i.e., associated with distinct transition
states), in which case the polarization behavior and transfer coefficients
derived from measured Tafel slopes can give information relevant to
reaction mechanisms under certain conditions.

In the electrochemical benchmark monograph by Bockris and Reddy
(B&R) (Ref. 3, p. 1001), these authors developed, based upon the quasi-
equilibrium approximation, transfer coefficients, αs, in terms of mecha-
nistic parameters. Their analysis demonstrated how such αs, obtained
from experimental polarization curves, can give information directly,
enabling elucidation of reaction mechanisms. Their transfer coefficients
are written as

(1a)

(1b)

and the pertinent quantities are the numbers of electrons transferred prior
to, during, and following a rate-determining step (rds). These are repre-
sented by the symbols γp, z rds, and γ , respectively, which indicate theƒ

number of times the rds occurs (i.e., the stoichiometric number, v) for one
overall act of the process. The quantity β is the barrier symmetry factor
for the transition state of the rate-limiting step. It is commonly supposed
that these coefficients have a straightforward relation to the important
mechanistic parameters [via Eqs. (1a) and (1b)] and hence they have been
cited in many experimental works.

This chapter originates from work we have been conducting on the
cathodic plating reaction of aluminum from nonaqueous solutions, a
process that involves three electrons and therefore must be a multistep
reaction. A particular bath for this purpose is the well-known etheric
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hydride bath which is based on mixtures of AlCl3 and LiAlH4 in tetrahy-
drofuran.4 Elsewhere5 we have described experiments that lead to an
elucidation of the mechanisms of the aluminum plating reaction from such
baths. In addition, we reviewed previous work in which attempts to
determine the mechanism of Al deposition from this bath were described.
However, among those reports there was no consensus in the conclusions
on the mechanism, although all were based on essentially the same
experimental data. In these cases, the bases upon which the various
reaction mechanisms were proposed were transfer coefficients derived
from polarization experiments involving Eqs. (1a) and (1b). In the re-
viewed work,6–9 these were seemingly used without regard to the limita-
tions of their application. This confusion is due, in the present author’s
opinion, to an incomplete understanding of how the transfer coefficients
and rate-determining steps to which they refer link particulars of electro-
chemical reaction mechanisms to the experimentally observable Tafel
slopes and other aspects of the kinetic behavior.

This problem prompted a closer examination and ultimately a rederi-
vation of the theory describing the link between mechanistic features in
generalized sequential reaction schemes and the values of experimentally
accessible transfer coefficients upon which the conclusions on mechanism
were based. We endeavor here to develop this link, which is built upon the
“quasi-equilibrium approximation” for dealing with the kinetics of mul-
tistep reactions, clearly and concisely, giving attention to the limits of its
application. We hence justify its significance in relation to determination
of the reaction mechanism.

In addition to the multiple electron-transfer steps that are formally
involved in deposition of metal phases from multiply charged cations, or
in their formation by anodic dissolution of a bulk metal phase, a variety
of gas or other molecular- generation reactions require two electron-
transfer steps (e.g., in the processes of electrochemical formation or
reduction of F2, Cl2, Br2, and I2, and ethane in the Kolbe reaction from
acetate). Four electron transfers are required in the important process of
O2 reduction while the extensively studied H2 formation or oxidation
reactions involve two electron-transfers.

The relation of the number of electrons required in the overall
reactions and the intermediates adsorbed or produced in solution, to the
observed and theoretical Tafel slopes b (the derivative of the electrode
potential with respect to ln[current-density]) has formed a major aspect of
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the field of electrode kinetics and studies of electrochemical mecha-
nisms. 10 In particular, the evolution of transfer coefficients (α) and barrier
symmetry factors (β) in interpretations of Tafel b values has been an
important, if sometimes controversial, aspect of electrode kinetics.

Usually the kinetics of a multistep electrochemical reaction, as also
for analogous regular chemical reactions, can be treated in two comple-
mentary ways.

1. The first is by means of the assumption that the formation and
decomposition of a particular transition state limits the rate of the overall
reaction and that any steps prior to the rate-determining step characterized
by that transition state are at quasi-equilibrium. This allows the concen-
trations of any intermediates involved in the rds to be expressed as a
function of potential [ƒ(V )] and hence a kinetic expression for the potential
dependence of the rds can be formulated in terms of its Tafel slope (b) and
transfer coefficient (α ), formally defined as b = dV/d ln i ≡ RT /αF.

In the case of a single-step reaction such as the reduction of Fe3+ to
Fe 2+ (in the absence of diffusion control), no assumptions are required
about a rate-determining step in the usual sense (although microscopically,
for such redox reactions in solution, consideration can be given to solvent
reorganization 11 in the formation of the transition state associated with
electron transfer). Correspondingly, no intermediate (except the transition
state itself!) need be considered in the reaction mechanism scheme.

2. The second way of treating kinetics is by means of the “steady-
state” condition, that is, the rates of all steps prior to and including the rds
are proceeding at the same rate at a given potential and constant current
density. Then a differential expression for the rates of formation and
consumption of an intermediate (in a multistep process) can be written for
a given potential and the net derivative equated to 0 for the supposed steady
state.

Usually such expressions are more cumbersome than those derivable
by the “quasi-equilibrium” method (especially for a step involving recom-
bination of an intermediate, e.g., 2H → H2), but reduce to the same
expressions when simplifications are made (e.g., that rate constants for
steps prior to the rds are at least 100 times smaller than that of the rds).

Some complications can arise when rate constants for reverse direc-
tions of a step are much smaller than that for the forward direction of the
given process. This of course then leads to a large quasi-equilibrium
constant, >> 1, for the step concerned. For steps in an electrode reaction
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that involve electron transfer, the (electrochemical) rate constants are
normally sensitively dependent (exponentially) on the electrode potential
adjusted in the experiment.

1. Structure of this Chapter

The approach to the kinetic formulations to be developed here will start
from the transition state or absolute reaction rate theory of chemical
kinetics, 12 followed by analysis of the effect of an applied potential on
electrochemical kinetics built up through the well-known Butler–Volmer
(BV) equation,13,14 which was originally written for a one-electron reac-
tion. As discussed earlier for multistep electrochemical mechanisms, it is
necessary to assume a rate-limiting step (rds) within the scheme and make
a quasi-equilibrium approximation to define the potential dependence of
rates for electrons transferred prior to, during, and following this rds. Thus,
the BV equation can be extended to simple multistep cases including,
significantly, the case of an overall reaction limited by a step having a
stoichiometric number greater than 1. The circumstances under which v
> 1 can arise will be described in detail later.

The following derivations are based on fundamental principles and
will clearly illustrate how the potential dependence of electrochemical
reaction rates, characterized by experimentally determinable transfer co-
efficients, arises in generalized reaction schemes, and the constraints that
the required limiting assumptions impose upon this potential dependence.
This approach is required because the simple transfer coefficients of B&R
are really only of use for assigning mechanisms if they are properly
applied; this is actually not so trivial a point given the above-mentioned
confusion that has arisen in the kinetic analysis of, e.g., the Al electro-
deposition reaction.5 Hence, attention will be given in the following
material to completeness.

The first half of this chapter covers basic concepts concerning the
potential dependence of rates of electrochemical charge-transfer reactions,
which will be familiar to specialists in the field. However, this material is
included for the more general reader in order to provide a basis for
following the more convoluted analysis required for dealing with com-
plex, multistep electron-transfer reactions that are treated in the later part
of this article in some detail.
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II. CHEMICAL KINETICS

The kinetic treatment of electrochemical reactions is based on that for
regular chemical reactions but with the inclusion of electrical energy
terms. We first consider the progress of a simple chemical transformation

(2)

which can be regarded as involving a transition state defined by an
activated complex (‡) of high energy, having a configuration intermediate
between that of the reactant and the product, and thus Eq. (2) can be written
as

(3)

It is generally assumed that the same transition-state describes the reaction
in the reverse direction and that this is a thermodynamic requirement for
a process at equilibrium [as is written Eq. (3)].

The energy required to attain the transition state is the energy differ-
ence between the activated complex, A·B·C‡, and the minima (zero-point
energies) of the reactants for the forward reaction direction or of the
products for the reverse direction where the Gibbs energies of these are
described by their respective standard chemical potentials (µi°). The stand-
ard forward activation energy barrier, ∆G →°

‡ is then

(4)

From the transition-state model, or the theory of absolute reaction rates
(Ref. 15, p. 89), the forward rate constant, k→, for a reaction, the rate of
which is determined by a potential barrier ∆G°‡

→, will be given by Eq. (5):

(5)

where kB is the Boltzmann constant, h is Planck’s constant, T is the
temperature (in K) and R is the gas constant. The transmission coefficient,
κ, which is usually formally included, has been assumed to be equal to 1.

Following from this, the rate of the reaction (in mol s–1 ) in the
cathodic direction, v , depends upon the number of molecules entering the
transition state per second and the rate constant for the tranformation,
k →, as
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(6)

Note that although the use of activities is preferred for bulk species in
kinetic expressions for electrochemical reactions, owing to the demon-
strated ability of the Debye–Huckel limiting law to predict trends in
reaction rate for ionic processes, 16,17 the molarity of the transition-state
complex is formally used in Eq. (6) since this species is ephemeral. It is
usually neither convenient nor possible to measure this species concentra-
tion, but if it is assumed that the passage of the A·B·C‡ complex over the
activation barrier determines the rate of the reaction, the formation of the
complex from the reactants (or products for the reverse reaction) can
be considered to be a “quasi”-equilibrium process, for which a quasi-
equilibrium constant, K‡

→, can be defined. For a forward direction of
reaction (3), this constant would be

(7)

where the as are activities of the solution species A-B and C.
The activated complex concentration, from a rearranged Eq. (7), can

be substituted in the rate equation [Eq. (6)] to give Eq. (8) for the rate of
the forward reaction:

(8)

where k → is the rate constant from Eq. (5) and K‡
→ the forward quasi-

equilibrium constant from Eq. (7). For simplicity, K‡
→ will be dropped and

assumed to be part of k→.

III. SIMPLE ONE-STEP, ONE-ELECTRON
ELECTROCHEMICAL KINETICS

1. Introduction

The transition-state theory is easily applied to the kinetics of electrochemi-
cal reactions that involve electrons as reactants supplied from the Fermi
level of a substrate electrode. The simplest one-electron process is a
one-electron reaction involving solution species [e.g., Fe(CN)6

3–/4–]. An
illustrative example of an electrochemical reaction that parallels the
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present author’s interests is, say, the electrodeposition of a species A from
a solution complex A+-L–, onto a conductive electrode substrate M:

(9)

Note that it must be assumed that no other reactions are occurring.

2. Energetics of the Electrochemical Transition State at
Equilibrium

In order to describe the energetic course of reaction (9), it is useful to
introduce the potential-energy (PE) representation of the progress of the
reactant species along a reaction coordinate,18 as shown in Fig. 1. This is
the single axis along which the bonds for both the reactant, A+-L– , and
product, M-A, vibrate. The transition state for the reaction is defined by
that region where the reactant and product PE surfaces intersect. This is
usually at a point (or region) where both reactant and product bonds are
stretched (or activated), or, for aquo or other complex ions, in some way
are configurationally modified to higher energy states. An assumption that
permits mathematical treatment of the PE curves is that the positions along

Figure 1. Potential-energy diagram showing the course of an
electrochemical reaction and the effect of an applied overpoten-
tial (solid curve [η = 0], dashed curve [η ≠ 0]). The magnitude
of the cathodic activation barriers in the presence, and
absence, of the applied η are drawn, as is the magnitude
of the applied zFη. Zero-point energies not distinguished.
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the reaction coordinate of the substrate (M) and ligand (L–) of the complex
ion A+-L– are considered to be frozen in place, the latter just outside the
outer Helmholtz plane (the reaction plane) of the substrate (see Fig. 1).
The course of the reaction is then described by the movement of A or A+

along the reaction coordinate. This representation is a simplification of the
real geometric progress of a reaction, idealized as a process taking place
in one dimension. In reality, the activation process may often require a
multidimensional representation (e.g., when desolvation of an ion is
involved). Note also that, owing to the difference between heterogeneous
and homogeneous reactions, a PE surface describing the (product) bond
with the metal substrate would be an average of all different bonding
situations arising from various influences of near-neighbor atoms and
conditions of solvation at the crystallographic faces the metal that may be
present at its surface.

The energies of the component species of this system may be de-
scribed by their electrochemical potentials, µs (the overbars indicate the
“electrochemical” quantities19,20 ), which, for a species i, would be

(10)

Note that µ i, Eq. 10, includes the species’ standard chemical potential, an
activity term, and an electrical energy term. The electrical term is com-
posed of the electrical work required to bring the molar charge ziF on a
given ionic species from infinity into the species’ phase, and φ i is the
standard inner potential or work function of the phase in question (e.g.,
that of the metal, φM, or of a particular ion in solution, φS) (Ref. 21, p. 20).

The rate of the reaction described by Fig. 1 (in either direction)
depends upon the height of the energy barrier (for that direction) where
for the forward, reductive reaction direction the barrier height is given by

(11)

which is the energy of the transition state relative to that of the reactants.
Analogously, would define the energy barrier for the reverse, oxida-
tive direction of reaction (see Eq. 9). Generally, of course, is
equal to the standard Gibbs energy change in the overall reaction. The rate
constant for the forward reaction would be (cf. Eq. 5)

(12)
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It is important to note that the height of the electrochemical barrier is
variable under the influence of the electric field in the interfacial region;
this is the result of applying an externally adjustable potential difference,
E, at the electrode/solution interface. The applied E can modify the
electrical component of the of reacting electrons, at any one temperature,
and this indirectly results in changes in the electrical energy experienced
by ions in their progress along the reaction coordinate. Applied potentials
can be controlled, with even the simplest instrumentation, to an accuracy
of about 1 mV (96 J mol –1), resulting in an easily measured energy change
with respect to electrons (if reaction kinetics do indeed limit the observed
current); herein lies the great advantage of studying the kinetics of
electrochemical over chemical processes.

The potential difference between metal and solution, φM – φS, is the
total electrical driving force across the reaction interface, which for the
condition of equilibrium can be defined as φM,rev – φS,rev . The fact is,
however, that the transition-state complex will exist at some unknown
position along the reaction coordinate across the double layer (see Fig. 1)
between the substrate and the bulk of solution and hence it does not
experience the entirety of this potential difference, but only a fraction that
corresponds to an intermediate potential φ‡. It is convenient to assume that
the potential difference at this point, φ‡,rev – φS,rev, is some constant
fraction, β , of the total interfacial potential difference, that is,
β (φM,rev – φS,rev), where β zF(φM,rev – φS,rev) would be the energy (in J
mol –1 ) associated with transfer of zF coulombs across the metal/solution
interface under standard conditions.

The symbol , the standard equilibrium potential, now replaces
φ M,rev – φS,rev , indicating that it is measured against an appropriate refer-
ence electrode and where the activities of all involved species are (hypo-
thetically) equal to 1 (i.e., standard conditions). Practical electrochemical

Up to this point, we have considered potentials associated with a
single metal/solution interface (i.e., φM, φS, and φ‡). It is, of course, not
possible to measure directly either the absolute potentials or differ-
ences between them. Potential is only experimentally measurable or
controllable relative to that of another electrode of defined, invariant
potential (i.e., a nonpolarizable reference electrode). Apart from defin-
ing the applied potential and enabling it to be measured, a reference
electrode is required in order to complete the circuit and maintain
electrical neutrality with zero current flow throughout the potential-
measuring circuit of the cell.
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cells are, however, usually nonstandard, and this requires the introduction
of the Nernstian reversible potential, Er , which is related to by the
well-known Nernst equation22:

(13)

for an equilibrium: R → O + ze.
With this in mind, a forward equilibrium rate constant for the elec-

trodeposition reaction Eq. (9) under nonstandard conditions is

(14)

in which the chemical and electrical terms are separated [see Eq. (5)] but
when combined, will become  The potential that the transition-state
complex experiences at its position in the double layer has been defined
by a fraction β of that across the entire interface (i.e., Er ), although note
that experimentally, consideration must be given to the structure of the
double layer and in fact β operates only on that part of the potential across
the Helmholtz layer and not on any part of the diffuse layer (see Section
III.5).

3. Electrochemical Reaction under Polarization

If it is assumed that the chemical component of the electrochemical
potentials of all species (including the transition-state complex) is poten-
tial independent, applied potentials add linearly across the reaction inter-
face, giving, likewise, a linear change in the energy of electrons involved
in the interfacial reaction. When applying a potential, it is useful to
introduce this E relative to that of the reversible potential of the reaction
under study, Er , the latter being the potential of the interfacial reaction at
equilibrium. In this way, the overpotential, η, is defined as the difference
between these two potentials, viz., η = E – Er , and defines the electrical
driving force that can be applied to a given reaction, say, Eq. (9). If βE r

defines the potential at the position of the transition-state complex, then
that same fraction of (E – Er ) will modify its energy (i.e., βzF(E – Er )]
when an external potential is applied. Note that at the electronic mecha-
nistic level, it is the change in the Fermi-level energy of electrons through
the change in electrode potential that is the principal origin of the effects
of electrode potential on electron charge-transfer rates in electrochemical
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reactions. However, little attention has been given to the effect of the
interfacial double-layer field, dφ/dx, on the state of reacting molecules or
ions except for the case of solvent molecule orientation in the double
layer23 and its possible effect24 on the temperature dependence of β (for
gas-evolving reactions).

The amount by which an applied η will decrease the cathodic energy
barrier is βzFη, which gives a potential-dependent cathodic rate constant
of

(15)

An applied potential, E, equal to Er , corresponds to a situation where
η is equal to 0 and hence to equilibrium conditions, in which case the rates
of forward and reverse reactions are equal. Considering the PE surface
representation of the reaction coordinate in Fig. 1, equilibrium corre-
sponds to the PE surface consisting of the two solid curves (indicated by
η = 0) in which the barrier height is the same in both reaction directions.a

The situation of E being more negativeb than Er (i.e., being of higher
electrical energy) corresponds to a negative overpotential that gives rise
to a negative surface excess charge for cases where the corresponding
reversible potential is at or already negative to the potential-of-zero charge
(pcz) of the electrode metal.

This application of a negative overpotential will shift upward (per-
fectly vertically, it is assumed26) the zero-point energy level of the reactant
PE surface [i.e., for reaction Eq. (9)], that of A+-L–, by zFη with respect
to that of the product PE surface. This η < 0, higher energy curve (dashed

a Confusion has sometimes arisen in the literature pertaining to potential-energy surface (or
section) diagrams for the representation of β and the corresponding Gibbs energy quantities.
Strictly speaking, β operates as a fraction of the Gibbs energy change associated with a
change in electrode potential, leading to the Tafel equation: This
effect is equivalent to that represented on a PE diagram only if the entropy change in the
process is 0 or is unaffected by potential change. A further complication is that for
equilibrium conditions and relations to io (and for quasi-equilibrium conditions), it is the
electrochemical Gibbs energy quantities, , that are equal across the reaction process, and
not the energies or enthalpies of the states involved.

bAs a point of clarification, the convention of the International Union of Pure and Applied
Chemistry (IUPAC) is followed here where a negative applied potential raises the energy
of the electrons in the electrode and drives reduction in the forward direction.25 Correspond-
ingly, resulting currents are written negatively.
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line) is shown in Fig. 1. Note that in this particular example it is the A+-L–

curve that shifts since it is on the same side of the electrochemical reaction
Eq. (9) as the electrons, written as M(e–). As noted earlier, in the usual
analysis no change of shape of this curve is envisaged, although this may
be a not entirely satisfactory assumption. Although the reactant curve in
Fig. 1 was shifted by zFη, it is evident that the cathodic barrier height,

will be changed by only a fraction, β , of that. This introduces an
alternative, physical interpretation of β , which is conceptually different
from the previous consideration of the electrical characteristics of the
transition-state complex, that is, φ‡ – φS = β(φM – φS) in relation to its
position27 along the reaction coordinate in the double-layer field.

4. The Symmetry Factor

β is termed the symmetry factor and is a means of describing the fraction
of an applied overpotential that influences the activation energy and hence
the rate of an electrochemical reaction. For most electrochemical reac-
tions, β is usually taken to be equal to about 1/2, an assumption justified
for a “symmetrical” energy barrier, which means that for a negative
applied η, one half of the applied η decreases the cathodic (Gibbs) energy
barrier while the other half, 1 – β , increases the anodic (Gibbs) energy
barrier. Electrochemists have been grappling with a physical repre-
sentation of β since the very beginning of electrochemical kinetics.
Although it is central to electrochemistry, there has not been considerable
discussion in the literature;28 currently there is no single physical model
that is generally accepted.

One of the earliest models was that of Butler,27 in which β was
considered to represent the relationship between the potential-distance
profile across the electrical double layer and the position of the transition-
state complex relative to the “locations” of the initial and final states of
the reaction. A model by Hush29 considered β to be the (fractional) charge
on the ion in the transition state. Marcus’ treatment of electrochemical
electron-transfer reactions has β as a multicomponent term that is depend-
ent upon the reorganization of the medium necessary to attain the transi-
tion state.11,30 If the electrochemical transition state is represented as
intersecting classical26 PE surfaces along the reaction coordinate (as
introduced in the previous section), β gives a measure of the relative slopes
of reactant and product PE surfaces, making it a geometric factor; this is
the origin of its being termed the symmetry factor. β , in this case, has the
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same kind of significance as the Brønsted factor in linear Gibbs energy
relationships, for example, for homogeneous acid-base reactions.17 Note
again, however, the formal confusion between β representing effects in a
PE vs. a Gibbs energy diagram.

The value of β , according to the PE surface representation adopted
in this work, can be put on a more quantitative footing by analyzing
the relationship between overpotential and the variation of, say, the
cathodic activation energy [i.e., zFη and or
such analysis generally relies on linearization of the PE surfaces near
the transition-state region, such as in Fig. 2, in which the reactant
surfaces in the absence and presence of an applied overpotential are
the solid and dashed curves, respectively. Also shown are the respective
cathodic barrier heights; owing to their varying points of reference,
these quantities (as represented by the lengths of the drawn lines in Fig.
2) have been redrawn in the inset box and aligned to illustrate the
fraction β of the applied overpotential that ends up modifying the
height of the cathodic energy barrier. On the basis of the necessary
simplifying assumptions that their slopes do not change with η and that

Figure 2. A linearized potential-energy diagram showing
the course of an electrochemical reaction. The reactant
curves in the absence and presence of an applied overpo-
tential (solid curve [η = 0], dashed curve [η ≠ 0]) are
shown. The magnitude of the cathodic activation barriers in
the presence, and absence, of the applied η
are shown and redrawn in the inset box to scale in such a
way as to compare their difference due to the applied zFη.
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the relative reaction coordinate positions of these curves do not move,
simple, if a little involved, trigonometry (see Ref. 3, p. 922) can express
β in terms of the reactant and product PE curves:

(16)

where the term in parentheses is β , θ is the angle the reactant (the ion
in the outer Helmholtz plane, OHP) PE surface makes with the reaction
coordinate axis (see Fig. 2), and φ is that for the product adsorbed on
the substrate surface. In Fig. 2, the PE surface of the product is
deliberately shown as more acute (or conversely less obtuse) in aspect
than the reactant surface and hence represents a stronger bond than that
of the reactant, corresponding to β < 1/2 for this example.

the possible potential dependence of β. Whether there is support for a
There has been considerable discussion in the literature concerning

potential-independent β seems to depend on the system involved; for
instance, β is known to vary little over a wide overvoltage range for the
hydrogen evolution reaction on Hg or Pb (see Ref. 31 and references
therein) and for the oxygen evolution reaction on various oxidized
metal surfaces, while for the reduction of nitrocompounds in
nonaqueous solutions, a significant change with potential is observed
(Ref. 32, p. 276). Note that if the PE surfaces (defining the transition
state) were to intersect near the zero-point energy of one of the curves,
a change of β with overpotential would be anticipated on the basis of
this model since the slope near the base of a PE surface changes quite
significantly. This is demonstrated in Fig. 3 by the tangent lines for
the intersection of the PE curves that are progressively closer to one of
their zero-point energy levels. The limit of this effect is when the PE
curves cross at the zero-point energy level and corresponding vibra-
tional amplitude [e.g., in cases approaching either the barrierless or
activationless kinetic conditions; (Ref. 32, p. 278)]. Note that it is often
difficult to observe this effect experimentally since, for the high applied
potentials necessary, diffusion of the reaction species in solution usu-
ally becomes rate-limiting instead. In addition, it is conceivable that
the changing electric field present at the electrified interface could
affect the position of charged species with respect to the OHP. For the
purpose of the present discussion, however, β is assumed to be potential
independent and symmetric (i.e., equal to 1/2), which is noted for many
reactions.
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Figure 3. Potential-energy diagram demonstrating the effect of
PE surface curvature. The intersection of product and reactant
curves progressively nearer to the zero-point energy of the
reactant curve gives considerably different slopes (drawn lines)
and hence βs .

5. Double-Layer Considerations

The potential difference across the electrode/solution interface is
“dropped” by the accumulation of ions of opposite charge in the solution
immediately adjacent to the electrode surface in the electrochemical
double layer. The spatial distribution of ions gives a potential profile across
the double layer into the solution over a distance that is dependent upon
the electrolyte concentration. Given this position-dependent potential
profile, it is possible that species undergoing electrochemical reaction,
which are assumed to reside in the outer Helmholtz plane of the electrical
double layer adjacent to the substrate electrode (otherwise known as the
plane of closest approach of nonspecifically adsorbed ions), may not
actually be at φS and hence would not experience the full electrical field
corresponding to the electrode/solution potential difference. The result of
this is that only a part of the measurable applied η affects the Gibbs energy
of activation of the process. The potential at the OHP with respect to
solution, φS, is denotedc ψ1 and is known as the potential of the (inner limit

cThis is the symbol used in the Russian literature; φ or φd 2 have been employed elsewhere.
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of the) diffuse layer and is actually the part of the applied potential that
does not affect the reactant in the OHP. Thus the ultimate electrical driving
force of an applied overpotential η at the OHP becomes modified to
β(η – ψ1). However, as long as ψ1 is small, which is usually the case when
solutions contain an inactive supporting electrolyte of concentration 0.1
to 1.0 M, or remains constant, it does not affect the actual potential
dependence of the interfacial reaction and η can then be used in the kinetic
equations without alteration.

6. Rate Equation

The rate υ → of the forward, reductive direction of reaction Eq. (9) is the
product of the activities of reactants [from the concentration of the
activated complex [M·A·L

–
]‡ as per Eq. (7)] and the rate constant describ-

ing the energy barrier, → [Eq. (15)], which is composed of a potential-
independent k→ [likened to Eq. (5)] and a potential-dependent term. The
rate of the deposition reaction, having units of mol s–1 cm–2 (the reaction
cross-section area of the substrate electrode), is

(17)

where aA+–L– is the activity of A+-L– in solution (i.e., diffusion is assumed
not to be limiting), k→ is the heterogeneous rate constant, I→ is the current
for the reduction reaction, and A is the accessible electrode area.

The reaction rate in the reverse direction is given, analogously, by Eq.
(18):

(18)

Combining the forward and reverse rates [Eqs. (17) and (18)] gives
Eq. (19) for the net current:

(19)
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Note that this equation is constructed so that the cathodic reaction contrib-
utes a negative current that follows the usual electrochemical convention
(see footnote b).

At equilibrium (η = 0), Inet = 0, but an exchange current continues to
pass reversibly in both directions of reaction. The exchange current density
is a direct measure of the kinetic facility of an electrochemical reaction
through a particular transition state and is given by

(20)

writing i for I /A. This i0 may be introduced into Eq. (19) to give the
simplified Eq. (21), which is the well-known Butler–Volmer (BV) rela-
tion13,14

(21)

Equation (21) essentially states that the cathodic and anodic slopes of
log i vs. η curves (when the reaction is under kinetic control) in potential
regions where one or other of the reaction branches is negligible (i.e., the
Tafel regions), is going to be proportional to zβ and z(1 – β ), respectively,
for a single-step, z-electron reaction (i.e., including hypothetically the
unlikely case of more than one electron being transferred in the transition
state). These factors are called the transfer coefficients and can be essential
tools for deriving reaction mechanisms in multistep electron-transfer
processes (i.e., where z > 1), as will be demonstrated in the next section.

IV. SEQUENCE OF CONSECUTIVE ELECTROCHEMICAL
REACTIONS INVOLVING A SINGLE RATE-DETERMINING

STEP

1. Reaction Schemes and Intermediates

We now proceed to the main topic of this chapter and examine the situation
for an electrochemical reaction that involves multiple consecutive elec-
tron-transfer steps of the kind referred to in a general way in the introduc-
tion. A hypothetical reaction sequence involving n consecutive
electron-transfer reduction steps is given in Scheme 1. The Ais are stable
species that can be reactants or products and the Iis are reaction interme-
diates of lower stability. The zis indicate the number of electrons trans-
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Scheme 1. Consecutive electrochemical reaction scheme

ferred in each step and can have values of 0, 1, 2, etc.; they are used as a
means of including the possibility of chemical steps (z i = 0) and single and
multielectron steps, respectively, as discrete reaction steps in the mecha-
nism, although it should be noted that the number of electrons transferred
in a given step (i.e., zi) is usually assumed ≤ 1. This assumption arises from
the absolute rate theory of electron transfer of Marcus (Ref. 11 and
references therein), in which it is argued that the energy requirements for
medium reorganization associated with electron transfer would favor
incremental transfer of charge. z, used previously in the Equation (21)
(which is for the single-step reaction) for the number of electrons trans-
ferred in the rds, is now the sum total of all electrons transferred for a
single turnover of the entire reaction, while zrds is the number specifically
transferred in the rds, that is, the usually assumed value of 1. The Ais and
Iis can be uncharged, or positively or negatively charged (the charge
balance among these is omitted in Scheme 1 for simplicity). Although
there are limits to the charge these species can have and hence how many
electron-transfer steps are possible, n steps are assumed in the scheme to
illustrate the origin of the potential dependence that is relevant to deter-
mination of mechanism in this discussion.

Each step will have individual rate constants for its forward and
reverse reaction directions; for instance, for step i (see Scheme 1), these
will be and respectively. The activities of the reactants and products
of the reaction are defined in terms of their solution activities, aAi

s. The
reaction intermediates, however, remain in the immediate vicinity of the
electrode substrate surface and do not possess “solution” activities per se,
since they are often unstable and ephemeral; thus they are normally
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defined by surface activities, aS
Ii
s (mol cm– 3).d The volume that describes

the surface activity is defined by a solution thickness on the order of that
of the double layer itself, and a particular species’ bulk solubility would
define the upper limit of its concentration (if that could be estimated).

It is the potential dependence of the surface activities of these inter-
mediates created in electron-transfer steps that gives rise to characteristic
variations in the Tafel slopes with the reaction mechanism. Note, however,
that if the intermediates are adsorbed onto the electrode surface, only in
the case of low coverages will a simplified treatment be possible; other-
wise, potential-dependent surface coverage terms, θi s, are required (see
Sections 2 and 4 for further discussion).

Scheme 1, as written, is considered to be closed between steps 2 and
n – 1; that is, reactants enter the reaction at step 1 and products exit at step n.
If it is recognized that only the surface activities of reaction intermediates are
potential dependent and hence affect the “electron” reaction order, Scheme
1 can be easily extended to permit the entrance of further reactants or
products (the latter being reactants for the reverse reaction) in intermediate
steps as well. These would be represented simply by their solution activi-
ties and hence would be potential independent.

2. Underlying Assumptions

In order to derive rate expressions for multistep mechanisms such as those
in Scheme 1, the following assumptions are usually made:

1. Only one of the steps is rate-limiting (the rate-determining step,
rds), which generally requires that the rate constant of this reaction
step be at least 100 times smaller than those of all other prior steps.

2. The same step is also rate limiting in the reverse direction (a
condition arising from reversibility of the reaction).

3. Intermediates, if adsorbed on the surface of the electrode substrate,
are at low coverages (note, however, that when coverages of
intermediates do approach saturation, potential-dependent rates
can still arise if an electrochemical desorption type of step is
involved; then b 118 mV dec– 1 at 298 K for β taken as 0.5).

dThe activities of intermediates at the substrate surface are designated by a superscript "s"
to distinguish them from those of solution species.
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4. The kinetics of all the other steps do not deviate significantly from
either steady-state or quasi-equilibrium conditions (see later dis-
cussion).

5. The nature of the mechanistic scheme does not change with
potential.

In reality, this last point often does not hold since the PE surfaces for initial
reactant, final product, and all the intermediates will shift relative to one
another; then some other step in the scheme could become rate-limiting.
There is also the possibility of the emergence of alternative parallel steps
that could lead to a different mechanism (although it should be mentioned
that mass transport can often become controlling before such alternative
pathways are experimentally recognized).

If however, the above assumptions do hold, as they often will near the
reversible potential, the net rate of the overall reaction (measured as
current density) will be determined by the rate of the rds. The equation for
the net rate, inet, of the overall reaction is then [cf. Eq. (19)]:

where k–rds and krds are the heterogeneous rate constants corresponding to
the PE barrier of the rds at equilibrium (η = 0), z rds is the number of
electrons transferred in the rds, z is the total number transferred per
turnover of the overall reaction, aS

Irds+1
 and aS

I are the surface activities of
rds

the species involved in this step, and for simplicity, the constants F/(RT)
have been replaced by ƒ.

The potential dependence of i net in this expression [Eq. (22)] might
initially appear to be defined solely by the exponential terms in either
branch, but if in fact Irds and Irds+1 are reaction intermediates, under certain

(22)

conditions their surface activities are also potential dependent. In order to
clarify this, the next step is to develop expressions for the potential
dependence of the surface activities of intermediates.

3. Steady-State and Quasi-Equilibrium Treatments

The standard method for evaluating the concentration dependence of
reaction intermediates in chemical kinetics is to use the steady-state
assumption (see Ref. 15, p. 89 and references therein, and the introductory
paragraphs in Section I), which may also be employed to determine the
potential dependence of the activities of reaction intermediates in electro-
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chemical kinetics. It is assumed for any reaction that following a short
induction time after initiation of the process, the effective concentrations
of all intermediates reach values that remain constant in time and therefore
are in a steady state, which means that the rates of their formation and
disappearance will be equal, with the result that the rates of change of their
effective concentrations will be 0. This situation allows the following
evaluation for say, aS

I2
, the activity of the first intermediate of Scheme 1:

(23)

which occurs since v1 (the rate of the forward direction of step 1 in Scheme
1) and v– 2 (that of the reverse direction of step 2) produce the intermediate
I2  and v –1  and v 2 consume it. Solving for the surface activity of I2 gives
Eq. (24):

(24)

This is clearly a complicated expression that will become simplified
only upon making (in some cases, arbitrary) assumptions about the relative
magnitudes of some of the rate constants and hence neglecting some terms
(see Ref. 33 for an example of this worked out fully). Such steady-state
expressions could be written for the surface activities of all intermediates
involved in the reaction scheme. If they were substituted one into the other,
they could progressively lead to an expression, albeit quite complicated,
defining the complete potential dependence of the surface activity of Irds.

In order to avoid such complicated expressions, the quasi-equilibrium
method is used, although the above steady-state approach can become
reduced to the same result if various limiting assumptions about relative
values of rate constants, referred to earlier, are introduced. This approach
assumes a rate-limiting step so that all other steps are supposed to have
much larger rate constants (in both directions) and hence are all in virtual
or “quasi”-equilibrium. Bockris34 applied a similar treatment in a less
general way to the kinetics of various pathways of the oxygen evolution
reaction. With the application of a negative overpotential that drives the
forward, supposed reductive direction of the reaction, each of the steps
prior to the rds (which are hence limited by it) will be at quasi-equilibrium,
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(26)

while those following it will not be limited by the rds and will simply run
to products without influencing the rate in that direction.

The steps after the rds (as they are written in Scheme 1, i.e., as
reductions) will be rate limited by the rds only in the reverse, oxidative
reaction direction. The effect of these steps following the rds will be
observed for applied positive “overpotentials.” In the case of oxidation the
steps following the rds will be in quasi-equilibrium and those preceding
the rds will now run (backward) to reactants without influencing the rate
in the reverse direction. Ignoring the opposite reaction direction is a
convenient simplication that, as we will see (Section IV.6) does not
seriously affect the validity of the quasi-equilibrium treatment.

At this point, the surface activities of the “reactant” and “product”
intermediates of the rds in Eq. (22) have unknown potential dependencies,
but these can usually be evaluated by use of the quasi-equilibrium method.
For the cathodic, forward direction, this potential dependence may be built
up progressively in terms of the initial reactant of the reaction scheme, that
is, A1 . Thus the rate of step 1 (in Scheme 1) is limited by the rds and
according to the above assumptions is considered to be in quasi-equilib-
rium. Therefore the rates (as current density) of the forward and reverse
reactions of this step may be equated as

(25)

Note that we are considering the current for this individual step and thus
z1 (probably unity) is used in the preexponentials instead of z; this latter
finds application when the overall reaction is considered [i.e., as in Eq.
(22)]. Equation (25) is rearranged to extract the surface activity of the
intermediate I2 in terms of the bulk solution activity of A1  and for
simplicity K1  is substituted for k1 /k– 1. This gives Eq. (26), a Nernst
equation-like expression for the quasi-equilibrium of step 1:

in which β and the preexponentials in Eq. (25) have become cancelled in
the rearrangement. [Obviously, for any quasi-equilibrium expression of
this kind, the β a and β c  factors must be assumed to be linked (i.e.,
β a = 1 – β c) in order for them to disappear].

Next, the rates of the forward and reverse reactions in step 2 may be
similarly equated and the activity of the next intermediate, I3 , solved for,
as in Eq. (27):

271
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(30)

(27)

into which the surface activity for I2 may be substituted from Eq. (26),
giving

(28)

which is an expression for the surface activity of the intermediate I3 in
terms of the (known and potential independent) bulk solution activity of
the initial reactant of the overall reaction.

This procedure may be carried through stepwise for all reaction steps
that are in quasi-equilibrium up to the rds, and this then gives the general
expression, Eq. (29):

(29)

The argument of the exponential term of Eq. (29) shows the overall
potential dependence of the cathodic reaction rate that arises from all the
quasi-equilibrium electron transfers occurring prior to the rds. The zis must
all be integers and thus each previously transferred electron adds “1” to
the η -dependence factor.

A general equation for the surface activity of the intermediate that is
the product of the rds, I rds+1  (which would be the reactant for the reverse,
oxidation reaction) can be similarly developed for the reverse, anodic
direction of reaction. In the case of the oxidation reaction, however, it
would be built backward from the ultimate product of the reaction (as
written in Scheme 1), An+ 1, and would be

4. Rate Equation for Consecutive Electrochemical Reactions

The rate equation for the reaction described by Scheme 1 is derived by
substituting the (potential-dependent) expressions for the activities Irds and
Irds+1 [Eqs. (29) and (30), respectively] into the rate equation for the rds
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(32)

[Eq. (22)]. This then gives Eq. (31), the equation for the net overall rate
for a multistep electrochemical reaction having a single rds:

(31)

The first term in Eq. (31) is the cathodic term, negative by convention (see
footnote b), that contains the activity of the initial reactant, A1 . For
simplification, γp, which is the total number of electrons transferred prior
to the rds, has replaced the summation term in the argument of the
exponential of Eq. (29). The second term in Eq. (31) is the anodic direction
term, giving a positive current contribution, which contains the activity of
the overall product of the reaction, An + 1, and γƒ  is the number of electrons
transferred following the rds.

Grouping potential-independent terms into an exchange current den-
sity and collecting the arguments of the exponentials simplifies the rate
equation to

This is obviously a BV type of equation [see Eq. (20)], but where β
and (1 – β) in that equation have become replaced, respectively, by trans-
fer coefficients which are

(33a)

for the cathodic direction of reaction and

(33b)

for the anodic reaction direction. The first terms (on the rhs) in Eqs. (33a)
and (33b) are the contributions from quasi-equilibrium, nonrate-limiting
or non-rds steps, while the second terms are the contributions from the
rds. Recall that preceding and following electron transfers in a reaction
mechanism add integers to the transfer coefficients for the rds. Note,
however, that the addition of integers is valid only when the effective
surface concentrations of the intermediates are below their solubility
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limitations apply with respect to the relative magnitudes of the rate

(35)

(36)

limits or, in the case of reactions involving adsorbed intermediates, when
the total surface coverage by intermediates is sufficiently small to allow
the approximation (1 – θI 2

 – θI 3
...) → 1 (see below, Section IV.5). Other

constants of the steps involved in a reaction sequence and these will be
examined in Section IV.6.

5. Adsorption of Intermediates

In the special but not uncommon situation where the intermediates of a
reaction are adsorbed onto the surface of the electrode substrate,e the
activities of the intermediates in the surface region, as they are used in the
present derivation, would have to be replaced with surface coverage
fractions (θis) since in this case the available electrode substrate area limits
the extent of the reaction. If the electrode were to become completely
covered by one or more of the intermediates (as with the application of a
larger driving force η ), the potential dependence of the rate (i.e., the Tafel
slope, b) would no longer include the contribution that would otherwise
arise for the non-rds coverage-limited reaction steps.

In this case, the quasi-equilibrium expression for step 1 of Scheme 1
would be [compare to Eq. (25)] modified to

(34)
where rearrangement would give

Ordinarily, electrochemical adsorption isotherms would have to be
written (e.g., a Frumkin-like isotherm) as given in, for example, Eq. (36),
which includes a lateral interaction parameter, g:

where g expresses the way in which increased coverage changes a given
species adsorption energy and it might be expected that there would be as

Mark C. Lefebvre

eAn important example of this is in the hydrogen evolution reaction (Ref. 21, p. 170).
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many g parameters as there are individual types of interactions between
adsorbed species. However, it is possible to envisage a communal basis of
interactions among the assembly of adsorbed intermediate species, as
proposed by Conway and Gileadi.35 Only in the limiting case where the
total electrode coverage, Σθi , is low [i.e., where 1 – Σθ i  → 1 and perhaps
also g = 0, but not necessarily], could the potential dependence be elabo-
rated as developed in for example, Eqs. (29) and (30), in which surface
activities were used.

If saturation coverage were to prevail (i.e., Σθi  → 1, for instance, at
elevated potentials), the coverage and hence the measured rate contribu-
tion of the step would become potential independent. It is therefore
important to identify such limiting situations by complementary experi-
mental techniques36 such as ac impedance spectroscopy37,38 or recording
of potential-decay transients 39–41 in order to avoid erroneous conclusions
about mechanisms. These two procedures serve to identify and character-
ize any pseudo-capacitance associated with the potential dependence of
coverage by intermediates when their θ i values become larger than about
0.1. As a final point, the θ = 1 condition generally does not arise in
multistep reactions because usually there is a following desorption step
that prevents this, except, of course, in underpotential deposition, where
no continuous faradaic reaction in time takes place.

6. Validity of the Quasi-Equilibrium Approximation

The quasi-equilibrium approximation offers a considerable simplication
of the usual steady-state approach for the solution of reaction mechanism
problems. It relies on the assignment of an rds with the assumption
[assumption (i), Section IV.2] that the rate constants of this step are at least
100 times smaller than all other steps. This assumption cannot of course
be applied to all electrochemical reactions without prior knowledge that
it is indeed valid. Even when this assumption is acceptable, there are limits
to the overpotential range over which mechanistically significant Tafel
slopes can be derived using this approximate method. In order to make
clear these limits and the effect that various combinations of rate constants
can have on a simple multistep reaction scheme, Tafel plots will be
simulated using the steady-state treatment. Of critical importance in this
regard are the relative magnitudes of the rds and non-rds rate constants.

Consider a reaction mechanism similar to Scheme 1, but involving
only three consecutive electron-transfer steps. If, as an example, we take
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and

the second, middle step as rate-limiting, the rate equation for this three-
step reaction is

(37)

It should be recognized that the activities of the two reaction intermediates,
I2 and I3  in Eq. (37), are potential dependent. If we assume that the reaction
is in a steady-state and for the time being ignore the solubility limits of
these intermediates, steady-state expressions for these potential-depend-
ent activities can be developed [i.e., as per Eqs. (23) and (24)]. In this
particular example, exp[βƒη ] may be factored out and cancelled from both
numerator and denominator of the steady-state expression for I2 and
exp[(1 – β )ƒη] for that for I3 , giving respectively

(38)

If we substitute these steady-state expressions for the activities of the two
intermediates into the rate equation for the rds [Eq. (37)], we then have

(39)

(40)

and this will describe the steady-state polarization behavior for this
reaction. Note that there remain in these expressions two intermediate
activities (for I3 and I2 ) in the cathodic and anodic terms, respectively.
These activities are for species on the “other side” of the rds and will have
to be assumed not to influence the rates of the respective terms (see later
discussion).

For this particular reaction (assuming β = 0.5), where one electron is
transferred both before and after the rds, the quasi-equilibrium approach
examined earlier (Seciton IV.4) would predict transfer coefficients [from
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Eqs. (33a) and (33b)] of αc = αa = 1.5, which should give (at room
temperature) Tafel slopes for both cathodic and anodic branches of about
|39| mV dec–1. The fact is, however, that the limiting conditions under
which the quasi-equilibrium treatment applies are not necessarily met for
all multistep reactions and, perhaps surprisingly in cases where they are
met, the treatment might give mechanistically significant results only over
a relatively narrow (and low) overpotential range. In order to clarify this,
we will examine the effect that various sets of rate constants (ki and k–i )
for steps 1–3 of this hypothetical reaction have on the form of the
semilogarithmic polarization curves calculated from Eq. (40).

For simplicity in this simulation, the solubility or coverage limits of
the activities of the rds intermediates which are calculated by either Eq.
(38) or (39), have been ignored and the calculated (potential-dependent)
effective concentrations have been allowed to vary freely and can reach
unrealistically large values. Although this is an oversimplication, it pro-
vides a better demonstration of how variations in the relative magnitudes
of the rate constants can affect the appearance of the Tafel relations.

To elaborate, in Fig. 4 is shown simulated [by Eq. (40)] Tafel plots
demonstrating the effect of varying k2, the forward rate constant of the rds,
with respect to k1. All other quantities are held constant in this simulation.
The effective concentrations aA1

and aA4
have been set equal to 0.5 mol

dm–3, the rate constants k–1, k3, and k–3 have all been set to 1 × 10–4 cm
s–1 and k –2 (i.e., k –rds) to 1 × 10 –6 cm s–1. k 2 and k1 are the only rate
constants that vary in this simulation where the ratio, k1/ k2, (i.e., prior step
relative to the rds) changes from 100 to 106. Note that k1 does not actually
change independently since the principle of microscopic reversibility and
detailed balance (Ref. 15, p. 285) requires that the following equality must
hold:

(41)

With all other quanitities set, k1 must vary as k2 does to satisfy this equality
[Eq. (41)].

In most of the simulated curves in Fig. 4 two linear regions in both the
cathodic and anodic branches can be clearly seen that have slopes of |39| and
|118| mV dec–1 (at 298 K), whereas the quasi-equilibrium treatment would
have predicted only a single linear Tafel region of slope |39| mV dec–1 for this
mechanism. When the k1 /k 2 ratio increases, varying from 100 (solid line) to
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Figure 4. Simulated Tafel plots [from Eq. (40)] for a reaction
involving three consecutive electron-transfer steps. The effec-
tive concentrations aA1  and aA 4  have been set to 0.5 mol dm–3;
the rate constants k– 1 , k3 , and k– 3  to 10– 4 cm s– 1; and k –2 (i.e.,
k- r d s ) to 10– 6 cm s– 1. k2  has values of 10– 5 (solid), 10– 6 (dots),
10– 7 (dot-dash), and 10– 8  (dash) cm s– 1  and therefore, accord-
ing to Eq. (41), k1  has values of 10

– 5
, 10– 4, 10– 3, and 10– 2  cm

s– 1, respectively, corresponding to k1 /k 2 ratios of 100 (solid),
10² (dots), 10

4
 (dot-dash), and 106 (dash) cm s– 1.

10
6

(dashed line) in Fig. 4, the effect is an increase in the length of the
(mechanistically significant) cathodic region of slope |39| mV dec– 1 . This
illustrates the importance of considering the relative magnitudes of the rate
constants of reaction steps and the criterion for the use of Tafel slopes for
mechanism elucidation. Note that the first (solid) curve, which shows no
region of (cathodic) slope –39 mV dec– 1, does not actually correspond to a
situation where step 2 is rate-limiting. All curves in Fig. 4 become superim-
posed at higher positive potentials here, since the values of k–3  and k –2 have
been held constant, their ratio, k– 2 /k– 3 , in this case being 100.

The transition from –39 to –118 mV dec– 1 in the curves in Fig. 4
occurs as increasing overpotential [either negative in the case of Eq. (38)
or positive for Eq. (39)] makes negligible the exponential terms relative
to the potential-independent terms in these equations [Eqs. (38) and (39)].
Recall that the numerators of the steady-state expressions, Eqs. (38) and
(39), contain activity terms for intermediate species on the “other side” of
the rds, i.e., a I 3  and a I2

, respectively. It was found, however, in these
simulations that the values for these activities, whether calculated by an
approximation or ignored, had little effect on the ultimate potential de-
pendence calculated by the steady-state expressions [Eqs. (38) and (39)].
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Figure 5 shows simulated polarization curves [by Eq. (40)] that
demonstrate the effect of varying the relative magnitudes of forward and
reverse rate constants of the non-rds reaction steps with respect to those
for the rds. For the curves in Fig. 5(a), the following values are set:

 = k– 2  = 1 × 10– 6  (rds) and k1  = k– 3  = 1 × 10– 3  (where these rate con-
stants are for the “intermediate-forming” directions of non-rds reaction
steps). k– 1  and k3  are varied, but remain equal to one another owing to the
equality of Eq. (41). The result is that the predicted Tafel plots have longer
mechanistically significant regions (i.e., of slope |39| mV dec– 1 ) with an
increasing ratio of the rate constants of the “intermediate-consuming” rds
steps, either k– 1 /k2  or k3 /k– 2  for the respective cathodic and anodic Tafel
branches (as for Fig. 4). The plots all become superimposed at higher
overpotential, having common slopes of |118| mV dec– 1 . This charac-
teristic for these simulated curves arises from the fact that the sums of
k2  · k1  and k– 2  · k– 3  for cathodic and anodic branches, respectively, have
been set constant in this simulation.

In Fig. 5(b) the rds and [in contrast to the simulated curves in Fig.
5(a)] intermediate-consuming reaction directions of the non-rds steps are
set with k2  = k– 2  = 1 × 10– 6  and k– 1  = k3 = 1 × 10– 4 . In this case, the rate
constants of both intermediate-forming (non-rds) reaction steps vary. It is
seen in Fig. 5(b) that all simulated curves have the same lengths of
mechanistically significant slope [defined by the ratios,  or
k3 /k– 2 [10– 2 ] which are set constant], but that the curves are shifted
vertically along the log i axis as k2  · k1  or k– 2 · k– 3  vary.

Essentially, it is the changing (with overpotential) of the effective
concentration of the intermediates involved in the rds that gives rise to a
decrease in the usual one-electron Tafel slope of |118| mV dec– 1 . Practi-
cally speaking, however, the potential dependence of these effective
concentrations would be restricted to the solubility limits for these inter-
mediate species or, in the case of surface reactions involving adsorbed
intermediates, to saturation (or complete coverage) conditions, which in
both cases would result in prior electron-transfer reactions becoming
potential independent and invisible to scrutiny by polarization experi-
ments. This fact imposes a further restriction on the appropriate region
from which mechanistically significant Tafel slopes should be evaluated.
As a further consideration, it must also be assumed that during experimen-
tal measurements, the activities of species that define the reversible
potential of the reaction (i.e., via the Nernst equation [Eq. (13)]) do not
change significantly; otherwise, unless this change could be determined
and E r corrected, the overpotential values would be incorrect.

k2

k– 1 /k2
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Figure 5. Simulated Tafel plots [from Eq. (40)] for a reaction
involving three consecutive electron-transfer steps, showing
the effect of variation of rate constants for (a) intermediate-
consuming and (b) intermediate-creating nonrds steps. (a)
Rate constants: k2  = k– 2  = 10– 6  cm s– 1  (i.e., the rds) and k1  =
k– 3  = 10– 3  cm s– 1  for k3  = k– 1  values of 10– 4  (solid), 10– 3

(dots), 10– 2  (dot-dash), and 10– 1  (dash) cm s– 1 . (b) Rate
constants: k2  = k– 2  = 1 × 10– 6  cm s– 1  (i.e., the rds) and k– 1  =
k3 = 1 × 10– 4  cm s– 1  for k1  = k– 3 values of 10– 3  (solid), 10– 4

(dots), 10– 5  (dot-dash), and 10– 6  (dash) cm s– 1 .
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Clearly, without prior knowledge of the mechanism of a given reac-
tion, it is difficult to identify mechanistically significant Tafel slopes when
the rate-determining step does not have rate constants at least 100 times
smaller than those of all other reaction steps.

V. MODIFICATIONS TO THE CONSECUTIVE
ELECTROCHEMICAL REACTION

1. General Remarks

The rate expression for the multistep consecutive electron-transfer reac-
tion of Scheme 1 [i.e., Eq. (31)] is able to relate complex consecutive
electron-transfer reaction mechanisms to experimental potential vs. loga-
rithmic current-density relations. When β is assumed to be 1/2, the Tafel
slopes (1/αƒ) predicted by this relation can only have values less than or
equal to 118 mV dec– 1  (at 25 °C) for electron-transfer limited reactions,
since electrons transferred in non-rds steps will add integers (to β) in the
expected α values and therefore decrease the Tafel slope below 118 mV
dec– 1 . For instance, the usual cathodic Tafel slope of 118 mV dec– 1  for a
one- electron transfer over a symmetric barrier is decreased to 39 mV dec– 1

for one preceding quasi-equilibrium electron transfer and to 24 mV dec– 1

for two, etc., and the anodic Tafel slopes are similarly decreased for one
and two “following” (where the reaction steps are still written as reduc-
tions, as in Scheme 1) electron transfers, respectively. It should be noted
that the Tafel slopes that are determined by α values involving γ + β differ
substantially and discontinuously from the value for α = β 1/2, and
therefore should be easily distinguishable.

The effect of the occurrence, within a generalized reaction scheme,
of chemical steps, multielectron transfers, or an rds that is a dissociation
or combination step (i.e., one that involves a change of stoichiometric
coefficients) will be examined as well as mechanisms where the rds (and
hence the overall reaction) has a stoichiometric number greater than 1.
This latter case is more complicated than these others and, since it is the
only mechanistic situationf in a consecutive reaction scheme that can give

f A situation of a different kind that can lead to b values > 118 mV dec– 1 arises when electron
transfer takes place across a barrier-layer oxide film (e.g., of TiO2  or ZrO2 ). Then β operates
only on the fraction of the metal solution p.d. that arises across the double layer on the
solution side of the oxide film.
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rise to Tafel slopes greater than 118 mV dec– 1  (under a specific set of
circumstances), it will be discussed separately in a section that follows.

2. Chemical Steps

If a step within the general mechanism does not involve an electron
transfer, its involvement in determining the potential dependence of the
rate will depend on whether it occurs as the rds. If some step, c, limited
by the rds, is a chemical step, its quasi-equilibrium expression will be

(42)

which when rearranged gives

(43)

This term is obviously independent of potential and so its effect is only a
trivial one, which is that Kc  is multiplied in among all the other quasi-equi-
librium constants (ΠKis). Note that reaction order in Eq. (42) could be >1.

However, if the rds itself is a chemical step, the transition state does
not involve electron transfer and hence β plays no part in the net rate, i.e.

(44)

In this case, the potential dependence of the net rate manifests itself
indirectly through that of the surface activities of the intermediates, Ir d s

and Ir d s + 1 , if their prior formation involves electron-transfer reactions. This
situation is described by the transfer coefficients developed previously
[Eqs. (33a) and (33b)], where zr d s  in these would be 0.

3. Multielectron Transfers

A multielectron transfer in one step (unlikely as these are considered to
be), if rate-limiting, would modify the transfer coefficients [Eqs. (33a) and
(33b)] by multiplying the potential dependence of the rds [the β parts of
Eqs. (33a) and (33b)] by the number of electrons involved in this transfer,
zr d s . If it does not arise during the rds, such a multielectron-transfer step
would simply contribute to (and disappear into) γp  or γ ƒ.
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4. Combination or Dissociation as a Rate-Limiting Step

When an electrochemical combination or dissociation step is rate-limiting
for a given reaction sequence, a unique potential dependence of the
non-rds steps arises owing to the difference in stoichiometric coefficientsg

between reactant and product of the rds. The simplest examples that can
be envisaged are (1) where ω equivalents of some reactant combine to
form a single product in an electrochemical reduction reaction (e.g., 2H+

+ 2e– → H2 ) or (2) for the case where a single reactant splits into ω
equivalents of some product (e.g., Cl2 + 2e– → 2Cl– ).

Considering a hypothetical reaction in which a dissociation (in the
cathodic reduction direction) step is rate-limiting, the equation for the net
rate for a reaction, the rds of which involves the dissociation of 1 into ω
entities, would be written as

(45)

Note that the change in stoichiometric coefficients in this rate-limiting step
(i.e., from 1 to ω) affects only the potential dependence of the surface
activity of the product, Ir d s + 1 , which, in fact, is raised to the ωt h  power in
Eq. (45). If the potential dependence of the activities of the intermediates
is expanded by the usual quasi-equilibrium approach [Eqs. (27)–(31)], the
net rate equation for a reaction, the rds of which is a dissociation step, is

(46)

g For clarification, note that the term stoichiometric coefficients, ω, refers to the numbers of
reactant and product equivalents involved in a given step while the stoichiometric number,
v, is the number of repetitions or acts of a given reaction step necessary to achieve an overall
multistep reaction. Although a relative change of ω in a step usually necessitates that all
following steps (in the case of a dissociation) occur v = ω times, the distinction between ω
and v should be emphasized since a mechanism having a rds with a stoichiometric number
greater than 1 has a unique effect on the theoretical transfer coefficients, as will be discussed
in Section VI.
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and

and

where γE – P  and γE – F
h  are the numbers of electrons transferred in elementary

electron-transfer steps prior to and following the rds, respectively, and
those following affect only the reverse, oxidation rate term.

It is at this point that we depart from the terminology used by Bockris
and Reddy (Ref. 3, p. 1007) in their often-cited and generalized discussion
of transfer coefficients [Eqs. (1a) and (1b)] (i.e., γp  and γƒ ) and introduce
the related terms γE – P  and γE – F . The difference between these sets of
electron-number parameters is that in the latter, an electron transferred in
a step that occurs, say, v times (i.e., it has a stoichiometric number v greater
than 1) is counted only once and not the v times it actually has to occur
for one turnover of the overall reaction. This added “complication” of the
electron accounting has the advantage of showing more clearly how
stoichiometric coefficients and numbers enter into experimentally obtain-
able transfer coefficients and hence can demonstrate one of the links
between mechanism and experiment.

The transfer coefficients for an rds that is a dissocation (reductive or
chemical) step are therefore

(47a)

(47b)

while those for an rds that is a combination (reductive or chemical) step
are

(48a)

(48b)

h The subscript terminology means: γ elementary-following, previous, and stoichiometric as
will be seen later. The seemingly minor difference between the terminologies has impor-
tance for later conclusions. Further, an “elementary” step is a reaction step that involves a
single transition state.
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VI. TAFEL SLOPES GREATER THAN 118 mV dec�1

1. Introduction

The theoretical transfer coefficients derived from the hypothetical reaction
mechanisms considered so far, Eqs. (33a) and (33b), (47a) and (47b), and
(48a) and (48b), can predict, for an assumed value of β = 1/2 (at room
temperature), Tafel slopes that are either less than 118 mV dec–1 or infinite
(where this latter would correspond to the case of a chemical rds with no
prior quasi-equilibrium electron-transfer steps). They cannot, however,
explain the Tafel slopes significantly greater than 118 mV dec–1 that are
sometimes observed.

Tafel slopes that are not infinite but are substantially greater than 118
mV dec–1 can be explained by: (1) an arbitrary and trivial assumption that
β < 1/2; (2) the effect (footnote f) of barrier-layer films such as oxide on
ZrO2 or TiO242–44 (but this is usually only in the case of anodic reactions,
particularly those involving valve-metal barrier oxide films); and (3) an
electrochemical reaction mechanism where the rds is a chemical step and
has a stoichiometric number, v, greater than 2 [refer to Eq. (1)]. This latter
possibility will be developed in the next section in terms of a general
multistep reaction mechanism.

2. Stoichiometric Number

The stoichiometric number, v, of a given reaction step is defined as
the number of times that step must occur for one turnover of the whole
reaction. The overall stoichiometric number of a reaction is specifically
the number of times the rds has to occur. This is an important quantity with
respect to mechanism elucidation and was originally defined by Horiuti
for the hydrogen reaction.45,46 According to the stoichiometric number
concept of Horiuti,45 vi for each reaction step will multiply the Gibbs
energy change (or as it is also called, its electrochemical affinity) for that
step, ∆gi, and the affinity, ∆G, for the overall reaction is

(49)

In this derivation, since it is assumed that a single step, the rds, limits
the rate of the overall reaction, all other steps must be in quasi-equilib-
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rium, which means that there are no Gibbs energy changes associated with
them. Thus the overall Gibbs energy change (∆ G) for the reaction is
defined by that of the rds. Therefore the stoichiometric number of the rds,
v rds, or what has come to be termed simply v, may be determined from
Eq. (50):

(50)

Equation (50) forms the basis upon which v can be evaluated (e.g. (1) by
the radioactive tracer method46–48 to evaluate simultaneously υ→ and
υ← ), (2) by comparing i values at appropriate potentials for different
reactant activities; (3) coupling information from high and low overpoten-
tial regions of steady-state polarization curves49–51 (extrapolated i0 and
charge-transfer resistance, RCT, respectively); (4) or by back-reaction
correction analysis.52 The first two methods involve determination of v at
any single potential while the latter two procedures must assume that the
same mechanism (and hence v) applies at different potentials (at which
individual measurements are required) and that the reverse reaction occurs
by the same path and has the same transition state and thus rate-determin-
ing step [for both forward (cathodic) and reverse reactions].

The third method listed above is based upon the relation

(51)

initially developed by Parsons,51 and which was originally deduced by
Horiuti45 for the special case of the hydrogen evolution reaction. This
approach to the determination of v relies on the assumption that the same
reaction mechanism prevails at both low and high overpotentials from
which RCT and i0 are measured, respectively. Equation (51) is generally
considered to be correct, but it should also be mentioned that aspects
Parsons’ development have been questioned as involving the fortuitous
cancellation of some ill-defined (Ref. 21, p. 262) and invalid53 terms.

The stoichiometric number concept does not, however, demonstrate
in a simple way how v becomes incorporated into and affects the theoreti-
cal rate expressions that describe polarization behavior for multistep
reactions that involve a stoichiometric number. This has been one of the
problems in understanding its significance. In the theoretical evaluation
of transfer coefficients based upon the quasi-equilibrium treatment of
Bockris and Reddy (B&R) in their monograph (Ref. 3, p. 1005), v forms
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a parameter of the experimentally accessible transfer coefficients [as
shown earlier; see Eqs. (1a) and (1b)].

At first glance, the non-rds terms of these transfer coefficients [i.e.,
the first on the lhs of Eqs. (1a) and (1b)] seem to be able to give fractional
contributions (i.e., 0 to 1) for both anodic and cathodic transfer coefficients
simultaneously due to v in these terms [e.g., if zr d s  = 0 (hence for a
chemical step)] and v> γp  and γƒ . This, as we will demonstrate, is in fact
not possible. In order to prove this and to establish the appropriate use of
these transfer coefficients, they will be derived here for the two general
types of reaction mechanism that require use of a stoichoimetric number
(Schemes 2 and 3 below).

3. Reaction Mechanisms Involving a Stoichiometric Number
Greater than 1

In the closed reaction sequences considered in this work, stoichiometric
numbers greater than 1 can arise only in order to satisfy a material balance
for a reaction step preceding or following the rds that creates or consumes
v intermediates in a single transition state.

The first of these cases, represented by Scheme 2, is the situation
where some facile and therefore nonrate-limiting dissociation step (either
reductive or chemical) occurs before the rds and produces, from a unit

Scheme 2. Consecutive electrochemical reaction scheme involving a dissociation step
occurring before the rds
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reactant, v identical intermediate equivalents; this is step i in Scheme 2.
These v intermediates must react in respective subsequent steps, including
the rds, v times, corresponding to a stoichiometric number > 1 for the
reaction.

In the second case (Scheme 3), some nonrate-limiting step occurring
after the rds in the reaction sequence combines v intermediate equivalents
into a unit product Ij+1 in a reduction or chemical step and this is step j in
Scheme 3. The v equivalents that must react and combine in step j require
that all prior steps, including the rds, be repeated v times to supply this
step with its reagent (the intermediate formed in the previous step).

If it is assumed that the rate of the overall reaction is controlled by
the transition state of the rds, then the net rate expression will be

(52)

The potential-dependent exponential term is also independent of v.
This may be explained if we recall that the effect of an applied overpoten-
tial in electrochemical kinetics is to modify the relative energies of reactant
and product curves through a change in the Fermi level energy and, by
extension, that of the transition state for the elementary (recall footnote h)
reaction step. The potential dependence of the energy of the transition state
is sensitive to the number of electrons transferred in it, but not the v times
that it must occur per turnover of the overall reaction; thus the exponential
in Eq. (52) is independent of v.

Scheme 3. Consecutive electrochemical reac-
tion scheme involving a combination step occur-
ring after the rds
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4. Prior Dissociation, Forward Reaction Direction

We consider Scheme 2, that is, a prior dissociation giving an rds with a
stoichiometric number v. The surface activities of the intermediate species
participating in the rds will again be potential dependent and, taking into
consideration the usual quasi-equilibrium assumptions, can be evaluated,
as has been shown earlier (Section IV.3). In order to see clearly the
development of the potential dependence of the activities or coverages of
the rds intermediates, it is useful to split the reaction steps into three groups
and to focus on the dissociation step and rds separately. For the prior
dissociation scheme, the groups (shown in Scheme 2) are Group I, up to
step i, the dissociation step; Group II, from the dissociation step to the rds;
and Group III, all steps following the rds (which are important only when
the reverse reaction is considered). The dissociation reaction step can be
thought of as that step that gives rise to the necessity that subsequent steps
occur more than once (a reductive combination step can be conceived in
this way as well). We will call such a step the stoichiometry-determining
step. This separation of the reaction steps helps to identify clearly and
specifically where and how v becomes a part of the potential dependence
of the reaction rate and ultimately the transfer coefficients.

Thus to expand the potential dependence of the surface activity of the
reactant (which is an intermediate) of the rds, and ultimately that of the
forward, reductive reaction direction, we again build up progressively
from the initial reactants. The potential dependence of Group I reaction
steps would be exactly that which was evaluated previously (Section IV)
for the simple consecutive reaction sequence, since there is no change in
molecularity between [or stoichiometric coefficients (see footnote g) of]
reactant and product for any of these reaction steps. Thus the potential
dependence of the activity of the reactant of the dissociation step Ii is given
by Eq. (29) (but where “i – 1” is used as the limit for the summation and
product in that equation), i.e.

(53)

Assuming the quasi-equilibrium approximation, the surface activity
of the product of the dissociation step (step i) is defined by equating the
rates of the forward and reverse directions of that reaction step:
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which upon rearrangement gives

(54)

(55)

Substituting for the activity of Ii [Eq. (53)] (i.e., for steps up to the
dissociation in step i), and taking the vth root gives Eq. (56)

(56)

To continue, we now consider Group II reaction steps (i.e., those
between the dissociation step and the rds). The quasi-equilibrium expres-
sion for the first of these, step i + 1, is

(57)

When this relation is rearranged to solve for the surface activity of the
product of this step, the stoichiometric number will cancel. Although this
step and in fact all others in Group II individually occur v times, their
potential dependence evidently does not involve v, and hence the expres-
sion for the Group II reaction steps, steps i + 1 through rds – 1, will
[analogously to Eq. (29)] be given by

(58)

Then, if we substitute for the surface activity of Ii+1 from Eq. (56), Eq. (59)
is the result:

(59)

which is the potential dependence of activities of all intermediates affect-
ing the rate of the forward, reductive, direction of the reaction.

If we identify where v arises in Eq. (59), it is clear that Group I steps
(see Scheme 2) and the dissociation step contribute in a power of 1/v t h a t
of Group II steps [i.e., those between the dissociation and the rds (steps
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i + 1 to rds–1)] and thus parts of both the preexponential and the expo-
nential (potential-dependent) terms in Eq. (59) are dependent on v while
others are independent of v.

5. Prior Dissociation, Reverse Reaction Direction

Considering now the reverse, anodic direction of the same reaction,
Scheme 2, the surface-region activity of the cathodic product of the rds,
I rds+1 (which is now the reactant for the reverse anodic reaction) will be
potential dependent if it is an intermediate. The Group III steps, now all
those following the rds, are all repeated v times,i but when their quasi-
equilibrium expressions are derived and the surface activity of Irds+1 is built
up, they will all be independent of v, just as was the case for Group II
reaction steps in the forward direction [Eq. (58) and the related text]. Thus
v has no bearing on the potential dependence of these steps (steps rds + 1
to n ) and hence the expression for the activity of the reaction intermediate
I rds+1 is simply [see Eq. (29)]

(60)

When Eqs. (59) and (60) are substituted into the overall [Eq. (54)],
the result is

(61)

iIt is assumed that the v intermediates formed in the preceding dissociation do not recombine
in the same reaction.
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which is the net rate equation for a reaction whose rds has a stoichiometric
number of v arising on account of a previous dissociation step.

The resulting transfer coefficients are

(62a)

(62b)

where γE–F , γE–P, and γE–S have replaced the summation terms in the
exponentials of Eq. (61) and are the total numbers of electrons transferred
in elementary (footnote g) electron-transfer steps following the rds, prior
to the rds, and those up to and including the stoichiometry-determining
step in the case of a previous dissociation. Note that the number of
elementary electrons transferred between the dissociation step and the rds
is given by γE–P – γE–S in Eq. (61) and hence αc [Eq. (62a)], but that the
actual number of electrons transferred in these steps in v times that,
namely, v (γE–P – γE–S ). The added coefficient, γE–S, is used in order to
maintain links to both the familiar terminology of B&R [Eqs. (1a) and
(1b)] and the stoichiometry-determining step. These points, it is hoped,
will reinforce the connection between mechanistic situations and these
kinetic derivations.

6. Following Combination Step

The second case, represented by Scheme 3, involves a combination
(chemical or reductive) step following the rds (e.g., in step j), and will also
give rise to a stoichiometric number, v, for the rds. The transfer coefficients
for this case, following a derivation similar to that given above, are

(63a)

(63b)

where in this case γE–S is the number of electrons transferred in elementary
steps after the stoichiometry-determining step for a combination step
following (in the forward reaction direction) the rds.
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7. Electron Number Coefficients

The preceding/following electron-number coefficients (γ) used here are
slightly different and less general than those employed by B&R (namely,
γp and γƒ) in their transfer coefficient analysis [Eq. (1)]. They are, however,
related and for a preceding dissociation, the expressions that link them are

(64a)

(64b)

Substitution of these γp and γf expressions into the B&R transfer coeffi-
cients [Eq. (1)] immediately demonstrates the equivalence of the deriva-
tions. Although, practically speaking, it is difficult to imagine examples
where the stoichiometry-determining step would be far separated from the
rds, we believe that the expanded transfer coefficients derived here are
expressed in a fashion that is more directly relevant to their use in
determining mechanism.

The present notation, while requiring a distinction between combina-
tion and dissociation cases, shows clearly and specifically how the type of
mechanism involved determines the transfer coefficients. In addition,
substituting v= 1 into either of the above coefficients [Eq. (62) or (63)]
reduces them to those for a simple consecutive electrochemical reaction,
Eqs. (33a) and (33b).

One important point of clarification of the B&R relations has arisen
from the treatment here. If we consider a reaction scheme where a
stoichiometric number arises as a result of a preceding dissociation, the
non-rds contribution to the anodic transfer coefficient for such a reaction
would be γ /v [Eq. (1a)] in B&R’s terminology, but γf E–F [Eq. (62b)]
according to the terminology used here. It would seem from a first glance
at the B&R transfer coefficients that the non-rds steps following the rds
could contribute a fraction to αa if v > γf. The non-rds part of the anodic
transfer coefficient from the present derivation clearly demonstrates that
the contribution of γE–F to αa can only be of whole numbers (i.e., not
fractional) since only integral numbers of electrons can be transferred in
electrochemical steps. In addition, the non-rds contribution to the cathodic

iIt is assumed that the v intermediates formed in the preceding dissociation do not recombine
in the same reaction.
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transfer coefficients for, say, the prior dissociation example [Eq. (62a)]
will only be fractional if v > γE–S and γE–P – γE–S is 0.

Thus, the conclusion is that for a preceding dissociation or a following
combination, either of the non-rds terms, γp /v or γf /v, can be fractional,
but the other must be a whole number. This is an important point that is
not otherwise apparent. In fact, we have found5 that just such an error has
been made in an analysis of the mechanism of the reaction of aluminum
electroplating from a hydride bath. This error was found to be due entirely
to the mistaken assumption that both anodic and cathodic non-rds terms
(i.e., γp /v and γ f /v ), of B&R’s theoretical transfer coefficients [Eqs. (1a)
and (1b)] could simultaneously give fractional contributions and so ac-
count for the transfer coefficients that had been derived from experimental
Tafel plots.

VII. APPLICATION TO THE PROCESSES OF ALUMINUM
DEPOSITION AND DISSOLUTION

The thoughts developed here on the link between reaction mechanism
and experimental transfer coefficients have been used to assign5 a mecha-
nism for Al electrodeposition and dissolution reactions from a thf-hydride
bath. An analysis of results from that work has served to clarify the
confusing literature that has also given attention to the kinetics and
mechanism of Al deposition from a hydride bath.6–9

The hydride bath for Al deposition is a complex mixture of chloro-
hydridoaluminates. The aluminate species that are present in the hydride
baths result from ligand mixing of the components, AlCl3 and LiAlH4, in
thf. The distribution of hydridochloroaluminate species formed in this
reaction depends on the molar ratio of AlCl –

3 to AlH4 ions introduced into
the donor etheric solvent. Two mechanistically significant compositional
regimes may be identified: Cl–-rich, where AlCl3 is in greater proportion
than LiAlH –

4, and, conversely, H–-rich, where AlH4 is in excess.
In the Cl–-rich bath type, experimental transfer coefficients were αc =

αa 0.5 ± 0.05, while in the H–-rich baths the values were αc 0.3 ± 0.05
and αa 0.65 ± 0.05. The stoichiometric number for the process was
calculated by coupling the charge-transfer resistance with the extrapolated
exchange current density from low and high overpotential regions, respec-
tively,5 and by back-reaction correction.5–7 It was determined to be 3 by
both methods and for all bath compositions. It has been suggested6,7 that



Multistep Electrochemical Reaction Mechanisms 295

the transfer coefficients in the H– -rich baths corresponded to a mechanism
in which the rds was a chemical step having a stoichiometric number of 3
preceded by one quasi-equilibrium electron transfer step and followed by
two (which govern the anodic reaction). This information, referring to Eq.
(1), would give 1/3 + 0 and 2/3 + 0 for α c and α a , respectively, closely
corresponding to the experimental values given above.

At first this would appear to be a reasonable conclusion, but upon
reevaluation of how a stoichiometric number becomes incorporated into
the transfer coefficients, this mechanism cannot be correct since it has been
shown in this review (Section VI) that it is impossible for both non-rds
electron-number coefficients to be fractional. So, although one of those
could be fractional, giving, say, αc 1/3, the other non-rds contribution
would have to be a whole number integer. With this in mind, it is evident
that the experimentally derived transfer coefficients for the Al reaction,
given that they are all near to about 1/2 for both bath types, must describe
the transition state of the rds.

An interpretation of reaction mechanisms from Tafel slopes depends
on the potential dependence of the surface activity or coverage, θi , of
adsorbed reaction intermediates combined with that of any coupled electron-
transfer step through its β. For cases where the θis tend to 1 and thence
become potential independent, the Tafel b value can be ~118 mV (i.e., β
0.5), a value that can also apply to an initial one-electron charge transfer
not involving an intermediate, as we have considered in Section IV.5. It is
therefore possible that non-rds electron-transfer reactions could be in-
volved in a given mechanism, but that they are at saturation conditions in
the overpotential region in which the Tafel slopes for the reaction are
derived. This would, of course, give an erroneous mechanism assignment
if such a saturation condition could not be otherwise identified. When
situations such as this may apply (as is possible with the Al deposition and
dissolution reactions involving three electrons), further information is
desirable (e.g., from impedance spectroscopy), especially when a pseudo-
capacitance35 (related to dθ/ dη ) may be involved. It was found pre-
viously5 that pseudocapacitances associated with Al reaction
intermediates were absent and this indicates that Al deposition and disso-
lution involves neither prior nor following (for the reverse reaction direc-
tion) electron transfers. This conclusion confirmed and validated the Tafel
slope measurements and resulting mechanistic analyses that would other-
wise have required taking into account an electrosorption isotherm for an
adsorbed intermediate.



Mark C. Lefebvre296

It might be thought that the mechanism for Al deposition would
involve three consecutive one-electron transfer steps, which conceptually
would be the most obvious pathway; then cathodic αs having values of
ca. 0.5 ( β ), 1.5 (1 + β ), or 2.5 (2 + β ), would be expected with the
corresponding pseudo-capacitances arising for Al(+I) and Al(+II) in-
terediate species in the second or third steps, respectively. In addition, v
values would be one for each of the three steps if they were individually
rate determining. None of these expectations is consistent with the experi-
mental kinetic data.

The facts that (1) there were no electron-transfer steps prior to or
following (for the reverse anodic reaction direction) the rate-determining
step; (2) α values were statistically near 1/2 in all cases; and (3) v was
determined to be 3 for all bath compositions, suggest that the Al deposition
reaction must be represented as

(65a)

(65b)

which is a reaction involving a thrice occurring electron transfer as rds
followed by a facile chemical disproportionation of three Al(+II) interme-
diates. The disproportionation process [reaction Eq. (65b)] must itself be
complex and would hardly be expected to take place in one step. However,
since it supposedly follows step (65a), with the latter being rate-limiting,
its kinetics and mechanism are veiled from electrochemical observation.
At sufficiently high negative potentials, the second (chemical) step would
eventually lead to a limiting current, as also would this step in the reverse
direction at large anodic polarizations since it is independent of potential.

The variation of the transfer coefficients for the Al deposition reaction
from the hydride bath from αc = αa = 1/2 in Cl–-rich baths to αc = 1/3 and
αa = 2/3 in H–-rich baths has been explained5 by a change in β between
the different bath types and not a difference of mechanism, as has been
suggested elsewhere.6,7 The change in β has been attributed to the different
chloro hydrido aluminate species that are involved in the electrode process
in the different bath types, where the distribution of these species has been
shown to vary among these bath types,54 by means of NMR measurements.
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VIII. CONCLUSIONS

The measurement of Tafel slopes is an important means for elucidating
electrochemical reaction mechanisms, and the keys to their analysis are
the resulting transfer coefficients. The ability to gain insight into a mecha-
nism from the experimentally obtained αs arises from the potential de-
pendence of the activities of reaction intermediates formed by
electron-transfer steps before a rate-determining step (in either reaction
direction).

The theoretical αs of B&R [Eqs. (1a) and (1b)] have been applied in
many investigations of multistep electrochemical reactions. This is largely
due to the straightforward means by which the particulars of reaction
mechanisms (i.e., parameters such as γp , γ f , and v ) contribute to the
experimentally accessible αs. The relationship between experimental αs
and the mechanism parameters is only appropriate, however, if the as-
sumptions upon which the link between them has been established are
indeed valid. The trouble is that these assumptions, which are the basis of
the quasi-equilibrium treatment, impose limits upon the ability to deduce
a mechanism from evaluation of experimental αs. During the course of
recent efforts5 to unravel the confusing literature surrounding the electro-
chemical kinetic work on the aluminum deposition reaction from an
etheric hydride bath, the elements of a number of these underlying
assumptions have been carefully considered. It is felt that this reexamina-
tion would be useful to others attempting to analyze electrochemical
mechanisms through polarization measurements on multistep reactions.

The quasi-equilibrium approximation relies on the assumption that
there is a single rate-determining step, the forward and reverse rate
constants of which are at least 100 times smaller than those of all other
reaction steps in the kinetic scheme. It is then assumed that all steps other
than the rds are always at equilibrium and hence the forward and reverse
reaction rates of each non-rds step may be equated. This gives simple
potential relations describing the varying activity of reaction intermediates
in terms of the stable solution species (of known and potential-inde-
pendent activity) that are the initial reactants or final products of the
reaction. The variation of the activities of reaction intermediates is,
however, restricted by either the hypothetical solubility limit of these
species or, in the case of surface-confined reactions and adsorbed inter-
mediates, the availability of surface sites. In both these cases, saturation
or complete coverage conditions would result in a loss of the expected
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zβ
A single electrochemical reaction step

z(1 – β )

Multiple electrochemical reaction steps

Multiple electrons trans- z rds greater than 1
ferred in rds:
Chemical step is rds: zrds equal 0

Change of stoichiometric coefficients within rds when:
rds is a dissociation
rds is a combination

Stoichiometric number of rds, v, greater than 1 arising from:
A prior dissociation
or a following combination

potential dependence for non-rds electron transfers. This would require
the use of other complementary experimental methods to ascertain the
existence of non-rds electron transfers in a particular reaction.

It has been shown that the relative magnitudes of rate constants for
the rds and those for non-rds reaction steps can affect the appearance of
Tafel plots and could result in misleadingly high Tafel slope values or
unexpected inflection points in Tafel plots.

In this chapter, transfer coefficients have been developed that describe
a number of mechanistic possibilities (Section V). The stoichiometric
number of a reaction emerges as an important parameter that may be
determined by a number of methods. The only reason an electrochemical
reaction pathway would show v values > 1 would be to satisfy the material
balance for either a reductive (or chemical) dissociation step occurring
before a rds as per Scheme 2 or a reductive (or chemical) combination step
occurring after a rds as per Scheme 3 (recall that in these schemes reaction
steps are written as a series of consecutive reductions, among which may
be a chemical step). By considering the types of reaction steps that can
give rise to v > 1 within a generalized scheme, an important restriction has

Table 1
Summary of Derived Transfer Coefficients

Mechanism details α a α c
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been demonstrated for the values that the non-rds terms within the
theoretical transfer coefficients can take; that is, γp /v or γ ƒ/v  can be
fractional, but if one is fractional, the other must be a whole number. We
have introduced further mechanistic parameters for the theoretical transfer
coefficients that demonstrate this point and these are collected in Table 1.
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Electro-Osmotic Dewatering of Clays, Soils,
and Suspensions

Ashok K. Vijh
Institut de recherche d’Hydro-Québec,

Varennes, Québec, Canada J3X 1S1

I. INTRODUCTION

There is a large range of industries that produce suspensions of fine
particles in water: the disposal of very large quantities of such dilute
suspensions requires procedures for concentrating and consolidating them
to produce sediments of “spadeable” consistency. Mechanical methods of
removing water from concentrated suspensions or sludges are energeti-
cally inefficient and inadequate because hydraulic flow falls off drastically
with decreasing pore size so that after the initial stages of dewatering,
subsequent dewatering becomes progressively harder to achieve. Thus,
energetically efficient and cost-effective handling and dewatering of
“fines” is a major industrial problem.1–6 This chapter reviews electro-
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chemical approaches that provide promising avenues to solutions of this
problem. Although an attempt is made to outline industrial applications,
the main emphasis is on the conceptual theoretical basis of this method-
ology.

The fundamental electrochemical approach of interest in this context
is the electro-osmotic dewatering (EOD) of clays, 7–12 the phenomenology
of which is described in the next section. It is pertinent to indicate here,
however, the breadth of possible applications of EOD in solving the
problems of industries and environmental degradation.1–2

There are very large quantities of “fines” produced by many metal-
lurgical and mineral processes: treatment of ores, tailings, and extracted
metals; clay and sand washing in diamond mining; phosphate extraction;
brown coal and peat dewatering; oil sands treatment; fly ash disposal; and
electroplating and metal finishing.1–6 All of these yield to dewatering by
EOD.

In the chemical industry, EOD can find applications in industries
connected with paints, pigments, and pharmaceuticals; textiles; paper-
making–pulp products and residues. In the food industry, an enormous
range of EOD processes can be used, as may be seen in most issues of the
journal Drying Technology. Perhaps the largest potential of EOD is in
environmental protection: treatment of agricultural and animal wastes,
sewage, water purification residues, radioactive and hazardous wastes, and
dredged materials. Also, there are many electrochemical and electrical
processes conceptually related to EOD or utilizing EOD as one of their
components that are being commercially developed for the removal of
contaminants from soils or from toxic solid waste dumps: the attractive-
ness of these processes lies in the fact that they can provide in situ soil
decontamination at a reasonable cost.

An important geotechnical application of EOD is in the stabilization
of soils in areas and locations where mud slides, wet soil slippage,
quicksand, etc. can cause safety hazards: such catastrophes become pos-
sible after prolonged rains and floods, particularly in areas where mine
residues were dumped (in the years past) to create artificial land for
buildings, etc. Such a dangerous landslide occurred, for example, in
St.-Jean-de-Vienney, near the city of Jonquière in the province of Quebec,
Canada, some years ago, with terrible loss of life and property. These
landslides are caused by an excess of water in the fine soil capillaries,
making it behave like a sludge; EOD can provide a means to dewater very
large tracts of soil in an in situ operation.



Electro-Osmotic Dewatering of Clays, Soils, and Suspensions 303

II. AN OUTLINE OF ELECTRO-OSMOTIC DEWATERING

Mechanical dewatering methods based on gravitational settling, filtration,
centrifugation, or hydraulic flow, achieved by applied pressure or vacuum
techniques, become ineffective in dewatering suspensions of particles
smaller than approximately 10 µm in diameter. If the water is initially
removed by mechanical methods, the particles move closer together, thus
decreasing the size of pores through which the water must flow and
drastically diminishing the rate of water removal9; electro-osmotic de-
watering becomes the ideal method for the further removal of water
trapped in the rather compacted fine clays because its mechanism is
based on the electrostatic effects operating in the electrochemical double
layers formed at the clay particle/water (actually, very dilute electrolyte)
interfaces in these wet clays.

EOD is carried out by applying an electric field between two elec-
trodes submerged in wet clay, using a voltage imposed from an external
power supply.9–12 One may conduct EOD either under continuous dc12 or
with periodic power interruption,8 when a dc power supply is used to drive
the EOD. Of particular interest is combined field dewatering in which
some combination of applied external pressure and EOD is used to remove
water from a sludge or a comparable matrix of water trapped in colloidal
suspensions. A schematic representation of EOD, with and without ap-
plied pressure, is shown in Fig. 1 (after Yoshida12).

Figure 1. A schematic diagram of dewatering of clay by the combined processes of
electro-osmosis and pressure.12
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EOD is based on the electrically induced flow (namely, electro-os-
mosis) of water trapped between the clay particles (Fig. 2). Such elec-
trically induced flow is possible because of the presence of the
electrochemical double layer at the clay/water interface; in this double
layer (Fig. 2), the charges on the clay surface are electrically balanced
by the opposite charges in the water; this water is actually an electrolyte
because of the presence of some salts, hydronium or hydroxyl ions, etc.
The structure and potential gradients of such a double layer are shown
in Fig. 3 by analogy with a metal/electrolyte interface.10

In this situation, the solid clay particles are the immobile phase and
the electro-osmotic flow causes the water to move as a “plug,”10 the entire
velocity gradient being concentrated at the solid surface in a layer that is
the same order of thickness as that of the diffuse double layer (Fig. 3). In
concentrated solutions, the thickness of the diffuse double layer is quite
small (<1 nm) whereas in very dilute solutions (which are indeed repre-
sented by the water in the clays), the diffuse double layer can assume much

Figure 2. A schematic diagram of clay particles with water (electrolyte) trapped
between them. The electrochemical double layer is indicated for each negatively
charged clay particle with positive ions (in water) poised against the negative
charge. 10
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Figure 3. A small portion of the electrochemical double layer at the
clay/water (electrolyte) interface is shown to depict the microscopic struc-
ture and the potential drops involved, by analogy with the metal/electrolyte
interface.10 (Diagram from Conway, Theory and Principles of Electrode
Processes, p. 26, Ronald Press, New York, 1965).

larger values (~10²–10³ nm), depending on the concentration of ions in
the water. The electro-osmotic movement of water between the clay
particles is exactly similar to electro-osmotic flow in a capillary pore13

(Fig. 4): the thin layer of charged fluid (i.e., water containing some ions)
next to the clay particle wall moves like a single ion (hence the analogy
of a plug) under the action of the electric field and in a direction parallel
to it.10 The electrochemical double layer originates from the requirements
of charge neutrality in which the charge on the clay surface must be
balanced against the opposite charge in the water (or any other fluid in a
more general case).13
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Figure 4. A schematic diagram of the electro-osmotic flow of medium (e.g.,
an electrolyte) in a capillary caused by the flow of counter-ions as a “plug,”
under the influence of the applied electric field, E; Ueo is the convective liquid
velocity from electro-osmosis.10,13

III. PHENOMENOLOGICAL EQUATIONS

The methods of irreversible thermodynamics are useful in providing a
quantitative approach to the phenomenon of electro-osmotic dewatering
and its connection to other electrokinetic effects. The main ideas were
developed by Overbeek14 and reviewed by DeGroot15; these ideas were
applied by many workers to a number of problems,16–18 following the
earlier papers of Overbeek and co-workers19,20 on the treatment of elec-
trokinetic phenomena in terms of irreversible thermodynamics. Recently
we have shown23 that this approach can also be applied to EOD, as follows.

Consider the clay or sludge with the trapped water (actually an
electrolyte since it contains dissolved ions) as a sort of porous diaphragm
(Fig. 1). When an electric field or a pressure, or both, are applied across
this diaphragm, dewatering occurs. We examine here the case of simulta-
neous application of pressure and the electrical field.

Nonequilibrium treatment14,18 of EOD under these conditions yields
the following rate equations for the simultaneous transport of matter (i.e.,
water) and electricity (i.e., current), assuming that the diaphragm is
uniform:

(1)

where J and I are, respectively, the total volume flux and electric current
due to both hydrostatic pressure difference, ∆P, and electric potential
difference, ∆V. The coefficients L22, L21, and L12 characterize the hydro-
dynamic and electro-osmotic flows, and streaming current, respectively,
while the conductance of the diaphragm is given by the coefficient L11. If
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L12 = L21

(4)

the relationship between (J)∆V=0 and ∆P is linear, L22 can be obtained from
the slope of the straight line that results from plotting (J)∆V=0 against ∆P,
and the value of L21 can be obtained from the slope of a plot of (J)∆P=0

against ∆V. A linear relationship between (J)∆V=0 and ∆P and between
(J)∆P=0 and ∆V shows that the flow regime is laminar.

Similarly, a plot of (I)∆P=0 against ∆V can give L11, whereas a plot of
(I)∆V=0 against ∆P should give L12. Thus all four coefficients namely, L22,
L21, L11, and L12 can be determined.

Noting that Onsager’s relation is14

one may deduce that the above system is completely described by three
constants (or coefficients): L11, L22, and L12 = L21. As mentioned above,
L11 is the electric conductance of the diaphragm, L22 the hydrodynamic
conductance of the diaphragm, and L21 = L12 are the electrokinetic effects.

The coefficient L21 can be interpreted in the usual way in terms of the
zeta potential as14

(2)

where ε is the dielectric constant of the liquid (water) in the pores, ζ
represents the zeta potential; η is the viscosity of the liquid (water) in
pores, Acs is the effective cross section through the diaphragm, and l is the
geometric distance between the anode and the cathode in the experimental
cell.

If one conducts EOD without the externally applied pressure (i.e.,
∆P = 0), the total volume flux of water J is given by Eq. (1) as

By combining Eqs. (3) and (2) we obtain

(3)

where E is the electric field gradient (∆ V/l, l being the thickness of the
diaphragm).

It should be noted that Eq. (4) is exactly the same as that derived for
electro-osmotic volume flux on the basis of electrocapillary phenomena,
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that is, from kinetic considerations (21). The dimensional analysis of the
various quantities in these equations is given in the Appendix.

1. Components of Current and Flux During Electro-Osmotic
Dewatering with or without Pressure

There is a great deal of confusion surrounding the dewatering efficiency
in terms of the significance of the measured electric current and the related
problem of liters per ampere-hour (or liters per watt-hour at constant
voltage). It has been remarked that “experimental efficiencies translate to
high and obviously untenable amounts of water per ion.”22 The nature of
the current and the flux in terms of its various components has been
recently elucidated,23 as follows.

(i) Electrochemical/Electrical Current

This is the current measured by the ammeter when an electrical field
E drives the EOD. At zero pressure difference, the electrical conductance
of the clay diaphragm is given by the coefficient L11 as

where I is the measured current, E is the applied field gradient across a
diaphragm of length l, and P is the hydrostatic pressure. This current is

water removal in EOD; it is, in fact, incidental (see equations and text on
pp. 216 and 217 of Ref. 10) to EOD and in any practical situation
constitutes only a small fraction of the total current, as pointed out
previously.10

that carried by the ions, which are then discharged at the anode and the
cathode, and is not synonymous with the total current responsible for the

(5)

(ii) Hydrodynamic Flux

This is given by the coefficient L22 as14

(6)

This is the hydrodynamic volume flux at zero applied field, that is, the
fraction of dewatering caused by the applied pressure alone.
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(iii) Electro-osmotic Current

This is the main driving force in the EOD and is given by Eq. (4) as14

(4)

All quantities in Eq. (4) have been defined above. This electro-osmotic
current in the absence of the applied electric field is driven only by the
zeta potentials and is given by the electrokinetic coefficient as [see Eq.
(2)]14

(2)

In order to obtain the electro-osmotic current in the absence of an
applied field [Eq. (2)], one may use two identical inert electrodes (i.e., not
sustaining electrode reactions such as corrosion, or oxidation or redox
reactions), which must be connected to each other externally to complete
the circuit in order to allow the electro-osmotic current, driven by the zeta
potential alone, to occur. Identical electrodes (ideally, gold electrodes but
more practically, inert graphite or stainless steel electrodes) are required
to eliminate (ideally, but more practically to minimize) the galvanic
battery effects and the associated electrode reactions. The total water
removal during combined pressure and electro-osmotic dewatering is thus
given by

total water removal = [electrical + hydrodynamic + electro-osmotic]
components

In other words, the water removal by EOD is given for unit voltage
and pressure difference by

EOD = L11 + L22 + L21 (7)

The total current, at unit voltage and pressure, is given through Eq.

(1) by

I = L11 + L12 (8)

This current is composed of two parts: an electrochemical and an electro-
osmotic part.
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From Eq. (8), it is easy to see the explanation of a persistent puzzle
in the EOD literature that “experimental efficiencies translate to high and
obviously untenable amounts of water per ion”22: the measured current
accounts only for L11, whereas most of the water is removed by L21

(electro-osmosis) and, in the presence of applied hydrostatic pressure, by
L22.

It should be added that L12 represents the streaming current, which is
equal to the electro-osmotic current L21: the streaming current is the
converse of the electro-osmotic current.

2. Connection of Electra-Osmosis to Other Electrokinetic Effects

Although the focus in the electro-dewatering literature is only on the
electro-osmotic dewatering caused by an applied electric field (with or
without applied pressure) as described in the preceding section, it is of
general scientific interest to indicate that Eq. (1) here, and the various
coefficients it contains, provide the conceptual basis for the complete
range of electrokinetic phenomena. We summarize below these cases
following Overbeek, 14 De Groot,15 Mazur and Overbeek,20 Sanfeld,18 and
Van Rysselberghe.24

From the phenomenological Eq. (1) and the Onsager relation, one
may obtain four effects that can be studied experimentally:

1.

(9)

At zero electrical current, one obtains the streaming potential

2. At uniform pressure, we have the electro-osmotic effect

(10)

3. When the flux J is 0, one gets the electro-osmotic pressure

(11)

and
4. At uniform electrical potential, the streaming current appears

(13)

(12)

On application of the Onsager relation, L12 = L21, these four effects
give the connection between the osmotic and the streaming effects:
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(14)

Equation (13), known as Saxen’s relation, has also been established
by applying kinetic considerations, which are, however, only possible if
some simplified model is invoked in which the diaphragm is identified as
equivalent to a capillary of uniform section. The importance of the
thermodynamic approach is that it holds whatever the nature of the
diaphragm or the porous plug.

Although an irreversible thermodynamic approach provides a quan-
titative framework for the EOD phenomenon, it does not elucidate the
mechanistic details of the physical and chemical events that take place in
electro-osmotic dewatering; in other words, it is phenomenological and
not mechanistic in content.

An electrochemical approach based on the considerations of double
layers at the clay-water interface provides a more transparent approach for
understanding the physical and chemical events occurring during electro-
osmotic dewatering; in particular, it shows more clearly how various
parameters (applied voltage, pH profiles, zeta potential, electrode reac-
tions, etc.) known to influence the EOD process come into play. The
framework for the electrochemical interpretation of the EOD phenomenon
is summarized in the next section.

IV. THE ELECTROCHEMICAL APPROACH TO
ELECTRO-OSMOTIC DEWATERING:

HELMHOLTZ�SMOLUCHOWSKI RELATION

The theoretical approach generally used1–12 in electro-osmotic dewater-
ing is an electrochemical one in which the Helmholtz–Smoluchowski
relation is used to relate the electro-osmotic convective liquid velocity
to such parameters as the viscosity and permittivity of the solution, the
zeta potential of the clay surface, and the strength of the applied field.
Also, electrode kinetic effects are taken into account where the data
point to the involvement of electrochemical reactions at the electrodes
during the EOD process.10 In combined pressure–electro-osmotic de-
watering (CPEOD), the effect of pressure is interpreted in an empirical,
ad-hoc manner without any attempt to develop a comprehensive theo-
retical framework that combines the two driving forces, namely, the
pressure and the electric field.12
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(15)

It should be emphasized that EOD is most attractive when the water
is trapped between fine clay particles (i.e., small “pores” or water transport
channels) and cannot be further removed efficiently by the application of
pressure or vacuum, etc. If the ionic concentration of the trapped water is
low, the thickness of the electrochemical double layer10,13 can become
comparable to or even exceed the pore size, thus requiring corrections to
the zeta potential approach based on the simple Helmholtz–
Smoluchowski equation; such corrections cannot, however, be carried out
accurately despite many attempts.14

Quantitatively, the convective liquid velocity from electro-osmosis,
Ueo, is given by

Here E is the applied field driving the electro-osmosis and is equal to the
voltage V divided by l, the thickness of the porous diaphragm, assuming
a uniform distribution of field: other terms have been defined in connec-
tion with Eq. (2).

The zeta potential is the potential difference between the plane of
shear (or slipping plane) and the bulk solution. From Eq. (15), it is clear
that for a given situation of water (electrolyte) in clay, the Ueo is propor-
tional to the zeta potential and to the applied field strength. Also, in a real
situation of EOD, it is necessary to use the length-averaged value of the
zeta potential in order to take into account the effect of the axially variable
zeta potential on the electro-osmotic velocity.8 Further, since both the zeta
potential and the electric field depend on the ionic concentration and pH
of the fluid (water in the present case), variations in electro-osmotic
velocity can be expected as the dewatering experiment progresses in time.

It should be noted from Eq. (15) that for EOD to occur, the passage
of electric current is not required, if ideally one could develop high E
(V cm–1) without the passage of significant electrical current. However,
in practice, the clay-water medium has a given resistance, R, so that

(16)

It is the passage of this current that is associated with the electro-
chemical reactions at the two electrodes inserted in the clay for applying
the potential gradient (i.e., field) necessary for the electro-osmotic flow to
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occur. The electrode reactions at the anode and cathode induced by the
passage of this current result in a number of effects. For example, there
are changes in pH near the electrodes which give rise to concentration
gradients in the bulk of the clay, causing changes in zeta values near the
electrodes. This results in reduced electro-osmotic flow, as described by
Rabie et al.,8  among others. There can also be elctrolytic gassing.

Following Rabie et al.,8  we note that the initial pH of their water in
the clay (i.e., the electrolyte) was around 9, that is, slightly alkaline. When
the dc power was turned on, there was the usual electrolysis reaction,
giving rise to evolution of H2  at the cathode and O2 at the anode, as follows:

cathode : (17)

anode : (18)

overall cell reaction } : H2 O (19)

As the electrolysis proceeds, the magnitude of the zeta potential of
the clay (e.g., bentonite) near the anode decreases because of the decrease
in pH caused by reaction (18), that is, evolution of O2. Near the cathode,
the pH remains high during electrolysis and changes little. The result is
that there is a gradient of zeta potential across the clay after electrolysis
(i.e., EOD) has proceeded for several minutes: there is a low zeta potential
near the anode and a high one near the cathode. The low zeta potential
value at the anode causes, through the logic of Eq. (15) the diminution
(even cessation) of the dewatering process.

It has been observed that for electroosmosis in a system such as

anode | clay (electrolyte) | cathode

the measured open-circuit potentials, which were also close to the thresh-
old voltages for starting the EOD (i.e., electrolysis), were between 1.8 and
2.3 V. These values were interpreted in terms of potential-pH diagrams for
the platinum/water systems.8  Such an interpretation is invalid in principle
in that the potential-pH diagrams formally apply to equilibrium conditions
where irreversible electrolysis events (including the electrode oxidation)
are not involved, in contrast to the present case of electrochemical reac-
tions on the electrodes driven by the passage of a current.

The most straightforward interpretation of the open-circuit potentials
(OCP) is as follows10:
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(20)

where is the reversible potential difference between the hydrogen
and oxygen electrodes (= 1.23 V); η anode  is the anodic overpotential during
EOD and its minimum expected value will be ~0.3 V for conditions of
detectable oxygen evolution; η cathode  is the cathodic overpotential during
EOD and its minimum expected value will be ~0.1 V for conditions of
detectable hydrogen evolution; IR is the resistive drop in the clay (note:
its value during open-circuit measurement with a high-input impedance
voltmeter will be 0 V; however, during electrolysis involving the passage
of high currents, the IR would become significant, e.g., ~1–3 V); and
(RT/F )pH is the voltage drop between the anode and the cathode due to
the pH gradient in the clay; at the end of dewatering, Rabie et al. observed
this to be around 8 pH units (i.e., 0.472 V).

If one adds all the above potential drops, the estimate of the OCP
value is ~2.1 V, which is very close to the observed value. The absolute
minimum value expected for the OCP is that found in the absence of
significant battery effects (hence vanishingly small η anode and η cathode

values) and would be ~1.7 V.10  This was indeed observed by Rabie et al.8

It should be noted that the total volume flux, J, in Eq. (1) is related to
the convective liquid velocity, Ueo  of Eq. (15) by

(21)

where Acs  is the effective cross section through the diaphragm [see Eq.
(2)]. By substituting Eq. (15) in Eq. (21),

(22)

Since, by definition, L21 one may write [see Eq. (2)]

(2)

Thus the phenomenological description in terms of irreversible thermo-
dynamics connects very well with the electrochemical kinetic approach.
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V. ELECTRO-OSMOTIC DEWATERING: SOME
EXPERIMENTAL ASPECTS

As mentioned in Section III.2 in the context of phenomenological equa-
tions, electro-osmosis is related to several electrokinetic phenomena that
occur in a charged porous medium (such as wet clay) when there are
couplings (see Fig. 1) between hydraulic (i.e., pressure) and electrical
driving forces and flows. Based on the driving forces causing the relative
movement between the solid and the liquid phases, the observed phenom-
ena can be broadly classified into two groups as in Table 1, which is taken
from Yeung, 25 who adapted it from Abramson. 26  Electro-osmosis and
electrophoresis constitute the first group in which the liquid or the solid
phase, respectively, moves relative to the other under an applied voltage.

Streaming potential and migration or sedimentation potential com-
prise the second group and here the liquid or the solid phase moves relative
to the other under the influence of a hydraulic or gravitational force,
respectively, thus inducing an electrical potential difference across the
medium. These four complementary electrokinetic phenomena are shown
schematically in Fig. 5, which is taken from Yeung,25 and Yeung and
Mitchell.27

Table 1
Classification of Electrokinetic Phenomena

Description CausePhenomenon

Electro-osmosis Movement of a liquid phase
through a stationary solid
phase

Streaming potential Formation of a potential
difference across the
upstream and the
downstream ends of a
stationary solid phase

Electrophoresis Movement of charged
particles dispersed in a
stationary liquid phase

Migration or sedimentation Generation of a potential
potential difference along the

migration direction of a
solid phase in a stationary
liquid phase

An externally applied
electrical gradient

Movement of a liquid phase
through a stationary solid
phase induced by an
externally applied hydraulic
gradient
An externally applied
electrical gradient

Movement of a solid phase
through a stationary liquid
phase induced by the
gravitational field

Source: Abramson 26 as cited by Yeung.25
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Electrical gradient
induces water flow

Electro-osmosis

Water flow induces
electrical potential

Streaming potential

Electrical gradient
induces particle movement

Electrophoresis

Particle movement generates
electrical potential

Migration or sedimentation potential

Figure 5. A schematic summary of the electrokinetic phenomena in clay.
(After Yeung and Mitchell, 27 as reviewed by Yeung.2 5)

One possible EOD configuration, as applied to multistage dewatering
of sludge, is shown in Fig. 7, taken from Yoshida12; sludge is poured in at
the top and water flows out at the bottom. Of course, practical, commercial
electro-osmotic systems, although similar in principle to that illustrated in
the schematic of Fig. 7, are much more complicated and have been
described in the literature4,25,28–31 and references cited there.

In electro-osmosis (Fig. 5), when an externally applied electric field
gradient operates across the wet clay, water is moved from the anode (the
positive electrode) to the cathode (the negative electrode); that is, there is
a movement of the liquid phase through the stationary solid phase (a clay,
soil, capillary, or porous plug, etc.) in response to an applied electric field,
as shown schematically in Fig. 6, taken from Probstein.28
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Figure 6. Schematic depiction of electro-osmotic flow in a porous charged
medium. (After Probstein.2 8)

Figure 7. A three-stage upper electrode-type electro-osmotic dewatering appara-
tus. (After Yoshida. 1 2 ) The upper electrode is the anode whereas the lower electrode
is the cathode.



318
A

shok K
. V

ijh



Electro-Osmotic Dewatering of Clays, Soils, and Suspensions 319

1. The higher the externally applied voltage, the faster the dewater-
ing in an EOD experiment.

2. Dewatering at a given voltage slows down when 45–50 wt%
solids is reached in the sludge or clay being dewatered.¹

3. The current efficiency is highest for the initial part of dewatering
at every voltage¹; its value of about 5–6 ml/mA is found¹ to be
independent of the applied voltage.

4. The energy requirement (mWh/ml), even at maximum current
efficiency, is proportional to the applied voltage.¹

5. The step sequence 1 V, 2 V, 4 V, 10 V, 50 V (or some other similar
step sequence) in which the initial part of dewatering is captured
(a high current efficiency region) at each voltage before stepping
up to the higher voltage, uses about five times less electrical
energy for dewatering than a voltage fixed at 50.¹

6. No significant differences in the dewatering, for example, of
sodium kaolinite, were observed with mild steel, copper, or
carbon electrodes.¹ With aluminum electrodes, however, the

Of great interest to electrochemists is a practical laboratory setup for
conducting EOD studies as, for example, in the work by Yeung and
co-workers, 25,32 Mujumdar et al.,8,9,33 and many other investigators.1–7,29–31,34

A diagram of a typical experimental setup for laboratory studies on electro-os-
motic dewatering is shown in Fig. 8, which is taken from Chen33 and the
laboratory of Mujumdar and Weber at McGill University; here EOD is
being used to flush out heavy metals from the clay (see Section VI below).

In regard to the experimental results of laboratory or field investigations
of EOD, a large number of parametric studies are available in which the effects
of the following factors on EOD have been examined1–6,8,9,12,28–33: voltage,
current magnitude and type (i.e., interrupted or continuous dc, etc.), salts,
acids, flocculants, clay types, clay conductivity, the presence of various
exchangeable cations, various electrode materials, and the presence or
absence of hydraulic pressure or vacuum accompanying the EOD process.
Most of these studies are empirical and of the “recipe type” and usually
pertain to a given set of experimental conditions, without leading to a set
of generalizations amenable to the construction of a comprehensive para-
metric theory that could lead to clear-cut predictions. A few important
points, however, can be deduced from these studies, as indicated by a few
observations for some typical experimental cases1–6,8,9:
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The above-mentioned experimental observations encapsulate the
main empirical facts established in a large number of studies on EOD.
Several of these observations present features that have been analyzed in
some detail as described in the following section.

application of high voltages is required to obtain even modest
EOD³ effectiveness.

7. Salt or acid concentrations up to 10– 2 M usually allow dewater-
ing to proceed at lower voltages, compared with suspensions in
pure water, presumably by lowering the resistance of the clay.²
At higher electrolyte concentrations (0.1 M), electro-osmotic
dewatering became limited, and significant electrode polariza-
tion and electrode reactions were observed.²

8. Flocculants (nonionic) usually diminish the current efficiencies
and increase the energy requirements for the EOD.

9. For high rates of EOD and for high current efficiencies, it is
necessary to maintain a high value of the zeta-potential, for
example, by causing the continued existence of a high pH at the
anode and a low pH at the cathode.8

10. The cationic component of the clay has a paramount effect on the
EOD. For example, for Na-kaolinite, EOD takes place at low
(1–2 V) voltages, whereas for Ca-kaolinite, detectable dewater-
ing occurs only above 10 V; for Al-kaolinite, 25 V was needed
just to initiate the dewatering, with appreciable continuing de-
watering being observed only when 150–250 V were applied.

11. When a highly electropositive anode (e.g., Mg) is used in con-
junction with a very electronegative anode (e.g., Au), electro-os-
motic dewatering occurs without an externally applied voltage,
owing to the battery effect; this is called galvani dewatering.¹

12. In dc electro-osmotic dewatering, current interruption followed
by short-circuiting removed 20–40% more water than continu-
ous dc or interruption with an open circuit, for otherwise equal
energy consumption.8

13. The electro-osmotic transport of water during EOD leads to very
high energy efficiencies; for example, the observed efficiencies
of 5.6 ml/mAh (1.55 ml/C) are equivalent to 8300 moles of water
per Faraday of electricity,¹ so that EOD is extremely cost effec-
tive.
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1. Electro-Osmotic Dewatering under Interrupted Direct Current
Conditions

Following earlier work by Lockhart and Hart,35  Rabie et al.,8 have reported
some work on the EOD of clay suspensions under interrupted dc voltage;
their main observations are as follows:

1. When the power was on, the passage of dc current caused electrode
reactions at the anode and the cathode. Changes in pH caused by
the electrode reactions affect the rate of water removal by changing
the zeta potential.

2. If during the current interruption periods the electrodes were
short-circuited, the water removed was 20–40% more than that
obtained either with continuous dc or with interruption with an
open-circuit period, for equal energy consumption.

3. When the power was on, the current was positive, that is, it flowed
through the clay–water column from the anode to cathode; during
the short-circuit, however, the current flowed in the opposite
direction.

4. The open-circuit potentials of the electrode/clay (electro-
lyte)/electrode system were found to be between 1.8 and 2.3 V.
It was concluded that these values arise from the electrochem-
istry of the system rather than from dewatering. However, the
interpretation of these open-circuit potentials as arising from
the hydroxides and oxides on the platinum anode, the pH
effects, etc., is not electrochemically valid, as shown in Sec-
tion IV [see Eq. (20)].

5 . When the dc power is interrupted and the electrodes are short-
circuited, a transient current is observed that is opposite in sign
to that seen during dc power application. The short-circuit current
was correctly interpreted by Rabie et al.8  as resulting from “dis-
charge of an electrochemical cell,” thus reversing reactions (17) to
(19), with the accompanying elimination of the zeta potential
gradient and the restoration of the zeta potential near the anode to
a high value approaching that at the start of the electrolysis. In
effect, a short-circuit current more or less tends to restore the
original conditions of the experiment, enabling one to restart the
dewatering by switching on the dc power.
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This discovery of Rabie et al.,8  namely, that increasing the zeta
potential near the anode by short-circuiting the electrodes after a
dc power interruption, and thus restarting the electrolysis process
(and thence dewatering), has provided the electrochemical clues
for making other proposals for increasing the energetic efficiency
of the EOD process. 10 These are described below.

(i) Fuel-Cell Effect

The fuel-cell effect is the proper name one could give to the discovery
by Rabie et al.,8 described above. As they correctly concluded, the
electrolysis reactions (17) to (19) that occur when the dc power is on are
(temporarily) reversed during short-circuiting; this would create a fuel-
cell situation: Reaction (19) would be reversed so that the overall reaction
would be the electrochemical combustion of H2 and O2  to produce H2 O
[see the reverse of reaction (19)] with the provision of power; hence the
observation of a current (of the opposite sign) during short-circuiting. This
is essentially an H2-O2 primary battery effect, corresponding to fuel-cell
behavior.

(ii) Forced Polarity Reversal

This “fuel-cell” effect, it may be suggested, could be more dramati-
cally realized by reversing the dc power polarity for a few seconds; this
should lead to a high zeta potential near the anode and cause the recom-
mencement of EOD when the normal polarity for dewatering is restored.

(iii) High Overvoltage Electrodes

In principle, it would be possible to apply high voltage gradients to
effect EOD in such a manner that the rates of the electrode reactions (and
hence the currents) are minimized at the anode and cathode. This can be
done by using highly polarizable, noncatalytic electrode materials. For
cathodes, metals such as Zn, Sn, Pb, In, Cd, and Hg (as an amalgam) are
excellent candidates for minimizing the rate of the hydrogen evolution
reaction. 8 For anodes, non-noble metals, alloys, carbides, silicides, etc.
can be found for minimizing the rates of the oxygen evolution reaction
(e.g., titanium coated by nonstoichiometric oxides to make its surface
conducting). 35 By minimizing the rates of electrode reactions, for a given
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(high) applied voltage gradient, the diminution of zeta potential at the
anode is delayed, thus postponing the cessation of dewatering.

(iv) Maintaining High Zeta Potential

In principle, in a system such as that studied by Rabie et al., it would
be possible to saturate the clay (or soil) with a low volume of concentrated
NaOH (or KOH) solution that continues to maintain high pH and hence
high values of the zeta potential near the anode even during prolonged
electrolysis. This would tend to avoid cessation of dewatering after several
minutes of EOD, as observed by Rabie et al.8

(v) Depolarization of the Anodic Reaction

It would appear that the depletion of OH near the anode could be
stopped (and thus changes in pH and zeta potential prevented) during EOD
by depolarizing the reaction (18) by another competing, parallel reaction
such as the following:

(23)

(24)

However, the presence of extraneous ions such as Fe2+ or Cl
–
, either

in clays or soils, may not be acceptable for environmental reasons, not to
mention their probable adsorption by clays. The idea of a depolarization
reaction leaves open, however, the possibility of a suitable reaction (other
than O2 evolution) at the anode, for example, some organic oxidation such
as that of HCOO – or CH3COO – or CH 3OH or C6 H5 OH. This may also
provide a method of using anodic oxidation to clean soils contaminated
by organics.

2. Electro-Osmotic Dewatering under Galvanic Conditions

Lockhart has observed¹ that “by combining an electropositive magnesium
anode with an electronegative gold cathode, substantial Galvanic dewa-
tering of sodium kaolinite was achieved without an external power supply.
Even better Galvanic dewatering was obtained for copper kaolinite, a clay
having an easily discharged cation.”
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His statement that the need for an external power supply is eliminated
because of the electricity-producing battery effect between the Mg anode
and an Au cathode (connected, of course, through a conducting “electro-
lyte” in the clay pores) is correct. However, a more important effect³ that
would seem to operate in this arrangement is that a high zeta potential is
maintained by ensuring a high pH at the anode and a low pH at the cathode,
owing to the following reactions:

Anode:

(25)

(26)

Cathode:

(27)
Both MgO and Mg(OH) 2 are highly basic16,17 and tend to maintain a high
pH at the anode; deposition of Cu 2+ at the cathode, suggested by Lock-
hart,³ ensures that H3O+ is not depleted near the cathode. Hence this
Galvanic dewatering creates the conditions for continued maintenance of
the high zeta potential so necessary for continued dewatering.

3 . Dewatering Efficiency in Terms of Liters per Ampere-Hour (or
Liters per Watt-Hour at Constant Voltage)

Although the dewatering efficiency [l( A h )– 1] is of great practical signifi-
cance, its fundamental conceptual significance is less clear. As pointed out
previously, 10 EOD involves the electro-osmotic flow of water (electrolyte)
through the clay as if the whole water were behaving as a single “ion” or
a charged “plug” driven by electrostatic effects arising from the electro-
chemical double layers at the clay/water (electrolyte) interface. Thus this
current is not a faradaic current (as, e.g., carried by each ion) but an
electro-osmotic current, although the faradaic current is a fraction of the
total current and constitutes that part which is carried by the ions discharg-
ing at the electrodes. Ideally [see Eq. (15) and the related discussion], the
passage of faradaic electric current (and hence the discharge of ions on the
electrodes) is not required for the EOD to occur by purely electro-osmotic
effects. In practice, however, the electrolytic effects 36 (and thus the
faradaic current) can and do arise for the reasons described previously.10
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If one examines 37 the large-scale field trials of electro-dewatering
conducted by Lockhart,4 high rates of dewatering were perhaps sustained
because the ionic concentrations were low, with very large values for the
widths of the diffuse double layers (~10²–10– 3nm). This would lead to
repulsions between the double layers 38 with “opening up” (electrostati-
cally speaking) of the clay pores, thus creating the conditions for the
electro-osmotic flow of a large “single ion” or “plug.” The fact that high
levels of dewatering could be sustained for 2 months indicates that
conditions for the maintenance of the high zeta potential continued to
operate during that period. It is clear that conceptually, one cannot simply
try to relate the observed EOD rates to the measured currents since these
currents represent only the faradaic component; it is realized, however,
that for practical, industrial problems, it is precisely this efficiency that is
of interest. This problem, of course, is the basis of the observation that
“experimental efficiencies translate to high and obviously untenable
amounts of water per ion.”¹ A more detailed analysis of the components
of the currents and fluxes observed during EOD has been given recently23

and is presented here in Section III.1.

4. High Voltages Needed for Dewatering Al-Kaolinite and the
Aluminum Electrode Effect

Another interesting observation made by Lockhart³ is as follows: “For
Na-kaolinite, . . . most of the electro-osmotic dewatering took place at low
voltages (1 V and 2 V) whereas for Ca-kaolinite no significant dewatering
occurred until 10 V was reached. For Al-kaolinite, 25 V was needed to
initiate water flow and only at 150–250 V was an appreciable degree of
dewatering achieved.” He realized³ that “the situation for Al clay is more
complex—even though high voltages are necessary for dewatering, the
currents are low but their dewatering efficiencies are reasonable; also the
pH of the water is neutral which implies that reaction (Al3+  + 3 e → Al) is
unlikely. Either the aluminum is present as a (less electropositive) complex
ion that does react according to (Aln+ + ne → Al) or reaction (2H 2 O +
2 e → H 2 + 2OH– ) occurs but the OH– then combines with the Al 3+ ions.”
Note that the electrodeposition of Al from Al3 + in aqueous solution is
thermodynamically impossible.

By taking the latter suggestion of Lockhart,³: we 38conclude that Al(OH)3
is indeed initially formed. This Al(OH)3 can exhibit the equilibrium reaction39
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The AlO–
2  can then get discharged on the carbon-covered steel anode

(when the voltage is applied), giving rise to an aluminum oxide layer:

(28)

(29)
This then sets the stage for the anodic growth of a barrier-type

insulating aluminum oxide layer36 on the electrode (anode), repre-
sented by M in Eq. (29). The reaction in Eq. (29) is an illustrative one
and is written only to suggest that a complex aluminum ion with a
negative charge (e.g., any oxygenated complex anionic species such as
oxides, hydroxides, oxyhalides, or a mixture thereof) is needed to
initiate the formation of a barrier layer, which will then require the
application of high voltages for appreciable dewatering: this will also
explain the low currents.36 In the picture suggested here, most of the
voltage used for dewatering operates (once the barrier oxide has been
formed) in fact across the insulating layer36 and is not “available” to
assist dewatering.

Similar effects would also be expected with Ca2+, but to a much lesser
extent because (1) anodic oxide growth on a “Ca anode” (actually a CaO
layer on the anode) reaches only a few volts since the oxide is not truly of
the barrier type; (2) the highly ionic CaO undergoes dissolution concomi-
tant to the growth process; (3) the CaO is not expected to be without a
large number of cracks and imperfections, which are much more delete-
rious to the integrity of the oxide than the self-healing “microfissures”
usually found in Al 2O3 and other barrier-type oxides. The evidence for the
involvement of insulating Al2O 3 is quite clear when C/C electrodes are
compared with Al/Al electrodes (Ref. 5, Table 5) since very high voltages
are observed for the latter electrodes, a case typically associated with
anodic oxide growth on Al.36 Furthermore, no other plausible mechanism
exists for explaining these high voltage buildups in dewatering when
aluminum is involved as an anode either directly (e.g., as the electrode) or
indirectly (i.e., deposition of AlO–

2 to give an Al 2O 3 layer anode).

5. Electro-Osmotic Dewatering at Low Applied Voltages

Another fact that needs comment is the observation by Lockhart¹ that EOD
can be achieved even by the application of 1 V to the

Anode | Clay (water) | Cathode
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system. In terms of our analysis10 [see Eq. (21)], this would be possible if
very low differences of reversible electrode potentials as well as overpo-
tentials existed between the anode and the cathode. An example would be

(30)

A variety of other plausible electrode reactions could be invoked (some
perhaps arising from trace impurities in the clay/water system or corrosion
reactions at the electrodes) to account for the existence of EOD at low
applied voltages, (e.g., 1 V).

It is important to note again that the current observed during EOD is
not a faradaic current (as, for example, carried by each ion), but an
electro-osmotic current in which the water trapped in the clay moves as a
plug, just as in a capillary. This is the reason why high faradaic power
efficiencies are observed compared with normal electrolysis in which the
discharge of ions at the anode and the cathode is the only manner of
eliminating water, namely, by electrolysis to H2 and O 2. The EOD involves
the electro-osmotic flow of the water (electrolyte) through the clay as if
the whole water were behaving as a single “ion” or a charged “plug” driven
by the electrostatic effects arising from the electrochemical double layers
at the clay/water (electrolyte) interface.

6. Components of Voltage in an Electro-Osmotic Cell

When either an externally applied voltage or a galvanically created voltage
is applied to an electro-osmotic cell, a number of potential drops develop
within the cell which together constitute the total voltage. A simple
extension of Eq. (20) will give the components of the voltage V, as
follows:

(31)

On comparison with Eq. (20), which defines various quantities at
open circuit (i.e., in the absence of the passage of an externally applied
current, although short-circuiting on open circuit will cause the flow of
some current owing to the fuel-cell type of effects discussed earlier), it
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should be noted that the various quantities on the right-hand side of
Eq. (32) refer to the passage of appreciable currents so that η anode , η cathode ,
and IR defined earlier would now attain relatively high magnitudes. V oxide

is the potential drop across the barrier oxide when an anode such as Al,
Ta, Nb, W, Zr, Hf, or Bi is used, since these anodes develop highly
insulating thick oxides during passage of an electrolytic current.3 6  V cake  is
the voltage drop across the dry anodic “cake” that usually forms (with any
anode, including those that do not form insulating oxides) on the anode
owing to the extreme dewatering and dryness of the clay in the vicinity of
the anode, once EOD has been proceeding for some time, especially at
high current. This drying effect is caused by a combination of electro-
osmotic dewatering and the resistive, I²R, heating effect.

In a more detailed analysis, one must decompose Eº
H2

/ O2
 for water

electrolysis (or for any other overall cell reaction operating in a given
situation) into component values for the cathodic and anodic half-cell
reactions; each half-cell potential can then be shown to consist of a detailed
potential profile (Helmholtz double layer, diffuse double layer, etc.) at the
metal/electrolyte interface, in the usual way. Furthermore, the various
quantities in Eq. (31), especially IR and (RT/F) pH, can further show
temporal variations with the passage of current over a significant period
of time.

It is thus clear that in most of the empirical studies on EOD, one talks
of “voltage across the cell” or some variation thereof (e.g., field, i.e.,
voltage divided by the length of the clay column in the cell) as if it were
a single quantity. It is, in fact, a quite complex quantity constituted of
several components [see Eq. (31)] and this should be taken into account,
as far as possible, in interpreting the results from EOD experiments.

VI. APPLICATIONS OF ELECTRO-OSMOTIC DEWATERING

Although several applications of EOD were already mentioned in Section
I, it is appropriate here to outline the ways in which EOD provides
solutions to industrial problems.

In geotechnical engineering work, 11,40  electro-osmotic technology is
used in stabilizing embankments, dewatering foundation sites, strength-
ening steeply cut slopes, and increasing the capacity of steel friction piles.

In the field of environmental engineering, electro-osmotic dewatering
can be used to remove organic contaminants or toxic heavy metals from
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fine-grained soils. This is carried out by an electro-osmotic contaminant-
flushing technique, which has been used, for example, to remove benzene,
toluene, trichloroethylene, and m-xylene from saturated kaolin clay by
Bruell et al. 40,41 Contaminants are flushed from the soil by injecting clean
water (or purge solution) at pipe anodes inserted in the clay; pore water is
displaced and contaminated water is removed at pipe cathodes (Figs. 6–8).
Similarly, toxic heavy metal cations such as Pb2+ and Cd 2+ have been
removed from soils by Probstein and co-workers7,28,34,42 and Chen et al. 33

(Fig. 8).
Removal of water from mine tailings and residues has been carried

out by Lockhart and co-workers. 1 – 6 Laboratory experiments on electro-
osmotic dewatering of vegetable sludge, such as that produced in the food
processing industry, have been reported by Chen et al.43 Yeung 25 has
provided a good summary of the wide range of applications of electro-
osmotic dewatering. The application of this technique to field tests for
the electrochemical remediation of polluted soils44,45or to the residues of
the mining industry

4
has shown spectacular results.

NOTE ADDED IN PROOF

Some aspects of the theoretical interpretations presented here have
been further developed and published recently46–48; the theory of EOD
has also been applied to the electrochemical treatment of cancerous
tumors. 49,50

VII. APPENDIX

The form of Eq. (1) in the text implies that the dimensions of the problem
(e.g., the length and cross section of a channel delimiting the flow) are
included in the coefficients L . A dimensional analysis of relationship (13)i j

in the SI unit system yields

(32)

where I is a total current in amperes and J is a total volume flow in cubic
meters per second (square brackets indicate that only dimension of the
variable is considered). Furthermore, the dimension of the coefficient L21

from Eq. (1) for J, assuming ∆P = 0, is
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and

(33)

The same result is obtained for L1 2 using Eq. (1) for I and assuming ∆V =
0, in accordance with Onsager’s relation. Similarly we obtain

(34)

(35)

In the homogeneous case, or when considering a sufficiently small
elementary volume, the flow and current are directly proportional to the
area of the channel (perpendicular to the flow) and indirectly proportional
to the length (parallel to the flow). Thus relationship (2) defines the
coefficient L 21 in terms of material properties and parameters of the
volume in question (area and length). It differs from Overbeek’s relation-
ship, 1 4 where the length is omitted. Again, dimensional analysis of Eq. (2)
yields expression (33).

It is often convenient, in particular when we are dealing with nonho-
mogeneous problems, to write Eq. (1) for specific quantities related to unit
volume. Then relationship (1) reads

and

(36)

Here [j] = m – 3·s–1/m² and [i] = A/m² are the flux per unit area and the
current density, respectively; l11 is the specific conductance in siemens per
meter, l 2 2 is the specific hydrodynamic conductance (m³·s/kg) and
l 12  = ∈ζ/(4πη) is the specific electrokinetic coefficient (As²·kg–1).

Note: A useful reference for the dimensions of the quantities used
here is A Physicist’s Desk Reference, H. L. Anderson, ed., American
Institute of Physics, New York (1989).
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The Effect of Magnetic Fields on
Electrochemical Processes

Thomas Z. Fahidy
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I. INTRODUCTION

The title of this chapter invites a question to be asked immediately:
Why should magnetic fields exert any effect at all on an electrochemi-
cal process? A simplistic but powerful answer is provided by a funda-
mental law of electromagnetics (often called the right-hand rule),
which states that coupled electric and magnetic fields generate motion;
electric motors operate according to this principle. Electrolytes are no
exception to this rule, as depicted qualitatively in Fig. 1. The four
photographs show progressively turbulent surface motion in a cell
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containing an aqueous CuSO4/H2SO4 solution between two concentric
cylindrical copper electrodes. The electric field produces a modest
current and the magnetic field strength is progressively increased. If
the vertically imposed magnetic field were uniform, the flow would be
circular and essentially laminar; in a nonuniform (gradient) field,
turbulent wavy motion is easily generated. This is, in essence, the thrust
of magnetic field imposition, although its theoretical and empirical
aspects span a wide spectrum of its appearance, importance, and
utilization.

Since the first recorded interest1 in the effects of magnetic field on
electrolyte solutions, a large number of researchers have contributed
to this complex and challenging field. Earlier studies were primarily
focused on relating an apparent electrolyte resistivity to the strength of
imposed magnetic fields, as shown in a thorough survey by Olivier 2 ;
in a typical paper,3 a “twisting” effect on ionic paths was offered as an
explanation for the minimal conductance values observed. This period
was followed by an intensive investigation of the Hall effect in electro-
lytes, convective diffusion under magnetic influence, and the effect of
magnetic fields on electrode-process kinetics. More recent investiga-
tions probed into surface-structural effects and the utility of imposing
a magnetic field on electrolytic cells in the production of various
chemical compounds. Two review papers4,5 summarize major as-
pects of research in this area. The wealth of information also avail-
able in the non-English-language literature (e.g., Refs. 6 and 7) has
not yet found wide recognition, to the author’s knowledge.

This chapter provides an overview of knowledge accumulated in
certain key directions of this research domain, but without any claim
to completeness (which would be a difficult task to achieve). The
general aim is to leave the reader with a view of what has been
accomplished over a few decades, and with an appreciation of the
major challenges that are still facing investigators of magnetic field
effects. Theoretical frameworks of analysis are also included, with
caveats about their limited quantitative applicability to experimen-
tal observations. It is hoped that this material will also spur the
reader to examine particular areas of the pertinent literature in
depth.
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II. MAGNETIC FIELD EFFECTS ON ELECTROLYTE
BEHAVIOR

1. The Hall Effect in Electrolytes

As indicated in an earlier review,4 the Hall effect has been the subject of
numerous investigations. The Hall constant RH is defined by the classical
electric field equation

(1)

where E is the electric field vector, j is the current-density vector, B is the
magnetic flux-density vector, and σ is the bulk electrolyte conductivity.
The Hall constant can be related to ionic mobilities2 and characteristic
ionic coefficients in terms of the ionic kinetic energy (Section VII;
typically between 40 and 54 zeptojoules per ion, in the case of monovalent
ions). In a somewhat similar formulation, Meton and Gerard8 found the
order of magnitude of the Hall constant to be between 10 –7 and 10 –6

m3A –1 s –1 for certain monovalent ions. In a conceptually different ap-
proach, Friedmann 9 applied advanced concepts of statistical mechanics
and, specifically, a Brownian motion-based model of ionic mobility.
Model-predicted values of Hall conductance show good agreement with
values obtained from the kinetic theory of slightly ionized plasmas. 10,11 In
considering electrohydrodynamic forces acting on ions moving in a mag-
netic field, Hubbard and Wolynes 12 have shown that this force, acting in
the opposite direction, can be about one-third of the Lorentz force.
Conceptual disagreements notwithstanding, the Hall conductance in aque-
ous electrolytes is about eight to nine orders of magnitude smaller than
the bulk conductance.

2. Diffusivity

In an analysis of the diffusion equations in magnetic fields, Dumarque et
al. 13 introduced a diffusivity tensor and an effectiveness parameter related
to the difference between diffusivity in the presence and in the absence of
a magnetic field. In a less general, but somewhat more amenable approach
to numerical estimations, Lielmezs and Musbally 14 derived a magnetic
correction factor called the arithmetic mean average fractional integral
diffusion coefficient
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( 2 )

where DM is the diffusivity of the electrolyte in the presence and D0 in the
absence of the magnetic field. In a comprehensive experimental program,
Lielmezs and co-workers obtained kM values experimentally and found
that their variation with temperature, electrolyte concentration, and mag-
netic field strength is normally less than 1%,15,16 although a value of kM =
6.13% has also been observed in aqueous KCl solutions. 17 In general, the
k M versus concentration curve has a local minimum at a fixed magnetic
field strength whose existence cannot be explained by a simple theory of
electromagnetism. The experimentally observed values of kM are some-
what larger than values predicted via the Lielmezsd–Musbally equation 14

(3)

where v1 and v2 are the ionic average drift velocity vectors in interacting
diffusion flow, and µss is the derivative of the chemical potential of the
electrolyte with respect to electrolyte concentration, cs .

3. Viscosity

The existence of a local minimum at an intermediate magnetic field
strength has been shown for the viscosity of water 18 (about a 3.5% drop
with respect to the H = 0 value at a magnetic field strength of H ≈ 370 A
m–1 ; H = B/µ and µ is the magnetic permeability of water), in aqueous
KCl,19 manganese nitrate, 20 and nickel nitrate 21 solutions. In water, in-
creases in viscosity have been reported from 0.06% (B = 0.5 tesla, T) to
0.27% [B = 1.2 T] in the 10–50°C temperature range.22 The variation of
viscosity in combined alternating electric and constant magnetic fields
with electric-field frequency has also been suggested23 on the basis of the
concept of “volume viscosity” in ultrasonic absorption and velocity stud-
ies in certain fluids.24 The variation of viscosity with magnetic field
strength cannot, however, be predicted from the fundamental relationships
of physics.

4. Properties of Chemical Equilibrium

The thermodynamics of magnetic systems have a solid theoretical foun-
dation; for example, in the case of ideal gases, the conventional pressure-
volume-temperature (PVT) basis is replaced by the magnetic field-
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magnetization-temperature (HMT) basis.25 Nevertheless, there is little
information available on the variation of equilibrium composition in
electrolytes with the magnetic field strength. The recent work by Yama-
guchi et al. on chemical equilibrium between metals and hydrogen26–28

may be considered as a “pathfinder” for much needed research in this area.
Under the influence of a magnetic field, a portion of the magnetostatic
energy of LaCo5 Hx hydride is converted into the chemical potential of
hydrogen in the hydride. The equilibrium hydrogen pressure (EHP) ratio
is expressed as

[EHP when B ≠ 0]/[EHP when B = 0] = exp(2 B∆Ms/RT) (4)

where ∆Ms[= 8.7 J(T mol hydrogen)–1 at 343.2 K] denotes the change in
saturation magnetization per 1/2 mol of desorbed hydrogen gas. Under
magnetization up to 14 T and constant hydrogen pressure at 313.2 K, the
hydrogen content changes from x = 1.88 to x = 0.96 in the hydride. If
similar data for ionic equilibria in electrolyte solutions were readily
available, the current understanding of magnetic field effects would be
significantly enhanced.

5. Magnetic Properties

Ions in solution are either paramagnetic (i.e., they develop a magnetic
moment parallel to an imposed magnetic field), or diamagnetic (i.e., they
develop a magnetic moment opposed to the imposed magnetic field). The
magnetic force tends to repel diamagnetic ions in a nonhomogeneous
magnetic field from the strong-field region, the latter attracting, in a
relative sense, paramagnetic ions. A fingerprint of this property is the
volume susceptibility, κ, related to the relative permeability of the medium
as µ r = 1 + κ, where µ r is the ratio of the absolute permeability of the
medium to µo = 4π x 10 –7 H m –1, the absolute permeability of a vacuum.
The mass susceptibility (i.e., the volume susceptibility divided by the
density) is a similar fingerprint. Magnetic moments are commonly ex-
pressed in Bohr magneton units: one Bohr magneton ≡ µB = 9.2732 yJ.
m2(Wb) –1

.
The range of mass susceptibilities is 10 –9to 10

–7
(per kilogram, at

20°C); typical experimental values of magnetic moments are 1.9 (Cu 2+ ) ;
3.2 (Ni 2+)29; 5.0 (Co2 +); 5.2 (Fe2 +) and 5.9 (Fe3 +) Bohr magnetons.30 In a
gradient of field, the magnetic force acting on a compound with the
dissociation constant Kd in an aqueous electrolyte may be written as
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(5)

where χ is the susceptibility of the solution, c is the electrolyte concentra-
tion, and H is the magnetic field strength vector. In experiments using
aqueous sodium carbonate solutions placed in solenoidal magnetic
fields,3 1 an ionic separation ratio of 0.42 was found for sodium ions when
ƒM was about 5 fN. While susceptibility effects are of a small magnitude,
they can generate ionic movement (ion separation) under carefully de-
signed experimental conditions (Section IX.2).

The smallness of the susceptibility effect is equally evident in an early
study 4,32 of magnetically modified reaction equilibria, where the expres-
sion for the equilibrium constant

(6)

carries a magnetic correction term of a 10–5 order of magnitude. Here v i

are the stoichiometric coefficients, µi
0 are the standard chemical potentials,

and χ i are the magnetic susceptibilities of the reacting species.

III. MAGNETIC FIELD EFFECTS ON SURFACE
MORPHOLOGY

1. Cathode Deposits

The beneficial effect of magnetic fields on surface quality has been amply
demonstrated by a number of investigations.33–38 O’Brien and co-work-
ers 39–40 indicate the important effect of electrode configuration on the
denseness and uniformity of zinc deposits; in pulsed electric fields,
microturbulence generated by polarity reversal contributes to evenness of
deposit. The variety of micro- and macroscopic deposit structures has been
illustrated by Chiba and co-workers,41,42 Young,43 and Ismail et al.44 i n
nonuniform magnetic fields. Recent investigations45 indicate that very
compact Zn deposits can be obtained in a B = 8 T field, in contrast to the
open-ramified fractal growth patterns observed in the absence of a mag-
netic field. Similar results were obtained in the magnetically assisted
electropolymerization of pyrrole,46,47 in which the fractal structure pro-
gressively disappears as the magnetic field strength is increased. The
fractal dimension at a fixed value of B depends on the thickness of the
solution in the experimental cell. Cathodic deposition from aqueous silver
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nitrate solutions in high magnetic fields is accompanied by a dense radial
growth of silver metal “leaves.”48

2. Deposits Formed in Anodic Dissolution

Secondary and tertiary processes accompanying anodic dissolution often
result in products that may be deposited (at least temporarily) on the anode
surface. Oscillatory current behavior arising from deposition and redisso-
lution cycles has been extensively studied via nonlinear dynamics and
chaos theory, 49,50 although experimental results obtained in magnetic
fields combined with electric fields are essentially confined to copper. 51,52

Oscillation can be suppressed by imposition of a magnetic field, and this
finding suggests the possibility of magnetic field control of anodic corro-
sion 53 under appropriate conditions. The exact role of the magnetic field
is not understood at present, and the interpretation of this effect in terms
of a modified Brusselator model of chemical reactions is rather tentative. 54

(See also Chapter 1 in this volume.)

IV. THE MAGNETIC FIELD EFFECT ON ELECTRODE
REACTION KINETICS

The expression “electrode reaction kinetics” implies in a strict sense the
governance of an electrode process by charge transfer. Under such condi-
tions, the classic Butler–Volmer equation, or the more phenomenological
Tafel equation, describes the electrode process within an appropriate range
of the electrode potential. In practice, the “hybrid” range, where control
is shared between charge transfer and diffusion, is also included with a
tacit understanding that charge transfer is considered to be dominant.
There is good reason, therefore, to distinguish between studies of the
relationships between the magnetic field strength and electrode-kinetic
parameters (i.e., the exchange current density, io , and the transfer coeffi-
cient α) and (rather simplistic) analyses of experimental current-voltage
curves.

In the latter category, no magnetic field effect at low voltages has been
reported in the electrolysis of, for example, cupric sulfate solutions 55 when
charge transfer is fully controlling. However, it has also been shown that
in a mixed-control regime, the magnetic field results in local maxima for
the relative increase in current that are sensitive to the field strength, in
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contrast to current observed in the absence of a magnetic field.56 In the
former category, Kelly 57 proposed a modified Butler–Volmer relationship
on the basis of experiments with Ti electrodes in sulfuric acid solutions,
where the conventional exponential term included a magnetically induced
potential difference.

A study involving iron amalgams in acidic and alkaline media58

indicates a magnetic field effect on the Tafel slope, probably due to a
complex interaction of the magnetic field with amalgam formation, diffu-
sion, and hydrogen evolution. Experimental results obtained with cupric
sulfate solutions show no magnetic field effect on the transfer coefficient
of the cathodic process.

59
The small effect on the exchange current density

may most probably be ascribed to a magnetically induced widening of the
Tafel region as well as deposit structural effects.

More recent findings by Waskaas 60–62 using iron electrodes in ferric
chloride solutions tend to indicate that anode and cathode polarization
curves depend on the magnetic field strength, but this effect is not purely
kinetic, since it involves bulk-to-diffusion layer transfer of ferric ions.

To counteract the (vexing) convection effects on kinetic experiments,
Aogaki and co-workers, having developed a special electrode assembly to
separate mass transport and kinetic effects, report 63 a marked decrease in
the exchange current density (about 25%) in magnetic fields imposed on
a copper deposition cell. Virtually no effect on the transfer coefficient (α
≈ 0.44) was observed. Experimental results obtained in nickel–phosphorus
alloy deposition, 63 cupric ion reduction in ethylenediamine solutions, 64 and
the electrolytic reduction of acetophenone65 are further demonstrations of
the interaction of the magnetic fields with polarization characteristics, and
point to the difficulty of fully eliminating the effect of convection and/or
diffusion on electrode kinetics.

V. THE MAGNETIC FIELD EFFECT ON IONIC MASS
TRANSPORT

The quantitatively most tangible effect of magnetic field imposition has
been found in the area of ionic mass transport. There is abundant experi-
mental evidence 4,5 in the earlier literature for increasing mass transport
rates under the influence of magnetic fields, although opposite observa-
tions have also been made under specific conditions.66 From an empirical
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point of view, the effect on mass transport rates is conveniently expressed
via the power regression written for the limiting current density as

(7)

where the zero superscript refers to the absence of a magnetic field, and
the numerical value of the p-exponent varies according to the magnetic
and electric field configuration. There has been a strong tendency to
correlate (for theoretical reasons, but with some statistical bias) current
density versus magnetic flux density data with a priori set values of p =
1/3, 1/4, and 1/2, but such regression relationships may be statistically
indistinguishable by model discrimination techniques.

67
Recent results on

the cathodic reduction of oxygen in metalloporphyrins,
68

the cathodic
reduction of acetophenone,

65
and the electropolymerization of aniline 69

are further illustrations of the magnetic enhancement of mass transport.
A useful tool in studying mass transport in magnetic fields has been

the electrohydrodynamic impedance technique based on the frequency
response of limiting currents observed in the presence of sinusoidally
excited magnetic fields.70 The variation of magnetohydrodynamic (MHD)
impedance with frequency is a clearly detectable function of the magnetic
flux density at low frequencies. Complex-plane analysis allows the iden-
tification of three distinct frequency ranges for the evaluation of the
magnetic field effect. Natural convective transport can also be distin-
guished from the forced flow generated by imposition of a magnetic field.
A notable advantage of the impedance technique over rotating disk-based
studies lies in the practical possibility of using very small cells without
mechanical means of rotation. The technique has also shown promise for
the analysis of thermoelectrochemical impedances obtained by frequency
response analysis of thermally perturbed electrolytic systems.71

Surface wave formation and stationary vortex formation are particu-
larly effective demonstrations of convection enhancement via magnetic
fields. A theoretical prediction

72
for aqueous electrolytes was corroborated

by experimental evidence73 produced in a concentric cylindrical cell using
copper electrodes and aqueous cupric sulfate electrolytes. Similar obser-
vations were reported by Gak and co-workers.7 Self-sustained oscillations
induced by nonhomogeneous periodic and aperiodic magnetic fields have
been demonstrated in photographs showing contiguous six- and seven-
vortex “cluster” domains in the experimental apparatus.7 ,74,75 A laser-
based visualization technique76 was successfully used to detect vortices
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carrying a highly dispersed gas–solid suspension generated by magneti-
cally assisted anodic dissolution of copper.

VI. MAGNETIC FIELD EFFECTS IN ENVIRONMENTAL
ELECTROCHEMISTRY

1 . Areas of Importance

In this context, the basic question is whether magnetic fields can efficiently
be employed to strengthen electrochemical means of environmental pro-
tection. A recent survey77 of areas of application suggests that there is
much potential for properly exploited magnetic field interaction with
various physical parameters of electrolytes. A case in point is water
employed in injection oil recovery, where the variation of hardness,
dissolved oxygen content, alkalinity, viscosity, pH, and suspended-particle
content with magnetic field strength18 is a key factor in the efficiency of the
process. Magnetic filtration and coagulation is the currently most evident
field of application, including metal recovery from industrial waste. 78

Water degasification, capillary flow control, filtration, precipitation, and
crystallization in magnetic fields are potentially promising applications.

2. Magnetic Field Effects on Corrosion Rates

Yee and Bradford
79

properly state that “it is still uncertain whether
enhancement, retardation, or both are the result of magnetic electrochemi-
cal interactions,” on the basis of pertinent literature. Their own observa-
tions of corrosion of steel indicate that the extent of magnetically induced
enhancement of corrosion is determined by the electric field strength.
Cyclic polarization of steel specimens in aqueous sodium chloride solu-
tions reveals that localized corrosion is not influenced by magnetic fields
unless the nonmagnetic corrosion rates themselves are a priori high. As
may be expected, the electric–magnetic field configuration, as well as the
geometric orientation of the specimens with respect to the fields, plays a
significant role in the extent of corrosion. More recent findings by Chiba
et al.80 indicate an increase in corrosion inhibition of aluminum in NaCl
solutions with an increase in the magnetic field strength, accompanied by
a decrease in the corrosion potential. It appears that, under the influence
of the magnetic field, the thickness of the inhibitive oxide film increases
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at a fixed chloride concentration. A representative list 77 of experimental
observations about the accelerating, decelerating, or indifferent effects of
the magnetic field provides ample encouragement for thorough systematic
studies to be done in the future.

3. Miscellaneous Aspects

Several investigations have been devoted to the influence of magnetic
fields on natural bodies of water (e.g., groundwater, spring water, water
in capillary flow).7 An outgrowth of experimental observations is the
dynamics of thin water layers, where horizontal bulk motion can be
decelerated due to friction at the surface of the thin laminary layer. The
imposition of a magnetic field results in various vortex forms shown by
visualization experiments, on account of MHD forces.81

The role of magnetic fields in various agricultural and geological
areas has also been well documented7; a short list77 outlines sources of
representative experimental investigations. One particularly interesting
set of observations82 emphasizes the importance of reliable magnetic field
measurements in the detection of underground water locations and the
movement of large expanses of water.

VII. MICROSCALE BEHAVIOR: APPLICATION OF
BOLTZMANN EQUATION-BASED TRANSPORT MODELS

The classical Boltzmann equation

(8)

represents electromagnetic interaction under general conditions on a
particle i of mass mi carrying the electric charge Qi . r and c describe the
geometric and concentration space, respectively, and ƒi is the distribution
function of the particle. The right-hand side of Eq. (8) is the collision term.
Assuming that the particles undergo only binary collisions, thus allowing
application of the Chapman–Enskog approximation,83 Tronel–Peyroz 84

and Olivier² derived the ionic current density distribution in terms of the
Γ and Γ ' characteristics defined as

(9)



The Effect of Magnetic Fields on Electrochemical Processes 345

and

(10)

where

(11)

and W is the kinetic energy of ionic species i. For a given ion, Γ and Γ '
are strongly temperature dependent [in the case of potassium ions, e.g.,
W ≅ 29.7 kJ mol

– 1
; Γ = 5486.2 at 293.16 K, and 3977.6 at 302.16 K]. At

25ºC, the value of Γ varies for common univalent ions between 3000 and
11,000. This approach was employed to estimate concentration and tem-
perature distributions, and induced potential differences in electrolytic
cells subjected to electric and magnetic fields.² The ratio of computed to
experimental variations in pH in the case of aqueous hydrochloric acid is
rather large (2 for 0.001 mol dm–3 and 3.8 for 0.01 mol dm– 3), but is well
within one order of magnitude. In the case of aqueous KCl solutions, the
ratio of differences in the logarithm of chloride ion concentrations is 1.74
(0.1 mol dm –3) and 1.78 (0.02 mol dm–3).

The estimation of temperature variations depends rather strongly on
the temperature dependence of Kw , the dissociation constant of water, and
agreement with measured values is not uniform. In the case of HCl
solutions, the discrepancy is minimal at concentrations below, for exam-
ple, 0.02 mol dm– 3 at B = 450 mT, but is not negligible at B = 640 mT. In
the case of NaOH solutions, the discrepancy is minimal even at 0.025 mol
dm– 3 when B = 450 mT. In NaBr solutions, the discrepancy is large even
in a 0.005 mol dm– 3 solution.

Application of the theory to potential differences observed under
steady-state conditions, when the direction of the magnetic field is re-
versed, has quantitatively been more successful. The predicted potential
difference is given² by

(12)

where Ex  is the electric potential field along the cell, Y is the cell width, e
is the charge of an electron (0.16 aC), τ is the characteristic relaxation time
for an ion, a is ionic activity, and m is the ionic mass. The subscripts a and
c refer to anion and cation, respectively. The ratio of predicted and
measured values of ∆V in certain HCl, KCl, and NaCl solutions, ranging
between 0.8 and 1.22, provides good support for the approach, which
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yields a relatively simple relationship for the estimation of the Hall
coefficient (Section I):

(13)

in terms of the ionic (bulk) mobilities µa and µc, the ionic Γ characteristics,
and the bulk electrolyte concentration n0 .

VIII. APPLICATION OF THE MODEL OF SLIGHTLY
IONIZED PLASMAS

In this approach, electrolyte solutions are considered as a mixture of fast
charge carriers, slow (or normal) charge carriers, and neutral species (e.g.,
solvent), providing an analogy to slightly ionized plasmas carrying elec-
trons, ions, and neutral atoms with widely different transport properties.
The tensorial nature of mobility, hence conductivity, in plasma theory
readily translates into this framework, applying Cambel’s formulation 85

of constitutive plasma equations to a plasma-oriented continuum model
of electrolytes subjected to combined electric and magnetic fields.86 Using
experimentally determined Hall coefficients, the computed charge density
of fast carriers in aqueous solutions of cupric sulfate disagrees only by one
order of magnitude with predictions of a “competing” MHD model.87

The plasma-oriented approach is also useful in estimating the inter-
action area between fast and slow charge carriers, by an appropriate
adaptation of the concept of collision cross sections to electrolytes. As an
illustration, the apparent cross-section radius of 181 nm in the case of a
0.005-mol dm– 3  solution subjected to a 1 mT magnetic field compares
favorably with the 134 nm computed from the classical Rosenbluth
formula 85 applying to electron–ion collisions.

IX. MACROSCALE BEHAVIOR: APPLICATION OF MHD
THEORY

1. Basic Notions

The flow of fluids under the influence of magnetic and electric fields can
be readily analyzed via classical MHD theory.88–91 In its application to
aqueous electrolytes, compressibility and viscous effects may usually be
neglected in the equation of motion. The magnetic Reynolds number
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(Rem ) is essentially of the same order of magnitude as the ratio of the
induced magnetic field strength to the imposed magnetic field strength.
The equation of motion is augmented by the MHD force density term j ×
B, and Ohm’s law by the σσ(v ×  B) term, where σ is the bulk electrolyte
conductivity. Of particular importance is the vorticity equation

(14)
which allows a theoretical exploration of the vortex generation or vortex
suppression capabilities of imposed magnetic fields. MHD theory has
become a widely applied tool of analysis and the interpretation of various
magnetoelectrolytic phenomena in the current literature.

2. The Application of MHD Theory to Mass Transport

In applying Eq. (14) to mass transport-controlled electrolytic processes,
an important step is the estimation of the effect of the imposed magnetic
field strength on properties of the diffusion boundary layer. Since electro-
lyte density is space-variant in this layer, the right-hand side of Eq. (14)
is nonzero, even if the low-Rem approximation [i.e., curl(j ×  B) = 0] is
invoked. This is clearly shown by the expanded form

(15)

since grad(ρ) is nonzero in the diffusion layer. On this basis, the vorticity
equation predicts vortex generation in the diffusion layer under appropri-
ate conditions and this finding offers one plausible explanation for the
experimentally observed enhancement of cathodic mass transport rates. 92

A somewhat different but equally valid interpretation is a decrease in the
mean diffusion-layer thickness due to an increasing presence of the
convective component of the convective diffusion process.

The latter interpretation was successfully used to analyze natural
convection at vertical plate electrodes by including a magnetic field-re-
lated term in the classical convective diffusion equation.93,94 The beneficial
effect of the magnetic field on mass transport may be estimated from the ratio
of the limiting current density in a magnetic field to that in its absence, called
the augmentation factor ƒA :

(16)

where Sc is the electrolyte Schmidt number and F1 is a function of two
important parameters in the classical theory95 of natural convection. The
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latter carries a correction for the presence of the magnetic field by the term
ψ(B) = (iL B/ρ gα), where α is the densification coefficient of the electro-
lyte. Furthermore,

(17)
and

(18)

In a cupric sulfate/sulfuric acid cell with vertical copper electrodes

(19)

Comparison with experimental values94 of the limiting current density
indicates a maximum of 7% relative error when Eq. (19) is employed for
estimation, within an imposed magnetic flux density range of 0.3–1.05 T.
Interferograms obtained in a thorough experimental study of electrodepo-
sition offer good qualitative support for the MHD approach, although the
temporal development of concentration-gradient patterns is highly com-
plex. 96

An attempt to solve the somewhat simplified set of MHD model
equations directly from the concentration field and current flow 97 met with
limited success for certain electrode and field configurations, where the
predicted and experimental values of current density agree at best within
one order of magnitude. Care must be exercised in assigning the role of
the convection propagator, inasmuch as magnetic fields can also induce
convection due to the nonuniform magnetic susceptibility of the partici-
pating ions, 98 provided that MHD-related mass transport can be sup-
pressed or minimized, as in a recent study by Kim and Fahidy.96

MHD-based models have been widely used in various magnetically
assisted electrolyte flow investigations.7,74,75 An application of the pump-
ing effect of combined electric and magnetic fields led to the development
of MHD-pump electrode cells, 99 where the concentration distribution,
modeled by the classical convective diffusion equation

(20)

in the diffusion layer, was solved by considering the magnetic field effect
as an interaction with the bulk electrolyte flow rate. The resulting equation
for the limiting current density:

(21)
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(25)

reduces to the simpler form iL  = kB 1/3 if the pressure drop over the flow
cell is negligible (k depends on the physical parameters of the cell and the
electrolyte). In a viscous flow in a narrow channel,1 0 0 iL is proportional to
B

1/2
; in both pump-cell configurations, agreement between theory and

experimental results is excellent.
The prediction of oscillatory flow rates in self-induced MHD-generated

oscillations (Section V) is equally possible from basic MHD principles.
74,101

The mean velocity along the circular path located halfway between two
concentric cylindrical electrodes may be written as

(22)

where

(23)

is the shape factor, I is the current, Ro  is the outer cylinder radius, ro is  the
inner cylinder radius, h is the cell height, and η is the electrolyte viscosity.
Under sinusoidal electric and magnetic fields of Io sin(ωt) and Bo sin(ωt) ,
respectively, the expression for the mean velocity becomes

(24)

hence hydrodynamic oscillation occurs at twice the frequency of the field
excitation. Equation (24) predicts velocity wave amplitudes between 0.6
and 1.2 cm s–1  (0.5 mol dm–3  CuSO4 ; H = 400–800 A m–1 ; current below
600 mA; K = 6), which fall within the order of magnitude of experimental
observations.

3. Magnetoelectrolytic Mass Transport in a Magnetic Field
Gradient

MHD theory readily predicts (at least in a qualitative sense) the beneficial
effect of gradient fields on electrolytic mass transport. Conditions of
3D-gradient fields can easily be generated for instance in large-scale
electrolytic cells by inclined electrodes102,103 and a solenoidal-type wind-
ing of cables carrying electric current. In Cartesian coordinates, the
magnitude of the magnetic flux density at an arbitrary (x, y, z) coordinate
position in the cell is given by the modulus equation
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where the subscripted variables denote the flux-density vector compo-
nents in the indicated spatial directions. In the simplest case where the
electric field is uniform and unidimensional in the y-direction, the MHD
body force density, j ×  B, has two nonzero components, ex jy Bz and –ez jyBx ,
and the forcing function on the right-hand side of Eq. (14) has four nonzero
terms with the magnitude

(26)

It follows that strong localized vortex motion may be generated by
even slightly nonuniform fields, and the convective component of the
convective diffusion equation (Eq. 20) becomes predominant. In fact, a
convincing argument may be put forward in favor of replacing Eq. 20 by
the general vector equation

(27)

where the velocity vector must be obtained from the general equation of
motion

(28)

if compressibility is ignored. F is an external force vector, for example,
gravity in the case of natural convection. The solution of Eqs. (27) and
(28) is generally impossible since not all auxiliary conditions are known,
in addition to the usual mathematical encumbrances associated with 3D
differential equations. This reality poses at present the major limitation for
extensive MHD-based modeling.

An alternative view, based on the energetic aspects of MHD flows, 88

leads to the same result. The rate of electromagnetic energy input into an
electrolyte under an electric field E is

(29)

where the first term on the right-hand side represents ohmic dissipation
(i.e., the joule effect), and the second term, describing electromagnetic
energy conversion, indicates that kinetic energy is created, producing
convective motion due to the magnetic field.

4. Profitability of Magnetoelectrolytic Processes: The MHD View

In a first approximation, the profitability of an electrolytic process may be
estimated by the profit-rate relationship 4
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(30)
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where P is the rate of profit generation, γ is the electrochemical equivalent
of the electrode reaction product, Cp is the market value of the product, Ce

is the unit cost of electricity, and γ is the specific area (electrode area per
unit cell volume). If the magnitude of current I is increased by an imposed
magnetic field, then PM  > P, if PM is the rate of profit generation under the
influence of a magnetic field, provided that the magnitude of the electric
field is not increased by the generation of secondary electric fields oppos-
ing ionic motion to the electrode. It is hazardous, therefore, to make
sweeping statements about the relative technological merits of magneti-
cally assisted electrolysis, all the more so because experimental data
collected in large-scale magnetoelectrolytic cells are scarce.

X. FINAL REMARKS

In spite of the continual growth of information on multifaceted phenomena
in electrolytic systems under the influence of magnetic fields, the exact
role of magnetism in modifying microscopic as well as macroscopic
behavior is not completely understood. Consequently, there exists at
present no overall mathematical framework or model that can explain
various magnetic field effects within a single cohesive physical or mathe-
matical paradigm. For this reason alone, further research on magnetic field
effects on electrolytes remains a challenging and worthwhile endeavor.
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I. INTRODUCTION

Current-distribution simulations are valuable for the design and analysis
of electrochemical processes.1 ,2 For example, such simulations are ubiq-
uitous in the battery and fuel-cell literature.2 ,3  They are used for electro-
chemical metallization processes not only in reactor design but also in
wafer design.4–6 A great deal of effort has also been put into the develop-
ment of analog solvers for cathodic protection systems.7

Figure 1 shows a schematic diagram of the information required as
input into a current-distribution solver for metallization processes. The
input labeled “homogeneous chemistry” refers to chemical interactions,
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such as the formation of complexed forms of cupric ions in electroless
deposition baths,8  throughout the electrolyte. It is commonly assumed that
such reactions are equilibrated (Ref. 1, Chapter 19). The input labeled
“physical properties” refers to diffusion coefficients, electrolyte conduc-
tivity, etc. “Electrode kinetics” refers to governing laws and rate constants
for the correlation of rates of interfacial reactions with variables such as
electrode potential or surface composition.

Various approximations for the fluid flow can be made. Commonly,
the flow is simply considered to be sufficient to render concentration
variations insignificant. It is assumed in Fig. 1 that the initial substrate is
a perfect conductor, so that the “terminal effect”9 ,1 0  does not need to be
considered. It is also assumed that the entire process is isothermal.
Depending on the complexity of the model, the amount of information
required can vary greatly. For example, for a primary or secondary current
distribution, where variations in concentration are ignored, the flow need

Figure 1. Schematic diagram illustrating the input or assumptions required
for the development of a current-distribution solver for metallization proc-
esses. It is assumed that the substrate is a perfect conductor.
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not be described. For more general models, the major uncertainties in the
input to the solver arise from descriptions of the fluid flow and the
electrode kinetics, especially when polarization measurements cannot be
well described in terms of a Butler–Volmer-type relationship. Assuming
that the fluid flow is laminar and that the flow and electrode kinetics are
well characterized, it should be feasible to develop an effective current-
distribution solver.

In the 1980s, a large number of laboratories developed Laplace
equation solvers for use in current-distribution simulations.5 ,1 1  These
procedures are normally based on boundary-element methods
(BEM), finite-difference methods (FDM), or finite-element meth-
ods (FEM). For Laplace’s equation, it is not clear that any particular
method has an overwhelming advantage over the others. It is, how-
ever, clear that a large number of current distributions cannot be
described by Laplace’s equation.

As Newman1 ,1 2  outlines, current distribution is governed by Laplace’s
equation when it can be described by an electrical potential in the absence
of concentration variations or by diffusion of a single species in the
absence of convection and electrical migration. For certain restrictive
conditions, current-distribution problems involving both diffusion and
electrical migration in the absence of convection are governed by
Laplace’s equation if the quasi-potential is introduced.1 3 – 1 5  Except when
solid or extremely viscous electrolytes are used, it is difficult to achieve a
stagnant electrolyte situation because of natural convection. Nevertheless,
for some geometries and for simple, boundary-layer flows, a stagnant
diffusion-layer approximation may be adequate.

In the majority of the Laplace equation solutions, the electrical
potential, subject to appropriate boundary conditions, is determined.
These primary or secondary current-distribution problems may appear to
be particularly relevant for electrodeposition, where useful deposit prop-
erties are obtained at small fractions of the limiting current. However, the
fact that industry has paid considerable attention to fluid flow in reactor
design suggests that flow effects can be important, even at a relatively
small fraction of the limiting current density.1 6 – 1 9

For example, practical electrodeposition processes use additives that
are present in very small concentrations to control deposit microstructure.
Consumption of the additives at an electrode surface is likely to lead to
concentration variations that may affect current distribution. Even in an
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additive-free bath, alloy deposition may involve significant concentration
variations for the dilute reactants.2 0 – 2 2  In addition, the occurrence of side
reactions, which may be mass-transfer controlled, can influence the dis-
tribution of deposition rate through ohmic potential drop or by changing,
for example, the solution’s pH.2 0 – 2 5  Such phenomena may be difficult to
incorporate rigorously into a current-distribution solver based on
Laplace’s equation.

The approach developed by Newman for the treatment of both mass-
transfer and electric-field effects in boundary-layer flows has had consid-
erable success.1 ,2 6  However, many flows of practical interest have
separation and recirculation regions, features not amenable to a boundary-
layer analysis. Fortunately, there has been significant progress in the
heat-transfer and other communities in computational fluid dynamics
(CFD), providing numerical methods applicable to problems important to
electrochemistry. The pioneers in using CFD for electrochemical applica-
tions are Alkire and co-workers, who have been largely interested in flow
effects in localized corrosion. The literature is briefly reviewed in the next
section.

Along with continued progress in CFD, computational power
continues to decrease in cost. CFD will thus become increasingly
common for the design and analysis of electrochemical-metallization
processes, especially for high-end applications, where feature dimen-
sions are small, requiring precise control of growth processes. This
chapter highlights some of the issues involved in choosing numerical
approaches for mass-transfer and fluid-flow calculations. For example,
a research group must decide between a commercial or an in-house
CFD code. We also discuss problems not frequently encountered in the
mainstream CFD literature, but common to researchers in the field of
electrochemical metallization.

Finally, we would like to emphasize the importance of experimental
verification of numerical simulations. Verification of CFD results is par-
ticularly important. A discussion of a variety of experimental methods for
studying fluid flow can be found in Goldstein.2 7  Of particular interest for
electrochemical applications is the work of Hanratty and co-workers, who
have extensively used redox couples at limiting-current densities to char-
acterize shear at solid walls. Much of this work has been reviewed
recently.2 8 ,2 9
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II. LITERATURE REVIEW

The CFD and mass-transfer literature is vast. In this survey, we only
highlight papers related to applications in electrochemistry. This review
is by no means exhaustive; some important papers are undoubtedly
omitted. In order to answer questions concerning flow relevant to a
specific geometry, consideration of the entire literature may be fruitful.
We have found the heat-transfer literature to be of particular relevance,
although Schmidt and Prandtl numbers in an aqueous phase normally
differ significantly.3 0  Furthermore, flows may be quite geometry depend-
ent, and extracting quantitative information from a similar but not identical
situation may be problematic.

When the governing model is given by the convection-diffusion
equation (no electrical migration effects are considered), well-established
numerical methods can be used directly in electrochemical cell design.
When using commercial software, it should be remembered that the code
has probably been benchmarked for applications different from those
found in metallization, where spatial distributions of flux at high Schmidt
numbers may be of more interest than the spatial average flux. Freitas3 1

has recently provided a comparison of several commercial CFD codes.
Many of these codes are based on a finite-volume method (FVM) or a
finite-element method. West et al.3 2 ,3 3  have discussed the application of
FVM to electrochemical systems. A similar treatment is provided below.

With a few exceptions, the fluid flow must be simulated before the
mass-transfer simulations can be rigorously performed. Nevertheless,
here are several important situations, such as that at a rotating disk
electrode, where the fluid flow is known analytically or from an exact,
numerical solution. Thus there exists a body of work that was done before
CFD was a readily available tool (for example, see Refs. 34–37). In many
of these studies, a boundary-layer analysis, based on a Lighthill transfor-
mation (Ref. 1, Chapter 17), is employed.

There have been fewer studies in electrochemistry where the flow is
known but the boundary-layer approach is inapplicable. One example has
been recently analyzed and compared with experiment. In this case, mass
transfer to a line electrode3 8  or an array of line electrodes3 9  in the presence
of an oscillatory shear flow was treated. A finite-volume approach was
used for the numerical analysis and a ferri/ferrocyanide redox couple was
used to measure the mass-transfer rate. The studies show that boundary-
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layer analysis is useful for shear flows that switch direction, but only if
the frequency is sufficiently low.

try normally requires numerical computation of the fluid flow. For exam-
The resolution of concentration fields in geometries relevant to indus-

ple, mass transfer in the wake region behind a bluff body has been studied
extensively.3 8 ,4 0 – 4 3  Such flows may be of interest, for example, for the
Romankiw paddle cell.

16–19
Numerical simulations, confirmed with ex-

perimental observations, indicate that the presence of a bluff body pro-
motes eddies that increase the mass-transfer rate to a downstream wall.
Recently, Yang et al.4 4  investigated the mass-transfer phenomena down-
stream of a circular cylinder in a confined channel. The fluid velocity fields
were computed using an FEM with unstructured grids, and the concentra-
tion field was computed using an FVM with an orthogonal mesh inde-
pendent of that used for the fluid flow calculation. The fluid velocity was
interpolated linearly from that calculated by the FEM.

Convective mass transport from small cavities is relevant to through-
mask electrodeposition and to localized corrosion and has hence received
much attention. In localized corrosion, mass transport is important for
determination of the local environment inside an active pit. For through-
mask deposition, an understanding of mass transport may be important
for design of mixing methods or for analysis of measured deposit profiles.
The electrodeposition in circular or rectangular cavities formed by a
photoresist has been studied by Kondo et al.4 5 ; it was found that the shapes
of deposited bumps can be explained by calculations of vortex evolution
and penetration flow.

Studies on the effect of hydrodynamics on localized corrosion and
electrochemical etching processes have been reviewed by West et al. 46

Much of the work has been performed by Alkire and co-workers.4 7 – 5 2  They
have used FIDAP,5 3  a commercial FEM code, to investigate the influence
of fluid flow on geometries relevant to etching and to pitting corrosion. In
most cases, Stokes’ flow was considered. The Stokes’ flow approximation
is frequently valid inside the cavity because its characteristic dimension
is small. However, the flow outside the cavity may not be in the Stokes
flow regime. Since it is the external fluid motion that induces flow inside
the cavity, under many (especially unsteady) situations, the use of the
Stokes flow approximation may be problematic. Some of the work of
Alkire and co-workers has been extended by Shin and Economou,5 4 ,5 5  who
simulated the shape evolution of corrosion pits. Natural convection was
also considered in their study.



Analysis of Mass Transfer and Fluid Flow for Electrochemical Processes 361

Many other studies related to transport to and from cavities can be
found in the heat-transfer literature. Fully developed shear flow in a
channel passing over the top of a cavity has been studied by O’Hern et
al. 56  and Chen.57  A similar study was performed by Chang et al.5 8  for
aspect ratios greater than 1. Multiple recirculation eddies were found; the
characteristic velocity of each eddy was found to decrease as the bottom
of the cavity was approached. Ghaddar et al.5 9 ,6 0  investigated the flow
pattern inside a cavity when the channel flow was destabilized by upstream
cavities. It was found that the resulting unsteady flow enhanced the
heat-transfer rate to the bottom surfaces of downstream cavities.

Jordan and Tobias6 1  used CFD in a study of flow effects in a trench
with a triangular cross section. Such a geometry simulates a scratch and
is used to study leveling agents. Chen et al.6 2  extended this work by
coupling shape-change calculations with CFD. Here, the influence of
leveling agents on electrodeposition into hemicylindrical cavities in the
presence of a shear flow was calculated. The stream function–vorticity
form of the Navier–Stokes equations was simulated. Structured, orthogo-
nal grids generated with GridPro6 3  were used. Numerical results were
compared with more approximate simulations based on stagnant-diffusion
layer models. Prudence was required in the development of the shape-
change algorithm.

Additional applications of CFD to electrochemical systems can be
found in the work of Moreno et al.,6 4  who used FIDAP to study mass
transfer of an impinging jet confined between parallel plates. Lee et al. 6 5

used a different commercial CFD software, microCOMPACT,66 to aid the
design of fountain-plating cells. Applications to bump plating were em-
phasized. Hourng and Chang6 7  numerically calculated the fluid flow and
the potential field of a typical electrochemical drilling process. They used
a Poisson equation to transform the irregular physical domain to a rectan-
gular computational domain.

As discussed in the introduction, many current-distribution problems
are not described by a simple, convection-diffusion equation or by
Laplace’s equations. Alavyoon et al.6 8  provided an example in which the
coupled concentration and potential fields were solved throughout the
entire computational domain, along with natural convection flow fields.
The equations were solved by evaluating the nonlinear terms at the
previous time step. Gu et al.6 9  provided an additional study that coupled
charge and mass transfer to natural convection. This work is related to
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lead-acid batteries and used three benchmark cases for validation of the
code.

Harb and Alkire51  have modified FIDAP to solve for a tertiary current
distribution in a pit. However, few details of the numerical procedure were
given. Sani used a Galerkin FEM with a front-tracking, adaptive mesh
technique to create a model for certain problems in electrochemical plating
and free-surface fluid mechanics.70 The model includes the effect of
convection, diffusion, and migration. Yang and West71 numerically and
experimentally characterized the current distribution on a line electrode
with varying concentrations of supporting electrolyte. Since the elec-
troneutrality tightly coupled the electrical potential and the concentration
fields, the discretized sets of algebraic equations at each node point were
solved simultaneously.

The simulation of convective effects on current distributions in the
presence of turbulent fluid flow has not been treated extensively, even
though turbulence is common in many practical applications. Wang et al.72

provided a literature review of some of the previous work. They also
presented simulation results for a two-equation kinetic energy-dissipation
turbulence model.73,74 The model equations were solved numerically
using the SIMPLE75 algorithm.

III. COMPUTATIONAL FLUID DYNAMICS

We limit our discussion here to laminar flows governed by the steady or
unsteady, incompressible Navier–Stokes equations. In addition, we re-
strict ourselves to flows where the solution to the energy or the concen-
tration equation does not influence the flow field, a circumstance not
uncommon to isothermal constant viscosity liquid flows of relevance for
many electrochemical systems. The incompressible, constant-property,
Navier–Stokes equations are given below, with summation over repeated
indices:

(1)

(2)
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While these equations continue to hold for incompressible turbulent
flows, the range of length scales (i.e., length scales of the smallest eddies
to those of the physical dimensions of domains) encountered in a turbulent
flow requires a prohibitively large number of grid points.76 Moreover, a
three-dimensional, time-accurate calculation with time steps small enough
to resolve the smallest scale motion is needed, even though the flow may
be steady and two-dimensional in a time-averaged sense. Incidentally, an
approach of this type to resolve turbulent flow is called direct numerical
simulation (DNS). Currently, DNS remains solely a research tool, owing
to the prohibitive computational costs associated with simulating even the
simplest geometries at relatively low turbulent Reynolds numbers. The
primary means for solving turbulent flows at present is through their
time-averaged form, known as the Reynolds-averaged Navier–Stokes
(RANS) equations. The averaging process leads to new terms that are
interpreted as “apparent” stress gradients and are usually expressed in
terms of mean variables through turbulence models.

Having decided to limit ourselves to laminar flow, we have a word of
caution. Unless one has existing knowledge from theory, experiment, or
otherwise, there is no easy way to ascertain that a given flow (determined
by the geometry and the boundary and initial conditions) will indeed be
laminar, or steady, or two-dimensional. Usually for a given domain, as the
characteristic flow speed is increased, there may exist one or more critical
Reynolds numbers at which a steady laminar flow may become unsteady
periodic, an unsteady periodic flow may become turbulent, and/or 3D
structures may appear in an otherwise nominally 2D domain. Such critical
Reynolds numbers vary greatly with geometry. Hence, DNS may be the
only tool for determining the range of applicability of a laminar flow
calculation in the absence of experimental data.

1. CFD Algorithms

Equations (1) and (2) are said to be in primitive (ux, uy, uz, p) variable form.
While there are other forms that rely on derived variables, such as stream
function vorticity, vorticity–velocity potential, and dual-potential meth-
ods, we restrict ourselves to the primitive variable form because of their
popularity and ease of interpretation. For a discussion of these methods,
as well as for further details of most aspects of CFD discussed here, see
Refs. 73, 74, and 77.
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The governing equations (1) and (2) are of a mixed parabolic-elliptic
nature. A key feature of incompressible flow is that that the time derivative
of pressure vanishes from the equations. Hence the equations do not
transmit any pressure history directly, and it is as if a new pressure field
is established at each step. This situation does not arise for compressible
flow where, owing to the presence of the time derivative of the pressure
term in the continuity equation, one can solve the coupled hyperbolic
system by advancing in time. In the absence of such a term, the algebraic
system of equations becomes singular. This is also why attempts to solve
the incompressible flow problem as a low Mach-number, compressible-
flow problem lead to ill-conditioned algebraic systems with poor algo-
rithmic efficiency and accuracy. For a detailed discussion of these issues,
see Ref. 74, p. 642.

accurate solutions have been obtained by Merkle and Athavale79 and
Chen and Pletcher, 80  among others; see Ref. 74, p. 664.

The above problems are essentially numerical in nature since no
observable changes occur in the flow physics as the Mach number is
reduced from, say, 0.3 to 0.01, while holding all other parameters the same.
In fact, one of the solution techniques for incompressible flow relies on
adding an artificial time term that vanishes at convergence to a steady state,
allowing steady-state solutions to be obtained efficiently. A similar ap-
proach can also be used to obtain time-accurate solutions by ensuring that
the artificial time term vanishes upon convergence at each physical time
step. The coefficient of the artificial time term is chosen to eliminate the
ill-conditioning of the algebraic system. Methods that rely on such an
approach treat all dependent variables as simultaneous unknowns and the
coupled hyperbolic system is solved by advancing in time. These methods
are called artificial compressibility methods. The steady-state version
of the method was proposed by Chorin.78 Since then, successful time-

The second class of methods, which seem to be more popular among
the commercial CFD codes, relies on the pressure-correction approach.
Here, the velocity components are solved in an uncoupled manner without
using the continuity equation as a constraint. An equation for pressure or
a change in pressure (hence the term “pressure correction”) is derived that
will alter the velocity field so as to better satisfy the continuity equation.
The precise formulation and the iterative procedures may differ as long as
iterative application of the momentum and the pressure-correction equa-
tions produces a solution that satisfies both the momentum and the
continuity equations. Algorithms that differ in this fashion are employed
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in the marker-and-cell (MAC) method of Harlow and Welch,81 the SIM-
PLE or SIMPLER methods of Patankary,

75
and the PISO method of Issa.82

Despite many advances in algorithms and techniques aimed at accu-
rate solution, convergence acceleration, reduction in storage requirements,
and more recently, parallelization, there still remains considerable uncer-
tainty about the precise numerical accuracy of an approach and about its
applicability to a wide range of physical problems. For the case of laminar
flow, where there are no uncertainties that are due to the choice of a
turbulence model, the most significant source of uncertainty (and debate)
arises out of the choice of spatial discretization for the convective term in
the momentum equation. The two most popular choices are either upwind
differencing (along with other versions that revert to upwind at high grid
Reynolds numbers) or central differencing. While the former is nominally
(for uniform grids) only a first-order scheme, it is not obvious that the
latter scheme, which is nominally second order, is necessarily better. This
is because of the need to add and manually adjust parameters that control
artificial dissipation in central difference schemes in order to damp spuri-
ous oscillations. There are a variety of such means to add artificial
dissipation.

The use of a particular differencing scheme is, however, intimately
tied in with the grid that is used, for two reasons. The first is that the actual
physical and mathematical properties of the equations of motion (or, for
that matter, scalar transport) suggest that upwinding is indeed the appro-
priate approach as grid Reynolds (or Peclet) numbers (Regrid ) become
much greater than 2 (say, 10). For values of Regrid less than 2, central
differencing is not only appropriate but is also stable (i.e., does not lead
to spurious oscillations). Note that the computational demands of using
sufficiently refined grids, so as to ensure that Regrid is everywhere less than
2, are often severe enough to preclude the use of central differencing.

The second reason is that most theoretical arguments for use of either
central or upwind schemes rely on one-dimensional considerations, where
by default the grid is aligned with the flow. This is not the case in two or
three dimensions where, except for boundary-layer-type flows, it is diffi-
cult to ensure that the grid is everywhere aligned with the flow. De Vahl
Davis and Mallison (Ref. 83, p. 108) have shown that when the flow is
oblique to grid lines, upwind schemes are dissipative and this “false
diffusion” can be minimized either by grid refinement or by realigning the
grid lines with the flow. A current assessment of artificial dissipation
models for central differencing is given by Lin and Sotiropoulos.84
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Given the inconclusive nature of this debate, our recommendation is
that regardless of what scheme is utilized, studies that progressively refine
the grid until the computed results are grid independent are a necessary
but not sufficient ingredient of any CFD analysis. Moreover, as far as
possible, an attempt should be made to ensure that grid lines are aligned
with the flow.

A variety of explicit (Dufort–Frankel, Lax–Wendroff, Runge–Kutta)
and implicit (approximate factorization, LU–SGS) or hybrid schemes
have been employed for integration in time. Because of the complexity of
the incompressible Navier–Stokes equations, stability analyses to deter-
mine critical time steps are difficult. As a general rule, the allowable time
step for an explicit method is proportional to the ratio of the smallest grid
size to the largest convective velocity (or the wave propagation speed for
an artificial compressibility method).

As viscous regions become thinner or physical features of the prob-
lem become smaller, demanding finer grids, or as convective velocities
become large, implicit methods become particularly attractive because of
their lack of a severe time-step constraint. However, even for an implicit
method, in practice, the time step cannot be made arbitrarily larger, and a
larger time step is frequently attained at significant additional computa-
tional costs. For engineers, who are likely to use existing research or
commercial codes, a heuristic choice that is usually made is to set the
implicit time step to a small multiple of the explicit time step. Frequently,
time steps are continuously increased until further increases lead to a
nonconvergent solution.

2. Grid Generation

The choice of an appropriate grid becomes a critical issue for a variety of
reasons. There are two somewhat separate issues involved. One is the
overall layout. If the geometry is regular (e.g., rectangular), then the choice
of grid lines that follow coordinate lines is straightforward, producing
what is called a structured, orthogonal grid. It is structured because the
number of grid points per grid line is constant, making it easy to identify
the neighboring grid points immediately and easy to address the grid
points in a computer program. It is orthogonal because grid lines intersect
each other at right angles, so that all surface (e.g., surfaces of control
volumes produced by the grid points) vectors have only one non-zero
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component. This feature makes it much easier to evaluate fluxes across
each face.

However, the need to obtain numerical solutions most often arises in
studies of complex geometries. Hence the ability to model complex
geometries is one of the key aspects of CFD. Consequently, orthogonality
is sacrificed. In fact, most finite-volume-based commercial codes use
boundary-fitted, nonorthogonal, structured grids. The advantage of such
grids is that they can be adapted to any geometry, and since grid lines
follow boundaries, boundary conditions are easily implemented. While a
structured grid is desirable, as discussed earlier, it does limit geometric
flexibility, sometimes producing grids with severe nonorthogonality.
While nonorthogonality is essential for describing complex geometries, it
almost always leads to loss of accuracy. This difficulty has largely been
alleviated by the development of algorithms that allow block-structured
grids, where the domain is subdivided into blocks (the block-connectivity
information must now be stored), with the grid being structured and nearer
to orthogonality within each block. Most FEM commercial codes use
unstructured grids, sacrificing simplicity of data structure for virtually
unlimited control of element shape.

Once the type of grid is selected, the second important issue is the
number of grid points that must be used in each direction and in each block,
for block-structured grids. As discussed earlier, accuracy as well as
stability are intimately dependent upon the grid size. The need for refined
grids arising from these requirements must be balanced by the increased
computational costs that are, at least, proportional to the number of grid
points. Also, the allowable time step, and hence computational time,
depends on the ratio of grid size to convective velocity.

Most users of CFD are likely to use either a built-in grid generation
module within their CFD code or a separate grid-generation software
package. In the latter case, a file that contains the coordinates of all grid
point locations is produced. If the grid is block structured or unstructured,
connectivity information for blocks or elements, respectively, is also
included. Grid generation for CFD is a field by itself with entire books
(e.g., Ref. 85) written on the subject. A more accessible review is also
provided by some of the recent books on CFD.73,74 An overview of
structured grid generation is provided by Eiseman.86

It is not possible here to review the variety of existing techniques for
grid generation. Instead, some rules of thumb governing the choice of
grids are discussed. Perhaps the single most important consideration in
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modeling fluid flow is the existence of boundary layers. For example, for
a flow over a stationary flat plate, the streamwise velocity is nearly
uniform, except in the vicinity of the wall, where the velocity must rapidly
reduce to its no-slip value. The thickness of this boundary layer depends
upon the flow velocity and the distance from the leading edge. The
dramatic variation in velocity occurs in the direction normal to the wall,
whereas the changes in the direction along the wall are more gradual. One
way to handle such a case is to stretch the grid in the normal direction with
a stretching factor, of, say, 1.1. This means that the size of each consecutive
grid in the normal direction is 1.1 times the previous one. One of the many
heuristic criteria that describe grid quality is that stretching factors should
not exceed 1.15. Note that if a stretching factor of 1.15 is applied to 100
consecutive gird lines, the largest grid is more than a million times larger
than the smallest one.

It may also be necessary to cluster grids in flow regions, where one
may anticipate separation (e.g., downstream of bluff bodies) or recircula-
tion regions (e.g., in cavities or downstream of separation points). Hence,
physical features of the geometry as well as the flow physics influence the
clustering of grids in selected regions of the flow domain. The art and
science of clustering grids in such regions is usually achieved by evaluat-
ing some measures based upon tentative flow solutions. This procedure is
called adaptive grid generation. Note that fine grids near a wall, where
velocities are low, are not as detrimental to time-step size as fine grids in
a uniform flow region, where velocities are much larger.

Moreover, when changes in one coordinate direction (e.g., along the
wall) are considerably slower than in the other (normal to the wall), grid
lines in the streamwise direction can be spaced further apart than those in
the normal direction. This produces grids with a high aspect ratio, that is,
the ratio of the larger dimension to the smaller. While aspect ratios can be
high if one is certain of the flow behavior, one must be careful not to
deviate significantly from unity in separation and recirculation regions.
One should be particularly aware of the unusually high aspect ratios that
can be produced when grid stretching is utilized. The elimination of
high-aspect-ratio grids is perhaps the most significant advantage that
unstructured grids offer.

One usually begins with a computation on a coarse grid in order to
ensure that the geometry, boundary conditions, initial conditions and fluid
properties are properly implemented. A preliminary flow solution is
obtained in this fashion. Coarse-grid solutions, combined with any other
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a priori knowledge of the flow physics, are utilized to progressively refine,
stretch, and cluster the grid to capture the flow physics accurately.

Frequently, the goal of an engineering CFD assignment may be to
study a host of different cases with parameter or geometry variations. The
only means of minimizing inaccuracy in such situations is to carry out a
detailed analysis of at least one test case, preferably the one that is
considered most stringent (e.g., has the largest gradients in flow). A
detailed analysis would involve ensuring that any further grid refinement;
reduction in time step; and reduction in stretching, aspect ratio, and
nonorthogonality do not alter the essential physics. A recent study of
three-dimensional, incompressible laminar (Re = 790) flow in a 90º bend
has demonstrated that this is no easy task and that even if they are carried
out in painstaking detail, such efforts may still be inconclusive.84 For this
classic test case, for which detailed experimental data exist,87 it was found
that even the finest mesh with an excess of 700,000 points was not
sufficient to establish grid-independent solutions. This note of apparent
pessimism is only meant as a warning and is not intended to discourage
the use of CFD.

IV. MASS TRANSFER

Except when natural convection is considered, the analysis of mass
transfer can be determined after the flow field is obtained. Here, we thus
assume that fluid velocity fields are known. Since Schmidt numbers in
aqueous electrolytes are typically on the order of 1000 and can be much
larger, the accurate resolution of concentration fields may require much
finer meshes than those for the flow fields. It thus may be advantageous
to develop methodologies that permit the use of different grids for the
concentration fields.

Flexibility in solving for concentration fields may also be important
because the fields may be coupled through an electrical potential or
through homogeneous chemical reactions.1 Such problems often involve
the solution of coupled, nonlinear differential equations that may not be
easily amenable to commercial solvers. For models involving only one
spatial dimension, Newman’s BAND(J) subroutine,1,88,89 a block tridiago-
nal matrix algorithm (TDMA), has been widely used. A finite-difference
method using central-difference discretization is typically used to generate
the coupled algebraic equations resolved by the block TDMA. Numerical
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methods that utilize this or similar algorithms can be developed to solve
the discretized equations that result from two- or three-dimensional prob-
lems. Common algorithms are described, for example, by Ferziger, 90

Ferziger and Peric, 73  and Pantakar. 
75

Various methods can be used for the discretization of the governing
equations, including FDM, FEM, and FVM. FDM is well known in
electrochemistry and is derived by using truncated Taylor series for the
approximation of derivatives. FVM, which is less well known in electro-
chemistry but is commonly employed for CFD, is discussed here.

1. Finite-Volume Methods

In finite-volume methods, the integral formulation of the conservation
laws over a small physical control volume is discretized directly. FVM
employs a conservative discretization, that is, each species is guaranteed
to be conserved, even for coarse meshes. In contrast, many traditional
FDMs are not conservative. For example, owing to the nonlinear nature
of the constitutive flux equations of ionic species in an a priori unknown
electric field, FDM is nonconservative, even when constant physical
properties are assumed. 32

In an FVM, the region of interest is subdivided, as in FEM, into a set
of nonoverlapping cells that cover the entire domain. On each cell, the
conservation laws are applied to determine the unknowns at a discrete
point in the cell. These node points can be positioned anywhere in the cells.
A typical choice would be a cell-centered node point, that is, the node
point is at the geometric center of the cell. There is considerable freedom
in the shape of the cell and the node positions. For example, cells can be
quadrilateral or triangular and they can be structured or unstructured. 77 In
addition to the conservation of material and its geometric freedom, another
important advantage of FVM is its flexibility in treating high-Peclet
number problems.

Consider one-dimensional transport in the element shown in Fig. 2.
The shell mass balance is written as

{Rate of accumulation} = {Rate of mass in} – {Rate of mass out} +
{Rate of generation}

or, on a unit area base,

(3)
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Figure 2. Schematic diagram of a one-dimensional control volume, with the west and east
faces and the neighboring node points labeled.

(4)

where N i,w is the flux of species i at the “west” face of cell jx, Ni,e is the
flux at the “east” face, and Ri is the rate of generation of species i per unit
volume. The cell has dimension ∆ xjx in the x-direction and unit dimensions
in the y- and z-directions. The flux of species i usually contains convective
terms and diffusive terms:

(5)

(6)

Typically, after making the mass balance for a small element, the element
spacing, ∆xjx , is allowed to become infinitesimally small to obtain a partial
diffrential equation. In an FDM, the differential equation is discretized
and the resulting algebraic equations are solved numerically.

In an FVM, the step where ∆xjx is assumed to be infinitesimally small
is omitted. Instead, Eq. (4) is discretized. The flux expressions are discret-
ized with an appropriate finite-difference approximation. In the limit as
∆ xjx  → 0, FVM and FDM give identical results. If the flux is the same for
a surface shared by adjacent cells, material is rigorously conserved. This
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conservation is true regardless of the size of ∆xj x . Therefore, preliminary
results can be obtained quickly with a coarse mesh without loss of material
conservation.

2. Two-Dimensional Formulation on an Orthogonal Grid

A two-dimensional control volume is shown in Fig. 3. The control volume
centered at the node point (jx, jy) is rectangular. A material balance for
species i at node point (jx, jy) can be written as

(7)

Figure 3. Schematic diagram of a two-dimensional control volume.



Analysis of Mass Transfer and Fluid Flow for Electrochemical Processes 373

where Ni,w , Ni,e , N i,s, and Ni,n  are the normal fluxes of species i at the west,
east, south, and north faces of the cell (jx,jy ), and Ri is the production rate
per unit volume. The volume of the cell is ∆xjx, jy∆yjx, jy, assuming that the
cell has unit dimension in the z direction. In general, the flux of species i
can be affected by all of the variables and their gradients. For example,
along the west face the flux can be written as

(8)

Analogous equations are written for fluxes along the other faces. Equation
(8) is assumed to be linear. Commonly, in electrochemical systems, the
constitutive relationship may be nonlinear. For example, assuming dilute-
solution theory, the flux of species j is given by

(9)

Since the electrical potential is an unknown, the first term on the right-hand
side is nonlinear. However, a numerical method to be employed is likely
to linearize that term around a guess so that for a given iteration, the flux
relationship (in deviation form) is given by Eq. (8).

To obtain an algebraic approximation to Eq. (7), the for fluxes
expressions on each face must be discretized. The optimal interpolation
formula used to evaluate the variables ck and their derivatives depends on
the local Peclet number. Nevertheless, the formulas for the east and west
faces will have the following forms:

(10)

(11)

(12)

(13)

Similar expressions would be utilized along the north and south faces. For
a low Peclet number, a linear interpolation is most appropriate. For this
case,

(14)
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and

When the grid Peclet number

oscillatory behavior in the concentration profile (which is physically

and

The high Schmidt numbers (i.e., the ratio of kinematic viscosity v to
the relevant diffusion coefficient D, that arise in electrochemical systems)
suggest that many convection-diffusion problems may be characterized
by large Peclet numbers,

When uniform meshes are used,
1 / ∆x, and β s  = βn  = 1/ ∆y.

(15)

where uchar  and Lchar are the characteristic velocity and length, respectively.

(16)

where ∆xjx is the grid size, the central-difference approximation causes

unrealistic). This can be eliminated by use of an upwind scheme. In the
upwind scheme, the variable in the convection term is assumed to have
the value at the node point on the upwind side of the cell. Therefore βw

and βe remain the same, but

α e =0; α w = 0 when the flow is from west to east (17)

αw = 1; αe = 1 when the flow is from east to west.

The upwind scheme described here is first-order accurate in space
while the central difference scheme is second-order accurate. Hence a
central-difference scheme is preferred whenever possible. Since it is the
grid Peclet number that decides the behavior of the numerical schemes, it
is, in principle, possible to refine the grids until the grid Peclet is smaller
than 2. This strategy, however, is often limited by the required computing
time. With sufficiently fine meshes, the two schemes should give essen-



Analysis of Mass Transfer and Fluid Flow for Electrochemical Processes 375

tially the same solution. The upwind scheme, however, gives physically
realistic solutions even for coarse grids.

The order of accuracy of the upwind scheme can be improved by
using a higher-order accurate scheme such as QUICK (quadratic upwind
interpolation for convective kinematics).77 The concentration at an inter-
face is interpolated by means of a parabola instead of a straight line. The
use of QUICK or similar methods may, however, complicate implemen-
tation of boundary conditions or lessen the convergence rate of the solution
algorithm.

In order to treat geometries of arbitrary complexity, nonorthogonal
grids are required. Even when an orthogonal mesh can be used, the
ability to use nonuniform grids is normally required to allow sufficient
grid density in the regions where concentration variations are the
greatest. Various strategies outlined in the previous section can be
adopted.

3. Validation of Simulations

In order to obtain confidence in the results of numerical simulations,
numerical experiments are performed. These involve solving similar
problems, for which theoretical or numerical treatments or high-qual-
ity experimental data are available. Ultimately, however, simulations
of the problem of interest must be verified by increasing the grid
density until the solution does not change when additional grid points
are added. For an unsteady solution, convergence on time-step size
must also be verified.

V. EXAMPLES OF APPLICATIONS

In order to highlight some possibilities and potential problems for current-
distribution simulations, two examples from recent articles are discussed.
The first example is concerned with copper deposition from a poorly
supported electrolyte, but in well-defined, unsteady fluid flow, for which
an analytical solution is available.71  The second example refers to ferri-
cyanide reduction in the presence of an unsteady flow, for which CFD
was required to interpret experimental measurements.44
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Figure 4. An oscillating-plate cell. The counter electrode is
stationary, and the working electrode is flush mounted in an
otherwise insulating plate that oscillates in its own plane.

1. Copper Deposition

A schematic of the electrochemical cell is shown in Fig. 4. A working
electrode of length 2L is mounted on an otherwise insulating plate that
oscillates in its own plane:

(18)

The counterelectrode is placed at a distance B from the working electrode.
When L/B << 1, the solution domain is essentially semi-infinite.* Calcu-
lations were carried out on a finite domain. Numerical experiments were
performed to determine the appropriate size of the truncated computa-
tional domain. The required size decreases with increasing Peclet number.

Deposition of copper at various fractions of the limiting current in the
presence of either excess or a limited amount of sulfuric acid was studied.
For the analysis of the latter conditions where electrical migration is

*For a convection-diffusion problem, where the electrical potential is not relevant to the
prediction of current distribution, a semi-infinite domain poses no conceptual problems;
however, the treatment of an electrical potential in a two-dimensional, semi-infinite domain
is problematic. When comparing simulation with experiment, the potential drop between
the outer edge of the computational domain and the actual position of the reference or
counter-electrode must be estimated.
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important, the sulfuric acid was assumed to be dissociated completely into
sulfate and hydrogen ions.

Simulations assumed dilute-solution theory, so that the flux of species
j is given by Eq. (9). If the origin is attached to the center of the electrode
on the moving plate and if L/B << 1, the velocity parallel to the electrode
can be approximated by

(19)

where θ is a constant.
It is assumed that no homogeneous reactions take place in the solu-

tion; hence the three (one each for Cu2+ , H+, and SO2–
4 ) material balance

equations become

Figure 5. Simulated and measured polarization curves obtained for two flow
conditions, in the presence of excess, supporting electrolyte. The bulk concen-
tration was 3 mM CuSO4  and 0.1 M H2SO4. The potential is relative to an
Hg/Hg2SO4  reference electrode.
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Figure 6. Simulated and measured polarization curves obtained for two
flow conditions, in the presence of a small amount of supporting electrolyte.
The bulk concentration was 3 mM CuSO4  and 0.3 mM H 2SO4. The potential
is relative to an Hg/Hg2SO 4 reference electrode.

(20)

In order to determine the electrical potential, the electroneutrality con-
straint is also imposed:

(21)

The boundary conditions are described in more detail elsewhere. A
zero-flux condition is imposed on the electrode for all species except the
reactant Cu2+. A Tafel relationship with a concentration-dependent ex-
change current density was used to describe the electrode kinetics.91  The
exchange current density was found from rotating disk experiments, and
all other model parameters were taken from the literature. No parameters
were adjusted for the simulations in the cell.
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For most cases, the experimental and simulated time-varying current
densities are in good agreement. Figures 5 and 6 compare measured and
simulated polarization curves under different flow conditions. Here the
dimensionless plate frequency is defined as and
Pe = In these figures, each point is the time-average
current density, and the ratio r is defined as The dimen-
sionless concentration of Cu2+ is then given by electroneutrality.

Figure 5, where = 0.99, shows results for an excess supporting
electrolyte; the results could be simulated with a standard convection-
diffusion solver as well as the coupled-field solver outlined below.
Discrepancies between experiment and simulation at the limiting current
density are believed to be due to surface roughness. In contrast, Fig. 6,
with = 0.3, shows results for a case where electrical migration is
important and was treated in the manner described below.

Equations (9), (20), and (21), and the boundary conditions define a
nonlinear and coupled system of partial differential equations, solved by
an FVM. The equations were linearized around a guessed value. The
guessed values were updated iteratively to convergence before executing
the next time step. Since the electroneutrality constraint tightly couples
the potential and concentration fields, the discretized sets of algebraic
equations at each node point were solved simultaneously. Attempts were
made to employ a sequential solver in which the electrical field was
assumed for determination of the concentration of each species. In this
way, the concentration fields appear decoupled and could be determined
easily with a commercial, convection-diffusion solver. A robust method
for converging upon the correct electrical field was, however, not found.

Both point-by-point and line-by-line overrelaxation methods were
used to resolve the algebraic equations.75,90 An overrelaxation parameter
of 1.5–1.8 was typically used. The two methods required similar compu-
tational times. An upwind scheme was used for all variables for high-Pe
problems, while a central-difference scheme was used for low Pe. For
some high-Pe cases, a central-difference scheme was used for the poten-
tial, but no appreciable differences in the results were observed.

Numerical experiments were performed to determine the minimum
computational domain and an adequate grid size. Uniform grids were used
near the electrode. Beyond this region, nonuniform (compound-interest)
grids, with a stretching factor of less than 1.2 in both directions, were used.
When the electric field is large, a more finely resolved grid is required.
The number of iterations to obtain a converged result was also found to
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increase in the presence of large electric fields. The convergence rate was
improved if a good initial, trial solution was given for the potential.
However, convergence was obtained for almost any initial guess. A
conclusion concerning the numerical method is that tertiary current-
distribution solvers, which are time accurate and based on a control
volume formulation, can be effectively implemented if the tight cou-
pling between the electrical and concentration fields is exploited.

2. Mass Transfer during Unstable Flows Generated by a Blocking
Cylinder

The second example is also concerned with estimation of mass-transfer
rates in the presence of unsteady, laminar fluid flows. The present problem
was investigated because an understanding of mass-transfer rates behind
bluff bodies may enable the development of mixing methods for high-end
metallization applications. This example is chosen here to highlight the
complexity in flow fields that can appear in an ostensibly simple geometry.

For example, the vortex shedding phenomena downstream of a cyl-
inder, which have been studied extensively, show very rich dynamic
behavior. For a cylinder in a free stream, the flow is found to be steady for
Re < 50 and periodic for 50 < Re < 194. At higher flow rates, the
appearance of three-dimensional vortices has been observed before the
development of turbulence. A detailed review of vortex dynamics behind
a cylinder is given by Williamson.92

Yang et al. 44  report an experimental and computational study of mass
transfer to a channel wall downstream of a cylinder. The rate of mass
transfer was recorded at various locations. Ferricyanide reduction at a
mass-transfer-controlled rate from an electrolyte containing a large
amount of KCl was used for the experimental measurements. A diagram
of the cell is shown in Fig. 7. A cylinder of diameter d is placed a distance
b from the bottom wall, and a working electrode of length 2L is placed at
a distance x downstream of the center of the cylinder. The fluid flow can
be characterized with a Reynolds number defined as

(22)

where v is assumed to be 10–2 cm2/s and u avg  is the average velocity.
The Reynolds numbers that were investigated ranged between 40 and

500. The primitive-variable forms of the continuity and momentum equa-
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Figure 7. Schematic diagram of a flow channel
of height h with a blocking cylinder of diameter d
placed in the center (b = h/2). The working elec-
trode (labeled mass-transfer sensor) is placed a
distance x downsteam of the cylinder center. The
counterelectrode (not shown) is located on the
opposite wall of the channel.

tions were solved using an FEM detailed by Wasfy et al.93 The standard
Galerkin approximation, which reduces to a central-difference scheme,
was used. The solution algorithm can be classified as being of an artificial
compressibility type. The code had previously been validated against
several steady as well as unsteady benchmark fluid flow problems.78

The electrode length, 2L, is much smaller than the computational
domain used in the fluid simulations. A separate mesh was therefore used
for the mass-transfer calculations. Velocity components in the mass-transfer
calculations were approximated by their first terms in a Taylor series expan-
sion in distance y from the wall:

(23)

where was determined from the flow simulations. These
velocity components satisfy the continuity equation as well as the no-slip
boundary conditions.

With these approximations, the concentration field near the electrode
is given by

(24)
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At the flow exit, the normal concentration gradient is set to 0. At the flow
inlet and at large distances from the electrode, the concentration is set at
the bulk value. The concentration is set to 0 on the electrode surface.

Temporal variations of the current density for Re = 110 are shown in
Fig. 8. Only the quasi-steady results, after the initial time transient has
disappeared, are shown. The blocking cylinder with d/h = 0.25 was placed
at the channel center (b/h = 0.5). The current density is shown for a sensor

Figure 8. Simulated (dashed lines) and measured (solid lines) limiting current
density as a function of time for three positions downsteam of the cylinder for d/h =
0.25. The experiments were obtained at Re = 110, and the simulations for Re = 100.
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located at x/d = 8.4, 4.1, and 1.9. The simulated current densities for Re =
100 are also shown. Similar agreement was found for a large range of
Reynolds numbers. The agreement in the average current density near the
cylinder (x/d = 1.9) was generally found to be the worst.

Current densities were recorded as a function of time for a large
number of flow rates. For Re < 50, the mass-transfer rate was steady. When
Re > 200, more than one frequency of oscillation in mass-transfer rate was
encountered. In the range 50 < Re < 200, only one dominant frequency
was observed. The frequency of oscillation is a function of Re. The
experimental and simulated frequencies as a function of Re for both
d/h = 0.25 and d/h = 0.5 are in close agreement.

Both experiments and simulation indicate that the frequency is the
same for all three positions. The oscillation amplitude increases with
distance downstream of the cylinder and reaches a maximum near x/d =
4.1. Beyond this region, the amplitude decreases. For most simulations,
there is reasonable agreement with experiment in frequency and in average
current density. Simulations, however, tend to overpredict the amplitude
of the temporal oscillations in the current density (see Chapter 1).

The discrepancy in average current density at x/d = 1.9 is believed to
be due to the sharp variation of the shear with position in the cylinder
region. Figure 9 shows the simulated spatial variation of the time-averaged
wall shear β avg for Re = 100. The shear is at a maximum slightly down-
stream of the cylinder center. It decreases sharply to a minimum at around
x/d = 4.1 and then increases to a nearly constant shear. The current density
(also shown) has the same shape as the shear. The lowest mass-transfer
rate is obtained at x/d = 4.1 while the highest rate was measured at x/d =
1.9. Stream lines indicate that the minimum in mass-transfer rate occurs
at a position of recirculation. The location of the recirculation region varies
with Reynolds numbers and moves upstream with increasing Re in the
range of 50 to 200.

The numerical simulations were all carried out by making an assump-
tion of a two-dimensional flow. The transition to three-dimensionality in
the near wake of a cylinder has been observed to occur at a Reynolds
number of about 200 in the absence of confining walls.92 The study
indicates that where the flow remains two-dimensional, numerical simu-
lations provide a good description of mass transfer. However, the simula-
tions apparently do not give the precise spatial variation of shear with the
Reynolds number. The reasons for this are not known with certainty; the
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Figure 9. Simulated spatial variation of the time-averaged current density (solid line) and
wall shear (dotted line) downstream of a cylinder at Re = 100. For comparison, experimental
current densities (symbols) for Re = 110 are shown.

discrepancies, however, indicate the need for experimental studies, espe-
cially when the current distribution strongly depends on CFD.

VI. SUMMARY

Numerical analyses of fluid flow and mass transfer in electrochemical
systems will become more common. It may be difficult, however, to utilize
currently available commercial solvers for mass transfer, especially when
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concentration fields are coupled through an electrical field or through
homogeneous chemical reactions. The large Schmidt numbers that are
important in electrochemistry may also imply that mass-transfer calcula-
tions require much finer computational grids than fluid-flow simulation.
Nevertheless, commercial fluid-flow solvers will often be adopted. Atten-
tion must be paid to experimental verification of the simulations.

The focus of this review has been on mass transfer in laminar,
single-phase flows. Significant work is necessary for the rigorous analysis
of current distribution in turbulent flows. Progress is also required for the
analysis of current distribution in multiphase flows, especially in porous
media relevant to fuel cell or battery applications.
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Notation

c
d

dw

D

ƒw

h
L
N
p

Pe
R

Re
t

u

x, y, z
zi

variable or concentration
diameter of a cylinder
coefficient of a linearized diffusive term at the west face
diffusion coefficient
coefficient of a linearized convective term at the west face
height of a channel
characteristic length
flux or number of dependent variables
pressure, Pa
Peclet number
rate of generation per unit volume
Reynolds number
time
velocity
cartesian coordinates
charge of species i
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i , j
jx, jy
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x, y, z
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Greek symbols

convective term interpolation variable at the west face
diffusive term interpolation variable at the west face
shear at a wall
indicates deviation variable
dimensionless potential
oscillation frequency
dimensionless frequency of plate oscillation

Subscript/superscript

east face of a control volume
characteristic dimension is the grid size
equation or species number
spatial index in the x- and y-direction
variable number
west face of a control volume
cartesian coordinates
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