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Preface

A majority of chemical reactions are carried out in solution. The use of a solvent
as reaction medium makes it easy to control reaction conditions such as tempera-
ture, pressure, pH, rate of mass transfer, and concentration of reactant. Water is
the most popular solvent. However, by using appropriate non-aqueous solvents,
substances that are insoluble in water can be dissolved, substances that are un-
stable in water remain stable, and chemical reactions that are impossible in water
become possible. The reaction environments are markedly wider in non-aqueous
solvents than in water.

The widespread use of non-aqueous solvents, especially dipolar aprotic solvents,
began in the 1950s in various fields of pure and applied chemistry and has con-
tributed greatly to later advances in chemical sciences and technologies. From the
very beginning, electrochemistry in non-aqueous solutions has played an impor-
tant role in exploring new chemical possibilities as well as in providing the meth-
ods to evaluate static solvent effects on various chemical processes. Moreover,
many new electrochemical technologies have been developed using non-aqueous
solvents. Recently, electrochemistry in non-aqueous solutions has made enormous
progress: the dynamic solvent effects on electrochemical processes have been
greatly elucidated and solvent effects are now understood much better than be-
fore. On the other hand, however, it is also true that some useful solvents have
properties that are problematic to human health and the environment. Today, ef-
forts are being made, under the framework of ‘green chemistry, to find environ-
mentally benign media for chemical processes, including harmless non-aqueous
solvents, immobilized solvents, ionic liquids, supercritical fluids, aqueous sys-
tems, and even solventless reaction systems. For electrochemical purposes, replac-
ing hazardous solvents by harmless solvents, ionic liquids and supercritical fluids
appears to be promising.

This book was written to provide readers with some knowledge of electrochem-
istry in non-aqueous solutions, from its fundamentals to the latest developments,
including the current situation concerning hazardous solvents. The book is di-
vided into two parts. Part I (Chapters 1 to 4) contains a discussion of solvent prop-
erties and then deals with solvent effects on chemical processes such as ion solva-
tion, ion complexation, electrolyte dissociation, acid-base reactions and redox reac-
tions. Such solvent effects are of fundamental importance in understanding chem-
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istry in non-aqueous solutions; furthermore, their quantitative evaluations are of-
ten carried out by means of electrochemical techniques. Part II (Chapters 5 to 12)
mainly deals with the use of electrochemical techniques in non-aqueous solu-
tions. In Chapter 5, the fundamentals of various electrochemical techniques are
outlined in preparation for the following chapters. In Chapters 6 to 9, the applica-
tions of potentiometry, conductimetry, polarography, voltammetry, and other new
electrochemical techniques in non-aqueous solutions are discussed by focusing on
the chemical information they provide. Chapters 10 and 11 examine methods of
selecting and purifying the solvents and electrolytes of electrochemical impor-
tance. Finally, in Chapter 12, some practical applications of non-aqueous solvents
in modern electrochemical technologies are discussed. These include their use in
batteries, capacitors and display devices, and such processes as electrolytic refin-
ing, plating, synthesis and polymerization. The applicability of ionic liquids and
supercritical fluids as environmentally benign media for electrochemical technol-
ogy is also dealt with.

Most chemists are familiar with chemistry in aqueous solutions. However, the
common sense in aqueous solutions is not always valid in non-aqueous solutions.
This is also true for electrochemical measurements. Thus, in this book, special
emphasis is placed on showing which aspects of chemistry in non-aqueous solu-
tions are different from chemistry in aqueous solutions. Emphasis is also placed
on showing the differences between electrochemical measurements in non-aque-
ous systems and those in aqueous systems. The importance of electrochemistry in
non-aqueous solutions is now widely recognized by non-electrochemical scientists
— for example, organic and inorganic chemists often use cyclic voltammetry in
aprotic solvents in order to determine redox properties, electronic states, and reac-
tivities of electroactive species, including unstable intermediates. This book will
therefore also be of use to such non-electrochemical scientists.

I obtained most of the information included in this book from the publications
of many scientists in this field. I would like to express my sincere thanks to all of
them. I also would like to thank my coworkers for their cooperation, the editorial
and production staff of Wiley-VCH for their help and support, and my wife for
her assistance and patience.

Matsumoto, December 2001 Kosuke Izutso
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Dissociative electron-transfer reaction 254

— decomposition of PCB 255

— halogenated organic compounds 254

Donor number (DN) 14

— in mixed solvents 47

— table of values 15

Donor-acceptor interaction, ion solvation 30

— acceptor number and anion solvation 30

— donor number and cation solvation 30

Double layer effect 235

— correction for double layer effect 235, 246

— effect on polarographic reduction of metal
ions 235

Double layer (see Electrical double
layer) 124, 235

Dropping electrolyte electrode 141

Dropping mercury electrode (DME) 118

Dual-reference electrode 225

Dynamical solvent effect on ET processes
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e
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Ligand relaxation, by supporting electro-
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1
Properties of Solvents and Solvent Classification

Three types of liquid substances, i.e. molecular liquids, ionic liquids and atomic
liquids, can serve as solvents. They dissolve solutes that are solid, liquid or gaseous
and form solutions. Molecular liquid solvents are the most common and include,
apart from water, many organic solvents and some inorganic solvents, such as hy-
drogen fluoride, liquid ammonia and sulfur dioxide. Ionic liquid solvents are
mostly molten salts and usually used at relatively high temperatures. Nowadays,
however, various room-temperature ionic liquids are being designed and used as a
kind of ‘green’ solvents.! There are only a few atomic liquid solvents at room
temperature, metallic mercury being a typical example. Besides these liquid sol-
vents, supercritical fluids are sometimes used as media for chemical reactions and
separations. ")

Apart from Section 12.7, which deals with supercritical fluids and room-tem-
perature ionic liquids, only molecular liquid solvents are considered in this book.
Thus, the term ‘solvents’ means molecular liquid solvents. Water is abundant in
nature and has many excellent solvent properties. If water is appropriate for a giv-
en purpose, it should be used without hesitation. If water is not appropriate, how-
ever, some other solvent must be employed. Solvents other than water are gener-
ally called non-aqueous solvents. Non-aqueous solvents are often mixed with
water or some other non-aqueous solvents, in order to obtain desirable solvent
properties. These mixtures of solvents are called mixed solvents.

There are a great many kinds of neat non-aqueous solvents. Substances that are
solid or gaseous at ambient temperatures also work as solvents, if they are lique-
fied at higher or lower temperatures. For mixed solvents, it is possible to vary the
mixing ratio and thus the solvent properties continuously. Therefore, if both non-

1) ‘Green’ chemistry is the utilization of a set of are being made to find environmentally benign
principles that reduces or eliminates the use media (green solvents) for chemical processes;
or generation of hazardous substances in the among such media are harmless non-aqueous
design, manufacture and application of chem-  solvents, immobilized solvents, ionic liquids,
ical products (Anastas, P.T., Warner, J.C. supercritical fluids, aqueous reaction systems,
Green Chemistry, Theory and Practice, Oxford and solvent-free reaction systems. For the latest

University Press, New York, 1998, p. 11). Un- situation, see, for example, Pure Appl. Chem.
der the framework of green chemistry, efforts 2000, 72, 1207-1403; 2001, 73, 76-203.
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1 Properties of Solvents and Solvent Classification

aqueous and mixed solvents are included, the number of solvents really is infi-
nite.

When a non-aqueous solvent is to be used for a given purpose, a suitable one
must be selected from the infinite number available. This is not easy, however,
unless there are suitable guidelines available on how to select solvents. In order to
make solvent selection easier, it is useful to classify solvents according to their
properties. The properties of solvents and solvent classification have been dealt
with in detail in the literature [1, 2]. In this chapter, these problems are briefly dis-
cussed in Sections 1.1 and 1.2, and then the influences of solvent properties on
reactions of electrochemical importance are outlined in Section 1.3.

Organic solvents and some inorganic solvents for use in electrochemical mea-
surements are listed in Table 1.1, with their physical properties.

1.1
Properties of Solvents

Physical and chemical properties that are important in characterizing solvents as
reaction media are listed in Table 1.2, and are briefly discussed in Sections 1.1.1
and 1.1.2. This solvent property data has been compiled in Refs [2-4] for a num-
ber of solvents. In addition to these properties, structural aspects of solvents are
outlined in Section 1.1.3 and the effects of toxicity and the hazardous properties
of solvents are considered in Section 1.1.4.

1.1.1
Physical Properties of Solvents

Each of the physical properties in Table 1.2 has its own significance.”’ The boiling
point, T, and the melting (or freezing) point determine the liquid range of sol-
vents. The vapor pressure is a fundamental vaporization property, but it is also
important when considering the problem of toxicity and other hazards of solvents
(Section 1.1.4). The heat of vaporization, A;H, determines the cohesive energy
density, ¢, defined by c¢=(A,H—RT)/Vy,, and the solubility parameter, J, defined by
0=c""?=[(AJH=RT)/Vy]'?, where V,, is the molar volume. The cohesive energy
density is a measure of the ’stickiness’ of a solvent and is related to the work nec-
essary to create ‘cavities’ to accommodate solute particles in the solvent. Converse-
ly, the solubility parameter proposed by Hildebrand is useful in predicting the so-
lubilities of non-electrolyte solutes in low polarity solvents. In many cases, two
liquid substances with similar d-values are miscible, while those with dissimilar J-

2) See Refs [1-3] or advanced textbooks of physical chemistry.
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1.1 Properties of Solvents
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1.1 Properties of Solvents

Tab. 1.2 Physical and chemical properties of solvents

Physical properties Bulk properties: boiling point, melting (or freezing) point, molar mass,
density, viscosity, vapor pressure, heat capacity, heat of vaporization, re-
fractive index, relative permittivity, electric conductivity;

Molecular properties: dipole moment, polarizability

Chemical properties  Acidity (including the abilities as proton donor, hydrogen-bond donor,
electron pair acceptor, and electron acceptor)”;

Basicity (including the abilities as proton acceptor, hydrogen-bond ac-
ceptor, electron pair donor, and electron donor) "

1) The terms ‘acidity’ and ‘basicity are used in somewhat wider ways than usual (see text).

values are immiscible.? The heat of vaporization at the boiling point, A,H(T}), in
k] mol™, determines Trouton’s constant, [A,S(Ty)/R], which is equal to A H(Ty)/
Ty. Solvents with AyS(T,)/R<11.6 are usually non-structured [e.g. A,S(Ty)/R=7.2
for acetic acid, 10.2 for hexane, 10.5 for benzene and 10.9 for acetone], while
those with A;S(T,)/R=12 are structured [e.g. A,S(T,)/R=12.5 for methanol and
13.1 for water]. The viscosity (1) influences the rate of mass transfer in the sol-
vent and, therefore, the conductivity of electrolyte solutions.

The relative permittivity, ¢,, influences the electrostatic interactions between
electric charges. If two charges, q; and ¢,, are placed in a vacuum at a distance r
from each other, the electrostatic force F,,. between them is expressed by Eq.
(1.1):

q192
Foae =—— 1.1
VT 4egr? (11)

3) The primary role of solvents is to ‘dissolve’ substances. There is an old principle — ‘like dissolves
like. In general, polar solvents can dissolve polar substances, while nonpolar solvents can dissolve
nonpolar substances. The following shows the relationship between the polarities of solvents and
solutes and their mutual solubilities.

Solvent A Solute B Interaction Mutual
solubility
A.--A B---B A-.-B
Nonpolar Nonpolar Weak Weak Weak High
Nonpolar Polar Weak Strong Weak Low
Polar Nonpolar Strong Weak Weak Low
Polar Polar Strong Strong Strong High

The necessary condition for dissolution of a substance is that energetic stabilization is obtained by
dissolution. The energetic stabilization depends on the energies of three interactions, i.e., solute-
solvent, solute-solute, and solvent-solvent interactions. When the solvent and the solute are both
nonpolar, all three interactions are weak. In that case, the energy gained by the entropy of mixing
of the solvent and the solute plays an important role in the high mutual solubility. For the dissolu-
tion of electrolytes, see Section 2.1.

9
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1 Properties of Solvents and Solvent Classification

where ¢, is the permittivity of a vacuum and £,=8.854x1072F m™". F,,. is a repul-
sive force if gq; and ¢, are of the same sign, while F,,. is an attractive force if they
are of opposite sign. If the two charges are placed in a solvent of relative permit-
tivity ¢, and at a distance r, the electrostatic force Fy,,between them is expressed
by Eq. (1.2):

F 1= 91(12 o Fvac
SV 4nepe, &

(1.2)

Because ¢, is larger than ~ 1.8 for most solvents (1.84 for n-pentane and 1.88 for
n-hexane are examples of lowest ¢, values), the electrostatic interaction between
charges is always weakened by solvents. As discussed in Chapter 2, the relative
permittivity of a solvent has a decisive influence on the electrostatic solute-solute
and solute-solvent interactions as well as on the dissolution and dissociation of
electrolytes. Thus, it is used in classifying solvent polarity or solvating capability.
Solvents of high permittivities (¢,215 or 20) are called polar solvents, while those
of low permittivities are called apolar or nonpolar solvents (Section 1.2). Many of
the solvents listed in Table 1.1 are polar solvents, because solvents for electro-
chemical use must dissolve and dissociate electrolytes. The relative permittivities
of N-methylformamide (NMF) and N-methylacetamide (NMA) are exceptionally
high, at 182 and 191, respectively. This is because the molecules of these solvents
mutually interact by hydrogen bonding and are linearly arranged, causing high
permittivities (Section 1.1.3). However, some nonpolar solvents, e.g. hexane and
benzene (¢, ~ 2), are now also used in electrochemical measurements, as will be
discussed in Section 8.4.

If a solvent is placed in a low-frequency electric field (<107 Hz), its molecules
are polarized in two ways: one is the induced polarization, which is due to the
atomic and electronic displacements, and the other is the orientational polariza-
tion, which is due to the alignment of the permanent dipoles. They both contrib-
ute to the static permittivity, s, which is equal to ¢, in Table 1.1. However, if the
frequency of the electric field is increased, the orientational polarization is lost in
the microwave region (10°-10" Hz) because the permanent dipoles need some
time to rotate or re-orient. The permittivity after this Debye (rotational) relaxation
is the infinite frequency permittivity and is denoted by &, (Fig. 1.1). Then, after the
resonant transition in the IR region, the polarization occurs only due to electronic
displacement. The permittivity then obtained is the optical permittivity and is de-
noted by &,,. After the transition in the UV region, no polarization occurs and the
permittivity becomes equal to unity. Table 1.3 shows the values of &, &, and &,
for some solvents. It also shows the values of the Debye relaxation time, tp, and
the longitudinal relaxation time, 71; 7p is obtained experimentally by such meth-
ods as dielectric relaxation spectroscopy [5] and 7, is obtained by the relation
71=(¢0/8s)7p [6]. For H-bonding solvents like alcohols and water, the Debye relaxa-
tion process is more complicated. Table 1.4 shows the data for the sequential re-
laxation of such solvents. For example, monoalcohols give three relaxation pro-
cesses; the first (slowest) one (7) is attributed to the winding chain formed by as-
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Fig. 1.1 Dielectric dispersion spectra T T T T

for a polar solvent with a single De- micro- FIR + IR UV/vis
bye relaxation process in the micro- Es wave
wave region and two resonant trans-
missions in the IR and UV ranges
[5b].

Permittivity

8 10 12 14 16 18
log(v/Hz)

sociation, the second one (t,) is attributed to the rotation of monomers and mole-
cules situated at the chain-end, and the third one (z3) is attributed to the hindered
rotation of molecules within the H-bonded system. Solvents that undergo one De-
bye relaxation are called “Debye” solvents, while those that undergo sequential re-
laxations are called “non-Debye” solvents. According to the recent studies, these
dynamic properties of solvents give remarkable influences on various electroche-
mical processes such as ion solvation, homogeneous and heterogeneous electron-

Tab. 1.3 Solvent dielectric and related properties at 25°C"

Solvent & (=&) £op £ Eop—Es' 7o (ps) 7 (ps)

Debye solvents

AN 37.5 1.80 2 0.528 33 ~0.2
Ac 21 1.84 2 0.495 33 0.3
DMF 36.7 2.04 4.5 0.472 11.0 1.3
DMSO 46.7 2.18 5.7 0.438 19.5 2.4
HMPA 29.6 2.12 33 0.438 80 8.9
NB 35.7 2.40 4.1 0.389 45.6 5.2
Py 13.3 2.27 2.3 0.365 6.9 1.2
THF 7.58 1.97 2.3 0.376 33 1.0
Non-Debye solvents

EtOH 24.5 1.85 4.2 0.499 130 22
FA 110 2.09 7.0 0.469 37 2.35
MeOH 32.7 1.76 5.6 0.628 48 8.2
NMF 182 2.04 5.4 0.485 123 3.7
1-PrOH 20.4 1.92 2.2 0.472 390 42
PC 65 2.02 4.1 0.480 43 2.7

1) From McManis, G.E., Golovin, M.N., Weaver, M.]. J. Phys. Chem. 1986, 90, 6563; Galus, Z. in Ad-
vances in Electrochemical Science and Engineering, (Eds H. Gerischer, C. W. Tobias), VCH, Weinheim,
Vol 4, p. 222. & static permittivity; &, optical permittivity; .. infinite frequency permittivity;

(sO’P1 — & 1) solvent Pekar factor; T, Debye relaxation time, 7 longitudinal relaxation time.
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Tab. 1.4 Dielectric relaxation parameters of water and lower alcohols determined by femtose-
cond terahertz pulse spectroscopy at 25°C"

Solvent & 71 (ps) & 7, (ps) & 73 (ps) £o

Water 78.36 8.24 4.93 0.18 3.48
MeOH 32.63 48 5.35 1.25 3.37 0.16 2.10
EtOH 24.35 161 4.15 33 2.72 0.22 1.93
1-PrOH  20.44 316 3.43 2.9 2.37 0.20 1.97

1) From Kindt, J.T., Schmuttenmaer, C.A. J. Phys. Chem. 1996, 100, 10373.

transfer reactions, and ionic migrations, as discussed in Sections 2.2.2, 4.13, 7.2.1,
8.2.2 and 8.3.1.

The refractive index, np, defined as the ratio of light speed at the sodium D-line
in a vacuum to that in the medium, is used in obtaining the polarizability, a, of
solvent molecules. The relationship between a and np is given by a=(3V,,/
47N,A)(nh—1)/(nD +2), where N, is the Avogadro constant and V,, is the molar vol-
ume.® Solvent molecules with high a-values tend to interact easily with one an-
other or with other polarizable solute particles by dispersion forces.>

Most solvents consist of molecules that are intrinsic dipoles and have perma-
nent dipole moments (x). If such molecules are placed between the two plates of
a capacitor as a vapor (or as a dilute solution in a nonpolar liquid), they are orient-
ed Dby the electric field. Then, the orientational polarization and the induced polar-
ization occur simultaneously, as described above. If ¢, is the relative permittivity
of the vapor, there is a relationship:

(1.3)

& —1 _ 4N ,u2
&+2 3V, 3kgT

where kg is the Boltzmann constant. By plotting the relation between V,,(e,—1)/
(&;+2) and 1/T, the value of u is obtained simultaneously with the value of q,

away that a mutual attraction results (Ref. [1a],
p- 12). The dispersion forces, which are univer-

4) Examples of np values: methanol 1.326, water
1.332, AN 1.341, hexane 1.372, PC 1.419,

DMF 1.428, DMSO 1.477, benzene 1.498, Py
1.507, NB 1.550, and DMTF 1.576 (Table 3.5
in Ref. [2a]). For all solvents, the value of np
is between 1.2 and 1.8. There is a relation-
ships e ~ 1h.

Dispersion forces (instantaneous-dipole — in-
duced-dipole interactions): even in atoms and
molecules having no permanent dipole mo-
ment, the continuous movement of electrons
results, at any instant, in a small dipole mo-
ments, which fluctuatingly polarize the elec-
tronic system of the neighboring atoms or
molecules. This coupling causes the electron-
ic movements to be synchronized in such

5

sal for all atoms and molecules, are proportional
to the products of the polarizabilities (a) of the
two interacting species but are short-range in ac-
tion. Among the intermolecular forces, the dis-
persion forces are often stronger than the di-
pole-dipole and dipole-induced dipole forces,
though it is weaker than the hydrogen bonding.
Due to the dispersion forces, benzene exists as
liquid at normal temperatures and hydrogen
and argon are condensed to liquids at low tem-
peratures. See, for example, Israelachvili, J.N.
Intermolecular and Surface Forces, 2nd edn, Aca-
demic Press, London, 1992, Chapter 6.
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although a more accurate value of u is obtainable from the Stark splitting of mi-
crowave lines.

The dipole moment is also used to assess the solvent polarity: solvents with
high dipole moments (e.g. #£>2.5 D, D=3.33564x10"°°C m) are called dipolar sol-
vents, while those with low dipole moments are called apolar or nonpolar solvents.
Many solvents with high &, values also have high u values (see Table 1.1). How-
ever, the u value of water (1.85 D) is lower than expected from its high solvating
abilities. The dipole moment tends to underestimate the polarity of small solvent
molecules, because it depends on the distance between the positive and negative
charge centers in the molecule.

Many efforts have been made to correlate solute-solvent and solute-solute inter-
actions in solutions with such polarity scales as relative permittivity and dipole
moment but they have often been unsuccessful. The chemical properties of sol-
vents, as described below, often play more important roles in such interactions.

1.1.2
Chemical Properties of Solvents

Here, we mean by ‘chemical properties’ the acidity and basicity of solvents.
Furthermore, we use the terms ‘acidity and ‘basicity in somewhat broader senses
than usual. The ability to accept an electron is included in the acidity of solvents,
in addition to the abilities to donate a proton and a hydrogen bond and to accept
an electron pair, while the ability to donate an electron is included in the basicity
of solvents, as well as the abilities to accept a proton and a hydrogen bond and to
donate an electron pair. Conventionally, acidity and basicity are defined by the pro-
ton donating and accepting capabilities by the Brensted acid-base concept and the
electron pair accepting and donating capabilities by the Lewis acid-base concept.
However, a solvent having a strong proton-donating ability usually has strong hy-
drogen bond-donating, electron pair-accepting and electron-accepting abilities.
Moreover, a solvent having a strong proton-accepting ability usually has strong hy-
drogen bond-accepting, electron pair-donating and electron-donating abilities. In-
clusion of electron-accepting and donating abilities in acidity and basicity, respec-
tively, is also justified by the fact that the energies of the highest occupied molecu-
lar orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for mol-
ecules of various solvents are linearly correlated with the donor and acceptor num-
bers (vide infra), respectively [7].

As outlined in Section 1.3, the solvent acidity and basicity have a significant in-
fluence on the reactions and equilibria in solutions. In particular, differences in
reactions or equilibria among the solvents of higher permittivities are often
caused by differences in solvent acidity and/or basicity. Because of the importance
of solvent acidity and basicity, various empirical parameters have been proposed
in order to express them quantitatively [1, 2]. Examples of the solvent acidity
scales are Kosower's Z-values [8], Dimroth and Reichard’s Ey scale [1, 9], Mayer,
Gutmann and Gerger’s acceptor number (AN) [10, 11], and Taft and Kalmet's a
parameter [12]. On the other hand, examples of the solvent basicity scales are Gut-

13
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mann’s donor number (DN) [11, 13] and Kamlet and Taft's f-parameter [12]. Be-
sides the acidity/basicity parameters, empirical solvent polarity/polarizability pa-
rameters such as the n*-scale [14] have also been proposed. The correlations be-
tween these empirical parameters have been studied in detail [2, 15]. Moreover, in
order to relate these parameters to solvent effects on various physicochemical
quantities in solutions, linear free energy relationships (LFER) [16], as expressed
by Eq. (1.4), are often used:

XYZ=XYZy+a-a+b-f+s-m*+... (1.4)

where XYZ is the given quantity, XYZ, is the quantity at a=f=n*=0, and a, b
and s are the coefficients for q, f and 7%, respectively. In this book, however, only
the acceptor number, AN, and the donor number, DN, are used, because they are
the most popular and simple to use.

The donor number, DN [11, 13], of solvent D (Lewis base) is determined calori-
metrically as the negative value of the standard enthalpy change, ~AH® (in kcal
mol ™), for the 1:1 adduct formation between solvent D and antimony pentachlor-
ide (SbCls), both being dilute, in 1,2-dichloroethane (DCE) at 25°C [Eq. (1.5)]:

D: +SbCls = D — SbCls DN = —AH?’ (kcal mol!) (1.5)

The values of DN are listed in Table 1.5 in increasing order. The solvent basicity
increases with the increase in the DN value. The DN value for DCE (reference sol-
vent) is zero.

The acceptor number (AN) [10, 11] of solvent A (Lewis acid) is obtained by mea-
suring the *'P-NMR chemical shift (AJ, ppm) of triethylphosphine oxide (Et;P=0,
a strong Lewis base) in solvent A:

& © o+ o—
(Et3P=0 < Et3P—O)+ A=—EzP =0 — A

The *'P-NMR chemical shift of Et;P=0 is also measured in hexane [Ad(hexane)]
and in DCE containing SbCls [Ad(SbCls in DCE)]. Here, by definition, AN=0 for
hexane and 100 for SbCls in DCE. Then, the AN of solvent A is obtained by Eq.
(1.6):

AO(A) — Ad(hexane)

AN = 100 x AJ(SbCls in DCE) — Ad(hexane)

= 2.348[A5(A) — Ad(hexane)]

(1.6)
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The values of AN are also included in Table 1.5.® The solvent acidity increases
with the increase in the AN value. Here, it should be noted that neither DN nor
AN can be correlated with the relative permittivity of the corresponding solvents.

Lewis acids are electron pair acceptors and Lewis bases are electron pair donors.
However, according to the Hard and Soft Acids and Bases (HSAB) concept [17],
Lewis acids are classified into hard and soft acids, while Lewis bases are classified
into hard and soft bases. Hard acids interact strongly with hard bases, soft acids
with soft bases.

The HSAB concept also applies to solvent-solute interactions. Therefore, we
have to know whether the solvent is hard or soft as a Lewis acid and a Lewis
base. Water is a hard acid and a hard base. In general, hydrogen bond donor sol-
vents are hard acids and solvate strongly to hard base anions [i.e. small anions
such as OH™, F~, CI” and anions with a negative charge localized on a small oxy-
gen atom (CH3;07, CH3COO", etc.)]. On the other hand, for solvents having elec-
tron pair donor atoms like O, N and S, the softness increases in the order
O<N<S. Here, examples of solvents with an O atom are water, alcohols, ketones
and amides, those with an N atom are nitriles, amines and pyridine, and those
with an S atom are thioethers and thioamides. Hard-base solvents solvate strongly
to hard-acid cations (Na®, K, etc.), while soft-base solvents easily solvate to soft-
base cations (Ag®, Cu®, etc.). Antimony pentachloride (SbCls), used in determin-
ing the donor number of solvents, is in between a hard acid and a soft acid. How-
ever, the donor number is considered to be the scale of solvents as hard bases. Re-
cently some scales have been proposed for the softness of solvents [18].”)

1.13
Structural Aspects of Solvents

The physical and chemical properties of solvents are closely related to their struc-
tures. Water molecules have strong hydrogen-bonding ability and considerable
parts of them are combined with one another to form three-dimensional networks
(Fig. 1.2) [20]. A water molecule held in a network does not stay there long and is
liberated as a free molecule; the lifetime of an individual hydrogen bond is of the
order of 0.6 ps [21]. However, the network formation by hydrogen bonding is re-
sponsible for various anomalous physical properties of liquid water, including
high boiling and melting points, high values of heat of vaporization, surface ten-
sion, compressibility and viscosity, and peculiar density change with temperature

6) Riddle and Fowkes [19] considered that the 7) For example, Marcus [18] proposed the y-scale

values of AN, determined by the NMR meth-
od, are partly due to the van der Waals forces
between Et;P=0 and solvent molecules and
attributed somewhat large AN values of
strongly basic solvents like pyridine to it.
They proposed a new acceptor number, which
was corrected for the influence of the van der
Waals forces.

for the softness of solvents. If the Gibbs energy
of transfer of species i from water to solvent
s is expressed by AGP(i,w — s) (in k] mol™), u
is defined by u={AG?(Ag", w —s)-0.5 [AG}
(Na*, w —s) + AGP(K*, w — 5)]}/(100 k] mol ™).
This scale is based on the fact that the size of
the soft acid, Ag* (0.115 nm in radius), is be-
tween the sizes of the hard acids, Na*

(0.102 nm) and K* (0.138 nm).
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Fig. 1.2 The three-dimensional structure
of water (Nemethy, G., Scheraga, H.A.
J. Chem. Phys. 1962, 36, 3382).

Unassociated
molecules

Networks

[22]. Due to the network formation, molecules and ions, which are large in size,
are often difficult to dissolve in water unless they have hydrophilic site(s).

Studies of solvent structure are usually carried out by analyzing radial distribu-
tion functions that are obtained by X-ray or neutron diffraction methods. Monte
Carlo (MC) or molecular dynamics (MD) calculations are also used. Studies of the
structure of non-aqueous and mixed solvents are not extensive yet but some of
the results have been reviewed. Pure and mixed solvents included in the reviews
[23] are FA, NMF, DMF, DMSO, AN, 2,2,2-trifluoroethanol, EtOH, DMF/AN and
2,2,2-trifluoroethanol/DMSO. For example, Fig. 1.3 schematically shows the liquid
structures of FA, NMF and DMF. In FA, chain structure and ring-dimer structure
are combined by hydrogen bonding to form three-dimensional networks, causing
high melting and boiling points and high viscosity of FA. In NMF, linear but
short chain structures predominate, giving it a high permittivity. DMF is not hy-
drogen bonding and most DMF molecules exist as monomers. Thus, the melting

Fig. 1.3 The liquid structures of FA,
NMF, and DMF [23]. «—— Methyl
group; 2 H-bond (-NH---O=CH-).
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and boiling points and the viscosity of DMF are lower than those of FA and NMF.
For other solvents, see Ref. [23].

1.1.4
Toxicity and Hazardous Properties of Solvents

There have been recent concerns that many solvents are toxic or hazardous to hu-
man health and/or the environment. The latest situation has been discussed in
detail in Ref. [24].

Effects on human health usually occur by exposure to solvents or by the uptake
of solvents through the lungs or skin. General effects that are caused by acute ex-
posure to high solvent concentrations are dysfunctions of the central nervous sys-
tem (CNS); symptoms such as dizziness, euphoria, confusion, nausea, headache,
vomiting, paresthesia, increased salivation, tachycardia, convulsions, and coma
can occur, depending on the situation. Besides these general effects, specific ef-
fects by particular solvents are also observed. Among these are non-immunologi-
cal hepatotoxicity (halogenated hydrocarbons, EtOH, DMF), nephrotoxicity (halo-
genated hydrocarbons, toluene, dioxane, ethylene glycol), reproductive toxicity
(CS,, benzene, nitrobenzene), hemopoietic toxicity (benzene metabolites), neuro-
toxicity (hexane, EtOH, styrene), and ocular toxicity (MeOH) and immunological
allergies to various solvents. More seriously, carcinogenic solvents are considered
to induce malignant tumor; even among the solvents listed in Table 1.1, benzene,
1,2-dichloroethane and HMPA are considered or suspected to be carcinogenic.
Threshold limit values (TLVs) are listed in the last column of Table 1.1, but, be-
cause of the complicated nature of carcinogenesis, it is often difficult to define
TLVs for carcinogens.

Many solvents in common use are volatile organic compounds (VOCs),® and
various environmental problems are caused by their evaporation. In the lower at-
mosphere, VOCs participate in photochemical reactions to form, to varying de-
grees, ground level ozone and other oxidants that affect health, as well as causing
damage to materials, crops and forests. Ozone impairs normal functioning of the
lungs and reduces the ability to perform physical exercise. Some solvents are
listed as hazardous air pollutants (HAPs): they are toxic and/or carcinogenic and
are associated with serious health effects such as cancer, liver or kidney damage,
reproductive disorders, and developmental or neurological problems. They also
have detrimental environmental effects on wildlife and degrade water or habitat
quality. The ‘“T” symbol in the last column of Table 1.1 shows that the solvent has
been listed as a HAP. The solvents known as chlorofluorocarbons (CFCs) gener-
ally do not contribute to ground level ozone formation but they cause strato-
spheric ozone depletion. In the stratosphere, they gradually release chlorine and
other halogens into the atmosphere; they are effective in destroying the ozone

8) A volatile organic compound (VOC) is de- carbonic acid, metallic carbides or carbonates,
fined by the Environmental Protection and ammonium carbonate, which is emitted or
Agency (EPA) as any compound of carbon, evaporated into the atmosphere.

excluding carbon monoxide, carbon dioxide,
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layer that protects us from damage by ultraviolet light. The production and use of
many CFCs have been banned and new chemicals are used instead. Recently,
there has been serious contamination of water and soil with hazardous solvents,
but this is not discussed here. In the laboratory, there are potential hazards of ac-
cidental spillages of organic solvents of low boiling point, which may be highly in-
flammable.

In recent years, many efforts are being made to avoid the problematic effects of
solvents and many international and national regulations have been established
(see Chapter 19 of Ref. [24]); toxic solvents are being replaced by non-toxic ones
and environmentally hazardous solvents by harmless ones. The search for new en-
vironmentally benign reaction media is the subject of current research and there
are many studies into the use of supercritical fluids and room temperature ionic
liquids as such media (see V) and Section 12.7).

1.2
Classification of Solvents

The classification of solvents has been dealt with in various books on non-aque-
ous solvents [25, 26]. In the classification of solvents, it is usual to use some sol-
vent properties as criteria. In order to discuss solvent effects on chemical reac-
tions, it is convenient to use relative permittivities and acid-base properties as the
criteria.

Type 1 2 3 4 5 6 7 8
Relative permittivity + + + + - - - -
Acidity + + - - + + - _
Basicity + - + - + — + _

In 1928, Brensted [27] used these criteria and classified solvents into the above
eight types. In the table, plus (+) means high or strong and minus (-) means low
or weak. Various improved methods of classification have been proposed since; in
this book, we follow the classification by Kolthoff [25] (Table 1.6).% According to

9) In Ref. 26¢, solvents are classified as follows: protophobic solvents (AN, Ac, NM, PC), low per-

protic solvents [amphiprotic hydroxylic sol- mittivity electron donor solvents (diethyl ether,
vents (water, methanol, glycols), amphiprotic dioxane, THF)]; low polarity and inert solvents
protogenic solvents (CH;COOH, HF), proto- [low polarity solvents of high polarizability
philic H-bond donor solvents (FA, NMF, (CH,Cl,, CHCI;, benzene), inert solvents (n-hex-
NH3)]; dipolar aprotic solvents [aprotic proto- ane, cyclohexane)].

philic solvents (DMF, DMSO, Py), aprotic

19



20

1 Properties of Solvents and Solvent Classification

Tab. 1.6 Classification of solvents (Kolthoff) [25]

No. &, u" Acidity? Basicity? Examples™

Amphiprotic solvents

Neutral la + + + Water (78); MeOH (33); ethylene-
glycol (38)
b - + + +-BuOH (11)
Protogenic 2a + ++ + H,SO,; HF; HCOOH (58)
n - ++ + CH;COOH (6)
Protophilic 3a o+ + ++ NMF (182); DMSO(46)"; tetra-
methyl urea (24); FA (111); NH;
23)
3b - + ++ en (13); tetramethylguanidine (12)
Aprotic solvents
Dipolar protophilic¥  4a  + — (%) ++(+) DMF (37); DMSO (46)*; NMP (32);
HMPA (30)
4 - - ++ (+) Py (13); THF (8); diethylether (4)
Dipolar protophobic® 5a  + - - AN (36); PC (65); NM (37); TMS
(43); Ac (21)
5b - - - MIBK (13); methylethylketone (17)
Inert 5¢c - - - Aliphatic hydrocarbons (~2); ben-

zene (2);CCl, (3);DCE (10)

1) The symbol + is for &>15 or 20, £>2.5 D and - is for & <15 or 20, u<2.5 D. In parentheses on
column ‘Examples’ are shown approximate values of ¢,.

2) The symbol + is for the case comparable with water, ++ for the case much stronger than water, +
for the case somewhat weaker than water, and — for the case much weaker than water.

3) Some solvents with ¢,<15 (or u<2.5 D) are also classified as ‘dipolar’. For the reason, see text.

4) DMSO is an amphiprotic solvent because its autoprotolysis occurs slightly (pKsy ~33) and the
lyate ion (CH3;SOCHS}) is somewhat stable. However, DMSO is classified as an aprotic solvent. The
rough criteria for aprotic solvents are pKsy>22 and AN<20.

his classification, solvents are roughly divided into two groups, amphiprotic solvents
and aprotic solvents. ")

Amphiprotic solvents have both acidic and basic properties in terms of the
Bregnsted acid-base concept. If we denote an amphiprotic solvent by SH, it do-
nates a proton by SH S™+H™ and accepts a proton by SH+H" = SHj. Overall, the
autoprotolysis (autoionization) occurs by 2SH = SH3 +S™. The extent of autoproto-
lysis is expressed by the autoprotolysis constant, Ksy=aSH3aS~, the values of
which are also included in Table 1.5 as pKsy values (for more details, see Table 6.6).

Using water as reference, an amphiprotic solvent having an acidity and a basici-
ty comparable to those of water is called a neutral solvent, one with a stronger acid-
ity and a weaker basicity than water is called a protogenic solvent, and one with a
weaker acidity and a stronger basicity than water is called a protophilic solvent. The
solvent with relatively strong acidity usually has in its molecule a hydrogen atom

10) There is an opinion that the term ‘aprotic’ ever, it is more popular to use ‘aprotic’ for sol-
should be reserved for solvents having no vents that are very weak in proton-donating and
hydrogen atom (e.g., SO, and BrFs). How- hydrogen bond-donating abilities.
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that is joined to an electronegative atom like oxygen (O), nitrogen (N) or halogen
(X). Because of the electron pair donor capacity of the electronegative atom, a sol-
vent with relatively strong acidity also has some basicity. Actually there are no
acidic solvents without some basicity.

Aprotic solvents, on the other hand, do not have a hydrogen atom joined to an
electronegative atom. Generally the hydrogen atom(s) of an aprotic solvent is
joined only to a carbon atom. Therefore, aprotic solvents have very weak proton-
donating and hydrogen bond-donating abilities. Concerning the basicity, however,
some aprotic solvents are stronger, although some are much weaker, than water.
Aprotic solvents with strong basicity are said to be protophilic, while those with
very weak basicity are said to be protophobic. The molecules of protophilic aprotic
solvents have an oxygen atom or a nitrogen atom, on which negative charge is lo-
cated. Among the aprotic solvents, those having relatively high permittivities
(6r=15 or 20) or large dipole moments (u>2.5D) are often called dipolar aprotic sol-
vents. As in Table 1.6, some aprotic solvents with ¢,<15 or £<2.5 D (e.g. Py, THF,
diethyl ether, MIBK) are classified as dipolar solvents. This is because, due to
their acidic or basic properties, they behave like dipolar solvents. Solvents having
low relative permittivities (or dipole moments) and very weak acidic and basic
properties are called inert solvents.

The distinction between amphiprotic and aprotic solvents is not always clear.
For instance, dimethyl sulfoxide (DMSO) is usually considered aprotic, but it un-
dergoes an autoprotolysis as follows:

2CI‘I3SOCI‘I},<:’(CI_I3SOCH3)I‘I+ + CH3;SOCH; (pKSH ~~ 33)

where (CH3SOCH;)H" is a lyonium ion and CH3;SOCHj; is a lyate ion. Thus,
DMSO may be considered to be an amphiprotic solvent.") It is usual, however, to
include solvents with pKsyy>22 as aprotic solvents. On the other hand, the values
of acceptor number, AN, are often less than 10 for inert solvents, between 10 and
20 for dipolar aprotic solvents, and 25 or more for neutral or protogenic amphi-
protic solvents.

13
Effects of Solvent Properties on Chemical Reactions [an Outline]

Chemical reactions in solutions are often affected drastically by the solvents used.
The main objective of this book is to correlate the properties of solvents and the sol-
vent effects on various chemical processes relevant to electrochemistry. The most
important solvent properties in considering solvent effects are the solvent permittiv-
ity and the solvent acidity and basicity. If the permittivity of one solvent is high
(6:>30) and that of the other is low (¢,<10), the difference in a chemical process

11) The lyate ion of DMSO (CH3SOCHy;") is called dimsyl ion. Its alkali metal salts have been used as
titrant in DM SO [25a].
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in the two solvents is usually attributable to the influence of permittivity. However,
the difference in a chemical process in two high permittivity solvents (e.g. &> 30) is
often attributable to the influence of the acidity or basicity of the two solvents rather
than the influence of permittivity. General tendencies of the effects of solvent acid-
base properties on chemical processes are summarized in Table 1.7. For example, the
items in the left-hand column of the table should be read as follows:

1)

A solvent with weak acidity is a weak hydrogen bond donor and solvates only
very weakly to small anions (F~, CI", OH", CH;COO", etc.). Thus, small anions
are very reactive in it. In contrast, a solvent with strong acidity easily solvates
to small anions by hydrogen bonding and weakens their reactivity.

In a solvent with weak acidity, the solvent molecule cannot easily release a pro-
ton. Thus, the pH region is wider on the basic side than in water; some strong
bases, whose strengths are leveled in water, are differentiated; some very weak
acids, which cannot be determined by neutralization titration in water, can be
determined. In contrast, in a solvent with strong acidity, a proton is easily re-
leased from the solvent molecule. Thus, the pH region is narrow on the basic
side; strong bases are easily leveled; neutralization titrations of very weak acids
are impossible.

A solvent with weak acidity is a weak electron acceptor and is more difficult to
reduce than water. Thus, in it, the potential window is wider on the negative
side than in water; some strong reducing agents that are not stable in water
can survive; some substances that are difficult to reduce in water can be re-
duced. In contrast, a solvent with strong acidity easily accepts electrons and is
reduced. Thus, in it, the potential window is narrow on the negative side;
strong reducing agents easily reduce the solvent; some substances, which can
be reduced in water, cannot be reduced until the reduction of the solvent.

Tab. 1.7 Acid-base properties of solvents and the characteristics of reactions

Solvents with weak (strong) acidity Solvents with weak (strong) basicity

1) Solvation to small anions is difficult (easy) 1) Solvation to small cations is difficult (easy)

e Small anions are reactive (not reactive) o Small cations are reactive (not reactive)
2) Proton donation from solvent is difficult 2) Proton acceptance by solvent is difficult
(casy) (casy)
o pH region is wide (narrow) on the basic e pH region is wide (narrow) on the acidic
side side
e Strong bases are differentiated (leveled) e Strong acids are differentiated (leveled)
o Very weak acids can (cannot) be titrated o Very weak bases can (cannot) be titrated
3) Reduction of solvent is difficult (easy) 3) Oxidation of solvent is difficult (easy)
e Potential region is wide (narrow) on nega- e Potential region is wide (narrow) on posi-
tive side tive side
¢ Strong reducing agent is stable (unstable) o Strong oxidizing agent is stable (unstable)
in the solvent in the solvent

o Substances difficult to reduce can (cannot) e Substances difficult to oxidize can (can-
be reduced not) be oxidized
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Water has high permittivity and moderate acidity and basicity. Thus, in water,
many cations and anions are easily solvated (hydrated) and many electrolytes are
highly soluble and dissociate into ions. Water has fairly wide pH and potential
ranges and a convenient liquid temperature range. Of course, water is an excel-
lent solvent. However, as in Table 1.7, the reaction environment can be expanded
much wider than in water by use of a solvent of weak acidity and/or basicity. This
is the reason why dipolar aprotic solvents, which are either protophilic or proto-
phobic, are used in a variety of ways in modern chemistry.

Although water is an excellent solvent and the most popular, it has somewhat
anomalous properties that come from the hydrogen bonding ability of water to
form three-dimensional networks (Fig. 1.2, Section 1.1.3). Large molecules and
ions are often difficult to dissolve in water, unless they have hydrophilic site(s).
Therefore, water is not suitable as a medium for reactions involving large hydro-
phobic molecules or ions. In contrast, most dipolar aprotic solvents are non-struc-
tured or only weakly structured and can dissolve many large molecules and ions.
This is another major reason why dipolar aprotic solvents are often used instead
of water.
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2
Solvation and Complex Formation of lons
and Behavior of Electrolytes

Solvation is a process in which solute particles (molecules or ions) in a solution inter-
act with the solvent molecules surrounding them. Solvation in an aqueous solution is
called hydration. The solvation energy is defined as the standard chemical potential of a
solute in the solution referred to that in the gaseous state. ) The solvation of a solute
has a significant influence on its dissolution and on the chemical reactions in which
it participates. Conversely, the solvent effect on dissolution or on a chemical reaction
can be predicted quantitatively from knowledge of the solvation energies of the rel-
evant solutes. In this chapter, we mainly deal with the energetic aspects of ion solva-
tion and its effects on the behavior of ions and electrolytes in solutions.

During the last two decades, studies on ion solvation and electrolyte solutions
have made remarkable progress by the interplay of experiments and theories. Ex-
perimentally, X-ray and neutron diffraction methods and sophisticated EXAFS, IR,
Raman, NMR and dielectric relaxation spectroscopies have been used successfully
to obtain structural and/or dynamic information about ion-solvent and ion-ion in-
teractions. Theoretically, microscopic or molecular approaches to the study of ion
solvation and electrolyte solutions were made by Monte Carlo and molecular
dynamics calculations/simulations, as well as by improved statistical mechanics
treatments. Some topics that are essential to this book, are included in this chap-
ter. For more details of recent progress, see Ref. [1].

2.1
Influence of lon Solvation on Electrolyte Dissolution

Ion solvation is of vital importance in the dissolution of an electrolyte [2-7]. Fig-
ure 2.1 shows the Born-Haber cycle for the dissolution of a crystalline electrolyte,

1) For an electrically neutral molecule, the solva- ~ where z; is the ionic charge and y is the surface
tion energy AG?, is equal to the Gibbs energy potential at the vacuum/solution interface. For
of transfer, AG?, of the molecule from a vacu- an electrically neutral electrolyte, the influence
um into the solvent. However, for an electri- of the surface potential cancels out between the
cally charged ion, the following relationship cation and the anion. Thus, the electrolyte can
holds: Dbe treated like a neutral molecule.

AGY = AGY, +zFy

25
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@ @ M* and X~

in gaseous state

e. \

Electrolyte MX Solvated M* and X~
(crystalline) in solution

Fig. 21 Dissolution process of crystalline electrolyte MX into a
solvent (see text).

MX. In Process I, M" and X ions, which are strongly bound electrostatically in
the crystal, are dissociated (separated from one another) and are brought into a
gaseous state. In Process II, the M" and X~ ions in the gas phase dissolve into the
solvent by being solvated. In Process III, the crystal of MX directly dissolves into
the solvent, forming the solvated M* and X~ ions. The Gibbs energies for the
three processes are related as follows:

AGIOH = AGIO + AG?I

Here, the subscripts I, II and III denote the processes I, II and III, respectively. If
we denote the lattice Gibbs energy of crystal MX by AG?,, we get AGP=—AGS,.”)
AGS is equal to the sum of the solvation energies of M* and X7, and, if MX is
completely dissociated into free ions in the solution, it is equal to the solvation en-
ergy of MX, AGg,. AG}y; corresponds to the Gibbs energy of dissolution of electro-
lyte MX, AGg- Thus, we get Eq. (2.1):

AG® = AGY, — AGS, (2.1)

The values of the thermodynamic parameters for the dissolution of lithium and
sodium halides in water and in propylene carbonate (PC) are given in Table 2.1.

If the solubility product constant of electrolyte MX is expressed by K, (MX),
Eq. (2.2) is obtained as the relation between AGg and K, (MX):

AG? = —RT In Ky, (MX) (2.2)

From this equation, the solubility of MX, s, is obtained to be 1, 107, 10~ and 10™° M
(M=mol dm™) for AG? of 0, 22.8, 45.7 and 68.5 k] mol™, respectively, at 25°C
and using s=K3}%. If AGS has a negative value, the solubility is expected to exceed
1 M. Thus, from Eq. (2.1), the electrolyte is easily soluble if the sum of the solva-

2) The term ‘lattice energy’ sometimes means lattice enthalpy, but it does not apply here.
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Tab. 2.1 Thermodynamic parameters for the dissolution of lithium and sodium halides (25°C;
k) mol™)

Electro- AH}, -TAS}; AG}, Water Propylene carbonate (PC)
Iyte

AHS, -TASS, AGS, AGS AHS, -TASS AGS, AGS

LiF -1040 78 -962 -1036 88 -948 142 - - - 96.2
LiCl -861 73 -788  -899 70 -829 —40.6 -869 102 =767 221
LiBr -819 72 -747  -869 66 -803 -55.6 -848 99 -749 54
LiI -762 69 —693 -825 57 -768 -75.3 -825 101 -724 -31.4
NaF -923 78 —845 -923 82 -841 42 - - - 76.1
NaCl -787 73 -714  -783 60 -723 -8.8 -761 83 —678 43.9
NaBr =752 72 —-680 753 56 -697 -16.3 -741 89 —652 28.5
Nal -702 70 —632 -710 49 -661 -289 -723 95 —628 4.2

1) AHp,, ASt, AGhy: Lattice enthalpy, entropy, and Gibbs energy of the crystalline electrolyte; AHg,,
ASg,, AGg,: Enthalpy, entropy, and Gibbs energy of solvation of the electrolyte; AGg: Gibbs energy
of solution of the crystalline electrolyte. Taken from Table 1 in Ref. [3], Chapter 1.

tion energies of the ions constituting the electrolyte is larger than the lattice
Gibbs energy (in absolute value) or very near to it. From the AGg values in Table
2.1, it is apparent that all of the lithium and sodium halides are easily soluble in
water. In PC, however, the solubilities are much lower than those in water and
LiF, NaF and NaCl are difficult to dissolve.

In general, AGg, and AG{,; have large negative values, which are, interestingly,
close to each other in magnitude. Thus AGg, which is obtained as the difference
between the two values [Eq. (2.1)], is relatively small. If the values of AGg, in two
solvents differ by several per cent, its influence on AGg may cause a big differ-
ence between the solubilities of the electrolyte in the two solvents. This actually
happens between water and PC, as shown in Table 2.1.

For reference, the standard Gibbs energies and enthalpies of hydration of some
single ions and neutral molecules are given in Table 2.2.

2.2
Some Fundamental Aspects of lon Solvation

2.2.1
lon-Solvent Interactions Affecting lon Solvation

As described above, the role of ion solvation is crucial in the dissolution of electro-
lytes. Ion solvation also has significant effects on chemical reactions and equilib-
ria. Ion-solvent interactions that may participate in ion solvation are shown in Ta-
ble 2.3 [8].

Their characteristics are outlined below:



28

2 Solvation and Complex Formation of lons and Behavior of Electrolytes

Tab. 2.2 Standard Gibbs energies and enthalpies of hydration of single ions and neutral mole-
cules (25°C; kJ mol™)

Cations AGRyqr AHRygr Anions AGRyar AHpygr Neutral AHRyar
molecules
H* -1056 -1094 F~ —472 -519 H,0 —44.0%
Li* —481 -522 cr —347 -376 CH;0H —44.7%
Na* -375 —407 Br~ -321 -345 NH, -34.6%
K* 304 -324 I -283 -300 H,S -19.2%
Et,N* - -127Y  clog 214 -232 Cdcl, -1942
Ph,As* - 427 BF; 200 -220 HgCl, —-69.1%
Mg** -1838 -1931 BPh; - —47Y  cdi, -1412
AP —4531 —4688 Nors -1090 -1138 Hgl, —-62.3%

From Table 5.10 in Marcus, Y. Ion Solvation, Wiley & Sons, New York, 1985, except 1): Ref. [3], p. 16;
and 2): Ref. [3], p. 25.

Tab. 2.3 lon-solvent interactions influencing ion solvation "

1) Electrostatic interactions as expressed by the Born equation (=80%)
2) Electron (pair) donor-acceptor interactions (£10%)
3) Interactions of anions with hydrogen bond donor solvents (£10%)
4) Interactions based on HSAB concept (£20%)
5) Interactions by back-donation from d'%-cation to solvent molecules (£10%)
6) Interactions related to the structure-making and breaking of solvents (£5%)

1) The values in parentheses show the rough estimate of the contribution from each factor to the to-
tal solvation energies of univalent ions (300-500 k] mol™) in a solvent of &,=25-100. From Ref.
8]

Electrostatic Interactions

The electrostatic part of the ionic solvation energy, AG (k] mol™), corresponds to
the difference between the electrostatic free energy of an ion in vacuo and that of
the ion in a solution of relative permittivity ¢. It is roughly given by the Born
equation:

Npz2e? 1 69.4 22 1
AGg=——"—"-|1——) =— 1—— 2.3
e 4mey - 2r & r & (2:3)

where ze is the ionic charge, r is the ionic radius (nm), and N, is the Avogadro
constant. Figure 2.2 shows the relationship between AG, and ¢, for a univalent
ion, obtained by assuming a constant ionic radius. The value of —~AG,, increases
with ¢, very rapidly in the low permittivity region (¢,<10) and rather slowly in the
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Fig. 2.2 The effect of solvent permittivity on the electrostatic sol-
vation energy of an ion (curve 1) and that of a neutral dipolar
molecule (curve 2). Curve 1 was obtained from Eq. (2.3) assuming

r=0.2 nm. For curve 2, see?.

high permittivity region (g;>20). This shows that the difference in AG, between

two high permittivity solvents is rather smal

1 3,4)

3) The Born equation, proposed in 1920, has been modified in various ways in order to get a single

4

equation that can express the experimental ionic solvation energies. In recent years, the so-called
mean spherical approximation (MSA) has often been used in treating ion solvation. In the MSA
treatment, the Gibbs energy of ion solvation is expressed by
AGs, — Nzt (1 - 1)

S Amey - 2(r +0s) &
where r is the radius of a spherical ion and ds=r,//, rs being the radius of a spherical solvent mol-
ecule and /, the Wertheim polarization parameter, obtained by the relation /2 (1+)*=16¢, [9]. For
water at 25°C, r,=142 pm and /4=2.65, and thus J,=54 pm. In the table below, the AGZ, (k] mol™)
values obtained experimentally in water are compared with those obtained by use of the Born and
MSA models [9]

Ion Li* Na* K* Rb* Cs* F Cl” Br~ I

r (pm) 88 116 152 163 184 119 167 182 206
Experimental -529 —424 -352 -329 -306 —429 -304 -278 —243
Born =779 =591 —451 —421 -373 =576 —410 =377 -333
MSA —483 —403 -333 -316 -288 -396 -310 -291 —264

The values of J in seven dipolar aprotic solvents have been reported to be 80 + 5 pm for cations
and 44 = 4 pm for anions [10]. The MSA is also used in treating ionic activity coefficients; in a re-
cent study [11], the change in solvent permittivity with electrolyte concentration was taken into ac-
count in addition to the change in ionic radius, and excellent agreements were obtained between
the experimental and theoretical results for 1:1 electrolytes of up to 2.5 M.

According to Kirkwood [12], the electrostatic solvation energy of a neutral spherical molecule with
a radius 7 and a dipole moment u is expressed by AGe=—(Na 1 /4meo){(e~1)/(2e:+1)}. The rela-
tionship between (¢,~1)/(2¢,+1) and &, plotted in Fig. 2.2, indicates that the influence of ¢, on mo-
lecular solvation is somewhat similar to that on ion solvation.

29
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For univalent ions in high permittivity solvents, the total solvation energy is
roughly in the range 300-500 k] mol™" (see®) and the electrostatic part, AG,, is
considered to amount to 80% or more (Table 2.3). However, if we compare the sol-
vation energies of an ion in two high permittivity solvents, we find that the differ-
ence in AGg is often less important than the difference in the solvation energies
caused by the interactions described below.

Electron Pair Donor-Acceptor Interactions

In ion solvation, the solvent molecules approach a cation with their negative
charge and approach an anion with their positive charge (Fig. 2.1). Therefore, cat-
ion solvation is closely related to the electron pair donor capacity or Lewis basicity
of solvents and tends to become stronger with the increase in donor number
(DN). On the other hand, the anion solvation is closely related to the electron pair
acceptability or Lewis acidity of solvents and tends to become stronger with the in-
crease in acceptor number (AN).

The effects of DN on the solvation energy of the potassium ion and on the stan-
dard potential of the hydrogen electrode, which is linearly related to the solvation
energy of the hydrogen ion, are shown in Fig. 2.3. Near-linear relations can be ob-
served in both cases [13]. There is also a linear relationship between AN and the
solvation energies of the chloride ion in aprotic solvents, as in Fig. 2.4 [13]. How-
ever, the chloride ion in protic solvents like water and alcohols behaves somewhat
differently than in aprotic solvents [14], probably because of the influence of hy-
drogen bonding (see below).

o]
s Lot sz
-4 FiZ- bzon & T
T T L —
-1+0.5
- 10 >
° -~
E T
2 =
~ --0.5 })
w =
1 %
Z Fig. 2.3 Standard Gibbs energies
,<- --1.0 of transfer of the potassium ion
cé from AN to other solvents and
Kg standard potentials of the hydro-
o
1 gen electrode, both plotted
2 10 18 26 34 42 against the donor number of sol-

Donor number (DN) vents [13].
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Fig. 2.4 Standard Gibbs energies of transfer of the chloride ion
from AN to other solvents plotted against the acceptor number
of solvents [13].

Interactions of Anions with Hydrogen Bond Donor Solvents

Such small anions as F~, CI” and OH™ and anions having a small oxygen atom
with a localized negative charge (e.g. CH;COO™, C¢Hs07) usually have a strong
tendency to accept hydrogen bonds. Thus, these anions are strongly solvated by
hydrogen bonding in protic solvents like water and alcohols. On the other hand,
they are solvated only weakly and thus are very reactive in aprotic solvents, which
are weak hydrogen bond donors (Table 2.4).

Large anions, such as I” and ClOj, have a relatively weak tendency to accept hy-
drogen bonds. However, they are highly polarizable and interact to a fair extent by
dispersion forces (London forces) with the molecules of aprotic solvents, which
are also considerably polarizable. Thus, for large anions, the solvation energies in
protic solvents (water, alcohols) and those in dipolar aprotic solvents (AN, DMF,
DMSO) are not as different as in the case of small anions (Table 2.4).

Interactions Based on the HSAB Concept

According to the hard and soft acids and bases (HSAB) concept, hard acids tend
to interact strongly with hard bases, while soft acids tend to interact strongly with
soft bases. The HSAB concept applies also to solute-solvent interactions. Fig-
ure 2.5 shows the polarographic half-wave potentials of metal ions in N-methyl-2-
pyrrolidinone (NMP) and N-methyl-2-thiopyrrolidinone (NMTP) [13]. Here, we
can compare the half-wave potentials in the two solvents, because they are re-
ferred to the half-wave potential of the bis(biphenyl)chromium(I)/(0) couple,

5) The negative charge on the O atom of the O atom of C¢HsO™ is delocalized by replac-
CH;3COO" is delocalized by replacing CH3 ing H atom(s) with electron-withdrawing NO,
group with electron-withdrawing CF; group. In  group(s).
the same way, the negative charge of

31
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Fig. 25 Comparison of the half-wave potentials of metal ions in N-methyl-2-pyr-
rolidinone (NMP) and those in N-methyl-2-thiopyrrolidinone (NMTP) [13].

which is considered nearly solvent independent (Section 2.3). NMP is a hard base
and NMTP is a soft base. NMP coordinates to metal ions (Lewis acids) with its O
atom but NMTP coordinates with its S atom. In Fig. 2.5, the half-wave potentials
of alkali metal ions are somewhat more negative in NMP than in NMTP, showing
that the alkali metal ions (hard acids) solvate more strongly in NMP than in
NMTP. On the other hand, the half-wave potential of Ag* is much more negative
in NMTP than in NMP, indicating a strong solvation of Ag” (soft acid) in NMTP.
Similar phenomena have been observed in N,N-dimethylformamide (DMF, hard
base) and N,N-dimethylthioformamide (DMTF, soft base). However, soft-base sol-
vents are rather exceptional. Most solvents in common use behave as hard bases,
although such solvents as AN, BuN and Py are known sometimes to show inter-
mediate characteristics, between hard and soft, as described in Section 4.2.

Interactions by Back-Donation from d'°-Cation to Solvent Molecules

Acetonitrile (AN) has relatively small DN and usually solvates rather weakly to
metal ions. However, it solvates very strongly to Cu®, Ag" and Au®, which are uni-
valent d'%metal ions. This is because these metal ions have an ability to back-do-
nate their electrons (inﬁ a m*-antibonding orbital of the CN group of AN, as
shown by CH3;C = N:— Ag". As a result, Cu* and Ag" in AN are stable and not
easily reduced to metal, while the weakly solvated Cu®* is very easily reduced to
Cu" [see Eq. (4.6)], making Cu®" in AN a strong oxidizing agent.

Interactions Related to the Structure-Making and -Breaking of Solvent

When an ion (or a molecule) is dissolved, a cavity must be formed in the solvent
to accommodate it. By the increase in the ionic (or molecular) size and by the
strengthening of the interaction between solvent molecules, the energy needed for
cavity formation increases. Water molecules are strongly bound to each other by
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hydrogen bonding and form three-dimensional networks. Thus, the cavity forma-
tion in water needs more energy than in other solvents in which the solvent-sol-
vent interactions are weak. Moreover, if a large hydrophobic ion [tetraalkylammo-
nium ion (R4N"), tetraphenylborate ion (Ph,B"), etc.] is introduced into water, it
rejects the surrounding water molecules. The rejected water molecules are com-
bined to make the structure more rigid (structure-making) and decrease the entro-
py of the system.®) For these reasons, large hydrophobic ions and molecules are
usually energetically unstable in water. They are much more stable in organic sol-
vents, which are free from strong solvent-solvent interactions. On the other hand,
if small inorganic ions that are hydrophilic are introduced into water, they interact
strongly with water molecules, weaken the structure of the surrounding water,
and increase the entropy of the system as a whole. Thus, hydrophilic ions in
water are energetically stable.

222
Structure of Solvated lons

In water, in which hydrogen bonding occurs between water molecules hydrated
(solvated) ions can be depicted by a typical model as shown in Fig. 2.6. Region A
is the primary solvation shell (sphere), the solvent molecules of which are orient-
ed by interacting directly with the ion; region B is the secondary solvation shell,
the solvent molecules of which are still partially oriented by the influence of the
ion and by the interaction with the molecules in the primary solvation shell; and
region D shows the bulk solvent where the influence of the ion is negligible. A
structural mismatch between regions B and D is mediated by a disordered region
C. A model similar to Fig. 2.6 also applies to ions in structured solvents such as
alcohols. However, a simpler model, in which regions B and C are not definite,
applies to ions in non-structured polar solvents.

A: Primary solvation shell

B: Secondary solvation shell
C: Disordered region

D: Bulk solvent

Fig. 2.6 Typical model of solvated ions in structured solvents
such as water and alcohols.

6) Hydrophobic molecules of organic compounds, neon, argon, etc. are also structure-making.
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The solvent molecules in the primary solvation shell are constantly renewed by
a solvent exchange reaction:

MS™ 4+ 8* 5 MS,_q (S*) +S

where M"" denotes a metal ion and S and S* denote solvent molecules. The rate
constants (k) of solvent exchange reactions for metal ions have been determined
by NMR (fast reactions) or isotope dilution (slow reactions) methods. As in Table
2.5, the k values vary greatly (from 107 to 10°° s™) by metal ion [15a]. The aver-
age lifetimes of solvents in the primary solvation shell also vary widely, because
they are of the order of (1/k). The average lifetimes, determined for Li" from the
NMR band widths are in the order NM (0.05) < AN (0.6) < THF (1.0) < MeOH
(1.6) < water(3.3) < FA(4.0) < NMF (5.6) < DMF(8) < DMSO(8) < HMPA (15)
[15b]. The values in parentheses show the lifetimes in ns. This shows that the
lifetime increases with the increase in the solvating ability of the solvent.

The solvation numbers in the primary solvation shell can be estimated by NMR,
IR, and Raman spectroscopies or by isotope dilution method. For example, in the
NMR peak area method, the solvent molecules in the primary solvation shell of a
metal ion (~1 M) give an "H-NMR peak separated from that for the bulk solvent,
if they have lifetimes longer than ~107*s. The solvation number of the metal ion
is determined directly from the ratio of the two peak areas. Though such metal
ions are limited in number at room temperatures (see Table 2.5), they increase at
low temperatures (—60 or —100°C). The solvation numbers obtained from NMR
peak areas are usually six for such metal ions as Mg”**, Al**, Ga**, Zn**, Mn?",
Fe**, Co*, Ni**, Ti’", V**, Cr’", Fe’* in water, MeOH, AN, DMF, DMSO, and
NHj;, though they are four for small metal ions like Be** and for square-planar
Pd** and Pt**. There is a tendency that bulky solvents, like HMPA and trimethyl
phosphate, give lower solvation numbers than other solvents. If the lifetime is too
short to use the NMR method, the IR method may be applicable. Figure 2.7
shows the FTIR-spectra of the v(C-N) stretching band for a LiClO, solution in AN
(25°C); (a) is for free AN molecules (2253 cm™) and (b) is for AN molecules in
the first solvation shell of Li* (2276 cm™) [16a]. With increasing LiClO4 concentra-
tion, the intensity of band (b) increases. Data analysis yields a solvation number
close to four. The difference in v between bands (a) and (b) increases with the cat-

Tab. 2.5 Logarithm of solvent exchange rate constant [k (s™')] in various solvents at 25°C")

Solvent Mg*  AP* crt Mn**  Fe** Fe** Co®** N cu*
Water 5.72 011 -5.62 7.49 6.64 22 6.35 458  9.64
MeOH 3.67 557 470 3.71 4.26 3.00 7.5
AN 7.08  5.82 554 330

DMF 179  -13  -7.26 643 6.23 1.79 5.59 358 9.0
DMSO -0.52 -749 680  6.00 1,4 565 422

1) From Funahashi, S. Inorganic Reactions in Solutions, Shokabo, Tokyo, 1998, p. 246.
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Fig. 2.7 FTIR spectra of LiClO,4 solution in AN (25 °C) [16 a] (see text).

ionic surface charge density in the order NaClO, < Ba(ClO4), < Sr(ClO,), <
Ca(ClOy), < LiClO,, indicating the strengthening of the ion-solvent interaction. IR
and Raman spectroscopies are useful to study the strength of ion-solvent interac-
tions. In Ref. 16a, ClO; was considered to be unsolvated in AN. However, a re-
cent study by attenuated total reflectance FTIR spectroscopy showed that the C-N
stretching band for AN molecules associated with ClOj has a significantly larger
molar absorption coefficient than the same band for self-associated AN [16D]. For
IR studies of solvated ions in other aprotic solvents, see Ref. [16¢].

X-ray and neutron diffraction methods and EXAFS spectroscopy are very useful
in getting structural information of solvated ions. These methods, combined with
molecular dynamics and Monte Carlo simulations, have been used extensively to
study the structures of hydrated ions in water. Detailed results can be found in
the review by Ohtaki and Radnai [17]. The structural study of solvated ions in
non-aqueous solvents has not been as extensive, partly because the low solubility
of electrolytes in non-aqueous solvents limits the use of X-ray and neutron diffrac-
tion methods that need electrolyte of ~1 M. However, this situation has been im-
proved by EXAFS (applicable at ~0.1 M), at least for ions of the elements with
large atomic numbers, and the amount of data on ion—coordinating atom dis-
tances and solvation numbers for ions in non-aqueous solvents are growing [15a,
18]. For example, according to the X-ray diffraction method, the lithium ion in for-
mamide (FA) has, on average, 5.4 FA molecules as nearest neighbors with an

6a) Besides spectroscopic (EXAFS, NMR, IR, Ra- transport with the ion. Thus, for strongly sol-

man) and scattering (X-ray and neutron dif- vated ions, the results may include the solvent
fraction) methods, transport properties molecules in the primary and secondary solva-
(transference numbers and ionic mobilities) tion shells or even more and larger values than
and thermodynamic properties (molar entro- those obtained by spectroscopic or scattering
pies of solvation, compressibilities, etc.) are methods may be obtained. For the methods and
used to obtain solvation numbers of ions in the problems associated with the estimation of
solution. The results obtained from transport  solvation numbers, see, for example, p. 61 and
and thermodynamic properties reflect the 139 in Ref. 1a; p. 28 in Ref. 43a; p. 68 in Ref. 5;

number of solvent molecules that behave or  p. 78 and 242 in Ref. 15a.
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Li*-O distance of 224 pm, while the chloride ion is coordinated by 4.5 FA mole-
cules and the CI™---N distance is 327 pm; the amino group of FA interacts with
the chloride ion in a bifurcated manner through the two hydrogen atoms [18].
The solvation numbers obtained by these methods correspond to the number of
solvent molecules in the first solvation shell immediately neighboring the ion; here,

the solvent molecules may or may not interact strongly with the ion.®®

223
Ultrafast lon-Solvation Dynamics

Since the end of the 1980s, ultrafast ion-solvation dynamics has been studied with
great interest by combining femtosecond laser experiments, analytical theories
and computer simulations [19]. This is because such ultrafast solvation dynamics
is closely related to various chemical processes including electron-transfer reactions
and ionic migrations (Sections 4.1.3 and 7.2.1) [20]. In typical studies of ion-solvation
dynamics, a fluorescent probe molecule is used that is nonpolar in the ground state
but is highly polar (possibly ionic) in the electronically excited state. When the probe
solute is in the ground state, the solvent dipoles around the solute remain randomly
oriented. When the probe solute is excited by an ultrashort laser pulse, the solvent
dipoles initially remain randomly oriented around the instantaneously created
charge distribution, but, with time, they gradually reorient so that the system is en-
ergetically relaxed. Thus, if E(0), E(t) and E(c0) denote the energies of the fluorescent
solute at times 0, t and oo (0<t<o0), respectively, there is a relation E(0) > E(t) >
E (o). If the emission energy of the excited fluorescent solute is measured as a func-
tion of time, it is observed that, with time, the emission maximum shifts to lower
energy, i.e. to longer wavelength. This phenomenon is called time-dependent fluores-
cence Stokes shift (TDFSS). The solvation dynamics is monitored by the decay of the
solvation time correlation function, S(t), defined by:

_ E() — E()

S(t) = E(0) — E(co
1.0¢
08
0.6

=

0.4
02} 3

Fig. 2.8 Experimentally obtained solvation

time correlation function, S(t), for the sol- 0_%
vation of coumarin 343 in water (taken

from Ref. [19a]). t (ps)
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As an example, Fig. 2.8 shows the experimental S(t)—t relation in water [19a]. The
probe molecule was coumarin 343, which is ionic in the excited state. The experi-
mental results are biphasic: an initial ultrafast Gaussian decay with a time
constant of ~55 fs is followed by a slower bi-exponential decay of time constants
126 and 880 fs. The initial decay constitutes more than 60% of the total solvation.
The relationship in Fig. 2.8 has been simulated by molecular hydrodynamic theo-
ry using the dielectric relaxation parameters of H,O. It agrees well with the ex-
perimental results: the theoretical time constant for the initial Gaussian decay is
equal to 52 fs and those for the slower bi-exponential decay are 134 and 886 fs.
The initial decay has been shown to correspond to the intermolecular vibrational
band originating from the O- - -O stretching mode of the O-H- - -O unit. Similar
biphasic relations have also been obtained in AN and MeOH [19b,c] and, based
on the theoretical studies, the initial ultrafast decay has been interpreted by the li-
brational motion or force-free (inertial) motion of solvent molecules. Various fac-
tors complicate the study of solvation dynamics: different experimental techniques
may give significantly different results; the excited probe-solute may behave as a
dipole rather than as an ion; the ultrafast decay may be due to the intramolecular
relaxation of the excited probe-solute [21]. Studies on ultrafast solvation dynamics
are still under way but are providing valuable knowledge that helps to understand
the dynamical solvent effects on various chemical processes.

23
Comparison of lonic Solvation Energies in Different Solvents
and Solvent Effects on lonic Reactions and Equilibria

2.3.1
Gibbs Energies of Transfer and Transfer Activity Coefficients of lons

The various factors that contribute to ion solvation were discussed in Section
2.2.1. In this section, we deal with the solvent effects on chemical reactions more
quantitatively [5, 22]. To do this, we introduce two quantities, the Gibbs energy of
transfer and the transfer activity coefficient.

If the solvation energy of species i in solvent R (reference solvent) is expressed
by AGg, (i, R) and that in solvent S (a solvent under study) by AGg, (i, S), the differ-
ence between the two is expressed by AGY (i, R—S) and is called the Gibbs energy
of transfer of species i from solvent R to S:

AGY(i, R — 8) = AGG (i, S) — AG, (i, R)

If the species i is electrically neutral, the value of AGY (i, R—S) can be obtained by
a thermodynamic method. For example, if the solubilities of i in solvents R and S
are Sg and Sg, respectively, AG{ (i, R—S) can be obtained by Eq. (2.4):

AG®(i,R — S) = RT In(Sg/Ss) (2.4)
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If the species i is an electrolyte MX, which is electrically neutral, it is also possi-
ble to obtain the value of AGY (i, R—S) from the solubilities of MX in the two sol-
vents.

However, if species i is a single ion, the value of AGY(i,R—S) cannot be ob-
tained by purely thermodynamic means. It is necessary to introduce some extra-
thermodynamic assumption. Various extra-thermodynamic assumptions have
been proposed. Some typical examples are described in (i), (ii) and (iii) below. For
practical methods of obtaining the Gibbs energies of transfer for ionic species,
see”).

(i) Reference ion/molecule assumption (assumption of a reference potential system):
When a univalent cation 1" (or anion I7), which is large in size and symmetrical
in structure, is reduced (or oxidized) in solvents R and S to form an electrically
neutral 1°, which has essentially the same size and structure as I* (or I'), we as-
sume that AGY(I* or I, R—»S)=AG{ (I°, R—S) or that the standard potentials of
the redox system (I*/I° or I°/I") in R and S are the same. Actually, such redox
couples as bis(cyclopentadienyl)iron(III)/bis(cyclopentadienyl)iron(II) (ferrocenium
ion/ferrocene, Fc*/Fc) and bis(biphenyl)chromium(I)/bis(biphenyl)chromium(0)
(BCr*/BCr) seem nearly to meet these requirements in various solvents. Thus,
these redox couples are often used as reference systems having solvent-indepen-
dent potentials.

This assumption, however, has some problems. One is that the relation AGY (I
or I,R—S)=AG{ (I°,R—S) does not hold if the relative permittivity of S is much
different from that of R. If we divide the solvation energy of I* (or I") into electro-
static and non-electrostatic parts, the non-electrostatic part of AGY(I" or I7,R—S)

7) The following are the practical procedures for
obtaining the Gibbs energies of transfer and
transfer activity coefficients of ionic species
based on the extrathermodynamic assump-
tions (i), (ii) and (iii) described above:

Assumption (i): When we use the Fc*/Fc
couple as a solvent-independent potential ref-
erence, we measure the emfs of the cell
Pt|Fc*(picrate), Fc, AgClO4(R or S)|Ag. If the
emfs in R and S are F and Es, respectively,
we get the values of AGP(Ag",R—S) and
log y(Ag",R—S) by the relation
AG?(Ag',R—8)=2.3RT log 7,(Ag", R—S)
= F(Es—ER). Then, we measure the solubilities
of a sparingly soluble silver salt (AgX) in R
and S to get the values of pK,(AgX,R) and
pKsp(AgX,S). Using these values, we calculate
the values of AGy (X", R—S) and
log y«(X",R—S). Then, by measuring the solu-
bility of a sparing soluble salt M*X", we get
the values of AGY(M*,R—S) 