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Preface

This book is for individuals who would like to help
other individuals to recover their control of
movement.

Neuromuscular rehabilitation is straightforward
and uncomplicated: we all do it naturally all of the
time. Throughout our lives we learn new movement
patterns or recover our control after an injury. The
means by which we achieve these changes are no
different to neuromuscular rehabilitation. They all
rely on the same neurophysiological, psychological
and behavioural processes.

Neuromuscular rehabilitation integrates several
branches of knowledge. They include medical,
neurophysiological, psychological-behavioural and
motor-control sciences as well as manual and physi-
cal therapy fields. The enormity of available in-
formation from these diverse sources can be
overwhelming, in particular when trying to translate
this information into a practical clinical approach.
The main aim in writing this book was to collate
and integrate all this information and present it in
a practical, user-friendly format.

Over the years of working in clinics I have
observed that neuromuscular rehabilitation of a per-
son after joint surgery or musculoskeletal injury
bears close resemblance to the clinical management
of a stroke patient. It was clear to me that there is a
unifying model for neuromuscular rehabilitation.
However, it took a good decade and a half to put
it together into a coherent and cohesive model,
and one which is still being tinkered with. This uni-
fied model for neuromuscular rehabilitation is
described throughout the book.

The information in the book is derived from sev-
eral sources. It is a combination of my own research
in the neurophysiology of manual therapy, the vast
research in all the fields discussed above, my clinical
experience of 23 years and my experience of teach-
ing neuromuscular rehabilitation for the last 15 years.
These experiences have made me aware of the aca-
demic and practical needs of the practitioners in this
area. This is reflected in the contents of this book:
it aims to bridge the gap between science and the
practice of neuromuscular rehabilitation.

The contents and organization
of the book

The book starts by identifying the main unifying
model/principles for motor rehabilitation (Ch. 1),
including the importance of a functional approach,
skill- and ability-level rehabilitation and the code
for neuromuscular adaptation. The following
chapters discuss several areas that are relevant to
neuromuscular rehabilitation. They include how
movement is organized (motor control, Ch. 2) and
how it is constructed from underlying control com-
ponents called motor abilities (Ch. 3). These abil-
ities are affected in various neuromuscular and
musculoskeletal conditions and may, therefore,
become the target of rehabilitation. Also, proprio-
ception plays an important role in movement
control and is often affected by musculoskeletal
and central nervous system damage (Ch. 4).

The next important issue in rehabilitation is how
to sustain the motor recovery in the long term.
Chapter 5 discusses motor learning and adaptation
principles and how to integrate them into the clini-
cal management. The consequences of learning,
neurophysiological/neuromuscular  plasticity and
adaptation are discussed in Chapter 6.

In musculoskeletal injuries the motor system reorga-
nizes movement to prevent further damage (Ch. 7).
The motor manifestation of this reorganization will be
discussed as well as the indications for introducing
neuromuscular rehabilitation after injury identified.

Once an individual acquires an injury, their
beliefs, attitudes and behaviour may have important
implications for recovery. Furthermore, the way a
person uses their body or schedules their activities
during the day may put them at risk for injury.
These cognitive and behavioural factors are dis-
cussed in Chapter 8. This theme is continued in
Chapter 9, examining non-traumatic pain conditions
such as trapezius and jaw myalgia, and chronic neck
pain. In this group of conditions the individual
develops localized and debilitating pain without a
history of tissue trauma.
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Chapter 10 explores the principles of functional
movement, motor control and learning/adaptation,
and their use in rehabilitating patients with central
nervous system damage.

Chapter 11 describes how to develop a rehabili-
tation programme using the key principles identi-
fied in the book. Chapter 12 describes some of
the assessments and challenges of motor abilities
and similarly for proprioception in Chapter 13. A
summary of the book can be found in Chapter 14.

The book is supplemented by a DVD demon-
strating some of the assessments and challenges of
the motor abilities and their use in clinic. The

viii

movement challenges described in the book and
DVD are derived from several sources. Some are
research-based, others I have developed and used
in clinic. Over many years of teaching I have
observed professionals from different disciplines
and their approach in rehabilitating movement con-
trol. Their wealth of experience and knowledge is
part of this library of movement rehabilitation. It
is a source book that aims to provide ideas and not
recipes or treatment protocols for rehabilitation.
I hope you will find it useful.

London 2010 Prof Eyal Lederman



Introduction

This book explores how manual and physical thera-
pists can help individuals to recover and optimize
their control of movement. Musculoskeletal injury,
pain experiences and central nervous system damage
are all associated with diverse neuromuscular and
movement control changes. The aim of this book is
to provide the theoretical and practical basis for
neuromuscular rehabilitation for these conditions.

This book is intended for manual and physical
therapists of all disciplines (physiotherapists, osteo-
paths, chiropractors, sports massage therapists, etc.)
who work with patients whose conditions involve
the neuromuscular system. The book will also be
useful for personal trainers, Alexander method tea-
chers, Pilates instructors, postural integration teachers,
Rolfing practitioners, sports trainers and individuals
who experience losses in movement control.

A functional approach
in rehabilitation

A functional approach in rehabilitation is the key
concept underpinning the management described
in this book.

Functional movement is defined here as the
unique movement repertoire of an individual. A por-
tion of this repertoire involves the movement beha-
viour associated with daily needs and demands, such
as feeding, grooming, going places, etc. (general
skills). Some movement behaviour may be partly
shared with others whilst some may be unique to
particular individuals; examples include physical
hobbies, sports and occupational activities (special

skills). For one person their functional repertoire
may include playing tennis, for another standing on
their head (yoga) or playing the piano and so on.
Once a person learns a movement or a new skill
it becomes a part of their movement repertoire
and, therefore, their behaviour. Movement which
is outside the normal repertoire of an individual will
be termed here as extra-functional (Fig. 1.1).

Functional rehabilitation is defined here as the
process of helping a person to recover their movement
capacity by using their own movement repertoire
(whenever possible). Hence, for a person who has
motor losses at the knee and is unable to walk or
run, the rehabilitation will be in walking, then run-
ning, jumping and stair-climbing, etc. If this person
plays tennis, this activity will also be used in the
rehabilitation programme.

However, rehabilitation is likely to be less effective
if the remedial movement patterns or tasks are outside
the individual’s experience (extra-functional). For
example, it would be less helpful for a tennis player
with a leginjury to be given rehabilitative exercise such
as football, or leg presses in the gym or leg exercise
lying on the floor (Ch. 2). For this particular patient,
rehabilitation that incorporates tennis tasks is more
likely to be useful. For a person who is suffering from
lower back pain and enjoys yoga, a functional rehabili-
tation would consist of the shared functional activities
(general skills), but may also include some of the
upright postures from yoga (special skills). A less suit-
able rehabilitation approach would be to prescribe ten-
nis to this individual. This may seem obvious;
however, movement rehabilitation often prescribes
extra-functional tasks such as core stability training



General skills

Extra-functional

Functional repertoir
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Special skills

Fig. 1.1 e Functional movement represents the movement repertoire of
the individual. It includes all the general activities and special skills. Extra-
functional movement comprises all activities outside the individual’'s

movement experiences.

on the floor, bracing the trunk or strength training with
equipment. The question is how effective are these
activities in recovering functional movement?

The introduction of extra-functional activities
during rehabilitation raises some problems. Extra-
functional activity or exercise requires learning a
new task at a time when the patient is experiencing
pain and/or loss of movement ability. This might
not be the best time to enter a new exercise regime.
Learning requires set-aside time, intense mental
focus and physical effort. Often it means the patient
has to be dependent on others for instructions and
guidance during the training. A functional approach
which aims to use the patient’s own movement
resources does not require additional learning; the
cognitive demands are less taxing and do not require
protracted training. Also the set-aside time for prac-
tice is more manageable for the patient. This form
of rehabilitation seldom relies on any specialized
exercise equipment and the remedial movement
challenges are integrated into the person’s daily activ-
ities. They can be practised anywhere and at any
time. A functional approach is easy to apply and it
empowers the patient to self-care.

There are exceptions to the functional approach
in rehabilitation. There are circumstances where
the patients will require specific exercises for par-
ticular motor losses; challenges which may not be
provided by their functional repertoire. There are
also situations where the individual is physically
unable to perform functional activities. When and
why the rehabilitation should stray from this model
will be discussed throughout this book.

Rehabilitation levels: skill and
ability level rehabilitation

Movement rehabilitation and motor normalization
following injury occurs naturally for most indivi-
duals. Following injury most individuals will take
physical actions that will support their spontaneous
and unaided recovery. This would happen without
any special knowledge or understanding of the
underlying physiological principles underpinning
their recovery. In this form of rehabilitation the
individual is attempting to, partially or fully, exe-
cute the movement that has been lost. Attempting
to walk becomes the rehabilitation for the person
who lost the ability to walk. Similarly, if an individ-
ual with an arm injury is unable to reach; their
repeated attempts in that pattern would often be
their rehabilitation. The focus in this form of move-
ment recovery is on the overall skill of performing
the particular movement. This will be loosely
referred to as skill rehabilitarion (Ch. 9).
However, this approach does not always lead to
the intended results. Individuals who are in pain or
have motor losses may develop movement patterns
that circumvent their losses. A patient may present
with walking difficulties due to losses in the control
of balance and coordination. One would imagine
that by encouraging the patient to increase their
walking, “walking would train balance and coordina-
tion during walking”. However, what may happen is
that the patient will get better at using their com-
pensatory pattern; walking slowly, using wider gait,



shorter steps, rather than truly improving their con-
trol of balance and coordination during walking.

Balance and coordination are part of several
control building blocks that make up skilled move-
ment. These building blocks are called sensory motor
abilities. A therapeutic approach that targets the
various motor abilities will be termed in this text
as re-abilitation. At this level of rehabilitation the
aim is to recover control losses associated with par-
ticular abilities. Hence, in the walking scenario
described above, the rehabilitation would aim to
challenge balance and coordination in dynamic and
upright postures (Ch. 2).

Skill rehabilitation and re-abilitation are both
clinically important and are often used in combina-
tion. However, there may be a shift of focus
towards one of these particular approaches depend-
ing on the individual’s condition and their phase of

recovery (Ch. 9).

The code for neuromuscular
adaptation

Neuromuscular rehabilitation is a straightforward
process — anyone can do it. Indeed, we all do it all
the time. Every day we take actions that result
in movement and behaviour changes; we can self-
modify our motor control. Furthermore, the neuro-
muscular system has the capacity for self-recovery
and to reorganize in response to injury. It means
that within our behaviour there are certain elements
that facilitate the recovery of movement control.
In functional rehabilitation we identify five such
elements that optimize neuromuscular adaptation:
cognition, being active, feedback, repetition and
similarity (Ch. 5). Hence, in order to learn a new task,
modify our behaviour or help our system recover we
need to be aware of what we are doing (cognition)
and we have to actively perform the action that we
aim to recover (being active). In order to correct our
movement we rely on internal information from our
senses or depend on guidance by someone (feedback)
and we have to practise the task many times (repeti-
tion). Furthermore, the practice has to closely resem-
ble the movement we aim to recover (similarity).
Hence, to play the piano a person needs to practise
the piano. However, strength training with finger
weights or practising push-ups is unlikely to benefit
playing the piano. The practice has to be task-specific.

Introduction .

The recovery of motor control can be facilitated
by introducing the adaptive code element into the
rehabilitation programme. It will promote a func-
tional recovery that is more likely to benefit the
patient in their daily activities. The results are more
likely to be maintained in the long-term and could
help to reduce the overall duration of the treatment
programme.

Developing a neuromuscular
rehabilitation programme

Much of the rehabilitation promoted in this book is
the marrying of the three concepts discussed so far:

1. The focus on functional movement
2. The principle of skill/ability level rehabilitation
3. The code for motor adaptation (Ch. 9).

Through a simple three-step process the therapist
decides which level of rehabilitation will be used
and applies the motor adaptation elements to the
treatment programme. Many of the remedial chal-
lenges are selected from the patient’s own move-
ment repertoire. It really is that simple.

The beauty of it all is that these principles can be
applied to any condition in which the neuromuscu-
lar system is implicated:

Conditions with an intact
motor system

* Neuromuscular changes associated with
musculoskeletal injuries, sports injuries, post
surgery, back pain and other musculoskeletal pain
conditions (Ch. 7)

* Conditions where certain behaviours impede
recovery or may lead to injury or pain (Ch. 8)

* Non-traumatic pain conditions, such as trapezius
myalgia, chronic neck pain and painful jaw (Ch. 9).

Conditions where there is damage
to the central nervous system

* Stroke, head trauma and post central nervous
system (CNS) surgery and all the degenerative
conditions (Ch. 10).



The main difference in managing these conditions
is in the magnitude of losses, the duration of recov-

ery and the extent of potential recovery.

Summary points

* Neuromuscular rehabilitation aims to help the
individual recover their movement control.

* Functional movement is the movement
repertoire of an individual.
* Functional movement is individual-specific.

. Neuromuscular Rehabilitation in Manual and Physical Therapies

* Functional rehabilitation uses the patient’s own
movement repertoire to help him/her to recover
their movement losses.

* The rehabilitation promoted in this book has
three basic recurring concepts:

1. It aims to be functional.

2. It uses the skill/ability level rehabilitation
concept.

3. It uses the learning/adaptation code to
optimize motor control changes.



Motor control

The motor system organizes and controls skeletal
muscle activation during movement, posture and
the musculoskeletal aspect of behaviour and expres-
sion. The motor system spans the whole of the cen-
tral nervous system (CNS). It is not a discrete
functional or anatomical entity.

This chapter will examine how movement is
organized and the implications it has for neuromus-
cular rehabilitation.

The organization for
movement

Imagine an action such as reaching for a cup. For
that action we need to collect information from all
our senses about our body and the environment.'™
We can than select the most suitable response to
get hold of the cup. Once a decision has been made
a motor command ensues,” muscles are activated
and a reaching movement is the outcome. Some ele-
ments of the motor process will be at conscious
level, “that we are reaching for the cup”, while a
larger proportion will remain at a subconscious
level,* such as the fine postural adjustments that
precede the action. Hence, any movement has con-
scious and reflexive elements and identifiable stages
(Fig. 2.1):
* Integration stage
* Motor stage
* Sensory stage.

These stages should be viewed as a process with
multiple sub-events rather than separate entities.’

The integration stage

Once an individual has decided to take an action the
role of the integration stage is to prepare the neuro-
muscular system for the execution of the associated
movement. Within the integration stage there are
two processes that have important implications for
neuromuscular rehabilitation. The first is how
movement is encoded by the motor centres for
future use and the second is how movement errors
are identified.

Motor programmes and movement
parameters

Our movement repertoire is stored within the central
nervous system as motor programmes. They are not
centre-specific and seem to be stored throughout
the central nervous system, including the spinal
cord.5 10

The motor programmes are believed to be
generalized schemes containing information about
the movement sequences and their goals rather than
specific muscle sequences.”> Writing is an example
of such a generalized scheme. A word can be writ-
ten in many different ways; it can be written fast
or slow, from different angles, in larger or small
amplitudes, whilst sitting or standing, or even in
completely new, unrehearsed situations. It can be
written with the non-dominant hand, with each foot
and even with the pen held between the teeth.
A mild stroke patient once demonstrated to me
how she could write beautiful calligraphy with the
affected arm/side. She would hold the pen in the



Fig. 2.1 e The motor system as a process. The
inner circle represents processes occurring at
reflexive, sub-awareness level.

hand; stiffen her arm and write by moving her
whole body. In these writing examples, the schema
for writing is executable by any part of the body
because it is not specific to any particular muscle
group.! 113

Once a task has been learned the movement
sequences become more robust to change, e.g. a
person’s handwriting is unique and will remain
largely unchanged through life. However, certain
factors such as the force, speed, range/size of the
writing can be changed at any time.? By modifying
these movement parameters any task can be per-
formed with infinite variations.''~!>

The movement parameters have an important
role in neuromuscular rehabilitation. It has been
demonstrated that in musculoskeletal injury or in
pain conditions the motor system “narrows” these
movement parameters. This reorganization of move-
ment control is a protection strategy which serves to
alleviate some of the stresses imposed on the dam-
aged tissues (Ch. 7). For example, a person
suffering from lower back pain may demonstrate
trunk muscle force losses,”! > reduced movement
reduced endurance,'®2° changes in the
normal timing and duration of synergists in the
trunk muscles,®’ >’ changes in coordinated move-
ment of the pelvis and thorax,?*?° reduced postural
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Integration-organization

Integration-
organization

Movement

stability®!3*38740 and loss of the ability to respond

to sudden postural changes.?®3%*! Hence, a person
with back pain will often display a posture and gait
which is different from their usual patterns. The
normal schemes for walking are still preserved, but
the movement parameters have changed. This
motor reorganization will also influence certain
building-blocks of movement called motor abilities

(see Ch. 3).

The comparator system

Imagine that while lifting the cup it slipped from
your hand resulting in immediate reflexive grasp.
The error detection is carried out by the comparator
system.

Once a movement pattern has been selected the
efferent commands are transmitted to the spinal
motor centres to initiate muscle activity. At the
same time a copy of this information (efferent or
efference copy) is transmitted internally to be pro-
cessed by the comparator system (Fig. 2.2). Here,
the information from the efference copy and the
information from the sensory inputs are matched
against the expected outcome of the action.”*?™*°
Any mismatch will result in motor reorganization
and correction of the movement.



Integration-organization
4

Comp'arator

" Integration-  “~__

4 organization

Efferent :" Efferent Comparator
copy

Fig. 2.2 e The comparator system identifies movement
irregularities/errors.

The comparator system reduces the processing
demands placed on the CNS by selectively drawing
attention to movement, but only when there is a
change from the norm. As long as the information
is similar it will remain at a low priority within the
overall motor processes. Hence, many of our famil-
iar daily activities (e.g. walking) remain below con-
sciousness until we make a mistake (e.g. tripping).

When learning a new task it will be acquired
through a process of making errors and their correc-
tion. This error detection is carried out by the com-
parator system. This detection process is only
functional during “active” rather than passive move-
ment. It implies that motor learning will be more
effective in rehabilitation approaches where the
person is active and concurrently correcting their
movement, in comparison to passive approaches.

The comparator system also plays a role in propri-
oception. When we move our limbs there is a sense of
their weight and the effort that is required to move
them. This sense of effort is believed to be derived
internally by central processes (comparator) and
not from the proprioceptors.>*>*>~#7 It has been
hypothesized that during motor development we
learn to associate the effort with movement sensa-
tions (proprioception). Eventually, the sense of effort
becomes a proprioceptive signal in its own right.*®

The sense of effort, as a source of feedback, is
only present during active rather than passive move-
ment. Hence, during active movement proprio-
ceptive acuity increases, compared to the same
movement being performed passively. It implies
that more effective proprioceptive rehabilitation
can be achieved by active rather than passive

Motor control '

movement approaches. The full clinical implication
of this phenomenon is further discussed in Chapters
4 and 13.

The motor stage

The motor stage is the culmination of the selection
of movement schemes and the transmission of these
efferent commands to the spinal motor centres.

One way to visualize the motor output is to imag-
ine a person wearing an electromyographic (EMG)
body-suit. This suit would have numerous EMG
electrodes that could record the motor activity from
every single muscle or, even better, from every
motor unit in the body. Furthermore, imagine that
the suit is covered by minute lights that would rep-
resent the intensity of the underlying motor events.
Areas with high motor activity will be represented
by brighter light and vice-versa. If this was possible,
we would probably see a psychedelic light show
throughout the body, with different areas lighting
at different intensities — the motor output is a
whole body event. These patterns would change
on a moment-to-moment basis as the person moves
or even while they are still.*

The EMG suit would probably demonstrate that
movement is achieved by shifting tension gradients
throughout the body (Fig. 2.3). In order to move

Fig. 2.3 e Dynamic tensional fields produce movement.
These fields change continuously on a moment-to-moment
basis and are unlikely to repeat themselves.



the arm to the mouth, tension develops in the ante-
rior aspect of the upper limb, while on the opposite
side the tension in the limb diminishes. The way to
imagine it is as broad and dynamic tensional fields,
rather than separate and individual muscles. These
fields are widespread and are continuously varying
in their intensities. Interestingly, most of the pro-
prioceptors in our body are tension receptors
(except for the skin, which has pressure receptors).
It seems that during movement the nervous system
“sees” areas of varying tensions rather than individ-
ual tendons, joint capsules or muscles.

l ] Clinical note

The concept of tensional field can help us to make
an important clinical shortcut: there is no need to
know the complex and exact anatomy of muscles
for effective neuromuscular rehabilitation. The focus
is on movement capacity and not on individual
muscles.

The complexity of recruitment

The recruitment of muscle is composed of highly
complex patterns. Imagine a simple movement such
as turning the head. Some muscles will be recruited
to produce the tensional field necessary to rotate
the head; meanwhile all the antagonistic muscles
will reduce their tensional field. Concurrently, mus-
cles bilaterally will increase in co-tension to prevent
the head from falling sideways (Fig. 2.4a). These
muscles have to dynamically stabilize the movement
while sharing some element in the execution of the
turning motion. As the head moves beyond the cen-
tre of its gravity the action of these muscles will
reverse. The antagonists develop low-level eccentric
tension to counter the weight of the head; the orig-
inal movers will drop in tension and so on. If we
were to describe every muscle activity in this simple
movement it would probably fill the whole of this
book and beyond. This complexity is depicted in
Figure 2.4b.

It has been demonstrated that every task or
movement we perform will never exactly repeat
itself.>°> Throughout life “every breath you take,
every step you make” and every heart beat is differ-
ent. Yet, in all this complexity we somehow pro-
duce movement that is definable, precise and is
unique to ourselves. It is now suggested that such

8
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variability is an essential healthy aspect of biological
systems and that during injury and disease processes
this variability tends to be diminished.’*>® Such
loss of variability was demonstrated during walking
in patients with chronic lower back pain. When
the trunk was perturbed they seemed to have a nar-
rower selection of postural responses to any sudden
movement.?*?

Goal-orientated movement

Movement is organized with an overall goal or pur-
pose: we reach for a cup, hit a ball or walk to a loca-
tion; but we don’t set out to move our limbs, move
a joint or contract a muscle.”®

For an outsider watching a person performing a
task it can be broken down into the action or move-
ment and its outcome, the goal.>’ Once we learn
how to achieve a certain goal, the action and the
outcome are integrated to become a unified auto-
matic response. They are represented internally as
images of the goal®”°® When we perform an action
or task, thinking of the outcome/goal triggers the
execution of the associated movement.> Interest-
ingly, 7-month-old infants favour learning by imitat-
ing movements that have obvious goals but not
those that have ambiguous goals.®*®!

The whole body is organized to take part in the
goal of the movement including all the anticipatory
postural adjustments that precede it.%> Different
parts of the body tend to “lead the way” during goal
movement. The arms for reaching or throwing, the

Movement direction

L]

Group 1
of movers
(more tension)

Areas of
shared activity

Areas of
shared activity

Group A
stabilisers
(co-tension with
group B)

Group B
stabilisers
(co-tension with
group A)

Group 2
antagonists
(less tension)

Fig. 2.4 ¢ A, “Simplified complexity” in tensional fields.
Shaded circles represent tension created by muscle groups.

(Continued)
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Fig. 2.4—cont’d. B, Complexity is movement.

One moment in time

legs for kicking or stepping over an obstacle and the
head leads in the initiation of walking and turning.
Head movement is also led by our senses;®* turning
the head to a sudden noise, looking up or bending
forward to smell or taste. The odd one out is the
trunk: it rarely leads in movement. In rehabilitation
of back conditions should the trunk/spine be a focus
of movement training or should it be engaged within
the overall movement goal?

I ] Clinical note

Movement control should be associated with its
goals during rehabilitation, i.e. rehabilitation should
use goal-orientated and task-specific movements.
Movement where the body itself is the goal may be
less effective in recovering motor control (see also
Internal and external focus and learning, Ch. 5).

Task-dependent muscle recruitment

The muscle recruitment will vary considerably from
one task to another.®*"%° For example, the trunk mus-
cles will display completely different activation pat-
terns during standing, walking, reaching to the sides
or forward, bending or lifting or any other imaginable
movement.”””! Furthermore, even within the same
task, changes in the underlying movement para-
meters and other factors will influence the complex
recruitment of muscles. They include:

* The force — movement which is similar but at a

varying force will change the muscle recruitment.*>

Another moment in time

* The amplitude of movement — how far a person
reaches changes the pattern of trunk muscle
activation.3>3°

* The rate/speed of movement — changing the
speed of movement will also change recruitment
patterns.”? For example, there is different trunk
muscles recruitment during slow or fast arm
movement. >’

* The position or direction — slight variations in
underlying posture/position during movement will
change overall patterns of muscle recruitment. For
example, different positions during exercise will
recruit different patterns in the trunk muscles.®®
Likewise, movement of the body in a different
direction will change the pattern of activation of the
abdominal muscles.>57%74

* Contact/contact-free movement (open-closed
kinetic chains) — muscle recruitment is different if
movement is contact-free (e.g. waving your arm)
from movement where the body makes contact
with another base, such as the floor, wall or an
object.”>””” Hence, muscle recruitment in the arms
is different during push-ups (contact) than the same
arms movement performed standing in space
without contact. Interestingly, most of our body is
involved in a mixture of these two contact patterns,
except for the head, which is invariably contact-
free. Does this mean that functional rehabilitation
of the neck should focus on contact-free head
movements?

* Pain - the experience, anticipation or fear of

pain will influence the muscle recruitment
patterns, 21242531, 78-81
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The current evidence suggests that alterations of task or
small changes in movement parameters can have a
profound and complex influence on muscle recruitment.
No single pattern of muscle recruitment dominates
movement (otherwise it would be impossible to move).
This has important implications for rehabilitation and
further enforces the concept of a functional approach. It
suggests that patients should be trained in a variety of
patterns that are similar to the goal movement.®?

The movement should be practised in different
positions, forces and speeds, and using both contact
and non-contact patterns. This would aim to
account for the infinite variability that exists in nor-
mal daily movement. Rehabilitation should not be
restricted to set movement patterns with minimal
variability or focused on particular muscles (e.g.
weight-training or performing biceps curls). Such
an approach will result in the patient’s learning to
control muscles in relation to these specific tasks,
in patterns which are unlikely to carry over to other
tasks (see Similarity principle and transfer, Ch. 5).

The sensory stage

During movement the motor system collects infor-
mation about internal physical events as well as
information from the environment.>**®3 This is
provided by two feedback systems:
* Proprioceptors — which provide information
about internal mechanical events
* Exteroceptors (vision and vestibular/hearing) —
which provide information about the environment.
When we reach for an object our movement is
organized in response to the information provided by
these two feedback systems. Information from vision
is used to estimate the distance and the size of the
object to be handled.” The proprioceptive and visual
information is integrated with vestibular information
to maintain the body balanced and upright during the
reaching task.®*%° The skin receptors signal the con-
tact of the fingers with the object and provide informa-
tion about its mass, size and texture. Further
information arrives from receptors in the muscles
and joints, indicating the position of the arm in space
and the relationship of different body masses to each
other; the speed and direction of movement and the
force of contraction (sense of effort). 7488794
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Misconceptions about motor control:
implications for neuromuscular
rehabilitation

There are several common misconceptions about
motor control which are likely to make rehabilitation
unnecessarily long and complex. They all originate
from the principle of “isolate in order to integrate”. In
these rehabilitation approaches particular tasks are
broken down until the action of single muscle groups
or muscles chains are singled out and become the
therapeutic focus. Once this is achieved, this local
control is reintegrated into the whole movement.
However, this rehabilitation approach is in conflict
with what is known about motor control:

e The organization of movement is about its goals. The
movement programmes are schemes representing
movement sequences not specific muscle
sequences.

e The muscle is never the goal of movement.
Focusing on clenching, tensing, bracing or
holding specific muscles during movement turns
them into the goal of movement.

e Muscles work in complex synergies — they never
work alone.

* Muscle activity is task-dependent — their role
changing in different tasks. Hence, training-
specific control of muscles in one task may not
prepare it for control of a different task (see
Similarity principle and transfer Ch. 5).

e All muscles are equally important, even the
muscles that are silent. From movement
control there is no such thing as an unimportant
muscle. Muscles which are silent or at low
EMG activity are part of the whole control pattern.
Normal movement would be impossible if these
muscles were over active. In stroke patients such
over-activity often results in severe joint
contractures and dysfunctional movement.

The processing of sensory information occurs
both at a conscious and subconscious levels.?* %
However, much of this extensive information is
processed at a subconscious/reflexive level, unless
we draw our attention to any element of it.

Role of proprioception

Proprioception has several important roles in motor

processes. It provides:

¢ feedback for immediate adjustments and
refinement of movement



¢ feedback for motor learning
* replenishment of pre-existing motor programmes.

Motor control relies on proprioception for the
final adjustment, refinement and synchronization
of complex movement.””'% It also provides infor-
mation if the movement strays away from what is
intended, e.g. walking and tripping. Proprioception
losses may lead to unrefined and inaccurate move-
ment, and are believed to predispose the individual
to recurrent injury (see Discussion, Ch. 4).

During very rapid movements the processing of
sensory feedback is too slow to allow correction of
the ongoing movement.*>#6101-106 Thig is seen in
activities such as walking, jumping, running, fast bal-
listic movements, typing or playing a musical instru-
ment. In these movements the pre-programmed
motor patterns precede the sensory feedback.!"?
The motor system, therefore, has to rely on the infor-
mation gathered before the onset of, rather than
from the instantaneous feedback during, the move-
ment. Consequently, the correction of the movement
occurs close to or at the termination of movement.
For example, during running and jumping, the activa-
tion of leg extensors precedes the foot contact with
the ground by about 150-180 m. This fact has impli-
cations for preventing injuries in sports. Since the
afferent transmission time within the CNS is fairly
fixed, improving proprioception is unlikely to reduce
injuries that occur during high-velocity movements.
However, injuries may be prevented by changing
the way the person performs the movement (see Dis-
cussions on task-behaviour and correctness of move-
ment, Chs 7 & 8).

Our mind is “shaped” by our experiences and our
experiences are formed by our senses. Propriocep-
tion, therefore, is essential for learning or recovering
control of movement.*® Therefore, partial or com-
plete losses of proprioception may slow down reha-
bilitation. Indeed, re-abilitation of stroke patients
with sensory loss may be more difficult than of
those with an intact sensory system.!?7108

The importance of proprioception for motor
learning can be also seen in medical conditions in
which a subject loses all their proprioception (often
due to damage to the dorsal column of the spinal
cord).!® Under these circumstances, the individual
is still capable of performing tasks learned before
the onset of their condition.'! However, they
may find it difficult to modify the task or learn a
new one. In one such documented case, the subject
could still drive the car he used before his illness,

Motor control .

but could not drive a new car as he was unable to
learn the fine adjustments needed for the new
mechanical situation.'!!

The refinement of the pre-stored programmes is
also dependent on proprioception, without which
the motor programmes deteriorate over time.''?
This is experienced in everyday circumstances when
attempting to carry out a physical activity that has
not been rehearsed for a long time (e.g. cycling). A
few “goes” are usually needed to refine the stored
programme.

Proprioception also plays an important role in
body-image and the sense of self. These topics are
relevant to behaviour and movement control, but
are outside the scope of this book (for full discus-
sion see: Lederman 2005 The Science and Practice
of Manual Therapy, Section 3).

Proprioceptors

Proprioceptors (mechanoreceptors) are found in the
skin, muscles, tendons, ligaments and joints (see
Table 2.1 for groups of mechanoreceptors and their
actions).

Afferent fibres from mechanoreceptors converge
segmentally on the dorsal horn of the spinal cord.
This anatomical segmental relationship is lost within
the spinal cord. The afferent fibres tend to diverge
in an ascending and descending manner, over several
segments, synapsing with different neuronal pools
and spinal interneurons. This sharing of afferents
by motor centres has also been demonstrated in
the cortex.'%? Hence, many synergistic muscle
groups share common afferent inputs.'**'3° This
means that spindle afferents from one group of
muscles supply the motorneurons of the muscle in
which they are embedded, as well as other synergis-
tic muscles.!3°

The functional implications of the diverging syn-
aptic connections can be demonstrated by tapping
the biceps tendon. When tapped, the reflex response
spreads to muscles as far away as the pectoralis major,
triceps, deltoid and hypothenar muscles.'” Simi-
larly, tapping the tendon of lateral oblique brings
about a reflex muscle response in all the abdominal
muscles.'*® Even passive movement of the shoulder
influences the gain of the motoneurons supplying
muscles of the hand.!3? This physical organization
has functional logic. Performance of a task involves
total body movement occurring over many joints
and muscle groups. The information about activity

ik



Table 2.1 Mechanoreceptor groups, their anatomical location and function.

Muscle tendon unit

Joints

12

Receptor

Spindle afferents
la &Il

Golgi tendon
organ

Groups Il & IV

Groups | & I

Group Il

Group IV

Neuromuscular Rehabilitation in Manual and Physical Therapies

Location

Muscle Il afferents are
situated at both sides of the
la afferent (on average, there
is only one secondary to one
primary as some spindles
contain only primary
afferents)

Tendons close to the
musculotendinous junction

Muscle

Joint capsules and ligaments

Joint capsules and ligaments

Joint capsules and ligaments

3,62,86, 113-131

Function

Feedback about length,
velocity, acceleration,
deceleration and
minimally about the
force of contraction

Feedback about
dynamic changes in the
force of contraction.
They are not stretch
receptors, as is
sometimes believed.
Contraction of a single
muscle fibre to which
they are attached will
bring about an increase
in their discharge

Chemosensitive.
Information about
metabolic changes and
muscle damage/
inflammation

Range, speed and
position of the joint.
Group | (dynamic and
static, low threshold,
slow adapting), Group Il
(dynamic, fast adapting)

Information about
dynamic events in
joints.

High threshold receptors
that become sensitized
by extreme joint
position or joint injury/
inflammation

Nociceptors.

Convey information
about excessive
stresses at the joint.
Become sensitized in
joint inflammation

Interesting stuff

The more refined the function
of the muscle, the greater the
number of spindles per unit
weight of the muscle.

The detection of force is
delegated to the Golgi tendon
organ

In some muscles, the capsule
of the spindle is fused or
continues to form the capsule
of the Golgi tendon organ.
They are connected to 10-20
muscle fibres and are generally
not affected by mechanical
events in other muscle fibres

Have an indirect influence on
proprioception, via spinal and
higher centres.

Can influence the sensitivity of
the spindle afferents

Most joint afferents are only
responsive to a movement arc
of about 15-20°

A lowering of threshold
(sensitization) takes place at
the receptor peripherally, but
also centrally within the spinal
cord

Although they are not true
mechanoreceptors, movements
activates some group VI, albeit
providing a poor sense of joint
position.

Receptor sensitization by
peripheral and central
processes



Receptor Location

Five types skin Skin
receptors: two

fast-adapting and

three slow-

adapting

receptors

Skin mechano receptors

in one group of muscles has to be conveyed centrally
to be integrated with all the other spinal motoneur-
ons and higher centres taking part in the movement.

I ] Clinical note

The divergence of afferents has important
implications for proprioceptive rehabilitation. It
suggests that localized, joint/muscle-specific
rehabilitation may not be as effective in recovering
control losses as rehabilitation of whole movement
patterns.

Nociception as feedback

When we are in pain we move differently. Nocicep-
tion is an important feedback system from the body
to inform us about tissue damage or the potential
for it. In response to the experience of pain the
motor system will reorganize movement that is less
physically stressful.

Psychological and behavioural factors related to
the pain experience will have profound effects on
movement control. In many musculoskeletal condi-
tions the intensity of the pain experience and/or
the resultant fear of it will often reflect in more
extensive motor reorganization (Ch. 8).2331:3%

Motor control .

Table 2.1 Mechanoreceptor groups, their anatomical location and function—Cont’d

Function

Convey information
about the contact and
surface texture of
objects.

Contribute to fast
reflexive gripping when
an object is slipping
through the hand.

Skin tension contributes
to joint movement
sense.

More sensitive to
dynamic rather than
static mechanical
stimulation

Interesting stuff

When skin mechanoreceptors
near the nail bed are
stimulated it elicits a sensation
of flexion at the distal
interphalangeal joint.
Interestingly, the perioral area
of the human face lacks any
proprioceptors except for skin
mechanoreceptors which play
a role in the position of the lips

I ] Clinical note

Injured individuals and those in pain will select
movement patterns that are beneficial for them. It
raises the question, when does this positive
protection strategy become a dysfunction, and at
what point should there be a therapeutic intervention
to change it? These issues will be discussed more

fully in Chapter 7.

Summary points

* The motor system organizes and controls skeletal
muscle activation during movement, posture and
the musculoskeletal aspect of behaviour and

expression.

* Motor processes have identifiable phases:
integration, motor and feedback stages.

* Movement is stored as a scheme rather than as a
fixed representation of the movement or specific

muscle sequences.

* All movement is goal or task orientated and this
should be reflected during rehabilitation.

° Rehabilitate whole movement — focusing on
single muscles or muscle chains is not effective or
essential for recovering motor control.

13




* Muscle recruitment changes according to the
ongoing task or changes in the movement

parameters.

* The motor system integrates proprioception
and exteroception for the organization of .

movement.

* Proprioception provides information about .
internal mechanical events in the body.

* Proprioception is used by the motor system
for the refinement of movement, motor .
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learning and replenishing existing

* Pain is also feedback that has a profound

influence on movement control.
The aim of this chapter was to demonstrate the

complexity of the motor output.

This complexity promotes a functional approach
in rehabilitation where the focus is on whole,
goal—orientated movement.
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Motor abilities

When we observed an individual performing a spe-
cific task in which they are talented we often refer
to them as being “skilful”. Levels of skilfullness
can be observed even in normal daily activities such
as the unskilled waddle of a toddler in contrast to
the skilful walking of an adult. Similarly, we can
instantly recognize the dysfunctional “unskilful” gait
of a person with an injury.

A skill is how well a person can perform a given
task. The proficiency in performing any skill is
dependent partly on practice but also on the indivi-
dual’s cognitive, sensory and motor abilities.

Motor abilities are motor control building blocks
that underlie all movement."? To be able to walk it
is necessary to have control of balance, multi-limb
and whole-body coordination as well as to have con-
trol of several other abilities. If any of these abilities
is affected the skill of walking will be affected, as
well as several other skills that depend on balance
and coordination. Some of these specific control
losses can be assessed, identified and become the
focus of the therapeutic intervention.

In this chapter the different motor abilities are
described. Their assessment and specific therapeu-
tic intervention will be discussed in Chapter 12
(see also DVD).

Motor complexity model

The area of motor abilities is extensive and it is
estimated that there are numerous such under-
lying abilities, perhaps running into the hundreds.’
As they are presented in the literature they are

impractical as a model for rehabilitation. I have,
therefore, taken the liberty of re-organizing them
into a practical clinical approach. As a consequence,
some of the abilities’ names have been changed to
make them user-friendly and new abilities have
been added (with apologies to Fleishman)!?

One clinically useful approach is to classify abil-
ities according to their level of motor complexity.
In this classification abilities are categorized into
four levels, with skill being the top level (Fig. 3.1):
* Parametric abilities
° Synergistic abilities
* Composite abilities

e Skill.

Parametric abilities are the least complex control
factors in this model. These abilities can be best
described by looking at a simple movement such as
reaching. Several variables of this movement can be
modified without altering the overall pattern (these
are the movement parameters described in Ch. 2).
The movement can be executed with varying degrees
of force and at different velocities (fast/slow). It can
be carried out using different arm lengths (range);
with the elbow fully extended or partially flexed.
We can repeat this pattern of movement for long or
short duration depending on our endurance. From
this we can identify four such parametric abilities:

* Force

* Velocity/speed /rate
* Length

* Endurance.

The next level up in complexity is synergistic
ability. During the reaching action, elbow flexors
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Skills

Composite abilities

Balance, coordination,
transition time, motor relaxation

Motor complexity

Synergistic abilities
Co-contraction and reciprocal activation

Parametric abilities
Force, velocity, length, endurance

Fig 3.1 ¢ The motor complexity model presenting some of the important abilities underlying

movement control.

and extensors have to be simultaneously controlled.
As the movement variables are modified in one group
they have to be reflected in the “opposite” group.
Hence, synergistic ability is about the relationships
between muscle groups or between movement pairs
(flexion—extension, adduction—abduction, internal-
external rotation or any combination of these pat-
terns). There are two identifiable synergistic control
patterns:

* Reciprocal activation
¢ Co-contraction.

Reciprocal activation serves to produce movement
while co-contraction increases the stiffness and sta-
bility (steadiness) of joints during static posture and
movement.

Further up the complexity model are the com-
posite abilities. These abilities rely on other com-
posite abilities, but also on the less complex
parametric and synergistic abilities. Using the
arm-reaching movement as an example, it was
identified that synergistic ability is needed for
elbow movement. However, what happens during
simultaneous shoulder and elbow movement?
Now, the motor complexity has moved a notch
up. The elbow synergistic control has to integrate
with that of the shoulder. The harmonious
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coupling of the two areas can be considered as
coordination ability. If at the same time the hand
was to manipulate an object, the fine harmonious
working of the fingers could be considered as fine
coordination. The movement of the whole arm is
single-limb coordination and multi-limb coordina-
tion if we were synchronously moving the other
arm. Since the arms are attached to the rest of
the body we have to also consider the harmonious
integration of movement between the limbs and
the trunk as body coordination.

However, there are other factors that come into
play while we stand. Upright posture and locomotion
depends on body coordination ability, but also on bal-
ance or postural stability. Furthermore, in daily activ-
ity we tend to perform in succession various tasks.
The reaching movement, if it were while cooking,
would be followed by actions such as holding, whisk-
ing or tossing food in a pan, etc. The ability to
smoothly and rapidly change between actions is
termed here as transition time. It is the time it takes
to reorganize movement control between two dissim-
ilar events. Finally, if the cooking was for a large num-
ber of guests and under a time pressure, we might
find that our shoulders are tense and may feel achy
and stiff. This psychomotor response to stress will
be termed here as moror relaxation abiliry.



From the description above four major compos-
ite abilities have been identified:

* Coordination (fine, single- multi-limb and body
coordination) ability

* Balance/postural stability

¢ Transition time

* Relaxation ability.

The individual’s skills are placed at the top of the
motor complexity model as they contain various
combinations of the abilities described above.

Abilities can affect each other, but they can also exist
as independent motor losses. For example, in the hand
of a stroke patient coordination ability can be affected
independently of force and velocity abilities.®”

The classification of abilities by complexity is a
useful clinical tool. It provides a rational and method-
ical approach for assessing and treating specific
motor control changes.

Parametric abilities

Force control

Force control is the ability to provide adequate
force for optimal execution of movement. It is the
ability to regulate force as well as recovering force
losses. Included in force control is the ability to
fully relax muscles. The way to think about force
control is to imagine a light dimmer switch — it
can be switched on/off or gradually dimmed.

Force control is the ability to regulate the force rather
than make someone stronger. For example, a stroke
patient can deliver a bone-crushing handshake, but
may not be able to fine grade the squeezing force
between low, medium and high forces.!”!! Conversely,
in children with hemiplegia there are force losses but
force regulation is saved in the affected hand.'*'3

Force control is also the ability to fully relax
muscles, i.e. no force. During movement some mus-
cle groups will be motorically inactive. This motor
relaxation is as important as motor activation for
the execution of normal functional movement. The
inability to relax force often results in severe move-
ment dysfunction, such as seen in writer’s cramp
(dystonias) or in stroke patients.'*"!”

Force loss on the other hand is the inability to
generate sufficient force for the optimal execution
of movement. Force loss can be due to direct phys-
iological and pathological changes to the muscle tis-
sue or its motor innervations. However, the most
common manifestation is in failure of voluntary acti-
vation seen in musculoskeletal injuries. Like a light

Motor abilities .

dimmer switch, the muscle forces are turned down
by the central nervous system (CNS) to unload the
damaged or sensitive tissues (Ch. 7).'8** Centrally
mediated force losses can also be seen in stroke
patients as unilateral weakness (hemiparesis) or com-
plete force loss (hemiplegia).'®

Frequently, force loss is the most obvious move-
ment deficit and can become the unjustified focus
of treatment®>?°, sometimes at the expense of
overlooking other motor control changes.

Length control

Length control is the ability to effectively regulate
the range of movement. This include both the elon-
gation and shortening control of the muscles.
Length control changes are often observed in injury
as a narrowing of the ranges of movement. This is a
protection strategy to prevent further tissue damage.
The hypersensitivity to stretching and reflexive guard-
ing seen after injury is an example of length control.
This can be seen during straight-leg raising, where
there is a sudden resistance to hip flexion by muscle
guarding. Another example is the loss of flexion relax-
ation of the back muscle in patients with chronic low
back pain (CLBP).?” This is a length protection strat-
egy to prevent the individual from bending fully for-
ward. Regulation of length can be an important issue
for patient with damaged CNS. For example, in stroke
patient the hypertonic, hyper-flexed wrist and hand
partly represent a dysfunctional control of length.
Often in rehabilitation the focus is on achieving
maximum length. However, the inability to achieve
maximum length could equally be due to an inability
to effectively shorten the muscle. This is seen, for
example, in neck conditions where there is an inability
torotate the neck to the symptomatic side (even when
pain subsides). This could be due to changes in
shortening-force control of the neck’s rotators. Simi-
larly patients with stiff, non-painful, frozen shoulder
may find full flexion difficult even after regaining the
passive range of flexion. This may be due to the inabil-
ity to produce effective length-force shortening of
shoulder flexors to elevate the arm (Fig. 3.2). Hence,
the therapeutic focus should be on the length-
shortening synergy of the movement pairs (see below).
The control of length also relates to the maximum
range, i.e. how far an active movement can be exe-
cuted. Range losses are often seen in musculoskeletal
conditions where the patient, due to immobilization
or pain, was unable to use the full range of move-
ment. This length change is partly shortening
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Control of shortening

Movement

Control of length

Fig 3.2 e Active range depends on control of shortening and
lengthening of the synergistic pairs.

adaptation in the muscles and connective tissues, but
also a dysfunctional “learned shortening” within the
neuromuscular continuum.

Length adaptation raises the issue of active and pas-
sive flexibility. Active flexibility is the maximum joint
range achieved by active shortening and elongation of
the local muscles. Passive flexibility is the extreme
physiological range of a joint, achieved when all the
local muscles are relaxed. If you extend your fingers
actively, and without assistance, you will reach a spe-
cific range. Keep the fingers in the same position, then
using the other hand push the fingers further into
extension while relaxing the stretched hand. The pas-
sive range should be greater than the active range.
Therefore, passive stretching is useful for improving
passive range whereas length control is necessary for
active flexibiliry. This has important clinical implica-
tions. For example, patients with the stiff phase of fro-
zen shoulder can be stretched passively into shoulder
flexion. However, when they are instructed to stand
and raise their arm, they often can only achieve a rela-
tive small degree of flexion — a dysfunctional active
range. Passive stretching does not necessarily improve
the active range. For improvements in active range the
patients should actively move their shoulder at the end
ranges (see Ch. 12, Challenging length control and
functional stretching).

Velocity/speed control

Speed ability is the capacity to regulate the rate of
movement (acceleration/deceleration) and the abil-
ity to produce maximum speed of movement.
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The ability to regulate the speed is seen, for
example, when moving the computer mouse at var-
ious speeds to control the screen pointer.

Maximum speed is how fast a movement or a
task can be made between two targets. For exam-
ple, walking a certain distance, reaching for an
object or producing an explosive force (mixture
of velocity and force). It is also the rate of produc-
ing static peak force, such as seen in sudden iso-
metric contraction to block or resist a sudden
perturbation.

Changes in speed ability are often seen in musculo-
skeletal injuries. Individuals tend to slow down their
movement as an evasive strategy to pain but also to
reduce the forces at the area of damage (reduce the
speed = reduce the force).?’~>? For example, patients
with lower back pain tend to adapt a slow walk, which
may not fully recover even when they are no longer in
pain.

Neuromuscular endurance

In the context of motor rehabilitation, endurance is
defined as the ability to maintain a physical activity
until it can no longer be continued (neuromuscular
fatigue). Fatigue often manifests as pain, reduced
force and velocity of the affected muscles. The
symptoms of fatigue are relieved by a period of
rest.>

A common clinical observation is that individuals
with musculoskeletal injuries often demonstrate
reduced neuromuscular endurance in the area
of damage, even in the absence of pain.?’3*3% A
similar observation is seen in patients who have suf-
fered CNS damage, such as stroke and multiple
sclerosis.>*~*? Individuals who suffer from non-trau-
matic conditions such as trapezius myalgia and
chronic neck pain also experience reduced endur-
ance in the painful muscles during repetitive tasks
(Ch. 9).%

Reduced neuromuscular endurance is associated
with central control mechanisms, which are partly
reflexive (spinal) and cognitive/psychomotor (higher
centres).>>*%* Tt is also partly due to peripheral
factors such as muscle atrophy following disuse or
immobilization.

Endurance can be improved by physical training
and degraded by disuse or injury. It suggests that
the central mechanisms that control endurance are
mutable and could be influenced by neuromuscular
rehabilitation.



Synergistic abilities

Reciprocal activation and co-contraction
control

Synergistic control represents the fact that “muscles
don’t work alone”, but in a complex relationship to
other muscles.*> This has important implications
for rehabilitation. Damage to one group will inevita-
bly alter the control of all its synergists. Even fatigue
or delayed muscle soreness in one muscle group will
have an influence on control of the non-exercised
synergists. For example, fatigued hamstrings will
influence the control of non-exercised quadriceps
and similarly fatigued biceps will influence tricepts
control.***® The effect is likely to spread even to
more distant synergists. For example, fatigue in
quadriceps will influence the control of the non-
exercised gastrocnemius muscle.*” Hence, it may
be more effective to engage the synergistic pairs
and whole movement cycles rather than single-mus-
cle or single-direction rehabilitation (e.g. biceps
curls).

There are two synergistic control patterns during
movement (Box 3.1):

* Reciprocal activation
* Co-contraction.

Reciprocal activation is the simultaneous, active
shorting and elongation of muscle pairs needed to
produce movement at a joint.

Co-contraction is the simultaneous activation of
several muscle groups to stabilize joints during static
postures (static stabilization or steadiness) or during
movement (dynamic stabilization). Co-contraction
also has a role in refining movement. *>-°0-

The two synergistic patterns can be observed, for
example, during head rotation. Some muscles will
produce the rotation movement (reciprocal activa-
tion) while others will dynamically stabilize the head

Home lab

Co-contraction and reciprocal activation exercise.
With an outstretched arm draw large imaginary
numbers from 1 to 10. Focus on your shoulder and
feel how the muscles are reciprocally activated. Now
draw small-amplitude numbers as fast as possible.
You should now feel the shoulder muscles
co-contract (as well as the rest of your body).

CHAPTER 3

Motor abilities

(co-contraction), keeping it upright and preventing it
from flopping to the side. Once the head has reached
its position, all the neck muscles co-contract stati-
cally to maintain the head in the upright position
(otherwise the head will fall to the side).

During various motor activities, these patterns of
contraction take place jointly but with one pattern
being dominant, depending on the task and the
angle of the limb (see Box 3.1).°%°” It should be
noted that there are no specific muscles for recipro-
cal activation or co-contraction. Muscles can switch
their roles between being stabilizers or “movers”, or
both, depending on the position of the limb and the
patterns of movement.”’ "

It has been demonstrated that both patterns of
activation have separate cortical control centres,
reflecting their distinct functional roles.®”®! During
motor learning, motor control transforms from pre-
dominantly co-contractions into more reciprocal
patterns (which are more energy-efficient).%?

Relative factors with synergisms

The two synergistic patterns represent the relation-

ship between several factors that control the move-

ment pairs (Fig. 3.3):

* The relative activation of the parametric abilities

* The relative timing and duration

* Dominance or failure of one of the synergistic
patterns.

The relative relationship of parametric abilities
can be observed in reciprocal activation. During

Relative force, velocity, length and endurance
Relative onset timing and duration

Relative force, velocity, length and endurance
Relative onset timing and duration

Fig 3.3 e Synergistic control includes the relative parametric
as well as the relative timing and duration in activation of the
movement pairs.
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rhythmic movement force will increase on one side
while reducing on the other; there is muscle elonga-
tion on one and shortening on the other. Velocity
will be equal on both sides; however, one will be
lengthening while the other shortening. In injury
and pain conditions this normal relationship is mod-
ified. For example, quadriceps inhibition and ham-
strings hyperexcitability have been demonstrated
in knee injuries.%7%

Timing and duration in synergies

Imagine a simple repetitive movement such as elbow
flexion—extension. During the phase change (i.e. flex-
ion to extension), the muscles in the movement pairs
will have to reverse their action from contraction to
relaxation. These changes require complex synchroni-
zation in relative timing between the muscle pairs
(Fig. 3.4). Furthermore, the relative duration of con-
traction or relaxation between the synergists also has
to be finely synchronized.3>%%73 Such changes in
timing and duration have been demonstrated in
patients with lower back pain.®®"""*78 There is some

Rhythmic movement
(reciprocal activation)
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evidence that timing and duration issues may predis-
pose an individual to injury.””%

One aspect of timing that has received much
attention in recent years is the onset time. This
represents the period between the initiation of an
action and the relative onset time of different mus-
cles.3#%"73 This method has been used in research
to examine how the onset timing changes in various
musculoskeletal injuries and pain conditions.

Dysfunctional synergistic control

Failure in synergistic control can be due to several
underlying mechanisms. It can be due to a dysfunc-
tional control of parametric abilities within the syn-
ergism, i.e. the relative force, length and velocity. It
can be about the relative timing and duration
between the movement pairs. Another possibility
is that one of the synergistic patterns becomes more
dominant or the patient is unable to fully recruit
that pattern to produce normal movement.

A change in favour of or dominance of one pattern
of synergistic control has been demonstrated in

Actively held in position

(co-contraction)

Fig 3.4 e Electromyograph of synergists during reciprocal activation and
co-contraction. A, Electromyograph (EMG) trace reciprocal activation.

B, EMG trace co-contraction.
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individuals with intact and damaged motor system.
Patients with CLBP tend to increase their co-contrac-
tion strategy during movement.>*#1"%2 The dominance
of co-contraction can also be seen in conditions such as
writer’s cramp and hypertonicity in stroke
patients.!*!78388 In stroke patients this was attribu-
ted to malfunction of the centres that control move-
ment synergisms.®! It is also possible that one of the
synergistic patterns becomes less effectively con-
trolled. For example, functional instability of the ankle
is associated with co-contraction failure.? The loss of
normal swinging of the affected arm in stroke could
be seen as the inability to control reciprocal activation.

Composite abilities

The composite abilities described below have been
narrowed down and modified to the ones that I feel
are clinically important. Composite abilities are influ-
enced not only by other abilities in the group but also
by the contraction and synergistic abilities (Fig. 3.5).

Coordination

Coordination is the harmonious and synchronous
control of two or more joints or body masses. Coordi-
nation may be affected locally, in the hand following
immobilization (fine cordination);”° more widely, in

Motor abilities .

the movement of a whole limb (single-limb coordina-
tion); bilaterally, in the coordinated activities of
limbs (multi-limb coordination) or extensively,
affecting the whole body (whole-body coordination).

Generally, patients with CNS conditions are more
likely to have extensive coordination losses. In mus-
culoskeletal conditions coordination losses may be
moregl;z)csllized, pertaining to the area of damage or
pain.””"

Balance

Balance is the ability to efficiently maintain upright
movement or stance with minimal physical stress
and expenditure of energy. This ability depends on
several factors: the sensory inputs from the vestibu-
lar apparatus, vision,”” proprioception, hearing,”>%*
central integration/processing of sensory informa-
tion”® and control of whole-body coordination and
balance.® Failure in any of these systems or pro-
cesses will manifest as unsteadiness and unrefined
movement and stance or, at worst, the inability to
maintain an upright posture.

There are differences between static balance
(standing still, sitting) and dynamic balance (walking,
running and climbing stairs). Dynamic balance is
more complex as it makes greater demands on motor
control and cognitive-motor processes. Patients who

Composite ability
coordination (muilti limb)

Composite ability
coordination (single limb)

<\ Parametric ability
force, velocity, and

Parametric ability
force, velocity, and length

Synergistic ability
reciprocal activation

g and co-contraction

Parametric ability
force, velocity, and length

Parametric ability
force, velocity, and

Synergistic ability
reciprocal activation

length and co-contraction

/

74

Limb A

Fig 3.5 e Motor abilities in control of a single and two limbs. At the lower end of the motor complexity are the

parametric abilities of the individual muscle groups. Next, is

the relative paired activation of the muscle groups at

synergistic level. The composite ability incorporates the underlying parametric and synergistic abilities.
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demonstrate balance losses should be challenged
both in dynamic and static balance (Ch. 12).

Postural stability and instability

Postural stability relates to local proprioception or
motor control losses from the lower limbs or the
trunk/neck that affect balance. It is often measured
as the magnitude of sway or steadiness to perturba-
tion during standing.

In musculoskeletal injuries reduced propriocep-
tion or loss of normal control of synergism at the
area of damage may produce what seems like a bal-
ance loss. For example, patients with lower back pain
may display postural instability associated with
delayed response times in the trunk muscle.%%
717576 Similarly, patients with an ankle injury may
find balancing difficult on the injured side due to
proprioceptive and synergistic control changes in
the lower limb.”

This is somewhat different to central losses where
balance is more widely affected. In these conditions
the patient may find balance to be equally difficult
on each or both legs, or even whilst sitting.

The distinction between balance and postural sta-
bility has some clinical implications. In musculoskel-
etal conditions the losses relate more to postural

Internal prompt
or external signal
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stability rather than true balance control. Postural
instability is more localized (e.g. affecting balance
on one limb); patients take less time to recover and
may use compensatory sensory-motor strategies that
overcome these losses (weight-bearing on the non-
affected side). However, central or vestibular causes
for balance losses are generally more extensive condi-
tions, require longer recovery periods and may only
partially recover depending on the extent of central
damage.

Transition time

Transition time is the period it takes to reorganize
movement between two dissimilar events and to
carry out the subsequent task skilfully (Fig. 3.6).
For example, if you hop on a single leg from side
to side and than suddenly stop, the body will sway
until it settles into the static balance. This repre-
sents the organization time between dynamic and
static balance. If this is repeated several times
you will find that the organization of the static bal-
ance becomes progressively and more rapidly
controlled.

Transition rate represents the duration it takes
for sensory inputs to reach central motor areas,
to process this information, to make decision

Reaction time + Movement time >

Transition time

Fig 3.6 e Transition time is the total period needed to organize and

execute one task after another.
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about the action to take and the time it takes the
motor commands to reach the muscles (reaction
time). It also includes the period required to
complete all the postural adjustments and the
observable execution of the movement in the
subsequent task (movement time). The different
elements within this chain of events can occur
within a fraction of a second, too rapidly to be
assessed separately in the absence of lab tools.
Therefore, the term “transition time” has been
introduced as a clinical reality. What is humanly
possible (in my experience) is to observe the grand
total of how rapidly and smoothly a person can
change between two activities — inaccurate, but
good enough clinically.

Longer organization times can be often observed
in various musculoskeletal injuries and in patients
with central damage.”®3%97 A stroke patient may
have difficulties in organization within or between
tasks, such as sitting, getting up and walking, or
walking and turning around. Such activities are
marked with a long pause for reorganization
between the two actions.

Interestingly in sports, some triathletes report
discoordination when running after cycling. This
was associated with the inability of the motor sys-
tem to effectively reorganize itself between the
two intense physical activities.”®

Motor relaxation

Motor relaxation is the ability to reduce neuromus-
cular activity to the optimal level necessary for
maintaining a motor task or to become inactive.
Motor relaxation represents the flip side of motor
activation. It is paradoxically a neurologically active
motor process.

Motor relaxation and force relaxation control
(see force ability) are seen in different conditions.
There are several conditions where the individual
develops pain conditions by tension holding, such
as trapezius myalgia or chronic neck pain (Ch. 9).
It is the inability to relax in a psycho-motor dimen-
sion. Force relaxation ability, on the other hand, is
associated with more reflexive mechanisms where
specific areas become hypertonic such as seen in
central nervous system damage.

Although motor relaxation and force ability are
the outcome of different processes, the clinical
management has the same aims (relax the overac-
tive muscles) using the same approach (motor
relaxation).

Motor abilities .

Mutability of abilities

According to motor control research, some of the
motor abilities described above are a mixture of
genetic traits and learning that develop during child-
hood and adolescence.'™ Coordination, for example,
is one such ability that is genetically determined.””
Once the motor system has matured in adult life
some of these abilities become resistant to change.
However, they may retain a limited capacity to be
modified by practice.!°!°! In other words each indi-
vidual has a “personal best” in any of these control
variables (except in the parametric and synergistic
abilities that rely partly on central and peripheral
adaptation to training).

The aim in neuromuscular re-abilitation is to help
the person recover their losses to the “best of their
ability”, rather than improving their personal best.
It has been demonstrated consistently that all abil-
ities in the motor complexity model can be affected
by musculoskeletal injury, psychomotor conditions
or CNS damage, see summary in Table 3.1.

It should be noted that in musculoskeletal condi-
tions there are no single ability changes. They are
part of an overall protective strategy, with multiple
options and containing a variety of component
changes (the abilities). One common misconception
about abilities is to view them as a unique, single
outcome (or cause) of a particular condition. This
is exemplified by the core stability training
approach, where the focus is on normalizing the
timing delay in the abdominal muscles. However,
this change is only a small element in the overall
motor strategy of a person suffering from back pain,
as depicted in Table 3.1.

Can motor abilities be
normalized?

There is some evidence that motor abilities can be
normalized by training and rehabilitation.

Most obvious changes can be observed in the para-
metric abilities. For example, physical training has
been shown to reduce arthrogenic inhibition in the
knee (force control).?*'%70 In patients with early
osteoarthritis of the knees and post meniscectomy,
exercise rehabilitation has been shown to improve
force and endurance abilities.'®!”! In chronic lower
back patients lumbar extension exercises were shown
to improve trunk muscle strength, cross-sectional
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Table 3.1 Examples of motor abilities affected in various conditions

Conditions Parametric motor abilities Synergistic Composite
Force Length Velocity Endurance Co-contraction/ GCoordination Balance/postural Transition Relaxation
reciprocal stability time
activation
Lower back Force losses in trunk Loss of flexion Reduced Increased Impaired postural Lumbar spine-hip  Changes in postural ~ Compared to Not studied (but
pain muscles in acute and relaxation in  velocity of fatigability of  control of the lumbar joint coordination  control in CLBP.”%'%8  healthy controls, should be).
chronic lower back  the spinal trunk trunk muscles spine is associated  altered in back Impaired postural persons with
pain (CLBP) muscles movement in patients with delayed trunk/  pain subjects.’*®  control of the lumbar  LBP exhibited a
patients.'® 1937192103 quring flexion  during with abdominal muscles  Dis-coordination  spine associated with reduced ability
in patients induced back CLBP.2"*%-3%  response times in pelvis—thorax  delayed muscle to adapt trunk—
with CLBP. pain.* in CLBP coordination in response times in pelvis
Extensors Individuals patients.®8=71.74=78 | gp 28:29 CLBP patients.” coordination and
activation with high Increase in trunk Changes in postural spinal muscle
prevents full  pain-related co-contraction in control unrelated to  activity to
forward fear had CLBP patients.”®82 pain in CLBP.'® sudden changes
bending.?” smaller peak Increase Post spinal surgery in walking
Individuals velocities and co-contraction in postural control velocity.?82°
with high accelerations trunk during walking changes both in pain  Slower reaction
pain-related  of the lumbar and additional and pain-free subjects. time in LBP
fear had spine and hip cognitive demands.* However, more evident patients.
smaller joints, even in the symptomatic Demonstrated
excursions of  after subjects.'®° recovery of
the lumbar resolution of Hip strategy for reaction time
spine for back pain.®! balance control in with training.'®*
reaches to all Walking quiet standing is
targets at 3 velocity affected in CLBP.'®
and 6 weeks, significantly Experimental muscle
but not at 12 lower in lower pain changes
weeks back pain feedforward postural
following pain (LBP) responses of the trunk
onset.®"! patients.?¢-30 muscles.®®

Smaller stride
length.>°



Conditions

Non-
traumatic
chronic.
neck pain
Trapezius
myalgia.
Tension
headaches.
Traumatic:
chronic
whiplash.

6¢

Parametric motor abilities

Synergistic

Composite

Force Length

Demonstrated muscle Reduced
weakness in cervical cervical range

muscle in chronic of motion in
whiplash whiplash
patients. %4105 patients and

chronic neck
pain.112,113

Trapezius myalgia —
reduced force in
affected side.'®®

Velocity

Only small
non-
significant
velocity
changes in
head
movement.''°
Longer time
to produce
peak force for
whiplash

subjects.'®

Endurance

Reduced
cervical flexor
endurance
following
whiplash
injury.*®
Reduced
endurance in
neck muscles
in chronic.'?”
Tension
headache —
reduced
endurance in
neck
flexors'?®

Co-contraction/
reciprocal
activation

Changes in
synergists’
recruitment during
isometric
(co-contraction) and
dynamic (reciprocal
activation) in acute
whiplash patients.'®
Tension headache —
abnormal
co-contraction and
reciprocal activation
in neck

muscles.'3*135

Coordination

Less refined
neck movement

Transition
time

Balance/postural
stability

Chronic neck pain Chronic neck
patients have reduced pain patients

Relaxation

Inability to relax in
whiplash,

in chronic whole body and head have reduced  trapezius myalgia
neck pain postural stability.'*®%? head stability ~ and chronic neck
patients."'®'"®  Tension headache —  during pain, 48149166
Balance most reduced postural perturbations.'®? Trapezius myalgia
unstable control. 3 — inability to relax
during gait specific

involving muscles.'®”

task-specific
head
movements.
Dis-coordinated
movement of
jaw and

head movement
in whiplash.'*°
Chronic neck
pain — abnormal
cervical muscle
recruitment
during
coordination

149

Chronic neck
pain — inability to
relax different
muscles in the
neck and

shoulder 151,152,168

eXerCise.108'151 ,152

Continued



Table 3.1 Examples of motor abilities affected in various conditions—Cont’d

Conditions

Knee

Parametric motor abilities Synergistic Composite
Force Length Velocity Endurance Co-contraction/ GCoordination Balance/postural Transition Relaxation
reciprocal stability time
activation
Abnormal relationship Reduced knee Reduced Normal Two different ACL damage. ACL-deficient subjects Loss of ability to Not applicable.
in force between range of walking endurance in  adaptive strategies  Changes in cannot adequately respond
quadriceps and motion — velocity in quadriceps following ACL tear. interjoint perform postural normally to
hamstrings in anterior external- painful pre and post- Change in reciprocal coordination of adjustments.'52 sudden postural
cruciate ligament flexion osteoarthritis operative ACL, and co-contraction  lower limb.®! perturbations in
(ACL) deficient moment (0A) but forces strategies. ' ACL tears. Also
knee.53-55 during various knees.'?'~'?® |osses were  Changes in the non-injured side
Force losses in gait activities present.?®3% timing and duration affected.'®?
quadriceps femoris  in ACL ACL damage — of knee synergists
after ACL repair.'””  deficient increase during movements in
knees.t* 114 fatigability of ~ ACL tears.'®"='%°
s hamstrings  Reduced stabilization
during in individuals who
walking.”®"  have knee instability

following ACL rupture
with return to pre-
injury activities. '
ACL injury -
“non-copers” utilize a
stabilization strategy
which not only is
unsuccessful but may
lead to excessive joint
contact forces and
which have the
potential to damage
articular structures
(Rudolph et al 1998).
Increase
co-contraction

during walking in
medial 0A.'*?



e

Conditions

Shoulder
conditions

Parametric motor abilities Synergistic Composite
Force Length Velocity Endurance Co-contraction/ Coordination Balance/postural Transition Relaxation
reciprocal stability time
activation
Impingement — force Although Impingement  Frozen Impingement — No available data. Not applicable. No available Not studied
deficits and muscular range is — bilateral shoulder- change in onset data.
imbalance in the reduced, may (painful and  reduced timing of rotator cuff
scapular be associated non-painful  endurance in muscles during
muscles. 08109 with sides) deltoid. % shoulder external
Force control affected pathological  decrease in  Impingement rotation in throwers
(ability to maintain a changes in the time to - reduced with and without
steady force) during tissues. peak tension endurance of symptoms.®
submaximal during medial trapezius, Muscular imbalance
contraction ~35% rotation of deltoideus, in the scapular
mve 34 shoulder.’” infraspinatus, muscles.'%®'43
and Abnormal muscle
supraspinatus recruitment timing in
during the trapezius and
submaximal  scapular muscle.'**
contraction, Abnormal muscle
not related to recruitment in the
pain.®* shoulder in
symptomatic and
asymptomatic
subjects, but greater
deficits in
symptomatic.'*®
Frozen shoulder —
changes in
coordination of
different part of
trapezius.'#®
Continued



Table 3.1 Examples of motor abilities affected in various conditions—Cont’d

Conditions

Parametric motor abilities

Synergistic

Composite

Force

Length

CNS damage Stroke — weakness in Stroke —

grip strength and
isometric
extension.
Excessive abnormal
flexor force limiting
voluntary finger
extension.'°
Children with
hemiplegia — force
losses but saved
force regulation in
affected hand.'>'3

110,111

abnormal
constraints in
range.'"”
Abnormal
constraints in
linkage
between
activation of
the elbow
flexors and
shoulder
extensors,
abductors, and
external
rotators.'®

Velocity

Loss of
velocity but
not timing in
ankle
movement in
incomplete
spinal cord
injury.'?*
Stroke —
patients
moved their
heads at
lower
velocities.'?®
Slower
movement
velocity. %

Endurance

Fatigability in
individuals
suffering from
a variety of
central
nervous
system (CNS)
conditions.*?

Co-contraction/

reciprocal
activation

Dysfunctional
co-contraction in
leg muscles of
children with
cerebral palsy.'’
Deficits in the
coordination of
agonist and

antagonist muscles

in stroke
patients.%” %

Stroke — presence
of abnormally large

silent duration in
co-contraction at

different angles. This
was correlated with

postural instability
and oscillations
about the final

position of the arm
57,87

after unloading.

Coordination

Stroke — single-
limb dis-
coordination.
Change in
inter-limb
coordination.'®*
Discoordination of
normal rhythm of
swinging the
arms. '8

Loss of fine
coordination (fine
control) in the
hand."®”

153,154

Balance/postural

stability

Stroke — patients had

altered postural
adjustments to
voluntary head
motions during
standing.'®

Transition
time

Increase in time
to organize
multi-limb
coordination at
onset of
movement.
Improves
towards the end
of movement.'®®

Relaxation

Not studied.



area and endurance.!”>”'”> In patients with chronic
neck pain, endurance and muscle strength improved
after 2 weeks’ training specific to these abilities.!”®
A functional rehabilitation program was shown to
improve the velocity of movement ability in lower
back and knee damage patients.!®*!”’

The synergistic muscle activity in patients with dif-
ferent joint conditions has also been shown to be
altered by physical therapy. In functional instability
of the ankle, treatment by challenging postural stabil-
ity virtually eliminated the symptoms of instability as
well as significantly changing muscle onset times.”®!”®
Similarly, training was shown to change various factors
in synergistic control of normal and anterior cruciate
ligament (ACL) deficient knees.! 918 Postural stabil-
ity and control of coordination was also shown to be
improved by TaiChi, which is a movement approach
that challenges these motor abilities.'®!

Summary points

e Skill is the measurement of how proficient a
person is in performing a particular task.

* Skills depends on a mixture of sensory-motor and
cognitive abilities of the individual.
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Sensory abilities

Sensory losses, and in particular proprioceptive def-
icits, may lead to unrefined movement and the loss
of ability to respond effectively to sudden demands
and may impede motor adaptation/learning. This
chapter will examine how proprioceptive losses
may come about and the underlying peripheral and
central mechanisms seen in different conditions.

Sensory abilities include proprioception and
exteroception (vision, vestibular apparatus and
audition). Generally, clinical care of extero-
ception is out of the scope of neuromuscular rehab-
ilitation. However, these sensory contributions
should not be underestimated and their losses
should be considered in the overall management
of the patient.’

Sensory complexity model

Similar to motor abilities, sensory information can
be categorized into groups of varying levels of com-
plexity (Fig. 4.1).

Let us start with a simple movement such as
elbow flexion—extension, preferably with the eyes
shut. We can selectively focus our attention on the
elbow before moving it. The awareness that the
elbow is held at a particular angle is called position
sense. As the elbow is moving, we now become
aware of the direction, changes in velocity and
acceleration—deceleration of the limb — a movement
sense. There is also a sense of effort in moving and
the limb’s own weight (Ch. 2).>>* These elements
of proprioception will be termed here as primary
proprioceptive ability.

Now, let’s make this a little more complex. With
the eyes still shut, try to touch the tip of your nose
with the index finger. Your ability (or inability)
to accurately reach that target depends on the inte-
gration of sensory information from the whole
arm, head and position of the nose; plus all the infor-
mation from the rest of the body. This is spatial
orientation ability: the capacity to identify the position
and direction of movement of any part of the body.

Finally, imagine standing, balancing on one leg and
then maintaining the same touch-the-nose movement.
Your success depends on the capacity of the motor
system to integrate several sources of exteroceptive
(visual, vestibular and auditory) and proprioceptive
information. This level of sensory ability will be
termed here as composite sensory ability.

Hence, proprioception can be categorized accord-
ing to complexity, from low to high level, as following:
* Primary proprioceptive ability (position,

movement and effort sense)
* Spatial orientation
* Composite sensory ability.

It should be noted that this classification is
artificial and that all these abilities co-exist in nor-
mal functional movement. However, this sensory
ability model has some clinical value - it can be
used as a predictive tool to understand potential
sensory losses in relation to various conditions. It
can also provide a useful clinical procedure for
testing more obvious losses and integrating sen-
sory with motor rehabilitation. The assessment
and challenges of proprioception are described in
Chapter 13.
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Composite
sensory abilities

Sensory complexity

Spatial orientation

Primary proprioceptive ability
Position, movement and effort sense

Fig. 4.1 e Sensory complexity model. Principal sensory abilities are
position, movement and effort sense. Next in complexity is the integration of
proprioception from several sources to provide a sense of the position and
movement of the whole limb in space. The integration of visual, auditory,
vestibular and proprioceptive is represented as composite sensory ability.

Change in proprioceptive acuity

Proprioceptive acuity refers to a change in the abil-
ity of the individual to detect various aspects of
movement. It can be the threshold to rate and
amplitude of movement; for example, if the move-
ment is very slow the individual may find it hard
to identify whether the limb is moving at all and
in which direction.®> Acuity is also the ability to
detect a joint’s angle when maintained in a certain
position or dynamically during movement.

Proprioceptive acuity depends on the intactness
of the sensing apparatus (mechanoreceptors and
their peripheral to central pathways) and the intact-
ness of central integration/possessing of sensory
information.® Generally, in musculoskeletal injury
the damage is to the proprioceptive apparatus in
the periphery. Later it may be accompanied by
adaptive central reorganization. Conversely, in cen-
tral nervous system (CNS) damage, the peripheral
proprioceptive apparatus is fully intact but the cen-
tres that process the information are damaged.

Proprioceptive changes in
musculoskeletal injury

Proprioceptive changes in musculoskeletal injuries
often manifest as diminished acuity in position and
movement sense.” '’ These changes together with
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nociception often result in unrefined motor control
(Fig. 4.2). Proprioceptive deficits have been demon-
strated in the ankle,'! knee,'*™' shoulder,'® temporo-
mandibular joint,® lower back,'”?° and neck
(whiplash injuries).?’~** Chronic neck pain was even
shown to reduce acuity in upper limb (elbow, shoulder
and spatial orientation of whole arm), suggesting a
central processing change in sensory integration.%26
Various degrees of musculoskeletal injuries, surgical
intervention and degenerative joint disease have been
shown to have local effects on proprioception.?’>*
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Fig. 4.2 e Damage to proprioceptive apparatus peripherally
combined with nociception will result in unrefined motor
output.



The clinical significance of proprioceptive losses is
not clear. For example in severe neck pain conditions
the losses are often less than 2.5° of error when com-
pared to asymptomatic subjects.?>3>3% With more
mild conditions, often the differences between
symptomatic and asymptomatic subjects are less that
1° in proprioceptive error.?>3’~#! It should be noted
that even asymptomatic individuals can demonstrate
up to 5° in proprioceptive error.>®*!

Short-term, reversible proprioceptive
changes

There is a common experience that following
intense exercise we tend to feel unsteady (wobbly
legs) and clumsy in the execution of skilled move-
ments. This unrefined movement may be partly
associated with the exercise-induced muscle dam-
age and the effects it has on proprioception. Such
proprioceptive changes are self-limiting and are
expected to recover within minutes in the case of
fatigue, or longer in the case of delayed muscle sore-
ness after exercise.'%4>~*%

The changes in proprioception are generally modest.
For example, immediately after eccentric quadriceps
exercise there is a force drop of 28%, accompanied
by 4.8 degrees of error. Following concentric exercise,
there is a force drop of 15% and matching errors of 3.7
degrees.*® On the other hand, proprioceptive acuity
may increase during normal warm-up where there is
no fatigue or muscle damage.*”

Several factors may contribute to this transient
change in proprioception. Muscle swelling and sar-
comere damage may influence the ability of the
muscle receptors to effectively detect movement
(Fig. 4.3). Furthermore, ischaemia or inflammation
is known to change the chemical environment of

Inflammation Tissue

Receptor
|

Fig. 4.3 e Changes in the chemical environment of the
mechanoreceptor may change its sensitivity in detecting
movement.

Sensory abilities .

the muscle receptors and their sensitivity (group
IIT and IV chemosensitive afferents and the spindle
afferents via spinal mechanisms).>%>*

There may be also central reasons for transient
changes in acuity. During eccentric exercise the
efferent motor command may increase to compen-
sate for the effects of fatigue. The proprioceptive
errors are due to inaccurate comparison between
predicted and actual feedback from the muscle
(see comparator system, Ch. 2).%3

Generally, these acute transient changes in pro-
prioceptive acuity have little clinical implications
and are unlikely to be affected by any special reha-
bilitative approach. In long-term injury or ongoing
painful conditions they may become more perma-
nent and, therefore, more relevant to rehabilitation
(see below).

Where transient proprioception may be impor-
tant is in sports management, particularly in the area
of injury prevention during training and competition.
During fatigue skillful movement may deteriorate,
due to a combination of several factors, including
reduced proprioceptive acuity (also reduced motor
control and psychological-cognitive factors).>>>’
These multidimensional factors may place the ath-
lete in movement patterns that could predispose
them to injury.’®®! The management of the athlete
in this situation would involve the organization-
behaviour of the individual, which is further
discussed in Chapter 8.

Long-term proprioceptive changes

Long-term reversible and irreversible proprioceptive

changes can be observed in musculoskeletal injuries.

Several factors can combine to generate these

changes:

* Damage to the receptors and/or their axons

* Structural-physical changes of the tissue in which
the receptor is embedded

* Central sensory reorganization

* Pain-proprioception competition.

Many receptors and their axons have a lower ten-
sile strength compared to the tissues in which they
are embedded. Physical trauma to tissues and nerve
trunks can damage the mechanoreceptors and their
axons resulting in localized proprioceptive losses
(Fig.4.4A).!41531.61-64 Thege proprioceptive defi-
cits can be very small and their clinical significance
is unknown. For example, in cruciate ligament tears
it can be less then 1.0 degree of movement.®
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Fig. 4.4 ¢ Local changes affecting the proprioceptive
apparatus. A, Damage to the receptor or its axon.

B, Changes in the tissues in which the receptor is embedded.
C, Tom fibres will reduce the receptor’s ability to detect
mechanical changes.

Another potential mechanism that may lead to
long-term sensory losses is structural/physical
change in the tissues in which the receptor is
embedded. The proprioceptive apparatus may be
fully intact, but its ability to detect movement
may be hindered by changes in the surrounding tis-
sues, in the form of adhesions or shortening
(Fig. 4.4B). Furthermore, proprioceptors embedded
in tissues that are torn or detached will lack the
mechanical stimulation needed for the detection of
movement (Fig. 4.4C).

Central sensory reorganization in response to
injury may also influence long-term changes in pro-
prioception. Reduced physical activity may result
in sensory “disuse”, affecting the whole sensory con-
tinuum from the receptors to their central represen-
tation in the brain. For example, in the periphery,
immobilization can lead to muscle spindle atrophy
and changes in its sensitivity and firing rate.®® More
centrally, it has been shown that tactile impoverish-
ment and sensorimotor restriction of an animal’s
paw causes deterioration in the cortical sensory
map representing that area.®’
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The reversal of disuse may be observed after
reconstructive capsular and ligamentous surgery.
Once repaired, proprioception tends to recover over
a period of several months.®®~"! This partly could be
due to the patient’s returning to a more normal and
pain-free use of the arm that promotes normal cen-
tral reorganization of proprioception.”3

Central sensory reorganization can produce
surprising findings. In individuals who had anterior
cruciate ligament (ACL) reconstruction or shoulder
injury, decreased proprioceptive ability was present
in some measurements in the affected, as well as in
the uninjured side.”>”"’

Competition in sensory information:
nociception vs. proprioception?

Changes in proprioceptive acuity after injury could
be due to a competition between nociception and
proprioception for central “attention,” occurring at
reflexive and cognitive levels.>%>1:5377

This competition in sensory information can be
likened to a bottleneck effect. A vast array of
information from the periphery floods the CNS.
The system is incapable of attending to all these
inputs and, therefore, only information which is
relevant or important makes it through to atten-
tion. Pain, which may be interpreted as being the
most important, will have dominance over pro-
prioception in passing through this bottleneck
of information.

There are several studies which support this
sensory competition model. Experimental pain
induced in muscle and subcutaneous tissues was
shown to significantly impair passive movement
detection in the pertaining joint.”? Proprioceptive
acuity has been shown to reduce when experi-
mental pain was induced in the muscles of the
lower leg®® and, likewise, superficial experimental
pain applied locally to the neck diminished neck
proprioceptive acuity.81 Such sensory competi-
tion was also demonstrated in postural stability.
When a painful heat stimulus was applied to the
skin of the calf it resulted in greater postural
unsteadiness.®?

Pain-proprioception competition is also evident in
musculoskeletal injury. Patients with painful ACL
damage seem to have larger proprioceptive deficits
than those who have pain-free ACL damage.®* It was
also demonstrated that proprioception improves after
6 months following shoulder decompression surgery
where only the inflamed and painful subaccromial



bursa was removed, i.e. proprioception won when the
competition (pain) was taken out.”!

Another possibility for pain-proprioception
competition may occur, more centrally, as an
adaptive process. This phenomenon may be
related to the principle that the more we focus
on an experience such as a physical sensation or
movement, the more it drives central adapta-
tion.®* %% In this scenario the individual’s focus
on their pain may facilitate pain imprinting while
displacing normal sensory-motor central represen-
tation. For example, in chronic lower back pain
there is a displacement of the cortical sensory-
motor areas representing the lower back® and,
indeed, this condition is often accompanied by
diminished proprioceptive acuity.!¢71°

Proprioceptive changes in central
nervous system damage

CNS damage could also lead to sensory losses.
Depending on the extent and location of damage,
all levels of sensory abilities may be affected. This
is in contrast to musculoskeletal injuries where the
primary proprioceptive abilities are largely affected.
Another important difference is that in CNS dam-
age the peripheral sensory apparatus is left intact,
which provides a potential for peripheral-to-central
recovery (Fig. 4.5). This however depends on the
extent of the damage, neural repair and central re-
organization (Ch. 10).70%4
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Fig. 4.5 e Central damage can affect proprioception. In
contrast to musculoskeletal injuries the proprioceptive
apparatus remains still intact.
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Proprioceptive recovery

Proprioceptive losses will partially or fully recover
during a period of several months following mus-
culoskeletal injury. The recovery of proprioception
ultimately relies on peripheral and central pro-
cesses: in the periphery, through the degree of
repair of the receptors and the tissue in which they
are embedded, and centrally, through the adapta-
tion and reorganization of the sensory pathways
and cortical maps.

There is some evidence that mechanoreceptors
can partially regenerate following tissue damage. Such
regeneration has been shown in muscle spindles, their
axons and efferent motor supply and in skin mechan-
oreceptors (Fig. 4.6).%%*%%97 In animal models
there has been even some evidence for sprouting of
new muscle and skin receptors, which took place
within 6 weeks of injury.®*?”® In muscle, the suc-
cess of regeneration depends on the extent of internal
damage and scarring and the duration of repair.

Being active is important for sensory regeneration.
Muscle hypertrophy in response to exercising is asso-
ciated with morphological and physiological changes
of the muscle spindle. Such changes will increase
the spindle’s sensitivity to detect movement.” 10!
Centrally, exercise encourages the sensory neurons
to produce growth factors that stimulate axonal
regeneration and synaptic connections (Fig. 4.7).'%

The recovery of the tissue in which the receptors
are embedded is also important for propriocep-
tion.'*® Naturally occurring healing or surgical repair
could lead to normalization of the tissue’s properties
and consequently to better detection of movement
by the receptors embedded in them. Some evidence
of such recovery was demonstrated following spinal,
ankle and shoulder surgery.®®7%1%% It is possible that
in some of these surgical repairs the tensions in the
capsule had been restored, consequently re-establish-
ing the receptors’ detection ability in the previously
torn fibres (this does not occur in every surgical
intervention, e.g. cruciate ligamen’c).74 This suggests
that passive or active movement may be advanta-
geous for such sensory regeneration. It will optimize
tissue repair, reduce oedema and scarring as well as
optimize the mechanical environment necessary for
receptor regeneration/adaptation. 105

The feedback from the spared receptors in the
area of damage as well as from receptors from
undamaged areas could also account for the re-
covery of proprioception (rather than through an
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i ol W e

Normal (36 terminals) After 8 weeks(36 terminals)

Fig. 4.6 ¢ Muscle spindle regeneration after damage to the nerve trunk. A, Normal spindle afferents (36 terminals).
B, Regeneration after 8 weeks (36 terminals). (From Barker D, Scott JJ 1990 Regeneration and recovery of cat muscle spindles after
devascularization. J Physiol 424:27-39, with permission).
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Fig. 4.7 e Exercise encourages the release of growth factors by sensory neurons that stimulate axonal regeneration and
formation of new synaptic connections. A and B, Sedentary animal. C and D, Three days exercised. E correlation between
distance run and normalized axon length (From Molteni R, Zheng JQ, Ying Z et al 2004 Voluntary exercise increases axonal regeneration
from sensory neurons. Proc Natl Acad Sci USA 101(22):8473-8478 (Fig. 1), with permission.)

improvement of proprioception from the area of somatosensory cortical territory has been observed
damage itself).!°®!%” In this scenario, the spared during denervation and re-innervation of peripheral
proprioceptors become more dominant and capture nerve and in the proximal limbs of amputees
the lost central representation of the damaged (Ch. 6).'% The other possibility is that the recep-
receptors (Fig. 4.8). Such loss and recapture of tors that were damaged gradually regain their lost
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Fig. 4.8 e Mechanisms in proprioceptive recovery.

A, Damage to the receptors or the tissue in which they are
embedded could lead to loss in their cortical representation
and capture of that area by the saved receptors. Some
proprioceptive recovery may be possible by the system
becoming more dependent on the saved receptors and their
enlarged cortical representation; even if there is no further
recovery of the damaged receptor or tissue. B, Gradual repair
of the receptor or the tissue in which it is embedded may help
recapture its lost cortical representation and improve overall
proprioception from the area of injury.

central territory as they regenerate and become
more functional. Here too we can assume that
active movement is the drive to sensory-motor plas-
ticity. This was demonstrated in stroke patients.
Functional rehabilitation brought about improve-
ment in motor control that correlates with reorgan-
ization in the somatosensory cortex.'%?

In can be concluded that after musculoskeletal inju-
ries or CNS damage there is a potential for proprio-
ceptive recovery. The studies suggest that recovery is
a mix of repair and adaptation processes that occur

Sensory abilities '

throughout the sensory system.!! As such, proprio-
ceptive recovery is expected to take several months
rather than a few weeks. Often such intrinsic body
processes can be optimized but not speeded up. Move-
ment may help this optimization by facilitating tissue
repair and providing the drive for central sensory-
motor adaptation.''Y However, the degree and time-
scale of recovery may be difficult to predetermine.'!!

I J Clinical note

e Movement can help optimize repair and adaption
of the proprioceptive system.

e Movement will also help the repair and adaption
of the tissues in which the receptors are
embedded. This may help to re-establish the
receptors’ ability to detect movement.

Does proprioceptive loss lead to
further damage?

Proprioceptive loss in the long-term is believed to
contribute to muscular atrophy, recurrent joint inju-
ries and eventually to progressive degenerative joint
disease.*® In this model, diminished feedback will
result in dysfunctional movement and joint instabil-
ity, which will eventually lead to progressive joint
damage. So far this model has been demonstrated
only in one animal study.''?

Functional instability of the ankle is a condition
which can be used to examine this theory. It is well
established that a combination of sensory-motor losses
at the ankle may predispose the individual to recurrent
injury.!! Will this recurrent injury predispose the indi-
vidual to progressive ankle joint damage? In a 20-year
follow-up study of patients with chronic ankle instabil-
ity, degenerative changes were observed only in six of
46 ankles. There was no correlation between persis-
tent instability and joint degeneration.'!'?

Another area that could help us to explore the
proprioceptive further damage model is delayed-
onset muscle soreness (DOMS) after exercise. This
transient muscle condition is accompanied by dimin-
ished proprioceptive acuity.'%**~* Most individuals
who experience DOMS will continue to exercise
without acquiring any further damage/injury. If pro-
prioceptive loss were to lead to injury, continuing
to exercise would initiate a vicious cycle that would
result in progressive damage.
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Finally, in a recent prospective cohort study with
2-3 year follow-up the lumbar spine position sense
was evaluated in 292 athletes. No significant differ-
ences in the repositioning errors or motion percep-
tion threshold between athletes with and without a
history of lower back injury or between those who
did and did not get injured during the follow-up.'®

I ] Clinical note

There is no evidence yet that proprioceptive

losses predispose the individual to gradual tissue
damage. Perhaps large magnitude proprioceptive
losses are required for this chain of events to occur.

Are there proprioceptive-specific
exercises?

Patients who exhibit proprioceptive losses are often
prescribed specific proprioceptive exercise. Is there
a distinct kind of exercise and would it be better
than any other functional activity?

Let’s take a look at the body — our ankle mechano-
receptors will be stimulated equally well whether we
exercise on a wobble board or jump around the court
while playing tennis. Indeed, the improvements in
function or reported reduced incidents of injury after
proprioceptive training are often attributed to
enhancing motor control (e.g. synergistic control or
coordination) rather than selective improvements in
proprioception.” 7610610714117

Yet, some studies do show that in musculoskeletal
injuries there are some direct and local improve-
ments in position sense following “proprioception
training”! '%12° However, it seems that propriocep-
tion improves regardless of the type of exercise used.
For example, proprioceptive acuity in the shoulder
seems to improve with isokinetic exercises, lifting
weights, exercises which mimic the movement of
lifting weights, push-ups, arm movement using a
resistance band or throwing a weighted ball '?!-124

If you feel baffled by all these findings, you should.
How can specific exercises improve proprioception
while the normal daily or sports activities of the indi-
vidual do not? It could be that we become more atten-
tive to proprioception rather than improving it.
Imagine a simple task like writing. Once learned it
becomes completely autonomous and out of our
awareness. The focus of writing is external towards
the goals of writing. If we were to increase the duration
of writing the awareness and proprioception acuity of
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the hand will remain unchanged. So doing more of
the same is unlikely to change proprioception. Now
imagine that we were given a novel task that forced
us to concentrate on our hand, say knitting. We have
to become more aware of the fine hand movements
of this new complex task. If we were to test proprio-
ception of the hand at that point we may find that acu-
ity has increased. This has come about because we are
more attentive and focused on our hands, rather than
by an improvement in proprioception. An analogy
can be experienced by focusing to listening with your
right ear. You will become more aware of the sound
on that side; however, your hearing has not improved.
Interestingly, it is claimed that elderly Tai chi practi-
tioners have better proprioceptive acuity than their
age-matched runners or swimmers and those who are
non and exercising.'>>'%° Is it because Tai chi uses
more focus and attention on the body (see Internal
and external focus and learning, Ch. 5)?

Another possible mechanism for increased acuity
may be related to the comparator system. When a
new activity is introduced the comparator system
becomes more engaged in error detection. The
sense of effort, which is a part of this system, may
consequently become more co-active. It could be
that the increases in the sense of effort will tempo-
rarily enhance proprioceptive acuity.

The short of it is that as long as the individual is
doing a novel exercise, awareness of proprioception
may increase and give the false impression that the
proprioception is improving. It would be interesting
to see what would happen to proprioceptive acuity
after several months when that exercise is no longer
novel, and is autonomous and boring.

I ] Clinical note

e There is no specific proprioceptive exercise.
All activities are likely to be equally effective.

Proprioception and prevention
of injury

There is a commonly held belief that proprioceptive
exercise or training can improve proprioceptive acu-
ity and, therefore, prevent sports-related injuries.'?’
The exercises that are prescribed often aim to chal-
lenge postural stability; they are performed at
higher speeds and involve sudden unexpected per-
turbations, such as exercising on a wobble board
(ankle disc exercise).'!”



In sports, most injuries occur during very rapid
movements. Under such conditions the foot-ground
impact force takes less than 50 ms to reach its peak
magnitude and ankle inversion can reach 17° in as lit-
tle as 40 ms. The swiftness of these events does not
leave sufficient time for even the shortest spinal
reflexes to execute an adequate motor response to
prevent injury.128 This lag in proprioceptive transmis-
sion time is immutable; it cannot be shortened by
exercising. From a proprioceptive perspective, exer-
cise cannot offer protection against injuries that occur
during movement at medium to high velocities.

Furthermore, proprioceptive exercises on a wobble
board are relatively slow, in the range of several
hundreds of milliseconds. They are, therefore,
unlikely to provide an optimal sensory training to pro-
tect the ankle against injury; even at medium move-
ment velocities.'”® (A Cochrane systematic review
suggests only limited evidence for the efficacy of wob-
ble board use for prevention of ankle injury.)'?’

Proprioceptive acuity and
passive and active movement

Are passive manual techniques useful for reha-
bilitation of proprioceptive or motor control? Propri-
oceptive acuity tends to increase when the
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Fig. 4.9 e Proprioceptive acuity tends to rise when the
physical stimulation is more dynamic and active (circles
denotes excitation of receptor).
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Fig. 4.10 e Passive movement engages only the sensory
element within the motor process. It will fail to activate the
comparator system. This will reduce the potential for learning
movement, modifying it as well as excluding the sense of effort.

movement is more dynamic and active rather than
passive (Fig. 4.9).13%131 When a subject’s joint is
moved passively, the ability to distinguish the finger’s
position is reduced compared to when the subject
slightly stiffens their finger during the move-
ment.> 32133 This is reflected in more extensive cor-
tical activity during active, in comparison to passive,
movement.'3* It has also been proposed that the
superiority of position sense in active motion is
related to the efferent flow and the sense of effort
(Ch. 2)."%" In active movement feedback is derived
from both proprioception and this internal feedback,
whereas passive motion tend to only stimulate the
feedback portion of the motor system (Fig. 4.10).

This difference between active and passive motion
was demonstrated in a recent study. Continuous active
motion was compared with continuous passive motion
for recovery of proprioception immediately after ACL
reconstruction (unfortunately no control).135 Signifi-
cantly better results were obtained in the active motion
group (4.2 £ 1.6 vs. 1.9 + 1.2 degrees).

Summary points

* The sensory-motor system is a functional unit.
There is no need to specifically target
proprioception.

* Proprioceptive ability can be classified according
to complexity from primary proprioceptive
ability, spatial orientation ability to composite
sensory ability.
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* Proprioceptive acuity can be affected by

peripheral and/or central causes.

* Musculoskeletal injury can affect the

peripheral proprioceptive apparatus while CNS
damage will affect central processing of

proprioception.

* Recovery of proprioception involves

both reparative and adaptive processes. As such,
it may have its own inherent recovery period
that may take several weeks or months to

complete.

* Promoting normal functional movement will help
proprioception by facilitating positive sensory-

motor reorganization/adaptation.
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* Recovery of proprioception is important for

optimising movement control. It is still unclear if it
provides protective function against future damage.

* There is no evidence that proprioceptive losses
will result in long-term degenerative changes.

* Many of the proprioceptive changes seen after
musculoskeletal injuries are very small and may

have little or no impact on a person’s
functionality. It seems that the body can tolerate
such minor changes.

* All exercises are proprioceptive exercises.

° Active movement is better than passive
movement in stimulating proprioception.

* Message to the patient — “keep on moving”.
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Motor adaptation

Every day we take actions that result in movement
and behaviour changes. This can be the consequence
of being exposed to new experiences, learning a new
task or recovering motor losses after an injury.
However, we clearly don’t retain all that we have
experienced. We seem to remember or learn only
certain events. Some physical actions become our
movement repertoire, while others seem to disap-
pear in time. Similarly, how can we be certain that
rehabilitation will result in effective and lasting
motor changes?

To answer this question we need to examine how
we naturally attain lifelong motor changes. It seems
that there are certain factors within our behaviour
that are important for facilitating adaptation in the
neuromuscular system. These factors can be viewed
as a form of code for neuromuscular adaptation.
Rehabilitation programmes that contain these code
elements are more likely to be effective in
recovering motor losses and promoting long-term
motor and behavioural changes.

The code for neuromuscular
adaptation

The neuromuscular adaptation code elements can
be identified by observing a person’s behaviour dur-
ing a motor learning situation. For example, in order
to learn to play the piano the individual has to be
aware of the score, the relationship of the keys to
the scales, placement of the hand on the keys and
so on. It involves physical, active practice at the key-
board. The person will continuously monitor their

mistakes and correct them; often playing the same
scales in numerous repetitions. Furthermore, we
are intuitively aware that lifting weights at the
gym will not improve playing the piano. In order
to play the piano one has to practise playing the
piano. From this example five basic adaptation code
elements can be identified (Fig. 5.1):

1. Cognition

2. Being active

3. Feedback

4. Repetition

5. Similarity principle.

It should be noted that motor learning and adapta-
tion share the same neurophysiological mechanisms. "
However, rehabilitation following musculoskeletal
injuries or pain conditions is not about learning a
novel motor pattern. Most patients are fully aware
of what movement they have to perform but are
unable to physically carry it out. Their inability is

often due to a mix of physical losses and an underly-
ing motor reorganization or dysfunction (Chs 9-12).

Adaptive code 1: cognition

In the context of neuromuscular rehabilitation cog-
nition is the mental process in which the patient is
aware of and attentive to the movement experience,
understands its aims and goals, and is able to make
decisions and organize a response. It is also the pro-
cess of thinking, rationalizing and memorizing.

The role of cognition in neuromuscular rehabili-
tation can be demonstrated by an example. A fell



Cognition
One Being active Another
motor/behavior Feedback motor/behavior
adaptive state Repetition adaptive state
Similarity

Fig. 5.1 e Experiences that contain the five code elements
are more like to promote adaptive changes within the
neuromuscular system resulting in movement and
behavioural changes.

runner who trained on rough terrain found that she
was tripping with increasing regularity. Consequently
she began to train on flat paved surfaces. She was
aware that something had changed in her control,
but could not understand her progressive inability.
During challenged balance she demonstrated gross
postural control losses that were later linked to recur-
rent severe bilateral ankle sprains. Patients often
experience such progressive deterioration of perfor-
mance without being able to understand their under-
lying causes and, consequently, how to rectify them.
The role of cognition in this case was to inform the
patient about her condition, bring attention to the
specific losses and work out, with the patient, a
management that would challenge these losses.

Neuromuscular rehabilitation is about changes in
motor patterns or movement behaviour. Cognition
is a potent modifier of behaviour and, therefore, of
motor control. A change in movement behaviour
can be as simple as bringing attention to the way a
person performs a movement and correcting it ver-
bally or by demonstration. For example, a teenage
tennis player developed medial knee pain over a
period of several weeks. It was brought to his atten-
tion that this injury could be related to a movement
pattern which exerted a medial stress on the knee.
He immediately recognized a newly acquired side-
stepping pattern in which he would adduct and drag
the non-weight-bearing leg on the ground. He also
knew the solution (not to do it) and was aware
how to implement the change. He required no fur-
ther treatment and rapidly recovered from the
injury (see Task-behaviour sphere, Ch. 8). The
whole management took place within the cognitive
dimension.

Cognition and phases of learning

We all have the experience that when we practise a
new movement after a while we don’t have to think

56

Neuromuscular Rehabilitation in Manual and Physical Therapies

Cognitive phase

Autonomous phase

Practice

>

Fig. 5.2 e The transition from cognitive to autonomous phase
during motor learning. Throughout the transition some
elements will remain cognitive and autonomous.

how to carry it out: it seems to occur just by “want-
ing” to do it. This phenomenon represents a phase
in motor learning where there is a transition from
a cognitive phase to a subconscious autonomous
phase (Fig. 5.2).%

The early, cognitive stages of learning are charac-
terized by the high levels of intellectual activity
needed to understand the meaning of the informa-
tion, the nature of the task and how to refine it.
The individual may be aware of doing something
wrong, but they are incapable of fully understanding
and improving it.?

As the individual becomes more proficient in
performing a skill, it becomes more “automatic”
and less under conscious control. In this phase, the
skill is stored as a motor programme and becomes
more robust to interference from other ongoing
activities and environmental disturbances. Hence,
in the cognitive phase it may be more difficult to
multitask, whereas this becomes easier in the auton-
omous phase.” Autonomous activity is not totally
subconscious and some elements of the movement
will remain in the individual’s awareness (Fig. 5.3).>

The transition between the two learning phases
can often be observed in rehabilitation. Initially,
the patient will perform a movement that is inaccu-
rate and requires intense concentration. After sev-
eral sessions the movement patterns become more
skilled and subconscious. The hallmark of the tran-
sition into the autonomous phase is when the
patient is no longer attentive to the movement and
is able to multitask, e.g. simultaneously conversing
with the therapist. This should be encouraged as it
may help to facilitate the transition into the autono-
mous state.’

Often a dysfunctional movement may become the
habitual autonomous pattern. For example, some
patients may be unaware of the compensatory/coping



Cognitive Autonomous
Cognitive-motor Motor programmes
Conscious Subconscious
Fragmented Continuous patterns

Energy consuming Energy efficient
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co-contraction
strategy

Less co-contraction,
more reciprocal
activation

Ability only to perform Able to multitask

the particular task

Much error Little/no error

11 G0l

Need guidance No guidance

Fig. 5.3 e Some features of the cognitive and autonomous
phases.

strategies they use to compensate for control losses.*
In these situations the motor dysfunction is trans-
ferred into the autonomous phase and becomes resis-
tant to change. To reverse this, the patient needs to
be brought back to the cognitive phase and retrained
in the correct movement pattern (see Task behaviour
sphere, Ch. 8). Once they are able to execute the
movement correctly, the rehabilitation would aim
to assist its transition back to the autonomous state.

I ] Clinical note

Generally, the aim of neuromuscular rehabilitation
is to bring motor control to an autonomous state
where it becomes part of the habitual movement
repertoire.

“Active cognition” and “passive
cognition”

There is a common experience that when we are driven
as a passenger to a new address we may find it difficult
to remember the route. However, having to actively
learn the route tends to improve the memory of it.
There seems to be a difference in learning
between being “actively” or “passively” aware. Sub-
jects tend to learn a motor task more effectively
when they are given more choice over how to prac-
tise and how much feedback to receive (“active cog-
nition”).> If they are given a pre-organized blocked
training programme and predetermined feedback

Motor adaptation '

they tend not to learn the movement as well
(“passive-cognitive”). This phenomenon has been
demonstrated in maze training. One group received
training that restricted their movements to the cor-
rect path, so that no choice was made (passively-
cognitive). Another group was given choices while
moving through the maze (actively-cognitive).® The
maze learning of the “choice” group was greatly supe-
rior to that of the “no-choice” group, although both
forms of guidance were cognitive.

I ] Clinical note

Motor learning could be optimized by enabling the
patients to make decisions and enabling them to
have control over the scheduling and sequencing
during rehabilitation.”

Selective attention and memories
of doing

During rehabilitation patients are often guided to
focus on the particulars of their movement or goals
of their actions. This focus (selective attention)
helps the sensory-motor system to adapt and mod-
ify our behaviour.® Events which are out of atten-
tion will often be forgotten over time. In some
remarkable way attention drives sensory-motor
adaptation. The analogy is in listening to music and
remembering only the melody line played by the
lead instrument. Although we can hear all the other
instruments, only the ones we focus on can be
remembered. This phenomenon can be observed in
(blind) Braille readers. The selective focus on their
reading index finger results in specific enlargement
of the finger’s cortical representation.’

Generally, there is a limited ability to focus on
more than one stream of information or actions at
a time (try reading the next paragraph and count
backwards from ten to zero).'%'? In musculoskele-
tal conditions pain itself may become the focus of
attention and, therefore, competes with other
attention demands.'’

Internal and external focus and learning

When walking across a room full of strangers most
individuals have had the experience of becoming
very aware of their own body and movement. As
this happens, momentarily, we don’t know what to
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do with our arms and the whole process of walking
seems to become more awkward and less skilled.
This experience may be due to a phenomenon that
occurs when there is a shift of attention from the
goal of movement to the details of how to do it.

When the focus of attention is directed to the
goals of the movement it is termed external focus.
When the focus is on the internal workings of the
body or the details of the action it is often referred
to as internal focus.” During the early phase of
learning attention is drawn internally to the particu-
lars of the action — the technique, the position of
the hand; the pressure used, etc.'® This focus shifts
externally as the individual becomes more skilled in
performing the movement.

For a skilled person, learning improves if training
uses external focus directed to the goals of the
movements rather than to the details of the actions.
For example, there is greater accuracy in tennis
serves and football shots when the subjects use
external-focus rather than internal-focus strate-
gies.'*1>  Conversely, skilled performance can
degrade if an internal focus is used, such as focusing
on the hand during tennis serves.>'® Even conscious
tensing of the trunk muscle (internal focus) has
been shown to degrade postural control.!”

The use of internal and external focus during
rehabilitation may depend on whether the patient
is an “unskilled injured” or “skilled injured”. The
unskilled injured is a novice who in the process of
acquiring/learning their skills has been injured.
In this scenario, rehabilitation should comprise
internal- and external-focus principles, since the
patient still has to learn the novel movement,
which requires some internal focus. In contrast,
the “skilled injured” are experienced in the task,
but are physically unable to perform it. An exter-
nal-focus approach may be more beneficial for this
group since they don’t have to learn the movement
from scratch.

This does not exclude the use of both focusing
approaches for the “injured skilled”. Skilled move-
ments degrade over time, especially if the individual
has been unable to perform normal movements due
to a long-term injury — a sort of “motor forget-
ting”.'® This can be seen in patients who walk with
a limp long after they have recovered from their
injury. In this condition, it may be helpful to revert
temporarily to an internal-focus approach, drawing
attention to the particulars of the walking cycle,
such as the heel strike. Internal focus strategies
may be also be beneficial for patients with central
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nervous system (CNS) damage.'” (Although in my
clinic I found that I tend to gravitate away from using
internal focus with CNS-damaged patients).'%?°

It has been shown that the focus of attention
during learning is different in children and adults.?!
Children tend to favour internal focus whereas adults
tend to focus more externally on the task. The differ-
ence could be due to the fact that children are less
motorically experienced, whereas adults are able to
draw on their previous motor experiences.

Extreme internal and external focus

How far internally can a person afford to focus before
it becomes detrimental to learning? Some movement
rehabilitation approaches promote internal focusing
on particular muscles or muscle chains: a form of
“extreme internal focusing”. In these approaches the
muscle itself becomes the focus or movement goal.
For example, in core-stability training transversus
abdominis is often the focus of rehabilitation.?” Also
currently in fashion is a focus on the improvement
in the efficiency of the scapular stabilizers for shoul-
der conditions and the enhancement in the control
of the deep anterior cervical muscles for patients
suffering from chronic neck pain.

In the last decade several studies have examined
this issue. In one such study participants performed
basketball shots using either internal focus (focus on
wrist motion) or external focus (basket).”> Com-
pared to internal focus, the external group had bet-
ter accuracy and lower EMG activity of the biceps
and triceps muscles. This suggests that an external
focus of attention optimizes movement economy.23

Even focusing on the effort of the movement
(internal) will result in inferior learning when com-
pared to focusing on the goal of the movement
(external).?*

In a study using balance as an outcome measure,
participants were instructed to focus their attention
on markers which were placed at different distances
from their body. It was found that the postural con-
trol improved the further away the focus from the
body was.'® In another study, participants balanced
on a stabilometer while holding a tube horizon-
tally.'® In one group the tube was empty while in
the other the tube contained a ball that had to be
kept central. Participants were instructed to either
focus on their hands (internal focus), or on the
empty tube (external focus) or on a sort of “super-
external” focus on the ball in the tube. In both
experiments, the external focus groups demon-
strated more effective learning and transfer than



the internal focus groups, both in learning the tube-
ball skill and the balancing task itself. However, the
super-external had the best learning outcomes both
in the tube and the balancing tasks. This phenome-
non of super-external focus was demonstrated in
stroke patients.”> Two groups of patients trained
in walking, but one group had to play with a ball
while walking. The group with the extra-external
task had greater improvement in walking than the
group practising the single task of walking.

More recently this phenomenon was demon-
strated in re-training postural stability after lateral
ankle sprain. The external focus (“keep your balance
by stabilising the platform”) was found to be more
effective than the internal focus (“keep your balance
by stabilising your body”).?® Furthermore, the inter-
nal focus group did not improve their balance at all.?’

Interestingly, Eastern movement traditions, such
as tai chi and yoga, often use internal focus strate-
gies for learning and performance of movement.
Yet, it was demonstrated that tai chi training
improves balance,?® as well as coordination during
gait initiation.?” It was as effective as functional bal-
ance and leg strength exercise (mostly external
focus) in reducing the incidents of falling in pre-frail
individuals.>®

I ] Clinical note

Neuromuscular rehabilitation should move away
from training approaches that focus attention on
specific muscles, muscle chains or joints. Movement
should be practised as a whole with an emphasis on
external focus and movement goals. This approach
is applicable to the majority of patients who receive
rehabilitation: they know what to do but can’t do

it (“skilled injured”). Patients with central motor
losses may benefit from a mix of internal- and
external-focus strategies.'®2° Probably, a pragmatic
approach is best — see what the patient can cope
with or what seems to be more beneficial
(constructive tinkering in the face of uncertainty).

Adaptive code 2: being active

Being active and physically practising the movement
is essential for neuromuscular adaptation. During
active movement, the whole of the motor system
is engaged. In contrast, during passive movement,
there is no efferent activity or muscle recruitment
(see The comparator system, Ch. 2).>' In order to

Motor adaptation '

learn we need to make mistakes and correct them.
Without the efferent/motor component there are
no errors to correct and hence little, if any, learning.
This has been demonstrated in studies where vision
was distorted by special lenses. The ability of the sub-
ject to learn to correct arm movement was greatly
enhanced by active rather than passive arm move-
ment.? Interestingly, passive movement rarely occurs
during normal daily activities.>® It can be inferred
from this observation that the motor system is well
accustomed to adapt to active rather than passive
movement.

These issues of passive versus active approach are
important in the context of neuromuscular rehabili-
tation and manual therapy. There are several disci-
plines that promote the belief that motor control
can be somehow manipulated by passive approaches,
for example spinal manipulation to normalize seg-
mental muscle tone.>*3 Such approaches are likely
to produce only brief, reflexive responses.

Facilitating motor learning with
mental practice

Despite the apparent need for physical practice,
motor learning can be enhanced by mental rehearsal
or by a demonstration of a movement (Fig. 5.4).*0*!

Mental practice has been shown to improve
activities such as bowling, piano-playing and ball-
throwing (can air-guitarists play real guitars?). Even
movement variables such as force, endurance and
movement-time have been shown to improve with
mental practice.***® It was shown that in weight
training the physical practice group improved their

Physical practice
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Fig. 5.4 e Mental practice can enhance motor learning.
Mental rehearsal of some tasks can be almost as effective as
physically practising it. (From: Rawlings El, Rawlings IL, Chen CS
et al 1972 The facilitating effects of mental rehearsal in the acquisition
of rotary pursuit tracking. Psychonomic Science 26:71-73.)
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Fig. 5.5 e Mental practice activates the efferent/motor
component of the motor process. It may involve low-level
activation in the muscles associated with the particular task
being rehearsed.

strength by 30% while the mental practice group
increased it by 20%. This force increase by mental
practice is probably due to central motor reorganiza-
tion of force control rather than muscle hypertrophy.

Mental practice facilitates motor adaptation by
activating the motor system in much the same way
as physical practice.12 Imagining a movement acti-
vates cortical motor areas in similar patterns to
those activated during actual physical practice.*’ It
may also engage minimally the muscles that are
involved in the imagined task but without producing
observable movement. When subjects are asked to
visualize hitting a nail with a hammer twice, the
electromyograph (EMG) trace demonstrates two
separate bursts of activity that are correlated with
the imagined movement.*> A similar process takes
place when we mentally recite words. The vocal
muscles are minutely activated, although no sound
is produced (Fig. 5.5).*

In the last few years mental practice has moved
from the motor learning to the rehabilitation sphere
and was shown to improve motor control in stroke
patients.*®*° This learning strategy may also be use-
ful for patients who have been immobilized or
unable to move due to musculoskeletal injuries.**

Adaptive code 3: feedback

Since we learn by making mistakes we need feed-
back to inform us how well we are achieving our
movement goals. Feedback can be intrinsic from
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proprioception or extrinsic in the form of verbal
instructions, visual demonstration or even physical,
tactile correction of movement by a therapist/
trainer.! #4041

Intrinsic, proprioceptive losses will impair the
ability to correct, improve or learn new movement
(Ch. 2 & 4).3°0-5% Under such circumstances the
individual will often compensate for this loss by
shifting their attention to another sensory source,
e.g. to vision if proprioception is lost.

Extrinsic feedback plays an important role in
rehabilitation and is often referred to as guidance
or kinaesthetic feedback.> It is often used to pro-
vide information about the details and “correctness”
of the movement (“hold the racket this way”), the
movement sequences (“swing it like this”) or the
quality in performance (“good shot”).

Generally, guidance is more effective if it pro-
motes an active gathering of information and
problem-solving by the patient. The outcome is
improved motor learning and a wider repertoire of
movement responses and learning that transfers read-
ily to other situations.’® For optimum learning, guid-
ance should be kept to the minimum and should be
rapidly reduced or fully withdrawn at the earliest
opportunity, 31157585960

Young children seem to depend on longer periods
of feedback during motor learning.%’ This may be
due to their having a limited range of motor experi-
ences on which they can draw when learning.

Adaptive code 4: repetition

We all have had the experience that to master a cer-
tain skill we need to put in the practice
(Table 5.1).*! The frequency and the number of
repetitions in practising specific tasks will have
important implications for the recovery of motor
losses. Like a well-trodden path on a grass lawn,
actions that are repeated will pave stable and
enduring neuronal paths within the CNS.
Repetition together with selective attention plays
a crucial role in the transformation of motor experi-
ences from short- to long-term memory. This trans-
formation is a sequential process often described as
occurring in three stages; from short-term sensory
store to short-term memory and, finally, long-term
memory.” 25253 Once a pattern has been stored
in the long-term memory it will not be lost in the
absence of rehearsal. Indeed, this can be observed
in activities such as swimming, cycling or playing a



Table 5.1 Estimated numbers of repetitions required to
achieve skilled performance

Activity Repetition for skilled
performance

Cigar-making 3 million cigars

Hand knitting 1.5 million stitches

Rug-making 1.4 million knots

Violin playing 2.5 million notes

Walking, up to 6 years 3 million steps

Marching 0.8 million steps

Pearl-handling 1.5-3 million

Football passing 1.4 million passes

Basketball playing 1 million baskets

Gymnastics performing 8 years’ daily practice

musical instrument, activities that can be recalled
after many years without practice.]2

The meaning and relevance to the individual,
motivational factors and the emotional value in the
experience also play a part in long-term memory.
Generally, experiences with strong personal or emo-
tional significance are more likely to transfer rapidly
to long-term memory.'? The extreme example of
this is often seen in individuals who have been in a
single traumatic experience, such as a road traffic
accident. They may develop long-term sensitization
and motor/behavioural changes in the absence of
any serious tissue clarnagcs:.64

Repetition and practice of tasks is important
throughout the spectrum of neuromuscular condi-
tions seen in clinic.%” In stroke patients it was demon-
strated that repetition can result in positive gains in
performance even after one day of training.%®

Adaptive code 5: similarity principle
and transfer

Following injury most individuals will take actions
to overcome their losses without any medical inter-
vention. These actions often resemble the move-
ment patterns which they have lost. A person with

Motor adaptation .

a sprained ankle, who could not walk, will attempt
to walk and, likewise, an injured tennis player will
attempt to gradually return to playing tennis. This
is nature’s “gold standard” for recovery of move-
ment control — practise what you have lost (or what
you would like to gain). This natural phenomenon is
the basis of the similarity principle. It proposes that
learning is more effective when the training resem-
bles the task which is being recovered.*”®” The sim-
ilarity principle is one of the most important issues
in neuromuscular rehabilitation. It determines which
activities or movement patterns will be the focus of
treatment.

It seems that for learning or recovering particular
movement patterns the practice should be both
similar and within the context of the task. This
suggests that if a patient cannot balance during
walking, rehabilitation should focus on balance dur-
ing walking.3*%%% Equally, if force losses impede
stair-climbing, than leg strength should be
challenged during that or a very similar activity.”’
If the patient, due to lack of coordination, cannot
raise their arm to eat then rehabilitation should
focus on coordination within similar movement pat-
terns. Under these circumstances the individual
parts of the whole movement are being practised
simultaneously, i.e. the relationships between them
are being rehearsed.'” Practising movement which
is similar and within context is more likely to trans-
fer to related daily activities. Transfer is the ability
to take a motor experience from one situation and
apply it to another.®””!="3

Practising a dissimilar movement pattern or
movement that is out of context may reduce the
likelihood of transfer (Fig. 5.6). Imagine a patient
who has standing difficulties due to a balance prob-
lem. The treatment will be dissimilar if strength
exercises, such as standing knee squats, are used
to challenge standing balance.”* The strength chal-
lenge is the dissimilar element as it fails to chal-
lenge balance. However, it is still performed
within the context of standing. The rehabilitation
will be out of context if the training for balance is
practised sitting on a Swiss ball. In this situation
the balance is similar but movement is performed
whilst sitting and is, therefore, out of the context
of standing. The rehabilitation can be both dissim-
ilar and out of context, for example straight leg
rising (dissimilar) practised on the floor (out of
context).

The importance of similarity and context has
been highlighted by several studies. Resistance
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Fig. 5.6 e Similarity and context in rehabilitation.

cycling or seated strength exercise will improve
strength in these activities, but have little or no
effect on walking for a stroke patient, because
strength may not be the control issue here.”>’%
Strength training in sitting may help the patient in
getting up;76 a situation where force may be neces-
sary. However, would not practising getting up be
equally, or even more, effective? For stroke patients
sitting and reaching training improves sitting and
reaching, and the production of vertical force
through the leg as they lean forward.”” The vertical
force improvement in the leg seems to transfer to
improvement in getting up from the sitting position,
but no aspect of that training transfers to walking.
However, training of stroke patients in walking
improves walking speed and distance, but not bal-
ance.”®’? Balance seems to be improved by chal-
lenging balance.®” But challenging static balance in
standing might not transfer well to dynamic balance
during walking!®' Yes, the similarity principle can
be that finicky.
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Goal of training

How similar should training be?

Current research cannot provide the answer as to
how far a treatment can stray from 100% similarity
(Fig. 5.7). The studies in motor control and learning
are very adamant that it should be very close.'?
However, most of these studies have been carried
out on healthy individuals who are learning new
and unfamiliar tasks. As discussed previously, neu-
romuscular rehabilitation involves individuals who
are not true learners; they are being retrained in
activities that they have experienced in the past.
They are “readjusting” rather than learning some-
thing new.

We can imagine 100% should give the best result.
If walking is affected then just practise walking.
However, in the case of a patient who is unable to
execute 100% similarity, how far can they afford
to stray from that ideal and still improve? For exam-
ple, I have been working with a stroke patient who
was unable to walk, partly due to inability to flex



CHAPTER 5

Motor adaptation

Highly transferable d
Least transferable "/
Dissimmilar Similar out Dissimmilar Similar within
out of context of context within context context
Rehabilitating: Lumbo-pelvic tilts Laying on the floor Core tensing or bracingin ~ Walk
Walking practiced on the floor moving both legs in a walking (this may seem

Core tensing or bracing

Extension exercise on
the floor

Abdominal muscle control
on the floor or sitting
Extension exercise

on the floor.

Trunk control in
upright movement

walking-like pattern

Lumbro-pelvic tilts
practiced on the floor

surprising. As long as the
person is walking they are
practicing walking.

The dissimilar movement

is redundant as far as
recovering control of walking)

As above Reaching, pulling and

pushing during standing

Fig. 5.7 e How similar is your rehabilitation? The effectiveness of practice can be assessed by examining how
similar it is and whether it is in the context of the goals of training. Rehabilitation is likely to be more effective if it is
similar and within the context of the movement goals of the treatment.

the hypertonic extended knee. We proceeded to
improve this movement in sitting. After a long and
intense focusing on this particular movement the
patient regained the ability to flex and extend the
knee, as well as execute rhythmic pendular move-
ments (similar but out of context to walking). It
would be logical to assume that once it has been
mastered, the patient should be able to transfer
the control of knee bending to walking. This was a
humiliating lesson in similarity and transfer. It had
absolutely no effect on bending the knee during
standing. It was as if he had never practised that
movement at all.

It is difficult to identify how close the training
should be to the goal of rehabilitation. The simple
solution is to endeavour to keep the training close
to the 100% similarity and in context; unless the
patient is unable to perform similar movement pat-
terns or execute them within context.

Is recovery transferrable?

Imagine a patient who has a balance/postural sta-
bility problem. We would expect that all upright,
weight-bearing activities that depend on balance
will be affected. Is the reverse also true? Would
balance training during standing or walking transfer
to running, skipping climbing stairs or playing
basketball?

We can only assume that recovery in balance/
postural stability in one or two weight-bearing activ-
ities (walking, stairs) will also improve all other
related upright activities (running, hopping on a
tennis court). If this assumption is correct it pro-
vides an interesting therapeutic shortcut. There is
no need to rehabilitate every physical action in a
person’s movement repertoire. All that may be
needed is to ‘“re-abilitate” the specific abilities
which are shared by several skills. This assumption
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is somewhat supported by clinical experience. The
time spent with the patient can never be sufficient
to rehabilitate every skill. Yet, patients often
improve in a wide range of physical activities as a
consequence of a relatively short session time. This
suggests that recovery in specific abilities practised
in one activity may transfer to other activities that
depend on these particular abilities.

The transfer of training can be in two directions:
a “lateral” and a “vertical” transfer. A lateral transfer
would be to similar tasks, such as from walking to
stair-climbing. A vertical transfer is the same task
but at increased difficulty (greater force, amplitude,
speed, range, etc.).®® Walking with a rucksack
which increases the load is a vertical transfer. It
requires complex neuromuscular reorganization
compared to free walking, but does not require
any extra learning.®°

Lateral and vertical transfer was demonstrated in
a study examining the effects of exercise on neuro-
muscular control after knee meniscectomy. The
patients presented with neuromuscular deficits and
functional limitations, which were evident several
years after their operation. The exercise programme
comprised postural stability training and functional
strength and endurance exercises for leg and trunk
muscles. The exercise group showed significant
improvement in hamstrings strength and quadriceps
endurance (vertical transfer), but, importantly, they
also improved in one-leg hop, something they did
not train for (lateral transfer). There is also evidence
that training in tai chi transfers laterally to postural
stability and coordination.®” Another example of
vertical transfer was shown in subjects with lateral
ankle sprain. It was demonstrated that training
under moderately unstable conditions can transfer
to improvements in postural control under more
challenging stability conditions.?’

Inter-limb transfer: the left hand does
know what the right hand is doing!

Learning a task on one side of the body can some-
times transfer to the other side.®®® For example,
strength training on one side was shown to transfer
to the opposite side (about a 10% increase).”® This
could be due to the motor programmes being a
generalized scheme of movement rather than being
limb-specific (Ch. 2). Interestingly, brain scans
demonstrate that motor learning on one side of
the body tends to bring about similar cortical
changes in both hemispheres.”!
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Movement strategies in painful conditions may
also transfer to the opposite limb; probably through
the same central mechanisms. In patients with
chronic wrist pain, coordination losses were evident
in the affected and, to a lesser extent, in the non-
affected hand.?

There may also be a sensory transfer between the
two limbs. In individuals who had cruciate ligament
reconstruction or shoulder injury, decreased propri-
oceptive ability was present in some measurements
in the injured as well as the uninjured side.”*%*

The clinical implication of this inter-limb trans-
fer is not clear. It is yet to be established whether
treating the non-injured limb will result in signifi-
cant clinical improvement of the injured limb
(I am placing my bets on treating the injured limb).

Variability in training

The similarity principle suggests that training should
be as close as possible to the goal movement. How-
ever, most movement patterns are highly variable.
In the clinic often the variability is reflected in
changing the movement parameters or varying the
task itself. During the rehabilitation of walking,
variability would reflect in practising different walk-
ing speeds or stride lengths. Furthermore, walking
itself can be practised in different tasks: walk side-
ways, walk over an obstacle, stairs, heel-toe, walk
and turn, and any other variation. From studies of
healthy subjects and individuals suffering from cen-
tral damage, such variability during training helps to
improve retention and transfer and increases the
movement repertoire, ! %30:40:95.96,97

Different tasks can be introduced in various
sequences. Blocked practice is when each task is
practised individually, for example walking only.
Another possibility is to mix several related tasks
in random practice,'>?° for example walking, stairs,
running, skipping, etc. Generally, a more random
sequence seems to be beneficial for individuals with
an intact CNS.7>9998 This form of practice intro-
duces greater cognitive/motor processing demands
on the individual. It tends to reduce performance
during the training/treatment sessions but seems
to benefit retention and transfer (which is the
important bit).

Patients suffering from CNS conditions, such as
Alzheimer’s and Parkinson’s disease, where cogni-
tive demands can be an issue, seem to do better in
retention and transfer when the tasks are practised
individually and repetitively.”>19%1%! Clinically, a



pragmatic approach is probably useful for schedul-
ing of tasks. Use the patterns that the patient can
cope with, rather than using a strict protocol.

Neuromuscular exercises — do
they exist?

There is a trend to label some forms of training as
neuromuscular exercise.!%!% Is there such a
distinct training entity? All exercises performed
actively by the patient are neuromuscular. Whether
they are performed lying down, sitting or with the
aid of machines; they are all challenging the neuro-
muscular system. Presumably, what is meant is that
some exercises are more within the context of
certain sports or related tasks. Hence, they are
more functional to that particular athlete and
their sports. This is in contrast to exercises such
as the traditional force training in the gym, which
are dissimilar, out of context and may even be
extra-functional.

Is one approach better in some way? The very
few studies that do exist generally demonstrate bet-
ter outcome in various measures for the functional
exercise (neuromuscular exercise) compared with
more traditional strength training.’®'%" However,
it seems that functional training may bring about
additional motor control benefits. For example,
standing balance training can give the same strength
gain in the leg as using specific machines for leg
curls and leg presses.®® The balance training had
the further advantage of improving balance and
equalising the muscle forces between the dominant

Motor adaptation .
and non-dominant leg.®® Hence, exercises that are
similar and within context are more likely to chal-
lenge a greater range of underlying abilities, includ-
ing the composite abilities, such as balance/
postural stability, single, multi-limb and whole body
coordination.

Summary points

* For effective motor adaptation/learning, the
practice needs to employ five principal elements:
cognition, being active, feedback, repetition and
similarity.

* Cognitive: the patient should be attentive to their
movement and encouraged to process and make
decisions about their actions.

* Active: being physically active is important for
motor learning. Passive approaches are unlikely to
be effective in promoting lasting and functional
motor control changes. Mental practice, an active
cognitive process, activates the whole motor system
and, therefore, may be a valuable clinical tool.

* Feedback can be intrinsic from proprioception or
extrinsic, such as guidance by the therapist.

* Repetition, repetition, repetition — very
important for long-term memory.

* Similarity: rehabilitation should use movement
patterns that are similar to and within the
context of the movement being recovered.

* Rehabilitation which is dissimilar or out of
context is unlikely to transfer from the session to
daily activities.

Table 5.2 Differences in motor learning strategies between young children and adults

Young

Observing, mimicking, some cognition?
Favour internal focus

Cope better with less variability in practice
Need more feedback

Greater need for repetition

May require longer rehabilitation due to lack of motor
experience (“unskilled injured”)

Adults

Use cognition

Favour external focus

Favour variability

Minimal feedback

Need repetition but not as much

Know the movement but can’t perform it (“skilled injured”)
Motor re-adaptation and reorganization rather than true learning
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patient has “forgotten” how to move correctly.
Internal focus should be withdrawn as soon as
the patient is able to perform the movement.

* Experiences that possess a higher content of
adaptive code elements have a greater potential
for promoting long-term changes.

Internal focus approach may be more beneficial

for patients with CNS conditions.

* Experiences with low code content will fail to .
promote any significant adaptation and will
result in an ineffective, short-lived response to .
treatment.

Children and adults may use different motor
learning strategies which may influence the

* External focus is more effective for treatment approach (Table 5.2).
motor learning. Internal focus should be used

only in learning novel movements or if the

° Air guitarists can’t play real guitars.
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Plasticity in the motor system

Learning, retraining, motor reorganization in response
to injury and return to functionality all imply that the
motor system has the capacity to adapt to new
experiences. Chapter 5 discussed the behavioural
aspects of motor learning and how they can be used
to promote sensory-motor adaptation. This chapter
will examine the neurophysiological consequences
of learning and their relevance to rehabilitation.

Sensory — motor adaptation

There are several neurophysiological processes asso-
ciated with learning and sensory-motor adaptation
(also termed neural plasticity).' They include
changes in the neuronal cell surface and its fila-
ments, sprouting of cell dendrites and axons, growth
of new synaptic connections and changes in neuro-
transmitter release at the synapses. More recent
studies have demonstrated neurogenesis (new neu-
rons) within specific parts of the brain, in particular
the hippocampus, an area associated with learning
and memory. Neurogenesis has also been observed
after brain damage in the areas of neural tissue
repair.4’5

Plasticity in the motor system is not centre-
specific but tends to occur within the whole sen-
sory-motor system.® Tapping the index and middle
finger of a monkey daily for several months was
shown to change the cortical representation of the
hand. The area representing the hand increased, dis-
torting the cortical map in favour of the tapped
fingers.® In blind Braille readers there is an expan-
sion of the sensorimotor cortical representation of
the reading finger.” Similarly in musicians, there is

an increase in cortical representation of the playing
fingers.® These changes in the cortex were shown
to occur fairly rapidly, within 3 weeks of practising
a novel task.’ In the cerebellum, striatum and
other motor-related cortical areas such changes are
evident within a few days.!? Interestingly, cortical
reorganization is so rapid that it can even be demon-
strated shortly after proprioceptive deprivation by
an anesthetic block.'’

Adaptive changes related to motor learning have
been shown to take place even in the reflexive part
of the motor system and spinal cord. Monkeys can
be trained by the offer of a reward to depress or ele-
vate the amplitude of the stretch reflex.!?'* The
reflex changes become evident within a few weeks
to months and will persist for long periods of time,
even after the removal of supraspinal influences, i.e.
without the brain.!® This implies that the spinal
cord has the capacity to retain learned experiences.
Humans can also be taught to control their stretch
reflex, but it only takes nine practice sessions.'®
The reason for this difference may lie in the potent
influence that cognition has in humans in accelerat-
ing the learning process (Ch. 5).

Further evidence for spinal cord “learning” was
demonstrated in a study where animals that have only
their spinal cord intact are trained to either stand or
walk.'® The results were task-specific learning where
each group could only perform the task in which
it was trained (walk or stand). Training each group
in the other task reversed these two conditions,
i.e. the walking group could be trained to stand, and
vice versa. Once the activity was changed, the animal
was unable to perform the previous motor task; a sort
of competition in adaptation.



Central sensorimotor plasticity can also be
demonstrated following injury in the periphery. In
normal circumstances, the palm of the hand is used
more than the dorsum and, therefore, the median
nerve has a wider cortical representation. When
the median nerve is cut, the cortical map of the
hand will change in size in favour of the intact radial
nerve. If the median nerve is allowed to regenerate,
it will recapture some of its lost cortical territory.'”
Similarly, amputees or patients with spinal cord
injuries show a lower threshold to excitation of
muscles which are still innervated (proximal to the
lesion).'®2° This is attributed to enlarged sensori-
motor representation of the unaffected proximal
muscles and shrinkage of the sensorimotor repre-
sentation of the denervated muscles.

Even less dramatic events such as immobilization
and subsequently remobilization will result in motor
adaptation.?’"?? It was demonstrated that during
remobilization there was reorganization of the brain
indicative of a “relearning” process.”> Such plastic
changes in response to immobilization can also be
observed in the spinal motor centre.”* Adaptive
changes in the firing patterns of motor units can
be demonstrated by straightforward joint immobili-
zation.?>?% Most of the adaptive changes took place
within the first 3 weeks, probably beginning within
days of immobilization.??

In patients with CNS damage the recovery of
motor function is associated with motor reorganiza-
tion in the brain.?’~>? Imaging studies have demon-
strated that functional recovery of movement in the
affected hand is brought about by the shift of neuro-
nal recruitment to other areas of the brain; areas
which previously were not involved in controlling
that particular movement.

Peripheral plasticity — muscle, the
acrobat of adaptation

By being a part of the neuromuscular continuum,
muscle can exhibit dramatic adaptation in parallel
to central plasticity.>® Changes in the muscle can
be in the form of length adaptation, hypertrophy
and changes in the fibre type of the muscle.?*~*3
The adaptation in muscle tends to be fairly
specific to the type of activity practised. Training
in one form of activity, for example running, does
not necessarily provide the neuromuscular adapta-
tion required for, for example cycling (specificity
principle in training), in the same way that the prac-
tice of yoga will not provide the adaptation required
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for lifting weights. When learning a new movement
pattern the muscle (and for that matter, the whole
motor system) will readapt to the newly practised
activity. In the muscle this involves a degree of fibre
destruction (hence the delayed onset of muscle sore-
ness) and adaptive reconstruction according to the
new demands placed on it. Such adaptive changes
in the muscle happen quite rapidly within 2-3
weeks.

The importance of physical
challenges in adaptation

Physical challenges play an important role in pro-
moting central reorganization and adaptation. In
mice with partial spinal cord damage, treadmill
training was shown to promote axonal sprouting
and synapse formation proximal to the lesion and
to improve motor recovery.44 Even neurogenesis is
driven by general physical activity or by providing
challenging environments for the individual. *®
However, not all exercises are equal. Motor
learning that involves tasks such as coordination and
balance encourages synaptogenesis, whereas tread-
mill exercise encourages the formation of new blood
vessels in the brain (angiogenesis), with delayed
synaptogenesis.“s_49 In a further study, synaptogen-
esis was evaluated using similar exercise protocols in
animals with an induced stroke.*®*” Synaptogenesis
was evaluated after 14 and 28 days and was found
to be intensively active within 14 days in the balance
and coordination group, whereas in the treadmill
group it was evident only at 24 days. Furthermore,
in animals, early introduction of aerobic exercise
after brain trauma tends to delay brain plasticity.>*>!
These studies have an important message for us:

Neuromuscular rehabilitation is not just about
exercising. It is about providing cognitive-
sensory-motor challenges that will facilitate
motor learning/adapration.

Hence, running on a treadmill could provide aer-
obic challenges and stimulate synaptogenesis (to a
limit, otherwise marathon runners would have huge
brains). However, running an obstacle course will be
both aerobic and more cognitively demanding, since
it involves more task variability and places greater
challenges on various motor abilities. Similarly,
playing a tennis game with a partner is more cogni-
tively/motorically challenging than practising hitting



a ball against a wall. These cognitive-motor chal-
lenges may, therefore, result in more complex sen-
sory-motor reorganization. The message here is
that rehabilitation should follow a similar strategy.
It should provide challenges that vary, are cogni-
tively demanding and are fun and interesting .
(depending on the patient’s capacity). Avoid using

“mindless” and tedious exercises.

Summary points

* Learning, retraining, motor organization to injury
and return to functionality partly depend on the
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Motor reorganization in
musculoskeletal injury

Musculoskeletal injury or pain will bring about pro-
found cognitive, behavioural and motor control
responses that serve to protect the body from fur-
ther damage.'”” This response to injury is termed
here the injury response.

In this chapter we will explore how the motor
system reorganizes movement in injury and what
influence it will have on the motor abilities. It will
also discuss in which situations should neuromus-
cular rehabilitation be used and at what point after
injury it should be introduced. The chapter will also
examine the relationship between long-term motor
reorganization and recurrent injury and progressive
joint/tissue damage.

The injury response

There seems to be a “standard” motor response to
damage or pain no matter which area or tissue is
affected in the body. This injury response often
manifests as a slowing down of movement, a loss
of force, reduced movement range and an increase
in fatigability. It is as if the motor system has used
a “dimmer switch” to turn down the four move-
ment parameters (force, velocity, length/range,
endurance, Fig. 7.1). Furthermore, to ensure that
the individual will not be tempted to physically
stress their injury, within the psychological dimen-
sion, another inhibiting process kicks into action:
the curbing of the “will to move”. The individual
will have an emotional experience of pain, fear of
use, sense of weakness and loss of the will to carry
out the movement.

This reorganization to injury can be put on hold
during disastrous life-threatening events to allow
the individual to reach safety. Hence, a person
with a moderate leg or trunk injury may be able
to escape from a burning house. Later, when there
is perceived safety, the injury response will take
over and in a matter of hours the person will
become motorically unable to move. However, this
injury response will be overrun by a survival
response if this period of recuperation is suddenly
interrupted by another life-threatening event. The
person may find that they are, again, able to move
using the injured limb.

There is an important point to this short story.
The motor system can “switch” the injury response
“off or on”, depending on priorities. In musculoskel-
etal injury the motor system is healthy and well
functioning compared to the tissues which are under-
going repair. There is no motor dysfunction, motor
pathology or movement dysfunction here. This
reorganization is a positive and well-orchestrated
response.

In musculoskeletal injury the tissue damage is a
set quantity at any point in time, e.g. the number
of torn muscle fibres. On the other hand, the motor
response is a variable entity. The magnitude of the
whole response, or elements within it, can alter on
a moment-to-moment basis depending on numerous
factors. Apart from the severity of tissue damage,
they include physiological needs (having to walk to
find food), socio-economic realities (having to go
to work with back pain) and psychological factors
such as the “will” of the individual, health beliefs,
mood, motivation, fear or depression. This
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Fig. 7.1 e The “standard” injury response — a protection
strategy which includes the turning down of the four
movement parameters.

highlights the fact that the organization to move-
ment is a complex multidimensional process and
not a crude, stereotypic “stimulus-response” reflex
(although there is some of this in it). It also means
that motor control in injury can be more effectively
rehabilitated by treatment that embraces the psy-
chological/cognitive and behavioural dimensions of
the individual (Ch. 8). These have potent and often
dominant modulating influences over the more
reflexive control elements.>”” For example, during
movement subjects with high fear avoidance tend
to reduce the force of their trunk muscles by
half.3'° It implies that their force losses can be
recovered by cognitive changes without any trunk-
strengthening exercise!

It should be emphasised that the injury response
can be initiated during any pain experience even in
the absence of tissue damage or inflammation. The
system may “mistake” the pain for being an injury.
This is often observed in the non-traumatic and
chronic pain conditions (Ch. 9).

Fig. 7.2 e Motor organization for preventing
further damage after injury.
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“Motor templates” i
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The motor system in injury

In response to damage, information about the dam-
age arrives to the central nervous system (CNS)
from nociceptors and proprioceptors (Fig. 7.2). This
information together with the cognitive/emotional
experience of the injury will be integrated to orga-
nize for the injury. The next stage in this process
is the selection and activation of the motor
programme that will modify posture and movement
in relation to the injury. It would be interesting to
know whether these programmes for injury are
learned responses or are pre-existing templates. It
seems that we all immediately “know” what pos-
tures to adopt when injured (anyone for a PhD?).

Once the appropriate response has been selected
the motor output will ensue, with the individual
exhibiting the movement patterns associated with
their injury.'"!? It seems that there can be several
responses to any one injury. Each individual uses
their own unique movement patterns. Such varia-
tion between individuals has been observed in
impingement syndrome of the shoulder and chronic
neck pain conditions.'*'* This has been also demon-
strated in subjects with anterior cruciate deficient
knees, where each person seems to have an individ-
ual compensating strategies during walking.!> Fur-
thermore, an injured person may demonstrate
several “movement solutions” to a given task.

These injury responses are task-dependent and
would, therefore, change between different activ-
ities.'®17!® Tt is also likely that the organization
for injury changes over time.'9?°

J10J0WoyoAsd
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Altered proprioception
+ nociception

Movement organized for damage limitation
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I ] Clinical note

e |t’s all too complex (but there is a solution)!
¢ Individuals have individuality in their injury
response.

The signalling of damage

The signalling from the body is a mix of information
about tissue damage from nociception and informa-
tion from proprioception about the mechanical
changes in the affected tissues.?’ The perception
of pain is evoked by the information from nocicep-
tors and other receptors, such as mechanoreceptors
from the skin, muscles and joints, which also con-
tribute to the sensation of pain.??%3

Proprioceptors can signal damage and promote
motor reorganization in the absence of pain. When
the knee is effused with non-painful saline it will
initiate an inhibition of quadriceps motoneurons
akin to the reflex patterns seen during knee
injury.?* Similarly, non-noxious stimulation of the
glenohumeral joint capsule will elicit strong inhibi-
tion of the shoulder muscles (see arthrogenic inhibi-
tion below).?

Conscious awareness and the experience of
injury will also have profound influence on the orga-
nization around injury. It may increase the levels of
pain, increase movement incapacity and may even

AN

Composite abilities

Balance, coordination,
transition time, motor relaxation

Motor complexity

Synergetic abilities
Co-contraction and reciprocal activation

CHAPTER 7

impede the rate of recovery.®!®?%?’ Generally,
injuries that are psychologically traumatic, such as
road traffic accidents, are more likely to have such
negative influences.?®%°

The injury response and motor
abilities

The turning down of the four movement para-
meters implies the involvement of the parametric
and synergistic abilities in motor reorganization dur-
ing injury (Fig. 7.3).%°

It is expected that these abilities will be selective
to the affected limb. However, local changes may be
accompanied by complex whole-body pain/damage
avoidance reorganization.”® In patients with lower
back pain (LBP) motor reorganization can be
demonstrated even in the unaffected upper limb.*°
Furthermore, injuries affecting control on one side
of the body may have a low-level cross-over to the
opposite side.?!

Composite abilities such as local coordination
may also be affected.’®3? They are expected to be
associated with chronic musculoskeletal conditions,
where movement dysfunction is progressing from
an injury to a more chronic adaptive response. This
is seen in situations where prolonged hand immobi-
lization leads to local losses in coordination.®
Another possibility is that composite abilities, such
as postural stability/balance and coordination, may
appear to have been affected.>*3® However, they

Fig. 7.3 e In the injury response the parametric
abilities are affected within a synergistic level
(change in one of the synergistic pairs is likely to
affect the other in the pair). It will also have a
knock-on effect on the composite abilities.

Parametric abilities
Force, velocity, length, endurance
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may represent the knock-on effects of changes in
synergistic abilities and proprioception.

Force control

Patients with acute or chronic conditions will often
complain of feeling that their joints or muscles are
weak and that they fatigue easily.>”*® This experi-
ence may sometime persist long after the pain has
been alleviated and repair seems to be fully
resolved.

There is a biological logic in this mechanism.
Forceful muscle activation will raise the intramus-
cular as well as the intracapsular pressure and may
result in further damage to these tissues.®'%

The force losses could be attributed to two pro-
cesses. In the psychological dimension patients with
musculoskeletal damage will be reluctant to fully
activate their muscles because of fear of pain, and
in the conscious sense there is a localized weakness
and inability to successfully execute the move-
ment.”*%*! This may lead to disuse atrophy, in par-
ticular if the patient is withdrawing from physical
activities. In the neurological dimension, another
more reflexive mechanism reduces the gain of the
spinal motoneurons in response to joint damage.
This is often called arthrogenic inhibition or failure
of voluntary activation (Fig. 7.4). The outcome of
this is more localized force loss, reduced endurance
and, consequently, muscle wasting.?”>®

Arthrogenic inhibition has been observed in acute
knee effusion and inflammation,***® in a chroni-
cally damaged knee (anterior cruciate ligament
[ACL] tears, osteoarthritis [OA] of the knee and
ageing) and in the elbow joint.3* 34952 A similar
process probably underlies the wasting of the multi-
fidus and psoas muscles seen in patients with
chronic lower back and neck pain.”*~>? Such muscle
wasting can occur fairly rapidly. In acute lower back
patients wasting of multifidus has been observed
within 24 hours of pain onset.” Individuals who
maintain physical activities after their injuries tend

to reduce the negative effects of arthrogenic
inhibition.>*%"

Length control

Another strategy to prevent more damage is to limit
the range of movement by muscle bracing.®® The
most dramatic demonstration of this is seen in acute
conditions, such as acute torticolis or acute lower
back pain, where the patient is immobilized rigidly
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Inhibition of
motor-neuron

pool Muscle wasting

Nociception + altered proprioception «——

Fig. 7.4 e Arthrogenic inhibition in joints leading to muscle
wasting.

by muscle contractions.®*%® Probably this bracing
strategy is achieved by an increase in localized co-
contraction combined with hyper-reactive control
to the muscles that restrict the movement towards
damage %%’

This controlled narrowing of range has also been
observed in chronic conditions. In normal subjects
during full forward bending the spinal extensor
muscles tend to become inactive at the end range.
However, in subjects with chronic back pain these
muscles remain active even at the end range. Also
in chronic back pain there is an increase in loca-
lized bracing by co-contraction, which will further
limit the movement range.”’®® These control
elements are all part of a strategy that aims to
keep the person upright and prevent them from
bending — movements which would otherwise
overload the damaged/painful posterior spinal
structures.” %970

Such organization to limit the extent of move-
ment can be seen also in painful muscle. When a
muscle is injected with a painful irritant there is
an inhibition of the painful muscle and excitation
of muscles antagonistic to the movement.”'™"® Sim-
ilarly, when pain is induced in tibialis anterior there
is reduced joint movement in the limb during
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walking, which is controlled by a decrease in activity
of the tibialis anterior and gastrocnemius muscles
(synergistic control).”!

Velocity control

Another hallmark of the injury response is slowness
of movement.!"1#637476 Tndividuals with back
pain reduce their walking speed and when pain is
severe they seem to move almost as if in slow
motion. Often the crucial indication that they are
improving is that their movement speed begins to
recover.

The slowing-down response is mediated within
the psychological/psychomotor dimension affecting
overall movement, as well as within the neurological
dimension as a localized reflex response directed to
muscles at the area of damage.®”""’

Neuromuscular endurance

One way of reducing stresses on a damaged area is
to prevent the person from repeatedly loading it
by reducing endurance.?”*® Localized, diminished

neuromuscular endurance can be observed even in
the absence of pain.!%37:38/69,78-80

Synergistic abilities

Co-contraction and reciprocal activation are pro-
foundly affected following tissue damage and in
pain conditions.®! Several control factors can change
in injury:
1. The relative force, velocity, muscle length
between the synergistic pairs

2. Augmentation or diminution of one of the
synergistic patterns

3. The timing and duration of activation between
the synergists.

At synergistic level, the reorganization of the
parametric abilities is represented as changes in
the relative forces, velocities, lengths and fatiga-
bility between muscle pairs. Such reorganization
can be observed in knee effusion where there
may be force losses in the quadriceps coupled with
an increase in hamstrings reactivity (Fig. 7.5).*
Even fatigue or delayed muscle soreness in one
muscle group will have an influence on control of
the non-exercised synergists.5>~5°

Lower threshold/
hyper-reactivity

XI Direction

of strain

Inhibition + wasting

Fig. 7.5 e Synergistic protective strategy to prevent further
damage. Inhibition and weakness of muscle that pulls the
joint into further strain and an increase in reactivity of the
muscles that resist that movement.

A diminution of one of the synergistic patterns
can be observed in different conditions. Functional
instability is often the outcome of co-contraction
inhibition.*>%¢%° In the ankle joint it often mani-
fests as a sudden “giving way” during foot contact.
This control failure seems to be sustained long after
the tissues have recovered and may predispose the
individual to recurrent ankle injury.

An increase in the dominance of co-contraction
strategy can be observed in lower back patients.”!
Co-contraction is considered to be an important
control strategy to maintain spinal stability.”?"3
Patients suffering from low back pain tend to use
higher levels of co-contraction force to increase
stability, but also limit the range of movement (Fig.
7.6). They also have different reciprocal activation
patterns of trunk muscles, indicative of synergistic

Synergists
co-contract

Fig. 7.6 e Joint bracing is a synergistic co-contraction
pattern to increase stability and reduce the movement
range.
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reorganization.”"?* These control changes can be
observed in every muscle group in the trunk, dia-
phragm and beyond.”""*””® Remember, even muscles
that are inactive have a role within the synergistic
control strategy (Ch. 2).

Changes in timing and duration

The timing of activation of synergistic muscle group
during co-contraction and reciprocal activation are
also affected in injury and pain. Everything is possi-
ble here: from changes in onset timing to changes in
the duration of activation.®”””° Delay in peroneal
onset times can be observed in ankle and in tibialis
anterior when this muscle is injected with an irri-
tant.”!% Patients with anterior cruciate repair
were shown to have longer onset times of hamstring
muscles activation.'®! It is expected that all these
timing differences would also affect the synergistic
pair.

Synergistic timing can be very complex. This can
be demonstrated in a study of trunk muscles activa-
tion during sudden trunk loading:

.. for healthy control subjects a shut-off of
agonistic muscles (with a reaction time of

53 msec) occurred before the switch-on of
antagonistic muscles (with a reaction time of
70 msec). Patients exhibited a pattern of
co-contraction, with agonists remaining active
(3.4 out of 6 muscles switched off) while
antagonists switched on (5.3 out of 6 muscles).
Patients also had longer muscle reaction times
for muscles shutting off (70 msec) and switching
on (83 msec) and furthermore, their individual
muscle reaction times showed greater
variabiliry.®”

This kind of complexity is not clinically friendly.
It is not possible to test it or to even remember all
of these minute details. Further complexity is intro-
duced as this motor reorganization changes on a
moment-to-moment basis during different postural
and movement situations, i.e. these strategies are
task-dependent. For example, during sudden pos-
tural challenges the onset timing of transverses
abdominis can change depending on variables such
as the phase of breathing,”® different velocities and
direction of arm movement,'%” and position of the
trunk.'®® In chronic lower back patients these tim-
ings tend to be reorganized, but still remain com-
plex task-dependent patterns (Ch. 2).103-108
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I J Important clinical note

The fine motor changes described above are often
single events within a more complex motor
reorganization.'®® They represent a moment in time
within a particular task carried out in the lab. It is very
easy to lose track of the whole person/response and
to be hooked on single control aspects such as timing
of transversus abdominis or the cross-sectional area
of multifidus at L4-5 in CLBP. They represent different
aspects of a larger reorganization (see Table 3.1,
Chapter 3) and, therefore, these single factors should
not be the ultimate therapeutic goal.

How to resolve this problem of complexity is not
to worry about it too much. It is virtually impossible
to analyse injury organization muscle by muscle or
reflex by reflex. Rehabilitation should ultimately
focus on overall control. Think movement not muscles!

To treat or not to treat

It was put forward above that the injury response is
a healthy motor control reorganization to prevent
further injury. The question that arises is whether
we can improve on this system and is there a time
that we should intervene.

The immediate short-term reorganization of the
neuromuscular system after injury should not be
the focus of rehabilitation. This protective function
often resolves when repair is complete and pain is
alleviated (Fig. 7.7). If it didn’t, we would all suffer
from progressive motor disability from our multiple
injuries throughout life. Perhaps in the first 2-3
weeks after injury the neuromuscular system should
be left alone to do what it does best. All that is
needed is for the patient to keep being active to
facilitate this natural recovery, i.e. no specific reha-
bilitation is required. For example, we know that
patients with acute lower back pain need no extra
exercise to get better. The advice is to keep being
active.'1%1!! Generally, individuals who keep up
with their physical activities after injury have less
pain and a better motor control status than those
who withdraw from activity.'¥®° However, overall
management including gradual exposure, goal-
setting, and cognitive-behavioural reassurance and
empowerment can be helpful for some patients dur-
ing the acute phase (Ch. 8).

So when does the injury response become dys-
functional? This occurs when the injury response is
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Fig. 7.7 e Acute injury. Motor re-organization
serves a positive protective function.

Motor re-

organization

for injury Normal motor
strategies

Much pain
No pain

Tissue

damaged

_ Tissue recovery

T
Time ~1-3 weeks

maintained in the absence of a repair process, i.e. it
serves no obvious functional/protective purpose and
is impeding normal movement. There are four
potential mechanisms that can account for main-
taining a dysfunctional organization:

1. Severe injury or post-operative conditions
where the repair is taking longer than usual to
resolve (Fig. 7.8).%* The injury response
becomes the dominant movement strategy
through the process of neuromuscular
plasticity/adaptation. Consequently, the
protective patterns may persist after tissue
repair has been fully resolved.''?

Physical constraints or immobilization that leads
to a dysfunctional motor adaptation (Fig. 7.8).
For example hand immobilization may lead to
loss of coordination due to disuse (seen as plastic
changes within the spinal cord and brain).*

Sensitization conditions where tissue damage
has resolved but has remained painful

(Fig. 7.9). Under these circumstances the
CNS/individual may perceive pain as being an
indication of damage and maintain a protective
movement strategy, such as seen in individuals
suffering from chronic lower back or neck
pain.113

Fig. 7.8 e Sensitization conditions where
tissue damage has resolved but has remained
painful. Under these circumstances the central
nervous system/individual may perceive pain
as being an indication of damage and
maintain a protective movement strategy.

Motor_re-_ Reorganization
organization to adaptation
for injury —
Pain
No pain

Tissue
damaged

~ Tissue recovery

T
Time ~1-3 weeks
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organization
for injury

Much pain Sensitization

Tissue recovery

Tissue
damaged

Time ~1-3 weeks

Fig. 7.9 e Physical constraints or immobilization may lead to
a dysfunctional motor adaptation.

4. Psychological distress leading to “psychomotor”
movement losses, such as seen in depression,
anxiety conditions or high levels of fear-

avoidance and catastrophizing (Fig. 7.10).3”

The therapeutic intention may change for the
different groups, but the rehabilitation is often very
similar. In the group that is recovering from injury
or is sensitized and where there is no obvious psy-
chological distress (e.g. fear-avoidance), the inten-
tion is to help to recover motor losses. In patients
where there is high psychological distress but low

Fig. 7.10 e Psychological distress may lead to

“psychomotor” movement reorganization that
resembles an injury response.

Motor re-
organization
for injury

Pain

Tissue
damaged
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evidence of tissue damage, rehabilitation is still the
same, but the underlying therapeutic intention is
to provide behavioural reassurance and empower-
ment, even in the absence of motor losses (Ch. 8).

Can the motor changes lead to
further injury or progressive
damage?

The short answer to this is we don’t know. The evi-
dence is mixed and not well-researched. In this
model, altered control results in abnormal mechani-
cal stresses being imposed on the joints/tissues. This
is believed to lead to further damage or recurrent
injury. 498789 114-116 Thic is supported by some evi-
dence that motor instability, such as seen in ankle
sprains, can lead to future recurrences.5¢90117118
Also there is some evidence that athletes with slug-
gish reaction times are more prone to back and knee
injuries.1 19,120

However, in a 20-year follow-up study of
patients with chronic ankle instability, degenerative
changes were observed only in six of 46 ankles, with
no correlation to age or persistent instability.

There is also an interesting observation from
working with stroke patients. It seems that the
affected hand does not develop degenerative
changes, although they suffer extensive motor con-
trol losses.'?! Similarly, ambulatory chronic stroke
patients don’t seem to develop any progressive joint
or soft-tissue damage in the affected lower limb

Fear and catastrophizing

Low level sensitization

Tissue recovery

Time
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(unless they have an injury due to loss of control). Summary pOintS

But what is very surprising is how little these stroke
patients suffer from back complaints, even though
they have severe motor control losses to the
trunk/spine.

As noted earlier, if motor losses led to progres-
sive damage we would never recover from our inju-
ries. We would forever be in a negative loop of
injury leading to motor loss, to further injury, fur-
ther motor loss and so on. Imagine even an uncom-
plicated injury such as the low level of damage
associated with delayed-onset muscle soreness after
exercise. Although it is associated with motor re-
organization/losses,'**"'** most athletes will exer-
cise during that period, seemingly without further
progression of muscle damage.

Perhaps motor losses are more of an issue to
individuals such as athletes who challenge their
control of movement to the extremes of physical
performance? But then we must suspect that all
individuals have some motor losses related to past
or current physical history and that these can be
tolerated up to a certain point. Otherwise it would
mean that athletes would be plagued with recur-
rent and progressive musculoskeletal pain and
disability.

We need many more studies to establish how
much control changes can be tolerated and how
motor changes may interact with other factors to
promote further damage.

I ] Clinical note

The primary aim of neuromuscular rehabilitation is to
help individuals to recover their control movement. It
is unknown if rehabilitation would confer protective
function against progressive tissue damage in the
future.

References

[1] van Dieen JH, Selen LPJ,
Cholewicki J. Trunk muscle

The motor reorganization following injury is a multi-
dimensional strategy culminating in postural and
movement reorganization aimed at reducing the
mechanical stresses imposed on the damaged tissues
—in this text it is referred to as the injury response.

The injury response is a positive healthy response
and not a motor dysfunction or pathology.

This response is highly individualistic. It is a
dynamic process changing on a moment-to-
moment basis during different phases of repair,
levels of pain, re-injuries, underlying pathologies,
ageing, and psychological states, such as anxiety,
stress and depression.

Acute musculoskeletal injuries should be left
alone — the body know best.

Neuromuscular rehabilitation is useful when the
injury response serves no obvious protective
function. It includes:

O conditions where the injury response has
become an adaptive state, such as in chronic
recovery from injury or surgery or conditions
where there were movement constraints or

immobilization

O sensitization conditions where tissue damage
has resolved but has remained painful

O injury-related psychological distress that leads
to “psychomotor” movement losses.

Parametric and synergistic motor abilities are the
ones most likely to be affected in musculoskeletal

injuries.

Composite abilities may change as a knock-on
effect from parametric and synergistic abilities.

Don’t get dazzled by scientific descriptions of the
minute reflexive motor changes in injury — don’t
lose sight of the forest for the trees.

Think movement not muscles.

[3] Adkin AL, Campbell AD,

(2]

activation in low-back pain
patients, an analysis of the
literature. J Electromyogr
Kinesiol 2003;13(4):333-351.
Schaible HG, Grubb BD.
Afferents and spinal mechanisms
of joint pain. Pain 1993;55:5-54.

(4]

Chua R, Carpenter MG. The
influence of postural threat on the
cortical response to unpredictable
and predictable postural
perturbations. Neurosci Lett
2008;435(2):120-125.

Lamoth CJ, Daffertshofer A,
Meijer OG, Lorimer Moseley G,

—

Wuisman PI, Beek PJ. Effects of
experimentally induced pain and
fear of pain on trunk coordination
and back muscle activity during
walking. Clin Biomech (Bristol,
Avon) 2004;19(6):551-563.
Lamoth CJ, Stins JF, Pont M,

et al. Effects of attention on the
control of locomotion in

83



—
[=))
=

—
co
[l

—
©
[l

[10]

(11]

[12]

[13]

(14]

individuals with chronic low back
pain. J Neuroeng Rehabil
2008;5:13.

Moseley GL, Hodges PW.
Reduced variability of postural
strategy prevents normalization of
motor changes induced by back
pain: a risk factor for chronic
trouble? Behav Neurosci
2006;120(2):474-476.
Cholewicki J, van Dieen JH,
Arsenault AB. Muscle function
and dysfunction in the spine.

J Electromyogr Kinesiol 2003;13
(4):303-304.

Thomas JS, France CR,

Lavender SA, et al. Effects of fear
of movement on spine velocity
and acceleration after recovery
from low back pain. Spine
2008;33(5):564-570.

Thomas JS, France CR, Sha D,

et al. The influence of pain-related
fear on peak muscle activity and
force generation during maximal
isometric trunk exertions. Spine
2008;33(11):E342-E348.

Thomas JS, France CR. Pain-
related fear is associated with
avoidance of spinal motion during
recovery from low back pain.
Spine 2007;32(16):E460-E466.
Lamoth CJ, Daffertshofer A,
Meijer OG, et al. How do persons
with chronic low back pain speed
up and slow down? Trunk-pelvis
coordination and lumbar erector
spinae activity during gait. Gait
Posture 2006;23(2):230-239.
Lamoth CJ, Meijer OG,
Daffertshofer A, et al. Effects of
chronic low back pain on trunk
coordination and back muscle
activity during walking: changes in
motor control. Eur Spine J
2006;15(1):23-40.

Roy JS, Moffet H, McFadyen BJ.
Upper limb motor strategies in
persons with and without
shoulder impingement syndrome
across different speeds of
movement. Clin Biomech (Bristol,
Avon) 2008;23(10):1227-1236.
Epub 2008 Aug 30.

Sjélander P, Michaelson P,

Jaric S, et al. Sensorimotor
disturbances in chronic neck pain —
range of motion, peak velocity,
smoothness of movement, and
repositioning acuity. Man Ther
2008;13(2):122-131.

84

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

Torry MR, Decker MJ, Ellis HB,
et al. Mechanisms of
compensating for anterior
cruciate ligament deficiency
during gait. Med Sci Sports Exerc
2004;36(8):1403-1412.

Moseley GL, Nicholas MK,
Hodges PW. Does anticipation of
back pain predispose to back
trouble? Brain 2004;127(Part
10):2339-2347.

Falla D, Farina D, Dahl MK,
Graven-Nielsen T. Muscle pain
induces task-dependent changes
in cervical agonist/antagonist
activity. J Appl Physiol. 2007;
102(2):601-6009.

Thomas JS, France CR, Sha D,
et al. The effect of chronic low
back pain on trunk muscle
activations in target reaching
movements with various loads.
Spine 2007;32(26):E801-E808.
Bandholm T, Rasmussen L,
Aagaard P, et al. Force steadiness,
muscle activity, and maximal
muscle strength in subjects with
subacromial impingement
syndrome. Muscle Nerve 2006;
34(5):631-639.

Bandholm T, Rasmussen L,
Aagaard P, et al. Effects of
experimental muscle pain on
shoulder-abduction force
steadiness and muscle activity in
healthy subjects. Eur J Appl
Physiol 2008;102(6):643-650.
Falla D, Farina D, Graven-
Nielsen T. Experimental muscle
pain results in reorganization of
coordination among trapezius
muscle subdivisions during
repetitive shoulder flexion. Exp
Brain Res 2007;178(3):385-393.
Casey KL. Neural mechanisms of
pain. In: Carterette EC,
Friedman MP, editors. Handbook
of perception: feeling and hurting.
London: Academic Press; Ch 6,
1978. p. 183-219.

Meyer RA, Campbell JA, Raja S.
Peripheral neural mechanisms of
nociception. In: Wall PD,
Melzack R, editors. Textbook of
pain. 3rd ed. London: Churchill
Livingstone; 1994. p. 13-42.
Wood L, Ferrell WR,

Baxendale RH. Pressures in
normal and acutely distended
human knee joints and effects on
quadriceps maximal voluntary

[25

[26

[27

[28

[29

[30

[31

[32

133

|

=

—

=

=

—

—

—

—_

' Neuromuscular Rehabilitation in Manual and Physical Therapies

contractions. Q J Exp Physiol
1988;73:305-314.

Voigt M, Jakobsen J, Sinkjaer T.
Non-noxious stimulation of the
glenohumeral joint capsule elicits
strong inhibition of active
shoulder muscles in conscious
human subjects. Neurosci Lett
1998;254:105-108.
Arendt—Nielsen L, Graven—
Nielsen T, Svarrer H, et al. The
influence of low back pain on
muscle activity and coordination
during gait: a clinical and
experimental study. Pain 1996;
64(2):231-240.

Buitenhuis J, de Jong PJ,
Jaspers JP, et al. Relationship
between posttraumatic stress
disorder symptoms and the
course of whiplash complaints.

J Psychosom Res 2006;61(5):
681-689.

Nederhand MJ, Hermens HJ,
lizerman MJ, Groothuis KG,
Turk DC. The effect of fear of
movement on muscle activation
in posttraumatic neck pain
disability. Clin J Pain 2006;
22(6):519-525.

Graven-Nielsen T, Arendt-
Nielsen L. Impact of clinical and
experimental pain on muscle
strength and activity. Curr
Rheumatol Rep 2008;10(6):
475-481.

Leinonen V, Airaksinen M,
Taimela S, et al. Low back pain
suppresses preparatory and
triggered upper-limb activation
after sudden upper-limb loading.
Spine 2007;32(5):E150-E155.
Hortobagyi T, Taylor JL,
Petersen NT, et al. Changes in
segmental and motor cortical
output with contralateral muscle
contractions and altered sensory
inputs in humans. J Neurophysiol
2003;90(4):2451-2459.

van Uden CJ, Bloo JK,

Kooloos JG, et al. Coordination
and stability of one-legged
hopping patterns in patients with
anterior cruciate ligament
reconstruction: preliminary
results. Clin Biomech 2003;
18(1):84-87.

de Jong BM, Coert JH,
Stenekes MW, et al. Cerebral
reorganisation of human hand
movement following dynamic



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Motor reorganization in musculoskeletal injury '

immobilisation. Neuroreport
2003;14(13):1693-1696.

Hurley MV, Scott DL, Rees J,
et al. Sensorimotor changes and
functional performance in
patients with knee osteoarthritis.
Ann Rheum Dis 1997;56(11):
641-648.

Hurley MV, Rees J, Newham DJ.
Quadriceps function,
proprioceptive acuity and
functional performance in healthy
young, middle-aged and elderly
subjects. Age Ageing 1998;
27(1):55-62.

Hassan BS, Mockett S,

Doherty M. Static postural sway,
proprioception, and maximal
voluntary quadriceps contraction
in patients with knee
osteoarthritis and normal control
subjects. Ann Rheum Dis
2001;60(6):612-618.

Roy SH, De Luca CJ,

Casavant DA. Lumbar muscle
fatigue and chronic lower back
pain. Spine 1989;14(9):
992-1001.

Taimela S, Kankaanpaa M,

Luoto S. The effect of lumbar
fatigue on the ability to sense a
change in lumbar position. A
controlled study. Spine 1999;
24(13):1322-1327.

Rainville J, Ahern DK, Phalen L,
et al. The association of pain with
physical activities in chronic low
back pain. Spine 1992;17(9):
1060-1064.

Verbunt JA, Seelen HA,
Vlaeyen JW, et al. Disuse and
deconditioning in chronic low
back pain: concepts and
hypotheses on contributing
mechanisms. Eur J Pain 2003;
7(1):9-21.

Verbunt JA, Seelen HA,
Vlaeyen JW, et al. Fear of injury
and physical deconditioning in
patients with chronic low back
pain. Arch Phys Med Rehabil
2003;84(8):1227-1232.

Spencer JD, Hayes KC,
Alexander 1J. Knee joint effusion
and quadriceps reflex inhibition
in man. Arch Phys Med Rehabil
1984;65:171-177.

Stokes M, Young A. The
contribution of reflex inhibition
to arthrogenous muscle weakness.

Clin Sci 1984;67:7-14.

[44] lles JE, Stokes M, Young A.

[46

[47

[48

[49

[50

[51

[52

[53

[54

—

[t}

—

—_

—

=

—

—

]

—_

Reflex actions of knee joint
afferents during contraction of
the human quadriceps. Clin
Physiol 1990;10:489-500.

Jones DW, Jones DA,

Newham DJ. Chronic knee
effusion and aspiration: the effect
on quadriceps inhibition.

Br J Rheumatol 1987;26:370-374.
Kennedy JC, Alexander 1J,
Hayes KC. Nerve supply of the
human knee and its functional
importance. Am J Sports Med
1982;10(6):329-335.

Torry MR, Decker MJ, Viola RW,
et al. Intra-articular knee joint
effusion induces quadriceps
avoidance gait patterns. Clin
Biomech 2000;15(3):147-159.
Sharma L. Proprioceptive
impairment in knee osteoarthritis.
Rheum Dis Clin North Am
1999;25(2):299-314.

Hurley MV, Newham DJ. The
influence of arthrogenous muscle
inhibition on quadriceps
rehabilitation of patients with
early, unilateral osteoarthritic
knees. Br J Rheumatol
1993;32:127-131.

Fisher NM, Pendergast DR.
Reduced muscle function in
patients with osteoarthritis.
Scand J Rehabil Med 1997;29(4):
213-221.

Chmielewski TL, Stackhouse S,
Axe MJ, et al. A prospective
analysis of incidence and severity of
quadriceps inhibition in a
consecutive sample of 100 patients
with complete acute anterior
cruciate ligament rupture. J
Orthop Res 2004;22(5):925-930.
Hurley MV, O’Flanagan DJ,
Newham SJ. Isokinetic and
isometric muscle strength and
inhibition after elbow
arthroplasty. J Orthop Rheumatol
1991;4:83-95.

Takemasa R, Yamamoto H,

Tani T. Trunk muscle strength in
and effect of trunk muscle
exercises for patients with
chronic low back pain. The
differences in patients with and
without organic lumbar lesions.
Spine 1995,20(23):2522-2530.
Hides JA, Richardson CA,

Jull GA. Multifidus muscle

recovery is not automatic after

(53]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

resolution of acute, first-episode
low-back-pain. Spine
1996;21:2763-27609.

Hides JA, Stokes MJ, Saide M,

et al. Evidence of lumbar
multifidus muscle wasting
ipsilateral to symptoms in patients
with acute/subacute low back
pain. Spine 1994;19:165-172.
Danneels LA, Vanderstraeten GG,
Cambier DC, et al. CT imaging of
trunk muscles in chronic low back
pain patients and healthy control
subjects. Eur Spine J 2000;9(4):
266-272.

Cooper RG, St Clair Forbes W,
Jayson MI. Radiographic
demonstration of paraspinal
muscle wasting in patients with
chronic low back pain. Br J
Rheumatol 1992;31(6):389-394.
Fernindez-de-las-Pefias C, Albert-
Sanchis JC, Buil M, et al. Cross-
sectional area of cervical multifidus
muscle in females with chronic
bilateral neck pain compared to
controls. J Orthop Sports Phys
Ther 2008;38(4):175-180.
Wallwork TL, Stanton WR,
Freke M, et al. The effect of
chronic low back pain on size and
contraction of the lumbar
multifidus muscle. Man Ther
2008; Epub 2008 Nov 20.
Solomonow M, Baratta R,

Zhou BH, et al. The synergistic
action of the anterior cruciate
ligament and thigh muscles in
maintaining joint stability.

Am J Sports Med 1987;15(3):
207-213.

Racinais S, Bringard A,

Puchaux K, Noakes TD, Perrey S.
Modulation in voluntary neural
drive in relation to muscle
soreness. Eur J Appl Physiol
2008;102(4):439-446.

Alexander C, Caughey D,

Withy S, et al. Relation between
flexion angle and intraarticular
pressure during active and passive
movement of the normal knee.

J Rheumatol 1996;23
(5):889-895.

Moseley GL, Hodges PW. Are
the changes in postural control
associated with low back pain
caused by pain interference? Clin
J Pain 2005;21(4):323-329.
Holm S, Indahl A,

Solomonow M. Sensorimotor

85



[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

control of the spine.

J Electromyogr Kinesiol 2002;
12(3):219-234.

Solomonow M, Zhou BH,

Harris M, et al. The ligamento-
muscular stabilizing system of the
spine. Spine 1998;23(23):
2552-2562.

Solomonow M, Baratta RV,
Zhou BH, et al. Muscular
dysfunction elicited by creep of
lumbar viscoelastic tissue. J
Electromyogr Kinesiol 2003;
13(4):381-396.

Zedka M, Prochazka A, Knight B,
et al. Voluntary and reflex control
of human back muscles during
induced pain. J Physiol 1999;520
(Part 2):591-604.

Marras WS, Ferguson SA, Burr D,
Davis KG, Gupta P. Functional
impairment as a predictor of
spine loading. Spine 2005;30(7):
729-737.

Shirado O, Ito T, Kaneda K,

Strax TE. Flexion-relaxation
phenomenon in the back muscles.
A comparative study between
healthy subjects and patients with
chronic low back pain. Am J Phys
Med Rehabil 1995;74(2):139-144.
Kaigle AM, Wessberg P,

Hansson TH. Muscular and
kinematic behavior of the lumbar
spine during flexion-extension.

J Spinal Disord 1998;(11):163-174.
Graven-Nielsen T, Svensson P,
Arendt-Nielsen L. Effects of
experimental muscle pain on
muscle activity and co-ordination
during static and dynamic motor
function. Electroencephalogr Clin
Neurophysiol/Electromyogr Motor
Control 1997;105(2):156-164.
Svensson P, Miles TS, McKay D,
et al. Suppression of motor
evoked potentials in a hand
muscle following prolonged
painful stimulation. Eur J Pain
2003;7(1):55-62.

Farina D, Arendt-Nielsen L,
Merletti R, et al. The effect of
experimental muscle pain on motor
unit firing rate and conduction
velocity. J Neurophysiol
2004;91:1250-1259.

Manetta J, Franz LH, Moon C,
et al. Comparison of hip and knee
muscle moments in subjects with
and without knee pain. Gait
Posture 2002;16(3):249-254.

86

[75]

[76]

[77]

[78]

[79]

[80]

[81]

(82]

[83]

(84]

[85]

Lindsay D, Horton J. Comparison
of spine motion in elite golfers
with and without low back pain.
J Sports Sci 2002;20(8):599-605.
Coulthard P, Pleuvry BJ,
Brewster M, et al. Gait analysis as
an objective measure in a chronic
pain model. J Neurosci Meth
2002;116(2):197-213.

Luoto S, Taimela S, Hurri H,

et al. Psychomotor speed and
postural control in chronic low
back pain patients. A controlled
follow-up study. Spine 1996;
21(22):2621-2627.

Kumbhare DA. Measurement of
cervical flexor endurance following
whiplash. Disabil Rehabil 22;
2005;27(14):801-807.

Suter E, Lindsay D. Back muscle
fatigability is associated with knee
extensor inhibition in subjects
with low back pain. Spine
2001;26(16):E361-E366.

Shirado O, Ito T, Kaneda K, et al.
Concentric and eccentric strength
of trunk muscles: influence of test
postures on strength and
characteristics of patients with
chronic low-back pain. Arch Phys
Med Rehabil 1995;76(7):604-611.
Fu SN, Hui-Chan CW.
Modulation of prelanding lower-
limb muscle responses in athletes
with multiple ankle sprains. Med
Sci Sports Exerc 2007;39(10):
1774-1783.

Weir JP, Keefe DA, Eaton JF,

et al. Effect of fatigue on
hamstring coactivation during
isokinetic knee extensions.

Eur J Appl Physiol Occup Physiol
1998;78(6):555-559.

Maynard J, Ebben WP. The
effects of antagonist prefatigue on
agonist torque and
electromyography. J Strength
Cond Res 2003;17(3):469-474.
Semmler JG, Tucker KJ,

Allen TJ, et al. Eccentric exercise
increases EMG amplitude and
force fluctuations during
submaximal contractions of elbow
flexor muscles. J Appl Physiol
2007;103(3):979-989.

Nyland JA, Caborn DN, Shapiro R.
Fatigue after eccentric quadriceps
femoris work produces earlier
gastrocnemius and delayed
quadriceps femoris activation
during crossover cutting among

(86

[87

(88

[89

[90

[91

[92

[96

[l

—

=

=

—

[a—

]

[}

=

' Neuromuscular Rehabilitation in Manual and Physical Therapies

normal athletic women. Knee Surg
Sports Traumatol Arthrosc 1997,
5(3):162-167.

Freeman MAR, Dean MRE,
Hanham IWF. The etiology and
prevention of functional instability
of the foot. J Bone Joint Surg (B)
1965;47(4):678-685.

Skinner HB, Barrack RL,

Cook SD, Haddad Jr RJ. Joint
position sense in total knee
arthroplasty. J Orthop Res
1984;1:276-283.

Cratty BJ. Movement behaviour
and motor learning. 2nd ed.
London: Henry Kimpton; 1967.
Barrack RL, Skinner HB,

Cook SD, et al. Effect of articular
disease and total knee
arthroplasty on knee joint-
position sense. J Neurophysiol
1983;50(3):684-687.

Richie Jr DH. Functional
instability of the ankle and the
role of neuromuscular control: a
comprehensive review. J Foot
Ankle Surg 2001;40(4):240-251.
Danneels LA, Coorevits PL,
Cools AM, et al. Differences in
electromyographic activity in the
multifidus muscle and the
iliocostalis lumborum between
healthy subjects and patients with
sub-acute and chronic low back
pain. Eur Spine J 2002;11
(1):13-19.

Manohar M, Panjabi MM. Clinical
spinal instability and low back
pain. J Electromyogr Kinesiol
2003;13(4):371-379.

Stokes 1A, Gardner-Morse M.
Spinal stiffness increases with
axial load: another stabilizing
consequence of muscle action.

J Electromyogr Kinesiol 2003;
13(4):397-402.

Hubley-Kozey CL, Vezina MJ.
Differentiating temporal
electromyographic waveforms
between those with chronic low
back pain and healthy controls.
Clin Biomech 2002;17 (9-10):
621-629.

Hemborg B, Moritz U. Intra-
abdominal pressure and trunk
muscle activity during lifting. II.
Chronic low-back patients. Scand
J Rehabil Med 1985;17(1):5-13.
Radebold A, Cholewicki J,
Polzhofer GK, et al. Impaired
postural control of the lumbar



(97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Motor reorganization in musculoskeletal injury '

spine is associated with delayed
muscle response times in patients
with chronic idiopathic low back
pain. Spine 2001;26(7):724-730.
Leinonen V, Kankaanpii M,
Airaksinen O, Hinninen O. Back
and hip extensor activities
during trunk flexion/extension:
effects of low back pain and
rehabilitation. Arch Phys Med
Rehabil 2000:81(1):32-37.
Hodges PW, Butler JE,
McKenzie DK, Gandevia SC.
Contraction of the human
diaphragm during rapid postural
adjustments. J Physiol 1997,
505(Part 2):539-548.

Leinonen V, Kankaanpaa M,
Luukkonen M, et al. Disc
herniation-related back pain
impairs feed-forward control of
paraspinal muscles. Spine
2001;26(16):E367-E372.
Madeleine P, Voigt M, Arendt-
Nielsen L. Reorganisation of
human step initiation during acute
experimental muscle pain. Gait
Posture 1999;10(3):240-247.
Bonfim TR, Jansen Paccola CA,
Barela JA. Proprioceptive and
behavior impairments in
individuals with anterior
cruciate ligament reconstructed
knees. Arch Phys Med Rehabil
2003;84:1217-1223.

Hodges PW, Richardson CA.
Relationship between limb
movement speed and associated
contraction of the trunk
muscles. Ergonomics 1997b;
40(11):1220-1230.

Hodges PW, Richardson CA.
Delayed postural contraction of
transversus abdominis in low back
pain associated with movement
of the lower limb. J Spinal Disord
1998;11(1):46-56.

Hodges PW, Richardson CA.
Inefficient muscular stabilization
of the lumbar spine associated
with low back pain. A motor
control evaluation of transversus
abdominis. Spine 1996;21(22):
2640-2650.

Hodges PW, Richardson C.
Altered trunk muscle
recruitment in people with low
back pain with upper limb
movement at different speeds.
Arch Phys Med Rehabil 1999;
80(9):1005-1012.

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Hodges PW, Gandevia SC,
Richardson CA. Contractions of
specific abdominal muscles in
postural tasks are affected by
respiratory maneuvers. J Appl
Physiol 1997;83(3):753-760.
Hodges PW, Richardson CA.
Delayed postural contraction of
transversus abdominis in low
back pain associated with
movement of the lower limb.

J Spinal Disord 1998;11(1):
46-56.

Hodges PW, Moseley GL,
Gabrielsson A, et al.
Experimental muscle pain
changes feedforward postural
responses of the trunk muscles.
Exp Brain Res 2003;151(2):
262-271.

Asay JL, Miindermann A,
Andriacchi TP. Adaptive
patterns of movement during
stair climbing in patients with
knee osteoarthritis. J] Orthop
Res 2008;27(3):325-329.
Liddle SD, Gracey JH,

Baxter GD. Advice for the
management of low back pain: a
systematic review of randomised
controlled trials. Man Ther
2007;12(4):310-327.

Hagen KB, Hilde G,

Jamtvedt G, et al. Bed rest for
acute low-back pain and sciatica.
Cochrane Database Syst Rev
2004;(4): CD001254.

Smith AJ, Lloyd DG, Wood DJ.
Pre-surgery knee joint loading
patterns during walking predict
the presence and severity of
anterior knee pain after total
knee arthroplasty. J Orthop Res
2004;22(2):260-266.
Koelbaek-Johansen M.
Generalised muscular
hyperalgesia in chronic whiplash
syndrome. Pain 1999;83(2):
229-234.

Palmieri-Smith RM,

Kreinbrink J, Ashton-

Miller JA, et al. Quadriceps
inhibition induced by an
experimental knee joint effusion
affects knee joint mechanics
during a single-legged drop
landing. Am J Sports Med
2007;35(8):1269-1275.
Parkhurst TM, Burnett CN.
Injury and proprioception in the

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

lower back. J Orthop Sports
Phys Ther 1994;19(5):282-295.
Zazulak B, Cholewicki J,
Reeves NP. Neuromuscular
control of trunk stability: clinical
implications for sports injury
prevention. J Am Acad Orthop
Surg 2008;16(9):497-505.
McVey ED, Palmieri RM,
Docherty CL, et al. Arthrogenic
muscle inhibition in the leg
muscles of subjects exhibiting
functional ankle instability. Foot
Ankle Int 2005;26(12):
1055-1061.

van Cingel RE, Kleinrensink G,
Uitterlinden EJ, et al. Repeated
ankle sprains and delayed
neuromuscular response:
acceleration time parameters.

J Orthop Sports Phys Ther
2006;36(2):72-79.

Cholewicki J, Silfies SP,

Riaz RA, Shah A, et al. Delayed
trunk muscle reflex responses
increase the risk of low back
injuries. Spine 2005;30(23):
2614-2620.

Zazulak BT, Hewett TE,
Reeves NP. Deficits in
neuromuscular control of the
trunk predict knee injury risk: a
prospective biomechanical-
epidemiologic study. Am J
Sports Med 2007;35(7):
1123-1130.

Segal R, Avrahami E,

Lebdinski E, et al. The impact of
hemiparalysis on the expression
of osteoarthritis. Arthritis
Rheum 1998;41(12):
2249-2256.

Bottas R, Nicol C, Komi PV, et al.
Adaptive changes in motor
control of rhythmic movement
after maximal eccentric actions. J
Electromyogr Kinesiol 2007;19
(2):347-356. Epub 2007 Oct 15.
Nie H, Arendt-Nielsen L,
Kawczynski A, et al. Gender
effects on trapezius surface
EMG during delayed onset
muscle soreness due to eccentric
shoulder exercise. J Electromyogr
Kinesiol 2007;17(4):401-409 .
Epub 2006 Jun 27.

Bulbulian R, Bowles DK. Effect
of downhill running on
motoneuron pool excitability.

J Appl Physiol 1992;73(3):
968-973.

87



Cognitive and behavioural

considerations in

neuromuscular rehabilitation

Cognitions, behaviours and movement control are
profoundly interlaced and inseparable and should
be considered as an essential part of patient care in
neuromuscular rehabilitation (Fig. 8.1).

A person’s beliefs, their attitudes and the action
they take when they are injured or in pain can have
important implications for their recovery. Further-
more, the individual’'s movement repertoire may
contain particular habitual patterns that could put
them at risk of injury. These beliefs and behaviour
can be challenged in ways that could help the
patient to adopt different attitudes and modify cer-
tain elements in their behaviour, changes that could
facilitate recovery and reduce the potential for
future injury.

Injury cognitions and
behaviours

A patient who used to be a keen runner withdrew
from this activity due to mild lower back pain. He
was advised by his surgeon to stop jogging because
it would exacerbate the wear and tear in his back.
Another patient had knee pain as a consequence of
a fall in judo. He believed that “knees can be a prob-
lem” and considered stopping judo. A 65-year-old
tennis player had surgery of his serving shoulder.
He had all the possible shoulder conditions known
to humankind affecting this joint. Will he ever be
able to play tennis again?

All these patients are exhibiting certain beliefs
about their condition that hold them back from
resuming these activities. These beliefs often mani-
fest as fear-avoidance (“1 can’'t walk because it

causes my back pain and it will make it worse”) or
catastrophizing (“I will never be able to walk again,
I have to stop working.”).!™ This group of patients
is adapting their behaviour in response to pain, dis-
comfort or movement losses, frequently withdraw-
ing from activities that may help them to recover.
Often these beliefs in combination with psychologi-
cal and social factors predate the injury and could
impact the potential for recovery. For example,
the development of serious back pain disability can
be predicted more accurately from psychosocial fac-
tors than from structural/degenerative changes in
the spine.” The individual’s beliefs about their con-
dition may also be influenced by previous negative
injury/surgery experiences.

As the injury/pain lingers on, these factors feed
the widening discrepancy between the “real” physi-
cal losses and the patient’s perceived inability
(Fig. 8.2). For some individuals there is no such
gap. They may suffer significant movement losses
and may feel that their body has let them down.

The person/cognitions

Motor control

Behaviour

Fig. 8.1 e Cognitions, behaviours and movement control are
profoundly interlaced and inseparable.
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Fig. 8.2 e The patient’s psychological distress about their
injury may widen the gap between the actual and perceived
physical ability. Their behaviour during the injury is often
dictated by the perceived ability. Pre-injury factors such as
psychosocial traits, health beliefs and attitudes, and previous
experiences of injury/pain can influence their recovery.

Patients suffering from physical losses and ongoing
painful conditions will often experience feelings
such as disappointment, anger, frustration, grief,
helplessness, loss of control and depression. Fre-
quently, the individual will become more focused
on their loss and dominated by their disability. Their
identity is that of an injured self, experiencing a neg-
ative change in their body and self-image.®® As time
passes these psychological distresses may become
more entrenched, further influencing the way the
individual interacts with their environment.’

These psychological factors are as important as
the physical aspect of the treatment and, therefore,
should be addressed during rehabilitation.

Cognitions, beliefs and attitudes

Within the professional-ethical boundaries of man-
ual and physical therapists there are several ways in
which we can help our patients to transform their
cognitions about their condition. This can manifest
clinically as challenging their beliefs about the condi-
tion, focusing on positive attitudes and engaging their
positive coping strategies. Our management will also
aim to help the patient to contain their fears, anxi-
eties and catastrophic thoughts by reassurance as well
as by empowering them to self-care.'%!3 The out-
come from such transformations can be reduced pain,
improved movement ability, a return to more normal
occupational and recreational activities, and less
health-seeking behaviour.'%!”

Cognition and behaviour are inseparable. Hence,
change in cognitions such as fear-avoidance will
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influence the person’s behaviour. Equally, challeng-

ing behaviour through the introduction of safe and

non-aggravating movement experiences can influence
ow a person perceives their condition (Fig. 8.3).

There are several ways in which to assist the
patient to transform their cognitions. Providing the
patient with relevant information about their condi-
tion can be part of this process.'>!®!9 People who
have a better understanding of their condition can
be empowered to self-care more effectively and
are more likely to initiate behavioural actions that
challenge their fears. If we take one of the above
examples, the patient with the knee condition, it
was explained to him that his knee had got better
within normal expected times (2-3 weeks), that
the fact that he had no history of knee injury, and
that such an injury does not cause osteoarthritis.
This was enough to reassure him to return to judo
(see also: Working with cognitions: changing the
narrative, Ch. 9).

Also focusing on the “abled-self” rather than
“disabled-self” can help to reassure, pointing out
to the patient what they can do, rather than what
they can’t do. For example, I often see in clinic
patients suffering from chronic back pain who are
virtually symptom-free during demanding physical
activities such as gardening, playing football or
even windsurfing. The focus here would be on
these “abled” activities — focusing on success. This
approach also has a clinical manifestation. Move-
ment rehabilitation often starts with what the
patient is able to do and later experiments with
their inability — start with the possible and then
tease the impossible.

Cognitions
Fear
Anxiety
Catastrophizing

Therapeutic focus —»

Behaviour
Withdrawal from activities
Activity cycling

lllness behaviour

Therapeutic focus —»

Fig. 8.3 e Cognition and behaviour are inseparable.
Changes in cognition will influence behaviour and vice versa.
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Further to the focus on the cognitive aspects, we
must keep in mind the quality of the therapeutic
relationship.'® Clinical attitudes that include being
attentive to the patient’s emotional state, empathic,
non-judgemental, caring and encouraging, will all
have important implications for their process of
recovery.?’

Reassurance by actions: the
behavioural experiment

Generally, after an injury most individuals will
return to pre-injury activities in a gradual manner.
They take a series of chances in which positive
movement experiences embolden them to take fur-
ther steps to improve the condition. However, there
are some injuries where the actions a person takes
result in pain and may lead to a gradual withdrawal
from these activities — sometimes beyond what is
required to prevent further damage. In this scenario
there is a growing discrepancy between the magni-
tude of tissue damage and the person’s perception
of their injury and, therefore, their behaviour.

One therapeutic aim is to help the patient to nar-
row the discrepancy between the real and perceived
losses. This can be achieved by implementing what
most injured individuals do naturally: gradual expo-
sure to the task. A graded challenge is a step-wise
increase in a particular activity (Fig. 8.4). This grad-
ing can be achieved by increasing the duration, rep-
etition or intensity of the remedial activity over

Force

Duration

Repetition

Range

+Number of activities

Consolidation

Withdrawl by patient

| Condition timeline

>

Fig. 8.4 e The behavioural experiment includes a gradual
increase of challenges in specific activities. The challenge is
increased in a stepwise manner, widening the four movement
parameters. At particular times it may be necessary to
consolidate the improvements if the next step up aggravates
the condition.

time (think of expanding the four movement para-
meters — force, length, velocity and endurance).

A gradual challenge can have several clinical man-
ifestations. It can start in the session during exami-
nation, where the patient is guided in movement
patterns which they fear. For example, a patient
with non-specific chronic lower back pain may be
invited to perform different trunk movements or
even jump gently on the spot. For those with long-
term pain, and who are particularly apprehensive,
the physical reassurance may start on the treatment
table, as a challenge to the trunk in different move-
ment patterns (see DVD section on trunk rehabili-
tation). All these physical challenges are carried
out in a graded manner, within pain-free ranges
and physically possible tasks and with the support
and reassurance of the therapist.

Beyond the session the behavioural reassurance is
to gradually expose the patient to the very move-
ment and tasks which they fear.!!"1221723 The
patient makes a wish-list of the exercise or activities
in order of importance. If the exercise, say, is to
return to tennis after a back injury, this would
be set as one of the therapeutic goals. The graded
challenge can start with serving a tennis ball against
a wall for 5 minutes a day, gradually increasing
the duration, intensity and number of serves over
several weeks and so on.

It is important to involve the patient in the
decision-making about the form of challenges, the
scheduling of the exposure and the setting of short-
and long-term goals.”* Goal-setting is all about
working out with the patient targets that are spe-
ci