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Preface to the Second
Edition

I am grateful to the publisher who asked me to renew my book as a second
edition. Indeed, after more than ten years, the field of computational biol-
ogy/statistical physics—the particular interface of two fields I am interested
in—has matured in many ways. Going through the first edition again was a
great pleasure when comparing past views to current insights.

As a consequence, the book has substantially changed while maintaining its
core contents. New material has been added, but in particular I have reworked
its whole architecture. In the second edition, there are only two parts: one on
equilibrium statistical physics and one on non-equilibrium statistical physics.
The theoretical tools in these fields that the book introduces are placed at the
beginning of each part, and then the applications follow. I hope that this new
structure will help the readers to master the material.

As a side effect of following the now classic dichotomy of statistical physics—
equilibrium and non-equilibrium—the focus on universal aspects, those that
statistical physics is most attuned to, has been sharpened. Even more than
before, this makes the book not a biophysics book. Since 2006, when the first
edition went into print, new books on biophysics have appeared, especially
bioinformatics books.

I hope that with its modifications, including updated additional notes to the
literature and references, this book will continue to find its readership and
help to introduce its readers to this exciting field of research.

Lille, February 2019
Ralf Blossey
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Preface to the First
Edition

This is not a biophysics book.

The readers of this book will indeed find a number of topics in it which com-
monly classify as biophysics; an example is the discussion of the electrostatic
properties of biomolecules. But the book’s ambition is different from being yet
another introduction into biophysics. I therefore like to explain my motivation
for the selection of topics I made.

The title of the book establishes a link between computational biology on the
one side, and statistical mechanics on the other. Computational biology is
the name of a new discipline. It is probably fair to say that it is, in fact, an
emerging one, since a new name is not sufficient to establish a new discipline.
Quantitative methods have been applied to biological problems since many
years; this has led to a vast number of different subdisciplines of established
fields of science: there is a mathematical biology, a biomathematics, a bio-
statistics, a bioinformatics, a biophysics, a theoretical biology, a quantitative
biology... this list is certainly not exhaustive.

All these subdisciplines emerged out of the existing fields and developed by
an act of transfer: the use of a method or a mathematical approach within a
new context, its application to new problems. One may expect that at some
point in the future all these different subdisciplines may merge into a common
discipline. For the time being and for the lack of a definite name, let us call
this discipline computational biology.

This book wants to contribute a particular element to this field; the use of
statistical mechanics methods for the modelling of the properties of biologi-
cal systems. Statistical physics is the scientific discipline which was developed
in order to understand the properties of matter composed of many particles.
Traditionally, it has been applied to non-living matter: gases, liquids, and
solids. Meanwhile, it is increasingly applied to what is nowadays called “soft

xi



xii � Preface to the First Edition

matter” which encompasses complex objects like colloids, membranes, and
biomolecules, hence objects which do not clearly fall into any one of the clas-
sic categories.

Statistical mechanics methods are therefore indeed essential in their applica-
tion to biophysical problems, since they are needed to understand the static
and dynamic properties of biomolecules, complex molecular machines, and
even whole cell behaviour.

But there is a second aspect for which these methods can prove important,
and this relates to the information content of the biological systems. Biology
is built on recognition processes: DNA strands have to recognize each other,
proteins have to identify DNA binding sites, etc. In bioinformatics, these recog-
nition problems are commonly modelled as pattern recognition problems: this
mapping is the basis of the enormous success of the field of modern genomics.

Moving beyond genomics, however, to the biology of whole systems, it be-
comes increasingly clear that an understanding of the physical properties of
biological systems becomes more and more important for processes involving
biological information content: DNA is not merely a string spelled out in a
four-letter alphabet, but it is also an elastic string. There is biological infor-
mation contained in its structure and its dynamics. Biology employs physical
mechanisms to organize its information processes. This becomes particularly
evident, as we begin to understand, in the properties of chromatin, the DNA-
protein complex making up the chromosomes in the nucleus of eukaryotic cells
(a topic which is discussed in the book), or, in the particle interaction net-
works upon which the cellular machinery relies.

This book is placed at just this interface: between biological recognition on
the one hand, and the statistical physics methods that can be employed to
understand the underlying mechanisms.

The first part of the book gives a concise introduction into the main concepts
of statistical mechanics, equilibrium, and non-equilibrium. The exposition is
introductory in the choice of topics addressed, but still mathematically chal-
lenging. Whenever possible, I have tried to illustrate the methods with simple
examples.

The second part of the book is devoted to biomolecules, to DNA, RNA, pro-
teins, and chromatin, i.e., the progression of topics follows more or less what
is commonly known as the central dogma of molecular biology. In this part,
mostly equilibrium statistical mechanics is needed. The concern here is to
understand and model the processes of base-pair recognition and (supra-)
molecular structure formation.
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The third part of the book is devoted to biological networks. Here, both equi-
librium and non-equilibrium concepts introduced in the first part are used.
The presentation covers several of the non-equilibrium statistical physics ap-
proaches described in Chapter 2 of Part I, and illustrates them on biologically
motivated and relevant model systems.

Throughout the book, Exercises and Tasks are scattered, most of them in the
first part. They are intended to motivate the readers to participate actively
in the topics of the book. The distinction between Exercises and Tasks is the
following: Exercises should be done in order to verify that the concept that
was introduced has been understood. Tasks are more ambitious and usually
require either a more involved calculation or an additional idea to obtain the
answer.

A final technical note: the book is complemented by a detailed key word list.
Key words listed are marked in italics throughout the text.

In the course of shaping the idea of this book and writing it, I profited from
discussions with many colleagues. I am especially thankful to Arndt Benecke,
Dennis Bray, Martin Brinkmann, Luca Cardelli, Enrico Carlon, Avi Halperin,
Andreas Hildebrandt, Martin Howard, Oliver Kohlbacher, Hans Meinhardt,
Thomas Lengauer, Hans-Peter Lenhof, Annick Lesne, Ralf Metzler, Johan
Paulsson, Andrew Phillips, Wilson Poon, Helmut Schiessel, Bernard Vanden-
bunder, Jean-Marc Victor, Pieter Rein ten Wolde, Edouard Yeramian.

Finally, I would particularly like to thank Andreas Hildebrandt and Mar-
tin Howard for their detailed and helpful remarks on an early version of the
manuscript.

I gratefully acknowledge the hospitality of the Institut d’Électronique, de Mi-
croélectronique et de Nanotechnologie (IEMN) in Villeneuve d’Ascq and the
Institut des Hautes Études in Bures-sur-Yvette, where parts of this book were
written.

Lille, 2006
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CHA PT E R 1

Equilibrium Statistical
Mechanics

Après tout, vous êtes ici, c’est l’essentiel! Nous allons faire du bon travail
ensemble [...]! D’ici peu, le monde ébloui decouvrira la puissance du grand Z!

Franquin, Z comme Zorglub (1961)

1.1 Z: THE PARTITION FUNCTION

This section introduces the basic physical concepts and mathematical quan-
tities needed to describe systems composed of many particles, when only a
statistical description remains possible.

Already for an apparently trivial system such as a gas of identical atoms,
composed of N ∼ 1023 particles/mole (Avogadro’s number), the description of
each particle’s trajectory is illusory and not even desirable, and hence only a
statistical approach feasible. In biology, as we will see, things are more com-
plicated: not only is the number of relevant interacting components large, but
in addition the components are very often ‘individuals’.

Suppose we can characterize our system of interest by a given number of ‘state
variables’, which can be finite or infinite. An example of such a state variable
can be the spatial position of a particle, hence a continuous variable, but in
principle it can be any other of its distinguishing characteristics. We call the

3
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set of these state variables x, irrespective of their physical nature, and treat
x here as a set of discrete variables;1 we call such a collection of variables
characterizing the state of a system a microstate. The possible microstates a
system can assume, typically under certain constraints, can be subsumed un-
der the name of a statistical ensemble. One has to distinguish the microstate
the system can assume in each of its realisations from the ultimate macrostate
that is to be characterized by a macroscopic physical observable after a suit-
able averaging procedure over the microstates.2

Example. We give a simple illustration of the concept by considering the
conformations of a linear molecule such as DNA. The macrostate is the chain
conformation we will most probably observe when we image the molecule un-
der certain experimental conditions, while a microstate is any mechanically
possible conformation of the molecule. The collection of all these possible
states is what we call the statistical ensemble.

Coming back to the conceptual question: what quantity governs the probabil-
ity P (x) of each state to occur?

Probability and information. We call P (x) ≥ 0 a probability; consequently,∑
{x} P (x) = 1, where the summation is over all possible states. To each prob-

ability we can associate an information measure3

s(x) = − lnP . (1.1)

For P = 1, s = 0, and for P = 0, s =∞. Therefore s(x) is a measure for the
lack of information. It can be used to define entropy as the average of s(x) in
distribution,

S(P ) =
∑
{x}

s(x)P (x) = −
∑
{x}

P (x) lnP (x) . (1.2)

In our terminology entropy can also be called an average ignorance. The
information-theoretic unit of entropy is the bit.

1In the case of continuous variables, sums have to replaced by integrals in an obvious
way; we will encounter this later and will pass liberally from one notation to the other.

2The averaging procedure means that we can determine the macroscopic state by an
average over the ensemble of microstates; the resulting ensemble average gives a correct
description of the macrostate of the system if the system had sufficient time in its dynamic
evolution to sample all its microstates; this condition is called ergodicity.

3The choice for the logarithm will become clear in the section on thermodynamics. Note
that we do not distinguish in our notation between log and ln, the meaning should be clear
from the context.
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Example. Again we take as a simple example DNA, which consists of the
four bases A, C, G, T (the details of the build-up of DNA are explained in
Chapter 2). If the probability of all bases is identical, P (base) = 1/4, and
we have S(P ) = 4× (1/4)× ln2(4) = 2. The average ignorance is thus 2 bits
per nucleotide. In order to interpret this result consider the following: before
a base is read by some ‘device’ (e.g., a polymerase transcribing DNA into
RNA), the information can be represented in binary code as two bits: 11, 10,
01, 00. After reading, the uncertainty has become 0.

Maximum entropy. What determines the form of P ? In order to deduce it,
we employ the prescription proposed by E. T. Jaynes, 1957. It states that
the prior probability distribution maximizes entropy while respecting macro-
scopic constraints; it should thus yield the maximum average ignorance under
those constraints.

Consider first the case of equiprobabilities, as we have assumed for our simple
DNA example: there is no other constraint. In order to apply Jaynes’ concept,
we have to maximize S(P ) under the only natural constraint of normalization,∑
{x} P (x) = 1. This leads to a variational problem4

δ[S + λ[
∑
{x}

P (x)− 1]] = 0 (1.3)

in which δ denotes the variation of the bracketed term with respect to P ; e.g.,
one has δS(P ) = −

∑
{x}[δP · lnP +P ·δ(lnP )], and δ lnP = [d(lnP )/dP ]δP .

In Eq. (1.3), λ is a Lagrange multiplier, a constant to be determined in the
calculation.

This variational problem Eq. (1.3) is solved by

P (x) = eλ−1 = const. ≡ Ω−1 (1.4)

where Ω is the number of realizations of x. All states are indeed found to
be equally probable, with a probability inverse to their number. From the
definition of entropy, Eq. (1.2), we have the relation

S = ln Ω . (1.5)

Exercise. Show that P (x) solves (1.3).

4For those confused by the δ-notation common to variational calculations, the same
result is obtained by replacing P → P0 + ε×P with a small parameter ε, and requiring the
terms of linear order in ε to vanish.
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The canonical ensemble. We now repeat the above argument and cal-
culation for the so-called canonical ensemble. Here, one additional constraint
appears, since we want to characterize the states of the system now by an
energy E(x), which we allow to fluctuate with average 〈E〉 = E0.

In this case we must maximize S(P ) under two constraints, the normalization
condition, and in addition the condition on the average energy

〈E〉 =
∑
{x}

E(x)P (x) . (1.6)

The resulting variational problem involves two Lagrange parameters, λ and β:

δ[S + λ[1−
∑
{x}

P (x)] + β[〈E〉 −
∑
{x}

E(x)P (x)]] =

=
∑
{x}

δP (x) · (− lnP − 1− λ− βE(x)) = 0 , (1.7)

with the canonical or Gibbs distribution as a result,

Pβ(x) = Z −1
β e−βE(x) , (1.8)

where Zβ is the partition function

Zβ =
∑
{x}

e−βE(x) . (1.9)

For dimensional reasons, the Lagrange parameter β must be an inverse energy,
which we take as the thermal energy

β −1 = kBT (1.10)

with Boltzmann’s constant kB . We define the free energy as

F ≡ −kBT lnZ . (1.11)

The meaning of this definition will become clear in the following section. Eq.
(1.9) is the key quantity in all of the first chapter of this part of the book; we
will be mostly concerned with methods how to compute it.

Task. Determine Pβ,µ if not only the average energy 〈E〉 is taken as a con-
straint condition, but also the number of particles N is allowed to fluctuate
with average 〈N〉. The associated Lagrange parameter µ is called chemical
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potential.5 The ensemble governed by the resulting distribution is called the
grand canonical ensemble.

Equivalence of ensembles. The different ensembles (canonical, grand
canonical etc.) are macroscopically equivalent for equilibrium states in the
thermodynamic limit of N , V → ∞ with n = N/V = const. Deviations from
the thermodynamic limit scale as ∼ 1/

√
N , and are hence negligible since the

value of N we usually talk about in statistical mechanics is on the order of
Avogadro’s constant.6 This equivalence allows to choose the ensemble based
on its convenience in a particular application.

1.2 RELATION TO THERMODYNAMICS

The knowledge of the statistical distributions for the different ensembles is
sufficient to characterize the macroscopic properties of a physical system in
thermal equilibrium. We now make the link explicit between the statistical
description and the expressions of macroscopic thermodynamics, for which a
number of basic principles can be formulated.

The Laws of Thermodynamics. The physical insight of macroscopic ther-
modynamics is usually summarized in the laws of thermodynamics. They are

• Law 0: If two systems A and B are in thermodynamic equilibrium, and B
is in equilibrium with C, then A and C are also in equilibrium with each
other. The equilibria can be characterized by their mechanical, thermal
or chemical properties.

• Law 1: Energy E is conserved:

dE = dQ+ dW (1.12)

where Q is the heat flowing into the system, and W the work done by
the system. If a process is adiabatic, dQ is zero.

• Law 2: In a thermally isolated macroscopic system, entropy never de-
creases.

5The chemical potential often confuses: it is a measure for the availability of particles,
and plays thus an analogous role as temperature does in providing an energy source.

6There are exceptions for the equivalence of ensembles, a point we do not pursue here.
And, obviously, for systems in which N is very much smaller than Avogadro’s constant, the
deviations from the thermodynamic limit can be important.
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• Law 3: As the temperature of a system tends to absolute zero, entropy
reaches a constant.

We see that energy and entropy are the key notions of equilibrium thermody-
namics. Let us understand them more deeply. To achieve this we first gener-
alize the descriptors we have introduced before and introduce the important
notion of an extensive variable.

An extensive variable is a variable which scales linearly with system size.
Volume is a (trivial) example for such a system property: if one starts with
two systems of volume V1 and V2, the volume of the systems is additive:
V = V1 + V2, and hence scales linearly. The particle number N is another
example. Temperature T , however, is not extensive: putting two systems of
equal temperature T together does not result in a system with temperature 2T .

We call the state of a system an equilibrium state if it can be characterized
by its (internal) energy E, and a set of extensive parameters X1, ...Xm. For
such a state there exists a function of the extensive parameters, the entropy
S (which we obtained before from the Jaynes principle). We call the relation

S = S(E,X0, ..., Xm) (1.13)

a fundamental equation for the system. S itself is also extensive; furthermore,
it is an increasing function7 of E.

Consider now the first statement, the notion of the extensivity of S. We can
express it mathematically by writing S as a first-order homogeneous function
of its extensive parameters

S(λE, λX0, ...λXm) = λS(E,X0, ..., Xm) , (1.14)

where λ is a scalar.

The second statement about S, the monotonicity property, corresponds to the
condition8 (

∂S

∂E

)
Xi

≥ 0 . (1.15)

7E is also extensive, but this is actually a subtle point if systems become strongly
interacting. We are not concerned with sophisticated problems of this sort here.

8The equality is restricted to a set of measure zero.
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The monotonicity property of S with respect to E allows its inversion,
leading to

E = E(S,X0, ...., Xm) (1.16)

and E, like S, is a first-order homogeneous function

E(λS, λX0, ...λXm) = λE(S,X0, ..., Xm) . (1.17)

Some properties of scalar fields. Before introducing the thermodynamic
potentials, we need some mathematical concepts for scalar fields. They are
stated here just as facts.

• If φ = φ(x0, ..., xm) is a scalar field of m+1 variables, its total differential
is given by

dφ =

m∑
i=0

∂φ

∂xi
dxi . (1.18)

• If the xi = xi(u, v) with u, v scalar, we can rewrite this expression

dφ =
m∑
i=0

∂φ

∂xi

∂xi
∂u

du+
m∑
i=0

∂φ

∂xi

∂xi
∂v

dv . (1.19)

• Contour surfaces, for φ = constant, define an implicit functional rela-
tionship between the xi since on a contour surface

m∑
i=0

∂φ

∂xi
dxi = 0 . (1.20)

• If all xi except x0 and x1 (e.g.) are held fixed, then(
∂x1

∂x0

)
φ,...

=

(
∂φ

∂x0

)
x1,...

·
(
∂φ

∂x1

)−1

x0,...

, (1.21)

and (
∂x0

∂x1

)
φ,...

=

(
∂x1

∂x0

)−1

φ,...

(1.22)

for φ = const.

• For three variables, one has the cyclic rule(
∂x0

∂x1

)
x2

·
(
∂x1

∂x2

)
x0

·
(
∂x2

∂x0

)
x1

= −1 , (1.23)

which generalizes to more variables in an obvious way.
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Exercise. Perform the generalization of the cyclic rule, Eq. (1.23), to more
variables.

We can now proceed to look at the total differentials of E and S. We assume
that E is a function of entropy S, volume V , and particle number N ; the
extension to further extensive variables is straightforward. We have

dE =

(
∂E

∂S

)
V,N

dS +

(
∂E

∂V

)
S,N

dV +

(
∂E

∂N

)
S,V

dN (1.24)

where the subscripts indicate the variables to be held fixed. We define the
following intensive parameters:

T =

(
∂E

∂S

)
V,N

(1.25)

is temperature;

P = −
(
∂E

∂V

)
S,N

(1.26)

is pressure;

µ =

(
∂E

∂N

)
S,V

(1.27)

is chemical potential; hence

dE = TdS − PdV + µdN . (1.28)

The intensive parameters are all functions of S, V,N , and the functional rela-
tionships in eqs.(1.25) - (1.27) are called equations of state.

Exercise. Verify explicitly that temperature T , pressure P and chemical po-
tential are intensive variables, i.e., that they are homogeneous functions of
zeroth order.

Task. Deduce from the fact that E is a first-order homogeneous function of
its variables one can obtain the Euler equation.9

E = TS − PV + µN . (1.29)

9The expressions for E show that TS has the dimension of an energy. Hence the in-
formation entropy we determined in the first section has to be multiplied by Boltzmann’s
constant, kB .



Equilibrium Statistical Mechanics � 11

Hint: differentiate Eq. (1.17) with respect to λ and put λ = 1.

Given that we have introduced E as a function of entropy S, volume V and
particle number N , one may wonder whether it is not possible - and even de-
sirable - to define thermodynamic functions of other variables than the ones
chosen. In particular, one may also want to study dependences on intensive
rather than extensive variables. This is indeed possible, and the resulting func-
tions are not independent from each other. In fact, one can pass from one to
the other via a mathematical transformation we introduce first in a formal
manner.

Legendre transform. Let Y (X0, ..., Xm) be a scalar field of the extensive
variables Xj , and the Pj = (∂Y/∂Xj)Xi6=j are the corresponding intensive
variables. Then

Λ = Y [P0, ..., Pi]i≤m ≡ Y −
i∑

j=0

XjPj (1.30)

is the Legendre transform of Y with respect to Xj≤i. The total differential of
Λ reads

dΛ = −
i∑

j=0

XjdPj +
m∑

j=i+1

PjdXj (1.31)

so that Λ = Λ(P0, ..., Pi, Xi+1, ..., Xm) is a function of the i+ 1 intensive, and
m− i extensive variables.

After this formal definition we want to apply this concept. This is best done
by simple cases, ignoring the physical context for the moment.

Legendre transform in one dimension. We first discuss the Legendre
transform in one dimension for a function f(x) and its derivative

y = f ′(x) =
df

dx
≡ g(x) . (1.32)

We can understand y = g(x) as a variable transformation from x to y. How
can we express f in terms of y?

For the function f(x) we can write the equation within each point x along the
curve

f(x) = xf ′(x) + b(x) . (1.33)

Since x = g−1(y) where g−1 is the inverse of g, we have

b(g−1(y)) = f(g−1(y))− yg−1(y) ≡ Λ(y) . (1.34)
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This is often written in short form as

Λ(y) = f(x)− xy , (1.35)

where x is a function of y.

We move on to some exercises.

Exercise. Compute the Legendre transform of f(x) = ex.

Exercise. Give the Legendre transform of the harmonic form with the vector x,

u(x) =
1

2
(xT ·A · x) , (1.36)

where A is an invertible (n× n)-matrix.

We now return to the physical context. For the energy E, the four most
common thermodynamic potentials that result from the application of the
Legendre transform are the

• Helmholtz free energy (T given, canonical ensemble)

F (T, V,N) = E[T ] = E − TS = −PV + µN (1.37)

dF = −SdT − PdV + µdN (1.38)

• Enthalpy (P given)

H(S, P,N) = E[P ] = E + PV = TS + µN (1.39)

dH = TdS + V dP + µdN (1.40)

• Gibbs-free energy (T, P given)

G(T, P,N) = E[T, P ] = E + PV − TS = µN (1.41)

dG = −SdT + V dP + µdN (1.42)

• Grand canonical potential (T, µ given)

Φ(T, V, µ) = E[T, µ] = E − TS − µN = −PV (1.43)

dΦ = −SdT − PdV −Ndµ (1.44)

The thermodynamic potentials all have to be minimized at equilibrium for
fixed values of their variables.

This ends our brief look into thermodynamics. The message that we want to
retain is that
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• within equilibrium physics there is a well-established body of thermody-
namic functions with which the macroscopic properties of a system can
be described;

• these functions have a rigorous link with each other via the Legendre
transform, and with statistical mechanics, since we know how to compute
the thermodynamic potentials within this theory.

We now return to statistical mechanics, and begin to discuss methods which
allow to compute the partition function and the quantities derivable from it.

1.3 COMPUTING Z

This section introduces methods to compute Z and the thermodynamic quan-
tities that can be derived from it. We begin with some technicalities that will
be useful later. An obvious first step in the computation of Z is to know how
to compute integrals involving the Gaussian distribution. The Gaussian distri-
bution is a generic characteristic of equilibrium states: in thermal equilibrium,
a system will be in a state minimizing the corresponding thermodynamic po-
tential, and the fluctuations around this stable state will be Gaussian.

Gaussian distribution. The Gaussian probability distribution in the case
of one variable −∞ < x <∞ is given by

P (x) = Ce−
1
2Ax

2−Bx (1.45)

where the normalization constant is

C =

(
A

2π

) 1/2

e−
B2

2A . (1.46)

The parameter A > 0 controls the width of P (x) and, together with B, the
peak position. Introducing the average µ and variance σ2 we find

µ1 = −B
A
, σ2 =

1

A
(1.47)

and can thus write the normalized form of the Gaussian or standard normal
distribution

P (x) =
1√

2πσ2
e−

(x−µ1)2

2σ2 . (1.48)
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The multivariate version of the distribution, for i = 1, ...,m random variables
x = {xi} is

P (x) = C exp

−1

2

m∑
i,j=1

Aijxixj −
m∑
i=1

Bixi

 (1.49)

where A = Aij is a positive definite symmetric matrix. The normalization
constant reads in this case as

C = (2π)−m/2(DetA)−1/2 exp

[
−1

2
B ·A−1 ·B

]
(1.50)

with the matrix inverse A−1.

Based on these results we can now easily write down the mean of each of the xi

〈xi〉 = −
∑
j

(A−1)ijBj (1.51)

and the covariance

〈(xi − 〈xi〉)(xj − 〈xj〉) = 〈xixj〉 − 〈xi〉〈xj〉 = (A−1)ij . (1.52)

The inverse of A is the covariance matrix. Its diagonal elements are the vari-
ances, the off-diagonals are the covariances.

Characteristic function, moment generating function and cumu-
lants. The characteristic function of a stochastic variable X is defined by

G(k) ≡ 〈eik〉 =

∫
dxP (x)eikx , (1.53)

where the symbol 〈...〉 was used to abbreviate the average in distribution. Ob-
viously, G(k) is a Fourier transform of P . It exists for real k and obeys

G(0) = 1 , |G(k)| ≤ 1 . (1.54)

The coefficients µm of its Taylor expansion are the moments

G(k) =
∞∑
m=0

(ik)m

m!
µm (1.55)

where

µn = 〈xn〉 =

∫
dxP (x)xn . (1.56)
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The coefficients κm of the series of its logarithm,

lnG(k) =
∞∑
k=1

(ik)m

m!
κm (1.57)

are the cumulants. They are combinations of the moments, the lowest of
which are

κ1 = µ1 , κ2 = µ2 − µ2
1 = σ2. (1.58)

For the Gaussian distribution, all higher cumulants vanish. Higher moments
can thus serve to characterize more complex distributions - this is useful since
not in all cases full distributions are obtainable.

Exercise. Compute the cumulants for the Poisson distribution

pn =
an
n!
e−n (1.59)

over the integers and zero, n = 0, 1, 2, ....

We have reached a point where we want to see the machinery of statistical
mechanics in action. We will now apply it to a standard model of statistical
mechanics, the Ising model, certainly the most famous model ever formulated
in statistical mechanics. Originally conceived to describe a uniaxial ferromag-
net and its phase transition from the paramagnetic (non-magnetic) to the
ferromagnetic phase, it has found innumerable applications all over the fields
of physics, chemistry and biology.

1.4 THE ISING MODEL

The Ising model on a one-dimensional lattice is defined by the energy10

H = −K
2

∑
n

snsn+1 − h
∑
n

sn (1.60)

where the sn = ±1 are called the ‘spins’ - local magnetic moments - of a
ferromagnet.11 Within the model, the parameter K describes a coupling be-
tween neighbouring local spins; for K > 0 they will prefer to be in the same

10In statistical mechanics jargon, the Hamiltonian.
11A ferromagnet is usually a metal which, below a certain temperature, has a permanent

magnetic moment; the origin of this permanent moment lies in the microscopic magnetic
moments produced by the electron shells inside the metal. In the model description we
employ, we summarize these atomistic effects by an elementary spin. This is sufficient if we
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state since the energy favors that state. The parameter h in the second term
defines an external coupling affecting each of the spins; for the ferromagnetic
system for which the Ising model was originally conceived, this contribution
represents an applied magnetic field which, depending on its sign, can favour
either the ‘up’ or the ‘down’ state with all spins following the field direction.

Since we will use the Ising model in a biological context, it is clear that the
original interpretation of the parameters is largely immaterial for us: for us,
sn is just a two-valued variable, and can be re-interpreted at will. From a
biological point of view we can, e.g., consider the Ising model in one spatial
dimension as a chain of objects which can be in either of two states. A simple
biological example to which this model then applies can be a DNA molecule.
Within the Ising model we can define microstates that distinguish each other
by the different numbers of spins up, interpreted as ‘base pairs bound’ and
spins down, interpreted as ‘base pairs unbound’. Hence we can, e.g., address
the question of the binding of two DNA strands, and the Ising model becomes
a first - but ultimately too crude - model for the physics of a DNA double
strand.

This re-interpretability of the model is a big advantage of statistical mechan-
ics: indeed, very often physically quite different situations turn out to fall into
the class of just one type of model. This explains the success of the Ising model
in so many applications - having a system with just two alternatives is the
simplest one can have.

Plugging the Hamiltonian of the Ising model into the partition function in the
canonical ensemble, we obtain

Z =
∑
{sn}

e−H =
∑
{sn}

e J
∑
n snsn+1+βh

∑
n sn (1.61)

with J ≡ βK/2. In the following we leave out the field h; its inclusion in the
calculation is left as a Task.

Now we have to compute Z, and we will learn a first method to do it.

The transfer-matrix solution of the 1d-Ising model. The partition func-
tion can be rewritten as

Z =
∑
{sn}

e Js0s1 · e Js1s2 · ... · e JsN−1s0 (1.62)

are only interested in the ordering phenomenon between a paramagnetic (non-magnetic) and
a ferromagnetic phase. A true microscopic theory of ferromagnetism has to be a quantum
theory.
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where a periodic boundary condition is assumed, i.e., the linear chain is joined
at its ends.

Since each spin has two orientations, there are four configurations for two
neighbouring spins, two of which are degenerate in energy. This suggests to
introduce a matrix representation with a transfer matrix

TJ =

(
eJ e−J

e−J eJ

)
(1.63)

which is a symmetric matrix, to be diagonalized by an orthogonal matrix O.
Since this matrix applies to every neighbouring pair of spins we can express
the partition function as

Z = Tr[TNJ ] = Tr[(OTJO
−1)N ] (1.64)

where the symbol Tr stands for ‘Trace’, the sum of the diagonal entries of the
matrix.

Exercise. Verify expression (1.64).

The orthogonal matrix O to diagonalize TJ is given by

O =

(
0 1
−1 0

)
(1.65)

and we find for the diagonalized matrix the result

OTJO
−1 = 2

(
cosh J 0

0 sinh J

)
(1.66)

so that

Z = 2N [coshN J + sinhN J ] . (1.67)

Since in statistical mechanics we are interested in the thermodynamic limit
which in this model amounts to consider N →∞, one finally finds the expres-
sion of the partition function

Z = 2N coshN J . (1.68)

Exercise. Show (1.68).
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Eq. (1.68) is the first partition function we have calculated explicitly, and we
can now calculate physical quantities from it. Let us begin with the internal
energy E; it is found to be

E = Z−1
∑
{sn}

He−βH = Z−1 ∂Z

∂β
= −NK tanh(βK/2) . (1.69)

A second, more complex example is the two-point correlation function 〈sisj〉
for |i− j| = r. It is given by

〈sisj〉 = Z−1
∑
{sn}

sisje
−βH . (1.70)

In order to apply the transfer matrix method we first have to find a suitable
way to represent it in terms of TJ . One can convince oneself that the expression
to write down is

σ3T
r
Jσ3T

N−r
J (1.71)

where σ3 is the matrix

σ3 =

(
1 0
0 −1

)
. (1.72)

This expression states that between two well-defined spin states along the
chain the transfer matrix has to propagate r times between the spins, and
then again N − r times along the other side of the closed chain - remember
we maintain the periodic boundary condition.

With this we can now write

〈sisj〉 = Z−1Tr[σ3T
r
Jσ3T

N−r
J ]

= Z−1Tr[(Oσ3O
−1) · (OTJO−1)r · (Oσ3O

−1) · (OTJO−1)N−r]

= 2NZ−1(coshr J sinhN−r J + sinhr J coshN−r J)

= tanhN−r J + tanhr J (1.73)

where

Oσ3O
−1 =

(
0 1
1 0

)
. (1.74)
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With N � r and in the thermodynamic limit we obtain the expression

〈sisj〉 = tanhr J = e−|i−j|/ξ (1.75)

where we defined

ξ ≡ | ln(tanhJ)|−1 (1.76)

as the correlation length. For the 1d-Ising model ξ diverges in the limit T → 0,
when all spins align either up or down (i.e., the system adopts a homogeneous,
oriented state). It will turn out that there is no phase transition in the one-
dimensional Ising model at a finite temperature (T > 0) between a state of
finite magnetization - the oriented state in which all spins point collectively
either up or down - and a state without a net magnetization, in which the
spins point randomly either up or down with a vanishing average.

For this simple example, we are essentially done and the reader can try to
extend the model to include the field h, or calculate other thermodynamic
quantities to get a feeling for the systems’ properties.

But we do not yet want to stop here and take at little deeper look into this
system. We have computed thermodynamic quantities in the thermodynamic
limit N →∞. Let us suppose we do not do that - in fact, in some applications
of statistical mechanics in biology, this limit may be difficult to reach, and
effects of finite system size may be important.

Let us therefore study how the properties of the one-dimensional Ising model
are affected upon a change of N . We start from the expression

Z[N, J ] = Tr[TNJ ] = Tr[(OTJO
−1)N ] (1.77)

where OTJO
−1 = eJ · 1 + e−Jσ3; the N -dependence is now explicit. Suppose

we, in a first step, double the lattice size from N to 2N . With

(OTJO
−1)2 = 2(cosh 2J · 1 + σ3) = COT JO

−1 (1.78)

where

C = 2
√

cosh 2J , J =
1

2
ln(cosh 2J) (1.79)

we arrive at the relation

Z[2N, J ] = CNZ[N, J ] . (1.80)
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The equations (1.79) and (1.80) can be read as generators of a flow in the
coupling constant J . If we were to iterate the mapping J → J starting from a
value J = 1, the iterated map will converge to zero (Exercise). What can we
learn from this observation?

By these very simple considerations we have in fact found the two fixed points
of a renormalization group transformation of the 1d-Ising model - without
noticing that such a thing exists. The first fixed point is J = 0, which corre-
sponds to T =∞. Physically, the system is then in the fully disordered phase,
in which the spins point randomly either up or down. The second fixed point
is J = ∞ corresponding to T = 0, and this is the fully ordered spin state
which only exists at zero temperature. Indeed, there is no phase with a finite
magnetization M ≡ 〈si〉 6= 0 for 0 < T ≤ ∞, as we mentioned before.

Although we have of course not made a systematic approach to renormaliza-
tion, there is already something to learn. Suppose we consider the system at
a given temperature, and at a given size N . The spins inside the system will
have a correlation length ξ over which their orientation (up or down) is corre-
lated. If we now double the system size, what does the correlation do? Will it
grow stronger or not? It is characteristic of a system right at a phase transi-
tion that the correlation length is infinite. The system behaves in a collective
(or cooperative) fashion. If the temperature I choose is just that critical tem-
perature, all the steps of increasing system size will not affect the correlation
length, and it will stay infinite. For the 1d-Ising model, this is just the case at
T = 0. By contrast, if I deviate ever so slightly from that critical temperature,
the step of increasing system size will tend to reduce the correlation length,
and if this procedure is repeated over and over again12 the system will move
away to a system of uncorrelated spins, hence a disordered phase. This whole
approach, in its systematic version, allows to compute the properties of all
equilibrium phase transitions in a unified way.

After this digression on the idea behind the renormalization group, we turn to
another approach to compute the partition function of the 1d-Ising model: the
computation by recursion. This will turn out to be a very important technique
in the third chapter of this book, since recursion methods are at the heart of
dynamic programming.

12Hence the notion of a renormalization group; technically, it is a semi-group.
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Solution of the 1d-Ising model by recursion. The analytic solution of
the 1d-Ising model is so easy to obtain since the coupling between any two
spins is the same. This is not necessarily the case, and we will indeed see later
that for the most relevant biological applications this simplifying assumption
cannot be made.

So let’s now make things a little more complicated. For the 1d-Ising model
with a neighbour-dependent coupling J(n), we write13

βH = −
N−1∑
n=1

J(n)s(n)s(n+ 1)−
N∑
n=1

H(n)s(n) (1.81)

where we now have also included a neighbour-dependent field H(n) = βh(n).
This variant of the Ising-model has been applied to problems in statistical
genetics, as suggested by J. Majewski et al., 2001, in a study of epistasis
(i.e., gene-gene interaction). In this interpretation, the spins on the lattice are
identified with different genes placed along the DNA molecule rather than the
individual base pairs.

As before, the total number of states in the model is 2N , hence exponential in
N , and the computation to be performed is seemingly exponential in N since
we now cannot use the transfer matrix trick anymore due to the neighbour-
dependence of couplings. Using a recursion technique, however, we can achieve
a computation in linear ‘time’ N .

For the construction of the recursion relation we write

ZN = ZN+ + ZN− (1.82)

where ZN+ refers to the partition function of the chain (which is left open in
this case - in contrast to our computation before) in which the last spin at
site N points up; the interpretation of ZN− is evident. One finds (Exercise)

ZN+ = eH(N)[Z(N−1)+e
J(N−1) + Z(N−1)−e

−J(N−1)] (1.83)

and
ZN− = e−H(N)[Z(N−1)+e

−J(N−1) + Z(N−1)−e
J(N−1)] . (1.84)

The partition function ZN can now be computed recursively from these ex-
pressions.

This concludes the discussion of the Ising model in one spatial dimension.

13With a slight change of notation which should be obvious.
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Although we saw some computational approaches at work, we can be a little
bit dissatisfied since there is no phase transition between an ordered and a
disordered state in this model at a finite temperature. So we are asked to
generalize, and one way to do this is to pass on to higher dimensions.14 Since
calculations in higher dimensions are more complicated (and in fact, they will
become far too complicated for the ambitions of this text) we will try to sim-
plify in another way. This leads us to what is called the mean-field solution of
the Ising model. In this approach, spatial dimension will first play no role.

Mean-field solution. For the discussion of the mean-field approximation we
place the spins on the edges of a hypercube in d space dimensions, and write
the energy as

H = −1

2

∑
x,y

J(x,y)s(x)s(y) (1.85)

where x = a xi ei with the lattice constant a and ei, i = 1, ..., d are the unit
vectors on the lattice. J(x,y) is taken as a symmetric matrix.

Again we need a technical concept first.

Hubbard-Stratonovich transformation. Consider the Gaussian integral
relation

exp

(
β

2
Js2

)
=

√
β

2πJ

∫ ∞
−∞

dφ exp

(
−β

2
J−1φ2 + βφs

)
. (1.86)

It can be understood as a linearization of the argument of the exponential
(i.e., the variable s). The price to pay for this operation is the introduction of
an auxiliary integration variable.

We generalize this step to the weight

exp

(
β

2

∑
x,y

J(x,y)s(x)s(y)

)
= (1.87)

=
∏
x

∫ ∞
−∞

dφ(x) exp

[
−β

2

∑
x,y

J −1(x,y)φ(x)φ(y) + β
∑
x

φ(x)s(x)

]

where we now have introduced a local field φ(x) at each lattice site. Note that

14With this generalization we lose for the moment the biological interpretation of the
Ising model for the binding of a DNA double strand. But this does not matter: here we
are mainly interested in the problem of the calculation of partition functions; the more
specific use of such models within a given biological context follows in the subsequent parts
of the book.
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the expression is meaningful as long as the matrix is semi-definite and posi-
tive, which is not the case for the Ising model since J(x,x) = 0; the formula
thus has to be considered a formal one.15

The partition sum over the spins s can be performed exactly with the Hubbard-
Stratonovich transformation, with the result

Z =

∫
Dφ exp

[
−β

2

∑
x,y

J −1φ(x)φ(y) +
∑
x

ln(cosh[βφ(x)])

]
(1.88)

where the integral measure is
∫
Dφ ≡

∫ ∏
x dφ(x). The ln(cosh(..))-term in

the argument of the exponential function arises from the summation over the
spins s(x) which is now easy to do - that was just the idea behind the lin-
earization in the first place.

We now have the expressions in place to perform the mean-field approxi-
mation. It corresponds to taking the saddle-point of the integrand, which is
determined by the stationary value of the argument of the exponential. This
idea is easily explained for a function of one variable; it is also known as the
method of steepest descent.16 Suppose the integral we want to compute is

I = lim
N→∞

∫ ∞
−∞

dx e−Nf(x) (1.89)

where we have introduced an explicit parameter N ; frequently such a param-
eter can be defined, if often only on formal grounds. Suppose the function f
has a global minimum at a value x = x0, well-separated from possibly other
minima. Upon Taylor expansion, f fulfills

f(x) ≈ f(x0) +
1

2
f ′′(x0)(x− x0)2 +O(x3) , (1.90)

since we expand around an extremum for which f ′(x0) = 0.

In the limit of N →∞, the global minimum will dominate the integrand and
the integration range is largely determined by the region around x0. Hence

I ≈ lim
N→∞

e−Nf(x0)

∫ ∞
−∞

dx e
N
2 f
′′(x0)(x−x0)2 (1.91)

≈ lim
N→∞

e−Nf(x0)

(
2π

Nf ′′(x0)

)1/2

.

15Further, we have ignored the integration amplitude.
16For oscillating integrands, see the stationary phase approximation.
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Task. Compute the next-order correction to the saddle-point value of the in-
tegral.

Coming back to our case, the result is given by the equation

−
∑
y

J −1(x,y)φ0(y) + tanh[βφ0(x)] = 0 . (1.92)

with the mean-field 〈φ(x)〉 = φ0(x).

A note on the mean-field approximation. At this point it is useful to
make a comment on the notion of the mean-field approximation since the
approach we took seems rather technical. In fact, there are several ways of
introducing a mean-field. A simple alternative is, e.g., to define and introduce

Ĥ(x) ≡
∑
y

J(x,y)s(y) (1.93)

as an effective field acting on the spins s(y). The resulting partition function
then becomes one-dimensional and can be solved following the steps we took
before. This procedure essentially means that within mean-field theory, one
neglects correlations and factorize 〈s(x)s(y)〉 = 〈s(x)〉〈s(y)〉. While this pro-
cedure is technically much easier to perform than the computation we did, we
will see in the following that our more systematic and general approach will
also allow us, in a fairly straightforward sequence of steps, to learn something
about the regime of validity of the mean-field approximation.

We now return to Eq. (1.92). If we assume that J(x,y) ≡ J , the system
becomes translationally invariant and we can define the uniform order param-
eter M via

φ0 = 2dJM (1.94)

so that the saddle-point equation is rewritten as

M = tanh(2dβJM) . (1.95)

The solutions of this equation can be obtained graphically, see Figure 1.1. If
2dβJM > 1, there is a pair of solutions which merge at M = 0 at the critical
temperature

β −1
c = 2dJ . (1.96)

Within the mean-field approximation, the Ising model thus displays a phase
transition at a finite temperature. This is at variance with our exact result
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for d = 1. So we have to clarify the limit of validity of the approximation
we made.

In fact, as we said before, the mean-field approximation assumes a factoriza-
tion of correlation functions, hence a neglect of fluctuations.17 These can be
accounted for by an expansion around the saddle-point value. We may thus
speculate that the approximation is valid whenever this expansion is mean-
ingful. In order to approach this question, we therefore have to pass on to a
theory which is capable to capture the properties of the Ising model in the
vicinity of the critical temperature.

Figure 1.1 Phase transition in the Ising model in the mean-field approx-

imation: graphical solution of the mean-field equation. A change in

temperature allows to pass from a unique solution for T > Tc (left) to

two solutions at T < Tc (right).

17Why do fluctuations destroy the factorization of correlation functions? Exercise.
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Ginzburg-Landau theory. In the vicinity of the transition, we can expand
the terms in Eq. (1.88) in a Taylor series (Why? Exercise!)∑

x,y

J −1φ(x)φ(y) = J −1
∑
x

φ(x)

(
1

2d
− 1

4d2
a2∇2 + ...

)
φ(x) (1.97)

and

ln[cosh(βφ(x))] =
β2

2
φ2(x)− β4

12
φ4(x) + ... (1.98)

which, after passing to the continuum limit for a → 0 yields the Ginzburg-
Landau form of the Hamiltonian

βH =

∫
ddx

[
1

2
(∇φ)2 +

m2

2
φ2 +

λ

4!
φ4

]
. (1.99)

This theory can easily be treated. We consider the case of a homogeneous
order parameter, φ = const. Then

βV0(φ) =
m2

2
φ2 +

λ

24
φ4 (1.100)

is the mean-field or effective potential of the Ginzburg-Landau theory. De-
pending on the sign of the quadratic term - with a fourth-order term which
has to be strictly positive for thermodynamic stability - the potential displays
two shapes which are shown in Figure 1.2. For m2 > 0, the potential has a
single minimum at φ = 0; this can be identified with a disordered state. For
m2 < 0, two minima appear at values φ = ±φ0. They correspond to a pair of
ordered states related to each other by a mirror-symmetry: one has a positive,
the other a negative value of the same magnitude. For the ferromagnet these
states correspond to states with positive and negative magnetization and are
identical to the solutions obtained from the graphical solution of the saddle-
point equation in Figure 1.1.

So far we have not specified the value of m2; in any case, in the vicinity of the
transition at m = 0 we know that

m2 ∼ βc − β ∼ |T − Tc| . (1.101)

On the other hand, on dimensional grounds, m must be an inverse length, and
we define

m ≡ ξ−1 ∼ |T − Tc| 1/2 , (1.102)

i.e.,
ξ ∼ |T − Tc|−1/2 . (1.103)
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We had encountered ξ before: it is the (spin-spin) correlation length. In Eq.
(1.103) we have obtained the first critical exponent which describes the power-
law behaviour of physical quantities in the vicinity of the critical point: the
exponent ν = 1/2 is thus the critical exponent of the correlation length.

The information that the approach to a critical point is by a power-law is
essential. Power laws are a general characteristic of systems without an in-
trinsic length scale (an example is a decay-length of correlations), or, in other
words, in scale-invariant systems. This property of critical systems explains
why power laws are so dearly loved by statistical physicists, and why they try
to find them in more complex systems as well - a point we will return to in
the book.

Figure 1.2 Mean-field potential of the Ginzburg-Landau theory, for T <

Tc (m2 < 0) and T > Tc (m2 > 0).

The Ginzburg-Landau model is, from a computational point of view, a very
nice topic. We therefore suggest a number of exercises and tasks for the read-
ers to try.

Task. Perform the steps explicitly which are needed to pass from the discrete to
the continuum version of the Ginzburg-Landau theory, leading to Eq. (1.99).
Verify that the mass parameter and the coupling constant are given by

m2 =
β−2
c

Ja2
(βc − β) , λ =

4β2

J2β4
c

ad−4 . (1.104)
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Exercise. Perform the mean-field approximation for a homogeneous order pa-
rameter at the level of the continuous Ginzburg-Landau theory by adding a
field term −hφ. Discuss the phase transition in this model for h = 0 at T = Tc
and at T < Tc and h→ 0.

As it turns out, the phase transition of the Ising model at T = Tc, h = 0 is a
second-order phase transition, while for T < Tc, h→ 0, it is a first-order phase
transition. This terminology derives from the singular (power-law) behaviour
of the first and second derivatives of the free energy near the transition. At
a first-order phase transition, there is a jump in the first derivative of the
free energy or, in other words, the free energy has a kink. For a second-order
phase transition, the free energy is continuous and differentiable, but at the
transition its second derivative displays a discontinuity. We will encounter the
distinction between first- and second-order transitions as well in Chapter 3, in
the discussion of the thermal stability of DNA, and see that in this particular
case, things are in fact more complicated.

Exercise. Draw the effective potential of the Ising model in Ginzburg-Landau
theory with and without field. Draw the shape of the potential near the first
and second-order transition to illustrate the above discussion.

Exercise. Calculate the dependence of the susceptibility on the distance of the
critical point, |T − Tc|, i.e.

χ = ∂hφ0|h=0 . (1.105)

Deduce the critical exponent of the susceptibility.

Exercise. Consider the phase transition from the disordered to the ordered
state at h = 0 and at a finite value of h. Calculate the specific heat

C ≡ −T∂TF . (1.106)

What do you notice? Determine the critical exponent.

Task. Are there also solutions to the Ginzburg-Landau equations which de-
pend on space, e.g., one-dimensional profiles φ(x)? What is their physical
interpretation?

Phenomenological scaling. Having found the first examples of critical ex-
ponents, the next obvious question to ask is whether there are any relations
between them. In order to answer this question we start from the homogeneous
Ginzburg-Landau equation with field and express it in the form

m2φ+ uφ3 = h . (1.107)



Equilibrium Statistical Mechanics � 29

The solutions to this equation describe a family of solutions φ = φ(m2, h). We
have discussed before what happens if h = 0; if we approach the critical point
at T = Tc, hence at m2 = 0, we find the power-law dependence

φ ∼ h 1/3 , (1.108)

which yields another critical exponent.

Is there a way to combine the two control parameters m2 and h? Let us in-
troduce a scaled field variable

ψ = φh−1/3 . (1.109)

Going back to Eq. (1.107) we find

m2h−2/3ψ + uψ3 = 1 . (1.110)

Thus by redefining x ≡ m2h−2/3 we obtain xψ + uψ3 = 1 and the whole de-
pendence on m2 and h is now through a parameter combination. The general
solution of the Ginzburg-Landau equation thus will have the scaling form

φ(m2, h) = h1/3ψ(m2h−2/3) . (1.111)

This equation states that the function φh−1/3 has a universal form, and all
curves parametrized by x will precisely collapse on this one universal curve.

What is the expression of this function? For the cubic polynomial, one can
calculate it explicitly (take this as Task), but in most cases this is not feasible.
It is more instructive to see the properties of this function in certain limits.
We know that at x = 0

ψ(0) ∼ u−1/3 . (1.112)

For x→∞, the cubic term in Eq. (1.110) can be dropped and we find in that
limit

ψ(x) ≈ 1

x
, (1.113)

hence

φ ≈ h1/3(m2h−2/3)−1 =
h

m2
∼ h

T
(1.114)

which is the high-temperature or weak-field limit; the final result is called
Curie’s law of paramagnetism in the context of magnetism.
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For the opposite limit, x→ −∞, we have |xψ| � 1 and |uψ3| � 1 so that

ψ ≈
√
|x|/u . (1.115)

We have seen this before: it is the ordered phase with φ ∼ |m2| 1/2.

The idea to combine the control parameters into a single scaling variable has
proved extremely fruitful for the theory of phase transitions. In the mid-sixties
of the last century B. Widom proposed that quite generally the free energy
per unit volume can be written in the scaling form

f(m2, h) = |m2|2−αfs(h(m2)∆) , (1.116)

where α is the specific heat exponent, and ∆ the gap exponent. From this hy-
pothesis, a whole sequence of critical exponent relations can be deduced that
are now known to hold independent of spatial dimension (with some notable
exceptions).

Task. From the above considerations of phenomenological scaling for the
Ginzburg-Landau theory, deduce the relation between the critical exponents
β, α, and ∆. Here, β is not to be confused with the abbreviation of (kBT )−1;
it is the common notation for the exponent characterizing the temperature
dependence of the order parameter via m ∼ |T − Tc|β .

Beyond Ginzburg-Landau theory. Ginzburg-Landau theory has permit-
ted us to very easily find the equilibrium states φ0 of the system by an almost
trivial analytic calculation, the minimization of the effective potential V0(φ),
Eq. (1.100). Further, we have found the critical exponents. But we still have no
clue about the validity of this approach. In contrast to our calculation of the
partition function of the one-dimensional Ising model, spatial dimensions do
nowhere appear explicitly, and the basic conflict between the one-dimensional
result (no phase transition at T > 0) and the Ginzburg-Landau result (a phase
transition at T = Tc 6= 0) persists. In order to finally resolve that conflict we
now have to look for the effects of fluctuations around the mean-field solution.
We expect that they will modify the behaviour we have obtained.

In order to compute the fluctuations around the mean-field solution we put
φ = φ0 + δφ and expand the Ginzburg-Landau Hamiltonian in δφ. This leads
to a partition function

Z = exp[−β(H0 +H1)] (1.117)
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where βH0 is the GL-value, and βH1 is determined by a Gaussian integral
over the δφ-fluctuations which can be carried out exactly. It reads

βH1 =
1

2

∫
ddx ln

[
−∇2

x +m2 +
1

2
λφ2

0(x)

]
δd(x− y)|x=y . (1.118)

With the Fourier representation of the δ−function18 we rewrite this as

βH1 =

∫
ddx

∫
ddk

(2π)d
e−ik·x ln

[
−∇2

x +m2 +
1

2
λφ2

0(x)

]
eik·x (1.120)

where the term ∼ e−ik·y was first pulled through to the left and then put to
y = x. If φ0 = const. we find

βH1 =

∫
ddk

(2π)d
ln

[
k2 +m2 +

1

2
λφ2

0

]
. (1.121)

Eq. (1.121) is the main result of this paragraph, and its consequences will now
be discussed. Obviously, this integral is not well-behaved for large k-values,
indicating the breakdown of the continuum theory for small spatial scales.19

We can render the integral finite by introducing a cut-off Λ, but already here
it becomes evident that spatial dimension now enters in the calculation. In
d = 3 we obtain

βH1 =
λφ2

0Λ

4π2
− 1

6π

(
m2 +

1

2
λφ2

0

) 3/2

+O(Λα) (1.122)

where higher-order terms depending on Λ are summed up in the last term; fur-
ther, terms which do not contain a dependence on the field have been dropped.

The expression (1.122) can be understood as an additional contribution to the
effective potential in mean-field which we recall had the form

βV0 =
1

2
m2φ2

0 +
λ

4!
φ4

0 . (1.123)

18The Fourier representation of a function we use in the following is given by the integral

f̂(x) =

∫
ddk

(2π)d
eik·xf(k) . (1.119)

Note that we frequently drop the .̂ and distinguish between a function and its Fourier
transform by its argument only.

19This phenomenon is called a UV-divergence in field theory since it occurs at large wave-
vectors, hence ‘high energies’. We do not follow this point here in all its consequences, since
this goes far beyond what is attempted here. The limited ambition here is to illustrate that
a continuum theory has to be considered carefully: it is potentially dangerous to extrapolate
its results down to microscopic scales. This may not show up in a purely mean-field approach,
but if one wants to go beyond to include fluctuation effects, surprises can happen.
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Expanding the root in βH1 up to fourth order in φ0 we obtain

βH1 = −m
3

6π
m3 +

λφ2
0Λ

4π2
− λmφ2

0

8π
− 1

64π

λ2

m
φ4

0 , (1.124)

where the first term can be ignored since it does not depend on φ0. We can
now restore the original form of the GL-potential by the redefinitions

m2
eff = m2 − λΛ

2π2
+
λm

4π
(1.125)

and

λeff = λ+
3

8π

λ2

m
. (1.126)

We stress again that, although the effective potential in d = 3 has the same
form as the effective potential in mean-field, the new result does depend both
on spatial dimension (the calculation is only valid in d = 3) and on the cutoff
Λ we used in calculating the integral.

The vicinity of the transition: m2 → 0. We are now ready to take the final
step and look at the effect of fluctuations at the critical point, or, more pre-
cisely, in the vicinity of the phase transition. In order to do this we have to look
at the correlation function of the field φ(x) in the limit m2 → 0, since this will
now give us additional information beyond the value of the order parameter
itself, which we can compute from the fluctuation-modified effective potential.

Calling the correlation function of the field20 G(x), it fulfills the differential
equation

(−∇2
x +m2)G(x) = δd(x) , (1.127)

and, consequently, its Fourier transform is given by

G(k) =
1

k2 +m2
. (1.128)

with, as before, m ≡ ξ−1 ∼ |T − Tc| 1/2.

Now let’s transform back to real space. We find

G(r) =

∫
ddk

(2π)d
eik·x

k2 + ξ−2
= ξ2−d

∫
ddq

(2π)d
eiq·x/ξ

q2 + 1
, (1.129)

20We made use of translational invariance of the system by shifting one of the arguments
to x = 0. In a translationally invariant system, the correlation function depends on the
distance of field at the two selected points in space - we saw this already before in our
computation of the correlation function in the one-dimensional spin chain.
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where q = ξk. The integrand has two asymptotic limits for |x| = r:

G(r) ∼


e−r/ξ

r(d−1)/2 , r � ξ

1
rd−2 , r � ξ .

(1.130)

Note that the first expression indeed reduces to our previous result, Eq. (1.75),
for d = 1. This means that, within Ginzburg-Landau theory, although there is
a mean-field transition, fluctuations will destroy this transition and the origi-
nal (exact) calculation is supported.

The existence of a second regime in which correlations decay algebraically
signals the presence of a true ordered phase at a finite temperature, i.e., for
0 < T < Tc, and we see that this is certainly possible for d > 2.

With this information we can now, finally, estimate the range of validity of
the Ginzburg-Landau theory. Considering length scales on the order of the
correlation length, we have

G(ξ) ∼ ξ2−d ∼ |T − Tc|
d−2
2 . (1.131)

If we look at the ratio of G and the square of the mean-field value of the order
parameter,

G(ξ)

φ2
0

∼ |T − Tc|
d−4
2 , (1.132)

we see that, in the vicinity of the transition for T → Tc, fluctuations grow
indefinitely for d < 4. The dimension du = 4 is hence considered as an upper
critical dimension above which mean-field theory becomes exact with respect
to the critical exponents, i.e., fluctuations are negligible.21 The dimension
dl = 1 is likewise a lower critical dimension at which the phase transition is
destroyed by fluctuations.

This concludes our discussion of the Ising model. We leave this model at a
point when, from the point of view of statistical physics, things become really
interesting: how can we mathematically describe the transition in the range
of dimensions 1 < d < 4? In d = 2, the Ising model can be solved exactly
by a transfer matrix approach (L. Onsager, 1944); in d = 3 the problem
of the computation of the partition function was shown to be NP-complete

21In a more detailed calculation one can see that right at the upper critical dimensions,
logarithmic corrections arise.
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(S. Istrail, 2000). It is here where renormalization-group methods need to
be used, to which we will turn in a later stage of the book.

In the following, we will introduce three types of biomolecules that will play
a role in the book: DNA, RNA and proteins. Subsequently we will see what
aspects of their properties can be treated with the methods we learnt in this
chapter.
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Additional Notes

Equilibrium statistical mechanics is a well-developed theory on which many
books have been and are being published, written to every taste of mathemati-
cal rigor. Four suggestions are the books by (K. Huang, 2009), (M. Plischke
and B. Birgersen, 2006), (L.E. Reichl, 2009) and (F. Schwabl, 2010).

Books focussing on the renormalization group methods of statistical physics
are, again as examples, the volumes by (L.P. Kadanoff, 2000) and
(N. Goldenfeld, 1992).

A highly recommendable introduction into biophysics, touching on many as-
pects of statistical physics, has been written by (P. Nelson, 2007). Two
recent excellent biophysics books are by (H. Schiessel, 2014), a book which
is also based on statistical physics approaches, and further the broad intro-
duction to the field for beginners by (F. Cleri, 2016).
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CHA PT E R 2

Biomolecular Structure:
DNA, RNA, Proteins

2.1 DNA, RNA AND PROTEINS: THE BUILDING BLOCKS

In this section we give a brief description of the basic chemical properties of
the biomolecules whose statistical physical properties will occupy us in the
following. The details given here are minimal; an indispensable reference for
more detail is the book by B. Alberts et al. (2014).

DNA and RNA are charged polymers composed of three structural elements:
a sugar, a phosphate group and the bases. The sugar gives the molecules their
names: deoxyribose or ribose. Both are pentose rings with five carbon atoms;
the arrangement of the carbons and their numbering is shown in Figure 2.1.
The chemical formula of deoxyribose is C5H10O4, of ribose C5H10O5. The

Figure 2.1 The sugar ring of the backbone of both DNA and RNA.

It contains an oxygen atom; the numbering of the carbon atoms is

indicated.

39
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Figure 2.2 A DNA single strand with a thymine base offering two hy-

drogen bonds to bind to a complementary base, adenine.

sugar builds, together with the phosphates, the backbone of DNA and RNA.
The phosphates are attached to one sugar at the 5’-tail and to the next at
the 3’-group, see Figure 2.2. Towards the opposite side, nucleotide bases are
attached. Figure 2.3 displays the chemical structure of the four possible bases
in DNA, two pyrimidines, and two purines, and the base uracil which replaces
thymine in RNA. Neighbouring bases along a DNA strand experience stacking
interactions when they are in registry, see Figure 2.4.

Consequently, a single-stranded DNA or RNA molecule is characterized by its
base sequence and the orientation of the strand, e.g.

5′ −ACTGTTTTACCCG− 3′ .

The strand orientation is from the 5’ to the 3’ prime end; this is called the
sense strand, while the direction 3’ to 5’ is the antisense strand. The bases
can provide hydrogen bonds to a complementary base with which it can hy-
bridize to form a double strand. This base pairing mechanism gives rise to the
double-helical structure of the DNA molecule, see Figure 2.5.

In RNA, the base thymine (T) is replaced by uracil (U), and the sugar is ribose
instead of 2-deoxyribose. In an organism RNA typically comes as a single
strand, since it is the product of the transcription (i.e., the reading process) of
a gene by the readout-molecule RNA polymerase. The basic variants of RNA
are listed in Table 2.1.
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Figure 2.3 DNA and RNA bases. Uracil replaces thymine in RNA.

Figure 2.4 DNA and RNA stacking. Left: stacked bases, right: an un-

stacked base.
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Nitrogenous+
base+

Figure 2.5 The DNA double helix. (From the Talking Glossary of Ge-

netic Terms, US National Human Genome Research Institute.)

While DNA usually forms a double-strand between two complementary se-
quences, RNA frequently hybridizes with itself.1 As a consequence of self-
hybridization, an RNA base sequence can give rise to a rich secondary struc-
ture, composed from RNA single strands interspersed with helical, i.e., bound,
regions.

These different structures correspond to the different functional roles the spe-
cific RNA molecule can play within its biological context. The most variable
type is the messenger RNA (mRNA) which is synthesized as a transcript from
the coding regions of DNA; it is the read-out of the transcription process by
RNA polymerase. The schematic fold of a transfer RNA is illustrated in Fig-
ure 2.6. As its name says, transfer RNA has a transport function; it brings an
mRNA transcript to the cellular bodies where protein synthesis occurs, the
ribosomes. It has a characteristic cloverleaf structure, in which each of the
leaves takes up a particular function.

1DNA can also self-hybridize, but this is the less frequent situation.
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Figure 2.6 Transfer RNA in a schematic representation.

TABLE 2.1 RNA variants

RNA type size (nt) function

mRNA variable transcript: template for protein
tRNA 75-95 adapter molecule
rRNA ≈ 103 part of ribosome; protein synthesis

The original understanding of RNA as being a purely passive intermediate on
the way from the genetic code of DNA to the functional properties of proteins
has obviously evolved in the past years, in particular through the discovery
of the mechanism of RNA interference, in which small non-coding double-
stranded RNA molecules can regulate gene expression (A. Fire et al., 1991).
Apart from the classic variants, meanwhile a zoo of different RNA types has
been found, some of which are indeed also double-stranded. RNA molecules
are nowadays understood as being mostly non-coding, i.e., they do not help
translate a DNA sequence into a protein. A list of the more recent examples
is provided in Table 2.2. This list is only scratching the surface: look, e.g., at
the list of RNA types provided by Wikipedia.
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TABLE 2.2 Recent RNA variants

sRNA small (non-coding) RNA, common name in bacteria,
75− 400 bp

ncRNA non-coding RNA, common name in eukaryotes
miRNA microRNA, form a putative translational regulatory

gene family
stRNA small temporal RNA, often also called miRNA
snRNA small nuclear RNA, includes eukaryote spliceosomal RNA
snmRNA small non-mRNA, ncRNA
snoRNA small nucleolar RNA, involved in rRNA modification
tmRNA bacterial ncRNA, have both mRNA and tRNA function
siRNA short (21-25 nt) interfering RNA, double-stranded,

involved in gene silencing

One could be tempted to say that DNA is all information; by contrast, RNA
is information and structure. DNA structure can vary between different con-
formational and topological states, but these are usually based on a double-
stranded molecule. By contrast, the single-stranded RNA molecule can build
a sequence-dependent three-dimensional structure, a fold, and in this way it
acquires similar degrees of freedom as a protein. It is thus not sufficient to
know the base sequence in order to characterize RNA: one also needs to know
the fold in order to understand its function. We will turn to this issue in the
next section.

Proteins are built up from twenty amino acids; they are listed in Table 2.3
(following A. von Haeseler and D. Liebers, 2003). A triplet of DNA bases
codes for an amino acid. Since the number of existing amino acids is lower
than the combinatorial possibility based on the triplet rule, there is thus re-
dundancy in the code. It appears typically, but not exclusively, in the last
codon. Note that particular combinations of the bases also code for the start
and stop of coding sequences.

Amino acids can further be distinguished by their hydrophobicity: hydropho-
bic amino acids will prefer to bury themselves inside of a protein fold in order
to avoid water contact.

The sequence of amino acids is called the protein primary structure. Proteins
also form secondary structures which are recurrent structural elements. These
are the α-helix, and the β-sheet; as the name indicate they correspond to
a helical and a folded, but fairly planar structure. Like DNA, the molecu-
lar building elements form hydrogen bonds with each other to stabilize these
structures. On the next level of complexity of proteins arises the full fold, the
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TABLE 2.3 Codons and amino acids; s.c.: starter codon

Bases Name Abbreviations

A G AG arginine Arg R
A G UC serine Ser S
A A AG lysine Lys K
A A UC asparagine Asn N
A C UCAG threonine Thr T
A U G methionine∗/s.c. Met M
A U UCA isoleucine∗ Ile I
C G UCAG arginine Arg R
C A AG glutamine Gln Q
C A UC histine His H
C C UCAG proline∗ Pro P
C U UCAG leucine Leu L
U G G tryptophane∗ Trp W
U G A stop codon
U G UC cysteine∗ Cys C
U A G stop codon
U A A stop codon
U A UC tyrosine∗ Tyr Y
U C UCAG serine Ser S
U U AG leucine∗ Leu L
U U UC phenylalanine∗ Phe F
G G UCAG glycine∗ Gly G
G A AG glutamic acid Glu E
G A UC aspartic acid Asp D
G C UCAG alanine∗ Ala A
G U G starter codon (s.c.)
G U UCA valine∗ Val V

Note: Predominantly hydrophobic amino acids are marked with
an asterisk; no distinction as to their degree of hydrophobicity is
made.
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Figure 2.7 Protein structure. (From the Talking Glossary of Genetic

Terms, US National Human Genome Research Institute.)
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tertiary structure. Finally, fully folded proteins can form protein complexes or
quaternary structures. These elements are all summarized in Figure 2.7.

In the following, we will begin by our discussion with RNA structures, and
use statistical mechanics methods to quantify them. A first step on this way
is the graphical representation of RNA structures.

2.2 REPRESENTING RNA STRUCTURE

The basic structural elements that occur in RNA secondary structure are
summarized in Figure 2.8. This collection already indicates the complexity
one encounters when one wants to classify and predict these structures in the
context of a complete molecule.

RNA structure is complex, but the number of the basic variable elements is
only four, hence small when compared to the twenty amino acids of the pro-
teins. It is useful to briefly list the ideas used to represent the self-hybridized
configurations of an RNA molecule. Two kinds of representations are shown
in Figure 2.9.

The top graph of Figure 2.9 shows an RNA molecule represented explicitly by
vertices (the nucleotides) and full-line edges. The edges are the connections
between the vertices and represent the hydrogen bonds, shown as dotted lines;
in the following, we drop this distinction. But there is also, different from Fig-
ure 2.8, a second class of edges, drawn in broken lines.

Consider the difference between the two configurations, once without and once
with the broken edges. Without the broken edges, the RNA could be cut in
two without affecting the hybridized chains. This is not the case anymore
when the broken edges are present: the RNA structure now has a pseudoknot,
intertwining separate paired regions along the chain.

This property becomes clear in the bottom graph. It can be thought to be ob-
tained from the top graph by ‘pulling at the ends’ of the RNA chain. The arc
or rainbow diagram clearly shows the ‘overlapping’ bonds for the pseudoknot.

There are formal ways to represent these RNA configurations which can be
used in computer implementations (see, e.g., G. Vernizzi et al., 2004). The
first is a bracketing rule: an unpaired base is given by a dot, while a paired
base is described by a bracket, indicating opening or closing of a bond. The
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Figure 2.8 Schematic representation of the elements of RNA secondary

structure; backbone and base pairs are both indicated as black bars,

so no difference is made between covalent and hydrogen bonds. From

top left to bottom right: single strand; duplex; duplex with dangling

end; single-nucleotide bulge; three-nucleotide bulge; hairpin: stem (du-

plex region) and loop; mismatch pair or symmetrical loop; asymmetric

internal loop; symmetric internal loop; two-stem junction; three-stem

junction; four-stem junction.
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Figure 2.9 Graphical representation of RNA with pseudoknots

(see text).

top graph in Figure 2.9 would thus be represented as

.(((.....)))....(((.....))). (2.1)

for the case without pseudoknot, and as

.(((...[[)))....(((]]...))). (2.2)

when the pseudoknot bonds are present. Each additional pseudoknot requires
a new bracket-type to be introduced.

Alternatively, one can represent the bonds along the chain also in an array or
matrix form. For this one writes the sequence of L nucleotides as an L × L
contact matrix C with elements Cij = 1, if i is paired to j, or zero other-
wise. One can also interpret the pairing between any two bases i and j as a
transposition of the elements {i, j} and associate a permutation structure to
it via σ(i) = j if i, j are paired, and σ(i) = i if not. For the example sequence
{5′ − CUUCAUCAGGAAAUGAC − 3′} we give the pseudo-knotted struc-
ture in dot-bracket notation in the first row and the permutation structure in
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Figure 2.10 Drawing RNA on a sphere and on a torus.
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the second and third:

σ = (2.3) . ( ( ( . [ [ [ ) ) ) . . ] ] ] .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 11 10 9 5 16 15 14 4 3 2 12 13 8 7 6 17


This is an involution since σ2 is the identity permutation.

Finally, there is an even more fundamental way to look at RNA pseudoknots. If
one closes the endpoints of a rainbow diagram to let it form a closed loop, one
obtains a circle diagram. In this diagram, RNA structures with and without
pseudoknots are distinguished by the presence or absence of edge crossings,
when all of them are drawn either inside or outside the circle diagram.

Exercise. Draw the circle diagram for the kissing hairpin, with and without
the pseudoknot bonds, and with bonds lying either all inside or outside the
circle.

It is instructive to draw the circle diagram on the surface of a sphere, with
the edges outside of the circle. Figure 2.10 (top) shows this for a non-
pseudoknotted case. By contrast, a pseudoknotted configuration can be drawn
without edge crossings on the surface of a torus (Figure 2.10, bottom).

The relationship between RNA structures and topology can be made quan-
titative through the Euler characteristic of the surface on which they can be
drawn without crossing the bonds. The Euler characteristic is defined as

χ ≡ V − E + F (2.4)

where V are the vertices (nucleotides), E the edges (bonds), and F the faces
of closed loops. RNA chains without pseudoknots have χ = 1. For the kissing
hairpin, one has χ = −1. This result can also be expressed in terms of the
genus g of the surface, which is χ = 1 − 2g for the case at hand. It is then
clear that the kissing hairpin can be represented by a torus, for which g = 1.
The notion of topology in RNA folds will be discussed further in the following
section.

2.3 COMPUTING RNA SECONDARY STRUCTURE:
COMBINATORICS

We have seen why the knowledge of RNA secondary structure is important
- for information processing in biology and biotechnology. In this section we
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want to learn how to predict RNA structure. Predicting RNA structure, as
we will see, has three aspects. The first aspect is combinatorial: how can we
classify and compute the possible structures?

Maximal base pairing. We begin the discussion by formalizing the graphi-
cal representations we have just introduced.

If the primary structure of an RNA molecule - i.e., its sequence - of length n
is denoted by a string

r = r1...rn , (2.5)

its secondary structure can be described as a set S of disjoint pairs (ri, rj) for
1 ≤ i < j ≤ n. Considering the bases as vertices on a graph, and all pairings
as the edges of that graph, the secondary structure is a matching in a graph
G = (V,E) with the properties that V contains a vertex for every base pair
ri, i = 1, ..., n, and E contains an edge (u, v) if and only if u, v ε V are com-
plementary bases.

In the prediction of secondary structure, we want to first exclude pseudoknots.
In the above notation such a knot occurs when a base ri is paired with a base
rj , and a base rk with rl such that i < k < j < l: the pairs overlap. It is this
condition which we reject for the moment.

The prescription we have given allows to cover all possible secondary struc-
tures, except for the occurrence of pseudoknots. However, we would not know
which one to select from the set of structures. A natural selection principle is
based on free energy. Assuming that we can associate with every complemen-
tary base pair an energy contribution α(ri, rj) = −1 and put α = 0 otherwise,
we see that the minimal (free) energy E(S) =

∑
(ri,rj)

α(ri, rj) will be at-
tained for the RNA structure with the maximal number of base pairs.

In this simplified version which treats all bound pairs on equal footing, the
problem of RNA secondary structure determination can be solved by a dy-
namic programming approach. With the assumption that α(ri, rj) is indepen-
dent of all other pairs and positions of ri and rj in the sequence, we can
compute the free energy of a substring ri...rj of the RNA molecule disregard-
ing the surrounding r1...ri−1 and rj + 1...rn. In this way, we can use solutions
for smaller strings to obtain those for larger strings and obtain a recursive
solution.

The resulting dynamic programming algorithm is easy to develop; the possi-
bilities that can arise in building up the structure are shown in Figure 2.11.
There are three alternatives:
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Figure 2.11 Dynamic programming recursion for RNA structure

(see text).

• Add paired bases to an optimal structure for the subsequence i+1, j−1;

• Add an unpaired base to an optimal structure for the subsequence i, j−1;
this possibility arises symmetrically for the other end of the molecule;

• Combine two optimal substructures i, k − 1 and k, j.

The latter step obviously runs in problems when pseudoknots are to be ac-
counted for.

The resulting recursion can be summarized as

E(Si,j) = min



E(Si+1,j−1)− 1

E(Si+1,j)

E(Si,j−1)

min{E(Si,k−1) + E(Sk,j)} , i < k ≤ j

(2.6)

In order to initialize the algorithm, one requires E(Si,i) = 0 for i = 1, .., n and
E(Si,i−1) = 0 for i = 2, .., n.

Let us illustrate this scheme with a small example (S. R. Eddy, 2004). We
take the RNA sequence r = GGGAAAUCC; for each allowed pair AU , GC
we take α = −1, and α = 0 otherwise. The pairing matrix (r × r) at the
initialisation step reads
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

G G G A A A U C C
G 0
G 0 0
G x 0 0
A x x 0 0
A x x x 0 0
A x x x x 0 0
U x x x x x 0 0
C x x x x x x 0 0
C x x x x x x x 0 0


(2.7)

where the lower half (x) is not used, and the diagonal and its left neighbour
are put to 0.

In the computation, one finds that entry Y depends on all entries denoted by
y, and w = (i+ 1, j),

G G G A A A U C C
G 0
G 0 0
G x 0 0 y y y y Y
A x x 0 0 w y
A x x x 0 0 y
A x x x x 0 0 y
U x x x x x 0 0 y
C x x x x x x 0 0
C x x x x x x x 0 0


(2.8)

so that one obtains the following result by going through the recursion

G G G A A A U C C
G 0 0 0 0 0 0 −1 −2 (−3)
G 0 0 0 0 0 0 −1 −2 (−3)
G x 0 0 0 0 0 −1 (−2) −2
A x x 0 0 0 0 (−1) −1 −1
A x x x 0 0 (0) −1 −1 −1
A x x x x 0 (0) −1 −1 −1
U x x x x x 0 0 0 0
C x x x x x x 0 0 0
C x x x x x x x 0 0


(2.9)

The minimum structure can be found by tracing back through the table fol-
lowing a diagonal trace (i, j) to (i + 1, j − 1). The result is shown in Figure
2.12; the trace back is indicated by terms in brackets. The complexity of the
algorithm to compute the structure is O(n3), since there are n2 entries, and
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Figure 2.12 Exemplary RNA structure for the sequence GGGAAAUCC

as obtained from the simple algorithm.

each computation is O(n). The trace back to find the structure takes again
linear time O(n), if back pointers are used.

Following the original approach by R. Nussinov and A. B. Jacobson, 1980,
there have been several further developments of algorithms for RNA secondary
structure prediction. M. Zuker, 1989, made an important contribution by
developing a tool for the determination of sub-optimal folds. More recent de-
velopments are targeted towards the inclusion of pseudoknots; we comment
on them in the Additional Notes.

The basic approach to RNA secondary structure, as we have seen, is to com-
pute the possible combinations by a recursion, and to score them by a suitably
defined free energy. Thinking back to what we saw for DNA, one might ques-
tion whether the first part - the computation of the configurations - cannot
also be done based on our main tool from statistical mechanics, the partition
function Z. This is what follows.

2.4 THE RNA PARTITION FUNCTION

The partition function of a chain of L nucleotides can be written in the fol-
lowing very general way as (H. Orland and A. Zee, 2002)

Z =

∫ L∏
k=1

d3rk F({r})ZL({r}) . (2.10)
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Here, rk is the position vector of the k-th nucleotide. The function

F({r}) =
L−1∏
i=1

f(|ri+1 − ri|) (2.11)

is a model-dependent function of the molecular geometry, and takes into ac-
count the steric constraints of the chain. Standard choices for f are

f(r) = δ(r − `) , (2.12)

if the nucleotides are connected by rigid rods of size `, or

f(r) = exp[−(r − `)2/6η2] (2.13)

if the rods are taken as elastic springs with η as a measure of their stiffness.

The partial partition function ZL in Eq. (2.10) counts the different configura-
tions of paired bases. It can be defined by the series

ZL({r}) = 1 +
∑
(ij)

Vij(rij) +
∑

(ijkl)

(Vij(rij)Vkl(rkl) + Vik(rik)Vjl(rjl)) + ...

(2.14)

with rij ≡ |ri − rj |, and where the summation index (ij) denotes all pairs
with i < j, (ijkl) all quadruplets with i < j < k < l, and so forth. The first
term of the series describes the binding energy between the bonds i and j,
with the indices running all along the chain, the second the binding of i and
j in a configuration together with k and l, and so forth. The factors

Vij ≡ exp(−βεijvij(rij))θ(|i− j| > 4) (2.15)

are the Boltzmann factors associated with a (4 × 4)-dimensional symmetric
matrix εij of bond energies between the i-th and j-th bases at a distance rij ;
β = 1/(kBT ) is the inverse thermal energy as before. In Eq. (2.15), the factor
vij = v(|ri − rj |) is a short-range attractive interaction between the bases.
The Heaviside function θ(|i − j| > 4) expresses the sterical constraint which
prohibits hybridization of the bases in closest proximity to each other. Finally,
note that Vii = 0.

The series (2.14) can be expressed in integral form by introducing a set of
i = 1, ..., L Hermitian matrices2 ϕi, i = 1, ..., L, using the expression for the

2A square matrix is hermitian if it is self-adjoint, i.e., fulfills Aij = Aji, where the
overbar stands for the complex conjugate. We encountered examples of self-adjoint matrices
in Chapter 1 in the discussion of the Ising model, e.g., the matrix σ3.
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ordered matrix product

Oπ[{ϕ}] ≡
L∏
l=1

(1 + ϕl) ≡ (1 + ϕ1)(1 + ϕ2) · · · (1 + ϕL) . (2.16)

The matrices have the dimension (N × N). The parameter N is introduced
on purely formal grounds; as will be seen below, it allows to organize the ex-
pansion of the partition function according to the topology of RNA. It can,
however, also be related to physical quantity, the concentration of a chemi-
cal which favors pseudoknots. Such chemicals, e.g., are divalent ions such as
Mg2+, and the relationship is given via the identification N −2 ≡ expβµ where
µ is the chemical potential of the ions.

Coming back to the calculation, the resulting formula for ZL(N) is

ZL(N) = AL(N)−1

∫ L∏
k=1

dϕke
−N2

∑
ij((V

−1)ijTr(ϕiϕj) 1

N
TrOπ[{ϕ}] (2.17)

where the normalization factor is given by

AL(N) =

∫ L∏
k=1

dϕke
−N2

∑
ij((V

−1)ijTr(ϕiϕj) . (2.18)

In both expressions, V is an (L× L)-matrix with entries Vij .

After the introduction of the matrices, the partition function given by Eq.
(2.17) looks like a Gaussian integral in the matrices ϕk over a product observ-
able in the ϕk. The product of the terms (1 +ϕl) evaluates into a polynomial
of order L and hence we have to perform Gaussian integrals over all the contri-
butions of this polynomial from order 1 to L - thus nothing but the moments
of the partition function.

The important thing is now that the introduction of the matrix-dimension N
gives a handle to reorganize the series representation. One can show that the
result is an asymptotic series in 1/N of the form

ZL(N) = 1 +
∑
i<j

Vij +
∑

i<j<k<l

VijVkl + ...+
1

N2

∑
i<j<k<l

VikVjl + ... (2.19)

The comparison of the two expressions eqs.(2.14), (2.19) shows that both co-
incide for N = 1; the latter, however, for N > 1 now contains information
about the topology or RNA. The O(1)-terms of Eq. (2.19) yield the planar sec-
ondary structures of RNA, while the 1/N2-terms correspond to RNA tertiary
structure.
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The secondary structure can be evaluated within this formalism by approxi-
mating the integral (2.17) by its saddle-point value in the limit N → ∞. In
order to be able to perform this limit, the integral has to be transformed by a
Hubbard-Stratonovich transform into an expression in which the dependence
on the parameter N - which is still the dimension of the matrices - becomes
explicit. How such a transform is set up can be found in Chapter 1; it is left
an as Task for the readers to apply it to the present case. Those who want to
see it explicitly can find it in the paper by (H. Orland and A. Zee, 2002),
which also discusses how Eq. (2.19) is obtained.

The result of the calculation is the expression (with C as an irrelevant nor-
malization factor)

ZL(N) =
1

C

∫
dAe−

N
2 Tr A

2+NTr lnM(A))M−1(A)L+1,1 (2.20)

where the integral runs over all Hermitian matrices A of dimension (L+ 1)×
(L+ 1). M is a matrix function of A given by

Mij = δij − δi,j+1 + i
√
Vi−1,jAi−1,j (2.21)

and the symbol for trace, Tr, means - as in Chapter 1 - the sum over the
diagonal elements.

The saddle-point of Eq. (2.20) follows from the variation δS(A)/δA = 0,
where S is

S(A) ≡ 1

2
Tr A2 − Tr lnM(A) . (2.22)

The stationary point is given by

A0
lk = i

√
Vlk(M−1)l,k+1 . (2.23)

Introducing Gij ≡ (M−1)i+1,j , and using the identity
∑
jMij(M

−1)jk = δik
one obtains the so-called Hartree equation

Gi+1,k = δi+2,k +Gik +
∑
j

Vi+1,jGi,j+1Gj−1,k . (2.24)

The Hartree equation is a recursion relation which can be solved for the
boundary condition Gi,i+l = 0 for l ≥ 0. Then, Gij is the partition function
of the secondary structure of a chain starting at base j and ending at base
i, just as it is used in dynamic programming algorithms. We have therefore,
as the saddle point of the partition function, recovered a formal expression
which allows to compute RNA secondary structure. We can use the result Eq.
(2.24) to compute, recursively, the structure of RNA; note that the energy
evaluation is contained in V .
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From this result, we can now branch off into two directions: we apply Eq.
(2.24), or we go on to evaluate the next terms in the series. This would amount
to go for pseudoknots. We will do both, and begin with the pseudoknots.

Pseudoknots. The computation of pseudoknots based on the theory de-
scribed in the previous section is rather involved, since the computation of
the higher order terms in 1/N2 requires the use of field-theoretic methods
which are out of the scope of this book.3 The interested reader is asked to
consult the original literature at this point.

Here, in what follows, we want restrict ourselves to obtain a general idea of the
occurrence of pseudoknots, based on the topological theory. The basic ques-
tion we address is: as the RNA structures become more and more complex,
how many pseudoknots will arise? This theory allows us to readily determine
the number of RNA pseudoknots according to their topological character, and
to see how it evolves as the sequence increases in length. For this calculation,
some simplifying assumptions can be made. If any possible pairing between
nucleotides is allowed (independent of the identity of the base pair and its
location along the chain), and if all of these pairings will occur with equal
probability, then the matrix Vij has identical entries, which we suppose as
v > 0 for all i, j.4

The computation of the integral ZL(N) in this simplified case runs as follows.
The original expression for ZL(N), Eq. (2.19), can be rewritten using the in-
tegral transforms introduced before as

ZL(N) = A−1(N)

∫
dσe−

N
2vTrσ

2 1

N
Tr (1 + σ)L , (2.25)

where σ is a single (N ×N)-matrix. The normalization factor in this case is
explicitly given by

A(N) =

∫
dσe−

N
2vTrσ

2

=
(πv
N

)N2

2

2N/2 . (2.26)

3We were pushing the limits a bit already. The method used here is well known as a 1/N -
expansion in the context of field theory in statistical mechanics and the theory of elementary
particles, and may be a bit difficult to digest for a bioinformatician. Note, however, that it is
actually equivalent to approaches from a completely different context in computer science,
the context-free grammars (see Additional Notes).

4A technical detail: in order for the computations to make sense when we do this, we
need to make Vij positive definite. We can do this by adding an arbitrary real number a
to the diagonal elements. Since no diagonal terms appear in the original series (Vii = 0),
this number plays only a formal regularizing role, and the final result can be shown to be
independent of its choice.
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In order to solve the Gaussian matrix integral (2.25) it is convenient to intro-
duce the spectral density %N of the matrix σ,

%N (λ) ≡ A−1(N)

∫
dσe−

N
2vTrσ

2 1

N
Trδ(λ− σ) . (2.27)

This is a convenient trick - in the same spirit as the Hubbard-Stratonovich
transformation we used for the Ising model in Chapter 1. With the spectral
density we can represent ZL(N) as

ZL(N) =

∫ +∞

−∞
dλ%N (λ)(1 + λ)N , (2.28)

where the identity
∫ +∞
−∞ dλ %N (λ) = 1 was used in Eq. (2.25). Hence, we have

reduced a multidimensional problem to a one-dimensional integral.

One can now introduce the (exponential) generating function of ZL(N),

G(t,N) ≡
∞∑
L=0

ZL(N)
tL

L!
=

∫ +∞

−∞
dλ%N (λ)et(1+λ) , (2.29)

and we need the explicit form of %N (λ). The latter is known from Random
Matrix Theory (see M. L. Mehta, 1991). It can be expressed in terms of a
series of Hermite polynomials Hk = (−1)k exp(x2)(dk/dxk) exp(−x2),

%N (λ) =
e−Nλ

2/(2v)

√
2πvN

N−1∑
k=0

(
N

k + 1

)
H2k(λ

√
N/2v)

2kk!
. (2.30)

With this one obtains for G(t,N) the expression

G(t,N) = e
vt2

2N +t 1

N
L

(1)
N−1

(
−vt

2

N

)
, (2.31)

where L
(1)
N (z) are the generalized Laguerre polynomials.5 The series expansion

of G(N, t) in t now gives the first coefficients of ZL(N). Putting v = 1, one
can write

ZL(N) =
∞∑
L=0

aL,g
N2g

(2.32)

where the coefficients aL,g determine the number of diagrams at fixed length
L and fixed genus g.

5The generalized Laguerre polynomials are defined by

L− nα(x) =
(α+ 1)n

n!
[1F1(−n;α+ 1;x)]

where (α)n = Γ(x+ n)/Γ(n) is the Pochhammer symbol and [1F1(a; b; z)] =
∑∞
k=0

(a)k
(b)k

zk

k!

is the confluent hypergeometric function of the first kind.
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Now that we have mastered this excursion into the functions of classical math-
ematical physics, we want to see what we can learn from this result. How can
we interpret it?

Let’s look at an example. For L = 8, we have

Z8(N) = 1 + 28v + 140v2 + 140v3 + 14v4 + (2.33)

+
1

N2
(70v2 + 280v3 + 70v4) + 21

v4

N4

The meaning of the numbers is:

• The power of v is the number of nucleotides that are paired;

• The power of N −2 is the genus g of the structure (i.e., the genus of the
surface on which it can be drawn without bond crossings);

• Putting v = 1, one obtains the number of structures for a given genus g;

• Putting N = 1, one obtains the number of structures with a given
number of bonds.

Thus, there are 28 planar structures with one bonded pair, 70 structures with
two bonded pairs on a torus, etc. The number of structures with genus g = 1
is 420, while the number of structures with four pairs (the maximal number)
is 105.

After this example, we finish by reading off some general characteristics from
formula (2.32). An analysis of this series for a given length L � 1 shows
that the normalized number of pseudoknots aL,g/ZL(1) is always peaked at
a characteristic genus of roughly gc(L) ∼ 0.23L. For fixed L, the maximally
achievable genus comes out to lie at g ≤ L/4. More interestingly, in order for
a structure to have a given genus g, it needs to have a length L ≥ 4g, i.e., for
an RNA structure with g = 7, the sequence must be at least 28 bases long.

2.5 PROTEIN FOLDING AND DOCKING

The fact that there are twenty building blocks for a protein - the amino acids
- makes the problem of relating sequence to structure even more difficult to
solve than for RNA with its four base units, the nucleotides.
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The puzzling feature of the protein folding problem is best illustrated by in-
voking a famous paradox, first stated by (C. Levinthal, 1969). If one starts
out with the protein as a linear polymer and wants to fold it into its 3-D
spatial structure which one assumes known from X-ray crystallography, each
residue in the chain has about ten times more conformational positions avail-
able as in its native state. Thus the total number of conformational shapes
for a 100-residue protein is 10100. Supposing a conformational change at the
single residue level happens at a picosecond rate, a fully random exploration
of the landscape would take 1081 years to find the ‘right’ structure.

Obviously, this is not what happens. Following a metaphor coined by
P. Wolynes, 2001, the random walk of the protein conformations in Levinthal
energy landscape resembles that of a golf course:6 all energy levels are equal,
except for the right one.

The consensus on protein folding that has emerged up to now can be summa-
rized as follows:

• ‘Small’ proteins are two-state folders. This problem then is similar to
that of DNA denaturation and hybridization which we will consider in
the next chapter.

• ‘Medium’ proteins are ‘complex’ because many details of the composi-
tion matter for the final folded state;

• ‘Large’ proteins do not have the problem we discuss: they simply do
not fold spontaneously. They are folded with the help of a specialized
molecular machinery, the chaperones. We will not address this topic here
any further.

We will here only consider the ‘medium’ proteins.

Medium proteins. It is more reasonable to think of a characterization of the
folding process as an ensemble of possible pathways which can be visualized
as trajectories in a complex energy landscape. The energy space of protein
conformations is what is sometimes called a ‘rugged’ landscape, with many
minima of near energetic degeneracy.

An elegant concept to characterize this landscape is the funnel, shown in
Figure 2.13 (H.S. Chan and K.A. Dill, 1998). In this plot, free energy is
plotted versus conformation. The folding process of a protein corresponds to
a descent in the funnel. In the beginning, near the top of the funnel, a large
number of possible pathways exist for the protein. The more it descends in
the funnel, the more limited becomes the number of available pathways: the
funnel narrows down towards the conformation with the minimal free energy.

6This should hold at least for the putting green.
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Figure 2.13 The folding funnel; a) folding paths from two different initial

conditions: A follows a direct path whereas B is trapped in a metastable

intermediate; b) rugged energy landscape with multiple minima at

intermediate energies. Note that the ‘true’ equilibrium has a much

lower free energy. [Reprinted with permission from John Wiley & Sons

(H.S. Chan and K.A. Dill, 1998).]

Let’s try to quantify this idea a bit. For this we turn to a basic model from
statistical physics that rationalizes the idea of a random energy landscape.
The Random Energy Model (REM) was invented by B. Derrida (1980)
with the idea to represent a class of models of disordered systems with many
nearly degenerate minima.7 For its application to protein folding, we follow
J.N. Onuchic et al. (1997) and consider a simple model with two basic
variables, the energy8 E, and one additional quantity, which we take as the

7The most prominent example of such systems is the ‘spin glass’, which is a disordered
ferromagnetic system in which a large number of ferromagnetic couplings have been replaced
by antiferromagnetic couplings. Since the latter favor the orientation of the neighboring
magnetic moments in antiparallel direction, the system can become ‘frustrated’ since the
spins may underlie conflicting conditions for the orientation of their magnetic moments.
This gives rise to a large degeneracy of the microstates of the system.

8Which we assume as averaged over the solvent.



64 � Computational Biology

fraction of native-like contacts, Q, hence a measure for the structural similar-
ity between a given protein conformation and the native one. For the native
structure, we take Q = 1. Q serves as our conformational coordinate.

For this model we can define a number of useful physical quantities like
the thermal average of the energy, E(Q), the roughness of the energy land-
scape (i.e., the fluctuations in energy),

√
∆E2(Q), and the density of states,

Ω(E,Q). The entropy of a configuration, e.g., is then given by S(E,Q) =
kB ln Ω.

One key feature of the REM-model is the assumption of a Gaussian distribu-
tion of energy states,

P (Q,E) =
1√

2π∆E2(Q)
exp

(
− (E − E(Q))2

2∆E2(Q)

)
. (2.34)

If a protein has N residues, the total number of its conformations is

Ω0 = γN (2.35)

where γ is the number of configurations per residue. This number is amenable
to simplifications: e.g., when only the backbone coordinates are taken, γ ≈ 5,
while the inclusion of excluded-volume effects allows γ ≈ 1.5.

Since by going down the energy funnel the folded structures more and more
resemble the native state, the total number of configurations decreases: the
native structure has a unique backbone conformation. If one calls Ω0(Q) the
density of conformational states of measure Q and S0(Q) the corresponding
entropy, then the density of conformations with associated energy E is given
by

Ω(Q,E) = Ω0P (Q,E) (2.36)

and the total entropy is

S(Q,E) = S0(Q)− kB
(E − E(Q))2

2∆E2(Q)
. (2.37)

At thermal equilibrium, the most probable energy is given by the maximum
of the distribution

Emp = E(Q)− ∆E2(Q)

kBT
, (2.38)

and the corresponding values of Ω and S at this maximum are easy to compute
using eqs.(2.36) and (2.37). Take this as an Exercise.
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Further, we can compute the free energy of a misfolded structure of a given
structural similarity Q, and at a given temperature T

F (Q,T ) = Emp − TS(Emp, Q) = E(Q)− ∆E2(Q)

2kBT
− TS0(Q) . (2.39)

Without precise knowledge about the dependence of this expression on Q,
further analysis is not possible. To proceed we consider the simplest case,
namely that the free energy has two minima, one at Q ≈ 0, corresponding to
an ensemble of collapsed misfolded states with a varying degree of ordering,
and another at the folded state9, Q = 1. As before in the discussion of the
small proteins these states will be separated by a kinetic barrier, hence by
energetic and entropic contributions. If we neglect the entropy of the folded
state to a first approximation, we have

Fnative = EN . (2.40)

At the folding temperature TF , the free energies of the folded and unfolded
state coincide

Fnative(Q = 1, TF ) = F (Qmin, TF ) (2.41)

where the value of Qmin is close to that of the unfolded state. From this we
can compute the stability gap

δEs ≡ E(Qmin)− EN = S0TF +
∆E2(Qmin)

2kBTF
. (2.42)

The folding temperature TF can be related to the glass transition temperature,
at which the entropy of the system vanishes, S(E0, Q) = 0. It is given by

TG(Q) =

√
∆E2(Q)

2kBS0(Q)
, (2.43)

with S0 = kB ln Ω0 with Ω0 given before.

The transition into the glassy state occurs precisely when there are too few
states available, and the system remains frozen in one of those states. The
ratio of the folding to the glass temperature is approximately given by

TF
TG
≈ δEs√

∆E2
·
√

2kB
S0

. (2.44)

In order for a protein to fold correctly and not be caught frozen in a wrong
minimum, one needs to fulfill the condition

TF > TG . (2.45)

9The discussion of the small proteins indicates how to extend this idea to more available
states.
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Since S0, ∆E2 and EN all depend linearly on N , the ratio Eq. (2.44) is not
dependent on protein length, but very sensitive to interaction energies. This
explains why the folding process remains so difficult to capture quantitatively.

Beyond this basic picture given here, there is still no general consensus on how
to quantitatively model and predict protein folding; maybe there is no such
theory ever to have, since such a great number of details intervene: proteins
are individuals designed for very specific purposes, and this individuality may
also be reflected in the way they fold. In the Additional Notes some inter-
esting novel conceptual avenues to attack the folding problem are listed. The
problem is likely to stay with us for some more time.

Here, we now move on to the problem of protein docking.

The protein docking problem as a specific bioinformatics problem dates back
to the late seventies (J. Janin and S. J. Wodak, 1978) and has since seen a
continuous development towards more efficient algorithms. The term protein
docking encompasses two closely related situations: protein-protein docking,
as it occurs during the formation of protein complexes, and protein-ligand
docking, which relates to the drug design problem mainly driving the field.
Here, protein docking is an essential tool to help design specific and efficient
small drug molecules.

In this section, we discuss the two main statistical physics aspects of the
problem. In order to fit two molecules snugly together, they must certainly fit
geometrically; but also their interactions must be compatible. While in fact
both geometry and interaction are fundamentally coupled, the approximate
approaches that exist to the docking problem today usually separate these
questions in two independent procedures. Geometric fit is used as a first level
of screening for docking candidates, and only then is the quality of the docking
evaluated (‘scored’) by a quantitative measure of the physical interaction of
the docking partners.

Geometric fit. In order to determine the geometrical fit of two molecules,
a quantitative method to determine surface complementarity is needed. We
explain the algorithm introduced in (E. Katchalski-Katzir et al., 1992).
It is based on the projection of the molecules in their atomic coordinates on a
3-dimensional grid built from N3 grid points. The molecules are represented
by discrete coordinates

aik =

 1 ε Γ
%i ε Ω
0 ε Σ

(2.46)

where i = 1, 2 represents the molecule of volume Ω and surface Γ, k = (l,m, n)
are the lattice indices. A lattice point is considered inside the molecular volume
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Ω if there is at least one atom within a distance r from it, where r is a pa-
rameter on the order of one van der Waals atomic radius - a measure for the
short-range repulsion of the electron shells. The surface layer Γ then is a finite
layer between the inside of the molecule and its exterior, Σ.

Matching of the surfaces is achieved by calculating correlation functions. The
correlation between the ai is given by

cq =
N∑

k=1

a1
k · a2

k+q (2.47)

where q denotes the number of grid steps by which molecule a2 is shifted with
respect to molecule a1. If the molecules have no contact, cq = 0. In order to
penalize interpenetration of the molecules, %i will be assigned a large negative
value for i = 1, and a small positive value for i = 2, leading to an overall
negative contribution in cq. In this way, positive and negative correlations
can clearly be related to the geometric positioning of the molecules.

Computationally, the determination of cq would require the calculation of
N3 multiplications and additions for each of the N3 relative shifts q, i.e. N6

steps. This can be reduced by taking advantage of the lattice representation.
Calculating first the discrete Fourier transform of the aiq, which can be done
with the Fast Fourier Transform (FFT), and then going back by an inverse
Fourier transform, the number of computational steps can be reduced to at
most O(N3 lnN).

Docking energetics. The molecules typically have to find their partners in
solution. As a consequence, the first quantity to determine is the free energy of
solvation for each individual molecule. The Gibbs free energy for this process
can be written as

∆G ≡ Gsolvent −Gvacuum = ∆Gpolar + ∆Gnonpolar . (2.48)

The nonpolar contribution consists of various terms, which are usually as-
cribed to cavity formation (i.e., to account for the cost of digging a hole into
water to fit in the protein), conformational contributions, and van der Waals
interactions. It is very difficult and debated how these quantities can be mod-
elled; in any case, it is an approximate procedure. Here, we will be interested
in electrostatic interactions only, which dominates the polar part in Eq. (2.48).
For the solvation process shown in Figure 2.14, the relevant quantity is the
free energy of binding. It is given by (R.M. Jackson and M.J.E. Sternberg
(1995), A. Hildebrandt, (2005)),

∆Gbind = ∆∆Gsolv,A + ∆∆Gsolv,B + ∆∆Gsolv,A−B (2.49)
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Figure 2.14 Solvation of a protein complex in water; for explanation,

see text.

The three contributions arise from: i) the change in solvation energy of
molecule A upon binding; ii) the change in solvation energy of molecule B
upon binding; iii) the interaction energy of A and B in the presence of sol-
vent. The last contribution contains the energy stored in the bonds between
both proteins, and in principle both polar and non-polar contributions.

This discussion obviously did not go beyond stating the basic principles. In
Chapter 4 we will discuss how the electrostatic properties of biomolecules can
be determined.

2.6 PULLING DNA

As a final topic for the application of the methods of statistical mechanics
for biomolecules we introduce a model description for their elastic behaviour.
Molecular elasticity is entropic in origin. This merits an explanation.
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Let’s begin with a simplistic version of a polymer chain model which is called
the freely jointed chain. We imagine the polymer can be abstracted as a chain
of N freely jointed links, as illustrated in Figure 2.15. The spatial configura-
tion of the chain resembles the trajectory of a random walk.

Figure 2.15 The simplistic polymer model: a chain of linear segments

which can freely move about their links.

If we now pull at the ends of our caricature polymer with a force F, we will
straighten out the chain. What happens if we then let go? Imagining we have
realized the chain as made from paperclips, it would simply stay straight,
as there is no internal or external mechanism that would pull the segment
back into the initial random configuration. Something is missing, this idea is
wrong.

A biomolecule in solution is subjected to thermal energy, kBT . The positional
fluctuations of the surrounding molecules hit the chain and will thereby gently
randomize the configuration. Straightening out the chain against these ther-
mally fluctuating forces consequently reduces the entropy of the chain, i.e.,
the number of conformations it can adopt. Work has to be performed, and
the relation between force and extension of a molecule in solution results thus
from an entropic elasticity.

Based on this concept, various experimental techniques have been developed to
exert forces on molecules in solution. The basic principle is that the molecule
has to be fixed at one end, while the other can be manipulated by mechan-
ical force. A typical setup is that a DNA molecule is chemically modified at
its both extremities; it is then rigidly fixed at one end to a surface (a cap-
illary), and to a superparamagnetic bead at the other end. The application
of a magnetic field allows to pull on the bead and hence the DNA molecule.
Another possible setup is by trapping a bead in an optical trap; such a setup is
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indicated schematically in Figure 2.16. Questions of biological or biophysical
interest that have been addressed with this approach are listed in the addi-
tional notes at the end of this chapter; here we only want to understand how
to describe the elastic properties.

Figure 2.16 A setup for DNA stretching experiments using an opti-

cal trap.

The worm-like chain (WLC)-model. Following the suggested discrete
representation of the polymer as a chain of elements, we first consider the
polymer as a linear chain with element length b, such that the chain made of
N segments has a total length of L = bN . The energy of the chain is given by
the Hamiltonian

βH = −K
∑
i

t̂i · t̂i+1 − βFb
∑
i

t̂i · ẑ (2.50)

where an applied force F is directed along the z-axis.

In Eq. (2.50), K/β is the stiffness of the chain, i.e., its resistance to bending.
The unit vector t̂i describes the orientation of the segment i. This model is
sometimes called the Kratky-Porod model, which for K = 0 reduces to the
freely jointed chain we had pictured before.
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In the continuum limit b → 0, where K ≡ `P /b introduces the persistence
length `P , we can represent the model as the Worm-like Chain model with the
energy expression

βHWLC =
`P
2

∫ L

0

ds(∂st̂ )2 − f
∫ L

0

ds t̂ · ẑ (2.51)

where the pulling force per unit length is F = kBTf . In this formulation,
s is the curvilinear coordinate along the chain, and t̂ has turned from the
orientational vector of a chain element into the tangential vector along the
continuous curve which makes out the chain.

The first term in the Hamiltonian is the bending energy. Its coefficient, the
persistence length, is a length scale measure for the correlations of the tangent
vectors along the chain, or, in other words, for the propagation of changes in
the chain conformation along the chain.10

As stated above, the quantity we are interested in from an experimental point
of view is the force-extension relation. For the WLC model, the exact com-
putation of the partition function is equivalent to solving the problem of a
quantum rotator subjected to a polarizing field. Here we give a simplified
calculation valid for the case when the forces pulling at the molecule are suffi-
ciently strong and limit the chain excursions transverse to the pulling direction
(J. F. Marko and E. Siggia, 1995).

Since |̂t| = 1, we can take the transverse components (tx, ty) ≡ t̂⊥ as inde-
pendent variables, and obtain for the z-component

tz = 1− t̂2
⊥/2 +O(t̂4

⊥) . (2.52)

We can then express the energy in a Gaussian approximation as

βHWLC =
1

2

∫ L

0

ds[`p(∂st̂⊥)2 + f t̂2
⊥]− fL . (2.53)

Introducing the Fourier modes

t̃⊥(q) =

∫
ds eiqs t̂⊥(s) (2.54)

we obtain

βHWLC =
1

2

∫
dq

2π
[`pq

2 + f ]̃t2
⊥ − fL . (2.55)

10There are several other commonly used lengths that characterize polymers; a prominent
one is the Kuhn length with `K = 2`p, which is well defined provided L� `K .
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The average of the transverse components along the chain s follows from
equipartition

〈t̂2
⊥〉 =

∫
dq

2π
〈|̃t⊥(q)|2〉 = 2

∫
dq

2π

[
1

`P q2 + f

]
=

1√
f`P

(2.56)

where the factor of two accounts for the two components of t̂⊥. The extension
of the chain is then obtained as

z

L
= t̂ · ẑ = 1− 〈t̂

2
⊥〉
2

= 1−
√
f`P
2

(2.57)

which behaves as a square-root in f . The approximate formula

f =
1

`P

[
z

L
+

1

4(1− z/L)2
− 1

4

]
(2.58)

describes the experimental behaviour rather well, see Figure 2.17.

Bending and twisting elasticity of DNA. J.F. Marko and E.D. Sig-
gia in 1994 proposed another continuum model for DNA elasticity which has
enjoyed some recent interest also from the experimentalists; it is therefore
briefly discussed at this point.The idea of this model is to look at the bending
and twisting degrees of freedom of DNA and how they are coupled. Starting
point is the schematics of Figure 2.18, in which a solid cylinder is shown on
whose surface the sugar-phosphate backbone of the double-helix of DNA is
inscribed, with orientations. Major and minor grooves are indicated by the
letters M and m, respectively.

The orientation of the DNA is described by the set of vectors (u,v, t) which
forms a right-handed coordinate system at each point s along the curve, where
s is arc length; see Figure 2.18. The space curve of DNA r(s) along the core
of the cylinder hereby defines the tangential vector t = dr/ds of unit length,
t2 = 1. The vector u is chosen to lie at the middle of the intersections R
and S that the two DNA strands make with a perpendicular plane across the
cylinder. The third vector is then defined via the condition v = t× u.

With the definition of e(i) = u,v, t for i = 1, 2, 3, one can define a general
deformation of the molecule by infinitesimal rotations Ω(s) of the coordinate
axes according to the formula

dei
ds

= (ω0e
(3) + Ω)× e(i) , (2.59)

where ω0 = 2π/` where ` = 34 Å is the helical pitch. If Ω = 0, the configura-
tion is undistorted as in Figure 2.18.
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Figure 2.17 Force-extension curve for a single-molecule DNA. (Reprinted

from C. Bustamante et al., 2000, with permission from Elsevier.)
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V 
Figure 1. Schematic diagram of the B-DNA molecule. The 
molecular diameter is d = 20 A, the helical repeat length is 1 = 
27r/w0 = 34 A, corresponding to a stack of about 10.5 nucleic acid 
bases. The nucleotides are bound between the sugar-phosphate 
backbone helices: we note the arrows on the side view (upper 
portion of figure), which indicate the opposite directedness of 
the two helices. The wide major groove is marked “M”, while the 
narrower minor groove is marked “m”. The lower part of the 
figure shows the end view of B-DNA, with tangent t directed out 
of the page. 

11. Elastic Free Energy of DNA 
A. Symmetry Analysis. B-DNA molecules2 are right- 

handed chiral rods of cross-sectional diameter d = 21 A. 
As schematically shown in Figure 1, the pairs of nucleotides 
(occupying the major groove region, denoted M in Figure 
1) are arranged in a helix with a pitch of about 1 = 34 A 
corresponding to a helical repeat every 10.5 base pairs 
(bp). We define the molecular axis (the center of the 
molecule) to be described by the space curve r(s), with s 
being arclength. The tangent t 1 dr/ds thus has unit 
length. 

At  any s, consider the plane perpendicular to t. The 
two sugar-phosphate backbones (the two helices, drawn 
with opposing arrows in Figure 1) intersect this plane at  
two points R and S. We define u to be the unit vector in 
this plane that points from the molecular axis to the 
midpoint of E. A final unit vector v is defined by v = 
t X u so that the set (u, v, t) forms a right-handed 
coordinate system at  each point s. It will be helpful to 
temporarily use indexed vectors e(l) u, e(2) = v, and e(3) 
= t. 

A general deformation of the molecule that maintains 
t2 = 1 may be described by infinitesimal rotations Q(s)  of 
the coordinate  axe^:^^^ 

de“’ 
ds 
-- - + ill x e“’ 

where 00 = 2* /1= 0.185 A-l determines the helical repeat 
length in the absence of deformations. We may think of 
the components Oi = il.eci) as “strains” which locally 
generate rotations of the coordinates around e(’). If Q = 
0, the molecule takes its undistorted configuration shown 
in Figure 1. The molecular axis r(s) is obtained for general 
Q by integrating the tangent equation dr/ds = e(3). 

The integral T w  = L/1 + J ds Q 3 / ( 2 r )  is defined to be 
the double helix “twist”3 where L is the molecule length, 
and where the integral is from s = 0 to s = L. For an 
undistorted molecule, T w  = L/1, and Tw just counts the 
number of helical turns of length 1 along the chain. For 
a distorted chain, the excess twist per helix repeat is (Tw 
- L/l)/(L/l) = ( Q 3 ) / ~ 0 ,  where we use the notation ( Q 3 )  = 
L-’J; ds Q3(s) to denote an average along the chain of 
length L >> 1. 

Since we assume that the Q = 0 state is equilibrium, we 
may write the free energy for small strains as a Taylor 
expansion in a and its s derivatives.10 The lowest order 

terms are 

(2) 
where we have introduced the matrices Aij and Aijk, which 
are symmetric under all permutations of their indices, 
and where the integral runs over the molecular axis of 
length L. If we ignore nucleotide-sequence dependence 
of the elastic properties of the molecule (or if we restrict 
our attention to symmetric repeats such as ($i)N then the 
A matrices have no s dependence, since in these coordi- 
nates, every point along the molecule in the undistorted 
state is equivalent. We will refer to these matrices as the 
“elastic constants”: they may depend on environmental 
factors (temperature, ionic strength, pH, etc.). We will 
ignore the constant free energy A0 for the remainder of 
this paper. 

The  second-order matrix has six independent 
components: All ,  A22, A33, A12, A139 and A23. We now 
show how symmetries make some of these components 
vanish. Note that rotation by 180’ around the vector u 
is a symmetry of the undistorted molecule (see Figure 1). 
Now consider an infinitesimal segment of length ds from 
s = -ds/2 to ds/2, with uniform strain Q = (01, 02, OS).  
Rotation of this segment by 180’ around u(s = 0) yields 
precisely the segment configuration with uniform strain 
il’ = ( 4 1 ,  Qz, O3). Therefore configurations D and D’ have 
the same free energy, indicating that A12 = A13 = 0.l’ 

We note that rotations by 180’ around either t(0) or 
v(0) do not take our infinitesimal distorted segment to a 
configuration with transformed D because these operations 
are not symmetries of the undistorted molecule. The lack 
of symmetry under these operations is due to the existence 
of two distinct regions of the DNA surface bounded by the 
two helices, marked “M” and “m” in Figure 1. These two 
regions are referred to as the ”major groove” and the “minor 
groove”, respectively. The minor groove is narrow, while 
the major groove is wider, filled up by the nucleotides 
which are bound between the backbones. The two grooves 
are also distinguished by the opposite directedness of the 
sugar-phosphate backbones on their boundaries. A ro- 
tation of the undistorted molecule around either t or v by 
180” exchanges the major and minor grooves. 

Chiral polymers without this particular broken sym- 
metry (e.g. a double-helix polymer with indistinguishable 
backbones, and therefore invariant under rotation by 180’ 
about t) will have A23 = 0. Finally, one should note that 
reflections (useful in derivation of the elastic energy of 
thin rods with reflection symmetrieslO cannot be used to 
analyze a chiral rod such as DNA. 

Thus, the nonzero elements of then = 2 elastic constant 
matrix are All ,  A22, A33, and A23. Physically, A11 and A22 
are (distinct) bending constants associated with bends 
locally in the planes perpendicular to u and v, respectively. 
We expect these constants to be approximately equal to 
the bend persistence length ~ 5 0 0  A.4 The constant A33 is 
just the twist rigidity, and is roughly equal to the twist 
persistence length 2500 A.4 

In addition to the bending rigidities and twist rigidity, 
we have a coupling A23 of bends about the local v axis and 
the twist in the quadratic (O(Q2)) elastic theory. Its overall 
magnitude should also be controlled by the degree by which 
rotations of the molecule by 180° about v and t are not 
symmetries. For DNA, these operations essentially ex- 
change the major and minor grooves of the molecule, which 
are rather different in structure: we thus expect A23 =Ai,. 

Figure 2.18 Geometry of the Marko-Siggia twist-bend model. [Reprinted

from J.F. Marko and E.D. Siggia (1994) with permission from the

American Chemical Society.]

One can then write down a free energy expression as a Taylor expansion in
small Ω and its derivatives. The result is

F

kBT
=

∫ L

0

ds

A0 +
1

2

∑
ij

AijΩiΩj +
1

6

∑
i,j,k

AijkΩiΩjΩk + ...

 . (2.60)

Truncating this expression at second order one finds on symmetry grounds
that only six independent components survive (Exercise!) and the result
then is

F

kBT
=

1

2

∫ L

0

ds

 ∑
i=1,2,3

AiiΩ
2
i + 2A23Ω2Ω3

 . (2.61)

This expression can be simplified by using the Frenet-Serret equations

ts = κn , ns = −κt + τb , bs = −τn (2.62)

where the curvature κ(s) and the torsion τ(s) have been introduced. Since the
vector pairs (u,v) and (n,b) are coplanar, one can write

u + iv = e−iφ(s)(n + ib) , (2.63)
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where the angle φ(s) rotates the slowly varying (n,b) into the rapidly rotating
(u,v). The three variables κ, τ and φ can now be used to replace the three
Ωi. The final result then is given by

F

kBT
=

∫ L

0

ds
[
Aκ2 −Bκ2 cos 2φ+ C(φs − ω)2 + 2Dκ(φs − ω) cosφ

]
,

(2.64)

with A = (A11 + A22)/2, B = (A11 − A22)/2, C = A33 and D = A23, and
ω̄ = Ω0 − τ .

In this expression, we see that A is the usual bending rigidity as in the Kratky-
Porod model, B is an asymmetric bending constant, C is the twist rigidity, and
D is the twist-bend coupling. It is the latter that has been of recent interest
to experimentalists, as the tweezer experiments are now becoming sufficiently
sensitive to probe the presence of this coupling (S. K. Nomidis et al., 2017
and 2018; E. Skoruppa et al., 2018).
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Additional Notes

RNA structure. For RNA structure prediction, a large number of dedicated
servers exists meanwhile; see the detailed catalogue on the web under

https://en.wikipedia.org/wiki/List of RNA structure prediction software

H. Orland and his colleagues have further pursued the statistical physics ap-
proach to RNA structure and in particular looked at pseudoknots (M. Pills-
bury at al., 2005), (M. Bon et al., 2013), (G. Vernizzi et al., 2016) and also
true knots. The latter appear still to be absent in RNA, see (A.S. Burton
et al., 2016).

Protein folding and docking. A modern standard reference on the pro-
tein folding problem is the book by A. Ben-Naim (2013). Otherwise there
is an unconquerable amount of literature on protein folding. A. Ben-Naim’s
second book on the topic which appeared in 2016 gives an account of this fact.

A recent review of protein docking methods is by N.S. Pagadala
et al. (2017).

Single-molecule pulling experiments. Experiments on single-molecule
manipulations of nucleic acids have started in the early nineties of the last
century; basic references on DNA elasticity are T. Strick et al., (1996,
1998). Early reviews on the basic physics and the experimental techniques
are C. Bustamante et al. (2000), and U. Bockelmann (2004).

The advantage of the single-molecule technique is that the mechanical force
exerted on the molecule can be made to interfere with enzymatic reactions
on the chains, allowing for a mechanical probing of biochemical processes.
Examples from the catalogue of achievements are:

• Unwinding of promoter regions in transcription initiation: A. Revjakin
et al. (2004).

• Pausing of RNA polymerase during transcription: R.J. Davenport et
al. (2000) and N.R. Forde et al. (2002).

• Base-pair stepping of RNA polymerase: E.A. Abbondanzieri
et al. (2005).

• Torque-induced structural transitions in DNA, of relevance for enzy-
matic reactions: Z. Bryant et al. (2003).

• DNA unzipping: C. Danilowicz et al. (2003).

https://en.wikipedia.org/
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The field has continued to bring in new insights in ever more complex con-
figurations and is now known under the name of Single-Molecule Force Spec-
troscopy. A recent review of the field of single-molecule techniques in bio-
physics is by H. Miller et al. (2018).

Theoretical papers on DNA elasticity are the classic papers on the worm-like
chain model by J.F. Marko and E.D. Siggia (1995), and their earlier paper
on the twist-bend coupling in 1994. Early extensions to include twist into
the WLC model were published by C. Bouchiat and M. Mézard (1998),
and J.D. Moroz and P. Nelson (1997). This field has continued to develop
in many directions, however, with the increasing use of molecular simulation
approaches, into the direction of more detailed models on different level of
atomistic detail - a topic this book does not address.
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CHA PT E R 3

Phase Transitions in RNA
and DNA

3.1 RNA PHASE BEHAVIOUR

In the previous sections we have seen that one can consider the RNA folding
problem as one of combinatorics and energetics: the correct fold of an RNA
molecule is the one which minimizes the free energy. All we have to do is put
in the specific base pairing energies, starting from the Hartree equation (2.24).

However, even if we do this, a more fundamental problem arises. While for
DNA Watson-Crick pairing of two complementary strands always gives a well-
defined minimum free energy configuration, for RNA that is not clear. If the
strands become longer and longer, the number of possible structures explodes.
And many of these configurations can be at least almost degenerate: there will
be several configurations with the same or nearly the same free energy. How
accessible - and how relevant - is thus the minimum energy fold? Maybe we
need to know also those structures that are not minimal in free energy, but
close? Isn’t it possible that the minimum configuration is well-separated from
a nearby configuration by an energy barrier, and the molecular configuration,
once trapped in the other minimum, will never change into the true minimum?
Such a high barrier would exist, e.g., if the two energetically competing struc-
tures would be structurally far apart in configuration space. Thus, for RNA
we come back to a problem which is very similar to that of protein folding and
also here we have to discuss the free energy landscape of the RNA structures.

The free-energy landscape of RNA turns out to be strongly temperature-
dependent. For high enough temperatures - but still below the denatura-
tion temperature of a folded RNA, since we do not want to break the
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structure - one may be allowed to ignore sequence-dependence to a first ap-
proximation, as we did before.1 We want to do this for the planar (non-
pseudoknotted) structures and go back to the saddle-point approximation.

Under the assumption that sequence-dependence is negligible, the Hartree
equation (2.24) becomes translationally invariant along the chain of length L
and takes on the simplified form

G(L+ 1) = G(L) + q
L−1∑
k=1

G(k)G(L− k) (3.1)

with q ≡ exp(−βε0). By using the transform

Ĝ(z) =
∞∑
L=1

G(L)z−L (3.2)

the convoluted sum in Eq. (3.1) can be eliminated, which gives rise to an

algebraic equation for Ĝ(z),

zĜ(z)− 1 = Ĝ(z) + qĜ2(z) . (3.3)

This equation has the solution

Ĝ(z) =
z − 1−

√
(z − 1)2 − 4q

2q
. (3.4)

In order to transform back to G(L), again a saddle-point approximation can
be used. We then find the expression

G0(L) ≈ g0(q)L−3/2exp(−Lf0(q)) (3.5)

with f0(q) = − ln(1 + 2
√
q).

The result (3.5) shows the coexistence of an exponentially large number of
RNA secondary structures with equal free energy. This phase is dominated by
the configurational entropy of the molecules; it has been termed the ‘molten
phase’ (R. Bundschuh and T. Hwa, 2002).

How physically realistic is this phase? In order to check this, one has to vary
the binding energies. In doing so we introduce what can be called sequence
disorder, since we start from a molecule with identical bindings. We choose
binding energies εij with

εi,j =

{
−um (i, j) , WC
umm , else

(3.6)

1But then based on a different argument since wanted to look at the different possible
topologies.
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with um, umm > 0, and WC stands for a Watson-Crick base. The εi,j are
taken as independent Gaussian distributed random variables with mean ε and
variance

(εi,j − ε)(εk,l − ε) = Dδi,kδj,l . (3.7)

For this choice it turns out that the molten phase is indeed thermodynami-
cally stable for weak sequence disorder (R. Bundschuh and T. Hwa, 2002),
but if we allow for arbitrarily strong sequence disorder the molten phase be-
comes unstable with respect to another phase: the glass phase. This phase is
dominated by one or few structures of lower free energies.

How can one see that the molten phase must be unstable with respect to
the glass phase? We follow an argument developed by R. Bundschuh and
T. Hwa, 2002.

The argument is based on the introduction of a so-called division free energy
in the molten phase, given by

∆F ≡ −kBT ln

[
G2

0(L/2)

G0(L)

]
≈ 3

2
kBT lnL . (3.8)

It is the free energy cost of cutting a chain of length L into two non-interacting
halves. This quantity characterizes the loss of configurational entropy a sec-
ondary structure of the molten phase will undergo by cutting.

Let us now consider the division free energy for an arbitrary base sequence.
For each sequence, we select a segment ` � L of Watson-Crick-paired bases
ri such that the sequence ri...ri+`−1 is in the first half of the molecule, while
rj−`+1...rj is in the second half. For a random sequence of length L one can
show rigorously that ` = lnL/ ln 2. We further observe that

∆F ≡ Fdiv − Ffree ≥ Fdiv − Fpaired (3.9)

where Fpaired is the free energy of the ensemble of structures in which the
complementary segments are paired and unpaired substrands remain,

Fpaired = −`um + (N − 2`)f0 +
3

2
kBT [lnL1 + lnL2] (3.10)

where L1, L2 are the lengths of the two remaining substrands. Taking as Fdiv
the value of the molten phase,

Fdiv = f0L+ 2(3/2)kBT lnL (3.11)
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(ignoring L-independent terms), and assuming that L1, L2 scale linearly with
L, one is left with the estimate

3

2
kBT ≥

um + 2f0

ln 2
. (3.12)

To close the argument we have to discuss the low temperature limit of Eq.
(3.12). For T → 0, f0 → −num, where n is the average number of base pairs
per monomer in the minimal free energy structure; if all bases are paired,
we have n = 1/2. Since there will in general be a finite fraction of non-paired
bases, we expect n < 1/2. Thus, by increasing the value of um while decreasing
T , the inequality (3.12) must be violated at a critical value u∗m, necessitating
the existence of a phase of secondary structures at a lower temperature. This
then is the ‘glass phase’.

For real RNA sequences, apart from the glass phase, we also have to consider
the ‘native phase’, which corresponds to the minimum free energy solution.
One can say the structural phases of RNA are characterised by the average
sizes of the molecules based on the scaling behaviour of the average diameter
〈h〉. Supposing a relation

〈h〉 ∼ Lm (3.13)

between diameter 〈h〉 and sequence length L, introducing an exponent m, one
finds that the exponent varies between 0.5 < m < 1 in the glass, molten and
native structures. Thus, 〈h〉 displays only a rather weak dependence on L.

3.2 THE DNA MELTING TRANSITION

The most fundamental feature of DNA is its ability to hybridize its two com-
plementary strands. This is the prime example of the physico-chemical recog-
nition processes which are at the heart of essentially all biological mechanisms
on a molecular level.

In some sense, the base-pairing mechanism of DNA is also the simplest of
these recognition processes. It can be easily studied experimentally in vitro:
one only needs to heat a solution containing double-stranded DNA molecules.
The thermal denaturation or melting of DNA is the dissociation of the double-
stranded DNA into its two separate single stands - hence just the inverse of
the recognition mechanism. This process is reversible: by cooling the sam-
ple, the single strands rehybridize to the double strand. As first noticed by
R. Thomas in the early 1950’s, this denaturation/hybridization process is
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indeed a thermodynamic phase transition in the limit of long chains. Many
features of this phase transition remain correct in a more direct biological
context, namely when the double strand of DNA is opened by the application
of a direct force, e.g., by an enzyme.

We will now start to describe the thermal denaturation process, and we begin
with short chains. This case is simpler than that of longer chains and also has
important applications in biotechnology, e.g., for DNA microarrays to which
we will turn later on as well.

Denaturing short chains. The opening of double-stranded DNA molecules
has two aspects. Ignoring first any sequence-dependent effects, it can be un-
derstood as a simple dissociation process: as one double strand opens, it gives
rise to two single strands. One can easily imagine that when the chains become
longer and longer, the sequence-dependence will become more and more im-
portant, and dissociation will not simply be one double strand versus two sin-
gle strands anymore; many intermediate states will become possible in which
the double-stranded molecule is only partially dissociated.

As we have said, in the case of short chains (typically up to, say, 50 bp) we
want to model the denaturation process as a dissociation equilibrium

C2 ↔ 2C1 (3.14)

where C1 is the concentration of single strands, and C2 the concentration
of double strands. This reaction is governed by the equilibrium constant
KD = C2/C

2
1 . The total concentration of DNA is given by CT = C1 + 2C2,

since each double strand contains two single strands. The quantities of interest
are the fraction of double strands,

θD ≡
2C2

CT
, (3.15)

or, likewise, the fraction of single strands, θ = 1− θD. Using the definition of
KD, a quadratic equation for C1 can be obtained which allows to express θD
or θ in terms of KD and CT . The fraction of single strands is then found to
fulfill the equation

θ =
−1 +

√
1 + 2γ

γ
, (3.16)

where γ ≡ 4CT /KD. This calculation assumes differing strands; if the two
strands are self-complementary, 4CT has to be replaced by CT . Why? Exercise.
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order to avoid misinterpreting sequence-dependent effects
as structural effects arising from the DNA constructs. The
melting curve of the oligomers in both heating and cooling
displays negligible hysteresis effects (see Figure 3). The same
holds true for the other systems we studied; we therefore
display only the heating cycles. As usual for melting curves
of short oligomers, the melting profile can be clearly
distinguished into a sequence-dependent signal (the so-called
internal melting curve), which dominates at low temperatures,
and a high-temperature dissociation curve.13 In our system,
the internal melting curve is stretched out over a temperature
range of about 20 °C. In addition, the softly rising signal
consists, at closer inspection, of two almost linear pieces.
Both effects can clearly be observed in the raw data (see
inset in Figure 3). The gentle variations of the melting signal
at low temperatures are well-known as ‘premelting’, and
have, so far, resisted any general explanation other than that
they can be shown to depend on details of the nucleotide
sequence.

If the initial melting curve is normalized, the resulting
signal is due solely to the dissociation process. For our
system, a clear sigmoidal curve is obtained from experiment.
This is shown in Figure 3 which gives the coil fraction, θ,
vs temperature. This sigmoidal curve is indicative that
melting of the oligomers occurs in a two-state process, as is
typical for DNA chains up to approximately 50 bp.14,15

The theoretical calculation is based on a standard ther-
modynamic analysis for the two-state melting process.17 The
melting temperature given at a coil fraction θ ) 0.5 is given
by

in which the symbols have the following meanings: ∆H and
∆S are the melting transition enthalpy and entropy, res-
pectively, where ϵ is the normalized cooperative chain
length (ϵ ) 1 for the 16 bp ODN), R is the gas constant, cT
the total DNA concentration, and R a factor taking into

account whether the sequences are self-complementary or
not (for non-self-complementary sequences, R ) 4, for
self-complementary sequences, R ) 1). In the last term in
the denominator, " is described by KD/Kduplex(T ) Tm),
where KD, Kduplex are the equilibrium constants of the total
complex and of the internal degrees of freedom of the
complex, respectively. " is thus precisely the entropy factor
arising from the chain conformations. In the quantitative
analysis for the given sequence, the melting enthalpy is
written as

which sums both the contributions from hydrogen bonds and
the stacking of the base pairs on top of each other. The first
term in eq 2 is given by

where ∆Sbp ) - 103.97 J‚mol-1‚K-1 is the entropy change
of base pair melting, assumed to the sequence and temper-
ature independent (which is valid over a range of moderate
salt concentrations valid in our case). NAT and NCG are the
numbers of AT- or CG-base pairs; the average melting
temperature of the AT and CG base pairs are given by TAT
) 355.55 + 7.95 ln[Na+] and TGC ) 391.55 + 4.89
ln[Na+].16

While the first term in eq 2 depends on composition, the
second term is sequence dependent. The determination of
the stacking free energies of the base pairs on top of each
other has been studied in detail.17 For the sequence A, the
calculation can be easily done following the protocol
described in ref 17; we found that the set of stacking energies
by Blake and Delcourt describes our data very well18 as can
be seen in Figure 3, where the theoretical curve is plotted
on top of the experimental curve without any free fitting
parameter (" ) 1) and hence is given by

with γ(T) ≡ cTKduplex(T), where Kduplex(T) ) exp[-(∆H -
T∆S)/RT].

Having established a description of the ODN melting
curves, we now turn to a discussion of the melting curves
of the different PON assemblies. We begin by comparing
the melting curves of the ds oligomers with the PON chains
and PON dimers. As can be seen from Figure 4, after the
extraction of the extrinsic degree of freedom, the coil fraction
curves are very similar to those of the pure oligomers. There
are only minor differences between the melting temperatures
(see below), which mainly result from different underlying
sample concentrations used in the experiment. More impor-
tantly, the overall shape of the curves is also nearly identical.
This also applies to the mixed system containing both
symmetric PON (A′PA, Ah ′P Ah ) and both ODN (A, Ah ) with
a molar ratio of 1:1:1:1 (for the potential structure, see

Figure 3. ODN melting profile. The coil fraction θ of the heating
(+) and the cooling cycle (×) can be described theoretically (s)
without any free fitting parameter, e.g., the nucleation factor
correction. The inset shows the unnormalized melting profile
(heating cycle) over the whole measured temperature range.

Tm ) ϵ∆H
R ln(cT /R) + ϵ∆S - R ln "

(1)

∆H ) ∆Hbond + ∆Hstacking (2)

∆Hbond ) ∆Sbp [NAT TAT + NCG TCG] (3)

θ(T) ) 1 -
1 + γ(T) - #1 + 2γ(T)

γ(T)
(4)

Nano Lett., Vol. 5, No. 3, 2005 499

Figure 3.1 Melting curve of a 16-bp oligomer; comparison of theory and

experiment. [Reprinted with permission from J. Bayer et al. Copy-

right (2005) American Chemical Society.]

What remains to be calculated is the equilibrium constant KD; in particular,
its temperature dependence will turn out to be important. One has

KD = exp[−(∆H − T∆S)/RT ] (3.17)

where the transition enthalpy given by

∆H = ∆HH−bond + ∆Hnn (3.18)

contains both contributions from the hydrogen bonds between the paired bases
on the two strands, and from the stacking of the pairs on top of each other,
see the previous section. Typically, for the stacking contribution it is assumed
that it can be considered as a purely nearest-neighbor effect, but there are
situations (e.g., in the presence of mismatches) when this is not sufficient.2

2The same philosophy applies to RNA-RNA and RNA-DNA duplexes, but the values of
the stacking interactions differ in all these cases.
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The transition entropy contribution in Eq. (3.17) is typically approximated
by ∆S = ∆Sbp[NAT +NGC ] where ∆Sbp is a temperature-independent value,
and NAT and NGC are the number of AT- and GC-base pairs, respectively.
The precise values of the melting parameters have been determined experi-
mentally, see, e.g., R. Owczarzy et al., 1998, and J. Santa-Lucia, 1998.

Figure 3.1 illustrates the comparison between theory and experiment for the
sequence 5’-TAG TTG TGA TGT ACA T-3’. (J. Bayer et al., 2005). The
graph illustrates generic features observed in oligomer melting curves. The
DNA double-strand undergoes a melting transition at a temperature TM which
is at θ = 0.5; here, the slope of the curve is maximal (the derivative dθ/dT
has a maximum). The melting temperature TM depends on base composition
and strand length. Further, the shape of the melting curve turns out to be
universal; it generically has a sigmoidal form. The effect of a change in base
sequence thus leads to a shift in melting temperature while the overall curve
is unchanged. If the base sequence is extended by adding more bases, the
melting temperature will shift to higher temperatures - simply because more
bases have to be broken. At the same time, however, the sigmoidal curve will
steepen up. This is a consequence of a cooperative effect: as long as the de-
naturation process occurs in a two-state fashion, essentially all bases have to
open up in concert.

Melting long chains: the Poland-Scheraga model. We now turn to the
discussion of melting of long DNA chains which do not open in the simple
two-state fashion. We can easily imagine that if we make the chains longer
and longer, 50 bp to, say, 500 bp, the cooperative effect of all bases opening
in concert will not be operative any more all along the chain. We may then
expect that a DNA molecule undergoing the denaturation process may look
like the schematic illustration in Figure 3.2. The molecule consists of a se-
quence of helices and open segments, so-called denaturation loops or bubbles.
The configuration shown in addition has open ends, but closed ends are of
course possible, too.

A model to describe the statistics of these configurations was first proposed by
Poland and Scheraga (1970); we here follow the discussion by Y. Kafri
et al. (2002).

If we ignore the configurational entropy of a bound segment embedded in the
ambient space, its statistical weight will be given by

w` = exp(−`E0/kBT ) (3.19)

where ` is the length of the segment, and E0 is a binding energy in which, for
the moment, no distinction is made between the chemical nature of the bases.
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Figure 3.2 A DNA chain configuration near the melting transition: it

consists of an open end of length `0, a bound segment of length `1, a

loop of length `2, a bound segment of length `3, and an open end of

length `4.

By contrast, a denatured loop has no energy associated with it; its statistical
weight is consequently determined only by its degeneracy - we have to count
the number of its configurations in order to estimate its contribution to the
entropy of the configuration.

Assuming that the DNA loop is fully flexible, in the simplest modelling it can
be considered as a random walk which returns to its origin after a path of
length 2`. From this modelling idea one then knows that the statistical weight
for the loop of length ` has an algebraic form,

Ω(2`) = σ
s`

`c
(3.20)

where s is some constant; the amplitude prefactor σ will be simply put to
σ = 1 for the moment; but we will come back to it later.

The exponent c is determined by the statistical properties of the loop config-
urations. Finally, the configuration of the chain ends must be characterized;
they consist of two denatured strands of length ` with a weight Λ(2`) of a
similar form as in Eq. (3.20), but with a different exponent c. The values c
and c can assume will be given later.

Given these weights, we can now proceed to calculate the total weight of any
given configuration. Supposing the example shown in Figure 3.2, its statistical
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weight is obtained by

Λ(2`0)w`1Ω(2`2)w`3Λ(2`4). (3.21)

The melting phase transition. This section is somewhat more formal since
we now want to determine the nature of the transition between a bound and
a denatured phase of a double-stranded DNA molecule.

In order to determine the thermodynamic properties of this model, it is prac-
tical for the calculation to assume a grand canonical ensemble in which the
total chain length L is allowed to fluctuate.3 The reason why this is a good
choice is that in this ensemble the total partition function can be conveniently
expressed as a geometric series,

Z =

∞∑
L=0

Z(L)zL =
V0(z)Q(z)

1− U(z)V (z)
, (3.22)

where Z(L) is the canonical partition function of a chain of given length L,
and z is the fugacity.4 The functions U(z), V (z) and Q(z) are defined as

U(z) ≡
∞∑
`=1

Ω(2`)z` =
∞∑
`=1

(sz)`

`c
= Φc(sz) , (3.23)

V (z) ≡
∞∑
`=1

w`z` =
wz

1− wz
, (3.24)

Q(z) ≡ 1 +

∞∑
`=1

Λ(2`)z` = 1 + Φc(sz) (3.25)

and
V0(z) = 1 + V (z) . (3.26)

Φc(sz) is the polylog function which converges for |z| < 1; if in addition Re(c) >
0, the function has an integral representation

Φc(z) =
1

Γ(c)

∫ ∞
0

dt t c−1 ze−t

1− ze−t
, (3.27)

3Remember that we argued in Chapter 1 that in the thermodynamic limit the ensembles
are equivalent.

4The fugacity is the intensive variable conjugate to the chain length, as much as the
chemical potential is conjugate to the particle number.
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where Γ(c) is Euler’s gamma function. The integral representation allows to
see that Φc(z) has a divergence of the form |z − 1|c−1 for z → 1, if c ≤ 1. If
c > 1 and 1−z = ε� 1, one has Φc(1)−Φc(1−ε) ∼ εζ where ζ = min(1, c−1).

In order to fix the average chain length L one has to choose the fugacity
such that

L =
∂ lnZ
∂ ln z

. (3.28)

The thermodynamic limit L → ∞ is obtained by allowing z to approach the
lowest fugacity value z∗ for which the partition function Z diverges. This di-
vergence can have two sources: either the numerator grows without bounds,
or the denominator vanishes. In fact, both cases occur. At low temperatures,
the denominator vanishes, which is at

U(z∗)V (z∗) = 1 . (3.29)

Making use of expression Eq. (3.24) for V (z), this result can be expressed as

U(z∗) = Φc(sz
∗) =

1

wz∗
− 1 =

1

V (z∗)
. (3.30)

The solutions of this equation depend on the singularities of Φc(z), which de-
pend itself on the value of c.

We take as the order parameter for the denaturation transition in the long
chains the fraction of bound monomers5, θb. Its temperature dependence in
the thermodynamic limit can be calculated from the behaviour of z∗(w), since
the average number of bound pairs in a chain is given by

〈m〉 =
∂ lnZ
∂w

(3.31)

so that

θb = lim
L→∞

〈m〉
L

=
∂ ln z∗

∂ lnw
. (3.32)

In the case of the short chains, we defined the transition as the point where
the temperature-derivative of the fraction of bound (or, unbound) base pairs
would show a maximum. We also noted that for somewhat longer chains, this
curve would steepen, and we interpreted this as a cooperative effect. Indeed, it
is a signature of a collective phenomenon, which in the limit of infinite system
becomes sharp, provided all bases were to open up collectively.

5For the case of short chains, θb = θD.
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If we now look at the order parameters 〈m〉 and θb we defined for the state
of the DNA double-strand, we are asked to check what the possible limiting
behaviour of these quantities in the limit L → ∞ is. This whole discussion
resembles the (simpler) discussion of the phase transition in the 1-dimensional
Ising model in Chapter 1. The difference between the two is that, apart from
the energy of the configurations, we have to explicitly account for the loop en-
tropy. And that, as we will see, makes everything different since the entropic
weights of the loops are algebraic in nature, hence of a long-range nature and
not rapidly decaying as for an exponential contribution.

As a consequence of this observation, the critical quantity in this discussion is
the exponent c. Depending on its value we can find three different scenarios:

• c ≤ 1: no phase transition. The function U(z) is finite for all z < 1/s,
and it diverges at z = 1/s. The function 1/V (z) is always finite and
intersects U(z) for z < 1/s. There is no singular behaviour.

• 1 < c ≤ 2: continuous phase transition. In this case, U(z) is finite
at z = 1/s since c > 1. For z > 1/s, it is infinite. The singular point
zM = 1/s is thus the phase transition point, separating a bound and a
denatured regime. At the transition, the derivative of U(z) diverges.

• c > 2: first-order phase transition. In this case, U(z) and its deriva-
tive are finite at z = zM . Again, there is a transition at this point; above
the transition, θb vanishes in the thermodynamic limit. The transition
is thus first-order.

All that remains to do now is to fix the value of c, which so far has been
left unspecified. Since we have modeled the loops as random walks, we have
to quantify the relationship between random walks and the polymeric nature
of DNA.

Indeed, if we were to consider the DNA loop simply as a random walk of a
given length which returns to the origin, we would find a value of c = d/2 in d
space dimensions. Taking this exponent, and looking into the list of possible
behaviours, there would be no denaturation transition in d ≤ 2; for 2 < d ≤ 4
the transition is continuous, and for d > 4, the transition will be first-order.

This argument can be somewhat refined when considering the loop as a self-
avoiding walk, since for a purely random walk configurations can occur in
which the walk crosses itself. The assumption of self-avoidance seems more
realistic since a real polymer can of course not intersect itself. One has

c = dν (3.33)
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where ν is the exponent associated with the radius of gyration6 RG of a self-
avoiding random walk. For a walk of length L one has RG ∼ Lν with ν = 3/4
in d = 2 and ν ≈ 0.588 in d = 3. For the loop exponent c, this yields c = 1.5
in d = 2, and c = 1.766 in d = 3. The inclusion of self-avoidance thus leads to
a slight smoothing of the transition.

All these reasonings are based on the assumption that the loop can be con-
sidered an isolated object which does not interact with the rest of the chain.
In fact, the whole build-up of the weights assumes that one can consider the
‘bits and pieces’, i.e., the helices and loops, as essentially independent from
each other. Recently, however, arguments have been put forward to account
for the self-avoidance between the loops and the rest of the chain, albeit in an
approximate way. These so-called excluded-volume effects between a loop and
the chain have originally been derived using the theory of polymer networks
by B. Duplantier, 1986. The discussion of his theory goes beyond the scope
of this book since it relies on renormalization group arguments; here, it must
suffice us to simply state that the excluded volume interactions modify the
self-avoidance exponent relation Eq. (3.33) into the expression

c = dν − 2ν3 (3.34)

where ν3 takes into account the contribution from the two 3-vertices at the
extremities of a loop, which connect the loop to the chain. In d = 3, one finds
a value of ν3 ≈ −0.175. Thus for c results

c ≈ 2.115 (3.35)

i.e., a value which is slightly larger than two. This result is in accord with inde-
pendent numerical work based on Monte-Carlo calculations for lattice models
of DNA (E. Carlon et al., 2002).

A side remark on the boundary effects. Just in order to complete the
discussion, it turns out that the result on the denaturation transition does not
depend on the value of c. This exponent enters the discussion, e.g., if one is
interested in the average length of the end segment near the transition, which
is given by

ξ = z
∂ lnQ

∂z

∣∣∣∣
z=z∗

(3.36)

with the value of z∗ determined before. The three different behaviours found
for the denaturation transition can be found back for the average end segment

6The radius of gyration is the average distance of a monomer from the centre of mass of
the polymer.
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length; for more details of this behaviour, see Y. Kafri et al., 2002. Here we
simply note that the value of c̄ can be obtained by summing up the scaling
dimensions of a linear chain and a fork, leading to c = −(ν1 + ν3) ≈ 0.092,
i.e., a very small value. Near the melting transition the end segment diverges
according to

ξ ∼ 1

|T − TM |
, (3.37)

where TM is the melting temperature.

The melting transition with sequence dependence. The main result of
the previous section was that the denaturation transition may in fact be a
first-order rather than a continuous transition if excluded-volume effects be-
tween the bubbles and the chain do matter.

This finding has revived a dormant, but long-ongoing controversy on the na-
ture of the transition. We will now turn to the computation of the melting
curves of specific DNA sequences and want to see whether the computational
results can faithfully represent experimental data. We thus first have to build
in sequence-dependence into the theory which we had ignored so far.

In order to systematically build in sequence effects we will follow a version of
the Poland-Scheraga model which is also useful for further generalizations (like
the thermal stability of hybrid DNA, i.e., chains which are not fully comple-
mentary and/or of different length). T. Garel and H. Orland (2004) have
recently cast the Poland-Scheraga model into a recursive formulation based on
the partition function.7 Previous work by D. Poland (1974) had relied on a
recursion formulation for configuration probabilities. Based on these, the sim-
ulation program MELTSIM had been developed by R. Blake et al. (1999), a
variant of which had been used to obtain the simulation results described here.

In the original Poland-Scheraga model one only considers two complementary
strands of equal length N . Let us call Zf (α) the forward partition function of
the two strands starting at base 1, and ending at base α (which is assumed
paired). The interaction of the bases is built as that between base pair stacks
at positions α and α+ 1 along the chain, with associated stacking energies8

εα ≡ εα,α+1;α,α+1 . (3.38)

7We have seen a basic version of this procedure in the section on the Ising model in
Chapter 1, and will encounter another application in the discussion of RNA secondary
structure in the following chapter.

8The values for these energy parameters are defined such as to include the hydrogen
bond contributions.
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Figure 3.3 Graphical representation of the Poland recursion for the par-

tition function.

In order to find the recursion relation obeyed by Zf (α+1) one has to consider
the three possibilities to pair two bases at position α+ 1:

• the last pair (α, α+ 1) is stacked;

• there is a loop starting at any α′ with 1 ≤ α′ ≤ α − 1 which ends at
α+ 1;

• there is no loop.

This is illustrated in Figure 3.3. Formally, this recursion relation is ex-
pressed as

Zf (α+ 1) = e−βεαZf (α) + σ
α−1∑
α′=1

Zf (α′)N (2(α+ 1− α′)) + ΣM(α) (3.39)

where β = 1/kT . There are two cooperativity parameters in this expression: σ
and Σ; these parameters quantify the probabilities for loop and fork forma-
tion, respectively, and are assumed to be sequence-independent.

The factor N counts the number of conformations of a chain beginning at
base α′ and ending at α+ 1. Asymptotically, one has

N (2(α+ 1− α′)) = µα−α
′
f(α− α′) (3.40)

where kB lnµ is the entropy per base pair (irrespective of its nature), and f(`)
is the return probability of a loop of length 2` to the origin. Finally, in Eq.
(3.39), M(α) = µαg(α), which counts the number of conformations of a pair
of unbound chains starting at base 1 and paired at base α+ 1. The function g
has a power-law behaviour, however, as we have seen before, with an exponent
close to 0. We therefore simply put this factor to 1.
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In a similar fashion as for the forward partition function Zf one can compute
the backward partition function Zb, starting at base N and ending at a paired
base α. Again there are three options to pair a base at position α, and thus
one finds

Zb(α+ 1) = e−βεαZb(α+ 1) + σ
N∑

α′=α+2

Zb(α
′)N (2(α′ − α)) + ΣM(N − α) .

(3.41)

From the expressions Eq. (3.39,3.41) one obtains the probability for the bind-
ing of a base pair α as

pα =
Zf (α)Zb(α)

Z
, (3.42)

where Z is the partition function of the two strands, given by

Z = Zf (N) + Σ
(
µZf (N − 1) + µ2Zf (N − 2) + ...+ µN−1Zf (1)

)
(3.43)

or, expressed in terms of the backward partition function,

Z = Zb(1) + Σ
(
µZb(2) + ...µN−1Zb(N)

)
. (3.44)

For the implementation of these recursion relations one has to take into ac-
count that the algorithm is O(N2) since one has to compute O(α) terms for
each value α. In order to reduce the computational complexity, M. Fixman
and J. J. Freire, 1977 have developed an approximation in which the power-
law loop-entropy factor is replaced by a sum of exponentials

f(`) =
1

`c
≈

I∑
i=1

aie
−bi` (3.45)

where the I parameters (ai, bi) obey a set of non-linear equations and de-
termine the degree of accuracy. With this step, computational complexity is
reduced to O(N ·I). In the case of sequences of unequal length, the complexity
of the algorithm can be reduced with this method from O(N2

1N
2
2 ) to O(N1N2).

We can turn to the application of the PS-model, and we will see that the story
that results will be, to some extent, a story of the cooperativity parameter σ.
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3.3 THE MELTING PROFILES OF GENOMIC DNA AND CDNA

Melting genomic DNA. We now want to take a look at the comparison
of the theory we have described with experimental data. In particular we
ask what value of c, the one without excluded-volume or with inclusion of
excluded-volume effects does fit experiments best? Could we even find out
this way whether the transition is first- or second order?

In order to perform such a quantitative comparison, the theory has finally to
be complemented by experimental parameters. The first set of parameters are
the nearest and paired neighbor energies (R. D. Blake et al., 1999), distin-
guishing the different paired bases and their stacks; there are ten independent
values to be specified. Further, there is the amplitude factor, the cooperativity
parameter σ which we had put to a value of one before. On a technical level,
this parameter determines the relative magnitude of energetic and entropic
effects. Its name, however, indicates its physical meaning: it determines how
many bases interact cooperatively, i.e., open up together to disrupt the helix
and form a loop.

Figure 3.4 Schematic diagram of the linearization of an AT-insertion

in a GC-rich bacterial plasmid. The bar represents the inserted DNA

segment which upon cutting is either placed at an extremity of the

molecule (a) or at its center (b). [Reprinted with permission from

R. Blossey and E. Carlon. Copyright (2003). American Physical

Society.]
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Figure 3.5 Fits of the melting curve with different values of c and σ. The

curve with c = 2.15 and σ = 1.26× 10−5 does not fit the experimental

data; by contrast, two choices for c and σ lie exactly on top of each

other. [Reprinted with permission from R. Blossey and E. Carlon.

Copyright (2003). American Physical Society.]

A good system to test the issue of the order of the denaturation transition
has been introduced by R. D. Blake and S. G. Delcourt, 1998. They
inserted artificial AT-rich sequences of varying length into GC-rich bacterial
(plasmid) DNA, with sequence lengths between about 200 and 700 bp. After
the insertion, the circular plasmid DNA was linearized in two ways: either
the insertion was left at the extremity, or left imbedded in the GC-rich chain,
see Figure 3.4. Both configurations differ in their melting temperatures: the
sequence which melts from the extremity has a lower TM , i.e., T loopM > T endM .

Figure 3.5 shows a first example of a calculated differential melting curve for
the case of an embedded loop, for the longest inserted sequence with 747 bp,
and for three sets of values (σ, c). It is found that the curves with the sets
(σ = 1.26× 10−5, c = 1.75) and (σ = 1.75× 10−4, c = 2.15) fall on top of each
other; the curve with the value σ = 1.26×10−4 and c = 2.15 has a higher TM .
Note that the two curves which fall on top of each other in this graph are in ac-
cord with experiment (data not shown). This result shows that a change in the
value of c can apparently be compensated for by choosing a smaller value of σ.
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Figure 3.6 Length dependence of the melting temperature shift.

[Reprinted with permission from R. Blossey and E. Carlon. Copy-

right (2003). American Physical Society.]

Figure 3.6 shows the theoretical values for the melting temperature difference
∆TM ≡ T loopM −T endM the two sets (σ, c), in comparison with the experimental
data, as a function of inverse insert length, 1/N . Both theoretical curves devi-
ate for shorter chain lengths, for which the theory is less reliable (see below).
Given that the experimental resolution of melting temperatures is on the or-
der of 0.1oC, there is obviously no direct way to decide the issue of the nature
of the transition based on a comparison of the Poland-Scheraga model with
this kind of experiment.

If one considers longer sequences of genomic DNA, such as, e.g., the hu-
man cancer-related gene eIF-4G with a sequence length of about 2900 bp,
a structure-rich denaturation profile appears with many interior openings,
hence loops, along the sequence. This is illustrated in Figure 3.7, where the
differential melting signal is shown together with the denaturation probability
1 − A(i), which is the probability that the i-th base pair is in a closed state.
The figure shows this probability at six different temperatures, labelled with
Greek letters α, .., φ. Again, in this figure, the melting curves are compared
for different values of σ and c, and as before for the plasmid inserts, again the
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CG matrix, as calculated by our program. We first fixed
!!1.26"10#5, the value reported in Ref. "19#. The change
of c from 1.75 to 2.15 causes a shift of the position of the
melting curves peak of about 0.2 °C and a slight increase of
height $the peak position defines the loop melting tempera-
ture TM

loop). By choosing c!2.15, !!1.75"10#4 one recov-
ers a melting curve which almost perfectly overlaps the
original one obtained with c!1.75, !!1.25"10#5 $solid
and dashed lines of Fig. 4%. This curve fits well the experi-
mental data $see Ref. "19#%, thus we conclude that for the
choice c!2.15 and !!1.75"10#4 yields a melting curve
consistent with the experimental values.

In order to provide an estimate of ! from several inde-
pendent measurements we reanalyzed the procedure fol-
lowed in Ref. "19#. Figure 5 shows experimental data $empty
circles% for the temperature difference of the sequences of
Table I, &TM'TM

loop#TM
end , plotted as functions of the in-

verse domain length 1/N $data taken from Table I of Ref.
"19#%. Here TM

loop and TM
end denote the location of the maxima

of dA/dT for sequences inserted in the interior and at the end
of the plasmid chain. The dashed line shows the calculated
&TM in the case of c!1.75, !!1.26"10#5, where the lat-
ter value was determined using a regression analysis to fit the
experimental data. We have repeated this procedure here fix-
ing c!2.15 for which we find an equally good fit of the data
with the choice !!1.25"10#4. Given the precision of the
experimental data which we could not assess or analyze fur-
ther, we find that our calculated curve matches the data very
well. Deviations between both theoretical curves clearly ap-
pear for shorter chains $loops% where the application of the
asymptotic form of the loop partition function of Eq. $1% may
not be appropriate.

B. Melting of sequences of intermediate length

We next consider the melting of two sequences of inter-
mediate length. We used two protein-coding cancer-related

genes, eIF-4G $2900 bp’s% and LAMC1 $7900 bp’s%, selected
from a series of other sequences analyzed for their predomi-
nant loop melting effects.

Figure 6$a% shows the melting curves for three different
values of c and ! for a fragment of DNA of eIF-4G as
calculated from our program. Four major distinct peaks, la-
beled from 1 to 4 are visible. The denaturation maps, i.e.,
plots of 1#A(i) as a function of i, the base position along
the chain, which are shown in Fig. 6$b%, provide further in-
sight on the type of transitions associated with each peak. We
recall that 1#A(i) is the average probability that the ith
base pair is in a closed state. The six plots of Fig. 6$b%,
labeled as ( , ) , . . . ,* , correspond to the six temperatures
marked by the vertical arrows in Fig. 6$a%.

Comparing the configurations at the temperatures just be-
low and above the peak 3 (+ and ,) we note that this peak
corresponds to the opening of a big loop extending roughly
from base pair 1300 to 2300. The melting curves were cal-
culated for three different sets of parameters, starting from

FIG. 5. Plot of &TM as a function of the inverse domain size.
Empty circles are experimental data taken from Ref. "19# $Table I%
dashed and dotted lines refer to two choices of c and ! .

FIG. 6. $a% Melting curves for the sequence eIF-4G for three
choices of c and ! and 0.05M of monovalent salt. $b% Denaturation
maps for c!2.15, !!1.26"10#5 calculated at the six different
temperatures $labeled by ( , ) , . . . ) indicated by vertical arrows in
$a%.
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Figure 3.7 Melting curve of the cancer-related human gene eIF-4G

with about 2900 bp (a); opening regions along the chains at differ-

ent temperatures (b). [Reprinted with permission from R. Blossey

and E. Carlon. Copyright (2003). American Physical Society.]
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loop and double helix segment lengths, scale as 1/! . As
pointed out before, a large cooperativity "small !), would
imply typically long loops and long double helical segments.
However, the conclusion that short "i.e., #10 bp’s$ loops
would be totaly suppressed due to the small ! is too simplis-
tic. Several studies showed that the nearest neighbor model
largely underestimates the opening probability for small
loops "see the discussion in Ref. %1& and references therein$,
so it cannot be a quantitatively reliable tool at too short
length scales. Such short loops are present in real DNA
samples.

We can demonstrate this effect explicitly by analyzing the
experimental melting curves recently obtained %33& in a
study of dsDNA bubble dynamics. This study was performed
on short sequences "of about 30 bp’s$ containing an internal
AT region surrounded on both sides by short CG clamps.
Experiments show that the inner AT region melts at tempera-
tures in which the CG edges are still bound %33&.

In Fig. 9 we present the calculated melting curves for the
probabilities of having the base pair i!1 and i!17 in an
open state for the sequence M 18 of Ref. %33&, which can be
directly compared with the experimental results as both
quantities A(1) and A(17) have been measured experimen-
tally through fluorescence measurements %33& "the base pair
i!17 is in the middle of the AT region$. As the sequence is
very short the calculated melting curves are not sensitive to a
change in c. For !!1.26"10#4 %Fig. 9"a$& the typical value
for the cooperativity parameter used previously in the paper,
our calculations show that A(1) and A(17) are at all tem-
peratures very close to each other, which implies that no
loops are formed and that the sequence rather melts from
edge openings, although the CG edges are energetically more
stable than the inner AT region. This is an effect of the small
value of ! used in the calculation. In order to verify this we
have plotted in Fig. 9"b$, just as an illustration, the same
quantities with !!5"10#2. The reduced cooperativity al-
lows for the formation of loops and now produces results
closer to what is observed in experiments "see Fig. 2 of Ref.

%33&$. Thus, despite that the small cooperativity parameter
(!#10#4) correctly describes long loop ($100 bp’s$ forma-
tions in DNA melting, small loops (#10 bp’s$ openings in
AT-rich domains are still possible. The importance of small
bubbles formation in DNA oligomers melting has been re-
cently emphasized in an analysis of the melting of DNA
oligomers %34&.

As the ssDNA has, at 90 °C, an estimated persistence
length corresponding to roughly 5 bp’s, we expect that the
opening of a small loop of about 15 bp’s would be sufficient
to decorrelate completely the two dsDNA segments at its two
sides. To provide an estimate of the persistence length of the
dsDNA one would need to know the average density of small
loops and their probabilities, which depends on the sequence
composition. It is however conceivable that this effect would
make the dsDNA at 80#90 °C much more flexible, com-
pared to its room temperature behavior, so that the use of the
loop embedded exponent for c is justified.

V. CONCLUSION

In this paper we have analyzed the effect of reparametriz-
ing the loop weight contribution, in the calculation of DNA
melting curves for sequences of a broad range of lengths, up
to the full genome of the E. coli (5.6"106 kbp’s$. Using the
closure exponent for a loop embedded in a chain (c!2.15)
we found that in order to reproduce correctly the existing
experimental data and melting curves one needs to increase
the cooperativity parameter ! by about one order of magni-
tude. An increase of the cooperativity parameter, which is the
weight associated with the interruption of a helix to form a
loop, implies that loops are more probable within the chain.

It is clear that a simultaneous change of the loop exponent
c and of ! cannot reproduce two perfectly overlapping melt-
ing curves. We found that rescaling ! by about one order of
magnitude together with a change in c from 1.75 to 2.15
produces typically very small shifts in peak positions
(#0.1°C) and heights. Accurate melting experiments would
be able to distinguish between the two choices and fix un-
equivocally both c and ! . In any case our analysis indicates
that the best samples where to test the above effects are
sequences of intermediate lengths ('103#104 bp’s$. We
showed that in these sequences rather large loops may be
formed and that the associated melting peaks are extremely
sensitive to a change in loop parameters c and ! . The disad-
vantage of shorter sequences is that they predominantly melt
through end openings "unless they are designed to do other-
wise, as in the example of the preceding section$. The melt-
ing curves of very long sequences, as we showed for E. coli,
are only weakly affected by a change in the parameters c
and ! .
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FIG. 9. Probability of finding i!1 and i!17 in an open state
plotted as a function of the temperature for the sequence M 18 of
Ref. %33& for !!1.26"10#4 "a$ and !!1.26"10#1 "b$.

REPARAMETRIZING THE LOOP ENTROPY WEIGHTS: . . . PHYSICAL REVIEW E 68, 061911 "2003$

061911-7

Figure 3.8 Effect of a change of the cooperativity parameter (see dif-

ferent values indicated in (a) and (b)) on the opening probability of

a short chain designed for loop opening. [Reprinted with permission

from R. Blossey and E. Carlon. Copyright (2003). American Phys-

ical Society.]
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curves can be recovered with two sets of parameter (and hence, consequently,
in fact by a whole range of parameter values, interpolating between the two
chosen values of σ and c).

One may wonder whether the whole discussion misses an important physical
parameter of DNA, the stiffness of the double helix, which we encountered
before in the discussion of the WLC model. Since the persistence length of
the double-stranded DNA, `dsP , is typically much larger than that of single-
stranded DNA, the relevance of excluded-volume effects between the loop and
the chain has been questioned (A. Hanke and R. Metzler, 2003). In their
view, the double-stranded DNA enclosing the bubble is so stiff compared to
the flexible single strands of the bubble that the excluded volume effect plays
no role.

Several factors, however, intervene in this issue. Firstly, denaturation is a
high-temperature phenomenon, since melting temperatures typically lie in the
range between 60oC - 90oC, and not at room or physiological temperature,
where values of the persistence length are often considered. Secondly, in the
limit of high salt concentrations, electrostatics is fully screened and the de-
pendence of `P on temperature can be assumed to follow the worm-like chain
model where `P ∼ T−1.

A further effect which influences the value of the persistence length is the
presence of small bubbles along the melting chain. It should be noted that
the Poland-Scheraga model is tuned to describe long chains and the opening
of long loops along the chain; the length of helix and loop segments should
scale as the inverse cooperativity parameter, hence as 1/σ. One could thus
be misled to assume that short loops would be suppressed during the melting
process, which is wrong.

This fact is illustrated in Figure 3.8, which plots the probability of finding
a specific base pair, i = 1 and i = 17, in an open state in a chain of 30 bp
length. Both A(1) and A(17) can be measured by fluorescence techniques; the
base pair i = 17 is placed in the interior of an AT-rich region. The shortness
of the sequence leads to the insensitivity of the melting curve on the value
of c, but it sensitively depends on σ. For the small value of σ ∼ 10−4, both
probabilities are indistinguishable, which would mean that there is no loop
opening, and the sequence rather melts from the ends. Increasing the value
of σ by a factor of 100 allows the opening of loops, and brings the theoretical
result close to what is observed in experiment (G. Altan-Bonnet et al.,
2003). Consequently, it appears that σ = σ(L).

We thus conclude that

• The Poland-Scheraga can be used to describe even complex denaturation
profiles in quantitative accord with experiment;
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• The theoretical results depend on the value of the critical exponent c and
the cooperativity parameter σ. Both need to be (and can be) adjusted
to fit to experiment;

• The fit to experiment depends on the length of the DNA under scrutiny;
by construction, the Poland-Scheraga model is more tuned to DNA prop-
erties on longer length scales;

• We cannot clarify the issue of the order of the phase transition; from
a practical point of view for the melting profiles of DNA this seems
almost an academic question. The transition is borderline between first
and second-order, beyond experimental resolution.9

Melting cDNA. DNA contains various sequence regions which are biologi-
cal entities: first there are the genes, or more specifically, the protein-coding
regions, the exons, but also the so-called junk DNA, non-coding regions, the
introns. There are also regulatory regions: places where regulatory proteins
attached and control the expression of genes (see Part III). If we melt purely
genomic DNA, we will get a bit of everything. Can we distinguish between the
melting behaviour of different sequence regions - is there a correlation between
the biological purpose of a sequence and its (thermal) stability?10 We address
this question for complementary DNA (cDNA).

Complementary DNA (cDNA) is a molecule which contains only exons (in-
cluding so-called untranslated end regions, UTRs). Complementary DNA can
be obtained from genomic DNA by first transcribing it into RNA, splicing
out the introns, and transcribing the mature RNA back into DNA; this latter
step is done by a viral enzyme, the reverse transcriptase. Figure 3.9 shows the
build-up of genomic DNA and cDNA in a schematic comparison.

Melting of genomic DNA of various organisms has been studied by E. Yera-
mian (2000, 2002). Quite generally it is found that the melting curves reflect
the base composition; since exons are on average more GC-rich than introns,
which have a bias to AT bases, this difference can in some cases permit to dis-
tinguish genes and non-coding regions from each other. AT-rich regions melt
more easily since the base pairing has only two hydrogen bonds, instead of
the three between G and C. However, this distinction does not always work;
e.g., for bacteria it was found that the structure of their ultra-dense genomes

9Physicists protesting against this pessimistic conclusion should look back into the crit-
ical properties of classical superconductors. Further, take a look into the Additional Notes
on the topic of mixed-order transitions.

10One might object that the thermal stability of DNA cannot be relevant for organisms
since the melting temperatures of DNA are usually much higher than physiologically rele-
vant temperatures. One counter-argument against this is that a position which is easier to
destabilize thermally can likewise be more readily destabilized either by changes of chemical
conditions (pH) or the localized action of forces, e.g., by protein complexes on DNA.
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Figure 3.9 Structure of genomic DNA vs. cDNA. [Reprinted with per-

mission from E. Carlon et al. Copyright (2005). American Physical

Society.]

without non-coding regions does not permit to identify genes based on melting
signatures alone.

This is indeed different for cDNA (E. Carlon et al., 2005). If one melts
cDNA, one finds a differential melting curve similar to the one shown in Fig-
ure 3.10. As for genomic DNA, several distinct melting peaks arise. In the
figure, sequence information has been added: the horizontal bars indicate the
location of the boundaries between two exons as known from sequence an-
notation. The numbers on the right indicate the number of base pairs of the
intron removed at that position. The vertical bars in the figure indicate when
the probability of having bound pairs falls below 1/2. The ends of these bars
locate the position of a thermal boundary: a sequence position at which the
opening of the sequence is stopped at increasing temperature.

Figure 3.11 shows that in several cases thermal boundaries coincide with the
annotated exon-exon boundaries, i.e., known coding regions of the genes. This
observation holds for many human genes, with a resulting coincidence of ther-
modynamic and annotated boundaries at about 30%.

At present, there is no simple explanation for this finding; but one may specu-
late. In this context it is useful to think in evolutionary terms. How did exons
and introns come into their positions in the first place? There are two current,
opposing hypotheses on the evolution of genomes, one based on the idea that
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base pair is bound at a temperature T. The total fraction of
bound base pairs is then ! ! P

i!i=N, where N is the
number of nucleotide pairs in the molecule. The multistep
nature of the melting transition can be seen in a plot of ! vs
T. This quantity vanishes while increasing the temperature
through a series of jumps which correspond to sharp peaks
in a plot of "d!=dT vs T, the differential melting curve.
The parameter ! can also be measured by UVabsorption of
DNA in a solution [10]. Typically, statistical mechanics
programs reproduce the experimental results quite well
[13].

In Fig. 2 we plot the melting curve "Nd!=dT, as
obtained by a statistical mechanical calculation [13], for
the human "-actin cDNA, where N is the total length of the
sequence (N ! 1792 in this case). We used the same
stacking energies and loop entropic parameters as in
Ref. [14]. The salt concentration was fixed at 0.05 M.
The three main melting peaks of Fig. 2 indicate three sharp
subtransitions which characterize the melting of the se-
quence. The evolution of the average configuration of the
sequence as a function of T can be read off from the
vertical bars, which denote, at the given temperatures, the
regions which are more likely to be dissociated, i.e., where
!i < 1=2. For instance, the bar shown at T # 85 $C indi-
cates that the region with i * 850 is dissociated, while that
with i & 850 is in a helical state. These melting domains
are plotted for temperatures between melting peaks, so
that, by comparing the configurations at temperatures be-
low and above each peak, one can visualize the regions of
the sequence involved in the multistep melting. We refer to
the nucleotides separating two neighboring regions of the
sequence with !< 1=2 and !> 1=2 as the thermodynamic

boundaries. In Fig. 2 exon-exon boundaries are indicated
as horizontal solid lines, while the boundaries between the
CDS and the UTRs are shown as dashed lines. The num-
bers on the left vertical axis, located at the exon-exon
boundaries, show the length on the introns in the genomic
DNA.

In the example of Fig. 2, the melting process starts with
the opening of small loops in the 30UTR, while the first
sharp peak at 80 $C is the dissociation of the whole 30UTR.
The next peak at about 84 $C is due to the melting of
exons 5 and 6 (numbering them from the 50 region), while
the melting of exons 3 and 4 occurs at higher temperature
(#86 $C). A remarkable overlap between the locations of
the thermodynamic and genomic domains is observed.

An equally striking correspondence is found in most of
the human cDNA sequences we investigated. Figure 3
shows the melting curve for the cDNA of the cyclin de-
pendent kinase (CDK4). Occasionally, we found some
discrepancies, as can be seen, e.g., in Fig. 4, which shows
the cDNA for the human HAADH gene. The inset shows
an enlargement of the region for the temperature interval of
80 $C–85 $C. Note that the thermodynamic boundary in-
dicated by the arrows splits the third exon of the sequence
into roughly two equal parts.

Long cDNA sequences (*3000 bp) may have a very
complex melting curve with many overlapping peaks. In
order to have a better criterion for the definition of ther-
modynamic boundaries, we have performed a temperature
scan from 60 $C to 100 $C and calculated the boundaries
separating the !i < 1=2 to the !i > 1=2 regions at a fixed
interval !T ! 0:01 $C. We have then derived a histogram
hi over all base pairs i as follows: if i is found to be a
thermodynamic boundary between two temperatures T1
and T2 > T1, the contribution to the histogram is hi !
%T2 " T1&=!T.

Figure 5 shows the histogram hi as function of i for the
human ILF2 cDNA (thick line). The solid and dashed thin
vertical lines denote the exon-exon and CDS-UTR bounda-
ries, respectively. The histogram is characterized by a few
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Figure 3.10 Melting curve and exon-exon boundaries. For the explana-

tion, see text; N is sequence length. [Reprinted with permission from

E. Carlon et al. Copyright (2005). American Physical Society.]

exon positioning came late, and were inserted (shuffled around) into intronic
DNA. (Bacteria have no introns; but according to the theory they were just
very active in getting rid of the junk.) The opposing hypothesis considers ex-
ons to be evolutionarily ‘early’, and introns being inserted into an otherwise
largely exonic DNA (W. Gilbert, 1987).

The finding that exon-exon-boundaries are, in humans, to about 30% located
in positions at which DNA is less (thermally) stable might support the view
that introns are ‘late’: the location of thermal boundaries might be preferred
sites for intron insertion, since in these positions double-stranded DNA is more
readily opened up. But then, these spots might also be prone to intron losses.
In any case, an agreement between positions at which a physical signature
coincides with a biological signature to such an extent seems hard to be just
accidental. In an analysis of actin genes from various species cases could indeed
be found which indicate an involvement of DNA denaturation physics for the
insertion of introns (E. Carlon et al., 2007).
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Figure 3.11 Correlation of thermal boundaries with exon-exon bound-

aries. [Reprinted with permission from E. Carlon et al. Copyright

(2005). American Physical Society.]

DNA microarrays. The hybridization of oligomeric DNA on microarrays in
order to measure gene expression levels has been a huge topic in the early
days of genomics; meanwhile new techniques have largely bypassed this ap-
proach. The idea of this method is that the amount of RNA in a cell (or, of
back-transcribed RNA into cDNA) can serve as a measure for the number of
proteins that are translated in the cell; this is only approximately correct, but
nevertheless an indication.

The recognition capability of a single-stranded RNA or DNA towards its com-
plementary sequence can be exploited in a very simple way to measure the
presence and amount of DNA in a given sample. In order to put this idea into
practice, it has now become possible, using techniques from the microelec-
tronics industry, to produce biochips - in analogy to microelectronic chips.

The principle of a biochip, or DNA microarray in our context, is the following.
On a substrate, a collection of single-stranded DNA molecules, the probes, is
built. In the case of Affymetrix chips, the only type of microarrays we address
here, the sequences contain 25 base pairs which have been selected from a gene
of interest. In fact, about 10-16 probes are produced and fixed at the substrate,
reflecting different selected subsequences from the same gene. In addition, for
each perfectly matching probe - one that is exactly identical to a subsequence
from the selected gene - a mismatching probe is produced. This probe differs
from the perfect match by one nucleotide. The mismatch probe is a control,
which is used to assess cross-hybridizations, i.e. non-specific hybridizations.
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Figure 3.12 Hybridization on a microarray. Note that in the case of

Affymetrix arrays, probes are DNA, while targets are RNA.

Based on this idea microarrays containing full genomes can now be built. They
are used by exposing the probe strands to a set of target DNA which will bind
to the selected probes, as schematically shown in Figure 3.12. The amount of
bound DNA is measured, typically optically by using fluorescently labelled
target RNA.

How do targets and probe meet each other on the chip? A very simple one
is the following (E. Carlon and T. Heim, 2005), motivated by previous
work by G. A. Held et al. (2003). After hybridizing targets and probes light
intensities I of the fluorescent markers are measured. Distinguishing between
specific, S, and non-specific hybridizations, N , we write

I(c,∆G) = S(c,∆G) +N + ε (3.46)

where ε stands for purely experimental noise. I is the intensity from the probe
whose complementary target RNA is present in solution at a concentration c,
and ∆G is the hybridization free energy. A distinction between mismatching
or matching DNA does not need to be made, since both will differ only in their
values of ∆G. The non-specific hybridization contribution N depends on total
RNA concentration in solution, and probably other free energy parameters
reflecting partial hybridizations. The value of N is not important if one decides
to consider the quantity

∆I ≡ I(c)− I(0) ≈ S(c,∆G) (3.47)
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Such a background subtraction is possible when we compare measurements in
which c is the concentration of a particular gene; this is the case for the set of
control measurements done in a Latin square, which consists of a well-defined
dilution series for a set of specific genes added to a background, the so-called
‘spike-in’ genes, and, importantly, contains the case c = 0.

In the simplest case, which is well applicable to chains of the order of 25
base pairs as we know from Section 3.1 of this chapter, we can understand
the binding of the probe DNA and the target RNA as a two-state process,
in which the target is either fully unbound in solution, or fully bound at the
correct sequence at the surface. The binding is then described by a Langmuir
isotherm of the form

S(c,∆G) =
Ace−β∆G

1 + ce−β∆G
(3.48)

where, as before, β = 1/RT . The amplitude factor A sets an intensity scale;
it corresponds to the saturation value in the limit c � eβ∆G, i.e., whenever
the concentration is high or the binding energy large.

Figure 3.13 shows an example of such data analysis. Noticing from Eq. (3.48)
that the free energy and the concentration appear always in the form of a
product x ≡ c exp(−β∆G), we can use x as a scaling variable. The data then
fall nicely on the Langmuir isotherms.

In these curves, the ∆G values were computed with parameters determined
experimentally for DNA-RNA hybrids in solution and not for the DNA at-
tached to the surface, and we may assume a systematic deviation between the
(known) solution values and the (unknown) surface values.

This systematic deviation between the free energy values in solution and at
the surface can likewise be shifted into one overall parameter: temperature.
Temperature T then changes status from an experimental to a fitting param-
eter. If its value is chosen to lie at around 700 K, i.e., roughly twice as large
as the true experimental temperature, a very good agreement between exper-
iment and the simple theory is reached.

As seen in Figure 3.13, only the data from probe 16 deviate significantly from
the computed Langmuir isotherm, but they seem to follow another isotherm
which appears shifted to the right. This behaviour can be captured by intro-
ducing a probe-dependent parameter

αk = (1 + c̃ exp(−β∆GRNA))−1 , (3.49)

which takes into account the effect of RNA-RNA hybridization in solution,
leading to secondary structures of the RNA strands closing in on themselves,



110 � Computational Biology

A rather high effective temperature ðT ¼ 2100KÞ was found in the fit of the Latin square data of Ref. [8].
The difference between our estimate and that of Ref. [8] is due to a different free energy parametrization (we
use the more appropriate RNA/DNA values) and a different fitting procedure. Here we focus on fits of
Langmuir isotherms as function of DG, rather than as function of the concentration as done in Ref. [8]. These
issues are discussed in Appendix B.

In Fig. 3 one notices the presence of few ‘‘outliers’’, i.e., those probes whose intensities strongly deviate from
the Langmuir isotherm, for instance as the probe 13 in Fig. 3(b). The inset of Fig. 3 shows a replicate of the
experiment at a concentration of 1024 pM. In that case the intensity of probe 13 is in agreement with the
Langmuir isotherm. The intensities from the probes 1 and 2 instead deviate systematically from the Langmuir
isotherm in all replicates of the 256 and 512 pM experiments. The origin of these deviations is discussed below.
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stronger than RNA/DNA or DNA/DNA counterparts. We fit the global behavior of ak with the following
equation:

ak ¼
1

1þ ~c expð$b0DGRÞ
, (5)

where DGR is the RNA/RNA hybridization free energy in solution. The best fit of the data is shown as a solid
line in Fig. 8, which leads to ~c & 10$2 pM and b0 ¼ 0:67mol=kcal, i.e., T 0 ¼ 725K.

The Eq. (5) resembles that for a two state process in which the target RNA reacts with a fragment with
concentration ~c. In reality there are many different matching fragments hybridizing with the same target
region. One should not view ~c as a real concentration, rather the whole ~c expð$bDGRÞ as a global relative
probability for hybridization in solution, which is obtained by averaging over all these processes.

Having now fixed the four fitting parameters A, T, ~c and T 0, we can reanalyze the data collapse by using as a
scaling variable x0 ¼ akc expðbDGÞ, with ak given in Eq. (5). Fig. 9 shows the plot of DI with the new scaling
variable for the probe set 1024_at (left) and 37777_at (right). Notice the nice collapse of all PM and MM
intensities into a single master curve, now in much better agreement with the Langmuir isotherm. Similar plots
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Fig. 9. Intensities for the probe sets 1024_at (a) and 37777_at (b) plotted as functions of the scaled variable x0 ¼ ac expðbDGÞ, which takes
into account of a, the fraction of target sequences hybridizing in solution. As a comparison we show in the insets the same quantity plotted
as a function of x ¼ c expðbDGÞ.

E. Carlon, T. Heim / Physica A 362 (2006) 433–449 441

Figure 3.13 Hybridization data falling on the Langmuir isotherm; plot-

ted against the two scaling variables x (top) and x′ (bottom) defined in

the text. [Reprinted with permission from E. Carlon and T. Heim.

Copyright (2005) by Elsevier.]

thereby reducing the amount of available sequences for binding at the sur-
face. This effect can be taken into account in the parameter combination
c̃ exp(−β∆GRNA), wherein c̃ is a fitting parameter. Figure 3.13 displays the
full data collapse if the scaling variable

x′ = αkc exp−β∆G (3.50)

is used. What happens during hybridization in solution is indicated schemati-
cally in Figure 3.14. Sequences with very high free energies tend to hybridize to
other chains present in the solution, and they are thus not available anymore
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Figure 3.14 Schematic drawing of RNA hybridization in solution indicat-

ing two possible effects, self-hybridization of targets and hybridization

of different fragments.

for the hybridization process at the surface - their ‘active’ concentration is
reduced as compared to that of other sequences.
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Additional Notes

RNA phase behaviour. The understanding of RNA phase behaviour has
continued to expand, in particular with sophisticated renormalization group
calculations (F. David and K. J. Wiese, 2007 and 2009; W.D. Baez
et al., 2018).

DNA melting. Short DNAs remain of interest due to their applicability in
biotechnology, in particular in microarrays. Modifications of the linear DNA
have become of interest as well; the simplest such systems are DNA hairpins,
in which a single-stranded DNA bends back to itself and increases specificity,
the so-called molecular beacons (G. Bonnet et al., 1999). We will discuss
some of their aspects in Part II of the book.

Other models used in studies of DNA denaturation. There are several
other models that have been developed for the description of DNA denat-
uration aside from the Poland-Scheraga model. We here comment only on
one model which follows a rather different philosophy: the Dauxois-Peyrard-
Bishop model by Th. Dauxois et al. (1993) following earlier work by M. Pey-
rard and A. R. Bishop (1989). Their model is more microscopic than the
Poland-Scheraga model; it starts out from the dynamics of the chains, i.e., the
main ingredient in the model is the transverse stretching yn of the hydrogen
bonds between the complementary bases counted by the index n. The model
is defined by the Hamiltonian

H =
∑
n

[
1

2
mẏ2

n + V (yn)

]
(3.51)

where m is the mass of the bases in the kinetic energy. The potential model
contains two contributions

V (yn) =

[
Dn

(
e−αnyn − 1

)2
+
k

2

(
1 + %e (yn+yn−1)

)
(yn − yn−1)

2

]
. (3.52)

The Morse potential in the first term describes the effective interactions be-
tween complementary bases: it contains both the attraction due to the hydro-
gen bonds forming the base pairs and the repulsion of the negatively charged
phosphates in the backbone of the strands, which is screened by the sur-
rounding solvent. The parameters Dn and αn distinguish between the two
complementary base pair combinations at site n, and hence induce a sequence
dependence. The second term comprises the stacking interactions. The expo-
nential term modifies an otherwise harmonic potential. This nonlinearity is
essential: representing local constraints in nucleotide motions, it induces long-
range cooperative effects. The stiffening of the coupling in the bound state
compared to that in the open state leads to an abrupt entropy-driven transi-
tion. Similar conclusions were drawn by D. Cule and T. Hwa (1997).
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The Dauxois-Peyrard-Bishop model, as the Poland-Scheraga model, has also
been confronted with experimental data, in particular for short sequences
(A. Campa and A. Giansanti, 1998). Moreover, it has recently been used to
correlate the dynamics of loop openings in the chain with regulatory sequence
signatures. Correlations of regions with a high probability of loop openings
with transcription start sites have been reported (C. H. Choi et al., 2004) and
(G. Kalosakas et al., 2004). More recent results are skeptical, see (T. S. van
Erp et al., 2005).

Sequence analysis with DNA melting. The analysis of genomes by a
physical analysis with DNA melting models pioneered by E. Yeramian has
continued to find interest among researchers; however significant results are
still lacking. At present, the method is best thought of enabling complemen-
tary information on DNA properties which needs to be considered with more
specific biological information. A paper in this direction is by G.K. Sandve et
al., 2010. For large-scale calculations it has been demonstrated by (D. Jost
and R. Everaers, 2009) that the use of a simpler version of the Poland-
Scheraga model, the Zimm-Bragg model, is of computational advantage while
being of sufficient quality for the detection of melting signals.

Mixed-order transitions and DNA melting. The DNA melting transition
in the Poland-Scheraga model shows some peculiarities when compared to the
standard classification of phase transitions. Classically, a first-order transition
has a discontinuous order parameter, while in a second-order transition, the
order parameter changes continuously, while the correlation length and the
susceptibility diverge. For the PS-model, in the case of a first-order transi-
tion, the correlation length diverges algebraically, while in other models - spin
models with long-range interactions - an exponential divergence is found. As
we saw, forc > 2 the model has displayed a discontinuity of the average loop
length, while the correlation length diverges as (T − TM )−1 at the melting
transition. D. Mukamel and collaborators have developed a general theory
of mixed-order transitions, see, e.g. (A. Bar and D. Mukamel, 2014) and
(A. Bar et al., 2016).

DNA unzipping. The opening of DNA does not necessarily have to arise by
thermal denaturation - which typically occurs at non-physiological tempera-
tures, and hence cannot play any direct role in a living cell. Other factors, such
as a change of pH or the direct application of a local force have, however, a
similar effect on the molecule. These effects have been tested in single-molecule
experiments, see the literature to the previous chapter.

DNA microarrays. The basic concept has been developed further in sev-
eral papers by E. Carlon and his collaborators, the most recent one is
by (W.W. Hadiwikarta et al, 2012). A more general discussion of the
physico-chemical basis of microarrays and other technologies is (A. Harrison
et al., 2013).
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CHA PT E R 4

Soft Matter Electrostatics

4.1 THE FREE ENERGY OF ELECTROSTATIC SYSTEMS

In this section we discuss the statistical mechanics of charged systems. These
arise most typically in what are called ‘soft matter systems’: these are sys-
tems with some relevance to biology, like membranes, biomolecules, viruses
and the like.

We start with a thermodynamic description which allows us to perform a nice
exercise in Legendre transforms. In this section we follow a derivation pre-
sented in (A.C. Maggs, 2012).

We want to discuss a system composed of a wall (or two walls) adjacent to
a solution containing ions; either counterions that neutralize an opposite wall
charge, or a salt solution. The free energy of such a system reads as

F =
1

2

∫
d3r

∫
d3r′%(r)

1

4πε0 | r− r′ |
%(r′)+kBT

∫
d3r

∑
j

(cj ln(cj−cj0)−cj)

(4.1)

where the total charge density is given by

% =
∑
j

%j + %f . (4.2)

The last term in Eq. (4.2) is the density of fixed charges, most commonly
located on the wall bounding of the system. The first term in Eq. (4.1) is the
electrostatic energy according to Coulomb’s law, while the second term is the
entropy of mixing of the ions of type j with concentration cj . The cj0 in the
second term are reference concentrations, related to the chemical potential of
each species via µj = −kBT ln cj0.

119
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The long-ranged expression of the first term can be replaced by a local term
via the introduction of the electrostatic potential, φ (Task!). The free energy
density f then reads as

f = %φ− ε (∇φ)2

2
+ kBT

∑
j

(cj ln(cj − cj0)− cj) (4.3)

where ε is the dielectric constant at space point r.

Looking now at the differential

df = dφ(%+∇ · ε∇φ) +
∑
j

dcj(qjφ+ kBT ln(cj/cj0)) (4.4)

we have from the second term the relation

qjφ+ kBT ln(cj/cj0)) = 0 (4.5)

which when put back into f yields the expression

f = %fφ− ε
(∇φ)2

2
− kBT

∑
j

cj0e
−βqjφ (4.6)

with β = 1/kBT . This is the standard free energy density for the Poisson-
Boltzmann theory, expressed in terms of the electrostatic potential. We can
generalize this expression slightly by renaming the term originating from the
dissociated ions as a function g(φ) which could equally well cover other specific
cases. The free energy density then reads as

f = %fφ− ε
(∇φ)2

2
− g(φ) . (4.7)

There is a problem with this expression, however. The free energy according
to this expression is not convex. This problem can be remedied by invoking a
Legendre transform.

In order to show this we start with the electrostatic free energy density

u = %fφ− ε
(∇φ)2

2
(4.8)

and introduce the electrostatic field E = −∇φ via a Lagrange multiplier D
which leads to the constrained functional

u = %fφ− ε
E2

2
+ D · (E +∇φ) . (4.9)
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Integrating this expression by parts allows to rewrite it as

u = −εE2

2
+ D ·E− φ(∇ ·D− %f ) . (4.10)

We can now vary this expression with respect to E and eliminate the latter via
the resulting relation for the dielectric displacement field D = ε(r)E, yielding
for u

u =
D2

2ε
− φ(∇ ·D− %f ) , (4.11)

in which φ serves as a Lagrange multiplier to enforce Gauss’ law.

We now go back to Eq. (4.7) and add the local contribution from the ions:

u =
D2

2ε
− φ(∇ ·D− %f )− g(φ) . (4.12)

The minimization with respect to φ now corresponds to the Lagrange trans-
form and allow to write the free energy density in the convex form

u =
D2

2ε
+ L(g)[%f −∇ ·D] (4.13)

where
L(g)[ξ] = supx(xξ − g(ξ)) ≡ g̃(ξ) . (4.14)

In the case of monovalent ions one specifically has

g(φ) = 2kBTc0 cosh(qβφ) (4.15)

and hence

g̃(ξ) =
kBTξ

q
sinh−1(ξ/2qc0)− kBT

√
4c20 + ξ2/q2 . (4.16)

We therefore see that the convexity problem can be easily removed by in-
voking a Legendre transform to a ‘dual’ description in terms of the dielectric
displacement field D. The downturn is that we have traded a scalar field, the
electrostatic potential φ, for a vector-valued field D with an interaction term
which is generally a more complicated function than the original one.

The method works also the other way around. Suppose one starts with the
free energy of a binary mixture with densities of the two components c1 and
c2 at constant T , f(c1, c2). The chemical potentials can be defined via

µ1,2 =
∂f(c1, c2)

∂c1,2
(4.17)
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and the pressure (or equation of state) can then be written as (see Chapter 1)

p(c1, c2) = −(f(c1, c2)− µ1c1 − µ2c2) . (4.18)

This equation also carries over to inhomogeneous cases in which the densities
will be integrated over the occupied volume. In the case of charged particles,
one generalizes

F [c1, c2,D] =

∫
V

d3r

(
D2

2ε
− ψ(∇ ·D− e(z1c1 − z2c2))

)
−
∫
V

d3r p(µ1, µ2) (4.19)

where now ψ is the Lagrange multiplier which ensures Gauss’ law. Minimizing
with respect to D one obtains the inhomogeneous thermodynamic potential

F [ψ] = −
∫
V

d3r

(
1

2
ε(∇ψ)2 + p(µ1 − ez1ψ, µ2 − ez2ψ)

)
. (4.20)

The advantage of this expression is that it works for any equation of state p
(A.C. Maggs and R. Podgornik, 2016).

4.2 THE POISSON-BOLTZMANN EQUATION

The Poisson-Boltzmann equation can be obtained from our previous Eq. (4.6)
by variation with respect to φ, which yields the expression

∇ · (ε∇φ) +
∑
j

qjcj0e
−βqjφ + %f = 0 . (4.21)

Assuming now the case of monovalent salt, qj = ±q, one has the result

∇ · (ε∇φ)− 2qc0 sinh(βqφ) + %f = 0 . (4.22)

Let’s first look at simple (or rather, simplified) solutions of this equation. We
first make clear that its behaviour is controlled by several length scales which
we now introduce and discuss.
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The Bjerrum length. Within our approach only two energy scales appear,
the Coulomb energy between the charges and the thermal energy. Their bal-
ance allows to define the Bjerrum length1

`B ≡
e2

εkBT
(4.24)

which for ε = 80, the dielectric constant of bulk water, yields a quantitative
value of `B = 7 Å. The physical interpretation of this length scale is simple:
for two oppositely charged particles at a distance r < `B , electrostatics wins,
and the particles are bound, while for r > `B thermal fluctuations make the
particles unbind.

Debye screening length. As we see from Eq. (4.6), the Poisson-Boltzmann
equation is a nonlinear equation. Under certain conditions (see below) it can
be linearized, which is sometimes called the Debye-Hückel approximation, and
reduces to

∇2φ(x) = κ2φ(x) (4.25)

with

κ−2 =
εkBT

8πq2c0
≡ `2D (4.26)

where `D is the Debye screening length.2 It is ion-density dependent, and varies
from a value of 3 Å in 1 M NaCl to about 1 micron in pure water.

The validity of the Debye-Hückel approximation can be determined from a
comparison of kinetic and interaction energies of the involved particles. If one

takes c
−1/3
0 as a length describing mean particle separation, then the condition

Γ ≡ `Bc1/30 � 1 (4.27)

needs to be fulfilled for the DH-approximation to be applicable.

1A note on units. In the discussion of electrostatics, both the CGS-system and the
SI-system are used. The change between the two can be easily rationalized. Since in the
discussion of electrostatics we only need the Poisson equation and little more, the translation
from CGS to SI is simple. If we write Maxwell’s equation in vacuum as

∇ ·E = −4πk% (4.23)

we get the CGS-expression with k = 1 and the SI-expression with k = 1/(4πε0). For the
mathematically inclined, the choice of k = 1/(4π) removes all units, following Heaviside.
Finally, the standard book on classical electrodynamics by J. D. Jackson contains a detailed
translation manual.

2Note that we switched to CGS units here.
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Counterions at a charged planar surface: the Gouy-Chapman length.
As an exemplary application of the nonlinear Poisson-Boltzmann equation we
consider the case of counterions, assumed as cations, opposite to a planar sur-
face of negative charge. The latter is described by a surface charge density
σ < 0. Since the system is translationally invariant, the Poisson-Boltzmann
equation can be considered in one dimension, orthogonal to the wall in direc-
tion z, which yields, expressed in φ

εε0φ
′′(z) = −4π`Bc0e

−φ(z) . (4.28)

This equation is complemented by the boundary condition

dφ

dz

∣∣∣∣
z=0

= −4π

q
σ > 0 . (4.29)

Upon integration one finds

φ(z) = 2 ln(z + `CG) + φ0 (4.30)

where the constant potential φ0 is left unspecified for now. The length `CG
introduced here is the Guoy-Chapman length

`CG ≡
εkBT

2πq|σ|
=

q

2π|σ|`B
∼ σ−1 (4.31)

which depends on the surface charge density. The density profile of the mobile
charges

c0(z) =
1

2π`B

1

(z + `CG)2
(4.32)

is found to decay algebraically for large distances z, while the potential itself
has a logarithmic (hence weak) divergence. The Gouy-Chapman length char-
acterizes the charge density layer at small distances, z � `CG.

Manning condensation. So far, our elementary reasonings allowed us to
introduce a number of relevant physical length scales to gain an intuitive idea
of the importance of electrostatic phenomena in solution. We now turn to
a first biologically motivated application of the Poisson-Boltzmann equation.
We consider the electrostatic profile of counterions around a straight cylinder
of radius R. This setting can be understood as a highly idealized model for a
linear, charged biomolecule like DNA or a polypeptide chain.
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For this geometry, the Poisson-Boltzmann equation reads in cylindrical coor-
dinates

d2ϕ

dr2
+

1

r

dϕ

dr
+ κ2e−ϕ(r) =

`Bσ

Ze
δ(r −R) , (4.33)

where we have again transformed the potential via ϕ = eφ/kBT . This differ-
ential equation (4.33) is of Liouville-type, and admits an analytical solution.
With the change of variable x = R ln(r/R) for r > R it is transformed into

d2ϕ

dx2
+ κ2e−ϕ(x)+2x/R = 0 . (4.34)

The shifted potential ϕ̃ = ϕ(x) − 2(x/R) satisfies the planar Poisson-
Boltzmann equation, albeit with a different boundary condition

dϕ̃(x)

dx

∣∣∣∣
x=0

=
`Bσ

Ze
− 2

R
. (4.35)

The solution of the Poisson-Boltzmann equation is, by analogy to the planar
case, given by

ϕ̃ = 2 ln

(
1 +

κx√
2

)
, (4.36)

where the boundary condition fixes the value of

κ =
1

2

(
`Bσ

Ze
− 2

R

)
. (4.37)

This result makes no sense for `BRσ < 2Ze, i.e. κ < 0. We then have to take
the solution of the Poisson-Boltzmann equation for κ = 0, and obtain instead
a logarithmic potential

ϕ(r) = 2ξm ln(r/R) (4.38)

where

ξm ≡
`BRσ

2Ze
(4.39)

is the Manning parameter. We thus obtain the full solution as

ϕ(r) =

{
2ξm ln(r/R) , ξm ≤ 1 ,
2 ln(r/R) + 2 ln[1 + (ξm − 1) ln(r/R)] , ξm > 1 .

(4.40)
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For ξm > 1, the electrostatic potential behaves like ϕ(r) ∼ 2 ln(r/R), and is
essentially independent of charge density; the counterions are bound to the
cylinder. For ξm ≤ 1, the number of counterions cs(r) ∼ exp−φ(r) contained
in a cylindrical shell R0 around the cylinder behaves as

cs(r) ∼ r2(1−ξm)
∣∣∣R0

R
(4.41)

and clearly diverges with R0: the counterions escape to infinity. The phe-
nomenon of the counterion confinement to the DNA is called Manning con-
densation (G. S. Manning, 1969).

4.3 PROTEIN ELECTROSTATICS

We will now go one step further and apply our knowledge to proteins. Here,
the ultimate aim to determine their solvation free energies. In many cases, the
dominating contribution is due to electrostatics (B. Honig and A. Nichols,
1995), and the main task then is to compute the electrostatic potential of the
proteins and their complexes.

The electrostatics problem associated with proteins can be determined by
solving the Poisson or Poisson-Boltzmann equation for the geometry depicted
in Figure 4.1. It is assumed that the space Ω is filled with an arrangement of
charges (not shown explicitly), while we ignore the distribution of ions that
can usually be assumed to surround the protein. We thus ‘only’ have to solve
the Poisson equation in this inhomogeneous space. The inclusion of the mobile
charges is, of course, possible.

The mathematical formulation of the problem consequently is:

∆φΩ(r) = −4π

εΩ
% (4.42)

∇r[εΣ(r)∇rφΣ(r)] = 0 (4.43)

∂n[εΩφΩ − εΣφΣ]|Γ = 0 (4.44)

φΩ|Γ = φΣ|Γ (4.45)

For proteins, εΩ ≈ 2− 5 is usually assumed, while for the surrounding water,
εΣ ≈ 80.
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Figure 4.1 Electrostatic problem of a protein in a solvent: a body Ω

imbedded in space Σ; Γ defines the boundary.

The solution of the above equations can be obtained only numerically for
the complex protein surfaces. This requires the development of sophisticated
solvers; this topic is discussed further in the Additional Notes. The example
we show here in Figure 4.2 comes from Nguyen et al. (2017).

Nonlocal electrostatics. In the Poisson equation for the solvent we have
allowed for a (local) spatial dependence of εΣ; this is frequently done in a phe-
nomenological way to mimic effects of the modification of the water dielectric
properties near the protein. This effect is based on the restricted motion of
the water near the protein, bringing about distinct orientational polarization
correlations. We will now see how this effect of water structure can be built
into the theory of electrostatics in a more fundamental way.

If we want to describe the electrostatic properties of biomolecules on length
scales for which a membrane can be modeled as a fluctuating sheet, a DNA
molecule as a cylinder, and a globular protein as a sphere, the level of de-
scription of electrostatic interactions is well justified. For the large protein
structures we have just seen, which are cylindrical on a mesoscopic scale, but
have a lot of atomistic structural detail which may - or will - be of biological
relevance, we have been pushing things a bit too far. It seems hard to justify
why the water surrounding a protein surface can, on this atomic scale, be
considered a dielectric medium of dielectric constant ε = 80.
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estimations. Specifically, the first set, Dataset 1, is a collection

of DNA-minor groove drug complexes having a narrow range

of DDG. The Protein Data Bank (PDB) IDs (PDBIDs) for this set

are as follows: 102d, 109d, 121d, 127d, 129d, 166d, 195d, 1d30,

1d63, 1d64, 1d86, 1dne, 1eel, 1fmq, 1fms, 1jtl, 1lex, 1prp, 227d,

261d, 164d, 289d, 298d, 2dbe, 302d, 311d, 328d, and 360d.

The second set, Dataset 2, includes various wild-type and

mutant barnase-barstar complexes. Its PDBIDs are as follows:

1b27, 1b2s, 1b2u, 1b3s, 2az4, 1x1w, 1x1y, 1x1u, and 1x1x. In

the last set, Dataset 3, we investigate RNA-peptide complexes

with following PDBIDs: 1a1t, 1a4t, 1biv, 1exy, 1g70, 1hji, 1i9f,

1mnb, 1nyb, 1qfq, 1ull, 1zbn, 2a9x, and 484d. The datasets can

be downloaded from website http://www.sb.fsu.edu/m~fenley/

convergence/downloads/convergence_pqr_sets.tar.gz. They are

also available from our website http://users.math.msu.edu/

users/wei/Data/bindingdata.tar.gz.

PB calculation details

The electrostatics binding free energy is a measure of binding

affinity of two compounds due to the electrostatics interac-

tion. Based on the free energy cycle, the electrostatics binding

free energy can be calculated by the following formula

DDGel5 DGelð ÞAB2 DGelð ÞA2 DGelð ÞB1 DDGelð ÞCoulomb; (8)

where ðDGelÞAB is the electrostatic solvation free energy of the

bounded complex AB, ðDGelÞA and ðDGelÞB are the electrostatic

solvation free energies of the unbounded components A and

B, and ðDDGelÞCoulomb is the electrostatic binding free energy

of the two components in vacuum.

The electrostatic solvation free energies DGel are obtained

using MIBPB software[4,18] while the binding energy

ðDDGelÞCoulomb is easily evaluated analytically via the following

formula

DDGelð ÞCoulomb5
X

i;j

qiqj
Emrij

; 8i 2 A; j 2 B; (9)

where qi and qj are the corresponding charges of the given

pair of atoms, and rij is the distance between this pair. Here,

Em is the dielectric constant of the solute region. Table S3 (in

the Supporting Information) lists ðDDGelÞCoulomb values of 51

studied complexes.

In all our calculations, the absolute temperature of the ionic

solvent is chosen to be T5298 K, the dielectric constants for

solute and solvent are 1 and 80, and the ionic strength is

0.1 M NaCl. The PBE is solved by the linearized solver, but the

nonlinear one does not produce any notably differences. The

incomplete LU biconjugate gradient squared (ILUBGS) solver is

used to solve all linear systems risen by the MIBPB approach.

To maintain consistent computations of the PB solver at differ-

ent grid sizes, the criteria convergence of ILUBGS solver mea-

sured by L2-norm is set to be 1026, and the maximum

iteration number is set to 100,000. The predictions of MIBPB

solver on DGel and DDGel are confirmed by other solvers such

as PBSA,[11,12] Delphi,[13,14] and APBS[15] at the grid size of

0.2 Å, see Table S2 of Supporting Information.

Results and Discussion

As described above, we consider three sets of binding com-

plexes, namely, drug-DNA, barnase-barstar and RNA-peptide

systems. For the sake of illustration, three sample surface elec-

trostatic potentials, each from one distinct set, are depicted in

Figure 1. PDBIDs for these three complexes are respectively

121d (in Drug-DNA complexes), 1b3s (in barnase-barstar com-

plexes), and 1biv (in RNA-peptide complexes). In the rest of

this section, we explore the influence of grid spacing in PB

equation solvation and binding free energy estimations using

our MIBPB solver.

Figure 1. Illustration of surface electrostatic potentials (in units of kcal/mol/e) for three complexes, generated by Chimera software.[31] a) PDBID: 121d (in
Drug-DNA complexes); b) PDBID: 1b3s (in barnase-barstar complexes); c) PDBID: 1biv (in RNA-peptide complexes). [Color figure can be viewed at wileyonli-
nelibrary.com]
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Figure 4.2 Illustration of surface electrostatic potentials (in units of

kcal/mol/e) for three complexes, generated by Chimera software E.F.

Pettersen et al. (2004). a) PDBID: 121d (in Drug-DNA complexes);

b) PDBID: 1b3s (in barnase-barstar complexes); c) PDBID: 1biv (in

RNA-peptide complexes). [Reprinted with permission by John Wiley

& Sons from D.D. Nguyen, D. Wang and G.-W. Wei (2017).]

On such length scales, the usual continuum approach ultimately must break
down, since water is not featureless on these scales: it has structure. The water
molecules respond to the presence of charges, and their network of hydrogen
bond has to rearrange, leading to correlations of the water molecule orienta-
tions over a characteristic length scale which we denote as λ.

One way to ‘repair’ the error made in classical electrostatics is to modify
the dielectric function. Conventionally this is done by an inclusion of a local
spatial dependence ε(r) near the protein surface. This function, which can
be parametrized in various ways, is used to effectively reduce the dielectric
constant of water to a small value near the protein surface. This approach is,
while physically justifiable, a technically uncontrolled procedure. Interest has
therefore risen in systematic extensions of the theory of continuum electro-
statics that allow to account for spatial variations of the dielectric behaviour
of the solvent, in particular near the boundary of a protein.

Within the continuum theory of the electrodynamics of matter, the orienta-
tional polarizability of water around a protein is nothing but a spatial dis-
persion effect. Such effects are known to be tractable within electrodynamic
theory, and indeed they have taken into account an approach called ‘nonlocal
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electrostatics’3 (A. A. Kornyshev et al., 1978; M. A. Vorotyntsev, 1978;
A. A. Kornyshev and M. A. Vorotyntsev, 1979) which generalizes the
commonly used electrodynamics of continuous media to take into account such
spatial dispersion effects.

The basis of this theory is the linear relationship between the dielectric dis-
placement field D and the electric field E through a permittivity kernel which,
in general, depends on two spatial arguments,

D(r) =
1

4π

∫
dr′ε(r, r′)E(r′) . (4.46)

Here, ε(r, r′) is the dielectric permittivity tensor. It carries the new characteris-
tic length scale, the correlation length λ of the water orientational polarization
correlations introduced before. This length defines the scale for the deviation
of the dielectric properties of a solvent from its average bulk value.

For the general protein geometry of Figure 4.1, the generalization of the Pois-
son equation in the solvent in nonlocal electrostatics reads as

∇
∫

Σ

dr′εΣ(r, r′)∇′φΣ(r′) = 0 (4.47)

where the primed symbol ∇′ denotes differentiation with respect to r′. The
main ingredient of the nonlocal theory is the integral kernel ε(r, r′) which
contains the dependence on the correlation length λ. The mathematical ex-
pression for this model depends on the water model one wants to use. A simple,
standard example for this quantity is the Lorentzian model4

ε(|r− r′|) = ε∞δ(r− r′) +
εΣ − ε∞

4πλ2

e−
|r−r′|
λ

|r− r′|
. (4.48)

As can be observed for this example - indeed this turns out to be of rather
general nature - one can write Eq. (4.48) in a more general form as

ε(|r− r′|) = ε∞δ(r− r′) + ε̃G(r− r′) (4.49)

3The name ‘nonlocal electrostatics’ is unfortunate since it may create confusion by al-
luding to strange effects of ‘action at a distance’ and the like. The nonlocality we talk about
is nothing of that sort, it just means that the dielectric response requires to take into ac-
count field values not at local points, but over a certain spatial range. All physical fields
(potentials, electrostatic fields) remain well-defined local objects.

4The Lorentzian model assumes isotropy of space as an additional simplifying assump-
tion. Although this assumption does not hold strictly, it is an acceptable first approximation.
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Figure 4.3 Comparison of local (left) and nonlocal (right) electrostatic

potential of the enzyme trypsin. The color code indicates positive and

negative values of the potential for a selected threshold. [Reprinted

with permission from Oxford University Press from A. Hildebrandt

et al., (2006).]

where ε̃ ≡ (εΣ − ε∞)/4πλ2, and G is a Green function satisfying

LG = −δ(r− r′) (4.50)

with, in the given case, L ≡ ∆ − λ−2, and G as the Green function of the
Yukawa potential. Eq. (4.49) contains two terms; the first reduces to the local
limit of the dielectric function ε∞ at small distances r → r′ and is cancelled
by the term ∝ ε∞ in the second term. The remaining contribution is the local
limit for large distances, εΣ, the usual macroscopic dielectric constant.

Eq. (4.49) can be taken as the starting point to reformulate the theory of
nonlocal electrostatics as a local theory. For this, we in addition represent the
dielectric displacement field as a sum of an irrotational part and a solenoidal
part (a so-called Helmholtz decomposition),

D(r) = −∇ψ(r) +∇× ξ(r) . (4.51)

One can show that the solenoidal part, although it explicitly appears in the
expression of the dielectric displacement field, does not appear in the equa-
tions of the electrostatic potentials (A. Hildebrandt, 2005).
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We are then finally left with the following system of equations for the electro-
static potentials φ and ψ, (A. Hildebrandt et al., 2004)

∆φΩ = −4π

εΩ
% (4.52)

∆ψΣ = 0 (4.53)

εΩ ∂nφΩ|Γ = ∂nψΣ|Γ (4.54)

φΩ|Γ = φΣ|Γ (4.55)

[ε∞L − ε̃]φΣ = 4πLψΣ(r) . (4.56)

Within its reformulation in terms of the local fields φ and ψ, the theory of
nonlocal electrostatics can now be treated with standard approaches in order
to numerically solve them with boundary element methods.

Such a result is shown in Figure 4.3. In this figure, the local and the nonlocal
electrostatic potentials of the enzyme trypsin are shown for comparison. It
can clearly be seen that the structure of the electrostatic potential obtained
in the nonlocal description deviates significantly from the local one which, for
the same threshold value of the potential surfaces, hardly reaches beyond the
geometric structure of the protein surface.

From this application we can deduce that the electrostatic potential of pro-
teins on Ångstrom scales is markedly influenced by the water properties, and
that electrostatic effects are important for the ‘visibility’ of a protein to its
interaction partners in solution.

4.4 CHROMATIN ELECTROSTATICS

Chromatin structure. In this section we break out of the central dogma of
molecular biology, DNA→ RNA→ protein, which has so far been our guiding
principle. In any organism all these molecules have to act in concert, and the
linear sequence should thus be better represented by a diagram with multiple
feedback loops.
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In order to express genes, they first have to be switched on. This is done in
part by specific proteins, the transcription factors in prokaryotes - and rather
transcription factories, in eukaryotes. The function of these molecules requires
recognition capability: proteins can detect their binding sites with high speci-
ficity. We will come back to this in Part II of the book when we look at the
dynamics of transcription factor binding on DNA.

In eukaryotes an additional problem arises, however. DNA is condensed and
packed in the cellular nucleus, making a simple DNA-protein recognition pro-
cess based on a diffusional search impossible. There must be a way for a
protein or enzyme to find out where it has to go in the first place, even when
the DNA is still condensed. Or, DNA has to be unpacked only partially, such
that the search time for transcription factors becomes reasonably short.

In order to understand the regulation of transcription in eukaryotes, we first
have to get an idea of the compact form of DNA in the cell. The condensed
form of DNA, in which it is actually a highly organized DNA-protein complex,
is called chromatin. Chromatin is the structural basis of chromosomes. The
different levels of organisation which are at present only partially understood.
Our current knowledge is summarized in Figure 4.4 (from G. Felsenfeld
and M. Groudine, 2003).

The best understood element of chromatin structure is the nucleosome. A nu-
cleosome is a DNA-protein complex which consists of an octameric protein
complex built out of eight histone proteins (of four different kinds), around
which DNA is wrapped along 146 bp with 1.75 left-winded turns. A linker
histone at the exit of the DNA histones completes the structure; the precise
positioning of the linker histone is not yet known. The molecular structure of
the so-called nucleosomal core particle - the DNA wrapped around the histone
octamer - has meanwhile been spatially resolved down to 1.9 Å. A ribbon rep-
resentation of a nucleosomal particle is shown in Figure 4.5.

Unfortunately, the crystal structure of a nucleosome does not tell its full story.
The N-terminal tails of the histone proteins are largely unstructured random
coils, hence they do not crystallize. These tails are functionally important in
two ways:

• The tails are positively charged and can interact with the negatively
charged DNA to form the condensed structures of chromatin, leading to
both local or global structural changes of chromatin structure;

• The tails are subject to various chemical modifications, brought about
by specific enzymes. Some of these modifications can alter the charge
of the chain. At the same time, many of the modifications can be read
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may facilitate gene activation, by promoting specific structural 
interactions between distal sequences, or repression, by occluding
binding sites for transcriptional activators. 

We suggest that the function of archaeal histones reflects their
ancestral function, and therefore that chromatin evolved originally
as an important mechanism for regulating gene expression. Its use in

packaging DNA was an ancillary benefit that was recruited for the
more complex nucleosome structure that subsequently evolved in
the ancestors of modern eukaryotes, which had expanded genome
sizes. Although their compactness might seem to suggest inertness,
chromatin structures are in fact a centre for a range of biochemical
activities that are vital to the control of gene expression, as well as
DNA replication and repair.

Packaging DNA into chromatin
The fundamental subunit of chromatin is the nucleosome, which
consists of approximately 165 base pairs (bp) of DNA wrapped in two
superhelical turns around an octamer of core histones (two each of
histones H2A, H2B, H3 and H4). This results in a five- to tenfold
compaction of DNA6. The DNA wound around the surface of the 
histone octamer (Fig. 1) is partially accessible to regulatory proteins,
but could become more available if the nucleosome could be moved
out of the way, or if the DNA partly unwound from the octamer. The
histone ‘tails’ (the amino-terminal ends of the histone protein
chains) are also accessible, and enzymes can chemically modify these
tails to promote nucleosome movement and unwinding, with 
profound local effects on the chromatin complex.

Each nucleosome is connected to its neighbours by a short 
segment of linker DNA (~10–80 bp in length) and this polynucleo-
some string is folded into a compact fibre with a diameter of ~30 nm,
producing a net compaction of roughly 50-fold. The 30-nm fibre is
stabilized by the binding of a fifth histone, H1, to each nucleosome
and to its adjacent linker. There is still considerable debate about the
finer points of nucleosome packing within the chromatin fibre, and
even less is known about the way in which these fibres are further
packed within the nucleus to form the highest-order structures.

Chromatin regulates gene expression 
Regulatory signals entering the nucleus encounter chromatin, not
DNA, and the rate-limiting biochemical response that leads to 
activation of gene expression in most cases involves alterations in
chromatin structure. How are such alterations achieved?

The most compact form of chromatin is inaccessible and 
therefore provides a poor template for biochemical reactions such as
transcription, in which the DNA duplex must serve as a template for
RNA polymerase. Nucleosomes associated with active genes were
shown to be more accessible to enzymes that attack DNA than those
associated with inactive genes7, which is consistent with the idea that
activation of gene expression should involve selective disruption of
the folded structure.

Clues as to how chromatin is unpacked came from the discovery that
components of chromatin are subject to a wide range of modifications
that are correlated with gene activity. Such modifications probably
occur at every level of organization, but most attention has focused on
the nucleosome itself. There are three general ways in which chromatin
structure can be altered. First, nucleosome remodelling can be induced
by complexes designed specifically for the task8; this typically requires
that energy be expended by hydrolysis of ATP. Second, covalent modifi-
cation of histones can occur within the nucleosome9. Third, histone
variants may replace one or more of the core histones10–12.

Some modifications affect nucleosome structure or lability
directly, whereas others introduce chemical groups that are recog-
nized by additional regulatory or structural proteins. Still others may
be involved in disruption of higher-order structure. In some cases,
the packaging of particular genes in chromatin is required for their
expression13. Thus, chromatin can be involved in both activation and
repression of gene expression.

Chromatin remodelling
Transcription factors regulate expression by binding to specific DNA
control sequences in the neighbourhood of a gene. Although some
DNA sequences are accessible either as an outward-facing segment
on the nucleosome surface, or in linkers between nucleosomes, most
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fibre of packed
nucleosomes 
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Figure 1 Packaging DNA. a, The organization of DNA within the chromatin structure.
The lowest level of organization is the nucleosome, in which two superhelical turns of
DNA (a total of 165 base pairs) are wound around the outside of a histone octamer.
Nucleosomes are connected to one another by short stretches of linker DNA. At the
next level of organization the string of nucleosomes is folded into a fibre about 30 nm
in diameter, and these fibres are then further folded into higher-order structures. At
levels of structure beyond the nucleosome the details of folding are still uncertain.
(Redrawn from ref. 41, with permission). b, The structure of the nucleosome core
particle was uncovered by X-ray diffraction, to a resolution of 2.8Å (ref. 42). It shows
the DNA double helix wound around the central histone octamer. Hydrogen bonds
and electrostatic interactions with the histones hold the DNA in place.

© 2003        Nature  Publishing Group

Figure 4.4 Chromatin structure. The base level of compaction is the

11 nm fibre, in which the nucleosomes are positioned as ‘beads on a

string’; nucleosomal arrays condense to form the 30 nm fibre of yet un-

known structure; higher order compactions lead to the familiar chromo-

some shape of condensed chromatin. [Reprinted with permission from

Springer Nature from G. Felsenfeld and M. Groudine (2003).]
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Figure 4.5 Nucleosomal core particle in a ribbon presentation of the

core histones bound to DNA (blue). Notice the dangling histone tails.

Generated with Chimera from the nucleosome structure PDB 1KX5.



Soft Matter Electrostatics � 135

Figure 4.6 Specific enzymatic modifications on histone tails. (Rib = ri-

bosylation, a rare modification.)

by specific proteins which affect chromatin structure locally. It has been
argued that the histone modifications constitute a higher level regulatory
code (B. D. Strahl and C. D. Allis, 2000).

These two mechanisms are clearly not fully independent from each other, and
are generally referred to as particular examples of chromatin remodelling. The
notion of remodelling stands for the totality of dynamic structural changes
chromatin can undergo and which are relevant for the regulation of transcrip-
tion.

Histone tail modifications. Enzymatic histone tail modifications are amino
acid specific: not only the chemical nature of the amino acid is a determinant,
but also its position on the tail. This is indicated in Figure 4.6. Several different
types of modifications are presently known. The most important are:

• Acetylation. One or several acetyl groups (CH3CO) are transferred to
lysine residues; the addition of one lysine reduces the positive charge
of the tail by one. The modification is reversible, i.e., acetylating and
deacetylating enzymes have been found.

• Methylation. One (or more) methyl groups (CH3) are added to lysine
residues; there is no effect on the charge. The reversibility of this modi-
fication is still under scrutiny; the first demethylating enzymes have re-
cently been found, as discussed in A. Bannister and T. Kouzarides
(2005).

• Phosphorylation. This modification can affect several residues: serine,
threonine, tyrosine on the one hand, and lysine, histidine, and arginine
on the other. The modifications are chemically different for both groups
of amino acids.
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In general, histone tail modifications do differ somewhat between organisms,
despite the high evolutionary conservation of the histones, their tails included.
While the experimental evidence is growing that the histone tail modifications
are read by a specific transcription machinery (Th. Agalioti, G. Chen and
D. Thanos, 2002), and apparently different modifications do not act inde-
pendently (W. Fischle, Y. Wang and C. D. Allis, 2003), it is clear that
the underlying ‘background’ mechanism is based on an electrostatic attraction
of the negatively charged DNA and the positively charged histones. It is thus
of interest to devise a simplified model view of this compaction mechanism.

Chromatin fibre electrostatics. We here follow H. Schiessel (2002). He
considered the electrostatic interaction between two DNA strands at the entry-
exit point of the DNA wrapped around the nucleosome, see Figure 4.7. The

Figure 4.7 Schematic drawing of the entry-exit region around a nucleo-

some. The two bent lines represent the lower and upper DNA strands;

the entry-exit angle α is defined via the indicated asymptotics.

angle α between the two DNA strands defines the entry-exit angle at the nu-
cleosome. For the geometry of Figure 4.7, it is defined by

h′(∞) ≡ tan(α/2) . (4.57)

The relevant question to be answered is that of the dependence of the angle
α on salt concentration cs, or on other charge-affected quantities. Salt contri-
butions are relevant for the screening of electrostatic interactions, since the
Debye screening length behaves as

κ−1 = `D = (8πcs`B)−1/2 (4.58)
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where `B is the Bjerrum length, the measure for the respective importance of
electrostatic forces and thermal energy we had introduced before in Eq. (4.24).

The DNA strands are considered as two semi-flexible polymers at positions
±h(x) with persistence length `P and a line-charge density λ. Their free en-
ergy is approximately given by

F ≈ 2kbT

∫ ∞
0

dx

[
`P
2

(h′′)2 + `Bλ
2K0(2κh(x))

]
(4.59)

where K0(x) is the modified Bessel function of zero order.5 The first term
in this expression is the bending energy of the strands, while the second de-
scribes their electrostatic interaction. The form of this term applies if it can
be assumed that the interaction can be considered as that of a straight chain
(hence the function K0) and a single charge at distance 2h. This approxima-
tion works as long as α is not too large; it tends to underestimate the true
value.

The Euler-Lagrange equation for h(x) reads, using the property K ′0(x) =
−K1(x) of the Bessel function,

`Ph
′′′′ = 2`Bλ

2κK1(2κh) (4.60)

together with the boundary conditions

h(0) = h′(0) = 0 = h′′(∞) = h′′′(∞) . (4.61)

A variable change h̃ = 2κh, x̃ = (4lBλ
2κ2)/lP ) 1/4x allows to express Eq.

(4.60) as h′′′′ = K1(h) (dropping tildes). With the relation s = h′(x)|x=∞ one
immediately obtains the dependence of the opening angle α on the physical
parameters, in particular the length scales we defined in Section 4.3,

tan(α/2) =
s√
2

(
`B
`P

)1/4(
λ

κ

)1/2

. (4.62)

The value of the constant s in this expression is of O(1) (H. Schiessel, 2002).

5Kα is defined by

Kα(x) =
π

2
iα+1H

(1)
α (ix)

where
H

(1)
α (x) = Jα(x) + iYα(x) .

Jα is the Bessel function we have introduced before; the Neumann function Yα(x) is defined
by

Yα(x) =
Jα(x) cosαπ − J−α(x)

sinαx
.
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Figure 4.8 Idealization of tail bridging: a peptide chain connects two

spherical particles.

Solving for α, one finds the dependence

α = arctan(C c−1/4
s ) . (4.63)

Intramolecular electrostatic effects can also be included in the calculation. In
this case one has to consider the modification of the persistence length `P
by the charges along the chain: due to their mutual repulsion the charges
along the molecule increase the rigidity of the chain. This additional repul-
sion can be calculated and leads to a modification of the persistence length
`P , which has to be replaced by the Odijk-Skolnick-Fixman persistence length,

` = `P + `OSF = `P + `Bλ
2/(4κ2) . (4.64)

Plugging in numbers into the result Eq. (4.63), one finds α-values of about
51o for 15 mM salt, and a value of 64o for 5 mM, in line with the expectation
that a decrease of salt concentration favours the opening of the structure.

The value of the entry-exit angle can be influenced by the histone tails if they
bind to the DNA. This is a local effect, when the tails bind to the DNA at-
tached to its own histone octamer.

There is, however, also the important possibility that the tails of different
nucleosomes interact. This gives rise to a tail-bridging effect (F. Mühlbacher
et al. 2006), which is illustrated in Figure 4.8.

Assuming that the nucleosomes can, in a zeroth-order approximation, as
spherical particles of radius R, the interaction potential between them is given
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by a contribution of the repulsion between the two like-charge particles and
the attraction caused by a bridge formed by a tail of contour length ` with
the line density λ,

U = Urep + Ubridge (4.65)

which is explicitly given by (ignoring precise numerical prefactors)

U(d)

kBT
=

`BZ
2

(1 +R/`D)2

exp−d/`D
d+ 2R

(4.66)

− exp

(
−(d− `D)

`B`DZλ

R2

)
+ exp

(
−(`− `D)

`B`DZλ

R2

)
.

Based on this result one can study how the minimum of the potential changes
as the line charge is varied. The minimum distance of the two particles,
dmin ∼ ln(C · λ), where C is a constant given by the other parameters of
the potential. The potential minimum becomes very shallow for decreasing λ,
and finally vanishes.

Although these considerations give an idea about how electrostatic effects of
the histone tails influence chromatin structure, there is still a large dispar-
ity between the understanding of any specific histone tail modification and
the histone code hypothesis on the one side, and the physical compaction
mechanism on the other. Given the highly unspecific nature of the electro-
static interactions, and the apparent high specificity with which particular
tail modifications can be placed and read, a satisfactory understanding of
transcriptional regulation of chromatin seems still far out.

In particular, it is yet open whether the histone tail specifications, highly
specific as they may be, really constitute a code. Recent experimental work
by M. F. Dion et al., 2005, on the acetylation of histone H4 provides evi-
dence that only a very restricted number of these histone tail modifications
are indeed ‘coding’ for specific regulatory processes. The conclusions support
earlier work by Q. Ren and M. A. Gorovsky, 2001, whose analysis of the
acetylation patterns of a histone variant H2A.Z demonstrated the dominant
role of rather non-specific electrostatic effects.

Polyelectrolytes and polyampholytes. In the discussion of the histone
tails, we have not treated the full statistics of the chain itself. We close this
section with generalizing the Poisson-Boltzmann equation to the case of poly-
electrolytes - polymers like negatively charged DNA - or polyampholytes - poly-
mers like the histone tails carrying both negative and positive charges. This
topic has become of renewed interest recently due to the experimental investi-
gations of intracellular phase separation, see Additional Notes. We will not go
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so far here, but only show the simplest way how to introduce the combination
of the electrostatic degrees of freedom coupled to the density of a polyelec-
trolyte.

We consider a smeared polyelectrolyte. If the polymer carries charges, we
assume that the total charge of the chain is equally distributed with each
monomer carrying a fractional charge pe, where e is the electron charge. One
can then write down a partition function (Borukhov et al., 1998)

Z =

∫
D[ψ]D[φ] exp(−βF [ψ, φ]) (4.67)

in which ψ is the electrostatic potential, and φ the polymer monomer density.
The expression of the free energy functional F [ψ, φ] is given by

βF [ψ, φ] =

∫
dr(−β ε

8π
(∇ψ)2 +

∑
±
c±b (1− e∓βeψ(r))

+
a2

6
(∇φ)2 +

v

2
φ4(r)− µpφ2(r) + βpeψ(r)φ2(r)) . (4.68)

In this expression, the free energy density of the monomers is parametrized by
a and v, the latter being the excluded volume interaction, and the chemical
potential µp. One notes the coupling term between the electrostatic potential
ψ(r)a and the density field φ(r).

Upon variation with respect to the fields the mean-field equations follow; first
the Poisson-Boltzmann equation

ε∆ψ(r) = 8πcb sinh(βeψ)− 4πe(pφ2 − pφ2
be
βeψ) , (4.69)

where the last term stems from the counterions dissociated from the chains.
The condition of charge neutrality has been imposed: c+b → cb and c−b →
cb + pφ2

b . It follows the equation for φ(r),

a2

6
∆φ(r) = v(φ3 − φ2

bφ) + βpeψφ . (4.70)

In this equation, the chemical potential µp has been substituted to identify
the proper bulk limit, ψ → 0 and φ2 → φ2

b .

We will not further discuss the properties of these equations, as they can only
be solved numerically; for details, see Borukhov et al., 1998). The point we
want to make here is that the extension of the Poisson-Boltzmann approach to
situations in which the statistics of the charged objects themselves comes into
play - rather than just considering fixed charge distributions - rapidly leads to
problems that withstand analytic treatment. They are of immense biological
relevance: e.g. if one considers such polyelectrolytes confined to shells, one has
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a simple yet realistic model for a DNA or RNA in a virus. Some literature
suggestions in this direction can be found in the Additional Notes.

Finally, we have not discussed any fluctuation effects in this section, as this
demands a technical level which is borderline to the ambitions of this book.
The interested reader is asked to consult the Additional Notes for suggestions
where to continue in this direction from the basis that has been laid here.
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Additional Notes

Theory of soft matter electrostatics. Poisson-Boltzmann theory as it has
been developed here is valid only for small surface charges, and when fluc-
tuation and correlation effects can be neglected. The latter e.g. arise in the
presence of walls, when ions start to interact with their image charges - these
are not taken into account for by the theory. Things get really bad when
the charges have high valencies; then the whole description breaks down. The
problem of going ‘beyond’ Poisson-Boltzmann theory has been very active
in the last years. A brief account of the problems encountered there is by
(A. Naji et al., 2013).

Treatment of fluctuations within Poisson-Boltzmann theory. Two
standard approaches are the inclusion of one-loop corrections around the
mean-field theory, and a variational approach. Ground laying papers are by
R.R. Netz and H. Orland (2000, 2003). The variational approach has seen
significant development towards applications, see e.g. (S. Buyukdagli and
R. Blossey, 2016).

Dual Poisson-Boltzmann. The dual approach was developed by (A.C.
Maggs, 2012) and has so far seen some formal development. It can presum-
ably become very useful for complex systems, as the corresponding partition
function can be evaluated by numerical minimization methods due to the
inherent convexity of the functional. It also allows for the inclusions of fluc-
tuations, see (R. Blossey and A.C. Maggs, 2018).

Manning condensation. The Manning condensation problem is a great
classic in the field. It has indeed aspects of a true phase transition which
were discussed in some detail in the literature. Exemplary references are
(B. O’Shaughnessy and Q. Yang, 2005; A.Naji and R.R. Netz, 2005
and 2006; M. Cha et al., 2017). A more basic introductory paper on the non-
linear screening of charged macromolecules is by (G. Tellez, 2011).

Protein electrostatics based on the Poisson-Boltzmann equation.
The development of Poisson-Boltzmann solvers for the calculation of protein
electrostatics has developed into a large field; for a recent review, see (C. Li
at al., 2013). A pioneering paper in this field is by (N.A. Baker et al., 2001).

Going beyond Poisson-Boltzmann: inclusion of water structure in
the continuum theory. One strategy to improve on Poisson-Boltzmann
theory for applications to biomolecules has been to include effective water
properties; one such approach - phenomenological, ‘nonlocal’ electrostatics
approach - has been pursued further by several researchers. Relevant refer-
ences are (J.P. Bardhan at al., 2015; D. Xie and Y. Jiang, 2016).
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An alternative approach has been to include water molecules in an explicit
fashion into the continuum theory. A prominent model in this line of research
has been the Dipolar Poisson-Boltzmann Langevin model (DPBL) in which
water molecules are described by point-dipoles. The approach is developed in
(P. Koehl et al., 2009).

A review putting the above described and other further approaches into per-
spective is by (J.P. Bardhan, 2012).

Polyampholytes. Polyampholytes are of particular current interest as intrin-
sically disordered proteins fall into their class. A variational theory for charge-
disordered polymers was developed in (K. Shen and Z.-G. Wang, 2018). A
review on the biological relevance is by D.M. Mitrea and R.W. Kriwacki
(2016).
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CHA PT E R 5

Back to P: Probabilities
over Time

Non-equilibrium statistical mechanics does not yet have such powerful general
concepts and tools as equilibrium statistical mechanics. Attempts to develop
concepts for physical processes which occur arbitrarily far from a thermal
equilibrium situation have so far not led to the desired success.1

Since we still lack these general principles which govern the time-dependent
or stationary distributions of our physical quantities of interest, we instead
have to directly address the properties of the stochastic processes themselves
and try to find methods to treat them, at least with some reasonable simpli-
fications.

In the most general case we can address, we will be able to compute the time
evolution of suitably defined probability distributions characterizing the state
of a physical system, or its transition from one state to another. Consequently,
our symbol of choice in this section is P rather than Z.

What we will also see, however, is that we sometimes will be able to relate
non-equilibrium processes to equilibrium processes. We will also find expres-
sions, the so-called fluctuation-dissipation theorems, which establish such a
relation. Most often, however, these relations require for their validity to be
not too far away from a thermal equilibrium. There is one notable exception
we will address as well, a result obtained some years ago by C. Jarzynski.
We will deal with these results and their application to biological systems in
the subsequent chapter.

1Of course, there is an extended body of work on irreversible processes. However, a theory
of non-equilibrium statistical physics of the same level of generality as that of equilibrium
statistical physics has not yet been established.
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We begin this chapter with the formal bits and pieces of a general description
of stochastic processes and their time evolution.2

5.1 STOCHASTIC PROCESSES

The first section of this chapter lists a number of definitions for later use.

We call X a stochastic variable with a particular value x; f is considered a
mapping from X at time t. We call

YX(t) = f(X, t) (5.1)

a random function, and Yx(t) = f(x, t) a sample function or a realization of
the stochastic process; as for equilibrium states, we can speak of the corre-
sponding ensemble in a natural way. For the stochastic process, we define an
ensemble average by

〈Y (t)〉 ≡
∫
dxYx(t)P (x) . (5.2)

The higher moments of the distribution are defined in an analogous way. The
probability for Yx(t) to take the value y at time t is given by

P (y, t) =

∫
dxP (x)δ(y − Yx(t)) . (5.3)

The mean and the moments are, as in thermal equilibrium, quantities that
allow to quantify the probability distributions. For time-dependent processes,
another quantity is of interest, which is the autocorrelation function.

The autocorrelation function. The autocorrelation function of the sto-
chastic process is defined by

A(t1, t2) ≡ 〈Y (t1)Y (t2)〉 − 〈Y (t1)〉〈Y (t2)〉 . (5.4)

For t1 = t2 = t, it reduces to the time-dependent variance, σ2(t).

Joint probability density. We define the joint probability density

P (y1, t1; ...; yn; tn) (5.5)

2The presentation, in particular at the beginning, follows the book by N. van Kampen,
1992, which can be seen as a standard reference on most of the topics discussed in this
chapter.
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which states that Yx(t) has the value y1 at t1,..., yn at tn.

Exercise. Write down the mathematical expression for P .

Conditional probability. The conditional probability is the probability den-
sity for Yx(t) to take on the value y2 at t2 if it was y1 at t1, with the normalized
density ∫

dy2P (y2, t2|y1, t1) = 1 . (5.6)

Markov process. A stochastic process has the Markov property if for any
set of ordered timesteps t1 < t2 < ... < tn the conditional probability satisfies

P (yn, tn|y1, t1, ..., yn−1, tn−1) = P (yn, tn|yn−1, tn−1) . (5.7)

P is then a transition probability. It only depends on the two states involved,
the one that is left and the one that is reached. A Markov process is uniquely
determined from the knowledge of P (y1, t1) and P (y2, t2|y1, t1).

Exercise. Convince yourself of the correctness of the last statement for a pro-
cess involving three steps, t1 < t2 < t3.

The Chapman-Kolmogorov equation. From the transition probabilities
of a Markov process we have the expression

P (y3, t3|y1, t1) =

∫
dy2P (y3, t3|y2, t2)P (y2, t2|y1, t1) (5.8)

in which time-ordering is essential.

Examples. a) For −∞ < y <∞, the Chapman-Kolmogorov equation is solved
by (for t2 > t1)

P (y2, t2|y1, t1) =
1√

2π(t2 − t1)
exp

[
− (y2 − y1)2

2(t2 − t1)

]
(5.9)

If P (y, 0) = δ(y), this Markov process is called the Wiener or Wiener-Lévy
process.

b) If Yx(t) takes on only positive integer values n = 0, 1, 2, ... for t ≥ 0,
Eq. (5.8) is obeyed by the Poisson process

P (n2, t2|n1, t1) =
(t2 − t1)

(n2 − n1)!

n2−n1

e−(t2−t1) (5.10)
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and
P (n, 0) = δn,0 . (5.11)

Task. Show that the probability density of the Wiener process fulfills the dif-
fusion equation

∂tP (x, t) = D∂2
xP (x, t) (5.12)

with a diffusion constant D = 1/2.

Stationary Markov processes. A stochastic process is called stationary if
all joint probability densities depend only on time differences τ

P (y1, t1; ....; yn, tn) = P (y1, t1 + τ ; ...; yn, tn + τ) . (5.13)

In this case we write for the conditional probabilities

P (y2, t2|y1, t1) = Tτ (y2|y1) (5.14)

and we will also suppress the index τ whenever no ambiguity can arise. With
this notation, the Chapman-Kolmogorov equation is rewritten as

T (y3|y1) =

∫
dy2T (y3|y2)T (y2|y1) . (5.15)

Task. Show that the autocorrelation function of a stationary Markov process
with zero mean is given by

A(τ) =

∫ ∫
dy1 dy2 y1 y2 Tτ (y2|y1)P (y1) (5.16)

for τ ≥ 0.

Example. The standard example of a stationary Markov process is the
Ornstein-Uhlenbeck process, for which

P (y1) =
1√
2π

exp

(
−y

2
1

2

)
(5.17)

and

T (y2|y1) =
1√

2π(1− e−2τ )
exp

[
− (y2 − y1e

−τ )2

2(1− e−2τ )

]
(5.18)

where τ ≡ t2 − t1.
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Exercise. Show that the Ornstein-Uhlenbeck process fulfills 〈Y 〉 = 0 and
A(τ) = e−τ .

5.2 THE MASTER EQUATION

We this minimal list of definitions we have set the stage for the description
of stochastic processes within the context of statistical physics, and are ready
to move on.3 The next and very important step is to make practical use of
the Chapman-Kolmogorov equation for more complex situations than we have
discussed so far in the few examples. The corresponding mathematical tool is
the master equation.

The master equation is a limiting expression one can obtain from the
Chapman-Kolmogorov equation if one lets the time interval tend to zero in a
controlled way such that one can pass over to a differential equation for the
transition probabilities. Let’s do this.

Suppose we write down the transition probability T for the case of small time
intervals τ ′ in the following way

Tτ ′(y2|y1) = (1− a0(y1)τ ′)δ(y2 − y1) + τ ′W (y2|y1) + o(τ ′
2
) . (5.19)

This is an expansion to linear order in τ ′, in which W (y2|y1) is defined as the
transition probability per unit time from y1 to y2, hence W (y2|y1) ≥ 0.

The second term in Eq. (5.19) is thus clear, but we have still to say something
about the first term. In this term, the coefficient in front of the δ-function
takes into account that no transition occurs during the time interval interval
τ ′, and hence we must have for the coefficient a0

a0(y1) =

∫
dy2W (y2|y1) . (5.20)

Finally, the last term in Eq. (5.19) denotes terms of higher order in τ ′ which
we neglect in the following.

3A reader who wishes to get more is asked to consult van Kampen’s book; see the list
of References at the end of the chapter.
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We insert this expression into the Chapman-Kolmogorov equation and do
some rearrangement of terms, with the result

Tτ+τ ′(y3|y1)− Tτ (y3|y1)

τ ′
= −a0(y3)Tτ (y3|y1) +

∫
dy2W (y3|y2)Tτ (y2|y1)

(5.21)

which in the limit τ ′ → 0 yields the differential equation

∂τTτ (y3|y1) =

∫
dy2 [W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)] . (5.22)

This is the master equation in its continuous form. Usually it is rewritten in
a more intuitive form as

∂tP (y, t) =

∫
dy′ [W (y|y′)P (y′, t)−W (y′|y)P (y, t)] . (5.23)

This equation must be solved for t ≥ t1 given an initial condition P (y, t1) =
δ(t− t1). Note that the equation should not be misinterpreted as an equation
for a single-time distribution, which is a frequent error due to the abusive
notation with P ; the Chapman-Kolmogorov equation makes it clear that we
are considering transition probabilities.

Having our tool finally at hand, we can now turn to some illustrative exam-
ples. For this, we employ the master equation in a form applicable to discrete
states n, and write it as

ṗn(t) =
∑
m

[wnmpm(t)− wmnpn(t)] . (5.24)

This equation can also be understood as a gain-loss equation for the proba-
bility of states n with wnm ≥ 0.

Example. As an example of a non-stationary Markov process, we consider
protein degradation. Within a cell, proteins are continually degraded by a ded-
icated cell machinery. In our simple model we describe this by a rate γ. The
transition probability is given by

wnm = γ mδn,m−1 (5.25)

with n 6= m. The master equation of this process reads

ṗn = γ(n+ 1)pn+1(t)− γnpn(t) (5.26)
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which needs to be solved under the initial condition pn(0) = δn,n0
, i.e., we

assume that at time t = 0 there are n0 proteins present.

The simple way to ‘solve’ Eq. (5.26) is to consider the evolution of the average
number of proteins, 〈n(t)〉. This is done by multiplying the equation by n and
summing up

∞∑
n=0

nṗn = γ
∞∑
n=0

n(n+ 1)pn+1 − γ
∞∑
n=0

n2pn

= γ
∞∑
n=0

(n− 1)npn − γ
∞∑
n=0

n2pn (5.27)

= −γ
∞∑
n=0

npn

which is nothing but

d

dt
〈n(t)〉 = −γ〈n(t)〉 (5.28)

solved by

〈n(t)〉 = n0e
−γt . (5.29)

This is, of course, not the full solution to the problem, but it nicely shows how
the behaviour of the average can be obtained.

Generating functions. In order to really solve the master equation we can
make use of the generating function.

G(s, t) =

n0∑
n=0

pn(t)sn (5.30)

defined for |s| ≤ 1. Multiplying Eq. (5.26) by sn and summing up, the master
equation is transformed into a first-order partial differential equation for G in
the variables s, t,

∂tG(s, t) + γ(s− 1)∂sG(s, t) = 0 . (5.31)

The form of the equation indicates that a separation of variables will be of
help. We are thus led to write the following ansatz4 for G

G(s, t) = (a(t)(s− 1) + b)n0 , (5.32)

4Note that according to its definition, G is a polynomial in the variable s of order n0.
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where the function a(t) and the constant b need to be determined. Plugging
the ansatz into Eq. (5.31), the s-dependence drops out, and the function a(t)
is found to fulfill the simple differential equation (compare to Eq. (5.28))

ȧ(t)

a(t)
= −γ (5.33)

with the solution a(t) = e−γt. The constant b = 1, as follows from the initial
condition G(s, 0) = sn0 . Thus

G(s, t) = (1 + e−γt(s− 1))n0 . (5.34)

Now we have two expressions for G(s, t), the power series in s and its sum.
Since the pn(t) are the coefficients of the series, we only have to Taylor expand
Eq. (5.34), which leads to the final result

pn(t) =

(
n0

n

)
exp(−γnt)(1− exp(−γt))n0−n . (5.35)

One-step processes. A frequently occurring class of stochastic processes
that can be studied with the help of master equations are one-step processes
in which transitions occur only between neighbouring state labels. Writing the
master equation as a matrix equation5

ṗn =Wnmpm (5.36)

we define the matrix Wnm as

Wnm = fmδn,m−1 + bmδn,m+1 (5.37)

with n 6= m. The diagonal element of the matrix is given by

Wnn = −(fn + bn) (5.38)

so that the full equation reads as

ṗn = fn+1pn+1 + bn−1pn−1 − (fn + bn)pn . (5.39)

5Which makes the linearity of the equation evident.
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The last equation can be written in a more concise form using the step operator
E , defined by its action to “move up or down the ladder” of states given by hn:

Ehn = hn+1 , E −1hn = hn−1 (5.40)

so that for Eq. (5.39) we have

ṗn = (E − 1)fnpn + (E −1 − 1)bnpn . (5.41)

Exercise. Solve the master equation (5.39) for the symmetric random walk
with fn = bn = 1,

ṗn = pn+1 − pn−1 − 2pn , −∞ < n <∞ (5.42)

for the initial data pn(0) = δn,0.

Folding of small proteins. As a final example for the master equation we
discuss small proteins that are two-state folders. Ideally, a two-state folder
should have exactly two states: a denatured (coil) state, and the native folded
(helix) state. If this is the case, the discussion of the denaturation of short
DNA chains applies: native and denatured state are describable as a chemical
equilibrium; the only difference being the calculation of the free energy. So we
are done.

If true, this would imply that the folding of small proteins is about as feature-
less as the denaturation/hybridization of a short DNA fragment, and only the
melting temperature (here, the folding temperature) would depend somewhat
on amino acid composition. We would then expect the following under muta-
tions of the amino acid composition of the chain: suppose we replace amino
acids and look at the folding profile in the same way as we did for the melt-
ing profile of DNA. If the amino acids have only different binding strengths,
the resulting curves should be shifted in temperature but otherwise not much
affected.

But that is not what is observed. Studies of protein unfolding kinetics have
uncovered quite a different picture. The effect of mutations on folding can be
quantified by the so-called Φ-value

Φ ≡ RT ln(kwt/km)

∆GM
, (5.43)

where kwt and km are the folding rates of the wild-type and mutated proteins,
and ∆GM is the free energy associated with the change in thermal stability
due to the mutation. Φ is also related to the free energy difference between
the transition state and the native state in the non-mutated protein, ∆GT .
One writes Φ = ∆GT /∆GM , neglecting prefactor differences.
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Φ is found to have values between 0 and 1, indicating that the residues in the
ensemble of transition states. These are those pseudo equilibrium structures
between the folded or unfolded equilibrium structures which have at least a
partial native-like structure. Sometimes values less than 0 or larger than 1 ap-
pear which are not so easy to interpret. In fact, the most important observed
feature of Φ is that changes in neighbouring bases can have very different
effects on the Φ-value. Φ thus does not vary in a continuous manner upon
mutations along the chain.

In hindsight this is not surprising, given that the various amino acids have
rather different chemical nature, in contrast to the nucleic acids.

Let’s discuss this issue in more detail, for one particular example, the chy-
motrypsin inhibitor CI2. Its structure is shown in Figure 5.1. We base the
discussion on a simple model specifically tuned to this case. The molecule CI2
has one α-helix and a four-stranded β-sheet. In the α-helix, 20 single residue
mutations have been studied experimentally with Φ-values in the range be-
tween −0.35 ≤ Φ ≤ 1.25. What does a simple model look like to reproduce
these data, at least the underlying trend?

In a very simple ansatz one can attempt to describe the folding kinetics by a
master equation

ṗ(t) = Wp(t) , (5.44)

where p is the vector of the state probabilities of the protein. We assume the
transition state from a state m to a state n to be given by

wnm =
1

t0

[
1

1 + exp[(Gn −Gm)/RT ]

]
, (5.45)

where Gi is the free energy of each partially folded state, and t0 is a charac-
teristic time.

The solution of Eq. (5.44) is given by

p(t) =
∑
λ

Yλ exp[−λ(t/t0)] (5.46)

with eigenvectors Yλ and eigenvalues λ. C. Merlo et al., 2005 assumed the
four folding states:

• the denatured state (D);

• a partially folded state (α) with a α-helix;
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Figure 5.1 Chymotrypsin inhibitor CI2 (PDB entry 1COA). Generated

with Chimera. Coiled regions are shown in red, α-helix in green, β-sheet

in blue.

• a partially folded state (β) with a β-sheet;

• the native state (N).

Hence in this case, the matrix W is a (4× 4)-matrix.

Due to its simplicity, the model can be solved exactly, and gives the eigenvalues

λ0,..,3 = (0, 1− q, 1 + q, 2) (5.47)

with

q =
1− αβ/N√

(1 + α)(1 + β)(1 + α/N)(1 + β/N)
(5.48)

with −1 < q < 1, and where α ≡ e−Gα/RT ; analogously for D, N and β.

Despite its four states, the model is found to display two-state kinetics pro-
vided the free energy of the native state is much smaller than the free energy of
the other states and, further, if the α- and β-intermediaries have free energies
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larger than D. In this case a kinetic barrier between D and N exists, and the
transition is governed by a single-exponential dynamics.

Given these conditions, q in Eq. (5.48) can be simplified to (Exercise)

q ≈ ((1 + α)(1 + β))
−1/2

, (5.49)

and the folding rate k - i.e., the smallest relaxation rate λ0 - simplifies upon
expansion of the square-root for α, β � 1 to

k ≡ 1− q ≈ α+ β

2
. (5.50)

From this result one infers that the folding rate is simply the sum of the rates
of folding into either the α- and or β-substructures with equal probability.

The model can now be used to study the effect of mutations. Treating the
effect of the mutations on the free energies as small perturbations ∆G one
can write

ln

(
kwt
km

)
≈ ∂ ln k

∂ lnGα
∆Gα (5.51)

with k taken from Eq. (5.50). Consequently, with i = α, β,

Φ = χi
∆Gi
∆GN

(5.52)

with, e.g., for i = α

χα = −RT ∂ ln k

∂Gα
=

α

α+ β
. (5.53)

Within this simple model one finds that Φ is the product of a structural factor
χ and an energetic factor ∆Gi/∆GN . Although χ obviously involves energies,
it can nevertheless be considered structural since it explicitly depends on the
possible intermediaries, be they the formation of an α-helix or a β-sheet.

Coming back to the protein CI2, the experimental Φ-values of the twenty
mutations on the α-helix could indeed be reproduced with this model with a
satisfactory correlation coefficient of 0.85 (C. Merlo et al., 2005). It should
be kept in mind, however, that the calculation is indeed a simplified one: in
reality there may well be interactions (so-called tertiary contacts) between the
α-helix and the β-sheet; the model assumes that both fold independently from
each other.
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5.3 THE FOKKER-PLANCK AND LANGEVIN EQUATIONS

In this section, we discuss two further classic analytical approaches commonly
used to describe the stochastic dynamics of particle systems.

The Fokker-Planck equation. In this subsection we will introduce a con-
tinuous approximation to the master equation. First, we recall the last general
expression we had obtained for it, Eq. (5.24)

∂tP (y, t) =

∫
dy′ [W (y|y′)P (y′, t)−W (y′|y)P (y, t)] . (5.54)

We now rewrite the transition probabilities W as

W (y|y′) = W (y′; r) , r = y − y′ (5.55)

and obtain

∂tP (y, t) =

∫
drW (y − r ; r)P (y − r, t)− P (y, t)

∫
drW (y ;−r) . (5.56)

This is just a rewrite, but now we want to play with the difference variable
r = y − y′ which will allow us to formulate a continuum approximation.

In order to formulate this continuum version of the master equation we assume
for the dependence of the transition probabilities on r that they fulfill the
following

W (y′; r) ≈ 0 , |r| > δ (5.57)

W (y′ + ∆y; r) ≈ W (y′; r) , |∆y| < δ (5.58)

which means that W is a slowly varying function of y′, but sharply peaked
in its dependence on r. If, additionally, P varies also slowly with y, we can
expand in a Taylor series to obtain

∂tP (y, t) =

∫
drW (y; r)P (y; t)−

∫
dr r ∂y[W (y; r)P (y, t)]

(5.59)

+
1

2

∫
dr r2∂2

y [W (y; r)P (y, t)]− P (y, t)

∫
drW (y;−r)
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where the first and the last term on the right-hand side (rhs) cancel each other
out. The remaining integrals over r can be absorbed in the definition of the
jump moments

aα =

∫ ∞
−∞

drrαW (y; r) (5.60)

and we finally obtain

∂tP (y, t) = −∂y[a1(y)P (y, t)] +
1

2
∂2
y [a2(y)P (y, t)] . (5.61)

This is the Fokker-Planck equation. It contains a drift term ∼ ∂yP and a dif-
fusion term, ∼ ∂2

yP . If we suppose a stationary distribution, ∂tP = 0, drift
and diffusion term have to balance each other.

Example for the Fokker-Planck equation: Brownian motion. Consider
a particle suspended in a liquid. If we trace its motion under the influence of
random molecular collisions of the liquid, we find a continuous path, as shown
in Figure 5.2. Measuring the distances the particle travels and averaging over
several realizations we obtain for the jump moments the expressions

a1 ≡
〈∆x〉X

∆t
= 0 , a2 ≡

〈(∆x)2〉X
∆t

= const. (5.62)

Thus, the Brownian particle obeys a diffusion equation

∂tP (x, t) =
a2

2
∂2
xP (x, t) (5.63)

and we can identify a2/2 ≡ D, i.e. the diffusion coefficient is given by

D =
〈(∆x)2〉

∆t
. (5.64)

We now want take a second, different look at the Brownian particle.6 Let us
now consider the velocity instead of the position of a suspended particle as
the dynamic variable. We first ignore the random collisions of the particle of
the solution molecules and assume that the velocity of the particle relaxes
according to

v̇ = −γv , (5.65)

6What we consider here is actually called the Rayleigh particle which is equivalent to the
Brownian particle; the difference between the two is the fine graining of the time scale. In
the discussion of the Rayleigh particle one assumes that tcoll � ∆t� trelax, where tcoll is
a molecular collision time, and trelax the time scale on which the particle velocity relaxes.



Back to P: Probabilities over Time � 165

Figure 5.2 Particle trajectory in solution: a Brownian path.

i.e., the particle velocity will go to zero for t→∞: the differential equation is
the same as that for the mean number of proteins in the protein degradation
problem we discussed with help of the master equation.

Hence, there is a now a drift term in the corresponding Fokker-Planck equa-
tion, and it is given by the jump moment

a1(v) =
〈∆v〉V

∆t
= −γv . (5.66)

The second jump moment fulfills a2(v) > 0 even for v = 0. The Fokker-Planck
equation reads as

∂tP (v, t) = γ∂v[vP (v, t)] +
a2

2
∂2
vP (v, t) . (5.67)

The stationary distribution for this process is actually known from equilib-
rium statistical mechanics: it is the Maxwell-Boltzmann velocity distribution
in which m is the particle mass and β = 1/kBT ,

P (v) =

(
βm

2π

) 1/2

exp

(
−βmv

2

2

)
. (5.68)

With the help of this expression, we can identify the coefficient of the diffusion
term as a2/2 = γ/(mβ), and the Fokker-Planck equation is fully given by

∂tP (v, t) = γ∂v

[
vP (v, t) +

1

βm
∂vP (v, t)

]
. (5.69)
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Exercise. Compute 〈v(t)〉 and 〈v2(t)〉 from Eq. (5.69) for the given initial ve-
locity v(0) = v0.

Exercise. Compute the dissipation-fluctuation relation for the Brownian mo-
tion from the Fokker-Planck equation for P (v, t).

The Langevin equation. We now complete the discussion of the Brownian
motion of the suspended particle in the velocity description by the classic ap-
proach originally suggested by P. Langevin.

In order to do this we consider the velocity process under the inclusion of a
noise source η(t) which we add to the rhs of Eq. (5.65),

v̇ = −γv + η(t) . (5.70)

The noise source η models the random action of the solution molecules on
the suspended particle (we now put m = 1). The solution particles ‘kick’ the
suspended particle and transfer part of their thermal energy. For the first two
moments of the noise distribution we assume

〈η(t)〉 = 0 , 〈η(t)η(t′)〉 = Γδ(t− t′) , (5.71)

where Γ is a constant. The motivating idea behind this specific choice is that
the random collisions are instantaneous and uncorrelated.

Exercise. How would the rhs of the second moment change if one were to in-
troduce a small but finite collision time τc?

If we assume an initial velocity v(0) = v0 of the particle, as we did before, we
can compute the velocity v(t) as

v(t) = v0e
−γt + e−γt

∫ t

0

dteγt
′
η(t′) (5.72)

and, using the moments of η, we can obtain those of v as:

〈v〉 = v0e
−γt (5.73)

〈v2(t)〉 = v2
0e
−2γt +

Γ

2γ
(1− e−2γt) . (5.74)
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We are now left to determine the coefficient Γ. For t → ∞, we know from
Eq. (5.68) - for m = 1 - that

〈v2(t→∞)〉 = kBT =
Γ

2γ
. (5.75)

Again we have found an example of the dissipation-fluctuation theorem. A
further, very prominent example is the Einstein relation

D =
kBT

γ
, (5.76)

see the Exercise on the Fokker-Planck equation in velocity space.

Fokker-Planck vs. Langevin. The Fokker-Planck equation determines the
full stochastic process of the Brownian particle; by contrast, the Langevin
equation does, by construction, not go beyond second moments. Therefore,
if we additionally assume that the noise η is Gaussian, all odd moments will
vanish, and the even moments will factorize (Exercise!). This leads to what is
commonly called a Gaussian white noise, i.e., a noise spectrum containing all
frequencies, which usually serves to model a rapidly fluctuating force.

This construction is all fine for the simple case of a Brownian particle, and
lends itself to the many applications of the Langevin equation approach, in
which a Gaussian white noise is added to the known deterministic equations of
the system. The constant Γ is then usually adjusted such that the stationary
solution correctly matches with the fluctuations around the stationary state.

But it is worth keeping in mind that this approach is a strong simplifica-
tion, as has been advocated by N. van Kampen. We will briefly go through
the main points here; for a more detailed discussion the reader is referred to
van Kampen’s book. Furthermore, we will return to this discussion in Part II
when we will discuss the role of fluctuations in biological systems in Chapter 6.

What has to be kept in mind if one wants to treat stochastic fluctuations
with the Langevin approach? By this we refer to the procedure we used for
the description of Brownian motion, namely to first write down a determinis-
tic equation for the macroscopic (average) dynamics, and to then add on the
fluctuations.

i) Suppose your system is described by a deterministic equation of the type
u̇ = A(u) = sinu to which we add the noise as defined above,

∂tu = sinu+ η(t) . (5.77)
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If we average this equation, we find

∂t〈u〉+ 〈sinu〉 = 0 (5.78)

since, as before, we have 〈η(t)〉 = 0. This result, however, means that the
average does not obey the macroscopic equation, i.e., ∂t〈u〉 6= sin〈u〉, since

〈sinu〉 = sin〈u〉 − 1

2
〈(u− 〈u〉)2〉 cos〈u〉+ ... , (5.79)

which is an equation involving all higher moments.

The message of this calculation obviously is: if we start from a deterministic
equation for the average which is nonlinear, the simple addition of fluctuating
source will in general be too naive.

ii) For an arbitrary nonlinearity A(u) the Langevin equation Eq. (5.77) is
equivalent to the Fokker-Planck equation

∂tP (u, t) = −∂u(A(u)P (u, t)) +
Γ

2
∂2
uP (u, t) . (5.80)

If we allow equations of the type

∂tu = A(u) + C(u)η(t) (5.81)

in which a u-dependent function multiplies the noise, we run into an inter-
pretation problem. For each jump in the solution u of the equation due to
the noise, the value of u and hence of C(u) is undetermined. We thus have
to specify a rule how to interpret the product C(u)η(t), and this leads to a
dependence of the resulting Fokker-Planck equation on that rule. Some pos-
sibilities are to take the value of C(u) before the jump, after the jump or
the mean. The different options lead to different Fokker-Planck equations and
hence to different results.7 The option to take the mean value is named after
R. L. Stratonovich, the version to take the value before the jump is named
after K. Itô.

We illustrate this phenomenon for the example of protein degradation for
which we had the master equation

ṗn = γ(n+ 1)pn+1(t)− γnpn(t) . (5.82)

7The two stochastic equations differ by what is called a spurious drift term, and the
equations can be transformed into each other by corresponding transformation rules; see
the detailed discussion in van Kampen’s book.
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Within the Langevin approach we can assume

ṅ = −γn+
√
nη(t) (5.83)

since we expect the fluctuations in the decay process to be proportional to the
square root of the number of proteins. Thus, we have a case in which we need
to determine the multiplication rule for the noise.

In the Itô-case, we take the value before the jump, hence

n(t+ ∆t)− n(t) = −γn(t)∆t+
√
n

∫ t+∆t

t

dt′η(t′) . (5.84)

It can be proved that this choice leads to the Fokker-Planck equation

∂tP (n, t) = ∂n(γ +
Γ

2
∂n)[nP (n, t)] . (5.85)

The corresponding line of reasoning in the Stratonovich case yields

∂tP (n, t) = ∂n

[(
γn− Γ

2

)
P +

Γ

2
∂n[nP (n, t)]

]
. (5.86)

If we calculate the equation for the average 〈ṅ〉 from the Itô-version of the
Fokker-Planck equation, we obtain the same result as Eq. (5.28) which we ob-
tained directly from the master equation (Exercise). The Stratonovich equa-
tion, by contrast, does not yield this result. The reason is that in the process
of protein degradation, the probability to go from n to n−1 proteins is indeed
proportional to the number n of available proteins before the transition, in
line with the Itô assumption of the construction of the stochastic process in
the first place.

The ambiguity arising from the different possible choices is referred to as the
Itô-Stratonovich dilemma. A better understanding of what is an adequate pro-
cedure in formulating stochastic equations can be obtained from a distinction
between intrinsic and extrinsic noise sources. Extrinsic noise is an ‘add-on’ to
a fundamentally deterministic dynamics, as it is the case in many engineering
applications. Here, one models, e.g., an electrical circuit on the level of its
macroscopic constituents like resistors and capacitors and not on the level of
electrons. In such a case, noise is never really white but has a finite correlation
time. In this case, there is no ambiguity and the Stratonovich prescription ap-
plies.

Intrinsic noise, by contrast, is due to the fact that the system itself is com-
posed of discrete particles which interact stochastically: this noise can never
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be switched off, and hence A(u) is not determined by the evolution equations
in a system isolated from noise. Hence, the Langevin approach does in general
not work for internal noise. Instead, one has to go back to the master equation
approach, from which in certain cases macroscopic equations can be derived.
This derivation can be done as follows in a systematic way. The starting point
is the probability density P (y, t) for a stochastic process YX . We define

y(t) ≡ 〈Y 〉t =

∫
dy y P (y, t) (5.87)

where we assume that the density P is a sharply peaked function of its argu-
ment y; it is assumed to be initially of the form P (y, 0) = δ(y − y0).

As t increases, the probability density P will evolve along y, and this deter-
mines the behaviour of the average y(t). One finds

ẏ(t) =

∫
dy y ∂tP (y, t)

=

∫
dy dy′y [W (y|y′)P (y′, t)−W (y′|y)P (y|t)] (5.88)

=

∫
dy dy′(y′ − y)W (y′|y)P (y, t) . (5.89)

We now recall the jump moments (Eq. (5.60))

aα(y) =

∫
dy′(y′ − y)αW (y′|y) (5.90)

for α = 0, 1, 2, .., to obtain

ẏ(t) ≡ d

dt
〈Y 〉t =

∫
dy a1(y)P (y, t) = 〈a1(Y )〉t (5.91)

If we expand a1(y) around the average 〈Y 〉t in a Taylor series

〈a1(Y )〉t = a1(〈Y 〉t) +
1

2
〈(Y − 〈Y 〉t)2〉ta′′1(〈Y 〉t) + ... (5.92)

one finds to a first approximation the equation

ẏ(t) = a1(y(t)) = A(y) (5.93)

which is, despite of P fulfilling a linear equation, in general a nonlinear equa-
tion of y(t), even when the higher-order terms are dropped.
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Task. Compute the corrections to the macroscopic equations. For this, consider

d

dt
〈Y 2(t)〉t (5.94)

and the variance σ2(t) = 〈Y 2(t)〉 − y2(t). For jump moments a1 and a2 which
are linear in y show that the macroscopic equation can be written as

ẏ(t) = a1(y(t)) +
1

2
σ2(t)a′′1(y(t)) . (5.95)

A generalization of Z. As a final step in our development of the theory of
stochastic processes we discuss a recent observation by (T. B. Liverpool,
2018), who showed that for steady-state stochastic processes a generalized
distribution can be derived for the average trajectories. Starting point of the
discussion is the Langevin equation

Ẋi = −Dij · (∇H(Xi) + vi(Xi)) + ξi (5.96)

where Xi is a vector with components i = 1, .., N , D a mobility matrix and
vi(Xi) a velocity term which cannot be derived from a scalar function, hence
explicitly breaks detailed balance. The noise ξi is Gaussian white noise with
a variance

〈ξi(t)ξj(t′)〉 = 2θDijδ(t− t′) . (5.97)

We consider Dij = Diδij with Di > 0 independent of Xi. The parameter
θ > 0 will play the role of thermal energy, kBT , in the equilibrium case, as we
will see below.

The Langevin equation is equivalent to a Fokker-Planck equation given by

∂tP =
N∑
i=1

∇iDi(θ∇iP + P (∇iH− vi)) . (5.98)

According to (T. B. Liverpool, 2018), this equation has a stationary distri-
bution given by

Pss = %(X) =
1

Z
e−h(X) (5.99)

with Z =
∫
dNXe−h, in perfect analogy to the equilibrium case, provided that

the condition
N∑
i=1

DiLi(h) = 0 (5.100)



172 � Computational Biology

is fulfilled for the function

Li(h) = θ(∇ih)2 +∇2
iH+∇ih(vi −∇iH)− θ(∇2

ih)−∇ivi . (5.101)

The stationary density % is then constant on the trajectories

Ẋi = Vi = Di(vi −∇iH+ θ∇ih) . (5.102)

In the equilibrium case we have for the velocity vi = 0 as well as Vi = 0, and
hence find

h =
H
θ

(5.103)

which justifies the identification of θ = kBT in equilibrium. When θ = 0, the
average trajectories are those of the deterministic equation. As other trajec-
tories do not keep the probability density constant, these trajectories act as
attractors. The condition on the eigenvalues of the Hessian matrix for h is
that ∇i∇jh > 0, i.e. their strict positivity.

Exercise. Illustrate this idea for a simple chemical oscillator, the Brusselator,
an oscillatory chemical reaction with two components. Their dynamics reads
as

ẋ = µ+ x2y − λx− x+ ξ1(t) (5.104)

and
ẏ = λx− x2y + ξ2(t) . (5.105)

Compute h. Hint: write h(x, y) as a power series in x, y.

This concludes our discussion of the general methods of stochastic dynam-
ics, i.e., master equations, Fokker-Planck and Langevin equations. We now
move on to a class of systems to which these approaches will be applied later,
to biochemical reaction systems, and give the basic elements of the theory
of chemical kinetics. We discuss two approaches: first, the deterministic one,
based on rate equations. Subsequently, we return to the stochastic aspect by
a description of the Gillespie algorithm which allows to simulate the master
equation for biochemical reactions.

Chemical kinetics. In many applications of stochastic processes in biology,
we have to deal with biochemical reactions. Consider thus a system of m
chemical substances, and n chemical reactions. We represent the latter by n
collision diagrams, given by

νi1A1 + ...+ νimAm →ki µi1A1 + ...+ µimAm (5.106)
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for i = 1, .., n. Ai can represent either the number of a molecule of substance
i, or its concentration (obtained by division through volume, ni = Ai/Ω).
The ki are rate constants; νim, µim are stoichiometric coefficients, which are
integer numbers. The sums

ri =
m∑
j=1

νij (5.107)

define the order of the transitions. A transition

A1 +A2 →k A3 (5.108)

thus represents the binary collision of A1 and A2, giving rise to A3. Higher
order collisions have a low probability to occur, and are generally neglected
in chemical kinetics.

In order to pass from a collision diagram to equations describing the time
evolution, several assumptions have to be made. We begin with the following:

• the system (typically, a solution) can be assumed spatially homogeneous;

• the density of the molecules is low;8

• all reactions occur at a constant volume and temperature;

• the collision frequency of the molecules depends on local concentration.

We can then write down the equation for the chemical kinetics of the molecules
in the form

dAj
dt

=
n∑
i=1

ki(µij − νij)Aνi11 · · ·Aνimm (5.109)

for j = 1, ...,m. This expression is the rate equation.

The equations expressed in (5.109) are not always independent. This can be
made more explicit by considering them in matrix form

d

dt
A = M ·K (5.110)

where Aj is a vector with components Aj , M is a matrix with row vec-
tors VT ≡ (µ1j − ν1j , ..., µnj − νnj) for j = 1, ...,m, and KT ≡ (k1A

νi1
1 ·

· ·Aν1mm , ..., knA
νn1
n · · ·Aνnmm ). If the matrix M has a rank r with r ≤ min{n,m}

8But not too low; if the molecules appear in too few numbers, the continuum approach
breaks down.
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the equations are linearly dependent; there are thus m− r conservation laws
which can be written as

m∑
j=1

αjkAj(t) =
m∑
j=1

αjkAj(0) (5.111)

for k = 1, ...,m− r.

Task. Consider Eq. (5.109) for the case of one collision diagram, with reaction
and back-reaction rate constants k+ and k−.

a) Write down the chemical master equation using the step operator E .

b) For an ideal mixture of molecules, the grand canonical distribution is given
by

P ({ni}) =
∏
j

(Ωzj)
nj

nj !
exp(−Ωzj) (5.112)

with nj = 0, 1, .... Here

zj =

(
2πm

β

)3/2∑
ν

exp(−βεν) (5.113)

is the partition function of one molecule j in a unit volume. The energies εν
contain all internal molecular degrees of freedom, be they rotational, vibra-
tional or electronic. Check that P ({ni}) is a stationary solution of the master
equation obtained under a), if

k+

k−
=
∏
j

z
µj−νj
j (5.114)

applies, i.e., the law of mass action is fulfilled.

The Gillespie algorithm. Since master equations are usually easy to write
down but hard to solve explicitly, D. T. Gillespie, 1977 proposed a simple
prescription how to determine the time evolution corresponding to the master
equation from a stochastic algorithm.

Starting point of the algorithm is the expression for the transition probability
of the Chapman-Kolmogorov equation, Eq. (5.21), in the case of small time
interval τ . The algorithm can be formulated in terms of the probability P for
a given reaction i = 1, ..., n to occur in an infinitesimal time-interval dτ , which
can be written as

P (τ, i) = P0(τ) · ai · dτ (5.115)
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where P0(τ) is the probability that no collision will have occurred in the
interval (t, t + τ), while ai ≡ hici is a stochastic reaction rate ci, multiplied
by a combinatorial factor determined by the type of reaction that occurs, and
by counting the number of distinct reaction partners that are available for
a reaction. Thus, ai · dτ is the probability that a collision will occur in the
interval (t+ τ, t+ τ + dτ). Defining

a0 ≡
M∑
i=1

ai , (5.116)

P0(τ) obeys the equation

P0(τ + dτ) = P0(τ) · [1− a0 · dτ ] (5.117)

which describes the (obvious) fact that the probability that no reaction oc-
curred in time τ+dτ equals the product of the probabilities that no transition
occurred in the interval τ , and within dτ .

The solution of this equation is given by P0(τ) = exp(−a0τ), such that

P (τ ; i) = ai exp(−a0τ) , 0 ≤ τ <∞ , i = 1, .., n, (5.118)

or 0 otherwise.

This result can be used to compute the time evolution of the system by the
reconstruction of P (τ ; i) from a draw of two random numbers r1 and r2 from
the unit interval uniform distribution according to the prescription

τ =
1

a0
ln

(
1

r1

)
, i = r2 (5.119)

where i is selected such that the condition

i−1∑
j=1

aj < r2a0 ≤
i∑

j=1

aj (5.120)

is fulfilled.

These steps can finally be cast into the following algorithm:

• define the stochastic rates ci for i = 1, ..., n, and the initial conditions
on the N molecules;

• calculate a1 = h1c1, ..., an = hncn, and a0 =
∑n
j=1 aj ;
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• generate r1, r2 and calculate τ and i;

• increase t by τ , adjust the population levels of the selected reaction i;
loop.

5.4 SEQUENCE ALIGNMENT: A NON-EQUILIBRIUM PHASE
TRANSITION

We will now discuss a phase transition, but not an equilibrium one as we did
in Chapter 1. We will find critical exponents and scaling, and we will both
use stochastic equations in their discrete and continuous versions. The topic
is sequence alignment, a fundamental method in computational biology de-
veloped to find out the similarities between two sequences, be they made up
DNA bases, or the amino acid sequences of proteins.

In this section, we will see that the alignment of two sequences can be un-
derstood as a phase transition in a non-equilibrium system. This may, at first
sight, seem astonishing: what does a pattern matching problem have to do
at all with a phase transition? There are several aspects that have to be ad-
dressed in order to answer this question, and we will do so as we go along,
and follow the exposition by R. Bundschuh, 2002.

We begin with a technical definition of the notion of an alignment.

Gapless alignment. The simplest procedure of sequence alignment is called
gapless alignment. It looks for similarities between two sequences a =
(a1, a2, ..., aM ) and b = (b1, b2, ...., bN ) where M ∼ N . The letters ai, bi are
taken from an alphabet of size c; for our purposes here we take c = 4, i.e., the
four-letter alphabet of the DNA bases.

A local gapless alignment A consists of two substrings of equal length ` of the
sequences a,b. To each such alignment can be assigned a score

S[A] = S(i, j, `) =
`−1∑
k=0

sai−k,bj−k (5.121)

where the scoring matrix is given, in the simplest case, by

sa,b =

{
1 a = b
−µ a 6= b

. (5.122)



Back to P: Probabilities over Time � 177

What is to be computed are the values of i, j and ` which lead to the highest
total score

Σ ≡ max
A

S[A] (5.123)

for the given scoring matrix sa,b.

This optimization problem can be reformulated by introducing the auxiliary
quantity Si,j which is the optimal score of the subsequences ending at (i, j)
optimized over `. This quantity can be computed with O(N2) steps instead
of O(N3) with the prescription

Si,j = max{Si−1,j−1 + sai,bj , 0} (5.124)

for the initial condition S0,k = Sk,0 = 0. This recursion expresses the fact that
for a given pair (i, j) the optimal ` = 0 or ` > 0. If ` = 0, the resulting score is
zero either; if ` = 1 at least, the corresponding pair (ai, bj) will belong to the
optimal alignment (which may be longer), whatever had been chosen as opti-
mal up to (i− 1, j − 1). Eq. (5.124) describes a random walk with increment
sa,b. It is cut off when it falls below zero. The global score Σ is then given by

Σ = max
1≤i≤M,1≤j≤N

Si,j . (5.125)

Significance of the alignment. Suppose we have found an alignment by
performing this computation. How significant is it? In order to answer this
question, we have to discuss the alignment of purely random sequences, and
to determine the distribution of scores in this case. This can be done rigor-
ously, leading to the result

P [Σ < S] = exp(−κe−λS) , (5.126)

which is a Gumbel or extreme value distribution. It is characterized by two
parameters λ and κ where λ characterizes the tail of the distribution. For the
case of gapless alignment we discuss here, both parameters can be calculated
from the knowledge of the scoring matrix sa,b.

We want to illustrate how the result (5.126) comes about in a heuristic fash-
ion. For this we go back to Eq. (5.124) and set i = j, which is permissible for
random sequences. Thus we have

Si,i ≡ S(i) = max{S(i− 1) + s(i), 0} . (5.127)
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In this equation, s(i) = sa,b plays the role of an uncorrelated noise given by
the distribution

P [s(i) > s] =
∑

(a,b|sa,b>s)
papb . (5.128)

Eq. (5.127) is essentially a discrete version of a Langevin equation. The dy-
namics generated can be found in two distinct phases, called the linear and
the logarithmic phase. The quantity which distinguishes the two is the local
similarity score

〈s〉 =
∑
(a,b)

papb . (5.129)

In the linear phase, the dynamics is a random walk with an average upward
drift 〈s〉, and the maximal score is

∑
≈ N〈s〉 for a sequence of length N . This

phase constitutes a phase of global alignment, and hence does not permit to
identify similarities in subsequences. The distribution of the Σ in this phase is
Gaussian, not Gumbel. If, however, the average drift 〈s〉 is negative, the ensu-
ing dynamics will lead to a score of the form shown in Figure 5.3. The resulting

Figure 5.3 Total score of an alignment as a function of sequence position.

score landscape can be considered as consisting of ‘islands’ in an ‘ocean’. For
the case of random sequences, the islands are statistically independent. If σk
is the maximal score of island k, the σk are thus independent random variables.

Island distribution. In order to calculate the island distribution explicitly,
we have to look at (R. Bundschuh, 2002)

p(σ) = 〈δ(σ −
L∑
i=1

s(i))〉 . (5.130)

Here L is the length of a ‘large’ island, measured from its beginning to the
peak at height σ. Using the Fourier representation of the δ-function and the
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statistical independence of the s(i) we obtain

p(σ) =
1

2π

∫
dke−ikσ〈e iks〉L (5.131)

Assuming that the peak score of each island is proportional to its length -
islands are thus on average little triangles with rising slope α - we approximate

p(σ) ≈ 1

2π

∫
dke−ikαL〈e iks〉L (5.132)

and then evaluate the integral in a saddle-point approximation. This leads to
(Task!)

p(σ) ∼ exp(−λσ) (5.133)

with
λ = iks − ln[〈e ikss〉]/α , (5.134)

where the saddle-point value of k, which we call ks, is determined by

〈se ikss〉
〈e ikss〉

= α . (5.135)

Note that ks still depends on α. The correct value α is found by minimizing
Eq. (5.135) with respect to α and using Eq. (5.135), which yields

〈eikss〉 = 1 (5.136)

i.e., explicitly

〈eλs〉 =
∑
a,b

papbe
λsa,b = 1 . (5.137)

The typical slope of an island is given by

α = 〈seλs〉 . (5.138)

Thus, we conclude that the islands follow the exponential distribution

P [σk > σ] ≈ Ce−λσ . (5.139)

Since the global optimal score Σ is given in terms of the islands σk by

Σ = max
k
{σk} (5.140)

the distribution of the Σ can be computed from the distribution of the σk.
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For a large number K ∼ N of island peaks one finds

P [Σ < S] = P [max{σ1, .., σK} < S] = [1− Ce−λS ]K ≈ exp(−κe−λS) ,
(5.141)

where κ = CK.

Gapped alignment. We now turn to the case of alignment with gaps. This
method is used to detect weak sequence similarities between evolutionary dis-
tant sequences, in which deletions and insertions have occurred over time.
The classic example is Smith-Waterman local alignment, in which the two
subsequences a,b, e.g. GATGC and GCTC, can be aligned as GATGC and
GCT-C, i.e., with one gap (see Figure 5.4). The score function for alignment
with gaps is given by

S[A] =
∑
a,b

sa,b − δNg , (5.142)

where Ng is the number of gaps with cost δ.

The gapped alignment of two sequences can be represented as a directed path
on a two-dimensional lattice, see Figure 5.4. The alignment score is the sum
over local scores of the traversed bonds, whereby diagonal bonds are gaps with
penalty δ, while horizontal bonds are given the similarity scores s(r, t) ≡ sai,bj .
What is sought is the best scoring path connecting the lattice origin (0, 0) to
its end, (0, 2N).

If we denote by h(r, t) the score of the best path ending in a lattice point
h(r, t), the highest scoring global alignment can be computed with the Needle-
man-Wunsch algorithm

h(r, t+ 1) = max{h(r, t− 1) + s(r, t), h(r+ 1, t)− δ, h(r− 1, t)− δ} . (5.143)

This expression can be interpreted to describe the configuration of a directed
polymer in a random potential given by the local scores s(r, t). Another inter-
pretation, which is somewhat easier to visualize, is to understand the config-
uration as the height profile h(r, t) of a growing interface between a solid and,
say, a liquid phase.

These systems - directed polymers in a random potential or a growing interface
- are well known in the physics of non-equilibrium systems. Due to the map-
ping of the sequence alignment problem onto the interface growth problem one
can immediately show, from the knowledge of the models in non-equilibrium
physics, that it belongs to the so-called KPZ universality class. A universality
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Figure 5.4 The local alignment of the two sequences CGATGCT and

TGCTCGA is represented as a directed path on an alignment lattice:

the diagonal bonds correspond to gaps, while horizontal bonds are

aligned pairs. [Reprinted with permission from R. Bundschuh (2002).

Copyright: American Physical Society.]
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class means that all systems that can be shown to be mathematically equiv-
alent will have the same phase transition, i.e., it can be characterized by a
common set of critical exponents.

Within a continuum description, one can show that the evolution of the heights
is governed by the Kardar-Parisi-Zhang equation (often short: KPZ equation)
(M. Kardar, G. Parisi and Y.-C. Zhang, 1986; T. Hwa and M. Lässig,
1998)

∂th = ν0∂
2
rh+ λ0(∂rh)2 + η(r, t) (5.144)

where η(r, t) = 1
2s(r, t)−δ is an uncorrelated Gaussian white noise. For t→∞

the heights assume a stationary equal-time distribution

P [h(r, t→∞)] ∝ exp

(
− 1

2D

∑
r

[h(r + 1, t)− h(r, t)]2

)
. (5.145)

The parameter D in this expression is a function of the scoring parameters µ
and δ.

Typical score profiles h(r, t) are illustrated in Figure 5.5 (top). In order to
extract the characteristics of these profiles, it is instructive to consider the
width of the profile, w(t), defined by

w2(t) =
1

X

x=X/2∑
x=−X/2

[h(x, t)− h(t)]2 (5.146)

with the interval size X(≈ N), and where the spatial average of the height,
h(t) is defined by

h(t) =
1

X

x=X/2∑
x=−X/2

h(x, t) . (5.147)

The behaviour of h and w is shown in Figure 5.5 (bottom). As illustrated in
the figure, the asymptotic behaviour of the width obeys a scaling law

w(t) = B(µ, δ)tω (5.148)

where the value of ω is known from the universal scaling behaviour of the
KPZ equation. Note that the scaling behaviour is obtained from an ensemble
average over different realizations of random sequences. The quantity

∆h(t) = hmax(t)− hmin(t) (5.149)

displays the same scaling behaviour as w.
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h(x, t)

x

t = 14000

t = 1000

∆h(t)

w(t)

t1/3

t

Figure 5.5 Qualitative sketch of the score profiles h(x, t) (top) and scal-

ing result for h(t) and w(t) (bottom).
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h(x, t)

x

t = 14000

t = 1000

0

∆h(t)

t1/3

t

t

Figure 5.6 Qualitative sketch of the score profiles for weakly correlated

sequences.
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If the sequences exhibit correlations, the behaviour changes. This is illustrated
in Figure 5.6, which displays the growth of a peak in the score profiles. In terms
of the height difference ∆h(t) one sees a deviation from the scaling behaviour
of the random case, from a power law of the form t 1/3 to a linear law. This
change in exponent illustrates the onset of global alignment, and we are thus
back to the linear phase we discussed before for the case of gapless alignment.

As a final step we want to locate the logarithmic phase in parameter space.
For the gapped case, a negative drift 〈s〉 is not sufficient, since the average
score now has to grow by a gap-dependent amount u({sa,b}, δ) on top of the
expectation value 〈s〉. Consequently, the log-linear transition occurs at

u({sa,b}, δ) + 〈s〉 = 0 . (5.150)

In a (δ, µ) diagram this condition corresponds to a line δc(µ), which can be
calculated approximately or numerically. The result is shown in Figure 5.7.
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Figure 5.7 The phase diagram of the log-linear phase transition in the

parameters δ vs. µ. The variable c the number of letters in the alphabet;

a value of 4 hence refers to the alphabet of DNA. (Reprinted with

permission from R. Bundschuh, 2002. Copyright: American Physical

Society.)
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Additional Notes

Non-equilibrium processes. The basic reference for the description of non-
equilibrium processes in physics and chemistry is the book by N. van Kampen
(1992), which also served as a basis for the discussion presented here. Readers
willing to learn more details are thus recommended to continue further studies
there.

We have treated chemical kinetics in a very brief manner; for a much more
detailed exposition, readers are asked to consult the book by Péter Érdi
and Gábor Lente (2014).

Stochastic thermodynamics. In recent years a novel approach has emerged
for the discussion of thermodynamic processes in non-equilibrium. It is based
on the Langevin-Fokker-Planck dichotomy. For a system in which temperature
can be assumed to vary over time, and with the application of a determin-
istic force, described by a Langevin equation, the corresponding probability
distribution P from the Fokker-Planck equation may be employed to define
a non-equilibrium expression for entropy. This procedure generalizes equilib-
rium thermodynamics and is recovered for time-invariant states. Introductions
are provided by K. Sekimoto’s book (2010) and U. Seifert’s review (2012).

Sequence alignment. The literature on sequence alignment is (fairly obvi-
ously) extensive. A point of reference is the book by M. S. Waterman (1995).
The classic paper on alignment is by S. B. Needleman and C. D. Wunsch
(1970). For a detailed description of the development until 1995 the reader is
asked to consult the Sources and Perspectives section in Waterman’s book.

The relationship between the alignment problem and models from non-
equilibrium statistical mechanics was observed by T. Hwa and M. Lässig
(1996, 1998). More recently, a mapping to the asymmetric exclusion process
has been proposed by R. Bundschuh (2002) which is the same universality
class as the KPZ-equation discussed in the text. The Asymmetric Exclusion
Process (ASEP) is a favorite model for studies of non-equilibrium statistical
mechanics since it is amenable to rigorous approaches.

The literature on both the ASEP and in recent years in particular on the
KPZ-equation has literally exploded, in particular through the mathematical
advances by M. Hairer on the mathematical theory of stochastic differential
equations. The literature in the field is enormous; a recent paper permitting
a self-contained introduction to the topic is by I. Corwin (2018).
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CHA PT E R 6

Fluctuation Theorems

Non-equilibrium statistical mechanics still lacks general concepts when com-
pared to equilibrium statistical mechanics. That does not say, however, that
there are no fundamental relations between physical quantities that can be
usefully formulated. The most important are fluctuation theorems which we
will now introduce.

6.1 THE FLUCTUATION-DISSIPATION THEOREM

We first derive a general fluctuation theorem, valid for non-equilibrium sta-
tionary states (and, a fortiori, near equilibrium states) within the formalism
we have introduced (M. Lax, 1960).

Suppose we have I molecular species present with numbers ni, 1 ≤ i ≤ I; we
consider the index i as a vector index on particle numbers, and abbreviate
n = (n1, ...nI) = ni, which is hence a row vector.

From our previous results we infer that the particle distribution function for
a Markov process fulfills

P (n, t+ ∆t) =

∫
dmP (n, t+ ∆t|m, t)P (m|t) , (6.1)

We now define the following quantities1

A(m) =
1

∆t

∫
dnP (n, t+ ∆t|m, t)(n−m) , (6.2)

1This step assumes that the conditional probabilities are expandable to linear order in
∆t.

191
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which is a vector; we call it a drift vector. Further, we define the matrix

D(m) =
1

2∆t

∫
dnP (n, t+ ∆t|m, t)(n−m) · (n−m)T (6.3)

where (...)T denotes the transpose of the row vector of particle numbers, hence
a column-vector. We call D the diffusion matrix.

Supposing that the stationary state is characterized by a particle number
vector n0, we introduce the vector

δn ≡ n− n0 . (6.4)

We now find (verify this as a Task) the equation for the time evolution of the
mean-value

d

dt
〈δn〉 = 〈A(n(t))〉 (6.5)

and the corresponding equation for the covariance matrix

d

dt
〈δn δnT 〉 = 2〈D(n)〉+ 〈A(n)δnT 〉+ 〈δnAT (n)〉 . (6.6)

As a following step we expand around the stationary state via n = n0 + δn
and assume for the drift-vector

A(n) ≈ A(n0)−Λδn , (6.7)

where we have introduced a matrix Λ. In this last equation we choose

A(n0) = 0 (6.8)

to be consistent with Eq. (6.5). Further, we make the simplifying assumption
that

D(n) ≈ D(n0) ≡ D . (6.9)

We then end up with the following results for the mean

d

dt
〈δn〉 = −Λ〈δn〉 (6.10)

and the covariance matrix

d

dt
〈δnδnT 〉 = 2D−Λ〈δnδnT 〉 − 〈δnδnT 〉ΛT . (6.11)
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These equations are the main result of this section. We note that in steady-
state, a relation between the diffusion matrix D, the fluctuations in particle
number δn and the drift matrix Λ is established in the form

2D = Λ〈δnδnT 〉+ 〈δnδnT 〉ΛT . (6.12)

This equation is a general version of the so-called fluctuation-dissipation theo-
rem. The name derives from special cases in which the drift vector corresponds,
e.g., to a friction force acting on a particle and hence provides a mechanism
for dissipation. We have seen such situations already in the previous chapter,
e.g. in the simple cases of Langevin dynamics.

Exercise. Apply the above theorem to the original Langevin equation discussed
in Chapter 5. What do you conclude?

6.2 THE JARZYNSKI EQUALITY AND CROOKS’ THEOREM

We now turn to another general result, the so-called Jarzynski equality. This
time we start the derivation from the master equation, following U. Seifert,
2004.

We consider a situation in which we allow the wmn in the master equation to
depend on some tunable parameter λ, i.e., we have

wmn = wmn(λ) . (6.13)

For a fixed value of λ, we assume (as before) that the system is in a stationary
state psn which obeys the condition of detailed balance. This condition is quite
important: while obeyed by equilibrium systems, the reverse it not true. The
condition of detailed balance suffices for the system to have a stationary state,
and hence is an important information to have on a non-equilibrium system.
Mathematically, the condition of detailed balance is given by

psn
psm

=
wmn
wnm

. (6.14)

If we now assume that the parameter λ is turned on in a time-dependent
manner, λ = λ(τ), we would like to know the probability P to encounter a
particular trajectory of the system n(τ) ≡ (n0, n1, ..., nk) starting in n0 at
time τ0 = 0, jumping to n1 after a time-interval τ1 and so forth, until the final
jump from τk−1 to τk ≡ t. This probability is given by
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P [n(τ), λ(τ)] = ps(n0, λ(0))×
k∏
i=1

exp

− ∫ τi+1

τi

dτ
∑
m6=ni

wn0,m(λ(τ))


×wn0,m(λτi+1) .

(6.15)

Likewise, we can study the trajectory ñ ≡ n(t−τ) which occurs under reversal
of λ, i.e., λ(t − τ) ≡ λ̃. This operation allows to write down the probability
P [ñ(τ), λ̃(τ)] (Exercise).

We can then form the ratio of the two probabilities which is given by

e−R[n(t)] ≡ P [ñ(τ), λ̃(τ)]

P [n(τ), λ(τ)]
= exp

[
−
∫ t

0

dτε′n(τ)λ̇(τ)

]
(6.16)

where the quantity

ε′n(λ) = − d

dλ
ln ps(n, λ) (6.17)

has been introduced. It can be considered as a formal ‘energy level’. This in-
terpretation can be made if one wishes to read the integral in the argument
of the exponential function as an analogue of a free energy - we will soon see
that this analogy can be made precise.

From these observations we obtain the following two identities

1 =
∑
ñ(τ)

P [ñ(τ), λ̃(τ)] =
∑
ñ(τ)

e−R[n(τ)]P [n(τ), λ(τ)] (6.18)

and

1 =
∑
n(τ)

e−R[n(τ)]P [n(τ), λ(τ)] = 〈exp

(
−
∫ t

0

dτε′n(τ)λ̇(τ)

)
〉 . (6.19)

We interpret the second expression as a fluctuation theorem

〈exp

(
−
∫ t

0

dτε′n(τ)λ̇(τ)

)
〉 = 1 , (6.20)

and explain now why, by some illustrative applications.
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6.3 APPLICATIONS OF THE FLUCTUATION THEOREMS

We first illustrate the result Eq. (6.20) by applying it to a simple cyclically
working enzyme or motor, following U. Seifert, 2005, as depicted in Figure
6.1. The enzyme is assumed to have three equivalent conformational states,
and it progresses from one to the other at a rate k+ in the forward (i.e., clock-
wise), and with a rate k− in the backward direction. We assume k+ > k−.
The stationary distribution of the system clearly is given by ps = 1/3: the
system spends equal times in each of the states. For this system we obtain R
as

R = n ln(k+/k−) (6.21)

where n ≡ n+ − n− is the effective number of steps in the forward direction.
Thus

P [−n]

P [n]
= e−n ln(k+/k−) =

(
k+

k−

)n
. (6.22)

The exact P [n] can be computed from the master equation, since this system
is an asymmetric random walk with the master equation

ṗn = k+pn+1 − k−pn−1 − (k+ + k−)pn (6.23)

for which

pn ≡ P [n] = I|n|(2
√
k+k−t)

(
k+

k−

)n/2
e−(k++k−)t , (6.24)

where In(x) is the modified Bessel function of order2 n. One sees that the
factor (k+/k−)n arises from the ratio of backward and forward processes with
the probability ratio P [−n]/P [n].

Jarzynszki theorem. The fluctuation theorem above can further be elu-
cidated by pointing out its relation of Eq. (6.20) with a theorem due to
C. Jarzynski, 1997a,b, as suggested by U. Seifert, 2004.

2The modified Bessel function of order n is given by the expression

Iα(x) = i−αJα(x)

with

Jα(x) =

∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(x
2

)2m+α
.
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Figure 6.1 An enzyme or molecular motor switching between three con-

figurational states. Transition rates in forward and backward direction

are given by k+
i and k−i for i = 1, 2, 3, respectively.

Consider the trajectory of a particle x(t) in a potential V (x, λ), which again
depends on the parameter λ. The stationary distribution of this process for
fixed λ is given by

ps(x, λ) = Z(λ)−1 exp[−βV (x, λ)] (6.25)

with the normalization given by the ‘partition function’

Z(λ) ≡
∫ ∞
−∞

dx exp[−V (x, λ)] . (6.26)

Substituting these correspondences into the formula (6.17) one has with
n(t) ∼ x(t)

εn(λ) ∼ − ln ps(x, λ) = βV (x, λ) + lnZ(λ) . (6.27)

Inserted into Eq. (6.20) this leads to the result

〈exp

(
−β
∫ t

0

dτV ′(x(τ), λ̇(τ))

)
Z(λ(0))

Z(λ(t))
〉 = 1 . (6.28)
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Invoking the expression for the free energy

F (λ) = β −1 lnZ(λ) , (6.29)

and introducing the notions of the applied work

W ≡
∫ t

0

dτV ′[x(τ), λ(τ)]λ̇(τ) (6.30)

and the dissipated work

Wdiss ≡W − [F (λ(t))− F (λ(0))] (6.31)

we finally arrive at the expression

〈e−βWd〉 = 1 (6.32)

or, equivalently, at
〈e−βW 〉 = e−β∆F (6.33)

where ∆F can be read off from Eq. (6.31). This is Jarzynski’s original result
(1997a).

The Jarzynski equation (6.33) is remarkable since it relates the difference
between an equilibrium free-energy difference to the average over a non-
equilibrium quantity. This merits a deeper discussion.

Validation of Jarzynski’s equality. Jarzynski’s result can be rewritten
as an equation for the free energy difference in terms of a non-equilibrium
expression

∆F = β −1 ln〈e−βW 〉 . (6.34)

To interpret this result further it is useful to rewrite it further in terms of the
cumulant expansion (see Chapter 1). This operation leads to the expression

∆F =
∞∑
n=1

1

n!
κn(−β)n−1 (6.35)

where the first four cumulants are given by

κ1 = 〈W 〉 , κ2 = 〈(W − 〈W 〉)2〉 = σ2
W (6.36)

and
κ3 = 〈(W − 〈W 〉)3〉 , κ4 = 〈(W − 〈W 〉)4〉 − 3σ4

W . (6.37)
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These expressions are instructive since we can infer from them different levels
of approximation which are testable against experimental measurements or
simulation results.

To begin, we keep only the first term of the cumulant expansion. We then
estimate the work done by the system as the free energy difference. This is
correct only when the work is done reversibly, which means that there is no
mechanism of energy dissipation in the system.

The second level approximation amounts to consider

∆F = 〈W 〉 − 1

2
βσ2

W , (6.38)

i.e., the fluctuations around the stationary state. Eq. (6.38) becomes exact in
a regime near an equilibrium state, since then the work distribution is Gaus-
sian, and all higher cumulants vanish identically. The result is also an example
application of the fluctuation-dissipation theorem, since

W diss =
1

2
βσ2

W , (6.39)

relates the dissipated work to the Gaussian fluctuations.

If we want to take the full Jarzynski result serious, we have to estimate the
free energy difference by the following expression

∆F = − 1

β
ln

[
1

N

N∑
i=1

e−βWi

]
, (6.40)

where N is the number of trajectories for which the work W has been deter-
mined.

What trajectories are best to measure in an experiment or a simulation? This
can be understood from reconsidering the Jarzynski result in the form in-
volving the dissipated work. Since we are near an equilibrium state, W is
Gaussian-distributed, hence the dissipated work follows a Gaussian distribu-
tion with mean W diss = 1

2βσ
2
W and variance σ2

W . As W diss increases - one
moves away from the near-equilibrium regime - the distribution will broaden.
The expression Eq. (6.40) obviously heavily weighs those trajectories whose
dissipated work is negative. The probability of finding such a trajectory is
given by

P (Wdiss < 0) =

∫ 0

−∞
dWdissP (Wdiss) =

1

2
(1− erf(

√
W diss/2)) (6.41)
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where erf is the error function.3 Since Eq. (6.41) is a sharply decreasing func-
tion of its argument, it is established that the efficiency of sampling falls
rapidly with the increase of dissipated work.

Pulling RNA and DNA hairpins. Jarzynski’s equality has been tested
in experiments on pulling RNA secondary structure. In such experiments -
using a similar experimental setup we described in Chapter 2 of Part I in the
context of the worm-like chain model - a single RNA molecule with known
secondary structure is fixed at its extremities between two beads which can
be moved reversibly, at different speeds (J. Liphardt et al., 2002). These
experiments have indeed allowed to demonstrate that the estimator given by
Eq. (6.40) converges towards ∆F if sufficiently many trajectories N are taken
into account for which the dissipated work is high. The quantity can also be
validated in simulations (S. Park et al., 2003). Again, a sufficient sampling
range is needed. More recently, a detailed study of RNA folding free energies
has been performed by D. Collin et al., 2005, who verified a generalization
of the Jarzynski theorem, the Crooks fluctuation theorem, in regimes near and
far from equilibrium. In the context of RNA folding, this theorem states that
the probability the ratio of the probability distributions of the work for un-
folding and folding under conditions of time-reversal symmetry fulfills

Punfold(W )

Pfold(W )
= expβ(W −∆F ) . (6.42)

In later work, the pulling of DNA hairpins was investigated in order to further
quantify the conditions under which the Jarzynski result holds, as there are
numerous sources of error when comparing real experiments with the basic
theoretical insight expressed in Jarzynski’s result. We now analyze the case of
DNA hairpins in somewhat more detail, trying to find out in what variables
the measured work has to be defined. We follow the discussions in J. Gore
et al. (2013) and A.M. Monge et al. ( 2018).

The setup of the experiment that we consider is shown in Figure 6.2. One of
the beads, on which the hairpin extremities are fixed, is held by a pipette in
a fixed position (0). The second bead has the position x(t), as it moves away
under the influence of the trap with velocity v. The trap itself is centered
at λ(t) > x(t). The experimental control parameter is this length λ(t), while
the molecular extension, the fluctuating quantity, is x(t). The DNA hairpin
is a pure two-state system (see Chapter 2), either fully open or fully closed
(except for a small loop at the top). Both the trap and the hairpin molecule

3The error function is defined by

erf(x) ≡
2
√
π

∫ x

0
dte−t

2
.
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0 x(t) �(t)

hairpin

handles bead

trap

pipette
v

Figure 6.2 Schematic DNA hairpin experiment. (After A. Mossa et al.,

2009.)

+ handles, which fix the hairpin are considered as two harmonic potentials
with stiffnesses kb and km. The rest length of the trap spring is zero, while
the rest length for the molecular spring km is either `0 if the hairpin is closed,
or `1, if the hairpin is open. For each value of λ, the state of the system is
then defined by a pair (x, a) where a = 0 denotes closed hairpin, and a = 1
denotes open hairpin. The force acting on the right bead is thus given by

f(x, a) = kb(λ− x)− km(x− `a). (6.43)

which can be rewritten as

f(x, a) = −kt(x− xeq) , (6.44)

where xeq is the equilibrium position

xeq =
kbλ+ km`a

kt
(6.45)

with the total stiffness kt = kb + km.

We further can assume mechanical equilibrium, 〈ft(t)〉 = 0, and write down
the Hamiltonian corresponding to the force as

H(λ) =
kb
2

(λ− x)2 +
1

2
(x− `a)2 + a∆G0 , (6.46)
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where ∆G0 is the free energy difference between the open and closed states
of the hairpin without applied force.

Task. Calculate the partition function for the Hamiltonian (6.46) and derive
expressions for the expectation values of the molecular extension, 〈x〉, and the
variance of x.

For the kinetics we assume rates of opening and closing according to a Bell-
Kramers type barrier crossing, i.e. exponentials reading as

k→ = k0 exp

(
w0f0(x)

kBT

)
(6.47)

and

k← = k0 exp

(
−w1f1(x) + ∆G0

kBT

)
(6.48)

with wi as distances from the barrier to closed and open states, fi two forces,
and k0 as a typical attempt frequency. To derive the relations between these
quantities we enforce detailed balance,

k→
k←

= exp

[
−H

(λ)(x, 1)−H(λ)(x, 0)

kBT

]
(6.49)

which holds for all λ and x. Relating exponentials we obtain for the simplifying
choice of f0(x) = f1(x) the remaining condition

w0 + wi = `1 − `0. (6.50)

The dynamics of the model is given by the Langevin equation

γẋ = ft(x(t), a) +
√

2γkBTξ(t) (6.51)

with γ as the friction coefficient of the bead in the trap, and x(t) as a Gaus-
sian white noise (see Chapter 5). Finally, the experimental protocol is defined
by the imposed function λ(t) = λ0 + vt.

We can now turn to discussing the work associated with the induced transition
between the open and closed hairpin structure. In the course of a pulling
experiment Γ occurring between an initial point i and a final point f one has
the integral over the force along the trajectory

WΓ =

∫ λf

λi

dλfb(λ, x) (6.52)
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with the force induced by the displacement of the trapped bead. However, this
is not the work obtained in the pulling experiment, which is instead given by

W ′Γ =

∫ xf

xi

dxf(λ, x) (6.53)

along the actual trajectory of the experiment Γ, to which correspond the
molecular extensions at time ti and tf = ti + (λf − λi)/v, which are given by

x = λ− f

kb
. (6.54)

Therefore, the two work expressions are related to each other via

WΓ = W ′Γ +
f2
f − f2

i

2kb
. (6.55)

The correction term only corresponds to a contribution from the boundaries
of the experiment.

If we now hope to realize an experiment in quasi-equilibrium conditions, for
pulling speeds v → 0, we find two expressions for the free energy difference
∆G0 we are interested in. We have

∆G0 = Wrev −
〈ff 〉2 − 〈fi〉2

2keff
(6.56)

where
1

keff
=

1

kb
+

1

km
. (6.57)

If we plot the force-extension curve as a function of molecular extension, we
have instead

∆G0 = W ′rev −
〈ff 〉2 − 〈fi〉2

2km
. (6.58)

We can now finally turn to the application of the Jarzynski equality, from
which we can estimate the reversible work, and this is indeed the quantity
W , while the experimenter often has W ′ at his disposal. We can evaluate the
error that occurs when the proper one is replaced by the alternative quantity.
For this we consider the reversible work measured in n experiments and used
to calculate the average

βW̃ = − ln
n∑
i=1

1

n
exp(−βWi) , (6.59)
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and likewise for W ′. To estimate the difference between W̃ and W̃ ′, we can
sort the measured work function according to their magnitudes. The sum of
exponentials is dominated by the minimum-work trajectory,

β(W̃ ) ≈ βW̃ + lnn , (6.60)

which also holds for W̃ ′. Therefore the difference in work is given by the
difference in minimal work trajectories. We thus need to know the distribution
of the trajectories. It turns out that the trajectories for W ′ are Gaussian-
distributed, while those for W follow approximately a Gumbel distribution,
which is slightly skewed when compared to a Gaussian. One obtains (Mossa
et al., 2009) approximate difference between the estimators,

∆G0 −∆G′0 ≈
√

6

π
(γ − lnn)s+

√
2z(n)s′ (6.61)

where one has identified Wrev = W̃ and defined ∆G′0 via the imposition of
W ′rev = W̃ ′. In Eq. (6.61), s, s′ are the standard deviations of the distributions
of Wiand W ′i , γ is the Euler-Mascheroni constant and z(n) is the solution of
a transcendental equation,

√
πz[1 + erf(z)] = (n− 1) exp(−z2) , (6.62)

which essentially grows logarithmically in n.
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Additional Notes

The relation between equilibrium and non-equilibrium physics as expressed
by the Jarzynski theorem has been an active field of research ever since its
inception. In particular the recent papers by C. Jarzynski, G. Crooks,
C. Maes and U. Seifert are recommended reading for those who want to
know more on this topic.

On the experimental side, there are continuous efforts to validate the fluctua-
tion theorems. Three earlier contributions in this field are by D. Keller et al.
(2003), E. H. Trepagnier et al. (2004), and D. Collin et al. (2005). A nice
summary and discussion of the developments in the field is by C. Jarzynski,
2010.
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CHA PT E R 7

Dynamics of Biological
Networks

How come all my body parts so nicely fit together?
All my organs doing their jobs, no help from me!

Crash Test Dummies, “How Does a Duck Know?” (1993)

The detailed knowledge of the properties of biomolecules and their interac-
tions, as we have described them in the previous chapters is a necessary but
not a sufficient step to understand biological systems. The next step is to un-
derstand how the different molecular components interact in concert and how
they build up the hierarchy observed in biological systems: cellular compart-
ments, cells, organs and organisms.

In most of what follows, we will be interested here in genetic networks of some
sort. Under this term we understand biological reaction schemes on the basis
of the central dogma DNA makes RNA makes protein. We will encounter the
following situations:

• A protein attaches itself to DNA at a binding site; such molecules are
transcription factors which help control gene expression;

• A protein-RNA complex, the RNA polymerase, reads out the genes after
fixing itself at a promoter site; the readout is a messenger RNA;

• The mRNA transcript is read at a ribosome and serves as a blueprint
for a protein;

207
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• Proteins compete with each other; this may happen by their direct in-
teraction or blocking or activating the corresponding genes.

This basic readout mechanism underlies the complexity of all gene networks.
The examples we discuss have been selected to allow for, mostly, analytical
calculations to illustrate several aspects arising in systems biology.

7.1 THE λ-REPRESSOR

In this section we want to discuss an example of a biological network - a very
small one - and to formulate a simple model for a particular aspect of its
dynamics. The example is the λ-phage.

The λ-phage is a bacterial virus for which the molecular basis of its lifecycle
is very well understood (M. Ptashne, 2004). Consequently, it is often used
as a prototypical example for theoretical studies. Here, we use it as a ‘simple’
complex system to illustrate how to describe biological networks within a de-
terministic dynamics setting. But first, we need to learn some basics of the
lifecycle of the virus; many more details can be found in Ptashne’s book.

Lifecycle of phage λ. Phage λ is a bacterial virus which infects E. coli. The
virus inserts its DNA into the bacterial cell. Here, the DNA has two options.
The first is its insertion into the host genome, and it then ‘stays on board’ as
a ‘blind passenger’, being passed on from one generation to the next upon cell
division. This phase is called the lysogenic phase. But if, e.g., the bacterium is
endangered and responds to this external stress, the virus can ‘abandon ship’.
It genome is excised out of the host genome and begins the production of new
viruses which then leave the host (which dies). The phase in which the virus
replicates is called the lytic phase.

The decision making process between the lysogenic or lytic phase is made at
a molecular switch. The switch is illustrated schematically in Figure 7.1. It
consists of an operon built from three operator binding sites, at which a dimer
of the λ-repressor molecule can attach itself. The λ-repressor is a transcrip-
tion factor, i.e., its presence on DNA serves as a flag for RNA polymerase to
attach itself and start transcription of an adjacent gene. Indeed, the three op-
erator sites are at the same time overlapping with two neighbouring promoter
regions, which are the fixation platforms for RNA polymerase, and they di-
rectly neighbour two adjacent genes, cI, the gene for the λ-repressor molecule,
and cro, the gene for a second transcription factor also involved in the switch.
Although operator and promoter sites are overlapping - and part of their func-
tion depends on this fact - their biological role is different.
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Figure 7.1 The λ-phage operon. Operator sites are shown as gray-shaded

areas, with OR3-OR2-OR1 from left to right. Promoters are indicated

by dashed frames; gene transcription directions are indicated by arrows.

Two λ-repressor dimers are shown upon attachment and approach.

The switch now functions as follows. The attachment of a cI-dimer (the other
name of the dimer form of the λ-repressor) at operator site OR1 enhances
the fixation probability of a second dimer to fix at OR2. The fixation of cI at
OR2, in turn, increases the probability of fixation of RNA polymerase at the
cI-promoter, upon which transcription of cI occurs. The action of cI is thus
directly implied in its description, hence the gene is autoregulatory. The con-
tinual transcription of cI ensures that the system stays in the lysogenic phase.

If, on the other hand, the system needs to switch to the lytic phase, a repressor
dimer can fix at OR3, which due to its overlap with the cI-promoter blocks
the access for RNA-polymerase. Now, Cro-proteins intervene, and they attach
themselves to the same OR-sites as CI, but with inverted affinities. A Cro-
protein present at OR2 enhances the fixation probability for a polymerase at
the cro-promoter, and transcription of cro can start, initiating the lytic path-
way.

Let’s now build some of these mechanisms into a mathematical model.

Hasty model I: basics. In this subsection we discuss a simple model for
repressor expression proposed by J. Hasty et al., 2000. The main actor in
this model is the repressor molecule itself; we denote it by X. The advantage
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of the Hasty model is that it allows to quickly gain a qualitative insight, but
it can be made fully quantitative as well. Here, we are mainly interested in
the qualitative aspects, though.

A first simplification in the Hasty model is the assumption that one can ne-
glect the operator binding site OR1. This is justified if one is only interested
in the repressor kinetics: it means we do not want to model the full switch,
but just the autoregulation mechanism of the λ-repressor.

In this case, the system can be described by six reactions. Four of them will be
assumed as being fast when compared to the others; these are the association
and dissociation of the transcription factors from their binding sites. They
will be considered as equilibrium reactions, and are given by

• Repressor dimerization, 2X ↔ X2 with equilibrium constant K1;

• Repressor dimer binding to the DNA promoter site OR2 on D, D+X2 ↔
DX2, with equilibrium constant K2;

• Repressor dimer binding to the DNA promoter site OR3 on D, D+X2 ↔
DX∗2 , with equilibrium constant K3;

• Repressor dimer binding to the DNA promoter sites OR2 and OR3 on
D, DX2 +X2 ↔ DX2X2, with equilibrium constant K4.

The slow reactions in the system are transcription and degradation. Tran-
scription is described by the irreversible reaction scheme

DX2 + P →kt DX2 + P + nX (7.1)

in which P is the DNA polymerase, and n is the number of repressor proteins
per RNA transcript. The degradation reaction reads

X →k2 φ . (7.2)

We now define concentrations for all variables,

x ≡ [X] , y ≡ [X2] , d ≡ [D] , u ≡ [DX2] , v ≡ [DX∗2 ] , z ≡ [DX2X2] . (7.3)

Considering the fast reactions as equilibrium reactions allows to write them
as simple algebraic expressions,

y = K1x
2 (7.4)

u = K2dy = K1K2dx
2 (7.5)

v = σ1K2dy = σ1K1K2dx
2 (7.6)

z = σ2K2uy = σ2(K1K2)2dx4 . (7.7)
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It now remains to write down a rate equation for the repressor, which is given
by

ẋ = α̃u− kdx+ r . (7.8)

Here, α̃ = nktp0 is a constant containing kt and the concentration of poly-
merase, p0, which is assumed fixed. The term −kdx describes degradation of x
while the last term, r, constitutes a basal transcription rate. In order to close
the system of equations, a conservation law needs to be invoked. In fact, the
total concentration of DNA promoter sites, dT , is fixed.1 Thus

dT = d+ u+ v + z = d(1 + (1 + σ1)K1K2x
2 + σ2K

2
1K

2
2x

4) (7.9)

which leads to

d =
dT

1 + (1 + σ1)K1K2x2 + σ2K2
1K

2
2x

4
. (7.10)

This use of expression Eq. (7.10) allows us to rewrite Eq. (7.8) in a succinct
form containing only x as a variable,

ẋ =
αx2

1 + 2x2 + 5x4
− γx+ 1 , (7.11)

where repressor concentration and time have been rescaled to dimensionless
quantities, and the values σ1 ≈ 1, σ2 ≈ 5, obtained from experimental esti-
mates, have been used. The remaining parameters α and γ then constitute
ratios of transcription rate and degradation rate relative to the basal tran-
scription rate.

The mathematical discussion of this equation is extremely simplified by its
one-dimensional character. In fact, we can rewrite it in the form

ẋ = −∂xV (x) , (7.12)

where V (x) is the integral of the right-hand side of Eq. (7.12). V (x) is now
seen to serve as a ‘potential energy’ landscape, shown in Figure 7.2, a function
which has two minima of different depth. The exact expression of V (x) is

1This is true in vivo, for small concentrations, but even more so in vitro, for large
concentrations.
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given by

V (x) = V0 − x+
γ

2
x2 − (7.13)

α


(

1
2 + i

4

)
arctan

(
x√

1
5− 2i

5

)
√

5− 10i
+

(
1
2 −

i
4

)
arctan

(
x√

1
5 + 2i

5

)
√

5 + 10i


Whichever is the lower of the two determines the steady state of the repressor
system, i.e., either a state with a low concentration, or with a high concen-
tration of repressor molecules.2 Figures 7.2 and 7.3 are the main results of
this subsection; it shows that repressor expression is a bistable system arising
from the two competing mechanisms of repressor production and degradation.
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Figure 7.2 The effective potential of the λ-repressor, Eq. (7.13), for α =

50 and γ = 15.

Hasty model II: looping included. We now include looping into the model.
What this means is indicated in Figure 7.4. In the λ-phage a second, or left,
operator region (OL) is found along the genome. This region, to which the cor-
responding genes are lacking, has a peculiar regulatory function (B. Révet

2This argument, as nice as it is, works indeed in general only for one variable. For more
than one variable, a potential will only exist in special cases.
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Figure 7.3 Bistability in phage λ. Graph A shows the graphical solution

of the stationary points of Eq. (7.12), i.e., ẋ = 0. In the figure, the

three curves are the first term of the rhs of Eq. (7.12), denoted by

f(x), while the straight line is given by the function g(x) = γx − 1,

with γ = 15. The intersections of the graphs correspond to the extrema

of V (x), and can, e.g., be varied by changing γ. In the figure, the green

curve is given by α = 70, the blue curve by α = 50, corresponding to

Figure 7.2, while the yellow curve is for α = 40.
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Figure 7.4 Looping in phage λ. (After M. Ptashne, 2004.)

et al., 1999). Repressors that fix themselves at the OL-sites, are present to
interact with their cousins sitting at OR-sites by forming a repressor octamer.
Octamerization of repressors in solution is a very rare event, but the presence
of the molecules on the DNA increases the formation rate enormously, since
looping is a very effective mechanism of bringing different regions of DNA into
contact (H. Merlitz et al., 1998). It is therefore also a common regulatory
mechanism in eukaryotes.

The Hasty model can be extended to account for DNA looping; one needs two
additional assumptions. Again we simplify the structure of the left operator
as we did for the right:

• the second operator unit equals the first: OR = OL; this in particular
refers to all rate constants. OL is placed on a second DNA site, dL.

• there is an additional kinetic process described by the complex forma-
tion between a doubly bound repressor at OR and the same at OL.
This process has a rate K5, and is assumed to be in equilibrium (fast
compared to repressor production).

The presence of this additional mechanism modifies the nonlinearity in
Eq. (7.12), which we now call f`(x), in the case looping. The change is due to
the different possibilities of repressor fixation at either OR or at OL (dR or dL).
Assuming the symmetric case with dR = dL = d`/2 we find the conservation
law

dT = d`(1 + (1 + σ1)x2 + σ2x
4) +

δd2
`

4
x8 (7.14)

which replaces Eq. (7.9), and where the factor δ derives from the looping pro-
cess, i.e., the kinetic rate K5. When the equation is solved for d` this yields,
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with σ1 = 2 and σ2 = 5,

d` = 2

[
1 + 2x2 + 5x4

δx8

][[
1 +

dT δx
8

(1 + 2x2 + 5x4)2

] 1/2

− 1

]
. (7.15)

Although expression (7.20) looks rather different from (7.10), there is in fact
only a minor difference between them. This fact becomes obvious by expand-
ing the square root in Eq. (7.20) for small x, which reduces (7.20) to the
Eq. (7.10), while for large x the curves have the same asymptotics but a dif-
ferent amplitude.

This insensitivity to the presence of the nonlinear coupling is astonishing, but
it allows to understand the role played by the looping-mediated coupling for
the repressor dynamics. If one compares the stationary points of the repressor
system with and without looping one sees that the effect of looping is simply
to reduce the bistable region in which repressed and non-repressed transcrip-
tional states coexist, see Figure 7.3. Given that the full operator region indeed
has a significantly larger bistable region due to the presence of the operator
site OR1 which we neglected in the calculation, the looping mechanism can
be understood as an effective means to dynamically modulate the bistability
of the repressor autoregulation.

As a further consequence, the looping mechanism also affects the fluctua-
tions, which we have not discussed at all in our discussion. Since, with loop-
ing allowed for, the system can switch between the two states within a much
narrower concentration range, the frequency of switching will consequently
increase, while the amplitude diminishes. This is in accord with recent con-
clusions based on stochastic simulations (J. M. G. Vilar and S. Leibler,
2003).

It is worth noting that the simple model presented here neglects all spatial
structure of the looping mechanism; the mechanism appears identical to that
of an octameric complex binding at OR. But it is this process which is highly
unlikely to occur since it has a very small equilibrium constant. By contrast,
bringing dimer complexes at sufficiently distant sites into contact via looping
occurs with a higher probability. The binding of repressor dimers at the OL
region thus constitutes an effective mechanism to hold the molecules ‘in stock’
by placing them on the DNA, rather than letting them diffuse through solu-
tion.
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7.2 DYNAMICS OF GENE REGULATORY NETWORKS

In this section we will look at models to describe the dynamics of gene regula-
tory networks, i.e., networks that via a specific wiring between their elements
implement what has become known as the ‘dogma of molecular biology’ as
attributed to Francis Crick, namely

DNA makes RNA makes protein.

When we say ‘DNA makes’ we talk about a specific region on DNA which
we call the gene; this is the DNA to be transcribed into mRNA. The latter is
then translated into the protein product. J. Paulsson (2005) has discussed
the stochastic dynamics of such a process, invoking a population (n1, n2, n3)
of genes, mRNAs and proteins that follow simple growth and decay processes,
except for the genes whose number is bounded above. In the following we will
try to build a truly minimal description for this process involving first one
gene only, and then combine several to form gene circuits. Thus we abstract
from the full triad (gene - mRNA - protein) to a reduced model.

The gene gate model. We first define a very basic description of what a
‘gene’ can do. A minimal description for this process has been formulated by
(Blossey, Cardelli and Phillips, 2006; 2008) in the gene gate model. A gene
gate is an object which allows three types of actions:

• a gate which ‘fires’ without input, which corresponds to gene expression
at a basal rate r;

• a gate which is blocked upon the binding a transcription factor;

• a gate which fires upon input, corresponding to the binding of a tran-
scription factor, the activated case.

These cases are illustrated schematically in Figure 7.5.

This formal description makes it clear why the notion of a ‘gate’ is used: the
analogy to computing by inputs and outputs is evident.

In this description, we have neglected the explicit distinction between mRNA
and protein as input and output. This can be easily made; take this as a
(Task). Let us now formalize the gene gate model in terms of reactions.

The action of gate a) can then be expressed as

G→ε G+ P , (7.16)
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Figure 7.5 The three types of gene gates: a), left: constitutive transcrip-

tion; b) middle: inhibition; c) right: activation of gene expression. In

this graph, u and v denote the inputs and outputs of the gene gate.

where G is considered the “on”-state of the gene. The resulting proteins are
degraded at a rate δ,

P →δ 0 . (7.17)

The feedback of protein P on the gene can affect gene activity by putting the
gene into its second state, G′. This is described by the reaction

G+ P →r G
′ + P . (7.18)

In the repressed case, the gene state G′ is not productive and simply relaxes
back to G at a rate η,

G′ →η G . (7.19)

G′ is then thus the “off”-state of the gene. In the activated case (A), the gene
is productive in state G′ via

G′ →η G+ P (7.20)

hence it relaxes back to gene state G while producing protein P , if the rate
η > ε. Here, G and G′ change roles: G is now the “off”-state (although never
fully off) and G′ is the “on”-state. We note that in the case η < ε, the gene
is actually repressed, but left with protein production at a finite rate η. This
case does, in fact, not differ qualitatively from the case under (R).

This simple set of reactions with variables G,G′, P and parameters (ε, δ, r, η)
corresponds in terms of its complexity to a model introduced very early by
Peccoud and Ycart (1995), which we abbreviate by PYM. The major differ-
ence between the gene gate model and the PYM is that the gene in the PYM
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never interacts with its proteins and reaction (7.18) occurs without the inter-
vention of proteins. Further, the reaction (7.20) of case (A) does not occur.
The main difference between the GGM and the PYM lies, in fact, precisely in
reaction (7.20).

We will now formulate the master equation for the simplest gene circuit, the
self-regulated gene. In the GGM, the reaction (7.20) leads in the master equa-
tion to state changes involving both the gene state and the protein number,
which differs from the PYM.

Master equation for the self-regulated gene. The self-regulated gene is
the gene circuit in which the gene product v and gene input u are identical:
the output of the gene controls its input.

The master equation of the self-regulated gene has been formulated and solved
by (Vandecan and Blossey, 2013), which we follow here. The master equations
for the two versions of the GGM are readily written down. Denoting the basal
state of the gene by 0, its second state by 1 and counting the protein number
by n, one can introduce time-dependent probability distributions p i,n(t), with
i = 0, 1. In case (R), (7.19) applies and the master equations read as

∀n ≥ 0 : ∂tp 1,n = nrp 0,n − ηp 1,n + δ[(n+ 1)p 1,n+1 − np 1,n]

∂tp 0,0 = ηp 1,0 − εp 0,0 + δp 0,1 (7.21)

∀n ≥ 1 : ∂tp 0,n = ηp 1,n + εp 0,n−1 − (ε+ nr)p0,n

+ δ[(n+ 1)p 0,n+1 − np 0,n]

while in case (A), for which Eq. (7.20) applies, we have

∂tp 0,0 = −εp 0,0 + δp 0,1

∀n ≥ 1 : ∂tp 0,n = −(ε+ nr)p 0,n + εp 0,n−1 + ηp 1,n−1

+δ[(n+ 1)p 0,n+1 − np 0,n]

∀n ≥ 0 : ∂tp 1,n = −ηp 1,n + nrp 0,n

+δ[(n+ 1)p 1,n+1 − np 1,n] . (7.22)

Introducing the generating functions

G0(z, t) =
∞∑
n=0

p 0,n(t)zn (7.23)
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and

G1(z, t) =
∞∑
n=0

p 1,n(t)zn , (7.24)

the master equations above are transformed into first-order differential equa-
tions in t and z. For case (R), we have

∂tG0 = ηG1 + ε(z − 1)G0 − (δ(z − 1) + rz)∂zG0

∂tG1 = −ηG1 − δ(z − 1)∂zG1 + rz∂zG0 (7.25)

while in case (A), we have

∂tG0 = ηzG1 + ε(z − 1)G0 − (δ(z − 1) + rz)∂zG0

∂tG1 = −ηG1 − δ(z − 1)∂zG1 + rz∂zG0 . (7.26)

At this point it is instructive to compare the differential equations for the
GGM to those of the PYM. The reaction (7.18), which describes the state
change of the gene from G to G′, is protein-number dependent and leads to
a change from a term ∼ rG0 to a term ∼ z∂zG0; otherwise, the equations
remain unchanged for case (R). In case (A), the notable difference is the pres-
ence of the term ∼ ηzG1 in the equation for G0, which results from reaction
(7.20). Note that the corresponding η-dependent term in the equation for G1

does not depend on z: the symmetry between the equations is broken.

We here solve the equations for case (A). Instead of solving for G0 and G1

separately we introduce the total generating function GT = G0 + G1 with
straightforward biological interpretation, allowing us to determine the mean
value of the protein number and its fluctuations.

In case (A), the term (z−1) can be placed in front in the equation for GT , i.e.,

∂tGT = (z − 1)
(
−δ∂zGT + ε(GT −G1) + ηG1

)
. (7.27)

One observes that a singularity arises at z = 1. The equality (7.27) is trivially
satisfied at z = 1, because GT (1, t) = 1 ∀t. A stationary solution requires
∂tGT (z, t) = 0 ∀z, t. For z 6= 1, this implies

−δ∂zGT + εGT + (η − ε)G1 = 0 . (7.28)
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Using Eq. (7.28), we can express G1 and ∂zG1 in terms of GT (z, t). For the
stationary solution, expression (7.26) can be rewritten in a second-order dif-
ferential equation(
δ(δ−z(r+δ))

)
∂2
zgT (z)+

(
−δε+δzε+rzη−ηδ

)
∂zgT (z)+ηεgT (z) = 0 (7.29)

with gT (z) ≡ limt→∞GT (z, t). Substitution of x = δ(δ−z(r+δ)) in Eq. (7.29)
leads to the Kummer equation, familiar from the theory of ordinary differen-
tial equations,

x
∂2

∂x2
g̃T (x) + (a+ bx)

∂

∂x
g̃T (x) + cg̃T (x) = 0 . (7.30)

Here a = (εr + δη)/(r + δ)2, b = (δε + rη)/(δ2(r + δ)2), c = ηε/(δ2(r + δ)2)
and gT (z) = g̃T (x). Since x = 0 is a weak singular point of the differential
equation (7.30), according to the method of Frobenius, a power series solution
can be found around the singular point, i.e.,

g̃T (x) = C1

∞∑
n=0

anx
n + C2x

1−a
∞∑
n=0

bnx
n . (7.31)

The substitution of the first term, i.e., the power series
∑∞
n=0 anx

n,
into Eq. (7.30), leads to the KummerM or the hypergeometric function
a01F1(c/b, a;−bx). The second term corresponds to the KummerU function
which can be discarded because the probability of n proteins does not tend
to zero for n → ∞. Consequently, the appropriate generating function gT (z)
reads

gT (z) = C ′11F1(c/b, a; bδ(z(r + δ)− δ)) . (7.32)

The coefficient C ′1 is determined by the condition limz→1gT (z) = gT (1) = 1
due to the continuity of the hypergeometric function 1F1, so that C ′1 =

1F1(c/b, a; bδr). The asymptotic solution in all parameters can be written as

gT (z) = 1F1

( ηε

δε+ rη
,
εr + ηδ

(r + δ)2
;

(δε+ rη)(z(r + δ)− δ))
δ(r + δ)2

)
/

1F1

( ηε

δε+ rη
,
εr + ηδ

(r + δ)2
;

(δε+ rη)r)

δ(r + δ)2

)
. (7.33)

From the total generating function (7.32) and Eq. (7.28), we can also sepa-
rately derive the asymptotic solutions g0(z) = limt→∞G0(z, t) and g1(z) =
limt→∞G1(z, t). The probability for measuring n proteins, p 0,n + p 1,n, is
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Figure 7.6 The probability distribution P (n). Models and parameters

from top left to bottom right: (TL), ε = 0.01; η = 0.1; r = 1.0; δ = 0.1;

(TR), ε = 0.01; η = 0.1; r = 1.0; δ = 0.04; (BL), ε = 15.0; η = 0.1;

r = 0.001; δ = 1.0; (BR), ε = 0.01; η = 0.1; r = 1.0; δ = 0.008.

(Vandecan and Blossey, 2013). (Reprinted with permission from the

American Physical Society.)

obtained from (1/n!)∂nz gT (z = 0). We obtain an analytical expression for the
stationary protein distribution P (n)

P (n) =
1

n!

( δε+ rη

δ(r + δ)

)n ( ηε
δε+rη

)
n(

ηr+ηδ
(r+δ)2

)
n

1F1

(
ηε

δε+rη + n, εr+ηδ(r+δ)2 + n; −δ(δε+rη)
δ(r+δ)2

)
1F1

(
ηε

δε+rη ,
εr+ηδ
(r+δ)2 ; (δε+rη)r)

δ(r+δ)2

)
with (.)n being the Pochhammer symbol, (x)n = x(x+ 1) · ... · (x+n− 1). The
mean protein number E and its fluctuations V can also easily obtained from
the first and second derivative of the generating function gT (z) with respect
to z, evaluated at z = 1; we skip these results here.

Figure 7.6 shows the resulting probability distributions for both the repressed
and the activated gene. We find two generic scenarios depending on rela-
tive parameter values. If degradation dominates over protein production, the
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protein probability is peaked at n = 0 (shown for (A), but likewise for (R)).
In case (A), an increase of protein production lets a peak at finite n grow
out of the peak at n = 0. In the repressed case, a bimodal appears with a
maximum at n = 0 and a peak at finite n; the same behavior is found for
the activated model with inversed rates, i.e., for ε > η, as shown in Figure
7.6 (bottom, left). For still larger values of protein production, the protein
probability becomes monomodal with a peak at finite protein number in both
cases (R) and (A). These analytical results of the gene gate models predict
accurately the results of the stochastic dynamics simulations of these simple
gates. For the parameters r = 1, ε = 0.01, η = 0.1 and δ = 0.001, the formula
(7.34) reduces to a Poisson-type distribution,

P (n) ≈ e−λλn

n!
(7.34)

with a mean λ = (δε+ rη)/(δ(r + δ)) ≈ 99 proteins in steady state, in accor-
dance with simulations for the activated gene gate using the Gillespie algo-
rithm (Blossey, Cardelli and Phillips, 2006).

Gene circuits from two and three genes. It is now clear how to pursue
the construction of more complex gene gates: one needs to use the input of
one gene as the input of another gene. Given the astonishing mathematical
complexity the master equation of the self-regulated gene already displays,
there are however only two ways to proceed: one either maps the problem
onto a deterministic dynamics, or one simulates the master equation of the
system with the Gillespie algorithm.

One can now go on to build more complex circuits from the basic gene gates,
both deterministic and probabilistic. We will show the latter results for the
repressilator. It is the most prominent example of a gene network, one which
has been built artificially by (M. B. Elowitz and S. Leibler, 2000). The
repressilator is a gene circuit which consists of inhibitory gates: the binding
of a transcription factor at a binding site blocks the transcription of the cor-
responding gene. The ‘wiring’ of the repressilator is shown schematically in
Figure 7.7.

Figure 7.8 shows a typical simulation run, provided suitable degradation rates
are chosen. As was found in the experiments, the system can be made to oscil-
late, and all transcription factor concentrations go through clearly separated
and synchronized rising and falling cycles (M. B. Elowitz and S. Leibler,
2000).

Deterministic dynamics of the gene gates. What if we want to discuss
the deterministic dynamics of the gene gates? Let us follow (Giuraniuc,
2008). For each gene and protein, we introduce continuous variables, both for
proteins p and for the gene states g and g′, with the idea that we average over
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Figure 7.7 The wiring diagram of the repressilator.

an ensemble of cells. The self-regulated gene whose master equation we just
discussed would then lead to two ordinary differential equations in the case of
the self-inhibitory loop

ṗ = εg − δp (7.35)

and
ġ = η[1− (1 + νp)g] (7.36)

where we used the relation g + g′ = 1 to eliminate the state g′. Assuming
further that we can also neglect the dynamics of the gene via ġ ≈ 0, we have
g = 1/(1 + νp) which, when plugged into the equation for p leads to

ṗ =
ε

1 + νp
− δp . (7.37)

This equation now presents us with a problem, as it only produces a single
fixed-point for p. In order to remedy this deficit in the deterministic descrip-
tion, we need to consider multimerization of proteins, i.e. a nonlinearity in p
in the denominator. We introduce this Hill-exponent h therefore by hand, and
generalize to

ṗ =
ε

1 + νph
− δp . (7.38)

Can we now reproduce oscillations? Suppose we write down the three equa-
tions for the proteins a, b and c respecting the wiring of the repressilator
circuit. We then have

ȧ =
ε

1 + νbh
− δa . (7.39)
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Figure 7.8 Repressilator oscillations. Shown are the outputs over time.

and the two permutations (a→ b, b→ c) and (a→ c, b→ a). If we assume for
simplicity that all parameters are identical, we find a symmetric fixed-point
a = b = c = ā. Looking at the stability of this fixed point, we obtain the
stability matrix (Exercise: Verify!)

Γfp =

 −δ −κ 0
0 −δ −κ
−κ 0 −δ

 (7.40)

with

κ ≡ εhνāh−1

(1 + νāh)2
. (7.41)

The characteristic polynomial of Γfp is given by

(δ + λ)3 + κ3 = 0 (7.42)

which has one real root
λ1 = −(δ + κ) (7.43)

and the other two complex roots are

λ2,3 = −δ + (1± i
√

3)
κ

2
. (7.44)

The condition for a Hopf bifurcation are thus given by

δ =
κ

2
(7.45)
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The stability analysis of this fixed point can be carried out
analytically for the full gene gate circuit, i.e., keeping both
the transcription factors and the three genes as dynamic vari-
ables. By symmetry, in fact, the calculation works for a cir-
cular circuit of n genes. The calculation amounts to general-
ize Eq. !26" so that

!! + ""n!" + #"n + !− 1"n−1!$%"n = 0 !34"

with n=3 for the repressilator. This fixed-point condition is
formally equivalent to that of the “leaky” repressilator dis-
cussed in #14$, for which a condition h&4 /3 was estab-
lished. Within the full gene gate dynamics, the condition on
h is thus weakened: The repressilator already oscillates for
Hill exponent values less than 2. Even for the case h=3, e.g.,
when both the full and the restricted system show oscillatory
behavior, the presence of the gene dynamics enlarges the
oscillatory region in the space of protein concentrations !Fig.
4". The stability of the limit cycle in the space of parameters
!$ ,'" is summarized in Fig. 5.

By contrast, the stochastic repressilator without cooperat-
ivity displays a limit cycle behavior, as shown in Fig. 6 !top".
The limit cycle appears as a symmetric triangle in the space

of transcription factor concentrations !a ,b ,c". The triangle is
somewhat “fuzzy,” reflecting the fluctuating nature of the
concentrations. This fuzziness can be reduced by increasing
the space of variables in the system. In a recent study, the
effect of an inclusion of transcription factor cooperativity
!dimerization and higher", or an inclusion of explicit RNA
transcription and protein translation was studied. It was
found that all of these mechanisms regularize the oscillatory
behavior #25$ and render the limit cycle less “fuzzy.” Analo-
gous findings for circadian clocks were reported earlier
#30,31$. The corresponding limit cycle for the deterministic
dynamics of the reduced system is shown in the bottom
graph of Fig. 6. Here again a Hill coefficient h=3 has been
assumed.

IV. MULTIINPUT GATES

A. Rewired repressilator

The stabilizing effect due to the presence of the gene
gates persists in the presence of multiple inputs, in fact, it
can even be reinforced. We observed this when considering a
rewired repressilator shown in Fig. 7, in which an additional
activatory loop has been added so that we have

neg!c;b"%posneg!c,b;a"%neg!a;c" . !35"

In the case without genes, this means that one of the equa-
tions, say the one for a is replaced by

ȧ =
$ + rpc

h

1 + (bh + (pc
h − !a . !36"

This “rewired” repressilator still has a unique fixed point
!a ,b ,c", as follows from an analysis of the fixed-point con-
ditions. The stability condition can be read off, as before,
from the stability matrix which now reads as

(b)

(a)

FIG. 4. Top: The repressilator dynamics without gene gates
!fixed at the nullclines of the gates" for the parameters r=1, !
=0.1, $=0.3, '=0.9, h=3. The limit cycle is absent, the fixed-point
is stable. Bottom: Plot of the repressilator dynamics for the full
system with identical parameters. The limit cycle persists in a wider
range of parameters.

FIG. 5. Parameter regimes for the repressilator dynamics. I,
stable fixed point; II, stable fixed point for the reduced system, limit
cycle for the full system; III, limit cycle. Parameters are the same as
in Fig. 4.

MEAN-FIELD VERSUS STOCHASTIC MODELS FOR… PHYSICAL REVIEW E 78, 031909 !2008"

031909-5

Figure 7.9 Parameter regimes for the deterministic repressilator dynam-

ics. I, stable fixed point; II, stable fixed point for the reduced system,

limit cycle for the full system; III, limit cycle (R. Blossey and V.G.

Giuraniuc, 2008). (Reprinted with permission from the American Phys-

ical Society.)

when the two complex roots turn imaginary. Making use of the fixed-point
condition one finds the relation

ā =

(
1− 2

h

)
ε

δ
, (7.46)

and hence we see that the condition

h > 2 (7.47)

needs to be fulfilled for oscillations, i.e. for a fully stable limit cycle.

What happens if we take into account the full equations, i.e., when we keep
the genes as dynamic quantities? We can then do a similar analysis from which
follows that the condition on the Hill coefficient is weakened: h > 4/3 is then
enough for oscillations to occur. Figure 7.9 compares the parameter regimes
for the reduced and the full model. Figure 7.10 gives a comparison between
the stochastic and deterministic limit cycles.
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! fp = ! − " − #0 #1

0 − " − #2

− #3 0 − "
" #37$

with

#0 %
$hbh−1#% + rpc

h$
#1 + $bh + $pc

h$2 , #38$

#1 %
hch−1&rp#1 + $bh$ − $p%'

#1 + $bh + $pc
h$2 , #39$

#2 % −
$hch−1

#1 + $ch$2 , #40$

#3 % −
$hbh−1

#1 + $bh$2 . #41$

Note that #1 can be both positive and negative. The charac-
teristic polynomial reads as

#" + &$3 + #" + &$#1#3 + #0#2#3 = 0 #42$

which still has a pair of complex eigenvalues. The Hopf
condition is given by

8"3 + 2"#1#3 − #0#2#3 = 0. #43$

The analysis of the full system, genes included, is clearly
more involved than for the repressilator due to the increased
number of variables. We have therefore studied the system
only numerically and compared the reduced and the full ver-
sion, as we did for the repressilator. Our calculations show
that the reduced version #three ODE’s for a ,b ,c$ is less ro-
bust against rewiring than the gene gate version #seven
ODE’s$: The stability limit of the limit cycle regime can
differ by parameter values up to one order of magnitude.
This finding is notable since in the presence of multiple regu-
lations the number of gene states increases linearly with the
number of inputs #neglecting still additional regulatory lay-
ers$ and thus significantly enhances the complexity in mod-
eling circuits with such elements. We close this section with
Fig. 7 #bottom$ which shows the limit cyle of the rewired
repressilator for the reduced deterministic system #h=3$. It
illustrates that in general the presence of the additional posi-
tive loop breaks the #a−b−c$ symmetry between concentra-
tions.

B. Multi-input circuit related to developmental regulation

In this final section we address a second example of a
multi-input gate. It consists of a bistable switch built from
two repressing gates which is placed under additional control
by an activating input. Such motifs occur both in transcrip-
tional regulation &19', but they have also been proposed re-
cently to play a role in morphogen concentration-dependent
cellular development &18'; our example is motivated by the
latter case. The circuit dynamics is governed by the follow-
ing ODE’s #neglecting the gene gate dynamics since we are
concerned with fixed-point dynamics only$;

(b)

(a)

FIG. 6. #Color online$ Top: The limit cycle of the stochastic
repressilator. Simulation parameters are r=rp=1, %=0.1, '=10−2,
"=10−3. Bottom: The deterministic version for comparison #re-
duced system in region III of Fig. 5, parameters identical to the
stochastic version, with h=3$.

(b)

(a)

FIG. 7. #Color online$ Top: The rewired repressilator, a positive
loop is added #see arrow$, so that one of the genes is doubly regu-
lated. Bottom: The limit cycle of the #reduced$ rewired repressilator
circuit; the additional activation interaction breaks the symmetry, as
discernable in the difference in maximal concentrations. Simulation
parameters are r=1, rp=10−4, %=0.1, '1='2=10−2, "=10−3, h=3.

R. BLOSSEY AND C. V. GIURANIUC PHYSICAL REVIEW E 78, 031909 #2008$
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condition is given by
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The analysis of the full system, genes included, is clearly
more involved than for the repressilator due to the increased
number of variables. We have therefore studied the system
only numerically and compared the reduced and the full ver-
sion, as we did for the repressilator. Our calculations show
that the reduced version #three ODE’s for a ,b ,c$ is less ro-
bust against rewiring than the gene gate version #seven
ODE’s$: The stability limit of the limit cycle regime can
differ by parameter values up to one order of magnitude.
This finding is notable since in the presence of multiple regu-
lations the number of gene states increases linearly with the
number of inputs #neglecting still additional regulatory lay-
ers$ and thus significantly enhances the complexity in mod-
eling circuits with such elements. We close this section with
Fig. 7 #bottom$ which shows the limit cyle of the rewired
repressilator for the reduced deterministic system #h=3$. It
illustrates that in general the presence of the additional posi-
tive loop breaks the #a−b−c$ symmetry between concentra-
tions.

B. Multi-input circuit related to developmental regulation

In this final section we address a second example of a
multi-input gate. It consists of a bistable switch built from
two repressing gates which is placed under additional control
by an activating input. Such motifs occur both in transcrip-
tional regulation &19', but they have also been proposed re-
cently to play a role in morphogen concentration-dependent
cellular development &18'; our example is motivated by the
latter case. The circuit dynamics is governed by the follow-
ing ODE’s #neglecting the gene gate dynamics since we are
concerned with fixed-point dynamics only$;
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FIG. 6. #Color online$ Top: The limit cycle of the stochastic
repressilator. Simulation parameters are r=rp=1, %=0.1, '=10−2,
"=10−3. Bottom: The deterministic version for comparison #re-
duced system in region III of Fig. 5, parameters identical to the
stochastic version, with h=3$.
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FIG. 7. #Color online$ Top: The rewired repressilator, a positive
loop is added #see arrow$, so that one of the genes is doubly regu-
lated. Bottom: The limit cycle of the #reduced$ rewired repressilator
circuit; the additional activation interaction breaks the symmetry, as
discernable in the difference in maximal concentrations. Simulation
parameters are r=1, rp=10−4, %=0.1, '1='2=10−2, "=10−3, h=3.
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Figure 7.10 (a) The limit cycle of the stochastic repressilator. Simulation

parameters are r = rp = 1, ε = 0.1, η = 10−2, δ = 10−3. (b) The deter-

ministic version for comparison with the reduced system in region III

of Figure 7.9, parameters identical to the stochastic version, with Hill

coefficient h = 3 (R. Blossey and V.G. Giuraniuc, 2008). (Reprinted

with permission from the American Physical Society.)

7.3 INTRINSIC NOISE

In this section we consider the dynamics associated with that of a binding site,
say a promoter region for a transcription factor, present at a concentration
c. We understand the binding and unbinding of the transcription factors as a
process leading to fluctuations in the occupancy of the binding sites. How can
we characterize these fluctuations?

We address this issue first in the framework of differential equations. The occu-
pancy of the promoter site is, within a deterministic modeling setup, given by
a kinetic equation for the time-dependent occupancy of the binding sites n(t)
for a given total concentration c of binding molecules. Following (W. Bialek
and S. Setayeshgar, 2005), we write

ṅ = k+c (1− n(t))− k−n(t) . (7.48)

At equilibrium, the binding is determined by detailed balance and associated
with the binding free energy

F = kBT ln

(
k+c

k−

)
. (7.49)
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We now assume that thermal fluctuations affect the rate constants. We lin-
earize Eq. (7.48) around the mean value n to obtain

˙δn = −(k+c+ k−)δn+ c(1− n)δk+ − nδk− , (7.50)

and, in addition,
δk+

k+
− δk−

k−
=

δF

kBT
. (7.51)

Together, this yields the expression

˙δn = −(k+c+ k−)δn+ k+c(1− n)
δF

kBT
. (7.52)

We can Fourier transform the equation for δn(t) and obtain the result (Exer-
cise!)

δn(ω)

δF (ω)
=

1

kBT

[
k+c(1− n)

−iω + (k+c+ k−)

]
. (7.53)

The total variance of the fluctuations can be obtained by invoking the
fluctuation-dissipation theorem3

〈(δn)2〉 =

∫
dω

2π
Sn(ω) (7.54)

where

Sn(ω) =
2k+c(1− n)

ω2 + (k+c+ k−)2
, (7.55)

which yields

〈(δn)2〉 = n(1− n) =
k+c

k+c+ kc
(1− n) . (7.56)

Note that the inverse of the sum of the rates

τc ≡
1

k+c+ k−
(7.57)

is the correlation time of the fluctuations.

3The fluctuation-dissipation theorem (FDT) in this context can be written as

〈n(t)n(t′)〉 =

∫
dω

2π
e−iω(t−t

′)Sn(ω)

.
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We now want to generalize this result to the case where the concentration c
of transcription factors is allowed to vary spatially, i.e., it obeys a diffusion
equation with a sink term,

∂tc(x, t) = D∆c(x, t)− δ(x− x0)ṅ(t) . (7.58)

One finds as a result the generalization of Eq. (7.53),

δn(ω)

δF (ω)
=
k+c(1− n)

kBT

[
1

−iω(1 + Σ(ω)) + τ −1
c )

]
(7.59)

with

Σ(ω) = k+(1− n)

∫
d3k

(2π)3

1

[−iω +Dk2]
. (7.60)

Task. Go through the steps of the above calculation. Discuss the properties of
the Fourier-space integral; it is helpful to go back to the discussion of fluctua-
tions in the Ising model in Chapter 1. Introduce a cutoff in k-space Λ = π/a.

The cutoff length a is a microscopic length which we identify with the size of
the binding region. If we look for the low-frequency (long-time) limit of the
function Σ(ω), we obtain

Σ(ω � D/a2) ≈ Σ(0) =
k+(1− n)

2πDa
, (7.61)

and we find for the spectral density of the occupancy fluctuations the result

Sn(ω) ≈ 2k+c(1− n)
1 + Σ(0)

ω2(1 + Σ(0))2 + τ −2
c

. (7.62)

The allowance for spatial fluctuations in the transcription factor concentration
affects the correlation time, since now

τspatialc =
1− n
k−

+
〈(δn)2〉
2πDac

. (7.63)

The diffusion contribution adds a minimum noise level given by the root-
mean-square bound per time interval ∆t

δnrms >
n(1− n)

πDac∆t
. (7.64)

Let’s now try to see whether this bound makes sense and plug in some num-
bers. In a bacterial cell, typically Ntf ≈ 100 transcription factors are present
in a cellular volume of 1 µm3; their diffusion coefficient is D ∼ 3µm2/s. With
the size of a promoter site of a ≈ 3 nm, one finds πDc ≈ 3/s. Thus the fluc-
tuations in the site occupancy in a time interval ∆t are given by

δn

n
> 0.55(1− n)

(
100

Ntf

) 1/2
s

∆t
. (7.65)
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Experiments on E. coli show that about 10% efficiency of gene expression
control can be achieved at small n. In order to be consistent with the above
limit, the promoter site must have an occupancy time on the order of one
minute.

Stochastic cascades. In the previous section we studied how the interaction
of a transcription factor with its binding site is affected by noise. In this sec-
tion, we turn to the problem of how the noise that is affecting one component
propagates in a network of several components. This occurs in transcriptional
networks, i.e., the chain of biomolecules composed of transcription factors,
DNA binding sites, mRNA products and proteins, as we discussed before.
But this is equally true also in signaling or metabolic networks, where we
speak about pathways of biochemical reactions, where at each level fluctua-
tion effects can intervene. One might therefore simply expect that adding level
upon level of noise on top of each other might always lead to a completely
washed-out output signal. So the question arises what conditions must be sat-
isfied such that a graded input signal can lead to an unambiguous, e.g., all or
none, output signal?

We want to address this question for a simple model for a signaling cascade
which was proposed by M. Thattai and A. van Oudenaarden, 2002. While
motivated by real biological cascades, such as phototransduction or protein
kinase cascades, the model is not tuned to a direct comparison with such sys-
tems - which would require to build in much more detail - but rather to get a
general idea about the noise robustness of reaction cascades. A recent applica-
tion of these modeling ideas in a study of noise propagation in gene networks
has been performed by J. M. Pedraza and A. van Oudenaarden, 2005.

The situation we have in mind is illustrated in Figure 7.11: The cascade is
built up from a set of species of number Yi, i = 0, ..., N which are linked
by differential amplification factors Ci which determine the response of Yi+1

to a change in Yi. The input signal at Y0 is read out at YN . At each level,
the concentrations of the species are subject to a noise qi. The model for
this cascade that we will formulate is linear to begin with, and hence can be
treated analytically using the methods of Chapter 5.

For the discussion, we need generic Langevin equations of the form

Ẋ = g(X) + η(t) (7.66)

where the noise η(t) is defined by the moments

〈η〉 = 0 , 〈η(t)η(t+ τ)〉 = qδ(τ) . (7.67)
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Figure 7.11 Generic model of a biochemical cascade. For the explanation

of symbols, see text.

In these equations, we understand X the number of a chemical species in a
cell. In the simplest case, we can assume that X is produced with a rate
k+ and destroyed with a rate k−, where both processes are assumed to be
Poisson-distributed. We then have

Ẋ(t) = k+ − k− + η(t) (7.68)

and we can compute the change in X in a time interval ∆t as

〈δX〉 = N+ −N− = (k+ − k−)∆t. (7.69)

Why did we assume production and destruction of X as Poisson processes? In
order to make use of the relationship 〈N2

±〉 = 〈N±〉 which holds in this case.
Thus we have

〈δX2〉 = (k+ + k−)∆t , (7.70)

on the one hand, and, using Eq. (7.67) on the other we have

〈δX2〉 =

∫ ∆t

0

∫ ∆t

0

dtdt′〈η(t)η(t′)〉 = q∆t (7.71)

such that we can identify
q = k+ + k− . (7.72)
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We now consider a protein product Y subject to a decay rate γ. We assume
that it is produced proportional to an average number b per mRNA transcript,
such that the equation reads as

Ẏ = kb− γY + η(t) . (7.73)

In a steady-state, the variance is given by

〈δY 2〉 = (1 + b)〈Y 〉 (7.74)

in which the factor b takes into account that the generally occurring ‘bursts’
in protein production will increase the variance above the Poisson level. From
Eq. (7.73) we find after expansion Y → Y0 + δY for δX the equation for the
fluctuations

δẎ + γδY = η(t) . (7.75)

By Fourier transforming we obtain

(iω + γ)δγ(ω) = η(ω) , (7.76)

and thus in time
〈|δY (ω)|2〉 =

q

ω2 + γ2
(7.77)

and finally

〈δY 2〉 =

∫ ∞
−∞

dω
q

ω2 + γ2
=

q

2γ
. (7.78)

Since 〈Y 〉 = kb/γ, we obtain q = 2kb(1 + b).

After these preliminaries we can finally go on to the cascade model. Its
Langevin equation reads

Ẏi + γYi = Fi−1(Yi−1) (7.79)

where the decay rates are all assumed equal, and we simply put them equal
to one. For the fluctuations we find

δẎi + δYi = Ci−1δYi−1 + ηi (7.80)

where the noise variance is

〈ηi(t)ηi(t+ τ)〉 = qiδ(τ) . (7.81)

Employing the Fourier representation, we can write

〈δY 2
i (ω)〉 =

qi + C2
i−1〈δY 2

i−1(ω)〉
1 + ω2

. (7.82)
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This equation is of the form

ζi = αi + βi−1ζi−1 (7.83)

where

αi ≡
qi

1 + ω2
, βi ≡

Ci
1 + ω2

, ζi ≡ 〈δY 2
i (ω)〉 . (7.84)

This recursion relation can be fully spelled out as

ζN = αN + βN−1αN−1 + βN−1βN−2αN−2 + ...+ βN−1 · · · β0α0 . (7.85)

Let us look for the upper bound of the variances in the limit of an infinite
cascade, i.e., for N →∞. Introducing q ≡ max qi, C ≡ max |Ci|, α ≡ q/(1 +
ω2) β ≡ C/(1 + ω2), we have

ζN ≤ α(1 + β + ...+ βN−1) + βζ0 (7.86)

from which the condition
ζ∞ ≤

α

1− β
, (7.87)

and consequently

〈δY 2
∞〉 ≤

∫
dω

2π

1

1 + ω2 − C2
≤ q

2
√

1− C2
(7.88)

follows.

The result of this calculation, Eq. (7.88), shows that the output fluctuations
will stay bounded provided that |C| ≤ 1, but they can be larger than the in-
put fluctuations at any single cascade stage, due to the presence of the factor
1/
√

1− C2.

But, surprisingly, we will now see how this result can be used to attenuate the
noise. For |C| < 1 the output noise will be independent of the input noise, if
only the cascade is sufficiently long.

To demonstrate this, we again consider a cascade of species Yi with low noise
strength qi = q for all i = 1, .., N which is subjected to a high noise at input,
q0 > q. The inverse Fourier transform of the recursion relation gives

〈δY 2
N 〉 =

N∑
m=0

qN−m

∫
dω

2π

C2m

(1 + ω2)m+1
=

N∑
m=0

qN−m
2

(
2m
m

)(
C

2

)2m

.

(7.89)

The variance of the output signal at stage N of the cascade contains contri-
butions from the cascade stage itself, and from the input carried along. With
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Stirling’s approximation for the factorial m! ≈ (m/e)m
√

2πm this reads as

〈δY 2
N 〉 =

q

2

(
1 +

N−1∑
m=1

C2m

√
mπ

)
+
q0

2

(
C2N

√
Nπ

)
. (7.90)

While the first term in this expression increases with cascade length N , the
second term is attenuated exponentially, since

〈δY 2
N 〉input ∼

e−
N
N0

√
N

(7.91)

where
N0 ≡ (− ln(C2))−1 (7.92)

is a sort of ‘attenuation length scale’. It can serve as an estimate for the length
of the cascade required to beat the noise on the input signal.

So much for a simple, linear model. The next step for us now is to see how
fluctuation effects can work in systems which interact in a nonlinear fashion.
We will discuss this for a, still fairly simple, feedback system in the next sec-
tion.

Stochastic focusing. In this section, we discuss the stochastic dynamics of an
intracellular negative feedback model system (J. Paulsson and M. Ehren-
berg, 2000). In this model, two species X and S are present that regulate each
other’s synthesis. The biological motivation is taken from bacterial genomes,
the so-called plasmids. Plasmids are self-replicating genomes that are able to
self-control their copy number. We want to see how a simple system of two
components can achieve this.

The macroscopic dynamic equations describing the feedback system read

ẋ =
kx

1 + αs
− x (7.93)

ṡ = ksx− kds .

As before, the small letters x and s denote concentration variables. The in-
terpretation of the equations is as follows: the X-molecules multiply autocat-
alytically (like the plasmids in the motivating example), while the S molecules
inhibit X-synthesis by what is called hyperbolic inhibition. This is reflected in
the factor

q ≡ 1

1 + αs
(7.94)
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in the equation for x: the presence of a high concentration of s inhibits the
production of x.

Hyperbolic inhibition is a ubiquitous control mechanism arising in various
reaction schemes (see J. Paulsson et al., 2000). In the system given by
Eq. (7.93), the parameters k and α set two characteristic concentration scales,
and kd determines how the steady state is approached: for small kd, the ap-
proach is oscillatory, while for large values, s remains ‘slaved’ to x. Normal-
izing the equations with respect to the steady-state values via xr ≡ x/x̄ and
sr ≡ s/s̄ leads to

ẋr =
(k − 1)(1− sr)
1 + (k − 1)sr

xr , (7.95)

ṡr = kd(xr − sr) .

so that one immediately sees that in the limit k � 1 the rate of synthesis of
X behaves has

ẋr ≈
(

1

sr
− 1

)
xr . (7.96)

Thus, high concentrations in S favour the decrease in X, and low concen-
trations in S favour the increase in X. The system cannot run away to high
values of X, though, since the second equation couples the evolution of X
directly to that of S.

We now want to look into what will happen to the fluctuations in X and S. For
this we set up the chemical master equation which corresponds to the reactions
between the S and X molecules. Suppose we start with m X-molecules and n
S-molecules. The synthesis of X is governed by the rate gmn = km/(1 + αn).
With the step operator E (see Part I, Chapter 2) one obtains the master equa-
tion in the form

ṗmn = (E −1
m − 1)gmn pmn + (Em − 1)mpmn (7.97)

+ ksm(E−1
n − 1) pmn + kd(En − 1)n pmn + pmn

∞∑
n=0

p1n

for m > 0, n ≥ 0; the last term arises from conditioning the distribution on
m > 0. This choice reflects the fact that the state with X = S = 0 is an
absorbing state. X can be considered a molecule whose absence signals cell
death.
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We now simplify this master equation by the additional assumption that the
number of S molecules rapidly adjusts to the number of X molecules; it is
thus considered a fast variable and can be eliminated from the equations. The
dependence on n in Eq. (7.97) is thus dropped and the equation simplifies to

ṗm = (E −1
m − 1)gmpm + (Em − 1)mpm + p1pm . (7.98)

This equation will now be analyzed for both noise-free and noisy signals, de-
pending on the conditional variation of S.

When the conditional S-variation for a given value of X is negligible,

gm =
km

1 + αm(ks/kd)
. (7.99)

If k is large (or, αm(ks/kd) small), gm becomes constant for large m, and
the number of X molecules remains Poisson distributed except at low aver-
ages 〈m〉. But when the conditional variation on S is not negligible - as a
consequence of a noisy signal - Eq. (7.99) has to be replaced by

gm = km
∞∑
n=0

pn|m
1 + αn

. (7.100)

The quasistationary conditional probabilities of n S-molecules given m X-
molecules pn|m are Poisson with average 〈n〉m = mks/kd, since all synthesis
and degradation events are independent. The number of S-molecules at any
given time represents the number of X-molecules in a probabilistic sense, and
hence S is a ‘noisy’ slave to the slow variable X.

Figure 7.12 shows the variance of the X-molecules as a function of k for the
two cases, assuming an average of 〈m〉 = 10, and 〈n〉m = m. One sees that
for the second case, the variance in X can be reduced indefinitely, while it
saturates for the former. This shows that it is indeed the variations of S
that lead to a reduction in the variation of X. This effect has been dubbed
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Figure 7.12 X-variance as a function of k for hyperbolic inhibition.

[Reprinted with permission from J. Paulsson and M. Ehrenberg;

Copyright (2000) American Physical Society.]

stochastic focusing; it is the paradoxical effect that the fluctuations in one
component effectively reduce those in another one.
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Additional Notes

The lambda phage. The lambda phage is a superb model system for biol-
ogists, as well as a system to model for the biophysicist. The first modeling
attempt, based on the free energies of binding of the transcription factors
and, in particular, their cooperative behaviour, is by G. Ackers et al., 1982.
Stochastic analyses were performed by A. Arkin et al., 1998 - but this is
actually a topic for the next Chapter. The octamerization of the λ repres-
sor by looping was found by B. Révet et al., 1999, see also the papers by
I. B. Dodd et al., 2001 and 2004. Finally, the paper by J. M. G. Vilar and
S. Leibler, 2003, extends the work by Ackers and Arkin to account for the
energetics and fluctuations of looping. Papers touching on further aspects of
the λ switch are by E. Aurell and K. Sneppen, 2002; A. Bakk et al., 2004,
and M. Santillán and M. C. Mackey, 2004.

Deterministic modeling. The modelling of the dynamics of networks by
nonlinear differential equations has a long history. Two of the pioneers are
A. Goldbeter and J. J. Tyson, see their work listed in the references.

Fluctuations, noise and robustness are becoming topics of increasing in-
terest in the computational biology community. This is to a large part, but
not exclusively, due to the influx of statistical physicists into the field. An
early contribution is by H. H. McAdams and A. Arkin (1997).

The effects of noise in the standard model of gene expression (DNA→ RNA→
protein) has been modelled and discussed with respect to experimental work in
particular by J. Paulsson (2004, 2005). Similar work is due to M. Thattai
and A. van Oudenaarden (2001) and by A. Becskei, B. B. Kaufmann
and A. van Odenaarden (2005).

Pi-calculus and process algebras. There is a whole literature developing
on systems biology modelling based on approaches by theoretical computer
scientists, in particular by specialists on programming languages. The seminal
work is by A. Regev (2002).

In order to model these gates we use a concept from theoretical computer sci-
ence, a calculus called the π-calculus (R. Milner (1999). We can understand
the gate actions as ‘communication’ events: each gate can receive input or send
outputs over communication channels. In our case, the messages sent over the
channels are simple synchronizations between output and input actions at the
two different gates. The ocurrence of an interaction (read: communication)
requires both partners to have the corresponding input and output channels
available.
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In practice, this works as follows. The action of gate a) of Figure 7.5 which
transcribes constitutively, will be written formally as

null(u) = τc . (tr(u)|null(u)) (7.101)

Note that this line should not be read as an equation but as a procedural
description, as computer code. What is written on the right-hand side are the
computational steps that are performed.

The notation means that the gate is considered a process with a parameter u
which is its transcription product; there is no input. The notion of process in
this context differs from the one commonly used in physics: this process is an
object which can perform actions in time, like a running computer program.
While the notation of the π-calculus may need some time of accommodation
for a statistical physicist, the use of process algebras and calculi for modeling
in systems biology is increasing. A big advantage of these approaches is their
modularity (or, in technical language, compositionality). This means that the
building blocks of the networks are easy to combine and modify, much easier
than the case in the more classic approaches such as differential equations -
an advantage that becomes crucial if one wants to model large systems.

Coming back to the formal description of the constitutive gate, the actions of
this process are defined as follows:

• first perform a stochastic delay τc with a rate c. The rates can be de-
termined according to the Gillespie algorithm simulating the underlying
master equation of the stochastic dynamics, see Part I, Chapter 2;

• the separating dot means ‘then’;

• the term in brackets denotes two parallel processes x and y, (x|y). The
second process is a copy of the original process since processes are con-
sumed after they have performed their actions;

• tr(u) denotes the process which produces u, and has to be defined sep-
arately.

The process defining the transcription factor tr(u) is written as

tr(u) =!u.tr(u) + τδ.0 (7.102)

There are two actions now among which can be chosen: + denotes choice
in this context. The first process is an output action (represented by the
exclamation mark ‘!’), followed by a copy of the original process, as already
discussed before. The second action is a degradation process, denoted by 0,
which occurs after a delay τδ, where δ again is a rate.
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In the same style we can now introduce the regulated gates. The gate b) of
Figure 7.5 which is blocked by receiving an input (a transcription factor) can
be written as

neg(v, u) =?v.τη.neg(v, u) + τc.(tr(u)|neg(v, u)) (7.103)

The second part of this expression should be clear: this is just the constitutive
part. The first part means that the gate is ready to receive an input in the
form of a transcription factor v which is followed by a stochastic delay; then
the system returns to its initial state.

Finally the gate c) of Figure 7.5, whose expression activity is enhanced upon
the action of a factor v is written as

neg(v, u) =?v.τη.(tr(u)|pos(v, u)) + τc.(tr(u)|neg(v, u)) (7.104)

The symmetry between the first and the second parts of the statement is now
evident; by comparison to gate b), gate c) both produces its product u con-
stitutively, and by activation with factor v.

We now have all the elements to build the circuits. The wiring diagram of the
repressilator is shown in Figure 7.7: three neg-gates are coupled. The wiring
is expressed by the names of the products and hence the code describing the
system is given by

neg(v, u)|neg(u,w)|neg(w, v) (7.105)



240 � Computational Biology

References

G.K. Ackers, A.D. Johnson, M.A. Shea
Quantitative model for gene regulation by λ phage repressor
Proc. Natl. Acad. Sci. USA 79, 1129-1133 (1982)

A. Arkin, J. Ross, H.H. McAdams
Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-
infected Escherichia coli cells
Genetics 149, 1633-1648 (1998)

E. Aurell, K. Sneppen
Epigenetics as a first exit problem
Phys. Rev. Lett. 88, 048101 (2002)

A. Bakk, R. Metzler, K. Sneppen
Sensitivity of OR in phage λ
Biophys. J. 86, 58-66 (2004)

A. Becskei, B.B. Kaufmann, A. van Oudenaarden
Contributions of low molecule number and chromosomal positioning to
stochastic gene expression
Nature Genetics 37, 937-944 (2005)

W. Bialek, S. Setayeshgar
Physical limits to biochemical signalling
Proc. Natl. Acad. Sci. USA 102, 10040-10045 (2005)

R. Blossey, L. Cardelli, A. Phillips
A compositional approach to the stochastic dynamics of gene networks
Transact. in Computational Systems Biology IV, 99-122 (2006)

R. Blossey, L. Cardelli, A. Phillips
Compositionality, stochasticity, and cooperativity in dynamic models of gene
regulation
HFSP Journal 2, 17-28 (2008)

R. Blossey, V.C. Giuraniuc
Mean-field versus stochastic models for transcriptional regulation
Phys. Rev E 78, 031909 (2008)



Dynamics of Biological Networks � 241

I.B. Dodd, A.J. Perkins, D. Tsemitsidis, J.B. Egan
Octamerization of λ CI repressor is needed for effective repression of PRM
and efficient switching from lysogeny
Genes & Development 15, 3013-3022 (2001)

I.B. Dodd, K.E. Shearwin, A.J. Perkins, T. Burr, A. Hochschild, J.B. Egan
Cooperativity in long-range gene regulation by the λ CI repressor
Genes & Development 18, 344-354 (2004)

M. B. Elowitz, S. Leibler
Synthetic gene oscillatory network of transcriptional regulators
Nature 403, 335-338 (2000)

C.P. Fall, E.S. Marland, J.M. Wagner, J.J. Tyson
Computational Cell Biology
Springer (2002)

A. Goldbeter
Biochemical Oscillations and Cellular Rhythms
Cambridge University Press (1996)

J. Hasty, J. Pradines, M. Dolnik and J.J. Collins
Noise-based switches and amplifiers for gene expression
Proc. Natl. Acad. Sci. USA 97, 2075-2080 (2000)

H.H. McAdams, A. Arkin
Stochastic mechanisms in gene expression
Proc. Natl. Acad. Sci. 94, 814-819 (1997)

H. Merlitz, K. Rippe, K. v. Klenin, J. Langowski
Looping dynamics of linear DNA molecules and the effect of DNA curvature:
a study by Brownian dynamics simulation
Biophy. J. 74, 773-779 (1998)

R. Milner
The π-Calculus
Cambridge University Press (1999)

J. Paulsson, O. Berg, M. Ehrenberg
Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation
Proc. Nat. Acad. Sci. USA 97, 7148-7153 (2000)



242 � Computational Biology

J. Paulsson, M. Ehrenberg
Random signal fluctuations can reduce random fluctuations in regulated com-
ponents of chemical regulatory networks
Phys. Rev. Lett. 84, 5447-4450 (2000)

J. Paulsson
Summing up the noise in gene networks
Nature 427, 415-418 (2004)

J. Paulsson
Models of stochastic gene expression
Physics of Life Reviews 2, 157-175 (2005)

J. Peccoud, B. Ycart
Markovian modeling of gene-product synthesis
Theor. Pop. Biol. 48, 222-234 (1995)

J.M. Pedraza, A. van Oudenaarden
Noise propagation in Gene Networks
Nature 307, 1965-1969 (2005)

M. Ptashne
A Genetic Switch. Third Edition: Phage Lambda Revisited
Cold Spring Harbor Laboratory Press (2004)

A. Regev
Computational Systems Biology: A Calculus for Biomolecular Knowledge
PhD-Thesis University of Tel Aviv (2002)
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CHA PT E R 8

Biological Networks:
Space

8.1 EXTRINSIC VS. INTRINSIC NOISE

So far we have dealt with the interplay of noise in systems of few different,
or many alike components. We now take a further step to distinguish more
precisely the different contributions to noise, and how they can be disentan-
gled in experiment. In particular, we add one important component to the
discussion: space (which we have once considered before).

P. Swain et al., 2002 have introduced an explicit distinction between extrin-
sic and intrinsic sources of noise in the context of biological systems. We have
seen already a definition of these notions from the point of stochastic dynamic
systems - a clarification is thus needed of the relation between the two con-
cepts with the same name. Let us discuss what Swain et al. refer to with these
notions.

The difference between intrinsic and extrinsic noise according to the defini-
tion by Swain et al. is easy to grasp from the following example. Consider
one particular gene and its protein product, let’s call it A in a population of
genetically identical cells. We want to relate this to the time evolution of the
protein concentration or number in a single cell.

Even if all cells were identical at a given time, the molecular processes in-
volved in the production of the protein (transcription and translation) are not
identical in the cells; the production process of protein A will thus contain
fluctuations that are intrinsic to the gene of protein A.

245
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At the same time, the actors intervening in the production process, like the
RNA-polymerase, are themselves gene products and also display cell-to-cell
and time-dependent variations. Since their properties are not controlled by
the production of protein A, one can consider their effect as being an extrinsic
source of noise to the production of protein A. This means that the variations
of the extrinsic factors (like the fluctuations in the number of polymerases)
arise independently from the intrinsic variations, but obviously influence them.
Extrinsic sources of noise in this sense are abundant in a cell, in which many
processes are coupled.

The definition by Swain et al. is thus quite different from the one by van
Kampen. In van Kampen’s interpretation, systems like the ones from biology
we discuss here have only intrinsic noise to begin with, since they are built
up from molecular constituents; nowhere are deterministic processes in sight.
The extrinsic noise by Swain et al. thus expresses the fact that the system can
be separated by way of analysis into several noise-dependent mechanisms.1

Let us see where this assumption leads us.

We now formulate the mathematical description for the distinction between
the two types of noise suggested by P. Swain et al., 2002. We represent the
intrinsic and extrinsic properties by two vectors I and E, whose components
list the different noise sources. Further, let us identify by Pk the expression
level of a specific gene in cell k.

From an experimental measurement taken on an ensemble of N cells, the Pk
can be deduced and averaged to obtain the moments of the corresponding
protein distribution in the form

1

N

N∑
k=1

Pmk ≈
∫
dE dIPm(E, I)p(E, I) (8.1)

where p is the joint probability distribution for intrinsic and extrinsic variables,
and Pm(E , I) is the measured expression level for particular values of E and I.

Using the product rule of probability distributions we can separate this
into contributions of intrinsic and extrinsic variables by invoking conditional

1The doubling of the notions of extrinsic and intrinsic with different meanings, once
in the context of general stochastic processes and once in a specific biological context,
is unfortunate. In the biological context, a better notion would probably have been to
talk about cis-noise and trans-noise, where cis-noise is stochasticity in the same stochastic
reaction pathway, and trans-noise is that exerted from one stochastic reaction pathway onto
another. Both cis- and trans-noise are intrinsic in character.
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probabilities

1

N

N∑
k=1

Pmk ≈
∫
dE p(E)

∫
dIPm(E, I) p(I|E) , (8.2)

and we can introduce the definition of the average over intrinsic variables from
the second integral

〈Pm(E)〉 ≡
∫
dIPm(E, I) p(I|E) . (8.3)

By contrast, averages over extrinsic variables can be indicated with an overline
in the form

〈Pm〉 =
1

N

N∑
k=1

Pmk . (8.4)

which amounts to an average over both intrinsic and extrinsic noise sources.

If we want to quantify the noise strength by standard deviations over mean,
we write for the total noise, as measured in experiment

η2
tot =

1
N

∑
k P

2
k −

(
1
N

∑
k Pk

)2(
1
N

∑
k Pk

)2 , (8.5)

which is equivalent to

η2
tot =

〈P 2〉 −
(
〈P 〉
)2

(
〈P 〉
)2 . (8.6)

This can be rewritten as

η2
tot =

〈P 2〉 − 〈P 〉2(
〈P 〉
)2 +

〈P 〉2 −
(
〈P 〉
)2

(
〈P 〉
)2 = η2

int + η2
ext . (8.7)

In order to distinguish experimentally between these two different contribu-
tions, one has to measure 〈P 〉2. This quantity can be obtained as follows. If
two identical copies of a particular gene were present in the same cell k, their

expression levels were P
(1)
k and P

(2)
k . These would have the same extrinsic

sources of noise, but different intrinsic variables. Consequently,

1

N

N∑
k=1

P
(1)
k P

(2)
k ≈

∫
dE

∫
dI1dI2P (E, I1)P (E, I2)p(I1, I2,E)

=

∫
dEp(E)

[∫
dIP (E, I)p(I|E)

]2

= 〈P 〉2 . (8.8)
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The verification of this scenario can be made by fluorescent tagging of two
genes controlled by identical regulatory sequences. These experiments have
been performed by M. B. Elowitz et al., 2002, in E. coli. In the absence
of intrinsic noise, the concentrations of both proteins, as measured by their
fluorescence, would fluctuate in a correlated way. In a population of cells this
then gives rise to a certain distribution of protein levels due to extrinsic noise
alone. In the presence of intrinsic noise, the correlations between the two pro-
tein concentrations in each single cell decrease, reflecting different expression
levels for the proteins.

Figure 8.1 shows a qualitative sketch of the experimental results in the form
of a plot of noise levels as a function of a measure for population-averaged
transcription rates, distinguishing between extrinsic and intrinsic noise con-
tributions.

⌘
⌘tot

⌘ext

⌘int

Figure 8.1 Cellular genetic noise in E. coli. Qualitative behaviour of

total, intrinsic and extrinsic noise as a function of fluorescence levels

(population means) characterizing transcription rates.
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8.2 THE TURING INSIGHT

However, a partial differential equation will be obtained which is thought to give
a good approximation to the behaviour of certain kinds of chemical system. The
differential equation has a number of parameters and it is necessary to find
values for these parameters which will make the differential equation behave
properly.

Alan Turing, The Development of the Daisy (1952)

In the 1950s the mathematician Alan Turing hypothesized that the for-
mation of biological structures may be driven by chemical instabilities. He
proposed that the patterning results from an instability involving the reaction
and diffusion of particular molecules, the morphogens. The idea that struc-
ture formation is based on the spatial distribution of chemical compounds and
their interactions has proved to be a very profound one; meanwhile, several
different variations of this scheme exist. We will go through the most impor-
tant ones.

Morphogen gradients. The simplest way to generate a pattern is to assume
that a morphogen is present at some localized source, and then diffuses into
the surrounding tissue. The simplest chemical reaction that can happen is the
decay of the morphogen due to degradation. Such a system is described by
the differential equation

∂tφ = D∂2
xφ− µφα + ηδ(x) , (8.9)

where φ is the concentration of the morphogen, D is its diffusion coefficient
in the tissue, and µ the degradation coefficient. The delta-function term de-
scribes the localized source of the morphogen. Note that we have restricted
ourselves to a one-dimensional case.

The parameter α allows to tune the degradation process: for α = 1 one has the
‘simple’ degradation process while the value α = 2 corresponds to an enhanced
autodegradation. This case has recently been studied by (J. L. England and
J. Cardy, 2005). Eq. (8.9) then has a steady-state solution φ0(x) given by

φ0(x) =
6D

µ

1

(x+ ε)2
(8.10)
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where ε ≡ (12D2/µη)1/3. This solution corresponds to a gradient profile which
decays algebraically outwards from the source.

A morphogen gradient can serve as a very simple means to structure space.
Any mechanism capable of detecting absolute concentrations, say a value φ∗,
naturally divides space into regimes φ > φ∗ and φ < φ∗. Although this mech-
anism seems astonishingly simple, it is actually realized in many systems (see,
e.g., J. B. Gurdon and P. Y. Bourillot, 2001).

Activators and inhibitors. More complex structuring effects can arise by
considering not only one substance which decays, but also the interaction of
two substances, one of which we call ‘activator’ a, while the second is called an
‘inhibitor’, h. A possible set of reaction-diffusion equations for such a system
is given by

∂ta = Da∂
2
xa− µa+

%a2

h
+ %a , (8.11)

∂th = Dh∂
2
xh− νh+ %a2 + %h , (8.12)

where the terms ∝ %a2 describe the auto- and crosscatalysis of the activator -
as opposed to an autodegradation we had in Eq. (8.9) - while the term ∝ 1/h
covers the action of the inhibitor; the remaining terms are degradation and
source terms, as one verifies upon comparison with Eq. (8.9).

Equations (8.11), (8.12) are examples of a large class of models which were
shown to generate pattern by a combination of short-range activation due to
the catalytic nonlinearity ∝ a2 and a long-range inhibition. Several examples
with different types of nonlinearities are discussed in the seminal paper by
(A. Gierer and H. Meinhardt, 1972). We will make a comment on the
choice of nonlinearities later on.

We now turn to the technical discussion of the linear instability in the reaction-
diffusion systems.

The Turing model. Turing was the first to see that instabilities in reaction-
diffusion systems can lead to a pattern formation process. Let us discuss the
appearance of an instability in the reaction-diffusion equations.

Suppose there are two chemical substances of concentrations φ1 and φ2, each
of which is allowed to react according to a chemical reaction scheme (see Chap-
ter 5). As before, the substances may diffuse. We now write down a general
system for the reaction-diffusion equations

∂tφ1 = f(φ1, φ2) +D1∆φ1 (8.13)

∂tφ2 = g(φ1, φ2) +D2∆φ2
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wherein f and g are nonlinear functions of φ1 and φ2, D1,2 are diffusion con-
stants, and ∆ ≡ (∂2

x+∂2
y+∂2

z ) is the Laplace operator in Cartesian coordinates
in three dimensions, generalizing what we wrote down before in eqs.(8.11),
(8.12).

Suppose now that this system of equations has a stationary point, ∂tφ1 =
∂tφ2 = 0 at (φ1, φ2) = (0, 0). A linearization of eqs.(8.13) around this state in
the form φ = φ0 + δφ then leads to a linear system in the fluctuations δφ; we
drop the δ in the following to simplify notation:

d

dt

(
φ1

φ2

)
=

(
a11 a12

a21 a22

)
·
(
φ1

φ2

)
+

(
D1∆φ1

D2∆φ2

)
. (8.14)

The coefficients aij will in general depend on the value of φ0. Now suppose that
the system is confined to a cubic volume. Assuming that there is no flux of φ1

or φ2 entering the cube of side length `, a Neumann boundary condition holds,
i.e., the first spatial derivative of φ1,2 with respect to the wall normal vanishes.

The solutions of eqs. (8.14) can then be written in a general form as

φ1(x, t) =
∑

n1,n2,n3≥0

cn1,...,nk(t) cos

(
2π

`
x1

)
· · · cos

(
2π

`
x3

)

φ2(x, t) =
∑

n1,n2,n3≥0

dn1,...,nk(t) cos

(
2π

`
x1

)
· · · cos

(
2π

`
x3

)
(8.15)

where c.., d.. are the Fourier coefficients of the solution to eqs.(8.14). The terms
in the sum are the eigenmode solutions, indexed by the set N ≡ (n1, n2, n3).
The introduction of these expressions into eqs.(8.14) then leads to an infinite
system of ordinary differential equations for the Fourier coefficients, which are
given by

d

dt

(
cN
dN

)
=

(
a11 − ( 2π

` )2D1|N |2 a12

a21 a22 − ( 2π
` )2D1|N |2

)
·
(
cN
dN

)
(8.16)

where |N |2 = n2
1 + n2

2 + n2
3.

We denote, in what follows, the (2× 2)-matrix in Eq. (8.16) by MN . For each
non-negative 3-tuple N the stability of the eigenmodes is determined by the
eigenvalues of MN , λ±N . These can be expressed in terms of the trace and the
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determinant of the matrix MN ,

λ±N =
1

2

(
TrMN ±

√
(TrMN )2 − 4DetMN

)
. (8.17)

For every N ≥ (0, 0, 0) the real and imaginary parts of Eq. (8.17) are bounded
from above; the value

Λ ≡ max Re λ±N (8.18)

thus is the upper bound of the spectral abscissae of the set of matrices {MN}
(in the positive quadrant).

We see already by inspection of the entries of the matrix MN that the diffusion
terms may indeed destabilize a stable state of the homogeneous system, which
may lead to a symmetry breaking of the global behaviour of the solutions to
the nonlinear equations. As it turns out, for the generation of patterns, the
two diffusion constants must significantly differ from each other, which may
not be evident in many biological situations: why should two proteins, say,
that diffuse in the cytoplasm have significantly different diffusion constants?
One way out, as we will see below, is that one diffusion process is confined to
the cell membrane, while the other occurs in the cytoplasm.

Returning to the eigenvalue problem of the Turing system, there are two types
of eigenvalues that indicate the linear instability of the homogeneous state: in
case of a Turing instability, Λ is positive and is one of the eigenvalues of MN ;
if there is an oscillatory instability, there exists a mode with Re λ±N = Λ > 0,
but for which Im λ±N 6= 0.

The occurrence of a Turing instability is, however, not generally sufficient to
generate a Turing pattern, i.e., a time-independent spatial structure. We do
not follow this trace here, since it is not necessarily a stationary pattern that
is of interest to us in the description of spatial structures in biological systems.
Also, patterning may arise in systems in which the conditions built into, e.g.,
the Gierer-Meinhardt model, like the production of an activator, need not be
the case. We will now see a particular example, the Min system, to which this
applies.

The Min system. We will now study an example of a particular pattern
forming process, which is actually even more: a structuring process in bac-
teria, namely the cell division mechanism in E. coli. which is a rod-shaped
bacterium of 2-6 µm length and 1-1.5 µm diameter. It divides roughly every
hour: after replication of the DNA, a cell splits in half to form two daughter
cells. The question is: how does the cell ‘know’ where its middle is?

The mechanism for cell division is based on the action of three proteins, the
Min family: MinC, MinD and MinE. These proteins oscillate from one end
to the other within the cytoplasm, and, furthermore, they move between the



Biological Networks: Space � 253

cytoplasm and the cytoplasmic membrane. Their concentration profiles deter-
mine the site for the cell division to occur.

The cell division itself is brought about by the formation of a contractile
polymeric ring, called Z-ring, at the site of division. This ring is made from
a protein named FtsZ, which is a homologue of tubulin which plays a similar
role in higher organisms. FtsZ forms just underneath the cytoplasmic mem-
brane, but how it generates the force needed for cell devision is still unknown.
The Min-system serves to confine the location of this ring to midcell. If this
mechanism is perturbed, ring formation can occur in the vicinity of the cell
poles, and can lead to the formation of minicells devoid of DNA.
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evidence that in this complex, the interaction 
of MinE with the membrane is required in 
order to exclude MinC from the membrane-
bound protein layer. We propose that these two processes are crucial 
for the acceleration of protein detachment at the rear of the wave, or 
at the end of an oscillation cycle, to efficiently clear the membrane 
of proteins.

RESULTS
In vitro reconstitution of MinCDE waves
MinE has been found to be able to displace MinC from the MinCD 
complex in a step that is independent of ATP hydrolysis11,12, demon-
strating that MinE first successfully competes for the binding site 
on MinD and then stimulates MinD detachment. However, with-
out simultaneous imaging of all three Min proteins, the spatial 
and temporal order of these events during pattern formation has 
remained unclear. To address these limitations, we incubated puri-
fied MinD (0.8 M, with 10 mol % MinD labeled with Cy5) and 
MinE (1.2 M, with 10 mol % MinE labeled with Cy3), together 
with MinC (0.08 M, with 40 mol % of an eGFP–MinC fusion 
 protein) in the presence of ATP on a supported lipid bilayer13. 
This concentration ratio corresponds to the one found in vivo23,24. 
When incorporated into traveling Min-protein waves, MinC did 
not change the intensity profiles of MinE and MinD (Fig. 1a and 
Supplementary Video 1) and only led to a slightly larger period 
(68.1  5.9 m compared to 58.4  9.9 m; mean  s.d., n = 9,  
P = 0.0225) and decreased velocity (0.69  0.10 m s−1 compared 
to 0.79  0.12 m s−1; mean  s.d., n = 9, P = 0.0728) of the wave 
(Fig. 1b). The intensity profile of MinC within the protein band 
resembles that of MinE (Fig. 1c). After a transitory phase at the 
wave front, the MinC density increases linearly and then drops in 
a manner that is similar to MinE. However, compared to the MinE 
distribution, the sudden collapse of MinC density occurs 2–3 m 
before membrane detachment of MinE from the membrane (2.55   
0.80 m, mean  s.d., n = 5). Because the pattern in vitro is about 
ten times larger than in vivo13, this value corresponds to a width of 
0.2–0.3 m in the E. coli cell. Our findings suggest that MinE does 
not inhibit initial binding of MinC to MinD, but that MinE forms a 
tight complex with MinD at the rear of the wave, causing collective 
MinC displacement from the membrane-bound MinD layer.

Accumulation of MinE precedes detachment of MinD and MinC
Using confocal microscopy, we could not observe a unique MinE 
 structure at the rear of the protein wave, which could explain how 
MinE can trigger simultaneous MinC detachment. To reduce the 

 background fluorescence from proteins not binding to the mem-
brane, we used total internal reflection fluorescence (TIRF) micro-
scopy, where the excitation light is restricted to a narrow region 
above the membrane. In TIRF micrographs, a narrow, bright band of 
MinE is readily observable at the trailing edge of the wave (Fig. 2 and 
Supplementary Video 2). This band of high intensity is also visible in 
corresponding kymographs (Fig. 2b,f). Starting from the wave front, 
the density of MinE increases linearly, and then peaks at the rear, 
before it suddenly collapses (red line in Fig. 2c,g). The signal of MinD 
increases faster than MinE and nonlinearly (see blue line in Fig. 2c).

By comparing the fluorescence intensities of the membrane-bound 
proteins to calibration standards, we could estimate the density of 
 membrane-bound proteins25. We found that the peak protein-surface 
density of MinD was 1.62 × 104 m−2  27.2% (s.e.m., n = 4), which was 
two times higher than the peak density of MinE (0.73 × 104 m−2  7.6%; 
s.e.m., n = 4; see Supplementary Fig. 1 and Supplementary Methods). 
Using these values to rescale the fluorescence intensity profiles of MinD 
and MinE, we could calculate the ratio of the protein densities [MinE]/
[MinD] within the protein band. We found that this ratio continuously 
rises and peaks at the rear of the wave at a value of about 0.9 (0.87  
0.17, s.e.m., n = 4; see black curve in Fig. 2d inset), suggesting that at the 
maximum density of MinE, nearly every MinD dimer on the membrane 
is in an equimolar complex with its activator MinE.

To better understand how the changes in the densities of MinE and 
MinD relate to each other, we calculated the derivatives of the inten-
sity profiles (Fig. 2d). The derivative of the MinD profile shows that, 
starting from the wave front, accumulation of MinD on the membrane 
is initially fast, but then slows down until detachment of MinD from 
the membrane starts to dominate. We found it remarkable that the rate 
of MinD density change goes along with the change of the [MinE]/
[MinD] ratio, with the highest rate of MinD detachment coinciding 
with the maximum [MinE]/[MinD] ratio (Fig. 2d inset).

A comparison of the intensity profiles of MinC and MinE reveals 
that synchronous detachment of MinC coincides with the maximum 
density increase of MinE (Fig. 2h), indicating that, in this case, MinD 
and MinE form a tight membrane-bound complex, which efficiently 
excludes MinC from the protein band.

To summarize, these results illustrate that protein binding and 
detachment within the traveling protein band is governed by the 
ratio of MinE to MinD on the membrane. This ratio also dictates the 
directionality of wave propagation, because the ratio and the MinD 
detachment rate have their maxima at the rear of the wave.
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Figure 1 MinD, MinE and eGFP-MinC 
in traveling waves in vitro. (a) Confocal 
fluorescence micrographs showing waves of 
MinD (0.8 M with 10 mol % MinD-Cy3), MinE 
(1.2 M MinE with 10 mol % MinE-Cy5) and 
MinC (0.08 M, with 40 mol % His-eGFP–
MinC) on a supported lipid membrane. (b) The 
influence of the presence of MinC on velocity 
and period of the protein waves. Error bars 
represent s.d., n = 9. (c) Fluorescence intensity 
profiles of MinD, MinE and MinC acquired from 
the rectangular region shown in a. Starting from 
the front of the wave (right), the density of MinC 
rises at a slope similar to that of MinE and also 
shows a similar sharp decrease at the rear of 
the wave. Note that the detachment of MinC is 
shifted toward the front of the wave.
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Figure 8.2 MinD, MinE and eGFP-MinC in traveling waves in vitro. (a)

Confocal fluorescence micrographs showing waves of MinD, MinE and

MinC on a supported lipid membrane. (b) The influence of the presence

of MinC on velocity and period of the protein waves. (c) Fluorescence

intensity profiles of MinD, MinE and MinC acquired from the rectan-

gular region shown in (a). Starting from the front of the wave (right),

the density of MinC rises at a slope similar to that of MinE and also

shows a similar sharp decrease at the rear of the wave. The detach-

ment of MinC is shifted toward the front of the wave. [Reprinted with

permission from Springer Nature from M. Loose et al. (2011).]
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The action of the Min-system, as far as it is now known from molecular biology
studies based on deletion mutants (i.e., bacteria in which corresponding genes
have been knocked out), is as follows:

• MinC localized in the cytoplasmic membrane locally inhibits assembly
of the contractile Z-ring. It remains in the cytoplasm and inactive in the
absence of MinD;

• MinD binds MinC and recruits it to the cytoplasmic membrane;

• MinE drives MinD away from the membrane; the fact that it is driven
mostly away from the bacterial midplane and hence allows for ring for-
mation is a result of the protein dynamics.

Without MinE, the MinC/MinD couple would inhibit Z-ring formation every-
where, blocking cell division. In this case, long filamentous cells are observed.
Without MinC, Z-ring formation cannot be inhibited anywhere, leading to
inviable cells. Without MinD, neither MinC nor MinE are recruited to the
cytoplasmic membrane and hence have less effect.

The wave dynamics of the Min-system has been visualized by fluorescence
techniques, see Figure 8.2. Visualization has been possible inside the live bac-
teria (G. Meacci and K. Kruse, 2005), as well as in in-vitro systems, as
shown in the figure.

In vivo, the MinC/Min D accumulate at a polar end of the bacterium on the
cytoplasmic membrane. MinE forms a band at midcell which sweeps to the
polar end and ejects the MinC/MinD into the cytoplasm. The ejected proteins
then rebind at the other end of the bacterium. The MinE band, by contrast,
dissociates at the pole and reforms at the center, and the whole process re-
peats towards the opposite cell pole. The observed oscillation period lasts 1-2
min, well below the cell division cycle length. The net effect of the dynamics
is to minimize the concentration of MinC/MinD at midcell, and maximizing
MinE concentration there, see Figure 8.3. The result shown there is obtained
from a model developed by M. Howard et al., 2001, to which we will now
turn.

The quantitative model for this dynamics based on the reaction-diffusion equa-
tion proposed by M. Howard et al., 2001, is based on four coupled equations
for the densities of MinD and MinE in the cytoplasm and the cytoplasmic
membrane. Since the MinC dynamics follows that of MinD, it does not need
to be considered explicitly. The equations read (here, densities are %i with
i = e, E and i = d,D for the membrane (small) and cytoplasm (capital)):
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Figure 8.3 Concentration profiles of the Min proteins in E. coli.

[Reprinted with permission from the American Physical Society

(M. Howard et al., 2001).]

∂t%D = DD∂
2
x%D −

σ1%D
1 + σ′1%e

+ σ2%e%d (8.19)

∂t%d =
σ1%D

1 + σ′1%e
− σ2%e%d (8.20)

∂t%E = DE∂
2
x%E − σ3%E%D +

σ4%E
1 + σ′4%D

(8.21)

∂t%e = σ3%E%D −
σ4%e

1 + σ′4%D
(8.22)

The first reaction terms in the equations for MinD describe the spontaneous
association of MinD to the cytoplasmic membrane. Cytoplasmic MinD recruits
cytoplasmic MinE to the membrane via the reaction term in the equation for
MinE. Once there, MinE drives MinD into the cytoplasm, given by the sec-
ond reaction term in the equations for MinD. The last term in the equations
for MinE corresponds to the spontaneous dissociation from the membrane.
All these terms have been modeled by introducing a parameter set {σ}, with
parameter values given below.

This dynamics conserves protein number; there are no source or drain terms.
The model exhibits a linear Turing-like Hopf-instability. Note that the mech-
anism of pattern formation in this system differs from the one proposed by
Turing, and Meinhardt and Gierer, since in this system there is no pro-
duction of activators or an external influx of particles. The origin of the insta-
bility is the disparity between the diffusion rates between the cytoplasm and
the cytoplasmic membrane; this has been idealized by setting the diffusion
rates in the membrane to zero.
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TABLE 8.1 Min system parameters

DD (µm2/s) DE (µm2/s) σ1 (s−1) σ′1 (µm)

0.28 0.6 20 0.028

σ2 (µm/s) σ3 (µm/s) σ4 (s−1) σ′4 (µm)

0.0063 0.04 0.8 0.027

Task. Analyze the linear stability of the system, testing for solutions of the
form eλt+iqx. Take the parameter values used by M. Howard et al., 2001,
listed in Table 8.1.

The equations (8.19) are valid only in a qualitative way, but establish a gen-
eral basis for further improvement, which has occurred over the last years.
But it should be clear that there is no general criterion to precisely decide on
the form of the nonlinearities; instead, comparisons with different experiments
need to be made in order to improve many details of the model.

Task. Discuss the difference between the models proposed by M. Howard et
al., and H. Meinhardt and P. A. J. de Boer, both from (2001).

8.3 NETWORKS AS GRAPHS

After our study of biological systems in their real space we now look at them
from an abstract perspective. The interactions between the different molecules
that in one way or another regulate the functioning of the biological system at
hand can be considered as an abstract space. In this way, biological networks
of specific components can be defined and characterized. The starting point
of our discussion of this abstract network structure is the random network, or
random graph introduced by Erdös and Renyi, 1959, which will serve us as
a convenient null model. It is also called an ER-graph.

The ER-graph consists of n nodes or vertices, joined by links or edges between
the vertices which are placed at random with independent probability p; an
illustration is given in Figure 8.4. The construction allows to introduce the
notion of an ensemble of graphs of n vertices, G(n, p), in which each graph is
present with the probability corresponding to the number of its edges.
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Figure 8.4 Random network, or Erdös-Renyi graph a). The graph un-

der b) represents a scale-free network, discussed in the text below.

[Reprinted with permission from Springer Nature (R. Albert et al.,

2000).]

The random graph has the following basic properties:

• The degree of a vertex is the number of edges connected to it. The
average degree of a graph is then given by

z = 2× n(n− 1)p

2n
= (n− 1)p (8.23)

where the factor of two takes into account that each edge is connected
to two vertices. Hence there are no edges going out and ending at the
same vertex.

• The probability pk that a vertex in an Erdös-Renyi graph has degree k
is given by the binomial distribution

pk =

(
n− 1
k

)
pk(1− p)n−1−k (8.24)

which in the limit n� kz yields a Poisson distribution

pk =
zk

k!
e−z . (8.25)

The degree distribution is thus strongly peaked around the mean z, and
decays rapidly for large degrees.

Exercise. Show that ER-graphs are always treelike. A graph is called treelike
if each of its cycles (or circuits, say internal loops) has at most one common
vertex.
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The question can be posed whether the random graph model applies to bi-
ological systems (or to other existing network-like systems, for that matter).
An attempt in this direction was made by H. Jeong et al., 2000, in the con-
text of a study of metabolic networks of 43 different organisms. A metabolic
network is the network of biochemical compounds whose transformations are
needed to sustain body function.

It was generally found that these large-scale networks display asymmetric
degree distributions with rather ‘fat’ tails, and could be characterized by al-
gebraic behaviour for a range of degrees, k. In analogy to critical phenomena,
think of the algebraic behaviour of correlation functions near a critical point
discussed in Chapter 1, such networks have been dubbed ‘scale-free’.

In subsequent work, H. Jeong et al., 2001 considered the interaction network
built from proteins in yeast Saccharomyces cerevisiae, consisting of 1870 edges
and 2240 identified physical interactions among the proteins. Their finding is
shown in Figure 8.5. Again, the degree distribution displays a fat tail, and the
authors fit it to the expression

p(k) =
A

(k + kD) γ
exp(−k/kc) (8.26)

where kD ≈ 1 and kc ≈ 20 are short- and large-scale cutoffs.

Evidently, the presence of cutoffs shows that the network is not strictly scale-
free. This notion has indeed been much abused in the literature, and we will
come back to it below in more detail. At present, it is important to also add
that the algebraic behaviour is observed only over a quite limited range of
k-values, sometimes hardly more than one order of magnitude. The exponent
γ is quite typically found to lie in the range of 2 < γ < 3.

Independent of the issue whether the graph is truly scale-free or not, already
the appearance of a fat tail in the degree distribution obviously takes the
protein interaction network out of the basic random graph paradigm. As a
consequence, in order to understand these networks we need a new theory.
Some additional observations provide further indication what this new theory
should be able to deliver.

The protein network is an example of a network which is undirectional, i.e.
the interaction of proteins does not distinguish between the partners. This
does not hold for all networks, e.g., we may want to study a network of
transcriptional interactions. In such a network, interactions are directional.
A transcription factor will activate a specific gene (as we saw in Chapter 7),
such that we need to have edges represent not just a basic ‘interacts with’,
but the directedness from one node to another. A typical subgraph arising in
such networks is shown schematically in Figure 8.6.



Biological Networks: Space � 259

Figure 8.5 A scale-free network of proteins in yeast. a) graphical rep-

resentation of the network; b) evidence for the fat-tail distribution; c)

essentiality of proteins as a function of the number of links. [Reprinted

with permission from Springer Nature (H. Jeong et al. 2001).]

The fact that the construction of networks as graphs must reflect the par-
ticular identity of the interacting components explains immediately why the
knowledge of degree distributions is not enough to characterize them. For di-
rected networks, we have to distinguish between ingoing and outgoing degrees;
but there are probably many deeper levels of structure as well. Also, it may
not be sufficient to look at only one type of network (may be selected only
because of the availability of data): S. Maslov and K. Sneppen, 2002 have
shown that the connectivity of protein interaction networks and transcrip-
tional regulation networks in the yeast Saccharomyces cerevisiae show impor-
tant correlations. The size of the networks used in this study amount to 4549
physical interactions (edges) between 3278 proteins (vertices) for the protein
network, and 1289 positive or negative direct transcriptional interactions for
682 proteins.
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Figure 8.6 An undirected and a directed graph.

In order to go beyond the ER-graph-network paradigm, we now first list a
number of important network characteristics and then show how to compute
them from a given degree distribution by the method of generating functions.
We then move on to a more general statistical mechanical theory of networks.

Probability generating functions. We have encountered generating func-
tions already in previous chapters, so this section provides a novel application
of this important tool.

We begin by taking the vertex degree distribution of the random network
introduced before, pk, and define, following (M.E.J. Newman, 2003), the
generating function

G0(x) =
∞∑
k=0

pkx
k . (8.27)

The vertex degree distribution pk can be generated from G0 by differentiation,

pk =
1

k!

dkG0

dxk

∣∣∣∣
x=0

. (8.28)

G0 has the following properties:

1. If G0 is properly normalized, then

G0(1) =
∑
k

pk = 1. (8.29)

2. The average degree 〈k〉 is found from computing

dG0(x)

dx

∣∣∣∣
x=1

≡ G′0(1) =
∑
k

kpk = 〈k〉 . (8.30)
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3. For the n-th moment of pk one has

〈kn〉 =
∑

knpk =

[(
x
d

dx

)n
G0(x)

]
x=1

. (8.31)

We may of course also consider generating functions of probability distribu-
tions other than the degree distribution. For example, the probability that a
vertex that can be reached along one edge from a starting vertex has (k − 1)
outgoing edges is given by (Exercise!)

qk−1 = k
pk∑
j jpj

. (8.32)

The average degree of the vertex then follows as

∞∑
k=0

kqk =
〈k2〉 − 〈k〉
〈k〉

. (8.33)

This is the average degree of a vertex two edge distances away from the starting
vertex. Based on this result, we can define the number of second neighbors in
the graph by

z2 =

(∑
k

kqk

)
· 〈k〉 = 〈k2〉 − 〈k〉 . (8.34)

The probability generating function based on qk finally reads as

G1(x) =
∞∑
k=0

qkx
k =

G′0(x)

z1
(8.35)

where z1 ≡ 〈k〉.

We can now list further important network measures:

• The clustering coefficient C of a random graph is given by

C ≡ 1

nz

[∑
k

kqk

]2

=
z

n

[
c2v +

z − 1

z

]2

(8.36)

where cv is the coefficient of variation of the degree distribution (the
ratio of standard deviation to mean).

• The diameter d of a graph is given by the maximum distance between any
two connected vertices in the graph. It can be shown that the fraction
of all possible graphs with n vertices and m edges for which d ≥ c lnn
for some constant c tends to zero in the limit n→∞.
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• A giant component is a subgraph whose size scales linearly with the
graph size. It corresponds to the infinite cluster in percolation theory.2

The random graph has a phase transition (akin to the percolation tran-
sition on a lattice) in which a giant component is present whenever the
Molloy-Reed criterion holds

∞∑
k=0

k(k − 2)pk = 0 . (8.37)

• For networks which contain a giant component the average vertex-vertex
distance ` is given by

` =
ln(n/z1)

ln(z2/z1)
+ 1 . (8.38)

Task. Characterize correlations in the ER-graph.

Robustness. The degree distribution allows to characterize networks accord-
ing to their robustness or resilience to attack. R. Albert et al. (2000) com-
pared the properties of an ER-graph and a scale-free graph upon edge removal.
These networks differ in a characteristic way: since vertices and edges in ER-
graphs are more ‘alike’, their properties such as the average degree change
fairly little when edges are removed randomly or even on purpose, i.e., when
vertices with a high degree are removed preferentially, simulating an attack
on the network. By contrast, the removal of few, highly connected nodes in a
scale-free network affects its structure very much.

Exercise. Study the robustness of the network described by the generating
function

G0(x) =
1

n
((n− 1)x3 + xn) . (8.39)

Picture this network. How does its diameter change as a function of n?

We are now ready for a more systematic approach, along the lines of equi-
librium statistical mechanics of Chapter 1. As there, a notion of entropy will
prove to be highly useful.

2Percolation is a geometric phase transition: consider the case of a two-dimensional
regular lattice with all sites occupied. Now one places bonds between the sites with a given
probability. A question one can pose now is at what concentration of occupied sites will a
cluster arise which spans the whole lattice: this is the infinite cluster. Its appearance (the
percolation transition) and the statistical properties of this cluster share many features of
thermal phase transitions, but there is of course no free energy in this case.
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8.4 STATISTICAL MECHANICS OF NETWORKS

A statistical mechanical theory of networks can be developed for exponential
random graphs (J. Park and M.E.J. Newman, 2004). If G is an element of a
set of graphs G, we can obtain its probability distribution P (G) by maximizing
the Gibbs entropy

S = −
∑
GεG

P (G) lnP (G) (8.40)

under the constraints
∑
G P (G)xi(G) = 〈xi〉 and

∑
G P (G) = 1, where xi,

i = 1, ..., r are a set of graph observables. The derivation of P (G) can now be
performed in complete analogy to our discussion of the thermal ensembles in
Chapter 1 (Task!), leading to the result

P (G) =
e−

∑
i θixi(G)

Z
=
e−H(G)

Z
. (8.41)

As in the thermal case, the expression Eq. (8.41) involves a set of Lagrange
multipliers θi.

Examples. The simplest example is the random graph with a fixed number
of vertices n. If we want to characterize the graph only by the mean number
of edges, 〈m〉, the Hamiltonian in Eq. (8.41) is chosen to be

H(G) = θm(G) (8.42)

We can now evaluate the partition function Z for an ensemble of simple undi-
rected graphs on n vertices. An (n× n) adjacency matrix can be defined by

σij =

{
1 i↔ j,
0 else

(8.43)

where the double-arrow symbol ↔ denotes i connected to j. With the adja-
cency matrix we can represent the number of edges as

m =
∑
i<j

σij , (8.44)

and hence compute the partition function Z

Z =
∑
G

e−H =
∑
{σij}

exp

−θ∑
i<j

σij



=
∏
i<j

1∑
σij=0

eθσij =
∏
i<j

(1 + e−θ) = [1 + e−θ]

 n
2


(8.45)
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We can also define the analogue of the free energy by F ≡ − lnZ and find the
result

F = −
(
n
2

)
ln(1 + e−θ) , (8.46)

such that the expected number of edges in the graph is

< m >=
1

Z

∑
G

me−H =
∂F

∂θ
=

(
n
2

)
1

1 + eθ
. (8.47)

In the last equation, we may want to redefine p = (1 + eθ)−1 to simplify
notation. The probability of a graph in this ensemble is then given by

P (G) =
e−H

Z
= pm(1− p)

 n
2

−m
. (8.48)

P (G) is the probability for a graph in which each of the

(
n
2

)
possible edges

appears with probability p; this is just a Bernoulli random graph.

Further examples. We list some further examples; the computation of their
properties is left as Exercises. (J. Park and M.E.J. Newman, 2004).

Specifying degrees. If we choose the vertex degrees ki as observables,

H =
∑
i

θiki , (8.49)

we can rewrite this using the adjacency matrix σij as

H =
∑
ij

θiσij =
∑
i<j

(θi + θj)σij . (8.50)

The partition function is given by

Z =
∏
i<j

(1 + e−(θi+θj)) . (8.51)

Directed graphs. We now change the graph ensemble G to contain directed
graphs; we have to adopt the adjacency matrix accordingly. It now contains
an entry 1 if an edge exists in the graph from j to i (j → i). For the choice
H = θm one has

Z =
∏
i6=j

1∑
σij=0

e−θσij = [1 + e−θ]
2

 n
2


(8.52)



Biological Networks: Space � 265

Fixed edges. If one chooses for G the set of graphs with both fixed number
of vertices n and edges m,

Z =
∑
G

δ(m̃,m(G))e−H (8.53)

where m̃ is the desired number of edges. This construction corresponds to a
canonical ensemble (J. Berg and M. Lässig, 2002).

Network growth. We have now learnt how to characterize statistically
graphs or networks of more general nature than simple random graphs, so
that we feel ready to come back to the problem of protein network struc-
ture. We can determine, e.g., degree distributions empirically based on data
and characterize the networks by various measures. A detailed analysis by
J.-D. Han et al. (2005) demonstrated the pitfalls one can get into by an un-
critical data analysis: the limits on the sampling range alone can already lead
to wrong conclusions on the degree distributions.

Whatever we do with the existing incomplete data, this does not, clearly, tell
us how they came about in the first place; it is hence of interest to model the
evolution of a network. For the protein-protein interactions networks, e.g.,
known mechanisms of network evolution are gene duplication and mutation.
In order to build a simple model for the dynamics of network growth, two basic
assumptions can be made (R. Albert and A.-L. Barabási, 2000; J. Kim
et al., 2002):

• Vertex duplication. Vertices (i.e., new proteins) are added, one after
the other. A new vertex duplicates a previously existing vertex which is
chosen randomly, and links to its neighbors are placed with a probability
1− δ.

• Diversification. Each new vertex links to any previous node with prob-
ability β/n, where n is the current total number of vertices in the net-
work.

A protein interaction network generated from such mechanisms thus mimics
the underlying evolutionary mechanisms. In these, mutations occur both at
the duplication and diversification levels, if the parameters β, δ > 0.

The average vertex degree of such a network G can be estimated as follows. In
each growth step, the average number of edges 〈m〉 increases by β+ (1− δ)G.
Thus,

〈m〉 = (β + (1− δ)G)n . (8.54)

Since generally the relation G = 2〈m〉/n holds, we find, eliminating 〈m〉

G =
2β

2δ − 1
, (8.55)
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which can only hold for δ > δc = 1/2. Below this threshold, the number of
links grows according to

d〈m〉
dn

= β + 2(1− δ) 〈m〉
n

(8.56)

which together with the relation G(n) = 2〈m〉(n)/n yields the scaling depen-
dencies

G(n) =

 finite δ > 1/2 ,
β lnn δ = 1/2 ,
C × n1−2δ δ < 1/2 .

(8.57)

Without diversification (β = 0), a finite average vertex degree is therefore
only found if δ > 1/2, illustrating the important role mutations play.

The case of δ > 1/2, β > 0 can be studied in more detail by the rate equa-
tion for the evolution of the number of vertices of degree k, Pk(n) when the
network as a whole has n vertices. The degree of a node increases by one at a
rate ak = β + (1− δ)k. We can then write down a rate equation of the form

dPk(n)

dn
=

1

n
(ak−1Pk−1 − akPk) +Gk (8.58)

where the first two terms account for the increase of a vertex degree by one.
The last term is a source term for the introduction of new vertices with k edges,
with a of the edges created by duplication and b = k − a by diversification.
The probability of the duplication process is

gdup =
∑
s≥a

xs

(
s
a

)
(1− δ)aδs−a (8.59)

where ps = ns/n is the probability of a vertex of degree s chosen for the
duplication process. The probability of diversification is

gdiv = βb
e−β

b!
(8.60)

such that the full expression for Gk is given by

Gk =
∑
a+b=k

∑
s=a

xs

(
s
a

)
(1− δ)aδs−aβb e

−β

b!
. (8.61)

Since the nk grow linearly in n, we can plug the relation Pk(n) = npk into the
rate equation and obtain(

k +
1 + β

1− δ

)
pk =

(
k − 1 +

β

1− δ

)
pk−1 +

Gk
1− δ

, (8.62)
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which looks very much like a recursion relation for the pk - but it is not,
since Gk depends on all ps for s ≥ k. It can, however, be turned into a re-
cursion relation in the limit k → ∞. In this limit, the main contribution to
Gk arises for small values of b, and the summand is sharply peaked around
s ≈ k/(1−δ). We may then replace the lower limit by s = k and ps by its value
at s = k/(1−δ). Further, anticipating that pk decays as k−γ we introduce the
ansatz ps = (1− δ)γpk and finally simplify Gk according to

Gk ≈ (1− δ)γpk
∑
s=k

xs

(
s
k

)
(1− δ)kδs−k

∞∑
b=0

βb
e−β

b!
= (1− δ)γ−1pk (8.63)

since the binomial sum equals (1− δ)−1.

Summing this all up, in the limit k → ∞, pk is found to have a power-law
behaviour pk ∼ k−γ with the value of γ fixed by the relation

γ(δ) = 1 +
1

1− δ
− 1

(1− δ)2−γ (8.64)

We thus find that γ(δ) sensitively depends on δ, but not on β. Choosing a
value of δ = 0.53, as can be suggested from observations (A. Wagner, 2001),
a value of γ = 2.373.. is found, in accord with what we had indicated before.

A particularly important point to notice is that this result is an asymptotic
one. The convergence to the asymptotic limit in which the power laws reign
is very slow. Even for vertex numbers of n = 106, the power-law regime is
only reached over two orders of magnitude of degrees k. Compare this with
the data for real protein networks.

8.5 SMALL WORLDS

Another important network paradigm that has been uncovered in the last
years is that of small-world networks (D. J. Watts and S. H. Strogatz,
1998). The authors studied a random rewiring process of a completely regular
network. Initially, the model network is placed on a one-dimensional ring and
up to k neighbouring points are linked. Then links are broken and rewired at
random across the lattice. Upon the introduction of only a few of these ‘short-
cuts’, a significant clustering property of the network arises, characterizing an
intermediate stage between complete regularity on the one side, and complete
randomness on the other.

The important feature of the small-world model is that distant points on the
network get access to each other: only a small number of shortcuts will thus
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allow the network, although being still fairly sparse, to ‘communicate’ effi-
ciently across all nodes. This phenomenon has acquired some fame through
the famous story of ‘six degrees of separation’, referring to the number of
acquaintances needed to pass between two randomly selected people in the
world. M. E. J. Newman at al., 2000, formulated an exactly solvable mean-
field model for the small-world network, but despite being ‘just a mean-field
solution’, it is already quite demanding.

Motifs and modules. Biological networks may display particular global fea-
tures, but they will also be characterized by the properties of local neigh-
bourhoods of vertices. This has been noticed via the occurrence of particular
network motifs (R. Milo et al., 2002, S. Shen-Orr et al., 2002).

Figure 8.7 shows a prominent example, the feedforward loop.3 While in a
random graph subgraphs are more likely to be trees, functional subgraphs of
networks are more likely to have a higher number of edges than a subgraph
in a random network. Again the distinction between directed and undirected
graphs matters.

Figure 8.7 A feedforward loop. Left: basic structure of the loop; right:

an example of a feedback loop in the gene network of E. coli.

There have been meanwhile a number of studies focussing on network motifs,
e.g. for E. coli and S. cerevisiae (E. Yeger-Lotem et al., 2004). In partic-
ular the feedforward loop has interesting features which have been recently
discussed (S. Mangan and U. Alon, 2003; S. Kalir et al., 2005). Eight

3Note that the innocently looking graph to the right in Fig. 8.7 has the same topology!
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different types of feedforward loops have been identified, depending on the
actions of the transcription factors (activating or repressing).

In E. coli, aside from the feedforward loop, two other motifs have been de-
tected as being statistically overrepresented in the data: the so-called single
input module, in which a single transcription factor regulates a set of tran-
scriptional units, the operons, see our discussion of the phage lambda. A third
motif is the dense overlapping regulon, in which a number of operons is regu-
lated by a set of transcription factors.

A review of the different types of motifs that have been detected is by
D. M. Wolf and A. A. Arkin, 2003). The notion of a motif generalizes, on
a higher network level, to that of a network module, comprising as separately
functioning network elements (E. Ravasz et al., 2002). The distinction be-
tween a motif and a module is not evident, as Wolf and Arkin note themselves.

RINs: residue interaction networks. The network of amino acids, or
residue interactions, is an example of such a small world network. The motiva-
tion to consider the networks formed by amino acids has been to find out what
residues could play pivotal roles for the function of the protein, in particular
if the protein shows allostery, i.e. a conformational change in one region upon
binding of ligand in another region of the protein.

The relevance of protein residues is typically characterized by two measures.
The first is the closeness centrality (A. Del Sol et al., 2006) which is given by

Ck =
n− 1∑
i6=k n(i, k)

(8.65)

where n is the total number of residues and n(i, k) is the shortest path dis-
tance between residues i and k. Residues are defined to be in contact via some
distance measure in real space: typically a condition of d < 5 Åis employed,
but this can vary upon context. The residues are then scored via the relation

zk =
Ck − C

σ
(8.66)

where C̄ is the mean of Ck over all k, and σ the corresponding standard de-
viation.

The second measure is betweenness centrality (Z. Hu et al., 2007) which for a
network N is given by

Bi =
∑

j,kεN,j 6=k

njk(i)

njk
(8.67)
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Figure 8.8 Structure and RINs of the colicin E2 DNase-Im2 complex. For

all three images, the residues at the interface between the two chains

are colored in blue, and central residues are colored in a gradient from

yellow (Z-score ≥ 2) to red (Z-score ≥ 4). For the explanation, see the

text. (From G. Brysbaert et al., 2018.)

where njk is the number of shortest paths connecting residues j and k, and
njk(i) is the number of shortest paths between j and k that pass through
residue i.

Figure 8.8 displays residue interaction networks for an enzymatic complex;
relevant residues are selected by a Z-score (score value - mean/standard devi-
ation). In this figure, water molecules surrounding the protein are considered
as part of the network as the presence of specific water molecules can play a
role in the function of the protein. The left figure shows a cartoon represen-
tation of the E2/Im2 complex (PDB-ID 3U43), with chain B (E2) located at
the top and chain A (Im2) at the bottom; E2 is depicted in a darker shade
while Im2 is lighter. Water molecules are shown as small red spheres. Central
residues are drawn in stick representation; the depicted central residues are
the additional ones that are highlighted in the right-hand network. The mid-
dle figure shows the residue interaction network generated from the structure,
excluding water molecules. Finally, the right graph displays the differential
residue interaction network of the ‘wet’ vs. ‘dry’ network, highlighting only
the additional central residues.
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Additional notes

Intrinsic vs. extrinsic noise. This topic enjoys growing interest in the bio-
community. An application of this concept to the cell-fate decision system is
by A. Colman-Lerner et al. (2005).

Parameter problems. A very general modeling problem in systems biology
is the lack of knowledge of parameters; a problem of which already A. Tur-
ing was well aware. A statistical mechanics approach to systems with many
poorly known parameters was launched by K.S. Brown and J.P. Sethna
(2003). Sethna has continued this work in the direction of systems biology
(Gutenkunst et al., 2007).

Theory of pattern formation. The pioneer in the field is Alan Turing. A
modern classic in the theory of pattern formation is the work by A. Gierer
and H. Meinhardt (1972).

The Min system. The Min system enjoys ongoing interest in modelling; see
the papers by M. Howard, K. Kruse, H. Meinhart, N. S. Wingreen and
collaborators. The system is nice since a lot can be done experimentally. Note,
however, that despite the model approaches are all similar in the underlying
philosophy, there are still unsolved questions, and the modeling is not unam-
biguous. See the discussion by M. Howard and K. Kruse (2005). Min is nice,
but Drosophila is maybe nicer. Relating back to the problem of transcriptional
control on the chromatin level it is of enormous interest and difficulty to study
the structure formation in embryo development. Modern approaches employ
modeling (J. Reinitz et al., 2003), microfluidics (E. M. Luchetta et al.,
2005), and gene network engineering (M. Isalan et al., 2005). (J. Reinitz
has continued to work on this problem, it is worth to check out his more recent
papers.

Statistical mechanics of networks. The literature on networks emerging
within the statistical physics community has literally exploded since its in-
ception. An early review was written by R. Albert and A. L. Barabási
(2002). The mathematical theory of random graphs in the tradition of the
pioneers (P. Erdös and A. Renyi, 1959), is summarized by B. Bollobás
(2000). Two books cover this field, the first by M. Newman (2018) (in second
edition) and the second by A.-L. Barabási (2016).

Protein-protein interaction maps. A high-quality protein ‘interactome’
map for yeast was published by Y. Hu et al. (2008). The possible role of
interactome maps for the treatment of humane disease was highlighted by
M. Vidal et al. (2011). Combining network analyses and phenotypes allows
to turn the undirected into a directed network (A. Vinayagam et al., 2014).
Conclusions that can be drawn from interactome maps for the evolution of
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genomes are reviewed in M.A. Ghadie et al. (2018). The usefulness of the ap-
proach for the detection of drug-disease relationships is discussed in F. Cheng
et al. (2018).

Residue interaction networks. A detailed protocol for the use of network
analyzing software is by Doncheva et al. (2012). A recent review on the topic
is (L. Di Paola et al., 2013). A method combining network analyses with
machine learning is by M. Giollo et al. (2014).

Network motifs. The existence of motifs can be used to construct an algo-
rithmic procedure for the detection and significance decision of local network
elements. The deterministic motifs are generalized to probabilistic motifs in
which edges occur with a certain likelihood. This procedure, called graph align-
ment due to its analogy to sequence alignment, can be based on a suitably
defined scoring function, i.e., a Hamiltonian for the motifs, Hscore (J. Berg
and M. Lässig, 2004). A recent survey of the field of graph alignment is by
A. Elmsallati et al. (2016).

Finally, it should be stressed that the overrepresentation of certain motifs
does not at all guarantee that these are the important building blocks in the
system. Biological networks, after all, have evolved over the course of many
thousands of years, and the networks hence carry a history along which is
very difficult to take into account the present description of networks (see,
e.g., E. Dekel et al. (2005) on the selection of the feedforward motif). As
useful as such notions as motifs and modules are as a work guide at present
(for a discussion, see the paper by L. H. Hartwell et al. (1999), as little is
known about their true biological significance.
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β-sheet, 44
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absorbing state, 234
acetylation, 135
activator, 250
adiabatic, 7
allostery, 269
amino acid, 44
antisense strand, 40
applied work, 197
arc diagram (RNA), 47
attempt frequency, 201
autocorrelation function, 152
autoregulatory, 209
average degree (graph), 257, 260
average vertex-vertex distance, 262
Avogadro’s number, 3

Bell-Kramers barrier crossing, 201
bending energy, 71
Bessel equation of order n, 195
betweenness centrality, 269
binding free energy, 226
binomial distribution, 257
biochemical cascade, 230
biochemical reaction pathway, 229
biological network, 256
bistable system, 212
Bjerrum length, 123, 137
Brownian motion, 164
Brusselator, 172
burst (protein), 231

canonical distribution, 6
canonical ensemble, 6
cellular genetic noise, 248
chaperone, 62

Chapman-Kolmogorov equation, 153,
155

characteristic function, 14
chemical instability, 249
chemical master equation, 174, 234
chemical potential, 7, 10, 140
chemical reaction, 172
chromatin, 131
chromatin remodelling, 135
circle diagram (RNA), 51
closeness centrality, 269
clustering coefficient, 261
coefficient of variation (degree

distribution), 261
collision diagram, 172
complementary DNA (cDNA), 104
conditional probability, 153, 191, 247
conservation law, 174
context-free grammar, 59
contour surface, 9
cooperativity parameter, 96
copy number, 233
correlation length, 19
correlation time, 227
Coulomb’s law, 119
counterion, 119
covarianc (Gaussian distribution), 14
covariance matrix, 14, 192
critical dimension (upper, lower), 33
critical exponent, 27
Crooks fluctuation theorem, 199
cumulant expansion, 197
cumulant of a distribution, 15
Curie’s law, 29
cycle (graph), 258

Debye screening length, 123, 136
Debye-Hückel approximation, 123
degree (graph), 257

281



282 � Index

degree distribution, 257, 262
denaturation bubble (DNA), 89
denaturation loop (DNA), 89
dense overlapping regulon, 269
detailed balance, 193, 201, 226
diameter (graph), 261
dielectric constant, 120
diffusion equation, 154
diffusion matrix, 192
diffusion term, 164
directed graph, 260
directed polymer, 180
dissipated work, 197
dissipation-fluctuation theorem, 167
diversification, 265
division free energy (RNA), 85
DNA melting, 86
dogma of molecular biology, 216
drift term, 164
drift vector, 192
dual theory (electrostatics), 121
dynamic programming, 52

edge (graph), 256
effective potential, 26
eigenmode solution, 251
Einstein relation, 167
electrostatic potential, 120
energetic factor, 162
energy, 6
ensemble, 65
ensemble average, 4, 152
enthalpy, 12
entropic elasticity, 68, 69
entropy, 4
entropy of mixing, 119
epistasis, 21
equation of state, 10
equilibrium state, 8
ER-graph, 256
ergodicity, 4
error function, 199
Euler characteristic, 51
Euler equation, 10
excluded volume effect, 94
excluded volume interaction, 140

exon, 104
exon-exon boundary, 106
exponential distribution, 179
exponential random graphs, 263
extensive variable, 8
extrinsic noise, 169, 245

fat tail, 258
feedforward loop, 268
first-order homogeneous function, 8
fixed point, 20
fluctuation theorem, 191
fluctuation-dissipation theorem, 151,

193, 198, 227
Fokker-Planck equation, 163, 164
fold (RNA), 44
force-extension curve, 202
forward partition function, 95
free energy, 6
free energy of solvation, 67
freely jointed chain, 69
Frenet-Serret equations, 74
friction coefficient, 201
fugacity, 91
funnel (protein), 62

gap exponent, 30
gapless alignment, 176
gapped alignment, 180
Gauss’ law, 121
Gaussian distribution, 13
Gaussian white noise, 167, 201
gene duplication, 265
gene gate model, 216
generating function, 157, 218
generator of a flow, 20
genetic networks, 207
genus (surface), 61
geometric fit, 66
giant component (graph), 262
Gibbs distribution, 6
Gibbs free energy, 12
Gillespie algorithm, 172
Ginzburg-Landau theory, 26
glass phase (RNA), 85, 86
glass transition temperature, 65
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Gouy-Chapman length, 124
graded input signal, 229
grand canonical ensemble, 7
grand canonical potential, 12
graph alignment, 272
graph ensemble, 256
growing interface, 180
Gumbel distribution, 177

Hamiltonian, 15
Hartree equation, 58, 83
heat, 7
Helmholtz decomposition, 130
Helmholtz free energy, 12
Hermite polynomial, 60
Hermitian matrix, 56
high-temperature limit, 29
Hill-exponent, 223
histone, 132
histone tail modifications, 135
Hopf bifurcation, 224
Hopf-instability, 255
Hubbard-Stratonovich transform, 58,

60
Hubbard-Stratonovich

transformation, 22
hybridization, 40
hydrophobicity, 44
hyperbolic inhibition, 233

infinite cluster, 262
information measure, 4
inhibitor, 250
inhibitory gates, 222
intrinsic noise, 169, 245
intrinsically disordered proteins, 143
intron, 104
Ising model, 15
island distribution (alignment), 178
Itô vs. Stratonovich, 168
Itô-Stratonovich dilemma, 169

Jarzynski equality, 193
joint probability density, 152
joint probability distribution, 246

jump moment, 170

Kardar-Parisi-Zhang equation
(KPZ), 182

Kratky-Porod model, 70
Kuhn length, 71

Lagrange multiplier, 5
Laguerre polynomial, 60
Langevin equation, 166, 201,

229, 231
law of mass action, 174
laws of thermodynamics, 7
Legendre transform, 11, 120
limit cycle, 225
line-charge density, 137
linear phase (alignment), 178
link (graph), 256
linker histone, 132
logarithmic phase (alignment), 178
long-range inhibition, 250
loop entropy, 93
looping (DNA), 212
Lorentzian model, 129
lysogenic phase, 208
lytic phase, 208

macrostate, 4
Manning condensation, 124
Manning parameter, 125
Markov process, 191
Markov property, 153
master equation, 155, 156, 193, 218
Maxwell-Boltzmann velocity

distribution, 165
mean (Gaussian distribution), 14
mean-field approximation, 22
MELTSIM, 95
messenger RNA (mRNA), 42
metabolic network, 229, 258
method of steepest descent, 23
methylation, 135
microstate, 4
minimum energy fold (RNA), 83
mixed-order transitions, 104
modified Bessel function, 137
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molecular motor, 196
Molloy-Reed criterion, 262
molten phase (RNA), 84
moment (of a distribution), 14
morphogen, 249
multivariate Gaussian distribution,

14
mutation, 265

native phase (RNA), 86
native-like contacts, 64
Needleman-Wunsch algorithm, 180
network motifs, 268
Neumann boundary condition, 251
node (graph), 256
noise (intrinsic, extrinsic), 245
non-equilibrium statistical

mechanics, 151
nonlocal electrostatics, 127
nucleosome, 132
null model, 256

Odijk-Skolnick-Fixman persistence
length, 138

one-step processes, 158
operator binding site, 208
operon, 208, 269
order of phase transition, 28
order of the transition (chemical

reaction), 173
order parameter, 24, 93
ordered phase, 30
orientational polarization

correlations, 127
Ornstein-Uhlenbeck process, 154

partition function, 6
periodic boundary condition, 17
persistence length, 71, 137
phase transition, 19
phenomenological scaling, 28
phosphorylation, 135
plasmid, 233
Poisson distribution, 15, 257
Poisson process, 153
Poisson-Boltzmann equation, 122

Poisson-Boltzmann theory, 120
Poland-Scheraga model, 89, 95
polyampholytes, 139
polyelectrolytes, 139
polylog function, 91
pressure, 10
primary structure (protein), 44
prior probability distribution, 5
probability, 4
promoter, 208
promoter site, 207
protein complex, 47
protein degradation, 156
protein docking problem, 66
protein folding problem, 62
protein network, 258
protein-ligand docking, 66
protein-protein docking, 66
pseudoknot (RNA), 47
purine (DNA base), 40
pyrimidine (DNA base), 40

quaternary structure (protein), 47

radius of gyration, 94
rainbow diagram (RNA), 47, 51
random energy model (REM), 63
random graph, 256
Random Matrix Theory, 60
random walk, 69
rate constant, 173
Rayleigh particle, 164
reaction-diffusion equation, 250
realization (of a stochastic process),

152
recursion, 21
regulatory region (DNA), 104
renormalization group

transformation, 20
repressilator, 222
residue interaction network (RIN),

269
RNA interference, 43
RNA secondary structure prediction,

55
robustness, 262
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saddle-point approximation, 179
saddle-point approximation (RNA),

84
saddle-point of the integrand, 23
scale-free network, 258
scale-invariant system, 27
scaling form, 29
scaling law, 182
score (alignment), 176
scoring, 66
scoring function, 272
scoring matrix, 176
secondary structure, 42
secondary structure (protein), 44
self-adjoint (matrix, operator), 56
self-adjoint matrix, 56
self-avoiding walk, 93
self-hybridization, 42
self-regulated gene, 218
sense strand, 40
sequence alignment, 176
sequence disorder, 84
short-range activation, 250
signaling cascade, 229
signaling network, 229
similarity scores, 180
small-world network, 267
Smith-Waterman local alignment,

180
specific heat, 28
specific heat exponent, 30
spectral density, 228
spin glass, 63
stability gap, 65
stacking interaction, 40
standard normal distribution, 13
stationary Markov process, 154
stationary phase approximation, 23
stationary point, 251
stationary state, 192
statistical ensemble, 4
step operator, 159, 174, 234
stochastic focusing, 236
stochastic reaction rate, 175
stochastic variable, 14, 152

structural factor, 162
susceptibility, 28
symmetry breaking, 252
systems biology, 208

tail-bridging effect, 138
temperature, 10
tertiary contacts, 162
tertiary structure (protein), 47
thermal denaturation (DNA), 86
thermal energy, 6
thermodynamic equilibrium, 7
thermodynamical limit, 7
total differential, 9
Trace (of a matrix), 17
transcription, 40
transcription factor, 132,

207, 208
transcription factories, 132
transfer matrix, 17
transfer RNA (tRNA), 42
transition probability, 153
transition state (protein), 159
Turing instability, 252
Turing pattern, 252
two-point correlation function, 18
two-state folder, 159

undirected graph, 260
universality class (KPZ), 180
untranslated region (UTR), 104
UV-divergence, 31

van der Waals radius, 67
vertex (graph), 256
vertex duplication, 265

weak field limit, 29
Wiener-(Lévy) process, 153
WLC model, 103
work, 7
Worm-like chain model, 71

Yukawa potential, 130

Z, 3
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