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Preface to Fourth Edition

This fourth edition of Crystallization has been substantially rewritten and
up-dated. The 1961 first edition, written primarily for chemical engineers and
industrial chemists, was illustrated with practical examples from a range of
process industries, coupled with basic introductions to the scientific principles
on which the unit operation of crystallization depends. It was also intended to
be useful to students of chemical engineering and chemical technology. The
aims and objectives of the book have remained intact in all subsequent editions,
although the subject matter has been considerably expanded each time to take
into account technological developments and to reflect current research trends
into the fundamentals of crystallization mechanisms.

The continuing upsurge in interest in the utilization of crystallization as a
processing technique covers an increasing variety of industrial applications, not
only in the long-established fields of bulk inorganic and organic chemical
production, but also in the rapidly expanding areas of fine and specialty
chemicals and pharmaceuticals. These developments have created an enormous
publication explosion over the past few decades, in a very wide range of
journals, and justify the large number of specialist symposia that continue to
be held world-wide on the subject of crystallization.

Particular attention is drawn in this edition to such topical subjects as
the isolation of polymorphs and resolution of enantiomeric systems, the
potential for crystallizing from supercritical fluids, the use of molecular
modelling in the search for tailored habit modifiers and the mechanisms of
the effect of added impurities on the crystal growth process, the use of com-
puter-aided fluid dynamic modelling as a means of achieving a better under-
standing of mixing processes, the separate and distinct roles of both batch
and continuous crystallization processing, and the importance of potential
downstream processing problems and methods for their identification from
laboratory investigations. Great care has been taken in selecting suitable liter-
ature references for the individual sections to give a reliable guide to further
reading.

Once again I want to record my indebtedness to past research students,
visiting researchers and colleagues in the Crystallization Group at University
College London over many years, for their help and support in so many ways.
They are too numerous to name individually here, but much of their work is
recorded and duly acknowledged in appropriate sections throughout this edition.
I should like to express my sincere personal thanks to them all. I am also very
grateful to all those who have spoken or written to me over the years with
useful suggestions for corrections or improvements to the text.

Finally, and most importantly, it gives me great pleasure to acknowledge the
debt I owe to my wife, Averil, who has assisted me with all four editions of
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Crystallization. Without her tremendous help in preparing the manuscripts, my
task of writing would not have been completed.

JOHN MULLIN
University College London
2001



Preface to First Edition

Crystallization must surely rank as the oldest unit operation, in the chemical
engineering sense. Sodium chloride, for example, has been manufactured by
this process since the dawn of civilization. Today there are few sections of the
chemical industry that do not, at some stage, utilize crystallization as a method
of production, purification or recovery of solid material. Apart from being one
of the best and cheapest methods available for the production of pure solids
from impure solutions, crystallization has the additional advantage of giving an
end product that has many desirable properties. Uniform crystals have good
flow, handling and packaging characteristics: they also have an attractive
appearance, and this latter property alone can be a very important sales factor.

The industrial applications of crystallization are not necessarily confined to
the production of pure solid substances. In recent years large-scale purification
techniques have been developed for substances that are normally liquid at room
temperature. The petroleum industry, for example, in which distillation has
long held pride of place as the major processing operation, is turning its
attention most keenly to low-temperature crystallization as a method for the
separation of ‘difficult’ liquid hydrocarbon mixtures.

It is rather surprising that few books, indeed none in the English language,
have been devoted to a general treatment of crystallization practice, in view of
its importance and extensive industrial application. One reason for this lack of
attention could easily be that crystallization is still referred to as more of an art
than a science. There is undoubtedly some truth in this old adage, as anyone
who has designed and subsequently operated a crystallizer will know, but it
cannot be denied that nowadays there is a considerable amount of science
associated with the art.

Despite the large number of advances that have been made in recent years in
crystallization technology, there is still plenty of evidence of the reluctance to
talk about crystallization as a process divorced from considerations of the
actual substance being crystallized. To some extent this state of affairs is similar
to that which existed in the field of distillation some decades ago when little
attempt had been made to correlate the highly specialized techniques devel-
oped, more or less independently, for the processing of such commodities as
coal tar, alcohol and petroleum products. The transformation from an ‘art’ to a
‘science’ was eventually made when it came to be recognized that the key factor
which unified distillation design methods lay in the equilibrium physical prop-
erties of the working systems.

There is a growing trend today towards a unified approach to crystallization
problems, but there is still some way to go before crystallization ceases to be the
Cinderella of the unit operations. More data, particularly of the applied kind,
should be published. In this age of prolific outputs of technical literature such
a recommendation is not made lightly, but there is a real deficiency of this type



Preface to First Edition Xi

of published information. There is, at the same time, a wealth of knowledge and
experience retained in the process industries, much of it empirical but none the
less valuable when collected and correlated.

The object of this book is to outline the more important aspects of crystal-
lization theory and practice, together with some closely allied topics. The book
is intended to serve process chemists and engineers, and it should prove of
interest to students of chemical engineering and chemical technology. While
many of the techniques and operations have been described with reference to
specific processes or industries, an attempt has been made to treat the subject
matter in as general a manner as possible in order to emphasize the unit
operational nature of crystallization. Particular attention has been paid to the
newer and more recently developed processing methods, even where these have
not as yet proved adaptable to the large-scale manufacture of crystals.

My thanks are due to the Editors of Chemical Engineering Practice for
permission to include some of the material and many of the diagrams pre-
viously published by me in Volume 6 of their 12-volume series. I am indebted to
Professor M. B. Donald, who first suggested that I should write on this subject,
and to many of my colleagues, past and present, for helpful discussions in
connection with this work. I would also like to take this opportunity of
acknowledging my indebtedness to my wife for the valuable assistance and
encouragement she gave me during the preparation of the manuscript.

JOHN MULLIN
London
1960



Nomenclature and units

The basic SI units of mass, length and time are the kilogram (kg), metre (m) and
second (s). The basic unit of thermodynamic temperature is the kelvin (K), but
temperatures and temperature differences may also be expressed in degrees
Celsius (°C). The unit for the amount of substance is the mole (mol), defined
as the amount of substance which contains as many elementary units as there
are atoms in 0.012 kg of carbon-12. Chemical engineers, however, are tending
to use the kilomole (kmol = 10° mol) as the preferred unit. The unit of electric
current is the ampere (A).
Several of the derived SI units have special names:

Quantity Name Symbol ST unit Basic SI unit
Frequency hertz Hz s~

Force newton N mkgs—2
Pressure pascal Pa Nm~? m~'kgs2
Energy, work; heat joule J Nm m?kgs2
Power watt W Js! m?kgs™3
Quantity of electricity coulomb C SA

Electric potential volt A% WA~ m?kgs 3 A~!
Electric resistance ohm Q VA~ m?kgs 3 A2
Conductance siemens S AV-! m2kg!s?A?
Capacitance farad F cv-! m~2kg's*A?
Magnetic flux weber Wb Vs m?kgs 2 A~
Magnetic flux density  tesla T Wbm2 kgs2A~!
Inductance henry H WbA-! mPkgs2A~?

Up to the present moment, there is no general acceptance of the pascal for
expressing pressures in the chemical industry; many workers prefer to use
multiples and submultiples of the bar (1 bar = 10°Pa = 10°Nm~2 ~ 1 atmos-
phere). The standard atmosphere (760 mm Hg) is defined as 1.0133 x 10° Pa,
i.e. 1.0133 bar.

The prefixes for unit multiples and submultiples are:

1071% atto a 10! deca da
10-15  femto f 102 hecto h
10712 pico p 103 kilo k
10° mnano n 10 mega M
107  micro p 10° giga G
103 milli m 102 tera T
102 centi ¢ 101> peta P
107" deci d 10" exa E
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Conversion factors for some common units used in chemical engineering are

listed below. An asterisk (*) denotes an exact relationship.

Length

Time

Area

Volume

Mass

Force

Temperature difference

Energy (work, heat)

*lin
*1ft
*1yd
1 mile
‘1A (angstrom)
*1 min
*1h
*1day
1 year

*11in2
1 ft?
1 yd?
1 acre
1 hectare
1 mile?
lin?
1 ft3
1yd?
1 UK gal
1 US gal

1oz

1 grain
*11b

1 cwt

1 ton

1 pdl

1 1bf

1 kgf

1 tonf
*1dyn

*1 degF (degR)

1 ftlbf
1 ftpdl
*1cal (internat. table)
lerg
1 Btu
1 chu
lhph
*1kWh
1 therm
1 thermie

25.4mm
0.3048 m
0.9144m
1.6093 km
107%m

60s
3.6ks
86.4ks
31.5Ms

645.16 mm?
0.092903 m?
0.83613 m?
4046.9 m?2
10000 m?
2.590 km?

16.387 cm?
0.02832m3
0.76453 m3
4546.1 cm?
3785.4cm’

28.352¢g
0.06480 g
045359237 kg
508023 kg
1016.06 kg

0.13826 N
44482 N
9.8067 N
9.9640 kN
107°N

2 degC(K)

1.35587
0.04214)
4.18687J
10-7J
1.05506 kJ
1.8991kJ
2.6845MJ
3.6 MJ
105.51MJ
4.1855MJ
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Calorific value (volumetric)

Velocity

Volumetric flow

Mass flow

Mass per unit area

Density

Pressure

Power (heat flow)

1 Btu/ft?

1 chu/ft?

1 kecal/ft?

1 kcal/m?3
1 therm/ft3

1ft/s
1 ft/min
1 ft/h
I mile/h

11t3/s
1ft3/h
1 UK gal/h
1 US gal/h

11b/h
1 ton/h

11b/in?
11b/ft?
1 ton/mile?

11b/in3
11b/ft?
11b/UK gal
1 1b/US gal

1 1bf /in?
1 tonf/in?
1 1bf /2
1 kgf/m?

*1 standard atm
1 at (1kgf/cm?)

“1 bar
1 ft water
1in water
linHg

I mmHg (1 torr)

1 hp (British)
1 hp (metric)
lerg/s

1 ft Ibf/s

1 Btu/h

1 Btu/s

1 chu/h
1chu/s

1 kcal/h

1 ton of refrigeration

37.259kJm™3
67.067kIm™3
147.86kIm—3
4.1868kIm™3
3.7260GIm ™3

0.3048 ms™!

5.0800 mms~!
84.667 ums~!
0.44704 ms~!

0.028316m3s~!
7.8658 cm? s~ !
1.2628 cm? s~!
1.0515cm? s~

0.12600 gs~!
0.28224kgs!

703.07 kgm~2
4.8824kgm2
392.30 kgkm~2

27.680 gecm 3
16.019kgm~3
99.776kgm3
119.83kgm3

6.8948 kKN m—2
15.444 MN m2
47.880 Nm—2
9.8067 Nm2
101.325kNm—2
98.0665 kN m~2
10°Nm—2
2.9891 kN m—2
249.09 Nm~2
3.3864kNm2
133.32Nm™2

745. 710 W
735.50 W
1077W
1.3558 W
0.29308 W
1.0551 kW
0.52754 W
1.8991 kW
1.1630 kW
3516.9W
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Moment of inertia 11bft? 0.042140 kg m?
Momentum 11bft/s 0.13826kgms~!
Angular momentum 11b ft?/s 0.042140kgm?s~!
Viscosity, dynamic *1 poise (1 g/cmss) 0.1 Nsm~2
(0.1kgm™'s™h)
11b/ft h 0.41338 mNsm™>
11b/ft s 1.4882 Nsm~>
Viscosity, kinematic *1 stokes (1 cm?/s) 107*m?s~!
1ft*/h 0.25806 cm?s~!
Surface energy 1 erg/cm? 1073 Jm~2
(surface tension) (1dyn/cm) (103 Nm™1)
Surface per unit volume 1 /63 3.2808 m>m~?
Surface per unit mass 1 ft?/Ib 0.20482m? kg~!
Mass flux density 11b/h ft? 1.3562gs™ ' m~2
Heat flux density 1 Btu/h ft? 3.1546 Wm™?
*1 kcal/h m? 1.163Wm™
Heat transfer 1 Btu/h ft>°F 56784 Wm—2K~!
coefficient 1 kcal/hm?*°C 1.1630 Wm 2> K~!
Specific enthalpy 1 Btu/lb 2.326kJ kg™!
(latent heat, etc.)
Heat capacity *1 Btu/Ib°F 4.1868 kJ kg~ K~!

(specific heat)

Thermal conductivity

1 Btu/h ft°F
1 kcal/hm°C

1.7307Wm~ ' K~!
1.163Wm~! K™!

The values of some common physical constants in SI units include:

6.023 x 102 mol !
1.3805 x 1072 JK !
6.626 x 1073 Js

Avogadro number, Ny
Boltzmann constant, k

Planck constant, h

Stefan—Boltzmann constant, o
Standard temperature and pressure

(s.t.p.)

5.6697 x 1078 Wm2K*
273.15K and 1.013 x 10° Nm2

Volume of 1kmol of ideal gas at s.t.p. 22.41m?>
Gravitational acceleration 9.807m s>
Universal gas constant, R 8.3143Jmol~ ! K~!
Faraday constant, F 9.6487 x 10* Cmol™!






1 The crystalline state

The three general states of matter — gaseous, liquid and solid — represent very
different degrees of atomic or molecular mobility. In the gaseous state, the
molecules are in constant, vigorous and random motion; a mass of gas takes
the shape of its container, is readily compressed and exhibits a low viscosity. In
the liquid state, random molecular motion is much more restricted. The volume
occupied by a liquid is limited; a liquid only takes the shape of the occupied
part of its container, and its free surface is flat, except in those regions where it
comes into contact with the container walls. A liquid exhibits a much higher
viscosity than a gas and is less easily compressed. In the solid state, molecular
motion is confined to an oscillation about a fixed position, and the rigid
structure generally resists compression very strongly; in fact it will often frac-
ture when subjected to a deforming force.

Some substances, such as wax, pitch and glass, which possess the outward
appearance of being in the solid state, yield and flow under pressure, and they
are sometimes regarded as highly viscous liquids. Solids may be crystalline or
amorphous, and the crystalline state differs from the amorphous state in the
regular arrangement of the constituent molecules, atoms or ions into some fixed
and rigid pattern known as a lattice. Actually, many of the substances that were
once considered to be amorphous have now been shown, by X-ray analysis, to
exhibit some degree of regular molecular arrangement, but the term ‘crystalline’
is most frequently used to indicate a high degree of internal regularity, resulting
in the development of definite external crystal faces.

As molecular motion in a gas or liquid is free and random, the physical
properties of these fluids are the same no matter in what direction they are
measured. In other words, they are isotropic. True amorphous solids, because
of the random arrangement of their constituent molecules, are also isotropic.
Most crystals, however, are anisotropic; their mechanical, electrical, magnetic
and optical properties can vary according to the direction in which they are
measured. Crystals belonging to the cubic system are the exception to this rule;
their highly symmetrical internal arrangement renders them optically isotropic.
Anisotropy is most readily detected by refractive index measurements, and the
striking phenomenon of double refraction exhibited by a clear crystal of Iceland
spar (calcite) is probably the best-known example.

1.1 Liquid crystals

Before considering the type of crystal with which everyone is familiar, namely
the solid crystalline body, it is worth while mentioning a state of matter which
possesses the flow properties of a liquid yet exhibits some of the properties of
the crystalline state.



2 Crystallization

Although liquids are usually isotropic, some 200 cases are known of sub-
stances that exhibit anisotropy in the liquid state at temperatures just above
their melting point. These liquids bear the unfortunate, but popular, name
‘liquid crystals’: the term is inapt because the word ‘crystal’ implies the exist-
ence of a precise space lattice. Lattice formation is not possible in the liquid
state, but some form of molecular orientation can occur with certain types of
molecules under certain conditions. Accordingly, the name ‘anisotropic liquid’
is preferred to ‘liquid crystal’. The name ‘mesomorphic state’ is used to indicate
that anisotropic liquids are intermediate between the true liquid and crystalline
solid states.

Among the better-known examples of anisotropic liquids are p-azoxyphene-
tole, p-azoxyanisole, cholesteryl benzoate, ammonium oleate and sodium
stearate. These substances exhibit a sharp melting point, but they melt to form
a turbid liquid. On further heating, the liquid suddenly becomes clear at some
fixed temperature. On cooling, the reverse processes occur at the same tem-
peratures as before. It is in the turbid liquid stage that anisotropy is exhibited.
The changes in physical state occurring with change in temperature for the case
of p-azoxyphenetole are:

. 137°C e 167°C L

solid —— turbid liquid —= clear liquid

(anisotropic) (anisotropic, (isotropic)
mesomorphic)

The simplest representation of the phenomenon is given by Bose’s swarm
theory, according to which molecules orientate into a number of groups in
parallel formation (Figure 1.1). In many respects this is rather similar to the
behaviour of a large number of logs floating down a river. Substances that can
exist in the mesomorphic state are usually organic compounds, often aromatic,
with elongated molecules.

The mesomorphic state is conveniently divided into two main classes. The
smectic (soap-like) state is characterized by an oily nature, and the flow of such
liquids occurs by a gliding movement of thin layers over one another. Liquids in
the nematic (thread-like) state flow like normal viscous liquids, but mobile
threads can often be observed within the liquid layer. A third class, in which

| T 0 NN
| oV /
YA //Z//Z-—EE%E-\\%Z/////
BN NI\ f/_._’—;_——;—’;-::_i/[w
</ N\~ e
:\/ /——\ \\ 4</ \\\\\l \—‘\Q\ii\%
O\
N =X N ///>\\§\\\\\ W7
(a) (b)

Figure 1.1. Isotropic and anisotropic liquids. (a) Isotropic: molecules in random arrange-
ment; (b) anisotropic: molecules aligned into swarms
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strong optical activity is exhibited, is known as the cholesteric state; some
workers regard this state as a special case of the nematic. The name arises from
the fact that cholesteryl compounds form the majority of known examples.
For further information on this subject, reference should be made to the
relevant references listed in the Bibliography at the end of this chapter.

1.2 Crystalline solids

The true solid crystal comprises a rigid lattice of molecules, atoms or ions, the
locations of which are characteristic of the substance. The regularity of the
internal structure of this solid body results in the crystal having a characteristic
shape; smooth surfaces or faces develop as a crystal grows, and the planes of
these faces are parallel to atomic planes in the lattice. Very rarely, however, do
any two crystals of a given substance look identical; in fact, any two given
crystals often look quite different in both size and external shape. In a way this
is not very surprising, as many crystals, especially the natural minerals, have
grown under different conditions. Few natural crystals have grown ‘free’; most
have grown under some restraint resulting in stunted growth in one direction
and exaggerated growth in another.

This state of affairs prevented the general classification of crystals for cen-
turies. The first advance in the science of crystallography came in 1669 when
Steno observed a unique property of all quartz crystals. He found that the angle
between any two given faces on a quartz crystal was constant, irrespective of
the relative sizes of these faces. This fact was confirmed later by other workers,
and in 1784 Haiiy proposed his Law of Constant Interfacial Angles: the angles
between corresponding faces of all crystals of a given substance are constant.
The crystals may vary in size, and the development of the various faces (the
crystal habit) may differ considerably, but the interfacial angles do not vary;
they are characteristic of the substance. It should be noted, however, that
substances can often crystallize in more than one structural arrangement (poly-
morphism — see section 1.8) in which case Haiiy’s law applies only to the
crystals of a given polymorph.

Interfacial angles on centimetre-sized crystals, e.g. geological specimens, may
be measured with a contact goniometer, consisting of an arm pivoted on a
protractor (Figure 1.2), but precisions greater than 0.5° are rarely possible. The
reflecting goniometer (Figure 1.3) is a more versatile and accurate apparatus. A
crystal is mounted at the centre of a graduated turntable, a beam of light from
an illuminated slit being reflected from one face of the crystal. The reflection is
observed in a telescope and read on the graduated scale. The turntable is then
rotated until the reflection from the next face of the crystal is observed in the
telescope, and a second reading is taken from the scale. The difference «
between the two readings is the angle between the normals to the two faces,
and the interfacial angle is therefore (180 — a)°.

Modern techniques of X-ray crystallography enable lattice dimensions and
interfacial angles to be measured with high precision on milligram samples of
crystal powder specimens.
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Figure 1.2. Simple contact goniometer

Slit and
collimator

Crystal
~

Telescope

Figure 1.3. Reflecting goniometer

1.3 Crystal symmetry

Many of the geometric shapes that appear in the crystalline state are readily
recognized as being to some degree symmetrical, and this fact can be used as
a means of crystal classification. The three simple elements of symmetry which
can be considered are:

1. Symmetry about a point (a centre of symmetry)
2. Symmetry about a line (an axis of symmetry)
3. Symmetry about a plane (a plane of symmetry)

It must be remembered, however, that while some crystals may possess a centre
and several different axes and planes of symmetry, others may have no element
of symmetry at all.

A crystal possesses a centre of symmetry when every point on the surface of
the crystal has an identical point on the opposite side of the centre, equidistant
from it. A perfect cube is a good example of a body having a centre of
symmetry (at its mass centre).

If a crystal is rotated through 360° about any given axis, it obviously returns to
its original position. If, however, the crystal appears to have reached its original
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Figure 1.4. The 13 axes of symmetry in a cube
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Figure 1.5. The 9 planes of symmetry in a cube

position more than once during its complete rotation, the chosen axis is an axis
of symmetry. If the crystal has to be rotated through 180° (360/2) before
coming into coincidence with its original position, the axis is one of twofold
symmetry (called a diad axis). If it has to be rotated through 120° (360/3), 90°
(360/4) or 60° (360/6) the axes are of threefold symmetry (triad axis), fourfold
symmetry (tetrad axis) and sixfold symmetry (hexad axis), respectively. These
are the only axes of symmetry possible in the crystalline state.

A cube, for instance, has 13 axes of symmetry: 6 diad axes through opposite
edges, 4 triad axes through opposite corners and 3 tetrad axes through opposite
faces. One each of these axes of symmetry is shown in Figure 1.4.

The third simple type is symmetry about a plane. A plane of symmetry
bisects a solid object in such a manner that one half becomes the mirror image
of the other half in the given plane. This type of symmetry is quite common and
is often the only type exhibited by a crystal. A cube has 9 planes of symmetry: 3
rectangular planes each parallel to two faces, and 6 diagonal planes passing
through opposite edges, as shown in Figure 1.5.

It can be seen, therefore, that the cube is a highly symmetrical body, as it
possesses 23 elements of symmetry (a centre, 9 planes and 13 axes). An octa-
hedron also has the same 23 elements of symmetry; so, despite the difference
in outward appearance, there is a definite crystallographic relationship between
these two forms. Figure 1.6 indicates the passage from the cubic (hexahedral) to
the octahedral form, and vice versa, by a progressive and symmetrical removal
of the corners. The intermediate solid forms shown (truncated cube, truncated
octahedron and cubo-octahedron) are three of the 13 Archimedean semi-
regular solids which are called combination forms, i.e. combinations of a cube
and an octahedron. Crystals exhibiting combination forms are commonly
encountered (see Figure 1.20).
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&

Cubo-octahedron

©

Truncated cube Truncated octahedron

Cube Octahedron

Figure 1.6. Combination forms of cube and octahedron

The tetrahedron is also related to the cube and octahedron; in fact these three
forms belong to the five regular solids of geometry. The other two (the regular
dodecahedron and icosahedron) do not occur in the crystalline state. The
rhombic dodecahedron, however, is frequently found, particularly in crystals
of garnet. Table 1.1 lists the properties of the six regular and semi-regular forms
most often encountered in crystals. The Euler relationship is useful for calcu-
lating the number of faces, edges and corners of any polyhedron:

E=F+C-2

This relationship states that the number of edges is two less than the sum of the
number of faces and corners.

A fourth element of symmetry which is exhibited by some crystals is known
by the names ‘compound, or alternating, symmetry’, or symmetry about a

Table 1.1. Properties of some regular and semi-regular forms found in the crystalline state

Form Faces Edges Corners Edges at Elements of symmetry
a corner

Centre Planes  Axes

Regular solids

Tetrahedron 4 6 4 3 No 6 7
Hexahedron (cube) 6 12 8 3 Yes 9 13
Octahedron 8 12 6 4 Yes 9 13
Semi-regular solids

Truncated cube 14 36 24 3 Yes 9 13
Truncated octahedron 14 36 24 3 Yes 9 13

Cubo-octahedron 14 24 12 4 Yes 9 13
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Figure 1.7. An axis of compound symmetry

‘rotation—reflection axis’ or ‘axis of rotatory inversion’. This type of symmetry
obtains when one crystal face can be related to another by performing two
operations: (a) rotation about an axis, and (b) reflection in a plane at right
angles to the axis, or inversion about the centre. Figure 1.7 illustrates the case of
a tetrahedron, where the four faces are marked 4, B, C and D. Face A4 can be
transformed into face B after rotation through 90°, followed by an inversion.
This procedure can be repeated four times, so the chosen axis is a compound
axis of fourfold symmetry.

1.4 Crystal systems

There are only 32 possible combinations of the above-mentioned elements of
symmetry, including the asymmetric state (no elements of symmetry), and these
are called the 32 point groups or classes. All but one or two of these classes have
been observed in crystalline bodies. For convenience these 32 classes are
grouped into seven systems, which are known by the following names: regular
(5 possible classes), tetragonal (7), orthorhombic (3), monoclinic (3), triclinic
(2), trigonal (5) and hexagonal (7).

The first six of these systems can be described with reference to three axes, x, y
and z. The z axis is vertical, and the x axis is directed from front to back and the
y axis from right to left, as shown in Figure 1.8a. The angle between the axes y
and z is denoted by «, that between x and z by [, and that between x and y by .
Four axes are required to describe the hexagonal system: the z axis is vertical
and perpendicular to the other three axes (x, y and u), which are coplanar and
inclined at 60° (or 120°) to one another, as shown in Figure 1.8b. Some workers

+2 +z
a B -X +y -x
¥ ty -y ty
Y +x -
+x
-z -z

(a) (b)

Figure 1.8. Crystallographic axes for describing the seven crystal systems: (a) three axes
vz = o; Xz = 3; Xy = ; (b) four axes (hexagonal system) xy = yu = ux = 60° (120°)
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Table 1.2. The seven crystal systems

System Other names Angles between Length of Examples
axes axes
Regular Cubic a=pF=7y=90° x=y=z Sodium chloride
Octahedal Potassium
chloride
Isometric Alums
Tesseral Diamond
Tetragonal Pyramidal a=0=7y=90° x=y#:z Rutile
Quadratic Zircon
Nickel sulphate.
7H,O
Orthorhombic Rhombic a=0=7y=90° x#y#:z Potassium
permanganate
Prismatic Silver nitrate
Isoclinic Todine
Trimetric a-Sulphur
Monoclinic Monosymmetric a =3=90°#~y x#y#z Potassium chlorate
Clinorhombic Sucrose
Oblique Oxalic acid
[-Sulphur
Triclinic Anorthic a#FPB#y#90° x#yFz Potassium
dichromate
Asymmetric Copper sulphate.
5H,0
Trigonal Rhombohedral a=8=v#90° x=y=z Sodium nitrate
Ruby
Sapphire
Hexagonal None z axis is perpen- x =y = u # z Silver iodide
dicular to the x, y Graphite
and u axes, which Water (ice)
are inclined at 60° Potassium nitrate

prefer to describe the trigonal system with reference to four axes. Descriptions
of the seven crystal systems, together with some of the other names occasionally
employed, are given in Table 1.2.

For the regular, tetragonal and orthorhombic systems, the three axes x, y and
z are mutually perpendicular. The systems differ in the relative lengths of these
axes: in the regular system they are all equal; in the orthorhombic system they
are all unequal; and in the tetragonal system two are equal and the third is
different. The three axes are all unequal in the monoclinic and triclinic systems;
in the former, two of the angles are 90° and one angle is different, and in the
latter all three angles are unequal and none is equal to 90°. Sometimes the
limitation ‘not equal to 30°, 60° or 90°’ is also applied to the triclinic system. In
the trigonal system three equal axes intersect at equal angles, but the angles are
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Tetrahedron Sphenoid

Figure 1.9. Hemihedral forms of the octahedron and tetragonal bipyramid

not 90°. The hexagonal system is described with reference to four axes. The axis
of sixfold symmetry (hexad axis) is usually chosen as the z axis, and the other
three equal-length axes, located in a plane at 90° to the z axis, intersect one
another at 60° (or 120°).

Each crystal system contains several classes that exhibit only a partial sym-
metry; for instance, only one-half or one-quarter of the maximum number of
faces permitted by the symmetry may have been developed. The holohedral
class is that which has the maximum number of similar faces, i.e. possesses the
highest degree of symmetry. In the hemihedral class only half this number of
faces have been developed, and in the tetrahedral class only one-quarter have
been developed. For example, the regular tetrahedron (4 faces) is the hemi-
hedral form of the holohedral octahedron (8 faces) and the wedge-shaped
sphenoid is the hemihedral form of the tetragonal bipyramid (Figure 1.9).

It has been mentioned above that crystals exhibiting combination forms are
often encountered. The simplest forms of any crystal system are the prism and
the pyramid. The cube, for instance, is the prism form of the regular system and
the octahedron is the pyramidal form, and some combinations of these two
forms have been indicated in Figure 1.6. Two simple combination forms in
the tetragonal system are shown in Figure 1.10. Figures 1.10a and b are the
tetragonal prism and bipyramid, respectively. Figure 1.10c shows a tetragonal
prism that is terminated by two tetragonal pyramids, and Figure 1.10d the

=\
- Y/

{a) {b) (c)

Figure 1.10. Simple combination forms in the tetragonal system: (a) tetragonal prism;
(b) tetragonal bipyramid; (c) combination of prism and bipyramid, (d) combination of two
bipyramids
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combination of two different tetragonal bipyramids. It frequently happens that
a crystal develops a group of faces which intersect to form a series of parallel
edges: such a set of faces is said to constitute a zone. In Figure 1.10b, for
instance, the four prism faces make a zone.

The crystal system favoured by a substance is to some extent dependent on
the atomic or molecular complexity of the substance. More than 80 per cent of
the crystalline elements and very simple inorganic compounds belong to the
regular and hexagonal systems. As the constituent molecules become more
complex, the orthorhombic and monoclinic systems are favoured; about 80
per cent of the known crystalline organic substances and 60 per cent of the
natural minerals belong to these systems.

1.5 Miller indices

All the faces of a crystal can be described and numbered in terms of their axial
intercepts. The axes referred to here are the crystallographic axes (usually three)
which are chosen to fit the symmetry; one or more of these axes may be axes of
symmetry or parallel to them, but three convenient crystal edges can be used if
desired. It is best if the three axes are mutually perpendicular, but this cannot
always be arranged. On the other hand, crystals of the hexagonal system are
often allotted four axes for indexing purposes.

If, for example, three crystallographic axes have been decided upon, a plane
that is inclined to all three axes is chosen as the standard or parametral plane. It
is sometimes possible to choose one of the crystal faces to act as the parametral
plane. The intercepts X, Y and Z of this plane on the axes x, y and z are called
parameters a, b and c¢. The ratios of the parameters a: b and b: ¢ are called the
axial ratios, and by convention the values of the parameters are reduced so that
the value of b is unity.

W. H. Miller suggested, in 1839, that each face of a crystal could be repres-
ented by the indices %, k and /, defined by

4
= — k:— < d = —
h s and / -

~X

+x

Figure 1.11. Intercepts of planes on the crystallographic axes
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For the parametral plane, the axial intercepts X, Y and Z are the parameters a,
b and ¢, so the indices A, k and [ are a/a, b/b and c/c, i.e. 1, 1 and 1. This is
usually written (111). The indices for the other faces of the crystal are calculated
from the values of their respective intercepts X, Y and Z, and these intercepts
can always be represented by ma, nb and pc, where m, n and p are small whole
numbers or infinity (Haily’s Law of Rational Intercepts).

The procedure for allotting face indices is indicated in Figure 1.11, where
equal divisions are made on the x, y and z axes. The parametral plane ABC,
with axial intercepts of O4 = a, OB = b and OC = ¢, respectively, is indexed
(111), as described above. Plane DEF has axial intercepts X = OD = 2a,
Y = OF = 3b and Z = OF = 3¢; so the indices for this face can be calculated
as

1
h=alX =al2a = 3
1
k:b/Y:b/3b:§
1
l=c/Z=cl3¢c==
3
Hence /:k: l— 5 ; and multiplying through by six, h:k:[/=3:2:2. Face
DEF, therefore, 1s mdexed (322). Similarly, face DFG, whlch has axial inter-
cepts of X = 2a, Y = —2b and Z = 3¢, gives h:k: l—— -5 ——3 —3:2or
(332). Thus the Miller indices of a face are inversely proportlonal to its axial
intercepts.

The generally accepted notation for Miller indices is that (hkl) represents a
crystal face or lattice plane, while {hkl} represents a crystallographic form
comprising all faces that can be derived from ikl by symmetry operations of
the crystal.

Figure 1.12 shows two simple crystals belonging to the regular system. As
there is no inclined face in the cube, no face can be chosen as the parametral
plane (111). The intercepts Y and Z of face 4 on the axes y and z are at infinity,

+z +z

A@'

4000 |
-y._.___-,LiJOQ__y ¥

-z
Cube Octahedron

Figure 1.12. Two simple crystals belonging to the regular system, showing the use of Miller
indices
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so the indices &, k and [ for this face will be a/a, b/oo and ¢/oco, or (100).
Similarly, faces B and C are designated (010) and (001), respectively. For the
octahedron, face 4 is chosen arbitrarily as the parametral plane, so it is
designated (111). As the crystal belongs to the regular system, the axial inter-
cepts made by the other faces are all equal in magnitude, but not in sign, to the
parametral intercepts a, b and c¢. For instance, the intercepts of face B on the z
axis is negative, so this face is designated (111). Similarly, face C is designated
(111), and the unmarked D face is (111).

Figure 1.13 shows some geometrical figures representing the seven crystal
systems, and Figure 1.14 indicates a few characteristic forms exhibited by
crystals of some common substances.

Occasionally, after careful goniometric measurement, crystals may be found
to exhibit plane surfaces which appear to be crystallographic planes, being
symmetrical in accordance with the symmetry of the crystal, but which cannot
be described by simple indices. These are called vicinal faces. A simple method
for determining the existence of these faces is to observe the reflection of a spot
of light on the face: four spot reflections, for example, would indicate four
vicinal faces.

The number of vicinal faces corresponds to the symmetry of the face, and this
property may often be used as an aid to the classification of the crystal. For
example, a cube face (fourfold axis of symmetry) may appear to be made up of
an extremely flat four-sided pyramid with its base being the true (100) plane but
its apex need not necessarily be at the centre of the face. An octahedral face
(threefold symmetry) may show a three-sided pyramid. These vicinal faces most
probably arise from the mode of layer growth on the individual faces commen-
cing at point sources (see section 6.1).

> 4
@ W

Cubic Tetragonal Orthorhombic
X=y=Z X=yZ xsysz
a=B:y a=B=y=90° a=B=y=90°

|
1
L

Monoclinic  Triclinic Trigonal Hexagonal
4% 4 x¥ysz xsye, see Table

a:B:QO"tY th:y#90° G=BEIA*90° 1.2

Figure 1.13. The seven crystal systems
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Figure 1.14. Some characteristic crystal forms

1.6 Space lattices

The external development of smooth faces on a crystal arises from some
regularity in the internal arrangement of the constituent ions, atoms or mole-
cules. Any account of the crystalline state, therefore, should include some
reference to the internal structure of crystals. It is beyond the scope of this
book to deal in any detail with this large topic, but a brief description will be
given of the concept of the space lattice. For further information reference
should be made to the specialized works listed in the Bibliography.

It is well known that some crystals can be split by cleavage into smaller
crystals which bear a distinct resemblance in shape to the parent body. While
there is clearly a mechanical limit to the number of times that this process can
be repeated, eighteenth century investigators, Hooke and Haiiy in particular,
were led to the conclusion that all crystals are built up from a large number of
minute units, each shaped like the larger crystal. This hypothesis constituted a
very important step forward in the science of crystallography because its logical
extension led to the modern concept of the space lattice.

A space lattice is a regular arrangement of points in three dimensions, each
point representing a structural unit, e.g. an ion, atom or a molecule. The whole
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Table 1.3. The fourteen Bravais lattices

Type of symmetry Lattice Corresponding
crystal system

Cubic Cube Regular
Body-centred cube
Face-centred cube

Tetragonal Square prism Tetragonal
Body-centred square prism

Orthorhombic Rectangular prism Orthorhombic
Body-centred rectangular prism
Rhombic prism
Body-centred rhombic prism

Monoclinic Monoclinic parallelepiped Monoclinic
Clinorhombic prism

Triclinic Triclinic parallelepiped Triclinic

Rhomboidal Rhombohedron Trigonal

Hexagonal Hexagonal prism Hexagonal

structure is homogeneous, i.e. every point in the lattice has an environment
identical with every other point’s. For instance, if a line is drawn between any
two points, it will, when produced in both directions, pass through other points
in the lattice whose spacing is identical with that of the chosen pair. Another
way in which this homogeneity can be visualized is to imagine an observer
located within the structure; he would get the same view of his surroundings
from any of the points in the lattice.

By geometrical reasoning, Bravais postulated in 1848 that there were only 14
possible basic types of lattice that could give the above environmental identity.
These 14 lattices can be classified into seven groups based on their symmetry,
which correspond to the seven crystal systems listed in Table 1.2. The 14
Bravais lattices are given in Table 1.3. The three cubic lattices are illustrated
in Figure 1.15; the first comprises eight structural units arranged at the corners
of a cube, the second consists of a cubic structure with a ninth unit located at
the centre of the cube, and the third of a cube with six extra units each located
on a face of the cube.

{a) (b) (c)

Figure 1.15. The three cubic lattices: (a) cube; (b) body-centred cube; (¢) face-centred cube
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The points in any lattice can be arranged to lie on a larger number of
different planes, called lattice planes, some of which will contain more points
per unit area than others. The external faces of a crystal are parallel to lattice
planes, and the most commonly occurring faces will be those which correspond
to planes containing a high density of points, usually referred to as a high
reticular density (Law of Bravais). Cleavage also occurs along lattice planes.
Bravais suggested that the surface energies, and hence the rates of growth,
should be inversely proportional to the reticular densities, so that the planes of
highest density will grow at the slowest rate and the low-density planes, by their
high growth rate, may soon disappear. For these reasons, the shape of a grown
crystal may not always reflect the symmetry expected from its basic unit cell
(see section 6.4).

Although there are only 14 basic lattices, interpenetration of lattices can
occur in actual crystals, and it has been deduced that 230 combinations are
posible which still result in the identity of environment of any given point.
These combinations are the 230 space groups, which are divided into the 32
point groups, or classes, mentioned above in connection with the seven crystal
systems. The law of Bravais has been extended by Donnay and Harker in 1937
into a more generalized form (the Bravais—Donnay—Harker Principle) by con-
sideration of the space groups rather than the lattice types.

1.7 Solid state bonding

Four main types of crystalline solid may be specified according to the method
of bonding in the solid state, viz. ionic, covalent, molecular and metallic. There
are materials intermediate between these classes, but most crystalline solids can
be classified as predominantly one of the basic types.

The ionic crystals (e.g. sodium chloride) are composed of charged ions held in
place in the lattice by electrostatic forces, and separated from the oppositely
charged ions by regions of negligible electron density. In covalent crystals (e.g.
diamond) the constituent atoms do not carry effective charges; they are con-
nected by a framework of covalent bonds, the atoms sharing their outer
electrons. Molecular crystals (e.g. organic compounds) are composed of dis-
crete molecules held together by weak attractive forces (e.g. m-bonds or hydro-
gen bonds).

Metallic crystals (e.g. copper) comprise ordered arrays of identical cations.
The constituent atoms share their outer electrons, but these are so loosely held
that they are free to move through the crystal lattice and confer ‘metallic’
properties on the solid. For example, ionic, covalent and molecular crystals
are essentially non-conductors of electricity, because the electrons are all locked
into fixed quantum states. Metals are good conductors because of the presence
of mobile electrons.

Semiconducting crystals (e.g. germanium) are usually covalent solids with
some ionic characteristics, although a few molecular solids (e.g. some polycyclic
aromatic hydrocarbons such as anthracene) are known in which under certain
conditions a small fraction of the valency electrons are free to move in the
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crystal. The electrical conductivity of semiconductors is electronic in nature,
but it differs from that in metals. Metallic conductivity decreases when the
temperature is raised, because thermal agitation exerts an impeding effect. On
the other hand, the conductivity of a semiconductor increases with heating,
because the number of electron—‘hole’ pairs, the electricity carriers in semicon-
ductors, increases greatly with temperature. Metals have electrical resistivities
in the ranges 107 to 107°S~!m. Insulators cover the range 10% to 10?° (dia-
mond) and semiconductors 10 to 10’ S~! m.

The electrical conductivity of a semiconductor can be profoundly affected by
the presence of impurities. For example, if x silicon atoms in the lattice of a
silicon crystal are replaced by x phosphorus atoms, the lattice will gain x
electrons and a negative (n-type) semiconductor results. On the other hand, if
x silicon atoms are replaced by x boron atoms, the lattice will lose x electrons
and a positive (p-type) semiconductor is formed. The impurity atoms are called
‘donors’ or ‘acceptors’ according to whether they give or take electrons to or
from the lattice.

1.8 Isomorphs and polymorphs

Two or more substances that crystallize in almost identical forms are said to be
isomorphous (Greek: ‘of equal form”). This is not a contradiction of Hatiy’s law,
because these crystals do show small, but quite definite, differences in their
respective interfacial angles. Isomorphs are often chemically similar and can
then be represented by similar chemical formulae; this statement is one form of
Mitscherlich’s Law of Isomorphism, which is now recognized only as a broad
generalization. One group of compounds which obey and illustrate Mitscher-
lich’s law is represented by the formula M3SOy4 - M5 (SO4); - 24H,0 (the alums),
where M’ represents a univalent radical (e.g. K or NHy) and M" represents a
tervalent radical (e.g. Al, Cr or Fe). Many phosphates and arsenates, sulphates
and selenates are also isomorphous.

Sometimes isomorphous substances can crystallize together out of a solution
to form ‘mixed crystals’ or, as they are better termed, crystalline ‘solid solu-
tions’. In such cases the composition of the homogeneous solid phase that is
deposited follows no fixed pattern; it depends largely on the relative concentra-
tions and solubilities of the substances in the original solvent. For instance,
chrome alum, K,SOy - Cra(SOy);-24H,O (purple), and potash alum,
K,SOy4 - Al,(SO4), - 24H,0 (colourless), crystallize from their respective aque-
ous solutions as regular octahedra. When an aqueous solution containing both
salts is crystallized, regular octahedra are again formed, but the colour of the
crystals (which are now homogeneous solid solutions) can vary from almost
colourless to deep purple, depending on the proportions of the two alums in the
crystallizing solution.

Another phenomenon often shown by isomorphs is the formation of over-
growth crystals. For example, if a crystal of chrome alum (octahedral) is placed
in a saturated solution of potash alum, it will grow in a regular manner such
that the purple core is covered with a continuous colourless overgrowth. In
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a similar manner an overgrowth crystal of nickel sulphate, NiSOy4 - 7H,O
(green), and zinc sulphate, ZnSO, - 7TH,0O (colourless), can be prepared.

There have been many ‘rules’ and ‘tests’ proposed for the phenomenon of
isomorphism, but in view of the large number of known exceptions to these it is
now recognized that the only general property of isomorphism is that crystals
of the different substances shall show very close similarity. All the other proper-
ties, including those mentioned above, are merely confirmatory and not neces-
sarily shown by all isomorphs.

A substance capable of crystallizing into different, but chemically identical,
crystalline forms is said to exhibit polymorphism. Different polymorphs of a
given substance are chemically identical but will exhibit different physical
properties. Dimorphous and trimorphous substances are commonly known,
e.g.

Calcium carbonate: calcite (trigonal-rhombohedral)
aragonite (orthorhombic)
vaterite (hexagonal)

Carbon: graphite (hexagonal)
diamond (regular)
Silicon dioxide: cristobalite (regular)
tridymite (hexagonal)
quartz (trigonal)

The term allotropy instead of polymorphism is often used when the substance is
an element.

The different crystalline forms exhibited by one substance may result from a
variation in the crystallization temperature or a change of solvent. Sulphur, for
instance, crystallizes in the form of orthorhombic crystals (a-S) from a carbon
disulphide solution, and of monoclinic crystals (5-S) from the melt. In this
particular case the two crystalline forms are interconvertible: G-sulphur cooled
below 95.5°C changes to the « form. This interconversion between two crystal
forms at a definite transition temperature is called enantiotropy (Greek: ‘change
into opposite’) and is accompanied by a change in volume.

Ammonium nitrate (melting point 169.6 °C) exhibits five polymorphs and
four enantiotropic changes between —18 and 125°C, as shown below:

o) (8 (111)

liquid Sec cubic Dioc trigonal SaC orthorhombic
W) v)
———= orthorhombic tetragonal
323°C —18°C

The transitions from forms II to IIT and IV to V result in volume increases: the
changes from I to II and III to IV are accompanied by a decrease in volume.
These volume changes frequently cause difficulty in the processing and storage
of ammonium nitrate. The salt can readily burst a metal container into which it
has been cast when change II to III occurs. The drying of ammonium nitrate
crystals must be carried out within fixed temperature limits, e.g. 40-80°C,
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otherwise the crystals can disintegrate when a transition temperature is
reached.

Crystals of polymorphic substances sometimes undergo transformation with-
out a change of external form, the result being an aggregate of very small
crystals of the stable modification confined within the boundaries of the original
unstable form. For example, an unstable rhombohedral form of potassium
nitrate can crystallize from a warm aqueous solution, but when these crystals
come into contact with a crystal of the stable modification, transformation
sweeps rapidly through the rhombohedra which retain their shape. The crystals
lose much of their transparency and acquire a finely granular appearance and
their original mechanical strength is greatly reduced. Such pseudomorphs as they
are called exhibit confused optical properties which cannot be correlated with
the external symmetry (Hartshorne and Stuart, 1969).

When polymorphs are not interconvertible, the crystal forms are said to be
monotropic: graphite and diamond are monotropic forms of carbon. The term
isopolymorphism is used when each of the polymorphous forms of one sub-
stance is isomorphous with the respective polymorphous form of another
substance. For instance, the regular and orthorhombic polymorphs of
arsenious oxide, As,Os, are respectively isomorphous with the regular and
orthorhombic polymorphs of antimony trioxide, Sb,O3. These two oxides are
thus said to be isodimorphous.

Polytypism is a form of polymorphism in which the crystal lattice arrange-
ments differ only in the manner in which identical two-dimensional arrays are
stacked (Verma and Krishna, 1966).

1.9 Enantiomorphs and chirality

Isomeric substances, different compounds having the same formula, may be
divided into two main groups:

(a) constitutional isomers, which differ because their constituent atoms are
connected in a different order, e.g., ethanol CH3;CH,OH and dimethylether
CH;OCH3,

(b) stereoisomers, which differ only in the spacial arrangement of their con-
stituent atoms. Stereoisomers can also be divided into two groups:
(1) emantiomers, molecules that are mirror images of one another, and
(i) diastereomers, which are not.

Diastereomers can have quite different properties, e.g., the cis- and trans-
compounds maleic and fumaric acids which have different melting points,
130°C and 270 °C respectively. On the other hand, enantiomers have identical
properties with one exception, viz., that of optical activity, the ability to rotate
the plane of polarization of plane-polarized light. One form will rotate to the
right (dextrorotatory) and the other to the left (laevorotatory). The direction
and magnitude of rotation are measured with a polarimeter.

Molecules and substances that exhibit optical activity are generally described
as chiral (Greek cheir ‘hand’). Two crystals of the same substance that are
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mirror images of each other are said to be enantiomorphous (Greek ‘of opposite
form”). These crystals have neither planes of symmetry nor a centre of sym-
metry. Enantiomorphous crystals are not necessarily optically active, but all
known optically active substances are capable of being crystallized into enan-
tiomorphous forms. In many cases the solution or melt of an optically active
crystal is also optically active. However, if dissolution or melting destroys the
optical activity, this is an indication that the molecular structure was not
enantiomeric.

Tartaric acid (Figure 1.16) and certain sugars are well-known examples of
optically active substances. Optical activity is generally associated with com-
pounds that possess one or more atoms around which different elements or
groups are arranged asymmetrically, i.e., a stereocentre, so that the molecule can
exist in mirror image forms. The most common stereocentre in organic
compounds is an asymmetric carbon atom, and tartaric acid offers a good
example. Three possible arrangements of the tartaric acid molecule are shown
in Figure 1.17. The (a) and (b) forms are mirror images of each other; both
contain asymmetric carbon atoms and both are optically active; one will be the
dextro-form and the other the lacvo-form. Although there are two asymmetric
carbon atoms in formula (c), this particular form (meso-tartaric acid) is optic-
ally inactive; the potential optical activity of one-half of the molecule is com-
pensated by the opposite potential optical activity of the other.

Dextro- and laevo-forms are now designated in all modern texts as (+) and
(—) respectively. The optically inactive racemate, a true double compound

lo]] on 10i

(a) (b)

Figure 1.16. (a) Dextro- and (b) laevo-tartaric acid crystals (monoclinic system)

COOH COOH COOH
OH——(‘:—H H——é——OH H—C—OH
H—C—OH OH~—é—H H—C—OH
OOH OOH OOH
(a) (b) (c)

Figure 1.17. The tartaric acid molecule: (a) and (b) optically active forms; (c) meso-
tartaric acid, optically inactive



20 Crystallization

(section 4.3.2), comprising an equimolar mixture of (4+) and (—) forms, is
designated (+). The symbols d- and 1-, commonly found in older literature to
designate optically active dextro- and laevo-forms, were abandoned to avoid
confusion with the capital letters b and L which are still commonly used to
designate molecular configuration, but not the direction of rotation of plane-
polarized light. It is important to note, therefore, that not all b series com-
pounds are necessarily dextrorotatory (4) nor are all L series compounds
laevorotatory (—).

The D, L system, was arbitrarily based on the configuration of the enantio-
meric glyceraldehyde molecules: the (+)-isomer was taken to have the structure
implied by formula 1 and this arrangement of atoms was called the p configura-
tion. Conversely, formula 2 was designated as representing the L configuration:

CHO CHO
| |
H— C — OH HO—C —H
| |
CH,OH CH,OH
(1) ()

Lactic acid provides a simple example of how the D, L system could be applied
to other compounds. The relative configuration of lactic acid is determined by
the fact that it can be synthesized from (p)-(+)-glyceraldehyde without break-
ing any bonds to the asymmetric carbon atom:

CHO COOH
| |
H— C —OH —> H—C — OH
| |
CH,OH CH,
(D)-(+)-glyceraldehyde (D)-(—)-lacticacid

The lactic acid produced by this reaction, however, is laevorotatory not dextro-
rotatory like the starting material, thus illustrating the above warning that there
is no essential link between optical rotation and molecular configuration.

The D, L system becomes ambiguous for all but the simplest of molecules and
is now increasingly being replaced with the more logically based and adaptable
R, s system, which has been internationally adopted by TUPAC for classifying
absolute molecular configuration. Comprehensive accounts of the R, s conven-
tion and its application are given in most modern textbooks on organic
chemistry, but the following short introduction may serve as a brief guide to
the procedure for classifying a compound with a single asymmetric carbon
atom as the stereocentre.
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First, the four different groups attached to the stereocentre are identified and
each is assigned a priority number, 1 to 4, using the Cahn—Ingold—Prelog
‘sequence rules’ according to which the highest priority (1) is given to the group
with the atom directly attached to the stereocentre that has the highest atomic
number. If by this rule two or more groups would at first appear to have
identical priorities, the atomic numbers of the second atoms in each group
are compared, continuing with the subsequent atoms until a difference is
identified. For example, for c-aminopropionic acid (alanine)

CH,
|

H— C — NH,
|

COOH

the following priorities would be assigned: NH, = 1, COOH = 2, CH; = 3 and
H = 4. The model of the molecule is then oriented in space so that the stereo-
centre is observed from the side opposite the lowest priority group. So observ-
ing the stereocentre with the lowest priority group (H = 4) to the rear, the
view would be

. (1) (1)
either NH2 or NH2

Y R L Y
C C
7\ )\
H,C  COOH HOOC CH,
(3) (2) () 3)

According to the Cahn—Ingold—Prelog rules, if the path from 1 to 2 to 3 runs
clockwise the stereocentre is designated by the letter R (Latin: rectus, right). If
the path runs anticlockwise it is designated by the letter s (Latin: sinister, left).
If the structure has only one stereocentre, (R) or (s) is used as the first prefix to
the name, e.g., (s)-aminopropionic acid. The optical rotation of the compound
is indicated by a second prefix, e.g., (s)-(4+)-aminopropionic acid, noting again
as mentioned above for the D, L system, there is no necessary connection
between (s) left and (R) right configurations and the (—) left and (4) right
directions of optical rotation. If the molecule has more than one stereocentre
their designations and positions are identified in the prefix, e.g., (2R, 3R)-
dibromopentane.

1.9.1 Racemism
The case of tartaric acid serves to illustrate the property known as racemism.

An equimolar mixture of crystalline p and L tartaric acids dissolved in water
will produce an optically inactive solution. Crystallization of this solution will
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yield crystals of optically inactive racemic acid which are different in form from
the p and L crystals. There is, however, a difference between a racemate and a
meso-form of a substance; the former can be resolved into b and L forms but
the latter cannot.

Crystalline racemates are normally considered to belong to one of two basic
classes:

1. Conglomerate: an equimolal mechanical mixture of two pure enantio-
morphs.

2. Racemic compound: an equimolal mixture of two enantiomers homo-
geneously distributed throughout the crystal lattice.

A racemate can be resolved in a number of ways. In 1848 Pasteur found that
crystals of the sodium ammonium tartrate (racemate)

Na - NH4 . C4H406 . H2O

deposited from aqueous solution, consisted of two clearly different types, one
being the mirror image of the other. The p and L forms were easily separated
by hand picking. Although widely quoted, however, this example of manual
resolution through visual observation is in fact a very rare occurrence.

Bacterial attack was also shown by Pasteur to be effective in the resolution of
racemic acid. Penicillium glaucum allowed to grow in a dilute solution of
sodium ammonium racemate destroys the p form but, apart from being a
rather wasteful process, the attack is not always completely selective.

A racemate may also be resolved by forming a salt or ester with an optically
active base (usually an amine) or alcohol. For example, a racemate of an acidic
substance A with, say, the dextro form of an optically active base B will give

pLA +DB — DA -DB+ LA -DB

and the two salts b4 -pB and LA - DB can then be separated by fractional
crystallization.

A comprehensive account of the resolution of racemates is given by Jacques,
Collet and Wilen (1981). This topic is further discussed in section 7.2.

1.10 Crystal habit

Although crystals can be classified according to the seven general systems
(Table 1.1), the relative sizes of the faces of a particular crystal can vary
considerably. This variation is called a modification of habit. The crystals
may grow more rapidly, or be stunted, in one direction; thus an elongated
growth of the prismatic habit gives a needle-shaped crystal (acicular habit) and
a stunted growth gives a flat plate-like crystal (tabular, platy or flaky habit).
Nearly all manufactured and natural crystals are distorted to some degree, and
this fact frequently leads to a misunderstanding of the term ‘symmetry’. Perfect
geometric symmetry is rarely observed in crystals, but crystallographic sym-
metry is readily detected by means of a goniometer.
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A
A\ = 4
(a) Tobular (b) Prismatic (¢) Acicular

Figure 1.18. Crystal habit illustrated on a hexagonal crystal

4o
y 2

Figure 1.19. Some common habits of potassium sulphate crystals (orthorhombic system):
a = {100}, b = {010}, c = {011}, / = {021}, m = {110}, o = {111}, r = {130}

Figure 1.18 shows three different habits of a crystal belonging to the hexa-
gonal system. The centre diagram (b) shows a crystal with a predominant
prismatic habit. This combination-form crystal is terminated by hexagonal
pyramids and two flat faces perpendicular to the vertical axis; these flat parallel
faces cutting one axis are called pinacoids. A stunted growth in the vertical
direction (or elongated growth in the directions of the other axes) results in a
tabular crystal (a); excessively flattened crystals are usually called plates or
flakes. An elongated growth in the vertical direction yields a needle or acicular
crystal (c); flattened needle crystals are often called blades.

Figure 1.19 shows some of the habits exhibited by potassium sulphate crys-
tals grown from aqueous solution and Figure 1.20 shows four different habits of
sodium chloride crystals.

The relative growths of the faces of a crystal can be altered, and often
controlled, by a number of factors. Rapid crystallization, such as that produced
by the sudden cooling or seeding of a supersaturated solution, may result in the
formation of needle crystals; impurities in the crystallizing solution can stunt
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Figure 1.20. Four different habits of sodium chloride (regular system) crystals (Courtesy of
ICI Ltd, Mond Division)

the growth of a crystal in certain directions; and crystallization from solutions
of the given substance in different solvents generally results in a change of
habit. The degree of supersaturation or supercooling of a solution or melt often
exerts a considerable influence on the crystal habit, and so can the state of
agitation of the system. These and other factors affecting the control of crystal
habit are discussed in section 6.4.

1.11 Dendrites

Rapid crystallization from supercooled melts, supersaturated solutions and
vapours frequently produces tree-like formations called dendrites, the growth
of which is indicated in Figure 1.21. The main crystal stem grows quite rapidly
in a supercooled system that has been seeded, and at a later stage primary
branches grow at a slower rate out of the stem, often at right angles to it. In
certain cases, small secondary branches may grow slowly out of the primaries.
Eventually branching ceases and the pattern becomes filled in with crystalline
material.

Most metals crystallize from the molten state in this manner, but because of
the filling-in process the final crystalline mass may show little outward appear-



The crystalline state 25

rﬂ: Jt

L

=
N LLlll ST
C LI LERN ¥ T -
IR Il ! e Ll Ll
. T 1 1 L) -
Primary branch [ 11 [ '
Main Secondary branch

stem

Figure 1.21. Dendritic growth

ance of dendrite formation. The fascinating patterns of snow crystals are good
examples of dendritic growth, and the frosting of windows often affords a
visual observation of this phenomenon occurring in two dimensions. The
growth of a dendrite can be observed quite easily under a microscope by
seeding a drop of a supersaturated solution on the slide.

Dendrites form most commonly during the early stages of crystallization; at
later stages a more normal uniform growth takes place and the pattern may be
obliterated. Dendritic growth occurs quite readily in thin liquid layers, prob-
ably because of the high rate of evaporative cooling, whereas agitation tends to
suppress this type of growth. Dendrite formation tends to be favoured by
substances that have a high enthalpy of crystallization and a low thermal
conductivity.

1.12 Composite crystals and twins

Most crystalline natural minerals, and many crystals produced industrially,
exhibit some form of aggregation or intergrowth, and prevention of the forma-
tion of these composite crystals is one of the problems of large-scale crystal-
lization. The presence of aggregates in a crystalline mass spoils the appearance
of the product and interferes with its free-flowing nature. More important,
however, aggregation is often indicative of impurity because crystal clusters
readily retain impure mother liquor and resist efficient washing (section 9.7.2).

Composite crystals may occur in simple symmetrical forms or in random
clusters. The simplest form of aggregate results from the phenomenon known
as parallel growth; individual forms of the same substance grow on the top of
one another in such a manner that all corresponding faces and edges of the
individuals are parallel. Potash alum, K,SOy - Al,(SOy4); - 24H,0, exhibits this
type of growth; Figure 1.22 shows a typical structure in which regular octahedra
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Figure 1.22. Parallel growth on a crystal of potash alum

Figure 1.23. Interpenetrant twin of two cubes (e.g. fluorspar)

are piled on top of one another in a column symmetrical about the vertical
axis. Parallel growth is often associated with isomorphs; for instance, parallel
growths of one alum can be formed on the crystals of another, but this property
is no longer regarded as an infallible test for isomorphism.

Another composite crystal frequently encountered is known as a twin or
a macle; it appears to be composed of two intergrown individuals, similar in
form, joined symmetrically about an axis (a twin axis) or a plane (a twin plane).
A twin axis is a possible crystal edge and a twin plane is a possible crystal face.
Many types of twins may be formed in simple shapes such as a V, +, L and so
forth, or they may show an interpenetration giving the appearance of one
individual having passed completely through the other (Figure 1.23). Partial
interpenetration (Figure 1.24) can also occur. In some cases, a twin crystal may
present the outward appearance of a form that possesses a higher degree of
symmetry than that of the individuals, and this is known as mimetic twinning.
A typical example of this behaviour is orthorhombic potassium sulphate, which
can form a twin looking almost identical with a hexagonal bipyramid.

Parallel growth and twinning (or even triplet formation) are usually encoun-
tered when crystallization has been allowed to take place in an undisturbed
medium. Although twins of individuals belonging to most of the seven crystal
systems are known, twinning occurs most frequently when the crystals belong
to the orthorhombic or monoclinic systems. Certain impurities in the crystal-
lizing medium can cause twin formation even under vigorously agitated condi-
tions: this is one of the problems encountered in the commercial crystallization
of sugar.

The formation of crystal clusters, aggregates or conglomerates which possess
no symmetrical properties is probably more frequently encountered in large-
scale crystallization than the formation of twins. Relatively little is still known
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Figure 1.24. Partial interpenetrant twin (e.g. quartz)

about the growth of these irregular crystal masses, but among the factors that
generally favour their formation are poor agitation, the presence of certain
impurities in the crystallizing solution, seeding at high degrees of supersatura-
tion and the presence of too many seed crystals, leading to conditions of
overcrowding in the crystallizer.

1.13 Imperfections in crystals

Very few crystals are perfect. Indeed, in many cases they are not required to be,
since lattice imperfections and other defects can confer some important chem-
ical and mechanical properties on crystalline materials. Surface defects can also
greatly influence the process of crystal growth. There are three main types of
lattice imperfection: point (zero-dimensional, line (one-dimensional) and sur-
face (two-dimensional).

1.13.1 Point defects

The common point defects are indicated in Figure 1.25. Vacancies are lattice
sites from which units are missing, leaving ‘holes’ in the structure. These units
may be atoms, e.g. in metallic crystals, molecules (molecular crystals) or ions
(ionic crystals). The interstitials are foreign atoms that occupy positions in the
interstices between the matrix atoms of the crystal. In most cases the occurrence
of interstitials leads to a distortion of the lattice.

More complex point defects can occur in ionic crystals. For example, a cation
can leave its site and become relocated interstitially near a neighbouring cation.
This combination of defects (a cation vacancy and an interstitial cation) is
called a Frenkel imperfection. A cation vacancy combined with an anion
vacancy is called a Schottky imperfection.

A foreign atom that occupies the site of a matrix atom is called a substitutional
impurity. Many types of semiconductor crystals contain controlled quantities of
substitutional impurities. Germanium crystals, for example, can be grown con-
taining minute quantities of aluminium (p-type semiconductors) or phosphorus

(n-type).
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Figure 1.25. Representation of some common point defects: A, interstitial impurity;
B, substitutional impurity; C, vacancy

1.13.2 Line defects

The two main types of line defect which can play an important role in the model
of crystal growth are the edge and screw dislocations. Both of these are respon-
sible for slip or shearing in crystals. Large numbers of dislocations occur in
most crystals; they form readily during the growth process under the influence
of surface and internal stresses.

Figure 1.26 shows in diagrammatic form the cross-sectional view of a crystal
lattice in which the lower part of a vertical row of atoms is missing. The
position of the dislocation is marked by the symbol L; the vertical stroke of
this symbol indicates the extra plane of atoms and the horizontal stroke
indicates the slip plane. The line passing through all the points L, i.e. drawn
vertical to the plane of the diagram, is called the edge dislocation line. In an
edge dislocation, therefore, the atoms are displaced at right angles to the
dislocation line.

The process of slip under the action of a shearing force may be explained as
follows (see Figure 1.26). The application of a shear stress to a crystal causes
atom A4 to move further away from atom B and closer to atom C. The bond
between A and B, which is already strained, breaks and a new bond is formed
between A4 and C. The dislocation thus moves one atomic distance to the right,
and if this process is continued the dislocation will eventually reach the edge of
the crystal. The direction and magnitude of slip are indicated by the Burgers
vector, which may be one or more atomic spacings. In the above example,
where the displacement is one lattice spacing, the Burgers vector is equal to 1.
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Figure 1.26. Movement of an edge dislocation through a crystal

Figure 1.27. A screw dislocation

A screw dislocation forms when the atoms are displaced along the dis-
location line, rather than at right angles to it as in the case of the edge
dislocation. Figure 1.27 indicates this type of lattice distortion. In this example
the Burgers vector is 1 (unit step height), but its magnitude may be any integral
number.

Screw dislocations give rise to a particular mode of growth in which the
attachment of growth units to the face of the dislocation results in the devel-
opment of a spiral growth pattern over the crystal face (see section 6.1.2).
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Figure 1.28. A simple tilt boundary

1.13.3 Surface defects

A variety of surface imperfections, or mismatch boundaries, can be produced in
crystalline materials as a result of mechanical or thermal stresses or irregular
growth. Grain boundaries, for example, can be created between individual
crystals of different orientation in a polycrystalline aggregate.

When the degree of mismatching is small, the boundary can be considered to
be composed of a line of dislocations. A low-angle tilt boundary is equivalent to
a line of edge dislocations, and the angle of tilt is given by § = b/h where b is the
Burgers vector and / the average vertical distance between the dislocations
(Figure 1.28). A twist boundary can be considered, when the degree of twist is
small, as a succession of parallel screw dislocations. For a full account of this
subject reference should be made to the specialized works (see Bibliography).
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2 Physical and thermal properties

2.1 Density
2.1.1 Solids

The densities of most pure solid substances are readily available in the standard
physical property handbooks. The densities of actual crystallized substances,
however, may differ from the literature values on account of the presence of
vapour or liquid inclusions (see section 6.6) or adhering surface moisture. For
example, recorded values of ‘commercially pure’ sucrose crystals have ranged
from 1580 to 1610 kgm 3 compared with an expected value of 1587 kgm™3.

The theoretical density, p%, of a crystal may be calculated from the lattice
parameters (section 1.6) by means of the relationship:

7nM
VN

Where n is the number of formula units in the unit cell, V is the volume of the
unit cell, M is the molar mass of the substance and N is the Avogadro number
(6.023 x 10 kmol~"). For sucrose, the lengths of the a, b and ¢ axes of this
monoclinic crystal are 10.9, 8.70 and 7.75 x 10~'"m, respectively, with the
angle = 103° (sin3 = 0.9744). Hence the volume V = 716.1 x 1073%m3.
Further, M = 342.3kgkmol~! and n = 2. Substituting these values in equation
2.1 gives a value of p; = 1587 kgm 3.

The actual density of a solid substance, even of a relatively small individual
crystal, may be measured by determining the density of an inert liquid mixture
in which the crystal remains just suspended. Examples of a convenient group of
miscible organic liquids for many inorganic salts include chloroform
(1492 kgm—3 at 20°C), carbon tetrachloride (1594), ethyl iodide (1930), ethyl-
ene dibromide (2180), bromoform (2890) and methylene iodide (3325).

For example, a crystal of sodium nitrate (2260 kg m~—3) could be floated in
about 50 mL of bromoform in a suitable flask, taking care that no air bubbles
are attached, and then caused to achieve the ‘just suspended’ state by slowly
adding chloroform from a burette. At this point the crystal density may be
assumed to be equal to that of the liquid mixture, which can readily be
estimated.

Solid densities have a very small temperature dependence, but this can be
ignored for industrial crystallization purposes. For example the density of
sodium chloride decreases by about 0.7 per cent when the temperature increases
from 10 to 80°C. The calculation needs a knowledge of the coefficient of
thermal expansion.

The densities of bulk particulate solids and slurries are discussed in section
2.1.3.

*

o @.1)
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2.1.2 Liquids

The density of a liquid is significantly temperature dependent. The ratio of the
density of a given liquid at one temperature to the density of water at the same,
or another, temperature is known as the specific gravity of the liquid. Thus,
a specific gravity quoted at say 20 °C/4 °C is numerically equal to the density of
the liquid at 20 °C expressed in gcm ™3 since water exhibits its maximum density
(1gem™3) at 4°C.

The simplest instrument for measuring liquid density is the hydrometer,
a float with a graduated stem. To approach reasonable accuracy, however, it
is essential to make the measurement at the particular calibration temperature
marked on the hydrometer. Densities may be determined more accurately by
the specific gravity bottle method, or with a pyknometer (BS 733, 1983) or
Westphal balance, details of which may be found in most textbooks of practical
physics.

In recent years, several high-precision instruments have become available,
the most noteworthy of which are those based on an oscillating sample holder.
A glass U-tube is filled with the sample and caused to oscillate at its natural
frequency, which is dependent on the total mass of the system. Since the tube
has a constant mass and sample volume, the measured frequency of oscillation
can be related to the liquid sample density. Precisions of up to £107%gem ™3
have been claimed for some instruments.

It is often possible to estimate to +5% the density of a solution from a
knowledge of the solute and solvent densities by means of the equation

L+S
L S
_+_
L Ps

Psoln = (22)

where L and S are the masses of the solvent (liquid) and solute (solid),
respectively, and pp and pg are the densities of the respective components. It
has to be acknowledged, of course, that the volume of a solution is not exactly
equal to the volumes of the solvent and added solute, but the error incurred in
making this assumption is often insignificant, particularly for industrial pur-
poses, as the following examples show:

1. An aqueous solution of potassium sulphate at 80 °C containing 0.214 kg
K>SO,/kg water (pp = 971.8 kgm™ at 80°C, ps = 2660 kgm ™).

Psoln = (1 +0.214)/[(1/971.8) + (0.214/2660)] = 1095 kgm .
Experimental value: 1117 kgm ™.

2. An aqueous solution of sodium sulphate at 15°C containing
0.429 kg Na,SOy - 10H,O/kg ‘free’ water (pr = 999.1kgm— at 15°C,
ps = 1460kgm3).

Psoin = (1 +0.429)/[(1/999.1) + (0.429/1460)] = 1103 kgm >
Experimental value: 1125kgm>.
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3. An aqueous solution of sucrose at 80 °C containing 3.62 kg C¢H,0¢/kg
water (pp = 971.8kgm~3 at 80°C, ps = 1590 kgm~3).

psoln = (1 +3.62)/[(1/971.8) 4 (3.62/1590)] = 1397 kgm >
Experimental value: 1350 kgm 3.

For more reliable estimations of solution density, reference should be made
to the procedures described in the book by S6hnel and Novotny (1985) which
also contains detailed density data for a large number of inorganic salt solu-
tions. In a later publication (Novotny and Séhnel, 1988) densities of some 300
inorganic salt solutions are recorded.

The densities of some aqueous solutions are recorded in the Appendix
(Table A.9).

2.1.3 Bulk solids and slurries

The bulk density of a quantity of particulate solids is not a fixed property of the
system since the bulk volume occupied contains significant amounts of void
space, normally filled with air. The relationship between the density of the solid
particles, ps, and the bulk solids density, pgs, is

pes = ps(l —¢) (2.3)

where ¢ is the voidage, the volume fraction of voids, which is considerably
dependent on particle shape, particle size distribution and the packing of the
particles. Further, £ can vary considerably depending on how the particulate
material has been processed or handled. For example, it can be increased by
aeration, as in freshly poured solids, and decreased by vibration, e.g. after
transportation in packaged form.

Expression of slurry densities

Many different terms are used for specifying the solids content of slurries and
each has its own particular use.

Slurry concentrations are not usually simple to measure experimentally since
it is not always convenient to filter-off, wash, dry and weigh the solids content.
So other more convenient, but less precise methods, are often adopted. For
example, it is common practice to take a sample of slurry in a graduated
cylinder, allow the solids to settle and to measure the volume percentage of
settled solids. Although this is often a rapid and quite satisfactory way of
assessing the slurry concentration, particularly for routine testing under indus-
trial plant conditions, it does not directly give the actual quantity of suspended
solids, because the settled volume (the overall volume occupied by the settled
solids) contains a significant proportion of liquid. Settled spheres of uniform
size, for example, enclose a void space of about 40 per cent, but consider-
able deviations from this value can occur for multisized particles of irregular
shape.
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The relationship between system voidages and the settled solids fraction is
given by equation 2.4. Other useful relationships are given in equations 2.5 to 2.9.

e=1-S(1—¢g) 2.9

=1~ (M/ps) 23)
=(p—ps)/(ps — pr) (2.6)

My =(1—e)ps 2.7)
=Xp (2.8)

= Xlps —e(ps — pu)] 2.9)

where S = settled solids fraction (m> of settled solids plus associated liquor

in the voids/m? of total sample taken)
X =mass fraction of solids (kg of suspended solids/kg of total
suspension)
M+ =slurry density (kg of suspended solids/m* of total suspension)
¢ = voidage of the slurry (m* of liquid/m? of total suspension)
1 — e =volume fraction of solids (m* of solids/m” of total suspension)
es = voidage of the settled solids
p = overall mean density of the suspension (kgm )
ps = density of solid (kgm )
pL = density of liquid (kgm ™)

For the special case of an industrial crystallizer, it is sometimes possible to
assess the slurry (magma) density by chemical analysis, measuring (a) the total
overall concentration of solute (crystals plus dissolved solute) in the suspension
and (b) the concentration of dissolved solute in the supernatant liquor. Thus,

C=Mt+eC* (2.10)
and

My = ps(C = C)/(ps — C) (2.11)

where C = kg of crystallizing substance (suspended and dissolved)/m? of total
suspension, and C* = kg of dissolved crystallizing substance /m> of supernat-
ant liquor.

2.2 Viscosity

The once common units of absolute viscosity, the poise (P) (1gcm™'s™!) and
its useful sub-multiple the centipoise (cP), have now been replaced by the SI
unit (kgm~'s~!) which is generally written as Pa s and sometimes as Nsm™2.

The following relationships hold:

1cP=0.01P=1mPas=1mNsm > =10"kgm's™!
=2421bft"'h™'
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Similarly, the once common units of kinematic viscosity (= absolute viscosity/
density), the stokes (St) (1cm?s~') and its sub-multiple the centistokes (cSt),
have been replaced by the SI unit (m?s~'). The following relationships hold:

1¢St=0.01St=10""m?s™! = 0.0388 ft> h™!

The viscosity of a liquid decreases with increasing temperature, and for many
liquids the relationship

n = Aexp(—B/T) (2.12)

holds reasonably well. 4 and B are constants and the temperature T is
expressed in kelvins. Plots of logn versus 7~ or logn versus log T usually
yield fairly straight lines and this property may be used for interpolating
viscosities at temperatures within the range covered.

In general, dissolved solids increase the viscosity of water, although a few
exceptions to this rule are known. Occasionally, the increase in viscosity is
considerable, as in the case of the system sucrose—water where, for example, the
viscosity increases from around 2 to 60 mPas for a concentration increase from
20 to 60 g/100 g of solution at 20°C.

Figure 2.1a shows an example of a solute that decreases the viscosity of the
solvent; in this system (KI-water) a minimum viscosity is exhibited. Several
other potassium and ammonium salts also exhibit a similar behaviour. Figure
2.1b shows the effect of concentration and temperature on the ethanol-water
system which exhibits a maximum viscosity.

A comprehensive survey of the viscosity characteristics of aqueous solutions
of electrolytes has been made by Stokes and Mills (1965) who also give experi-
mental data on a considerable number of systems. Viscosities of some aqueous
solutions are recorded in the Appendix (Table A.10).

Unfortunately, no completely reliable method is available for the prediction
of the viscosities of solutions or liquid mixtures. A general survey is made by
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Figure 2.1. Aqueous solutions exhibiting (a) minimum, (b) maximum viscosities. (After
Hatschek, 1928)



Physical and thermal properties 37

1

Bend

\Lf/ unconstricted

Nt

Figure 2.2. Simple U-tube viscometer

Reid, Prausnitz and Poling (1987) and some indication of the complexities
involved in making estimates of the viscosities of mixed salt solutions may be
gained from the survey made by Nowlan, Thi and Sangster (1980).

Numerous instruments have been devised for the measurement of liquid
viscosity, many of which are based on the flow of a fluid through a capillary
tube and the application of Poiseuille’s law in the form

B Tt AP

<7 (2.13)

where AP = the pressure drop across the capillary of length / and radius r, and
V' = volume of fluid flowing in unit time. One simple type of U-tube viscometer
is shown in Figure 2.2. The liquid under test is sucked into leg B until the level in
this leg reaches mark z. The tube is arranged truly vertical, and the temperature
of the liquid is measured and kept constant. The liquid is then sucked up into
leg A to a point above x and the time 7 for the meniscus to fall from x to y is
recorded. The kinematic viscosity of the liquid v can be calculated from

v = k¢ (2.14)

where k is a constant for the apparatus, determined by measurements on a
liquid of known viscosity, e.g. water.

The falling-sphere method of viscosity determination also has many applica-
tions, and Stokes’ law may be applied in the form

_(ps —p1)d’¢

2.1
18u (2.15)

where d, p and u are the diameter, density and terminal velocity, respectively, of
a solid sphere falling in the liquid of density p;. A simple falling-sphere visco-
meter is shown in Figure 2.3. The liquid under test is contained in the inner
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Figure 2.3. Falling-sphere viscometer

tube of 30 mm diameter and about 300 mm length. The central portion of the
tube contains two reference marks a and b, 150 mm apart. The tube is held truly
vertical, and the temperature of the liquid is measured and kept constant.
A 1.5mm diameter steel ball, previously warmed to the test temperature, is
inserted through a small guide tube and its time of passage between the two
reference marks is measured. A mean of several measurements should be taken.
The viscosity of the liquid can then be calculated from equation 2.15. Modern
instrumental versions of the falling-sphere technique are claimed to measure
viscosities in the range 0.5-500 mPa with high precision at controlled tempera-
tures using sample volumes as low as 0.5mL.

Several high-precision viscometers are based on the concentric-cylinder
method. The liquid under test is contained in the annulus between two vertical
coaxial cylinders; one cylinder can be made to rotate at a constant speed, and
the couple required to prevent the other cylinder rotating can be measured. For
more detailed information on practical viscometry reference should be made to
specialized publications (Dinsdale and Moore 1962, BS 188, 1993).

2.2.1 Solid-liquid systems

The viscosity characteristics of liquids can be altered considerably by the pres-
ence of finely dispersed solid particles, especially of colloidal size. The viscosity
of a suspension of rigid spherical particles in a liquid, when the distance
between the spheres is much greater than their diameter, may be expressed by
the Einstein equation:

ns = no(1 +2.5¢) (2.16)
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where 7 1s the effective viscosity of the disperse system, 7 the viscosity of the
pure dispersion medium, and ¢ the ratio of the volume of the dispersed particles
to the total volume of the disperse system. In other words, ¢ = 1 — ¢, where ¢ is
the voidage of the system. Equation 2.16 applies reasonably well to lyophobic
sols and very dilute suspensions, but for moderately concentrated suspensions
and lyophilic sols the Guth—Simha modification is preferred:

ns = mo(1 +2.5¢ + 14.1¢%) 2.17)

For concentrated suspensions of solid particles, the Frankel-Acrivos (1967)
relationship

9 m 1/’3
»=(im)

can be applied for values of ¢/¢,, — 1, where ¢,, is the maximum attainable
volumetric concentration of solids in the system (usually about 0.6 for packed
monosize spherical particles). Equation 2.18 has met with experimental support
in the region (¢/¢n) > 0.7. However, for solids concentrations such as those
normally encountered in industrial crystallizers (say ¢ ~ 0.8, ¢ ~ 0.2 and
@/dm ~ 0.3 for granular crystals) the much simpler equation 2.17 predicts the
order of magnitude of apparent viscosity reasonably well.

2.3 Surface tension

Of the many methods available for measuring the surface tension of liquids
(Findlay, 1973), the capillary rise and ring techniques are probably the most
useful for general applications.

In the capillary rise method, the surface tension, v, of a liquid can be deter-
mined from the height, %, of the liquid column in a capillary tube of radius r.
If the liquid completely wets the tube (zero contact angle),

v = %rhApg (2.19)

where Ap is the difference in density between the liquid and the gaseous atmo-
sphere above it. The height, /4, can be accurately measured with a cathetometer
from the base of the liquid meniscus to the flat surface of the free liquid surface
in a containing vessel. However, to minimize errors, this reference to a flat
surface can be eliminated by measuring the difference in capillary rise in two
tubes of different bore (Figure 2.4). Then

v = %rlhlApg = %rzthpg

From which it follows that

_ AhAprirg
2(}’1 — r2)

The differential height A% can be measured with precision.

(2.20)
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Figure 2.4. Measurement of surface tension by the differential capillary rise method

The ring technique, and its many variations, is widely used in industrial
laboratories. Several kinds of commerical apparatus incorporating a torsion
balance are available under the name du Noiiy tensometer. The method is
simple and rapid, and is capable of measuring the surface tension of a pure
liquid to a precision of 0.3% or better.

The force necessary to pull a ring (usually of platinum or platinum-iridium
wire) from the surface of the liquid is measured. The surface tension is calcu-
lated from the pull and the dimensions of the ring after the appropriate
correction factors have been applied.

It is often possible to predict the surface tension of non-aqueous mixtures of
solvents by assuming a linear dependence with mole fraction. Aqueous solu-
tions, however, generally show a pronounced non-linear behaviour and predic-
tion is not recommended.

The surface tension of a liquid decreases with an increase in temperature, but
the decrease is not always linear (Table 2.1).

The addition of an electrolyte to water generally increases the surface tension
very slightly, although an initial decrease is usually observed at very low
concentrations (< 0.002mol L~!) (Harned and Owen, 1958). Non-electrolytes
generally decrease the surface tension of water. For example, saturated aqueous
solutions of a-naphthol, adipic acid and benzoic acid at 22°C are 48, 55 and
60 mNm™!, respectively, whereas a saturated solution of potassium sulphate at
the same temperature has a surface tension of 73mNm~".



Physical and thermal properties 41

Table 2.1. Surface tensions of some common solvents at different temperatures

Solvent Surface tension, mNm™!

0° 10° 20° 30° 40° 50°C
Water 76.0 73.5 72.8 71.2 69.6 67.9
Benzene 31.6 30.2 28.9 27.2 26.3 25.0
Toluene 30.8 29.7 28.5 27.4 26.2 25.1
CCly 29.5 28.0 26.8 25.5 24.4 23.1
Acetone 25.5 24.4 23.3 22.3 21.2 -
Methanol 24.3 234 22.6 21.7 20.8 -
Ethanol 24.1 23.1 22.3 21.4 20.6 19.8
ImNm!=1mJm2=1dyncm™!

2.3.1 Interfacial tension

The surface tension of a liquid, as normally measured, is the interfacial tension
between a liquid surface and air saturated with the relevant vapour.

The interfacial tension of a crystalline solid in contact with a solution of the
dissolved solid is a quantity of considerable importance in crystal nucleation
and growth processes. It is also sometimes referred to as the ‘surface energy’.
This subject is dealt with in section 5.6.

2.4 Diffusivity

Two examples of a theoretical approach to the problem of the prediction of
diffusion coefficients in fluid media are the equations postulated in 1905 by
Einstein and in 1936 by Eyring. The former is based on kinetic theory and
a modification of Stokes’ law for the movement of a particle in a fluid, and is
most conveniently expressed in the form

kT
orn

where D = diffusivity (m>s~'), T = absolute temperature (K), 1 = viscosity
(kgs~'m™!), r = molecular radius (m), k =Boltzmann’s constant and the
dimensionless factor ¢ has a numerical value between 47 and 67 depending on
the solute : solvent molecular size ratio. Eyring’s approach, based on reaction
rate theory, treats a liquid as a disordered lattice structure with vacant sites
into which molecules move, i.e. diffuse. For low solute concentration Eyring’s
equation may be expressed in a form identical with that of equation 2.21 but
a different value of ¢ applies.

The usefulness of these equations, however, is strictly limited because they
both contain a term, r, which denotes the radius of the solute molecule. Values
of this quantity are difficult to obtain. Consequently, the most directly useful
relationship that emerges is

D (2.21)
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Dn/T = constant (2.22)

which is of considerable value in predicting, for a given system, the effect of
temperature and viscosity on the diffusion coefficient. This simple relation is
often referred to as the Stokes—Einstein equation.

The very limited success of the theoretical equations has led to the develop-
ment of many empirical and semi-empirical relationships for the prediction of
diffusion coefficients. Amongst those devised for diffusion in liquids the fol-
lowing may be mentioned. For diffusion in aqueous solutions Othmer and
Thakar (1953) proposed the correlation

C14x107°

1906 (2.23)

where v is the molar volume of the solute (cm> mol™") and 7 is the viscosity in
cP, giving the diffusivity D in cm?s~!. By correlating a large number of
published experimental diffusivities Wilke and Chang (1955) arrived at the
relationship

1078 (’yM)Tl/z

D =74 x o

(2.24)

where M is the molar mass (kg kmol ™), v is the molal volume (cm® mol ™) and
T is in kelvins, giving D in cm?s~!. For unassociated solvents, e.g. benzene,
ether and heptane, the so-called association parameter v = 1. For water,
methanol and ethanol, v = 2.6,1.9 and 1.5, respectively.

Despite the widespread use of these and many other similar correlations,
however, they are notoriously unreliable; deviations from experimental values
as high as 30% are not unusual (Mullin and Cook, 1965). Furthermore, these
empirical relationships were devised from diffusion data predominantly on
liquid-liquid systems, and there is little evidence to suggest that they are reliable
for the prediction of the diffusion of solid solutes in liquid solutions, although
an ‘order of magnitude’ estimation is sometimes possible. For example, the
diffusivity of sodium chloride in water at 25°C is 1.3 x 10" m?s~!, while
values calculated from equations 2.23 and 2.24 range from 1.7 to 2.6 x 10~°
m? s~ !. Similarly, for sucrose in water at 25°C, D = 5.2 x10~19m? s~!, while the
predicted values range from 3.6 to 4.2 x 107 19m?s~1.

It is also important to note that these empirical correlations are meant to
apply only to dilute solutions. Despite the fact that they all contain a term
relating to viscosity which is a function of concentration, they usually fail to
predict the rate of diffusion from a concentrated solution to a less concentrated
one. For example, the diffusion coefficient for sucrose diffusing from a 1%
aqueous solution into water at 25°C is approximately five times the value for
the diffusion between 61.5 and 60.5% solutions, whereas over the concentra-
tion range 1 to 60%, the viscosity exhibits a fortyfold increase.

These empirical equations also fail to discriminate between isomers as
was pointed out by Mullin and Cook (1965), who measured the diffusivities
of 0-, m- and p-hydroxybenzoic acid in water. The data measured at 20 °C are
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Figure 2.5. Diffusivities of saturated aqueous solutions of the hydroxybenzoic acids into
water: O = ortho-, []= meta-, /\= para-, — = predicted from equation 2.24 (after
Mullin and Cook, 1965)

compared with values predicted by equation 2.24 in Figure 2.5, where the
deviation is about +30% between the estimated values and those measured
for the m- and p-isomers, with a difference of about 60% between the o- and m-.

Clearly equation 2.24 and other empirical relationships, fail to take some
property of the system into account, and it is likely that this quantity is the ‘size’
of the diffusing component. For the case of the hydroxybenzoic acids the
differences in diffusivity can be accounted for by considering the different
hydrogen bonding tendencies of the three isomers, which in turn would influ-
ence both the size and shape of the diffusing species.

2.4.1 Experimental measurements

In a diffusion cell, where two liquids are brought into contact at a sharp
boundary, three different states of diffusion may be recognized. In the case of
‘free’ diffusion, concentrations change progressively away from the interface;
when concentrations begin to change at the ends of the cell, ‘restricted’ diffu-
sion is said to occur. If the concentration at a given point in the cell remains
constant with respect to time, ‘steady-state’ diffusion is taking place, and, as in
all other steady-state processes, a constant supply of material to and removal
from the system is required. Several comprehensive accounts have been given of
the methods used for measuring diffusion coefficients under these three condi-
tions (Tyrrell, 1961; Stokes and Mills, 1965; Robinson and Stokes, 1970).
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The techniques used for restricted and steady-state diffusion generally
involve the use of a diaphragm cell. This method has the disadvantage that
the cell has first to be calibrated with a system with a known diffusion coeffi-
cient, and for systems with relatively slow diffusivities each run may require an
inconveniently long time.

The diffusion coefficient under free-diffusion conditions can be measured by
analysis at the termination of the experiment or by continuous or intermittent
analysis while diffusion continues. Care has to be taken not to disturb the
system, and the most widely employed methods for measuring diffusion coeffi-
cients in liquids are interferometric, resulting from the original work of Gouy in
the 19th century.

Two kinds of diffusivity can be recorded, viz. the differential, D, and the
integral, D. The differential diffusivity is a value for one particular concentra-
tion, ¢, and driving force, ¢; — ¢z, where ¢ = (¢; + ¢3)/2 and ¢; — ¢, is suffi-
ciently small for D to remain unchanged over the concentration range.
However, the diffusion coefficient is usually concentration dependent, and in
most cases it is the integral diffusivity that is normally measured. This is an
average value over the concentration range c; to c».

The differential diffusivity is of considerable theoretical importance, and it is
only through this quantity that experimental measurements by different tech-
niques can be compared. On the other hand, it is the integral coefficient that is
generally required for mass transfer assessment, since this coefficient represents
the true ‘average’ diffusivity over the concentration range involved in the mass
transfer process.

For example, in the dissolution of a solid into a liquid, the solute diffuses
from the saturated solution at the interface to the bulk solution. In crystal-
lization the solute diffuses from the supersaturated bulk solution to the satur-
ated solution at the interface. The relevant diffusivity that should be used in an
analysis of these two processes, therefore, is the integral diffusivity, which
covers the range of concentration from equilibrium saturation to that in the
bulk solution.

Integral diffusivities may be measured directly by the diaphragm cell tech-
nique (Dullien and Shemilt, 1961), but unless the concentration on both sides of
the diaphragm (see Figure 2.6) is maintained constant throughout the experi-
ment, the diffusivity measured is the rather complex double-average known as
the ‘diaphragm cell integral diffusivity’. Dq, defined by an integrated form of
Fick’s law of diffusion:

— 1 C1, — €2,
Dy=—In[—21—= 2.25
Y n(% —02,) (229

where ¢g and ¢, are the initial and final (at time ¢) concentrations, 1 and 2 refer
to the lower and upper cells, and (3 is the cell constant (m~2), which can be
calculated from the cell dimensions:

A1 1
=1 r) (220
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Figure 2.6. Diaphragm diffusion cell (after Dullien and Shemilt, 1961). A, light liquid
compartment; B, heavy liquid compartment; C, stop-cock; D, E, capillaries; F, sintered
glass diaphragm; G = polythene-coated iron stirrers; H, rotating magnets

where 4 and L = area and thickness of diaphragm, and V'; and V, = volume of
the cell compartments.

The above method is extremely time-consuming and the process of convert-
ing integral to differential values is both tedious and inaccurate. It is more
practicable, therefore, to measure the differential diffusivity, D, at intervals
over the whole concentration range and to calculate the required integral
diffusivity, D, by means of the relationship

- / Dde 2.27)

1 —CJg

Figure 2.7 shows the measured differential and calculated integral diffusiv-
ities for the systems KCl—H,0 and NH4CI—H,O (Nienow, Unahabhokha and
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Figure 2.7. Measured differential (@) and calculated integral (broken line) diffusivities for
the systems NH4Cl—H,O and KCI-H,O at 20°C (after Nienow, Unahabhokha and
Mullin, 1968)

Mullin, 1968). Diffusivities for a number of common electrolyte systems are
given in the Appendix (Table A.11).

The diffusivity of a strong electrolyte at infinite dilution is called the Nernst
limiting value of the diffusion coefficient, D°, which can be calculated from

_RT( —v)  AgAp

D’ = . 2.28
F2V1|Zl| AOI +A02 ( )

where Ag; and Ag; are the limiting conductivities, and v and v, are the number
of cations and anions of valency z; and z;, respectively. Using the conditions of
neutrality:
vz + 1z =0

so equation 2.28 may also be written
_RT 21|+ |z Aoude

F>  |ziza]  Ag +Ap
where F is the Faraday constant (9.6487 x 10* Cmol '), R is the gas constant
(8.3143J K 'mol™!), giving values of RT/F> of 24381, 2.6166 and
2.7951 x 1072S ' mol~'s~! at 0, 20 and 40 °C, respectively. These may be used
with the values of Ag (Sm?mol™") in the Appendix (Table A.13) to give values
of D’ in m?s ™.

By the application of reaction rate theory to both viscosity and diffusion it
can be shown that

D° (2.29)

n = Aexp(—Ey/RT) (2.30)
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and
D = Bexp(—Ep/RT) (2.31)

A plot of logn against 1/7" should yield a straight line, and similarly a linear
relationship should exist between log D and 1/7. The slopes of these plots give
the respective energies of activation Ej (viscosity) and Ep (diffusion).

2.5 Refractive index

Refractometric measurements can often be used for the rapid measurement of
solution concentration. Several standard instruments (Abbé, Pulfrich, etc.) are
available commercially. A sodium lamp source is most usually used for illu-
mination, and an instrument reading to the fourth decimal place is normally
adequate for crystallization work. It is advisable that calibration curves be
measured, in terms of temperature and concentration, prior to the study with
the actual system.

If a dipping-type refractometer is used, a semi-continuous measurement
may be made of the change in concentration as the system crystallizes.
However, if nucleation is heavy or if large numbers of crystals are present,
it may be difficult to provide sufficient illumination for the prism because of
the light scattering. One solution to this problem (Leci and Mullin, 1968) is
to use a fibre optic (a light wire) fitted into a collar around the prism
illuminated from an external source (Figure 2.8). In this way undue heating
of the solution is also avoided.

Figure 2.8. A4 technique for illuminating the prism of a dipping-type refractometer in an
opaque solution: A, Perspex collar; B, fibre optic holder; C, fibre optic; D, refractometer
prism; E, polished face of prism
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2.6 Electrolytic conductivity

The electrolytic conductance of dilute aqueous solutions can often be measured
with high precision and thus afford a useful means of determining concentra-
tion (see section 3.6.3). A detailed account of the methods used in this area is
given by Robinson and Stokes (1970).

In the author’s experience, however, conductivity measurements are of
limited use in crystallization work because of the unreliability of measurement
in near-saturated or supersaturated solutions. The temperature dependence of
electrical conductivity usually demands a very high precision of temperature
control. Torgesen and Horton (1963) successfully operated conductance cells
for the control of ADP crystallization, but they had to control the temperature
to £0.002°C.

2.7 Crystal hardness

Crystals vary in hardness not only from substance to substance but also from
face to face on a given crystal (Brookes, O’Neill and Redfern, 1971). One of the
standard tests for hardness in non-metallic compounds and minerals is the
scratch test, which gave rise to the Mohs scale. Ten ‘degrees’ of hardness are
designated by common minerals in such an order that a given mineral will
scratch the surface of any of the preceding members of the scale (see Table 2.2).

The hardness of metals is generally expressed in terms of their resistance to
indentation. A hard indenter is pressed into the surface under the influence of
a known load and the size of the resulting indentation is measured. A widely
used instrument is the Vickers indenter, which gives a pyramidal indentation,
and the results are expressed as a Vickers hardness number (kgf mm~2). Other

Table 2.2. Mohs scale of hardness

Mohs Reference Formula Vickers
hardness substance hardness
number number
M V
1 talc 3MgO - 4Si0; - H,O 50
2 gypsum CaSOy - 2H,0 80
3 calcite CaCO; 130
4 fluorite CaF, 200
5 apatite CaF, - 3Ca3(POy), 320
6 orthoclase K,0 - A,O3 - 6Si0; 500
7 quartz Si0, 800
8 topaz (AIF), - SiOy4 1300
9 corundum Al,O4 2000
10 diamond C 10000
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tests include the Rockwell, which uses a conical indenter and the Brinell, which
uses a hard steel ball (Bowden and Tabor, 1964).

The relation between Mohs hardness, M, and the Vickers hardness, V, is not
a clear one. However, if diamond (M = 10) is omitted from the Mohs scale, the
relationship

logV =02M +1.5 (2.32)

may be used for rough approximation purposes for values of M < 9.
A few typical surface hardnesses (Mohs) of some common substances are:

sodium 0.5 aluminium 2-3
potassium 0.5 gold 2.5-3
lead 1.5 brass 3—4
magnesium 2 glass 3—4

The scratch test is not really suitable for specifying the hardness of
substances commonly crystallized from aqueous solutions, because their Mohs
values lie in a very short range, frequently between 1 and 3 for inorganic salts
and below 1 for organic substances. For a reliable measurement of hardness of
these soft crystals the indentation test is preferred. Ridgway (1970) has meas-
ured mean values of the Vickers hardness for several crystalline substances:

sodium thiosulphate (Na;S,0;3 - 5SH,0) ;18
potassium alum (KAI(SOy), - 12H,0) . 56
ammonium alum (NH4AI(SO4), - 12H,0) @ 58
potassium dihydrogen phosphate (KH,;POy) : 150
SucCrose (C12H2201 1 ) Y

He has also determined the hardnesses of different faces of the same crystal:

ammonium dihydrogen phosphate (NH4H,PO4) (100) : 69

(110) : 73
potassium sulphate (K»2S0y) (100) : 95
(110) :100
(210) :130

Hardness appears to be closely related to density (proportional to) and to
atomic or molecular volume (inversely proportional), but few reliable data
are available. In a recent study, Ulrich and Kruse (1989) made some interesting
comments on these relationships and confirmed the need for more experimental
data before any acceptable prediction method can be developed.

2.8 Units of heat

The SI heat energy unit is the joule (J), but four other units still commonly
encountered are the calorie (cal), kilocalorie (kcal), British thermal unit (Btu)
and the centigrade heat unit (chu). The old definitions of these four units are
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Table 2.3. Equivalent values of the common heat energy units

cal kcal Btu chu J
1 0.001 0.00397 0.00221 4.187
1000 1 3.97 2.21 4187
252 0.252 1 0.556 1.055
453.6 0.4536 1.8 1 1.898
0.2388 2.388 x 10~* 9.478 x 10~* 5.275 x 1074 1

based on the heat energy required to raise the temperature of a unit mass of
water by one degree:

lcal = 1g of water raised through 1°C (or K)

1 kcal= 1 kg of water raised through 1°C (or K)
1 chu = 11b of water raised through 1°C (or K)
1 Btu = 11b of water raised through 1°F

The definitions of these units are linked to the basic SI unit, the joule:
1J=1Ws=1Nm

Table 2.3 indicates the equivalent values of these various heat units.

2.9 Heat capacity

The amount of heat energy associated with a given temperature change in
a given system is a function of the chemical and physical states of the system.
A measure of this heat energy can be quantified in terms of the quantity known
as the heat capacity which may be expressed on a mass or molar basis. The
former is designated the specific heat capacity (Jkg=' K~!) and the latter the
molar heat capacity (Jmol~! K~!). The relationships between some commonly
used heat capacity units are:

specific heat capacity, C
lcalg™'°C™!' (or K™') = 1 Btulb ! °F !
= lchulb '°C! (or K1)
=4.187kJ kg ' K™!
molar heat capacity, C
1calmol™'°C™ (or K™!) = 1 Btulb-mol ™' °F~!
= 1chulb-mol '°C™" (or K™
=4.187Jmol ' K™!

For gases two heat capacities have to be considered, at constant pressure, Cp,
and at constant volume, C,. The value of the ratio of these two quantities,
C,/C, =, varies from about 1.67 for monatomic gases (e.g. He) to about 1.3
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for triatomic gases (e.g. CO;). For liquids and solids there is little difference
between C, and C,, i.e. 7 ~ 1, and it is usual to find C, values only quoted in
the literature.

2.9.1 Solids

Specific heat capacities of solid substances near normal atmospheric temper-
ature can be estimated with a reasonable degree of accuracy by combining two
empirical rules.

The first of these, due to Dulong and Petit, expresses a term called the
‘atomic heat’ which is defined as the product of the relative atomic mass and
the specific heat capacity. For all solid elemental substances, the atomic heat is
assumed to be roughly constant:

atomic heat ~ 6.2 calmol ' °C~!

which in SI units is equivalent to approximately 26 J mol~! K~!. However, since
virtually all the data available in the literature are recorded in calorie units,
these will be retained in this section for all the examples.

The second rule, due to Kopp, applies to solid compounds and may be
expressed by

molar heat capacity = sum of the atomic heats of the constituent atoms

In applying these rules, the following exceptions to the approximation ‘atomic
heat ~ 6.2’ must be noted:

C=18 H=23 B=27 Si=338
0=40 F=50 S=54 [H0]=0938

The substance [H,O] refers to water as ice or as water of crystallization in solid
substances. Obviously a reliable measured value of a heat capacity is preferable
to an estimated value, but in the absence of measured values, Kopp’s rule can
prove extremely useful. A few calculated and observed values of the molar heat
capacity are compared in Table 2.4.

Table 2.4. Estimated (Kopp’s rule) and observed values of molar heat capacity of several
solid substances at room temperature

Solid Formula Calculation Ccalmol™'°C™!

Calc. Obs.
Sodium chloride NacCl 6.2+6.2 12.4 12.4
Magnesium sulphate  MgSOy4 - TH,O 6.2 + 5.4 + 4(4.0) + 7(9.8) 96.2 89.5
Todobenzene C¢Hsl 6(1.8) +5(2.3)+6.2 28.5 24.6
Naphthalene CoHg 10(1.8) + 8(2.3) 36.4 37.6
Potassium sulphate  K,SO4 2(6.2) + 5.4 + 4(4.0) 33.8 30.6
Oxalic acid C,H,04 - 2H,0  2(1.8) 4 2(2.3) + 4(4.0)

+2(9.8) 438 435
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Many inorganic solids have values of specific heat capacity, c,, in the range
0.1-0.3calg ' °C7'(0.4-1.3kJ kmol ' K~!) and many organic solids have
values in the range 0.2-0.5 (0.8-2.1). In general, the heat capacity increases
slightly with an increase in temperature. For example, the values of ¢, at 0
and 100°C for sodium chloride are 0.21 and 0.22calg™'°C~' (8.8 and
9.2kJ kmol~! K~!) respectively, and the corresponding values for anthracene
are 0.30 and 0.35 (approximately 13 and 15kJ kmol~! K~1).

2.9.2 Pure liquids

A useful method for estimating the molar heat capacity of an organic liquid is
based on the additivity of the heat capacity contributions [C] of the various
atomic groupings in the molecules (Johnson and Huang, 1955). Table 2.5 lists
some [C] values, and the following examples illustrate the use of the method —
the molar capacity values (calmol™'°C~!) in parentheses denote values
obtained experimentally at 20°C:

methyl alcohol (CH3; - OH) 9.9 + 11.0 = 20.9 (19.5)
toluene (C¢Hs - CH3) 30.5 + 9.9 = 40.4 (36.8)
CH;

isobutyl acetate CH; - COO - CH

CH, - CH;
= 3(9.9) + 14.5 + 5.4 + 6.3 = 55.9 (53.3)

The heat capacity of a substance in the liquid state is generally higher than that
of a substance in the solid state. A large number of organic liquids have specific
heat capacity ¢ values in the range 0.4-0.6calg~'°C~! (1.7-2.5kJ kg ' K1) at
about room temperature. The heat capacity of a liquid usually increases with
increasing temperature: for example, the values of ¢ for ethyl alcohol at 0, 20

Table 2.5. Contributions of various atomic groups to the molar heat
capacity (calmol™ °C™Y) of organic liguids at 20°C (after A. I.
Johnson and C. J. Huang, 1955)

Group [C] Group [C]
CeHs— 30.5 —OH 11.0
CH;— 9.9 —NO, 15.3
—CH,— 6.3 —NH, 15.2
—CH 5.4 —CN 13.9
—COOH 19.1 —Cl 8.6
—COO— (esters) 14.5 —Br 3.7
C=0 (ketones) 14.7 —S— 10.6

—H (formates) 3.6 —O— (ethers) 8.4
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and 60°C are 0.54, 0.56 and 0.68 cal g~' °C~! (2.3, 2.3 and 2.9kJ kg~ K~') and
those for benzene at 20, 40 and 60°C are 0.40, 0.42 and 0.45 (1.7, 1.8 and
2.1kJ kg ' K~!). Water is an exceptional case; it has a very high heat capacity
and exhibits a minimum value at 30 °C. The values for water at 0, 15, 30 and
100°C are 1.008, 1.000, 0.9987 and 1.007 calg~! °C~!, respectively.

2.9.3 Liquid mixtures and solutions

Although not entirely reliable, the following relationship may be used to predict
the molar heat capacity C of a mixture of two or more liquids:

Chixt = XACA +xCB + - -+ (2.33)

where x denotes the mole fraction of the given component in the mixture.
A similar relationship may be used to give a rough estimate of the specific heat
capacity c:

Cmixt = Xaca + Xpep + - - (2.34)

where X is a mass fraction.

For example, the value of ¢ for methanol at 20°C is 2.4kJkg~' K~!. From
equation 2.34 it can be calculated that an aqueous solution containing 75 mass
per cent of methanol has a specific heat capacity of 2.9kJkg~' K~!, which
coincides closely with measured values.

For dilute aqueous solutions of inorganic salts, a rough estimate of the
specific heat capacity can be made by ignoring the heat capacity contribution
of the dissolved substance, i.e.

| =1-Y] (2.35)

where Y = mass of solute/mass of water, and ¢ = cal g~! °C~!. Thus, solutions
containing 5g NaCl, 10 g KCl and 15 g CuSO, per 100 g of solution would by
this method be estimated to have specific heat capacities of 0.95, 0.89 and
0.82calg~'°C~!, respectively. Measured values (25°C) for these solutions are
0.94, 0.91 and 0.83 calg~'°C~! (3.9, 3.8 and 3.5kJ kg~' K~ "), respectively. This
estimation method cannot be applied to aqueous solutions of non-electrolytes
or acids.

Another rough estimation method for the specific heat capacity of aqueous
solutions is based on the empirical relationship

el = 1p~"] (2.36)

where p = density of the solution in gcm—3. For example, at 30°C a 2 per cent
aqueous solution of sodium carbonate by mass has a density of 1.016 gcm™!
and a specific heat capacity of 0.98calg™'°C~!(1/p =0.98), while a
20 per cent solution has a density of 1.210 and a specific heat capacity of 0.86
(1/p = 0.83).
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2.9.4 Experimental measurement

The specific heat capacity of a liquid may be measured by comparing its cooling
rate with that of water. This is most conveniently done in a calorimeter,
a copper vessel fitted with a copper lid and heavy copper wire stirrer, supported
in a draught-free space kept at constant temperature. The vessel is filled almost
to the top with a known mass of water at about 70°C and its temperature is
recorded every 2 minutes as it cools to, say, 30°C. Significant errors may be
incurred if the starting temperature exceeds about 70 °C because evaporation
greatly increases the rate of cooling. The water is then replaced by the same
volume of the liquid or solution under test and its cooling curve is determined
over the same temperature range.

Taking the specific heat capacities of copper and water to be 385 and 4185
Jkg~ ! K~! respectively, a balance of the heat losses gives

(4185my, + 385mc)(d0/d1), = (cymy + 385mc)(d6/do),

where m. = mass of the copper calorimeter, lid and stirrer, m,, = mass of water
and m; = mass of liquid. The cooling rates (d6/d¢) are taken from the slopes of
the cooling curves at the chosen temperature 6, and the specific heat capacity ¢;
of the liquid under test can thus be evaluated.

2.10 Thermal conductivity

The thermal conductivity, x, of a substance is defined as the rate of heat
transfer by conduction across a unit area, through a layer of unit thickness,
under the influence of a unit temperature difference, the direction of heat
transmission being normal to the reference area. Fourier’s equation for steady
conduction may be written as

dg _ . do

5 = AT (2.37)

where ¢, t, 4, 0 and x are units of heat, time, area, temperature and length
(thickness), respectively.

The SI unit for thermal conductivity is Wm~'K~! although other units such
as cal s~'ecm~'°C~! and Btu h~!'ft"'°F~! are still commonly encountered. The
conversion factors are:

leals'em™ °C™' =418 7Wm ' K~! = 241.9Btuh™' ft ' °F"!

The thermal conductivity of a crystalline solid can vary considerably accord-
ing to the crystallographic direction, but very few directional values are avail-
able in the literature. Some overall values (Wm~' K~!) for polycrystalline or
non-crystalline substances include KCl (9.0), NaCl (7.5), KBr (3.8), NaBr (2.5),
MgSO, - TH,0(2.5), ice (2.2), K,Cr,07(1.9), borosilicate glass (1.0), soda glass
(0.7) and chalk (0.7).
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Table 2.6. Thermal conductivities of some pure liquids

Temperature, Thermal conductivity, K (Wm~! K1)

°C Water Acetone Benzene Methanol Ethanol CCly
10 0.59 0.16 0.14 0.21 0.18 0.11
40 0.62 0.15 0.15 0.19 0.17 0.099
95 0.67 — - — — -

An increase in the temperature of a liquid usually results in a slight decrease
in thermal conductivity, but water is a notable exception to this generaliza-
tion. Furthermore, water has a particularly high thermal conductivity
compared with other pure liquids (Table 2.6). There are relatively few values
of thermal conductivity for solutions recorded in the literature and regrett-
ably they are frequently conflicting. There is no generally reliable method of
estimation.

The thermal conductivity of an aqueous solution of a salt is generally slightly
lower than that of pure water at the same temperature. For example, the values
at 25°C for water, and saturated solutions of sodium chloride and calcium
chloride are 0.60, 0.57 and 0.54 Wm~! K~!, respectively.

The thermal conductivity & (Wm~' K=" of pure liquids between about 0 and
70°C may be roughly estimated by the equation

k= 3.6 x 10~ 8cp(p/M)'? (2.38)

where c is the specific heat capacity (Jkg~'K™!), p is the density (kgm~—>) and
M is the molar mass (kg kmol™").

2.11 Boiling, freezing and melting points

When a non-volatile solute is dissolved in a solvent, the vapour pressure of the
solvent is lowered. Consequently, at any given pressure, the boiling point of
a solution is higher and the freezing point lower than those of the pure solvent.
For dilute ideal solutions, i.e. such as obey Raoult’s law, the boiling point
elevation and freezing point depression can be calculated by an equation of
the form

_mK
M

AT (2.39)

where m = mass of solute dissolved in a given mass of pure solvent and M =
molar mass of the solute. When AT refers to the freezing point depression,
K = K¢, the cryoscopic constant; when AT refers to the boiling point elevation,
K = Ky, the ebullioscopic constant. Values of Ky and K, for several common
solvents are given in Table 2.7; these, in effect, give the depression in freezing
point, or elevation in boiling point, in °C when 1 mol of solute is dissolved,
without dissociation or association, in 1kg of solvent.
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Table 2.7. Cryoscopic and ebullioscopic constants for some common solvents

Solvent Freezing Boiling K¢ K,
point, point, K kgmol~! K kgmol™!
°C °C
Acetic acid 16.7 118.1 3.9 3.1
Acetone —-95.5 56.3 2.7 1.7
Aniline —6.2 184.5 5.9 3.2
Benzene 5.5 80.1 5.1 2.7
Carbon disulphide —108.5 46.3 38 2.4
Carbon tetrachloride —-22.6 76.8 32.0 4.9
Chloroform —63.5 61.2 4.8 3.8
Cyclohexane 6.2 80 20.0 2.8
Nitrobenzene 5.7 211 7.0 5.3
Methyl alcohol —-97.8 64.7 2.6 0.8
Phenol 42.0 181 7.3 3.0
Water 0.0 100.0 1.86 0.52

The cryoscopic and ebullioscopic constants can be calculated from values of
the enthalpies of fusion and vaporization, respectively, by the equation

RT?

K= AF (2.40)
When K = K¢, T refers to the freezing point 77 (K) and AH to the enthalpy of
fusion, AH;(Jkg™!). When K = K, T refers to the boiling point T} and
AH = AH,, the enthalpy of vaporization at the boiling point. The gas con-
stant R = 8.314 Jmol 'K~

Boiling points and freezing points are both frequently used as criteria for the
estimation of the purity of near-pure liquids. Detailed specifications of stand-
ard methods for their determination are given, for example, in the British
Pharmacopoeia (2000).

Equation 2.40 cannot be applied to concentrated solutions or to aqueous
solutions of electrolytes. In these cases the freezing point depression cannot
readily be estimated. The boiling point elevation, however, can be predicted
with a reasonable degree of accuracy by means of the empirical Diihring rule:
the boiling point of a solution is a linear function of the boiling point of the
pure solvent. Therefore, if the boiling points of solutions of different concen-
trations are plotted against those of the solvent at different pressures, a family
of straight lines (not necessarily parallel) will be obtained. A typical Diihring
plot, for aqueous solutions of sodium hydroxide, is given in Figure 2.9 from
which it can be estimated, for example, that at a pressure at which water boils at
80°C, a solution containing 50 per cent by mass of NaOH would boil at about
120°C, i.e. a boiling point elevation of about 40 °C.

The boiling point elevation (BPE) of some 40 saturated aqueous solutions
of inorganic salts have been reported by Meranda and Furter (1977) who
proposed the correlating relationship
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Figure 2.9. Diilring plot for aqueous solutions of sodium hydroxide

BPE (°C) = 104.9x¢"!* (2.41)

where xg is the mole fraction of salt in the solution.
The practical difficulties of measuring boiling point elevations have been
discussed by Nicol (1969).

2.11.1 Melting points

The melting point of a solid organic substance is frequently adopted as a
criterion of purity, but before any reliance can be placed on the test, it is
necessary for the experimental procedure to be standardized. Several types of
melting point apparatus are available commercially, but the most widely used
method consists of heating a powdered sample of the material in a glass
capillary tube located close to the bulb of a thermometer in an agitated bath
of liquid.

The best type of glass tube is about 1 mm internal diameter, about 70 mm
long, with walls about 0.1 mm thick. The tube is heat-sealed at one end, and the
powdered sample is scraped into the tube and knocked or vibrated down to the
closed end to give a compacted layer about 5mm deep. It is then inserted into
the liquid bath at about 10 °C below the expected melting point and attached
close to the thermometer bulb. The bath is agitated and temperature is raised
steadily at about 3 °C/min. The melting point of the substance is taken as the
temperature at which a definite meniscus is formed in the tube. For pure
substances the melting point can be readily and accurately reproduced; for
impure substances it is better to record a melting range of temperature.



58 Crystallization

Table 2.8. Melting points of pure organic compounds
useful for calibrating thermometers

Substance Melting point,
°C
Phenyl salicylate (salol) 42
p-Dichlorbenzene 53
Naphthalene 81
m-Dinitrobenzene 90
Acetamide 114
Benzoic acid 123
Urea 133
Salicylic acid 160
Succinic acid 183
Anthracene 217
p-Nitrobenzene acid 242
Anthraquinone 286

Some organic substances are extremely sensitive to the presence of traces of
alkali in soft soda-glass capillary tubes, giving unduly low melting points. In
these cases, borosilicate glass tubes are recommended. Traces of moisture in the
tube will also lower the melting point so the capillary tubes should always be
stored in a desiccator.

Some organic substances begin to decompose near their melting point, so
that it is important not to keep the sample at an elevated temperature for
prolonged periods. The insertion of the capillary into the bath at 10 °C below
the melting point, allowing the temperature to rise at 3 °C/min, usually elim-
inates any difficulties. For reproducible results to be obtained, the sample
should be in a finely divided state (<100 pm). The thermometer, preferably
graduated in increments of 0.1°C, should be accurately calibrated over its
whole range and, if in constant use, should be checked regularly. The well-
known standardization temperature are the freezing and boiling points of
water, but other standards that can be used are the melting points of pure
organic substances, such as those indicated in Table 2.8.

The liquid used in the heating bath depends on the working temperature;
water is quite suitable for melting points from about room temperature to
about 70 °C and liquid paraffin and a range of silicone fluids are widely used
for more elevated temperatures.

Specifications of methods for determining melting points are given in the
British Pharmacopoeia (2000). See also section 4.5.1.

2.12 Enthalpies of phase change

When a substance undergoes a phase change, a quantity of heat is transferred
between the substance and its surrounding medium. Several types of enthalpy
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change, still often referred to as the latent heat, and the following types may be
distinguished:

solid I = solid II  (enthalpy of transition, AH)
solid = liquid  (enthalpy of fusion, AHy)
solid = gas (enthalpy of sublimation, A Hy)
liquid = gas (enthalpy of vaporization, AH,)

Only the last three of these represent significant quantities of heat energy:
enthalpies of transition can for most industrial purposes be ignored. For
example, the transformation of monoclinic to orthorhombic sulphur is accom-
panied by an enthalpy change of about 2kJ kg~!, whereas the fusion of ortho-
rhombic sulphur is accompanied by an enthalpy change of about 70kJ kg™
Enthalpy changes, like the other thermal properties, can be expressed on a
mass or molar basis, but to avoid confusion, all in this section will be expressed
on a molar basis. The relationship between some commonly used units are:

lcalg' =1chulb™' = 1.8Btulb ' =4.187kJkg™!
1calmol™" = 1 chu 1b-mol™! = 1.8 Btu 1b-mol™! = 4.187Jmol ™!

The relationship between any enthalpy change AH and the pressure—
volume—temperature conditions of a system is given by the Clapeyron equation

dp  AH

dT  TAv

(2.42)

where dp/dT = rate of change of vapour pressure with absolute temperature
and Av = volume change accompanying the phase change.

A typical temperature—pressure phase diagram for a one-component system
is shown in Figure 2.10. The sublimation curve 4AX indicates the increase of the
vapour pressure of the solid with an increase in temperature. This is expressed
quantitatively by the Clapeyron equation written as

Fusion
line \

Solid

Liquid

[
1
@ .
@ X Vaporization
g—_’ curve

. . Vapour

Sublimation P
curve
Temperature

Figure 2.10. Temperature—pressure diagram for a single-component system
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dp\  AH;
()

where vg and v, = the molar volumes of the vapour and solid, respectively, and
AH;=enthalpy of sublimation. The vaporization curve XB indicates the
increase of the vapour pressure of the liquid with an increase in temperature:

dp\  AH,
(@)~ T (249

where v; = the molar volume of the liquid, and AH, = latent heat of vaporiza-
tion. Curve XB is not a continuation of curve AX; this fact can be confirmed by
calculating their slopes dp/dT from equations 2.43 and 2.44 at point X.

The fusion line XC indicates the effect of pressure on the melting point of the
solid; it can either increase or decrease with an increase in pressure, but
the effect is so small that line XC deviates only slightly from the vertical. When
the fusion line deviates to the right, as in Figure 2.10, the melting point increases
with an increase in pressure, and the substance contracts on freezing. Most
substances behave in this manner. When the line deviates to the left, the melting
point decreases with increasing pressure, and the substance expands on freez-
ing. Water (see section 4.4) and type metals (Pb—Bi alloys) are among the few
examples of this behaviour that can be quoted. The equation for the fusion
line is

dp N AH{
<ﬁ>1_ T(vy —vs) (243)

where AH; is the enthalpy of fusion.
The enthalpies of sublimation, vaporization and fusion are related by

AH, = AH; + AH, (2.46)

but this additivity is applicable only at one specific temperature. The variation
of an enthalpy change with temperature can be calculated from the Clausius
equation

_AH (2.47)

When AH = AH,, ¢; and ¢, are the molar heat capacities of the liquid, just on
the point of vaporization, and of the saturated vapour, respectively. Equation
2.47 can also be used for calculating AHy and AH, the appropriate values of ¢
being inserted.
The specific volumes v; and vs are much smaller than vg; equations 2.43 and
2.44 can therefore be simplified to
dp  AH

T T, (2.48)
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where AH = AH, or AH,. From the ideal gas laws v, = RT'/p, so that equa-
tion 2.48 may be written

dp AH

L dr 2.49

s " RI2 (2.49)
This is the Clausius—Clapeyron equation. If the enthalpy change is considered
to be constant over a small temperature range, 77 to 7>, equation 2.49 may be
integrated to give

P2 AH(T, — Th)

2.50
14 RT\ T, (2:50)

Equation 2.50 can be used to estimate enthalpies of vaporization and sublima-
tion if vapour pressure data are available, or to estimate vapour pressures from
a value of the enthalpy change. Analysis of sublimation problems (see section
7.4), is frequently difficult owing to the scarcity of published vapour pressure
and enthalpy data. If two values of vapour pressure are available, however,
a considerable amount of information can be derived from equation 2.50 as
illustrated by the following example.

Suppose that the only data available on solid anthracene are that its vapour
pressure at 210° and 145°C are 40 and 1.3mbar, respectively; the vapour
pressure at 100°C is required. Equation 2.50 can be used twice — first to
calculate a value of AHj then that of the required pressure:

n 40 AH((483 —418)
1.3) 7 8314 x 483 x 418
AH, = 88.5kJmol™!

Substituting this value of AH; in equation 2.50 again,

140\ _ 88.5 (483 — 373)
T 8314 x 483 x 373

P1oo°C
therefore,

P1ooe.c = 0.04 mbar

2.12.1 Enthalpy of vaporization

There are several methods available for the estimation of enthalpies of vapor-
ization at the atmospheric boiling point of the liquid. Trouton’s rule, for
example, is only suitable for non-polar liquids, but the Giacalone equation is
fairly reliable for both polar and non-polar liquids:

AH,, = 88T, (Trouton) (2.51)
AHy, = ( RT.Ty ) InP.  (Giacalone) (2.52)
T.— Tt
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where AH,, = enthalpy of vaporization (Jmol™') at the boiling point, T} =
boiling point (K) of the liquid at 760 mm Hg, T, = critical temperature (K)
of the liquid, and P, = critical pressure (atm) of the liquid. (latm =
760 mm Hg = 1.013 x 10° N/m?.)

The enthalpy of vaporization of a liquid at some temperature 77 can be
calculated from its value at another temperature 7> by means of the Watson
equation:

(2.53)

T T \038
AI'Ivl = AH\/Z( = 1)

T.— T

For example, the enthalpy of vaporization of benzene at its boiling point
(353K) is 30.8 Jmol, its critical temperature 563 K. From equation 2.44 the
corresponding value at 25°C (298 K) can be calculated as 33.6 Jmol ™!, which
compares with an experimental result of 33.7 Jmol .

A critical account of these and other more recent methods is given by Reid,
Prauznitz and Poling (1987).

2.13 Heats of solution and crystallization

When a solute dissolves in a solvent without reaction, heat is usually absorbed
from the surrounding medium (still commonly referred to as the heat of
solution), i.e. if the dissolution occurs adiabatically the solution temperature
falls. When a solute crystallizes out of its solution, heat is usually liberated (still
commonly referred to as the heat of crystallization) and the solution temper-
ature rises. The reverse cases, viz. heat evolution on dissolution and heat
absorption on crystallization, may be encountered with solutes that exhibit an
inverted solubility characteristic, ¢.g. anhydrous sodium sulphate in water.

The dissolution of an anhydrous salt in water at a temperature at which the
hydrated salt is the stable crystalline form frequently leads to the release of heat
energy, owing to the exothermic nature of the hydration process:

AB + nH>,O — 4B - nH,O

Table 2.9 lists the heats of solution of anhydrous and hydrated magnesium
sulphate and sodium carbonate in water to illustrate the effect of water of
crystallization.

The enthalpy changes associated with dissolution (AHy, ) and crystallization
(AHys) are generally recorded as the number of heat units liberated by the
system when the process takes place isothermally. According to this system
of nomenclature, if an adiabatic operation is considered, the expression
AH, = +q (heat units per unit mass of solute) means that the solution
temperature will increase; AHy, = —¢ means that it will fall.

The magnitude of the heat effect accompanying the dissolution of solute in
a given solvent or undersaturated solution depends on the quantities of solute
and solvent involved, the initial and final concentrations and the temperature at
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Table 2.9. Heats of solution of anhydrous and hydrated salts in water at
18 °C and infinite dilution

Salt Formula Heat of solution,
kJmol™!

Magnesium sulphate MgSO, +88.3
MgSO4 - H,O +58.6
MgSOy - 2H,0 +49.0
MgSO, - 4H,0 +20.5
MgSO, - 6H,O +2.3
MgSO;, - 7TH,0 —13.3

Sodium carbonate Na,COs +23.3
Na,COs - H,O +9.2
Na,CO; - TH,O —42.6
N212CO3 . 10H20 —67.9

which the dissolution occurs. The standard reference temperature is nowadays
generally taken as 25°C.

The first differential heat of solution (heat of solution at infinite dilution),
AHZ;, may be regarded as the heat liberated or absorbed when 1 mole of solute
dissolves in a large amount of pure solvent. This is the value most generally
recorded in the data handbooks. For inorganic salts in water, it normally lies
between about 5 and 15kcalmol ™', i.e. about 20 to 60kJ mol~'. For organic
substances in organic solvents, it normally lies between 1 and 5kcal mol ™!
(about 5 to 20kJmol~!). The last differential heat of solution AHY, is the
amount of heat liberated or absorbed, when 1 mole of the solute dissolves in a
large amount of virtually saturated solution. This is numerically equal to the
heat of crystallization, AH.y,, but of opposite sign. The relationship between
these quantities is

_AHcrys = AH?& + AHgy = AHSC(l)l (254)

In crystallization practice, however, it is usual to take the heat of crystal-
lization as being equal in magnitude, but opposite in sign, to the heat of
solution at infinite dilution, since this is the quantity most commonly available
in the handbooks, i.e.

AHgys ~ —AHY (2.55)

sol

Few values of heats of dilution are available in the literature, especially for
the higher concentration ranges usually associated with industrial practice, but
this quantity is usually only a small fraction of the heat of solution. Further-
more, as the dilution of most aqueous salt solutions is exothermic, i.e. the
concentration is endothermic, the true value of the heat of crystallization will
be slightly less than that obtained by taking the negative value of the heat of
solution alone. Therefore the calculated quantity of heat to be removed from a
crystallizing solution will be slightly greater than the true value, and this small
error can serve as a factor of safety in the design of cooling heat transfer
equipment.
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An alternative way to evaluate the heat of solution, and hence to estimate the
heat of crystallization, is to consider the effect of temperature on the solubility:
the greater the effect the higher is the heat of solution of the solute as quantified
by the relationship

dine®  AHY
= — (2.56)

where AHY | is the final differential heat of solution.

2.14 Size classification of crystals

The most widely employed physical test applied to a crystalline product is the
one by means of which an estimate may be made of the particle size distribu-
tion. Product specifications invariably incorporate a clause that defines, often
quite stringently, the degree of fineness or coarseness of the material. For many
industrial purposes the demand is for a narrow range of particle size; regularity
results in the crystals having good storage and transportation properties, a free-
flowing nature and, above all, a pleasant appearance. Terms such as ‘fine’ and
‘coarse’ are frequently used, although usually without definition, to describe
crystalline and powdered materials. For pharmaceutical products, however,
some guidance is available from recommendations in the British Pharmaco-
poeia (2000), based on sieve gradings.

Coarse all passes 1700 pm +40% passes 355 um
Moderately coarse all passes 710 um +40% passes 250 um
Moderately fine all passes 355 um +40% passes 180 um
Fine all passes 180 um +40% passes 125 um
Very fine all passes 125 pm +40% passes 45 pm
Microfine <£90% passes 45 pum

Some of the more important procedures associated with the characterization
of particulate solids are outlined below.

2.14.1 Sampling

The physical and chemical characteristics of a bulk quantity of crystalline
material are determined by means of tests on small samples. These test samples
must be truly representative of the bulk quantity; otherwise any results
obtained will be grossly misleading or completely useless. Inefficient sampling
followed by careful analysis in the laboratory constitutes a waste of everyone’s
time and effort. Sampling, which is a highly specialized skill, should be carried
out by conscientious, well-trained personnel who are fully aware of the tests
that are to be made on the sample, without having any direct interest in the
outcome of the analyses.

The actual technique employed for sampling will depend on the nature of the
bulk quantity of material, its location, the properties to be tested, the accuracy
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required in the test, and so on. Difficulties may be encountered in the sampling
of solids in containers after transportation, owing to the partial segregation of
fine and coarse particles; the fines tend to migrate towards the bottom of the
container, and thorough remixing may be the only answer. Similar problems
caused by segregation may be met in the sampling of solids flowing down
chutes or through outlets.

Hand sampling, widely employed for batch-produced or stored materials, is
time-consuming and prone to error, but its use cannot always be avoided. One
common method involves the use of a sample ‘thief’, a piece of pipe with
a sharp bottom edge which is plunged into the full depth of the material. It is
then withdrawn and the sample removed. This operation can be performed at
fixed or random intervals in the bulk quantity. Sampling at intervals by means
of scoops or shovels, known as grab sampling, is also widely used, but serious
errors can be encountered when dealing with non-homogeneous materials.

Automatic sampling is preferred to sampling by hand, and is also better
suited to continuous processes. Ideally, the sample should be taken from
a moving stream of solids or slurry. To eliminate segregation effects, samples
should be taken by collecting the whole of the flowing stream for short periods.
Isokinetic sampling is recommended for crystal suspensions in agitated vessels
and pipelines (section 9.2).

Bulk samples, which may range up to several hundred kilograms for large
tonnage lots, have to be reduced to a smaller laboratory sample which, in turn,
will have to be divided into several smaller test samples for subsequent analysis.
These operations may be carried out by hand or with the aid of a sample divider.

The best-known hand method is that of coning and quartering. The sequence
of operations, carried out on a clean, smooth surface, or on glossy paper for
small quantities in the laboratory, is shown in Figure 2.11. The bulk sample is
thoroughly mixed and piled into a conical heap. The pile is then flattened and
the truncated cone divided into four equal quarters (Figure 2.11c). This may be
done, for example, with a sharp-edged wooden or sheet metal cross pressed into
the heap. One pair of opposite quarters are rejected, the other pair are thor-
oughly mixed together and piled into a conical heap, the procedure being
repeated until the required laboratory sample is obtained.

A simple sample divider is the riffle which usually takes the form of a box
divided into a number of compartments with bottoms sloping about 60° to the
horizontal, the slopes of alternate chutes being directed towards opposite sides
of the box. Thus, when the bulk sample is poured through the riffle, it is divided

N O o

(a) {b) {c) (d)

Figure 2.11. Method of coning and quartering: (a) bulk sample in a conical heap; (b)
flattened heap; (c) flattened heap quartered, (d) two opposite quarters mixed together and
piled into a conical heap
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Figure 2.12. Battery of riffles used for reduction of a large quantity of material

into two equal portions. The dimensions of a riffle depend on the size of the
particles and the quantity of material — an even flow of solids must be spread
over the whole inlet area. When very large bulk samples have to be reduced to
small test quantities, a battery of riffles decreasing in size may be employed, as
shown diagrammatically in Figure 2.12. This arrangement is also suitable for
the continuous or intermittent sampling of materials flowing out of hoppers or
other items of process plant.

The rotary sample divider, or spinning riffle, is less prone to operator error than
is the static riffle. Basically it consists of a hopper which allows particulate material
to flow on to a vibrating chute which then discharges into a number of sample boxes
located in a rotating ring. Several units of this type are available commercially.

The statistical theories of sampling are discussed by Allen (1990) who also
describes, in considerable detail, a large number of sampling methods. BS 3406/1
(1986) also gives guidance on sampling, the sub-division of laboratory samples
and the reporting of results.

2.14.2 Particle size and surface area

A large number of methods are now available for measuring particle size, some
of which are listed in Table 2.10 together with their approximate ranges of
application. The book by Allen (1990) and a series of British Standards (BS
3406, 1986; BS 4359, 1984) give excellent coverage of the subject. Only a short
review will be given here.

Itisnot possible to measure or define absolutely the size of an irregular particle,
and perfectly regular crystalline solids are rarely, if ever, encountered. The terms
length, breadth, thickness or diameter applied to irregular particles are mean-
ingless unless accompanied by further definition, because so many different values
of these quantities can be measured. The only meaningful properties that can be
defined for a single solid particle are the volume and surface area, but even the
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Table 2.10. Some methods of particle size measurement and their aproximate useful size
ranges

Method Size range
(pm)
Sieving (woven wire) 125000-20
Sieving (electroformed) 120-5
Sieving (perforated plate) 125 000-1000
Microscopy (optical) 150-0.5
Microscopy (electron) 5-0.001
Sedimentation (gravity) 50-1
Sedimentation (centrifugal) 5-0.1
Electrical sensing zone (Coulter) 200-1
Laser light scattering (Fraunhofer) 1000-0.1

Permeametry Surface area measurement: useful for particle sizes smaller than
Gas adsorption [ about 50 um

measurement of these quantities may present insuperable experimental dif-
ficulties. All particle size measurements are made by indirect methods: some
property of the solid body which can be related to size is measured.

Despite these difficulties of definition and measurement it is most convenient
for classification purposes, if a single-length parameter can be ascribed to an
irregular solid particle. The most frequent expression used in connection with
particle size is the ‘equivalent diameter’, i.e. the diameter of a sphere that
behaves exactly like the given particle when submitted to the same experimental
procedure. Several of these equivalent diameters are defined below.

Sieving

Woven wire test sieves were formerly designated by a mesh number (the
number of wires per inch) but as the important sieve characteristic is the size
of its apertures all standard test sieves are now designed, by international
agreement, by their aperture size in millimetres or micrometres. The aperture
sizes in a standard series are related to one another, e.g. following a fourth root
of two (1.189) or a tenth root of ten (1.259) progression. The two most widely
used standard sieve scales are the American (ASTM E11, 1995) and British (BS
410, 2000) both of which are compatible with the international scale (ISO 3310,
2000) (Table 2.11).

The range of aperture sizes in most standard series extends from 125 mm to
20 um. At the top end of the range particles must be carefully hand-placed on
the sieve. At the lower end, sieving with the aid of a liquid is often needed to
assist the flow of particles through the mesh. Particles that pass through a sieve
are characterized by an equivalent sieve aperture diameter, ds, , the diameter of
a sphere that would just pass through. Care needs to be taken to interpret this
quantity, however, as explained in section 2.14.3 (see Figure 2.14).

Perforated plate sieves are available, with round (125 to 1 mm) or square (125
to 4mm) apertures, for coarse particle sizing. Microsieves with electroformed
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Table 2.11. Comparison between the British and US standard wire mesh sieve scales*

showing the danger of using the ‘mesh number’ as a sieve designation

Aperture width (um)

Aperture width (um)

Mesh BS ASTM Mesh BS ASTM
numbert 410 El1 numbert 410 El1
(obsolete) (obsolete)
3 5600 50 300
3 % 4750 5600 52 300
4 4000 4750 60 250 250
5 3350 4000 70 212
6 2800 3350 72 212
7 2360 2800 80 180
8 2000 2360 85 180
10 1700 2000 100 150 150
12 1400 1700 120 125 125
14 1180 1400 140 106
16 1000 1180 150 106
18 850 1000 170 90 90
20 850 200 75 75
22 710 230 63
25 600 710 240 63
30 500 600 270 53
35 500 300 53
36 425 325 45
40 425 350 45
44 355 400 38 38
45 355 450 32 32

*Both standard test sieve scales BS 410 and ASTM El11 are compatible with the international (ISO
3310) scale.
1 The definition of ‘mesh number’ is the number of apertures per inch in the sieve mesh. This
obsolete designation leads to confusion because different standards specify different wire diameters.

round or square apertures (120 to 5um) in nickel plate are available for very
fine particle sizing.

Sieving is basically a very simple and justifiably popular particle sizing

technique, but the precautions necessary to produce reliable data do not appear
to be widely appreciated. Some of the more important points to note about the
use of standard test sieves for particle size analysis are as follows.

1. Particles must not be forced through the sieve apertures.

2. Sieving should be continued to an end-point, i.e. until the amount of
material passing through ceases to affect the result significantly. When using
a mechanical shaker, it is recommended that each sieve removed from the
stack should be given a brief brisk tapping and shaking by hand to ensure
that the end-point has been reached. If it has not, sieving must be continued.

. It should be clearly understood that the aperture size marked on the sieve is

only a nominal size. The actual value can vary from this value, within
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specified tolerances. For accurate work, it is advisable to calibrate the sieve,
e.g. by sieving a reference sample of known size distribution.

Procedures for test sieving, both wet and dry, are prescribed in standard
specifications (ISO 2591, 1989; BS 1796, 1990). Methods for the analysis of
sieve test data are described in section 2.14.4.

Microscopy

Microscopy is commonly used as a basic reference method for particle sizing
since individual particles may be observed while measuring or assessing their
size, shape and composition. Particle images may be viewed directly in an
optical microscope or by projection. The particle size may be recorded as the
projected area diameter dj, ., the diameter of a circle that has the same area as
the projected image of the particle viewed in a direction perpendicular to its
plane of maximum stability. This may be assessed by comparison with grad-
uated circles on an eyepiece graticule. The microscopic method can be tedious
and time-consuming, although automatic counting devices are now available.
Photographic methods are popular, but can introduce further errors into the
system (BS 3406/4, 1990; ISO 13322, 2001). The problems of preparing a micro-
scope slide containing a well-dispersed representative sample of small crystals
can be very considerable (Allen, 1990).

Sedimentation

A simple sedimentation technique, which readily lends itself to the determina-
tion of crystal size distribution in the range 1-50 um, is the Andreasen pipette
method. Although it is generally better to prepare a fresh suspension of the
crystals under test in a suitable inert liquid, it is possible to classify crystals
suspended in their own mother liquor. If the difference in density between the
particles and suspending liquid is <0.5gcm™3 special care must be taken to
avoid convection currents. The method, briefly, is as follows (BS 3406/2, 1986).

A homogeneous suspension of the crystalline material in a suitable liquid is
prepared in the graduated sedimentation cylinder of capacity ~600 cm? (Figure
2.13). Small samples (e.g. 10 cm?) of the suspension are withdrawn through the
fixed pipette, at a known depth, 4, below the liquid level, at chosen time
intervals. The samples, including the one taken at zero time, are analysed for
total suspended solids content by a suitable method. Ideally the suspension
should be dilute (< 3 per cent) and a dispersion agent may be needed to prevent
agglomeration: for particles in insoluble water a 0.1 per cent solution of sodium
pyrophosphate is generally suitable.

A sample taken at time ¢ will contain no particles larger than size ds;
calculated from Stokes’ law which may be written

1 12
dSt:{ 81y ] (2.57)

(ps — pr)gt
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Figure 2.13. Andreasen fixed pipette method

Thus by taking samples at suitable intervals, e.g. 0, 5, 10, 20, 40, 80 ... min, the
size distribution of the original suspension may be evaluated. For routine
analysis only one or two samples may be needed to characterize the particles.
If ¢ is measured in minutes, 4 in cm, p in gcm™ and 7 in centipoise, then the
particle size d, in um, is given by

I 12
dsg = 17.5| ——— (2.58)
{(ps - pf)f]
For a given sample, n, the cumulative mass percentage, P,, of particles
smaller than the limiting Stokes’ diameter for the time interval, ¢,, may be
calculated from the mass W, of the suspended solids in the fraction by

W V}

2.
w v, 2.59)

P, = 100[
where W = mass (g) of solids originally suspended in the apparatus, V =
original volume of the suspension (cm?) and V, = volume of sample taken
via pipette (cm?).

A typical analysis is given in Table 2.12, where the size distribution of
precipitated calcium carbonate (p; = 2.7 gcm ™) is measured by sedimentation
at 20 °C in water containing 0.1 per cent sodium pyrophosphate as dispersant
(pr = 1.0gem™ and 1 = 1.0 cP, i.e. 1073 Ns/m?). In this test the CaCO3 was
determined volumetrically by adding 0.2M HCI to each sample, boiling to
remove CO, and back-titrating with 0.1 M NaOH. A ‘blank’ was run on the
suspending liquid. Alternatively, in this case, a gravimetric method could have
been used, i.e. by evaporation to dryness.

Descriptions of other gravitational sedimentation techniques are outlined in
a recent international standard (BS ISO 13317, 2000) for particles in the size
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Table 2.12. Measurement of the particle size distribution of a sample of precipitated
calcium carbonate by the Andreasen pipette method

Time, Pipette Stokes’ CaCO; in Cumulative
t depth, diameter, fraction* percentage
(min) h (cm) d (um) W, (g) undersize
0 20.0 - 0.231% -
5 19.6 28 0.147 64
10 19.2 19 0.108 47
20 18.7 13 0.0763 33
40 18.3 9.1 0.0508 22
80 17.9 6.4 0.0299 13
160 17.4 4.4 0.0184 8
320 17.0 3.1 0.00924 4

*Sample volume ¥, = 10cm?.
1 Test sample mass W = 14.3 g in suspension volume V' = 620 cm’.

range 1-100 um. For particles smaller than about 5 um, however, problems can
arise from convection effects and Brownian motion, but these difficultics may
be reduced by speeding up the settling process by centrifuging the suspension.
A number of procedural methods and commercial equipment for centrifugal
sedimentation are now available for determining particle size in the 0.1—5 pm
range (Allen, 1990; ISO 13318, 2000).

Electrical sensing zone (Coulter) methods

In the Coulter technique, particles have to be suspended in an electrolyte
solution and then induced to pass through a small orifice, with surrounding
electrodes, located in the measurement cell. Changes in electrical impedance in
the orifice channel for each particle passage are measured and counted. The
result is a number—size (volume) distribution of particles (BS ISO 13319, 2000).
The method has found applicability in a wide range of industries. For applica-
tion to crystallizing systems, however, it is important to choose a unit in which
the voltage between the inner and the outer electrode is automatically adjusted
so as to maintain a constant current. This renders the calibration, and hence the
actual counting, insensitive to the type of electrolyte used as well as to concen-
tration and temperature changes within the electrolyte. This precaution is of
paramount importance for crystallization studies where changes in electrolyte
properties due to phase transitions are inevitable (Janci¢ and Grootscholten, 1984).

Laser light scattering (Fraunhofer) methods

Another widely used particle size analyser is based on the forward scattering of
laser light through a dilute (< 1% by volume) suspension of crystals retained in
a small (~10mL) agitated cell. The resulting Fraunhofer diffraction pattern is
detected and translated, by means of the instrument software, into a particle
size distribution (BS ISO 13320, 2000).
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Specific surface area measurement

In many cases, particularly for very small particles, surface area is a more
appropriate characteristic to assess than some size based on an equivalent
diameter. Particle surface area is important, for example, in paints and pig-
ments or when chemical reactivity is an important property, as in the setting of
cement. Precipitated materials are often characterized in this manner. Amongst
the several techniques available, those based on permeability and gas adsorp-
tion are probably the most popular.

In the permeability methods a known quantity of air is forced through a small
bed of the fine solids under a constant pressure drop, and the flow time is
recorded. The theory is based on the laminar flow of fluids through porous
beds, and the specific surface area S (m” g~!) of the material is calculated from
the Kozeny equation

., AP e
kunLp* (1 —e)’

(2.60)

where AP = pressure drop across the bed; e = voidage of the bed; L = depth of
the bed; n = viscosity of the air; u = empty-tube velocity; p = density of the
solid material; k is a constant (Kozeny’s constant), which has a value equal to
about 5.0 for granular solids. Several different types of permeability cell are
available (BS 4359/2, 1982; Allen, 1990).

A solid particle exposed to a gas will adsorb gas molecules on to its exposed
surfaces. The derivation of a multilayer adsorption theory for gases on solid
surfaces by Brunauer, Emmett and Teller in 1938 led to the development of the
so-called BET adsorption methods for measuring the specific surface area of
particulate solids. Several techniques are available (BS 4359/1, 1982; Lowell
and Shields, 1984; Allen, 1990).

Dry tests like the BET adsorption method can often give misleading informa-
tion when used to characterize precipitated materials because the sample
preparation operations of filtering, washing and drying can result in consider-
able damage and distortion to the particles. For this reason, a dye adsorption
technique has been found to give a more realistic measurement of the specific
area of precipitates while still suspended in their original mother liquor (Mullin
et al., 1989a). A sample of the precipitate suspension is pipetted into a small
flask containing a known quantity of a concentrated solution of a suitable dye,
the selection of which depends on the chemical nature of the precipitate. After
shaking to allow the mixture to come to equilibrium it is clarified in a labor-
atory centrifuge and the clear liquid analysed with a UV spectrophotometer.
Knowing the mass of dye adsorbed on a given mass of precipitate, and the
‘coverage’ value of the dye (the so-called Paneth value), it is a straightforward
matter to calculate a specific surface area of the precipitate in, for example,
m? gl

It should also be noted that size data produced by the many different
electronic techniques and instruments now available are dependent on the
particular analysis algorithm incorporated into the instrument by the manu-
facturer. Significant differences in sizing results can therefore be recorded by
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commercial equipment of basically the same type. Indeed, for precise work,
repeatability tests should be carried out to determine the closeness of agreement
between independent tests made with the same method on identical test mater-
ial in the same laboratory by the same operator using the same equipment. For
inter-laboratory investigations reproducibility tests should be made to determine
the closeness of agreement between tests made with the same method on
identical test material in different laboratories with different operators using
different equipment. Recommended procedures for repeatability and reprodu-
cibility tests are described in ISO 5725 (1992).

Comparison of data

From the above brief descriptions of a few commonly used particle sizing
techniques it can be seen that the different methods arrive at an expression of
particle ‘size’ after measuring quite different particle properties. It is not
surprising, therefore, that for a given sample of particulate material the differ-
ent techniques will give different, often very different, sizes.

It is advisable to use, if at all possible, only one sizing technique over the
whole particle size range encountered in any one analysis. Even in sieving, only
one type of sieving medium should be used throughout (woven wire, perforated
or electroformed plate, round or square aperture) because of their individual
sieving characteristics. When it is necessary, because of a very wide size dis-
tribution, to apply two different sizing techniques it is advisable that the data
from both methods overlap over a significant part of the range to enable all the
data to be converted to a common basis. Examples of overlap studies have been
reported for sieve/zone sensing (Mullin and Ang, 1974; Janci¢ and Grootschol-
ten, 1984) and for sieve/laser light scattering (BreCevic and Garside, 1981).

2.14.3 Shape factors

A precise calculation of the volume or surface area of a solid body of regular
geometric shape can only be made when its length, breadth and thickness are
known. For particulate solids in general, these three dimensions can never be
precisely measured. Therefore, before a brief account is given of some of the
methods of calculation available, a word of warning is necessary. It must be
fully appreciated that the precision of calculation is always far greater than that
of measurement of the various quantities used in the mathematical expressions.
An equation, especially a complex one, always has a look of absolute depend-
ability, but in this particular connection it most certainly leads to a false sense of
security. All calculated volume or surface area data must be used with caution.

Most calculation methods are based on one dimension of the particle, usually
the equivalent diameter. If this dimension is obtained from a sieve analysis, it will
be the sieve aperture diameter, ds, ; but as crystals are never true spheres, this
diameter will normally be the second largest dimension of the particle. Figure 2.14
demonstrates some particle shapes that would, in a sieve analysis, all yield the
same value for d;, . One potential source of error is thus clearly seen.
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Figure 2.14. Various particle shapes that would all be classified under the same
sieve-aperture diameter

For a single particle, the size of which is defined by some length parameter
or equivalent diameter, d, and density, p the following relationships can be
applied:

volume vy =fod® (2.61)

mass m = f,pd’ (2.62)
P

surface area s = f,d? (2.63)

The constants f, and f; may be called volume and surface shape factors,
respectively. In the expressions for crystal growth rate in section 6.2.1, fy and
fs are given the symbols « and 3, respectively. These latter symbols are also
used in Chapter 8.

For spherical (diameter = d) and cubic (length of side = d) particles

a=f= g (sphere) and 1 (cube)
B =f; = m (sphere) and 6 (cube)

The shape factors are readily calculated for other regular geometrical solids.
For an octahedron, for example, with d representing the length of an edge,
v =+/(2)d?/3 and s = 2+/(3)d?, therefore

a=f,=v/d® =/(2)/3=0471
B =f,=s/d* =23 =346

From equations 2.61-2.63 two basic ratios may be defined:

surface : volume % :;‘;{3 = (2.64)
s fid? F
£ : — == = — 2.
surface : mass m " hpd " pd (2.65)

Equation 2.65 defines the useful quantity known as the specific surface area,
i.e. the surface area per unit mass of solid. The constant F (= f;/f, = 3/a) may
be called the overall, surface-volume or specific surface shape factor. For
spheres and cubes, F = 6. For other shapes F > 6. For an octahedron

=/(2)/3, fy = 2v/3 and F = 7.35. Values of F ~ 10 are frequently encoun-
tered in comminuted solids, and much higher values may be found for flakes
and plate-like crystals. If the particles are elongated or needle-shaped, their
volume and surface area may be calculated on the assumption that they are
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cylindrical; length and diameter may be measured microscopically, or the
diameter can be taken as the equivalent sieve aperture diameter.

For example, a crystal with a length:breadth :thickness ratio of 5:2:1
would be characterized in sieving by its second largest dimension, i.e. d = 2.
Therefore f, = v/d*> = 10/8 = 1.25, f; = s/d*> = 34/4 = 8.5 and F = f,/f, = 6.8.

Volume shape factors may be measured by weighing a known number of
particles from a close-sieve fraction, the number depending on the size of the
particles and the accuracy with which the total mass can be weighed. The need
for a close-sieve fraction arises from the fact that the shape factor of crystals
can vary greatly with size (Garside, Mullin and Das, 1973).

The determination of volume shape factors for particles smaller than about
500 um becomes extremely difficult, since it may be necessary to count and
weigh several thousand particles. However, the following method may be used
to simplify the procedure. Prepare a sample of the particles by sieving between
two close sieves. Clean the finer of the two sieves (the retaining sieve) and
attach a strip of adhesive tape of known mass and dimensions, to its underside.
Place a quantity of the particles on the sieve and shake the sieve for several
minutes. Peel off the adhesive tape, which will now have hundreds or thousands
of particles in a regular matrix (more or less one per sieve aperture). The
approximate number of particles per unit area can be determined from the
designation of the sieve mesh. For example, a 150 um aperture sieve with
100 um diameter wires contains about 1600 apertures per cm?. The adhesive
strip can then be weighed and the average mass of one particle determined.

Surface shape factors are much more difficult to measure than volume shape
factors and they are subject to greater uncertainty. One method is as follows.
A few individual crystals are observed through a low-power microscope fitted
with a calibrated eyepiece, and sufficient measurements taken to allow a sketch
to be made of a representative geometric shape, e.g. a parallelepipedon, ellips-
oid, oblate spheroid, etc. The surface area of the representative solid body
may then be calculated. It should be appreciated, of course, that the result of
such a calculation will be prone to significant error.

Another quantity that has been used to characterize crystal shape is
the sphericity, 1, defined as the ratio of the surface area of a sphere having
the same volume as the particle to the apparent estimated surface area of the
particle. This can be rewritten (Nyvlt, 1990) as

2/3
= O (2.66)
Js/m
For isometric particles v is close to 1 while for needles or platelets its value is
much lower. Evaluation of ¢ is useful for checking the values of fyv and fs since
0<y <l
When three mutually perpendicular dimensions of a particle may be deter-
mined, Heywood’s ratios may help to characterize shape (Allen, 1990):

elongation ratio n = L/B
flakiness ratio m = B/T
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The thickness 7 is the minimum distance between two parallel planes which
are tangential to opposite surfaces of the particle, one plane being the plane
of maximum stability. The breadth B is the minimum distance between two
parallel planes which are perpendicular to the planes defining the thickness
and are tangential to opposite sides of the particle. The length L is the distance
between two parallel planes which are perpendicular to the planes defining
thickness and breadth and are tangential to opposite sides of the particle.

When using shape factors, it is important to remember that they depend on
the dimension chosen to characterize the particle. For example, a geometrical
shape such as regular parallelepipedon with a length : breadth : thickness ratio,
L:B:T,of 5:2:1 the following shape factors may be calculated:

e Js F

using L =15 0.08 1.4 17
B=2 1.25 8.5 6.8
T=1 10 34 3.4

Different answers again would result if measured values of the different equi-
valent diameters, such as ds, , dp.a., dsi, etc. were used. An example of apparent
shape factor change caused by the use of different sieves (woven wire, round
or square hole, perforated plate) to measure the particle size is reported by
Garside, Mullin and Das (1973).

2.14.4 Size data analysis

Mean particle size

In a total mass, M, of uniform particles, each of mass m and equivalent
diameter d, the number of particles, n, is given by

M M
m  fpd? (2.67)
and the total surface area, Xs, by
fiMd*>  FM
s =ns Topd od (2.68)

Equations 2.67 and 2.68 can be applied to masses of non-uniform particles if
a suitable average or mean value of d can be chosen. This becomes an intractable
problem, however, since there are so many possible choices that could be made.

The simplest of all average diameters is the arithmetic mean. For example, if
sieving has been carried out between two sieves of aperture a; and «, the
average particle equivalent diameter is given by

d, = (a) + a)/2 (2.69)

This description may be quite adequate for two close sieves in a v/2 series, but it
can be absolutely meaningless for two sieves at extreme ends of the mesh range.
Another simple average diameter is the geometric mean, defined by
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dy = \/(a1a2) (2.70)

Values of d calculated from equation 2.70 are smaller than those given by
equation 2.67, but for two close sieves the difference is not great.

The volume mean diameter (or mass mean if the particle density is constant)
is widely used:

- Znd*  X(Md)
" Sndd T IM

When the surface area of the particles is an important property the surface
mean diameter can be employed, defined by

B “nd? XM
Y Ynd? X(M/d)

@2.71)

2.72)

where n and M are the number and mass, respectively, of all particles of
equivalent diameter d.

The root mean square diameter is also frequently used when surface proper-
ties are important. This statistical quantity is defined by

— | (Znd®\ [S(Md)
s = ¢ (z—> = V [m] (@73)

Values of the overall mean diameters calculated from equations 2.71-2.73
can differ considerably (see Table 2.13), yet for a mass of particles with a wide
size distribution there is no general agreement as to the preferred method.

Two other statistical diameters are often encountered, viz. the modal and
median diameters; both are determined from frequency plots (size interval
versus number of particles in each interval). The modal diameter is the diameter
at the peak of the frequency curve, whereas the median diameter defines a mid-
point in the distribution — half the total number of particles are smaller than the
median, half are larger. If the distribution curve obeys the Gaussian or Normal
Error law, the median and modal diameters coincide.

Table 2.13. Calculation of overall ‘mean’ diameters

Size range Mean size Mass of Md Md M|d?
(um) of fraction, fraction,
d (pm) M (g)

850-600 725 11.8 8550 0.0163 0.031 x 1076
600425 512 18.6 9520 0.0363 0.139 x 107
425-300 362 38.5 13900 0.1064 0.812 x 107
300212 256 22.7 5810 0.0887 1.353 x 107¢
212-150 181 8.4 1520 0.0464 1.417 x 107°

100.0 39300 0.2941 3.752 x 107°
d, = 39300/100 = 393 um.
ds = 100/0.2941 = 340 um.
dims = (0.2941/3.75 x 1076)2 = 280 um.
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In connection with particle size measurement more than 20 different ‘mean’
diameters have been proposed at one time or another; and while several have
certain points in their favour in special cases, none has yet been found to be
generally satisfactory. Therefore all calculations based on an average diameter
are prone to appreciable error, and it is recommended that such calculated
quantities be clearly annotated with the method of calculation so that the
results of different workers can be compared.

Graphical analysis

Once a size analysis has been performed and the results recorded, there remains
the task of assessing the size characteristics of the tested material and of extract-
ing the maximum amount of information from the data. While a table may record
all the measured quantities, this form of expression is not always the best one; the
magnitudes of the various quantities may be readily visualized, but certain trends
may be completely obscured in a mass of figures. The real significance of a sizing
test can most readily be judged when the data are expressed graphically. From
such a pictorial representation trends in the data are easily detected, and the
prediction of the expected behaviour of the material on sieves other than those
used in the test can often be made with a reasonable degree of accuracy.

Many different forms of graphical expression may be employed, and the use
and applicability of some of these methods are demonstrated below with
reference to the results of a sieve test. The graphical procedures described,
however, are applicable, with suitable nomenclature changes, to all methods
of particle size analysis. The sieve test data in Table 2.14 are recorded in three
different ways, viz. the percentage by mass of the fractions retained on each
sieve, and the cumulative mass percentages of oversize and undersize material.

Four types of graph paper are commonly used for plotting particle size
distributions, depending on the sort of information that is required: (a) ordinary

Table 2.14. Sieve test data used for the construction of Figures 2.15 to 2.18

Sieve Fractional Cumulative Cumulative
aperture, mass mass mass
pm per cent per cent per cent
retained oversize undersize
2360 1.2 1.2 98.8
1700 2.9 4.1 95.9
1180 18.8 229 77.1
850 28.8 51.7 48.3
600 22.0 73.7 26.3
425 11.1 84.8 15.2
300 6.0 90.8 9.2
212 3.9 94.7 5.3
150 1.8 96.5 3.5
106 1.3 97.8 2.2

- 2.2 - -
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squared or arithmetic, (b) log-linear or semi-log, where one of the axes is
marked off on a log scale and the other on an arithmetic scale, (¢) log—log where
both axes are marked off on a logarithmic scale, and (d) arithmetic—probability,
where one axis is marked off on a probability scale, the intervals being based on
the probability integral. Log—probability and double-logarithmic (RRS) grids
also find use in special cases.

In Figure 2.15a the mass percentages of the fractions retained on each
successive sieve used in the test are plotted against the widths of the sieve
apertures (in microns). The lines joining the points have no significance; they
merely complete the frequency polygon. The sharp peak in the distribution
curve occurs at 850 pm. This point, however, represents the fraction that passes
the 1180 um sieve and is retained on the 850 um, so it could be plotted at the
‘mean’ size of 1015 um. Alternatively, the results may be represented in the
form of a frequency histogram (Figure 2.15b) depicting the size range of each
collected fraction. From both diagrams the general picture of the overall spread
of particle size can be seen quite clearly, but the simple arithmetic method of
plotting suffers from the disadvantage of producing a congested picture in the
regions of the fine mesh sieves.

When the data are plotted on semi-log paper (Figure 2.16a), with the aperture
widths recorded on the logarithmic scale, the points in the coarse sieve region are
brought closer together, and those in the fine sieve region located further apart
than in the corresponding simple arithmetic plot. In fact, the successive points
are more or less equally spaced along the horizontal scale. The frequency
histogram (Figure 2.16b) is composed of columns of approximately equal widths.
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Figure 2.15. Sieve test data plotted on arithmetic graph paper — percentage by weight of
the fractions retained between two given sieves in the B.S. series: (a) the frequency polygon;
(b) the frequency histogram



80 Crystallization

—_——

Corresponding B.S. mesh numbers Corresponding B.S. mesh numbers
150 10072 52 36 25 18 14 10 7 150 100 72 52 36 25 18 (4 10 7
30111;1111x1301r1|1|F_111
H 3
c
§ 25 S 25
® e —
t 20 T 20
1 )]
o 31 |
& &
8 5 a s}
5 5
4 =
H g ]
g E
[
& £

S N R | ] ! ] !
O;oo 200 300 %00  |0QO 2000 3000 %o 200 300 500  |000 2000 3000

Sieve aperture width, um Sieve aperture width, um
(a) (b)

Figure 2.16. Sieve test data plotted on semi-log graph paper — percentage by weight of
fractions retained between two sieves in the B.S. series: (a) the frequency polygon; (b) the
frequency histogram

The semi-log graphs of the cumulative oversize and undersize percentages
(Figure 2.17a) show that the curves are mirror images of each other. In practice
only one need be plotted. The two curves cross over at the median size (50 per cent
is larger than the median, and 50 per cent is smaller). In this case the median
size is 870 um. Interpolation is facilitated by the even spread of the plotted
points. It can be estimated, for instance, that about 87 per cent of the original
material would be retained on a 355 um sieve or that about 7 per cent would
pass through a 250 um sieve.

The cumulative percentages of oversize and undersize particles may also be
plotted against aperture size on a log—log basis (Figure 2.17b). In this type of
plot the cumulative undersize data tend to lie on a straight line over a wide
range of particle size, about 100 to 1200 um in this case. The undersize and
oversize curves are clearly not mirror images, and oversize data are rarely
correlated on this basis.

The log-log method of plotting of undersize data is extremely useful because
rough checks may be made on the size distribution by the use of only two, or
possibly three, test sieves. Material of the type considered in Table 2.11 could be
size-checked with 1000, 500 and 250 pm sieves, for example.

Coefficient of variation (CV)

Probability plots have often been suggested for particle size analysis, par-
ticularly in connection with the assessment of comminution processes.
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The following method, proposed by Powers (1948) for use in the sugar industry,
has much to be said in its favour for the size specification of crystalline products.
This method employs arithmetic-probability graph paper (one scale divided
into equal intervals, the other marked off according to the probability integral)
and provides a simple means of recording the crystal size distribution in terms
of two numbers only — the median size (MS), and a statistical quantity the
coefficient of variation (CV) expressed as a percentage.

The evaluation of MS/CV is demonstrated in Figure 2.18a with the sieve
analysis data from Table 2.13. The cumulative undersizes (or oversizes if
preferred) are plotted on the probability scale, the sieve aperture sizes on the
arithmetic scale. If the data between about 10 and 90 per cent lie on a straight
line, the MS/CV method can be applied. The data in Figure 2.18a comply with
this requirement. Thus the median size is 870 um. The coefficient of variation
can be deduced as follows.

The equation for the normal probability (Gaussian) curve may be expressed
as

1
o/ (27)

fd) = (2.74)

202

N2
exp[_(d—d)]

where d is an equivalent particle diameter, in this case based on sieve aperture
size, and o is the standard deviation. If the area enclosed under the normal
curve between sieve apertures d = 0 to oo is taken as unity, the area enclosed
between d = 0 and d = d + o, where d is the median (50 per cent) size MS, is
0.8413. This value is obtained from tables of the normal probability function.
Therefore the area enclosed between d =d + ¢ and d = co is 1 —0.8413 =
0.1587. The value of o, the standard deviation, can be obtained from the
arithmetic probability diagram by reading the value of d at 84.13 per cent
(84 per cent is accurate enough for this purpose) and subtracting the value of
d. Alternatively, the value of d at 15.87 (or 16) per cent can be subtracted from

d, ie.
0 =dsay, —d =d — digv,
These two values of o may not coincide, so a mean value can be taken as

 dsay, — diev
2

The coefficient of variation, as a percentage, is given by

1006 1000
cy - 1000 2.75
d ds0% e
or
. 100(dsas, — di6v) (2.76)

2ds09,
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From Figure 2.18a

_100(1270 — 440)

= = 4
CvV 2870) 8 per cent

and the size distribution can be specified, in terms of MS/CV, as 870/48.

The size distribution does not have to be Gaussian for the MS/CV method to
be applied. Many skew distributions also give the necessary linear relationship
between about 10 and 90 per cent, although in these cases MS will not coincide
with the modal diameter at the peak of the distribution curve.

For skew distributions that are not approximately Gaussian over the 10-90
per cent region, plotting on log-probability paper (one scale logarithmic, the
other marked off according to the logarithmic probability function) may give a
better correlation. The equation of the logarithmic normal curve is

_ (logd —logd'y’

1
(logd) =——¢
Jlogd) log o’\/21 *P 2log’ o’

2.77)

where d' is the geometric mean size and ¢ is the geometric standard deviation.

The log-normal distribution gives a curve skewed towards the larger sizes,
and it frequently gives a good representation of particle size distributions from
precipitation and comminution processes. Furthermore, the log-normal distri-
bution is often used because it overcomes the objection to the normal (Gaus-
sian) distribution function which implies the existence of particles of negative
size.

Another distribution function gaining popularity for characterizing crystal
size distributions is the gamma function, expressed as

f(d) = d* exp (dx/y)L(x + 1) (y/x)"! (2.78)

The parameters x and y, which give measures of the ‘skewness’ and ‘size’ of the
distribution respectively, can be related to the crystallization process. The
median size MS (= d) and standard deviation, o, may be calculated from

J = y(x + 1)/X and o= y(x + 1)1/2/x
Therefore from equation 2.75 the coefficient of variation is given by
CV = 100(x + 1) (2.79)

Some skew distributions, particularly those of comminuted materials can be
fitted by the Rosin—Rammler—Sperling (RRS) function. This relationship,
based on one originally derived from probability considerations, may be
written

P = 100 exp[—(d/d')"] (2.80)

where P = cumulative percentage oversize, d = particle size, and d’ is a statist-
ical mean size corresponding to P = 36.8% (100/e, where e = 2.718, the base of
natural logarithms). Equation 2.80 indicates a linear relationship between
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log log(100/P) and log d. The slope of the line, 7, has been called a ‘uniformity
factor’, i.e. n =tan6, where 0 is the angle between the RRS line and the
horizontal. As the size distribution narrows towards a mono-sized dispersion,
n — oo; as it broadens, n — 0.

Special double logarithmic graph paper suitable for this type of plotting is
available and the data from Table 2.14 are shown on such a plot in Figure 2.18b.
From this plot it is possible to determine the 16, 50 and 84% cumulative
percentages needed to calculate the MS/CV, as described above. Alternatively,
the distribution can be characterized by the uniformity factor, n. In the example
shown the median size dspo, = 870 um (the same as determined in Figure 2.18a),
the statistical mean size d’ = 1000 um, and the uniformity factor n = 1.8.



3 Solutions and solubility

3.1 Solutions and melts

A solution (gaseous, liquid or solid) is a homogeneous mixture of two or more
substances. The constituents of liquid solutions are frequently called solvents
and solutes, but despite common usage there is no fundamental reason why any
one particular component of a solution should be termed the solvent, and con-
siderable confusion can arise from adhering to rigid definitions. For example,
a salt such as potassium nitrate fuses in the presence of small amounts of water
at a much lower temperature than the pure salt does. The use of the term
‘solvent’ for water would hardly seem to be justified in this case, and although it
may seem strange to refer to ‘a solution of water in potassium nitrate’, this
would be an equally acceptable description. Fusion is nothing more than an
extreme case of liquefaction by solution, so it may be said that when a salt
dissolves in water the salt, in fact, melts.

Owing to the widespread and often indiscriminate use of the word ‘melt’, it
is difficult to give a precise definition of the term. Strictly speaking, a melt is
a liquid close to its freezing point, but in its general application the term also
includes homogeneous liquid mixtures of two or more substances that would
individually solidify on cooling to ambient temperatures. Thus a-naphthol
heated above its melting point (96 °C) would be regarded as a melt, and so
would a liquid mixture of a-naphthol and (-naphthol (m.p. 122°C). On the
other hand, a liquid mixture of a-naphthol and methanol would normally be
classified as a solution. However, no rigid definition is possible. The
KNO3;-H,;0 system quoted above, and the many well-known cases of
hydrated salts dissolving in their own water of crystallization at elevated temper-
atures, would in all probability be considered to be melts.

3.2 Solvent selection

Water is almost exclusively used as the solvent for the industrial crystallization
of inorganic substances from solution. This fact is quite understandable
because, apart from the relative ease with which a very large number of
chemical compounds dissolve in it, water is readily available, cheap and innocu-
ous. For these reasons water is used whenever possible even for the industrial
crystallization of organic compounds, although for a variety of reasons other
solvents may have to be used in this particular field.

The selection of the ‘best’ solvent for a given crystallization operation is not
always an easy matter. Many factors must be considered and some compromise
must inevitably be made; several undesirable characteristics may have to be
accepted to secure the aid of one important solvent property. There are several
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hundred organic liquids that are potentially capable of acting as crystallization
solvents, but outside the laboratory the list can be shortened to a few dozen
selected from the following groups: acetic acid and its esters, lower alcohols and
ketones, ethers, chlorinated hydrocarbons, benzene homologues, and light
petroleum fractions. In many cases, of course, the solvent may already have
been selected by the prevailing process conditions. In others, the cost of solvent
recovery may override other considerations.

A mixture of two or more solvents will occasionally be found to possess the
best properties for a particular crystallization purpose. Common binary solvent
mixtures that have proved useful include alcohols with water, ketones, ethers,
chlorinated hydrocarbons or benzene homologues, etc. and normal alkanes
with chlorinated hydrocarbons or aromatic hydrocarbons.

A second liquid is sometimes added to a solution to reduce the solubility of
the solute, cause its precipitation/crystallization and maximize the yield of
product. It is necessary, of course, for the two liquids (the original solvent
and the added precipitant) to be completely miscible with one another in all
proportions. The process is commonly encountered, for instance, in the crystal-
lization of organic substances from water-miscible organic solvents by the
controlled addition of water. The term ‘watering-out’ is often used in this
connection. This approach is also used to reduce the solubility of an inorganic
salt in aqueous solution by the addition of a water-miscible organic solvent in
salting-out precipitation processes (section 7.2.5).

Some of the main points that should be considered when choosing a solvent
for a crystallization process include the following. The solute to be crystallized
should be readily soluble in the solvent. It should also be easily deposited from
the solution in the desired crystalline form after cooling, evaporation, salting-
out with an additive, etc. There are many exceptions to the frequently quoted
rule that ‘like dissolves like’, but this rough empiricism can serve as a useful
guide. Solvents may be classified as being polar or non-polar; the former
description is given to liquids which have high dielectric constants, e.g. water,
acids, alcohols, and the latter refers to liquids of low dielectric constant, e.g.
aromatic hydrocarbons. A non-polar solute (e.g. anthracene) is usually more
soluble in a non-polar solvent (e.g. benzene) than in a polar solvent (e.g. water).
However, close chemical similarity between solute and solvent should be
avoided, because their mutual solubility will in all probability be high, and
crystallization may prove difficult or uneconomical. It should be noted that the
crystal habit can often be changed by changing the solvent (section 6.4).

Based on the nature of their intermolecular bonding interactions solvents
may be conveniently divided into three main classes:

1. polar protic, e.g. water, methanol, acetic acid;
2. dipolar aprotic, e.g. nitrobenzene, acetonitrile, furfural;
3. non-polar aprotic, e.g. hexane, benzene, ethyl ether.

In polar protic solvents the solvent molecules interact by forming strong
hydrogen bonds. In order to dissolve, the solute must break these bonds and
replace them with bonds of similar strength. To have a reasonable solubility,
therefore, the solute must be capable of forming hydrogen bonds, either
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because the solute itself is hydrogen bonded or because it is sufficiently basic to
accept a donated hydrogen atom to form a hydrogen bond. If the solute is
aprotic and not basic it cannot form strong bonds with the solvent molecules
and therefore will have a very low solubility.

In dipolar aprotic solvents, characterized by high dielectric constants, the
solvent molecules interact by dipole—dipole interactions. If the solute is also
dipolar and aprotic it can interact readily with the solvent molecules forming
similar dipole—dipole interactions. If the solute is non-polar it cannot interact
with the dipoles of the solvent molecules and so cannot dissolve. Protic solutes
are found to be soluble in basic dipolar aprotic solvents because strong hydro-
gen bonds are formed, replacing the hydrogen bonds between the solute mole-
cules in the solid state. If a dipolar aprotic solvent is not basic, however, a
protic solute will have a low solubility because the strong hydrogen bonds in
the solid phase can only be replaced by weaker dipole—dipole interactions
between solvent and solute molecules.

In non-polar aprotic solvents, characterized by low dielectric constants,
molecules interact by weak van der Waals forces. Non-polar solutes are readily
soluble as the van der Waals forces between solute molecules in the solid phase
are replaced by similar interactions with solvent molecules. Dipolar and polar
protic solutes are generally found to have very low solubilities in these solvents
except in cases where non-polar complexes are formed.

Solvent power

The ‘power’ of a solvent is usually expressed as the mass of solute that can be
dissolved in a given mass of pure solvent at one specified temperature. Water,
for example, is a more powerful solvent at 20°C for calcium chloride than
n-propanol (75 and 16 g/100 g solvent, respectively). At the same temperature
n-propanol is a more powerful solvent than water for benzoic acid (42.5 and
0.29 g/100 g solvent, respectively).

The temperature coefficient of solubility is another important factor to be
considered. For example, at 20 °C water is a more powerful solvent for potas-
sium sulphate (11 g/100 g water) than for potassium chlorate (7 g/100 g), but the
converse is true at 80 °C (K,SO4, 21 g/100 g; KClO3, 39 g/100 g). Thus, on cooling
the respective saturated solutions from 80 to 20°C, more than 80% of the
dissolved KClO3; would be deposited compared with less than 50% of the
K»S0;.

Both the solvent power and the temperature coefficient of solubility must be
considered when choosing a solvent for a cooling crystallization process;
the former quantity influences the volume of the crystallizer, and the latter
determines the crystal yield. It frequently happens, especially in aqueous
organic systems, that a low solubility is combined with a high temperature
coefficient of solubility. For example, the solubilities of salicylic acid in water
at 20 and 80°C are 0.20 and 2.26 g/100 g, respectively. Therefore, on cooling
from 80 to 20 °C, most of the dissolved solute (91%) is deposited, and conse-
quently the solute yield is high. However, on account of the low solubility, even
at the higher temperature, an excessively large crystallizer would be required to
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give a reasonable production rate and consequently water could not be con-
sidered as a suitable solvent for salicylic acid crystallization.

Potassium chromate is an example of a solute with a reasonably high solu-
bility in water and a low temperature coefficient of solubility (61.7 and 72.1 g/
100 g at 20 and 80°C, respectively). The low yield on cooling (about 14 per
cent) makes it necessary to effect crystallization in some other manner, such as
a combination of cooling and evaporation, thus increasing the cost of the
operation. An algorithm for the prediction of an optimal solvent or solvent
mixture for cooling crystallization has been proposed by Nass (1994).

Solvent hazards

A few words on the subjects of purity and hazards might not be entirely out of
place at this point, because their consideration is inevitable when choosing
a solvent for a crystallization process. No deleterious impurity, dissolved or
suspended, should be introduced into a crystallizing system. The solvent, there-
fore, should be as clean and as pure as possible. No colouring matter should be
permitted to affect the appearance of the final crystals. No residual odours
should remain in the product after drying, a problem often encountered after
crystallization from organic solvents with distinctive odours. If no previous
experience has been obtained with a potential solvent, simple laboratory trials
should be made, but due caution should be exercised in interpreting the results
because laboratory filtration, washing and drying techniques generally prove to
be much more efficient than the corresponding large-scale operations.

The solvent should be stable under all foreseeable operating conditions: it
should neither decompose nor oxidize, and it must not attack any of the
materials of construction of the plant. When organic solvents are being used,
care must be taken in choosing the correct gasket materials; most common
types of rubber and many synthetic elastomers, for example, swell and disin-
tegrate after prolonged contact with chlorinated hydrocarbons.

The solute and solvent should not be capable of reacting together chemically,
although solvate formation may be permitted under certain circumstances.
Hydrated crystals are frequently desired as end-products, but should the anhyd-
rous substance be required the necessary drying process may prove difficult and
expensive. Methanol, ethanol, benzene and acetic acid are also known to form
solvates with certain substances, and the loss of solvent on drying imposes an
additional cost on the process.

Highly viscous solvents are not usually conducive to efficient crystallization,
filtration and washing operations. In general, therefore, solvents of low viscos-
ity are preferred. If the solvent recovery process involves distillation, a reason-
ably volatile solvent is desirable. On the other hand, the loss of a solvent with
a high vapour pressure from filters and other processing equipment can be
considerable and may prove both costly and hazardous. Solvents with freezing
points above about —5°C present wintertime storage and transportation diffi-
culties. Benzene (f.p. 5°C) and acetic acid (f.p. 17°C) are good examples.

Most organic solvents employed in cystallization processes are flammable,
and their use necessitates stringent operating conditions. Two of the most
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important properties of a flammable solvent are the flash point and explosive
limits; the former is the temperature at which the mixture of air and vapour
above the liquid can be ignited by means of a spark, and the latter refers to the
percentages by volume in air between which the vapour mixture will, if ignited,
explode in a confined space. Diethyl ether is an example of a solvent with a very
low flash-point (—30°C) and wide range of explosive limits (1 to 50%).

All organic solvents are toxic to a greater or lesser degree: the prolonged
inhalation of almost any vapour will produce some harmful effect on a human
being. Some solvents are acute poisons, some have a cumulative poisoning
effect, and others produce narcosis or intoxication on inhalation, or dermatitis
on contact with the skin. Information on these aspects and on the maximum
vapour concentrations permitted in working areas can be obtained from spe-
cialized reference books. The handbooks by Sax (1992) and Bretherick (1999)
deal comprehensively with solvent properties and hazards. Health risks in the
use of common solvents are dealt with in RSC/CEC (1986, 1988).

3.3 Expression of solution composition

The composition of a solution, or melt, may be expressed in many different
ways, €.g. mass per unit mass of solvent, mass per unit mass of solution, mass
per unit volume of solvent, and so on. The mass unit may refer to the dissolved
species itself or to a solvated form, e.g. a hydrate.

For the expression of crystallization kinetics there is some theoretical justi-
fication for recording compositions on a molar basis, e.g. as kmolm™ (i.e.
mol L~1), while mole fractions are most frequently used for thermodynamic
calculations. Mass fractions are commonly used in the construction of phase
diagrams, although the use of mole fractions is recommended for the repres-
entation of reciprocal salt pair systems (section 4.7.2).

For the purpose of expressing a mass balance on an item of process plant,
there is considerable merit in expressing solution composition as mass of
unsolvated solute per unit mass of solvent, particularly when temperature
changes are expected. This avoids the need for further calculation to account
for density changes.

In view of the frequent need to make interconversions of composition units
it is recommended that, whenever solution concentration measurements are
made, the density of the solution at the relevant temperature is also measured
and recorded (see section 3.9).

Many of the above methods of solubility expression can lead to the use of the
potentially misleading term ‘percentage concentration’. For instance, an
expression such as ‘a 10 per cent aqueous solution of sodium sulphate’ could
be taken to mean, without further definition, any one of the following:

10 g of Na;SOy4 in 100 g of water

10 g of Na;SOy4 in 100 g of solution

10 g of Na,SO4 - 10H,0 in 100 g of water
10 g of Na,SO, - 10H,0 in 100 g of solution
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If 10 g of anhydrous Na,SOy4 in 100 g of water were the intended description
of the solution concentration, this would then be equivalent to

9.1 g of Na;SOy4 in 100 g of solution
20.6 g of Na,;SO, - 10H,0 in 100 g of solution
26.0 g of Na,;SOy4 - 10H,0 in 100 g of water

which gives some measure of the magnitude of the possible misinterpretation. To
make matters even worse, the term ‘percentage concentration’ is often applied
on a volume basis, e.g. 10 g of Na;SO4 in 100 mL of water, of solution, and so on.

Table 3.1 lists the interconversions between a number of the common expres-
sions of solution composition. For convenience, the expressions are drafted in
terms of aqueous systems, but the relationships are completely general if the
terms ‘unsolvated substance’, ‘solvate’ and ‘solvent’ are substituted for ‘anhy-
drous substance’, ‘hydrate’, and ‘water’, respectively.

Table 3.1. Conversion factors for solution concentration units

Concentration Equivalent expressions
c G C; Cy Cs Ce MaCy
! 1-C;, R—C; R+(R—1)Cs p—Cs pR—Cs p— MaCs
c C g Cy g 5 MaCy
: 1+C R R(1 + Cy) o pR p
R R M,
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1+C 1+ Gy p p p
C RC] RCz C3 RC5 C(, My C7
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pCi pCs pCs Cs
& C — _ — MpC
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6 1+ pLL pL3 1+ Cs 5 HC7
pCi pCa pCs pCq Cs Cs
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C) = kg of anhydrous substance/kg of water
C, = kg of anhydrous substance/kg of solution
C; = kg of hydrate/kg of solution

C4 = kg of hydrate/kg of ‘free’ water

Cs = kg of anhydrous substance/m> of solution
Cs = kg of hydrate/m® of solution

C; = kmol of anhydrous substance/m> of solution
Cg = kmol of hydrate/m? of solution

Cy = mole fraction of anhydrous substance
Cy9 = mole fraction of hydrate

Ma = molar mass of anhydrous substance
My = molar mass of hydrate

= molar mass of water

= Mu/Ma

= density of solution (kgm™?)

S xE
=
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Interconversions between mass or molar units and those based on mole
fractions are a little more complex than those in Table 3.1. The mole fraction
x of a particular component in a mixture of several substances is given by

_ my /M
mi/My + ma/M> 4+ m3/M3 + - -

X1 (3.1
where m is the mass of a particular component, and M its molar mass.

The relationship between compositions expressed in mole fractions and in
other units is given by

MwC, MwCy

C = =
T MwCi + My My + (My + My — Mp)Ca

(3.2)

MwCy MwCy

Cio= =
T My — My — Ma — My)Ci~ MwCy + My

(3.3)

A large number of terms have been used to express the relative solubility of
a solute in a given solvent. The following, together with some examples of
solubility (gL~") at around ambient temperature, are the most frequently
encountered:

Practically insoluble BaSOy4 0.002
Slightly soluble Ca(OH), 1.5
Sparingly soluble PbCl, 10
Soluble NaCl 350
Very soluble Sucrose 2000

3.4 Solubility correlations

In the majority of cases the solubility of a solute in a solvent increases with
temperature, but there are a few well-known exceptions to this rule. Some
typical solubilities for various salts in water are shown in Figure 3.1, where all
concentrations are expressed as kg of anhydrous substance per 100 kg of water.
In Figure 3.1a sodium chloride is a good example of a salt whose solubility
increases only slightly with an increase in temperature, whereas sodium acetate
shows a fairly rapid increase.

The solubility characteristics of a solute in a given solvent have a consider-
able influence on the choice of a method of crystallization. It would be useless,
for instance, to cool a hot saturated solution of sodium chloride in the hope of
depositing crystals in any quantity. A reasonable yield could only be achieved
by removing some of the water by evaporation, and this is what is done in
practice. On the other hand, a direct cooling crystallization operation would be
adequate for a salt such as copper sulphate: cooling from 90 to 20°C would
produce about 44 kg of CuSOy for every 100 kg of water present in the original
solution. As the stable phase of copper sulphate at 20 °C is the pentahydrate the
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Figure 3.1. Solubility curves for some salts in water: (a) smooth curves, (b) indicating
occurrence of phase changes

actual crystal yield would be about 69 kg of CuSQOy - 5SH,O for every 100 kg of
water present initially.

Not all solubility curves are smooth, as can be seen in Figure 3.1b. A dis-
continuity in the solubility curve denotes a phase change. For example, the
solid phase deposited from an aqueous solution of sodium sulphate below
32.4°C will consist of the decahydrate, whereas the solid deposited above this
temperature will consist of the anhydrous salt. The solubility of anhydrous
sodium sulphate decreases with an increase in temperature. This negative
solubility effect, or inverted solubility as it is sometimes called, is also exhibited
by substances such as calcium sulphate (gypsum), calcium, barium and stron-
tium acetates, calcium hydroxide, etc. These substances can cause trouble in
certain types of crystallizer by causing a deposition of scale on heat-transfer
surfaces.

The solubility curves for two different phases meet at the transition point,
and a system may show a number of these points. For instance, three forms of
ferrous sulphate may be deposited from aqueous solution depending upon the
temperature: FeSOy4 - 7TH,O up to 56 °C, FeSOy4 - 4H,0 from 56 to 64°C and
FeSO4 - H>,O above 64°C.

The general trend of a solubility curve can be predicted from Le Chatelier’s
Principle which, for the present purpose, can be stated: when a system in
equilibrium is subjected to a change in temperature or pressure, the system will
adjust itself to a new equilibrium state in order to relieve the effect of the
change. Most solutes dissolve in their near-saturated solutions with an absorp-
tion of heat (endothermic heat of solution) and an increase in temperature
results in an increase in the solubility. An inverted solubility effect occurs when
the solute dissolves in its near-saturated solution with an evolution of heat
(exothermic heat of solution).
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Strictly speaking, solubility is also a function of pressure, but the effect is
generally negligible in the systems normally encountered in crystallization from
solution. In the purification of melt systems, however, pressure manipulation
can be utilized for separating organic isomers (section 7.3.2).

Many equations have been proposed for the correlation and prediction of
solubility data. Some are better than others, but none has been found to be of
general applicability. In any case, an experimentally determined solubility is
undoubtedly preferred to an estimated value, particularly in systems that may
contain impurities. Nevertheless, there is frequently a need for a simple math-
ematical expression of solubility to assist the recording and correlation of data.

One of the most commonly used expressions of the influence of temperature
on solubility is the polynomial

c=A+Br+Cr+--- (3.4)

where ¢ is the temperature, e.g. in °C, and ¢ is the solution composition,
expressed in any convenient units. A, B, C, etc. are constants that depend on
the units used. There is rarely any need to resort to higher-order polynomials
for this empirical relationship.

In addition to equation 3.4, a number of semi-empirical equations have been
proposed for solubility correlation purposes, some of which are based on
thermodynamic relationships relating to phase equilibria. Examples of some
of the expressions that have found favour, at one time or another, are

logx = A+ BT 3.5
logx = A +BT +CT? (3.6)
logx=A+BT! (3.7)
logx =A+BT™' +CT2 (3.8)
logx =A+BT ' +ClogT 3.9

In all these relationships the solution composition x is expressed as mole
fraction of solute and the temperature 7T is expressed in kelvins (K). The
constants A, B and C in equations 3.4 to 3.9, of course, are not related to one
another.

Broul, Nyvit and Séhnel (1981) came to the conclusion that, when tested
against solubility data from 70 inorganic salts in water, the accuracy of the two-
constant equations was consistently lower than that of the three-constant
equations. However, they found that there was little to choose between indi-
vidual equations in these two groups, but they did select equation 3.9 as being
the most reliable.

There is still considerable merit, however, in favour of equation 3.7 because
of its simple form and its usefulness in the graphical estimation of transition
points. Conventional solubility plots, such as those shown in Figure 3.1, can
prove unreliable for this purpose when only a few data points are available,
especially when the points lie on one or more different curves. Solubilities
plotted in accordance with equation 3.7 are shown in Figure 3.2. Mole fraction
concentrations x are recorded on the logarithmic abscissa and values of 103 7!
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Figure 3.2. Alternative method for the graphical representation of solubility data

(because 7! in the range 273-373 K is a very small quantity) are recorded on
the right-hand linear ordinate scale. Alternatively, log-reciprocal graph paper
can be used on which the temperature in degrees Celcius can be plotted directly,
as on the left-hand ordinate in Figure 3.2.

In Figure 3.1 the solubility of CuSO,4 over the temperature range 0—-100 °C is
represented by a smooth curve, and the solubilities of Na;SO4 and Na,CrOy are
represented by smooth curves that intersect at transition points. Several advant-
ages of the logx versus 7! plot shown in Figure 3.2 immediately become
apparent. For example, the data for the above three salts lic on a series of
straight lines, which greatly assists interpolation and allows transition points
to be identified with some precision. It is easier, for example, to produce the
two straight lines for sodium sulphate in Figure 3.2, to meet at 32.4°C than it
is to extend the two corresponding curves in Figure 3.1. The two straight lines
for CuSOy intersect at about 67°C, which indicates a phase transition at
this temperature; this transition between two different crystalline forms of
the pentahydrate is not detected in Figure 3.1. Incidentally, the transition
CuSOy - 5H,0 = CuSOy - 3H,0 occurs at 95.9 °C. Only two of the transitions
for the sodium chromate system are indicated in Figure 3.2. There are actu-
ally three transition points in this system: 10H,O = 6H,O (19.6°C),
6H,0 = 4H,0 (26.6°C) and 4H,0 = anhydrous (64.8°C).

The solubility data for sodium acetate are included in Figure 3.2 to illustrate
the fact that straight lines do not always result from this method of plotting.
Curved lines are often obtained for highly soluble substances, or in regions
where the temperature coefficient of solubility is high, or in cases where several
hydrates can exist over a narrow range of temperature. It is possible, of course,
that the curved portion of the sodium acetate line in the region of about
40-58 °C could be a series of straight lines representing hydrates other than
the trihydrate, but there is no evidence to support this view.
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3.5 Theoretical crystal yield

If the solubility data for a substance in a particular solvent are known, it is a
simple matter to calculate the maximum yield of pure crystals that could be
obtained by cooling or evaporating a given solution. The calculated yield will
be a maximum, because the assumption has to be made that the final mother
liquor in contact with the deposited crystals will be just saturated. Generally,
some degree of supersaturation may be expected, but this cannot be estimated.
The yield will refer only to the quantity of pure crystals deposited from the
solution, but the actual yield of solid material may be slightly higher than that
calculated, because crystal masses invariably retain some mother liquor even
after filtration. When the crystals are dried they become coated with a layer of
material that is frequently of a lower grade than that in the bulk of the crystals.
Impure dry crystal masses produced commercially are very often the result of
inadequate mother liquor removal.

Washing on a filter helps to reduce the amount of mother liquor retained by
a mass of crystals, but there is always the danger of reducing the final yield by
dissolution during the washing operation. If the crystals are readily soluble in
the working solvent, another liquid in which the substance is relatively insol-
uble may be used. Alternatively, a wash consisting of a cold, near-saturated
solution of the pure substance in the working solvent may be employed. The
efficiency of washing depends largely on the shape and size of the crystals (see
section 8.6.1).

The calculation of the yield for the case of crystallization by cooling is quite
straightforward if the initial concentration and the solubility of the substance at
the lower temperature are known. The calculation can be complicated slightly
if some of the solvent is lost, deliberately or accidentally, during the cooling
process, or if the substance itself removes some of the solvent, e.g. by taking up
water of crystallization. All these possibilities are taken into account in the
following equations, which may be used to calculate the maximum yields of
pure crystals under a variety of conditions.

Let C; = initial solution concentration (kg anhydrous salt/kg solvent)
C, = final solution concentration (kg anhydrous salt/kg solvent)
W = initial mass of solvent (kg)
V' = solvent lost by evaporation (kg per kg of original solvent)
R = ratio of molar masses of hydrate and anhydrous salt
Y = crystal yield (kg)

Substance crystallizes unsolvated (e.g. anhydrous salt)

Total loss of solvent: Y = W(C, (3.10)
No loss of solvent: Y=W({C —Cy) (3.11)
Partial loss of solvent: Y = W[C; — Cy(1 — V)] (3.12)

Substance crystallizes as a solvate

Total loss of free solvent: Y = WRC(C, (3.13)
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WR(C, - C
No loss of solvent: Y = % (3.149)
Partial loss of solvent: Y = WRIC, — &A=~ V)l (3.15)

1—Cy(R—1)

Equation 3.15 can, of course, be used as the general equation for all cases.

Example 1

Calculate the theoretical yield of pure crystals that could be obtained from
a solution containing 100 kg of sodium sulphate (mol. wt. = 142) in 500 kg of
water by cooling to 10°C. The solubility of sodium sulphate at 10°C is 9kg
of anhydrous salt per 100 kg of water, and the deposited crystals will consist of
the decahydrate (mol. wt. = 322). Assume that 2 per cent of the water will be
lost by evaporation during the cooling process.

R =1322/142 =2.27

C; = 0.2kg Na,SOy4 per kg of water

C> = 0.09kg Na,SOy4 per kg of water

W = 500 kg of water

V' =0.02kg per kg of water present initially

Substituting these values in equation 3.15 gives

y_ 500 x 2.2710.2 — 0.09(1 — 0.02)]
B 1—0.092.27 — 1)
Yield = 143 kg Na,SO, - 10H,0

To determine the crystal yield from a vacuum crystallizer (section 7.5.3) it is
necessary to estimate the amount of solvent evaporated, V. This depends on the
heat made available during the operation of the crystallizer, i.e. the sum of
the sensible heat drop of the solution, which cools from the feed temperature to
the equilibrium temperature in the vessel, and the heat of crystallization liber-
ated. The heat balance, therefore, will be

VWA = et — )W (1 + Cp) + A\ Y (3.16)

where, in addition to the symbols defined for equation 3.15,
A\, = enthalpy of vaporization of solvent (kJkg™')
Ae = heat of crystallization of product (kJkg~')
t; = initial temperature of solution (°C)
t, = final temperature of solution (°C)
¢ = mean specific heat capacity of solution (kJkg™' K1)

Substituting for the value of Y from equation 3.15 and simplifying

_AR(CL = Gy + et — 1p)(1 + C)1 = Cr(R—1)]

v M1 = Co(R—1)] — ARC

(3.17)
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Example 2

Estimate the yield of sodium acetate crystals (CH;COONa - 3H,0) from a
continuous vacuum crystallizer operating with an internal pressure of 15 mbar
when it is supplied with 2000 kg h ! of a 40 per cent aqueous solution of sodium
acetate (0.4 kg of anhydrous salt in 0.6 kg water) at 80°C. The boiling point
elevation of the solution may be taken as 11.5°C.

Heat of crystallization of CH3;COONa - 3H,O, A, = 144KkJ kg*1

Specific heat capacity of the solution, ¢ =35kJkg ' K™!
Latent heat of vaporization of water at 15mbar, )\, = 2.46 MJ kg~!
Boiling point of water at 15 mbar =17.5°C
Operating temperature = 17.5° + 11.5°C =29°C
Solubility at 29°C, C, —=0.539kgkg™!
Initial concentration, C; = 0.4/0.6 =0.667kgkg ™!
Initial mass of water in feed, W = 0.6 x 2000 = 1200kgh™!
Ratio of molar masses, R = 136/82 = 1.66

The quantity of water vaporized is calculated from equation 3.17: V =
0.153 kg/kg of water present originally which, when substituted in equation
3.15, gives the crystal yield as ¥ = 660 kgh™! of sodium acetate trihydrate.

3.6 Ideal and non-ideal solutions

An ideal solution is one in which the interaction between solute and solvent
molecules is identical with that between the solute molecules and the solvent
molecules themselves. From this definition alone it is clear that a truly ideal
solution is most unlikely to exist, but the concept is still very useful as a
reference condition. For instance, if the solute and solvent did form an ideal
solution, the solubility could be predicted from the van’t Hoff equation:

AH 1 1

where x is the mole fraction of the solute in the solution, 7" is the solution
temperature (K), 7; is the fusion temperature (melting point) of the solute (K),
AHy is the molal enthalpy of fusion of the solute (Jmol™!) and R is the gas
constant (8.314 Jmol 'K ).

For example, the solubility of naphthalene at 20 °C in an ideal solution may
be calculated from its melting point (80°C) and enthalpy of fusion
(18.8 kI mol™") to give x = 0.269. In principle, therefore, by performing such
calculations over a range of temperatures, an ‘ideal’ solubility curve may be
constructed, but it is important to note that any such calculated solubility is
expressed without reference to any particular solvent. Furthermore, the
assumption of ideality for most real solutions is generally unjustified.

The potential unreliability of equation 3.18 in predicting solubility can be
demonstrated by comparing the above calculated ideal solubility (x = 0.269) of
naphthalene with measured solubilities in a few common solvents:
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benzene 0.241 toluene 0.224 CCl14 0.205 hexane 0.090

Even in the case of benzene, with its chemical similarity to naphthalene,
ideality is barely approached (the predicted solubility is some 12% too high).
The solution in hexane, however, is highly non-ideal (the prediction is 200%
too high).

The van’t Hoff equation can also be written in the form:

(3.18a)

since AHy = Ty ASy. ASy is the molal entropy of fusion. It should be under-

stood, however, that even though a plot of In x versus 7~ may give a straight

line, its slope may differ from —AH;/R if the solution exhibits non-ideal

behaviour. In such cases, the enthalpy and entropy of mixing must be taken

into account by replacing AHy with AHy4 (of dissolution) and ASy by ASy

(Beiny and Mullin, 1987), i.e., using:
AHy ASq4

Inx =———+

=7 R (3.18b)

Another approach stems from a consideration of the Gibbs free energy
change AG for a dissolution process, which in general may be expressed in
terms of the enthalpy and entropy changes associated with the mixing process:

AG = AH — TAS (3.19)

For the formation of an ideal solution, e.g. by mixing two liquids, the Gibbs
free energy may also be expressed as

AG =RTInx (3.20)

where x is the solution composition expressed as a mole fraction of one of the
components. The entropy change accompanying this dissolution process, from
equation 3.19, is

AS = -Rlnx (3.21)

since the enthalpy of mixing, AH, is zero for an ideal solution.
The overall free energy change may also be expressed in terms of the activity,
a, of one of the components:

AG=RTIna (3.22)
In other words, if the solution is ideal,
a=x (3.23)

For non-ideal solutions, however, equation 3.23 has to be modified by the
appropriate activity coefficient, +, i.e.

a=nyx (3.24)
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Similarly, equation 3.18 should be expressed as

smf1 1

T (3.25)

In(x7) = =
The key to the use of equation 3.25 for the prediction of solubilities in non-ideal
systems is a reliable estimation of the activity coefficient v. For organic
solutes in organic solvents, this may be achieved (Gmehling, Anderson and
Prausnitz, 1978) by the UNIFAC group contribution method which is
discussed, together with other techniques for the prediction of solubility data,
in section 3.10.

3.6.1 Activity and ionic strength

The colligative properties of solutions, e.g. osmotic pressure, boiling point
elevations, freezing point depression and vapour pressure reduction, depend
on the effect of solute concentration on the solvent activity. The chemical
potential, u, of a non-electrolyte in dilute solution may be expressed by

= pioc +RTInc (3.20)

where ¢ is the solute molar concentration (mol L™") and pe is the standard
chemical potential also expressed on a molar basis (J mol™").

Equation 3.26 is unsatisfactory for non-electrolyte solute concentrations in
excess of about 0.1 molar, and it cannot be applied to solutions of electrolytes
for concentrations greater than about 107> molar. For such cases an expression
based on activity rather than concentration should be applied, e.g.

[t = ptoc + RT Ina, (3.27)

where a. is the solute activity expressed on a molar basis, which is related to
composition ¢ through the corresponding activity coefficient, ~., by

e = e (3.28)

The activity coefficient becomes unity at infinite dilution, i.e. when ideality may
be assumed.

For electrolyte solutions it is more appropriate to use the mean ionic activity,
ay, defined with respect to the mean ionic concentration and mean ionic
activity coefficient by

ae = df, = (cx+7x)” = (QCvsc) (3:29)

where v is the number of moles of ions in 1 mole of electrolyte, i.e.

v=vy+v_ (3.30)
and
Q=) (3.31)

For non-electrolytes, v = 1.
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From the Debye—Hiickel theory of electrolytes, the limiting (infinite dilution)
law gives the mean activity coefficient of the ion as

logyy = —A|z z_|I'? (3.32)
where the ionic strength, 7, expressed as mol L', is defined by
=1y ez (3.33)

where ¢; is the concentration (molL™") of the ith ionic species and z; the
valency, and z, and z_ are the valencies of the cation and anion, respectively.
The Debye—Hiickel constant, A, has values of 0.493, 0.499, 0.509 and 0.519 at
5, 15, 25 and 35°C, respectively.

Similar relationships to those of equations 3.26 to 3.33 may be written for
solution compositions expressed as molality, m (mol/kg of solvent), and
mole fraction, x, respectively. For example, equation 3.26 could be written as
either

[t = fiom + RT Inm (3.26a)
or

[t = fiox + RT Inx (3.26b)

and equation 3.33 as either

Ly =1 "miz (3.33a)
or

=1 xz (3.33b)

For simplicity, however, only the molar-based ionic strength (I = I;) will be
used subsequently in this section.

The Debye—Hiickel limiting law (equation 3.32) has to be modified for all but
the most dilute solutions, and many modifications have been proposed. For
example, the Giintelberg equation:

12

log Y+ = —A|Z+Z,| {m] (334)
is useful for solutions of sparingly soluble electrolytes, and the Davies
equation:

Jadt
is generally quite satisfactory for values of 7 up to about 0.2mol L~ (Davies,
1962; Nancollas, 1966). For concentrated mixed electrolyte solutions, more
complex relationships have to be employed (see section 3.10).
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The calculation of the ionic strength of a mixed solution of electrolytes may
be illustrated, using equation 3.33, for a mixture of equal volumes of 0.1 mol L™!
NaCl and CaCl, solutions, assuming complete dissociation:

I =1[(Na™) x 17]+[(Ca*") x 22] + [(C1") x 1%])
=1(0.1x1+01x4+3x0.1x1)
= 0.4molL™!

3.6.2 Association and dissociation

For incompletely dissociated electrolytes, it is generally convenient to define
another activity coefficient, the mean activity coefficient of ions in solution, +,..
For a binary electrolyte which dissociates according to

My Ay = v, M7 £ v A (3.36)

the concentration of free ions in a solution of molar concentration, ¢, is
ac, where « is the degree of dissociation, and the activity coefficients are
related by

e = @Yy (3.37)
ie.
= Vic/Vic (3.38)

The degree of dissociation, «, of dissolved electrolyte was first expressed by
Arrhenius in 1887 as the ratio of the molar conductivity (see section 3.6.3) of
the solution, A, to that of a solution at its most extreme dilution, Ay, i.e.

a = A/ (3.39)

The degree of dissociation can also be expressed in terms of the van’t Hoff
factor, i, and the number of moles of ions, v, in one mole of solute:

i=1l—a+va (3.40)
ie.
gl (3.41)
v—1

For strong electrolytes (virtually complete dissociation, o — 1)
= (3.42)

The dissociation of an electrolyte molecule in solution into oppositely
charged ions, however, is by no means a simple matter. The ionic association
theory, first developed by Bjerrum in 1926, indicates that some kind of associa-
tion will still exist between oppositely charged ions even when they are several
molecular diameters apart. The rates of dissociation and reformation, of mole-
cules or other complexes, are extremely fast and it is doubtful if the ions can
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ever truly be considered to be ‘free’. Ion association should be taken into
account in any complete treatment of aqueous electrolyte solutions since it
reduces the value of the ionic activity coefficients.

3.6.3 Conductance and conductivity

The current flowing through an electrolyte solution is proportional to the
reciprocal of its resistance, R (Ohm’s law). This quantity, 1/R, is called the
conductance of the solution, which formerly was expressed as reciprocal ohms
(mhos, Q~"), but now bears the SI unit name of the siemens, S. Thus, a solution
with a resistance of 102 has a conductance of 0.1 S.

The resistances of different solutions can be compared through the quantity
known as the resistivity, p, defined by the relationship

p = Rall (3.43)

where / is the length of the conductivity path in the solution and « is its cross-
sectional area. The units of p are the ohm metre, Q2 m, or in SI units, siemens ™!
metre, S~! m.

In a similar manner to resistances, the conductances can be compared
through the quantity known as the conductivity, x (' m~'or Sm™"), which
is the reciprocal of the resistivity, i.e.

K== (3.44)
P
For electrolyte solutions the molar conductivity, A (the conductivity per
mole of electrolyte), is a useful characteristic since it allows comparisons to
be made between solutions of different substances. A is defined by

A =k/c (3.45)

where c is the solution concentration, expressed as molm—3, giving A the units

of "' m?mol~!, i.e. Sm?mol~!. According to Kohlrauch’s law, the value of A
at infinite dilution, Ay, is the sum of the corresponding molar ionic conductiv-
ities, also at infinite dilution (see Tables 3.2 and A.13), i.e.

Ao = Af +Ag (3.46)

The utility of the above relationships in estimating the solubility of sparingly
soluble salts is discussed in section 3.9.3.

Furthermore, in addition to its straightforward application, equation 3.46
can be used to calculate Ay for weak electrolytes, e.g. organic acids, from Ay
values for their strong electrolyte salts. For example, Ay for acetic acid can be
calculated (Moore, 1972) from values of sodium acetate, HCI and sodium
chloride. At 25°C:

Ag(HAc) = Ag(NaAc) + Ag(HCI) — Ag(NaCl)
= (91 +425-128) x 107*
=388 x 10°*Sm?mol~!
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Table 3.2. Some molar ionic conductivities at infinite dilution at 25°C

Cation 10%Ag Anion 10°A5
(Sm2mol™") (Sm2mol™")
H* 349.8 OH~ 198.5
K* 73.5 Br~ 78.4
NH; 73.4 I 76.8
Ag' 61.9 cl 76.3
Na* 50.1 F~ 55.0
Li* 38.7 NO;y 71.4
IMg** 53.1 Clo; 68.0
Ica** 59.5 CH;CO; 40.9
N 59.5 lco3~ 74.0
IBa®" 63.6 1803~ 78.8
Ipb** 65.0 1crof- 83.0

The values of A expressed here as x 1074 Sm? mol~! are equivalent to the former common units of
Q'em?mol ™.

3.6.4 Solubility products

The solubility of a sparingly soluble electrolyte in water is often expressed in
terms of the concentration solubility product, K.. To take the simplest case, if
one molecule of such an electrolyte dissociates in solution into x cations and y
anions according to the equation

M Ay, = xM* + yA™ (3.47)
where zt and z~ are the valencies of the ions, then for a saturated solution
(c4)*(c-)" = constant = K, (3.48)

where ¢, and c_ are the ionic concentrations expressed as mol L™

Solubility products are often recorded, for convenience, as pK values where
pK, = —logK.. Thus a value of K.=3.9x107% would be reported as
pK, = 5.4.

For a salt which produces two ions per molecule (1-1, 2-2, etc. electrolytes,
ie. for x=y=1) ¢, =c_ =c*, where ¢* is the equilibrium solubility

(mol L™1).
Therefore, equation 3.48 becomes
& = (K)'"? (3.49)
In general
¢ = (Ke/xy")let) (3.50)

Therefore, for a 2—1 electrolyte

¢ = (K /4" (3.51)
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and for a 3—1 electrolyte
¢ = (K27 (3.52)

For example, the solubility products of silver bromide, lead iodide and
aluminium hydroxide at 18°C are 4.1 x 1073, 9.3 x 107 and 1.1 x 10~1
respectively, so their solubilities in water at this temperature may be expressed as:

AgBr (equation 3.49):

¢ =@41x107"%1"2 =64 x 10" mol L™
Pbl, (equation 3.51):

¢ =[(7.5x107")/4]"* = 1.2 x 10> mol L™!
AI(OH); (equation 3.52):

¢ =[(1.1 x 1071%)/27]"* = 8.0 x 10 mol L™!

However, the simple solubility product principle has extremely limited use. It
should, for example, be restricted to solutions of very sparingly soluble salts
(<1073 mol L™"). For more concentrated solutions it is necessary to adopt a
more fundamental approach involving the use of activity concepts.

The activity solubility product, K, is defined

(ay)"(a_) = constant = K, (3.53)

where a, and a_ are the ionic activities. As the activity of an ion may be
expressed in terms of the ionic concentration, ¢, and the ionic activity coeffi-
cient, 7, equation 3.53 may be written

(crr) (7)Y =K, (3.54)

K, = K.(v)" (3.55)

where .4 is the mean ionic activity coefficient and v (=x + y) is the number of
moles of ions produced by one mole of electrolyte.

So the concentration solubility product is equal to the activity solubility only
when v = 1, i.e. at infinite dilution. In practice, K, and K. may be assumed
approximately equal for concentrations up to about 107> molL™!, but above
this concentration significant deviations can occur. The activity of an ion
depends on the concentration of all the other ions in solution, so the presence
of a dissolved foreign electrolyte can greatly influence the value of v, of a
sparingly soluble salt.

A number of cases which appear anomalous when the simple solubility
product is used can be explained when activity coefficients are taken into
account. For instance, the addition of a common ion generally decreases the
solubility of a salt, but cases are known where additions of a salt with a
common ion result in increase in solubility. The reason for this is that a large
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Figure 3.3. Relative increase in solubility with increase in ionic strength: (a) BaSOy in
KNOj solution, (b) AgCl in KNOj; solution. (After Lewin, 1960)

increase in ionic concentration can cause a reduction in the activity coefficients.
Thus from equation 3.54 an increase in ¢_ will result in a decrease in ¢, i.e.
precipitation of the sparingly soluble salt, if v, and ~_ remain fairly constant,
but an increase in ¢_ to a value which reduces both v, and ~_ must result in
an increase in ¢, if K, is to remain constant. The addition of a salt without
a common ion often increases the solubility; this again is the result of the
increased ionic concentration reducing the activity coefficients (Figure 3.3).

Lewin (1960) has pointed out that even equation 3.54 does not represent the
true situation since a saturated aqueous solution in equilibrium with the solid
phase involves the reversible reaction

solid + water = saturated solution

so at constant temperature and pressure

M. Ay + (xb + yo)H,0 = x(M*" - bH,0) + (4 - ¢H,0)

solid solvent saturated solution

where b and ¢ are the numbers of water molecules associated with the cation
and anion respectively. Consequently, under equilibrium conditions, by the
Law of Mass Action:

(a;)*(a-)

xbtyo)
(asolid)(awater)(x +e)

(3.56)

which Lewin called the comprehensive activity solubility product. The use of this
thermodynamically rigorous form of the solubility product can resolve most
apparently anomalous problems.
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Common and diverse ion effects

The addition of an electrolyte to a saturated solution of a sparingly soluble salt
with a common ion depresses the solubility of the latter (the common ion effect)
and leads to its precipitation. For example, the solubility product of AgCl at
25°Cis 1.56 x 1071° (K, = K. at this dilution), i.e.

[Ag"[CI ] =1.56 x 1071°
giving, from equation 3.49, a solubility of
¢ =1.25%x 10 mol L™!

If a small quantity of a more soluble chloride, e.g. NaCl, is added to a satur-
ated solution of AgCl the CI™ concentration will temporarily exceed
1.25x 107> mol L7, i.e.

[AgH[Cl7] > 1.56 x 10717

This unstable condition cannot persist so the system readjusts itself until the
new ionic product equals the solubility product and this results in the precipita-
tion of some of the AgCl.

The solubility product principle can only be strictly applied to equilibrium
conditions, although it has often been used to explain such precipitations as
those encountered in qualitative analysis by the traditional wet-test methods.
However, these sudden precipitations do not take place under anything like
equilibrium conditions and the fact that reasonably successful predictions can
usually be made is mainly due to the enormous excess ionic concentrations
(supersaturations) generated compared with those required by the corresponding
solubility products. Errors of magnitude of 10°—107 per cent have been estimated
(Lewin, 1960) for such calculations and these clearly swamp other variations such
as neglect of solute activity coefficients, complex ion formation, etc.

Whereas the presence in solution of an ion in common with a sparingly
soluble salt can significantly decrease the salt solubility, the presence of an
ion not in common with any of those of the solute can increase the solute
solubility on account of the increase in ionic strength. For example, the solu-
bility of silver bromide in water is increased by around 30% in a 0.1 mol L™
sodium nitrate aqueous solution, as can be seen in the following rough calcula-
tion.

The solubility of silver bromide in water at 15°C is about 6 x 10~"mol L™".
At this low concentration the ‘activity’ and ‘concentration’ solubility products
may be assumed to be equal (see equation 3.55), i.e.

K. =(*)?=36x10""=K,

For a 0.1 molar solution of sodium nitrate, using equations 3.35 with a value
of A = 0.499 appropriate for 15°C, the calculated ionic activity coefficient ~,
is 0.783, from which it may be estimated that

K, =3.6x10713/(0.783)> = 5.87 x 10713
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giving the solubility
¢ =K"?=77x10"molL™'

Temperature effects
The ionic product of water
K, =[HT][OH] (3.57)

is temperature dependent, rising from about 10~ at 0°C, to 10~'# at 25°C and
10~ at 60°C. Such a large variation is of considerable significance in the
precipitation of sparingly soluble metal hydroxides, and its neglect can lead to
gross errors. Fe(I11) hydroxide, for example, dissociates according to:

Fe(OH), = Fe*t +30H~
and the solubility product

K. = [Fe*"J[OH ]}
ie.

s, kKo KMHT
P = 00T = kT

Thus at a given pH the Fe** concentration above which precipitation may be
considered possible is

[Fe’'] o K

A value of K, = 10~'# is commonly used in rough calculations, but this is only
correct at 25°C. If it were to be used for conditions at 15°C, where the correct
value of K, is 0.45 x 1074, an error of about (1/0.45)~* x 100, i.e. > 1000 per
cent, would be incurred.

3.7 Particle size and solubility

The relationship between particle size and solubility, originally derived for

vapour pressures in liquid—vapour systems by Thomson (who became Lord

Kelvin in 1892) in 1871, utilized later by Gibbs, and applied to solid-liquid

systems by Ostwald (1900) and Freundlich (1926) may be expressed in the form
In {c(r)] 2M~

= 3.58
c* vRTpr ( )

where ¢(r) is the solubility of particles of size (radius) r, ¢* is the normal
equilibrium solubility of the substance, R is the gas constant, 7" is absolute
temperature, p is the density of the solid, M is the molar mass of the solid in
solution and + is the interfacial tension of the solid in contact with the solution.
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The quantity v represents the number of moles of ions formed from one mole of
electrolyte (equation 3.30). For a non-electrolyte, v = 1.

Confusingly, but for understandable reasons, equation 3.58 is referred to in
the literature by a variety of names such as the Gibbs—Thomson, Gibbs—Kelvin
and Ostwald—Freundlich relation. For consistency, however, the designation
‘Gibbs-Thomson’ will be used throughout this work.

As a result of the particle size solubility effect, solution compositions may
exceed greatly the normal equilibrium saturation value if the excess solute
particles dispersed in the solution are very small. For most solutes in water,
however, the solubility increase only starts to become significant for particle
sizes smaller than about 1 um.

For example, for barium sulphate at 25°C: T = 298 K, M = 233 kgkmol ',
v=2,p=4500kgm=>,v=0.13Jm 2, R = 8.3 x 103 Jkmol~' K~!. Thus for
a lpm, crystal (r =5 x 1077 m), c¢/c* = 1.005 (i.e. 0.5% increase). For 0.1 pm,
c¢/c* =1.06 (i.e. 6% increase) and for 0.01 um, ¢/c* = 1.72 (i.e. 72% increase).

For a very soluble organic compound such as sucrose (M = 342 kg kmol !,
v=1, p=1590kgm™>, v=10"2Jm™?) the effect is similar: 1pm (0.4%
increase), 0.1 um (4%), 0.01 pm (40%). All such calculated values, however,
should be treated with caution, not only because of the unreliability of v values
but also because the Gibbs—Thomson effect may cease to be influential at
extremely small crystal sizes (see Figure 3.4).

For practical application to crystals, equation 3.58 could be more usefully
redrafted in terms of particle size expressed as a convenient length parameter,
L, coupled with an approximate overall shape factor, F:

" [C(L)] 2F M~

¢t | 3uRTpL (3.59)
For spheres and cubes F = 6 (L = diameter or length of side). For other shapes
F > 6, e.g. for an octahedron F = 7.35 (section 2.14.3).

Strictly speaking, equation 3.58 should be expressed in terms of solution
activities rather than concentrations (Eniistiin and Turkevich, 1960). Further-
more, it involves a number of assumptions that may not always be valid. For
example, the solid-liquid interfacial tension (section 5.6) is implicitly assumed
to be independent of particle size, and no account is taken of any ionization or

Solubility —

Normal solubility c*

Particle size r—

Figure 3.4. The effect of particle size on solubility
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dissociation of the solute in solution. This latter effect, discussed in detail by
Jones and Partington (1915), leads to the relationship

In | 2M~
| (1—a+va)RTpr

(3.60)

where « is the degree of dissociation. For the case of complete dissociation
(a = 1) equation 3.60 reduces to equation 3.58.

Another fault of equation 3.58 is that it postulates an exponential increase in
solubility to infinity with a reduction in particle size to zero:

c(r)y = c*exp 2M~/vRT pr) (3.61)

To overcome this anomaly, Knapp (1922) considered that the total surface
energy (interfacial tension) of very small solid particles should be regarded as
the sum of their ‘normal’ surface energy plus the surface electrical charge that
such particles would carry. From these considerations he derived for the case of
isolated charged spheres an equation of the form

e(r) = cexp(Ar~! — Br %) (3.62)

where A = 2yM/RTp and B = ¢>* M /87kRTp, q being the electrical charge on
the particle of radius r and « its dielectric constant. Equation 3.62 gives a curve
of the type shown in Figure 3.4. Subsequent work has tended to lend support to
Knapp’s postulation and measurements made by Harbury (1946) indicated
maximum:equilibrium solubility ratios of 3, 6 and 13 for salts KNO3, KCIO;,
K,Cr,07 and Na,;SO4 - 10H,O in water.

3.8 Effect of impurities on solubility

So-called pure solutions are rarely encountered outside the analytical labor-
atory, and even then the impurity levels are usually well within detectable limits.
Industrial solutions, on the other hand, are almost invariably impure, by any
definition of the term, and the impurities present can often have a considerable
effect on the solubility characteristics of the main solute.

If to a saturated binary solution of A4 (a solid solute) and B (a liquid solvent)
a small amount of the third component C (also soluble in B) is added, one of
four conditions can result. First, nothing may happen, although this is com-
paratively rare, in which case the system remains in its original saturated state.
Second, component C may react or otherwise combine or react chemically with
A by forming a complex or compound, thus altering the whole nature of the
system. In the third case, the presence of component C may make the solution
super-saturated with respect to solute A4, which would then be precipitated. In
the fourth case, the solution may become unsaturated with respect to 4. The
terms ‘salting-out’ and ‘salting-in’ are commonly used to describe these last two
cases, particularly when electrolytes are involved.
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The salting-out effect of an electrolyte added to an aqueous solution of a
non-electrolyte, can often be represented by the empirical equation

*/

1og%* —kC+ 13 (3.63)

where ¢* and ¢ are the equilibrium saturation concentrations (mol L™' of the
non-electrolyte in pure water and in a salt solution of concentration C
(mol L), respectively. The constants k, called the salting parameter, and 3
refer to one particular electrolyte and its effect on one particular non-electrolyte
at a given temperature. This type of relationship, which often applies with a
reasonable accuracy for low non-electrolyte concentrations and electrolyte
concentrations up to 4 or 5mol L', is commonly employed to characterize
the precipitation of proteins from aqueous solution using inorganic electrolytes
(Bell, Hoare and Dunnill, 1983).

Occasionally the presence of an electrolyte increases the solubility of a non-
electrolyte (negative value of k) and this salting-in effect is exhibited by several
salts, with large anions and cations, which themselves are very soluble in water.
Sodium benzoate and sodium p-toluenesulphonate are good examples of these
hydrotropic salts and the phenomenon of salting-in is sometime referred to as
hydrotropism. Values of the salting parameter for three salts applied to benzoic
acid are NaCl (0.17), KCIl (0.14) and sodium benzoate (—0.22). Long and
McDevit (1952) have made a comprehensive review of salting-in and salting-
out phenomena.

Halstead (1970) reported that potassium sulphate once dissolved would
not recrystallize from aqueous solutions contaminated with traces of chro-
mium(III) or iron(III) and suggested that these impurities prevented the nuclea-
tion of K,SO, crystals. Trace impurities can sometimes have highly unexpected
effects on equilibrium solubility measurements. For example, the solubility of
potassium sulphate is significantly lowered when measured by dissolving
K,SO,4 crystals in water containing ppm traces of Cr(III) (Kubota et al.,
1988). A measured value obtained under these circumstances, however, is only
an apparent or pseudo-solubility, the value of which is determined by two
competing rate processes, viz., the adsorption of Cr(III) species on the K,SO4
crystals and the dissolution of the crystals. Interestingly, a false solubility
measurement is also obtained when, instead of approaching equilibrium from
the undersaturated state, it is approached from the supersaturated condition,
e.g., by cooling a solution to deposit excess solute. In this case, the recorded
pseudo-solubility is higher than the true equilibrium value because the Cr(III)
species in solution adsorb on the depositing K,SOy crystals, retard their growth
and prevent complete desupersaturation of the solution. The actual species
adsorbed, one of the many possible hydroxo-Cr(III) complexes, depends on
the particular salt added as impurity and the pH of the solution (Kubota et al.,
1994). The magnitude of the decrease in the measured pseudo-solubilities
depends on pH, impurity concentration and the particular salt of the impurity
added. Similar patterns of behaviour are seen when traces of Fe(III) salts are used
as the added impurity (Kubota et al., 1999). An account of the effects of trace
impurities on crystal growth and dissolution processes is given in section 6.2.8.
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When considerable quantities of a soluble impurity are present in, or delib-
erately added to, a binary solution, the system may be assessed better in terms
of three components, expressing the data on a triangular ternary equilibrium
diagram (see section 4.6).

3.9 Measurement of solubility

Innumerable techniques, of almost infinite variety, have been proposed at one
time or another for the measurement of the solubility of solids in liquids. No
single method can be identified, however, as being generally applicable to all
possible types of system. The choice of the most appropriate method for a given
case has to be made in the light of the system properties, the availability of
apparatus and analytical techniques, the skill and experience of the operators,
the precision required, and so on.

The accuracy required of a solubility measurement depends greatly on the
use that is to be made of the information. Requirements vary enormously. In
some cases, a simple assessment of whether a substance is highly, moderately or
sparingly soluble in a given solvent, with some rough quantification, may be
quite sufficient. In others, very high precisions may be demanded. For most
work, however, a precision of < 1% should be aimed for, and usually this is not
too difficult to attain.

Extensive reviews of the literature on the subject of experimental solubility
determination have been made by Vold and Vold (1949) and Zimmerman
(1952). Purdon and Slater (1946) give an excellent account of the determination
of solubility in aqueous salt systems. The monographs of Blasdale (1927) and
Teeple (1929) give comprehensive accounts of the problems encountered in
measuring equilibria in complex multicomponent aqueous salt systems.

Temperature control

Constant temperature control is essential during all the experimental pro-
cedures for solubility determination, not only during equilibration, but also
during the sampling of saturated solution for analysis. The allowable limits of
temperature variation depend on the system under investigation and the
required precision of the solubility measurement. Much greater care has to be
taken when the solubility changes appreciably with a change in temperature. In
the determination of the solubility at 25°C of, say, sodium chloride in water
(Figure 3.1a), a variation of £0.1°C in the experimental temperature would
allow for a potential precision of less than 0.01 per cent in the solubility, but the
same temperature variation would allow for more than 1 per cent in the case of
sodium sulphate (Figure 3.1b). For most general purposes, a thermostat preci-
sion of better than £0.1 °C is normally adequate.

It is essential that any thermometers, thermocouples, thermistors, etc. used in
the thermostat bath and equilibrium cell are accurately calibrated with refer-
ence to a standard thermometer. This point cannot be emphasized too strongly.
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Agitation of solutions

Agitation is generally necessary to bring liquid and solid phases into intimate
contact and facilitate equilibration. Agitation with a stirrer in an open vessel
is not normally recommended, on account of the potential loss of solvent by
evaporation, but sealed-agitated vessels are commonly used. Agitation in
tightly stoppered vessels, that are rocked, rotated or shaken whilst immersed
in a thermostat bath, is also quite a popular method, particularly when many
samples have to be tested at the same time.

Sampling

Once equilibrium has been attained, i.e. when the originally over- and under-
saturated solutions are of equal composition, the mixture is allowed to stand
for an hour or more, at the relevant constant temperature, to enable any finely
dispersed solid particles to settle. The withdrawal of a sample of clear super-
natant liquid for analysis can be effected in a number of ways, depending on the
characteristics of the system. For example, a suitably warmed pipette, with the
tip protected by a piece of cotton wool, glass wool or similar substance, is often
quite adequate. The pipette may be warmed to the appropriate temperature by
leaving it standing in a stoppered tube immersed in the thermostat bath.
Alternatively, a variety of sintered glass filters can be utilized (Figure 3.5)
(Nyvlt, 1977). In all cases, several portions of solution should first be with-
drawn and discarded to satisfy any possible capacity of the filter to adsorb
solute from the saturated solution (Vold and Vold, 1949). The sample of
saturated solution may then be analysed by any convenient technique (section
3.9.2).

It is important to note that a weighed quantity, not a measured volume, of
solution should be taken for analysis. Weighing should be carried out to
£0.0005 g if possible, depending on the required precision.

N\

L
%

oo A

N

Figure 3.5. Some sintered glass filters for separating an equilibrium solid phase from
a saturated solution. (After Nyvlt, 1977)
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Achievement of equilibrium

The achievement of equilibrium presents one of the major experimental diffi-
culties in solubility determination. Prolonged agitated contact is required
between excess solid solute and solution at a constant temperature, usually
for several hours. In some cases, however, contact for days or even weeks may
be necessary. Viscous solutions and systems at relatively low temperatures
often require long contact times and so do substances of low solubility.

A check should always be made, if possible, on the accuracy of a solubility
determination at a given temperature, by approaching equilibrium from both
the under-saturated and over-saturated states. In the first method a quantity of
solid, in excess of the amount required to saturate the solvent at the given
temperature, is added to the solvent and the two are agitated until apparent
equilibrium is reached, i.e. when the solution attains a constant composition. In
the second method the same quantities of solute and solvent are mixed, but the
system is then heated for about 20 minutes above the required temperature, if
the solubility increases with temperature, so that most but not all of the solid is
dissolved. The solution is then cooled and agitated for a long period at the
given temperature while the excess solid is deposited and an apparent equi-
librium is reached. If the two solubility determinations agree, it can be reas-
onably assumed that the result represents the true equilibrium saturation
concentration at the given temperature. If they do not, more time has to be
allowed. This important point always has to be borne in mind when solubility
measurements have to be made in solutions containing impurities (section 3.8).

Unless solubility data for specific industrial substances are required, both the
solute and solvent should be of the highest purity possible. The solute particles
should be reasonably small to facilitate rapid dissolution, but not too small that
the excess particles will not settle readily in the saturated solution. Settling is
generally desirable to allow solid and liquid phase samples to be taken, after
equilibration, for separate analysis. In practice, a close-sieved crystal fraction in
the 100-300 um size range is generally suitable for most purposes.

3.9.1 Solution and solid phase analysis

Tremendous advances have been made in the past few decades in both the
range and sensitivity of the analytical methods now available. For the purpose
of solubility measurement, solution compositions can be measured by any
convenient analytical technique, among which may be listed: liquid chromato-
graphy (HPLC), spectroscopy (UV, IR, NMR and mass), differential scanning
calorimetry (DSC), differential thermal analysis (DTA), thermogravimetric
analysis (TGA), refractometry, polarimetry, and most recently capillary electro-
phoresis (Altria, 2000).

For the identification of crystalline polymorphs, IR spectroscopy and X-ray
diffraction are the most commonly used techniques, while a combination of
DSC-TGA or DTA-TGA are useful for analysing solvates.

Descriptions of these techniques will be found in most handbooks of chem-
ical and physical analysis (e.g. Findlay, 1973; Matthews, 1985). Comprehensive
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accounts of modern instrumental methods of analysis is given by Willard,
Merritt, Dean and Settle (1988) and Ewing (1997).

When the dissolved substance is stable to heat, the mass present in a known
mass of solution may often be determined by gentle evaporation to dryness,
followed by heating to constant mass in an air oven at around 100 °C. Great
care must be taken in this procedure to avoid solids loss by spattering. Another
problem is that of solution creeping up the sides of the evaporating dish and
over the edge. Gentle evaporation on a water bath may be used with aqueous
solutions, covering the evaporating dish with a large funnel to prevent dust
contamination.

For substances that are not stable on heating to dryness, e.g. hydrates, their
concentration in solution may be determined in some cases by chemical analysis
and in others by measuring some concentration-dependent physical property.
The latter is often convenient when a large number of determinations have to
be made. Solution density and refractive index are probably the two properties
most commonly measured for this purpose and the many well-established
techniques available are fully described in standard textbooks of practical
physical chemistry.

In all cases, however, it is necessary to prepare a calibration chart. The first
step, therefore, is to make up a series of solutions of known strength and
measure the physical property in question for these solutions. This may be
done for a range of temperatures, so that a series of calibration curves can be
constructed. The composition of an unknown solution may then be determined
by measuring the property in question at a given temperature, usually a few
degrees above the saturation temperature to avoid the possibility of crystal-
lization. Alternatively, a weighed quantity of the unknown solution is diluted
with a known mass of solvent before measurement.

It is always advisable, incidentally, to measure the density of a saturated
solution at the same time that the equilibrium saturation concentration is being
measured, for the simple practical reason that density is the mass—volume
conversion factor, and this quantity is frequently required in process calcula-
tions. S6hnel and Novotny (1985) have published an extensive compilation of
concentration—density data for aqueous solutions of inorganic salts.

The final step that has to be taken in a solubility determination, in order to
complete the information, is to determine the composition of the solid phase
that was in equilibrium with the solution at the given temperature, remember-
ing that the stable phase can change appreciably over quite a short range of
temperature, especially in hydrated systems. For example, in the determination
of the solubility of sodium carbonate in water over the temperature range
10-50°C, it would be found that the stable solid phase is Na,CO5 - 10H,O up
t0 32.0°C, NayCO;3 - TH,O between 32.0 and 35.4°C and Na,CO; - H,O above
35.4°C.

A sample of the equilibrium solid phase may be separated from its saturated
solution by means of sintered glass filters like those depicted in Figure 3.5. It is
necessary to ensure that the separation is made at the appropriate temperature,
e.g. by carrying out the operation with the filter immersed in the thermostat
bath itself. No matter how efficiently the filtration is made, however, the
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recovered solid particles will always be wet with adhering mother liquor and
this must be accounted for in any subsequent analysis. First, it is essential to
separate the wet solid sample as quickly as possible and transfer it immediately
to a weighing bottle which can be closed to minimize loss of solvent.

For simple binary systems, i.e. one solute and one solvent, correction for
adhering mother liquor may be made in the following manner. The damp solid
is weighed (mass m) and then dried to constant mass, m,, at an appropriate
temperature, taking care to avoid decomposition, dehydration of hydrates, etc.
The amount of solvent present in the mother liquor, s (¢.g. grams of solvent per
gram of solution) is determined from the saturated solution analysis described
above. The mass of mother liquor, m3, originally retained in the damp solid
sample may then be calculated from

m3 = (my — my)/s (3.64)

The actual composition of the equilibrium solid phase may then be calculated
from a simple mass balance, using the respective compositions of the damp
solid and the equilibrium mother liquor.

For multi-component systems the composition of the equilibrium solid phase
may be determined indirectly by the so-called ‘wet residues’ method first
proposed by Schreinemakers (1893) in which the need for solid-liquid separa-
tion by filtration, etc. is avoided. The experimental procedures, together with
those of the alternative ‘synthetic complex’ method, are fully described in
section 4.6.5.

3.9.2 Measurement techniques

The so-called ‘synthesis’ methods of solubility determination involve the pre-
paration of a solvent—solute mixture of known composition, initially containing
excess solute. The complete dissolution of the solid phase is then observed,
either when the mixture is subjected to slow controlled heating (the ‘polythermal’
methods) or at constant temperature when small quantities of fresh solvent
are sequentially added over a period of time (the ‘isothermal’ methods). The
disappearance of the solid phase can be observed visually or monitored by
recording some appropriate physical or physicochemical property of the system.

Polythermal methods

Solute and solvent are weighed into a small (50-100 mL) glass vessel in propor-
tions corresponding approximately to the composition of a saturated solution
in the middle of the proposed operating temperature range. The objective is to
have some solid phase in excess at the lowest temperature used and all in
solution at the highest.

The closed vessel is fitted with a calibrated thermometer graduated in incre-
ments of 0.1°C and a suitable stirrer, and the contents are heated gently until
all the crystals have been dissolved. The clear solution is first cooled until it is
nucleated. Then, under controlled conditions, the temperature is increased
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slowly (~0.2°C/min) until the last crystal dissolves. At this point the equilib-
rium saturation temperature 6* has been achieved. Repeat runs will enable 6*
for a given solution composition to be determined with a precision of +0.1°C
for solutions with a moderate to high temperature coefficient of solubility
(section 3.2).

An apparatus in which the controlled heating and cooling sequences
demanded in the above technique is depicted in Figure 5.9 and described in
section 5.3. Determination of the instant at which all the crystals have finally
dissolved in a solution is most commonly made by visual observation. In
principle, however, the monitoring of any concentration-sensitive physical or
physicochemical property (refractive index, conductivity, density, vapour pres-
sure, particle size distribution, etc.) can offer alternative procedures.

Nyvlt (1977), for example, has described how refractive index measurements
may be used for this purpose, where the sequence of events is as drawn in Figure
3.6a. As the solution containing suspended crystals is heated, the refractive
index of the solution increases as the crystals dissolve. At point A the last
crystal dissolves, at the equilibrium saturation temperature 6*. Further
increases in temperature lead to a slow decrease in refractive index. The reverse
curve traces the cooling sequence, with nucleation occurring at point B, when
the refractive index suddenly falls to point C and subsequently follows the
equilibrium saturation curve. The corresponding solution composition—
temperature graph is also included in Figure 3.6b. The refractive index may
be monitored with a dipping-type refractometer.

The property of refractive index may be utilized in another way. A novel
technique was devised by Dauncy and Still (1952) for the direct and rapid
measurement of solution saturation temperatures. This method is based on
an optical effect caused by the slight change in concentration, and therefore in
refractive index, occurring in a layer of solution immediately in contact with a
crystal that is either growing or dissolving.

The saturation cell is a small Perspex container fitted with a stirrer (altern-
atively, the solution may be passed continuously through the cell), a calibrated
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Figure 3.6. Refractive index (a) and composition (b) changes during solubility
measurement by the polythermal method. (After Nyvit, 1977)
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Figure 3.7. An optical method of solubility measurement

thermometer and a holder for a medium-sized crystal. The cell is placed in a
thermostatically-controlled water bath also made of Perspex. A beam of light
from an optical slit is directed on to an edge of the crystal, and the appearance
of the slit when viewed from behind the crystal will take the form of one of the
three sketches shown in Figure 3.7. The light is bent into an obtuse angle when
the solution is unsaturated (), and into an acute angle when it is supersaturated
(¢). As soon as it is determined that the solution near the crystal face is
unsaturated or supersaturated, the temperature is raised or lowered until view
(b) 1s obtained. The temperature at this point is the equilibrium saturation
temperature. It was reported that, with ethylenediamine hydrogen tartrate
and ammonium dihydrogen phosphate, points on the respective solubility
curves could be plotted at the rate of 810 per hour. Wise and Nicholson
(1955) adapted the method and applied it successfully in the determination of
sucrose solubilities.

Isothermal methods

The disappearance of the solid phase in a solubility cell can be observed under
isothermal conditions while adding small portions of fresh solvent to a solu-
tion—suspension of known composition. Mullin and Sipek (1982) have
described one use of this technique for solubility measurements in the three-
phase system potash-alum—water—ethanol.

The apparatus used for the solubility determinations (Figure 3.8) was a small
glass vessel (~50mL) fitted with a four-blade glass stirrer with a glycerol shaft
seal. The cell was immersed in a thermostat water bath controlled to +0.02°C.
Weighed quantities of potash alum and alcohol, together with predetermined
amounts of water, were charged to the cell and agitated for ~1h. At the end of
this time, as predicted, only a small amount of crystalline material was left
undissolved. Small quantities of water (starting with 1 mL and reducing) were
then added to the mixture at hourly intervals until all traces of crystalline
material (observed under a strong back-light) had disappeared. Towards
the end-point, water was added dropwise. This method, when carefully
performed, could reproducibly determine the solubility to a precision of at least
+0.5%.
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Figure 3.8. Solubility apparatus: (a) 50mL glass cell; (b) four-bladed glass stirrer;
(¢) charging port; (d) glycerol seal for stirrer shaft. (After Mullin and Sipek, 1982)

Measurement under pressure

An equilibrium cell for use under pressure is described by Brosheer and Ander-
son (1946). Although originally devised specifically for solubility measurements
of monoammonium and diammonium phosphates in the system NH;—H,O—
H;PO,, it is clearly of more general applicability. For a detailed account of this
method, reference should be made to the original paper. A simple apparatus
for the measurement of solubility under pressure was ecarlier described by
Gibson (1934) who also made an interesting analysis of the pressure effect
and demonstrated the possibility of estimating the solubility of certain salts in
water under pressures up to 10 kbar using data obtained at lower pressures.

Thermal and dilatometric methods

A phase reaction is generally accompanied by significant enthalpy and volume
changes. The detection and quantification of these effects form the basis of
several useful methods for determining solubilities and phase equilibria. Some
of these techniques are discussed in section 4.5.

Sparingly soluble salts

The solubility of sparingly soluble electrolytes in water, with the exception of
the salts of weak acids or bases, may be determined from conductivity measure-
ments on their saturated solutions. A variety of commercial instruments are
now available for this purpose and experimental details may be found in
handbooks of practical physical chemistry, e.g. Findlay, 1973; Matthews, 1985.
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If the equilibrium saturation concentration, ¢*, of the salt is expressed in
molm™, the molar conductivity, A, (Sm?mol~") of the solution may be
expressed (see equation 3.45) as

A =k/c* (3.65)

where £ is the conductivity (Sm™'). Even a saturated solution of sparingly
soluble salt is still very dilute, so it may be assumed that A ~ Ay where Ay is the
molar conductivity at infinite dilution. If, therefore, the value of A is known,
or can be calculated since it is the sum of the ionic conductivities (equation
3.46), the saturation concentration of salt may be calculated from

¢ = K/ (3.66)

where k is the measured conductivity of the saturated solution.

For example, the conductivity of a saturated solution of barium sulphate in
water at 25°C has been experimentally determined as 1.66 x 1074 Sm™". If the
conductivity of the water used in the determination (2.5 x 10~> Sm™!) is deducted
from the measured solution conductivity, the value attributable to BaSQOy is
k= 141x10"*Sm~". From Table 3.2, the relevant molar ionic conductivities at
25°C at infinite dilution are A g0+ = 63.6 X 10~*Sm?mol ' and Ayjpsor- =
78.8 x 107*Sm?mol™" giving Ay = 143.4 x 10*Sm?mol~'. From equation
3.66,

¢ =141 x107%/143.4 x 107
=9.83 x 10> molm~3
=983 x 10 °molL"!

The corresponding solubility product K, may be calculated from equation 3.49
(since BaSOy is a 2-2 electrolyte), i.c.

K. = (c)* = 9.66 x 10" mol’> L2

3.10 Prediction of solubility

A measured value of solubility, even when roughly determined, generally gives
more confidence than an estimated one. Accurate solubility measurements,
however, demand laboratory facilities and experimental skills (section 3.9)
and can be very time-consuming on account of the need to achieve equilibrium
and the fact that large numbers of individual measurements may be necessary
to cover adequately all the ranges of variables. There will always be a need,
therefore, for methods of solubility prediction that can avoid these difficulties,
but it has to be pointed out that in employing such methods some other more
serious problems may well be incurred in return. A good number of solubility
correlation and prediction methods are available ranging from simple tech-
niques of interpolation and extrapolation to some quite complex procedures,
based on thermodynamic reasoning, that have considerable computational
requirements.
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The success of any given method can vary enormously from system to
system. Some can only be used for rough assessment while others can occa-
sionally yield data of comparable precision to those attained by careful experi-
mental measurement. Each system must be considered independently.

For binary solutions (one solute, one solvent) data correlations of the type
indicated by equations 3.4 and 3.9 are commonly used for predicting, by
interpolation, values that were not otherwise measured. If the correlating
equation is based on adequate data, interpolation can be carried out with
reasonable confidence (e.g. see Figure 3.2). Extrapolation, on the other hand,
is generally inadvisable and should never be attempted if there is any suspicion
that a phase change is possible in the unknown region.

Prediction methods using theoretical relationships based on the assumption
of solution ideality can be very unreliable, as shown by the example in section
3.6 which indicates that an assumption of ideality for the ‘simple’ case of
naphthalene dissolved in an organic solvent can result in an error of up to
200% in estimating the solubility.

The number of solubility measurements necessary for the construction of a
multicomponent phase diagram increases enormously as the number of com-
ponents is increased. It is in this area, therefore, that the demand for prediction
method most often lies. The methods range from the entirely empirical,
generally based on geometrical concepts, to the semi-theoretical, i.e. partly
based on thermodynamic descriptions. A comprehensive account of some of
these methods, together with several detailed worked examples, is given by
Nyvlt (1977).

Several thermodynamic approaches have been made to the problem of
solubility predictions in multicomponent aqueous salt solutions over the past
30 years or so, with varying degrees of success. Most methods are based to
some extent on modified Debye—Hiickel equations (section 3.6.1) and require
the prediction of activity coefficients, enthalpies and entropies of solution, and
specific heat capacities. Within the confines of this chapter, however, it is not
possible to give more than a flavour of the relevant literature in this area.

For example, Marshall and Slusher (1966) made a detailed evaluation of the
solubility of calcium sulphate in aqueous sodium chloride solution, and sug-
gested that variations in the ion solubility product could be described, for ionic
strengths up to around 2 M at temperatures from 0 to 100 °C, by adding another
term in an extended Debye—Hiickel expression. Above 2M and below 25°C,
however, further correction factors had to be applied, the abnormal behaviour
being attributed to an increase in the complexity of the structure of water under
these circumstances. Enthalpies and entropies of solution and specific heat
capacity were also reported as functions of ionic strength and temperature.

A thermodynamic model developed by Barba, Brandani and di Giacomo
(1982) described the solubility of calcium sulphate in saline water. A system of
equations based on Debye—Hiickel and other models was used to describe
isothermal activity coefficients of partially or completely dissociated electro-
lytes. Using binary parameters, good agreement was claimed between experi-
mental and predicted values of calcium sulphate solubility in sea water and
brackish brines including those with a magnesium content.
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The solubilities of the scale-forming salts barium and strontium sulphates in
aqueous solutions of sodium chloride have been reviewed by Raju and Atkin-
son (1988, 1989). Equations were proposed for the prediction of specific heat
capacity, enthalpy and entropy of dissolution, etc., for all the species in the
solubility equilibrium, and the major thermodynamic quantities and equilib-
rium constraints expressed as a function of temperature. Activity coefficients
were calculated for given temperatures and NaCl concentrations and a com-
puter program was used to predict the solubility of BaSO4 up to 300°C and
SrSOy4 up to 125°C.

A group contribution method called UNIFAC, an acronym which stands for
the UNIQUAC Functional Group Activity Coefficient (UNIQUAC stands
for the Universal Quasi-chemical Activity Coefficient), has been developed
for estimating liquid-phase activity coefficients in non-clectrolyte mixtures.
The UNIFAC method is fully described by Fredenslund, Jones and Prausnitz
(1975) and Skold-Jorgensen, Rasmussen and Fredenslund (1982).

To estimate the solubility of an organic solid solute in a solvent it is only
necessary to know its melting point, enthalpy of fusion and relevant activity
coefficient. Gmehling, Anderson and Prausnitz (1978) have shown that this
activity coefficient can be estimated by the UNIFAC group contribution
method, and they report a number of cases where the solubilities of a variety
of organic solids in single and mixed solvents are accurately predicted. Even
eutectic temperatures and compositions may be estimated for some binary
systems.

Gupta and Heidemann (1990) used a modified UNIFAC model to predict
the effects of temperature and pH on the solubility of amino acids in water.
They also made a similar approach to the modelling of the solubility of several
antibiotic substances in mixed non-aqueous solvents. Macedo, Skovborg and
Rasmussen (1990) used a modified UNIFAC model to calculate phase equilib-
ria for aqueous solutions of strong electrolytes.

As explained in section 3.6.1, many modifications have been proposed for the
Debye—Hiickel relationship for estimating the mean ionic activity coefficient .
of an electrolyte in solution and the Davies equation (equation 3.35) was
identified as one of the most reliable for concentrations up to about 0.2 molar.
More complex modifications of the Debye—Hiickel equation (Robinson and
Stokes, 1970) can greatly extend the range of . estimation, and the Bromley
(1973) equation appears to be effective up to about 6 molar. The difficulty with
all these extended equations, however, is the need for a large number of
interacting parameters to be taken into account for which reliable data are
not always available.

A more simple, but purely empirical, approach to the estimation of v, was
suggested by Meissner and Tester (1972) who claimed applicability up to
saturation or 20 molar. They noted that for over a 100 electrolytes a plot of
a ‘reduced’ activity coefficient versus the ionic strength, I, formed a family of
non-intersecting curves. They proposed methods of interpolation and extra-
polation working from the basis of at least one known value of .. for a concen-
trated solution of the chosen electrolyte. A survey of the use of this method, and
its subsequent development for computer-assisted calculations (Meissner and
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Manning, 1983), has been made by Demopoulos, Kondos and Papangelakis
(1988).

Vega and Funk (1974) presented a thermodynamic correlation for solid—
liquid equilibria in concentrated aqueous salt solutions and applied the correla-
tion to the six-component system containing Na*, K*, Mg, NO3, SO~ from
0 to 50°C. In their correlation they define an activity coefficient as if the given
salt were a non-electrolyte, although this new quantity is easily related to the
mean ionic activity coefficient ... The derived parameters are claimed to enable
correlation of equilibria for ternary and quaternary systems with errors in
liquid phase composition of less than 2 g salt per 100 g water.

3.11 Solubility data sources

The main primary sources of solid-liquid solubility data, i.e. those which report
experimental measurements together with the full literature source references,
are those of Stephen and Stephen (1963), Seidell (1958) and the continuing
multivolume ITUPAC Solubility Data Series (1980-91) which by the end of 1991
had reached its 48th volume. The series covers gas—liquid, liquid—liquid and
solid-liquid equilibria, but up to the present time fewer than one quarter of the
published volumes are devoted to solid-liquid systems. In all these publica-
tions, ternary as well as binary data are reported and solvents other than water
are considered. Blasdale (1927) and Teeple (1929) give extensive data on
equilibria in aqueous salt solutions relevant to natural brines and natural salt
deposits, ranging from binary to quinary complex systems. The compilation by
Wisniak and Herskowitz (1984) is an excellent literature source reference, but
no actual data are recorded.

Among the secondary sources of data available, i.e. summaries assembled
from several sources, sometimes ‘smoothed’, include the compilations of Nyvit
(1977), and Broul, Nyvit and S6hnel (1981) and Appendices A4 and A5 in this
book.

3.12 Supersolubility

A saturated solution is in thermodynamic equilibrium with the solid phase, at
a specified temperature. It is often easy, however, e.g. by cooling a hot con-
centrated solution slowly without agitation, to prepare solutions containing
more dissolved solid than that represented by equilibrium saturation. Such
solutions are said to be supersaturated.

The state of supersaturation is an essential requirement for all crystallization
operations. Ostwald (1897) first introduced the terms ‘labile’ and ‘metastable’
supersaturation to classify supersaturated solutions in which spontaneous (prim-
ary) nucleation (see section 5.1) would or would not occur, respectively. The
work of Miers and Isaac (1906, 1907) on the relationship between supersatura-
tion and spontaneous crystallization led to a diagrammatic representation of
the metastable zone on a solubility—supersolubility diagram (Figure 3.9). The
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Figure 3.9. The solubility—supersolubility diagram

lower continuous solubility curve, determined by one of the appropriate tech-
niques described in section 3.9, can be located with precision. The upper broken
supersolubility curve, which represents temperatures and concentrations at
which uncontrolled spontaneous crystallization occurs, is not as well defined
as that of the solubility curve. Its position in the diagram is considerably
affected by, amongst other things, the rate at which supersaturation is gener-
ated, the intensity of agitation, the presence of trace impurities and the thermal
history of the solution (sections 5.3 and 5.4).

In spite of the fact that the supersolubility curve is ill-defined, there is no
doubt that a region of metastability exists in the supersaturated region above
the solubility curve. The diagram is therefore divided into three zones, one well-
defined and the other two variable to some degree:

1. The stable (unsaturated) zone, where crystallization is impossible.

2. The metastable (supersaturated) zone, between the solubility and super-
solubility curves, where spontaneous crystallization is improbable. How-
ever, if a crystal seed were placed in such a metastable solution, growth
would occur on it.

3. The unstable or labile (supersaturated) zone, where spontaneous crystal-
lization is probable, but not inevitable.

If a solution represented by point 4 in Figure 3.9 is cooled without loss of
solvent (line ABC), spontaneous crystallization cannot occur until conditions
represented by point C are reached. At this point, crystallization may be
spontaneous or it may be induced by seeding, agitation or mechanical shock.
Further cooling to some point D may be necessary before crystallization can be
induced, especially with very soluble substances such as sodium thiosulphate.
Although the tendency to crystallize increases once the labile zone is pen-
etrated, the solution may have become so highly viscous as to prevent crystal-
lization and could even set to a glass.

Supersaturation can also be achieved by removing some of the solvent from
the solution by evaporation. Line AB’C’ represents such an operation carried
out at constant temperature. Penetration beyond the supersolubility curve into
the labile zone rarely happens, as the surface from which evaporation takes
place is usually supersaturated to a greater degree than the bulk of the solution.
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Crystals which appear on this surface eventually fall into the solution and seed
it, often before conditions represented by point C” are reached in the bulk of the
solution. In practice, a combination of cooling and evaporation is employed,
and such an operation is represented by the line AB”C” in Figure 3.9.

Experimental techniques for determining the metastable zone width, the
amount of undercooling that a solution will tolerate before nucleating, are
described in section 5.3. The significance of the metastable zone and the inter-
pretation of metastable zone width measurements are somewhat contentious
subjects. Experimental values depend very strongly on the method of detection
of the onset of nucleation, but it is still possible to extract kinetic information
on the nucleation process as well as on the growth behaviour of very small
crystals. These topics are discussed in some detail in section 5.3.

3.12.1 Expressions of supersaturation

The supersaturation, or supercooling, of a system may be expressed in a
number of different ways, and considerable confusion can be caused if the
basic units of concentration are not clearly defined. The temperature must also
be specified.

Among the most common expressions of supersaturation are the concentra-
tion driving force, Ac, the supersaturation ratio, S, and a quantity sometimes
referred to as the absolute or relative supersaturation, o, or percentage super-
saturation, 1000. These quantities are defined by

Ac=c— " (3.67)

s=< (3.68)
C

o A*C g1 (3.69)
C

where ¢ is the solution concentration, and ¢* is the equilibrium saturation at the
given temperature.
The term supercooling, defined by

AO=0"—0 (3.70)

is occasionally used as an alternative to the supersaturation, Ac, the two
quantities being related through the local slope of the solubility curve,
dc*/dé, by

Ac = (dc*/dO)AD 3.71)

Of the above three expressions for supersaturation (equations 3.67 to 3.69)
only Ac is dimensional, unless the solution composition is expressed in mole
fractions or mass fractions. The magnitudes of these quantities depend on the
units used to express concentration, as the following examples show.
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Example 1

Potassium sulphate (mol. mass = 174) at 20°C. The equilibrium saturation
¢* =109 g of K»,SO4/kg of water, which gives a solution density of 1080 kgm 3.

Let the concentration of a supersaturated solution ¢ = 116 g/kg, giving a
solution density of 1090 kgm™3 at 20°C. Then the following quantities may
be calculated:

Solution composition ¢ c* Ac S o

g/kg water 116 109 7.0 1.06 0.06
g/kg solution 104 98.3 5.7 1.06 0.06
g/L solution (=kgm™3) 113.3 106.1 7.2 1.07 0.07
mol/L solution (=kmolm~3) 0.650 0.608 0.042 1.07 0.07
mol fraction of K,SO4 0.0119 0.0112 0.0007 1.06 0.06

It is essential to quote the temperature when expressing the supersaturation
of a system, since the equilibrium saturation concentration is temperature
dependent. In the above case of potassium sulphate, for example, S = 1.06
means a concentration driving force Ac = 7 g/kg of water at 20°C and 13 g/kg
at 80°C.

The quantity that changes most in example 1 is Ac; neither S nor o is very
greatly affected. However, with very soluble substances considerable changes
can occur in all expressions of supersaturation depending on the concentration
units used, as seen in example 2 where o varies from 0.08 to 0.20.

Example 2

Sucrose (mol. mass = 342) at 20°C, ¢* = 2040 g/kg of water (solution dens-
ity = 1330 kgm ). Let ¢ = 2450 g/kg of water (density = 1360 kgm ™). Thus:

Solution composition c c* Ac S o

g/kg water 2450 2040 410 1.20 0.20
g/kg solution 710 671 39 1.06 0.06
g/L solution (=kgm™) 966 893 73 1.08 0.08
mol/L solution (=kmolm™) 2.82 2.61 0.21 1.08 0.08
mole fraction of sucrose 0.114 0.097 0.017 1.18 0.18

The situation becomes even more confused than that hinted at in examples
1 and 2 if the substance crystallizes as a hydrate, because in these cases solution
compositions can be expressed in terms of the hydrate or the anhydrate,
thus further increasing the number of possible definitions of supersaturation.

Interconversion of solution composition units, as discussed in section 3.3,
is facilitated by the formulae listed in Table 3.1. Interconversion of solution
supersaturation values, based on seven different solution composition units, is
facilitated by the formulae listed in Table 3.3 (Mullin, 1973). It should be clearly
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appreciated, however, that none of these different supersaturations coincides
exactly with the true thermodynamic supersaturation.

The fundamental driving force for crystallization is the difference between
the chemical potential of the given substance in the transferring and transferred
states, e.g. in solution (state 1) and in the crystal (state 2). This may be written,
for the case of an unsolvated solute crystallizing from a binary solution, as

Ap = —po (3.72)

The chemical potential, p, is defined in terms of the standard potential, 1, and
the activity, a, by

p=po+RTIna (3.73)

where R is the gas constant and 7' is the absolute temperature.
The fundamental dimensionless driving force for crystallization may there-
fore be expressed as

Ap o _
RT — In(a/a”) =1In S (3.74)

where a* is the activity of a saturated solution and S is the fundamental super-
saturation, i.e.

S = exp(Au/RT) (3.75)

For electrolyte solutions it is more appropriate to use the mean ionic activity,
ay, defined by

a=d; (3.76)

where v (=v; + v_) is the number of moles of ions in 1 mole of solute (equation
3.30). Therefore,

Ap/RT =vin S, 3.77)
where
S, = ax/ay (3.78)

Alternatively, the supersaturation may be expressed as
0q=3S,—1 (3.79)
and equation 3.77 as
Ap/RT =vin(l + o,) (3.80)
For low supersaturations (o, < 0.1)
Ap/RT = vo, (3.81)

is a valid approximation.
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However, for practical purposes, supersaturations are generally expressed
directly in terms of solution concentrations, e.g.

Se==, Sy=— and S, == (3.82)
m X

where ¢ = molarity (mol/litre of solution), m = molality (mol/kg of solvent)
and x = mole fraction. The asterisks denote equilibrium saturation.

The relationship between these concentration-based supersaturations and the
fundamental (activity-based) supersaturation may be expressed through the
relevant concentration-dependent activity coefficient ratio, 4 = ~/v*, i.e.

Sa = ScAe = SuAm = SxAx (383)

where A, = v./v:, Am = Ym/7;, and A = v /75

If the relevant activity coefficients can be evaluated, it is possible to establish
how the different supersaturations differ from one another and, more import-
antly, from the fundamental supersaturation, S,. The decisive factor is the
activity coefficient ratio, 4. The more it deviates from unity, the greater is the
incurred inaccuracy. In general, when 4,, > 1, m-based concentration units are
preferred, but when 4,, < 1, x- or c¢-based units are better than m-based. The
choice between x- and c-based units in this case again depends on the activity
coefficient ratio: if A, > A., the x-based units are preferred and vice versa.

For example, the mean ionic activity coefficients (see section 3.6.2) for a
saturated solution of KCI in water at 25°C (m* = 4.761 mol KCl/kg water)
(Robinson and Stokes, 1970) are

Vi, =0.6938; ~L, =0.5923; i =1013

and those corresponding to a solution at the same temperature of concentration
m = 5.237mol KCl/kg water, i.e. of supersaturation S,, = 1.1 (Mullin and
Sohnel, 1977) are

Ve = 0.7157; vy = 0.6019; 4 = 1.030

The respective activity coefficient ratios (4 = /") are, therefore,
A, =1.032; A4,,=1016; A4,=1.017

so from equation 3.83
S, =0.969S,; S, =0.984S,; S, =0.983S,

which indicates that in this case the supersaturation expressed on a molar basis
is the least reliable.

In general, in the absence of any information on the activity coefficient ratio,
preference should be given to supersaturations based on molal units because of
their more practical utility compared with mole fractions and their temperature
independence compared with molar units. In other words, a concentration scale
based on mass of solvent is generally preferred to one based on volume of
solution.
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An extension of the above analysis to more complex cases (S6hnel and
Mullin, 1978a) leads to the conclusion that the dimensionless driving force
for crystallization of a hydrate should always be expressed in terms of the
hydrate and not of the anhydrous salt, i.e.

(AM/RT)H =vin SHAH (384)

where the solution concentrations and activity coefficients and their ratio Ay
both relate to the hydrate. The difference between the hydrate (H) and anhy-
drous (A) quantities, (Au/RT)y and (Au/RT),, can be very considerable.
When, for lack of information, the quantity 4y cannot be evaluated, the
approximation

(Ap/RT)y ~ vin Sy (3.85)

may be used. No general rules have yet been derived about the preference for c-,
m- or x-based concentration units for the expression of the supersaturation Sy in
these cases, although the subject is further discussed by Sohnel and Garside (1992).

Sparingly soluble electrolytes

Supersaturations in aqueous solutions of sparingly soluble electrolytes are best
expressed in terms of the solubility product, e.g.

S = (IAP/K,)"" (3.86)

where /AP is the ion activity product of the lattice ions in solution, K, is the
activity solubility product of the salt, i.e., the value of /4P at equilibrium as
defined in section 3.6.4, and v is the number of ions in a formula unit of the salt.

When applying equation 3.86 to express the level of supersaturation created
before the onset of precipitation, it is important to recognize that the values of
IAP and K, used should be those appropriate to the conditions existing in the
actual mother liquor at the completion of the precipitation reaction, and not to
those relating to equilibria between the pure precipitate and pure solvent (water)
which is the basis on which solubility products are normally listed, asin Table A.3.

A simple example of the magnitude of the error that can be incurred using
the incorrect solubility values is demonstrated by the precipitation of BaSO,
after mixing equal volumes of 1 molar aqueous solutions of BaCl, and H,SOy4
at 10°C, thus producing an initial mixture containing 0.5mol L~! BaSO,4 and
ImolL~! HCIL. The equilibrium solubility of BaSO4 at 10°C in water is
8.56 x 10 °mol L™!, but in aqueous 1 molar HCI it is 2.36 x 10~*mol L'
So the initial supersaturation (equation 3.68) of BaSO,4 with respect to water
is (0.5/8.56) x 10 = 58400, whereas that expressed, more correctly, with
respect to solution in 1 molar HCI is (0.5/2.36) x 10~* = 2120 (S6hnel and
Garside, 1992).

A further difficulty in establishing the correct supersaturation with some
systems is the necessity to determine the extent of any ion association, complex
formation and hydration in the supersaturated solution. For example, in sys-
tem such as CaCO3-H,O, in addition to the presence of Ca’* and CO32’ ions,
others such as HCO3 and CaHCO7 must also be taken into consideration. The
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calcium phosphate systems show even greater complexity. Good examples of
the iterative calculations necessary to identify the correct value of 74P to be
employed in equation 3.86 are given by Nancollas and Gardner (1974) and
Barone and Nancollas (1977).

Mixed salt systems

It is not easy to quantify precisely the supersaturation levels of given species
generated in mixed salt systems or in solutions in which ion association occurs.
Relationships such as equations 3.67-3.69 cannot be simply applied because
of the difficulty of expressing the true reference condition of equilibrium satura-
tion. It is first necessary to identify all the possible single species, ion pairs and
solid—liquid phase equilibria that can occur in the system. The relevant thermo-
dynamic association/dissociation constants (K values) must be known. The
activity coefficients for the various ionic species must be calculated, e.g. by
means of Debye—Hiickel type equations (section 3.6.2). Equilibrium concentra-
tions of all the possible species present are then evaluated by iterative procedures.

Examples of these complex computing procedures are given in several pub-
lications, e.g., for calcium carbonate (Wiechers, Sturrock and Marias, 1975),
calcium phosphate (Barone and Nancollas, 1977), calcium oxalate (Nancollas
and Gardner, 1974) and magnesium hydroxide (Liu and Nancollas, 1973), in
a variety of electrolyte solutions.

3.12.2 Measurement of supersaturation

If the concentration of a solution can be measured at a given temperature, and
the corresponding equilibrium saturation concentration is known, then it is
a simple matter to calculate the supersaturation (equations 3.67-3.69). Just as
there are many methods of measuring concentration (section 3.9.2) so there are
also many ways of measuring supersaturation, but not all of these are readily
applicable to industrial crystallization practice.

Solution concentration may be determined directly by analysis, or indirectly
by measuring some property of the system that is a sensitive function of solute
concentration. The properties most frequently chosen for this purpose are
density and refractive index which can often be measured with high precision,
especially if the actual measurement is made under carefully controlled condi-
tions in the laboratory.

For the operation of a crystallizer under laboratory or pilot plant conditions
the demand is usually for an in situ method, preferable one capable of con-
tinuous operation. In these circumstances problems may arise from the temper-
ature dependence of the property being measured. Nevertheless, the above
properties can be measured, more or less continuously, with sufficient accuracy
for supersaturation determination.

The supersaturation of a concentrated solution may be determined from a
knowledge of its boiling point elevation. Holven (1942) applied the principle of
Diihring’s rule (the boiling point of a solution is a linear function of the boiling
point of the pure solvent at the same pressure) to sucrose solutions over the
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Figure 3.10. Diihring-type plot showing constant supersaturation lines (range S = 0 to 1.8)
for aqueous solutions of sucrose. (After Holven, 1942)

range of pressures normally encountered in sugar boiling practice (Figure 3.10)
and developed an automatic method for recording and controlling the degree of
supersaturation in sugar crystallizers.

3.13 Solution structure

Water is a unique liquid. It is also the most abundant compound on earth
(~10%' kg in the oceans with perhaps a similar quantity bound up as water of
crystallization in rocks and minerals) and it is an essential constituent of all living
organisms. [ts unusual properties, such as a high boiling point compared with its
related hydrides, a high thermal conductivity, dielectric constant and surface
tension, a low enthalpy of fusion, the phenomenon of maximum density (at
4°C), etc., are usually explained by assuming that liquid water has a structure.

It is not possible at the present time to decide conclusively between the
various structural models that have been proposed, but there is no doubt that
liquid water does retain a loose local structure for short periods maintained by
hydrogen bonds disposed tetrahedrally around each oxygen atom. Hydrogen
bonded clusters readily form, but their lifetime is short (probably ~107!!s);
and the name ‘flickering clusters’ is particularly apt.

The presence of a solute in water alters the liquid properties profoundly. In
aqueous solutions of electrolytes, for example, the coulombic forces exerted
by the ions lead to a local disruption of the hydrogen bonded structure. Each
ion is surrounded by dipole orientated water molecules firmly bonded in what
is known as the ‘primary hydration sphere’. For monatomic and monovalent
ions, four molecules of water most probably exist in the firmly fixed layer. For
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polyvalent ions such as Cr’*, Fe’* and AI’*, six is a common number. The
hydrated proton H;O" most probably exists as H;O(H,0); .

The eclectrostatic effects of an ion, however, can extend far beyond the
primary hydration sphere. This accounts for the very large so-called hydration
numbers that have been reported for some ions (up to 700 for Na', for
example). There is clearly a much larger region around the ion which contains
loosely bound, but probably non-orientated, water. This assembly constitutes
the ‘secondary hydration sphere’.

Some interesting comments have been made by Wojciechowski (1981) on
evidence for structure in saturated aqueous solutions. An analysis of the
solubilities of a number of inorganic salts in water, together with views on the
structure of water, suggested a statistical concentration of phase transitions
near certain temperatures, e.g. 30, 45 and 60 °C, giving a possible explanation
for changes in the number of waters of crystallization in hydrates crystallizing
around these temperatures.

Detailed accounts of current theories of liquid structure are given by Samoi-
lov (1965), Franks and Ives (1966), Franks (1972-82) and in Faraday Discus-
sions (1967, 1978).

Solute clustering

The structure of a supersaturated solution is probably more complex than that
of an unsaturated or saturated solution. As reported by Khamskii (1969) a
number of attempts have been made to find the distinguishing features of super-
saturated solutions by investigating the dependences of various physical proper-
ties on concentration. In most cases, however, no evidence of discontinuity of
the property—concentration curves at the equilibrium saturation point has been
found, although an observation that light transmittancy could decrease sharply
in the supersaturated region was regarded as evidence for solute clustering.

Table 3.4. Concentration gradients developed in quiescent aqueous citric acid solutions
kept under isothermal conditions (Mullin and Leci, 1969a)

Initial Concentration after time t

concentration

on all three Top' Middlet Bottom! Solution  Time

positions temp. t

¢ S ¢ S c S c S °C h

2.247 1.055 2244 1.053 2253 1.057 2263 1.061 28.2 70
2.568 1.393 2,531 1.372 2546 1.381 2.604 1.412 22.6 71
2.624 1.173  2.500 1.131 2.616 1.169 2.652 1.182 30.0 92

2336 1.185 2303 1.168 2333 1.183 2336 1.185 252 336
11.553  0.714 1553 0.714 1.553 0.714 1553 0.714 28.5 158

¢ = solution concentration (g of citric acid monohydrate/g of ‘free’ water).

¢* = equilibrium saturation concentration (g of citric acid monohydrate/g of ‘free’ water).
S = supersaturation ratio = ¢/c*.

1 = vertical distance between the sample points = 20 cm.

I = unsaturated solution (one of many similar runs).
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Mullin and Leci (1969a) reported that supersaturated aqueous solutions
of citric acid, kept quiescent at constant temperature, develop concentration
gradients with the highest concentrations in the lower regions (7Table 3.4). This
unusual behaviour was taken as a strong indication of the existence of mole-
cular clusters in such solutions, which is perhaps not unexpected in this case
because citric molecules by virtue of their —OH and —COOH groups are
capable of extensive hydrogen bonding between themselves and with the sol-
vent water molecules. Using a similar technique, Allen et al. (1972) observed
concentration gradients in supersaturated solutions of sucrose and developed a
‘settling’ equation based on thermodynamic considerations.

Larson and Garside (1986) reported on work with several supersaturated
aqueous solutions, including citric acid, urea and sodium nitrate. Treating the
cluster concentration as the solute concentration in excess of saturation, they
developed a relationship which was in some respects similar to that used by Allen
et al. (1972) from which cluster size estimates were made between 4 and 10 nm,
containing up to 7000 molecules. In analysis based on non-equilibrium thermo-
dynamics, Veverka, S6hnel, Bennema and Garside (1991) have suggested that
concentration gradients could be expected to develop in quiescent columns of
supersaturated solutions whether or not clustering occurs. The phenomenon of
solute clustering, however, is still fully compatible with their proposed theory.

Several attempts have been made to use Raman spectroscopy to estimate the
degree of ionic and/or molecular association in supersaturated aqueous salt
solutions. From the Raman spectra of ammonium dihydrogen phosphate
solutions, Cerrata and Berglund (1987) concluded that whilst low-order (mono-
mers and dimers) and high-order species were present, none of the clusters
exhibited crystalline properties. A similar conclusion was reached by Rusli,
Schrader and Larson (1989) in a study on supersaturated solutions of sodium
nitrate. In fact, the concentrated solution spectra were found to be very similar
to those of sodium nitrate melts.

The diffusivity of electrolytes and non-electrolytes in aqueous solution
increases steadily with increasing concentration up to near the equilibrium
saturation point, as shown by the data for NH4Cl and KCI in Figure 2.7.
However, Myerson and his co-workers have demonstrated that above the
saturation limit the diffusivity declines very rapidly. This is to be expected since
supersaturated solutions are metastable and the diffusivity falls to zero at the
spinodal, i.e., at the limit of the metastable zone (section 5.1.1). Diffusivity was
also shown to decrease with solution age. All these observations are compatible
with cluster theory, and analyses by Lo and Myerson (1990) and Ginde and
Myerson (1992) suggest that clusters in supersaturated aqueous solutions of
glycine are mainly in the form of dimers and trimers, although a few up to 100
molecules can exist. Mohan, Kaytancioglu and Myerson (2000) also found
trimer clusters in highly supersaturated solutions of ammonium sulphate and
observed that the true metastable zone was much wider than had previously
been thought, suggesting that virtually all bulk experiments involve heteroge-
neous rather than homogeneous nucleation. Further comments on clusters and
their role as nucleation precursors are made in section 5.1.



4  Phase equilibria

4.1 The phase rule

The amount of information which the simple solubility diagram can yield is
strictly limited. For a more complete picture of the behaviour of a given system
over a wide range of temperature, pressure and concentration, a phase diagram
must be employed. This type of diagram represents graphically, in two or three
dimensions, the equilibria between the various phases of a system. The Phase
Rule, developed by J. Willard Gibbs in 1876, relates the number of compon-
ents, C, phases, P, and degrees of freedom, F, of a system by means of the
equation

P+F=C+2

These three terms are defined as follows.

The number of components of a system is the minimum number of chemical
compounds required to express the composition of any phase. In the system
water—copper sulphate, for instance, five different chemical compounds can
exist, viz. CuSOy - SH,O, CuSOy - 3H,0, CuSOy4 - H,O, CuSO4 and H,O; but
for the purpose of applying the Phase Rule there are considered to be only two
components, CuSO4 and H,O, because the composition of each phase can be
expressed by the equation

CuSO4 + xH,0 = CuSOy4 - xH,O

Again, in the system represented by the equation
CaCO; = Ca0O + CO,

three different chemical compounds can exist, but there are only two compon-
ents because the composition of any phase can be expressed in terms of the
compounds CaO and CO,.

A phase is a homogeneous part of a system. Thus any heterogeneous system
comprises two or more phases. Any mixture of gases or vapours is a one-phase
system. Mixtures of two or more completely miscible liquids or solids are also
one-phase systems, but mixtures of two partially miscible liquids or a hetero-
geneous mixture of two solids are two-phase systems, and so on.

The three variables that can be considered in a system are temperature,
pressure and concentration. The number of these variables that may be changed
in magnitude without changing the number of phases present is called the
number of degrees of freedom. In the equilibrium system water—ice—water vapour
C =1, P = 3, and from the Phase Rule, F = 0. Therefore in this system there are
no degrees of freedom: no alteration may be made in either temperature or
pressure (concentration is obviously not a variable in a one-component system)
without a change in the number of phases. Such a system is called ‘invariant’.
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For the system water—water vapour C = 1, P =2 and F = 1: thus only one
variable, pressure or temperature, may be altered independently without chan-
ging the number of phases. Such a system is called ‘univariant’. The one-phase
water vapour system has two degrees of freedom; thus both temperature and
pressure may be altered independently without changing the number of phases.
Such a system is called ‘bivariant’.

Summarizing, it may be said that the physical nature of a system can be
expressed in terms of phases, and that the number of phases can be changed by
altering one or more of three variables: temperature, pressure or concentration.
The chemical nature of a system can be expressed in terms of components, and
the number of components is fixed for any given system.

Comprehensive accounts of the phase rule and its applications have been
given by Bowden (1950), Findlay and Campbell (1951), Ricci (1966), Haase and
Schoénert (1969) and Nyvlt (1979).

4.2 One-component systems

The two variables that can affect the phase equilibria in a one-component, or
unary, system are temperature and pressure. The phase diagram for such a
system is therefore a temperature—pressure equilibrium diagram.

Figure 4.1 illustrates the equilibria between the vapour, liquid and solid
phases of water. Curve 4B, often referred to as the sublimation curve, traces
the effect of temperature on the vapour pressure of ice. Curve BC is the vapour
pressure curve for liquid water, and line BD indicates the effect of pressure on
the melting point of ice, i.e. the freezing point of water. Water is an unusual
substance in that it expands on freezing, indicated by the slope of line BD
towards the left of the diagram, i.e. pressure decreases the melting point. The

Water

Ice

Pressure

_A_‘/B Steam

Temperature

Figure 4.1. Phase diagram for water (not to scale)
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vast majority of other substances behave in the opposite manner (see Figure
2.10). The three curves meet at the triple point B (0.01°C, 6.1 mbar (610 Pa))
where ice, liquid water and water vapour can coexist in equilibrium. At the
critical point C (374°C, 220 bar (22 MPa)) liquid and vapour phases become
indistinguishable. Above the critical point water is referred to as a supercritical
fluid.

The solvent properties of supercritical fluids are particularly interesting.
Liquid water, for example, has a dielectric constant of around 80, whereas
the value for supercritical water is around 2. At this low value it no longer acts
as a polar solvent and many organic compounds can be dissolved in and
crystallized from it. The potential exploitation of supercritical fluids, especially
H,0 and COa, in crystallization processes is discussed in section 7.1.4.

4.2.1 Polymorphs

Figure 4.2 illustrates the case of sulphur, a system that exhibits two crystalline
polymorphs. The area above the curve ABEF is the region in which ortho-
rhombic sulphur is the stable solid form. The areas bounded by curves A BCD
and FECD indicate the existence of vapour and liquid sulphur, respectively.
The ‘triangular’ area BEC represents the region in which monoclinic sulphur is
the stable solid form. Curves 4B and BC are the vapour pressure curves for
orthorhombic and monoclinic sulphur, respectively, and these curves intersect
at the transition point B.

Curve BE indicates the effect of pressure on the transition temperature for
orthorhombic S = monoclinic S. Point B, therefore, is a triple point represent-
ing the temperature and pressure (95.5°C and 0.51 N m~2 at which orthorhom-
bic sulphur and sulphur vapour can coexist in stable equilibrium. Curve EF
indicates the effect of pressure on the melting point of orthorhombic sulphur;

Solid
(orthorhombic) E

Pressure

Temperature

Figure 4.2. Phase diagram for sulphur (not to scale)
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point E'is a triple point representing the temperature and pressure (151 °C and
1.31 x 108 Nm~2) at which orthorhombic and monoclinic sulphur and liquid
sulphur are in stable equilibrium. Curve CD is the vapour pressure curve for
liquid sulphur, and curve CE indicates the effect of pressure on the melting
point of monoclinic sulphur. Point C, therefore, is another triple point (115°C
and 2.4Nm~2) representing the equilibrium between monoclinic and liquid
sulphur and sulphur vapour.

The broken lines in Figure 4.2 represent metastable conditions. If ortho-
rhombic sulphur is heated rapidly beyond 95.5 °C, the change to the monoclinic
form does not occur until a certain time has elapsed; curve BB’, a continuation
of curve AB, is the vapour pressure curve for metastable orthorhombic sulphur
above the transition point. Similarly, if monoclinic sulphur is cooled rapidly
below 95.5°C, the change to the orthorhombic form does not take place
immediately, and curve BA’ is the vapour pressure curve for metastable mono-
clinic sulphur below the transition point. Likewise, curve CB’ is the vapour
pressure curve for metastable liquid sulphur below the 115°C transition point,
and curve B’E the melting point curve for metastable orthorhombic sulphur.
Point B’, therefore, is a fourth triple point (110°C and 1.7 N m~?) of the system.

Only three of the four possible phases orthorhombic (solid), monoclinic
(solid), liquid and vapour can coexist in stable equilibrium at any one time,
and then only at one of the three ‘stable’ triple points.

Transformations

The transformation from one polymorph to another can be reversible or
irreversible; in the former case the two crystalline forms are said to be enantio-
tropic; in the latter, monotropic. These phenomena, already described in sec-
tion 1.8, can be demonstrated with reference to the pressure—temperature phase
diagram.

Figure 4.3a shows the phase reactions exhibited by two enantiotropic solids,
« and (. AB is the vapour pressure curve for the o form, BC that for the §
form, and CD that for the liquid. Point B, where the vapour pressure curves of
the two solids intersect, is the transition point; the two forms can coexist in
equilibrium under these conditions of temperature and pressure. Point C is
a triple point at which vapour, liquid and [ solid can coexist. This point can be
considered to be the melting point of the 3 form.

If the « solid is heated slowly, it changes into the 3 solid and finally melts.
The vapour pressure curve ABC is followed. Conversely, if the liquid is cooled
slowly, the § form crystallizes out first and then changes into the « form. Rapid
heating or cooling, however, can result in a different behaviour. The vapour
pressure of the o form can increase along curve BB', a continuation of AB, the
« form now being metastable. Similarly, the liquid vapour pressure can fall
along curve CB', a continuation of DC, the liquid being metastable. Point B,
therefore, is a metastable triple point at which the liquid, vapour and « solid
can coexist in metastable equilibrium.

The type of behaviour described above is well illustrated by the case of
sulphur (Figure 4.2), where the orthorhombic and monoclinic forms are
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Figure 4.3. Pressure—temperature diagrams for dimorphous substances: (a) enantiotropy;
(b) monotropy

enantiotropic; the transition point occurs at a lower temperature than does the
triple point.

Figure 4.3b shows the pressure—temperature curves for a monotropic sub-
stance. 4B and BC are the vapour pressure curves for the « solid and liquid,
respectively, and A'B’ is that for the [ solid. In this case the vapour pressure
curves of the o and 8 forms do not intersect, so there is no transition point
within this range of temperature and pressure. The solid form with the higher
vapour pressure at any given temperature (G in this case) is the metastable
form. Curves BB’ and BB” are the vapour pressure curves for the liquid and
metastable « solid, so B’ is a metastable triple point. If this system did exhibit a
true transition point, it would lie at point B”; but as this represents a tempera-
ture higher than the melting point of the solid, it cannot exist.

A typical case of monotropy is the change from white to red phosphorus.
Benzophenone is another example of a monotropic substance: the stable melt-
ing point is 49 °C, whereas the metastable form melts at 29 °C.

The kinetics of polymorphic transformations in melts and solutions are
discussed in section 6.5.

4.3 Two-component systems

The three variables that can affect the phase equilibria of a binary system are
temperature, pressure and concentration. The behaviour of such a system
should, therefore, be represented by a space model with three mutually perpen-
dicular axes of pressure, temperature and concentration. Alternatively, three
diagrams with pressure—temperature, pressure—concentration and temperature—
concentration axes, respectively, can be employed. However, in most crystal-
lization processes the main interest lies in the liquid and solid phases of
a system; a knowledge of the behaviour of the vapour phase is only required
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when considering sublimation processes. Because pressure has little effect on
the equilibria between liquids and solids, the phase changes can be represented
on a temperature—concentration diagram; the pressure, usually atmospheric, is
ignored. Such a system is said to be ‘condensed’, and a ‘reduced’ phase rule can
be formulated excluding the pressure variable:

P+F =C+1

where F’ is the number of degrees of freedom, not including pressure.

Four different types of two-component system will now be considered.
Detailed attention is paid to the first type solely to illustrate the information
that can be deduced from a phase diagram. It will be noted that the concentra-
tion of a solution on a phase diagram is normally given as a mass fraction or
mass percentage and not as ‘mass of solute per unit mass of solvent’, as
recommended for the solubility diagram (section 3.3). Mole fractions and mole
percentages are also suitable concentration units for use in phase diagrams.

4.3.1 Simple eutectic

A typical example of a system in which the components do not combine to form
a chemical compound is shown in Figure 4.4. Curves AB and BC represent the
temperatures at which homogeneous liquid solutions of naphthalene in benzene
begin to freeze or to crystallize. The curves also represent, therefore, the tem-
peratures above which mixtures of these two components are completely liquid.
The name ‘liquidus’ is generally given to this type of curve. In aqueous systems
of this type one liquidus is the freezing point curve, the other the normal
solubility curve. Line DBE represents the temperature at which solid mixtures
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Figure 4.4. Phase diagram for the simple eutectic system naphthalene—benzene
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of benzene and naphthalene begin to melt, or the temperature below which
mixtures of these two components are completely solid. The name ‘solidus’ is
generally given to this type of line. The melting or freezing points of pure
benzene and naphthalene are given by points 4 (5.5°C) and C (80.2 °C), respect-
ively. The upper area enclosed by the liquidus, 4BC, represents the homo-
geneous liquid phase, i.e. a solution of naphthalene in benzene; that enclosed
by the solidus, DBE, indicates solid mixtures of benzene and naphthalene. The
small and large ‘triangular’ areas ABD and BCE represent mixtures of solid
benzene and solid naphthalene, respectively, and benzene—naphthalene solution.

If a solution represented by point x is cooled, pure solid benzene is deposited
when the temperature of the solution reaches point X on curve AB. As solid
benzene separates out, the solution becomes more concentrated in naphthalene
and the equilibrium temperature of the system falls, following curve AB. If
a solution represented by point y is cooled, pure solid naphthalene is deposited
when the temperature reaches point Y on the solubility curve; the solution
becomes more concentrated in benzene and the equilibrium temperature fol-
lows curve CB. Point B, common to both curves, is the eutectic point (—3.5°C
and 0.189 mass fraction of naphthalene), and this is the lowest freezing point in
the whole system. At this point a completely solidified mixture of benzene and
naphthalene of fixed composition is formed: it is important to note that the
eutectic is a physical mixture, not a chemical compound. Below the eutectic
temperature all mixtures are solid.

If the solution y is cooled below the temperature represented by point Y on
curve BC to some temperature represented by point z, the composition of the
system as a whole remains unchanged. The physical state of the system has been
altered, however; it now consists of a solution of benzene and naphthalene
containing solid naphthalene. The composition of the solution, or mother
liquor, is given by point z on the solubility curve, and the proportions of solid
naphthalene and solution are given, by the so-called ‘mixture rule’, by the ratio
of the lengths zZ and zZ', i.e.

mass of solid CoHg  zZ
mass of solution  zZ’

A process involving both cooling and evaporation can be analysed in two steps.
The first is as described above, i.e. the location of points z, Z and Z’; this
represents the cooling operation. If benzene is evaporated from the system, z no
longer represents the composition; thus the new composition point z' (not
shown in the diagram) is located along line ZZ’' between points z and Z. Then
the ratio z/Z/z’Z' gives the proportions of solid and solution.

The systems KCI-H,0 and (NH4),SO4—H,O are good examples of aqueous
salt solutions that exhibit simple eutectic formation. In aqueous systems the
eutectic mixture is sometimes referred to as a cryohydrate, and the eutectic
point a ‘cryohydric point’.

It should be understood that the term ‘pure’ when commonly used, as in this
chapter, does not mean absolute 100% purity. In industrial crystallization
practice this is neither necessary nor indeed achievable, and for many bulk-
produced chemicals a purity of >95% is often accepted as justifying the
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designation ‘pure’. In any case, a single crystallization step cannot produce
100% pure crystals for a variety of reasons, e.g., they can be contaminated with
residual solvent or other impurities that have not been removed by washing, or
have been incorporated into the crystal interstitially or as liquid inclusions, and
so on. Furthermore, contamination commonly results from the existence of
terminal solid solutions, which inevitably accompany both eutectic and chemical
compound systems, as described in section 7.2.

4.3.2 Compound formation

The solute and solvent of a binary system may, and frequently do, combine to
form one or more different compounds. In aqueous solutions these compounds
are called ‘hydrates’; for non-aqueous systems the term ‘solvate’ is sometimes
used. Two types of compound can be considered: one can coexist in stable
equilibrium with a liquid of the same composition, and the other cannot behave
in this manner. In the former case the compound is said to have a congruent
melting point; in the latter, to have an incongruent melting point.

Figure 4.5 illustrates the phase reactions in the manganese nitrate—water
system. Curve AB is the freezing point curve. The solubility curve BCDEFG
for Mn(NO3), in water is not continuous owing to the formation of several
different hydrates. The area above curve ABCDEFG represents homogeneous
liquid solutions. Mixtures of the hexahydrate and solution exist in areas BCH
and ICD. The tetrahydrate is the stable phase in region DEJ and the dihydrate
in EKF. The rectangular areas under FH, IJ and KL represent completely
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Figure 4.5. Phase diagram for the system Mn(NO3),-H,O
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solidified systems (ice and hexahydrate, hexa- and tetrahydrates, and tetra-
and dihydrates, respectively). Point B is a eutectic or cryohydric point with the
co-ordinates —36 °C and 0.405 mass fraction of Mn(NO3),.

Point C in Figure 4.5 indicates the melting point (25.8 °C) and composition
(0.624 mass fraction) of the hexahydrate. Thus when a solution of this com-
position is cooled to 25.8 °C it solidifies to the hexahydrate, i.e. no change in
composition occurs. Point C, therefore, is a congruent point. Similarly, point £
is the congruent point for the tetrahydrate (melting point 37.1 °C, composition
0.713). Points D and F are the other two eutectic points of the system. Point G is
the transition point at which the dihydrates decomposes into the monohydrate
and water, i.e. it is the incongruent melting point of the dihydrate. The vertical
broken line at 0.834 mass fraction represents the composition of the dihydrate.

The behaviour of manganese nitrate solutions on cooling can be traced in the
same manner as that described above for simple eutectic systems. The solution
concentrations and the proportions of solid and solution can similarly be
deduced graphically. The process of isothermal evaporation in congruent melt-
ing systems presents an interesting phenomenon. For example, the mixture
represented by point X in Figure 4.5 represents a slurry of ice and solution;
but when sufficient water is removed to bring the system composition into the
region to the right of curve AB, it becomes a homogeneous liquid solution.
When more water is removed, so that region BCG is entered, the system
partially solidifies again, depositing crystals of the hexahydrate. On further
evaporation, once the composition exceeds 62.4 per cent of Mn(NO3),, e.g. at
point Y, the system solidifies completely to a mixture of the hexa- and tetra-
hydrates. The reverse order of behaviour occurs on isothermal hydration.

The formation of eutectics and solvates with congruent points is observed in
many organic, aqueous inorganic and metallic systems. The case illustrated
above is a rather simple example. Some systems form a large number of solvates
and their phase diagrams can become rather complex. Ferric chloride, for
example, forms four hydrates, and the FeCl;—H,O phase diagram exhibits
five-cryohydric points and four congruent points.

A solvate that is unstable in the presence of a liquid of the same composition
is said to have an incongruent melting point. Such a solvate melts to form a
solution and another compound, which may or may not be a solvate. For
instance, the hydrate Na,SO, - 10H,O melts at 32.4°C to give a saturated
solution of sodium sulphate containing a suspension of the anhydrous salt;
hence, this temperature is the incongruent melting point of the decahydrate.
The terms ‘meritectic point’ and ‘transition point’ are also used instead of the
expression ‘incongruent melting point’.

Figure 4.6 illustrates the behaviour of the system sodium chloride—water. The
various areas are marked on the diagram. 4B is the freezing point curve and
BC is the solubility curve for the dihydrate. Point B (—21°C) is a eutectic or
cryohydric point at which a solid mixture of ice and NaCl-2H,O of fixed
composition (0.29 mass fraction of NaCl) is deposited. At point C (0.15°C) the
dihydrate decomposes into the anhydrous salt and water; this is, therefore, the
incongruent melting point, or transition point, of NaCl-2H,0O. The vertical
line commencing at 0.619 mass fraction of NaCl represents the composition of
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Figure 4.6. Phase diagram for the system NaCl-H,O

the dihydrate. If this system had a congruent melting point, which it does not
have, this line would meet the peak of the extension of curve BC (e.g. see Figure
4.5).

Many aqueous and organic systems exhibit eutectic and incongruent points.
Several cases are known of an inverted solubility effect after the transition point
(see Figure 3.1b); the systems Na,SO4—H,0 and Na,CO3;-H,O are particularly
well-known examples of this behaviour.

Salt hydrates for energy storage

There has been a growing interest in recent years in the use of salt hydrates as
heat storage materials, e.g. solar heat for space-heating purposes or in small
heat parks for personal uses. The hydrates are melted in the energy absorbing
stage and they subsequently release heat at the phase transition temperature
when they recrystallize. Ideally the hydrates should have a congruent melting
point so that the phase transition crystal = melt = crystal can be repeated
indefinitely. In practice, however, many otherwise acceptable hydrates exhibit
slightly incongruent behaviour and have to be used in admixture with other
substances.

Examples of hydrates that have been considered for domestic application
include CaClz . 6H20, N32S04 . 10H20, Na28203 . 5H20, NazHPO4 . ]2H20
and CH3COONa - 3H,0 (Kimura, 1980; Grenvold and Meisingset, 1982; Feil-
chenfeld and Sarig, 1985; Kimura and Kai, 1985; Tamme, 1987).

4.3.3 Solid solutions
Many binary systems when submitted to a cooling operation do not at any

stage deposit one of the components in the pure state: both components are
deposited simultaneously. The deposited solid phase is, in fact, a solid solution.
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Figure 4.7. Solid solutions: (a) continuous series (naphthalene—3-naphthol; (b) minimum
melting point (naphthalene—B-naphthylamine)

Only two phases can exist in such a system: a homogeneous liquid solution and
a solid solution. Therefore, from the reduced phase rule, F/ = 1, so an invariant
system cannot result. One of three possible types of equilibrium diagram can be
exhibited by systems of this kind. In the first type, illustrated in Figure 4.7a, all
mixtures of the two components have freezing or melting points intermediate
between the melting points of the pure components. In the second type shown
in Figure 4.7b, a minimum is produced in the freezing and melting point curves.
In the third, rare, type of diagram, a maximum is exhibited in the curves.

Figure 4.7a shows the temperature—concentration phase diagram for the
system naphthalene—(-naphthol, which forms a continuous series of solid
solutions. The melting points of pure naphthalene and S-naphthol are 80 and
120 °C, respectively. The upper curve is the liquidus or freezing point curve, the
lower the solidus or melting point curve. Any system represented by a point
above the liquidus is completely molten, and any point below the solidus
represents a completely solidified mass. A point within the area enclosed by
the liquidus and solidus curves indicates an equilibrium mixture of liquid and
solid solution. Point X, for instance, denotes a liquid of composition L in
equilibrium with a solid solution of composition S, and point Y a liquid L' in
equilibrium with a solid S'.

The phase reactions occurring on the cooling of a given mixture can be traced
as follows. If a homogeneous liquid represented by point 4 (60 per cent
[-naphthol) is cooled slowly, it starts to crystallize when point L (105°C) is
reached. The composition of the first crystals is given by point S (82 per cent (-
naphthol). As the temperature is lowered further, more crystals are deposited
but their composition changes successively along curve SS', and the liquid
composition changes along curve LL'. When the temperature is reduced to
94 °C (points L' and §'), the system solidifies completely. The over-all composi-
tion of the solid system at some temperature represented by, say, point 4’ is the
same as that of the original homogeneous melt, assuming that no crystals have
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been removed during the cooling process, but the system is no longer homo-
geneous because of the successive depositions of crystals of varying composi-
tion. The changes occurring when a solid mixture 4’ is heated can be traced in
a manner similar to the cooling operation.

Figure 4.7b shows the relatively uncommon, but not rare, type of binary
system in which a common minimum temperature is reached by both the upper
liquidus and lower solidus curves. These two curves approach and touch at
point M. The example shown in Figure 4.7b is the system naphthalene—(-
naphthylamine. Freezing and melting points of mixtures of this system do not
necessarily lie between the melting points of the pure components. Three sharp
melting points are observed: 80 °C (pure naphthalene), 110 °C (pure S-naphthy-
lamine) and 72.5 °C (mixture M, 0.3 mass fraction S-naphthylamine). Although
the solid solution deposited at point M has a definite composition, it is not
a chemical compound. The components of such a minimum melting point
mixture are rarely, if ever, present in stoichiometric proportions. Point M,
therefore, is not a eutectic point: the liquidus curve is completely continuous;
it only approaches and touches the solidus at M. The phase reactions occurring
when mixtures of this system are cooled can be traced in the same manner
as that described for the continuous series solid solutions.

4.4 Enthalpy—composition diagrams

The heat effects accompanying a crystallization operation may be determined
by making heat balances over the system, although many calculations may be
necessary, involving knowledge of specific heat capacities, heats of crystalliza-
tion, heats of dilution, heats of vaporization, and so on. Much of the calcula-
tion burden can be eased, however, by the use of a graphical technique in which
enthalpy data, solubilities and phase equilibria are represented on an enthalpy—
composition (H—x) diagram, sometimes known as a Merkel chart.

The use of the H—x diagram for the analysis of chemical engineering unit
operations such as distillation, evaporation and refrigeration processes, is
now quite common, and the procedures are well described in textbooks, e.g.
Coulson and Richardson (1991), McCabe, Smith and Harriott (1985). These
charts are less frequently applied to crystallization processes, however, because
not many H—x diagrams are available.

Among the few enthalpy—composition charts for solid—liquid systems pub-
lished in the open literature (all for aqueous solutions) are:

ammonium nitrate (Othmer and Frohlich, 1960)

calcium chloride (Hougen, Watson and Ragatz, 1943)
calcium nitrate (Scholle and Brunclikova, 1968)
magnesium sulphate (McCabe, 1935)

sodium tetraborate (borax) (Scholle and Szmigielska, 1965)
sodium carbonate (Tyner, 1955)

sodium hydroxide (McCabe, 1935)

sodium sulphate (Foust et al., 1960)
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Figure 4.8. An adiabatic mixing process represented on an H-x diagram

boric acid (Scholle and Szmigielska, 1965)
hydrazine (Tyner, 1955)
urea (Banerjee and Doraiswamy, 1960)

The construction of an H—x diagram is laborious (McCabe, 1935) and would
normally be undertaken only if many calculations were to be performed, e.g. on
a system of commercial importance. Nevertheless, once an H—x chart is avail-
able its use is simple, and a great deal of information can be obtained rapidly.
If the concentration x of one component of a binary mixture is expressed as
a mass fraction, the enthalpy is expressed as a number of heat units per unit
mass of mixture, e.g. Btulb™! or Jkg~'. Molar units are less frequently used
in crystallizer design practice.

The basic rule governing the use of an H—x chart is that an adiabatic mixing,
or separation, process is represented by a straight line. In Figure 4.8 points A
and B represent the concentrations and enthalpies x4, H4 and xp, Hp of two
mixtures of the same system. If A4 is mixed adiabatically with B, the enthalpy
and concentration of the resulting mixture is given by point C on the straight
line AB. The exact location of point C, which depends on the masses m4 and mpg
of the two initial mixtures, can be determined by the mixture rule or lever-arm
principle:

my(xc — x4) = mp(xp — X¢) 4.1

or

X = TBXE T MaXA 4.2)
my +mp
Similarly, if mixture 4 were to be removed adiabatically from mixture C, the
enthalpy and composition of residue B can be located on the straight line
through points 4 and C by means of the equation

xp = AT (4.3)
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H-x charts in SI units for aqueous solutions of sodium carbonate and
sodium sulphate (both recalculated from original data) are given in Figures
4.9 and 4.10, respectively, and a chart for magnesium sulphate, retained in its
original Imperial units, is given in Figure 4.11.

In Figure 4.11, for example, the isotherms in the region above curve pabcdg
represent enthalpies and concentrations of unsaturated aqueous solutions of
MgSOy, and the very slight curvature of these isotherms indicates that the heat
of dilution of MgSO, solutions is very small. Point p (zero enthalpy) represents
pure water at 32 °F, point n the enthalpy of pure ice at the same temperature.
The portion of the diagram below curve pabcdg, which represents liquid—solid
systems, can be divided into five polythermal regions:
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Figure 4.9. Enthalpy—concentration diagram for the system Na,CO3;—H,O
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In between these five regions lie four isothermal triangular areas, which
represent the following conditions:

aef (25°F) mixtures of ice, cryohydrate ¢ and MgSQ, - 12H,0

bfh (37.5°F) mixtures of solid MgSO, - 12H,0 and MgSO, - 7TH,O in a
21 per cent MgSOy solution

¢ji (118.8°F) mixtures of solid MgSO, - 7TH,0 and MgSO, - 6H,0 in a

dkl (154.4°F)

33 per cent MgSQO, solution

37 per cent MgSQy solution

mixtures of solid MgSO, - 6H,0O and MgSO, - H,O in a
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Figure 4.11. Enthalpy—concentration diagram for the system MgSO4—H,0. (From
McCabe, 1963, by courtesy of McGraw-Hill)

The short vertical lines fg and ik represent the compositions of solid
MgSO, - 12H,0 (0.359 mass fraction MgSO,4) and MgSOy - 7TH,0O (0.49 mass
fraction). The following example demonstrates the use of Figure 4.11.

Example

Calculate (a) the quantity of heat to be removed and (b) the theoretical crystal
yield when 50001b of a 30 per cent solution of MgSO,4 by mass at 110°F is
cooled to 70 °F. Evaporation and radiation losses may be neglected.

Figure 4.12 indicates the relevant section — not to scale — of the H—x diagram in
Figure 4.11.
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(a) Initial solution, 4 x4 =0.30, Hy = —31 Btu/lb
Cooled system, B xg = 0.30, Hg = —75Btu/lb
Enthalpy change AH = —44 Btu/lb
Heat to be removed 44 x 5000 = —220000 Btu

(b) The cooled system B, located in the region bcih in Figure 4.11, com-
prises MgSOy - 7TH,O crystals in equilibrium with solution S on curve bc. The
actual proportions of solid and solution can be calculated by the mixture rule.

Solution composition xs = 0.26
Crystalline phase composition xc =049

4.5 Phase change detection
4.5.1 Thermal analysis

A phase reaction is always accompanied by an enthalpy change (section 2.12),
and this heat effect can readily be observed if a cooling curve is plotted for the
system. In many cases a very simple apparatus can be used. A large glass test-
tube, fitted with a stirrer and a thermometer graduated in increments of 0.1 °C
and held in a temperature-controlled environment, will often suffice. The
temperature of the system is recorded at regular intervals of say 1 min.

A smooth cooling curve is followed until a phase reaction takes place, when
the accompanying heat effect causes an arrest or change in slope. Figure 4.13a
shows a typical example for a pure substance. AB is the cooling curve for the
homogeneous liquid phase. At point B the substance starts to freeze and the
system remains at constant temperature, the freezing point, until solidification
is complete at point C. The solid then cools at a rate indicated by curve CD. Itis
possible, of course, for the liquid phase to cool below the freezing point, and
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Figure 4.13. Some typical cooling curves

some systems may withstand appreciable degrees of supercooling. The dotted
curve in Figure 4.13a denotes the sort of path followed if supercooling occurs.
Seeding of the system will minimize these effects.

Figure 4.13b shows the type of cooling curve obtained for a binary system in
which eutectic or compound formation occurs. The temperature of the homo-
geneous liquid phase falls steadily along curve EF until, at point F, deposition
of the solid phase commences. The rate of cooling changes along curve FG as
more solid is deposited. The composition of the remaining solution changes
until the composition of the eutectic is reached, then crystallization or freezing
continues at constant temperature (line GH), i.e. the eutectic behaves as a single
pure substance. The completely solidified system cools along curve HL. Super-
cooling, denoted by the dotted lines, may be encountered at both arrest points
if the system is not seeded.

Figure 4.13c¢ shows a typical cooling curve for a binary mixture that forms
a series of solid solutions. The first arrest, K, in the curve corresponds to the
onset of freezing, and this represents a point on the liquidus. The second arrest,
L, occurs on the completion of freezing and represents a point on the solidus.
It will be noted that no constant-temperature freezing point occurs in such
a system.

The discontinuities may not always be clearly defined on a cooling curve
(temperature 6 versus time ¢ plot). In such cases, the arrest points can often be
greatly exaggerated by plotting an inverse rate curve (6 versus dz/df, i.e. the
inverse of the cooling rate). A typical plot is shown in Figure 4.14.

Equilibria in solid solutions are better studied by a heating than by a cooling
process. This is the basis of the thaw—melt method. An intimate mixture of
known composition of the two pure components is prepared by melting,
solidifying and then crushing to a fine powder. A small sample of the powder
is placed in a melting-point tube, attached close to the bulb of a thermometer
graduated in increments of 0.1 °C, and immersed in a stirred bath. The tem-
perature is raised slowly and regularly at a rate of about 1°C in Smin. The
‘thaw point’ is the temperature at which liquid first appears in the tube; this is
a point on the solidus. The ‘melt point’ is the temperature at which the last solid
particle melts; this is a point on the liquidus. Only pure substances and eutectic
mixtures have sharp melting points. The thaw—melt method is particularly
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Figure 4.15. Construction of equilibrium diagrams from ‘thaw-melt’ data: (a) eutectic
system; (b) solid solution

useful if the system is prone to supercooling, and it has the added advantage of
requiring only small quantities of test material.

The construction of equilibrium diagrams from cooling or thaw—melt data is
indicated in Figure 4.15. In practice, however, a large number of different
mixtures of the two components 4 and B, covering the complete range from
pure A4 to pure B, would be tested. The liquidus curves are drawn through the
first-arrest points, the solidus curves through the second-arrest points. Only
at 100 per cent A4, 100 per cent B and the eutectic point do the liquidus and
solidus meet.

Differential thermal analysis (DTA)

Differential thermal analysis is a method used for observing phase changes and
measuring the associated changes in enthalpy. A small test sample, often only
a few milligrams, is heated in close proximity to a sample of reference material
in an identical container. The reference material, chosen for its similarity to the
test sample, must not exhibit any phase change over the temperature range
under consideration.
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Figure 4.16. Differential thermal analysis: (a) comparative heating curves, (b) differential
temperature curve for a single substance

When the test sample undergoes a phase change, there will be heat release or
absorption. For example, if it melts it will absorb heat and its temperature will
lag behind that of the reference material (Figure 4.16a). The difference in
temperature between the two samples is detected by a pair of matched thermo-
couples and recorded as a function of time. The area between the differential
curve (Figure 4.16b) and the base line is a function of the enthalpy associated
with the phase change.

Differential scanning calorimetry (DSC)

Differential scanning calorimetry is another calorimetric technique for observ-
ing solid-liquid phase changes. Two independently controlled heaters allow
the sample and reference pans to be heated at a fixed rate. The instrument
detects the temperature difference AT between the sample and reference, dur-
ing heating or cooling, and records the amount of heat added to or removed
from the sample at the sample temperature to compensate for the temperature
difference. The melting point and enthalpy of fusion of the sample material can
thus be determined simultaneously from the DSC curve. An exothermic reac-
tion in the sample results in a positive peak in the DSC curve. An endothermic
reaction gives a negative peak.

Some typical DSC curves are shown in Figure 4.17. The negative peaks
indicate endothermic melting. The height of the peak quantifies the enthalpy
of fusion. A pure sample gives a sharp peak (Figure 4.17a) while an impure
sample would show a broader peak, an indefinite start and a blunt maximum.
Different types of DSC curve will be obtained for different types of phase
equilibria. For example, Figure 4.17b indicates, for a binary system, the beha-
viour for a simple eutectic and Figure 4.17c¢ shows the behaviour for the
formation of a series of solid solutions.

A good introductory account of the basic principles and practical require-
ments of a range of modern techniques of thermal analysis is given by Brown
(1988). The development of a differential scanning calorimeter, coupled with
a personal computer, for the measurement of solid-liquid equilibria, has been
described by Matsuoka and Ozawa (1989).
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Figure 4.17. DSC curves: (a) pure component, (b) eutectic mixture, (c) solid solution
(T melting point, T, eutectic point, Ty onset temperature, T, peak temperature)

4.5.2 Dilatometry

The dilatometric methods for detecting phase changes utilize volume changes in
the same way as the calorimetric methods utilize thermal effects. Dilatometry is
widely used in the analysis of melts and particularly of fats and waxes (Bailey,
1950; Swern, 1979). The techniques and equipment are usually quite simple.
Solids absorb heat on melting and, with the notable exception of ice, expand.
They evolve heat when they undergo polymorphic transformation to a more
stable polymorphic and contract. Consequently, dilatometric (specific volume—
temperature) curves bear a close resemblance to calorimetric (enthalpy—
temperature) curves. The melting dilation corresponds to the heat of fusion,
and the coefficient of cubical expansion, a, corresponds to the specific heat
capacity, c¢. The ratio c¢/a is virtually a constant independent of temperature.
A dilatometer used for fats and waxes is shown in Figure 4.18. Mercury, or
some other suitable liquid, is used as the confining fluid and the liquid thread in

Figure 4.18. Gravimetric dilatometer and filling device. (After Bailey, 1950)
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the capillary, C, communicates with the reservoir, R. Volume changes in the
sample, S, are measured by weighing the liquid in the reservoir before and after.
The small expansion bulb, B, is warmed to expel any air that enters the end of
the capillary when the flask is detached. Owing to the high density of mercury
and the accuracy with which weighings can be made, volume changes as small
as 10~°cm?® g~! have been detected.

Melting points can be determined with great precision by dilatometry. A plot
of dilation versus temperature usually gives two straight lines — one for the solid
dilation, which generally has a steep slope, and one for the liquid, with a low
slope. The point of intersection of these two lines give the melting point, which
may often be estimated to +0.01°C.

4.6 Three-component systems
4.6.1 Construction of ternary diagrams

The phase equilibria in ternary systems can be affected by four variables, viz.
temperature, pressure and the concentration of any two of the three compon-
ents. This fact can be deduced from the phase rule:

P+F=3+42

which indicates that a one-phase ternary system will have four degrees of
freedom. It is impossible to represent the effects of the four possible variables
in a ternary system on a two-dimensional graph. For solid-liquid systems,
however, the pressure variable may be neglected, and the effect of temperature
will be considered later.

The composition of a ternary system can be represented graphically on a
triangular diagram. Two methods are in common use. The first utilizes the
equilateral triangle, and the method of construction is shown in Figure 4.19a.
The apexes of the triangle represent the pure components 4, B and C. A point
on a side of the triangle stands for a binary system, AB, BC or AC; a point
within the triangle represents a ternary system 4BC. The scales may be con-
structed in any convenient units, e.g. weight or mole percent, weight or mole
fraction, etc., and any point on the diagram must satisfy the equation
A+ B+ C =1 or 100. The quantities of the components 4, B and C in a given
mixture M are represented by the perpendicular distance from the sides of the
triangle.

Special triangular graph paper is required if the equilateral diagram is to be
used, and for this reason many workers prefer to employ the right-angled
triangular diagram which can be drawn on ordinary squared graph paper. The
construction of the right-angled isosceles triangle is shown in Figure 4.19b.
Again, as in the case of the equilateral triangle, each apex represents a pure
component A, B or C, a point on a side a binary system, and a point within the
triangle a ternary system; in all cases 4 + B+ C =1 or 100. The quantities
of 4, B and C in a given mixture M are represented by the perpendicular
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Figure 4.19. Construction of equilateral triangular diagrams

distances to the sides of the triangle. If two compositions, 4 and B, B and C, or
A and C are known, the composition of the third component is fixed on both
triangular diagrams.

Two actual plots are shown in Figure 4.19¢ to illustrate the interpretation of
these diagrams. For clarity the C scale has been omitted from the right-angled
diagram; the C values can be obtained from the expression C =1 — (4 + B).
The ‘mixture rule’ is also illustrated in Figure 4.19c. When any two mixtures X
and Y are mixed together, the composition of the final mixture Z is represented
by a point on the diagram located on a straight line drawn between the points
representing the initial mixtures. The position of Z is located by the expression

mass of mixture X distance YZ
mass of mixture ¥  distance XZ

For example, if one part of a mixture X (0.14, 0.5B, 0.4C) is mixed with one
part of a mixture Y(0.54, 0.3B, 0.2C), the composition of the final mixture Z
(0.34,0.4B,0.3C) is found on the line XY where XZ = YZ. Again, if 3 parts of
Y are mixed with 1 part of X, the mixture composition Z’' (0.44, 0.35B, 0.25C)
is found on the line XY where XZ' = 3(YZ’). The mixture rule also applies to
the removal of one or more constituents from a system. Thus, one part of
a mixture X removed from 2 parts of a mixture Z would yield one part of a
mixture Y given by:
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mass of original Z YX 2
mass of X removed YZ 1

Similarly, one part of X removed from 4 parts of Z' would yield 3 parts of
a mixture Y given by

mass of original Z’ YX 4

mass of X removed YZ' 1

The principle of the mixture rule is the same as that employed in the opera-
tion of lever-arm problems, i.e. ml; = mylp, where m is a mass and / is the
distance between the line of action of the mass and the fulcrum. For this reason,
the mixture rule is often referred to as the lever-arm or centre of gravity
principle.

Although ternary equilibrium data are most frequently plotted on equilateral
diagrams, the use of the right-angled diagram has several advantages. Apart
from the fact that special graph paper is not required, it is claimed that
information may be plotted more rapidly on it, and some people find it easier
to read. In this section the conventional equilateral diagram will mostly be
employed, but one or two illustrations of the use of the right-angled diagram
will be given.

4.6.2 Eutectic formation

Equilibrium relationships in three-component systems can be represented on
a temperature—concentration space model as shown in Figure 4.20. The ternary
system ortho-, meta- and para-nitrophenol, in which no compound formation
occurs, is chosen for illustration purposes. The three components will be
referred to as O, M and P, respectively. Points O’, M’ and P’ on the vertical
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Figure 4.20. Eutectic formation in the three-component system o-, m- and p-nitrophenol:
(a) temperature—concentration space model; (b) projection on a triangular diagram
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edges of the model represent the melting points of the pure components ortho-
(45°C), meta- (97°C) and para- (114°C). The vertical faces of the prism
represent the temperature—concentration diagrams for the three binary systems
O-M, O—P and M—P. These diagrams are each similar to that shown in Figure
4.4 described in the section on binary eutectic systems. In this case, however,
the solidus lines have been omitted for clarity.

The binary eutectics are represented by points 4 (31.5°C; 72.5 per cent O,
27.5 per cent M), B (33.5°C; 75.5 per cent O, 24.5 per cent M) and C (61.5°C;
54.8 per cent M, 45.2 per cent P). Curve AD within the prism represents the
effect of the addition of the component P to the O—M binary eutectic A.
Similarly, curves BD and CD denote the lowering of the freezing points of the
binary eutectics B and C, respectively, on the addition of the third component.
Point D, which indicates the lowest temperature at which solid and liquid
phases can coexist in equilibrium in this system, is a ternary eutectic point
(21.5°C; 57.7 per cent O, 23.2 per cent M, 19.1 per cent P). At this temperature
and concentration the liquid freezes invariantly to form a solid mixture of the
three components. The section of the space model above the freezing point
surfaces formed by the liquidus curves represents the homogeneous liquid
phase. The section below these surfaces down to a temperature represented
by point D denotes solid and liquid phases in equilibium. Below this temper-
ature the section of the model represents a completely solidified system.

Figure 4.20b is the projection of the curves AD, BD and CD in Figure 4.20a
on to the triangular base. The apexes of the triangle represent the pure compon-
ents O, M and P and their melting points. Points A, B and C on the sides of
the triangle indicate the three binary eutectic points, point D the ternary
eutectic point. The projection diagram is divided by curves AD, BD and CD
into three regions which denote the three liquidus surfaces in the space model.
The temperature falls from the apexes and sides of the triangle towards the
eutectic point D, and several isotherms showing points on the liquidus surfaces
are drawn on the diagrams. The phase reactions occurring when a given ternary
mixture is cooled can now be traced.

A molten mixture with a composition as in point X starts to solidify when
the temperature is reduced to 80°C. Point X lies in the region ADCM, so
pure meta- is deposited on decreasing temperature. The composition of the
remaining melt changes along line M XX’ in the direction away from point M
representing the deposited solid phase (the mixture rule). At X', where line
MXX' meets curve CD, the temperature is about 50°C, and at this point
a second component (para-) also starts to crystallize out. On further cooling,
meta- and para- are deposited and the liquid phase composition changes in
the direction X’D. When melt composition and temperature reach point D,
the third component (ortho-) crystallizes out, and the system solidifies with-
out any further change in composition. A similar reasoning may be applied
to the cooling, or melting, of systems represented by points in the other
regions of the diagrams.

An example of the use of a ternary eutectic diagram for the assessment
of a melt recrystallization process (for nitrotoluene isomers) is given in
section 8.2.1.
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4.6.3 Two salts and water

There are many different types of phase behaviour encountered in ternary
systems consisting of water and two solid solutes. Only a few of the simpler
cases will be considered here; attention will be devoted to a brief survey of
systems in which there is (a) no chemical reaction, (b) formation of a solvate,
e.g. a hydrate, (c¢) formation of a double salt, and (d) formation of a hydrated
double salt.

At one given temperature the composition of, and phase equilibria in, a
ternary aqueous solution can be represented on an isothermal triangular dia-
gram. The construction of these diagrams has already been described. Poly-
thermal diagrams can also be constructed, but in the case of complex systems
the charts tend to become congested and rather difficult to interpret.

No compound formed

This simplest case is illustrated in Figure 4.21 for the system KNO;—NaNO;—
H,O at 50°C. Neither salt forms a hydrate, nor do they combine chemically.
Point A represents the solubility of KNOj in water at the stated temperature
(46.2 g/100 g of solution) and point C the solubility of NaNO; (53.2g/100 g).
Curve AB indicates the composition of saturated ternary solutions that are
in equilibrium with solid KNO;, curve BC those in equilibrium with solid
NaNOs;. The upper area enclosed by ABC represents the region of unsaturated
homogeneous solutions. The three ‘triangular’ areas are constructed by draw-
ing straight lines from point B to the two apexes of the triangle; the composi-
tions of the phases within these regions are marked on the diagram. At point B
the solution is saturated with respect to both KNO3; and NaNOs;, and from the
reduced phase rule F/ = 1. This means that point B, generally referred to as
a eutonic point, is univariant, i.e. invariant when the temperature is fixed.

The effect of isothermal evaporation on such a system can be shown as
follows. If water is evaporated from an unsaturated solution represented by

Ha0

KNOy
+
solution

X, P

/ KNO3+ NaNQ3+ solution
Xs Xe

NaNO,

Figure 4.21. Phase diagram for the system KNO3;—NaNO3;—H;,0 at 50°C
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point X7 in the diagram, the solution concentration will increase, following line
X1X;. Pure KNO; will be deposited when the concentration reaches point X5. If
more water is evaporated to give a system of composition X3, the composition
of the solution will be represented by point X3 on the saturation curve 4B: and
when composition Xy is reached, by point B: any further removal of water will
cause the deposition of NaNOj as well as KNOj;. All solutions in contact with
solid will thereafter have a constant composition B. For this reason the eutonic
point B is sometimes referred to as the drying-up point of the system. After the
complete evaporation of water the composition of the solid residue is indicated
by point X5 on the base line.

Similarly, if an unsaturated solution, represented by a point located to the
right of B in the diagram, were evaporated isothermally, only NaNO; would be
deposited until the solution composition reached the drying-up point B, when
KNOj3 would also be deposited. The solution composition would thereafter
remain constant until evaporation was completed. If water is removed isotherm-
ally from a solution of composition B, the composition of the deposited solid
is given by point X on the base line, and it remains unchanged throughout the
remainder of the evaporation process.

The effect of the addition of one of the salts to the system KNO3;—NaNO;—
H,O at 50°C is shown in Figure 4.22a. This time the equilibria are plotted on
a right-angled triangular diagram simply to demonstrate the use of this type
of chart. Points 4 and C, as in Figure 4.21, refer to the solubilities at 50 °C of
KNO; and NaNOs;, respectively. Curves AB and BC indicate the saturated
ternary solutions in equilibrium with solid KNO;3; or NaNOs;, and show, for
instance, that the solubility of KNO;3 in water is depressed when NaNOj is
present in the system, and vice versa.

Take, for example, a binary system NaNO3;—H,O represented by point Y
(0.7 mass fraction of NaNOj3 and 0.3 H,0O). As this point lies in the ‘triangular’
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Figure 4.22. Phase diagrams for the system KNO3;—NaNO3;—H;O: (a) at 50°C; (b) at 24
and 100°C
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region to the right of curve BC, the system consists of a saturated solution of
NaNO;, with a composition given by point C, and excess solid NaNOjs. If
a quantity of KNO; is added to this binary system, the temperature being
kept constant at 50 °C so that the new composition is represented by point Y,
(0.64 NaNOs3, 0.1 KNOs, 0.26 H,0), the composition of the ternary saturated
solution in contact with the excess solid NaNOs present is given by Y} (0.46
NaNOs3, 0.15 KNO3;, 0.39 H,O) on the line drawn from the apex N through Y,
to meet curve BC. As more KNOj; is added, the solution concentration alters,
following curve CB. At point B the solution becomes saturated with respect to
both NaNOj; and KNOs; its concentration is 0.4 NaNO3, 0.29 KNOs, 0.31
H,O. If after this point further quantities of KNOj are added to bring the
system concentration up to some point Y3, no more KNOj dissolves, the
solution composition remains at point B.

The interpretation of these phase diagrams is aided by remembering the rule
of mixtures — i.e. on the removal or addition of any component from or to a
system, the composition of the system changes along a straight line drawn from
the original composition point to the apex representing the pure given com-
ponent. In Figure 4.22a the right-angled apex represents pure water, the top
apex K pure KNOj and the other acute apex N pure NaNOs.

The effect of temperature on the system KNO;—NaNO3;-H;O is shown in
Figure 4.22b. Two isotherms, A'B'C’ and A”"B”C”, for 25 and 100°C,
respectively, are drawn on this diagram. The lower left-hand area enclosed by
A'B’C represents homogeneous unsaturated solutions at 25°C, the larger area
enclosed by A” B” C" unsaturated solutions at 100°C. The line B’B” shows the
locus of the drying-up points between 25 and 100 °C. To illustrate the effect of
temperature changes in the system, let point Z; refer to the composition (0.5
NaNOs;, 0.1 KNO3, 0.4 H,O) of a certain quantity of the ternary mixture.
From the position of Z; in the diagram it can be seen that at 100 °C the system
would be a homogeneous unsaturated solution, but at 25°C it would consist
of pure undissolved NaNOj; in a saturated aqueous solution of NaNO; and
KNOj. Thus pure NaNO;3; would crystallize out of the solution Z; on cooling
from, say, 100 to 25°C, in fact at about 50 °C. Despite the phase changes, of
course, the overall system composition remains at Z; until one or more com-
ponents are removed. At 25 °C the composition of the solution in contact with
the crystals of NaNOj is given by the intersection of the line from N through Z,;
with curve B'C’, ie. at point Z| (0.43 NaNO;, 0.11 KNO;, 0.46 H,O).
The quantity of NaNO3; which would crystallize out at 25°C is given by the
mixture rule

mass of crystals deposited  length Z;Z]
mass of saturated solution length Z; N

where N represents the NaNOj apex of the triangle.

When a ‘pure’ solute is to be crystallized from a ternary two-solute system by
cooling, there is usually a temperature limit below which the desired solute
becomes ‘contaminated’ with the other solute. This can be demonstrated by con-
sidering a system represented by point Z, in Figure 4.22b. The composition at
Z51s 0.3 NaNOs, 0.45 KNO3, 0.25 H,0; at 100 °C the system is a homogeneous
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unsaturated solution. At 25 °C, however, this point lies in the region where both
solid NaNO3; and KNOj are in equilibrium with a saturated solution of both
salts, its composition being given by point B’. If it is desired to cool solution Z,
in order to yield only KNOj crystals, then the temperature limitation is found
by drawing a straight line from the KNOj3; apex K through point Z, and
producing it to meet the drying-up line B’B” at Zj. Point Z} occupies the
position of an invariant point on an isotherm; by referring to Figure 4.22a it can
be seen that it corresponds approximately to point B on the 50 °C isotherm.
Thus solution Z, must not be cooled below 50 °C if only KNO; crystals are to
be deposited.

Solvate formation

When one of the solutes in a ternary system is capable of forming a compound,
with the solvent, the phase diagram will contain more regions to consider than
in the simple case described above. A common example of solvate formation is
the production of a hydrated salt in a ternary aqueous system. Figure 4.23
shows the isothermal diagrams for the system NaCl-Na,SO,—H,O at two
temperatures, 17.5 and 25 °C, at which different phase equilibria are exhibited.
Sodium sulphate combines with water, under certain conditions, to form
Na,SO4 - 10H,0. Sodium chloride, however, does not form a hydrate at the
temperature being considered. Figure 4.23a shows the case where the decahy-
drate is stable in the presence of NaCl, and Figure 4.23b that of the decahydrate
being dehydrated by the NaCl under certain conditions.

Points 4 and C in Figure 4.23a represent the solubilities of NaCl (26.5 mass
per cent) and Na,;SOy (13.8 per cent) in water at 17.5°C, curves AB and BC the
ternary solutions in equilibrium with solid NaCl and Na,SO, - 10H,O, respect-
ively. Point D shows the composition of the hydrate Na,SO, - 10H,O. For
convenience, the following symbols are used on the diagram to mark the phase

H.0 H20

H+504+CL S5+Cl+8S0,4

NaCl Ng,S0, NaCl No, SO,
(a) {b)

Figure 4.23. Phase diagrams for the system NaCl-Na,SO4—H,O: (a) at 17.5°C; (b) at
25°C
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regions: S = solution; H = hydrate Na,SO,-10H,0; SO, = Na,SO4 and
Cl = NaCl. The solution above curve ABC is unsaturated. The lowest triangu-
lar region represents a solid mixture of Na,SOy4, Na,SO,4 - 10H,O and NaCl.
Point B is the eutonic or drying-up point of the system.

In Figure 4.23b, points A and D denote the solubilities of NaCl (26.6 mass per
cent) and Na;SOy4 (21.6 per cent) in water at 25°C, point E the composition of
Na;SOy4 - 10H,0. In this diagram there are three curves, AB, BC and CD,
which give the composition of the ternary solutions in equilibrium with NaCl,
Na,SO,4 and Na,SOy - 10H,0. The various phase regions are indicated on the
diagram. If NaCl is added to a system in the region CDE, i.e. to an equilibrium
mixture of solid Na,SOy4 - 10H,O in a solution of NaCl and Na,SO,, the
solution concentration will change along curve DC. When point C is reached,
the NaCl can only dissolve by dehydrating the Na,;SO,4 - 10H,O, and anhy-
drous Na,SOy is deposited. Further addition of NaCl will result in the complete
removal of the decahydrate from the system, the solution concentration follow-
ing curve CB; under these conditions the excess solid phase consists of anhy-
drous Na;SO4. At the eutonic point B the solution is saturated with respect to
both NaCl and Na,SOy.

The effects of isothermal evaporation, salt additions and cooling can be
traced from Figure 4.23 in a manner similar to that outlined for Figures 4.21
and 4.22.

Double salt formation

Cases are encountered in ternary systems where the two dissolved solutes
combine in fixed proportions to form a definite double compound. Figure
4.24 shows two possible cases for a hypothetical aqueous solution of two salts
A and B. Point C on the 4B side of each triangle represents the composition of
the double salt; points L and O show the solubilities of salts 4 and B in water at
the given temperature. Curves LM and NO denote ternary solutions saturated
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Figure 4.24. Formation of a double salt: (a) stable in water; (b) decomposed by water
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with salts 4 and B, respectively, curve M'N ternary solutions in equilibrium with
the double salt C. The significance of the various arecas is marked on the
diagrams.

The isothermal dehydration of solutions in Figure 4.24a can be traced in the
manner described for Figures 4.21 and 4.22. Point M is the eutonic or drying-up
point for solutions located to the left of broken line WR, point N that for
solutions to the right of this line. A solution on line WM behaves as a solution
of a single salt in water; when its composition reaches point M, a mixture of
salt A and double salt C crystallizes out in the fixed ratio of the lengths PC/AP.
Similarly, a solution on line WN yields a mixture of B and C, in the ratio
CQ/QB, when its composition reaches point N. A solution represented by a point
on line WR also behaves as a solution of a single salt; when its composition
reaches point R, the double compound C crystallizes out and neither of salts A
and B is deposited at any stage. Point R, therefore, is the third drying-up point
of the system. An example of this type of system is ammonium and silver
nitrates in water, giving the double salt NH4;NO; - AgNO;.

The phase diagram in Figure 4.24b shows a different case. There are only two
drying-up points, M and N, in this system, the first for solutions located to the
left, the second for solutions to the right of line WN. Each solution on lines
WM and WN behaves as a solution of single salt in water. The line WC does
not cross the saturation curve MN of the double salt but cuts the saturation
curve for salt B, indicating that the double salt is not stable in water; it is
decomposed and salt B is deposited. An example of this type of system is
glaserite, a non-stoichiometric double salt of potassium and sodium sulphates
with the formula K3;Na(SOy),.

Hydrated double salt

Figure 4.25a shows the phase diagram for the case of a hydrated double salt
that is stable in water. The best-known examples of this type of system are the

w
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Figure 4.25. Formation of a hydrated double salt: (a) stable in water, (b) decomposed by
water
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alums (M}SO4 - MY (SO,)5 - 24H,0, where M"' and M™ represent mono- and
tervalent cations, e.g. M'=Na, K, NH,, Cs, Rb, Tl or hydroxylamine;
MM = Al, Ti, V, Cr, Mn, Fe, Co or Ga; the sulphate radical may be replaced
by selenate) and the Tutton salts (M1M"(SOy), - 6H,0, where M' and M"
represent mono- and bivalent ions, respectively, e.g. M' = NHy, K, Rb, Cs or
Te; M = Ni, Mn, Mg, Fe, Co, Zn or Cu).

In the case depicted salt 4 forms a hydrate of composition H. Its saturation
curve is LM. Salt B is anhydrous and its saturation curve is ON. Point W
represents water. Salts A and B combine together to form a hydrated double
salt of composition denoted by point C within the triangular diagram. MN is
the saturation curve for the hydrated double salt. The compositions of the
phases in the eight separate regions are indicated in the diagram. The only
region in which the pure hydrated double salt will crystallize out of solution, at
the temperature for which the particular phase diagram is drawn, is the area
bounded by MNC.

In Figure 4.25a line WC cuts the saturation curve MN of the hydrated
double salt, which indicates that the salt is stable in the presence of water. In
Figure 4.25b line WC does not cross curve MN, which indicates that the
hydrated double salt decomposes in the presence of water. This is a comparat-
ively rare behaviour, but an example is the case of MgSO, - Na,SO, - 4H,O
(astrakanite) at 25°C.

4.6.4 Solid solutions

Ternary systems comprising water and two electrolytes containing a common
ion often yield solid solutions. Such a system can be represented in the manner
indicated in Figure 4.26: an isothermal diagram for salts 4 and B and solvent
water W. Points a and b represent the solubilities of salts 4 and B at the given
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Figure 4.26. Solid solution formation in a ternary system, e.g. two salts in water
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temperature. The curve ab represents the equilibrium solubilities of mixtures
of salts 4 and B. The sector abW represents unsaturated solutions, and sector
AabB represents mixture of AB solid solutions (crystals) in equilibrium with
aqueous solutions saturated with salts 4 and B. The broken tie lines connect
equilibrium mixtures of liquid solutions (curve ab) and solid solutions (base
line AB).

For example, a solution S, isothermally evaporated to a condition repres-
ented by point M would yield a mixture of crystals (solid solution) of overall
composition C at one end of the tie line suspended in a solution of composition
represented by point L at the other end. If evaporation were to be continued to
dryness, the overall composition of the solid solution would be represented by
point F on line AB. The deposited crystals would not be homogeneous, how-
ever, since they would have successively grown from a whole range of solution
compositions and would tend to reflect these conditions by their outer layers
being of slightly different composition from their insides.

An alternative method of representing ternary solid solution systems graph-
ically is to plot the concentration of one component in the solid phase against its
composition in the liquid phase. On this basis, Roozeboom in 1891 showed that
five different types of system were possible. Only two of these will be mentioned
here, however, but a good account of all five types of behaviour is given by
Blasdale (1927).

Type I behaviour is characterized by complete miscibility, with the concen-
tration of one of the salts in the liquid phase exceeding that in the solid phase
for all concentrations (Figure 4.27a). Examples of type I systems include
KQSO4—(NH4)ZSO4—H20, KHQASO4—H20 and K—alum—NH4-alum—H20.

Type II behaviour is also characterized by complete miscibility, but while the
concentration of one of the salts in the liquid phase exceeds that in the solid
phase for a certain rate of concentrations, it is less for the remaining concen-
trations. In other words, at one particular concentration the A4 : B salt ratios in
the solid and liquid phases are identical (Figure 4.27b). An example of this less-
common type II behaviour is the system KCI-KBr—H,O.

Mass fraction of A in
the dissolved salts

Mass fraction of A in crystals
{a) (b)

Figure 4.27. Solid solution formation in a ternary system: (a) Type 1; (b) Type 2
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Solid solutions with a eutectic

Not all solid solution systems form continuous series; some exhibit partial
miscibility, i.e. one solid solution being partially miscible with another, and,
as in the case of partially miscible liquids, the phase region between the two
homogeneous phases is referred to as the miscibility gap. Partially miscible
solid solution systems can exhibit a number of different types of behaviour, but
only one simple case will be described here for illustration purposes.

Figure 4.28 shows an example of two solid solutions that form a eutectic,
a fairly common occurrence in organic melts. Curve AF indicates how increas-
ing amounts of component B lower the freezing point of 4B liquid mixtures.
Curve BE shows the effect of component 4 on B. All systems above curve AEB
(the liquidus) are homogeneous liquid and all systems below curve ACEDB (the
solidus) are solid. In the sectors to the left of ACF and to the right of BDG, the
solid phases are homogeneous solid solutions « and [, respectively. The sector
FCEDG, the miscibility gap, encloses heterogeneous mixtures of the two solid
solutions « and 3. The sectors ACE and BDE contain mixtures of « + liquid
and [+ liquid respectively. Point E represents the temperature and composi-
tion of the eutectic, a conglomerate of solid solutions « and 3. The cooling of
a liquid mixture X to some temperature Y may be traced as follows. Point Y,
which lies in sector BDE, represents a suspension of solid solution 3, of
composition S, in equilibrium with a liquid of composition L. The proportion
of solid to liquid is represented by the distance ratio LY : SY (the mixture rule).

When the miscibility gap extends close to the pure component compositions,
it can be difficult to distinguish between this type of system and that of the
simple eutectic described in section 4.3.1. The problem of terminal solid
solutions is discussed in section 7.2.
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Figure 4.28. Two solid solutions that form a eutectic
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4.6.5 Equilibrium determinations

For multicomponent systems the composition of the equilibrium solid phase
can be determined indirectly by the so-called wer-residues method, first pro-
posed by Schreinemakers (1893), in which the need for solid—liquid separation
before analysis is avoided. In practice, the equilibrium system is allowed to
settle and then most of the saturated supernatant solution is decanted off the
sedimented solids. A sample of the wet solids is then scooped out and quickly
weighed in a closed weighing bottle, to avoid solvent loss, and subsequently
analysed by the most convenient analytical technique.

The method of wet residues is based on the application of the straight-line
mixture rule on a phase diagram. For a ternary system, the solid—liquid phase
equilibria can be represented on a triangular diagram, with the equilibrium
solution composition being represented by a point on the solubility curve and
the wet-residue composition by a point within the triangle. By virtue of the
properties of a triangular phase diagram, the three points representing the
compositions of equilibrium solubility, wet-residue and the equilibrium solid
phase, must lie on a straight line (section 4.6.1). The point at which a line drawn
through the solubility and wet-residue points and extended to meet the side of
the triangle therefore gives the composition of the equilibrium solid phase.

Although extrapolations are commonly made graphically on phase dia-
grams, algebraic extrapolation is less subjective, more accurate, and lends itself
to the application of statistical methods which minimize errors. Mathematical
extrapolation procedures for the method of wet residues have been described by
Ricci (1966) and Schott (1961).

The synthetic complex method of solid—liquid equilibrium determination in
multicomponent systems offers an alternative procedure to that of the wet-
residue method, and is capable of yielding more rapid results. The procedure is
as follows. Several mixtures of the solutes are prepared, covering a range of
compositions, and known amounts of solvent are added to each sample. Thus a
number of ‘synthetic complexes’ of known composition are obtained and their
composition points can be plotted within a phase diagram. The samples are
then shaken or agitated to equilibrate at constant temperature, using any
convenient method, after which the clear supernatant saturated solution is
analysed. Again, as in the wet-residues method, a line is drawn through the
‘solution’ point, its corresponding ‘complex’ point, and then extended to one
side of the phase diagram (triangular for a ternary system) to give the composi-
tion of the solid phase.

Purdon and Slater (1946) give good accounts of the practical difficulties that
may be encountered in applying both the wet-residues and synthetic complex
methods of solid phase analysis.

4.7 Four-component systems

A one-phase, four-component or quaternary system has five degrees of free-
dom. Therefore the phase equilibria in these systems may be affected by the five



170 Crystallization

variables: pressure, temperature and the concentrations of any three of the four
components. To represent quaternary systems graphically, one or more of the
above variables must be excluded. The effect of pressure on solid—liquid sys-
tems may be ignored, and if only one temperature is considered an isothermal
space model can be constructed. If the concentration of one of the components
is excluded, usually the liquid solvent, a two-dimensional graph can be drawn,
but this simplification will be described later.

4.7.1 Three salts and water

The first, simple, type of quaternary system to be considered here consists of
three solid solutes, 4, B and C, and a liquid solvent, S. No chemical reaction
takes place between any of the components, e.g. water and three salts with
a common ion. The isothermal space model for this type of system can be
constructed in the form of a tetrahedron (Figure 4.29a) with the solvent at the
top apex and the three solid solutes on the base triangle. The four triangular
faces of the tetrahedron represent the four ternary systems 4—B-C, A-B-S,
A—C—S and B—C-S. The three faces, excluding the base, have the appearance
of the ‘two salts and water’ diagram shown in Figure 4.21.

A point on an edge of the tetrahedron represents a binary system, a point
within it a quaternary. On the faces ABS, BCS and ACS the solubility curves
meet at points L, M and N, respectively, which represent the solvent saturated
with two solutes. They are the starting points for the three curves LO, MO and
NO, which denote solutions of three solutes in the solvent; point O represents
the solution which, at the given temperature, is saturated with respect to all
three solutes. All these curves form three curved surfaces within the space
model. The section between these surfaces and the apex of the tetrahedron
indicates unsaturated solution, that between the surfaces and the triangular
base complex mixtures of liquid and solid.

Figure 14.29b shows another way in which systems of this type can be
represented as a space model. Here it takes the form of a triangular prism
where the apexes of the triangular base represent the three solid components
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Figure 4.29. Isothermal representation of a quaternary system of the ‘three salts with a
common ion in water’ type: (a) tetrahedral space model; (b) triangular prism space model,
(¢) Jdnecke projection
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and the vertical scale the liquid solvent. The interpretation of this model is
similar to that just described for the tetrahedron; the same symbols have been
used.

For a complete picture of the phase behaviour of quaternary systems a space
model is essential; yet, because of its time-consuming construction, a two-
dimensional ‘projection’ is frequently employed. Such a projection, named after
E. Jédnecke, is shown in Figure 4.29¢. In this type of isothermal diagram the
solvent is excluded. The curved surfaces A’LON, B'MOL and C'NOM in
Figures 4.29a and 4.29b, which represent solutions in equilibrium with solutes
A, B and C, respectively, are projected on to the triangular base and become
areas ALON, BMOL and CNOM in Figure 4.29c. Curves LO, MO and NO
denote solutions in equilibrium with two solutes, viz. 4 and B, B and C, 4 and
C, respectively, while point O represents a solution in equilibrium with the three
solutes. For this type of system the projection diagram can be plotted in terms
of mass or mole fractions or percentages.

4.7.2 Reciprocal salt pairs

The second, and more important, type of quaternary system that will be
considered is one consisting of two solutes and a liquid solvent where the two
solutes inter-react and undergo double decomposition (metathesis). This beha-
viour is frequently encountered in aqueous solutions of two salts that do not
have a common ion. Typical examples of double decomposition reactions of
commercial importance are

KCI + NaNO; = NaCl + KNOj
NaNOs + 1 (NH4),SO4 = NH4NOs + 1 Na,S0,4
KCI +1Na,S04 = NaCl + 1 K,S0,
NaCl + 1 (NH,;),80;4 = NH4Cl + 1 Na,SO,
NaNO; +1K,S04 = KNO; + 1 Na,80,

The four salts in each of the above systems form what is known as a
‘reciprocal salt pair’. Although all four may be present in aqueous solution,
the composition of any mixture can be expressed in terms of three salts and
water. Thus, from the phase rule point of view, an aqueous reciprocal salt pair
system is considered to be a four-component system.

Reciprocal salt pair solutions may be represented on an isothermal space
model, in the form of either a square-based pyramid or a square prism. Figure
4.30a indicates the pyramidal model: the four equilateral triangular faces
stand for the four ternary systems AX-AY-W, AY-BY-W, BY-BX-W and
4X-BX-W (W = water) for the salt pair represented by the equation

AX + BY = AY + BX

The apex of the pyramid denotes pure water, its base the anhydrous quaternary
system AX—-AY-BX—BY. Points L, M, N and O on the four triangular faces of
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Figure 4.30. Isothermal representation of a quaternary system of the ‘reciprocal salt pair’
type: (a) square-based pyramid; (b) square prism

the pyramid indicate the equilibria between two salts and water. Point P, which
represents a solution of three salts AX, BX and BY in water saturated with all
three salts, is a quaternary invariant point. So is Q, which shows the equilib-
rium between salts AX, AY and BY and water. Curves OP, NP and LQ, MQ,
which join these quaternary invariant points P and Q to the corresponding
ternary invariant points on the triangular faces of the pyramid, represent
solutions of three salts in water saturated with two salts, and so does curve
PQ, joining the two quaternary invariant points.

The square-prism space model (Figure 4.30b) illustrates another way in which
a quaternary system of the reciprocal salt pair type may be represented. The
vertical axis stands for the water content, and the points on the diagram are the
same as those marked on Figure 4.30a. In both diagrams all surfaces formed
between the internal curves represent solutions of three salts in water saturated
with one salt, all internal curves solutions of three salts in water saturated with
two salts, and the two points P and Q solutions of three salts in water saturated
with the three salts. The section above the internal curved surfaces denotes
unsaturated solutions, the section below them mixtures of liquid and solid.

4.7.3 Janecke diagrams

In order to simplify the interpretation of the phase equilibria in reciprocal salt
pair systems, the water content may be excluded. The curves of the space model
can then be projected on to the square base to give a two-dimensional graph,
called a Janecke diagram as described in section 4.7.1. A typical projection is
shown in Figure 4.31a; the lettering is that used in Figure 4.30. The enclosed
areas, which represent saturation surfaces, indicate solutions in equilibrium
with one salt, the curves solutions in equilibrium with two salts, points P and
Q solutions in equilibrium with three salts.

Molar or ionic bases must be used in this type of diagram for reciprocal salt
pairs. The four corners of the square represent 100 mol of the pure salts 4X,
BX, BY and AY. Any point inside the square denotes 100 mol of a mixture of
these salts; its composition can always be expressed in terms of three salts. The
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Figure 4.31. Interpretation of the Jdinecke diagram for reciprocal salt pairs: (a) projection
of the surfaces of saturation on to the base; (b) method of plotting

scales in Figure 4.31b are marked in ionic percentages of 4, B, X and Y. Take,
for example, 100 mol of a mixture expressed as

Salt moles of moles of ions
compounds
B X Y
AX 20 20 20
AY 60 60 60
BX 20 20 20
100 80 20 40 60

The totals of the 4 4+ Bions (e.g. the basic radicals) and the X + Y ions (e.g. the
acidic radicals) must always equal 100. Thus point ¢, indicating this mixture
can be plotted: the square is divided by the two diagonals into four right-angled
triangles, and point « lies in triangles 4X . AY . BX and AX .AY .BY. There-
fore the composition of the above mixture could also have been expressed in
terms of salts AX (40 mol), AY (40 mol) and BY (20 mol). In a similar manner, it
can be shown that point 8 which lies within the two triangles AX . BX . BY and
BX .BY .AY represents 100 mol of a mixture with a composition expressed
either by 50 BY, 30 AX and 20 BX, or by 50 BX, 30 AY and 20 BY.

Although it is usually more convenient to plot ionic percentages on the
square, it is quite in order to plot mole percentages of the salts direct. The
numerical scales marked on Figure 4.31b must now be ignored. If point « is
considered to lie in triangle AX . AY . BX, representing a mixture 20 4X, 60 4Y
and 20 BX, the compositions of the two salts at opposite ends of the diagonal
AY and BX are used for plotting purposes. Thus point « is located by 60 along
the horizontal AY scale and 20 up the vertical BX scale. If « is taken to lie in
triangle AX . AY . BY, the composition is represented by 40 AX, 20 BY, 40 AY,
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Figure 4.32. Jdnecke projections for aqueous solutions of a reciprocal salt pair, showing
(a) two congruent points, (b) congruent and incongruent points

and the AY and BX compositions are used for plotting. A similar reasoning may
be applied to the plotting of point 5 in triangles 4X. BX.BY and AY. BY. BX.

Figure 4.32 shows Janecke diagrams for solutions of a given reciprocal salt
pair at different temperatures. These two simple cases will be used to demon-
strate some of the phase reactions that can be encountered in such systems.
Both diagrams are divided by the saturation curves into four areas which are
actually the projections of the surfaces of saturation (e.g., see Figure 4.32b).
Salts AX and BY can coexist in solution in stable equilibrium: the solutions are
given by points along curve PQ. Salts BX and AY, however, cannot coexist in
solution because their saturation surfaces are separated from each other by
curve PQ. Thus AX and BY are called the stable salt pair, or the compatible
salts, BX and AY the unstable salt pair, or the incompatible salts. In Figure 4.32a
the AX—BY diagonal cuts curve PQ which joins the two quarternary invariant
points, while in Figure 4.32b curve P'Q’ is not cut by either diagonal. These are
two different cases to consider.

Point P represents a solution saturated with salts 4X, BX and BY, Q one
saturated with salts AX, BY and AY. In Figure 4.32a both P and Q lie in their
‘correct’ triangles, i.e. AX . BX.BY and AX .BY . AY, respectively, and solu-
tions represented by P and Q are said to be congruently saturated. In Figure
4.32b point Q' lies in its ‘correct’ triangle, AX .BY .AY, but P’ lies in the
‘wrong’ triangle, the same as Q'. Point Q’, therefore, is congruent and point
P’ is incongruent.

Isothermal evaporation

The phase reactions occurring on the removal of water from a reciprocal salt
pair system will first be described with reference to Figure 4.32a. Point a which
lies on the BY saturation surface represents a solution saturated with salt BY.
When water is removed isothermally from this solution, the pure salt BY is



Phase equilibria 175

deposited and the solution composition (i.e. the composition of the salts in
solution, the water content being ignored) moves from a towards «' along the
straight line drawn from BY through a to meet curve QM. When a sufficient
quantity of water has been removed, the solution composition reaches point @’
and here the solution is saturated with two salts, BY and 4Y.

Further evaporation results in the deposition of 4Y as well as BY; the
composition of the solid phase being deposited is given by point M. The overall
composition of deposited solid therefore moves from BY towards a” on the line
BY . AY. The solution composition, being depleted in solid M, moves away
from point M towards Q. On reaching point Q, three salts 4X, 4Y and BY are
deposited. The composition of the solid phase deposited is also given by point
Q; the overall composition of the solid phase, assuming that none has been
removed from the system, by point ¢”. The solution composition, the water
content being ignored, and the composition of the deposited solid phase remain
constant at point Q for the rest of the evaporation process, and the overall
solids content changes along line a¢”a, composition a representing the com-
pletely dry complex. Point Q is a quaternary drying-up point for all solutions
represented by points within triangle AX . AY . BY.

The isothermal evaporation of solution » on the diagonal can be traced as
follows. If point b lies on the saturation surface, it represents a solution
saturated with salt BY. While salt BY is being deposited, the solution composi-
tion changes along the diagonal from b towards &'. At b’ the solution becomes
saturated with salts AX and BY. This ternary system (4X—BY-H;0) thereafter
dries up, without change in composition, at point »’. Point %', therefore, is a
ternary drying-up point.

If point c lies on the saturation surface, it represents a solution saturated with
salt AX. When this solution is evaporated isothermally, 4X is deposited and the
solution composition changes along line c¢’. At ¢’ salt BY also crystallizes out
and the composition of the solid phase deposited is given by &', the point at
which the diagonal crosses line PQ. The solution composition, therefore,
changes along line ¢'P, and at P the three salts AX, BY and BX are co-
deposited: point P is the quaternary drying-up point for all solutions repres-
ented by points within triangle AX . BX . BY.

The isothermal evaporation of a solution denoted by point w in Figure 4.32b
can be traced in the same manner as that described for point « in Figure 4.32a.
Q' is the drying-up point. The evaporation of solution x can be traced as
follows. At x the solution is saturated with salt BY, and this salt is deposited
until the solution composition reaches x’, where the solution is saturated with
the two salts AX and BY. The composition of the solid phase being deposited at
this stage is given by point R on the diagonal. As evaporation proceeds, the
solution composition changes from point x’ along line x'Q’, i.e. in a direction
away from point R, and at Q' the solution is saturated with the three salts AX,
AY and BY. Both solution and deposited solids thereafter have a constant
composition until evaporation is complete: Q' is the quaternary drying-up
point.

Point Q' is also the drying-up point for a solution represented by point y. The
solution composition changes along line y)’ while salt AX crystallizes out, and
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then from )’ towards P’ while the two salts 4X and BY of composition O’ are
deposited. At P’ the solution is saturated with the three salts 4X, BX and BY,
the composition of the solid phase deposited at this point being given by R. On
further evaporation, the solution composition remains constant at P’ while salts
AX and BY are deposited and salt BX is dissolved. When all BX has dissolved,
the solution composition changes from P’ towards Q’, and the solution finally
dries up at Q'.

Point P, therefore, is incongruent. It is not a true drying-up point except for
the case where the original complex lies within the triangle representing the
three salts of which it is the saturation point, i.e. AX, BY and BX. Point z may
be taken as an example of this case. On evaporation, the solution composition
changes from z to z’ while salt AX is deposited, from z’ towards P’ while salts
AX and BX are deposited. The composition of the solid phase at this latter
stage is given by point O’. At P’ this solution is saturated with salts 4X, BX and
BY. Further evaporation results in the deposition of 4X and BY and the
dissolution of BX. The solution dries up at point P'.

Representation of water content

So far in the discussion of Jdnecke projections for reciprocal salt pair systems
the water content has been ignored. This is not too serious, because much
information can be obtained from the projection before consideration of the
quantity of water present. One way in which the water content can be repres-
ented is shown in Figure 4.33a; the plan shows the projection of the saturation
surfaces, the elevation indicates the water contents. To avoid unnecessary
complication, the elevation only shows the horizontal view of the particular
saturation curve concerned in the problem.

The isothermal evaporation of water from a complex a was considered in
Figure 4.32a, where point a, representing the composition of the given complex,
was taken to lie on the saturation surface. In Figure 4.33a the isothermal
dehydration of an unsaturated solution S is considered, the dissolved salt
having the same composition a as that in Figure 4.32a. Point S, therefore, is
located on the elevation vertically above point « in the plan. The exact position
of S is determined by the water content of the given solution, i.e. distance Sas
on the water scale denotes the moles of water per 100 mol of salt content. Line
Sas, called the water line, represents the course of the isothermal dehydration.
Points Q and M are similarly located on the elevation, according to their
corresponding water contents, vertically above points Q and M on the plan.
Point & lies on curve QM vertically above & in the plan. Point 7 on the
elevation represents the water content of a saturated solution of pure salt BY,
the salt to be deposited.

Three construction lines can now be drawn on the elevation. Line Ta cuts the
water line at point a. The BY saturation surface is assumed for simplicity to be
plane, so Tad' is a line on this surface. The Y corner of the elevation represents
pure salts 4Y and BY and all their mixtures. The line drawn from ¢’ to Y (BY
on plan) cuts the water line at @y, that from Q to Y (a” on plan) at a;.
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Figure 4.33. Representation of water content: (a) isothermal evaporation; (b) crystal-
lization by cooling

When water is removed isothermally from the unsaturated solution S,
the water content falls along the water line Sa;. When point « is reached, the
solution is saturated with salt BY, and pure BY starts to crystallize out. The
quantity of water to be removed to achieve this condition is determined from
the water scale readings on the elevation diagram, i.e. Sa mol of water has to be
removed from a system containing 100 mol of salts dissolved in Sa; mol of
water. Salt BY is deposited while the water content falls from a to a;, and at
point a; the solution (of composition a’) becomes saturated with salts BY and
AY. Both salts are deposited while the water content falls from a; to a;, and the
overall deposited solids content changes along line BY /a” on the plan. At point
a, the solution (composition Q) is saturated with respect to the three salts AX,
AY and BY, and further evaporation from a, to a3 proceeds at constant
solution composition Q. The solids composition changes along line a’a on
the plan.

Crystallization by cooling

The graphical procedure described above, viz. the drawing of a plan and
elevation, provides a simple pictorial representation of the phase reactions
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occurring in a given system at two different temperatures. Figure 4.33b shows
two isotherms labelled ‘hot’ and ‘cold’, respectively; they are in fact the curves
from Figure 4.32, plotted on one diagram, and the same lettering is used. By
way of example, two different cooling operations will be considered.

Point ¢ on curve Q' M’ represents a hot solution saturated with the two salts
AY and BY. When it is cooled to the lower temperature point « lies in the BY
field of the projection. Line BY/a is drawn on the plan to meet curve QM at b,
but point b represents the solution composition only if point « lies on the BY
saturation surface in the ‘cold’ projection, i.e. if pure BY was crystallizing out.
To find the actual solution composition and the composition of the deposited
solid phase, point b is projected from the plan onto curve QM in the elevation.

Point Y on the elevation diagram represents salts 4 Y or BY or any mixture of
them. Line Y« is drawn on the elevation and then produced to meet curve QM
at ¢. It can be seen that in this case points » and ¢ do not coincide. This means
that the deposited solid phase is not pure salt BY but some mixture of BY and
AY. Point ¢ is projected from the elevation onto the plan, and line cad is drawn.
Thus the final solution composition is given by point ¢, and the overall solid
phase composition by point d.

If pure salt BY was required to be produced during the cooling operation, the
water content of the system would have to be adjusted accordingly. Solution
point ¢ has to move to become coincident with point ¢, and solid point 4 has to
move to BY on the plan. In this case, therefore, water has to be added to the
system, e.g. to the hot solution before cooling. The quantity of water required
per 100 mol of salts is given by the vertical distance ae on the elevation.

A different sequence of operations is shown in another section of Figure
4.33b. Point w on curve P'Q’ represents a solution saturated with salts 4X and
BY at the higher temperature. At the lower temperature, however, point w lies
in the BY field of the diagram. If the correct amount of water is present in the
system, pure BY crystallizes out on cooling, and the solution composition is
given by point x located on line BY/w produced to meet curve PQ. A cyclic
process can now be planned.

The pure salt BY is filtered off and a quantity of solid mixture, e.g. of
composition z, is added to solution x. The quantity of solid z to be added,
calculated by the mixture rule, must be the amount necessary to give complex y,
the composition of which is chosen so that, on being heated to the higher
temperature, it lies in the AX field, yields the original solution w and deposits
the pure salt AX. Thus the sequence of operations is

Cool solution w to the lower temperature

Filter off solid BY

Add solid mixture z to the mother liquor x to give complex y
Heat the complex to the higher temperature

Filter off solid 4X

Cool mother liquor w to the lower temperature, and so on

A e

Of course, the water contents at each stage in the cycle must be adjusted so that
the solutions deposit only one pure salt at a time. The quantities of water to be
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added or removed can be estimated graphically on the elevation diagram in the
manner described above for solution a.

Only the simplest type of reciprocal salt pair diagram has been considered
here. Many systems form hydrates or double salts: in others the stable salt pair
at one temperature may become the unstable pair at another. For information
on these more complicated systems reference should be made to specialized
works on the phase rule. The monographs by Blasdale (1927) and Purdon and
Slater (1946) are particularly noteworthy in this respect; graphical solutions of
problems of commercial importance are given, and five-component aqueous
systems are analysed. Teeple (1929) and Fitch (1970) also give accounts of the
use of multicomponent phase diagrams for the design of industrial fractional
crystallization processes.

The phase diagrams described in this section are by no means limited to ‘salts
in water’ systems, as a comparison between Figures 4.20 and 4.29 will clearly
show. A worked example of the use of a diagram similar to both Figures 4.20b
and 4.29¢ is given in section 8.2.1 to demonstrate the recovery of one pure
component from a ternary organic eutectic system by cooling melt crystal-
lization. The use of multicomponent phase diagrams for selecting appropriate
crystallization methods for a wide range of separation procedures including
cooling, evaporating, salting-out, adduct formation, etc. with both organic and
inorganic systems has been extensively demonstrated by Chang and Ng (1998),
Cesar and Ng (1999) and Wibowo and Ng (2000).

4.8 ‘Dynamic’ phase diagrams

One of the problems of trying to establish reliable phase equilibria in multi-
component solid—liquid systems is that very long periods of contact between
crystals and solution are often necessary before the equilibrium state is
approached. In fact, some systems can appear to be unable to achieve a stable
equilibrium, in which case a meaningful phase diagram cannot be constructed.

Not only are reliable multicomponent phase equilibria difficult to measure in
the laboratory, the measured data may be found to be inapplicable to certain
industrial procedures where, for example, contact times between solid and
liquid phases can be quite short and true equilibrium state conditions are not
achieved.

It has long been appreciated that phase equilibria of complex salt systems
measured under laboratory conditions may have limited industrial use. It was
first noted by van’t Hoff (1903), when crystallizing salts from seawater, that
certain thermodynamically expected stable salts never crystallized. Even exceed-
ingly slow crystallization together with deliberate seeding by the salts them-
selves did not help. Yet the salts in question all occupied clearly defined zones
on the appropriate stable phase diagrams.

Studies on similar systems were made in the USSR by Kurnakov in the 1920s
and Valyashka in the 1940s (see Hadzeriga, 1967), in Germany by Autenrieth
(1953) and in the USA by Hadzeriga (1967). Attempts to reproduce in the
laboratory conditions of natural saline lake evaporation appropriate to the
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Figure 4.34. A ‘dynamic’ phase diagram superimposed on a conventional equilibrium
diagram for the quinary system Na, K, Mg, Cl, SOy in water at 25°C

solar evaporation of natural brines have led to proposals for the use of
‘dynamic’ as opposed to conventional ‘equilibrium’ phase diagrams. Figure
4.34 is such a diagram for the quinary aqueous system Na*t, K+, Mg?*, CI~
and SO3~ saturated with NaCl, using a Jinecke projection. The particular area
of interest represents only the upper third of the full phase diagram.

Although there is a large central field of kainite (MgSO,4 - KC1 - 3H,0) on the
‘equilibrium’ diagram (zones bounded by bold lines in Figure 4.34a) kainite
does not crystallize out when brines in this region are evaporated in solar
ponds. In fact, under these operating conditions, all the phase boundaries are
changed; the sylvite (KCI) field, for example, is slightly enlarged; carnallite
(KCI - MgSOy - 6H,0) and hexahydrate (MgSO, - 6H,0) are greatly expanded;
kainite disappears altogether; epsomite (MgSQOy - 7H,0) is slightly reduced,
and so on (Figure 4.34b).

When crystallizing from multicomponent systems, kinetic factors often over-
ride thermodynamic considerations (the so-called Ostwald rule of stages —
section 5.7). The phase which crystallizes is not necessarily the one which is
thermodynamically most stable, but the one which crystallizes the fastest.
Numerous examples of this sort of behaviour are available.



5 Nucleation

The condition of supersaturation or supercooling alone is not sufficient cause
for a system to begin to crystallize. Before crystals can develop there must exist
in the solution a number of minute solid bodies, embryos, nuclei or seeds, that
act as centres of crystallization. Nucleation may occur spontaneously or it may
be induced artificially. It is not always possible, however, to decide whether
a system has nucleated of its own accord or whether it has done so under the
influence of some external stimulus.

Nucleation can often be induced by agitation, mechanical shock, friction and
extreme pressures within solutions and melts, as shown by the early experi-
ments of Young (1911) and Berkeley (1912). The erratic effects of external
influences such as electric and magnetic fields, spark discharges, ultra-violet
light, X-rays, ~-rays, sonic and ultrasonic irradiation have also been studied
over many years (Khamskii, 1969) but so far none of these methods has found
any significant application in large-scale crystallization practice.

Cavitation in an under-cooled liquid can cause nucleation, and this probably
accounts for a number of the above reported effects. Hunt and Jackson (1966)
demonstrated, by a novel experimental technique, that nucleation occurs when
a cavity collapses rather than when it expands. Very high pressures (~10°bar)
can be generated by the collapse of a cavity; the change in pressure lowers the
crystallization temperature of the liquid and nucleation results. It is even
suggested that nucleation caused by scratching the side of the containing vessel
could be the result of cavitation effects.

At the present time there is no general agreement on nucleation nomenclat-
ure so to avoid confusion the terminology to be used in this and subsequent
chapters will be defined here. The term ‘primary’ will be reserved for all cases of
nucleation in systems that do not contain crystalline matter. On the other hand,
nuclei are often generated in the vicinity of crystals present in a supersaturated
system; this behaviour will be referred to as ‘secondary’ nucleation. Thus we
may consider a simple scheme:

NUCLEATION

N

PRIMARY SECONDARY

/ \ (induced by crystals)

HOMOGENEOUS HETEROGENEOUS
(spontaneous) (induced by foreign particles)
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5.1 Primary nucleation
5.1.1 Homogeneous nucleation

Exactly how a stable crystal nucleus is formed within a homogeneous fluid is
not known with any degree of certainty. To take a simple example, the con-
densation of a supersaturated vapour to the liquid phase is only possible after
the appearance of microscopic droplets, called condensation nuclei, on the
condensing surface. However, as the vapour pressure at the surface of these
minute droplets is exceedingly high, they evaporate rapidly even though the
surrounding vapour is supersaturated. New nuclei form while old ones evap-
orate, until eventually stable droplets are formed either by coagulation or under
conditions of very high vapour supersaturation.

The formation of crystal nuclei is an even more difficult process to envisage.
Not only have the constituent molecules to coagulate, resisting the tendency to
redissolve (section 3.7), but they also have to become orientated into a fixed
lattice. The number of molecules in a stable crystal nucleus can vary from about
ten to several thousand: water (ice) nuclei, for instance, may contain about 100
molecules. However, a stable nucleus could hardly result from the simultaneous
collision of the required number of molecules since this would constitute an
extremely rare event. More likely, it could arise from a sequence of bimolecular
additions according to the scheme:

A + A=A,
Ay, + A= A;
A,_1 + A= A, (critical cluster)

Further molecular additions to the critical cluster would result in nucleation
and subsequent growth of the nucleus. Similarly, ions or molecules in a solution
can interact to form short-lived clusters. Short chains may be formed initially,
or flat monolayers, and eventually a crystalline lattice structure is built up. The
construction process, which occurs very rapidly, can only continue in local
regions of very high supersaturation, and many of the embryos or ‘sub-nuclei’
fail to achieve maturity; they simply redissolve because they are extremely
unstable. If, however, the nucleus grows beyond a certain critical size, as
explained below, it becomes stable under the average conditions of super-
saturation obtaining in the bulk of the fluid.

The structure of the assembly of molecules or ions which we call a critical
nucleus is not known, and it is too small to observe directly. It could be
a miniature crystal, nearly perfect in form. On the other hand, it could be a
rather diffuse body with molecules or solvated ions in a state not too different
from that in the bulk fluid, with no clearly defined surface. The morphology
of very small atomic clusters has been discussed by Hoare and Mclnnes
(1976).

The classical theory of nucleation, stemming from the work of Gibbs (1948),
Volmer (1939), Becker and Déring (1935) and others, is based on the con-
densation of a vapour to a liquid, and this treatment may be extended to
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crystallization from melts and solutions. The free energy changes associated
with the process of homogeneous nucleation may be considered as follows.
The overall excess free energy, AG, between a small solid particle of solute
(assumed here, for simplicity, to be a sphere of radius r) and the solute in
solution is equal to the sum of the surface excess free energy, AGy, i.e. the
excess free energy between the surface of the particle and the bulk of the
particle, and the volume excess free energy, AGy, i.e. the excess free energy
between a very large particle (r = oc) and the solute in solution. AGy is
a positive quantity, the magnitude of which is proportional to 2. In a super-
saturated solution Gy is a negative quantity proportional to r*. Thus

AG = AGs + AGy
= 47rr2fy+g7rr3AGv (5.1)

where AG, is the free energy change of the transformation per unit volume and
~ is the interfacial tension, i.e., between the developing crystalline surface and
the supersaturated solution in which it is located. The term ‘surface energy’ is
often used as an alternative to interfacial tension, but the latter term will be
used throughout here for consistency. The two terms on the right-hand side of
equation 5.1 are of opposite sign and depend differently on r, so the free energy
of formation, AG, passes through a maximum (see Figure 5.1). This maximum
value, AG,;, corresponds to the critical nucleus, r¢, and for a spherical cluster
is obtained by maximizing equation 5.1, setting dAG/dr = 0:

dAG

o = 8mry + 47rPAG, =0 (5.2)
N AGs
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Figure5.1. Free energy diagram for nucleation explaining the existence of a ‘critical nucleus’
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therefore
—2y
= — 5~3
N (5.3)
where AG, is a negative quantity. From equations 5.1 and 5.3 we get
1673 Ayr?
crit = T = (5.4)

3(AG, 3

The behaviour of a newly created crystalline lattice structure in a supersat-
urated solution depends on its size; it can either grow or redissolve, but the
process which it undergoes should result in the decrease in the free energy of the
particle. The critical size r., therefore, represents the minimum size of a stable
nucleus. Particles smaller than r. will dissolve, or evaporate if the particle is a
liquid in a supersaturated vapour, because only in this way can the particle
achieve a reduction in its free energy. Similarly, particles larger than r, will
continue to grow.

Although it can be seen from the free energy diagram why a particle of size
greater than the critical size is stable, it does not explain the amount of energy,
AG, necessary to form a stable nucleus is produced. This may be explained as
follows. The energy of a fluid system at constant temperature and pressure is
constant, but this does not mean that the energy level is the same in all parts of
the fluid. There will be fluctuations in the energy about the constant mean value,
i.e. there will be a statistical distribution of energy, or molecular velocity, in the
molecules constituting the system, and in those supersaturated regions where
the energy level rises temporarily to a high value nucleation will be favoured.

The rate of nucleation, J, e.g. the number of nuclei formed per unit time per
unit volume, can be expressed in the form of the Arrhenius reaction velocity
equation commonly used for the rate of a thermally activated process:

J = Aexp(—AG/kT) (5.5)

where k is the Boltzmann constant, the gas constant per molecule (1.3805 x
1003 JK ' =R/N, where R is the gas constant = 8.314JK 'mol~' and
N = the Avogadro number = 6.023 x 10> mol™").

The basic Gibbs—Thomson relationship (section 3.7) for a non-electrolyte
may be written

o

InS =
S = T

(5.6)

where S is defined by equation 3.68 and v is the molecular volume; this gives

2 k7TIn S
SAG, = =0 (5.7)
r v
Hence, from equation 5.4
167312
it = —— (5.8)

3(kTIn S)*
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Figure 5.2. Effect of supersaturation on the nucleation rate

and from equation 5.5

(5.9)

1 3.2
J=Aexp[— by’ }

3K3T3(1In S)?

This equation indicates that three main variables govern the rate of nucleation:
temperature, 7T; degree of supersaturation, S; and interfacial tension, 7.

A plot of equation 5.9, as shown by the solid curve in Figure 5.2, indicates the
extremely rapid increase in the rate of nucleation once some critical level of
supersaturation is exceeded.

The dominant effect of the degree of supersaturation on the time required for
the spontaneous appearance of nuclei in supercooled water vapour was calcu-
lated by Volmer (1925) as

Supersaturation, S Time
1.0 00
2.0 1092 years
3.0 103 years
4.0 0.1s
5.0 10735

In this case, a ‘critical’ supersaturation could be said to exist in the region of
S ~ 4.0, but it is also clear that nucleation would have occurred at any value of
S > 1 if sufficient time had been allowed to elapse.

Equation 5.9 may be rearranged to give

3.2 12
InS = {%} (5.10)
30T In(A/J)

and if, arbitrarily, the critical supersaturation, Sc, is chosen to correspond to
a nucleation rate, J, of say, one nucleus per second per unit volume, then
equation 5.10 becomes

(5.10a)

1673y 117
I Serit = |35 1 4
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From equations 5.3 and 5.7 the radius of a spherical critical nucleus at a
given supersaturation can be expressed as

r. = 2yv/kT InS (5.11)

For the case of non-spherical nuclei, the geometrical factor 167/3 in equations
5.4 and 5.8-5.10a must be replaced by an appropriate value (e.g. 32 for a cube).

Similar expressions to the above may be derived for homogeneous nucleation
from the melt in terms of supercooling. The volume free energy AG, is given
by

AH;AT

AG,
T*

(5.12)

where T* is the solid—liquid equilibrium temperature expressed in kelvins,
AT = T* — T is the supercooling and AH; is the latent heat of fusion. The

radius of a critical nucleus is given by
24T+
=_-" 5.13
e T AHAT (.13)

and the rate of nucleation, from equation 5.9, may be expressed by

167v?
3KT*AHRT(AT,)

J=Adexp|— (5.14)

where T is the reduced temperature defined by 7, = T/T* and AT, = AT|T*,
i.e. AT, =1— T;. Equation 5.14, like equation 5.9, indicates the dominant
effect of supercooling on the nucleation rate.

For a wide range of substances, including organic melts, the critical homo-
geneous nucleation temperature expressed in kelvins is approximately 0.8-0.85
T*, although for hydrocarbons >Cjs it may approach 0.957*.

The size of the critical nucleus is dependent on temperature, since the volume
free energy, AG,, is a function of the supercooling, AT, (equations 5.12 and
5.13) giving

re o< (AT)™! (5.15)
and from equation 5.4
AGyi < (AT)™? (5.16)

These relationships are shown in Figure 5.3, where it can be seen that the size of
a critical nucleus increases with temperature.

Melts frequently demonstrate abnormal nucleation characteristics, as noted
in the early work of Tamman (1925). The rate of nucleation usually follows an
exponential curve (solid curve in Figure 5.2) as the supercooling is increased,
but reaches a maximum and subsequently decreases (broken curve in
Figure 5.2). Tamman suggested that this behaviour was caused by the sharp
increase in viscosity with supercooling which restricted molecular movement
and inhibited the formation of ordered crystal structures. Turnbull and Fisher
(1949) quantified this behaviour with a modified form of equation 5.9:
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Figure 5.3. Effect of temperature on the size and free energy of formation of a critical
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(5.17)

which includes a ‘viscosity’ term. When AG’, the activation energy for molecu-
lar motion across the embryo-matrix interface, is exceptionally large (e.g. for
highly viscous liquids and glasses) the other exponential term is small because
under these circumstances S is generally very large. AG’' then becomes the
dominant factor in this rate equation and a decrease in nucleation rate is
predicted.

The formation of the glassy state is by no means uncommon; Tamman (1925)
reported that out of some 150 selected organic compounds, all capable of being
crystallized fairly easily, over 30 per cent yielded the glassy state on cooling
their melts slowly.

Although most reported experimental observations of this reversal of the
nucleation rate have been confined to melts, it is interesting to note that this
behaviour has also been observed in highly viscous aqueous solutions of citric
acid (Figure 5.4) (Mullin and Leci, 1969b).

Excessive supercooling does not aid nucleation. There is an optimum tem-
perature for nucleation of a given system (see Figures 5.2 and 5.4) and any
reduction below this value decreases the tendency to nucleate. As indicated by
the classical relationship (equation 5.9) nucleation can theoretically occur at
any temperature, provided that the system is supercooled, but under normal
conditions the temperature range over which massive nucleation occurs may be
quite restricted. Therefore, if a system has set to a highly viscous or glass-like
state, further cooling will not cause crystallization. To induce nucleation the
temperature would have to be increased to a value in the optimum region.

The nucleation process has been discussed above in terms of the so-called
classical theories stemming from the thermodynamic approach of Gibbs and
Volmer, with the modifications of Becker, Doring and later workers. The main
criticism of these theories is their dependence on the interfacial tension (surface
energy), v, e.g. in the Gibbs—Thomson equation, and this term is probably
meaningless when applied to clusters of near critical nucleus size.
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Figure 5.4. Spontaneous nucleation in supercooled citric acid solutions: A, 4.6 kg of citric
acid monohydrate per kg of ‘free’ water (T * = 62°C); B, 7.0kg/kg (T * = 85°C). (After
Mullin and Leci, 1969b)

An empirical approach to the nucleation process is described by Nielsen
(1964), expressing a relationship between the induction period, f,g (the time
interval between mixing two reacting solutions and the appearance of crystals)
and the initial concentration, ¢, of the supersaturated solution:

tind = kc' P (5.18)

where k is a constant and p is the number of molecules in a critical nucleus. It
was suggested that the induction period, which may range from microseconds
to days depending on the supersaturation, represents the time needed for the
assembly of a critical nucleus, although this is an over-simplification (see
section 5.5).

The so-called classical theories of homogeneous nucleation and the above
empirical theory all utilize the concept of a clustering mechanism of reacting
molecules or ions, but they do not agree on the effect of supersaturation on the
size of a critical nucleus. The former theories indicate that the size is dependent
on the supersaturation, whereas the latter theory indicates a smaller but
constant nucleus size. So far these differences have not been resolved, largely
owing to the fact that the experimental investigation of true homogenous
nucleation is fraught with difficulty since the production of an impurity-free
system is virtually impossible.

Critical reviews of nucleation mechanisms have been made by, for
example, Nancollas and Purdie (1964), Nielsen (1964), Walton (1967),
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Strickland—Constable (1968), Zettlemoyer (1969), Nyvlt et al. (1985) and
S6hnel and Garside (1992). The recent publication by Kashchiev (2000) is
noteworthy for its in-depth analyses of the thermodynamics and kinetics of
homogeneous and heterogeneous nucleation.

Measurement techniques

Itis only in recent years that suitable techniques have been devised for studying the
kinetics of homogeneous nucleation. The main difficulties have been the prepara-
tion of systems free from impurities, which might act as nucleation catalysts, and
the elimination of the effects of retaining vessel walls which frequently catalyse
nucleation.

An early attempt to study homogeneous nucleation was made by Vonnegut
(1948) who dispersed a liquid system into a large number of discrete droplets,
exceeding the number of heteronuclei present. A significant number of droplets
were therefore entirely mote-free and could be used for the study of true
homogeneous nucleation. The dispersed droplet method, however, has many
attendant experimental difficulties: concentrations and temperatures must be
measured with some precision for critical supersaturations to be determined;
the tiny droplets (< 1 mm) must be dispersed into an inert medium, e.g. an oil,
which will not act as a nucleation catalyst; and any nuclei that form in the
droplets have to be observed microscopically.

Variations of the droplet method have since been developed to overcome the
above difficulties (White and Frost, 1959; Melia and Moffitt, 1964; Komarov,
Garside and Mullin, 1976), but the reliability of homogeneous nucleation
studies is still difficult to judge. For example, experimental values of the
‘collision factor’ (the pre-exponential factor 4 in equation 5.9) have frequently
been reported in the range 103 to 105cm—3s ', but as these are well outside the
range predicted from the Gibbs—Volmer theory (~10%) it is probable that true
homogeneous nucleation was not being observed in these cases. Another point
to note is that the interfacial energy term -y, which appears in equation 5.14 to
the third power, cannot be assumed to be independent of temperature (see
section 5.6).

An interesting technique was reported by Garten and Head (1963, 1966) who
showed that crystalloluminescence occurs during the formation of a three-
dimensional nucleus in solution, and that each pulse of light emitted lasting
less than 10~ s corresponds to a single nucleation event. Nucleation rates thus
measured were close to those predicted from classical theory, with collision
factors in the range 10% to 10’ cm—3s~!. In their work on the precipitation of
sodium chloride in the presence of lead impurities, true homogeneous nuclea-
tion occurred only at very high supersaturations (S > 14). The nucleation
process was envisaged as the development in the solution of a molecular cluster,
as a disordered quasi-liquid, which after attaining critical size suddenly ‘clicks’
into crystalline form. As a result of this high-speed rearrangement, the surface
of the newly formed crystalline particle may be expected to contain large
numbers of imperfections that would encourage further rapid crystalline
growth. As a nucleus appears to be generated in <107s, its steady build-up
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as a crystalline body by diffusion is ruled out (a diffusion coefficient for NaCl
of 105 cm?s gives a formation time more than ten times greater than the
pulse period). These observations, therefore, may be taken as strong evidence
for the existence and development of molecular clusters in supersaturated
solutions.

From their work with sodium chloride Garten and Head suggested that
a critical nucleus can be as small as about 10 molecules. A different order of
magnitude was proposed by Otpushchennikov (1962), who estimated the sizes
of critical nuclei by observing the behaviour of ultrasonic waves in melts kept
just above their freezing point. For phenol, naphthalene and azobenzene, for
example, he suggested that fewer than 1000 molecules constitute a stable
nucleus. In contrast to this, the work of Adamski (1963) with relatively insol-
uble barium salts led to the conclusion that a critical nucleus was about 10~1° g,
and as small as this mass may appear it still represents several million mole-
cules. It is obvious, therefore, that there are still some widely diverging views on
the question of the size of a critical nucleus, but this is not surprising as the
critical size is supersaturation-dependent (equation 5.11) and no consideration
is given to this important variable by any of the above authors.

Agitation is frequently used to induce crystallization. Stirred water, for
example, will allow only about %"C of supercooling before spontaneous nucle-
ation occurs, whereas undisturbed water will allow over 5°C. Actually, very
pure water, free from all extraneous matter, has been supercooled some 40 °C.
Most agitated solutions nucleate spontaneously at lower degrees of supercool-
ing than quiescent ones. In other words, the supersolubility curve (Figure 3.9)
tends to approach the solubility curve more closely in agitated solutions, i.e. the
width of the metastable zone is reduced.

However, the influence of agitation on the nucleation process is probably
very complex. It is generally agreed that mechanical disturbances can enhance
nucleation, but it has been shown by Mullin and Raven (1961, 1962) that an
increase in the intensity of agitation does not always lead to an increase in
nucleation. In other words, gentle agitation causes nucleation in solutions that
are otherwise stable, and vigorous agitation considerably enhances nucleation,
but the transition between the two conditions may not be continuous; a portion
of the curve (see Figure 5.5) may have a reverse slope indicating a region where
an increase in agitation actually reduces the tendency to nucleate. This phe-
nomenon, observed with aqueous solutions of ammonium dihydrogen phos-
phate, magnesium sulphate and sodium nitrate, might be explained by
assuming that agitation effects can lead to the disruption of sub-nuclei or
molecular clusters in the solution (section 3.13).

There has long been an interest in the potential effects on the nucleation
process of externally applied electrostatic or magnetic fields. There is evidence
that both homogeneous nucleation and the duration of the nucleation induc-
tion period (section 5.5) can be influenced. However, the relevance of experi-
mental data, obtained from small-scale investigations under controlled
laboratory conditions, to bulk solutions in flow or agitated conditions normally
encountered in industrial practice (section 9.5) is still the subject of considerable
controversy (Séhnel and Mullin, 1988c). A detailed account of recent theor-
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Critical supersaturation

Agitation

Figure 5.5. Influence of agitation on nucleation, showing a region where increased
agitation can reduce the tendency to nucleate. (After Mullin and Raven, 1962)

etical studies on the effect of electric fields on nucleation has been given by
Kashchiev (2000).

Spinodal decomposition

The existence of concentration fluctuations in a multicomponent fluid system is
an implicit assumption in the Gibbs theory of homogeneous nucleation. Two
types of phase transition (nucleation) have been postulated, viz. composition
fluctuations large in degree and infinitesimal in spatial extent (e.g. an infinites-
imal droplet with properties approaching those of the bulk supercooled phase)
or infinitesimal in degree and large in extent (e.g. continuous changes of phase).
Classical nucleation theory, based on the former postulate, requires the further
assumption that a sharp interface exists between the nucleating (stable) and
supercooled (unstable) phases. The latter mode of transition, known as spinodal
decomposition, does not require this assumption; a diffuse interface may be
considered to exist between the phases.

The underlying theory for spinodal decomposition rests on Gibbs’ derivation
for the limit of stability of a fluid phase with respect to continuous changes of
phase, represented by

PG

=0 (5.19)
ac? T.p

where G is the Gibbs free energy per mole of solution and ¢ is the solution
concentration. On a phase diagram the locus of such points, representing the
limit of stability, is referred to as the spinodal (see Figure 5.6). Thus, for
spinodal decomposition to occur, a spontaneous phase transition is necessary
and the condition

(0*G/oc*) <0 (5.20)

should apply. Within the spinodal region any phase separation can lower
the free energy of the system and no nucleation step is required. Outside
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Figure 5.6. (a) Free energy—composition—temperature surface, showing the location of the
spinodal; (b) temperature—composition graph of the spinodal

this boundary, nucleation is essential to effect a phase change. The spinodal
curve represents the limit of the metastable zone (sections 3.12 and 5.3)
and is characterized by the condition of zero diffusivity (Myerson and Senol,
1984).

5.1.2 Heterogeneous nucleation

The rate of nucleation of a solution or melt can be affected considerably by the
presence of mere traces of impurities in the system. However, an impurity that
acts as a nucleation inhibitor in one case may not necessarily be effective in
another; indeed it may even act as an accelerator. No general rule applies and
each case must be considered separately.

Many reported cases of spontaneous (homogeneous) nucleation are found on
careful examination to have been induced in some way. Indeed, it is generally
accepted that true homogeneous nucleation is not a common event. For
example, a supercooled system can be seeded unknowingly by the presence of
atmospheric dust which may contain ‘active’ particles (heteronuclei). Aqueous
solutions as normally prepared in the laboratory may contain >10° solid
particles per cm? of sizes <1 um. It is virtually impossible to achieve a solution
completely free of foreign bodies, although careful filtration can reduce the
numbers to <10°cm™ and may render the solution more or less immune to
spontaneous nucleation.

Cases are often reported of large volumes of a given system nucleating
spontaneously at smaller degrees of supercooling than small volumes. A plaus-
ible explanation is that the larger samples stand a greater chance of being
contaminated with active heteronuclei. The size of the solid foreign bodies is
important and there is evidence to suggest that the most active heteronuclei in
liquid solutions lie in the range 0.1 to 1 pm.

Heteronuclei play an important role in atmospheric water condensation or
ice formation (Mason, 1957). Atmospheric nuclei have been classified as ‘giant’
(10 to 1um) which remain airborne for limited periods only, ‘large’ (1 to
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0.2 um) and ‘Aitken’ (0.2 to 0.005 um). Particles smaller than about 10~* um are
not normally found in air because they readily aggregate. Aitken nuclei are so
called because they are active at the supersaturations produced in an Aitken
counter, an apparatus in which a known volume of air is rapidly expanded;
water droplets, formed on the particles, settle and are counted microscopically.
Aitken nuclei, which occur ~10* to 10° cm™3 in the atmosphere, result from
industrial smokes and vapours, ocean salts arising from spindrift, land dusts,
particles from volcanic eruptions and even from outer space (Faraday Discus-
sions, 1998).

As the presence of a suitable foreign body or ‘sympathetic’ surface can
induce nucleation at degrees of supercooling lower than those required for
spontaneous nucleation, the overall free energy change associated with the
formation of a critical nucleus under heterogeneous conditions AG/,, must
be less than the corresponding free energy change, AG,;, associated with
homogeneous nucleation, i.e.

AG . = ¢AGeri (5.21)

crit

where the factor ¢ is less than unity.

It has been indicated above, e.g. equation 5.9, that the interfacial tension, =,
is one of the important factors controlling the nucleation process. Figure 5.7
shows an interfacial energy diagram for three phases in contact; in this case,
however, the three phases are not the more familiar solid, liquid and gas, but
two solids and a liquid. The three interfacial tensions are denoted by ~
(between the solid crystalline phase, ¢, and the liquid 1), v (between another
foreign solid surface, s, and the liquid) and . (between the solid crystalline
phase and the foreign solid surface). Resolving these forces in a horizontal
direction

Vsl = Yes + Vel €OS (5.22)

or

cos = 1 Tes (5.23)

Vel

The angle 0, the angle of contact between the crystalline deposit and the foreign
solid surface, corresponds to the angle of wetting in liquid—solid systems.

Ya

Liquid (L)

Crystalline
deposit (¢)
Yes 9 Y
Solid surface (s)

Figure 5.7. Interfacial tensions at the boundaries between three phases (two solids, one
liquid)
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The factor ¢ in equation 5.21 can be expressed (Volmer, 1939) as

(2 +cosB)(1 — cosb)

5.24
¢ ; (5.24)
Thus, when 6 = 180°, cosd = —1 and ¢ = 1, equation 5.21 becomes

AG; = Al (5.25)
When @ lies between 0 and 180°, ¢ < 1; therefore

AG; < AGeit (5.26)
When 6§ =0, ¢ =0, and

AG; =0 (5.27)

The three cases represented by equations 5.25-5.27 can be interpreted as
follows. For the case of complete non-affinity between the crystalline solid and
the foreign solid surface (corresponding to that of complete non-wetting in
liquid—solid systems), 8 = 180°, and equation 5.25 applies, i.e. the overall free
energy of nucleation is the same as that required for homogeneous or spontan-
eous nucleation. For the case of partial affinity (cf. the partial wetting of a solid
with a liquid), 0 < 6 < 180°, and equation 5.26 applies, which indicates that
nucleation is easier to achieve because the overall excess free energy required is
less than that for homogeneous nucleation. For the case of complete affinity
(cf. complete wetting) § = 0, and the free energy of nucleation of zero. This case
corresponds to the seeding of a supersaturated solution with crystals of the
required crystalline product, i.e. no nuclei have to be formed in the solution.
Figure 5.8 indicates the relationship between ¢ and 6.

As mentioned above, the heterogeneous nucleation of a solution can occur
by seeding from embryos retained in cavities, e.g. in foreign bodies or the walls

1.0
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S
d
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d
"
< =
0 90 180

Contact angle, 8

Figure 5.8. Ratio of free energies of homogeneous and heterogeneous nucleation as a
function of the contact angle



Nucleation 195

of the retaining vessel, under conditions in which the embryos would normally
be unstable on a flat surface. This problem has been analysed by Turnbull
(1950) for different types of cavity. The maximum diameter of a cylindrical
cavity which will retain a stable embryo is given by

4~ cos 6

TAG, (5.28)

dmax =
where AG, is the volume free energy for the phase transformation. If the system
is heated, this reducing the supersaturation or supercooling and eliminating all
embryos in cavities larger than dy,x, and subsequently cooled, the embryos
retained in the cavities smaller than dp,x will grow to the mouth of the cavity.
They will then act as nuclei only if the cavity size dpyax > 2rc, where r. is the size
of a critical nucleus (equation 5.3 or 5.13).

5.2 Secondary nucleation

A supersaturated solution nucleates much more readily, i.e. at a lower super-
saturation, when crystals of the solute are already present or deliberately
added. The term secondary nucleation will be used here for this particular
pattern of behaviour to distinguish it from so-called primary nucleation (no
crystals initially present) discussed in section 5.1. There have been several
comprehensive reviews of the literature on secondary nucleation (Strickland-
Constable, 1968; Botsaris, 1976; de Jong, 1979; Garside and Davey, 1980;
Garside, 1985; Nyvlt et al., 1985).

Among the early papers on this subject may be mentioned the work of Ting
and McCabe (1934) who demonstrated that solutions of magnesium sulphate
nucleated in a more reproducible manner at moderate supersaturations in the
presence of seed crystals. Similar observations were made in studies with copper
sulphate (McCabe and Stevens, 1951).

A particular type of secondary nucleation in KBr solutions was interpreted
by Gyulai (1948) as evidence for a ‘transitional boundary layer’ of partially
integrated units which could be stripped off the crystal surfaces by fluid
motion. This behaviour was demonstrated by Powers (1963), in a series of
simple experiments, showing that the movement of a sucrose crystal in a
supersaturated solution, or the movement of the solution past a stationary
crystal, produced nuclei. Inert replicas of the crystals did not produce nuclei
under the same conditions. These results tended to suggest that a fluid mechan-
ical shearing of weak outgrowths or loosely bonded units from the crystal—
solution interface was responsible. Sung, Estrin and Youngquist (1973) have
also invoked the concept of fluid shear in an agitated vessel as a mechanism for
generating embryos (sub-nuclei) which develop into stable nuclei when swept
into regions of high supersaturation.

Strickland-Constable (1968) described several possible mechanisms of sec-
ondary nucleation, such as ‘initial’ breeding (crystalline dust swept off a newly
introduced seed crystal), ‘needle’ breeding (the detachment of weak out-
growths), ‘polycrystalline’ breeding (the fragmentation of a weak polycrystalline
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mass) and ‘collision’ breeding (a complex process resulting from the interaction
of crystals with one another or with parts of the crystallization vessel).

5.2.1 Contact nucleation

Clontz and McCabe (1971) showed that at moderate levels of supersaturation,
crystal contacts readily caused secondary nucleation of MgSO, - 7TH,O, but
crystal-crystal contacts gave up to five times as many nuclei as did crystal-
metal rod contacts. Furthermore, the faster growing faces produced fewer
nuclei than did the slower growing faces (Johnson, Rousseau and McCabe,
1972) indicating a connection between secondary nucleation and the crystal
growth process.

Collisions in a liquid medium can initiate complex behaviours. Fracture may
occur at the point of contact, but substantial hydrodynamic forces can operate
over the surfaces in the vicinity of the point of contact, giving rise to plastic and
elastic deformation in the parent crystal. Due to energy absorption, a small
fragment broken off a crystal by collision could be in a considerably disordered
state, with many dislocations and mismatch surfaces: in fact, it may be nearer
to an amorphous glassy condition than to a crystal (Strickland-Constable,
1979). It is not surprising, therefore, that these small crystalline fragments often
grow much more slowly than macrocrystals. Indeed, cases have been recorded
where they do not grow at all (Bujac, 1976; van’t Land and Wienk, 1976).
Ristic, Sherwood and Shripathi (1991) suggest that the formation of varying
numbers of dislocations and the development of elastic strain in the new inter-
face are the two main reasons for growth rate dispersion (section 6.2.7) in
attrition fragments smaller than about 150 um.

Crystal-agitator contacts are prime suspects for causing secondary nucle-
ation in crystallizers, although only those crystals that manage to penetrate the
fluid boundary layer around the blade will actually be hit. The probability of
such an impact is directly proportional to the rotational speed of the agitator
(Nienow, 1976). The relative hardness of the contacting bodies is also a factor
to consider: a metal impeller gives a much higher nucleation rate than one
coated with a soft material such as polyethylene (Shah, McCabe and Rousseau,
1973; Randolph and Sikdar, 1974; Ness and White, 1976; Toyokura, Yamazoe
and Mogi, 1976).

Energy—impact models have been developed from the results of attrition and
breakage studies in agitated vessels using crystals suspended in inert liquids
(Fasoli and Conti, 1976; Nienow and Conti, 1978). A generalized model to
quantify nucleation by mechanical attrition, based on Rittinger’s law for the
energy required for producing new surface and the additivity of two attrition
processes due to crystal-crystal and crystal-impeller collisions, has been pro-
posed by Kuboi, Nienow and Conti (1984).

Several hydrodynamic models of secondary nucleation in agitated crystal-
lizers were applied to experimental data obtained from a 6-L agitated batch
crystallizer using potassium sulphate by Shamlou, Jones and Djamarani (1990).
They concluded that the secondary nuclei were produced by an attrition
process with a turbulent fluid-induced mechanism with critical eddies in the
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viscous dissipation subrange of the turbulent energy spectrum. An empirical
attrition model, which relates crystal attrition to crystal size and hold-up, was
developed by Jager et al. (1991) from data obtained with a 20-L continuous
evaporative crystallizer using ammonium sulphate.

Direct observation of impact-induced microattrition at the surfaces of potash
alum crystals immersed in supersaturated solution (Garside, Rusli and Larson,
1979) indicated that the majority of the fragments produced were in the
1-10 um size range and had a supersaturation-dependent size distribution.
Impact energy and the frequency of impact also have an important influence
on the number of crystals resulting from contact secondary nucleation (Larson,
1982).

Crystalline fragments smaller than about 1 um probably do not survive in an
agitated crystallizer where fluctuations of both temperature and supersatura-
tion commonly occur. The so-called ‘survival theory’ (Garabedian and Strick-
land-Constable, 1972) is based on the Gibbs—-Thomson effect (section 3.7)
which suggests that microcrystals can dissolve in solutions that are supersatur-
ated with respect to macrocrystals.

The production of breakage fragments, i.e. secondary nuclei, may not always
be a direct result of crystal interactions or collisions. Chernov, Zaitseva and
Rashkovich (1990) have shown that growing crystals containing dislocations,
defects or inclusions are prone to secondary nucleation through the develop-
ment of internal stresses which lead to crack formation and the subsequent
production of breakage fragments, i.e. secondary nuclei. Crack propagation
initiated by the adsorption of impurity species at defects on crystal surface was
earlier suggested by Sarig and Mullin (1980) as a possible explanation of an
observed phenomenon of crystal breakdown in a gently agitated suspension in
a just-saturated solution that also contained a trace amount of a substance that
was known to be an active habit modifier.

5.2.2 Seeding

Probably the best method for inducing crystallization is to inoculate or seed
a supersaturated solution with small particles of the material to be crystallized.
Deliberate seeding is frequently employed in industrial crystallization to effect
a control over the product size and size distribution (section 7.5.5).
Atmospheric dust frequently contains particles of the crystalline product
itself, especially in industrial plants or in laboratories where quantities of the
material have been handled. Fortuitous seeding from this source can serve to
prevent the crystallization of thermodynamic unstable phases, e.g., hydrates or
polymorphs, that might otherwise appear (Ostwald’s rule of stages, section 5.7).
Seed crystals, however, do not necessarily have to consist of the material
being crystallized in order to be effective; isomorphous substances will fre-
quently induce crystallization. For example, phosphates will often nucleate
solutions of arsenates; sodium tetraborate decahydrate (borax) can nucleate
sodium sulphate decahydrate; phenol can nucleate m-cresol; and so on. The
success of silver iodide, as an artificial rain-maker, is generally attributed to the
striking similarity of the Agl and ice crystal lattices. However, there are many
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cases where lattice similarity does not exist and undoubtedly other factors have
to be considered. Micro-organisms like Pseudomonas syringae, for example,
have been used commercially as ice nucleators in the snow-making process
(Liao and Ng, 1990).

In laboratory and large-scale crystallizations the first sign of nucleation often
appears in one given region of the vessel, usually where there is a local high
degree of supersaturation, such as near a cooling surface or at the surface of
the liquid. On the other hand, it is not uncommon to find some particular spot
on the vessel wall or on the stirrer acting as a crystallization centre. The most
reasonable explanation of this phenomenon is that minute cracks and
crevices in the surface retain tiny crystals from a previous batch which seed
the system when it becomes supercooled. It is possible, of course, for some part
of a metal or glass surface to be in a condition in which it acts as a catalyst for
nucleation.

Melia and Moffitt (1964) studied secondary nucleation in aqueous solutions
of KClI and reported that the nucleation rate was independent of the number of
seeds added. At a constant cooling rate a time-lag or induction period (section
5.5) was recorded before secondary nucleation commenced. Cayey and Estrin
(1967) also observed an induction period with seeded solutions of MgSQOy in a
2-L agitated crystallizer and reported a strange effect of the quantity of seeds
added: one seed (~1mm, <2mg) was more effective in inducing nucleation
than 50 mg, but less effective than 500 mg. This anomaly, however, was not
pursued. They also reported that a crystal was not capable of giving rise to fresh
nuclei until it had reached a critical size of around 220 um. Rousseau, Li and
McCabe (1976) suggested a critical size of about 200 pm. Toyokura, Mogi and
Hirasawa (1977) reported that crystals smaller than about 100 pm did not
produce secondary nuclei in a fluidized bed with solutions of K alum super-
cooled by 3°C. Using the same system at a lower supercooling (2°C) in an
agitated vessel, Kubota and Fujiwara (1990) demonstrated that the critical size
could vary between about 200 and 500 um depending on the agitator speed and
its material of construction.

There are several reasons why the seed crystal size may be influential in
secondary nucleation. For example, large seeds generate more secondary nuclei
in agitated systems than do small seeds because of their greater contact prob-
abilities and collision energies. Indeed, very small crystals can follow the
streamlines within the turbulence eddies in vigorously agitated solutions,
behaving essentially as if they were suspended in a stagnant fluid, rarely coming
into contact with the agitator or other crystals. Other factors to consider are
that crystals smaller than about 10 pm probably grow much more slowly than
do macrocrystals (section 6.2.7) and, as mentioned above, some damaged
crystal fragments may not be capable of growing at all.

Secondary nucleation was observed to occur in a series of pulses, mainly
during the latent period (section 5.4), when citric acid solutions were seeded in
an agitated vessel (Mullin and Leci, 1972). The secondary nucleation rate
decreased with an increase in the seed size or in the number of seeds of a given
size. The latent period was drastically reduced by decreasing the seed size, but
was relatively unaffected by the number of seeds added. Increased supersatura-
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tion increased secondary nucleation and decreased the latent period. Increased
agitation increased the desupersaturation rate to a maximum and decreased the
latent period to a minimum. No evidence of fluid mechanical shearing was
found, and a mechanism of secondary nucleation based on molecular cluster
formation in solution was proposed.

Belyustin and Rogacheva (1966) studied the nucleation of MgSO, - 7H,0
which crystallizes in enantiomorphic forms (section 1.9) at room temperature.
When this salt nucleated spontancously (unseeded), the product crystals were
mostly left-handed. When the solution was seeded with right-handed crystals,
the number of product crystals increased and the percentage of left-handed
crystals in the total product decreased. Increases in solution velocity and super-
saturation in the presence of a right-handed seed both led to decreases in the
percentage of right-handed crystals in the product. They concluded, however,
that secondary nucleation in these cases was not caused by fragmentation.
Because filtration of the solution retarded both seeded and unseeded nucleation
they proposed that foreign particles (heteronuclei) coming into contact with the
seed crystals became activated and initiated nucleation.

In a similar study, Denk and Botsaris (1972) studied the seeded nucleation of
sodium chlorate enantiomorphs in non-agitated solution and attempted to
distinguish between nuclei originating from either the solution or a fixed single
crystal suspended in the solution. At high supercoolings (>12 °C) when primary
nucleation was considered to be the dominant mode, the crystals that devel-
oped were found to be roughly 50:50 p- and L-forms. At supercoolings
between 12 and 4°C, however, virtually 100% of the developed crystals were
of the same form as the suspended seed, indicating that the nuclei were derived
directly from the parent crystal. At supercoolings below about 4 °C the propor-
tion fell to around 60% (Figure 5.9).

The use of selective seeding as a method for separating solutes in solutions
supersaturated with two salts was proposed by Rousseau and O’Dell (1980).
Supersaturated aqueous solutions of potassium sulphate together with either
potassium chloride or dichromate were seeded with one of the solutes to cause
secondary nucleation of that substance. After recovering the developed crystals
by filtration, the filtrate was seeded with the second solute to complete the
separation.

Unintentional seeding

The deliberate use of seed crystals is common practice in both research labor-
atory, e.g., to encourage the crystallization of a ‘difficult’ substance, and in
industrial plant to exert control over the crystal size distribution of the final
product (section 8.4.5). On the other hand, unintentional seeding, also fre-
quently encountered in both laboratory and industry, is an uncontrolled event
which can often cause considerable frustration and trouble.

The technical literature abounds with tales, some dating back over 150 years,
of problems caused by the perverse behaviour of crystallizing systems (e.g.,
Buckley, 1952; Woodward and McCrone, 1975; Dunitz and Bernstein, 1995).
Xylitol, for example, first prepared in 1891 was considered to be a liquid until
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Figure 5.9. Seeded nucleation of sodium chlorate enantiomorphs in non-agitated solution.
(After Denk and Botsaris, 1972)

1941 when a solid form melting at 61 °C unexpectedly crystallized. Two years
later, another form melting at 94 °C appeared, after which subsequent attempts
to prepare the lower melting (less stable) polymorph have been unsuccessful.
Benzophenone and the sugars melibiose, levulose and turanose are all examples
of former liquids that are now regularly produced in crystalline form. Single
piezoelectric crystals of anhydrous ethylene diamine tartrate were manufac-
tured on the industrial scale for many years until suddenly at one plant
a monohydrate nucleated and grew preferentially. Within weeks the affliction
spread to a second plant many miles away. In another case, ampicillin, a broad-
spectrum penicillin, could be readily crystallized as either an anhydrate or
a trihydrate. Several years later a monohydrate made its appearance, since when
the anhydrate has never been prepared. The secure patenting of pharmaceutical
products, usually done at a relatively early stage of the laboratory investigations,
long before industrial production, has become a complex and difficult matter.
Undoubtedly, many of the above and other examples have been caused by
unintentional seeding. Reference has already been made in section 5.1.2 to the
role atmospheric dust can play as a nucleating agent, noting that even foreign
bodies in the dust can also act as nucleation promoters. Once a certain crystal-
line form has been prepared in a laboratory or plant, the working atmosphere
inevitably becomes contaminated with seeds of the particular material. If later
a thermodynamically more stable polymorph or hydrate (pseudopolymorph)
appears, then seeds of this too will enter the atmosphere and play a dominant
role. However, it is the speed with which another laboratory or plant, often
some large distance apart, sometimes even in another country, also become
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contaminated that has led to suggestions of ‘world-wide seeding’, a phenom-
enon which cannot be justified. Seeding is essentially a local problem. There are
innumerable ways in which seeds can be transferred from one location to
another without assuming that every spot on the earth has become inoculated.
For example, personnel travel widely and inadvertently carry contaminating
seeds with them. Samples of the material are frequently passed from one
location to another, and so on. As Dunitz and Bernstein (1995) say in their
entertaining and highly informative paper: “‘We believe that once a particular
polymorph has been crystallized it is always possible to obtain it again; it is only
a matter of finding the right experimental conditions’.

5.3 Metastable zone widths

The lack of success of the classical nucleation theories in explaining the beha-
viour of real systems has led a number of authors to suggest that most primary
nucleation in industrial crystallizers is heterogeneous rather than homogeneous
and that empirical relationships such as

J =k, Al

max

(5.29)

are the only ones that can be justified. J is the nucleation rate, k,, the nucleation
rate constant and Acnyax the maximum allowable supersaturation (or meta-
stable zone width). The exponent n, which is frequently referred to as the
apparent order of nucleation, has no fundamental significance. It does not give
an indication of the number of elementary species involved in the nucleation
process.

However, equation 5.29 is not entirely empirical since it can be derived from
the classical nucleation relationship (equation 5.9) (Nielsen, 1964; Nyvlt, 1968).
The nucleation rate may be expressed in terms of the rate at which super-
saturation is created by cooling, viz.

T = qb (5.30)

where § = —df/dt and ¢ is the mass of crystalline substance deposited per unit
mass of ‘free’ solvent present when the solution is cooled by 1°C. ¢ is a function
of the concentration change and of the crystallizing species. In general,

de*
=49
where € = R/[1 — ¢(R — 1)I*. R is the ratio of the molecular weights of hydrate:
anhydrous salt and ¢ is the solution concentration expressed as mass of anhy-
drous solute per unit mass of solvent at a given temperature.
The maximum allowable supersaturation, Acpm,x, may be expressed in terms
of the maximum allowable undercooling, Af.x:

Alimax = (di) Abpax (5.32)

(5.31)

dé
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so equation 5.29 can be rewritten as

de* - de* "
€<d0>9= kn{<@> A@maX:| (5.33)

or, taking logarithms,

*

logf = (n— 1)log (c;%) — loge + logk, + nlog Abmax (5.34)
which indicates that the dependence of 1og 6 on log Afp.y is linear with a line of
slope n.

Although equation 5.34 can be useful for characterizing the metastability of
crystallizing systems, as will be described below, it is no longer regarded as a
reliable indicator of the nucleation kinetics alone. The over-simplification in the
above analysis is that it assumes that at the moment when nuclei are first
detected the rate of supersaturation is equal to the rate of nucleation, but the
true situation is rather more complex. The created supersaturation is dissipated
in two ways, partly by growth on existing crystalline particles and partly by the
formation of new nuclei. Further, in the experimental determination of the
metastable limit, nuclei are not detected at the moment of their creation but at
some later time when they have grown to visible size (at say about 10 um). In
other words, the results of such measurements are dependent not only on
nucleation but also on the subsequent crystal growth process.

Recognizing this fact, Nyvlt (1983) proposed a refinement of the theoretical
analysis and concluded that for unseeded solutions the slope of the

log Abf.x versus log 6

line is not equal to n but to (3g + 4 + n)/4 where g is the apparent ‘order’ of the
growth process (equation 6.18).

Janse and de Jong (1978) have warned that attempts to evaluate crystal-
lization kinetics from metastable zone width evidence should be treated with
caution, while Kubota, Kawakami and Tadaki (1986) have suggested that the
cooling rate dependence of Af,.x can reasonably be explained by a random
nucleation model. Other detailed analyses of metastable zone width measure-
ments and their relationship to nucleation and growth kinetics have been made
by Mullin and Janci¢ (1979) and S6hnel and Mullin (1988b).

The simple apparatus shown in Figure 5.10 (Mullin, Chakraborty and
Mehta, 1970), based on an earlier one devised by Nyvit (1968), can be used
to determine equilibrium solubilities (section 3.9) as well as metastable zone
widths (section 3.12). About 40mL of nearly saturated solution of known
concentration is placed in the 50-mL flask and rapidly cooled until nucleation
commences. The contents of the flask are then slowly heated. The cooling and
heating sequences may be effected by means of the water jacket, as shown, or
by an externally operated cold/hot air blower. On approaching the saturation
temperature the heating rate is reduced to about 0.2 °C/min. The temperature
at which the last crystalline particle disappears is taken as the saturation
temperature, 6*.
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Figure 5.10. Apparatus for measuring metastable limits in agitated solutions: A, cooling
water-bath; B, pump; C, flow meter; D, magnetic stirrer; E, Perspex water jacket;
F, thermometer

The nucleation temperature is measured in a similar way. The flask contain-
ing the solution of known concentration is warmed to about 4 or 5° higher than
the saturation temperature. A steady rate of cooling is maintained and the
temperature at which nuclei first appear is recorded. The difference between the
saturation and nucleation temperatures is the maximum allowable undercool-
ing, Afn.x, corresponding to a particular cooling rate 6.

Nucleation temperatures in the presence of crystalline materials can be
determined by a procedure similar to that for the measurement of unseeded
data by introducing two small crystals (~2 mm in size) into the flask when the
solution has cooled to its predetermined saturation temperature.

The variation of the maximum allowable undercooling Af,y with the cool-
ing rate 6 for aqueous solutions of ammonium sulphate (Mullin, Chakraborty
and Mehta, 1970) is shown in Figure 5.11. The lines for seeded and unseeded
solutions are not parallel; the seeded points lie approximately 1.5-2°C below
the unseeded. The slopes of the lines for seeded and unseeded solutions are
approximately 2.6 and 6.4, respectively, which indicates that the mechanisms of
primary and secondary nucleation are different. The best straight lines through
the data yield the relationships

6= (1.38 £ 0.9)AG>%4*092  seeded (secondary)
and
6= (1.28 £0.91) x 107 2A0$3*192  ynseeded (primary)

which give a measure of the scatter of the data. The maximum allowable
undercoolings for seeded and unseeded solutions are more or less independent
of the saturation temperature over the range 20-40°C, but do depend on the
rate of cooling. At low rates of cooling (~5°C/h) the values are about 1.8 and
3.8°C for seeded and unseeded solutions, respectively, of ammonium sulphate
compared with 3.5 and 5°C for a cooling rate of 30 °C/h.
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Figure 5.11. Nucleation characteristics of ammonium sulphate aqueous solution: (a) pure
solutions, seeded and unseeded, (b) effect of impurities in seeded solutions. The broken line
represents data from (a). (After Mullin, Chakraborty and Mehta, 1970)

Undercooling data obtained from unseeded solutions have little or no indus-
trial relevance. In fact it is often impossible to obtain consistent ‘unseeded’
values for many aqueous solutions, e.g. sodium acetate, sodium thiosulphate
and citric acid. For crystallizer design purposes, the lowest ‘seeded’ value
should be taken as the maximum allowable undercooling, and the working
value of the undercooling should be kept well below this.

Some typical maximum allowable undercoolings in seeded solutions are
given in Table 5.1. 1t should be noted that although the values of Af,,x for
any two substances may be similar, the values of the supersaturation, Acpmax
and S, may be very different. The relationship between the two quantities is

Table 5.1. Maximum allowable undercooling®, AOn., for some common aqueous salt
solutions at 25 °C (measurements made in the presence of crystals under conditions of slow
cooling (~5°C/h) and moderate agitation)

Substance °C Substance °C Substance °C  Substance °C
NHyalum 3.0 MgSO4 - 7H,0O 1.0 Nal 1.0 KBr 1.1
NH,4CI 0.7 NiSOy4 - 7TH,O 4.0 NaHPO,-12H,O 04 KCI 1.1
NH4NO, 0.6 NaBr-2H,0O 0.9 NaNOj 0.9 KI 0.6
(NH4)2SO4 1.8 Na2C03 . IOHzo 0.6 NaN02 0.9 KH2P04 9.0
NH4H,POy4 2.5 NayCrOy4 - 10H,O 1.6 Na,SO4-10H,O 0.3 KNOj3 0.4
CHSO4 . 5H20 1.4 NaCl 1.0 N’szzO3 . 5H20 1.0 KN02 0.8
FeSO4 - 7H,O 0.5 Na,B407-10H,O 4.0 K alum 4.0 K,SOq4 6.0

*The working value for normal crystallizer operation may be 50% of these values, or lower. The
relation between Afn.x and Acmax 1S given by equation 5.32.
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given by equation 5.32. For example, Afp,x = 1°C for both sodium chloride
and sodium thiosulphate, but the corresponding values of Acpax are 0.25
and 18 g of crystallizing substance per kg of solution and S ~ 1.01 and 1.4,
respectively.

It has long been known that the metastable zone width can be greatly
affected by the thermal history of the solution. A solution that has been kept
for an hour or so at a temperature sufficiently higher than the saturation
temperature will be found to have a wider metastable zone than if it had been
kept only slightly above the saturation temperature. The higher the preheating
and the longer the solution is maintained at that temperature, the higher the
supersaturation at which nucleation commences. Preheating also increases the
induction period (section 5.5) and decreases the number of crystals formed
(Sohnel and Garside, 1992). The influence of thermal history has often been
attributed to the deactivation of heteronuclei in the solution, but an alternative
view is that preheating changes the solution structure and influences the sub-
critical cluster sizes (Nyvlt et al., 1985).

The experimental measurement of industrially meaningful metastable zone
widths can be very time consuming. For this reason Mersmann and Bartosch
(1998) have proposed a theoretical model claimed to be able to predict working
values for the design of seeded batch crystallizers. A number of basic assump-
tions are made. First, that the secondary nucleation is not caused by attrition
between seed crystals, but by surface nucleation on the seeds which develop into
outgrowths and later detach. This mode of behaviour was first analysed by
Nielsen (1964) and given the name ‘needle breeding’ by Strickland-Constable
(1979). It is further assumed that the development of the outgrowths is con-
trolled by the integration step (section 6.1.4) and that the shower of detectable
nuclei that marks the onset of secondary nucleation occurs when the volumetric
hold-up of crystals in the vessel is between 10~* and 10~° (m® crystals/m?
suspension) corresponding to a detectable size of ~10 um.

5.4 Effect of impurities

The presence of impurities in a system can affect nucleation behaviour very
considerably. It has long been known, for example, that the presence of small
amounts of colloidal substances such as gelatin can suppress nucleation in
aqueous solution, and certain surface-active agents also exert a strong inhibit-
ing effect. Traces of foreign ions, especially Cr** and Fe**, can have a similar
action on inorganic salts, as can be seen from the data recorded in Figure 5.11b.

It would be unwise to attempt a general explanation of the phenomenon of
nucleation suppression by added impurities with so little quantitative evidence
yet available, but certain patterns of behaviour are beginning to emerge. For
example, the higher the charge on the cation the more powerful the inhibiting
effect, e.g. Cr’t > Fe’* > APt > Ni** > Nat. Furthermore there often
appears to be a ‘threshold’” concentration of impurity above which the inhibit-
ing effect may actually diminish (Mullin, Chakraborty and Mehta, 1970). The
modes of action of high molecular weight substances and cations are probably
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quite different. The former may have their main action on the heteronuclei,
rendering them inactive by adsorbing on their surfaces, whereas the latter may
act as structure-breakers in the solution phase.

Other suggestions have been made for the action of impurities. For example,
Botsaris, Denk and Chua (1972) suggested that if the impurity suppresses
primary nucleation, secondary nucleation can occur if the uptake of impurity
by the growing crystals is significant; the seed crystal creates an impurity
concentration gradient about itself; the concentration of impurity near the
crystal surface becomes lower than that in the bulk solution; and if it is reduced
low enough, nucleation can occur. Another possibility is that certain impurities
could enhance secondary nucleation by adsorbing at defects on existing crystal
surfaces and, by initiating crack propagation, render the crystals prone to
disintegration (Sarig and Mullin, 1980). Kubota, Ito and Shimizu (1986), on
the other hand, have interpreted the effects of ionic impurities on contact
secondary nucleation by a random nucleation model.

The presence of soluble impurities can also affect the induction period, fuq
(section 5.5), but it is virtually impossible to predict the effect. lonic impurities,
especially Fe’* and Cr’*, may increase the induction period in aqueous
solutions of inorganic salts. Some substances, such as sodium carboxymethyl-
cellulose or polyacrylamide, can also increase fj,q, whereas others may have
no effect at all. The effects of soluble impurities may be caused by changing
the equilibrium solubility or the solution structure, by adsorption or chemisorp-
tion on nuclei or heteronuclei, by chemical reaction or complex formation
in the solution, and so on. The effects of insoluble impurities are also
unpredictable.

The effects of soluble impurities on crystal growth and crystallization
processes in general are discussed in more detail in sections 6.2.8 and 6.4,
respectively.

5.5 Induction and latent periods

A period of time usually elapses between the achievement of supersaturation
and the appearance of crystals. This time lag, generally referred to as an
‘induction period’, is considerably influenced by the level of supersaturation,
state of agitation, presence of impurities, viscosity, etc.

The existence of an induction period in a supersaturated system is contrary to
expectations from the classical theory of homogeneous nucleation (section
5.1.1), which assumes ideal steady-state conditions and predicts immediate
nucleation once supersaturation is achieved. The induction period may
therefore be considered as being made up of several parts. For example, a
certain ‘relaxation time’, #., is required for this system to achieve a quasi-
steady-state distribution of molecular clusters. Time is also required for the
formation of a stable nucleus, #,, and then for the nucleus to grow to a
detectable size, #,. So the induction period, ti,q, may be written.

find =t +ta + 1g (5.35)
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It is difficult, if not impossible, to isolate these separate quantities. The
relaxation time depends to a great extent on the system viscosity and, hence,
diffusivity. Nielsen (1964) has suggested that # ~ 107D~ where
D = diffusivity (m?>s~!). In an aqueous solution of an electrolyte, with
D ~ 102 m?s™!, the relaxation time would be about 10~%s. In highly viscous
systems, however, values of D can be extremely low and # accordingly very
high. Indeed, some systems can set to a glass before nucleation occurs. The
nucleation time depends on the supersaturation which affects the size of the
critical nucleus (section 5.1.1), but its estimation is the subject of speculation
(Séhnel and Mullin, 1988a). The growth time depends on the size at which
‘nuclei’ are detectable and the growth rate applicable to this early stage of
development. This latter quantity is difficult to predict since the rate of growth
of a nucleus cannot be assumed to have the same order of magnitude as that of
a macrocrystal: the mechanism and rate may well be quite different (section
6.2.7).

In some systems, particularly at low supersaturation, another time lag may
be observed. To distinguish it from the induction period, defined above as the
point at which crystals are first detected in the system, the term ‘latent period’
will be used, and is defined here as the onset of a significant change in the
system, e.g. the occurrence of massive nucleation or some clear evidence of
substantial solution desupersaturation.

Figure 5.12 indicates some of these events diagrammatically on a typical
desupersaturation curve. Supersaturation is created at zero time (point A4)
and a certain induction time #,q elapses before crystals are first detected (B).
This point, of course, is not the nucleation time #,(B’) since critical-sized nuclei
cannot be detected; they need a certain time (¢j,q — #,) to grow into crystals of
detectable size. However, at point B, and often for a considerable time after-
wards, no significant changes in the solution may be detected until, at point C,
sometimes referred to as the end of the latent period, fp, rapid desupersatura-
tion occurs (D). Crystal growth predominates during the desupersaturation
region. Towards the end of the gradual approach to equilibrium, E, which
may take hours or days, an ageing process may occur (section 7.2.2). At very
high supersaturations, the induction time and latent period can be extremely
short and virtually indistinguishable.

The presence of seed crystals generally reduces the induction period, but does
not necessarily eliminate it. Even if the system is seeded at time ¢ =0,
a measurable induction period f,g may elapse before new crystals are detected.
By definition, these are ‘secondary’ nuclei and they may appear in several
bursts throughout the latent period, making it difficult to attach any real
significance to the induction time itself. For these reasons it may be preferable
to record the latent period as the more practical characteristic of the system.
Factors that can influence the induction and latent periods and the rate of
desupersaturation are temperature, agitation, heat effects during crystalliza-
tion, seed size, seed surface area and the presence of impurities.

Induction periods are often measured visually, but a different result can
be recorded if new crystalline matter in the system is detected by more sens-
itive means, e.g. by laser light scattering or electric zone sensing methods
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Solution concentration

Figure 5.12. A desupersaturation curve (diagramatic): ¢* = equilibrium saturation,
tn = nucleation time, tinq = induction time, t\, = latent period

(section 2.14.2). This variability serves to emphasize the fact that an experi-
mentally determined #,4 is not, by itself, a fundamental characteristic of a
crystallizing system.

In practice, the determination of f#,q by conventional methods presents few
problems so long as it exceeds about 10s. For example, reacting solutions may
be quickly mixed in an agitated vessel and the time recorded when the first
physical property change or the first crystals are detected (Mullin and Osman,
1973). Serious complications can arise, however, when f;,4 is less than about 5
because the mixing time in a simple vessel could be comparable with or even
exceed the measured induction time. For the successful measurement of short
induction periods, therefore, two things are essential: (1) very rapid mixing and
(2) a fast sensitive method for the detection of the appropriate system changes.

A useful technique for the precipitation of relatively insoluble electrolytes is
the stopped-flow method (S6hnel and Mullin, 1978b). If two stable solutions,
which react to form a supersaturated solution of the reactant, are mixed
together instantaneously, no detectable changes occur for some time. However,
as soon as the reactant starts to precipitate the concentration of the electrically
conductive species begins to decrease and this causes the solution conductivity
to diminish. The period of conductivity steadiness is inversely proportional to
the supersaturation, and for highly supersaturated solutions it can be less than
a millisecond.

A precipitation cell made of Perspex (overall dimensions 100 x 60 x 40 mm)
is shown in Figure 5.13. The two reactant solutions (5mL each) are placed in
the separate 10-mm diameter chambers, 4, from where they are displaced by
the twin piston, B, into the mixing chamber, C. The twin piston is rapidly
plunged by hand, an operation that takes less than 0.1s, and a microswitch,
situated at the lowest position of the piston, is triggered when the piston stops
at the bottom of the feedstock chambers. Two platinum electrodes, D, are
located in the 4-mm diameter outlet channel, E, at a distance of 15mm from
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Figure 5.13. Precipitation cell. (A) reactant solution chambers; (B) twin pistons; (C) mixing
chamber; (D) disc electrodes; (E) outlet channel. (After Sohnel and Mullin, 1978b)

the mixing chamber in such a way that they do not obstruct the liquid flow. The
detection equipment includes a storage oscilloscope which permits time
measurements from 10s to 1 ps. A microswitch triggers the oscilloscope sweep.

The sensitivity of the method may be estimated as follows. Two solutions are
forced into the mixing chamber where they react to form a supersaturated
solution of the reactant. The supersaturated solution then travels down the
outlet channel. At some distance, /, from the mixing chamber, the first detect-
able change in conductivity occurs. The distance, /, which depends on both the
liquid velocity and the level of supersaturation achieved, is a constant while
liquid is flowing in the channel, assuming steady-state conditions. However,
when the flow stops, i.e. when the mixing process is completed, the ‘detection
boundary’ in the liquid phase travels back up the channel, towards the mixing
chamber, with a velocity //ti,g and it reaches the measuring point, located at
a distance, d, from the mixing chamber, in a time f., after the cessation of
liquid flow where

lexp = tina(l — d)]1 (5.36)

If / > d then feyp ~ ting, 1.€. the experimentally measured time can be regarded
as being equivalent to the induction period. The limit of application may be
estimated to lie at / ~ 3d, where #, may still be regarded as approximately
equal to f,q if experimental errors are taken into account.

A typical curve recorded on the oscilloscope display is shown in Figure 5.14.
From point 4 (where liquid movement had stopped and the oscilloscope sweep
was initiated by the microswitch) to point B, the solution conductivity does not
change detectably. Then the conductivity suddenly decreases (B to C) and
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Figure 5.14. A typical oscilloscope record indicating the induction period AB

continues to decrease slowly over a long period. The time corresponding to the
interval 4B is taken as the induction period of precipitation. The interval BC,
the length of which is a function of the initial solution supersaturation, is caused
by the sudden creation of nuclei and their subsequent growth. The last period,
beyond point C, reflects the final slow growth of the crystals in a solution with a
near-depleted supersaturation.

5.6 Interfacial tension (surface energy)

As the induction period can be affected profoundly by so many external
influences, it cannot be regarded as a fundamental property of a system. Nor
can it be relied upon to yield basic information on the process of nucleation.
Nevertheless, despite its complexity and uncertain composition, the induction
period has frequently been used as a measure of the nucleation event, making
the simplifying assumption that it can be considered to be inversely propor-
tional to the rate of nucleation:

fing o< J ! (5.37)

The classical nucleation relationship (equation 5.9) may therefore be written
3

log ting X |———— 5.38

#find ['ﬁ(log 5)2} 439

which suggests that, for a given temperature, a plot of log f;,q versus (log S) >
should yield a straight line, the slope of which should allow a value of the
interfacial tension, ~, to be calculated. This can only be justified, however, if the
data relate to true homogeneous nucleation. In a similar manner, the Arrhenius
reaction velocity relationship (equation 5.5) written in terms of the induction
period:

tinda = Aexp(AG/KT) (5.39)
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will allow evaluation of the activation energy of homogeneous nucleation from
the slope of a linear plot of log ti,q versus 7.

An experimentally determined linear relationship between logt,q and
(log S)~2 is no guarantee that homogeneous nucleation has occurred, as can
be seen from stopped-flow precipitation data for CaCOj; plotted in Figure 5.14
(S6hnel and Mullin, 1978b) where two different straight lines can be drawn
through the experimental points. The change of slope at (log S)™* ~ 0.55, i.e.
S ~ 20, marks a division between homogeneous and heterogeneous nucleation.
The slope of the line in the higher supersaturation region to the left of the
diagram gives a value of 4 ~ 80mJm~2. Data for SrCO3, an even less soluble
salt, does not show a transition to heterogeneous nucleation in the supersatura-
tion range studied (S = 50-70) and a value of v ~ 100mJm~ is calculated
from the slope of this line.

Much lower values of v are expected for soluble salts. The data in Figure 5.16
for nickel ammonium sulphate, where t;,q was determined visually (Mullin and
Osman, 1973; Mullin and Ang, 1976), again show a homogeneous/hetero-
geneous division, this time at a value of S ~ 1.8, and a value of 7 ~ 4mJm2
is calculated from data in the left hand region for S > 2.

The temperature dependence of interfacial tension has been demonstrated
using induction period data for nickel ammonium sulphate recorded over a
short temperature range. The salt was precipitated by quickly mixing equimolar
solutions of nickel and ammonium sulphates after which the system was
allowed to remain static until nucleation occurred. Plots of logt,g versus
T-3(log S)~2, in accordance with equation 5.38, gave a family of straight lines
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Figure 5.15. Induction period as a function of initial supersaturation for calcium and

strontium carbonates. The data for CaCOs indicate a transition between homogeneous
and heterogeneous nucleation. (After Sohnel and Mullin, 1978b)
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of different slope indicating that ~ increased from 3.9mJm~2 at 20°C to
4.6mJm~2 at 0°C (Mullin and Osman, 1973).
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Figure 5.16. Induction period as a function of initial supersaturation for nickel ammonium
sulphate. A = homogeneous, B = heterogeneous nucleation. (After Mullin and Ang, 1976)
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Figure 5.17. Plot of logt versus T—3(logS)™% for (a) non-agitated and (b) agitated
systems: () 15, (7) 20, (O) 25, and (A) 35°C. (After Mullin and Zacek, 1981)
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Another example is shown in Figure 5.17 for the precipitation of potassium
alum. The data points for the static system (Figure 5.17a) lie on three straight
lines giving ~ values, calculated from equation 5.38, ranging from 2.03 mJ m >
at 35°C to 3.14mJm~2 at 15°C. A different picture emerges from precipitation
in agitated solution (Figure 5.17b) when the relationship between log T and
T-3(logS)? is non-linear suggesting a heterogeneous or even a secondary
mode of nucleation (Mullin and Zacek, 1981). A value of  around 37 mJ m~>
has been reported (Lancia, Musmarra and Prisciandaro, 1999) for the sparingly
soluble CaSQy - 2H,0 and no significant variation was found over the tem-
perature range 25-90°C.

A graph (Figure 5.18) attempting to relate interfacial tension v with equi-
librium solubility ¢* was constructed by Nielsen and Séhnel (1971) after asses-
sing a wide variety of experimental data. The link between « and ¢* can be
substantiated on the basis of regular solution theory (Bennema and Sohnel,
1990). Following similar lines, Mersmann (1990) proposed the equation

peNT*? Tes
Y= 0.414kT[ © } In {—} (5.40)
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Figure 5.18. Interfacial tension as a function of solubility. (After Nielsen and Siéhnel,
1971)
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derived from fundamental relationships, for predicting interfacial tension
v(Im~2); k = Boltzmann constant (1.38 x 1072 JK~!), N = Avogadro con-
stant (6.02 x 10?° kmol~!), M = molar mass (kgkmol™"), p. = crystal density
(kgm™3), cs and ¢p are the solute concentrations (kmolm~3) in the solid and
liquid phases, respectively. Equation 5.39 appears to be compatible with pub-
lished data on more than 50 anhydrous salts in aqueous solution. For example,
for BaSOy at 18 °C in saturated aqueous solution 7' = 291 K, p. = 4500 kgm >,
M = 233kgkmol™!, cs = 4500/233 = 19.3kmolm—3, solubility product K, =
0.87 x 1071°, ¢ = (K)"* = 0.93 x 10~ kmolm~3, and the value of v may be
calculated as approximately 0.12Jm™~2.

A comprehensive review of the general subject of solid material surface
energy has been made by Linford (1972).

5.7 Ostwald’s rule of stages

In the early part of the 19th century several workers made the experimental
observation that some aqueous solutions of inorganic salts, when cooled
rapidly, first deposited crystals of a less stable form than that which normally
crystallizes. A frequently quoted example is that of sodium sulphate solution
which can precipitate heptahydrate crystals at around room temperature before
the thermodynamically stable decahydrate appears. Another is the crystalliza-
tion of an unstable polymorph of potassium nitrate in advance of the more
stable rhombic form.

Ostwald (1896, 1897) attempted to generalize this sort of behaviour by
propounding a ‘rule of stages’ which he stated as: an unstable system does
not necessarily transform directly into the most stable state, but into one which
most closely resembles its own, i.e. into another transient state whose formation
from the original is accompanied by the smallest loss of free energy. Ostwald
recognized that there were many exceptions to this ‘rule’ and countless others
have since been recorded. Thermodynamic explanations alone do not offer
any theoretical support (Dufor and Defay, 1963; Dunning, 1969), but a com-
bined thermodynamics-kinetics approach (Cardew and Davey, 1982) does
appear to offer some justification, although the conclusion is that the rule has
no general proof. A more recent proposal, based on the assumption of structural
changes taking place in crystallizing solutions, has been offered as an alternative
explanation by Nyvlt (1995) together with experimental evidence from aqueous
solutions of citric acid, ferrous sulphate and sodium hydrogen phosphate.
Some support for this has been given by a computer simulation of crystal-
lization from solution (Anwar and Boateng, 1998) which demonstrated the
development of a diffuse precursor phase, with some elements of crystallinity,
eventually transforming into a stable crystalline structure.

Despite the lack of definitive theoretical proof, some form of the rule of
stages does seem to operate often enough for it to be regarded as important to
bear in mind when, for example, operating large-scale precipitation processes
(section 7.2.6). The most probable explanation of the phenomenon lies in the
kinetics of the transformation, the deciding factor being the relative rates of
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crystal nucleation and growth of the more-stable and less-stable forms. It is
in fact, a good example of the behaviour where, if more than one reaction
is thermodynamically possible, the resulting reaction is not the one that is
thermodynamically most likely, but the one that has the fastest rate. In other
words, kinetics are often more important than thermodynamics, and this
should always be borne in mind when dealing with industrial (non-equilibrium)
precipitating systems.



6 Crystal growth

6.1 Crystal growth theories

As soon as stable nuclei, i.e. particles larger than the critical size (section 5.1.1),
have been formed in a supersaturated or supercooled system, they begin to
grow into crystals of visible size. The many proposed mechanisms of crystal
growth may broadly be discussed under a few general headings.

The surface energy theories are based on the postulation that the shape
a growing crystal assumes is that which has a minimum surface energy. This
approach, although not completely abandoned, has largely fallen into disuse.
The diffusion theories presume that matter is deposited continuously on a
crystal face at a rate proportional to the difference in concentration between
the point of deposition and the bulk of the solution. The mathematical analysis
of the operation is similar to that used for other diffusional and mass transfer
processes. The suggestion by Volmer (1939) that crystal growth was a discon-
tinuation process, taking place by adsorption, layer by layer, on the crystal
surface led to the adsorption-layer theories, several notable modifications of
which have been proposed in recent years.

For a comprehensive account of the historical development of the many
crystal growth theories, reference should be made to the critical reviews by
Wells (1946), Buckley (1952), Strickland-Constable (1968), Lewis (1980),
Chernov (1980, 1989) and Nyvlt et al. (1985).

6.1.1 Surface energy theories

An isolated droplet of a fluid is most stable when its surface free energy, and
thus its area, is a minimum. In 1878 Gibbs (1948) suggested that the growth of a
crystal could be considered as a special case of this principle: the total free
energy of a crystal in equilibrium with its surroundings at constant temperature
and pressure would be a minimum for a given volume. If the volume free energy
per unit volume is assumed to be constant throughout the crystal, then

n
> " aig; = minimum (6.1)
1

where «; is the area of the ith face of a crystal bounded by n faces, and g; the
surface free energy per unit area of the ith face. Therefore, if a crystal is allowed to
grow in a supersaturated medium, it should develop into an ‘equilibrium’ shape,
i.e. the development of the various faces should be in such a manner as to ensure
that the whole crystal has a minimum total surface free energy for a given volume.

Of course, a liquid droplet is very different from a crystalline particle; in the
former the constituent atoms or molecules are randomly dispersed, whereas in
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the latter they are regularly located in a lattice structure. Gibbs was fully aware
of the limitations of his simple analogy, but in 1885 Curie found it a useful
starting point for an attempt to evolve a general theory of crystal growth and in
1901 Wulff showed that the equilibrium shape of a crystal is related to the free
energies of the faces; he suggested that the crystal faces would grow at rates
proportional to their respective surface energies.

The surface energy and the rate of growth of a face, however, should be
inversely proportional to the reticular or lattice density of the respective lattice
plane, so that faces having low reticular densities would grow rapidly and
eventually disappear. In other words, high index faces grow faster than low.

The velocity of growth of a crystal face is measured by the outward rate of
movement in a direction perpendicular to that face. In fact to maintain con-
stant interfacial angles in the crystal (Hatiy’s law), the successive displacements
of a face during growth or dissolution must be parallel to each other. Except for
the special case of a geometrically regular crystal, the velocity of growth will
vary from face to face. Figure 6.1a shows the ideal case of a crystal that
maintains its geometric pattern as it grows. Such a crystal is called ‘invariant’.
The three equal A faces grow at an equal rate; the smaller B faces grow faster;
while the smallest face C grows fastest of all. A similar, but reverse, behaviour
may be observed when a crystal of this type dissolves in a solvent; the C face
dissolves at a faster rate than the other faces, but the sharp outlines of the
crystal are soon lost once dissolution commences.

In practice, a crystal does not always maintain geometric similarity during
growth; the smaller, faster-growing faces are often eliminated, and this mode of
crystal growth is known as ‘overlapping’. Figure 6.1b shows the various stages
of growth of such a crystal. The smaller B faces, which grow much faster than
the A faces, gradually disappear from the pattern.

So far there is no general acceptance of the surface energy theories of crystal
growth, since there is little quantitative evidence to support them. These the-
ories, however, still continue to attract attention, but their main defect is their
failure to explain the well-known effects of supersaturation and solution move-
ment on the crystal growth rate.

B A 8
A A
8 4, 8

(a) (b)

Figure 6.1. Velocities of crystal growth faces: (a) invariant crystal; (b) overlapping
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6.1.2 Adsorption layer theories

The concept of a crystal growth mechanism based on the existence of an
adsorbed layer of solute atoms or molecules on a crystal face was first suggested
by Volmer (1939). Many other workers have contributed to, and modified
Volmer’s original postulation. The brief account of this subsequent develop-
ment given below will serve merely to indicate the important features of layer
growth and the role of crystal imperfections in the growth process.

Volmer’s theory, or as some prefer to call it, the Gibbs—Volmer theory, is
based on thermodynamic reasoning. When units of the crystallizing substance
arrive at the crystal face they are not immediately integrated into the lattice, but
merely lose one degree of freedom and are free to migrate over the crystal face
(surface diffusion). There will, therefore, be a loosely adsorbed layer of integ-
rating units at the interface, and a dynamic equilibrium is established between
this layer and the bulk solution. The adsorption layer, or ‘third phase’, as it is
sometimes called, plays an important role in crystal growth and secondary
nucleation (section 5.3). The thickness of the adsorption layer probably does
not exceed 10 nm, and may even be nearer 1 nm.

Atoms, ions or molecules will link into the lattice in positions where the
attractive forces are greatest, i.e. at the ‘active centres’, and under ideal condi-
tions this step-wise build-up will continue until the whole plane face is com-
pleted (Figure 6.2a and b). Before the crystal face can continue to grow, i.e.
before a further layer can commence, a ‘centre of crystallization’ must come
into existence on the plane surface, and in the Gibbs—Volmer theory it is

{c) :

Figure 6.2. A mode of crystal growth without dislocations: (a) migration towards desired
location; (b) completed layer; (¢) surface nucleation
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suggested that a monolayer island nucleus, usually called a two-dimensional
nucleus, is created (Figure 6.2c).

Expressions for the energy requirement of two-dimensional nucleation and
the critical size of a two-dimensional nucleus may be derived in a similar
manner to those for homogeneous three-dimensional nucleation (section
5.1.1). The overall excess free energy of nucleation may be written

AG = ay + vAG, (6.2)

where a and v are the area and volume of the nucleus, and if this is a circular
disc of radius r and height 4, then

AG = 27rhy + 1P hAG, (6.3)
and, maximizing to find the critical size, r,

dAG

T = 27Th’y + 27TVhAGV =0 (64)
whence

.7

re = AG, (6.5)

In other words, the critical radius of a two-dimensional nucleus is half that of
a three-dimensional nucleus (equation 5.3) formed under similar environmental
conditions.

Similarly,
mhy?
A rit — — .
Gc t AGV (6 6)
where AG, is a negative quantity; so from equation (5.7)
why?v
AGcrlt - m (67)

In a similar manner to that described earlier, the rate of two-dimensional
nucleation, J', can be expressed in the form of the Arrhenius reaction velocity
equation:

J' = B-exp(—AGuiyt/kT) (6.8)
or
hy?y
J=B- e 6.9
eXp[ szzlns} (69)

Comparing equations 5.8 and 6.7 it can be seen that the ratio of the energy
requirements of three- to two-dimensional nucleation (sphere:disc) is
16yv/3hkTInS. By inserting some typical values, e.g. = 10"'Jm2,
v=2x10m? h=5x10"""m, k7 =4 x 1072!J, it can be calculated that
the ratio is about 50:1 for a supersaturation of S = 1.1 and about 1.2:1 for
S = 10. In general, therefore, it may be said that a reasonably high degree of
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Figure 6.3. Kossel’s model of a growing crystal surface showing flat surfaces (A), steps
(B), kinks (C), surface-adsorbed growth unmits (D), edge vacancies (E) and surface
vacancies (F)

local supersaturation is necessary for two-dimensional nucleation to occur, but
lower than that required for the formation of three-dimensional nuclei under
equivalent conditions.

The Kossel (1934) model of a growing crystal face is depicted in Figure 6.3. It
envisages that an apparently flat crystal surface is in fact made up of moving
layers (steps) of monatomic height, which may contain one or more kinks. In
addition, there will be loosely adsorbed growth units (atoms, molecules or ions)
on the crystal surface and vacancies in the surfaces and steps. Growth units are
most easily incorporated into the crystal at a kink; the kink moves along the
step and the face is eventually completed. A fresh step could be created by
surface nucleation, and this frequently commences at the corners.

A crystal should grow fastest when its faces are entirely covered with kinks,
and the theoretical maximum growth rate can be estimated (equation 6.37). It is
unlikely, however, that the number of kinks would remain at this high value for
any length of time; it is well known, for example, that broken crystal surfaces
rapidly ‘heal’ and then proceed to grow at a much slower rate. However, many
crystal faces readily grow at quite fast rates at relatively low supersaturation,
far below those needed to induce surface nucleation. Crystals of iodine, for
example, can be grown from the vapour at 1 per cent supersaturation at rates
some 10'9% times greater than those predicted by classical theory (Volmer and
Schultz, 1931)! So it must be concluded that the Kossel model, and its depend-
ence on surface nucleation, is unreasonable for growth at moderate to low
supersaturation.

A solution to the dilemma came when Frank (1949) postulated that few
crystals ever grow in the ideal layer-by-layer fashion without some imperfection
occurring in the pattern. Most crystals contain dislocations (see section 1.13)
which cause steps to be formed on the faces and promote growth. Of these the
screw dislocation (section 1.13.2) is considered to be important for crystal
growth, since it obviates the necessity for surface nucleation. Once a screw
dislocation has been formed, the crystal face can grow perpetually “up a spiral
staircase’. Figure 6.4a—c indicates the successive stages in the development of a
growth spiral starting from a screw dislocation. The curvature of the spiral
cannot exceed a certain maximum value, determined by the critical radius for a
two-dimensional nucleus under the conditions of supersaturation in the med-
ium in which the crystal is growing.
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Figure 6.4. Development of a growth spiral starting from a screw dislocation

An example of a circular growth spiral on a silicon carbide crystal is shown in
Figure 6.5. The major and minor axes of the elliptical spirals on the (100) face of
an ammonium dihydrogen phosphate crystal growing in aqueous solution
(Figure 6.6) point in the [010] and [001] directions respectively, indicating that
surface diffusion is faster in the former direction (Davey and Mullin, 1974). The
polygonized spiral on the Cs6 hydrocarbon crystal (Figure 6.7) is probably only
a few long-chain molecules in height. Quite often very complex spirals develop,
especially when several screw dislocations grow together. Many examples of
these are shown in the books by Verma (1953) and Read (1953).

As a completely smooth face never appears under conditions of spiral
growth, surface nucleation is not necessary and the crystal grows as if the
surface were covered with kinks. Growth continues uninterrupted at near the
maximum theoretical rate for the given level of supersaturation. The behaviour
of a crystal face with many dislocations is practically the same as that of
a crystal face containing just one. Burton, Cabrera and Frank (1951) developed

Figure 6.5. A circular spiral on a silicon carbide crystal. (Courtesy of the Westinghouse
Corporation)
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Figure 6.6. An elliptical spiral on the (100) face of an ammonium dihydrogen phosphate
crystal growing in aqueous solution (Davey and Mullin, 1974)

Figure 6.7. A polygonized spiral on the face of a C3s normal alkane crystal. (Courtesy of
R. Boistelle)

a kinetic theory of growth in which the curvature of the spiral near its origin
was related to the spacing of successive turns and the level of supersaturation.
By the application of Boltzmann statistics they predicted kink populations, and
by assuming that surface diffusion is an essential step in the process they were
able to calculate the growth rate at any supersaturation.

The Burton—Cabrera—Frank (BCF) relationship may be written

R = Ao’ tanh(B/o) (6.10)



Crystal growth 223

Growth rate, &
2
\q_,

Supersaturation, o

Figure 6.8. The Burton—Cabrera—Frank (BCF) supersaturation—growth relationship
(I, R  &%; II, an approach to R x o)

where R = crystal growth rate. The supersaturation ¢ = S — 1 where S = ¢/c*
(see section 3.12.1). A and B are complex temperature-dependent constants
which include parameters depending on step spacings.

At low supersaturations the BCF equation approximates to R o2, but at
high supersaturations R « ¢. In other words, it changes from a parabolic to
a linear growth law as the supersaturation increases. The volume diffusion
model proposed by Chernov (1961) gives the same result. The general form of
these expressions is shown in Figure 6.8.

It should be pointed out that the BCF theory was derived for crystal growth
from the vapour; and while it should also apply to growth from solutions (and
melts), it is difficult to quantify the relationships because of the more complex
nature of these systems. Viscosities, for example, are higher and diffusivities
lower in solutions (~103Nsm™2 (1cP) and 10 °m?s~') than in vapours
(~105Nsm™2 and 107*m?s™'). In addition, the dependence of diffusivity
on solute concentration can be complex (section 2.4). Transport phenomena
in ionic solutions can be complicated, especially if the different ions exhibit
complex hydration characteristics. Furthermore, little is known about surface
diffusion in adsorbed layers, and ion dehydration in or near these layers must
present additional complicating factors.

For a comprehensive account of the relationships between the various sur-
face and bulk diffusion models of crystal growth, and their relevance to crystal
growth, reference may be made to the reviews by Bennema (1968, 1969, 1984)
and Chernov (1980, 1989, 1993).

6.1.3 Kinematic theories

Two processes are involved in the layer growth of crystals, viz. the generation
of steps at some source on the crystal face followed by the movement of layers
across the face. Consideration of the movement of macrosteps of unequal
distance apart (BCF theory considers a regular distribution of monoatomic
steps) led Frank (1958) to develop a ‘kinematic’ theory of crystal growth. The
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Figure 6.9. Two-dimensional diagrammatic representation of steps on a crystal face

step velocity, u, depends on the proximity of the other steps since all steps are
competing units (Figure 6.9). Thus

u=gqjn (6.11)

where ¢ is the step flux (the number of steps passing a given point per unit time)
and 7 is the step density (the number of steps per unit length in a given region).
The distance between steps, A = n~'. The slope of the surface, p, with reference
to the close packed surfaces, i.e. the flat ledges, is given by

p=tanf = hn (6.12)
and the face growth rate, v, normal to the reference surface by
v = hq = hnu (6.13)

where /£ is the step height.

If the steps are far apart (¢ — 0), and the diffusion fields do not interfere with
one another, the velocity of each step, u, will be a maximum. As the step
spacings decrease and the slope increases, u decreases to a minimum at
hn =1 (0 = 45°). Looking at it another way: as the slope 6 increases, the face
growth velocity v (=utan#) increases, approaches a flat maximum and then
decreases to zero. The shape of this v( p) curve, which is affected by the presence
of impurities, is an important characteristic of the growth process.

For the two-dimensional case depicted in Figure 6.9 another velocity,
¢ = dx/dt, may be defined which represents the motion of ‘kinematic waves’
(regions on the crystal surface with a constant slope p and velocity v). These
waves do not contain the same monomolecular steps all the time, as the step
velocity u = v/p can be greater or less than ¢. When two kinematic waves of
different slope meet, a discontinuity in slope occurs, giving rise to ‘shock waves’
across the surface.

Another problem that can be treated on the basis of the kinematic theory is
that of step bunching. The steps that flow across a face are usually randomly
spaced and of different height and velocity. Consequently they pile-up or
bunch. Growth, and dissolution, can be characterized by the relationship
between the step flux, ¢, and step density, n. Two general forms of this relation-
ship can be considered depending upon whether d’g/dn® < 0 (Type I) or
d*q/dn* > 0 (Type II). The former is analogous to the flow of traffic along a
straight road and the latter to flood water on a river (see Figure 6.10).
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Figure 6.10. (a) Step flux density curves: type I, d*q/dn® < 0; type II, d®q/dn? > 0.
(b) Surface profiles arising from bunches with type I and type Il kinetics, respectively

6.1.4 Diffusion-reaction theories

The origin of the diffusion theories dates back to the work of Noyes and
Whitney (1897) who considered that the deposition of solid on the face of
a growing crystal was essentially a diffusional process. They also assumed that
crystallization was the reverse of dissolution, and that the rates of both pro-
cesses were governed by the difference between concentration at the solid
surface and in the bulk of the solution. An equation for crystallization was
proposed in the form

— = knA(c — ¢*) (6.14)

where m = mass of solid deposited in time #; A = surface area of the crystal;
¢ = solute concentration in the solution (supersaturated); ¢* = equilibrium
saturation concentration; and k,,= coefficient of mass transfer.

On the assumption that there would be a thin stagnant film of liquid adjacent
to the growing crystal face, through which molecules of the solute would have
to diffuse, Nernst (1904) modified equation 6.14 to the form

(l—n;ng(c—c*) (6.15)
where D = coefficient of diffusion of the solute, and § = length of the diffusion
path.

The thickness ¢ of the stagnant film would obviously depend on the relative
solid-liquid velocity, i.e. on the degree of agitation of the system. Film thick-
nesses up to 150 um have been measured on stationary crystals in stagnant
aqueous solution, but values rapidly drop to virtually zero in vigorously
agitated systems. As this could imply an almost infinite rate of growth in
agitated systems, it is obvious that the concept of film diffusion alone is not
sufficient to explain the mechanism of crystal growth. Furthermore, crystal-
lization is not necessarily the reverse of dissolution. A substance generally
dissolves at a faster rate than it crystallizes at, under the same conditions of
temperature and concentration.

Another important finding was made by Miers (1904), who determined, by
refractive index measurements, the solution concentrations near the faces of
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crystals of sodium chlorate growing in aqueous solution; he showed that the
solution in contact with a growing crystal face is not saturated but super-
saturated.

In the light of these facts, a considerable modification was made to the
diffusion theory of crystal growth by Berthoud (1912) and Valeton (1924),
who suggested that there were two steps in the mass deposition, viz. a diffusion
process, whereby solute molecules are transported from the bulk of the fluid
phase to the solid surface, followed by a first-order ‘reaction’ when the solute
molecules arrange themselves into the crystal lattice. These two stages, occur-
ring under the influence of different concentration driving forces, can be
represented by the equations

d

d—”: — kgA(c — ¢;) (diffusion) (6.16)
and

dm N .

O k:A(c; — ¢*) (reaction) (6.17)

where kg = a coefficient of mass transfer by diffusion; k. = a rate constant for
the surface reaction (integration) process; and ¢; = solute concentration in the
solution at the crystal-solution interface.

A pictorial representation of these two stages is shown in Figure 6.11 where
the various concentration driving forces can be seen. It must be clearly under-
stood, however, that this is only diagrammatic: the driving forces will rarely be
of equal magnitude, and the concentration drop across the stagnant film is not
necessarily linear. Furthermore, there appears to be some confusion in recent
crystallization literature between this hypothetical film and the more funda-
mental ‘boundary layers’ (see section 6.3.2).

Equations 6.16 and 6.17 are not easy to apply in practice because they
involve interfacial concentrations that are difficult to measure. It is usually
more convenient to eliminate the term ¢; by considering an ‘overall’ concentra-
tion driving force, ¢ — ¢*, which is quite easily measured. A general equation for
crystallization based on this overall driving force can be written as

Adsorption layer

T c
Driving force
for diffusion

L _%___ —
Driving force
for reaction

- —c
Bulk of solution

Crystal
Concentration —

“Crystal: solution interface

Figure 6.11. Concentration driving forces in crystallization from solution according to the
simple diffusion—reaction model
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dm = KgA(c — c)® (6.18)
de
where Kg is an overall crystal growth coefficient. The exponent g is usually
referred to as the ‘order’ of the overall crystal growth process, but the use of
this term should not be confused with its more conventional use in chemical
kinetics, where the order always refers to the power to which a concentration
should be raised to give a factor proportional to the rate of an elementary
reaction. In crystallization work the exponent, which is applied to a concentra-
tion difference, has no fundamental significance and cannot give any indication
of the number of elementary species involved in the growth process.
If g = 1 and the surface reaction (equation 6.17) is also first-order, the inter-
facial concentration, ¢;, may be eliminated from equations 6.16 and 6.17 to give

dm  A(c—c")

m_ae=c) 6.19
dr ~ 1k + ks (6.19)
1.€.
T
tr_ 1.1 2
T tE (6.20)
or
kdkr
Ko = 21
etk (6:21)

For cases of extremely rapid reaction, i.e. large k;, Kg =~ kq and the crystal-
lization process is controlled by the diffusional operation. Similarly, if the value
of kq is large, i.e. if the diffusional resistance is low, Kg = k;, and the process is
controlled by the surface integration. It is worth pointing out that whatever the
relative magnitude of k4 and k, they will always contribute to Kg.

The diffusional step (equation 6.16) is generally considered to be linearly
dependent on the concentration driving force, but the validity of the assumption
of a first-order surface reaction (equation 6.17) is highly questionable. Many
inorganic salts crystallizing from aqueous solution give an overall growth rate
order, g, in the range 1 to 2. The rate equations, therefore, may be written

1 dm o
Rg = yEr T ka(c — ¢i) (diffusion) (6.22)
= k(¢c; — ¢*)"  (reaction) (6.23)
= Kg(c—c*)® (overall) (6.24)

The reverse process of dissolution may be represented by the overall relation-
ship

Rp = Kp(c¢* — ¢)? (6.25)
where d is generally, but not necessarily, unity. From equation

Ci =¢C— RG/kd (6.26)
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so equation 6.23 representing the surface integration step, may be written

R r
Rg = k¢ <Ac - —G> (6.27)
kq
where Ac=c—c*andr>1.1Ifr=1,
kak;,
R = Ac 2
o [kd A kr] : (6.28)

as in equation 6.21. However, if r # 1, the surface integration step is dependent
on the concentration driving force in non-linear manner. For example, if
r =2, equation 6.27 can be solved to give

<1+ ke )— <1+ ka )2—1 Ac (6.29)
k. Ac k. Ac '

However, apart from such simple cases, equation 6.27 cannot be solved
explicitly for Rg and the relationship between the coefficients Kg, kg and k;
remains obscure. Recently, however, Sobczak (1990) has proposed an integral
method, based on a linearization of equation 6.27, which allows reasonable
values of k4 and k, to be estimated.

RG:kd

Effectiveness factors

A quantitative measure of the degree of diffusion or surface integration control
may be made through the concept of effectiveness factors. A crystal growth rate
effectiveness factor, 7., may be defined (Garside, 1971; Garside and Tavare,
1981) as the ratio of the growth rate at the interface conditions to the growth
rate expected if the interface were exposed to the bulk solution conditions, or

ne = (1 = neDa) (6.30)

where r is the ‘order’ of the surface integration process, and Da is the
Damkohler number for crystal growth, which represents the ratio of the
pseudo-first-order rate coefficient at the bulk conditions to the mass transfer
coefficient, defined by

Da = ki(c — ) ' (1 — w)ky! (6.31)

where w is the mass fraction of solute in solution. The plot of equation 6.30 in
Figure 6.12 shows that when Da is large, the growth is diffusion controlled
(ne — Da~") and when Da is small, the growth is surface integration controlled

(e — 1).

Other contributing steps

It might be thought possible that the diffusional and surface reaction coeffi-
cients could be quantified by making certain assumptions. For example, if it is
assumed that the diffusional mass transfer coefficient, kg, in the crystallization
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ne = 1.0 ( Pure surface integration growth)

\__nc,= DO-l
\\ ( Pure ditfusion growth)

o
ES
1

Effectiveness factor, n,

o
n
T

0 1
0.0l 0.1 1.0 10 100

Damkéhler number, Da

Figure 6.12. The effectiveness factor for crystal growth (equation 6.30). (After Garside and
Tavare, 1981)

process is the same as that measured for crystal dissolution in near-saturated
solutions under the same concentration driving force, temperature, etc., then
values of k; can be predicted.

Such calculations have been made (Garside and Mullin, 1968; Mullin and
Gaska, 1969), but the assumption that the diffusion step in crystal growth can
be related to the diffusion step in dissolution may not always be valid. It is
possible, for example, that even dissolution is not a simple one-step process.
Indeed some form of surface reaction (disintegration) step has been measured
for the dissolution of lead sulphate in water (Bovington and Jones, 1970).

In any case, the growth process is undoubtedly much more complex than the
simple two-step process envisaged above. For an electrolyte crystallizing from
aqueous solution, for example, the following processes may all be taking place
simultaneously:

Bulk diffusion of hydrated ions through the diffusion boundary layer
Bulk diffusion of hydrated ions through the adsorption layer

Surface diffusion of hydrated or dehydrated ions

Partial or total dehydration of ions

Integration of ions into the lattice

Counter-diffusion of released water through the adsorption layer
Counter-diffusion of water through the boundary layer

NN =

The potential importance of the ion dehydration step in the crystallization of
electrolytes from aqueous solution has been discussed by several authors (Reich
and Kahlweit, 1968; Nielsen, 1984), and there is evidence that an allowance for
these effects could account substantially for discrepancies between theoretical
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and actual growth rates. However, any one of the above processes could
become rate-controlling, and a rigorous solution of the problem is virtually
unattainable. Furthermore, the thicknesses of the different layers and films
cannot be known with any certainty. Adsorbed molecular layers probably do
not exceed 1072 um; partially disordered solution near the interface may
account for another 10~' um; and the diffusion boundary layer is probably
not much thicker than about 10 um (see section 6.3.2).

The individual constants k4 and &, are not only difficult if not impossible to
determine, but can vary from face to face on the same crystal. It is even possible
for k4 to vary over one given face: although it is true that the solution in contact
with growing crystal face is always supersaturated, the degree of supersaturation
can vary at different points over the face. In general, the supersaturation is highest
at the corners and lowest at the centre of the face (Berg, 1938; Bunn, 1949).

The diffusion theories of crystal growth cannot yet be reconciled with the
adsorption layer and dislocation theories. It is acknowledged that the diffusion
theories have grave deficiencies (they cannot explain layer growth or the facet-
ing of crystals, for example), yet crystal growth rates are conveniently measured
and reported in diffusional terms. The utilization of the mathematics of mass
transfer processes makes this the preferred approach, from the chemical engin-
eer’s point of view at any rate, despite its many limitations.

If a crystallization process were entirely diffusion-controlled or surface reac-
tion controlled, it should be possible to predict the growth rate by fundamental
reasoning. In the case of diffusion-controlled growth, for example, the molecu-
lar flux, F (mols~' cm™2) is related to the concentration gradient, dc/dx, by

F = D(dc/dx) (6.32)

where x is the length of the diffusion path and D is the diffusion coefficient.
Therefore the rate of diffusion, dn/dz (mols™'), to a spherical surface, distance
r from the centre, is given by

dn de
= 4D — 6.33
dr = (6.33)
At any instant dn/d¢ is a constant, so equation 6.33 may be integrated to give
@ dn [ dr
41D de = — — 6.34
T /,3l ¢ dt /,] r? (6.34)
ie.
dn B 47TD(6‘2 - C1)
w1 1 (6.35)
ry nr

If ¢; = ¢* (equilibrium saturation) at r; = r (the surface of the sphere) and
¢ = ¢ (the bulk liquid concentration) at r, = oo (i.e. r, > ry), then

dn o dr 4m?
a—47er(c—c)—a~ .

(6.36)
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So the general equation for the diffusion-controlled linear growth rate may be
expressed as

dr  Dv(c —¢¥)
— = 6.37
dt r 6.37)
The same relationship may be used for the reverse process of dissolution. For
dissolution into a pure solvent (¢ = 0) integration of equation 6.37 gives
1 = 1) — 2Dvc't (6.38)

where ry is the initial size at time # = 0. The time for complete dissolution
(r = 0) is thus given by
2
p
t=--2
2Dvc*

(6.39)

Substitution of typical values into equation 6.39 leads to some interesting
observations. Small crystals of reasonably soluble salts may dissolve in frac-
tions of a second, but those of sparingly soluble substances can take very long
periods of time. For example, a 1um crystal (r = 5 x 10~"m) of lead chromate
(D~107°m?s !, va~5x10°m*mol™!, ¢*~10*molm~>) would take
about 7h to dissolve in water at room temperature. A 10 um crystal would
take about 30 days. Tiny crystalline fragments of relatively insoluble substances
may therefore remain undissolved in unsaturated solutions and act as nuclei in
subsequent crystallization operations. The behaviour of precipitates attributed
to the past history of the system may well be associated with this behaviour.

6.1.5 Birth and spread models

Several growth models based on crystal surface (two-dimensional) nucleation,
followed by the spread of the monolayers have been developed in recent years
(O’Hara and Reid, 1973; van der Eerden, Bennema and Cherepanova, 1978).
The term ‘birth and spread’ (B + S) model will be used here, but other names
such as ‘nuclei on nuclei’ (NON) and ‘polynuclear growth’ may also be seen in
the literature to describe virtually the same behaviour. As depicted in Figure
6.13, growth develops from surface nucleation that can occur at the edges,
corners and on the faces of a crystal. Further surface nuclei can develop on the
monolayer nuclei as they spread across the crystal face.

Figure 6.13. Development of polynuclear growth by the birth and spread (B+ S)
mechanism
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The B + S model results in a face growth velocity—supersaturation relation-
ship of the form

v=A0""exp(As/0) (6.40)

where A; and A, are system-related constants. Equation 6.40 is interesting in
that it describes the only growth model that allows a growth order, g, greater
than 2.

6.1.6 Combinations of effects

Pure diffusion-controlled growth for all sizes in a crystal population is unlikely.
From diffusional considerations Turnbull (1953) derived the mass flux, N, to
a growing particle of radius r as

dr Dkc
N—K(a> = D1n (6.41)

where D = diffusivity, K is a constant and « is an interface transfer coefficient
defined by N = k(c; — ¢*). Concentrations ¢, ¢; and ¢* refer to the bulk solu-
tion, particle surface and equilibrium saturation, respectively. Integration of
equation 6.41 gives

2

r r
1=K 42
D + - tc (6.42)
For r — 0 this becomes
r~ kKtc (6.43)

indicating that the growth of very small nuclei should be interface-controlled.
For large values of r

r — /(2DKtc) (6.44)

indicating diffusion control.

A further complicating factor in using diffusion-controlled growth rate
expressions such as equation 6.37 is the fact that very small crystals can have
solubilities significantly higher than those of macrocrystals (Gibbs—Thomson
effect, section 3.7). In any complete analysis of the growth process, therefore,
the combined effects of diffusion, surface integration and size-solubility may
have to be considered together. An analysis along these lines by Matz (1970)
provided results that appeared to be consistent with experimental data for the
growth of sodium chloride crystals from aqueous solution. In another
approach, Leubner (1987) developed a combination model for crystal forma-
tion by the precipitation of sparingly soluble compounds, e.g. the silver halides,
which relates the number of stable crystals formed to the precipitation condi-
tions and to the crystal growth mechanism.

It is quite possible for more than one basic growth mechanism to influence
the crystal growth rate simultaneously. When two mechanisms act in parallel,
e.g. BCF and B + S, the individual rates are additive, and the one that gives
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faster rate is rate-determining. When the two mechanisms act consecutively,
e.g. bulk diffusion followed by BCF growth, they have to share the driving
force and the slower one (at equal driving force) will be rate determining
(Nielsen, 1984).

The combined effects of nucleation and growth on the development of crystal
populations in crystallizers are discussed in section 6.9.4.

6.1.7 Crystal surface structure

The structure of a growing crystal surface at its interface with the growth
medium, e.g. a supersaturated solution, has an important bearing on the
particular mode of crystal growth adopted. This property has been character-
ized by a quantity variously designated as a surface roughness or surface
entropy factor, or more frequently nowadays simply as the alpha factor (Jack-
son, 1958; Tempkin, 1964; Bennema and van der Eerden, 1977) which may be
defined by

a = EAH/KT (6.45)

where £ is an anisotropy factor related to the bonding energies in the crystal
surface layers, AH is the enthalpy of fusion and k is the Boltzmann constant.

Although reliable « values are not easy to calculate, it is possible, making
certain simplifying assumptions (Davey, 1982), to make estimates from solu-
bility data. Values of o < 2 are taken to be indicative of a rough (i.e. at the
molecular level) crystal surface which will allow continuous growth to proceed.
The growth will be diffusion-controlled and the face growth rates, v, will be
linear with respect to the supersaturation, o, i.e.

VX o (6.46)

For o> 5, a smooth surface is indicated and, as the high energy barrier
discourages surface nucleation at low supersaturation, growth generally pro-
ceeds by the screw dislocation (BCF) mechanism (equation 6.10) in which case
the face growth rate, v, is given by

vy x o tanh(B' /o) (6.47)
which, at low supersaturation, reduces to
Vo o2 (6.48)

and at high supersaturation, to equation 6.46.

For « values between about 2 and 5, the most probable mode of growth is the
generation and spreading of surface nuclei, i.e. by the B+ S model (section
6.15), when equation 6.40 applies.

For practical correlations of experimental data, however, the simple power
law

vx o (6.49)
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is commonly used. This represents the two limiting cases of the BCF equation
(r = 1 and 2, respectively) and is also a good approximation for the intermedi-
ate regime 1 < r < 2. It also makes a satisfactory approximation for the B+ S
model over a limited range of supersaturation (Garside, 1985).

6.1.8 Crystallization from melts

The rate of crystallization from a melt depends on the rate of heat transfer from
the crystal face to the bulk of the liquid. As the process is generally accom-
panied by the liberation of heat of crystallization, the surface of the crystal will
have a slightly higher temperature than the supercooled melt. These conditions
are shown in Figure 6.14 where the melting point of the substance is denoted by
T* and the temperature of the bulk of the supercooled melt by 7. The overall
degree of supercooling, therefore, is 7* — T. The temperature at the surface of
the crystal, the solid-liquid interface, is denoted by 77, so the driving force for
heat transfer across the ‘stagnant’ or ‘effective’ film of liquid close to the crystal
face is T; — T. The rate of heat transfer, dg/dz, can be expressed in the form of
the equation

dg

— =hA(T;, - T) (6.50)

dr
where 4 is the area of the growing solid surface and 4 is a film coefficient of
heat transfer defined by

K
T8

where « is the thermal conductivity and &' is the effective film thickness for heat
transfer. There is a distinct similarity between the form of equation 6.50 for
heat transfer and equation 6.16 for mass transfer by diffusion. Agitation of the
system will reduce the effective film thickness, increase the film coefficient of
heat transfer and tend to increase the interfacial temperature, 75, to a value near
to that of the melting point, 7 *.

The rate of crystallization of a supercooled melt achieves a maximum value
at a lower degree of supercooling, i.e. at a temperature higher than that

h (6.51)

Adsorption layer
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Crystal:solution interface

Figure 6.14. Temperature gradients near the face of a crystal growing in a melt
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required for maximum nucleation. The nucleation and crystallization rate
curves are dissimilar: the former has a relatively sharp peak (Figure 5.2), the
latter usually a rather flat one. Tamman (1925) suggested that the maximum
rate of crystallization would occur at a melt temperature, 7, given by

T=T"-— (AHY‘> (6.52)

Cm
where AH.y is the heat of crystallization and ¢y, is the mean specific heat
capacity of the melt.
The crystal growth rate (e.g. mass per unit time) may be expressed as a
function of the overall temperature driving force (cf. equation 6.18), by
d ,/
d—rf — KLA(T* — T) (6.53)
where 4 is the crystal surface area, K5 is an overall mass transfer coefficient for
growth and exponent g’ generally has a value in the range 1.5 to 2.5. The reverse
process of melting, like that of dissolution, is often assumed to be first-order
with respect to the temperature driving force, but this is not always the case
(Palermo, 1967; Strickland-Constable, 1968; Kirwan and Pigford, 1969), i.e.
d ;
- g — KnmA(T — T (6.54)
where x > 1, K is an overall mass transfer coefficient for melting.
Melting is a simultaneous heat and mass transfer process, i.c.

— = AAT = —— AH, 6.55
a - Um dr —f (6-55)
therefore
dm UmAAT
& T AH (6.56)

where AT =T — T*, ¢ is a heat quantity, AH is the enthalpy of fusion and
Uw is an overall heat transfer coefficient for melting.

The surface area of the melting solid (4 = BL?) is related to the mass
(m = apL?) by

o\ 23

A= ﬂ(—) (6.57)
ap

where L is a linear dimension, p = density, and « and 8 = volume and surface

shape factors, respectively (see section 2.14.3). Hence, equation 6.56 becomes

dm m 2/3UMAT
dt  "\ap AH¢

and, assuming the Uy, AT, « and § remain constant,

(ap)’” AH;

(6.58)
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or
A(m'P) = —t (6.59)
where v = BUMAT/3AH(ap)*?, or in terms of the change in particle size, AL,
AL = —+'t (6.60)

where ' = SUMAT/3AHrap.

For an account of the basic theories of melting and crystal growth from
the melt, reference should be made to the monographs by Brice (1965) and
Ubbelohde (1965). Good accounts of dendritic growth from the melt are given
by Gill (1989) and Ananth and Gill (1991).

6.2 Growth rate measurements

Many different experimental techniques have been employed to facilitate crys-
tal growth rate measurements. The single crystal growth techniques, which can
focus on individual face growth rates, are predominantly used for fundamental
studies relating to growth mechanisms. Measurements made on populations of
crystals are useful for determining overall mass transfer rates under controlled
conditions and for observing size-dependent growth or growth rate dispersion.
Additionally, the population methods can provide useful information for
crystallizer design (Chapter 9).

6.2.1 Crystal growth rate expressions

There is no simple or generally accepted method of expressing the rate of
growth of a crystal, since it has a complex dependence on temperature, super-
saturation, size, habit, system turbulence, and so on. However, for carefully
defined conditions crystal growth rates may be expressed as a mass deposition
rate Rg (kgm~2s7!), a mean linear velocity #(ms~') or an overall linear
growth rate G (ms~'). The relationships between these quantities are
RG :KGACXZ%-%:%-;)CG
3 dL  6a dr 6«

:?PCE—F'PCEZ?'PJ’ (6.61)
where L is some characteristic size of the crystal, e.g. the equivalent sieve
aperture size, r is the radius corresponding to the equivalent sphere, and p; is
the crystal density. The volume and surface shape factors, o and 3, respectively,
are defined (see section 2.14.3) by m = ap.L® (i.e. dm = 3ap.L*dL) and
A = BL?, where m and A are the particle mass and area. For spheres and cubes
6a/0 = 1. For octahedra 6a/3 = 0.816.

The utility of the overall linear growth rate, G, in the design of crystallizers is
demonstrated in section 8.3.2. Some typical values of the mean linear growth
velocity v (= %G) are given in Table 6.1.
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Table 6.1. Some mean overall crystal growth rates expressed as a linear velocity'

Crystallizing substance °C S 7 (ms!)
(NH4),SOy4 - Al5(SO4); - 24H,0 15 1.03 1.1 x 108
30 1.03 1.3 x 1078
30 1.09 1.0 x 1077
40 1.08 1.2x 1077
NH4NO; 40 1.05 8.5x 1077
(NHy),SO4 30 1.05 2.5%x 1077
60 1.05 4.0x 1077
90 1.01 3.0x 1078
NH4H,PO4 20 1.06 6.5x 1078
30 1.02 3.0x 1078
30 1.05 1.1x 1077
40 1.02 7.0 x 1078
MgSOy, - 7TH,0 20 1.02 4.5% 1078
30 1.01 8.0 x 1078
30 1.02 1.5%x 1077
NiSOy4 - (NH4),SO4 - 6H,0 25 1.03 52x107°
25 1.09 2.6x 1078
25 1.20 40x 1078
K2SOy4 - Alr(SO4); - 24H,0 15 1.04 1.4 x 1078
30 1.04 2.8 x 1078
30 1.09 1.4 %1077
40 1.03 5.6x 1078
KCl 20 1.02 2.0x 1077
40 1.01 6.0 x 1077
KNO; 20 1.05 45%x 1078
40 1.05 1.5%x 1077
K,SO4 20 1.09 2.8 x 1078
20 1.18 1.4 %1077
30 1.07 4.2 % 1078
50 1.06 7.0 x 1078+
50 1.12 3.2x 1077
KH,PO,4 30 1.07 3.0x 1078
30 1.21 29 %1077
40 1.06 5.0x 1078
40 1.18 48 %1077
NaCl 50 1.002 2.5%x 1078
50 1.003 6.5x10°8
70 1.002 9.0x 1078
70 1.003 1.5%x 1077
N‘szzO3 . 5H20 30 1.02 1.1 x 1077
30 1.08 5.0 x 1077
Citric acid monohydrate 25 1.05 3.0x 1078
30 1.01 1.0x 1078

30 1.05 4.0x1078
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Table 6.1. (Continued)

Crystallizing substance °C S 7 (ms!)
Sucrose 30 1.13 1.1 x107%
30 1.27 2.1 x 1078
70 1.09 9.5x1078
70 1.15 1.5x 1077

T The supersaturation is expressed by S = ¢/c* with ¢ and ¢* as kg of crystallizing substance per kg

of free water. The significance of the mean linear growth velocity, v (= %G), is explained by

equation 6.61 and the values recorded here refer to crystals in the approximate size range 0.5-1 mm
growing in the presence of other crystals. An asterisk (*) denotes that the growth rate is probably
size dependent.

6.2.2 Face growth rates

The different faces of a crystal grow at different rates under identical environ-
mental conditions, as first demonstrated by Bentivoglio (1927). In general, the
high index faces grow faster than the low. A fundamental assessment of the
growth kinetics, therefore, must involve a study of the individual face growth
rates.

An apparatus that permits precise measurement of crystal growth rates is
shown in Figure 6.15 (Mullin and Amatavivadhana, 1967; Mullin and Garside,
1967). Briefly, the technique is as follows. A small crystal (2—5 mm) is mounted
on a 1 mm tungsten wire in a chosen orientation. Solution of known temper-
ature (£0.05°C), supersaturation and velocity is pumped through the cell, and
the rate of advance of the chosen crystal face is observed through a travelling
microscope. Several glass cells have been used ranging in internal diameter
from 10 to 30 mm, permitting a wide range of solution velocities to be used.

(b)

Figure 6.15. Single-crystal growth cell: (a) complete circuit, (b) the cell. A, solution
reservoir; B, thermostat bath; C, thermometer; D, flow meter; E, cell, F, pump. (After
Mullin and Amatavivadhana, 1967; Mullin and Garside, 1967)
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Figure 6.16. Face growth rates of single crystals of potash alum at 32°C. Solution
velocities: @ = 0.127, O = 0.120, A = 0.064, A = 0.022, B = 0.006 ms~'. (After Mullin
and Garside, 1967)

The results in Figure 6.16 show the effects of both solution supersaturation
and velocity on the linear growth rates of the (111) faces of potash alum crystals
at 32°C. This hydrated salt [K2SO4 - Al,(SOy4); - 24H,0] grows as almost per-
fect octahedra, i.e. eight (111) faces.

Three interesting points may be noted. First, the growth rate is not first-order
with respect to the supersaturation (concentration driving force, Ac). If the
data are plotted on logarithmic co-ordinates (not given here) straight line
correlations are obtained giving

Va1 = KAc8 (662)

where g varies from about 1.4 to 1.6. For v expressed in ms~! and Ac in kg of
hydrate per kg of solution, K varies from about 3 x 107> to 2 x 10~* as the
solution velocity increases from 6 to 22 cms~!. Second, the solution velocity has
a significant effect on the growth rate. Third, significant crystal growth does
not appear to commence until a certain level of supersaturation is exceeded.

The effect of solution velocity can be seen more clearly in Figure 6.17. The
points on this graph have been taken from the smoothed curves in Figure 6.16.
For a given supersaturation the growth rate increases with solution velocity, the
effect being more pronounced at the higher values of Ac.

If the solution velocity is sufficiently high, the overall growth rate should be
determined by the rate of integration of the solute molecules into the crystal
lattice. If the crystal is grown in a stagnant solution (# = 0), then the rate of the
diffusion step will be at a minimum. The growth curves in Figure 6.17 have
therefore been extrapolated to u = 0 and oo to obtain an estimate of the growth
rates when the rate-controlling process is one of natural convection (# = 0) and
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Figure 6.18. Extrapolated growth rates of potash alum crystals at limiting velocities
(O=u— 0o, ®@=u— 0) (After Mullin and Garside, 1967)

surface reaction (¢ — o0). It is, of course, unlikely that the growth curves would
change in a smooth continuous manner when the rate-controlling mechanism
changes from surface reaction control to natural convective diffusion control, and
it is by no means certain that these curves can be extrapolated, with any precision,
to the point where the growth rate becomes constant. However, the derived
curves in Figure 6.18 give an indication of the possible limits of the growth curves.
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Rates of mass transfer by natural convection are usually correlated by a semi-
theoretical equation of the form

Sh =2+ a(Gr - S¢)*» (6.63)

where the Sherwood number Sh = kL/D. Schmidt number Sc¢ = n/p;D and
Grashof number Gr = L3p,Apsg/n*, ps = solution density, Ap, = difference
between solution density at the interface and in the bulk solution, n = viscosity
(kgm~'s™"), L = crystal size (m), D = diffusivity (m?>s~!) and k = a mass
transfer coefficient (ms~'). The mean value of the constant o based on the
results of a number of workers is 0.56. Growth rates, calculated from equation
6.63 lie very close to the experimental points and this tends to confirm that the
growth process in stagnant solution is controlled by natural convection. It is of
interest to note in this connection that the Grashof number contains a term
Aps, which is directly proportional to the concentration difference, Ac, so the
mass transfer rate under conditions of natural convection depends on Ac'?.
When forced convection is the rate-controlling process, the mass transfer rate is
directly proportional to Ac.

Diffusional mass transfer rates under conditions of forced convection may be
correlated by an equation of the form

Sh =2+ ¢RelSc" (6.64)

where Re,, is the particle Reynolds number (psuL/n). Equation 6.64 is fre-
quently referred to as the Frossling equation. However, for reasonably high
values of Sh (say > 100) it is common practice to ignore the constant 2 (the
limiting value of Sh as Re, — 0, i.e. mass transfer in the absence of natural
convection) and use the simpler expression

Sh= ¢ResSc” (6.65)

Dissolution rate data, for example, are conveniently expressed in this way. The
mass transfer coefficient, in the Sherwood number, depends on the solution
velocity, u, raised to the power a. It is possible, therefore, that the effect of
solution velocity on crystal growth may also be represented by an equation of
this type in the region where diffusion influences the growth rate.

The effect of the two variables, Ac and u, on crystal face growth rates may
thus be represented by

Viki = Cu’Act (6.66)

where ¢ is a constant, and « and g are both functions of the solution velocity.
For the growth of potash alum at 32°C, as u — oo,u — 0 and g — 1.62, while
asu — 0,g — 1.25.

It is of interest at this point to refer back to the consequences of the BCF
growth theory (equation 6.10). At low supersaturation, S, the growth rate is
expected to be proportional to (S — 1), but at high supersaturation the rate
tends to become a linear function of S — 1. For growth from solution Chernov
(1961) showed that for the range 1.01 < S < 1.2 (which corresponds to
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0.0015 < Ac < 0.03 kg/kg in the present case of potash alum) the growth rate
can be represented by

vt = K(S — 1) (6.67)

where values of K and g are determined by the parameters in the theoretical
relationship. Now S = ¢/c*, i.e. S — 1 = Ac/c*, so equations 6.62 and 6.67 are
of the same form and the value of the exponent g, measured experimentally, is
within the range predicted theoretically.

The velocity of the solution past the crystal face is thus capable of influen-
cing the growth rate, and this velocity effect manifests itself as a crystal size
effect when freely suspended crystals are grown in a crystallizer. The reason, of
course, is that large crystals have higher settling velocities than small crystals,
i.e. higher relative solid—liquid velocities are needed to keep the larger crystals
suspended. This important effect, which has not often been appreciated in the
past, can rapidly be detected and quantified in the growth cell described
above.

Salts that have been established as having solution velocity dependent
growth rates include ammonium and potassium alums, nickel ammonium
sulphate, sodium thiosulphate and potassium sulphate. Ammonium sulphate,
ammonium and potassium dihydrogen phosphates, for example, do not.

6.2.3 Layer growth rates

The movement of growth layers on the face of a crystal growing in solution can
often be detected and measured by observing the particular face microscopic-
ally, using reflected light. An apparatus that permits this to be done is shown in
Figure 6.19. Small crystals are nucleated and grown on the lower non-reflecting
surface of the observation cell.

The arrangement consists of a central portion, 20 mm in diameter and 4 mm
deep, in which the crystals are growing, enclosed in a water jacket which
controls the cell temperature to within £0.05 °C. Solution is circulated through
the cell under controlled conditions of temperature, supersaturation, flow rate
and purity. The solution velocity across the central portion of the cell may be
varied between about 1 and 20mms~'. The crystals growing in the cell are
illuminated with a highly collimated, intense light beam from a 24-V, 150-W
tungsten—halogen lamp. Angular adjustment of the cell in the horizontal and
vertical planes allows light reflected from the crystal surface to be diverted into
the microscope objective. The growth layer velocities are measured with the aid
of a micrometer eyepiece.

Extensive use of this type of cell for the measurement of layer velocities on
crystal faces has been reported by Davey and Mullin (1974). The moving layer
fronts observed by this technique are not elementary (monomolecular) steps
but macrosteps, often several hundred or thousand molecules in height, which
build-up from the bunching of smaller layers with velocities a hundred times
faster than the macrosteps (Phillips and Mullin, 1976). These fast moving layers
are generally difficult to monitor, but velocity measurements of near-elementary
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Figure 6.19. A cell for making layer growth observations by reflection microscopy. (After
Davey and Mullin, 1974)

layers have recently been made using atomic force microscopy, a powerful tool
that promises to cast new light on the fundamental mechanisms of crystal
growth (Land et al., 1999).

6.2.4 Overall growth rates

It is often much more convenient, and more useful for crystallizer design
purposes, to measure crystal growth rates in terms of mass deposited per unit
time per unit area of crystal surface rather than as individual face growth rates.
This may be done in agitated vessels or fluidized beds, e.g. by measuring the
mass deposition on a known mass of sized seed crystals under carefully con-
trolled conditions.

The overall linear growth rate, G, (ms~') may then be evaluated from

Mll/‘3 . M1/3
G=—"1——" (6.68)
(apN) "t

where M; and M are the initial and final crystal masses (kg), respectively. N is
the number of individual crystals, « is their volume shape factor, p is their
density (kgm~?) and 7 is time (s).
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Alternatively, expressing the overall mass deposition rate Rg (kgm~2s~") as
in equations 6.14 and 6.61 the overall linear growth rate G may be expressed as

6= Kones (6.69)

ap

where ( is the crystal surface shape factor and Ac is the mean supersaturation
over the run (kg solute/kg solvent). The value of exponent g is given by the slope
of the linear plot of log G versus log Ac, and the overall mass transfer coeffi-
cient Kg (kgm~2s~") can then be evaluated.

Experimental precautions

A number of precautions need to be taken when attempting to measure reliable
crystal growth rates by gravimetric measurement and subsequent calculation
(Phillips, 1974). The seed crystals should be carefully selected, both for size and
surface quality. The crystal surface area is often required and this is most
commonly calculated on the assumption that the crystals have a definite
geometrical form and plane faces. The seeds ought to have faces that, macro-
scopically at least, are smooth. The volume and surface shape factors of the
seeds and the grown crystals should be determined (section 2.14.3) so that any
changes may be taken into account in subsequent calculations, ¢.g. when using
equations 6.68 or 6.69. The volume shape factor of potassium sulphate crystals,
for example, changes from about 1 to 0.6 as the crystals grow from about
300 um to 2 mm (Mullin and Gaska, 1969; Garside, Mullin and Das, 1973).

At the end of a growth run, the crystals must be cleanly and qualitatively
separated from the mother liquor so that their final dry mass can be measured.
Filtration is commonly followed by washing to recover residual mother liquor.
These operations should be carried out rapidly to minimize any chance of the
crystals undergoing change. Ideally the wash liquid should be completely mis-
cible with the mother liquor, and the crystals should be practically insoluble in
the wash liquid. Further, to assist rapid drying, the wash liquid should be
reasonably volatile. Methanol, ethanol and acetone, for example, are often
chosen for inorganic salts that have crystallized from aqueous solution. Filtra-
tion should remove a very high proportion of the mother liquor so that the
chance of salting-out and consequent surface contamination is minimized.
Further comments on the problems associated with crystal washing under
industrial conditions are made in section 9.7.1.

Fluidized beds

A laboratory-scale fluidized bed crystallizer capable of yielding useful growth
rate information is shown in Figure 6.20. It is constructed mainly of glass (total
capacity 10—13 L) with growth zones 5-8 cm diam. and 75 cm long. A combina-
tion of heating tapes and water cooler enables the temperature of the solution
to be maintained to +0.03°C. Solution concentration can be measured at
intervals or continuously. A typical run would consist of adding about
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Figure 6.20. A4 laboratory-scale fluidized bed crystallizer: A, growth zone; B, outlet cock;
C, resistance thermometer; E, F, orifice plates; H, heating tapes; J, thermometer; K, water
cooler. (After Mullin and Garside, 1967)

5 g+ 1 mg of carefully sized seed crystals and controlling the solution velocity
so that the crystals are uniformly suspended in the growth zone until their mass
has increased to, say, 15g. This mass increase would allow 600 pm crystals of
potassium sulphate, for example, to grow to about 800 um. The duration of
a run varies from about % to 3h, depending on the working level of super-
saturation. At the end of a run the crystals are removed, dried, weighed and
sieved. Some typical results are shown in Figure 6.21 for potash alum crystals
grown at 32°C. These results may be compared with those shown in Figure
6.16. Here, again, the effect of supersaturation can be seen and so can the effect
of crystal size. As explained above, solution velocity dependent growth shows
up as crystal size dependent growth when freely suspended crystals are grown in
a crystallizer. In this case large crystals grow faster than small.
For potash alum it has been shown that

RG = K(;Acg (670)

For Rg expressed as kgm~2s~! and Ac askg hydrate/kg solution Kg varies

from 0.115 to 0.218 and g from 1.54 to 1.6 for crystals ranging from 0.5 to
1.5mm. Or, since it has already been shown that vy = Cu’Ac® for single
crystals (equation 6.66), then

Rg = C'L"Ac?® (6.71)
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Figure 6.21. Overall growth rates of potash alum crystals at 32°C (mean crystal sizes:
A=19,B=14,0=099, A=0.75 57 = 0.53mm. (After Mullin and Garside, 1967)

which is similar to the equation used by Bransom (1960) as the starting point for a
theoretical analysis of crystal size distribution. In the above case of potash alum

R = 16L"%Ac? (6.72)

Overall growth rates for potash alum measured in the fluidized bed crystal-
lizer coincide very well with those predicted from face growth rates measured in
the single crystal cell (Figure 6.22). The alums grow as almost perfect octa-
hedra, i.e. eight (111) faces, so it is a simple matter, using the crystal density, p.,
to convert linear face velocities to overall mass deposition rates (Rg = pcv(in)-

Agitated vessels

It is possible to determine overall crystal growth rates by adding a known mass
of sized seeds to a supersaturated solution in an agitated vessel, following
a similar procedure to that outlined above for the fluidized bed method. To
correlate the data, however, it is necessary to estimate the particle—fluid slip
velocity as a function of impeller speed in the agitated vessel using relationships
of the type described in section 9.4.1.

An example of the comparison of growth rate data obtained in both fluidized
bed and agitated vessel crystallizers, using ammonium alum, has been reported
by Nienow, Bujac and Mullin (1972).

Measurement from desupersaturation rates

A rapid method for overall crystal growth rate estimation may be made by
suspending a batch of seed crystals in a supersaturated solution kept at con-
stant temperature, and following the decay of supersaturation over a period
of time. A mass of seed crystals of known size and surface area is added to
the solution in a closed system, e.g. in a fluidized bed or an agitated vessel.
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Figure 6.22. Comparison between face (smooth curve) and overall ( points) growth rates of
potash alum crystals at 32°C. (After Mullin and Garside, 1967 )

The initial supersaturation is recorded and the desupersaturation decay
is monitored by continuous or frequent intermittent solution analysis, ¢.g. by
measuring some relevant physical property such as density, refractive index,
conductivity, etc. The same procedure may be used, with appropriate nomencla-
ture changes, to determine overall dissolution rates by measuring the increase in
solution concentration.

Assuming that negligible nucleation occurs after the seeds are added, the
change in solution concentration dc¢ at any instant is proportional to the mass
deposition dm on existing crystals, i.c.,

dm = —Wdc (6.73)

W is the mass of ‘free water’ present. If the crystallizing substance is hydrate, the
solution concentration ¢ should be expressed as kg of hydrate per kg of free water.

The overall crystal growth rate, Rg (the mass rate of deposition, dm/d¢, per
unit crystal surface area, 4, see equation 6.61) may thus be expressed as

1 dm W dc
A dt A4 dr
Values of dc/df may be obtained from the measured desupersaturation curve.

W is a constant for a given run and the surface area, 4, of the added seeds can
be estimated from their total mass, M, and characteristic size, L:

A= BM/ap.L (6.75)

R (6.74)
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where a and 3 are the volume and surface shape factors, respectively, and p
is the crystal density. It is advisable to use seed crystals as near uniform as
possible, in both size and shape, to minimize errors.

If the surface area change cannot be neglected, a mean value 4 may be used
in equation 6.75, based on the initial and final areas, and calculated from (Ang
and Mullin, 1979)

R /L'A Lar (6.76)
Li— Loy, Ly '
13 23
S EORCY

where M, and M, are the initial and final crystal masses.

Desupersaturation methods for crystal growth rate measurements have been
reported for ammonium alum (Bujac and Mullin, 1969), potassium sulphate
(Jones and Mullin, 1973a), nickel ammonium sulphate (Ang and Mullin, 1979),
potassium chloride (Nyvlt, 1989) and succinic acid (Qui and Rasmuson, 1990).

A different approach was adopted by Garside, Gibilaro and Tavare (1982)
who suggested that crystal growth rates could be evaluated from a knowledge
of the first two zero-time derivatives of a desupersaturation curve which had
been approximated by an nth order polynomial. The analytical procedures
adopted are fully described in the above paper, together with an example of
the application of the approach to the growth of potassium sulphate crystals in
a fluidized bed crystallizer.

Measurement on a rotating disc

The rotating disc method may be used to study the separate roles of diffusion
and integration in crystal growth since it enables the mass transfer (diffusion)
step to be isolated. A uniform hydrodynamic boundary layer of thickness

&n = 2.8(v/w)"? (6.78)

is produced over the smooth surface of a small disc rotated in a horizontal plane
about its axis; v is the kinematic viscosity of the liquid and w is the angular
velocity of the disc. For example, a disc rotating at N = 200 rev/ min (w =
27N ~ 21 radians/s), and taking v = 10~°m? s~ gives the value of 6, ~ 600 um.
The mass transfer (diffusion) boundary layer thickness 6;, would only be a small
fraction of this (see section 6.3.2).

The disc, impregnated with the crystalline material, is rotated in a relatively
large volume of solution so that the solution concentration remains virtually
unchanged during a run.

The technique may be used to study both growth and dissolution using
solutions of the appropriate solute concentrations. It has been used to measure
individual face growth rates by mounting a well-formed crystal in the disc with
one face only exposed, but it is more commonly employed for measuring
overall growth or dissolution rates of a multicrystalline compact compressed
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into a recess in the disc surface, thus exposing a random orientation of faces to
the solution.

Flow over the disc must be laminar, so the disc Reynolds number
(Re = wr?/v) should be kept between 10° and 10°. For example, for a 50-mm
diameter disc, these limits correspond to rotational speeds of around 15 and
1500 rev/min, respectively. Turbulent flow starts at a Reynolds number of
about 2 x 10° and below about 10?> natural convection can interfere with the
mass transfer process. The disc is weighed before and after a run during which
a loss, or gain, of around 0.2 g in mass has occurred, depending on whether
growth or dissolution is being studied. It is essential, of course, to standardize
the disc-drying procedure in such studies.

Descriptive accounts of the construction and use of rotating disc units have
been given by Bourne et al. (1976), Karel and Nyvit (1989) and Garside,
Mersmann and Nyvit (1990).

6.2.5 Growth and nucleation rates

The processes of growth and nucleation interact in a crystallizer, and both
contribute to the crystal size distribution (CSD) of the product (see section 9.1).
Kinetic data needed for crystallizer design purposes (effective growth and
nucleation rates) can be conveniently measured on the laboratory scale in
a mixed-suspension, mixed-product removal (MSMPR) crystallizer operated
continuously in the steady state (Figure 9.3). The assumptions made are that no
crystals are present in the feed stream, that all crystals are of the same shape,
that crystals do not break down by attrition, and that crystal growth rate is
independent of crystal size.

The relationship between crystal size, L, and population density, #n (number
of crystals per unit size per unit volume of the system), derived directly from the
population balance (Randolph and Larson, 1988) (section 9.1.1) is

n = nyexp(—L/GT) (6.79)

where ng is the population density of nuclei (zero-sized crystals) and 7 is the
residence time. Equation 6.79 describes the crystal size distribution for steady-
state operation. Rates of nucleation B and growth G (= dL/d¢) are convention-
ally written in terms of supersaturation as

B =k A (6.80)
and

G = kAt (6.81)
These empirical expressions can be combined to give

B = ksG' (6.82)
where

i=blg (6.83)
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in which b and g are the kinetic orders of nucleation and growth, respectively,
and i is the relative kinetic order. The relationship between nucleation and
growth may be expressed as

B = nyG (6.84)
or
ny = k4Gi7l (6.85)

Experimental measurement of crystal size distribution (recorded on a num-
ber basis) in a steady-state MSMPR crystallizer can thus be used to quantify
nucleation and growth rates. A plot of logn vs. L should give a straight line of
slope <(G7)~! with an intercept at L = 0 equal to o (equation 6.79 and Figure
6.23a); if the residence time 7 is known, the crystal growth rate G can be
calculated. Similarly, a plot of logny vs. log G should give a straight line of
slope i — 1 (equation 6.85 and Figure 6.23b); if the order g of the growth process
is known, the order of nucleation b can be calculated from equation 6.83.

A typical laboratory MSMPR crystallizer suitable for measuring kinetic
data is shown in Figure 6.24. Such a unit would typically be operated for
around ten residence times to achieve the steady-state conditions necessary
before taking a sample of the magma to assess the crystal size distribution.
The solenoid-operated discharge mechanism is based on the one described by
Zacek et al. (1982). Normally only one feed system would be required, e.g. for
cooling crystallization, but two independent feed systems as illustrated, would
be necessary for reaction crystallization or precipitation studies. With suitable
modification to the crystallization vessel, the unit can be adapted for reduced-
pressure evaporation.

MSMPR units with crystallizer working volumes as small as 250 mL have
been operated successfully, but if the kinetic data are to be used for industrial
design purposes, the working volume should not be less than about 4L, and
sizes up to 20L have been recommended (Garside, Mersmann and Nyvlt,
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Figure 6.23. Population plots characterizing (a) the crystal size distribution and (b) the
nucleation and growth kinetics for a continuous MSM PR crystallizer
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Figure 6.24. A laboratory-scale MSMPR crystallizer: A, thermostatted feedstock tank;
B, constant-head tank; C, MSMPR crystallizer; D, water inlet to jacket; E, baffle;
F, thermometer; G, level detector; H, solenoid-operated discharge valve; I, magma outlet;
J, control unit

1990). The larger the working volume, the more meaningful will be the nucle-
ation data, particularly for scale-up purposes, but the more difficult it will be to
achieve good mixing and MSMPR conditions in the vessel. Further, because of
the large quantities of feedstock solution to be handled, more expensive ancil-
lary equipment will be required. Conversely, although it is much easier to
achieve MSMPR operation in small volume units and to operate with much
simpler equipment, the consequent low feedstock solution flowrates in narrow
supply lines can cause severe problems arising from crystallization blockage.
A detailed example of the evaluation of kinetic information from MSMPR data
is given in section 9.2.

Mersmann and Kind (1988) have surveyed data reported in the literature on
17 different inorganic substances crystallizing or precipitating from aqueous
solution in MSMPR crystallizers. One of the interesting compilations is shown
in Figure 6.25 where some orders of magnitude of potential growth and
nucleation rate are indicated. Below a relative supersaturation, o (= Ac/c"),
of about 1, the processes could be described as crystallization (by cooling,
evaporation, salting out, etc.) coupled with secondary nucleation. For ¢ > 1
the processes are more appropriately described as precipitation coupled with
primary nucleation.

6.2.6 Effect of temperature

The relationship between a reaction rate constant, k, and the absolute temper-
ature, 7, is given by the Arrhenius equation
dlnk E
dT  RT?

(6.86)
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Figure 6.25. Growth and nucleation rates in an MSMPR crystallizer: A, KCI; B, NaCl;
C, (NH»),CS; D, (NH4),SO,; E, KNOs; F, Na,SOy4; G, K,SO4; H, NH4AI(SO,),;
I, K»,Cr,O7; J, KAI(SOy),; N, CaCOs; O, TiOy; Q, BaSOy. (After Mersmann and Kind,
1988)

where E is the energy of activation for the particular reaction. On integration
equation 6.86 gives

k=A- exp(—E/RT) (6.87)

or, taking logarithms,

E

Ink=InA RT (6.88)
Therefore, if the Arrhenius equation applies, a plot of log k against 7! should
give a straight line of slope —E/R and intercept log k.

Alternatively, if only two measurements of the rate constant are available, k|
at Ty and k; at T, the following equation may be used:

RT T, | k;

E= - In A (6.89)
Equation 6.89 is obtained by integrating equation 6.86 between the limits 77
and T, assuming that £ remains constant over this temperature range.

The above equations may be applied to diffusion, dissolution or crystal-
lization processes; k can be taken as the relevant rate constant. For example,
a plot of log Kg versus T ! would give a so-called activation energy for crystal
growth, Egys; logKp versus 7! gives Egiss; logD versus T !, where
D = diffusivity, gives Egyr; and logn versus T ~', where n = viscosity, gives
a value of Ey;; and so on.

Activation energies for diffusion are usually ~10—20kJmol~! and for sur-
face integration ~40—60kJmol~'. As the rate of integration increases more
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rapidly with temperature than does the rate of diffusion, crystal growth rates
tend to become diffusion controlled at high temperature and integration con-
trolled at low temperature. For example, sucrose is reported to be diffusion
controlled above 40 °C (Smythe, 1967) and sodium chloride above 50 °C (Rum-
ford and Bain, 1960). Over a significant intermediate range of temperature,
however, both processes can be influential, and accordingly Arrhenius plots of
crystal growth data often give curves rather than straight lines, indicating that
the apparent activation energy of the overall growth process is temperature
dependent.

6.2.7 Effect of crystal size

It is probably true to say that all crystal growth rates are particle size depend-
ent; it all depends on the size and size range under consideration. The effect of
size may be quite insignificant for macrocrystals, but the situation can change
dramatically for crystals of microscopic or sub-microscopic size.

Size-dependent growth

One effect of crystal size on the overall growth rates of macrocrystals has
already been mentioned in section 6.2.4 (see Figure 6.21). Not all substances
exhibit this type of size—growth effect, but in cases where they do, an overall
growth rate expression of the form of equation 6.71 can be useful. Because of
the limitations imposed by traditional experimental techniques, the crystals
normally studied do not extend much outside the range 200 um to 2mm. In
this range any effect of size would appear to be closely linked with the effect of
solution velocity: large particles have higher terminal velocities than those of
small particles and, in cases where diffusion plays a dominant role in the growth
process, the larger the crystals the higher their growth rate.

A different effect may be considered for crystals smaller than about 10 um.
Because of their very small terminal velocity, and sizes smaller than that of
turbulent eddies, they may be growing in a virtually stagnant medium, even in
an apparently well-agitated system.

Another, and often more powerful, effect of crystal size may be exhibited at
sizes smaller than a few micrometres, and is caused by the Gibbs—Thomson
effect (section 3.7). Crystals of near-nucleic size may grow at extremely slow
rates because of the lower supersaturation they experience owing to their higher
solubility. Hence the smaller the crystals, in the size range below say 1 or 2 um,
the lower their growth rate.

A third factor to be considered in connection with the crystal size-growth
rate effect is the possibility of the surface integration kinetics being size depend-
ent. The number of dislocations in a crystal increases with size due to mechan-
ical stresses, incorporation of impurity species into the lattice, etc. In addition,
the larger the crystals the more energetically will they collide in agitated
suspensions and the greater is the potential for surface damage. Both of these
effects favour faster surface integration kinetics and lead to higher growth rates
with increasing crystal size (Garside and Davey, 1980).
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Some comments are made in section 9.1.1 on attempts to develop appropriate
empirical formulae to relate crystal growth rate with crystal size, particularly
for the assessment of MSMPR crystallizer data.

Growth rate dispersion

The above size-dependent effects are all concerned with the growth rate change
of a crystal solely on account of its size, i.e. a genuine size—growth effect. In
contrast, the behaviour now generally known as ‘growth rate dispersion’ refers
to the fact that individual crystals, all initially of the same size, each apparently
subjected to identical growth environments (temperature, supersaturation,
hydrodynamics, etc.), can grow at different rates. White and Wright (1971)
first identified this phenomenon in the batch crystallization of sucrose, and this
is now a generally accepted behaviour in all crystallizers. It has also been
demonstrated for the growth of secondary nuclei (Garside, Rusli and Larson,
1979; Berglund, Kaufman and Larson, 1983). Reviews of the subject have been
made by Ulrich (1989) and Tavare (1991).

Growth rate dispersion stems mainly from different interferences with the
surface integration kinetics on different crystals. Random surface adsorption
or physical incorporation of impurity species, leading to the development
of different crystallographic faces, may account for some cases, but there is
evidence to suggest that the prime causes could be the varying degrees of lattice
strain and deformation in individual crystals and their dislocation structure
(Ristic, Sherwood and Shripathi, 1991; Jones et al., 2000). Lattice strain can be
caused by mechanical stresses imparted to crystals in a crystallizer by fluid
shear, or physical contact with other crystals, the agitator or other internal
parts of the equipment. The less ductile the crystals the more likely they are to
be prone to growth rate dispersion.

6.2.8 Effect of impurities

The presence of impurities in a system can have a profound effect on the growth
of a crystal. Some impurities can suppress growth entirely; some may enhance
growth, while others may exert a highly selective effect, acting only on certain
crystallographic faces and thus modifying the crystal habit (see section 6.4).
Some impurities can exert an influence at very low concentrations, less than
1 part per million, whereas others need to be present in fairly large amounts
before having any effect. The influence of impurities on nucleation has been
discussed in section 5.4.

Any substance other than the material being crystallized can be considered
an ‘impurity’, so even the solvent from which the crystals are grown is in the
strictest sense an impurity, and it is well known that a change of solvent
frequently results in a change of crystal habit (see section 6.4.2).

Impurities can influence crystal growth rates in a variety of ways. They can
change the properties of the solution (structural or otherwise) or the equilib-
rium saturation concentration and hence the supersaturation. They can alter
the characteristics of the adsorption layer at the crystal-solution interface and
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Figure 6.26. Sites for impurity adsorption on a growing crystal, based on the Kossel model:
(a) kink; (b) step; (c) ledge (face). (After Davey and Mullin, 1974)

influence the integration of growth units. They may be built into the crystal,
especially if there is some degree of lattice similarity.

Impurities are often adsorbed selectively on to different crystal faces and
retard their growth rates. To effect retardation, however, it is not necessary for
the impurity to achieve total face coverage. As seen in Figure 6.26, utilizing the
Kossel model (section 6.2), three sites may be considered at which impurity
species may become adsorbed and disrupt the flow of growth layers across the
faces, viz. at a kink, at a step or on a ledge (face) between steps. Considering the
theoretical implications of adsorption at each of these sites in relation to
experimental observations, it is possible to assess which of the adsorption sites
are important in reducing layer velocities (Davey and Mullin, 1976). Briefly, if
kink site adsorption is possible, growth retardation may be affected at very low
impurity levels in the solution. More impurity would be needed if step site
adsorption is the preferred mode while much higher levels may be required if
adsorption only occurs on a ledge or face site.

The use of single-crystal growth-rate measurements in the quantitative pre-
diction of crystal habit was first demonstrated by Michaels and Colville (1960)
who grew adipic acid crystals from aqueous solution in the presence of trace
surfactants. Sodium dodecylbenzenesulphonate (SDBS) (anionic) caused a much
greater reduction in the growth rate of the (010) and (110) faces than of the
(001) face, leading to the formation of prisms or needles. Trimethyl dodecyl-
ammonium chloride (TMDAC) (cationic) had the opposite effect, favouring
the formation of plates or flakes.

A similar study was made by Mullin and Amatavivadhana (1967) and
Mullin, Amatavivadhana and Chakraborty (1970) on the face growth rates of
ammonium and potassium dihydrogenphosphates which are affected by trace
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(a) (b)

Figure 6.27. (a) Perfect ‘capping’ of an ADP crystal; (b) tapered growth caused by traces
of Fe** (6 = angle of taper). (After Mullin, Amatavivadhana and Chakraborty, 1970)

quantities of Cr*" or Fe* and also by solution pH changes. The most visual
effect is a tapering of the prism faces (Figure 6.27), the angle of taper increasing
with increase in impurity cation concentration. The overall effect, which was
confirmed in a fluidizing bed crystallizer, is that growth at pH 4 gives thin
needles, at pH 5 gives squat prisms and at pH 4 with 5 ppm Fe** in the solution
gives tapered needles. Possible mechanisms for the complex action of these
trivalent cations, and the effect of pH, have been proposed by Davey and
Mullin (1976) and Kubota et al. (1994, 1999). This topic is considered further
in section 6.4.

Theoretical analyses of the effects of impurities on crystal growth have been
made by Bunn (1933), Lacmann and Stranski (1958), Chernov (1965), Davey
(1976) and Boistelle (1982). Cabrera and Vermilyea (1958) visualized a general
impurity effect in terms of a ‘pinning’ mechanism whereby the progress of
growth layers on a crystal surface is blocked by individually adsorbed impurity
species. They proposed that complete stoppage of growth would occur when
the distance between the adsorbed impurities species was < 2r., where r. repre-
sented the radius of a critical two-dimensional nucleus (equation 6.5). For
spacings > 2r. the elementary growth layers could squeeze through the gaps
between the impurity species and crystal growth would continue, although at a
lower rate than that without any impurities present.

The blockage of active sites by impurities can be related to the impurity
concentration in solution through the Langmuir adsorption isotherm, and
a number of models utilizing this concept have been proposed (Davey and
Mullin, 1974; Black et al., 1986; Klug, 1993). A recent refinement, which
incorporates the concept of an impurity effectiveness factor (Kubota and
Mullin, 1995), offers an opportunity to explain several hitherto anomalous
patterns of behaviour and may be summarized as follows.

The growth layer velocity v in the presence of an impurity relative to the
velocity vy in pure solution may be represented by

v/vg =1 — alleq (6.90)

where 6.4 is the fractional surface coverage by adsorbed impurities at equilib-
rium, and « is an impurity effectiveness factor. Thus when oo = 1 and 6q = 1,
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the step velocity v = 0, i.e., complete stoppage of growth at complete coverage.
However, when a > 1 and 6.4 < 1 (incomplete coverage) v — 0, but when
a < 1, v never approaches zero, even for 6 = 1.

Assuming the Langmuir adsorption isotherm to apply,

Beq = Ke/(1 + Ko) (6.91)

where K is the Langmuir constant and c¢ is the impurity concentration. The
relative step velocity can be expressed as

g = 1 — [aKe/(1 +Ke)] (6.92)

and assuming that the crystal face growth rate G is proportional to the step
velocity

GGy =1 — [aKc/(1 + Ko)] (6.93)

Relative step velocities calculated from equation 6.92 are shown in Figure 6.28
for several different effectiveness factors as a function of the dimensionless
impurity concentration Ke. When a > 1, the relative velocity decreases very
rapidly with increasing impurity concentration, reaching zero at a small value
of Ke¢. For o = 1, the step velocity approaches zero asymptotically. For o < 1,
however, the step velocity never approaches a non-zero value as the impurity
concentration is increased. These three types of behaviour in the step velocity-
impurity relationship can be found in many reports in the literature. For
example, the case of a > 1 is illustrated by the effect of raffinose on the step
velocities on the {100} faces of sucrose (Albon and Dunning, 1962). The effects
of FeCl; and AICI; on the step velocities on the {100} faces of ammonium
dihydrogen phosphate (Davey and Mullin, 1974) are good examples of o = 1,

1.2 T T T T T
a=0

° 1 7
=
2 -
5 0.8
9
[}
; 0.6 a=0.5 -
[}
1)
() 0.4 |- -
2
©
[}

0.2 | ]
o a=1

a=1.5
0 | | | 1 T
0 5 10 15 20 25 30

Dimensionless impurity concentration Kc

Figure 6.28. Relationship between the relative step velocity v/vy and the dimensionless
impurity concentration Kc for different values of the impurity effectiveness factor «. (After
Kubota and Mullin, 1995)
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and the effect of aliphatic carboxylic acids on the {100} face growth rates of
KBr (Bliznakov and Nikolaeva, 1967) neatly illustrates the case of a < 1.

The impurity effectiveness factor « is related to the critical radius of a two-
dimensional nucleus at low supersaturation (o < 1) Mullin and Kubota
(1995) as

a =ya/kToL (6.94)

where a is the size of a growth unit, v the edge free energy, o the supersaturation
(equation 3.69), L the separation of sites available for impurity adsorption,
T the absolute temperature and k the Boltzman constant.

Equilibrium adsorption, however, is neither necessary for impurity action,
nor is it the most commonly encountered condition. Impurities can still retard
growth rate under non-equilibrium adsorption conditions so long as sufficient
surface coverage is attained. To consider non-steady-state impurity action feq
in equation 6.90 is replaced by 6, the surface coverage at time ¢:

vivg=1—ab (6.95)

and, assuming the Langmuir mechanism to apply, the net adsorption rate can
be expressed as

dojdt = k(1 — O)c—ka0 (6.96)

where k| and k, are constants and c is the impurity concentration, also assumed
to be constant. Integrating equation 6.96 with the initial condition of # = 0 at
t =0 for a given impurity concentration ¢ gives the surface coverage 6 as
a function of time:

0 = Oeg[1 — exp(—1/7)] (6.97)

where the adsorption process time constant 7 = (k| + k,)~'. The final equilib-
rium coverage 64 is given by equation 6.91 and from equations 6.95 and 6.97

V/vg =1 — albleq[1 — exp(—1/7)] (6.98)
or in terms of face growth rates
G/Gy =1 — alflq[l — exp(—t/T)] (6.99)

Equations 6.98 and 6.99 are valid for all values of ¢ for weak impurities (o < 1)
and up to a characteristic time 7., when the face growth rate G becomes zero,
for strong impurities (o > 1) where

te = In[abeq/(afeq — DI (6.100)

The combined influence of supersaturation and impurity concentration on
crystal growth can be quite complex, but two basic cases may be considered
(Kubota, Yokota and Mullin, 2000): (i) growth is only suppressed in the low
range of supersaturation while at higher supersaturations the impurity effect
disappears completely and (ii) growth rate suppression occurs throughout
a very wide range of supersaturation. The first case may be explained by
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assuming slow unsteady-state adsorption of impurity at high supersaturation.
The second is actually a special case of the first, where the adsorption time
constant becomes very small even at higher supersaturations.

For the simple case in which adsorption equilibrium is established instant-
aneously (7 = 0) regardless of the supersaturation, equation 6.99 reduces to the
equilibrium adsorption model equation

G/Gy=1—ab for abfeq <1 (6.101)
which, using equations 6.91 and 6.94, becomes
G/Gy =1—[(Kc/l +Kce)(ya/kTol)] (6.102)

Equation 6.102 can be modified to describe the relative growth rate as a function
of supersaturation o at a given temperature under the influence of a given
impurity concentration

G/Gy=1— (o))" for o. <o 1 (6.103)
where o, the critical supersaturation below which G = 0, is defined by
oc = yaKe/KTL(1 + Kc) (6.104)

Any growth model can be used for Gy in equations 6.102 and 6.103, but if
a linear model (Gy = kgo) is assumed, equation 6.103 becomes

G=kg(c—0;) for o <okl (6.105)

Equation 6.105 is represented by the dotted line in Figure 6.29a showing that
for instantaneous adsorption (7 = 0) growth rate suppression occurs over a
wide range of supersaturation. For the case of very slow adsorption (7 = 00),
no impurity effect would be expected, i.c., growth in the presence of impurity
would be the same as if no impurity were present, i.e. G = Gy. This is repres-
ented by the continuous line in Figure 6.29a.

In most cases the impurity adsorption rate decreases as the supersaturation is
increased. The time constant 7 increases from zero at some critical supersatura-
tion og, below which adsorption occurs instantaneously. The time-averaged
growth rate would change gradually from G for 7 = 0 (instantaneous adsorp-
tion) to Gy (the growth rate in pure solution) for 7 = oo (very slow adsorption)

(a) (b) (c)
pure or impure (T=%)
Q© .
\ © impure (t=0) © impure (t20)
T o A | pure L A pure el
impure (t=0) ,+* impure (t=0) .* impure (t=0)
0 - 0 -
o A —>o 0o A —o ° M
o O ® @ Oc

Figure 6.29. Face growth rate G as a function of supersaturation o: (a) for instantaneous
(7 = 0) and very slow (1 = o0) adsorption, (b) and (¢) for a continuous increase of T from 0
to 0o, (b) for oy > o. and (c) for oy < o.. (After Kubota, Yokota and Mullin, 2000)
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in the manner shown schematically in Figures 6.29b and 6.29¢ as thick solid
lines for the cases of 0. < gy and o, > oy.

Another interesting behaviour, often exhibited in the presence of impurities,
is growth rate hysteresis where a crystal growing in a high supersaturation
solution can continue to grow, at appropriate reduced rates, down to a low
supersaturation, if the supersaturation is lowered continuously from the higher
level. Yet the reverse does not occur, i.e., a crystal which has ceased to grow at
a low supersaturation is unable to grow even when the supersaturation is
continuously raised to a very much higher level. The hysteresis effect is an
indication of unsteady-state growth behaviour and can be explained by assum-
ing a slow impurity adsorption at higher supersaturations as discussed above. If
the supersaturation is lowered from a high value the crystal can continue to
grow before impurity species block the active sites, whereas if the supersatura-
tion is raised from a low value, impurities quickly block the sites and stop the
growth. Several cases of growth rate hysteresis are described by Kubota,
Yokota and Mullin (1997).

6.3 Crystal growth and dissolution

If both crystallization and dissolution processes were purely diffusion con-
trolled in nature, they should exhibit a true reciprocity; the rate of crystal-
lization should equal the rate of dissolution at a given temperature and under
equal concentration driving forces, i.e. at equal displacements away from the
equilibrium saturation conditions. In addition, all faces of a crystal would
grow and dissolve at the same rate. These conditions rarely, if ever, occur in
practice.

Crystals usually dissolve much faster than they grow, and up to fivefold
differences are not uncommon. Different crystallographic faces grow at differ-
ent rates; they may even dissolve at different rates, but few reliable measure-
ments of this behaviour have yet been reported. These facts have led most
investigators to support the view that the crystallization process can be con-
sidered on the basis of a simple two-step process: bulk diffusion being followed
by a surface ‘reaction’ at the growing crystal face (section 6.1.4). There have,
however, been other suggestions put forward. Some authors have suggested
that crystals dissolve faster than they grow because the exposed surface is not
the same in each case; etch pits rapidly form on the faces of a dissolving crystal
(these occur either at random point defects or points where line defects break
the surface) as seen in Figure 6.30a. Dissolution then proceeds by a pitting and
layer-stripping process. It is well known that a broken or etched crystal grows
initially at a much faster rate than that when the faces are smooth, but as
Van Hook (1961) has pointed out, even an overgenerous allowance of extra
surface area due to pitting cannot possibly explain the greater rates of dissolu-
tion compared with the rate of crystallization of sucrose under comparable
conditions. Other workers have expressed similar views, and it has been shown
that some dissolution processes may also involve a slow ‘reaction’ step at the
crystal surface (Bovington and Jones, 1970; Zhang and Nancollas, 1991).
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(b)

Figure 6.30. Growth and dissolution of a sucrose crystal: (a) etch pits appearing at the
onset of dissolution; (b) growth layers moving over a crystal surface
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Figure 6.31. Growth and dissolution for potash alum crystals at 32°C. Mean crystal
sizes: A=1.75,0=1.02, ®=0.73, & =051, A=1.69, B=14, O=0.99, ®=0.75,
v =0.53mm. (After Garside and Mullin, 1968)

Growth and dissolution rates of crystals can be measured conveniently in the
laboratory fluidized bed crystallizer described above (Figure 6.20). Some typical
results for potash alum are shown in Figure 6.31, where it can be seen that
dissolution rates are very much greater than growth rates under equal driving
forces (Ac). Similar results have been reported for potassium sulphate (Mullin
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and Gaska, 1969). However, whilst in both cases the dissolution rates are first-
order with respect to supersaturation, i.e.

RD = KDAC (6106)

the growth processes are not, i.e. Rg = KgAcf (equation 6.70) where g ~ 1.6
for potash alum at 32°C and g ~ 2 for potassium sulphate at all temperatures
fom 10 to 50°C. In equations 6.70 and 6.90 Kp and Kg are the overall
dissolution and growth mass transfer coefficients, respectively.

Crystal growth retardants do not necessarily have an influence on the dis-
solution process, but many such cases have been reported. Sears (1958) showed
that complex inorganic ions such as FeF;  can retard both the growth and
dissolution of lithium fluoride at concentrations of <10~ mol L~". Nancollas
and Zawacki (1984) commented on the growth and dissolution retardation of
sparingly soluble salts using, for example, chelating anions that adsorb at
cationic sites. Kubota er al. (1988) demonstrated that ppm traces of Cr*" in
solution can prevent potassium sulphate crystals dissolving, with the effect that
solubilities of this salt measured under these conditions are always lower than
the true equilibrium solubility (section 2.8).

An example of the effect of trace impurities on both dissolution and growth
is shown in Figure 6.32 for the case of Fe(III) and a single crystal of potassium
sulphate (Kubota et al., 1999). The effect of temperature on both growth and
dissolution processes has been considered in section 6.2.6.
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Figure 6.32. Dissolution and growth rates (expressed as a mass increase or decrease,
normalized with the initial seed crystal mass) of a single potassium sulphate crystal in the
presence of Fe(I1l) as trace impurity added as FeNH4(SOy), - 2H>O. (After Kubota et al.,
1999)
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6.3.1 Mass transfer correlations

Dissolution rate data obtained under forced convection conditions can be
correlated by means of equation 6.64 or 6.65. As described in section 6.2.2,
equation 6.64 is the preferred relationship on theoretical grounds, since Sh = 2
for mass transfer by convection in stagnant solution (Re = 0), whereas equa-
tion 6.65 incorrectly predicts a zero mass transfer rate (S% = 0) for this condi-
tion. However, at reasonably high values of S4 (>100) the use of the simpler
equation 6.65 is quite justified. The exponent of the Schmidt number 5 is
usually taken to be % and for mass transfer from spheres the exponent of the
Reynolds number a = 1.

Data plotted in accordance with equation 6.65 for the dissolution of potash
alum crystals yield the relationship (Garside and Mullin, 1968)

Sh = 0.37Re) S (6.107)

where the particle Reynolds number, Rep, is based on a mean crystal size and its
relative velocity when suspended in the solution.

Rowe and Claxton (1965) have shown that heat and mass transfer from a
single sphere in an assembly of spheres when water is the fluidizing medium can
be described by

Sh= A+ BRe"Sc'? (6.108)

where 4 =2[1 — (1 —¢)'?], B=2/3¢ and (2 —3m)/3m — 1) = 4.65Re "%,
The solution Reynolds number, Res, is based on the superficial fluid velocity,
us, and £ = voidage.

Another correlation used for predicting rates of mass transfer in fixed and
fluidized beds is that of Chu, Kalil and Wetteroth (1953). The j-factor for
diffusional mass transfer given by

Ja = <ﬁ> Sc*3 (6.109)
UsPs

is plotted against the modified solution Reynolds number Re)(1 — ¢), where Re;
contains L', the diameter of a sphere with the same surface area as the crystal
under consideration. The recommended expressions for calculating the mass
transfer coefficients are:

1< ReJ(1—¢)<30:  ja=S5TRe)(1 —e) "™ (6.110)
30 < Rel/(1 — ) < 5000: jg = 1.77Rel/(1 — )" (6.111)

Dissolution rate data for potash alum are plotted in accordance with equations
6.108 and 6.110 with € = 0.95, in Figure 6.33, where it can be seen that the
results lie reasonably close (+20%) to the predicted values. However, it should
be noted that equation 6.110 is very sensitive to values of € as ¢ — 1, so it
cannot be applied with any reliability to very lean beds of dissolving particles
and certainly not to the dissolution of single particles.

For the dissolution of crystals smaller than about 60 pm, a rough estimate of
the diffusional mass transfer rate may be made because as Re, — 0 Sh reduces
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Figure 6.33. Comparison of dissolution data for potash alum at 32°C with the mass
transfer correlations of Rowe and Claxton and Chu et al. (After Rowe and Claxton,
1965; Chu, Kalil and Wetteroth, 1953)

to its limiting value of 2 (equation 6.64), i.e., Kp = 2D/L where D is the
diffusivity (m?s™'), L the crystal size (m) and Kp the mass transfer coefficient
for dissolution (ms~'). The dissolution time, fp, of fine crystals of size L may
therefore be expressed as tp = pL?/8DAc, where p is the crystal density and
Ac = ¢* — cis the undersaturation, the driving force for dissolution, the reverse
of equation 3.67.

For crystals larger than about 60 um in agitated vessels, it is difficult to
estimate the relative crystal-solution velocity (section 9.4.1), and hence Rep,
but an order of magnitude estimate of the dissolution mass transfer coefficient
may be made from the Levins and Glastonbury (1972) equation:

1/374/3 0.62 0.17 0.36
Sh=2+0.47 (’“—) (ﬁ) (L) (6.112)
n dy psD

where ds and dy are the diameters of the stirrer and vessel, respectively and € is
the stirrer energy dissipation rate (W kg™') in the vessel.

6.3.2 Films and boundary layers

When a fluid flows past a solid surface there is a thin region near the solid—
liquid interface where the velocity becomes reduced owing to the influence of
the surface. This region, called the ‘hydrodynamic boundary layer’ 6, may be
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partially turbulent or entirely laminar in nature, but in the case of crystals
suspended in their liquor the latter is most probable.

For mass transfer processes another boundary layer may be defined, viz. the
‘mass-transfer or diffusion boundary layer’, 6,,. This is a thinner region close to
the interface across which, in the case of a laminar hydrodynamic boundary
layer around the crystal, mass transfer proceeds by molecular diffusion. Under
these conditions the relative magnitudes of the two boundary layers may be
roughly estimated from

LIRUTE (6.113)
m
where Sc=1n/psD is the dimensionless Schmidt number (7 = viscosity,
ps = solution density, D = diffusivity).

The ratio of the thicknesses of the two layers depends considerably on the
solution viscosity and diffusivity. For example, for ammonium alum crystals
in near-saturated aqueous solution at 25°C, n=12x103kgm's7!,
D=4x10""m2s"", p;=1.06 x 10°kgm~>. Therefore, S¢c =2.8 x 10° and
6n/6m ~ 14. However, for sucrose at 25°C, n=10"", D=9 x10"'" and
ps = 1.5 x 103, giving Sc = 7.4 x 10° and &,/6m ~ 90.

In the description of mass transfer processes another fluid layer is frequently
postulated, viz. the ‘stagnant film’ (see Figure 6.8) or, as it is sometimes called,
the ‘effective film for mass transfer’, 6. This hypothetical film is not the same
thing as the more fundamental diffusion boundary layer 6, but it may be
considered to be of the same order of magnitude.

The thickness of the effective film for mass transfer, 4, is defined by

6= 3 (6.114)
where ps = solution density, D = diffusivity and k is a mass transfer coefficient
expressed as ms~!. As described earlier, mass transfer data are frequently
correlated by relationships such as equation 6.65 in which the Sherwood
number Sh = kL/D and particle Reynolds number Re, = psulL/n. L = particle
size and u = relative particle solution velocity. Exponent b of the Schmidt
number is generally taken as %, and in the case of a laminar boundary layer it
can be shown theoretically that exponent a of the Reynolds number is %
However, a can vary from about 0.5 to 0.8 if the boundary layer is not truly
laminar. Values of the constant ¢ for granular solids may range from about 0.3

to 0.9. So, writing a simple, arbitrary form of equation 6.65 as
2 /
Sh = gkeyzs&/3 (6.115)

and expressing Sh = L/6 (using equation 6.114), we get

3L ( pal. —1)2 " —1/3
=5 () ) 6119

and this equation has often been used to give a rough estimate of the value of
6. It should be noted, however, that equation 6.116 depends on the mass transfer
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process being first-order with respect to the concentration driving force, other-
wise S/ is not dimensionless and equation 6.115 is invalid. A further complica-
tion (Paterson and Hayhurst, 2000) is that equation 6.114 only strictly applies
to the case of a planar film of thickness 6 whereas the appropriate relationship
for a spherical shell film should be expressed in terms of a characteristic
distance for mass transfer / where

[ =DJk=L/2+ L/b) (6.117)
which leads to the statement that
Sh=2+L/6 =24 f(Re,Sc) (6.118)

This equation encompasses two asymptotic results for (i) the stagnant case:
6/L — oo, Sh — 2 and (ii) the planar case: /L — 0, ] — 6.

It is thus possible to estimate a value for the thickness of the so-called
stagnant film, 6, but it is perhaps worthwhile at this point to question the
meaning and utility of this quantity. The concept of a stagnant film at an
interface is undoubtedly useful in providing a simple pictorial representation
of the mass transfer process, but in the case of crystals growing or dissolving in
multi-particle suspensions the actual existence of stable films, of the magnitude
normally calculated as shown above, around each small particle is debatable, to
say the least. Further, the value of ¢ can only be deduced indirectly from the
mass transfer coefficient and diffusivity (equation 6.114), and it is difficult to
select the appropriate value of D to use in any given situation. The question
arises, therefore, as to whether or not ¢ is a meaningful quantity to calculate
in these circumstances. In any case, the hypothetical nature of the stagnant
film should be clearly appreciated, and calculated values of its thickness should
be used with considerable caution.

6.3.3 Driving forces for mass transfer

There is a wide choice of possible driving forces for a mass transfer process, but
provided that the driving force is clearly defined the selection is generally of
little importance. However, in certain cases, e.g. under conditions of high mass
flux, the choice becomes critical.

For low mass flux mass transfer from a single sphere to an extensive fluid, the
general correlation

Sh=2+0.72Re;*Sc'? (6.119)

may be used over the range 20 < Re, < 2000.
The mass transfer coefficient in the Sherwood number may be defined by

R =ke(co — o) (6.120)

= ke(powo — Pocwoo) (6.121)
= pskc(wo - C"Joo) (6122)
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since for low mass flux py =~ ps =~ ps. Other definitions of the mass transfer
coefficient include

R = ku(wo — woo) (6.123)
= ky(Yo — Yao) (6.124)
= kyB (6.125)

In equations 6.120-6.125 R = mass flux (kgm—2s7!), ¢ = solution con-
centration (kgm™>), k =mass transfer coefficient (k. =ms"!, k,=
kem2s'Aw! ky = kgm ?sT'AY " and ky, = kgm s~ B7"), py = solution
density (kg m~3), w = mass fraction of solute in solution (dimensionless) and Y
is the mass ratio of solute to solvent in the solution (dimensionless). The
subscripts 0 and oo refer to the interfacial and bulk solution conditions,
respectively.

The dimensionless mass transfer driving force B is defined by

Wy — Weo

B= (6.126)

Wt — Wo
where w; is the mass fraction of the solute in the transferred solid substance, i.e.
wy = 1 for a single component. If the solute is a hydrate, then w; = 1 only if the
mass fractions are expressed as mass of hydrate per unit mass of solution.

Equation 6.119 should describe the dissolution of a solid solute into a solvent
or its own solution, and either k. or k, can be used, as Sh = k.d/D = k,d/psD.
However, complications can arise if the solute solubility is high. First, the
concentration dependence of the physical properties become significant and,
since py # pPoo, the Sherwood numbers based on k. and k, will not be equal.
Second, the mass flux from the surface of the solid alters the concentration
gradient at the surface compared with that obtained under otherwise identical
conditions of low mass flux.

Diffusion coefficients of electrolytes in water are greatly dependent on con-
centration; variations of £100% from infinite dilution to near-saturation are
not uncommon. Moreover the change is often non-linear and accurate predic-
tion of its effect is extremely difficult. Other physical properties, such as
viscosity and density, change over this concentration range but not to such
an extent.

The effects of concentration dependent physical properties on the correlation
of dissolution mass transfer data have been reported in some detail by Nienow,
Unahabhoka and Mullin (1966, 1968). ‘Mean’ solution properties should be
used for the Sherwood and Schmidt groups in equation 6.119 if the mass
transfer data for moderately soluble substances are to be correlated effectively.
The arithmetic mean will suffice for viscosity and density, but the integral value
must be used for the diffusivity (equation 2.27). Bulk solution properties are
used for the Reynolds number.

For low to moderate mass flux mass transfer studies, therefore, provided that
the physical property changes are taken into account, mass transfer coefficients
k. or k, may be used. The dimensionless mass ratio driving force, AY, has been
used quite successfully in crystallization and dissolution studies (Garside and
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Mullin, 1968; Mullin and Gaska, 1969), but this has the disadvantage that each
value of w, yields a different value of ¢, even if the physical property variations
are allowed for.

However, if the dimensionless driving force, B, is used, together with the
appropriate physical properties, the value of ¢ in equations 6.64 and 6.65
remains substantially constant at about 0.7-0.8 for a wide range of systems.
There is little doubt that B is the best driving force to use for high mass flux
studies.

A comprehensive account of the role of transport processes in crystallization
has been given by Garside (1991).

6.3.4 Mass transfer in agitated vessels

Crystallization and dissolution data obtained from agitated vessel studies may
be analysed by the methods discussed above, but a survey of the literature
related to the subject of solid-liquid mass transfer in agitated vessels shows that
there is an extremely wide divergence of results, correlations and theories. The
difficulty is the extremely large number of variables that can affect transfer
rates, the physical properties and geometry of the system and the complex
liquid—solid—agitator interactions.

Relationships such as equations 6.64 and 6.65 are commonly used for correl-
ating solid—liquid mass transfer data. However, the Reynolds number should
not be based on the agitator dimensions and speed, because this cannot take
into account one of the most important factors, viz. the state of particle
suspension. The mass transfer coefficient increases sharply with agitator speed
until the particles become fully suspended in the liquid, after which the rate of
increase with further increases in speed is reduced considerably. A maximum
rate of mass transfer occurs when substantial aeration of the liquid occurs at
high agitator speeds. From the ‘just-suspended’ to ‘severe aeration’ conditions
the mass transfer coefficient may be enhanced by 40-50% while the agitator
power input may be increased tenfold. There is little justification, therefore, for
using agitator speeds much higher than those needed to suspend the particles in
the system.

The appropriate velocity term for the particle Reynolds number in equations
6.64 and 6.65 is the slip velocity, i.e. the relative velocity between particle and
fluid. The slip velocity is usually assumed to be the free fall velocity of the
particle, but this quantity is not easy to predict.

The critical mass transfer rate, for particles just suspended in a liquid, can be
estimated from equation 6.119, the ‘mean’ solution properties being used as
explained above. The terminal velocity, u, for use in the Reynolds number may
be calculated from the empirical equations

U = 0.153 g0A7] Ll414ApOA71pS—0A29,’7—0A43 (6127)
for particles smaller than 500 pm, and from

u = (4gLAp[3py)"? (6.128)
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for particles larger than 1500 pm (Nienow, 1969). For particles of intermediate
size, u; should be predicted from both relationships, and the smaller value used
in the Rep as a conservative estimate. In equations 6.127 and 6.128, u; = cm s~
g=98lcms 2, L =cm, p=gem and 7 = poise (g5~ em ') where ps and 7
refer to the bulk solution. Ap is the solid-liquid density difference.

The expected mass transfer coefficient can be predicted from the critical
value by multiplying by an enhancement factor ranging from about 1.1 for
particles ~200 um to about 1.4 for particles ~5mm. Particle density also
influences the rate of mass transfer. The reason for this enhancement is the
increased level of turbulence at which larger and denser particles become
suspended in the liquid.

Another model for mass transfer is based on the Kolmogoroff theory of
homogeneous isotropic turbulence adapted to solid—liquid systems (Kolar,
1958, 1959; Middleman, 1965; Hughmark, 1969). The energy put into the
system by the agitator is considered to be transferred first to large-scale eddies
and then to larger numbers of smaller isotropic eddies from which it is dis-
sipated by viscous forces in the form of heat. For a given system the mass
transfer coefficient, k, can be related to the energy input, e, to the system by
ko 60'25.

The Kolmogoroff theory can account for the increase in mass transfer rate
with increasing system turbulence and power input, but it does not take into
consideration the important effects of the system physical properties. The
weakness of the slip velocity theory is the fact that the relationship between
terminal velocity and the actual slip velocity in a turbulent system is really
unknown. Nevertheless, on balance, the slip velocity theory appears to be the
more successful for solid-liquid mass transfer in agitated vessels.

6.4 Crystal habit modification
6.4.1 Crystal morphology and structure

The morphology of a crystal depends on the growth rates of the different
crystallographic faces. Some faces grow very fast and have little or no effect
on the growth form; the ones that have most influence are the slow-growing
faces. The growth of a given face is governed by the crystal structure and
defects on the one hand, and by the environmental conditions on the other.

A number of attempts have been made to predict the equilibrium form of
a crystal. According to the Bravais rule (chapter 1), the important faces govern-
ing the crystal morphology are those with the highest reticular densities and the
greatest interplanar distances, dj;. Or, in simpler terms, the slowest-growing
and most influential faces are the closest-packed and have the lowest Miller
indices. The surface energy theories of crystal growth (section 6.1.1) suggest
that the equilibrium form should be such that the crystal has a minimum total
surface free energy per unit volume.

The morphological theory of Hartman and Perdok (1955) considers the bond
energies involved in the integration of growth units into the lattice. In this
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theory crystal growth is considered to be controlled by the formation of strong
bonds between crystallizing particles. A strong bond is defined as a bond in the
first co-ordination sphere of a particle. The two-dimensional crystal shown in
Figure 6.34a is bounded by straight edges that are parallel to uninterrupted
chains of strong bonds. Such a straight edge is formed when the probability of
a particle being integrated is greater for site 4 than site B. In the case illustrated
the particle at site 4 is bonded to the crystal with one strong bond more than at
site B. The uninterrupted chains of strong bonds have been called periodic bond
chains (PBC); and as the number of strong bonds per unit cell is limited, there
exists a maximum length for the period of a PBC and, hence, a limited number
of PBCs.

The minimum thickness of a growth layer is the elementary ‘slice’, djx;, and
faces that grow slice after slice are called flat or F-faces. The condition for
a slice to exist is that two neighbouring parallel periodic bond chains be bonded
together with strong bonds (Figure 6.34b). If this is not so, no slice exists, i.e. no
layer growth can occur. Such faces are called stepped or S-faces (Figure 6.34c¢).

If no PBC exists within a layer, dj, the face is called a kinked or K-face,
which needs no nucleation for growth since it corresponds to a generalized type

(@)

(b

Figure 6.34. (a) Two-dimensional crystal. Each circle represents a growth unit of Kossel’s
repeatable step. (b) and (c¢) Projection of a three-dimensional crystal along a PBC. Each
circle represents a PBC. An F-face results when neighbouring PBCs are linked together by
strong bonds, otherwise an S-face develops
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Figure 6.35. Crystal with three PBCs parallel to [100] (A4), [010] (B), and [001] (C). The
F-faces are (100), (010) and (001). The S-faces are (110), (101) and (011). The K-face is
(111). (After Hartman, 1963)

of Kossel’s repeatable step (Figure 6.35). In terms of crystal structure depend-
ent growth, therefore, the growth form should be bounded by F-faces only,
although not all F-faces need be present.

The Hartman—Perdok approach is applied by making projections of the
crystal structure parallel to a PBC and tabulating all the bonds. The packing
of the chains determines the F-faces, provided that the chains are bonded by
strong bonds. Sometimes it is easier to recognize the slices, and in that case the
PBC may be found as the intersection of two slices.

Some reported examples of the use of PBC analysis to predict crystal
morphology include: hexamethylenetetramine (Hartman and Perdok, 1955),
calcium sulphate (gypsum) (van Rosmalen, Marchée and Bennema, 1976),
anthracene (Hartman, 1980), magnesium hydrogenphosphate (newberyite)
(Boistelle and Abbona, 1981), sodium sulphite and potassium sulphate (Follner
and Schwarz, 1982), succinic acid (Davey, Mullin and Whiting, 1982), sucrose
(Aquilano et al., 1983).

Docherty and Roberts (1988) developed an alternative technique which
included the computation of surface attachment energies: faces with the lowest
attachment energies will be the slowest growing and hence the most dominant
morphologically (Bennema and Hartman, 1980). This approach led to the
successful modelling of the theoretical morphologies of molecular crystals,
e.g. anthracene, biphenyl and 3-succinic acid. In a similar manner, Clydesdale
and Roberts (1991) predicted the structural stability and morphologies of
crystalline C;3—Cyg n-alkanes. Anwar and Boateng (1998) have shown how
crystallization from solution can be simulated using the method of molecular
dynamics for a model solute/solvent system consisting of atomic species char-
acterized by the Leonard-Jones potential function. Accounts of molecular
modelling techniques, based on computer simulation and computational chem-
istry, are given by Docherty and Meenan (1999) and Myerson (1999).
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6.4.2 Interface structure

Consideration of the structure of a growing crystal face can provide additional
information to assist in the task of crystal morphology prediction. The surface
roughness (on the molecular level) quantified by the a-factor (section 6.1.7) is
governed by energetic factors arising from fluid—solid interactions at the inter-
face between the crystal and its growth environment. The degree of roughness
of a given crystal face can have an important bearing on the growth mechanism
controlling its development. A significant change in the a-factor could con-
siderably alter the face growth potential and hence affect the overall crystal
habit.

A change of solvent often changes the crystal habit and this may sometimes
be explained in terms of interface structure changes. In general, the higher the
solubility of the solute in the solvent, the lower the a-value and hence
the rougher the surface. A smooth face (high a-value) would favour growth
by the BCF screw-dislocation mechanism, a rough face (low a-value) would
favour diffusion-controlled growth, while a face of intermediate roughness
would tend to grow by the B + S mechanism. Since these three mechanisms
imply different v—o relationships (section 6.1.7), the face growth rates could be
quite different in different solvents, and any differences in the relative rates of
growth would manifest themselves in a habit change.

A detailed study on solvent effects relating to the growth of succinic acid
crystals from water and isopropanol solutions was reported by Davey, Mullin
and Whiting (1982). The faster growth of the (010) and (001) faces in water than
in isopropanol resulted in a succinic acid habit modification from platelets to
needles, as shown in Figure 6.36. Calculated a-factors for the two faces were
found to be similar for both solvents, so the change of habit was considered to
result from chemical interaction with the solvent. Succinic acid interacts, pre-

(a)
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Figure 6.36. Habits of succinic acid crystals grown from (a) water (b) isopropanol.
(After Davey, Whiting and Mullin, 1982)
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sumably through hydrogen bonding, more strongly with isopropanol than with
water, and the stronger adsorption would reduce the face growth rates below
those in aqueous solution. On the (001) faces, the carboxylic acid groups are
normal to the surface and adsorption would reduce surface diffusional flux to
the growth steps. On the (010) faces, the carboxylic acid groups are parallel to
the surface and adsorption would be active in blocking kink sites. This appears,
therefore, to be a case in which adsorption effects dominate the growth kinetics.
In another attempt to explain the habit changes of succinic acid in water/
isopropanol solvents, van der Voort (1991) assumed that solvent interactions
determine diffusion rates.

The adsorption of an impurity on a crystal face can have a similar effect to
a change of solvent. Since adsorption reduces the interfacial tension, it will also
reduce the a-factor and consequently roughen the surface. If adsorption is
selective, i.e. only on to specific faces of the crystal, or to different extents on
different faces, any significant change from the smooth to rough condition
could lead to faster growth on those faces and hence to a habit change.

Crystal growth enhancement by the adsorption of a foreign species appears
to be contrary to the commonly held view of the action of an additive in which
foreign species adsorb at various sites on a crystal face, impede the flow of
growth layers and reduce the growth rate (section 6.2.8). However, the two
effects can sometimes be seen in the same system, with growth enhancement
occurring at low impurity levels followed by a reversal at higher levels when the
blocking effect becomes dominant. An example is shown in Figure 6.37 where
the cube (100) and octahedral (111) faces of lead nitrate growing in the presence
of increasing amounts of methylene blue (Bliznakov, 1965) both exhibit
a reversal effect at the low impurity level of approximately SmgL~!. Similar
examples have been reported with other systems by Budz, Jones and Mullin
(1986) and Fidelman, Azoury and Sarig (1986).

The chemisorption of an impurity can cause chemical changes in the crystal
surface that give it a new structural appearance. The growth of octahedral
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Figure 6.37. The influence of methylene blue on the (100) and (111) face growth rates of
lead nitrate at 25°C and S = 1.08, showing a reversal of effect. (After Bliznakov, 1965)
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sodium chloride crystals from solutions containing cadmium chloride results
not from the simple adsorption of Cd**, but from the formation of a new
phase, CdCl, - 2NaCl - 3H,0, which has an epitaxial fit with the {111} planes
of NaCl causing the (111) growth rate to decrease and hence dominate the habit
(Boistelle and Simon, 1974).

6.4.3 Structural compatibility

It is usually assumed that there is some form of affinity between an active
impurity and the crystallizing species, and this can take a large variety of forms.
For example, there may be some degree of structural compatibility between
ionic groups in the modifying agent and the crystal, e.g. as in the case of
calcium carbonate being modified by metaphosphates, or nitrilotriacetamide
and nitrilotripropionamide for modifying NaCl and KCI, respectively (Sarig,
Glasner and Epstein, 1975). There may be some structural similarity with the
crystal to be modified, particularly in organic systems, and this has led to the
use of the term ‘tailored’ crystal growth. A tailored additive usually has two
parts, one which is structurally compatible with a grouping on one of the
crystal faces and the other which acts as a repellent, i.e., after integration it
will then disrupt the subsequent bonding sequence and hence retard the growth
process on that face.

A simple example of a tailor-made habit modifier for benzamide was
reported by Berkovitch-Yellin ez al. (1982). This substance normally crystallizes
from ethanol solution in the form of platelets, with the slowest growth in the
¢ direction. During growth the benzamide molecules develop a ribbon pattern
in which hydrogen bonded cyclic dimers are interlinked by N—H- - -O bonds
along the b axis. The ribbons are stacked along the « axis to yield (001) layers.
Three different impurities, benzoic acid, o-toluamide and p-toluamide, which
all bear a structural resemblance to benzamide but contain substituent groups
that interfere with the bonding, were found to be capable of retarding the
growth rates along the b, a and c¢ axes, respectively.

Figure 6.38 demonstrates the action of benzoic acid which, after substituting
for a benzamide molecule in the lattice by H bonding, repels the next incoming
benzamide molecule as it encounters an O---O repulsion due to the lone pair
electrons of the benzoic acid carbonyl oxygen. The rate of growth along the
¢ axis is thus impeded.

A tailored modifier does not always have to be deliberately added to a cryst-
allizing system; it may already exist, e.g., as a synthesis by-product of a chemical
reaction. If its presence causes a crystal habit problems, it must be removed or
deactivated. On the other hand, it may have a beneficial effect. These are both
commonly encountered cases in the manufacture of organic chemicals.
A simple, but industrially important, example is the effect of biuret on the
crystallization of urea (Davey, Fila and Garside, 1986). In the synthesis of urea
(NH,;CONH,) from ammonia and carbon dioxide a small amount of biuret
(NH,CONHCONH),;), a condensation dimer, is formed. The presence of biuret
is actually beneficial because from pure aqueous solution urea crystals form as
elongated [001] needles that are difficult to process. Biuret retards growth in the
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Figure 6.38. Benzoic acid, as an impurity, retarding the growth of benzamide. (After
Berkovitch-Yellin et al., 1982)

[001] direction resulting in short stubby urea crystals which are more easily
handled in the subsequent downstream processes of filtration, washing and
drying (section 9.7).

The needle-like morphology of urea results from the strong intermolecular
hydrogen bonding along the urea crystal c-axis, as shown by the dotted lines in
Figure 6.39. The urea structure is such that the {001} surfaces cannot easily
discriminate between two urea molecules and one biuret molecule, so biuret
molecules can easily become attached to the lattice at growth sites in the [001]
direction. However, subsequent urea molecules attempting to attach to
a biuret-contaminated surface meet a resistance since the NH; groups in the
crystal surface that are needed to form hydrogen bonds are now missing. The
growth rate in the [001] direction is thus effectively reduced, and stubby crystals
are the result. This example illustrates the general rule that the most effective
habit modifiers are those that are able to enter the growing surface and yet once
there they disrupt further growth. To perform this function effectively the
additive molecule must resemble the crystallizing molecule while containing
some small difference in stereochemistry or functionality, rendering it capable
of inhibiting growth in a selected direction (Davey and Garside, 2000).
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Figure 6.39. Showing a biuret molecule occupying two urea sites on the fast growing (001)
face and impeding further growth. (After Davey and Garside, 2000).

Authoritative account of the control of crystal morphology by the use of
tailor-made additives have been given by Davey, Polywka and Maginn (1991),
Popovitz-Biro et al. (1991), Myerson (1999) and Davey and Garside (2000).

6.4.4 Industrial importance

Most habit modification cases reported in the literature have been concerned
with laboratory investigations, but the phenomenon is of the utmost import-
ance in industrial crystallization and by no means a mere laboratory curiosity.
Certain crystal habits are disliked in commercial crystals because they give the
crystalline mass a poor appearance; others make the product prone to caking
(section 7.6), induce poor flow characteristics or give rise to difficulties in the
handling or packaging of the material. For most commercial purposes a granu-
lar or prismatic habit is usually desired, but there are specific occasions when
other morphologies, such as plates or needles, may be wanted.

In nearly every industrial crystallization some form of habit modification
procedure is necessary to control the type of crystal produced. This may be done
by controlling the rate of crystallization, e.g. the rate of cooling or evaporation,
the degree of supersaturation or the temperature, by choosing a particular
solvent, adjusting the solution pH, deliberately adding an impurity that acts as
a habit modifier, or even removing or deactivating some impurity that already
exists in the solution. A combination of several of the above methods may have
to be used in specific cases, as seen in the examples quoted in section 6.2.8.

Many dyestuffs act as powerful habit modifiers for inorganic salts. Buckley
(1952) has summarized a large number of case histories giving an indication of
the concentrations necessary to induce the required change, but these additives
do not nowadays find any significant industrial application.

Surface-active agents (surfactants) are frequently used to change crystal
habits. Common anionic surfactants include the alkyl sulphates, alkane sulphon-
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ates and aryl alkyl sulphonates. Quaternary ammonium salts are frequently
used as cationic agents. Non-ionic surfactants only occasionally find applica-
tion as habit modifiers.

Polymeric substances such as polyvinylalcohol, polyacrylates, polyglutam-
ates, polystyrene sulphonates, alginates, polyacrylamides, etc., have also found
application, as have long-chain and proteinaceous materials like sodium car-
boxymethylcellulose, gelatin and phosphoproteins. Sodium triphosphate,
sodium pyrophosphate, organic derivatives of phosphonic acid (H3PO3), low
molecular weight organic acids, such as citric, succinic and tartaric and their
derivatives, are also useful habit modifiers.

The trace presence of foreign cations can exert an influence on the crystal
habit of inorganic salts. Some act by simple substitution in the lattice, e.g. Cd**
for Ca®" in calcium salts or Ca?* for Mg?t in magnesium salts, as a result of
similar ionic radii and charge. Trivalent cations, particularly Cr3* and Fe’*,
have a powerful effect on the morphology of salts such as ammonium and
potassium dihydrogenphosphates (Mullin, Amatavivadhana and Chakraborty,
1970; Davey and Mullin, 1974, 1976) and ammonium sulphate (Larson and
Mullin, 1973). These trivalent cation habit modifiers are not only powerful in
effect, i.e., active at very low concentrations in the system, but also that above
some critical concentration they begin to have a severe disruptive effect on the
overall crystal growth process, resulting in the production of unacceptable
crystalline products. For example, at a Cr’* concentration of 5 ppm the normal
orthorhombic crystal habit of ammonium sulphate changes with the appear-
ance of higher index faces, while at around 20 ppm large grotesque non-faceted
crystals are produced (Figure 6.40).

Complex cations, like Fe(CN)g_, have a remarkable influence on sodium
chloride (Figure 6.41). At concentrations of around 0.1%, excrescences develop
at the corners of the normal cubic crystals producing large hard crystals with a
skeletal appearance, often referred to as dendrites (see Figure 8.3). At around
1% Fe(CN)gf, however, the product changes to soft friable particles with little
or no outward appearance of crystallinity (Cooke, 1966).

Phoenix (1966) has reported on the effects of a wide variety of inorganic and
organic additives on NaCl, NaBr, KCI, KCN, K;,S04, NH4CI, NH4NOj3; and
(NH4),SO04. A considerable amount of valuable quantitative information is
given concerning the effects of the different additives on crystal habit, growth
and dissolution rates, and anti-caking effectiveness. The influence of ferrocyan-
ide ions in producing dendritic crystals of NaCl is discussed in some detail.

Figure 6.40. Habit changes in ammonium sulphate crystals caused by traces of impurity:
(@) pure solution, (b) 5ppm Cr>*, (¢) 20 ppm Cr**. (Larson and Mullin, 1973)



278 Crystallization

Figure 6.41. Habit changes in sodium chloride crystals caused by traces of impurity:
(a) pure solution, (b) 0.1% Fe(CN)g‘, (c) 1% Fe(CN), ™. (Cooke, 1966)

There are literally thousands of reports in the scientific literature concerning
the effects of impurities on the growth of specific crystals, and it would be
superfluous to attempt a summary here. General reviews on the influence of
additives in the control of crystal morphology have been made by Kern (1965),
Boistelle (1976), Davey (1979), Botsaris (1982), Nancollas and Zawacki (1984),
van Rosmalen, Witkamp and de Vreugd (1989), Davey et al. (1991) and Pfefer
and Boistelle (1996).

The selection of a suitable habit modifier for the industrial production of
crystals of a particular form normally begins with a series of laboratory-scale
screening tests covering a wide range of potential additives at different concen-
trations. It is usually necessary to conduct further trials with the more promising
modifiers to attempt to identify the ones that should prove efficacious on the
industrial scale. Quite clearly, all these procedures can be extremely time-con-
suming and costly, but ultimate success depends on the key step of deciding
which additive is likely to be potentially useful. There is a rapidly growing
interest, therefore, in an alternative procedure to eliminate guesswork and
serendipity from the initial selection process, involving the use of computer
modelling techniques to match additive molecular species with the molecular
configurations on the specific faces of the crystal that need to be influenced. This
is a rapidly developing field of activity, but it should be understood that whilst
the molecular modelling approach to habit modification undoubtedly holds
great promise for the future, it is first necessary to be in possession of detailed
crystallographic data and quantifications of intermolecular bond strengths at
relevant crystal faces. Unfortunately, this information is not always readily
available. Nevertheless, there are already several reported examples of the
successful application of the molecular modelling approach to habit modifica-
tion (Davey, Polywka and Maginn, 1991; Lewtas et al., 1991; Lee et al., 1996;
Myerson, 1999; Davey and Garside, 2000; Winn and Doherty, 2000).

Maximum crystal size

Theoretically there is no limit to a product crystal size, but there is generally
a practical limit. It is common experience that some crystals do not normally
grow beyond a certain size in agitated industrial crystallizers (Figure 6.42),
although there is no single clear-cut answer to this problem.
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Figure 6.42. Maximum mean crystal sizes obtained in an MSMPR crystallizer: A, KCl;
B, NaCl; C, (NH,),CS; D, (NH4),SO04; E, KNOs; F, Na,SO4 G, K,SO4; H,
NH4A1(SO4)2; 1, K2Cr207; J, KAI(SO4)2; K, KCIO3; L, NiSO4(NH4)2SO4; M, Ban;
N, CaCOs; 0, TiOy; P, CaF,; Q, BaSOy. (After Mersmann and Kind, 1988)

Some crystals have such low growth rates that excessive residence times
would be necessary to produce large crystals. For example, at a linear growth
rate of 1077 ms~! a nucleus would grow to | mm in just over 1 h, butat 10" ms~!
it would require around 6 days. Growth rates exhibited by inorganic salts in
aqueous solution generally lie well within this range (Table 6.1). Of course,
increased residence time alone in an agitated crystallizer may not greatly
influence the product size because of the inevitable occurrence of secondary
nucleation (section 9.1.1) which greatly increases the number of product
crystals and consequently inhibits the development of large crystals. Growth
rates can be increased by raising the operating level of supersaturation, but
nucleation rates are even more sensitive to supersaturation and play the
dominant role.

The presence of impurities in the system can also have a significant effect.
For example, crystallization of copper and cadmium sulphates from plating-
bath liquors, to which gelatin has been added, produces crystals no larger than
1 um, yet both of these salts can readily be crystallized from normal aqueous
solution as large crystals (> 1 mm).

Some crystals appear to become prone to attrition once they have been
grown beyond a certain critical size in an agitated crystallizer. To some extent
this can be attributed to increased damage from the agitator as higher rota-
tional speeds are needed to keep them in suspension. Sometimes the critical size
coincides with the onset of polycrystalline growth which tends to make the
crystals friable. Polycrystalline growth, however, may not only render the
crystals mechanically weak, but may even make the crystals thermodynamically
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unstable (the Gibbs—Thomson effect — section 3.7) and dissolution would tend
to occur at sharp edges and grain boundaries, i.c. at regions of very small
radius, and cause the crystal to achieve a rounded shape. It is possible, there-
fore, that opaque egg-shaped crystals produced in many industrial crystallizers,
are as much the result of sequences of crystallization—dissolution as of attrition.

6.5 Polymorphs and phase transformations

It is not uncommon in crystallization processes for the first crystalline phase to
make its appearance to be metastable, e.g. a polymorph or hydrate (Ostwald’s
rule of stages — section 5.7). Some metastable phases rapidly transform to a more
stable phase while others can exhibit apparent stability for an exceptionally
long time. Some transformations are reversible (enantiotropic) while others are
irreversible (monotropic), as explained in sections 1.8 and 4.2.1. In some cases,
the metastable phase may have more desirable properties than the stable phase,
e.g., a metastable pharmaceutical product may be more pharmacologically
active than the stable form. If the required metastable form is first to crystallize,
it is important to isolate and dry it quickly to prevent it transforming to the
stable form. Once in the dry condition a metastable form can often remain
unchanged indefinitely. If the stable polymorph is required, it is essential to
create conditions and allow sufficient time in the crystallizer for total trans-
formation to the more stable phase to be ensured.

Polymorphism is commonly encountered in crystalline substances. Calcium
carbonate, for example, has three polymorphs, ammonium nitrate has five
(section 1.8), and some organic compounds have many more. Aspirin, for
example, was once thought to have 6 or 8 and phenobarbitone as many as
13, but it is always worth keeping in mind the somewhat provocative comment,
generally attributed to McCrone (Dunitz and Bernstein, 1995), that the number
of polymorphs discovered often seems to be proportional to the time and
money spent looking for them.

Because polymorphs differ in the type of lattice, or in the spacing of the
lattice points, they can exhibit different crystalline shapes and may often be
readily identified by visual or microscopic observation. These characteristics,
however, should not be confused with changes in crystal habit (section 6.4)
which are caused solely by changes in the relative rates of growth of specific
faces and do not affect the basic physical properties of the substance.

All crystals of one given substance, which may exhibit different habits, have
identical physical properties. On the other hand, the different polymorphs of a
given substance, which may also differ in habit, will exhibit different physical
properties: density, hardness, melting point, solubility, reactivity, thermal prop-
erties, optical and electrical behaviour, etc. Each polymorph constitutes a
separate phase of the given substance, in the Gibbs’ phase rule sense, whereas
crystals of different habit constitute the same phase. Polymorphs may trans-
form in the solid state, but crystals of different habit cannot.

Strictly speaking, hyd