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Like the Earth and planets, stars rotate. Understanding how stars rotate is central
to modeling their structure, formation, and evolution and how they interact with
their environment and companion stars. This authoritative volume provides a lucid
introduction to stellar rotation and the definitive reference to the subject. It combines
theory and observation in acomprehensive survey of how the rotation of stars affects
the structure and evolution of the Sun, single stars, and close binaries.

Thistimely book will be of primary interest to graduate students and researchers
studying solar and stellar rotation and close binary systems. It will also appeal to
those with amore general interest in solar and stellar physics, star formation, binary
stars, and the hydrodynamics of rotating fluids — including geophysicists, planetary
scientists, and plasma physicists.
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There are epochs in the history of every great operation and in the course of every un-
dertaking, to which the co-operations of successive generations of men have contributed
(...), when it becomes desirable to pause for a while, and, as it were, to take stock;
to review the progress made, and estimate the amount of work done: not so much for
complacency, asfor the purpose of forming ajudgement of the efficiency of the methods
resorted to, to do it; and to lead us to inquire how they may yet be improved, if such
improvement be possible, to accelerate the furtherance of the object, or to ensure the
ultimate perfection of itsattainments. In scientific, no lessthan in material and social un-
dertakings, such pauses and résumés are eminently useful, and are sometimes forced on
our considerations by a conjuncture of circumstances which almost of necessity obliges
us to take a coup d'oeil of the whole subject, and make up our minds, not only as to
the validity of what is done, but of the manner in which it has been done, the methods
employed, and the direction in which we are henceforth to proceed, and probability of
further progress.*

Sir John Herschel (1792-1871)

* Quoted in Hatton Turnor, Astra Castra— Experimentsand Adventuresinthe Atmosphere, p. v, London:
Chapman and Hall, 1865.
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Preface

When | wrote my first book — Theory of Rotating Stars (Princeton: Princeton University
Press, 1978) — | was not aware of the fact that the 1970s were a period of transition
and that major unexpected developments would take place in the field of stellar rotation
during the 1980s.

In the mid-1970s, we had no direct information about the internal rotation of the Sun.
Little was known about the rotation of main-sequence stars of spectral type G and later,
although it was already well established that the surface rotation rate of these stars de-
cayed as the inverse sguare root of their age. We certainly had much more information
about axial rotation in the upper-main-sequence stars, but the actual distribution of spe-
cific angular momentum within these stars was till largely unknown. On the theoretical
side, important progress in the study of rotating stars had been made by direct numeri-
cal integration of the partial differential equations of stellar structure. However, because
therewas no clear expectation for the actual rotation law in an early-type star, the angular
momentum distribution always had to be specified in an ad hoc manner. The presence
of large-scale meridional currentsin a stellar radiative zone was al so a serious problem:
All solutions presented to date had unwanted mathematical singularities at the bound-
aries, and the back reaction of these currents on the rotational motion had never been
properly taken into account. Asfar as | remember, there was only one bright spot that
was emerging from this rather gloomy picture of stellar rotation: The observed degree
of synchronism and orbital circularization in the short-period close binaries appeared to
be in reasonabl e agreement with the (then current) theoretical views on tidal interaction
in close binary systems. The year was 1977 and, as | said, we did not realize that thetide
was turning fast.

Ten years later, helioseismology was already providing a wealth of detail about the
internal rotation of the Sun through the inversion of p-mode frequency splittings. At
the same time, spectroscopic rotational velocities for numerous lower-main-sequence
stars and pre-main-sequence stars were derived on the basis of high signal-to-noiseratio
data and Fourier analysis techniques. Modulation of starlight due to dark or bright areas
on a rotating star was also currently used to obtain rotation periods for a number of
low-mass main-sequence stars. Helioseismology has forced us to reconsider our views
on the Sun’sinternal rotation. Similarly, the newly derived rotational velocities of stars
belonging to open clusters have provided us with a general outline of the rotational
history of solar-type stars. However, very little observational progress has been made
in measuring the surface rotation rates of main-sequence stars more massive than the

Xiii



Xiv Preface

Sun; and since asteroseismology is still in its infancy, we do not yet know their internal
distribution of angular velocity. Unexpectedly, renewal of interest in the close binaries
has led to the conclusion that synchronous rotators and circular orbits are observed in
binaries with orbital periods substantially larger than previously thought possible. This
isamost challenging result sinceit requires that we reconsider the currently held views
ontidal interaction in close (and not so close) binaries.

Over the course of the past two decades, theoreticians have also made great progress
in developing an understanding of the effects of rotation in stellar radiative zones. This
progress has not resulted from the devel opment of new observational techniquesor faster
supercomputers, however, but from the recognition that rotation generates meridional
currents as well as a wide spectrum of small-scale, eddylike motions wherever radia-
tive transfer prevails. The importance of these rotationally driven motions lies in the
fact that, under certain conditions, they can produce chemical mixing in regionsthat re-
main unmixed in standard cal cul ations of nonrotating stellar models. Meridional circula
tion and eddylike motions also explain in a natural way the correlation between slow
rotation and abnormal spectrum in the Am and Ap stars. This new approach, which is
based on the idea that eddylike motions are an ever-present feature of a stellar radiative
zone, aso resolvesin avery simple manner the many contradictions and inconsistencies
that have beset the theory of meridional streaming in rotating stars.

All these new devel opments provide sufficient justification for anew book on rotating
stars that would summarize the basic concepts and present a concise picture of the
recent important advances in the field. Unfortunately, because the subject has grown
so much in breadth and in depth over the past twenty years, a complete coverage of
al the topics discussed in my first book has become an almost impossible task for a
single individual. Thisis the reason why | have tried to concentrate almost exclusively
on topics dealing with main-sequence stars, making occasional incursionsinto their pre—
main-sequence and post—main-sequence phases. Admittedly, although much attention
has been paid in the book to the correspondence between theory and observation, thetext
is basically theoretical with greater emphasis on firm quantitative results rather than on
quick heuristic arguments. The book’s prime emphasis, therefore, is on problems of long
standing rather than on more recent devel opments (such as rotationally induced mixing
in stellar radiative zones) that are still in the process of rapid and diverse growth. The
view adopted throughout the book isthat the study of rotating starsisamultidisciplinary
endeavor and that much can be learned from a parallel study of other rotating fluid
systems, such as the Earth’s atmosphere and the oceans.*

The contents of the various chapters are asfollows: Chapter 1 presentsthe main obser-
vational data on which the subsegquent discussion is based. Chapters 2 and 3 provide the
theoretical background necessary for the understanding of the structure and evolution of
arotating star. In particular, Sections 2.5-2.7 describe some important geophysical con-
cepts that will find their application in subsequent chapters. Even though the reader may
not wish to go through thesetwo chapters, | recommend reading the whol e of Section 3.6,

* Thisis not the place to discuss the psychological impact that the new trends toward interdisciplinary
modes of research may have on individual members of the scientific community. For pertinent com-
ments, see Juan G. Roederer, “ Tearing Down Disciplinary Barriers,” Astrophysicsand Space Science,
144, 659, 1988.
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however, because it summarizes severa basic ideas and concepts that are recurring
throughout the book. Chapter 4 describes the state of motion in a star that consists of
a convective core surrounded by a radiative envelope, whereas Chapter 5 is concerned
with the rotational deceleration of the Sun—astar that consists of aradiative core and an
outer convection zone that is slowly but inexorably losing angular momentum to outer
space. These twin chapters are purely theoretical in the sense that both of them attempt
to develop a clear understanding of the many hydrodynamical phenomena that arise in
the early-type and late-type stars as they slowly evolve on the main sequence. On the
contrary, in the next two chapters | review the observational evidence for axia rotation
insingle starsand, asfar as possible, | compare the theoretical models with observation.
Chapter 6 is entirely devoted to stars more massive than the Sun, whereas Chapter 7
discusses the rotational history of solar-type stars. Finally, Chapter 8 is concerned with
tidal interaction in close binary stars and contact binaries. Sections 8.4 and 8.5 present
distinct applications of two well-known geophysical concepts, namely, Ekman pumping
and geostrophy.

All chaptersend with ashort section entitled “ Bibliographical notes,” wherereferences
have been listed for elaboration of the material discussed in the corresponding sections.
No attempt at completeness has been made, however, because that would have involved
far too many entries. In each chapter, then, | have tried to include a useful selection of
significant research papers and reviews from which further references may be obtained.
Particular attention has been paid to origina credits and priorities. For any inadvertent
omission | offer asincere apology in advance.

| am indebted to Paul Charbonneau and Georges Michaud who kindly provided valu-
able comments on portions of the manuscript. | appreciate al so the untiring efforts of my
wife, Monique, who typed and converted the original draft into IATeX format, offered
many hel pful commentsand corrections, and assi sted with the proofreading and indexes.
Their help is gratefully acknowledged, but of course they arein no way responsible for
any errors of fact or judgment that the book may contain.

Montréal, Québec
December 1997
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Observational basis

11 Historical development

The study of stellar rotation began at the turn of the seventeenth century, when
sunspots were observed for the first time through a refracting telescope. M easurements
of the westward motion of these spots across the solar disk were originaly made by
Johannes Fabricius, Galileo Galilei, Thomas Harriot, and Christopher Scheiner. Thefirst
public announcement of an observation came from Fabricius (1587—c. 1617), a 24-year
old native of East Friesland, Germany. His pamphlet, De maculis in Sole observatis et
apparente earum cum Sole conversione, bore the date of dedication June 13, 1611 and
appeared in the Narratio in the fall of that year. Fabricius perceived that the changes
in the motions of the spots across the solar disk might be the result of foreshortening,
with the spots being situated on the surface of the rotating Sun. Unfortunately, from fear
of adverse criticism, Fabricius expressed himself very timidly. His views opposed those
of Scheiner, who suggested that the sunspots might be small planets revolving around
an immaculate, nonrotating Sun. Galileo made public his own observationsin Istoria e
Dimostrazioni intorno alle Macchie Solari eloro Accidenti. | nthese threeletters, written
in 1612 and published in the following year, he presented a powerful case that sunspots
must be dark markings on the surface of a rotating Sun. Foreshortening, he argued,
caused these spots to appear to broaden and accelerate as they moved from the eastern
side toward the disk center. The same effect made the sunspots seem to get thinner and
slower as they moved toward the western side of the disk. Galileo also noticed that al
spots moved across the solar disk at the same rate, making a crossing in about fourteen
days, and that they al followed parallel paths. Obviously, these featureswould be highly
improbable given the planetary hypothesis, which isal so incompatible with the observed
changes in the size and shape of sunspots.

The planetary hypothesis, championed by Scheiner among others, was thus convinc-
ingly refuted by Galileo. Eventually, Scheiner’s own observations led him to realize that
the Sun rotates with an apparent period of about 27 days. To him also belongs the credit
of determining with considerably more accuracy than Galileo the position of the Sun’s
equatorial plane and the duration of its rotation. In particular, he showed that different
sunspots gave different periods of rotation and, furthermore, that the spots farther from
the Sun’s equator moved with a slower velocity. Scheiner published his collected ob-
servations in 1630 in a volume entitled Rosa Ursina sive Sol, dedicated to the Duke of
Orsini, who sponsored thework. (Thetitle of thebook derivesfromthe badge of the Orsini
family, which wasarose and abear.) Thiswastruly the first monograph on solar physics.

1



2 Observational basis

Itisnot until 1667 that any further significant discussion of stellar rotation was made.
In that year the French astronomer Ismagl Boulliaud (1605-1694) suggested that the
variahility in light of some stars (such as Mira Ceti) might be a direct conseguence
of axial rotation, with the rotating star showing alternately its bright (unspotted) and
dark (spotted) hemispheres to the observer. This idea was popularized in Fontenelle's
Entretiens sur la pluralité des mondes — a highly successful introduction to astronomy
that went through many revised editions during the period 1686—-1742. To be specific, he
noted “. . . that these fixed stars which have disappeared aren’t extinguished, that these
are redlly only half-suns. In other words they have one half dark and the other lighted,
and since they turn on themselves, they sometimes show us the luminous half and then
we see them sometimes half dark, and then we don’t see them at all.” * Although this
explanation for the variable stars did not withstand the passage of time, it is nevertheless
worth mentioning because it shows the interest that stellar rotation has aroused since
itsinception. Asamatter of fact, nearly three centurieswereto el apse before Boulliaud’s
original ideawas fully recognized as a useful method of measuring the axia rotation of
certain classes of stars, that is, stars that exhibit a detectable rotational modulation of
their light output due to starspots or stellar plages.

For more than two centuries the problem of solar rotation was practically ignored, and
it is not until the 1850s that any significant advance was made. Then, a long series of
observations of the apparent motion of sunspots was undertaken by Richard Carrington
and Gustav Sporer. They confirmed, independently, that the outer visible envel ope of the
Sun does not rotate like a solid body; rather, its period of rotation varies as a function
of heliocentric latitude. From his own observations made during the period 18531861,
Carrington derived the following expression for the Sun’s rotation rate:

Q(deg/day) = 14°42 — 2°75 sin”/* ¢, (1.2)
where ¢ isthe heliocentric latitude. Somewhat |ater, Hervé Faye found that the formula
Q(deg/day) = 14°37 — 3’10 sin*¢ (1.2)

more satisfactorily represented the dependence of angular velocity on heliocentric lat-
itude. Parenthetically, note that Carrington also found evidence for a mean meridional
motion of sunspots. Convincing evidence was not found until 1942, however, when
Jaakko Tuominen positively established the existence of an equatorward migration of
sunspots at heliocentric latitudes|ower that about 20° and a poleward migration at higher
latitudes.

The spectroscope was the instrument that marked the beginning of the modern era of
stellar studies. As early as 1871 Hermann Vogel showed that the Sun’s rotation rate can
be detected from the relative Doppler shift of the spectral lines at opposite edges of the
solar disk, one of which is approaching and the other receding. Extensive measurements
were made visually by Nils Dunér and Jakob Halm during the period 1887—1906. They
showed arotation rate and equatorial acceleration that were quite similar to those ob-
tained from the apparent motion of sunspots. They concluded that Faye's empirical law

* Bernard le Bovier de Fontenelle, Conversations on the Plurality of Worlds, trandation of the 1686
edition by H. A. Hargreaves, p. 70, Berkeley: University of California Press, 1990.



1.1 Historical development 3

adequately represented the spectroscopic observations al so, but their coverage of latitude
was doubl e that of the sunspot measurements. Thefirst spectrographic determinations of
solar rotation were undertaken at the turn of the twentieth century by Walter S. Adams
at Mount Wilson Solar Observatory, California.

William de Wiveleslie Abney was the first scientist to express the idea that the axial
rotation of single stars could be determined from measurements of the widths of spectral
lines. In 1877, he suggested that the effect of a star’s rotation on its spectrum would be
to broaden all of thelinesand that “. . . other conditions being known, the mean velocity
of rotation might be calculated.”* In 1893, while doubts were still being expressed with
regard to measurable rotational motions in single stars, J. R. Holt suggested that axial
rotation might be detected from small distortions in the radial velocity curve of an
eclipsing binary. Thus, he argued,

...inthe case of variable stars, like Algol, where the diminution of light is supposed to
be due to the interposition of a dark companion, it seems to me that there ought to be a
spectroscopic difference between the light at the commencement of the minimum phase,
and that of the end, inasmuch as different portions of the edge would be obscured. In
fact, during the progress of the partial eclipse, there should be a shift in position of the
lines; and although this shift is probably very small, it ought to be detected by a powerful
instrument.

Confirmation of this effect was obtained by Frank Schlesinger in 1909, who presented
convincing evidence of axial rotation in the brightest star of the system § Librae. How-
ever, twenty more years were to elapse before Abney’s origina idea resulted in actual
measurements of projected equatorial velocitiesin single stars. This notable achievement
was due to the efforts of Otto Struve and his collaborators during the period 1929-1934
at Yerkes Observatory, Wisconsin.

A graphical method was originally developed by Grigori Shajn and Otto Struve. The
measurements were made by fitting the observed contour of aspectral lineto acomputed
contour obtained by applying different amounts of Doppler broadening to anintrinsically
narrow line-contour having the same equivalent width as the observed line. Comparison
with an observed line profile gave the projected equatorial velocity v sini aong the line
of sight. These early measurements indicated that the values of v sini fell into the range
0-250 km s~ and may occasionally be aslarge as 400 km s~ or even more. Asearly as
1930 it was found that the most obvious correlation between v sini and other physical
parametersiswith spectral type, with rapid rotation being peculiar to the earliest spectral
classes. This was originaly recognized by Struve and later confirmed by statistical
studies of line widths in early-type stars by Christian T. Elvey and Christine Westgate.
The O-, B-, A-, and early F-type stars frequently have large rotational velocities, while
in late F-type and later types rapid rotation occurs only in close spectroscopic binaries.
A study of rotational line broadening in early-type close binaries was aso made by
Egbert Adriaan Kreiken. From his work it is apparent that the components of these
binaries have their rotational velocities significantly diminished with respect to single,
main-sequence stars of the same spectral type. The following year, 1936, Pol Swings

* Mon. Not. R. Astron. Soc., 37 (1877), p. 278.
t Astronomy and Astro-Physics, 12 (1893), p. 646.



4 Observational basis

properly established that in close binaries of short periodsaxial rotation tendsto be either
perfectly or approximately synchronized with the orbital motion.

At this juncture the problem was quietly abandoned for almost fifteen years. Interest
in the measurements of axial rotation in stars was revived in 1949 by Arne Slettebak.
Extensive measurements of rotational velacities were made during the 1950s and 1960s
by Helmut A. Abt, Robert P. Kraft, Slettebak, and others. However, because the only
observational technique availablewasto determinelinewidthsin starsfrom photographic
spectra, these studies were limited almost entirely to stars more massive than the sun
(M Z 1.5M;) and to main-seguence or post—main-sequence stars. Since appreciable
rotation disappears in the middle F-type stars, higher-resolution spectra are therefore
reguired to measurerotational broadeninginthelate-typestars. In 1967, Kraft pushed the
photographictechniquetoitslimit tomeasurev sini aslow as6 kms~tin solar-typestars.
Now, as early as 1933, John A. Carroll had suggested the application of Fourier analysis
to spectra line profiles for rotational velocity determinations. In 1973, the problem was
reconsidered by David F. Gray, who showed that high-resolution data make it possible
to distinguish between the Fourier transform profile arising from rotation versus those
arising from other broadening mechanisms. Since the late 1970s systematic studies of
very slow rotators have been made by Gray, Myron A. Smith, David R. Soderblom,
and others. Current techniques limit the measurement accuracy of projected rotational
velocitiesto 2 km st in most stars.

Periodic variations in the light output due to dark or bright areas on some rotating
stars have also been used to determine the rotation periods of these stars. Although the
principle of rotational modulation was suggested as early as 1667 by Isma&l Boulliaud,
convincing detection of this effect was not made until 1947, when Gerald E. Kron found
evidence in the light curve of the eclipsing binary AR Lacertae for surface inhomo-
geneities in its G5 component. The principle was therefore well established when in
1949 Horace W. Babcock proposed the so-called oblique-rotator model for the magnetic
and spectrum variations of the periodic Ap stars. Kron's result was forgotten till 1966,
when interest in the principle of rotational modulation was independently revived by
Pavel Chugainov. A large body of literature has developed since the late 1960s. This
work generally divides according to the method used to estimate the rotation periods,
with the two typesbeing (i) photometric monitoring of light variations produced by large
starspot groups or bright surface areas and (ii) measurements of the periodic variation in
strength of some emission linesthat are enhanced in localized active regionsin the chro-
mosphere. These techniques have the advantage that arotation period can be determined
to much higher precision than v sini and are free of the sini projection factor inherent
to the spectrographic method. Moreover, very accurate rotation periods can be derived
even for quite slowly rotating stars at rates that would be impossible to see as a Doppler
broadening of their spectral lines.

A different line of inquiry was initiated by the discovery of the so-called five-minute
oscillations in the solar photosphere. The first evidence for ubiquitous oscillatory mo-
tions was obtained in the early 1960s by Robert B. Leighton, Robert W. Noyes, and
George W. Simon. However, it is not until 1968 that Edward N. Frazier suggested that
“...thewell known 5 min oscillations are primarily standing resonant acoustic waves.”*

* Zeit. Astrophys., 68 (1968), p. 345.
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Two years later, Roger K. Ulrich presented a detailed theoretical description of the phe-
nomenon, showing that standing acoustic waves may be trapped in a layer beneath the
solar photosphere. Thismodel wasindependently proposedin 1971 by John W. L eibacher
and Robert F. Stein. In 1975, Franz-L udwig Deubner obtained the first observational ev-
idence for these trapped acoustic modes. Soon afterward, it was realized that a detailed
analysis of the frequencies of these many oscillatory modes could provide a probe of
the solar internal rotation. Indeed, because axia rotation breaks the Sun’s spherical
symmetry, it splits the degeneracy of the nonradial modes with respect to the azimuthal
angular dependence. A techniquefor measuring the solar internal rotation from thesefre-
guency splittings was originally devised by Edward J. Rhodes, Jr., Deubner, and Ulrich
in 1979. Since 1984, following the initial work of Thomas L. Duvall, John W. Harvey,
and others,* diverse methods have been used to determine the Sun’s internal angular
velocity.

1.2 The Sun

In Section 1.1 we briefly discussed the early measurements of the axial rotation
of the Sun. With the advent of more sensitive instruments, however, Doppler and tracer
measurements have shown that the solar atmosphere exhibits motions on widely differ-
ent scales. Besides the large-scale axisymmetric motions corresponding to differential
rotation and meridional circulation, velocity fields associated with turbulent convection
and also with oscillatory motions at about a five-minute period have been observed.
Considerable attention has focused on analysis of these oscillations since, for the very
first time, they make it possible to probe the Sun’sinternal rotation.

1.2.1 Large-scale motionsin the atmosphere
The solar surface rotation rate may be obtained from measurements of the lon-
gitudinal motions of semipermanent features across the solar disk (such as sunspots,
faculae, magnetic field patterns, dark filaments, or even coronal activity centers), or
from spectrographic observations of Doppler displacements of selected spectral lines
near the solar limb. Each of the two methods for deriving surface rotation rates has its
own limitations, although few of these limitations are common to both. Actually, the
determination of solar rotation from tracers requires that these semipermanent features
be both randomly distributed throughout the fluid and undergo no appreciable proper
motion with respect to the medium in which they are embedded. In practice, no tracers
have been shown to possess both characteristics; moreover, most of them tend to occur
in alimited range of heliocentric latitudes. By the spectrographic method, rotation rates
can be found over a wider range of latitudes. But then, the accuracy is limited by the
presence of inhomogeneities of the photospheric velocity field and by macroscopic mo-
tions within coronal and chromospheric features, so that the scatter between repeated
measurementsis large.
Figure 1.1 assembles sidereal rotation rates obtained from photospheric Doppler and
tracer measurements. Theobservationsrefer to the sunspotsand sunspot groups, magnetic
field patterns, and Doppler shifts. In al cases the relationships shown in Figure 1.1 are

* Nature, 310 (1984), pp. 19 and 22.
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Fig. 1.1. Comparison of the solar differential rotation obtained by different methods. Source:
Howard, R., Annu. Rev. Astron. Astrophys., 22, 131, 1984. (By permission. Copyright 1984
by Annual Reviews.)

smoothed curves obtained by fitting the data to expansionsin the form
Q= A+Bsin?¢ +Csing. (1.3

The decrease of angular velocity with increasing heliocentric latitude is clear. However,
it is also apparent that different techniques for measuring the solar surface rotation rate
yield significantly different results. In particular, the sunspot groups rotate more slowly
intheir latitudesthan individual sunspots. Note al so that therotation rate for the magnetic
tracersisintermediate between that for the individual spots and that for the photospheric
plasma. It is not yet clear whether these different rotation rates represent real differences
of rotation at variousdepthsinthe solar atmosphere or whether they reflect acharacteristic
behavior of the tracers themselves.

Chromospheric and coronal rotation measurements have aso been reported in the
literature. It seems clear from these resultsthat thelatitudinal gradient of angular velocity
depends very much on the size and lifetime of the tracers|ocated above the photosphere.
To be specific, the long-lived structures exhibit smaller gradients than the short-lived
ones, and the very long-lived coronal holes rotate almost uniformly. These noticeable
differences remain poorly understood.
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Fig. 1.2. Residuals of annual average sunspot rotation rates for the period 1921-1982. So-
lar cycle maxima timing and length are denoted by numbered boxes. Vertical lines denote
year of sunspot minimum. Source: Gilman, P. A., and Howard, R., Astrophys. J., 283, 385,
1984.

Figure 1.1 merely illustrates the mean properties of the solar surface differential ro-
tation. As was originaly shown by Howard and LaBonte (1980), however, analysis of
theresidual maotionsin the daily Doppler measurements made at M ount Wilson suggests
the presence of atorsional oscillation of very small amplitude in the photosphere. This
oscillation isan apparently organized pattern of zonally averaged variationsfrom amean
curvefor the differential rotation, as defined in Eq. (1.3). The amplitude of the residuals
constituting the torsional oscillation is of the order of 5 m s72. It is a traveling wave,
with latitude zones of fast and slow rotation, that originates near the poles and moves
equatorward over the course of a 22-year cycle. The latitude drift speed of the shear
is of the order of 2 m s™2. In the lower heliocentric latitudes, the torsional shear zone
between the fast stream on the equator side and the slow stream on the pole side is the
locus of solar activity. This coincidence strongly suggests that this torsional oscillation
is somewhat related to the solar activity cycle.

Variations of the solar surface rotation rate over individual sunspot cycles have been
reported by many investigators. Detailed analyses of the Mount Wilson sunspot datafor
the period 19211982 suggest that on average the Sun rotates more rapidly at sunspot
minimum.* A similar frequency of rotation maximaisal so seenin the Greenwich sunspot
data for the years 1874-1976. The variability of the mean rotation rate is illustrated in
Figure 1.2, which exhibits peaks of about 0.1 degree day—?! in the residuals near minima
of solar activity. The Mount Wilson data also show variations from cycle to cycle, with
the most rapid rotation found during cycles with fewer sunspots and less sunspot area.

* A similar result was obtained by Eddy, Gilman, and Trotter (1977) from their careful anaysis of
drawings of the Sun made by Christopher Scheiner (during 1625-1626) and Johannes Hevelius
(during 1642—-1644). During theearlier period, which occurred 20 yearsbeforethe start of the Maunder
sunspot minimum (1645-1715), solar rotation was very much like that of today. By contrast, in the
later period, the equatorial velocity of the Sun was faster by 3 to 5% and the differential rotation was
enhanced by afactor of 3. Theseresultsstrongly suggest that the changein rotation of the solar surface
between 1625 and 1645 was associated, as cause or effect, with the Maunder minimum anomaly.
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Very recently, Yoshimura and Kambry (1993) have found evidence for a long-term
periodic modulation of the solar differentia rotation, with a time scale of the order
100 years. This modulation was observed in the sunspot data obtained by combining
Greenwich data covering the period 1874-1976 and Mitaka data covering the period
1943-1992. Their analysis suggests that there exists awell-defined periodic variation in
the overall rotation rate of the photospheric layers. To be specific, it is found that the
surface rotation rate reaches a maximum at solar cycle 14, decreases to a minimum at
cycle 17, and increases again to reach amaximum at cycle 21. Moreover, thetime profile
of thelong-term modulation of the solar rotation is quite similar to the time profile of the
solar-cycle amplitude modul ation, but the two profiles are displaced by about 23 yearsin
time. Further study is needed to ascertain whether this long-term modulation is strictly
periodic or part of along-term aperiodic undulation.

Several observational efforts have been made to detect a mean north—south motion
on the Sun’s surface. Unfortunately, whereas the latitudinal and temporal variations of
the solar rotation are reasonably well established, the general features of the meridional
flow are still poorly understood. Three different techniques have been used to measure
these very slow motions: (i) the Doppler shift of selected spectral lines, (ii) the dis-
placement of magnetic features on the solar disk, and (iii) the tracing of sunspots or
plages. A majority of Doppler observations suggests a poleward motion of the order
of 10 m s™1, whereas others differ in magnitude and even in direction. Doppler data
obtained with the Global Oscillation Network Group (GONG) instruments in Tucson
from 1992 to 1995 indicate a poleward motion of the order of 20 m s™1, but the results
also suggest that the Sun may undergo episodes in which the meridional speedsincrease
dramatically. The analysis of magnetic features showsthe existence of ameridional flow
that is poleward in each hemisphere and is of the order of 10 m s™1, which agrees with
most of the Doppler measurements. On the contrary, sunspots or plages do not show
a simple poleward meridional flow but a motion either toward or away from the mean
latitude of solar activity, with a speed of a few meters per second. Analysis of sunspot
positions generally shows equatorward motions at low heliocentric latitudes and pole-
ward motions at high latitudes. Several authors have suggested that these discrepancies
might be ascribed to the fact that different features are anchored at different depths in
the solar convection zone. Accordingly, the meridional flow deep into this zone might
be reflected by the sunspot motions, whereas the meridional flow in the upper part of
this zone might be reflected by the other measurements. As we shall seein Section 5.2,
these speculations have a direct bearing on the theoretical models of solar differential
rotation.

1.2.2 Helioseismology: Theinternal rotation rate

The Sunisavery small amplitude variable star. Its oscillations are arising from
a huge number of discrete modes with periods ranging from a few minutes to severa
hours. The so-caled five-minute oscillations, which have frequencies between about
2 mHz and 4 mHz, have been extensively studied. They correspond to standing acoustic
wavesthat are trapped beneath the solar surface, with each mode traveling within awell-
defined shell in the solar interior. Since the properties of these modes are determined by
the stratification of the Sun, accurate measurements of their frequencies thus provide a
new window in the hitherto invisible solar interior.
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To afirst approximation, the Sun may be considered to be a spherically symmetric
body. In that case, by making use of spherical polar coordinates (r, 9, ¢), we can write
the components of the Lagrangian displacement for each acoustic mode in the separable
form

dR™  B™ 9
¢ = (sr R™. & | )cos(mqo—wn,lt), (L4)

bl B £ _

do ’ “"cosd dg
where P™(cos@) is the associated Legendre function of degree | and order m (—I <
m < +l1). The eigenfunctions & (r; n,|) and &.(r; n, |) define the radial and horizontal
displacements of themode. Both functionsdepend on theinteger n, whichisrelated to the
number of zerosof thefunction & aong theradius, and theinteger |, which isthe number
of nodal lines on the solar surface. Because a spherical configuration has no preferred
axis of symmetry, these eigenfunctions are independent of the azimuthal order m, so that
to each value of the eigenfrequency wy| correspond 2| + 1 displacements. Rotation splits
this degeneracy with respect to the azimuthal order m of the eigenfrequencies. Hence,
we have

Wnl,m = Wn| + AC‘)n,l,m‘ (1-5)

Since the magnitude of the angular velocity 2 is much less than the acoustic frequencies
wn,, perturbation theory can be applied to calculate these frequency splittings. One can
show that

R pm
Awnym=m / / Ko m(r, 6) (1, 6) rdr do, (1.6)
0 JoO

where the rotational kernels K, m(r, ) are functions that may be derived from a non-
rotating solar model for which one has calculated the eigenfrequencies wy, and their
corresponding eigenfunctions. Given measurements of the rotational splittings Awn,.m,
itisthereforepossible, in principle, to solvethisintegral equationfor theangular vel ocity.

Measurement of the rotational splitting Awn.m provides a measure of rotation in a
certain region of the Sun. In fact, the acoustic modes of progressively lower | penetrate
deeper into the Sun, so that the information on the angular velocity in the deeper layers
is confined to splittings of low-I modes. Similarly, because only when an acoustic mode
is quasi-zonal can it reach the polar regions, the information on the angular velocity at
high heliocentric latitudes is confined to splittings of low-m modes. Since the measured
splittings for the low-I and low-m modes have comparatively larger relative errors, de-
termination of the function Q(r, ) thus becomes increasingly difficult with increasing
depth and increasing latitude.

Several groups of workers have observed the splittings of acoustic frequencies that
arise from the Sun’s differentia rotation. Figures 1.3 and 1.4 illustrate the inverted
solution of Eq. (1.6) based on frequency splitting determinations from the latest GONG
data (1996). Note that the equatorial rotation rate presents a steep increase with radius
near r = 0.7R,, thus suggesting the possibility of a discontinuity near the base of the
convection zone. Note also that the equatorial rotation rate peaks near r = 0.95R,,
before decreasing with radius in the outermost surface layers. Figure 1.4 illustrates the
latitudinal dependence of the inverted profile. In the outer convection zone, for latitude
¢ < 30°, the rotation rate is nearly constant on cylinders, owing to a rapidly rotating
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Fig. 1.3. Solar rotationrateinferred fromthelatest GONG data (1996). The curvesare plotted
asafunction of radius at the latitudes of 0° (top), 30° (middle), and 60° (bottom). The dashed
curvesindicateerror levels. Source: Sekii, T., in Sounding Solar and Stellar Interiors(Provost,
J., and Schmider, F. X., eds.), I.A.U. Symposium No 181, p. 189, Dordrecht: Kluwer, 1997.
(By permission. Copyright 1997 by Kluwer Academic Publishers.)

belt centered near r = 0.95R,. At higher latitudes, however, the rotation rate becomes
constant on cones. The differential character of the rotation disappears below a depth
that corresponds to the base of the convection zone. This solution agrees qualitatively
with theinverted profiles obtained by other groups. Perhapsthe most interesting result of
these inversionsis that they show no sign of atendency for rotation to occur at constant
angular velocity on cylinders throughout the outer convection zone.

In summary, severa inversion studies indicate that the rotation rate in the solar con-
vection zoneis similar to that at the surface, with the polar regions rotating more slowly
than the equatorial belt. Near the base of the convection zone, one finds that there exists
an abrupt unresolved transition to essentially uniform rotation at arate corresponding to
some average of therate in the convection zone. This shear layer, which is known as the
solar tachocline, is centered near r = 0.7R,; recent studies indicate that it is quite thin,
probably no more than 0.06R,,. The actual rotation rate in the radiative core remains
quite uncertain, however, because of alack of accurately measured splittings for low-|
acoustic modes. Several investigators have found that from the base of the convection
zone downtor ~ 0.1-0.2R, their measurements are consistent with uniform rotation
at a rate somewhat lower than the surface equatorial rate. Not unexpectedly, the rota-
tion rateinside that radiusis even more uncertain. Some studies suggest that the rotation
rate of thisinner core might be between 2 and 4 times larger than that at the surface.
According to other investigators, however, it is more likely that this inner core rotates
with approximately the same period as the outer parts of the radiative core. | shall not
go into the disputes.
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Fig. 1.4. Solar rotation rate as a function of normalized radius and latitude. Contours of
isorotation are shown, superimposed on a gray-scale plot of the formal errors. A very dark
background means alessreliable determination. Source: Korzennik, S. G., Thompson, M. J.,
Toomre, J., and the GONG Internal Rotation Team, in Sounding Solar and Sellar Interiors
(Provost, J., and Schmider, F. X, eds.), |.A.U. Symposium No 181, p. 211, Dordrecht: Kluwer,
1997. (Courtesy of Dr. F. Pijpers. By permission; copyright 1997 by Kluwer Academic
Publishers.)

1.3 Single stars

As was noted in Section 1.1, two basic methods have been used to measure
rotational velocities of single stars. One of them consists of extracting rotational broad-
ening from aspectral line profile, from which oneinfersthe projected equatorial velocity
vsini aong theline of sight. The other one consists of determining the modulation fre-
guency of a star’s light due to the rotation of surface inhomogeneities (such as spots
or plages) across its surface. If observable, this modulation frequency is a direct esti-
mate of the star’s rotation period P, which is free of projection effects. Hence, given
aradius R for the star, this period can be transformed into a true equatorial velocity v
(= QR =27R/Py).

The spectrographic method has proven useful in determining the projected velocities
for stars of spectral type O, B, A, and F. In fact, vsini measurements can only be
used in a statistical way because the inclination anglei is generally unknown. Evidence
for random orientation of rotation axes is found in the lack of correlation between the
measured values of v sini and the gal actic coordinates of the stars. For randomly oriented
rotation axes, one can thus convert the average projected equatorial velocity (v sini) for
agroup of starsto an average equatorial velocity (v}, taking into account that the average
value (sini) is equal to /4. Numerous statistical studies have been made over the
period 1930-1970. The main results pertaining to stellar rotation have been assembled
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Fig. 1.5. Mean projected equatorial velocities for a number of different classes of stars
as compared with normal main-sequence stars. Source: Slettebak, A., in Stellar Rotation
(Slettebak, A., ed.), p. 5, New York: Gordon and Breach, 1970. (By permission. Copyright
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by Slettebak and are summarizedin Figure 1.5. Inthisfigure the mean observed rotational
velocitiesfor single, normal, main-sequence stars are compared with the mean observed
vsinisfor giant and supergiant stars, Be stars, peculiar A-type and metallic-line stars,
and Population |1 objects.

The distribution of rotational velocities along the main sequence is quite remarkable;
Rotation increases from very low values in the F-type stars to some maximum in the
B-type stars. However, adifferent picture emerges when one considers the mean rotation
periods rather than the mean equatorial velocities. Thisisillustrated in Table 1.1 which
lists typical values of the masses, radii, equatorial velocities, angular velocities, and
rotation periods. Note that the periods reach a minimum value of about 0.56 day near
spectral type A5, and they increase rather steeply on both sides so that the GO- and O5-
type stars have approximately the same rotation period. The large observed values (v)
for the upper main-sequence stars are thus entirely due to the large radii of these stars.

TheopencirclesinFigure 1.5 represent meanrotational velocitiesfor starsbel ongingto
the luminosity classes |1l and IV; they are connected by abroad cross-hatched band, thus
suggesting uncertainties in the mean rotational velocities for the giant stars. According
to Slettebak, the very low point at spectral type A0 can probably be interpreted in terms
of selection effects. In any case, the broad band indicates that the early-type giants rotate
mores owly than the main-sequence starsof corresponding spectral types, whereasfor the
late A- and F-typesthe giants rotate more rapidly than their main-sequence counterparts.
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Table 1.1. Average rotational velocities of
main-sequence stars.

Spectrum M R v Q Prot

(dassV) (Mg) (Ro) (kms™) (107°s) (days)
05 39.5 17.2 190 15 4.85
BO 17.0 7.6 200 38 191
B5 7.0 4.0 210 7.6 0.96
A0 3.6 2.6 190 10.0 0.73
A5 2.2 1.7 160 13.0 0.56
FO 1.75 13 95 10.0 0.73
F5 14 1.2 25 3.0 242
GO0 1.05 1.04 12 16 4.55

Source: McNally, D., The Observatory, 85, 166, 1965.

This behavior can be interpreted as an evolutionary effect. As we know, the rapidly
rotating B- and A-type main-sequence starsevolveto luminosity classes!il and 1V inlater
spectral types. But then, the drop in rotation asthe star’ s radius increases is compensated
by the steeper drop in rotation along the main sequence, so that the evolving star still
has a larger equatorial velocity than its main-sequence counterpart. As we shall seein
Section 6.5, the drop in rotation for the giants takes place between spectral types GO |11
and G3 I11; the drop for subgiants occurs alittle earlier, at spectral typesF6 1V to F8 I V.

Supergiants and Population Il stars are shown schematically near the bottom of Fig-
ure 1.5. The supergiants of all spectral types do not show conspicuous rotations. They
show no sudden decreasein rotation either, although rotational velocitiesupto 90 kms=?
are observed for spectral types earlier than F9. The apparent rotation velocities of Pop-
ulation 11 stars are also small, with v sini values smaller than 30 km s™. Note also that
the mean rotational velocities of the peculiar A-type stars and metallic-line stars are
considerably smaller than the means for normal stars of corresponding spectral types.
Finally, going to the other extreme, we note that the Be stars rotate most rapidly, and
individual rotational velocities of 500 km s~ have been observed by Slettebak. These
starsare shown separately on Figure 1.5, with arrowsindicating that their mean rotational
velocities are in reality larger than shown. (Aswe shall seein Sections 6.3.2 and 6.3.4,
however, there are no early-type stars with rotation rates anywhere near the critical rate
at which centrifugal force balances gravity at the equator.) As arule, the white dwarfs
rotate rather slowly, with typical vsini values of order 20 km s, and none of them
rotates faster than 60 km s,

To put the relation between stellar age and axia rotation on a firm quantitative basis,
several authors have obtained projected equatorial velocities for stars belonging to open
clusters and associations. Detailed statistical analyses have been made by Bernacca and
Perinotto (1974) and Fukuda (1982). In Figure 1.6, which is derived from data presented
by Fukuda, we compare the average rotational velocity loci for field and cluster stars. As
was done in Figure 1.5, the data have been grouped to smooth out irregularities in the
distributions of (v sini ) along the main sequence (see aso Section 6.3). Figure 1.6 shows
that field and cluster stars of spectral type O, B, and A have mean projected rotational
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Fig. 1.6. Mean projected equatorial velocitiesfor early-typefield and cluster stars. Note that
the open-cluster F dwarfs rotate more rapidly than their older, field counterparts. Source:
Stauffer, J. R., and Hartmann, L. W., Publ. Astron. Soc. Pacific, 98, 1233, 1986. (Courtesy of
the Astronomical Society of the Pacific.)

velocities in the range 150200 km s~1. Within each spectral type, the mean rotational
velocities of the field stars earlier than spectral type FO are aimost the same as those in
clusters. Later than spectral type FO, however, the rotational velocities steeply decrease
with increasing spectral type, dropping to below 20 km s at spectral type GO. Note also
that the F-type cluster stars, which are generally younger than the field stars, rotate more
rapidly than their field counterparts. This result confirms Kraft's (1967) origina finding
that themean rotational vel ocities of late-F and early-G starsdeclinewith advancing age.
Thiscorrel ation between rotation and age was quantified shortly afterward by Skumanich
(1972), who pointed out that the surface angular velocity of a solar-type star decays as
the inverse sgquare root of its age. To agood degree of approximation, we thus let

Qo t™? (1.7

whichisknown as Skumanich’slaw. (Other mathematical relations between rotation and
age have been suggested, however.) As we shall see in Section 7.2, such a spin-down
process is consistent with the idea that magnetically controlled stellar winds and/or
episodic mass gjections from stars with outer convection layers continuously decelerate
these stars as they sowly evolve on the main sequence.

An inspection of Figure 1.5 shows that appreciable rotational velocities are common
among the normal O-, B-, and A-type stars along the main sequence, whereas they



1.3 Single stars 15

200 _I T dol T LKé T ® i KSI T | lMé T T T 11 I I MSI__
150 |- * —
— — [ _J -
E - .
N A 1
~ Y . .
100 — —
[ ]
L ° _
n 'o A i
e ° .
- * ) -
50 :—o ... . -—_
[ ]
. @ . P . -
L e _
L e’ Wb ° ° . .
0 S T T I N B l E I I I | | ot 0t l S .| [ t 11
) 1 1.5 2 2.5
V-1

Fig. 1.7. Rotational velocity distribution for o Persei members. Source: Stauffer, J. R., Hart-
mann, L. W., and Jones, B. F., Astrophys. J., 346, 160, 1989.

virtually disappear near spectral type F5. Several photometric and spectroscopic studies
made during the 1980s have confirmed that late-type, old field dwarfswith few exceptions
are slow rotators, with true equatorial velocities less than 10 km st in most stars.
Fortunately, because continuous mass loss or discrete mass g ections cause spin-down
of stars having convective envelopes, this sharp drop in rotational velocities along the
main sequence is considerably reduced in younger stellar groups. Hence, clues to the
rotational evolution of low-mass stars may be gained from the study of stars belonging
to open clusters. Thisisillustrated in Figures 1.7 and 1.8, which depict, respectively,
the rotational velocity distributions for lower main-sequence starsin the o Persei cluster
(age ~ 50 Myr) and in the Hyades (age ~ 600 Myr). Figure 1.7 shows that the young «
Persei cluster has alarge number of very slowly rotating stars and a significant number
of stars with projected equatorial velocities greater than 100 km s~1. Thisisin contrast
to the older Hyades, where G and K dwarfs are slow rotators, with the mean equatorial
velocity appearing to decrease at least until spectral type K5. There is one prominent
exception in Figure 1.8, however, a K8 dwarf that is the earliest known member of a
population of relatively rapidly rotating late K- and M-type Hyades stars. These are
genuine evolutionary effects that will be discussed in Section 7.4.2.

Other essentia clues to the initial angular momentum distribution in solar-type stars
can be obtained from the rotational velocity properties of low-mass, pre-main-sequence
stars. These starsarecommonly dividedintotwo groups: theclassical T Tauri stars, which
have evidence of active accretion, and the weak-line T Tauri stars, which do not. Several
photometric monitoring surveyshave successfully determined rotation periodsfor alarge
number of these stars. It appears likely that most of the weak-line stars rotate faster than
the classical T Tauri stars. Moreover, as was originally found by Attridge and Herbst



16 Observational basis

7 L . | S S T
14 * -
12 _—- . —:
7 [ ]
@ — -
g 1o -
~ d o -
£ e ]
— [~ Y -
g of =
] - . i
E : L] . ° . :
g 8 — 3 . . -
s B ¢ ]
e r . .
< - hd -

= . 3 . .
g *C ]
=3 . -
2l —
F7 GO G5 KO0 K5 -
0 ! ' ] ! ! l ] I 1 I ! 1 1 ' 1 L] 1 I 1 ]
B .8 1 1.2 1.4
B-V COLOR

Fig. 1.8. Rotational velocity distribution for 23 Hyades stars. Source: Radick, R. R., Thomp-
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(1992), the frequency distribution of rotation periods for the T Tauri stars in the Orion
Nebula cluster is distinctly bimodal. Figure 1.9 illustrates the frequency distribution of
known rotation periods for these stars, combining the data for the Trapezium cluster,
the Orion Nebula cluster, and other T associations. This combined distributionisclearly
bimodal, with a sparsely populated tail of extremely slow rotators. The implications of
this bimodality will be further discussed in Section 7.4.1.

14 Close binaries

In Section 1.1 we pointed out that the early-type components of close binaries
rotate more slowly than the average of single stars of the same spectral type. In con-
trast, whereas the rotational velocities of single main-sequence stars of spectral type
F5 and later are quite small (i.e., less than 10 km s™1), appreciable rotations are com-
mon among the late-type components of close binaries. It haslong been recognized that
the distribution of rotational velocities in the close binaries is caused mostly by tidal
interaction between the components, although some other processes — such as stellar
winds, gravitational radiation, and large-scale magnetic fields— may aso play a definite
role in some binaries. To be specific, all types of tidal interaction involve an exchange
of kinetic energy and angular momentum between the orbital and rotational motions.
If we neglect stellar winds, the total angular momentum will be conserved in the tidal
process. However, due to tidal dissipation of energy in the outer layers of the compo-
nents, the total kinetic energy will decrease monaotonically. Accordingly, as a result of



1.4 Close binaries 17

12 IIII'IIII LI IlIlIIIII L IlIIl

Number of Stars

||||I||||I||ul_-

0 5 10 15 20 25 30 35

Rotation Period (Days)

Fig. 1.9. Histogram showing the frequency distribution of rotation periods of T Tauri stars.
Thisfigure combinesthe datafor the Trapezium cluster, the Orion Nebulacluster, and other T
associations. Source: Eaton, N. L., Herbst, W., and Hillenbrand, L. A., Astron. J., 110, 1735,
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various dissipative processes, a close binary starting from a wide range of initial spin
and orbital parameters might eventually reach a state of minimum kinetic energy. This
equilibrium state is characterized by a circular orbit, where the stellar spins are aligned
and synchronized with the orbital spin.

As we shall seein Sections 8.2-8.4, however, in detached binaries the synchroniza-
tion of the components proceeds at a much faster pace than the circularization of their
orbits. Accordingly, the rotation of each component will quickly synchronize with the
instantaneous orbital angular velocity at periastron,

_ (l+ e)1/2
T (1-e)p2

wherethetidal interactionisthe most important during each orbital revolution. (Asusual,
e is the orbital eccentricity and Qg is the mean orbital angular velocity.) Figure 1.10
illustrates this concept of pseudo-synchronism for a sample of selected eclipsing bina-
ries with eccentric orbits for which we have accurate absolute dimensions. This figure
compares the observed rotational velocities with the computed rotational velocities, as-
suming synchronization at periastron. We observe that most points scatter along the
45-degree line, indicating that pseudo-synchronization obtainsin most close binaries of
short orbital periods, either perfectly or approximately.

Observations show that an upper limit to the orbital period exists at which the ob-
served rotational velocities begin to deviate very much from the synchronization (or

2p Qo (1.8)
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pseudo-synchronization) period. As was originally noted by Levato (1976), the orbital
period below which main-sequence binary components are still rotating in synchronism
depends on spectral type. Specifically, he found that the largest orbital period for full
synchronism is about 4-8 days in the early B spectral range, decreases to a minimum
value of about 2 days at mid A-type, and increases up to 10-14 days at mid F-type. Sub-
sequent investigations have confirmed that the tendency toward synchronization between
the axial rotation and orbital revolution is indeed stronger in the F-type and later types
than in the hotter ones. However, these studies have also demonstrated that in the whole
early spectral range synchronism (or pseudo-synchronism) extends up to binary separa-
tions substantially greater than previously held. For example, the rotational properties of
alarge sample of early-type double-lined spectroscopic binaries have been investigated
by Giuricin, Mardirossian, and Mezzetti (1985). Their statistical study indicates that
a considerable tendency toward pseudo-synchronization extends up to a distance ratio
d/R ~ 20 in the early-type (from O to F5) close binaries. (Here d is the mean distance
between the componentsand R istheradius.) Infact, only for d/R = 20 do pronounced
deviations from synchronism at periastron become the rule in these binaries. In terms
of orbital periods (for an easier comparison with Levato’'s underestimated upper limit
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Fig. 1.11. Period—eccentricity distribution for a sample of spectroscopic binaries with A-
type primaries. Single-lined binaries are shown as crosses; double-lined binaries are shown
asfilled circles. Source: Matthews, L. D., and Mathieu, R. D., in Complementary Approaches
to Double and Multiple Star Research (McAlister, H., and Hartkopf, W. I., eds.), ASP.
Conference Series, 32, 244, 1992. (Courtesy of the Astronomical Society of the Pacific.)

periods), alimiting value of d/R &~ 20 corresponds to orbital periods of about 26, 18,
and 13 days at spectral types B2, AO, and A5, respectively.

It is awell-known fact that circular (or nearly circular) orbits greatly predominate in
short-period binaries. Since tidal interaction between the components of close binaries
will tend to circularize their orbits, the precise determination of the cutoff period above
which binaries display eccentric orbits appearsto be avaluabletest for thetidal theories.
Giuricin, Mardirossian, and Mezzetti (1984) have studied the period—eccentricity dis-
tribution for alarge sample of early-type detached binaries, excluding systems believed
to have undergone (or to be undergoing) mass exchange between the components. They
found that amost all binaries have circular or nearly circular orbits for orbital periods
P smaller than 2 days. However, a mixed population of circular and eccentric orbits
was found in the period range 2—-10 days. Beyond P = 10 days al orbits are eccen-
tric. A similar result was obtained by Matthews and Mathieu (1992), who investigated
the period—eccentricity distribution of a sample of spectroscopic binaries with A-type
primary stars. Figure 1.11 clearly shows that all binaries with orbital periods less than
P ~ 3 dayshavecircular or aimost circular orbits (i.e., e < 0.05). Binaries with periods
between 3 and 10 days are found with either circular or eccentric orbits, with the maxi-
mum eccentricity increasing with period. The longest-period circular orbitisat P = 9.9
days. This is exactly the kind of distribution one may expect to find for a sample of
detached binaries with a random distribution of ages, where the population of circular
and eccentric orbits becomes increasingly mixed as the Ps tend toward an upper limit
period above which all orbits become eccentric.* For comparison, Figure 1.12 illustrates

* More recently, Mermilliod (1996, Fig. 2) has shown that this upper limit period was actually close
to 25 days for a sample of 39 late-B and A-type binary stars belonging to open clusters. Note also
that most of the O-type binaries with periods less than 30 days have circular orbits, whereas the
long-period systems have eccentric orbits (Massey, 1982, p. 258).
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Fig. 1.12. Period—eccentricity distribution for a sample of spectroscopic binaries with red
giant primaries. Source: Mermilliod, J. C., Mayor, M., Mazeh, T., and Mermilliod, J. C.,
in Binaries as Tracers of Stellar Formation (Duquennoy, A., and Mayor, M., eds.), p. 183,
Cambridge: Cambridge University Press, 1992.

the period—eccentricity distribution of spectroscopic binaries with red giant primaries.
Not unexpectedly, becausered giantsreach larger radii than main sequence stars, circular
orbitsare found for larger orbital periods. Note al so the mixed population of circular and
eccentric orbitsin the period range 80-300 days. Again, thisis caused by the mixing of
al red giants, since the sample contains arange in age and mass.

It will be shownin Sections8.2—8.4 that the degree of circularity of an orbit dependson
how long thetidal forces have been acting on the components of aclose binary. The study
of binaries belonging to clusters is of particular interest, therefore, since these are the
only stars for which one has some information about their ages. Mayor and Mermilliod
(1984) were the first to study the orbital eccentricities for a coeval sample of late-type
binaries in open clusters (33 red-dwarf binaries in the Hyades, Pleiades, Praesepe, and
Coma Berenices open clusters). They found that al binaries with periods shorter than
5.7 days display circular orbits whereas al orbits with longer periods have significant
eccentricities. More recently, it has been found that other coeval samples with different
evolutionary ages exhibit transitions between circular and eccentric orbits at distinct cut-
off periods. It is immediately apparent from Table 1.2 that the transition period Py
increases monotonically with the sample age t,. Accordingly, the observed t,—Pg
relation strongly suggests that the circularization mechanism is operative during the
main-sequence lifetime of the stars — pre-main-sequence tidal circularization is permit-
ted but not required by present observations. This provides a very important test for the
tidal mechanisms since thetheoretical circularization time cannot exceed the sample age
at cutoff period.

Tidal interactioninthe RS CVn stars poses quite achallenging problem also. Infact, in
these chromospherically active binaries thereis still atendency toward synchronization
inthe period range 30-70 days, upto P = 100 days. However, asynchronousrotatorsare
present in al period groups, even among binaries with orbital periods of 30 daysor less.
In these systems one also finds that the rotation periods are either shorter or longer than
theorbital periods, independent of the orbital eccentricities. Aswasshown by Tan, Wang,
and Pan (1991), however, asynchronous RS CVn stars have orbital eccentricitiesthat are
larger, on the average, than the eccentricities of pseudo-synchronously rotating systems.
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Table 1.2. The observed t,—P. relation.

Cutoff Period Age

Binary Sample (day) (Gyr)
Pre-main-sequence 4.3 0.003
Pleiades 7.05 0.1
Hyades/Praesepe 85 0.8
M67 124 4.0
Halo 18.7 17.6

Source: Mathieu, R. D., Duguennoy, A., Latham,
D. W., Mayor, M., Mazeh, T., and Mermilliod,
J. C., in Binaries as Tracers of Sellar Forma-
tion (Duquennoy, A., and Mayor, M., eds.), p. 278,
Cambridge: Cambridge University Press, 1992.

These authors also found that the chromospheric activity in their sample of asynchronous
binaries is lower, on the average, than in synchronous RS CVn stars. If so, then, other
braking mechanisms (e.g., magnetically driven winds) must be interfering with tidal
interactioninthesegiant binary stars. To makethe problem even morecomplex, let usnote
that Stawikowski and Glebocki (1994) have found another basic difference between the
synchronousand asynchronouslong-period RSCV nstars, whentheir primary component
isalate-type giant or subgiant: Whereas for synchronously rotating stars the assumption
about coplanarity of their equatorial and orbital planesisjustified, in most asynchronous
binaries the rotation axis of the primary is not perpendicular to the orbital plane. A
similar result was obtained by Glebocki and Stawikowski (1995, 1997) for late-type
main-sequence binaries and short-period RS CVn stars with orbital periods shorter than
about 10 days. Pseudo-synchronism and coplanarity will be further discussed in Section
8.2.1.
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Rotating fluids

21 Introduction

As we may infer from the observations, most stars remain in a state of me-
chanical equilibrium, with the pressure-gradient force balancing their own gravitation
corrected for the centrifugal force of axia rotation. Accordingly, theoretical work has
tended to focus on the figures of equilibrium of arotating star, assuming the motion to
be wholly one of purerotation. However, detailed study of the Sun has demonstrated the
existence of large-scale motionsin its convective envel ope, both around the rotation axis
and in meridian planes passing through the axis. Theoretical work has shown that large-
scale meridional currents also exist in the radiative regions of arotating star. Moreover,
as new results become available, it is becoming increasingly apparent that these regions
contain awide spectrum of turbulent motions embedded in the large-scal e flow. All these
problems are the domain of astrophysical fluid dynamics — a field that has devel oped
quite slowly until recently.

Over the course of the past fifty years, however, meteorologists and oceanographers
have made important advances in our knowledge of the behavior of rotating fluids. |
thus find it appropriate to review some dynamical concepts that are applicable to both
the Earth’s atmosphere and the oceans. As we shall see, al of them play akey rolein
providing useful ideas for quantitative analysis of large-scale motions in a rotating star.
Accordingly, unless the reader is aready familiar with geophysical fluid dynamics, |
recommend reading this introductory chapter, which is essentia for understanding the
many hydrodynamical problems treated in the book.

2.2 The equations of fluid motion

Fluid dynamics proceeds on the hypothesis that the length scale of the flow is
aways taken to be large compared with the mean free path of the constitutive par-
ticles, so that the fluid may be treated as a continuum. This model makes it pos-
sible to treat fluid properties (such as velocity, pressure, density, etc.) at a point in
space, with the physical variables being continuous functions of space and time. In
other words, we assume that the macroscopic behavior of our systems is the same
as if their distribution of matter were perfectly continuous in structure. Accordingly,
whenever we speak of the velocity of a “mass element” (or “fluid particle”) we al-
ways mean the average velocity of a large number of constitutive particles contained
within a small volume of finite extent, although this volume must be regarded as a
point.

25
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The mathematical description of a fluid motion from the continuum point of view
alowstwo distinct methods of approach. Thefirst one, called the Lagrangian description,
identifies each mass element and describes what happensto it over time. Mathematically,
we represent the motion by the function

r=r(R,1), (2.2)

where R = (X1, X, X3) isthe original position of afluid particle, at timet = 0 (say),
andr = (Xq, Xo, X3) isthelocation of the same mass element at the subsequent instant t.
The dependent vector r is thus determined as a function of the independent variables R
and t. The velocity and acceleration of afluid particle are
ar 9°r
V(R,t) = ot and a(R,t) = TER (2.2

where the partial derivative indicates that the differentiation must be carried out for a
given mass element (i.e., holding R constant).

The second approach, called the Eulerian description, focuses attention on aparticular
point in space and describes the flow at that point over time. Mathematically, the state
of motion is described by the velocity field

v =v(r,t), (23

where the independent variables are location in space, represented by the vector r = (X,
X2, X3), and time. The acceleration of a fluid particle is the material derivative of the
velocity. Hence, we let

Dv ov
alr,t) = ot ot + (v - grad)v. (2.4)
Similarly, one can define the material derivative
DQ 9Q

which measures the rate of change of the quantity Q asonefollowsafluid particle along
its path.

2.2.1 Conservation principles
It isnot my purpose to demonstrate the basic equations of fluid dynamics, since
their derivation can be found in numerous textbooks. In this section | shall list these
equationsin an inertial frame of reference, making use of the Eulerian specification.
In the absence of sources or sinks of matter within the fluid, the condition of mass
conservation is expressed by the continuity equation,
1 Dp .
» DI +divv = 0. (2.6)
This equation states that the fractional rates of change of density and volume of a mass
element are equal in magnitude and opposite in sign.
Newton’s second law of action can be written in the form
Dv

1 1
— =9g— —gradp+ —f(v), (2.7)
Dt P P
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wheregistheacceleration dueto gravity, p isthedensity, and pisthepressure. Thevector
f istheviscousforce per unit volume, which can be written asthe vectorial divergence of
the viscous stress tensor 7. For Newtonian fluids, the six components of this symmetric
tensor are

avi 8Uj 2 avk> 8Uk
- Rt R At Sii —, 2.8
G * <8Xj + X 3 Y 0 X t K 09Xk ( )

where the coefficients of shear viscosity © and bulk viscosity «s both depend on loca
thermodynamic propertiesonly (6;; = 1ifi = j,&; =0ifi # j; summationover repeated
indices). Thus, we have

f(v) = uVav + (u + :—13/@) grad (divv), (2.9)

where, for the sake of simplicity, we have assumed that the viscosity coefficients remain
constant over the field of motion. Equation (2.7) is often known as the Navier—Stokes
equation.

If the flow is such that the pressure variations do not produce any significant density
variations, the compressibility of the fluid may be neglected. (This occursin most liquid
flows; it also occurs in many of the gas flows for which the speed is everywhere much
smaller than the speed of sound.) In compressibleflows, however, itisalwaysnecessary to
augment Egs. (2.6) and (2.7) with an equation based on the principles of thermodynamics.
To be specific, the conservation of thermal energy implies that

Iy %Ltj + pdivv=div(k.grad T) + @, + pQ, (2.10)
where U isthe thermal energy per unit mass, T is the temperature, k. is the coefficient
of thermal conductivity, @, isthe rate (per unit volume and unit time) at which heat is
generated by viscous friction, and Q is the net heat addition per unit mass by internal
heat sources. For al situations to be discussed in this book, the dissipation function @,
isutterly negligible. Since the function Q is of particular relevance to stellar interiors, it
will be discussed further in Section 3.2.

Now, assuming quasi-static changes at every point of the fluid, we can write
DS DU D /1

- B 211

Dt Dt4_th(p)’ (211)

where Sisthe entropy per unit mass. By virtue of Eq. (2.6), acomparison between Egs.
(2.10) and (2.11) leads to the result

pT%?:dW&mwT%H%+pQ, (2.12)

expressing the change of specific entropy aswe follow a mass element along its motion.
To complete the system of equations, further thermodynamic relations are required.
For example, for an ideal gas, one has

U=cT (2.13)
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and

R
p==pT, (2.14)
w
where 1 is the mean molecular weight. Oneaso hasR /i = ¢, — ¢y, where ¢, and ¢y
are the specific heats, at constant pressure and constant volume. Inserting these relations
into Eg. (2.11), one obtains

S = ¢, log ® + constant. (2.15)
The quantity
(r=1/y
O=T (%) , (2.16)

where pg is a constant reference pressure and y is the adiabatic exponent, is known as
the potential temperature. For isentropic motions (i.e., motions for which the right-hand
side of Eq. [2.12] identically vanishes) the potential temperature of each fluid particle
remains a constant along its path.

2.2.2 Boundary conditions
Inorder tosolvethepartial differential equationsthat governthefluid motion,itis
necessary to prescribeinitial conditions specified over al space and boundary conditions
specified over all time. Whereas initial conditions are always peculiar to the problem at
hand, the appropriate boundary conditions are of arather general nature.
On a fixed solid boundary, there can be no fluid motion across the boundary. This
condition implies that

n-v=0, (2.17)

where n isthe outer normal to the surface. A second condition is provided by the no-dlip
condition that there should be no relative tangential velocity between arigid wall and
the viscous fluid next to it. Hence, we must also prescribe that

nxv=0, (2.18)

on afixed solid wall.

At aninterfacial boundary (such as the top of an ocean or the outer surface of a star),
one must prescribe that no mass element cross this boundary so that fluid particles on
the boundary will remain on the boundary. Thus, if £(r, t) defines the surface elevation
above an equilibrium level, this kinematic boundary condition on the velocity is

Dé§

> _n. 2.1

Dt n-v (2.19)
at thematerial boundary. If thisboundary isfixed (i.e., & = 0), condition (2.19) reducesto

n-v=0, (2.20)

expressing that matter is always flowing along the prescribed material boundary.
Beyond this kinematic boundary condition, it is also clear that we must ensure the
balance of forces at any nonsolid boundary. For example, the gravitational attraction
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must be continuous across the free surface of a star. Similarly, the components of the
stress vector acting on a nonsolid boundary must be continuous across that boundary
(see Eq. [2.9]). Thus, we let

[k (—pdik + TiK)] = 0, (2.21)

where brackets designate the jump that the quantity experiences on a nonsolid boundary
(i =1, 2,3).Inparticular, at thefree surface of astellar model embedded into avacuum,
these three components must identically vanish.

2.2.3 Rotating frame of reference
In some applications, it is convenient to describe the motions as they appear to
an observer at rest in aframe rotating with the constant angular velocity €2. We can write

v(r,t) =u(r,t)+ Q xr, (2.22)

where the velocity u refersto the moving axes. Similarly, the material acceleration (2.4)
has the form

D
a(r,t):EltJ+2(2xu+Qx(er), (2.23)
where
Du ou
— = — + (u-grad)u 2.24
Dt at+( grad) (2.24)

isthe acceleration relative to the rotating frame. The quantities 22 x u and €2 x (2 x r)
represent, respectively, the Coriolis acceleration and the centrifugal acceleration. Since

the tensor (2.8) isinvariant with respect to a uniform rotation, Eq. (2.7) then becomes
D 1 1
?Ltj+29xu=g—ﬂx(ﬂxr)—fgradp-i—ff(u). (2.25)
P o

It isasimple matter to show that
1
Q x (Q xr)=—grad <§|er|2>. (2.26)

Becausethevector gisderivablea so fromascalar potential, V (say), we canthusrewrite
the momentum equation (2.25) in the form

D 1 1

—u+29xu=ge——gradp+ff(u), (2.27)

Dt P P
where

1
ge = —grad (v -5 | x r|2> (2.28)

is the effective gravity. Comparing Eq. (2.27) with Eq. (2.7), one readily sees that the
Coriolis acceleration is the only structural change of Newton's second law for motion
relative to arotating frame of reference.*

* Asfar back as 1835, the French engineer Gaspard Coriolis (1792—1843) made adetailed mathematical
study of the absol ute accel eration of moving solidsin arotating frame of reference. Hiswork had little
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For steady flows, the relative importance of the acceleration measured in the rotating
frame and the Coriolis accel eration can be estimated as

lu-gradu] U?/L U
Qxu QU QL

where U and L are the characteristic velocity and length of the flow. This ratio is a
nondimensional number called the Rossby number, and it is designated by

U
=L
Similarly, by making use of Eq. (2.9), one can easily estimate the ratio of the viscous
force to the Coriolis force. One obtains

[VV2u| N vU /L2 v
Qxu QU _ QL?

(2.29)

Ro (2.30)

(2.31)

where v = 1/ p isthe coefficient of kinematic viscosity. The nondimensional number

Vv

is known as the Ekman number.

2.3 Thevorticity equation

To visualize afluid motion, it is often convenient to construct the streamlines of
the flow. Since a streamline is an imaginary line that is everywhere tangent to the fluid
velocity v(r, t), the family of such linesis given by the integration of

dn _ de _ dx

(2.33)

U1 V2 U3
In steady flows, streamlines and particle paths are identical.

In many instances, however, it is also instructive to describe the flow in terms of the
absolute vorticity

w=curlv, (2.34)

which represents the local and instantaneous rate of rotation of the fluid measured in an
inertial frame of reference. By definition, a continuous line that is everywhere tangent to
the vector w(r, t) is called an absolute-vorticity line. The family of such linesis defined

impact on the meteorological studies of that time, however, so that few advances in our knowledge
of the behavior of rotating fluids were made during the nineteenth century. As a matter of fact, it
is not until the late 1850s that the American meteorologist William Ferrel (1817-1891) gave the
first mathematical formulation of atmospheric motions on a rotating Earth. Moreover, as we shall
see in Section 2.6.1, the importance of the deflective force of the Earth's rotation on wind-driven
currentsin the oceans was not recognized until the turn of the twentieth century. For comparison, Sir
Arthur Eddington (1882—1944) in 1925 noticed that large-scale meridional currentsin the radiative
regions of a star would be deflected east and west by the star’s rotation, but it is not until 1941
that Gunnar Randers (1914-1992) made the first detailed analysis of the steady motion exhibiting a
balance between the viscous and deflective forces in arotating star (see Eq. [4.49]).
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by the pair of differential equations

dx _ de _ dxs 235
w1 o w2 o w3 ' ’

By virtue of Eq. (2.34), one always has
divw = 0. (2.36)

Hence, absolute-vorticity lines cannot begin or end in the fluid; they are either closed
curves or terminate on the boundary. By making use of Eq. (2.22), one can also write

w=curl(uU+Q xr)= ¢+ 202, (2.37)

where ¢ isthe relative vorticity, that is, the curl of the velocity measured in the rotating
frame of reference.

L et usnow derivethe equation expressing therate of changeof vorticity inacontinuous
motion. Using aformulawell known in vector analysis,

1
> grad|ul®> = u x curlu+u - gradu, (2.38)
we can take the curl of Eq. (2.27) to obtain
1 1
% + curl (w x u) = — gradp x grad p + curl < f> . (2.39)
ot p? o

By making use of Eq. (2.36), one finds that
curl(wx u)=u-gradw — w - gradu + wdivu. (2.40)
Since €2 isa constant vector, one also has 9¢ /ot = dw/dt. Hence, EQ. (2.39) becomes

%=w-gradu—wdivu+igradpxgradp+cur| (L‘) (2.41)
Dt p? o

Combining Egs. (2.6) and (2.41), one obtains the vorticity equation

R<f)=f~gradu+igrad,o><gradp+1curl (Ef) (2.42)
Dt \p o 03 o o
The first term on the right-hand side of this equation represents the action of velocity
variations on the ratio w/p. The second term, the so-called baroclinic vector, modifies
thisratio whenever the surfaces of constant pressure and constant density do not coincide
inthefluid. Thethird term represents the rate of change of theratiow/p dueto diffusion
of vorticity by viscousfriction.

Since the vector (w/p) - gradu has no counterpart in the momentum equation, it
warrants further discussion. Thus neglecting the baroclinic vector and the curl of the
frictional force, we obtain

D /w w
Bt (;> == gradu. (2.43)
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Now, by making use of the Lagrangian variablesR and t (see Egs. [2.1] and [2.2]), one
can integrate this equation at once to obtain
@ _ oo 0% (2.44)
P Po 9 Xk
where wo(R, 0) and po(R, 0) aretheinitial values of w(R, t) and p(R, t). Aswas shown
by Helmholtz, this solution simply means that the particles that compose an absolute-
vorticity line at oneinstant will continue to form an absolute-vorticity line at any subse-
guent instant. The proof liesin the fact that atangent to such alineis carried by the fluid
sothat it always remainstangent to an absolute-vorticity line. Let dX; bethe components
of the vector representing aline element, at theinstant t = O, of an absolute vortex line.
Aswe follow its motion, we have

X
dx; = — dX, 245
X 9 X, k ( )

wherethedx; sarethe new components, at timet, of thislineelement. Now, by hypothesis,
we can always write

X = e, (2.46)
Po
where € is some constant. From Egs. (2.44)—2.46), it follows that
wok 0% i
dX-zéiize—, 2.4
' Po Xy o (247

thusimplying that the vector with components dx; isalso tangent to an absol ute-vorticity
line. This concludes the proof. By virtue of Egs. (2.46) and (2.47), we a so note that the
ratio w/p isproportional to the length of aline element along an absolute-vorticity line.
Thisisknown as vortex line stretching or shrinking.

In summary, we have shown that the absol ute-vorticity linesmovewith thefluid in the
absence of baroclinicity and friction. However, although one can aso construct lines of
relative vorticity, it is only the absolute-vorticity lines that may remain coincident with
material lines. Moreover, when thelast two termsin Eq. (2.42) do not identically vanish,
viscous friction allows the absolute-vorticity lines to diffuse across the fluid, with the
baroclinicity also being able to create new vortices.

2.3.1 The Taylor—Proudman theorem

Let us consider steady motions in a rotating fluid. Then, if both the Rossby
number and the Ekman number of the flow are small, and if the baroclinic vector is
identically zero, Eq. (2.42) becomes

Q.gradu =0, (2.48)

since |¢] <« |€2] when Ro <« 1. This condition implies that the velocity relative to the
moving axes must be independent of the coordinate parallel to Q. If this vector isaong
the x5 axis, we can thus write

BIVE du, dus .

T _ T g (2.49)
0X3 0X3 0X3
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In particular, if we consider a system with solid boundaries perpendicular to the rotation

axis so that one has u;z = 0 at some specified value of x3, it follows at once that
%=%=o and uz =0, (2.50)
0X3 0X3

everywherein thefluid. Theflow isthen entirely two dimensional in planes perpendicular

to the rotation axis.

Motions that satisfy the Taylor—Proudman constraint can be observed in laboratory
experiments (e.g., Greenspan 1968, Fig. 1.2, and Tritton 1988, Sec. 16.4). For example,
let us consider a case in which the relative motion between the fluid and an obstacle
is perpendicular to the rotation axis. Obvioudly, the fluid is deflected past the obstacle.
However, because the flow must be two dimensional, this deflection also occurs above
and below the obstacle. Accordingly, one observes the formation of a column of fluid,
extending parallel totherotating axisfrom the obstacle, around which thefluidisdefl ected
asif it too were solid. Since the neglected terms never exactly vanish, especialy at the
edge of the column, there is in fact some interchange between the exterior and the
interior of the column. Yet, Eq. (2.48) clearly demonstrates the tendency for coupling of
the relative motion in the direction parallel to the vector €2.

24 Reynolds stresses and eddy viscosities
Laboratory experiments show that the transition from laminar to turbulent mo-
tionsin an incompressible fluid depends on the Reynolds number
LU

Re , (2.51)
vV

which is a measure of the relative magnitude of the inertial to viscous forces occurring
in the flow (see Eq. [2.7]). Here U is the characteristic velocity of the flow, L is a
characteristiclength for theproblemon hand, and v = 11/ p isthe coefficient of kinematic
viscosity. Turbulent flows always occur when the nondimensional number Re exceeds
some critical value Re; (say). This critical number is not a universal constant but takes
different values for each type of flow. (A laminar flow in a pipe normally becomes
turbulent when Re > Re. ~ 2,200.) This explains why the majority of fluid motionsin
systems with large dimensions and low viscosity are turbulent.

Damping due to molecular viscosity is very small and its effects on the large-scale
motions encountered in geophysics and astrophysics is utterly negligible. However, for
the very reason that one can make direct measurements in the Earth’s atmosphere and
in the oceans, it has long been recognized that these systems contain a wide spectrum
of eddylike motions that coexist with the largest-scale motions. (As we shall see in
Section 3.6, similar small-scale motions exist in stellar interiors, but their existence can
beinferred by reasoning only.) Sincethereisasyet no practical and accurate theory that
describes all scales of motion, from the largest to the smallest scales, it is convenient
to restrict consideration to the large-scale motions only. Because Eq. (2.7) contains the
nonlinear terms v - gradv, this isolation can never in fact be complete, with motions
on one spatial scale necessarily interacting with motions on other spatial scales. These
interactions are often modeled by the inclusion of a large anisotropic eddy viscosity in
the momentum equation, of much larger magnitude than the molecular viscosity; the
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functional form of this frictional force is analogous to that of Eq. (2.9). Unfortunately,
because turbulence is not afeature of fluids but of fluid flows, the momentum exchange
by eddylike motions only superficially resembles molecular exchange of momentum.
Yet, although the empirical concept of eddy viscosity cannot be derived rigorously from
first principles alone, it has proven to be both useful and effective in many dynamical
problems that demand some frictional forces to be present.

At any given point and time, the physical variables of a system may be expressed in
terms of mean values (denoted by overbars) and fluctuating values (denoted by primes).
For such a decomposition to make sense, a suitable averaging period has to be found
so that the mean values are substantially independent of this averaging period. Here we
shall assumethat it is possible. Hence, we let

V=V+V, (2.52)

and we write similar expressions for the other physical variables. By definition, the
components of the mean velocity are given by

7 = 2K, (2.53)
0
so that
pvf = 0. (2.54)
Note that we have also
A (2.55)
P

which vanishes only in the case of an incompressible fluid. Equation (2.54) ensures that,
on the average, there is no transfer of mass due to turbulence and that Eqg. (2.6) remains
valid for the mean flow. It follows at once that

1D
= —'0 +divv = (2.56)
o Dt
Combining next Egs. (2 6) and (2. 7) we can recast the momentum equation in the form
8p Tk
—, 25
(p i) +o (pv| ) = pY = % + % (2.57)

where the viscous stress tensor is defl ned in Eq. (2.8). If we suppose the body force to
be unaffected by turbulence, the average of Eq. (2.57) is
Ip

(p |)+_(PU|Uk)—pgl _a_+_( Tik + oik), (2.58)

sincethe operationsof averaging and differentiation commute. Thetensor T istheaverage
of the tensor 7. The new tensor o has the components

Oik = — PV V. (2.59)

These six quantities define the Reynolds stresses. Equation (2.58) isidentical to Eq. (2.7)
with all quantities replaced by their mean values, except for the additional Reynolds
stresses. This symmetric tensor represents the flux of momentum due to the eddylike
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motions. The term div o in Eq. (2.58) thus exchanges momentum between these small-
scale motions and the mean flow, even though the three components pv;, of the mean
momentum of the turbulent velocity fluctuations are zero. Whenever eddylike motions
prevail, the average viscous stresses 7 are usually negligible compared to the Reynolds
stresses o.

The central problem in this representation of small-scale motions lies in the fact that
Eqg. (2.58) introduces six unknown quantities, namely, the six components of the tensor
o. The simplest approach is to draw an analogy with molecular viscosity. Following
Boussinesg, we shall assume that the turbulent motions act on the large-scale flow in
amanner that mimics the microscopic transfer of momentum between the congtitutive
particles, when amacroscopic velocity gradient prevails. In order to apply this method to
geophysical problems, weshall makeuseof Cartesian coordinates. Therelevant equations
for arotating star will be discussed further in Section 3.6.

In the Earth’s atmosphere and in the oceans, the horizontal dimensions of the large-
scale motions are much greater than the vertical ones. This anisotropy of the large-scale
flows strongly suggests that the turbulent transport of momentum in these two directions
cannot be expected to be the same. If the axes are chosen so that the x3 axisisin the
vertical direction, aparticularly simple expression for the Reynolds stressesis

op = 2Ax 22 oz = 2A4 g)’z o5 = 2Ay g:’:z (2.60)
012 = 01 = Ay 2—2 + Ay g—;):i, (2.61)
013 = 031 = Ay 2—2 + Ay g—zj, (2.62)
03 =0 = Ay 22 + Ay giz, (2.63)

where Ay, and Ay arethehorizontal and vertical coefficientsof eddy viscosity. Neglecting
molecular viscosity and omitting the overbars, one can thusrewrite Eq. (2.58) intheform

Dv 1 1

= =9— — gradp+ —F(v), (2.64)
Dt P P

where F isthe turbulent viscous force per unit volume, which isthe vectorial divergence
of the tensor o. Neglecting compressibility effects, one obtains

v 9% 0%v
F(v) = A4y <8x§ + 8x§) + Ay e’ (2.65)
where we have assumed that Ay and Ay are constant quantities. The preferred vertica
direction is thus properly taken into account. (Compare with Egs. [2.7] and [2.9].)
Because the eddy viscosities cannot be calculated from first principles alone, crude
measurements of their values in the Earth’s atmosphere and in the oceans have been
made. Typical atmospheric values of Ky (= Av/p) lie in the range 10*~106 cn?? s2,
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whereas one hasv &~ 10~ cm? s~1 for air. It follows that

Kv o 10°-107, (2.66)

V

in the atmosphere (Houghton 1986). For the oceans, estimates of Ky range from
1cm? s71 to 107 cn? s~ Thisimplies that

K
—V ~ 10%-10%, (2.67)
V

in the oceans, since one has v = 102 cm? s~ for water. The smaller values go with
smaller-scale motions, and conversely (Apel 1987). It is also worth noting that in the
Earth’s lower atmosphere one has Ay /Ay < 107, whereas this ratio may be as large as
10° in the surface layer of the ocean where large-scale currents are observed.

25 Applicationsto the Earth’s atmosphere

Sincethe atmosphereisessentially athin layer of fluid on asphere, aconvenient
set of axes at any point on the Earth’s surface has x directed toward the east, y to
the north, and z vertically upward (i.e., along the effective gravity g, which combines
the effects of the gravitational force and centrifugal force). If i, j, and k are unit vectors
directed a ong theserotating axes, therel ative vel ocity of the mean flow may be expressed
as

u = ui+ vj + wk. (2.68)
Letting ge= — gk, one can rewrite the components of the momentum equation in the
form:
Du uwv Uw 10p . 1
— — — tan — = —— — 4+ 2QuSing — 2Qw COoS —F, (269
ot~ R @AYt R > % +2Qusing w COS@ + 5 Fx (2.69)
Dv u? wv 1dp . 1
— 4+ — tan — = —— — —2Qusin —Fy, 2.70
Dt + R @y + = o 3y ¢+ oy (2.70)
Dw u?+? 1adp 1
— = =—— — — 22U cos —F;, 2.71
Dt R 0 97 g+ ®+ P z ( )

where R is the radius of the Earth, Q2 is its angular velocity of rotation, and ¢ is the
geographical latitude. By virtue of Eg. (2.65), the turbulent viscous force is given by

d%u 9% 32U
Fu=Ay|—+— —. .
(u) H <8x2 + ayZ) Vg2 (2.72)
If one further assumes that the fluid isincompressible, Eq. (2.6) becomes
du dv dw
— Y+ — 4+ — =0, 2.73
X + y + 0z (273)

which closes the system of equations.

In this section we shall be concerned with midlatitude synoptic scale motions,
that is, systems of typically 10% km in the horizontal dimension and 10 km in vertical
extent. For this scale, the vertical velocity (typicaly lessthan 1 cm s™1) is much smaller
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than the horizontal velocity (typically 10 cm s1). Hence, to afirst approximation, terms
involving w canbeneglectedinEgs. (2.69)—2.71). Similarly, becausethecurvatureterms
are also much smaller than the other terms, they too can be neglected. The resulting
approximate horizontal momentum equations are

Du lop 1

— —fv=—=" "4+ =F 2.74

Dt v p 9X + o 274)
and

Dv lop 1

—+ fu=—-———+-F,, 2.75

Dt + b Ay + oy (2.75)
where

f =2Qsing (2.76)

isthe Coriolis parameter. To this order of approximation, Eg. (2.71) becomes

ap
- 2.77
PP 09, (2.77)

which is the hydrostatic approximation.

The Coriolis parameter f isthelocal component of the planetary vorticity normal to
the Earth’s surface. If the north—south particle motions are extensive enough in latitude,
the values of this parameter also change. For small changes about a mean latitude ¢
where f = fp, one can write

df
f=fo+d—yy+-~-=fo+ﬂy+-~-. (2.78)

At midlatitudes, ¢ = 45° (say), onehas fo = 10*stand 8 = 1.619x 107 B cm1s1.
The tangent-plane approximation with f constant is called an f plane; if we assume a
linear relation between f and vy, it is known as the 8-plane approximation.

25.1 Thegeostrophic approximation

For synoptic motions far from the Earth’s surface, turbulent friction and con-
vective accel erations can be neglected atogether in Egs. (2.74) and (2.75). Accordingly,
if the response of the atmosphere to gravity leads ultimately to a steady state, that state
will be given by the time-independent solution u = ug and v = vy, say, where

1 dp 1 ap
g of oy Yo +pf X ( )
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This is known as the geostrophic balance and describes the familiar situation in which
the flow is along contours of constant pressure.* If we define the geopotential

CID:/gdz, (2.80)
0

which isthe work required to raise a unit mass from the Earth’s surface to height z, this
approximate solution becomes

1 /00 1/00
(¥ d ovg=+= (22 281
"o f(ay>p and vg =g <8x>p’ (281)

where the subscript “ p” refersto differentiation at constant pressure. Aswe shall seein
Section 8.5, such amotion is also relevant to the theory of contact binaries.

Now, if f isregarded as a constant, it is a ssimple matter to differentiate Eq. (2.81)
with respect to pressure and to make use of the fact that 9®/dp = —1/p to obtain

dUgq 1 8,0) dvg 1 (8,0)
e __ - (ZE d 2=4+—1{-2). 2.82
p p2f (8y b an op Jrp2f X /p (282)
Thence, in combining Egs. (2.77) and (2.82), one finds that
Mg _, 9 (a_p> ad Mo __9 <8_p) . 2.89)
0z pf \ady/, 0z pf \ox/,
For the atmosphere, Eq. (2.14) implies that one can rewrite these relations in the forms:
dUg g aT) dvg g <8T>
e __ 2 [T — =4 (—] . 2.
0z Tf (ay p and 0z +Tf X /p (284)

Thisisthethermal wind equation, which relatestheincrease of the horizontal geostrophic
velocity with height to the horizontal temperature gradient within a surface of constant
pressure. In other words, if the surfaces of constant pressure and constant temperature
do not coincide, the geostrophic wind generally has vertical shear. On the contrary, if
these two families of surfaces are coincident, its velocity must be independent of height.
This result implies that the Taylor—Proudman theorem is a direct consequence of the
geostrophic approximation (see Eq. [2.49]).

252 Ekman layer at arigid plane boundary
In the lowest kilometer of the atmosphere, the geostrophic solution (2.79) does
not apply because the vertical viscousforce generaly is comparable in magnitude to the

* Anempirical law that describesthe approximate agreement between the geostrophic wind (Eq. [2.79])
and the actual wind was originally derived in 1857 by the Dutch meteorol ogist Christoph Buys Ballot
(1817-1890). This rule of thumb states that in the northern hemisphere a person standing with his
back to the wind has the higher pressure to hisright and the lower pressure to hisleft; in the southern
hemisphere, the lower pressure isto theright of the observer and the higher pressureto the left. Buys
Ballot also noticed that the wind blows in general perpendicular to the pressure gradient and that the
wind speed increases with increasing pressure gradient (see Eq. [2.79]). As we shall seein Section
2.5.2, however, in both hemispheres the wind near the ground does not flow exactly parallel to the
isobars but has a component toward lower pressure because of surface friction. Buys Ballot’s law,
whichisalso known as Ferrel’slaw or the baric wind law, is not applicable in the equatorial regions.
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pressure-gradient and Coriolis forces. In this boundary layer, the acceleration terms are
till small compared to the remaining terms in Egs. (2.74) and (2.75). For asituation in
which there is a shear in the vertical direction only, we can thus write

lop 1. 92
I W (2.85)

and
19
fu=—=-""+> A/ —. 2.86
* p3y+p V922 (2:80)

Let us further assume that the fluid is homogeneous. Then, taking the first-order deriva-
tives of Eq. (2.77) with respect to x and y, one readily sees that the horizontal pressure
gradient does not depend on height. Hence, by making use of EqQ. (2.79), one obtains

d?u
KV @ + f(U - ’Ug) =0 (287)
and
d?v

where Ky = Ay/p isregarded as a constant. At ground level, in close analogy with
molecular viscosity, we shall assume that eddy viscosity inhibits the tangentia fluid
motion. Hence, we let

u=v=0 a z=0. (2.89)

(see Egs. [2.17] and [2.18]). Since the flow must also match the geostrophic solution at
high levels, it isaso required that

Uu—ug and v— vg a  zZ— oo, (2.90)

where ug and vy are defined in Eq. (2.79).
The appropriate boundary-layer solution for the horizontal velocity is

U= ug — e"#ugcos(z/A) + vgsin(z/A)] (2.91)
and
v = vg — e5¥Myg cos(z/A) — ug Sin(z/A)], (2.92)
where
1/2
o (2 s

This steady solution was originally obtained by Ekman (1905). Figure 2.1 illustrates
the wind velocity vector as a function of the nondimensional height z/ A. Owing to the
combined effects of the Coriolisforce and turbulent friction, thetip of the velocity vector
tracesaspiral asz/ A decreasesto zero. Asthe solid boundary is approached, this vector
isat 45° to the left of the geostrophic velocity. Asz/A = =, thewind is parallel to the
geostrophic flow but slightly greater than geostrophic in magnitude. Thelevel z = 7 A
may be considered as the top of the viscous boundary layer. Measurements indicate that
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Fig. 2.1. Thevelocity vector within the Ekman layer, at various heights above a solid bound-
ary. The values of the nondimensional height z/A are, respectively, =, 57/6, 47 /6, 31 /6,
27/6,and 7t /6 (see Eq. [2.93]). Thelarge arrow indicates the direction of the applied pressure
gradient.

the wind approaches its geostrophic value at about one kilometer above the ground.
Letting f =10~* s and v=10"t cm? s7%, one finds that Ky =5 x 10* cm? s™* and
Ky /v a5 x 10° (see Eq. [2.66]). Note that thisideal solutionisrarely observed because
the coefficient Ky must vary rapidly with height near the ground. On qualitative grounds,
however, it gives an adequate picture of the frictional coupling between the geostrophic
flow in the free atmosphere and the Earth’s surface.

2.5.3 Ekman pumping and secondary circulation

Away from the ground, the atmosphere adjusts to a geostrophic equilibrium in
which the pressure-gradient force balances the Coriolis force associated with a steady
flow along the surfacesof constant pressure. If thismotion extendsto theground, the effect
of turbulent friction is to disrupt this geostrophic balance, thus producing a flow across
these surfacesfrom hightolow pressure. Hence, work isbeing done onthefluid withinthe
surface boundary layer by the pressure-gradient force. Thiswork supplies the necessary
energy to maintain thislayer against the dissipative forces within it. Accordingly, unless
the geostrophic flow is forcibly maintained, it will decay under the action of the bottom
friction.

To calculate the typical spin-down time of a geostrophic flow, let us again consider
guasi-horizontal motions in a cyclonic vortex. Since the motion is geostrophically bal-
anced away from the ground, the center of the vortex is at low pressure compared to
its outer edge. In the surface boundary layer, then, turbulent friction produces a radial
flow of matter toward the vortex center. By continuity, this requires upward motion
and a compensating outward radial flow above the friction layer. Figure 2.2 presents a
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Fig. 2.2. Qualitative sketch of the streamlines of meridiona circulation in a mid-latitude
cyclonic vortex. The rotation axisis vertical.

qualitative sketch of the streamlines of thissecondary flow. Sincethisslow but inexorable
motion approximately conserves angular momentum, high angular velocity fluid is thus
progressively replaced by low angular velocity fluid in the atmosphere. Aswe shall see,
thisaxially symmetric circulation driven by turbulent friction in the surface layers serves
to spin down the azimuthal mation of the cyclonic vortex far more rapidly than could
turbulent diffusion of momentum. This mechanism, which exchanges mass between the
surface boundary layer and the free atmosphere aboveit, is known as Ekman pumping.

For the sake of simplicity, let usassumethat the atmosphere, of height H, isof uniform
density. Assume further that in the surface boundary layer, of depth d, the radial inflow
of matter isadequately described by Egs. (2.91) and (2.92). Above the boundary layer, in
the free atmosphere, the azimuthal motion of the cyclonic vortex hasitsrelative vorticity
—y(X, y) —aong the z axis (see Eq. [2.37]). By virtue of Eq. (2.79), we thus have

dvg  duUg
=30 "oy (294)

which is called the geostrophic vorticity. To calculate the upward velocity we at the top
of the boundary layer, let usintegrate Eq. (2.73) through the depth of the layer. Because
w=0az=0,itfollowsthat

d/79u  dv
=— — 4+ —)dz 2.95
ve=-| <ax " ay) ’ (299
Substituting for u and v from Egs. (2.91) and (2.92), one obtains
Ky \2 A
we=(57) w=3% (2.9

Thisrelation merely statesthat the vertical velocity of the matter that is pumped into the
free atmosphere is proportional to the geostrophic vorticity.

For synoptic scale mations, the vorticity equation can be derived from Egs. (2.74) and
(2.75) by cross differentiation with respect to x and y. Neglecting turbulent friction, we
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thus have
ou ov

ax "y
(Compare with Eq. [2.43], which is written in an inertial frame of reference)) If f is
regarded as a constant, Eq. (2.97) can be written approximately as
8 _ ¢ dw
at  az’
where we have also neglected ¢y compared to f in the divergence term. Integrating this
equation from thetop of the boundary layer (z = d) tothetop of theatmosphere(z = H),
we obtain

Ig’t(1=+;)=—(1=+;)( ):(fﬂ)aa':. 2.97)

(2.98)

3
H % — fuwg, (2.99)

sinced < H and w = O at z = H. Substituting for weg from Eq. (2.96) and integrating
this eguation with respect to time, one finds that

tg = £(0) exp[—(f Ky /2H?)Y?t], (2.100)
where ¢4(0) isthe geostrophic vorticity at t = 0. By virtue of Eq. (2.100), the spin-down

time of acyclonic vortex, ty, is
2H2\'?
ty = ( ) . (2.101)

fKy

This result was originally derived by Charney and Eliassen (1949).

Toillustratetheproblem, weshall let H = 10km, f =10~%s ™!, and Ky = 10°cm?s™2.
By making use of Eq. (2.101), onefindsthat tyy ~ 4 days. In contrast, the characteristic
timet, for turbulent diffusion to penetrate adepth H is of the order H2/K\,, which, for
the above values of H and Ky, givest, ~ 100 days, which is much longer than 4 days.
We conclude that Ekman pumping is a far more effective mechanism for destroying a
cyclonic vortex in the Earth’s atmosphere than is turbulent diffusion of momentum. Yet,
letting ¢g = f in Eq. (2.96), which means an intense cyclonic vortex, one finds that the
vertical speed we does not exceed 2.3 cm s~ at the top of the boundary layer.

As shown in Figure 2.3, it is an analogous meridional circulation that is responsible
for the decay of the azimuthal motion created when a cup of teais stirred. Physicaly,
the spin-down mechanism is essentially that described for the cyclonic vortex, except
that in the cup of teait isthe centrifugal force that balances the pressure-gradient force,
not the Corialis force. Visualization of the transient meridional flow is provided by the
tea leaves, which are always observed to cluster near the center at the bottom of the
spinning fluid. Aswas shown by Greenspan and Howard (1963), the spin-down time ty
is, roughly, of the order of (L2/v2)Y/?, where L isacharacteristic dimension, parallel to
therotation axis, v isthe kinematic viscosity, and 2 istheinitia angular velocity. Letting
L=4cm,v=10"2cm?s !, and Q =2r s7!, oneobtainsty = 16 s, in agreement with
casual observation. One also finds that t, = L?/v =1,600 s! Obviously, the azimuthal
motion in a cup of tea decays much more rapidly through Ekman pumping than by mere
viscous diffusion of momentum.




2.6 Thewind-driven oceanic circulation 43
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Fig. 2.3. Qualitative sketch of the streamlines of meridional circulation in a cup of tea. The
rotation axisisvertical.

Asweshall seein Section 8.4, asimilar mechanism may beinvoked to explain the high
degree of synchronism that is observed in the close binary stars, although the physical
cause of Ekman pumping in anonsynchronous binary component iscompl etely different.

2.6 Thewind-driven oceanic circulation

When the wind blows over an ocean, a stress is exerted on its surface. The
applied wind stress produces a horizontal mass transport in athin surface layer, whichis
mostly between 10 and 100 meters deep. If the applied stress were spatially uniform, the
ocean below this layer would be little affected by the wind. However, spatial variations
of thewind also cause spatial variationsin the horizontal masstransport near the surface.
These horizontal divergences or convergences of matter result in vertical motions, with
water flowing upward or downward to replace the displaced surface water. Deep in
the ocean, however, this vertical mass flux must move so as to preserve the specific
angular momentum of each fluid particle. As we shall see in Section 2.6.2, this may
be accomplished by large-scale horizontal motions in the deep interior, where the basic
momentum balancefor thisflow isgiven by the geostrophi c approximation. Suchasimple
solution is clearly not complete, however, since those termsin the vorticity equation that
are negligible in the open ocean become important near the ocean’s lateral boundaries.
In Section 2.6.3 we shall thus present a geostrophic flow that is frictionally eroded by
horizontal eddy viscosity acting near these boundaries but is maintained by wind stresses
acting over the ocean’s surface.

26.1 Ekman layer at the ocean—atmosphereinterface
We suppose that the ocean is bounded by the horizontal surface z = 0 at which
the wind stress

S=Si+5] (2.102)

is applied. Since we are making alowance for a large-scale geostrophic motion in the
inviscid interior, the basic flow in the surface layer isdescribed by Egs. (2.87) and (2.88).
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However, the presence of an applied wind stress requires that

du dv
pKVE=S< and pKVEzsy, a z=0, (2.103)
where we took into account that the vertical scale of the boundary layer is much smaller
than that of the horizontal scale on which the wind stress varies (see Egs. [2.62] and
[2.63]). Theflow in the surface layer must also merge with the geostrophic flow at depth.
Hence, we let

u—ug and v— vy, as z—> —oo, (2.104)

where ugy and vy are defined in Eq. (2.79). As was originally shown by Ekman (1905),
the boundary-layer solution satisfying these conditions is

U=yt 5 @S + S)oosz/A) - (S - SISnE/A)] (2109
and
v =gt 5 Ky e 2[(S, — S cos(z/A) + (S, + S sin(z/A)], (2.106)
where A isdefined in Eq. (2.93).*
Let us define

Ug = (U—Ug)i+ (v —ug)], (2.107)

which is the friction velocity in the surface boundary layer. Figure 2.4 illustrates the
spiral distribution of this vector. At the surface, the velocity ug is45° to the right of the
applied wind stress. As the depth below the free surface increases, the direction of this
vector rotates uniformly in a clockwise sense and its magnitude falls off exponentialy.
The horizontal mass flux associated with the velocity ug is

0 1
ME=/ Uedz=—Sxk, (2.108)
oo p

which does not depend on the eddy viscosity. Note al so that the vector M g is orthogonal
totheapplied stress. Thisisaconsequence of the fact that anet massflux in that direction
would give rise to a net Coriolis force that would remain unbalanced.

For further reference, we can also integrate the continuity equation for the velocity ug
over the entire depth of the Ekman layer to abtain the vertical velocity we flowing into
that layer. Taking into account that the surface wind usually varies much more rapidly

* This solution was motivated by observations made by Fridtjof Nansen (1861-1930) during the Nor-
wegian North Polar Expedition of 1893-1896. Looking at observations of the wind and of ice drift
taken from hisship Fram (i.e., “Forward”) while she drifted in the arctic ice, he saw that the direction
of the ice drift showed a systematic deviation to the right relative to the wind direction. Nansen
correctly guessed that this deviation was in some way related to the Earth’s rotation. The problem
was given to the young Swedish scientist Vagn Walfrid Ekman (1874-1954), who came out in 1905
with a full scale theory of the so-called Ekman spiral. For a detailed account of these and related
matters, see Arnt Eliassen, “Vilhelm Bjerknes and his Students,” Annual Review of Fluid Mechanics,
14, 1, 1982.
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Fig. 2.4. Theveocity vector within the Ekman layer, at various depths below afree surface.
The values of the nondimensional depths |z/A| are, respectively, 0, 7/12, 27 /12, 37 /12,
57/12, 7 /12, 97 /12, and 7 (see Eq. [2.93]). The large arrow indicates the direction of the
applied wind stress.

than f, one finds that

1 /3S, 0S 1
=— (=2 -=)="k-curl S 2.109
PET of (3X 8y> of o ( )

which is the relation between the vertical velocity at the lower edge of the surface
boundary layer and the z component of the curl of the surface wind stress.

26.2 TheSverdruprelation

To illustrate the basic features of wind-driven currents in the oceans, we shall
assume that our model, of constant depth H, is of uniform density. The rotating fluid
thus consists of three regions: athin surface Ekman layer, theinviscid interior, and athin
bottom frictional layer. For low Rossby numbers, the basic momentum balance is given
by the geostrophic approximation. By making use of Egs. (2.78) and (2.97), we can also
write

D¢ ow

b¢ _ 0w 2110
pt TPV 9z (2.110)

where ¢ is the z component of the relative vorticity of the interior flow and Bv is the
change with latitude of the planetary vorticity f. For steady motions and low Rossby
numbers, this equation becomes

5
Bu=f a—j (2.111)

Sincetheinterior flow ishomogeneous and geostrophic, thefunctionsu, v, and ¢ must be
independent of z (see Eq. [2.83]). Hence, Eqg. (2.111) may be integrated over the whole
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depth of the ocean to give

B = - [we(x. y.0) — we(x. y. —H)]. 11)

where we(X, vy, 0) and we (X, y, —H) arethe vertical velocities entering the interior flow
on its upper and lower edge, respectively (see Egs. [2.109] and [2.96]). Neglecting the
bottom contribution, we obtain

1
Bv = - k-curl S. (2.113)
PO

Thisis Sverdrup’s (1947) solution for large-scale oceanic currents.

Theinterpretation of these relationsis as follows. Wherever the horizontal mass flow
in the surface layer is divergent, with upwelling taking place to replenish the surface wa-
ter transported away, the right-hand sides of Egs. (2.109) and (2.113) are positive so that
the change of planetary vorticity along the motion, v, is also positive. Since the plan-
etary vorticity f increases poleward, it follows at once that the interior flow must move
poleward to maintain the balance defined by Eq. (2.113). Conversely, wherever the hori-
zontal surface transport is convergent, with downwelling as aresult of the accumulation
of mass, theinterior flow must move in the direction along which the planetary vorticity
f decreases, that isto say, equatorward. Such a mass transport is observed over much of
the circulation pattern in the North Atlantic Ocean, with equatorward flowing currents
on the eastern side of the ocean basin, north of approximately 20°N (e.g., Pedlosky
[1987], Fig. 5.1.1, or Apel [1987], Fig. 2.21). The southward Sverdrup flow cannot apply
to the whole ocean basin, however, since it must necessarily return to the north so asto
ensure continuity and conservation of specific angular momentum of each fluid particle.
As we shall see below, this circumstance results in the formation of the intense and
narrow Gulf Stream current, which flows along the western edge of the North Atlantic
Ocean, from Florida to Cape Hatteras, where it rejoins the generally clockwise oceanic
circulation. Although the Gulf Stream is the best-known example of awestern boundary
current, such avorticity-balancing and mass-balancing flow is present off the east coasts
of continents everywhere in the world.

2.6.3 Western boundary currents. The Munk layer

Although the southward Sverdrup flow occurs over a very large portion of an
ocean basin, Eq. (2.113) aone cannot satisfy all lateral boundary conditions, nor can
it satisfy mass conservation for the basin as a whole. The inadequacy of this solution
strongly suggests the existence of turbulent boundary layers adjacent to the perimeter
of the basin. Making allowance for horizonta friction in Egs. (2.74) and (2.75), we can
rewrite the vorticity equation in the form
D¢ 9%c 9% ow
Dt + Bv — Ky (ax2+ ay2) =f 57" (2.114)
where Ky = Ay /p (seeEq. [2.72]). Again for steady motions and |low Rossby numbers,
this eguation may be integrated over the thickness of the ocean to yield

%c % 1
—K — 4+ — ) =—k-curlS. 2.11
Bv H <8x2 + 8y2> H curl S (2.115)
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(Compare with Eq. [2.113].) Since the horizontal motion is geostrophic, the functionsu
and v may be written in terms of a stream function W. We can thus write

Vv ow
u=—— and v=+—, (2.116)
ay aX
so that
VALV
= —+ —. 2117
(=™ 3y (2.117)

To be specific, we shall consider the case where the meridional boundaries x = Xy
and X = Xg are independent of latitude. In the interior of the ocean, away from these
boundaries, we have

g0 _ 1
ax  pH
where W, istheinterior stream function, which depends on the applied wind stress. In
the boundary layers, however, Eg. (2.115) can be written as

k-curl S, (2.118)

o 4w 1
since only the highest derivative with respect to x will be retained in the boundary-layer
analysis.
Near the eastern boundary, it is convenient to make use of the stretched variable
£ = XE(S_ X (2.120)
where
K 1/3
§ = (—”> . (2.121)
p
In order to solve Eq. (2.119), we shall also let
U= (X,y)+ Ve(&,Y), (2.122)
where Wg must gotozeroasé — oo. Inserting thisrelationinto Eq. (2.119), one obtains
e OWE
—— 4+ —=0. 2.123
aet T oe (2.123)

As usual, the complete solution must satisfy the conditions of no normal flow and no
dip at the boundary x = Xg (see Egs. [2.17] and [2.18]). Thus, we a so have
oV v
X y
The solution that satisfies these conditionsis

U=V (X,y)—§ <a\p|) e, (2.125)
X=Xg

0, a &=0. (2.124)

aX
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where

X

= 1 k - curl Sdx'. (2.126)

IO:B H Xe
It is immediately apparent from Eqg. (2.125) that this solution acts only to satisfy the
no-slip condition on the eastern boundary, having little effect on the large-scale mass
transport in the ocean.

The situation is quite different on the western side of the ocean. Here we shall define
the stretched variable

v,

- X
n=" 5 LY (2.127)
where § is still defined in Eq. (2.121). We shall also let
V=W (x,y) + Yw(n,y), (2.128)
where Wy, must goto zeroasn — oo. By virtue of Eq. (2.119), thefunction Wy satisfies
R\ W
W _ZTW _ . (2.129)
ont on
The boundary conditions at the western boundary x = Xy are
v v
—=—=0, a n=0. (2.130)
aX ay
The appropriate solution is
V3 1 . /3
V= 1-e? — 4+ — sSn— 2131
|(x,y)[ e <0082n+ﬁsn2n , (2.131)

which aso ensures that the net mass flux in the meridional direction exactly vanishes.
Accordingly, this western boundary current returns northward a mass flux that precisely
bal ances the southward Sverdrup mass flux. By virtue of the second equation (2.116),
the northward velocity in this western boundary current is given by
B 2 .. V3
v =V (Xw,Y) Sﬁe sin 5 - (2.132)
Both solutions were originally derived by Munk (1950). Figure 2.5 illustrates the
zonal variation of the transport stream function, as given by W/ W, , and the north—south
velocity v across the western boundary layer. Note the intense northward flow and the
small but significant counterflow just to the east of this boundary flow. This counterflow
isactually found in observations of the Gulf Stream, and thus Munk’sfrictional model is
qualitatively similar to the general oceanic circulation. (This large-scale flow possesses
speeds of the order of 1-10 cm s~2, whereas the northward velocity in the Gulf Streamis
typically 100 cm s~1, with amaximum speed of 200 cm s~1.) Unfortunately, one readily
sees from Eq. (2.121) that the lateral scale of the flow is set by the horizontal eddy
viscosity Ky, which is an adjustable parameter of the theory. Letting § ~ 50-100 km,
whichisthelateral dimension of the Gulf Stream, onefindsthat Ky, should be of the order
of 10’108 cm? s~. Because such a value requires a very sizable frictional dissipation,
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Fig. 2.5. The transport stream function, /W, and the north—south velocity v across the
western boundary layer. The quantity v is measured in units of ¥, /§ (see Egs. [2.131] and
[2.132)).

Bryan (1963) has made numerical calculations that retain both the frictional terms and
thenonlinear terms(i.e., D¢ /Dt) in Eq. (2.114). Hisnonlinear solutions, which requirea
smaller amount of lateral dissipation, convergeto the purely frictional solutioninthelimit
of large viscosities (e.g., Pedlosky [1987], pp. 309-311). Aswe shall seein Section 4.3,
a similar problem arises in the discussion of large-scale meridional currents in stellar
radiative zones.

2.7 Barotropic and baraoclinic instabilities

Although asteady solution may prove useful for interpreting the general features
of alarge-scale motion, observations reveal that small-scale disturbances are inevitably
present in any natural system. As a matter of fact, geophysicists have long recognized
that the presence of fully developed disturbances — such as midlatitude cyclones — can
be attributed to hydrodynamical instabilities. One form of instability that is of particular
interest is called baroclinic instability. Aswas originally shown by Charney (1947), this
mechanism depends on the presence of avertical velocity shear in the mean zonal flow.
By making use of Eq. (2.84), one readily sees that this shear requires the presence of
horizontal temperature gradients. Sincethe surfaces of constant temperature and constant
pressure do not coincide in such a system, it follows that the main source of energy
for the baraclinic instability is the available potential energy that may be released and
transferred to the small-scale disturbances. Another form of instability of geophysical
interest depends on the presence of ahorizontal velocity shear in the mean zonal flow. It
is called barotropic instability, because it can occur in a system for which the surfaces
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of constant temperature and constant pressure do coincide. In the barotropic case, thus,
the source of energy for the eddylike disturbances is associated with the kinetic energy
stored in the mean flow. In more complex situations, however, these instabilities draw
their energy from both the potential and kinetic energy of the basic state.

Deferring to Section 3.4 the study of these barotropic and baroclinic instabilities as
they may occur inarotating star, herewe shall consider the simplegeophysical model first
introduced by Eady (1949). This configuration is particularly useful because it provides
us with an overall perspective of the various kinds of instability that may arise in a
rotating fluid.

The model neglects dissipative and curvature effects and uses the Boussi nesq approx-
imation for compressibility effects. Hence, we treat the density asaconstant in all terms
in the equations, except the one in the gravitational acceleration. Thus we assume a
Boussinesg, isentropic, inviscid fluid, with constant density p and thermal expansion
coefficient «. In the plane-parallel representation of Section 2.5, we interpret x as longi-
tude, y aslatitude, and z asheight. Thefluid islocated on aplanerotating about the z axis
with angular velocity f/2 and with a gravitational acceleration g. The system, which
we assume to be in hydrostatic equilibrium in the z direction, is contained between the
planes z = 0 and z = H and is unbounded horizontally. The basic state consists of the
zonal wind u = U (2) and the potential temperature ® = ©(y, z), witho® /9z > 0since
we do not want to consider convective motions (see Eq. [2.16]). Hence, by making use
of Egs. (2.75) and (2.77), one can write

1
fu= _ 9P (2.133)
p ay
and
19p
—ag® = — — — 2.134
og PRt (2134)

where f isregarded as a constant. Eliminating the deviation from hydrostatic pressure
by cross-differentiation, we obtain the thermal wind relation
du 00
f—= —ag—, (2.135)
ay
which relates the vertical velocity shear to the latitudinal potential-temperature gradient
(see Eq. [2.84)).
At thisjuncture, it is convenient to define the squared buoyancy frequency
RIC)
9z’
whichisameasure of the stability of the fluid layer against vertical disturbances. (When
N2 > 0, thefrequency N merely correspondsto buoyancy oscillations, i.e., stable gravity

modes; when N2 < 0, it corresponds to rising or sinking motions.) N is usually called
the Brunt-Vaisala frequency. We shall also define the nondimensional number

N? = ag

(2.136)

N2

R = (dujdze

(2.137)
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which is known as the Richardson number. A positive value of this number corresponds
to a convectively stable stratification in the vertical direction.

Equations (2.133)—(2.135) define the unperturbed state of the flow. We now assume
small deviations from this basic state. Hence, we linearize Egs. (2.73)—«2.75), (2.77),
and (2.12). Thus neglecting nonhydrostatic effectsin the z component of the momentum
equation, one obtains the following set of equations:

duq vy Jwq

ox "oy T ez O (2139)

(%JFU 88)u1+%—LZJw1— fog = —% %, (2.139)
(83 ) v+ fuy = —% aaiy (2.140)

—ag®; = —% %, (2.141)
<8+U%)®1+%v1+%w1=0, (2.142)

where uy, vy, wy, P1, and O, designate, respectively, the small Eulerian changes in the
velocity components, pressure, and potential temperature.

We now consider azonal flow of magnitude up and constant vertical shear up/H anda
potential temperaturewith constant stratification 0 ® /9z and constant horizontal gradient
90 /ay. For convenience, we shall make use of the following basic units: X ~ ug/f,
y~Uy/f,z~H,t ~1/f,U = Ug,® =~ H(0®/32),uU; = Ug, vy =~ Ug,andw; ~ fH.
In these units, our basic steady state becomes

U=z (2.143)
and

O=z- % + constant, (2.144)

where Ri = ag(d®/d2)/(ug/H)? is a constant. Since the coefficients of the linearized
equations depend on z only, we can thus let

w1 = W(2) expli(ot + kx +1y)], (2.145)

and we can write similar expressions for the other Eulerian variations in Egs. (2.138)—
(2.142). Given our choice of units, wehavek ~ f/ug, | =~ f/ug, and o = f. With alittle
algebra, these equations can be reduced to the following equation for the function W:

d2 k dw
2 - -0
[1- (o +k2] 2[U+kz "} =
2kl
s L2 2 —
Ri (k2 + | )+a+kz} W = 0. (2.146)
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We shall also prescribe that
W=0 a z=0 and z=1 (2.147)

Equations (2.146) and (2.147) constitute an eigenvalue problem for the complex fre-
guency o =o; + ioj. Since the unit of horizontal scale is up/f, the nondimensional
wavenumbersk and | are smply the zonal and latitudinal Rossby numbers of the pertur-
bations (see Eq. [2.30]).

A detailed study of this eigenvalue problem has been made by Stone (1966, 1970,
1972), who integrated Egs. (2.146) and (2.147) for awide range of valuesfor the nondi-
mensional parameters k, |, and Ri. His analysis shows that three basically different
instabilities can occur for strictly positive Richardson numbers: a symmetric instability
of the kind discussed by Solberg and Hgiland (see Section 3.4.2), abaroclinic instability
of thekind first discussed by Charney (1947) and Eady (1949), and a shear-flow instabil-
ity analogousto the Kelvin—Helmholtz instability of two superposed fluidswith different
velocities and densities.* Not unexpectedly, because there is no latitudinal shear in the
mean zonal flow U = z, barotropic instability does not occur in this simple model (see,
however, Section 3.4.3).

2.7.1 Thesymmetric instability

The maximum growth ratesfor thisinstability are associated with perturbations
that correspondto k = 0,1 > 1, and large growth rates (|oi| ~ 1). Lettingk = 0in Eq.
(2.146), one obtains

d2w dw
_ 2 il Y 12w — _
(1 o)dzz + 2il 4z I“RiW = 0. (2.148)
Its solution, subject to boundary conditions (2.147), is
W=exp< —z ) snmrz (2.149)
1-o02
and
R/ 1V | RV /1 V]
=1 () +— |1 () () 2.150
“ + 2 \mn m + 2 mn ’ ( )
withm=1,2 3, .... Only the eigenvalues corresponding to the minus sign in front of

the square root may lead to unstable motions. By virtue of Eq. (2.150), this instability
occursif and only if

Ri <1 (2.151)

The growth rate |o; | is maximum for | = oo and has the value

loi| = (Ri - 1>1/2. (2.152)

* See, e.g., Chandrasekhar, S., Hydrodynamic and Hydromagnetic Sability, Sections 100-104, Oxford:
Clarendon Press, 1961 (New York: Dover Publications, 1981); Drazin, P. G., and Reid, W. H.,
Hydrodynamic Stability, Section 44, Cambridge: Cambridge University Press, 1981.
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By making use of Egs. (2.135) and (2.137), one readily sees that this instability may
be visualized as the response to alarge horizontal potential-temperature gradient in the
form of an axisymmetric motion (k = 0) with small latitudinal wavelengths (I > 1), that
is, aseriesof rollsparallel to the mean zonal flow. Aswas shown by Stone (1972), these
motions draw their energy from both the kinetic and potential energy of the basic flow.
For themost unstablemodes (I — co), however, the potential energy releaseisnegligible.
Accordingly, thisinstability may also be viewed as aform of barotropic instability. The
link between condition (2.151) and the Solberg—Hgiland conditions will be established
at the end of Section 3.4.2.

2.7.2 Thebaroclinic instability

The maximum growth ratesfor thisinstability are associated with perturbations
that are independent of latitude (I = 0), have large zonal scales (k « 1), and have small
growth rates (Joi| ~ k). Thuswelet | = 0and o = kc in Eq. (2.146) to obtain

d2w 2 dw

iZ otz dz k“Ri W= 0. (2.153)
Since the largest growth rates are found in the range 0 < k « 1, we shall expand the
solutions of the eigenval ue problem in powers of k2. Letting

[1-K(c+2)]

W=W,+kW,+--- and c=co+k%i+--- (2.154)
in Eq. (2.153), one can show that
Wo = (co+ 2% — ¢, (2.155)
Ri 6+ Ri
Wi = 3e1(Co + 2 + 5 3G + 2+~ (G +2)% (2.156)

etc. Applying boundary conditions (2.147) to these solutions, we obtain*

1 [ 2
= — |1- —K(1+Ri 2.157
¢ 22&[ 15””]+ (2150
Hence, the growth rates of thisinstability can be written approximately as
k 2
i|l=—=[1— — K1+ Ri)|. 2.158
= 575 1= 35+ R0 (2159
Ignoring terms of order k® or higher, onefindsthat the most rapidly growing perturbation
is the one with the wavenumber
5/2 \Y?
k| = 2.1
k=17 5) (2159

* In this simple mathematical model, which does not include the latitudinal variation of the Coriolis
parameter (i.e., the g term in Eq. [2.78]), one thus finds a cutoff wavelength, below which all dis-
turbances are stable, and above which those of larger scale are unstable. As was originally shown
by Green (1960), however, when Eady’s (1949) problem is modified by taking 8 > 0, the flow
becomes unstable to disturbances of all wavelengths, even for small values of 8. In amore redlistic
formulation of baroclinic instability, there is thus no short wave limit for the instability region of the
wave spectrum (e.g., Pedlosky [1987], Fig. 7.8.4).
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and growth rate

_ [ 5/54\'?
|0i|—<1+Ri> ) (2.160)

One can show that this instability dominates over the symmetric instability whenever
Ri Z 1. Stone's (1972) analysis also shows that the kinetic energy of the growing per-
turbations is drawn from both the potential and kinetic energy of the basic state. When
Ri > 1, however, the kinetic energy release is negligible compared to the potential en-
ergy release. This is the reason why this instability is called a baroclinic instability. It
will be discussed further in Section 3.4.3.

2.7.3 The shear-flow instability

This instability is associated with relatively small-scale perturbations (k > 1)
and has small growthrates(|o;| ~ k). Again, lettingo = kcin Eq. (2.146) and assuming
that at most | ~k inthelimit k — oo, one finds that Eq. (2.146) reduces to

d-w

2 |2
(c+27? e Ri (1+ P) W =0. (2.161)

Following Stone (1966), we obtain the solution for this equation:

W = (c+ 2)YJA(c+ 2)% + B(c+2) 9], (2.162)

_[E_Ri(HE)
q= 4 k2

Applying boundary conditions(2.147), onefindsthat anontrivial solution existsif c = 0,
c=1o0r

where
1/2

(2.163)

1 i mmr
=——4 —cth— 2.1
c > 2ctn 2" (2.164)
withm = 1,2,3,.... Thisequation shows that unstable solutions exist if q isred. In
particular, g will bereal inside the region
1
12 < k2 ( — 1) , k> 1, 2.165
=" \aRi > (2.165)

and such aregion exists aslong as
o1
Ri < 7 (2.166)

Equation (2.165) showsthat thisinstability isgreatest for small latitudinal wavenumbers,
with the perturbations consisting of aseriesof rolls perpendicular to the mean zonal flow.
Likethe symmetric instability, it isalso aform of barotropic instability, becauseit draws
its energy mainly from the kinetic energy of the basic flow, although it may also store
up potential energy. It will be considered further in Section 3.4.3.
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2.8 Sdf-gravitating fluid masses

In this section we shall consider some general properties of self-gravitating
bodies rotating freely in space. Aswe shall seein Section 6.2.1, although the interest of
these models may be of arather formal character, some of them have adirect bearing on
the internal structure of rotating stars.

28.1 Thevirial equations
If we neglect friction altogether, Eg. (2.7) can be rewritten in the form

Dy LAY 1 ap
—_— = - — 2.167
Dt 0 X 0 0 X ( )
(k =1, 2, 3). Here we have
r',t
V= —G/ PG g (2.168)
v Ir—r]

where G isthe constant of gravitation, ) isthetotal volume of the configuration, and dv
is the volume element.

Multiply now the left-hand side of Eq. (2.167) by pX; and integrate over the entire
volume. By virtue of mass conservation, one has

Dv d
/\;pXiTtkdv dat / oXi vk dv — 2Ky, (2.169)
where
1
Kik = — / PV Vg dv (2170)
2 )y
(see Eq. [3.53] below). Similarly, by making use of Eq. (2.168), we can write
/ oxi Y gy = G/ / o 1) o' 1) S X g 2.171)
09Xk vJv Ir—r'|
Thus, if we let
(i = X)X — %) )
Wy = —= G ,o(r t) p(r', t) TETE dvdv’, (2.172)
Eq. (2.171) reducesto
/ % s— dv = — Wi, (2.173)
Xk
Finaly, the last term in Eq. (2.167) can be integrated by partsto give
/ P gy = —a.k/ pd, (2.174)
v X

since the pressure must vanish on the free surface.
Combining Egs. (2.169), (2.173), and (2.174), we obtain
d

dt/,OX|deU—2K|k+VV|k+8|k/ pdv. (2.175)
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Since al tensors on the right-hand side are symmetric, it follows that the |eft-hand side
must also be symmetric. Hence, we can write

d d
a/\;pxivkdv: a/v,oxkvidv. (2.176)

This equation, which embodies the conservation of the total angular momentum J,
implies that

d 1 d?

a/y,ox;wdv: EE/V'OXiXkdU‘ (2.177)
Equation (2.175) thus becomes

1 d2l;

ETZk =2Kik+VVik+5ik/vde7 (2178)
where

lik = / P Xi Xi dv. (2179)
%

These are the second-order virial equationsin their usua form.
By contracting the indices in Eq. (2.178), we abtain the scalar virial equation,
1 d?|
2 dt?
where | is the moment of inertia with respect to the center of mass and K is the total
kinetic energy. By virtue of Egs. (2.168) and (2.172), one aso has

=2K + W + 3/ pdv, (2.180)
4

1
W= —/ oV du, (2.181)
2 )y

which isthe gravitational potential energy.
For a self-gravitating fluid that rotates steadily about the X3 axis with some assigned
angular velocity €2, Eq. (2.180) becomes

2K — |W| + 3/ pdv =0, (2.182)
%
where
1
K = 5/ pQ2 (X2 + %2 dv, (2.183)
%

whichistherotational kinetic energy. Sincethe volumeintegral over the pressure always
remains a nonnegative quantity, it follows at once that the ratio

T = K/|W]| (2.184)

islimited by equilibrium requirementsto rangefrom r = 0 (aspherical body) tor = 0.5.
Of course, at this stage we do not know a priori whether the entire domain of values for
7 (or J) can be covered by suitable models.
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28.2 TheMaclaurin and Jacobi €ellipsoids
From a purely mechanical point of view, the specification of a particular model

in astate of permanent rotation depends on three quantities: (i) thetotal mass M, (ii) the
total angular momentum J, and (iii) an assigned distribution for the angular momentum
per unit mass Q(x2 + x3). To clarify some aspects of the general problem, let us consider
uniformly rotating, homogeneous ellipsoids. For that purpose, consider a system that is
at rest with respect to aframe of reference rotating with the constant angular velocity 2.
The equations of relative equilibrium referred to rectangular axes rotating around the x3
axisare

1 0dp A% 2

D % + (1 — 8i3) QX (2.185)
(i =1, 2, 3; no summation over repeated indices). Now, the components of the gravita-
tional attractionin ahomogeneousellipsoid (with semi-axesay, a,, and a3) havetheform

g:(/i =21 GpAX;, (2.186)
where
A = a aag / OOL (2.187)
o (@2+u)A
and
A% = (aZ+u) (a5 +u)(ai+u). (2.188)

By virtue of EqQ. (2.186), the three components of Eq. (2.185) can bereadily integrated
to give

1
b_ > Q2 (X2 +X3) — wGp (Axd + AoX3 + Agx3) + constant, (2.189)
P
so that the surfaces of constant pressure take the form
(A o ) X2 + (A o ) X2 4+ Agx? = congtant (2.190)
YT 2nGp) Y 2 2nGp ) 2 3% T ' '

In expressing that the boundary of the ellipsoid,
X% X
A28, 2.191
a? * a2 + a3 ( )

coincides with one of the surfaces defined in Eqg. (2.190), one finds that

2 Q? a2 Q? a2
aj (Al - 2nGp> =35 (Az - ZnG,o) = a3 As. (2.192)
Hence, we must have
aZad(A1— Ap) + (&l —ad)alA3 =0 (2.193)
and
Q*  alA —ajA,  alA—ajAs  ajA,—ajhAs

. (2.194)

27Gp &l —a3 a? 2

=5



58 Rotating fluids

Obvioudly, the first equality (2.194) obtainsonly if a; # a, # as. If we next make use
of Eq. (2.187), Eq. (2.193) becomes

0 272 2
2 2 aa R du
— — — =0. 2.195
(@~ | @ru(@sy  Z+u| A (2.195)
Finally, the three equalities (2.194) lead to the following relations:
Q? o0 u du
_ =, 2.196
272Gy  udeR /o @+u) @t A (2.196)
when a; # a, # ag; without any restriction, we also find
Q? A%, 5 o [ u du
= - — 2.197
2nGp & (8 — ) /0 (aZ+u)(a+u) A (2197

and asimilar expression in which the index 1 replaces the index 2, and conversely.

From Eq. (2.197) and its unwritten companion, we first observe that a; > a; and
a, > ag. Thus, the rotation must always take place about the least axis. However, we
may have either a; > a, or a; < ay, since there is no physical difference between any
two configurations for which we exchange the indices 1 and 2. Finally, we perceive at
once that Eq. (2.195) can be satisfied in two different ways. Either we let a; = a, or,
whenever possible, welet a; > a; (say) and maketheintegral factor vanishin Eq. (2.195).
The former solution defines the Maclaurin spheroids while the latter corresponds to the
Jacobi ellipsoids.* The Maclaurin spheroids range from asphere (z = 0) to an infinitely
thin disk that is at rest (z =0.5). A numerical integration of Eq. (2.195) reveals that the
Jacobi ellipsoids exist only in thedomain 7, < t < 0.5, where 7, = 0.1375; they range
from the bifurcation spheroid (r = 1,, where ag/a; = 0.5827) to an infinitely long
needle that is devoid of rotational motion (r = 0.5). Figure 2.6 illustrates the behavior
of Q2 asafunction of z. Thus, when 0 < t < 1, the Maclaurin spheroids are the only
possible figures of equilibrium; in contrast, in the range 7, < t < 0.5, to each value
of t correspond two ellipsoidal configurations in relative equilibrium: one Maclaurin
spheroid and one Jacobi ellipsoid.

For fixed valuesof J, M, and V, one can show that the total mechanical energy K +W
is smaller in the body with triplanar symmetry than in the corresponding axisymmetric

* The Scottish mathematician Colin Maclaurin (1698-1746) was the first to show in 1740 that any
oblate homogeneous spheroid is a possible figure of equilibrium for uniformly rotating bodies. The
next important discovery was not made until 1834, however, when the German mathematician Carl
Jacobi (1804—1851) pointed out that homogeneous ellipsoids with three unequal axes can very well
be figures of equilibrium (Poggendorff Ann., 33, 229, Oct. 4, 1834). Competition was fierce then,
asit istoday. Indeed, about three weeks later Joseph Liouville (1809-1882) published the detailed
analytical proof of that theorem; however, noting that Jacobi had merely reported Egs. (2.195) and
(2.196) in his paper, Liouville could not refrain from saying that “this theorem, simple asit is, seems
to have been enunciated as a challenge to the French mathematicians.” And then Liouville added:
“Mr. Jacobi was promising more indeed, when he announced that he was going to take over celestial
mechanics from the pitiful state in which, so he said, Laplace had left it” (J. Ecole Polytech. Paris,
14, Cahier 23, p. 291n, Oct. 27, 1834). Thus, Liouville perceived at once — but was reluctant to admit
—that Jacobi had made an important discovery; yet, none of them could have foreseen that they were
discussing the first known case of broken symmetry in physics. For the interested reader, the above
quotations from Liouville's paper should clarify Chandrasekhar’s (1969, p. 7) presentation of the
Jacobi ellipsoids.
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Fig. 2.6. The squared angular velocity ©? along the Maclaurin (solid line) and the Jacobi
(dashed line) sequences, as afunction of theratio r = K /|W|. The unit of Q2 is 27 Gp.

configuration. Accordingly, if some dissipative mechanismis operative, we may expect
that beyond the point of bifurcation, t = 7, an incompressible Maclaurin spheroid will
evolve gradually to the Jacobi ellipsoid having the same total angular momentum. A
detailed study of theglobal oscillationsthat transform aMaclaurin spheroidinto agenuine
triaxial body while preserving its plane of symmetry isthusin order.

Such a study was made by Lebovitz (1961). In particular, by making use of the
perturbation forms of the six components of Eq. (2.178), hewas ableto calculate thefive
oscillation frequencies that reduce to the quintuple Kelvin frequency belonging to the
spherical harmonics YJ" in thelimit @ = 0 (Im| < 2). Aswe shall seeg, it isthe toroidal
(or barlike) modesthat are of direct relevanceto our discussion. When dissi pative effects
may be neglected, the corresponding frequencies are

0,=0-(2w—-2)Y? and o, =Q+ (2w — Q)Y (2.198)
and two similar frequencies in which —2 replaces 2. Here we have let
o u du
o = 2nGpalag / — . (2.199)
o (aZ+u)” A

Thisisanexact analytical result. Figure 2.7 illustratesthe behavior of thefrequencieso_,
and o, , along the Maclaurin sequence. We observe that o_, vanisheswhen Q2 = w, that
is, at the point T = 7, where the Jacobi sequence branches off the Maclaurin sequence.
In addition, both frequencies become complex when Q2 > 2w, that is, beyond the point
T =1 = 0.2738,whereas/a; = 0.3033; clearly, thisimpliesinstability by an overstable
oscillation of frequency Q.
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The situation is somewhat different when dissipation is properly taken into account. In
that case, one can show that thebarlikemodesof oscillation aredamped prior totheneutral
point T = 1,,. In the range 1, < t < t;, however, the dightest amount of dissipation will
carry slowly the Maclaurin spheroidinto another configuration having agenuinetriplanar
symmetry. The system is then said to be secularly unstable. Beyond the point T = 1,
the Maclaurin spheroid becomes dynamically unstable as in the nondissipative case.

2.8.3 Rotating polytropes

In Section 2.8.2 we have summarized the main properties of the Maclaurin-
Jacobi ellipsoids. To what extent can we extrapol ate these results to centrally condensed
bodies that we force to rotate with some prescribed angular momentum distribution? In
particular, isit always possible to build a model in a state of permanent rotation for all
valuesthat we may assign to thetotal angular momentum J? Toillustrate these problems,
let us briefly consider polytropes, that is, barotropic structures for which the pressure p
and the density p are related by the relation

p = KoM, (2.200)

where Ky and n are constants (0 < n < 5). Because the value n = 0 corresponds to a
configuration of uniform density, it istherefore convenient to think of theincompressible
Maclaurin spheroids as a sequence of uniformly rotating polytropes of index n = 0.

It has been known since the pioneering work of Jeans (1919), which was subsequently
refined by James (1964), that every sequence of axialy symmetric, uniformly rotating
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polytropes terminates with a configuration in which the gravitational and centrifugal ac-
celerations exactly balance at points on the equator. As arule, each sequence terminates
at apoint T = Tma (Say), and the values of T, decrease sharply with polytropic index.
(While 1, = 0.5 along the Maclaurin sequence, tma &~ 0.12 when n = 1, and s
is already reduced to less than one percent when n = 3.) To be specific, for low poly-
tropicindex (i.e., n < 0.8) sequences of axisymmetric models reach points of bifurcation
and, where further models become secularly unstable (as for n = 0), the sequences may
bifurcate into analogs of the Jacobi elipsoids. When n > 0.8, however, sequences of
axially symmetric, uniformly rotating polytropes aways terminate at models in which
the effective gravity vanishes at the equator.

In the early 1980s, different groups have actually constructed complete sequences of
nonaxisymmetric, uniformly rotating polytropesfor n < 0.8. Their independent calcula-
tionsclearly show that all these Jacobi-like sequences bifurcate from their corresponding
axisymmetric counterparts at about the same value of r (~ 0.137). However, as was
shown by Eriguchi and Hachisu (1982), even for anindex aslow asn = 0.1, they termi-
nate after only asmall increase in J away from the axisymmetric models. Accordingly,
until limited by the onset of equatorial breakup, the equilibrium figures of uniformly
rotating polytropes with low polytropic index resemble, in all essential respects, the
Maclaurin—-Jacobi ellipsoids. Thisisin sharp contrast to the more centrally condensed
polytropesfor which the rotational kinetic energy does not exceed asmall fraction of the
gravitational potential energy (r « 0.5). Indeed, as was shown by Tassoul and Ostriker
(1970), because uniformly rotating configurations having a genuine triplanar symmetry
always branch off at the point = ~ 0.137, which is almost independent of n, bifurcation
— and the ensuing secular instability — does not occur along polytropic sequences with
n > 0.8. In other words, uniformly rotating, centrally condensed polytropes remain un-
affected by the global instabilities described in Section 2.8.2 because they cannot store
alarge amount of angular momentum!

Aswasoriginally shown by Bodenheimer and Ostriker in 1973, acompletely different
picture emergesfrom the study of frictionless, differentially rotating polytropesfor which
weprescribeagiven angular momentum distribution. Inthat case, thecentrally condensed
models closely simulate incompressible Maclaurin spheroids, except that they do not
maintain uniform rotation. In particular, it was found that the polytropic sequences do
not terminate and that bifurcation may occur when 7 is very closely equal to the value
7 = 13, obtained for the Maclaurin spheroids. Moreover, their work strongly suggested
that dynamical instability with respect to a barlike mode always sets in beyond the
point T = t;, which again does not greatly depend on the particular sequence. Recent
devel opments have shown that some of these propositions may need refinement, however.

To be specific, Imamura et al. (1995) have shown that for angular momentum distri-
butions similar to those of the Maclaurin spheroids, thereisaqualitative correspondence
between the onset of secular instability for compressible and incompressible fluids.
However, for angular momentum distributions that are more peaked toward the equato-
rial radius, their work indicates that secular instability with respect to abarlike mode sets
in at lower values of z, shifting from ¢ = 0.14 to = = 0.09 over the range of angular
momentum distributions considered. Morerecently, Toman et al. (1998) have shown that
the onset of dynamical instability with respect to a barlike mode is not very sensitive to
the compressibility or angular momentum distribution when the polytropic models are



62 Rotating fluids

parameterized by t. The eigenfunctions for the fastest growing barlike modes are, how-
ever, qualitatively different from the Maclaurin eigenfunctions in one important respect:
They develop strong spiral arms. These spiral arms are stronger for larger values of the
polytropic index and for configurations whose angular momentum distributions deviate
significantly from those of the Maclaurin spheroids.
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Rotating stars

31 Introduction

Consider a single star that rotates about a fixed direction in space, with some
assigned angular vel ocity. Asweknow, the star then assumesthe shape of an oblatefigure.
However, we are at once faced with the following questions. What is the geometrical
shape of the free boundary? What is the form of the surfaces upon which the physical
variables (such as pressure, density, ...) remain a constant? To sum up, what is the
actual stratification of a rotating star, and how does it depend on the angular velocity
distribution? For rotating stars, we have no apriori knowledge of thisstratification, which
isitself an unknown that must be derived from the basic equations of the problem. This
isin sharp contrast to the case of a nonrotating star, for which a spherical stratification
can be assumed ab initio.*

In principle, by making use of the equations derived in Section 2.2, one should be able
to calculate at every instant the angular momentum distribution and the stratification
in a rotating star. Obviousdly, this is an impossible task at the present level of knowl-
edge of the subject, even were the initial conditions known. Until very recently, the
standard procedure was to calculate in an approximate manner an equilibrium structure
that corresponds to some prescribed rotation law, ruling out those configurations that
are dynamically or thermally unstable with respect to axisymmetric disturbances (see
Sections 3.4.2 and 3.5). Unfortunately, the results presented in Section 3.3 indicate that,
no matter whether radiation or convection is providing the energy transport, the large-
scale motion in a star is always the combination of a pure rotation and a circulation in
meridian planes passing through the rotation axis. Moreover, as we shall seein Section
3.4.3, no dynamically stable model can possibly exist when nonaxisymmetric distur-
bances are taken into account. These barotropic and baroclinic instabilities, which have
their rootsin the geophysical literature, are mild onesin the sense that they continuously
generate small-scale, eddy motions that interact with the large-scale flow. Lacking any
better description of these transient motions, we shall further assume that the eddy flux

* Following the publication of Newton's (1687) Principia, the effects of rotation upon the interna
structure of aself-gravitating body wereinvestigated mainly with aview to their possible applications
to geodesy and planetary physics. Many a classical result derived during the period 1740-1940 still
retains its usefulness today when applied to centrally condensed stars. For a brief historical account
of these and related matters, see J. L. Tassoul, Theory of Rotating Sars, Section 1.3, Princeton:
Princeton University Press, 1978.
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momentum can be represented parametrically by means of suitable coefficients of eddy
viscosity. Thisisknown asthe eddy—mean flow interaction, which is presented in Section
3.6. This approach has been familiar to geophysicists since the late 1940s. It is partic-
ularly convenient because it resolvesin a very simple manner the many contradictions
and inconsistencies that have beset the theory of rotating stars.

3.2 Basic concepts
Because molecular viscosity is negligible for large-scale motions in a star, the
momentum equation (2.7) reduces to
Dv 1
— =—gradV — — grad p, (3.1
Dt P
wherev isthe velocity in an inertial frame of reference, V isthe gravitational potential,
p isthe density, and p is the pressure. The gravitational potential and the density are
related by the Poisson equation

V3V = 47 Gp, (3.2
where G is the constant of gravitation. Mass conservation implies that
Dp .
— divv =0. 3.3
o TP (3.3)

Finally, neglecting the dissipation function @, and thermal conductivity, we may recast
Eq. (2.12) intheform

DS ,
pT— = penye — div F, (3.9
Dt
where ey iS the rate of energy released by the thermonuclear reactions per unit mass
and unit time, and F istheradiative flux vector. If we except the outermost surfacelayers
of astar, this vector is given by

F =—xoradT, (3.5)
where
4ac T3
X = 3 xp (3:6)
Kp

isthe coefficient of radiative conductivity. Asusual, a isthe radiation pressure constant,
c isthe speed of light, and « is the coefficient of opacity per unit mass.

In thefollowing we shall consider amixture of blackbody radiation and asimpleideal
gas. Neglecting the ionization and excitation energies, we thus replace Egs. (2.13) and
(2.14) by

1
U=o T+ Sar (37)
P

and
R

1
p= = oT + 3 aT®. (3.8)
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For isentropic motions, Eq. (2.11) becomes

DS DU D /1 DU p .
—_— = — |- ) =—+—dvv=0, 39
Dt Dt +th (,0) Dt +,0 WV (39)
thus expressing that the specific entropy of each fluid particle remains a constant along
its path (although this entropy may differ from one path line to another). Equation (3.9)

can be written also in the form

Dp_ . PDp
Dt = Iy > DU (3.10)
Here we have let
4-38)%(y — 1
K= p4 ( B)"(y — 1) (311)

B+12(y —1)(1-p)’
where 8 = pgy/(Py + Pr) istheratio of gaseous pressure to total pressure. One can aso
write

1 DT 1D r,—110D
S =P 2= 2P (3.12)
T Dt p Dt r, p Dt
where T', and I'; are related to I'; by the following relations:
ry—-p8 r,—1
—1= =r . 3.13
s-1=g g =T (313)
The variation of theratio 8 isgiven by
1D 1D
——ﬁ=(F3—F1)——p- (3.19)
B Dt o Dt

The I's reduce to the usual adiabatic exponent y = c,/cy inthelimit p. < pg; they
reduce to 4/3 for blackbody radiation alone (p; <« pr). For a mixture of an idea gas
and blackbody radiation, the generalized adiabatic exponents are intermediate in value
between 4/3 and y.

3.2.1 ThePoincaré&-Wavre theorem

The simplest model of a rotating star we can make is to assume that the con-
figuration rotates about a fixed direction in space with some assigned angular velocity.
Assume further that the star is axially symmetric and that the motion is steady in time.
Let the star rotate about the z axis, and take the center of our inertial frame of reference
at the center of mass. Then, in cylindrical polar coordinates (o, ¢, z), the velocity v has
the form

V=Qwl, (3.15)

where 1, is the unit vector in the azimuthal direction. By virtue of our assumptions,
Eq. (3.3) is identically satisfied. Since we have neglected any large-scale motion in
meridian planes passing through the rotation axis, the ¢ component of Eq. (3.1) is
identically satisfied also. The remaining components of this equation imply that

1 dp oV

; py- = _% + QZZD' (316)
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and
lop 9V
podz oz
Many useful properties can be deduced from these equations. For this purpose, let us
define the effective gravity

B\ B\
=—(——-Q%» |1, — —1,, 3.18
g <8w w) 9z (3.18)

where 1, and 1, are the unit vectors in the @ and z direction. Equations (3.16) and
(3.17) become

(3.17)

1 grad p = g. (319
P

It follows at once that the effective gravity is everywhere orthogonal to the surfaces of
constant pressure (i.e., the isobaric surfaces). Thisis a general property, which isvalid
no matter whether one has 2 = Q(w) or Q = Q(w, 2).

Let us now assume the star rotates as a solid body. Equation (3.18) then reducesto

g=—grad ®, (3.20)
where, except for an additive constant, one has

1
& =V(w,2) — > Q?w?2. (3.21)

Under what circumstances can we also derive the effective gravity from a potential in a
differentialy rotating star? By virtue of Eq. (3.18), thisis possibleif and only if &2 does
not depend on z, that is, when the angular velocity is a constant over cylinders centered
about the axis of rotation. Then, instead of Eq. (3.21), one has

®=V(w,2)— / mgz(w/)w/dwd (3.22)

Various interesting conclusions can be inferred from the existence of such a potential.
First, by virtue of Eq. (3.19), one can always write

i dp = g, dw + g, dz. (3.23)

Making use of Egs. (3.20) and (3.22), we obtain
; dp= —do. (3.24)
By definition, for any displacement on alevel surface ® = constant one hasd® = 0.

Since Eq. (3.24) shows that dp = 0 on the same surface, it follows at once that the
isobaric surfaces coincide with the level surfaces. If so, then, we can write

p = p(d) or d = P(p). (3.25
By virtue of Eq. (3.24), one readily sees that
1 do
1__de) or o = p(p). (3.26)

o dp
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Accordingly, the density is also a constant over an isobaric surface. Thus, the surfaces
upon which p, p, and ® remain a constant al coincide. As a consequence, when a
potential ® doesexist, the vector gisalso normal to the surfaces of constant density (i.e.,
the isopycnic surfaces).

Reciprocally, let us consider a system for which the surfaces of constant pressure and
constant density coincide. If we let

dp
o(p)=—- | ——, 3.27
(P) 2(0) (3.27)
Eqg. (3.23) then becomes
d® =g, dw + g, dz (3.28)

Asfunction of the coordinates, the differential d® isan exact total differential. Accord-
ingly, Eq. (3.20) must hold true, and the vector g may be derived from a potential.

Finally, let us suppose that the effective gravity is everywhere normal to theisopycnic
surfaces. By virtue of Eq. (3.23), any displacement over one of these surfaces gives
dp = 0, so that the pressure is a constant over an isopycnic surface. The coincidence of
the surfaces of constant pressure and constant density is thus established.

If we now collect al the pieces together, it is a simple matter to see that we have
proved the equivalence of the following statements:

(d) Theangular velocity depends on z only.

(b) The effective gravity can be derived from a potential.

(c) The effective gravity is normal to the isopycnic surfaces.
(d) Theisobaric surfaces and the isopycnic surfaces coincide.

Thus, any of these statementsimplies the three others. By definition, a system for which
these statements hold trueis called a barotrope.

Following current practice, we shall call a system for which these statements do not
hold true a barocline. The major distinction between a barotrope and a barocline lies
in their respective stratification. Of particular importance is the fact that the isopycnic
surfaces arein general inclined to and cut the isobaric surfaces in a barocline.

Note that slow but inexorable meridional currents do exist in a rotating star. As we
shall seein Chapters 4 and 5, however, these currents are so slow that they do not upset
the mechanical balance defined by Egs. (3.16) and (3.17). Hence, they do not modify the
basic conclusions reported in this section.

33 Some tentative solutions

In Section 3.2.1 we have demonstrated some simple mechanical properties of
an axially symmetric star that rotates with some assigned angular velocity. Yet, because
we have hitherto circumvented the use of the condition of energy conservation, we do
not know whether we can apply these results, without modification, to aradiating star.
For example, is there any constraint imposed by the condition of radiative equilibrium
on the angular velocity distribution in a barotropic star? Similarly, to what extent is it
necessary to modify the conclusions of the Poincaré-Wavre theorem when turbulent
friction is properly taken into account in astar in strict convective equilibrium? We shall
devote this section to the study of these two questions.
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331 Thecase of radiative equilibrium
Consider abarotropic star in strict radiative equilibrium. By making use of Eq.
(3.4), we can write

divF = pene. (3.29)
Equations (3.19) and (3.20) further imply that

1 grad p = —grad @, (3.30)
P

where ® is defined in Eq. (3.22). By virtue of the Poincarée-Wavre theorem, we imme-
diately deduce that p = p(®) and p = p(®). If the chemical composition is constant
(or a function of p and p only), one also has T = T(®). Hence, if we assume that
enwe = enwc(p, T) and « = «(p, T), both the energy generation rate and the opacity
coefficient depend on @ only. It follows that

4ac T3 dT
=—— —— grad® 3.31
7 3 kp dd g (3.31)
or
F = f(P)grad D, (3.32
where
4ac T3 dT
f(P)=—— — —. 3
(®) 3 1o do (3.33)
Let us consider next the divergence of Eq. (3.32). One obtains
. , do\? 5
divF = f'(®) an + f(D)V-D, (3.34)

where dn isalong the outward normal to alevel surface, and a prime denotes aderivative
with respect to ®. We also have

(iﬁ)z - (;}2)2 + (aac:)z =g (3.35)

Clearly, d®/dn is the magnitude of the effective gravity g. Combining Egs. (3.2) and
(3.22), one can write

V20 = arGp — — 4 (@2w?). (3.36)
o do
By making use of Egs. (3.34)—(3.36), we can thus recast Eq. (3.29) in the form
1d
f/(P)g? + f(P) |47Gp — — — (%@ ?)| = pence. (3.37)
o do

Thisisthe condition of strict radiative equilibrium in a barotropic star.
The case of a uniformly rotating barotrope is particularly straightforward, and it was
originally discussed by von Zeipel (1924). Equation (3.37) then reduces to

f/(D)g2 + (D) (4rGp — 22%) = penue. (3.38)
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Asweknow, gisnot constant over alevel surfacein arotating body, becausethe distance
from one level to the next one is not the same for every point on it. Accordingly, since
0, €nue, @nd © are al constant on level surfaces, the coefficient of g in Eq. (3.38) must
vanish separately. We have, therefore,

f'(®)=0 or f(®) = constant. (3.39)
Hence, Eq. (3.38) assumes the form
QZ
€Nuc X (l - o G,O> s (3.40)
and Eq. (3.32) reduces to
|F| x g. (3.41)

Thisis known as von Zeipel’s law of gravity darkening. Obviously, condition (3.40) is
never fulfilled in an actual star. It follows at once that rigid rotation is impossible for a
barotrope in static radiative equilibrium.

Let us consider next the general conservative law @ = Q(w). In this case, as was
pointed out by Rosseland (1926) and Vogt (1935), it is intuitively evident that the law
Q = Q(w) isincompatible with condition (3.37). Indeed, while  will be constant over
cylinders centered about the rotation axis, g will be constant over certain oblate surfaces.
Therefore, by virtue of Eq. (3.37), conditions (3.39) and (3.41) still pertain, but we must
impose the additional condition

1 d
o do
After integrating, one obtains

(Q2w?) = congtant. (342)

C
Q=c + w—zz (3.43)

where ¢; and ¢, denote two arbitrary constants. If ¢, = 0, we simply recover the case
of a uniformly rotating barotrope. Similarly, if c, # 0, the rotational law (3.43) be-
comes singular on the rotation axis; it must be disregarded because it also leads to an
impossible constraint on ey, (i.€., condition [3.40] with 2 being replaced by c,). This
argument shows that a differentially rotating barotrope cannot remain in static radiative
equilibrium,

It is not the usual energy generation rates that prevent the rotation laws Q2 = constant
or Q = Q(w) from being realized, but rather the condition of strict radiative equilibrium.
Indeed, inthelimit 2 = 0O, gisaconstant over each spherical surface® = V = constant,
and there is no requirement that some terms in Eq. (3.37) should vanish independently
of the remaining terms. Therefore, this equation must be regarded as an indication that
for nonspherical stars at least one of the assumptions leading to conditions (3.40) and
(3.42) must be relaxed.

This problem can be solved in two different ways. Either we assume strict radiative
equilibriumwhileallowing €2 to depend on both @ and z or we assumethat strict radiative
equilibrium breaks down in a rotationally distorted star. The latter solution leads to
the formation of alarge-scale meridional flow (and concomitant differential rotation) in
the radiative zone of arotating star. The former solution is mainly of academic interest,
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however, because there is no obvious reason why the angular velocity would adjust itself
so asto prevent meridional currents. These matterswill be discussed further in Chapter 4.

3.3.2 Thecase of convective equilibrium

In aregion of efficient convection, the energy transport keepsthe actual temper-
ature gradient closely equal to the adiabatic lapse rate. L et us assume that such aregion
has reached a state of mechanical equilibrium, with no large-scale motions in merid-
ian planes passing through the rotation axis. Since the fluid is essentially barotropic, it
follows at once that

Q = Qo) (3.44)

over the whole region where strict convective equilibrium prevails.

The actual form of the rotation law depends on the azimuthal forces. By assumption,
there are no meridional motions; and thereis no large-scale magnetic field. Accordingly,
the only remaining forceisthe ¢ component of turbulent friction acting on the rotational
motion. Anexplicit expressionfor thisforcewill bepresentedin Section 3.6. Anticipating
these results and introducing spherical polar coordinates (r, 6, ¢), one finds that

r%% (M\/IA? +Avr39> +smi39% (,LLH sin®o %) =0, (3.45)
where 1y and uy are the vertical and horizontal coefficients of eddy viscosity, and Ay
isaparameter representing the influence of global rotation on the anisotropic convective
elements (see Eq. [3.133]).

Equation (3.45) must be solved with appropriate boundary conditions. Because eddy
viscosity isaways much larger in a convective zone than in the surrounding regions, we
shall merely prescribe that the tangential viscous stresses vanish at the boundaries of the
convective zone (see Eq. [2.21]). For a slowly rotating solar-type star, these conditions
become

1Y)
MvraT_HLVQ:O at r=R ad r=R, (3.46)

where R, and R, are the inner and outer radii of its (almost) spherical convective layer
(see Eq. [3.131)).

For the sake of simplicity, let us assume that the parameter A\, and the eddy viscosities
are constant. Following Kippenhahn (1963), one can show that Egs. (3.45) and (3.46)
can be satisfied only if the angular velocity is constant on spheres, with the rotation law

Q=Qgr (3.47)

where Q¢ isaconstant and « = Ay /uy . Because the parameter A does not in genera
vanish in aconvective zone, it preventsrigid rotation from being asolution of Eq. (3.45).
Accordingly, conditions (3.44) and (3.47) cannot be satisfied simultaneously in a con-
Vvective region, so that a pure rotation cannot be a solution of the problem. This result
confirms Biermann’s (1958) origina finding that large-scale meridiona currents are
always present in aregion of efficient convection.

This conclusion is very similar to the result obtained in Section 3.3.1. However, in
contrast to the case of a radiative zone, it isthe necessity to conserve linear momentum,
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rather than energy, that drives the meridional flow in a convective zone. A detailed
discussion of these large-scale currents will be made in Section 5.2.

34 The dynamical instabilities
Consider an axially symmetric star and assume that it rotates with some pre-

scribed angular velocity 2 = Q(w, z). By making use of Egs. (3.16) and (3.17), we can

rewrite these conditions of mechanical equilibrium in the compact form

j 2

51, =0, (3.48)

gradV + % grad p —
where j = Qw2 isthe angular momentum per unit mass. Then, under what conditions
is this configuration stable with respect to small isentropic disturbances? Although no
definitiveanswer can begiven at the present time, someinteresting results can be obtained
for axially symmetric motions (i.e., motions for which the specific angular momentum
of each fluid particle is preserved along its path). Departures from axial symmetry will
be discussed briefly in Section 3.4.3.

Two types of description can be used to analyze the oscillations of a star about a
known state of equilibrium: Either we specify the Eulerian change noted by an external
observer who, at every instant t, views a given volume of fluid at a fixed location in
space, or we describe the Lagrangian change within a given mass element, which is
followed along its path in the course of time. Let Q(r,t) and Qo(r, t) be the values
of any physical quantity in the perturbed and unperturbed flows, respectively. Consider
also the Lagrangian displacement £(r, t), which describes any departure from the state
of equilibrium. Given these definitions, one finds that

§Q =Q(r,t) — Qo(r, t) (3.49)

isthe Eulerian variation of the quantity Q, whereas
AQ = Q[r +&(r,t), t] — Qo(r. ) (3.50)

isits Lagrangian variation. In the linear approximation, we can thus write

AQ=45Q+¢& grad Q. (3.51)
One aso has

5/ Qdmz/AQdm, (3.52)

% %

wheredm = pdv isthe mass element and )V isthetotal volume. Very much for the same
reason, we can also write

d [ DbQ
a/\)Qdm_/vﬁtdm. (3.53)

34.1 Anenergyprinciple

As was originally shown by Fjartoft (1946), one can derive the appropriate
stability criterion on the basis of the energy equation. His analysis relies upon the fact
that the total energy — which is extremal for configurations satisfying Eq. (3.48) —isa
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minimum for dynamically stable equilibria and fails to be a minimum for dynamically
unstable ones. This can be seen as follows. Take the scalar product of Eqg. (3.1) with the
velocity v, and integrate over the volume ). After performing an integration by partsand
using the fact that the pressure vanishes at the free surface, we obtain

1
E/ —|v2|dm:/ P givvdm —/v'gradVdm. (3.54)
dt v 2 Y %
By making use of Egs. (3.9) and (3.53), one finds that
p pu  d / _dUur
D divvdm = , Dt dm= at VU dm = T (3.55)
where U+ isthe total thermal energy. Similarly, we can write
w
/v~gradVdm: _aw (3.56)
v dt

where W is the gravitational potential energy. Using Egs. (3.55) and (3.56), we can
integrate Eq. (3.54) to obtain

1
/ > IvI2dm + Ut + W = constant. (357)
%

Suppose now that an axially symmetric motion is superimposed upon the state of equi-
librium. Equation (3.57) then becomes

1
Z |vyl2dm + E = constant, 3.58
2 p

\%

wherev,, isthevelocity field of theaxially symmetric pulsation, and E isthetotal energy

1 2 1
=—/—dm+/Udm+—/Vdm. (3.59)
2 sz Vv 2 %

Obviously, any increase of the kinetic energy of the axially symmetric motion must be
supplied from thetotal energy E. Accordingly, thisenergy must be aminimum for stable,
isentropic motions.

Let us now compute the first and second variations of the total energy E by keep-
ing constant the total mass M and the total angular momentum J. Dynamically stable
equilibria correspond to the conditions

SE=0 and &°E >0. (3.60)

In the case of axialy symmetric motions, the specific angular momentum is preserved
for each fluid particle. We thus have Dj /Dt = 0, so that we can write

2/ dm = — / i &, dm. (3.61)
Similarly, for isentropic motions one has DS/Dt = 0. Equation (3.9) thus implies that

AU = — Pdive. (3.62)
0
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By making use of Eq. (3.52), we obtain

6/Udm=/AUdm= —/Edivgdm=/3§.gradpdm. (3.63)
v v v P v P

Finally, the first variation of the potential energy is

SW = / ¢ gradV dm. (3.64)
%
From Egs. (3.61), (3.63), and (3.64), it thus follows that
1 2
(SE:/g-(gradVJr—gradp—J—slw)dm. (3.65)
% Y w

By making use of Eq. (3.48), one readily sees that the condition §E = O defines a state
of mechanical equilibrium. Similarly, it is a simple matter to prove that

i2
52E — / £ [A (gradV + 1 grad p) L3 14 dm. (3.66)
% Jo w
By virtue of Egs. (3.48) and (3.51), one obtains

A <gradV + i grad p)

1
=gradéV + — gradsp — 8—'2 grad p + £ - grad (Q?w) 1,,.  (3.67)
P P
Hence, we can rewrite Eq. (3.66) in the compact form
§2E = —/ £.Ledm, (3.68)
1%

where
1 dp 1 5 4
L£=—grad5V—;grad3p+E gadp— — & - grad (e ") 1,,. (3.69)
w

Equations (3.3) and (3.10) imply that
Sp= —pdivE—€&-gradp (3.70)
and
Sp= —Typdivg — & -grad p. (3.71)
Similarly, by assuming that the density vanishes at the free surface, we have

5p(r', t)
v Ir=r]|

8V =-G

dv’, (3.72)

wheredp isgivenintermsof £ by Eq. (3.70). Thus, if there exists adisplacement £ such
that

/ ¢-Ledm > 0, (373)
Vv

we have §2E < 0, and the system is dynamically unstable because its total energy fails
to be an absolute minimum.
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For the sake of completeness, let us briefly consider the small oscillations about the
state of mechanical equilibrium defined in Eq. (3.48). A rigorous discussion was made
by Lebovitz (1970), who derived the following eguation:

9%¢

— =L¢, 3.74

T = L& (3.74)
where L isthe time-dependent operator defined in Eq. (3.69) and £ isatwo-dimensional
vector with components &,, and &,. This operator is symmetric in the sense that

/vg-Lndmz/vn-Lgdm, (3.75)

where £ and r) are two arbitrary vectors. Aswas shown by Lebovitz, the symmetry of L
implies that the configuration is unstable if, for any tria function &, condition (3.73) is
satisfied. The strength of thisresult isthat it avoids any assumptions about the existence
of normal modes or about their properties when they do exist. It can be put into a more
familiar form if we consider the normal-mode solution

£ = &(ne, (3.76)
for which

—o%€y=L¢&, (3.77)
and

2_ _ Jy&o-L&dm
fvfo'ﬁodm '

By virtue of Eq. (3.75), thisequation providesavariational basisfor the determination of
the allowed values of -2, with the smallest eigenval ue being the minimum of the expres-
sion on the right-hand side of Eq. (3.78). Accordingly, if condition (3.73) is satisfied for
some vector £ = &, theright-hand side of Eq. (3.78) is negative for such achoice. This
implies a negative value for the least eigenvalue o2, so that the mechanical equilibrium
isdynamically unstable. The equivalence of the two methods is therefore demonstrated.

To proceed any further, we must now insert Egs. (3.69)—3.72) into Eq. (3.73). In-
tegrating by parts and rearranging the various terms in this equation, we eventually
obtain

[ [eomeon- [ [

where the tensor M hasthe form

(3.78)

+ & -gradsV | dm, (3.79

1 1 1 1
M= = gradp (— grad p — —— grad p) + — gadw grad(Q’w?).  (3.80)
P P Iip w

34.2 The Solberg—Hgiland conditions

In order to discuss the implications of this stability criterion, we shall assume
that the Eulerian changes§p and 6V can be neglected in the configuration. Thehypothesis
3p = 0isvalid whenever the characteristic time of the disturbances exceeds the travel
time of asound wavein the perturbed domain. (Thisamountsto filtering out the p-modes
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of oscillation.) By virtue of Eq. (3.72), the hypothesis §V = 0 implies that we restrict
our analysisto disturbances having many nodes, that is, perturbations with wavelengths
much shorter than the star’s radius.

Giventheseassumptions, itisimmediately apparent from Eq. (3.79) that the stability of
an equilibrium with respect to axially symmetric motions depends on the character of the
quadratic form & - M. By virtue of Eq. (3.73), a self-gravitating system is dynamically
stable with respect to short-wavelength perturbations if and only if £ - M£ is positive
definite. Indeed, if thisconditionisnot satisfied, it isalways possibleto find aLagrangian
displacement £ for which the second variation,

82E=/£~M£dm, (3.81)
%

isnegative. If so, then, thetotal energy E failsto be an absol ute minimum, thusindicating
an unstable state of equilibrium.
For further use, let us define the following vectors:

1 Q
® = — grad(Q®w ") =2 = grad |, (3.82)

w w
Py=gradow = 1,, (3.83)

1 1 1 y-1
U=—gadp——gradp = — rad S, 3.84
Flp@J P pg o Cprs_lg (3.84)
1

Po=——gradp= —g, (3.85)

0

where j isthe angular momentum per unit mass and Sis the entropy per unit mass. We
can thus rewrite Eqg. (3.80) in the compact form

M = $o® + Tl (3.86)

Note that the vectors ®, and ¥ are always directed along the outer normal to the
surfaces w = constant and p = constant, respectively. Similarly, the vectors ® and ¥
are orthogonal to the surfaces j = constant and S = constant, respectively, although we
do not know a priori whether they are directed along the inner or outer normal.

Since the vectors (3.82)—3.85) and the tensor (3.86) play an essential role in the
subsequent discussion, we shall briefly summarize their main properties. First, taking
the curl of Eq. (3.48), we obtain

1 1
grad — x grad p = — grad(Q*=*) x 1,,. (3.87)
0 ()

Thisisthe thermal wind relation, which relates the z dependence of the angular velocity
Q tothebaroclinicity of the system (see Eq. [2.83]). By making use of Egs. (3.82)—3.85),
we thus have

D x Pyg+ ¥ x ¥y =0, (388)

sothat therotation ® — ®,isawaysoppositetotherotation ¥ — Wq. Equation (3.87)
is aso the condition that makes the tensor M symmetric. Indeed, since the sets (®q, ¥o)
and (®, ¥) can be interchanged, it follows at once that

PP+ P Vyg=PyP + Py, (3.89)
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and the curves £ - M€ = constant represent afamily of concentric conics. At each point
of the configuration, one can thus find their two (orthogonal) principal axes (X, y) so
that

£-ME =y &F +ay &l (3.90)

where &, and &, are the components of £ along the principal axes. Because the trace and
the determinant of M are invariant with respect to a rotation of the axes, we also have

ax +ay =traceM = @ - ®,+ ¥ - ¥, (3.91)
and
axey = detM = (g x ¥p) - (P x P). (3.92

From Egs. (3.90)—3.92) we observe that £ - M€ is positive definite if and only if oy
and «ry are both positive. Hence, the conditions of stability are

traceM > 0 and detM > 0O, (3.93)
or, returning to the original variables,

1 90j2 1 y-1

w3 dw  cp3—1

(—g)-gradS> 0 (3.94)

and simultaneously

3j2 39S  9j2 9S
g, (A2 A 92 3.95
gz(aw 0z 9z 807) ~ (399

Equations (3.94) and (3.95) are often known as the Solberg—Hgiland conditions for
dynamical stability.
Now, as was shown by Holmboe (1948), the equation governing small axisymmetric
oscillations can be brought to the form
0%¢
T =~ Bo(®-6) — To(¥ - ). (3.96)
This equation gives the meridional acceleration in the perturbed motion as a result of
two forces. The first term on the right-hand side of Eq. (3.96) represents the centrifugal
buoyancy. It is directed opposite to the unit vector 1,,, and it has the magnitude (® - £).
Since the vector @ is perpendicular to the surfaces j = constant, it follows at once
that only the component of £ perpendicular to these surfaces is active in the generation
of centrifugal buoyancy. The second term represents the gravitational buoyancy. It is
in the same direction as the effective gravity g, and it has the magnitude |g|(¥ - ®).
Thus, only the component of £ perpendicular to the surfaces S = constant contributes
to the gravitational buoyancy. The stability of the system depends on the direction of the
resultant buoyancy with reference to all permissible displacements &.
Inthelimit j = 0, stability conditions(3.94) and (3.95) reduceto the singleinequality

(—g) - grad S= N? > 0, (3.97)

which is the condition for the temperature lapse rate to be subadiabatic throughout the
configuration (see Eq. [2.136]). Not unexpectedly, the solution of Eq. (3.96) then reduces
to stable buoyancy oscillations.
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Fig. 3.1. A dynamically stable situation.
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Fig. 3.2. A dynamically unstable situation.

Inthelimit S = constant, the configuration degenerates into abarotrope. In this case,
the stability condition (3.94) becomes
a > 0, (3.98)
do
with the solution of Eq. (3.96) being stable inertia oscillations. Notethat criterion (3.98)
generalizes to homentropic fluids the well-known Rayleigh criterion for an incompress-
ible fluid.*

Given these results, one would be tempted to conclude that, in the general case of a
baroclinic star, stability conditions (3.94) and (3.95) are equivaent to conditions (3.97)
and (3.98) simultaneously. This is not quite true, as will become apparent from the
following discussion.

Since we are mainly interested in the radiative regions of a rotating barocline, let us
restrict our discussion to the case for which traceM > 0 (see Eq. [3.91]). Figures 3.1
and 3.2 depict, at any given point, two plausible orientations of the basic vectors. In
Figure 3.1 the vector products ®, x ¥ and & x ¥ both point along the same direction,
so that the determinant of M is positive (see Eq. [3.92]). This implies stahility. On the

* See, e.g., Chandrasekhar, S., Hydrodynamic and Hydromagnetic Sability, Section 66, Oxford: Claren-
don Press, 1961 (New York: Dover Publications, 1981).
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contrary, in Figure 3.2 the vector products ® x ¥ and ® x ¥ have oppositesigns. Their
scalar product is therefore negative, and the determinant of M if negative. Thisimplies
instability. By virtue of Egs. (3.82) and (3.84), thisdeterminant identically vanisheswhen
the surfaces | = constant and S = constant coincide. This limiting case corresponds to
aneutral state of equilibrium.

In summary, in this section we have considered the dynamica stability of a baro-
clinic star with respect to axially symmetric motions. Restricting our analysis to short-
wavelength disturbances, we have shown that the radiative zone of a baroclinic star is
stable with respect to these motions if and only if, on each surface S = constant, the
angular momentum per unit mass Qw2 increases as we move from the poles to the
equator. In other words, if the specific angular momentum decreases radially outward
on the surfaces S = constant, there exist unstable motions. In geophysics, this form of
instability is called symmetric instability.

Not unexpectedly, in the radiative regions of abarotropic stellar model, thisinstability
occurs whenever Qw2 decreases with increasing distance from the rotation axis. In the
case of a stably stratified baroclinic star, however, Figure 3.2 shows that the configura-
tion may become unstable with respect to axially symmetric motions (i.e., trace M > 0
and det M < 0) even when N2 > 0 and 3(Qw?)/dw > 0. Thisis clear proof that stabil-
ity conditions (3.97) and (3.98) are not, in general, equivalent to the Solberg—Hgiland
conditions (Egs. [3.94] and [3.95]).

What is the exact link between the simple model presented in Section 2.7 and the
more elaborate discussion made in this section? It is a smple matter to show that these
two models are strictly equivalent. Indeed, as was pointed out by Ooyama (1966), the
tensor M that correspondsto arotating fluid layer in the f plane approximation is given

by

du
£2 £ ;2 ¢ dY
dz dz
M = = (3.99)
Doy “9%2 az

(see Egs. [2.135] and [2.136]). Accordingly, we can write
du \?
detM = f2 <dz) (Ri — 1)), (3.100)

so that the conditiondetM < Oimplies Ri < 1, and conversely (see Eq. [2.137]). Con-
dition (2.151) is therefore equivalent to the Solberg—Hgiland conditions for dynamical
instability.

To conclude, let us mention the work of Lorimer and Monaghan (1980), who have
made a preliminary numerical investigation of the symmetric instability in differentially
rotating polytropes. Following these authors, thisinstability isaviolent onein the sense
that, given an initially unstable j-distribution, a slowly rotating barotrope will a once
generate meridional currents and nonaxisymmetric motions in the nonlinear regime,
where the resulting flow becomes chaotic with avery slow trend to equilibrium. Further
studies along these lines would be most welcome.
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3.4.3 Nonaxisymmetric motions

In Section 2.7 we have considered a basic flow that has a shear in the vertical
direction, that is, along the direction of the effective gravity (see EQ. [2.143]). Besidesthe
symmetricinstability, thisvery simple model exhibitstwo formsof dynamical instability
with respect to nonaxisymmetric motions. One of them — the shear-flow instability —
occurs when the Richardson number satisfies the condition

1

Ri < 3 (3.101)
(see Eq. [2.137]). In this case, then, instability setsin when the vertical shear is so steep
that the destabilizing effect of inertia overwhelms the stabilizing effect of buoyancy.
Its maximum growth rates are associated with short-wavelength zonal disturbances.
The other one — the baroclinic instability — occurs for amost al positive values of
the Richardson number, and it is associated with zonal disturbances of all wavelengths
(see Section 2.7.2). These nonaxisymmetric motions may become unstabl e because the
isothermal surfaces and the isobaric surfaces do not coincide in a barocline. Hence,
the potential energy of the basic flow can be converted into kinetic energy of baroclinic
waves. Thisisquitedifferent from the shear-flow instability, whichisaform of barotropic
instability, becauseit drawsitsenergy mainly from thekinetic energy of the zonal motion.

Not unexpectedly, the case of arotating star satisfying condition (3.48) is much more
complex than the simple problem discussed in Section 2.7. For example, letting Q =
Q(w) one can easily see that both vertical and latitudinal shears become possible. In
general, for a star rotating with some assigned angular velocity Q@ = Q(w, 2), the
stability problem is complicated by the presence of avertical shear aswell aslatitudinal
variations of both the angular velocity and the temperature over an isobaric surface.
In the simple barotropic case, the component of the rotational motion with latitudina
shear will become unstabl e to disturbancesthat transfer momentum down the meridional
gradient in angular velocity, thus weakening the basic zonal flow. This is the reason
why this instability is called a barotropic instability. It disappears only if the surfaces
Q = constant and p = constant coincide. (Recall that the shear-flow instability is
also a form of barotropic instability, drawing its energy from the component of the
rotational motion with vertical shear.) Inthe general baroclinic case, thus, the basic zonal
flow may develop al these instabilities with respect to nonaxisymmetric disturbances:
(a) the barotropic instability, because there is alatitudinal gradient in angular velocity,
(b) the shear-flow instability, because there is a vertical shear in the rotational motion,
and (c) the baroclinic instability, because the isothermal surfaces are aways inclined to
the isobaric surfaces in a barocline.

Although the importance of shear-flow instability haslong been recognized, the other
two instabilities have received scant attention in the astronomical literature. Important
progress has been made by Fujimoto (1987, 1988) and Hanawa (1987), who investigated
the stability of abaroclinic star with respect to nonaxisymmetric, isentropic disturbances.
Their calculations strongly suggest the preval ence of the barotropic and baroclinic insta-
bilitiesin differentially rotating stars, for all positive values of the Richardson humber,
at least for short azimuthal wavelengths; the instabilities disappear only if therotation is
strictly uniform at every point. Aswe shall seein Section 3.6, thisis an important result
because shear-flow instability generates small-scal e eddieswherever condition (3.101) is
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satisfied. Sincethereis no reason to expect thisinequality to be satisfied at every pointin
astellar radiative zone, it isevident that one can hardly justify the presence of turbulence
in arotating star on the basis of shear-flow instability alone.

35 Thethermal instabilities

The stability criterion derived in Section 3.4.2 is based on the assumption that
the displaced fluid particles move isentropically (D S/ Dt = 0). Whereas viscous effects
are negligible in a star, the effects of radiative conductivity may become important,
at least for sufficiently small mass elements, because of the smoothing of temperature
differencesby radiative transfer. To be specific, consider a system that has a subadiabatic
temperature gradient so that it is dynamically stable with respect to isentropic motions.
If the fluid is unstable without the isentropic constraint due to a dlightly adverse angular
momentum distribution, the thermal conductivity will thus reduce the restoring force of
thermal buoyancy. Hence, it will permit axially symmetric disturbances to grow, with
their amplitudes being limited by the thermal conductivity that relaxes the isentropic
constraint. As we shall see in this section, two types of thermally unstable motions can
occur simultaneously in a baroclinic star.

Consider an axially symmetric star that rotates with the assigned angular velocity
Q = Q(w, 2). Assume that it satisfies the Solberg—Hgiland conditions for dynamical
stability with respect to axially symmetric disturbances. We shall consider asimpleideal
gas with negligible radiation pressure. However, we shall make allowance for a gradient
of chemical composition. By virtue of Eq. (3.8), wethushave p « pT/u, Where i isa
function of position and time. Since we are chiefly interested in a dissipation mechanism
(i.e., radiative conductivity), we may expect that the most unstable perturbations will be
found to have wavelengths that are much smaller than the star’s radius. It is therefore
expedient to work with asimplified set of equationsthat approximate the exact equations
in asmall region of the star. The analysisis restricted to small axisymmetric motions,
and we assume that their size is much smaller than any scale height of the equilibrium
model. Then, the coefficients in the perturbation equations will be independent of @, z,
and t, so that the Eulerian changes may be expanded in plane waves of the form

exp[nt +i(k, @ + k;2)]. (3.102)

Consistent with the above approximations, wemay now takesV = 0. Weshall also make
use of the Boussinesq approximation for compressibility effects; the pressure variations
thus contribute little to the density variations.

By virtue of Eq. (3.102), the momentum eguation reduces to

e = — P @y (e ®)Po— - kop. (3.103)
P P

where £ isatwo-dimensiona vector with components &, and &, (see Eq. [3.74]). Note
that Eq. (3.103) already incorporatesthe conservation of angular momentum of each mass
element alongitspath. (Thisproperty still holdsbecausewe canrightfully neglect viscous
friction.) Similarly, by virtue of Eqg. (3.3), our approximationslead to the conditionk -£ =
0, thus implying that the wave vector k is transverse to the displacement £. Letting next
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& = &£a(whereaisthe unit vector along &) and multiplying Eq. (3.103) by a, we obtain

e = — ‘S’f (a-Tp) — £(a- B)(a- o) (3.104)

(see Egs. [3.82], [3.83], and [3.85]).
Outside the central regions where thermonuclear reactions take place, Eq. (3.4)
reduces to

DS
oT ot = div(x grad T). (3.105)

The small-perturbation counterpart of this equation can be brought to the form

(T S
no(8S+ & - grad S) = —xk? [ ( /_/“_L) + TM] , (3.106)
T/u w
where k? = k? + k2. For asimpleideal gas, we have
T
S=cylog = + constant. (3.107)
wprt
Accordingly, we can write
1 1 1 _
grad S = cy [T gradT —(y — 1) — gradp — = grad u} (3.108)
P 0
and
8(T 1) 1)
aszcv[(/m (v )p]:—cp—p, (3.109)
P P
where we made use of the fact that
) 8(T
bo 8T/ _ (3.110)
P T/n

Since the rate of diffusion of chemical speciesis comparable to the (negligible) viscous
diffusion rate, we shall also assume that

Du ou
ﬁ = ﬁ +vV- grad,u 0. (3.111)
It follows that
S ad
M e Ty (3.112)
0 W
By making use of Egs. (3.108)—(3.112), we can thus rewrite Eq. (3.106) in the form
b) ad
(1+6>p:g(a@)-%(a-gr_”), (3.113)
n/ p n m
where
e = xk?/pc, (3.114)

and ¥ = grad S/cy, with grad S being defined in Eq. (3.108).
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Itisnow asimple matter to eliminate §p/ p between Egs. (3.104) and (3.113) to obtain

n*+en’+ An+eB =0, (3.115)
where
A=(a ®)@a &)+ (a ¥)a- ¥o) (3.116)
and
B =(a ®)a &) — (a- graf'“) (@ o). (3.117)
"

In the limiting case ¢ = 0, EQ. (3.115) provides the requisite dispersion relation for
discussing dynamical stability (see Section 3.4.2). When ¢ = 0 and A > 0, its three
rootsaren = +i /A, which describe stable oscillations, and thetrivial root n = 0. When
€ > 0, the roots can be written in the forms

n==ioc +a and n=bh, (3.118)

where o, a, and b are real numbers (see Egs. [3.102]). According to the Routh—Hurwitz
criterion,* a and b are negative if and only if

B>0 ad A-B>0. (3.119)

These two inequalities can be rewritten in the form

(a- d)a- d) — (a- grai”) (@a-To) > 0 (3.120)
m
and
(a- W)@ o) + (a- grad ) (@a- W) > 0. (3.121)
m

These are the conditions for thermal stability with respect to axisymmetric motions,
when both radiative conductivity and a gradient of chemical composition are taken into
account.

Consider first the chemically homogeneous part of a stellar radiative zone. By virtue
of Eq. (3.120), thermal instability occurs whenever a vector a can be found that will
make (a- ®)(a- ®o) negative (i.e., b> 0in Eq. [3.118]). Figure 3.3 illustrates the case
of adynamically stable baracline (asillustrated in Figure 3.1). It is a smple matter to
seethat all vectorsathat liein the cross-hatched region makethe body thermally unstable
at that point. Obviously, the only way to prevent thisinstability in astar isto remove the
cross-hatched region at every point. This can be done only if the vector ® pointsin the
w direction, that is, if

a2 d

-, =0 ad -~ (Qw?) >0 (3.122)
at every point of the radiative interior. This result was originally obtained by Goldreich
and Schubert (1967) and, independently, by Fricke (1968).

* See, e.g., Handbook of Applied Mathematics (Pearson, C. E., ed.), p. 929, New-York: Van Nostrand,
1974.
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Fig. 3.3. A thermally unstable situation.

Fig. 3.4. A thermally overstable situation.

Following Shibahashi (1980), let us consider the implications of condition (3.121) in
achemically homogeneous region. In that case, if one can find a vector a that will make
(a- ¥)(a- Pp) negative, thermal overstability occurs in the system (i.e,, a > 0in Eq.
[3.118]). Figure 3.4 clearly shows that al vectors a lying in the cross-hatched region
generate overstable motions at that point. This oscillatory instability can be removed
only if the vectors ¥ and ¥ point to the same direction. By virtue of Eq. (3.88), this
requirement also implies that the vector ® pointsin the e direction. Again, thisistrue
only if condition (3.122) is satisfied at every point of the radiative interior.

Now, isit possibleto maintain the chemically inhomogeneous part of astellar radiative
zone in static equilibrium with the steady rotation law Q = Q(z, 2)? Condition (3.120)
shows that a stable gradient of chemical composition (i.e., grad < 0) often has a
stabilizing influence on al unstable motions in the wedge between the surfaces w =
constant and j = constant. Accordingly, a suitable stratification of mean molecular
weight might well prevent the Goldreich—Schubert—Fricke instability from occurring in
a baroclinic star. However, by making use of Egs. (3.108) and (3.121), one also sees
that Shibahashi’s oscillatory instability is probably little affected by astable w-gradient.
This is a mere consequence of the fact that the overstable motions are located in the
wedge between the surfaces p = constant and S = constant, which differ little from the
surfaces . = constant. Obvioudly, further discussion of the effects of a u-gradient in a
baroclinic star necessarily requiresthe use of aparticular model for theradiativeinterior.
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To conclude, let us note that these thermal instabilities also are a form of baroclinic
instability, since both of them are driven by the baroclinicity of the basic state. How-
ever, they differ from the baroclinic instability of the kind discussed in Sections 2.7.2
and 3.4.3 in two obvious ways. First, unlike the usual baroclinic instability, which is
associated with nonaxisymmetric motions, they are axisymmetric instabilities. Second,
because they depend upon the relaxation of the isentropic constraint, their time scale
is certainly much longer than the time scale for the usual baroclinic instability. At this
writing, the time scale for angular momentum transport by these thermal instabilities
remains controversial, ranging in the literature from the Kelvin—Helmholtz time to the
Eddington—Sweet time of large-scale meridional currents (see Eq. [4.37]). Thisis prob-
ably of no great consequence, however, because the dynamical instabilities with respect
to nonaxisymmetric disturbances will generally dominate in arotating star.

3.6 The eddy—mean flow interaction
Thefirst step toward understanding the dynamics of arotating star requires that

we simplify the basic equations so that they describe only the largest scale of motion.
As was pointed out in Section 2.4, however, large-scale flows do not exist in isolation
in a huge natural system, such asa star. Thisis because ever-present nonaxisymmetric
instabilities in a rotating star generate a wide spectrum of eddylike motions.* These
small-scale disturbances give rise, by nonlinear processes, to fluxes of heat and momen-
tum and, hence, influence the dynamics of the largest scale motions. In geophysics, this
is caled the eddy—mean flow interaction. This global approach rests essentialy on a dy-
namical linkage between the ever-present eddylike motions (which we call “anisotropic
turbulence” because effective gravity and rotation define two preferential directionsin a
star) and the mean flow (that is, the overall rotation and concomitant motionsin meridian
planes passing through the rotation axis). As usual, the role of these eddylike motions
is simply parameterized in frictional form through the use of eddy viscosities and re-
lated coefficients. Not unexpectedly, these coefficients attain much larger values in a
convectively unstable region than in a stellar radiative interior.

Neglecting molecular viscosity and omitting the overbars, we can thus rewrite Eq.
(2.58) intheform

Dv 1 1

— =—gradV — — grad p + — F(v), (3.123)
Dt P p

where F is the turbulent viscous force per unit volume, which can be written as the
vectoria divergence of Reynolds stresses (see Eq. [2.59]). In spherical polar coordinates
(r, 0, ), themean velocity v is

v=ul +uyly +Qrsinél,, (3.124)

where u; and uy are the components of the two-dimensional meridional velocity u.

* Aswas noted by Balbus and Hawley (1998) and others, small-scale magneto-rotational instabilities
play animportant rolein generating turbulence in accretion disks. Under very specific circumstances,
similar instabilities might be relevant to the study of turbulent motionsin stellar radiative zones.
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For axisymmetric motions, the poloidal part of Eq. (3.123) has the components

p<%+ur%+¥%—u§) = —p%—%ﬂmzrgnze
- silne P?g %(rza”) + % (ove sine)] - r}(age +0,,) (3.125)
and
(%LieJrura;oJrL:gzL:nL urru6> = —?%—%%jwoszzrsinecose
: silne [S'rﬂ %(rzmg) + %(090 sine)} + r} (0v9 — oy, COtE). (3.126)

They depend on the Reynolds stresses oy, 0yg, 0y, and ory. These quantities can be
simply expressed as

o = 2y aair (3.127)

oo = 21H (l: + r} ?9") : (3.128)

— (% + 2 $°t9> , (3.129)

o =om =+ gy (G =) (3.130)

where vy and uy arethevertical and horizontal coefficients of eddy viscosity. Equations
(3.125) and (3.126) thus depend on two parameters. Of course, this can only be a very
crude model, but it does make allowance for adifference in momentum transfer between
the vertical (i.e., along the effective gravity) and horizontal directions.

For axisymmetric motions, the toroidal part of Eq. (3.123) depends on the Reynolds
stresses oy, and oy,,. Following Rudiger (1980) and others, we shall let

0 . .
Orp = Oy =va¥ sinf + Ay2sné (3.131)
and
0 .
Ogy = Opg = H 2 Sinf + Ay Q2 cosh. (3.132)

These relations depend on the eddy viscosities and two additional parameters, Ay and
An, Which represent the influence of global rotation on anisotropic turbulence. The
free parameter 1 identically vanishes whenever the eddylike motions have horizontal
symmetry, being then isotropicin planes perpendicular to the effective gravity. To agood
degree of approximation, the Ay term can be neglected in a slowly rotating star. In that
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case, by making use of Egs. (3.131) and (3.132), one can show that the ¢ component of
Eq. (3.123) hastheform

0 o (22292 % (38 o cote
Pt TP or r ) TP o

L 22 rsa) 1 2 L (waeo ™). @iy
which depends on three independent parameters only. As we shall seein Section 5.2.1,
however, the 1, term makes a nonvanishing contribution to the toroidal viscous force
acting inthe solar convective envel ope. Inthat sense, thus, the Sunisnot aslowly rotating
Star.

Now, aswas originally pointed out by Schatzman (1969), anisotropic turbulence gen-
erated by the nonaxisymmetric instabilities may contribute to the diffusion of chemical
elementswithin astellar radiative zone. More recently, Press (1981) suggested that inter-
nal waves generated by chaotic motions at the boundary of a convective zone might also
lead to speciesmixingin stably stratified regions. Asusual, lacking any better description
of all these eddy and/or wave events, we shall lay emphasis on the mean properties, using
gross parameterizations of the smallest scale motions. For axisymmetric motions, the
turbulent transport of a chemical element with concentration ¢ can be described by the
following equation:

D 19 ac 1 9 . 9dc

m(pc)zrzar(,oDvl’zar) + 5ng 30 (,ODH sn989>, (3.134)
where p is the density and Dy and Dy are the vertical and horizontal coefficients of
eddy diffusivity. (D/Dt is the total derivative.) As was noted by Fujimoto (1988) and
others, however, vertical mixing is probably much less efficient than horizontal mixing,
especially in a strongly stratified system. Indeed, for element mixing, work has to be
done against gravity, so that the vertical displacements may be easily inhibited by the
buoyancy force. In contrast, the instahilities responsible for horizontal turbulence are
the barotropic and baroclinic instabilities, which are caused by latitudinal variations of
angular velocity and temperature along the isobaric surfaces (see Section 3.4.3). Recall
that these instabilities are operative for all positive values of the Richardson number Ri
whereas the usua shear-flow instability, which is associated with a vertical shear in the
rotational motion, is operative only when condition (3.101) is satisfied.

Various measurements in the laboratory and in the Earth’s atmosphere indicate that,
under stable conditions, the eddy diffusivities of matter and momentum decrease with
increasing stability. These studies also show that the turbulent diffusion of matter is
a much less effective process than the turbulent diffusion of momentum in a stably
stratified system. Specificaly, itisfoundthat theratio of eddy diffusivity to eddy viscosity,
oDy /v, isof theorder of afew tenthsfor Ri < 1, whereasfor Ri > 1 thisratio steadily
decreases to zero as Ri — oo (e.g., Turner 1973). These results are quite interesting
because they strongly suggest that the ratio oDy /v can also be assumed to be much
smaller than one in a stellar radiative interior. This matter will be discussed further in
Section 5.4.1.

In this section we have developed a theoretical framework that describes the largest
scaleof motioninarotating star. In particular, whereasthe poloidal part of themomentum
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equation depends on two independent parameters (i.e., uv and wy), it isfound that its
toroidal part depends on at |east three independent parameters(i.e., wy, iun, and Ay). As
was seenin Section 3.3, the parameter 1\, isof paramount importance becauseit prevents
solid-body rotation in a convective envelope. Note also that the equation governing
turbulent diffusion of matter in an axially symmetric star depends on two additional
parameters (i.e., Dy and Dy). Equations (3.127)—(3.132) specify the Reynolds stresses
in such away that Egs. (3.125), (3.126), and (3.133) represent a closed set of equations
for thelarge-scal e flow. (Comparewith Egs. [2.60]-2.65].) Unfortunately, becausethere
is no apriori justification for this particular model, it must be borne in mind that the
eddy-viscosity coefficients cannot be calculated from first principles alone. A similar
remark can be made about the eddy-diffusivity coefficients, Dy and Dy, since the ad
hoc nature of the underlying model precludes a deterministic calculation of their values
in arotating star.

As was noted in Section 2.4, measurements in the Earth’s atmosphere and in the
oceans show that the eddy viscosities greatly exceed their molecular counterparts (see
Egs. [2.66] and [2.67]). Inthe astrophysical literature, it is usually accepted that one can
write, for example, Dy = L.V, where L. is sometypical length and V, is some typica
speed of the turbulent motions. Unfortunately, although this expression isdimensionally
correct, it is not possible at this writing to cal culate unequivocally the quantities L. and
V. from results obtained on the basis of alinear stability analysis. A linear theory by
its nature can say nothing about the process by which unstable eddylike or wavelike
motions achieve some finite amplitude in the full nonlinear regime. Accordingly, no
matter what kind of instability is assumed to be responsible for the small-scale motions,
the magnitude of the eddy coefficients cannot quantitatively be given by a measure of the
instability of the mean flow. That isto say, regardless of the spatial form that is assigned
to the eddy coefficients, their overall magnitude can be determined only by fitting the
chosen empirical formulae to the observational data.

It is not known at this writing whether one can find a better way of closing the
equations for the large-scale flow in a rotating star. In any case, perhaps the greatest
value of these parameterized modelsisthat they give at least areasonable global picture
of thelarge-scale dynamics of the flow. They also provide anew perspective from which
more elaborate models can be viewed.
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Meridional circulation

41 Introduction

In Section 3.3.1 we noted that the conditions of mechanical and radiative equi-
librium are, in general, incompatible in arotating barotrope. This paradox can be solved
in two different ways:. Either one makes allowance for a dight departure from barotropy
and choosestheangular velocity Q2 = Q(w, z) sothat strict radiative equilibrium prevails
at every point or one makes allowance for large-scale motionsin meridian planes passing
through therotation axis. Thefirst alternativeismainly of academicinterest becausethere
iS no reason to expect rotating stars to select zero-circulation configurations. Moreover,
these baroclinic models are thermally unstable with respect to axisymmetric motions, as
well asdynamically unstable with respect to nonaxisymmetric motions (see Sections 3.4
and 3.5). Hence, the slightest disturbance will generate three-dimensional motions and,
as aresult, alarge-scale meridional circulation will commence. The second aternative
wasindependently suggested by Vogt (1925) and Eddington (1925), who pointed out that
the breakdown of strict radiative equilibrium in abarotrope tends to set up slight risesin
temperature and pressure over some areas of any given level surface and slight falls over
other areas. The ensuing pressure gradient between the poles and the equator thereby
causes a flow of matter. In fact, it is the small departures from spherical symmetry in a
rotating star that lead to unequal heating along the polar and equatorial radii, which in
turn causeslarge-scale currentsin meridian planes. Slow but inexorable, thermally driven
currents also exist in atidally distorted star, aswell asin amagnetic star, since the tidal
interaction with acompanion and the L orentz force both generate small departures from
spherical symmetry in a star. Obvioudly, it is the causal relation between nonsphericity
and meridional circulation that makes the stellar problem entirely different from those
expounded in Sections 2.5 and 2.6. This fact strongly suggests that well-known results
obtained in geophysics (such as geostrophy and Ekman layers) should not be applied
indiscriminately to a stellar radiative zone. | shall comment further on these important
mattersin Section 4.8.

In Section4.2.1wewill obtain thesteady circulation patternin theradiative envel ope of
auniformly rotating, frictionlessstar. Following Sweet (1950), weshall thuscal culatethe
meridional flow generated by the nonsphericity of a chemically homogeneous region in
slow uniformrotation. Section 4.2.2 presentsacritical reassessment of hissolution, which
becomesinfiniteboth at thefree surface and at the core—envel opeinterface, andwhichal so
fails to take into account the transport of specific angular momentum by the meridional
flow. In Sections 4.3 and 4.4, by making use of the eddy—mean flow interaction, which
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takes place continuously in a stellar radiative envelope, we obtain asimple but adequate
description of the mean state of motionin arotating star. Thissolution, whichisfreeof the
objectionsthat can be made about Sweet’ sfrictionless solution, satisfiesall the boundary
conditionsand all the basic equations. Thermally driven currentsin cooling white dwarfs
areconsidered next in Section 4.5. Section 4.6 isdevoted to the circulatory currentsinthe
radiative envel ope of an early-type star, which isadetached component of a closebinary,
and whose surfaceis nonuniformly heated by the radiation of its companion. Meridional
flows in magnetic stars are considered further in Section 4.7. We conclude the chapter
with a general overview of the problem, pointing out the differences and similarities
between the large-scale currents that are encountered in geophysics and astrophysics.

4.2 A frictionless solution

Consider a single, nonmagnetic star that has a fully convective core, in which
hydrogen burning is taking place, and a chemically homogeneous radiative envelope.
Assume also that the axially symmetric star is slowly rotating with the constant angular
velocity ©2¢. We shall also neglect viscosity and theinertiaof the circulation itself. Then,
inaninertial frame of reference, the equations governing steady motionsin the radiative
envelope are

ap Vv 20 G2
L i Q 4.1
o Py P QT Sno, (4.1)
9 Vv _
875 =_p879+,os2(2)r25m9c059, (4.2)
V2V = 47 Gp, (4.3)
div(pu) = 0, (4.4)
pTu-grad S = div(x grad T), (4.5
R
n

where p is the pressure, p is the density, V is the inner gravitationa potential, u is
the two-dimensional circulation velocity, T is the temperature, and R is the perfect gas
constant. For electron-scattering opacity, the coefficient of radiative conductivity hasthe
form

4ac T3
X="73 o 4.7
Kp
where k isaconstant. For asimple ideal gas, we also have
S=cylog % + constant, (4.8)
P

where cy isthe specific heat at constant volume.

421 Sweet’'smeridional circulation

Sinceitisthelack of spherical symmetry that causesthemeridional flow, weshall
first derivefrom Egs. (4.1)—(4.3) an expression for the distortion of thelevel surfacesdue
to the slow but uniform rotation. Following Milne (1923) and Chandrasekhar (1933), we
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shall expand about hydrostatic equilibrium in powers of the nondimensional parameter

Q2ZR®
€= GM’ (4.9)
where M isthe total mass and R is the equatorial radius. (In a realistic main-sequence
model, ¢ does not exceed the critical value . &~ 0.4, at which point equatoria breakup
islikely to occur.) Letting P>(1) denote the Legendre polynomial of degree two, wethus

write, in spherical polar coordinates (r, 4 = cosé, ¢),

p(r, 1) = Po(r) + e[ pro(r) + Pr.2(r)Pa(w)] (4.10)
and a similar truncated expansion for the density. The inner gravitational potential is

GM
V(r, n) = Vo(r) — R + €[Vao(r) + €10 + Va2(r) Po(u)], (4.11)
whereas the potential that is appropriate to the surrounding vacuum has the form
GM B B
Voulro ) = = 2 e |24 02 Pa)]. (@.12)

where By and B, are constants.
Now, by making use of Egs. (4.1)—(4.3), one can easily show that the nonradial func-
tions (i.e., P12, p1.2, and V ,) satisfy the following set of equations:

o' Pr2— P pr2=0, (4.13)
1
Prz=—pViz— 50 wg 2, (4.14)
d2V,, 2dVy, 6
S+ - —% — — Vio = 47Gpy,, 4.15
drz T r dr 2 'n2T TR (4.15)

where w3 = GM/R3. A prime denotes a derivative with respect to r . Without confusion,
we have omitted the subscript “0” from the functions po and po that define the (known)
model corresponding to e = 0. The continuity of the gravitational field across the free
surface, which isadlightly oblate surface, further implies that

BQ dV]_,z _ Bz
Vig(R)= o5 and ( g )R__Sﬁ‘ (4.16)

We shall not write down the relations between the radial functions (i.e., p1.0, 010, and

V1.0) Since, to first order in €, they are not relevant to the circulation problem.
To solve Egs. (4.13)—<4.15), we shall let

1
Vip = Apdy(r) — 3 wir?, (4.17)

where A; isaconstant. Thence, it isasimple matter to show that the function @, satisfies
the following equation:

d2q>2 2 dcbz 6 ,0,0/
F'ﬁ‘rfdir—rfzq)z-i'llﬂ(;?@z—o, (418)
with ©,(0) = ®5(0) = 0. Boundary conditions (4.16) now become
B 1
Ar®5(R) — —= = = 2R (4.19)

R 3
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and

/ B, 2
A, ®,(R) + 3 Ei =3 w?R. (4.20)

Solving for A, and B,, one obtains
1, 5R?
= - o
3 2 3®,(R) + RDY(R)

A (4.21)

and
B, — }wé RS 29,(R) — R<I>2(R)7
3 39,(R) + RPL(R)
thus ensuring that the inner potential (4.11) smoothly joins the outer potential (4.12).
Thus, by letting

(4.22)

5GM @
_5 ) (4.23)
3 R 3d,(R)+ RdLY(R)
we have shown that
P12 = —ph (4.24)
and
pra = —% h, (4.25)

where the function @, can be obtained from Eq. (4.18).

Following Sweet (1950), we now turn to Egs. (4.4)—4.6). By making use of the
equation of state, one readily seesthat the temperature can be expanded as was done for
the pressure and density. Hence, we can write

Tz _ Pz ;2 (4.26)
T p p

where we have also omitted the subscript “0” from the temperature in the spherical
model. Combining Egs. (4.24)—4.26), one finds that

Tpo=—T (ﬁ — 5) h. (4.27)

p P

If we now make use of Egs. (4.4) and (4.5), it isasimple matter to show that, correct to
first order in €, the circulation velocity has the form

dP
U=eu(r)Pau) L +ev(r)(@d— ud dzli“) 1., (4.28)
where
11d, ,
(As usual, we also have uy = —ru,/sing.) By virtue of Eq. (4.29), the meridional

circulation depends on the single function u only.
Inserting our truncated expansionsinto Eq. (4.5), one finds that
d [1dT T. 6T 4rc 5
= Gh2 g 12 P12 L2 ﬂvrsz(p

p/
— - 12 =P u=0 (430
dr | T’ dr T 0 r2 T/Jr L p p)u » (4.30)
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where L isthetotal luminosity of the model corresponding to e = 0. In establishing this
equation, we have made use of the fact that

Arr?yT' = —-L, (4.31)

where yx is the coefficient of radiative conductivity in the spherical model. Inserting
next solutions (4.25) and (4.27) into Eq. (4.30), we obtain an algebraic equation for the
function u. Its solution, u = us (say), has the form

2Lr* n+1 2 m
=———— |N ———1h 4.32
Us G2m3n—3/2{ Jr(r m) } (4:32)
where m is the mass contained within the sphere of radiusr, m' = 4mpr?, and
p'T
= 4.33
o (4.33)

isthe effective polytropic index. Thisis Sweet’s (1950) solution for the meridional flow
in the radiative envelope of a star in slow uniform rotation. Equation (4.32) can also be
written in the form

2Lr* Vg 2 m
=————|h - ——h 4,
Us G2md Vy —V { +(r m) } (4.34)
where
aInT aIlnT
= and Vad=< ) . (4.35)
alnp alnp /g

Combining Egs. (4.23) and (4.34), onereadily seesthat |us| ~ L R?/GM? inthe bulk
of astellar radiative zone. Hence, we have

|~ = —, 4.36
Ul ~ € =1 e (4.36)
wheretyy isthe Kelvin-Helmholtz timeand ¢ istheratio of centrifugal forceto gravity at
theequator (see Eq.[4.9]). Thisresultimpliesat oncethat thetime scal e of themeridional
flow in the bulk of aradiative envelope (tgs, say) is

t
teg = —1 (4.37)
€
which is known as the Eddington—Sweet time.

422 Theclassical objections
Table 4.1 gives a detailed solution for a Cowling_point-source model with
electron scatterlng opacity.* Herewehave T, = 1.7606x 107 1 M /Rand p; = 4.0779x
107 M?/R*, where [z is the mean molecular weight and the remaining barred quantities

* This simple numerical model, with power-law opacity and point-source energy generation, was
originally discussed by Thomas George Cowling (1906-1990) in 1935. It consists of a convective
core that contains al the energy sources and a radiative envelope. See, e.g., Cox, J. P, and Giuli,
R. T., Principles of Stellar Structure, Sections 19.2a and 23.4, New York: Gordon and Breach, 1968;
Tayler, R. J,, Quart. J. R. Astron. Soc., 32, 201, 1991.
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Table4.1. Physical properties of a Cowling point-source model.

r m T p n h _Us _ _Tvg
(R) (M) (Te) (po) (M/R)  (LR¥Y/M?)  (LR¥/M?)

0.00000 O. 1.0000E+0 1.0000E+00 1.5000 O.
0.05000 2.4440E—3 9.8719E—1 9.6829E—-01 15000 5.8690E+12
0.10000 1.8886E—2 9.4965E—1 8.7883E—01 15000 2.2905E+13
0.15000 6.0178E—2 8.8988E—1 7.4702E—01 15000 4.9487E+13
0.20000 1.3169E—1 8.1176E—1 5.9370E—01 15000 8.3212E+13
0.25000 2.3234E—1 7.2002E—1 4.3991E-01 15000 1.2126E+14 . ..
0.28318 3.1197E—1 6.5413E—1 3.4607E-01 15000 1.4751E+14 infinite infinite
0.28319 3.1199E—1 6.5412E—1 3.4605E—01 15001 1.4752E+14 3.7196E—1 —2.2226E+3
0.28320 3.1201E—1 6.5409E—1 3.4602E—01 15002 1.4752E+14 1.6414E—1 —4.3284E+2
0.28400 3.1403E—1 6.5247E—1 3.4388E-01 15070 14816E+14 35870E—3 —2.0748E-1
0.29000 3.2927E—1 6.4042E—1 3.2802E—01 15577 1.5291E+14 4.2638E—4 —3.0082E—3
0.30000 3.5507E—1 6.2072E—1 3.0244E—-01 1.6400 1.6081E+14 1.7107E—4 —5.0179e—4
0.35000 4.8749E—1 5.2904E—1 1.9237E—-01 2.0069 1.9897E+14 4.4700E—5 —3.5569E—5
0.40000 6.1480E—1 4.4806E—1 1.1381E—-01 2.2980 2.3356E+14 3.0266E—5 —1.3809E—5
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0.45000
0.50000
0.55000
0.60000
0.65000
0.70000
0.75000
0.80000
0.85000
0.90000
0.95000
0.99000
0.99900
0.99990
0.99999
1.00000

7.2584E—-1
8.1507E—-1
8.8192E—-1
9.2897E—-1
9.6012E—-1
9.7944E—-1
9.9054E—-1
9.9631E—-1
9.9888E—-1
9.9979E—-1
9.9999E—-1
1.0000E+0
1.0000E+0
1.0000E+0
1.0000E+0
1.0000E+0

3.7703E—-1
3.1511E-1
2.6136E—-1
2.1478E-1
1.7436E—-1
1.3919E-1
1.0842E-1
8.1376E—-2
5.7460E—-2
3.6182E—-2
17139E-2
3.2894E—-3
3.2597E—-4
3.2568E—-5
3.2565E—6
0.

6.3121E—02
3.3055E—-02
1.6412E-02
7.7220E—03
3.4200E—-03
1.4046E—-03
5.2052E—-04
1.6572E-04
4.1255E—-05
6.4894E—06
3.2677E-07
4.4332E-10
4.2756E—-14
4.2602E—18
4.2587E—-22
0.

2.5195
2.6823
2.7982
2.8779
2.9306
2.9636
2.9829
2.9932
2.9979
2.9996
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000

2.6420E+-14
2.9180E+14
3.1793E+14
3.4421E+14
3.7207E+14
4.0262E+414
4.3665E+14
4.7471E4+14
5.1714E+414
5.6410E+14
6.1562E+-14
6.6006E+14
6.7044E+4-14
6.7149E+-14
6.7160E+-14
6.7161E+14

2.7805E—-5
3.0232E-5
3.6467E-5
4.6910E—-5
6.2653E—5
8.5282E—-5
1.1677E—-4
1.5940E—-4
2.1564E—-4
2.8805E—4
3.7930E—-4
4.6775E—4
4.8973E—-4
4.9198E—-4
4.9220E—-4
4.9222E—4

—8.6574E—6
—7.4173E-6
—8.5870E—6
—1.3113E-5
—2.4106E-5
—4.8436E—5
—1.0071E-4
—2.1316E-4
—4.6505E—-4
—1.0998E-3
—3.3448E-3
—2.2836E—2
—2.4429E—-1
—2.4593E+0
—2.4609E+1
infinite

Source: Tassoul, J. L., and Tassoul, M., Astrophys. J. Suppl., 49, 317, 1982.
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are expressed in solar unitsinstead of in cgs units. The sixth column must be multiplied
by M /R to obtain the values of the function h in cgs units. Similarly, once the last two
columns have been multiplied by L RZ/ M, they provide Sweet’s solution —us and r vs
—incgs units. His solution for the meridional flow consists of asingle cell, with interior
upwelling at the poles and interior downwelling at the equator (see Figure 4.3). Unfor-
tunately, as was expected from Egs. (4.29) and (4.32), onefinds that us o< 1/(n— 3/2)
and vs o< 1/(n — 3/2)? at the core boundary, whereas us # 0 and vs o p/p at the
free surface. Thisimplies at once that the frictionless solution does not stream aong the
boundaries. To be specific, without mass loss, a consistent solution of the problem must
be such that

n-u=0, with |u] finite, (4.38)

at theboundary r = R (see Eq. [2.20]). A similar condition applies at the core boundary
r = R; if we assume that the circulatory currents do not penetrate into the convective
region. Yet, one finds that

uoxl ad ugx(R—r)1 (4.39)
near the free surface, and
U o —R)?T  and Uy o (r —R)7Z (4.40)

near the core—envelope interface.

Aswas shown by Baker and Kippenhahn (1959), the situation is even worse when the
prescribed rotation law is nonuniform. In that case, neglecting viscous friction and the
inertial terms u - grad u, they found that Eq. (4.36) must be replaced by

L R? 0 AQ

[Ur | ZEW (050"‘,30,0), (4.41)
wherea and 8y areconstantsof order unity, o isthemean density, and A2 isameasure of
the prescribed nonuniform rotation rate. Hence, for el ectron-scattering opacity, Eq. (4.39)
must be replaced by

u <« (R=r= and uyx(R—r)73 (4.42)

near thefree surface. Asthey noted, in radiativeregionsnear the surface of adifferentially
rotating star one can thus expect much higher meridional velocities than are calculated
on the assumption of strict uniform rotation. This matter will be considered further in
Section 4.4.1.

From the viewpoint of astronomy, Egs. (4.36) and (4.41) are quite satisfactory, since
they provide an order of magnitude of the circulation velocitiesin the bulk of aradiative
envelope. They aso point to an apparent difference between solid-body rotation and
differential rotation, thelatter causing adefinite intensification of the meridional currents
in the surface layers of an early-type star. Unfortunately, these two formulae are not
directly applicable in the surface regions, because none of them satisfies the kinematic
boundary condition (4.38) at the outer boundary. Moreover, one readily sees that the
1/p singularity in Eq. (4.41) impliesthat one has |pu - grad u| o< 1/p, thusinvalidating
the method of solution in the surface layers. Note also that in both solutions one has
neglected the inexorable transport of angular momentum by the meridional currents.
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Another serious objection wasraised by Opik (1951), who noted that Sweet’s solution
for the radial component of the circulation velocity,

Ur = e us(r) Pa(w), (4.43)
should be replaced by
u = u(r)(l— % )P() (4.44)
r = € Ug 271G,O 2\ ). .

If so, then, the meridional flow consists of two distinct cells (or gyres, as they say in
geophysics) separated by the level surface with density p = p* (say) given by Q2 =
27 Gp*. Thefollowing analytical proof of this property was broached by Gratton (1945)
and Mestel (1966). Consider a chemically homogeneous radiative envelope in uniform
rotation. Neglect friction and the inertia of the meridional currents. Then, by making use
of Egs. (3.31)—3.36), one can rewrite Eq. (4.5) in the form

pA(@)u-grad ® = — f(P) (47Gp — 2Q7) — f'(P) ¢, (4.45)
where
dT 2T dp

and g = d®/dn isthe magnitude of the effective gravity. (Remember that g varies over
alevel surface!) Dividing Eq. (4.45) by g and integrating over alevel surface, we obtain

f(®) (4rGp — 2Q%) (g™ + f'(@)(g) =0, (4.47)

since in a steady state there can be no flux of matter across a level surface. (Angular
brackets designate a mean value over alevel surface.) From Eqgs. (4.45) and (4.47), it is
clear that one has

pA@)U-gradd = f’ ((éﬁ)q _ 92> . (4.48)
If the function f’(®) vanishesfor avalue ® = ®* (say), this equation implies that the
meridional currents do not crossthe corresponding level surface. By virtue of Eq. (4.47),
one has f'(®) = 0 on the level surface with density p*(®*) given by Q2 = 27 Gp*.
This concludes the analytical proof that there apparently exists a double-cell pattern in
auniformly rotating radiative envel ope.

Asweshall seein Section 4.4.1, the Gratton—Mestel proof of the double-cell patternis
incorrect; Opik's equation (4.44) is also quite inadequate for describing the meridional
flow in aradiative envelope.

43 A consistent first-order solution

In Sections2.5.1 and 2.6.2 we have presented frictionless solutionsthat describe
large-scaleflowsintheEarth’ satmosphereand inthe oceans (see Egs. [2.79] and[2.113]).
In both cases, however, these solutionsfail to satisfy the appropriate boundary conditions.
Thisisthereasonwhy turbulent friction hadto beretainedin narrow layersnear thenatural
boundaries (see Egs. [2.87]-{2.88] and [2.119]). The importance of eddy viscosity near
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the boundaries is directly related to the fact that the viscous force contains second-
order derivativesin the velocities (see Eq. [2.65]). Hence, if eddy viscosity is neglected
altogether in Eq. (2.64), the order of this equation is reduced so that its solutions can no
longer satisfy all the boundary conditionsthat are required by the nature of the problem.
Aswe know, the only way to satisfy all these conditionsisto retain turbulent friction in
thin boundary layers, where the vel ocitiesmay vary rapidly in space. Then, thefrictional
forcewill be of the same order as the nonfrictional terms, notwithstanding the smallness
of the coefficients of eddy viscosity. This is the key idea involved in boundary-layer
theory. Not unexpectedly, a boundary-layer analysis of the thermally driven currentsin
the radiative envelope of a nonspherical star is a much more complex problem because
it involves both the momentum equation and the energy equation. This will become
apparent in the following pages.

In Section 4.2 we calculated thethermally driven currentsin astellar radiative envel ope
that we compel to rotate as a solid body. To obtain a fully consistent solution in a
nonmagnetic star, we shall retain turbulent friction in Egs. (3.125), (3.126), and (3.133).
Hence, it is no longer necessary to prescribe the rotation rate, since the transport of
angular momentum by the meridional flow can now be adjusted steadily so asto balance
the effects of friction on the angular velocity. By virtue of Eqg. (3.133), neglecting the Ay
effect, we thus have

sin?6 a< r4asz)+ 1 a< sin3989)
iz ar "Y' ar ) T sne a0 \ MM 30

= pu - grad(r’sin®e Q). (4.49)

Similarly, we shall replace Egs. (4.1) and (4.2) by the following equations:
ap Vv

= — Q?r sin?o F, 4.50
or P o +p + ok ( )
ap LAY 2 2
— = —p — Q°r<siné coso Fo, 451
50 Pag TP + oFy (4.51)

where F; and F, are the poloidal components of the turbulent viscous force per unit
volume (see Egs. [3.125] and [3.126]). Equations (4.3)—(4.6) remain unaffected by eddy
viscosity. Equations (4.49)—(4.51) and (4.3)—(4.6) thus provide seven relations among
the seven unknown functions 2, u, p, p, T, and V.

Because the angular velocity isin general afunction of bothr and 6, let us write

Q(r, 0) = (Q) + [Q(r) — ()] + Q(r, 6), (4.52)

where 2 isa suitable mean value of 2 on ameridian (i.e., amean with respect to ) and
(R2) is a suitable mean value of Q aong the radius (i.e., a mean with respect to both 6
andr), with  describing the 6 variations of €. Given this decomposition of the angular
velocity, Eq. (4.49) implies that

O(Q — () N ol(9) N O+ )

453
ty tH tes (4.53)
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where tgs is the circulation time of the meridiona flow (see Eq. [4.37]). We have aso
let

_ O(,O) 2
= 00

where O() isthe order of magnitude symbol.

L et usassume next that in Eq. (4.53) thethreetermsare of the same order of magnitude.
Then, comparing the advection term on the right-hand side to the horizontal dissipation
term on the | eft-hand side, one readily seesthat the & dependence can be neglected (i.e.,
Q< Q) if and only if one hasty « tes. Similarly, comparing the advection term on
the right-hand side to the vertical dissipation term on the left-hand side, one notices that
the r dependence can be neglected (i.e, Q ~ (Q)) if and only if one hasty <« tgs.
Thus, if one has simultaneoudly ty « tgs and ty < tgs in a dowly rotating star, the
angular velocity is nearly constant throughout the radiative envelope. The latter caseis
particularly simple because, as we shall see in Section 4.3.1, one can then expand the
unknown function €2 in powers of the small parameter ¢ (see Eq. [4.9]). Theformer case,
which is much more involved, will be considered in Section 4.3.2.

O(p) R2

and t = )
" O(un)

ty (4.54)

431 Thelinear case (ty < tgs)

Aswas originally pointed out by Krogdahl (1944), the condition that u vanishes
with © plusthe obvious properties that u must be an even function of €'/2, whereas Q is
to be odd in /2, suggest the following choice for the velocities:

Q= Qo(1+ ewr + €2wo + - - ), (4.55)
U=€ls +€Up+---. (4.56)

Correct to O(e), it follows at once from Eq. (4.55) that @2 = Q2 + O(e?). Thus, to that
order of approximation, Egs. (4.50) and (4.51) do not depend on w4, sothat it is possible
to calculate u; from Egs. (4.3)—(4.6) and (4.50)—4.51), replacing of course the function
Q by the constant 2. Thence, one calculates the function w, from Eq. (4.49). Correct
to O(e%/?), this equation becomes

10 4811)1 MH 1 J |: 228w1:|
— re—— - 1— -
r4 or <MV 8r>+r2 1—M23M( “)au

1 2z
= 2p (I’ Uy — 1—7;3 U]_M> s (457)

where . = cos6. (The quantities y and uy refer to the spherical model corresponding
to e = 0.) The problem of finding the meridional flow (i.e., u,) isthus separated from
that of evaluating the reaction of these currents on the overal rotation rate (i.e., wy).
In other words, the overall rotation of O(e%/?) forces a small departure from spherical
symmetry, which generates large-scale meridional motions of O(e); these, in turn, react
back on the driving mechanism, giving rise to differential rotation of O(e*/?).

Correct to O(e), thecirculation vel ocity u can be represented by Eq. (4.28). However,
because we have retained turbulent friction in Egs. (4.50) and (4.51), the functions p; »,
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p1.2, and Ty » must be replaced by the following relations:

P2 =—ph+G, (4.58)
pro=-"2h4 %g’, (4.59)
/ T T
Te=-T(2-2)n+ 20— 2. (4.60
p P~ P

where G represents the contribution from turbulent friction. Since we must retain the
dominant part of the viscous force near the boundaries only, we shall let G = 0 in the
bulk of the radiative zone, and we shall write

d dv
f— 2 —_— —_— D)
Gg=r ar (Mv dr) + (4.61)

near the core—envel ope interface and the free surface. Note that this function is nothing
but the dominant term .\ (U, /3r) in Eq. (3.130). By making use of Eq. (4.29), one
readily seesthat G contains the third-order derivative of theradial function u. Sinceitis
not yet known how to model the variations of 1\, with any confidence, we shall closely
follow the examples set in Egs. (2.66) and (2.67). Thus, we shall let uy = 10N jt,a,
where N (> 0) isaconstant and 1o i the coefficient of radiative viscosity,

_ 4a T4
~ 15c kp’
where « isthe coefficient of opacity per unit mass.

Inserting next Egs. (4.59) and (4.60) into Eq. (4.30), we obtain, after collecting and
rearranging terms,

Mrad (4.62)

4rG3mip® n—3/2
L pr n+1

where us is defined in Eq. (4.32), and where £V'u is a sixth-order differential operator
acting on the function u. Since £V'u = 0 in the bulk of a radiative envelope, we thus
recover Sweet’s frictionless solution u = us. Near the two boundaries, however, one
must explicitly solve Eq. (4.63) together with appropriate boundary conditions (see
Section 2.2.2). In particular, we must ensure that matter is flowing along the free surface
(see Eg. [4.38]). Moreover, the components of the stress vector acting on the outer
boundary,

LV'u (u—us) =0, (4.63)

Nk (— Pdik + oik) , (4.64)
must identically vanish. At the core—envelope boundary, however, the components de-
fined in Eq. (4.64) must be continuous across that boundary. For the sake of simplicity,
we shall also prescribe that the core boundary acts as an effective i-barrier (although
another boundary condition could easily be conceived).” Hence, we shall aso apply
condition (4.38) at the lower boundary.

* Short of a better theory for the convective core, we have thus assumed that the core is a uniformly
rotating, isentropic fluid (i.e., apolytrope of index n = 3/2, which isrotating at the constant angular
velocity ©20). Strictly speaking, if convective core overshooting was properly taken into account, one
should then solve for both the convective core and the radiative envel ope. In practice, however, given
some ad hoc description for the overshooting, one could either apply condition (4.38) at a (somewhat
larger) effective core radius or prescribe some penetration velocity at the coreradiusr = R;.
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Near the core boundary, one finds that

d®v 1 du
We can aso expand the effective polytropic index in the form
3
n=3 +N(R)r —R)+--- (4.66)
(see Eq. [4.33]). Equation (4.63) then becomes
dbu
7
80 F — (I’ — Rc)u = —V, (467)
where
LR [uvpn+27] |7
V
= 4,
5 {24n63[ e L} (469
and

- (4.69)

= [O= 3] 5

One can easily show that §./R. <« 1 so that §. may be taken as a measure of the
boundary-layer thickness. L etting next
x=""R ag oy (4.70)

Sc v

we can rewrite Eq. (4.17) in the form

d° :
theoriginx = 0(i.e.,r = R;) becomes, therefore, asimpleturning point for theequation.
One can also show that our boundary conditions are

dy d?%

Tdx  dx?

Finally, sincethe solution of Eq. (4.71) should match thefrictionless solution at adistance
from the core boundary, we must also have

1
y—o, & x—oo (4.73)

=0 a x=0. (4.72)

Figure 4.1 illustrates the solution of Eq. (4.71) that satisfies conditions (4.72) and (4.73).

In order to discuss the motions in the surface boundary layer, we shall prescribe
the usual radiative-zero boundary conditions on the spherica model. Hence, letting
z=R—-r,wehave p = p,2", p = pp2", T = Tpz, and py = 10N upz. As usual,
one has n = 3 for electron-scattering opacity and n = 3.25 for Kramers' opacity law.
To exhibit the differences between the core and surface boundary layers, we shall let,
without confusion,

R—r and y = u
~ us(R)’

(4.74)
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Fig. 4.1. Function y(x) in the core boundary layer. The frictionless solution, y = 1/x, is
indicated by a dashed curve. Source: Tassoul, J. L., and Tassoul, M., Astrophys. J. Suppl.,
49, 317, 1982.

where
1/(2n+4)
(4.75)

_ {10“ LR®  uppp(n+1)°

N 247 G3 M3 pE(n—3/2)
Again, one has §/R « 1 so that § may be regarded as a measure of the boundary layer
thickness. It then becomes a simple matter to show that Eq. (4.63) reducesto

6 6—k
a d> "y n-2 2n-2
S S Xy = X2 (4.76)

where the as are numerical coefficients that depend on the effective polytropic index
in the surface layers. One can aso show that our boundary conditions reduce to u = 0,
uyv' =0,and (G/p) =0, ar = R. These three conditions become

y=0, (4.77)
d?y dy n
X g~ V=0 (4.78)
and
d“y d3y d2 n(n +2)dy n(n+2)
o 3V _ 2 9Y -0 4.79
d4+ de n(+) x dx = x2 y (4.79)

a x = 0. Finaly, since the solutlon of Eq. (4.76) must join smoothly the frictionless
solution at some depth below the free surface, we must also prescribe that

y—>1 & Xx- o (4.80)
Figure 4.2 illustrates the solution of Eq. (4.76) that satisfies conditions (4.77)—(4.80).
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Fig. 4.2. Function y(x) in the surface boundary layer. The frictionless solution, y = 1, is
indicated by a dashed line. Source: Tassoul, J. L., and Tassoul, M., Astrophys. J. Suppl., 49,
317, 1982.

Fig. 4.3. First-order solution for the meridional flow in a Cowling point-source model, with
electron-scattering opacity, M = 3Mg, and N = 6 in the boundary layers. The streamlines
do not penetrate into the convective core, but there is an accumulation of streamlinesin the
core boundary layer. Source: Tassoul, J. L., and Tassoul, M., Astrophys. J. Suppl., 49, 317,
1982.

Figure 4.3 illustrates the streamlines of the meridional flow in a Cowling point-source
model, with electron-scattering opacity, M = 3My, and N = 6 in the boundary layers
(seedso columns 2 and 5in Table 4.2). To this order of approximation, the circulation
pattern consists of a single cell (or gyre) extending from the core to the surface, with
rising motions at the poles and sinking motions at the equator. Figure 4.3 givesthe false
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Table4.2. Thefirst-order velocity field in a 3My, stellar model (N = 6).
u rv
r/R a=0 a=+10"2% o=-103 a=0 a=+410"° a=-10"3

0.283182 0. 0. 0. 0. 0. 0.
0283200 6.2797E-5 6.2843E-5  6.2884E-5  4.8677E—1  4.8657E—-1  4.8689E—1
0.283250 2.8603E—3 2.8590E—3  2.8609E—3 5.4638E+0  5.4614E4+0  5.4650E+0
0283300 1.2381E-2 12375E-2  1.2384E-2 12605E+1  1.2599E+1  1.2607E+1
0283350 2.9318E—2 29305E-2  2.9325E-2 19126E+1  19117E+1  1.9130E+1
0.283400 5.2093E—-2 52070E—2  5.2105E-2 23471E+1  2.3461E+1  2.3476E+1
0.283500 1.0408E—1 1.0404E—1 1.0410E-1 2.3853E+1 2.3843E+1 2.3858E+1
0283750 1.6931E—1 1.6923E-1  16935E—1 —9.0272E-1 —9.0233E—-1 —9.0292E—1
0.284000 1.2678E—1 1.2673E—1  12681E—1 —1.0672E+1 —10667E+1 —1.0674E+1
0.284500 6.8959E—2 6.8929E—2 6.8975E—2 —1.8782E4+0 —1.8774E+0 —1.8786E+0
0.285000 5.1074E—2 5.1052E—2  51086E—2 —1.4116E+0 —14110E4+0 —1.4119E40
0.286000 3.2826E—2 3.2811F—2  3.2833E-2 -55661E—1 —55637E—1 —5.5674E—1
0.287500 2.1380E—2 2.1371E-2 21385E—2 —23642E-1 —23631E—-1 —2.3647E-1
0290000 1.3493E—2 1.3487E-2  13496E-2 —95189E-—2 —95147E-2 —9.5210E-2
0.300000 5.4137E-3 54113E-3  54149E-3 —15877E-2 —15870E-2 —1.5881E-2
0.350000 1.4145E-3 14138E—-3  14149E-3 —11254E-3 —1.1250E-3 —1.1256E-3
0.400000 9.5778E—4 9.5712E-4  95814E-4 —4.3693E—4 —4.3686E—4 —4.3689E—4
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0.450000
0.500000
0.550000
0.600000
0.650000
0.700000
0.750000
0.800000
0.850000
0.900000
0.925000
0.950000
0.975000
0.980000
0.985000
0.990000
0.995000
0.997500
0.999000
1.000000

8.7991E—-4
9.5670E—4
1.1540E-3
1.4845E-3
1.9827E-3
2.6988E—3
3.6954E—-3
5.0444E-3
6.8240E—-3
9.1156E—-3
1.0479E-2
1.2003E-2
1.3690E—-2
1.4105E-2
1.4427E-2
1.2628E—-2
7.2169E—-3
3.6952E—-3
1.4913E-3
0.

8.7913E—-4
9.5554E—4
1.1521E-3
1.4810E-3
1.9763E-3
2.6874E—-3
3.6767E-3
5.0257E—-3
6.8950E—3
1.0170E-2
1.4505E—-2
3.2423E-2
2.4357E-1
5.0824E—-1
1.4525E+0
2.6253E+0
2.0576E+-0
1.1078E+0
4.5329E—-1
0.

8.8045E—-4
9.5760E—4
1.1557E-3
1.4876E—-3
1.9886E—3
2.7097E-3
3.7134E-3
5.0622E—3
6.7522E—-3
8.0606E—3
6.4533E—-3
—8.4177E-3
—2.1619E-1
—4.8003E-1
—1.4237E+0
—2.6000E+0
—2.0432E+0
—1.1005E+0
—4.5031E-1
0.

—2.7395E—-4
—2.3472E-4
—2.7174E-4
—4.1497E-4
—7.6285E—4
—1.5328E-3
—3.1869E-3
—6.7455E—-3
—1.4717E-2
—3.4804E-2
—5.7473E-2
—1.0585E—-1
—2.5801E-1
—3.3131E-1
—4.8428E—-1
—7.4853E-1
—9.4255E-1
—9.7945E-1
—9.9211E-1
—9.9954E-1

—2.7406E—-4
—2.3506E—4
—2.7246E—-4
—4.1625E—-4
—7.6458E—-4
—1.5329E-3
—3.1738E-3
—6.6620E—3
—1.4254E-2
—3.1660E—-2
—4.7300E-2
—5.9876E—-2
—3.3609E—-1

3.8968E+-0
—3.6741E+40
—1.1203E+2
—2.5817E+2
—2.9149E+-2
—3.0098E+2
—3.0601E+2

—2.7377E-4
—2.3431E-4
—2.7093E—-4
—4.1354E-4
—7.6085E—-4
—15322E-3
—3.1991E-3
—6.8274E-3
—15178E-2
—3.7943E-2
—6.7641E—-2
—15182E-1
—1.7991E-1
—4.5594E+0

2.7055E+-0

1.1054E+2

2.5629E+-2

2.8954E+-2

2.9900E+-2

3.0401E+4-2

Source: Tassoul, M., and Tassoul, J. L., Astrophys. J., 440, 789, 1995.
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impression that the streamlines penetrate into the core. Actually, they are closed curves,
but there is such an accumulation of streamlinesin the core boundary layer (R, <r <
R. + &) that aclear depiction isimpossible without enlarging this narrow band. Aswas
expected, becausewehave madeallowancefor turbulent frictionintheradiative envel ope,
matter is now flowing freely along its upper and lower boundaries. Moreover, there are
no mathematical singularities in the meridional flow; the circulation velocities remain
uniformly small everywhere in the radiative envelope. This is a definite improvement
over Sweet’s frictionless solution.

By making use of Eqg. (4.28), we can now solve Eq. (4.57) for the function w;. One
finds that

dP;

—, 4.81
di (4.81)

dP
w1 = Pa(r) di,ul + Ba(r)

where Py() = p and 2Ps(i) = 5u® — 3u. The nondimensional functions 8, and B3
are governed by the following inhomogeneous equations:

1d 4d,31 2 u
1 d ,dBs\ 10 2 u
4 dr (Mvr W) 2 un Pz = —gl) (ZU - r‘) . (4.83)

Since the component o;, of the Reynolds stresses must vanish at the free surface, one
has

dpa _ dBs _
%) )

Assuming that the convective core is uniformly rotating with angular velocity Qq, we
shall also let

Pr(R)=0 and  pB3(R)=0. (4.85)

Thus, once we have obtained the functions u and v, Egs. (4.82)—4.85) can be solved to
give a unique solution. The nonuniform rotation rate follows at once from Eq. (4.55).

It is immediately apparent from Egs. (4.82) and (4.83) that ¢|8;| and ¢|B3| are of
the order of (epur/uy), where brackets indicate a suitable mean value. By virtue of
Egs. (4.37) and (4.54), one readily sees that €|w;| ~ ty/tes. To first order in ¢, then,
the convergence of expansion (4.55) impliesthat e|w,| < 1 orty < tes. Letting uy =
10N 14,49, ONE can show that this requirement implies that 105N < 1ina3M,, star. In
atypical rotating star having € ~ 1072, one must thus let N ~ 5-6. This value is quite
similar to those encountered in geophysics (see Egs. [2.66] and [2.67]). If the condition
€106-N < 1isnot met, however, one can no longer make use of expansion (4.55); that
isto say, the full nonlinearity of Eq. (4.49) must be retained in the calculations.

432 Thenonlinear case (ty > tes)
For the sake of simplicity, we shall consider aslowly rotating star for which one
hasty « tesinitsradiative envelope. Hence, we can essentially let @ = Q(r) + Q(r, 6),
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with |Q| <« Q. Inthiscase, by virtueof Egs. (4.3)—(4.6) and (4.50)—<4.51), thecirculation
velocity u can till be represented by Eq. (4.28). Accordingly, if we let

Q = Qow(r), (4.86)
Eq. (4.49) becomes
d?w 4 uw\ dw 2 p u 1 dw
s+ ) = =—Ze L (34— “u— 4.87
dr2+<r+u) dr SG/LV[(H—r)wJFZUdr}’ (487

where we have neglected the contributions to the function 2. At the free surface, we
have

dw
- =0. 4.88
<MV dr )r:R ( )

Parenthetically note that condition (4.88) is not automatically satisfied if wy vanishes
at the surface, since this also implies that Eq. (4.87) hasasingular pointatr = R. In
fact, Eq. (4.87) has afirst integral that is quite convenient for our purposes. Setting the
constant of integration equal to zero, one obtains the nonlinear equation

d
“Suy di:’ — cpuw, (4.89)

therefore ensuring that boundary condition (4.88) is satisfied provided the product pu
vanishesatr = R.

A second relation between u and w can be obtained from Eqgs. (4.3)—4.6) and (4.50)—
(4.51). Inthis case, Eq. (4.58) remains valid but Egs. (4.59) and (4.60) must be replaced

by

p1,2=—pp, h+§g/+pf (4.90)
and
! T T
Tio=-—T (p_p>h+g—g/—Tf, (4.91)
p P p P
where
1GM p dw?
f_—""F 2 492
3 R p dr (4.92)
Again inserting these relations into Eq. (4.30), we obtain
47G3mip3 n—3/2
VI
— — =0. 4.
LU L pr N1 [u—(us+uf)]=0 (4.93)
Assuming electron-scattering opacity, one has
2Lr* n4+1 2 m
=——— |h(f - — — | h(f 4.94
s sz3n—3/2[ ()+<r m) ()} (4.94)
and
L 17T
Uy N2 o) (4.95)

T 4Gmpn_3/2T
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The function h is governed by the following inhomogeneous equation:

d>h 2dh 6 p [df m 1
a7 T e F e ¢ K Y

(Notethat f = 0inthe convective core, where one assumesthat Q = ,.) Asexplained
in Section 4.2.1, when solving this equation one must always ensure the continuity of
gravity across the core—envel ope interface and across the free surface. One also has

Dz(f)—d2f+{2+(8— )]zf+{ 2(”;+:)TT,—2} f.  (497)

Equations (4.89), (4.93), and (4.96) form a coupled system for the functions u, w,
and h. Away from the boundaries, turbulent friction acting on the meridional flow is
negligible so that one can replace Eq. (4.93) by

U= Us+ Ujs (4.98)

in the bulk of the radiative envelope. Near the core boundary, one can solve Eqg. (4.93)
aongthelinespresentedin Section 4.3.1 (see Figure 4.1). Near thefree surface, however,
one readily sees from Eqgs. (4.94)—4.97) that the frictionless solution us + us behaves
as1/p. Following closely Egs. (4.74)—(4.80), we shall thus let

R—r _ 8" ppu

X = and = 4.99
$ Y (out)r ( )
in the surface boundary layer. With this new definition for y, Eq. (4.93) becomes
6 6— k
A d n—2 n—2
D K dxe Y xen-zy = xn-2, (4.100)

k=0

Notethat Eq. (4.100) isvery similar in structureto Eq. (4.76), with x"~2 merely replacing
x2"=2 on the right-hand side. Conditions (4.77)—(4.79) remain unchanged but Eq. (4.80)
must be replaced by

y — X—J;, as X — 00, (4.101)
since the solution of Eqg. (4.100) should match the frictionless solution at the bottom of
the surface boundary layer. Figure 4.4 illustrates the solution of Eq. (4.100) that satisfies
conditions (4.77)—«4.79) and (4.101). A uniformly valid solution of Egs. (4.89), (4.93),
and (4.96) can thusbe obtained, all theway fromthe outer boundary to the core—envel ope
interface.

The above formulation corresponds to the case for which onehasty < tgs so that we
canlet @ = Q(r). Asexplained in Section 4.3.1, if one also assumes that ty < tgs, the
function 2 remains nearly equal to aconstant. In that case, correct to order ¢, Eq. (4.86)
can be rewritten in the form

Q = Qo1+ €pu(r)]. (4.102)
After linearizing Eq. (4.89), we obtain

dfs

_Svdr

= pu. (4.103)
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Fig. 4.4. Function y(x) in the surface boundary layer. The frictionless solutions, y = 1/x",
areindicated by dashed curves. Source: Tassoul, J. L., and Tassoul, M., Astrophys. J. Suppl.,
49, 317, 1982.

This equation must be solved with the condition 8;:(R;) = 0 so that 2 = Qg at the core
boundary r = R.. (Condition [4.88] is automatically satisfied since one has pu = 0
ar = R) Thisis a mgor simplification because it implies that f = us = 0; the
right-hand side of Eq. (4.96) isthusidentically equal to zero. This, in turn, implies that
Eqg. (4.90) no longer depends on rotation. Hence, the function u can be calculated along
the lines presented in Section 4.3.1. Thence, one can solve Eq. (4.103) to obtain the
function ;. Thisisexactly the problem presented in Eq. (4.81), neglecting of coursethe
6 dependence of the function w;. Indeed, by making use of Eq. (4.29), one can easily
show that the derivative of Eq. (4.103) is strictly equivalent to Eq. (4.82).

44 A consistent second-order solution
In Section 4.3.1 we have calculated the meridional velocity u and the angular
velocity © in a slowly rotating star, when the departures from solid-body rotation are
uniformly small throughout the whole radiative zone. The circulation pattern consists
of asingle cell (or gyre) extending from the convective core boundary to the free sur-
face, with interior upwelling at the poles that is compensated by interior downwelling
at the equator (see Figure 4.3). Although turbulent friction acting on the circulation is
negligible in the bulk of the radiative envelope, there exist thin layers in which turbu-
lent friction prevents the formation of unwanted singularities near the inner and outer
boundaries. Such boundary-layer solutions satisfy all the basic equations and all the
boundary conditions, with the circulation velocities remaining uniformly small through-
out the radiative envelope. Of course, in the boundary layers these velocities depend
on the coefficient 1y . Fortunately, because they depend, respectively, on (uy)Y” and
(uv)Y% in the core and surface boundary layers, their dependence on this poorly known
parameter is considerably reduced (see Egs. [4.68] and [4.75]).
Now, as was noted in Section 4.2.2, the claim has been made that there always exist
two distinct cells separated by the level surface with density p = p* (say) given by
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Q2 = 2 Gp*. Moreover, it has been shown that in africtionless, differentially rotating
star one dways hasu, o 1/p in the surface layers, thus leading to much larger surface
velocities than Sweet’s (1950). Both objections require that we retain the second-order
termsin Egs. (4.55) and (4.56). However, because differential rotation plays an essentia
rolein the discussion, we shall also replace Eq. (4.55) by

Q= Qo (wo+ ewy + wa + -+ +) (4.104)

where wq is a function of the coordinates and time. Following Section 4.3.1, we shall
consider the case for which one hasty <« ty < tgs, thus ensuring the convergence of
expansion (4.104).

The general strategy isasfollows. First, one solvesto O(e/?) the ¢ component of the
momentum equation for the large-scale motion. Neglecting the 6 dependence, we obtain

dwe 1 9 dwo
P W = I’_4 E (,LL\/TAW +Avr3w0) R (4105)

where we have retained the Ay effect (see Eq. [3.133]). Thus, unless the parameter Ay
identically vanishes, the solution of Eq. (4.105) does not correspond to a solid-body
rotation. For steady motions, we have

"o d
wo = exp(— v r) . (4.106)
vy r
Since v and Ay are poorly known quantities, we shall merely prescribe that
wo=14+a(l—-r/R)? (4.107)

where « is a constant. Second, one calculates the first-order velocity u;, which can be
obtained from Egs. (4.28) and (4.93), replacing w by wq in definition (4.92). Third,
once the problem has been solved to that order, one calcul ates the back reaction w; (see
Eq. [4.81]). Finally, collecting all the pieces together, one calculates the second-order
velocity u,. To this order of approximation, however, one must retain the inertial terms
u; - gradu, in the poloidal part of the momentum equation.

Correct to O(e?), one has

p = po(r) + €[p1o(r) + p1.2(r) Pa(u)]
+ €2[p20(r) + p2.2(t) Pa(i) + p2.4(r) Pa(p)] (4.108)
and similar expressions for p, T, and V. (Henceforth we shall omit the subscripts “0"

from the function pq.) With the help of Eq. (4.4), we can aso describe the meridional

flow by means of a stream function. Thus, we let
1 v 1 v
u=—-——L+— —1,. (4.109)
or2 ou pre or

(Onedso hasuy, = —ru,/sing.) To the same order of approximation, one finds that

W = ewn(r)(1 - ) 2
m
e - ) Zzli“) - D) Z“ﬁ“) . (4110
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where we have defined the following functions:

1

Wy = 5 r2pu(r), (4.1112)
1, 2

v, = 5" pU(r) + | pro+ 7 P12 u(r)|, (4.112)

W= Ly {u()+18
4=59" [PU) T 35

It is to be noted that, to O(e?), the streamlines ¥ = constant do depend on €, whereas
they areindependent of this small parameter in the first-order approximation. Correct to
O(€?), the angular velocity can be brought to the form

wte 3 A0 T+ Y n0 T

i=1,3 i=1,35

praur )} (4.113)

Q= Q (4.114)

where the y; s are governed by a set of inhomogeneous equations.

In Table 4.2 we list the first-order functions u and rv (in cms™) for three values
of «, in a Cowling point-source model with electron-scattering opacity (M = 3Mg,
R=175R,, L =93L,, and N = 6inthe boundary layers). Evidently, thecasea = 0
corresponds to Sweet’s problem, withus = 0and u = usinthefrictionlessinterior (see
Egs. [4.94] and [4.95]). In contrast, any model for which @ # 0 hasu = us + u; inthe
frictionlessinterior, since us # 0 when dwp/dr # 0. One can show that us > 0 when
a > 0(i.e, whendwg/dr < 0); similarly, onefindsthat usy < Owhena < 0(i.e., when
dwo/dr > 0). Sinceus > 0, it follows at once that the sum us + u; is aways positive
when « > 0 but may change its sign along the radius when « < 0. Therefore, to first
order in €, the meridional flow consists of a single cell when « > 0, whereas it may
consist of two cellswhen o < 0. This property isimmediately apparent from the fourth
columnin Table 4.2.

From the solutions presented in Table 4.2, one readily sees that there is a definite
intensification of the function u near the surface of models for which « £ 0. Obviously,
such an intensification does not occur in the limiting case « = 0. Close scrutiny of
the second-order corrections indicates that there always exists a surface intensification
of the radial component U, = euy + €?Uy, N0 matter whether one has w; # 0 or
w1 = 0. To be specific, in africtionless model having we # 1, one hasuy, o« 1/p
and uy o 1/p in the surface layers. In contrast, letting wo = 1 in africtionless model,
one findsthat u;, oc 1 and uy o 1/p inthese layers. Strictly speaking, then, the case
wo = 1 is mathematically singular since €?|u, | may become larger than e|uy, | in the
surface layers.* Accordingly, a consistent expansion method requires a small amount of
differential rotation to O(e/?), so that one has uy, o< 1/p in the frictionless solution
near the surface. Of course, when turbulent friction is properly taken into account to
al orders in the small parameter ¢, there are no singularities in the components of the

* Thecasewg = 1listheonly onefor which thefunction u;, hasno 1/ p singularity inthesurfacelayers.
Thiscan happen only if there existsacentrifugal potential that isproportional tor 2[1— P,(cos#)], that
isto say, in the case of strict uniform rotation to O(e%/?). Note that such amathematical complication
does not occur when the thermally driven currents are caused by disturbing forces other than the
centrifugal force of rotation.
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circulationvelocity u. Figure4.4 clearly illustrateshow thefrictional force actsto prevent
the appearance of inordinately large radial velocities near the outer boundary. Because
of the 1/p term in the frictionless solution that remains valid in the deep interior only,
the function u; at first increases toward the surface and then drops rapidly to zero at the
free boundary. To be specific, thereis an intensification of the radial velocities below the
surface, typically by two or three orders of magnitude (see Table 4.2). However, given the
extreme smallness of the meridional currentsin the bulk of a stellar radiative envelope,
the maximum radial speed below the free surface does not exceed 1 cm s™1, which isa
far remove from the various evaluations that can be found in the literature.

Figures 4.5 and 4.6 illustrate two second-order solutions for the meridiona flow,
respectively for o« = +10 2 anda = —102 (N = 6, un/uy = 10?2, and e = 107%).
These curves are quite independent of the parameter € in the deep interior, where the
second-order termsmakeanegligiblecontribution tothefirst-order solution. Incontrast, it
isimmediately apparent that, evenfor arather low valueof ¢, the second-order termsmake
a sizeable contribution in the surface layers, where two or even three cells may occur.
Note especialy the cell in the equatorial belt, when the basic angular velocity decreases
with depth (o < 0). Obvioudly, there is a definite interplay between the meridional flow
and the spatial variations of the angular velocity in the surface layers of astellar radiative
envelope. Thisisquite unfortunate becausethe actual run of the angular vel ocity depends
on the eddy viscosities, which are poorly known parameters.

441 Answer tothe classical objections

Consider again auniformly rotating, nonmagnetic barotrope. Neglecting viscos-
ity and theinertial termsu - grad u in the momentum equation, one readily sees that the
velocity u is present only in the equations expressing conservation of mass and energy
(Egs. [4.4] and [4.5]). Inthe case of anonspherical star, then, Egs. (4.3), (4.6), and (3.30)
provide four scalar relations among the four functions p, p, T, and V. Indeed, letting
p = po + €ps, €tc., and linearizing these equations, one can calculate unequivocally the
four nonspherical corrections (i.e., ps, o1, T1, and V1) to agiven spherical model. These
four corrections are independent of the velocity u. Hence, the potential ® is also com-
pletely determined, and it does not depend on the velocity u either. Because Eq. (4.47)
isderived from Eq. (4.5), which isindependent of the remaining equations, there isthus
no reason to believe that the constraint (4.47) will be satisfied by the functions (g) and
(g1 that one has derived from the known potential ®. Prima facie, this raises serious
guestions about the validity of Eq. (4.48).

Aswaspointed outin Section4.2.2, the Gratton—M estel proof of thedouble-cell pattern
rests on the fact that their frictionless, nonmagnetic body remains strictly barotropic in
spite of the inexorable meridional flow. We may therefore ask the following question:
Is it actually possible to obtain such a flow in a uniformly rotating body that has all
the properties of a barotrope? Specifically, given the approximations made, EqQ. (4.49)
impliesthat onehasu-grad (r2sin? ) = 0, that is, the streamlines of the meridional flow
must coincide with the straight linesr sind = constant (i.e., lines parallel to the rotation
axis). Thisis an impossible requirement, since Eq. (4.38) implies that the streamlines
must be closed curves. Moreover, because the meridional velocities in a frictionless
system have unwanted singularities at the upper and lower boundaries, thereisno reason
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Rotation Axis

Equatorial Plane

Fig. 4.5. Second-order solution for the meridional flow in a Cowling point-source model,
with electron-scattering opacity, M = 3Mg, N = 6, uy/uy = 10?2, ¢ = 10%, and o =
+1073. Intheinner cell, interior upwelling along the rotation axisis compensated by interior
downwelling in the equatorial belt. The sense of circulation is reversed in the outer cell that
is adjacent to the rotation axis. Note that there are two cellsin the outer layers: One of them
isadjacent to the rotation axis, and the other islocated in the equatorial belt. Source: Tassoul,
M., and Tassoul, J. L., Astrophys. J., 440, 789, 1995.

Rotation Axis

Equatorial Plane

Fig. 4.6. Same as Figure 4.5, but for « = —10~3. Source: Tassoul, M., and Tassoul, J. L.,
Astrophys. J., 440, 789, 1995.

to believe that one can apply the condition
7§ pn-udS =0 (4.115)
S

on each level surface S, since thisintegral relation implicitly assumes that the velocity
u is everywhere finite. We therefore conclude that the Gratton—Mestel result is the con-
sequence of an excessively large number of conflicting assumptions that cannot be met
in arealistic model.
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Making use of Eq. (4.109), one also has, correct to O(€2),

Ur = eu(r)Pa(i) + € [Uo(r) + Uz(r) Pa(i) + ua(r) Pa(w)] (4.116)

where uy = —(1/5)(p12/p)u. A mere comparison with Eq. (4.44) shows that Opik’s
formuladoesnot provideareliablesolutionfor themeridional flow inarotating barotrope.
It must therefore be disregarded.

Yet, because onehasus o« 1/p asr — Rin Eq. (4.95), it is immediately apparent
from Eq. (4.98) that a small amount of differential rotation can have alarge effect in the
surface layers. Does it imply that meridional velocities of the order of kilometers per
second are the rule in the outer layers of an early-type star? The answer to this question
isflatly no, because any formulathat hasal/p singularity cannot possibly satisfy all the
basic equations and all the boundary conditions. As a matter of fact, we have shown in
this chapter that turbulent friction acting on the meridional flow always prevents huge
surfacevelocities, having |u,| < 1ecmstand |ug| < 10°cm s tinthesurfacelayersof a
3M,, star inalmost uniform rotation. Obviously, these speeds are much slower than those
predicted on the basis of the formulae u, o< €/p or u, « €2/p, which are completely
inadequate in the outermost surface layers of arotating star.

4.5 Meridional circulation in a cooling white dwar f

Consider a single, nonmagnetic white dwarf that produces its luminosity by
cooling of itsalmost isothermal, degenerateinterior. Following closely theanalysisgiven
in Sections 4.2.1 and 4.3.1, we shall consider a configuration in slow, almost uniform
rotation. Hence, we shall expand about hydrostatic equilibrium in powers of the ratio of
centrifugal force to gravity at the equator (see Eq. [4.9]). In spherical polar coordinates
(r, u = cosé, ¢), themeridional velocity u is

dPs(u)

u=-eu(r)P(u)l +ev(r)d— pu? du 1,, (4.117)
where, by virtue of Eq. (4.4), v isrelated to u by therelation
11d, ,

The meridional flow is thus characterized entirely by the radial function u. (Recall that
Ug = —ru,/sing.) We also have

Q=9 {1 +e {ﬁl(r) a0 | gy dp3(“)} } : (4.119)

du du

where 8; and s verify Egs. (4.82)—4.84) and the condition that both functions remain
finiteatr = 0. From Egs. (4.117) and (4.119) onereadily seesthat thelarge-scale motion
consists of a constant overall rotation of O(e/?), ameridional flow of O(¢), and a back
reaction of the currents of O(e%/?).

The structure of thissolution isvery similar to that of anondegenerate star. Of course,
Egs. (4.5) and (4.6) need to be modified. First, allowance must be made for a more
general equation of state in the degenerate interior. Second, because energy is released
throughout the star, EqQ. (4.5) must be replaced by

pTu-gradS=div(y grad T) + p&, (4.120)
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where £ = —T (3S/at) is the energy released by cooling (per gram and per second)
and y isthe coefficient of thermal conductivity in the degenerate interior (or radiative
conductivity in the nondegenerate envelope).

Given these two modifications, it is a simple matter to calculate the function u in the
bulk of a cooling white dwarf. Away from the surface layers, the frictionless solution,
U = Us (say), hastheform

Ar4 1-m&/l  Vy 2 m
= h - ——1h 4121
Us G2m3 A Vw—V[ Jr(r m) } ( )

where
| = —4mr?y T/, (4.122)

which isthe net amount of energy crossing the spherical surface of radiusr per second.
(As usual, we have omitted the subscript “0” from the functions &, xo, and Ty in the
spherical model.) We have also let

Vo = (8'”T) _ A (4.123)
dlnp /s cppT

The second equality defines the parameter A. Remaining symbols have their standard
meanings (see Eq. [4.34]).

Asone movestoward the free surface, Eq. (4.121) merely reducesto Sweet’sfunction
(4.34), since we have| = L, £ = 0, and A = 1 in the nondegenerate envelope.
As we know, this frictionless solution is not acceptable near the surface because it
does not satisfy the kinematic boundary condition (4.38). We are thus forced to retain
turbulent friction in the surface layers and, hence, to make explicit use of the sixth-
order equation (4.63) for the function u. By making use of the radiative-zero boundary
conditions, one can easily show that Egs. (4.74)—(4.80) are the appropriate equations for
the problem being considered. Once the function u has been calculated fromr = 0 to
r = R, one can solve Egs. (4.82) and (4.83) for the functions 8, and Bs.

Table 4.3 gives a detailed solution for a 0.8M, white-dwarf model. The functions u
andrv are given in cm s, They were obtained using the formula ity = 10N ft4, With
N = 2, inthe nondegenerate envelope (see Eq. [4.62]). This choice of N isunimportant
sinceu andr v depend on ()%, In Table 4.3 wealso list thefunctions 8, and Bs. They
were obtained using the viscosity of a degenerate electron gas in the deep interior and
the above formula in the outer layers. Figure 4.7 illustrates the meridional flow, which
breaks down into three regions with motions in opposite senses. This situation arises
because the factor (1 — m&/1) changes its sign twice aong the radius. Accordingly,
this triple-circulation pattern is a mere consequence of the stratification of the spherical
model sthat were used to obtain the function u. For atypical white dwarf, with equatorial
velocity veq ~ 50 km s™%, we have e ~ 10~%. Hence, from Table 4.3 one readily sees
that |u,| (=~ €lu]) < 1072 ecm st and |uy| (= er|v]) < 10~° cm s~! Moreover, since
|B1] and | B3| are both of order unity, €|81| and €| 83| remain in general much smaller than
one, so that Eq. (4.119) provides an acceptable solution for the azimuthal motion. As
regardspractical applications, such aslarge-scal e mixing and microscopic diffusioninthe
surface layers, we therefore conclude that the meridional currents are utterly negligible
in a cooling white dwarf in a state of slow, almost uniform rotation.
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Table 4.3. The velocity field in a 0.8M, cooling white dwarf.

r/R log(1 — m/M) u rv B1 B3
0.000000 0. 0. 0. 0. 0.
0.096517 —0.00413 4.0440E—-12 1.9762E—12 —7.5979E-5 —2.2525E—4
0.172414 —0.02228 7.7119E-12 3.6337E—12 —25375E—4 —7.4405E—4
0.292340 —0.09691 1.5276E—11 6.4466E—12 —82887E—4 —2.3373E-3
0.374016 —0.18709 2.3923E-11 1.0428E—11 —15421E-3 —4.1660E—3
0.473461 —0.34679 4.4661E—11 19598E—11 —3.2013E—-3 —7.7537E-3
0.583683 —0.60206 9.5232E-11 3.7716E-11 —7.6818E—3 —1.5030E—2
0.698923 —1.00000 2.0127E-10 1.0222E—11 —-2.1271E-2 —3.0718E-2
0.847698 —2.00000 3.6225E—-10 —1.1825E-09 —8.6396E—2 —8.2736E—2
0.884567 —2.50000 8.4421E-11 —-23871E-09 —1.1174E—-1 —9.8335E-2
0.908588 —3.00000 —29180E—10 —2.3595E—12 —9.7037E—2 —8.5441E-2
0.924756 —3.50000 —4.5561E—10 3.0146E—-09 4.6999E—2 —4.8949E-2
0.936511 —4.00000 —5.8203E—10 9.5082E—-09 5.1515E-2 2.0577E-2
0.950625 —4.50000 —5.7619E—10 7.3009E—-09 24517E-1 1.5650E—1
0.962850 —5.00000 —4.3912E—10 8.3732E—09 3.5125E—-1 2.2961E—-1
0.978424 —6.00000 —1.4982E—10 6.9378E—09 3.9344E-1 2.5786E—1
0.987204 —7.00000 2.6621E—11 2.2088E—09 3.9532E—1 2.5892E—1
0.992409 —8.00000 1.3858E—10 —6.4318E—-09 3.9504E—-1 2.5866E—1
0.995597 —9.00000 23133E-10 —2.2086E—08 3.9492E-1 2.5855E—1

0.997503 —10.00000 3.0559E—-10 —5.2426E—-08 3.9489E—-1 2.5853E-1
0.998598 —11.00000 3.6040E—10 —1.2305E-07 3.9488E—-1 2.5852E—-1
0.999212 —12.00000 3.7125E-10 —2.3394E-07 3.9488E—-1 2.5852E—-1
0.999712 —14.00000 3.7399E-10 —6.4598E—07 3.9488E—-1 2.5852E—-1
0.999838 —15.00000 3.6121E-10 —1.2407E—-06 3.9488E—-1 2.5852E—-1
0.999909 —16.00000 2.4886E—10 —1.7597E—06 3.9488E—-1 2.5852E—-1
0.999949 —17.00000 14499E-10 —1.8792E—-06 3.9488E—-1 2.5852E—-1
1.000000 infinite 0. —1.8986E—06 3.9488E—-1 2.5852E—-1

Source: Tassoul, M., and Tassoul, J. L., Astrophys. J., 267, 334, 1983.

4.6 Meridional circulation in a close-binary component

Consider a system of two rotating stars revolving in circular orbits about their
common center of gravity. We have a chemically homogeneous, early-type star of mass
M (the primary) acted on by the tidal force originating from its companion of mass M’
(the secondary). We shall assume that the radii of the components are much smaller
than their mutual distance d, so that the secondary may be treated as a point mass when
studying the tidal distortion of the primary. Assuming that the overall rotation of the
primary is synchronized with revolution, we have

G(M+ M)
ds ’
where Q is the angular velocity of the primary.

Q2 = (4.124)

4.6.1 Thetidally driven currents
Since we want to fix our attention on the primary, it is convenient to choose a
rotating frame of referencein which the origin is at the center of gravity of the mass M.
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Fig. 4.7. Streamlines of meridional circulation in a 0.8M, cooling white dwarf. The three
circulation zones are separated by the spherical surfacesr = 0.88975R andr = 0.98590R.
The outer circulation pattern (0.98590R < r < R) is schematically depicted by a single
curve. Source: Tassoul, M., and Tassoul, J. L., Astrophys. J., 267, 334, 1983.

Thex axispointstoward the center of the secondary, andthez axisisparallel totheoverall
angular velocity of the primary. Neglecting theinertial terms ug, - grad ug, we thus have

20 x Ugr = —grad(V — W) — 1 grad p + 1 F(ug), (4.125)
P P

where the three-dimensional velocity ug is measured in our rotating frame of reference,
and F is the turbulent viscous force per unit volume. In spherical polar coordinates (r,
0, @), the potential W is given by

1 GM’ < rk
W= 2 Q2r2[1— Py(u)] + > 5 Pc(v), (4.126)
k=2

d
where 1 = cosf and v = sinf cosg. The Pys are the Legendre polynomials. Since
our basic assumptions are identical to those made in Section 4.3.1, Eq. (4.125) must be
combined with Egs. (4.3)—4.6).

Following standard practice, we shall expand about hydrostatic equilibrium in powers
of the nondimensional parameter

QAR M+ M /RY
‘TGM T M <d>
Inparticular, weshall let p = po+ep1+-- -, €tc. Intheframerotating with the angular
velocity Q, the three-dimensional velocity ug hasthe form

Ur :€U1+63/2U3/2—|—"', (4.128)

since the Coriolis force is of O(e%2). By virtue of Egs. (4.125) and (4.126), this three-
dimensional velocity isthe superposition of two different kinds of currents. One of them
is caused by the small oblateness due to rotation around the z axis; the other one is
caused by the small prolateness due to tidal action in the direction of the x axis. Hence,
the general problem can be decomposed into two subproblems. In the first subproblem,
the flow is caused by the rotational distortion only; for the second, the velocity ug isdue
to thetidal distortion only. To evaluate the effects of thefirst we shall solve the equations

(4.127)



122 Meridional circulation

with M” = 0; for the effects of the second, at least to O(e), we shall formally let 2o = 0
in the equations. Correct to O(¢), then, the tidal flow is the superposition of these two
circulation patterns.

Letting M’ = 0, one readily sees that the velocity u; becomes symmetrical with
respect to both the z axis and the (z = 0)-plane. We then have, in the rotating frame,

d =UOPG). U = L) (4.129)

and uy, = 0. To O(e), this solution is strictly equivalent to the one obtained in Sec-
tion 4.3.1, with the functions u and v being related to each other by Eq. (4.118). For
the sake of completeness, one must also solve Eq. (4.125) to O(e%/?), thus expressing
the balance between the Coriolis force acting on the rotationally driven currents and the
turbulent friction acting on the differential rotation around the z axis. To O(e%/?), this
equation is strictly equivalent to Eq. (4.57).

If weformally disregard the centrifugal and Coriolisforcesin Eqg. (4.125), the velocity
u; becomes symmetrical with respect to the x axis (but not with respect to the (x = 0)-
plane!). In order to describe this part of the solution, it is convenient to use the radial
variable r, the cosine of the colatitude from the x axis v = sin6 cosg, and the azi-
muthal angle ¢ around the x axis. Using these coordinates, one can show that the tidal
contribution to the circulatory currents can be written in the form

4 : 5 dR()
Uy =) W(P(), U, =) wlr)(L—v)—"-, (4.130)
k=2 2 dv
and uy, = 0. Equation (4.4) implies that
1 1 d
Uk (pr2ui) (4.131)

" k(k+1) pr2 dr

(k = 2, 3, 4). This motion depends, therefore, on the three functions u,, uz, and uy.
When both the rotational and tidal terms are retained in Eq. (4.126), it is a simple

matter to prove that the three-dimensional velocity u; has the following components:

4
Uz = Y Uk(r)P(v) + u(r) Po(u), (4.132)
k=2
- 3 P(v) dPy()
— _ 20 W) _ 2
U1M—k§:;vk(r)(l n) i + o) — pno) du (4.133)
4
U1¢=Z rug(r) E)Pk(v)’ (4.134)

= (L—pd)2 de

where, aswe recall, v = (1 — u?)Y?cosg. This solution is actually the vectorial sum
of the velocity fields (4.129) and (4.130), with both solutions now being written in the
rotating frame of reference (r, u, ¢). Note that the functions u, and vy are still related to
each other by Eq. (4.131) because

3 P(v) 1 9%P(v) d dP(v)
aku ]+1—u2 a«kﬂ :E[(l_vz) O ]
= —k(k + 1)Pc(v). (4.135)

o A=)
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2+3+4

Fig. 4.8. Tidally driven currents in a synchronously rotating star. The vertical arrow points
toward the companion; the tidal distortion of the model is not depicted. From left to right:
Contributions from the P,, P;, and P, terms in Eq. (4.130), and the sum of these three
contributions (when M = M’ = 3M, and € = 0.25; that is, d/R = 2, veg = 290 km s,
and P = 27 R/vg = 0.31 day). Even for this relatively large value of ¢, it is the P, term
that dominates in the expansion. The streamlines do not penetrate into the convective core,
but thereis an accumulation of streamlinesin the core boundary layer. Source: Tassoul, J. L.,
and Tassoul, M., Astrophys. J., 261, 265, 1982.

As usual, once the functions u and uy have been obtained, Eq. (4.125) can be solved to
O(e%/?) to give aunique solution for the velocity fields us),.

Figure 4.8 illustrates the pure tidally driven component of the circulation (see
Eq. [4.130]). Following Section 4.3.1, we have considered a 3M, Cowling point-source
model, with electron-scattering opacity and vy = 10°u,4 in the boundary layers (see
Eq. [4.62]). Although this large-scale motion is the combination of three terms, it is
immediately apparent that the contribution from the P,(v) term dominates over the two
others. Their time scaleisof the order of the Kelvin—Helmholtz time, txy, divided by the
ratio of thetidal forceto gravity at the equator, (M’/M)(R/d)3. These axially symmetric
motions are the strict analog of the rotationally driven currents depicted in Figure 4.3.

4.6.2 Thereflection effect in close binaries

To the best of my knowledge, Hosokawa (1959) was the first to point out that
the mutual heating of the componentsin a close binary generates large-scal e circulatory
currentsin their superficial layers. To illustrate the problem, we shall calculate the pho-
tospheric flow caused by the presence of a permanent “hot spot” on the surface of an
early-type star that is a synchronously rotating component of a close binary.

Again consider arotating frame of reference in which the origin is at the center of the
primary (of mass M, radius R, and luminosity L when neglecting the “hot spot”). The x
axis points toward the point-mass secondary (of mass M’ and luminosity L"), and the z
axisisparallel tothe overall angular velocity of the primary. In this case, the appropriate
expansion parameter, n (say), istheratio of thefluxesatr = R,

L' / R\
=— (=], 4.136
=1 () (4136
where d is the separation between the two centers of mass.
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To discuss the boundary-layer currents caused by the reflection effect in agray atmo-
sphere, we shall assume that the prescribed irradiating flux ' takes the form

F = % 1 grad[exp(—1)P.(v)], (4.137)
Kp

where « is the opacity and 7 is the optical thickness. As usual, v is the cosine of the
colatitude from the x axis, and Py(v) = v. Admittedly, thisis a crude approximation of
theirradiating flux in the surface layers of astar. Yet, EqQ. (4.137) adequately modelsthe
fact that (a) the epicenter of the permanent “hot spot” is located on the x axis (v = 1)
and (b) the irradiating flux is attenuated exponentially with optical depth. By virtue of
Eq. (4.137), Eq. (4.5) must be replaced by

pTu-grad S= div(x grad T) + div F". (4.138)

It is a simple matter to prove that, correct to O(n), the velocity of the currents can be
written in the form

ur = nu(r)Py(v) and u, =no(r)(1— vz)@, (4.139)
v
where
11 d 2

(Compare with Egs. [4.130]{4.131].) Retaining turbulent friction in the surface layers,
one can also show that the function u satisfies the following equation:;

4rG3m3p3 n—3/2 G?m?p?
Lpr4 n+1 v= r4
where n is the effective polytropic index. (Compare with Eq. [4.63].)
Following Section 4.3.1, we shall prescribe the usual radiative-zero boundary condi-
tion. For electron-scattering opacity, we have k = constant, n = 3, p = ppZ*, p = P2’
T = Tpz, and uy = 10N upz, where z = R —r. Letting next

£V

kp exp(—1), (4.141)

R—r u

= and =— 4.142
= Y= (4.142)
one can rewrite Eq. (4.141) in the form
6 6—k
a d° ™y
kzg XK dxb—k xty = —x" exp(—asx), (4.143)
where
2¢L 1
Uy = and =~ kpp ™. 4.144
17 37GM w1= kP (4.144)

Equation (4.75), withn = 3, definestheboundary-layer thickness . (Compare Eq. [4.143]
with Eq. [4.76].) Of course, the solutions of Eq. (4.143) must satisfy the boundary con-
ditions (4.77)—4.79). However, because the motions generated by the reflection effect
must vanish at some depth from the surface, condition (4.80) must be replaced by the
following condition:

y— 0, as X — 00. (4.145)
Equations (4.143), (4.145), and (4.77)—4.79) form the basic equations of the problem.
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Table4.4. Thefunctions u and r v in the surface boundary

layer.
N=5 N=6
X u rv u rv
0.0 0 —3.6299E+5 0 —5.2076E+4

0.2 1.3084E+2 —3.6179E+5 2.3604E4+1 —5.1793E+4
04 2.5672E4+2 —3.4923E+5 4.5883E+1 —4.9218E+4
0.6 3.6435E4+2 —3.1731E+5 6.4100E4+1 —4.3798E+4
0.8 4.4216E+2 —2.7198E+5 7.6742E4+1 —3.7005E+4
10 4.8658E+2 —2.2146E45 8.3607E4+1 —2.9828E+4
12 4.9889E+2 —1.7091E+5 85073E+1 —2.2837E+4
14 4.8297E+2 —1.2372E+5 8.1863E+1 —1.6411E+4
16 4.4429E+2 —8.2151E+44 7.4931E4+1 —1.0814E+4
18 3.8927E4+2 —4.7645E+4 6.5365E+1 —6.2057E+3
20 3.2453E+2 —2.0864E+4 54292E+1 —2.6548E+3
2.2 2.5680E+2 —1.7779E+3 4.2781E+1 —1.4281E4-2
24 1.9138E+2 1.0236E+4 3.1753E+1 1.4236E+3
26 1.3276E+2 1.6263E+4 2.1925E+1 2.1955E+-3
2.8 8.3842E+-1 1.7674E+4 1.3763E+1 2.3593E+-3
3.0 4.5990E+1 1.5942E+4 7.4771E4-0 2.1127E+3
32 19177E+1 1.2467E+4 3.0481E4-0 1.6416E+3
34 2.2549E+1 8.4233E4-3 2.7242E—-1 1.1010E+3
36 —6.6589E+0 4.6728E+3 —1.1723E40 6.0390E+-2
38 —9.7740E+40 1.7310E+3 —1.6591E+0 2.1675E+-2

Source: Tassoul, J. L., and Tassoul, M., Astrophys. J., 261, 273, 1982.

In Table4.4 welist thefunctionsu andr v (incm s™1) for a3M,, Cowling point-source
model, withn = 3,k = 0.34cm? g, and u; = 6.45 x 10’ cm s~*. Thevaluesarelisted
for N =5(a; = 20and§/R = 3.6 x10%)and N = 6 (oy; = 50and§/R = 4.6 x 1073).
Figure 4.9 illustrates the function y(x) when «; = 20. It is apparent from Table 4.4 and
Eq. (4.139) that the axially symmetric circul ation pattern consists of amain cell (or gyre)
within the boundary layer (0 < R —r < 0.01R) and secondary cells at lower depths
(R—r Z 0.01R). Because the flow speed decreases exponentially with optical depth,
the dominant mass flow takes place within the outermost external layer of the absorbing
star, however. The circulatory currents are symmetrical with respect to the line joining
the centers of gravity, with rising motionsin the “hot spot” (v = 1) and sinking motions
at the antipode (v = —1). Thereisthus amean steady current that is flowing away from
the “hot spot” on the stellar surface and a mean steady countercurrent that is flowing
away from the antipode at a somewhat lower level. The whole flow, in fact, takes place
within a very thin superficia shell (0.99 < r/R < 1). Typicaly, with n = 10~2 and
N = 6, Table 4.4 indicates that |u,| < 0.85 cms™ and |uy| < 520 cmst. Even
though there are still uncertainties about these maxima (again because u and r v are quite
sensitive to the values of N), these speed estimates are far removed from the various
evaluations based on frictionless solutions that can be found in the literature. All these
evaluations are utterly inadeguate because they do not satisfy the kinematic boundary
condition (4.38).
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n=3
@,=20

Fig. 4.9. Function y(x) in the surface boundary layer, when n = 3 and «; = 20. Source:
Tassoul, J. L., and Tassoul, M., Astrophys. J., 261, 273, 1982.

4.7 Meridional circulation in a magnetic star

In Section 4.3.1 we have obtained a self-consistent description of meridional
streaming and concomitant differential rotationin the chemically homogeneousenvelope
of an early-type, nonmagnetic star. Since these matters have been largely clarified by
now, here we shall go astep further and discuss the role of a prescribed magnetic fieldin
an early-type star. For the sake of simplicity, we shall assumethat the large-scalefieldis
not maintained by a contemporary dynamo operating in the convective core, but rather
that it is the slowly decaying relic of the field present in the gas from which the star
formed.

4.7.1 Themagnetically driven currents
In an inertial frame of reference, the momentum equation for the large-scale
flow becomes

D 1 1 1
PV o _gradV — = gradp+ = F(V) + —— curlH x H, (4.146)
Dt P 0 Ao

where H denotes the mean magnetic field and F is the turbulent viscous force per unit
volume (see Section 3.6). We also have

divH =0 (4.147)

and

oH
o curl(v x H) — curl(8 curl H), (4.148)

where g isto beinterpreted as the coefficient of magnetic eddy diffusivity in the turbulent
radiative envelope. For the sake of simplicity, we shall assumethat 8 = BT, where
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B and v (>0) are two constants. As usual, these equations must be combined with
Egs. (4.3)—(4.6).

Because we are considering a rotating magnetic star that does not greatly depart
from spherical symmetry, the large-scale meridional flow is the linear superposition of
rotationally driven currents and magnetically driven currents. To cal cul ate these currents,
weshall prescribe an axially symmetric dipolar field. Neglecting the circul ation vel ocity
and letting H = P in Eq. (4.148), we thus have, in spherical polar coordinates (r,
p = €oso, ),

_ dP
P=H |P(r, )P ()L + O, t)(1 — u?) (1) 1, (4.149)
where H isaconstant and Py(1) = u. We have
P = pm(r) exp(—ot) (4.150)
and
11d ,
Q=755 g (F"Pm) exp(—ot), (4.151)

with pm(R) = 1 sothat H istheinitial polar field strength. The constant o is the lower
eigenvalue of

4
P + ; P + %T”pm =0, (4.152)
with Rp/, + 3pm = 0atr = R, and py, finiteat r = 0. Given this |arge-scale magnetic
field, weshall now expand about hydrostatic equilibriumin powersof the nondimensional
parameter

-
= 2—,\?:. (4.153)
To the decaying dipolar field P corresponds the following meridional velocity:
U = (. )P0 + (e (A — 1) ZZIE“) 1., (4.154)
where
U= Un(r)exp(—2ot) and v = vm(r) exp(—20t). (4.155)
Asusual, we aso have
Um = % iz dg (prium) (4.156)

and 2P,(u) = 3u? — 1. (Recal that uy = —ru, /sing.)
Following Section 4.3.1, boundary-layer theory was used to calculate the functions
Um and vy,. Extensive numerical results have been obtained for a Cowling point-source
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model embedded into avacuum (M = 3Mg, R = 1L.75R,, L = 93L ), with electron-
scattering opacity and with iy = 10°u,4 in the boundary layers. Equations (4.9) and
(4.153) become, therefore,

€e=3x10°%% and A=9x10H? (4.157)

where the equatorial velocity veq (= Q0R) and the constant H are measured in km s™*
and gauss, respectively. (Letting veg = 60 kms* and H = 10° G, one has e ~ 1072
and A~ 1071%) Now, solving Eq. (4.152) for the decay time 7, (= o), one finds
that Br, = 4.2 x 10 (when v = 1.5) and Bt, = 5.4 x 10 (when v = 3.5). For
example, if we neglect turbulence altogether, 8 becomes equal to its ideal value vy, =
108 T-3/2cm? s~ so that one has t, = 4 x 10 yr. Obviously, shorter decay times can
be obtained by choosing other values for the free parameters 8 and v; these times must
be compared with the main-sequence lifetime t.,s of a3M, star, which is of the order of
2 x 108 yr.

Aswas dready noted, correct to the orders € and A, the large-scale meridional flow is
thevectoria sum of rotationally driven currentsand magnetically driven currents. Hence-
forth we shall call them the “Q-currents’ and the “ H-currents,” respectively. Table 4.5
lists the functions u, rv, Uy, and r vy, in cgs units, when v = 1.5 and v = 3.5. All en-
triesin the last four columns must be multiplied by the exponential factor exp(—2t/zp);
they do not depend on 8. Even when H is as large as 10°-10* G, one readily sees
that the steady Q-currents are much faster than the slowly decaying H-currents in the
bulk of the radiative envelope. (Atr = 0.6R, one has |u,| ~ 107® cm s~! for the Q-
currents, whereas |u,| ~ 4 x 107 cmst at t = 0 for the H-currents). Just below
the surface, however, Au, may become larger than eu, in spite of the fact that both uy,
and u vanish at the top of the boundary layer (i.e., atr = R). The presence of sizable
H-currents in the outermost surface layers of a magnetic star is not at all unexpected,
since it is only in the low-density surface regions that the Lorentz force can generate
sizable departures from spherical symmetry. Figure 4.10 illustrates the complex circu-
lation pattern of the H-currents; correct to O(1), it does not depend on the polar field
strength. Figure 4.10 must be compared with Figure 4.3, which depictsthe corresponding
Q-currents.

From Table 4.5, one readily sees that the values of uy, and v, are quite sensitive
to the exponent v, that is to say, to the magnitude of the coefficient of magnetic eddy
diffusivity. Thus, even though it is the eddy viscosity that ultimately prevents unwanted
singularities in the circulation velocities at the surface, the role of the magnetic eddy
diffusivity is nevertheless an essential one in the sense that it considerably reduces the
magnitude of these velocities near the surface. Unless one makes the unrealistic demand
that the motions be strictly laminar in achemically homogeneous, fully ionized radiative
envelope, thereisnoreasonto select thevaluev = 1.5, however. Thisshould beespecially
true because hydrogen is only partially ionized at the surface of many magnetic stars,
thus increasing the diffusion coefficient S.

Now, because the 2-currents and the H -currents are neatly separated to the orders e
and ., these solutions can be used also to obtain the circulation pattern when the axis of
the basic dipolar field isinclined at an angle x to therotational axis. Because we already
know that the H -currentsplay anegligibleroleinthebulk of aradiativeenvel ope, weshall
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Fig.4.10. Linesof forceof thedipolar magneticfield (left) and streamlines of the correspond-
ing quadrupolar circulation (right), when v = 3.5. The shape of these curves does not depend
on the polar field strength. Recall that the dipolar field decreases as exp(—t/rp) whereas
the meridional currents decrease as exp(—2t/z,,). Note &l so the accumul ation of streamlines
near the core boundary and near the free surface. Source: Tassoul, J. L., and Tassoul, M.,
Astrophys. J., 310, 786, 1986.

merely follow intimethedistortionsof aninitially dipolar field that may be caused by the
Q-currents alone. Three-dimensional cal cul ations show beyond any doubt that the slow
but inexorable Q-currentswill indeed convert aninitially inclined dipolar fieldintoamore
complex field that hasalarger inclination over therotation axis. Figure4.11illustratesthe
evolution of aninitialy dipolar field, withinitial x = 45°,¢ = 1073, and 7, = 2x 108 yr.
(Therotation axisis set to be vertical.) Accordingly, assuming a modest increase of the
coefficient B over itsideal value vy, (8/vm ~ 10?) and choosing arotation that is typical
foramagneticstar (¢ ~ 10-%), wehave shownthat the Q-currentsareby far tooinefficient
to produce aperpendicular rotator over the main-sequencelifetimeof a3M, star. In other
words, because thefield lines can more easily diffuse through aless-than-ideal body, one
has random orientation of the axes, whereas in an idealized stellar model (with 8 = vp)
one has an excess of perpendicular rotators. Since the observed distribution of the oblig-
uities seemsto be at most amarginal nonrandom one, these cal culations corroborate the
ideathat small-scale, eddylike motions comprise an essential ingredient of the many the-
oretical problemsthat areraised by rotation and magnetismin astellar radiative envel ope.

4,7.2 Circulation, rotation, and magnetic fields

In Section 4.7.1 we have cal culated the meridional flow intheradiative envelope
of arotating magnetic star, assuming that departuresfrom spherical symmetry are not too
large. As we know, these rotationally and magnetically driven currents advect angular
momentum and, hence, interact with the azimuthal motion. In the absence of amagnetic
field, the transport of specific angular momentum can be made to balance the viscous
forcearising fromdifferential rotation so that the mean state of motionisasteady one (see
Egs. [4.55]{4.57]). When a large-scale magnetic field pervades the system, however,
this balance is modified by the presence of the toroidal component of the Lorentz force.
This is the reason why the claim has often been made that there exists a weak, axialy
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Table 4.5. The Q-currentsand H-currentsin a 3M, stellar model (N = 5).

v=15 v=235

r/R u rv Umn [ Un v

0.283182 0. 0. 0. 0. 0. 0.

0.283400 1.340E—1 4.716E+1 3.384E4-01 1.193E4+04 1.637E+3 5.754E+-5
0.283600 2.347E—1 —3.983E4+0 5.940E4+01 —9.815E402 2.862E+3 —4.984E+44
0.283800 1.640E—1 —1.935E4+1 4.160E+01 —4.888E4+-03 1.997E+3 —2.364E45
0.290000 1.355E—2 —9.628E-2 3.633E+00 —2427E4+01 1.554E+2 —1.178E+3
0.300000 5414E-3 —1594E-2 1579E+00 —4.031E4+00 5.620E+1 —1.949E+2
0.350000 1.414E-3 —1.125E-3 5.852E-01 —-2463E-01 8.697E4+0 —1.218E+1
0.400000 9577E—4 —4.370E—4 5428E-01 —-2.027E-02 3.601E4+0 —3.838E+0
0.450000 8.798E—4 —2.739E—4 6.869E—-01 1244E-01 2185E+0 —1.893E+0
0.500000 9.566E—4 —2.347E—4 1.050E+00 3.644E-01 1.720E4-0 —1.213E40
0.550000 1.154E—-3 —-2.717E—4 1.843E+00 9.096E—-01 1.652E4+0 —9.324E-1
0.600000 1.484E—3 —4.149E—4 3.633E+00 2.328E4+00 1.867E4+0 —8.139E-1
0.650000 1.983E—3 —7.627E—4 8.022E4-00 6.485E4+-00 2435E4+0 —7.586E-1
0.700000 2.699E—3 —1.533E-3 2.014E+401 2.060E4+01 3.656E4+0 —6.545E-1
0.750000 3.695E—3 —3.187E—3 5.970E+401 7.924E4+01 6.414E40 —1.207E-1
0.800000 5.044E—3 —6.745E—3 2.249E+-02 4.060E4+-02 1.373E+1 2.833E4+-0
0.850000 6.824E—3 —1.472E—2 1.249E4-03 3.306E4+03 3.953E+1 2.293E+1
0.900000 9.116E—3 —3.480E—2 1.435E+04 6.315E+04 1.928E+2 2.604E+-2
0.950000 1.200E—2 —1.062E—1 1.030E+06 1.014E+07 3.419E+3 1.288E+4
0.986000 1.461E—2 —5.019E—1 4.058E+-09 1.052E+12 1.097E+6 4.772E+7
0.990000 1.418E—2 —7.772E—1 8.503E+10 1.040E+12 4.637E+6 —5.647E+47
0.995000 8.944E—3 —1.154E+0 1.937E+11 —2.036E+13 6.421E4+6 —7.520E48
0.999000 1.872E—3 —1.246E+0 5.452E+10 —3.622E+13 1.482E4+6 —9.882E+8
1.000000 O. —1.255E+0 O. —3.646E+13 0. —9.838E+8

Source: Tassoul, J. L., and Tassoul, M., Astrophys. J., 310, 786, 1986.

symmetric magnetic field that can offset the advection of specific angular momentum
and so keepsthe rotation effectively uniform in space, with little or no turbulent motions
in the radiative envelope. It is the purpose of this section to conduct an examination of
the ways alarge-scale magnetic field can indeed maintain almost uniform rotation in the
radiative envelope of an early-type star (see also Section 5.4.2).

Let us first assume that the magnetic field is symmetric about the rotation axis. Ex-
pressing the mean velocity v and the mean magnetic field H as the sum of poloidal and
toroidal parts,

V=u+Qwl, ad H=P+7Twl, (4.158)

we can thus write the ¢ components of Egs. (4.146) and (4.148) in the forms
d
P a(ﬁwz) + pu - grad(Qew?)

1
= div(pveo?grad Q) — y P x curl(7w1,) (4.159)
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Fig. 4.11. Evolution of aninitially dipolar magnetic field, with x = 45°, ¢ = 1073, and t, =
2 x 108 yr. Therotation axisis vertical. The lines of force, which do penetrate the convective
core, are depicted in the radiative envelope only: att = 5 x 10% yr, at t = 4.2 x 107 yr,
att = tp, and in the asymptotic limit t — oo. Source: Tassoul, J. L., and Tassoul, M.,
Astrophys. J., 310, 805, 1986.

and
07 . 1
TS +div(7u) =P-grad Q — — {curl[8 curl(T @ 1,)]},. (4.160)
w

In principle, we must calculate the functions u, 2, P, and 7 from Egs. (4.146) and
(4.148) and the auxiliary equations (4.3)—4.6). Following standard practice, however,
we shall assume some plausible forms for the circulation velocity u and the poloidal
magnetic field P. Accordingly, it is possible to calculate the functions 2 and 7 from
Egs. (4.159) and (4.160), with u and P being two prescribed vectors. As usual, these
coupled parabolic equations must be solved with some initia conditions and a pre-
scribed set of boundary conditions at the core boundary r = R, and at the free sur-
facer = R. For the sake of simplicity, al numerical calculations reported below were
made for a spherical fluid shell with constant density p, constant kinematic viscosity v
(= uv/p), and constant magnetic diffusivity 8. The convective core is assumed to be
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maintained in strict uniform rotation. Two extensive sets of numerical calculations have
been made.

Tassoul and Tassoul (1989) have considered a quadrupolar magnetic field, vanishing
at the core—envelope interface and at the free surface, and a prescribed quadrupolar
meridional circulation. Specifying initial states of uniform or amost uniform rotation,
they obtained solutions that are characterized by an inexorable approach to a state of
isorotation (i.e., rotation with constant angular velocity along each field line) with large
differential rotation between field lines after about ten Alfvén times, with no apparent
trend toward solid-body rotation.*

Moss, Mestel, and Tayler (1990) have considered a dipolar magnetic field, fully an-
chored into the convective core and threading the free surface, and a quadrupolar merid-
ional circulation. They aso introduced a high-viscosity buffer zone above the core—
envelope interface, in which, however, they retained low values for the magnetic diffu-
sivity. Starting from a state of almost uniform rotation, they obtained solutionsin which
thereisaperiodic, low-amplitude shear reversal about a state of uniform rotation, along
with spatially extended latitudinal oscillations in the toroidal magnetic field.

How can one explain the differences between these two independent sets of calcula
tions? Recall first that, in both works, the magnetic field is symmetric about the rotation
axis so that the magnetic transport of angular momentum in the radiative envel ope takes
place along but not across the poloidal field lines. Accordingly, if these lines thread
neither the free surface nor the core—envelope interface, viscous friction is the only
mechanism that can potentially couple different field lines. Hence, the redistribution of
angular momentum takes place along the field lines through the propagation of Alfvén
waves. Since ohmic dissipation acts to damp out these waves, it will thus enforce a con-
stant angular velocity along each poloidal field line, athough this constant isin general
different for each field line. This solution corresponds to the state of isorotation that
was obtained by Tassoul and Tassoul (1989). Obvioudly, thisis quite different from the
situation in which the poloidal field linesare anchored into therigidly rotating core. If so,
then, there is a coupling between the convective core and the radiative envel ope, so that
significant mutual coupling of different poloidal field lines will occur. Aswas noted by
Moss, Mestel, and Tayler (1990), it isthe anchoring of al poloidal field linesinarigidly
rotating, strongly viscous convective core that is ultimately responsible for the estab-
lishment of a state of almost uniform rotation, on atime shorter than the main-sequence
lifetime of an early-type star. Of course, if the core is not rotating as a solid body or if
some poloidal field lines do not penetrate into the core, the large-scale poloidal mag-
netic field will not necessarily enforce amost uniform rotation throughout the radiative
envelope.

It is appropriate at this juncture to briefly discuss the work of Charbonneau and
MacGregor (1992), who have studied the rotational evolution of an initially non-
rotating radiative envelope, following an impulsive spin-up of the core to a constant
angular velocity. Thiswas accomplished by solving Egs. (4.159) and (4.160) for agiven
axially symmetric vector P, neglecting al fluid motions other than the azimuthal flow

* The concept of isorotation — as opposed to solid-body rotation — has its roots in the work of Ferraro
(1937) and Mestel (1961).



4.8 Discussion 133

associated with the evolving differential rotation (i.e., letting u = 0 in these equations).
For fully core-anchored poloidal field configurations, they found that uniform rotation
is aways enforced on a time very much shorter than the main-sequence lifetime, yet
generally much larger than the core-to-surface Alfvén transit time. However, they also
found that the relatively rapid transition toward uniform rotation depends critically on
al poloida field lines having at least one footpoint anchored on therigidly rotating core.
Thisis well illustrated by their unanchored and partially anchored solutions, which in
many cases either do not attain solid-body rotation or do so onapurely viscoustime scale.

We can only conclude from these three sets of calculations that the extent to which
a weak poloidal magnetic field can produce a state of amost uniform rotation in a
stellar radiative envelope depends critically on assumptions regarding the behavior of
the field lines at the core—envelope interface. To be specific, if the convective core is
not maintained in strict uniform rotation, or if all field lines are not fully anchored into
the core, the configuration does not converge toward a state of almost uniform rotation
in the radiative envelope. Given our almost complete ignorance of the state of motion
in a convective core and of whether al poloidal field lines do penetrate into the core
of an early-type star, there is thus no reason to claim that there always exists an axially
symmetric magnetic field that can enforce almost uniform rotation despite theinexorable
advection of angular momentum by the meridional currents. Such a magnetic field may
or may not exist, depending on the field-line topology and rotation in the convective core.

Of course, as was noted by Moss (1992) and others, if the poloidal magnetic field
is not symmetric about the rotation axis, nonuniform rotation will generate magnetic
torquesthat caninterchange angular momentum between poloidal field lines. Preliminary
calculations have been made when the magnetic axisis perpendicular to therotation axis,
suggesting that the azimuthal magnetic forcesdo indeed establish almost uniformrotation
in the radiative envelope of a perpendicular rotator. In my opinion, no firm conclusion
can be made until independent studies present reliable calculations of a large number
of fully three-dimensional models having arbitrary inclinations. This is another way of
saying that, contrary to an often held belief, the presence of alarge-scale magnetic field
does not make the problem of stellar rotation any simpler.

48 Discussion

Self-gravitation and self-generated radiation are the two main factors that make
most problems of stellar hydrodynamics quite different from those encountered in the
geophysical sciencesand in laboratory hydrodynamics. Self-gravitation actsasthe * con-
tainer” of astar, makingitsouter surfacefreerather than solid. Hence, itisself-gravitation
that alows for the small departures from spherical symmetry — regardless of whether
their ultimate cause isthe centrifugal force, the Lorentz force, or thetidal interaction with
acompanion. Moreover, as explained in this chapter, it isthe transport of self-generated
radiation in anonspherical configuration that causes the slow but inexorable currentsand
concomitant differential rotation in a stellar radiative zone.

In the case of a slowly rotating, early-type star, the large-scale meridiona flow is
guadrupolar in structure, with rising motions at the poles and sinking motions at the
equator. Typically, the time scale of these thermally driven currentsin the bulk of ara-
diative envelopeisequal to the Kelvin—Helmholtz time divided by theratio of centrifugal
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force to gravity at the equator (see Eq. [4.37]), which is known as the Eddington—Sweet
time.

The complexity of the problem derives from the fact that turbulent friction becomes
of paramount importance near the core—envelope interface and the free surface. To be
specific, near each of these boundaries, athin layer exists in which turbulent processes
allow the velocity to make the transition from the value required by the nature of the
boundary to the value that is appropriate to the interior, frictionless solution. Simultane-
oudly, thefrictional force acting on the mean azimuthal flow can be made to balance the
transport of angular momentum by the large-scale meridional flow, therefore ensuring
that all three components of the momentum equation are properly satisfied.

Asfar as hydrodynamicsis concerned, perhaps the most challenging feature of these
motionsisthat they bear no relation whatsoever to thelarge-scal e circul ation encountered
in geophysics.

For example, as was seen in Section 2.5.1, for large-scal e atmospheric motions away
from the Earth’s surface the balance is essentially geostrophic (see Eg. [2.79]). On the
contrary, onereadily seesthat Eq. (4.57) definesthe bal ance between the turbul ent viscous
force acting on the mean azimuthal motion and the inexorable transport of angular mo-
mentum by the thermally driven currents. When written in arotating frame of reference,
this equation merely states that the Coriolis force acting on the meridional circulation
bal ances the azimuthal viscousforce. In other words, the concept of geostrophy does not
apply to the thermally driven currentsin a nonspherical stellar radiative envelope.

A comparison between the results obtained in Sections 2.5.2 and 4.3.1 also shows that
the boundary layersin a stellar radiative envel ope are definitely not of the Ekman type.
To be specific, because the meridional flow isessentially caused by the nonspherical part
of thetemperaturefield, these boundary layersare of the mixed thermo-viscoustype (see
Eq. [4.60]). That isto say, whereas turbulent friction plays a dominant role in the energy
eguation, the mechanical balance is mainly between the pressure-gradient force and the
effective gravity; the viscous force is very small in the equations of maotion themselves.
These boundary layersarealso of asingular nature becauseit is not possibleto obtain the
boundary-layer solutions by merely adding thermo-viscous corrections to the interior,
frictionless solution (see Egs. [4.71], [4.76], and [4.100]). To the best of my knowledge,
thereis no equivalent in any other field.

Admittedly, in Section 4.3 we have made use of steady state models to represent
the largest scale of motion in a stellar radiative envelope, while applying parametric
expressions to describe the effects of all smaller scales. These solutions are basically
very similar tothelinear and nonlinear solutionsthat were obtained for oceanic boundary
currents: Bryan's nonlinear solution smoothly reduces to Munk’s linear solution as the
eddy viscosity is gradually increased (see Section 2.6.3). More recently, because it has
been established that mid-ocean eddies (~ 50 km) are prevalent, their model s have been
superseded by high-resolution models that include this eddy field within the large-scale
oceanic circulation. In principle, a similar improvement could be made in the case of a
stellar radiative zone, taking into account the smaller scales of motion. Unfortunately,
very littleisknown about theintensity, length and time scal es, and the spatial distribution
of thesetransient motions. At thiswriting, it istherefore quite difficult to resolve the eddy
field and, at the sametime, thelarge-scaleflow in the radiative envelope of arotating star.
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Solar rotation

51 Introduction

Until recently, only surface measurements of the solar rotation rate were avail-
able. Since the mid-1980s, with the advent of helioseismology, much has been learned
about the interna rotation of the Sun through the inversion of p-mode frequency split-
tings. Aswas noted in Section 1.2.2, it now appears that the observed surface pattern of
differential rotation with latitude prevails throughout most of the solar convection zone,
with eguatorial regions moving faster than higher latitudes. In contrast, the underlying
radiative core appearsto rotate nearly uniformly downtor ~ 0.1-0.2R,, at aratethat is
intermediate between the polar and equatorial rates of the photosphere. Within the cen-
tral regionr < 0.2R,, some measurements suggest that the angular velocity increases
with depth, implying rotation at a rate between 2 and 4 times that of the surface; other
measurements strongly suggest, however, that the solar inner core rotates rigidly down
to the center.

The problem presented by the observed solar differential rotation isone of long stand-
ing and many effortshave been madeto formulate aplausibleflow pattern that reproduces
the large-scale motions in the solar atmosphere. Following Lebedinski’s (1941) pioneer-
ing work, many theories have been proposed to explain how the equatorial acceleration
originated and is maintained in the solar convection zone. Broadly speaking, they can be
divided into two classes, depending on the mechanism proposed to produce and maintain
the equatorial acceleration: (i) the interaction of rotation with local turbulent convection
and (i) theinteraction of rotation with global turbulent convection in arotating spherical
shell. Till the late 1980s, however, the most detailed models invariably predicted rota
tion profiles that were constant on cylinders concentric to the rotation axis. Obviously,
these solutions are at variance with the current observations, which suggest an angular
velocity that is constant on radii in the convection zone, at least at mid-latitudes. In
Section 5.2 we shall explain how the disparities between the rotation profiles deduced
from the helioseismol ogical data and what has been predicted by these early models can
be resolved.

Now, a number of recent observations has shown that solar-type stars undergo rota-
tional deceleration as they slowly evolve on the main sequence (see Eq. [1.7]). As we
shall seein Section 7.2, this spin-down is presumably the consequence of angular mo-
mentum loss via magnetically channeled stellar winds and/or sporadic mass gjections
emanating from the surface layers. The central question is how this inexorable braking
of the outer convection zone will affect the rotational state of the radiative interior. In
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the case of the Sun, the absence of marked differential rotation in the outer layers of
its radiative core implies that angular momentum redistribution within that region must
be very efficient indeed. Within the framework of the eddy—mean flow interaction pre-
sented in Section 3.6, three distinct mechanisms for angular momentum redistribution
might be operative: (i) large-scale meridional currents, (ii) turbulent friction acting on
the differential rotation, and (iii) large-scale magnetic fields. In Section 5.3 we discuss
thetime-dependent meridional flow inthe Sun’sradiativeinterior, taking into account the
development with age of a gradient of mean molecular weight in the hydrogen-burning
core. Section 5.4 presents quantitative studies of the rotational evolution of the Sun’'s
radiative interior, with angular momentum being removed from the convective envel ope
to simulate the effects of the solar wind and/or episodic mass jections.

5.2 Differential rotation in the convection zone

Theinteraction of rotation with convection appears to be the most likely mech-
anism for the generation of the observed solar differential rotation. Two different ap-
proaches have been proposed to explain the maintenance of differentia rotation and
concomitant meridional circulation. One class of models is based on the appealing as-
sumption that the variations in angular vel ocity arise mainly from the nonlinear interac-
tion of rotation withthelargest scal esof convection, when aradial superadiabatic gradient
of temperature prevails. These global-convection models resolve numerically as many
of the large scales as possible in a rotating spherical shell and parameterize, via eddy
diffusivities, the transport of momentum and heat by all the smaller unresolved scales.
In the other class of models, the role of global convection is assumed to be unimportant.
What isessential inthese mean-field model sisthe effect of thelarge-scal e azimuthal flow
on the local convective motions that are not greatly influenced by the Sun’s spherical
shape. As usual, following closely the method presented in Section 3.6, the role of this
turbulent convection is parameterized by the use of eddy viscosities, which are speci-
fied functions of rotation. Unavoidably, this mathematical description of the interaction
between turbulent convection and rotation depends on adjustable parameters.

521 Mean-field models

In this approach the large-scale motions in the solar convection zone are de-
scribed by means of stationary, axially symmetric flow patterns, with turbulent convec-
tion giving rise to Reynolds stresses and eddy viscosity coefficients. In spherical polar
coordinates (r, 6, ¢), the mean velocity v is of the form

V=u+ Qrsnfl,, (5.2)

where u is the two-dimensional meridional velocity. Because we have assumed axial
symmetry for the mean flow, mass conservation implies that

div(pu) = 0, (5.2

where p isthe mean density.
For mean steady motions, the ¢ component of Eq. (3.123) becomes

sing 9 1 0
u-grad(Qw?) = —- —(r® —
pu - grad(Qe ©) (Ur¢)+5m989

T ar (Sn? 6 0y,,), (5.3)
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where w =r sinf. This equation merely expresses the fact that turbulent friction act-
ing on the differential rotation can be made to balance the transport of specific angular
momentum, Qw2, by the meridional flow. If the influence of rotation and gravity was
negligible, the turbulent transport of momentum would occur downward along the gra-
dient of angular velocity, so that the Reynolds stresses oy, and oy, would be proportional
to a2/ar and 92/96, respectively. However, because anisotropy prevailsin arotating
fluid embedded in a gravitational field, the stresses oy, and oy, contain both diffusive
and nondiffusive parts. Following Section 3.6, one has

0 . .
Or“’:MVraT sinf + Ay 2sné (5.9
and
0 .
Ogy = Sy 20 sin@ + Ay 2 coso, (5.5)

where s = up/ny is the anisotropy parameter. It is immediately apparent that the
nondiffusive parts, which are proportional to the mean rotation rate, maintain rather
than smooth out differential rotation in the solar convection zone. They depend on two
independent parameters, Ay and i, which define the anisotropies in the vertical (i.e.,
along the effective gravity) and horizontal directions. Appropriate expansions for these
parameters are

Ay = }\.VQ(I') + AVl(r)SinZG + .- (56)
and
AH =)\.H1(r)9.n29+"'. (57)

Note that the parameter A, which is related to the anisotropy of turbulence in planes
perpendicular to the effective gravity, vanishes at the poles. In principle, the radial func-
tions Avo, Av1, and A1 may be derived from the equations governing the fluctuating part
of the instantaneous velocity field (e.g., Rudiger 1989).

Neglecting the inertial terms u- grad u, one can aso rewrite Egs. (3.125) and (3.126)
for mean steady motionsin the compact form

1 1
gradV + = grad p — Q*w 1, = = Fy(u), (5.8)
P P
where F(u) isthe poloidal part of the turbulent viscous force per unit volume acting on
the meridional flow (see Eq. [3.123]) and 1, istheradial unit vector in cylindrical polar
coordinates (o, ¢, z). Taking the curl of Eq. (5.8), one obtains

1 ]
P grad p x grad p — - (Q*=) 1, = R(u), (5.9)

where, for shortness, R(u) is the curl of the viscous force. If R(u) makes a negligible
contribution to this equation, one readily sees that any barotropic model for the solar
convection zone has the angular velocity constant on cylinders aligned with the rotation
axis; that is, p = p(p) impliesthat Q = Q(w), and conversely. This result is a mere
consequence of the Poincaré-Wavretheorem (see Section 3.2.1). It isanimportant resullt,
however, because we know that the angular velocity is not constant on cylinders within
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the solar convection zone. Since detailed models for the Sun indicate that R(u) isindeed
negligible in the bulk of that zone, it follows that strict barotropy is most certainly an
inadequate approximation for the solar rotation problem.

In Section 3.3.2 we have shown that the anisotropy of turbulent convection due to the
preferred direction of gravity can produce differential rotation and meridional circulation
in the solar convection zone. Since the early 1970s, a variety of models have been
calculated, taking into account in an approximate manner the convective energy transport.
To complete Egs. (5.2), (5.3), and (5.8) we thus let

pTu-grad S+ div(F + F¢) = 0. (5.10)

The specific entropy is given by

S=cylog Tp + constant, (5.11)
p°3
where ¢y is the specific heat at constant volume. The radiative flux is given by the
standard expression

4ac T3
F=-220" gadT (5.12)
3 «kp
(see Egs. [3.5] and [3.6]), and the convective flux is taken to be of the form
Fe=—kTgrad$, (5.13)

where k¢(r) is the turbulent heat transport coefficient. One also has
p= E oT, (5.14)
o

where 1 is the mean molecular weight. As usual, this set of equations must be solved
with appropriate boundary conditions at the base and at the top of the rotating spherical
shell.

Baroclinic models based on the concept of anisotropic eddy viscosity exhibit angular
velocity profiles that are not constant on cylinders. They also produce a slow merid-
ional flow, with typical surface velocities of the order of 1 m s~1. Moreover, all these
baroclinic models have very small (=~ 1 K) pole—equator temperature differences. Un-
fortunately, in order to reproduce the observed equatorial acceleration, the anisotropy
parameter s (= un/pmy) must be larger than one. Thisis amost surprising result since
onhe expects turbulent convection to provide more transport in the radial than in the hori-
zontal directions. Thisinadequacy of these solutions strongly suggeststhat L ebedinski’s
(1941) anisotropic eddy viscosity might not bethe ultimate cause of the Sun’sdifferential
rotation.

Aswas originally pointed out by Weiss (1965), the solar differential rotation could be
generated by meridional currents driven by a pole—equator temperature difference. This
approach isbased on thefact that rotation hasasmall but significant influence upon turbu-
lent convection, thus resulting in aconvective heat transport that depends on heliocentric
latitude. Thisgivesriseto aninexorable meridional flow that transports angular momen-
tum toward the equator and thus sustainsthedifferential rotation. Following thisidea, sev-
eral authors have developed models of differentially rotating spherical shells—assuming
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a latitude-dependent heat transport coefficient «.(r, 8) and an isotropic eddy viscosity.
Many of these models succeed in maintaining angular velocity profiles that are not con-
stant on cylinders. However, some of them have meridional velocities at the surface
that are too large, while others have pole—equator temperature differences that are too
large.

More recently, Kitchatinov and Rudiger (1995) have pointed out that the conflict
between mean-field model sand solar observations can beresolved by taking into account
an anisotropic eddy viscosity as well as an anisotropic turbulent heat transport. Thus,
instead of letting k. = k¢(r) or k. = «c(r, 0) in Eq. (5.13), they prescribe that the
convective heat flux has the components, in Cartesian coordinates,

3
aT aT
o e S [ 21 - (21
“ Jz:; Y 8Xj 8X] ad

where (0T /9dX;)a is the adiabatic gradient of mean temperature and x;; is atensor de-
scribing the turbulent heat transport (i = 1, 2, 3). Aswas done for the eddy viscosities
and related coefficients, the components of thistensor can be obtained from the equations
governing the fluctuating quantities (e.g., Rudiger 1989). Fortunately, these models in-
volve only one adjustable parameter, which is the ratio of the mixing length to the
pressure-scale height. Figure 5.1 illustrates one particular solution. Note that the angular
velocity distribution closely fits the helioseismological data reported in Section 1.2.2,
with the rotation becoming virtually rigid below the convection zone. This model has
asmall (=5 K) pole—equator temperature difference, which is consistent with the ob-
servations. However, it also predicts a slow equatorward meridional motion on the free
surface, which is not observed in the Doppler measurements (see Section 1.2.1). None-
theless, thisis the first mean-field model that satisfies aimost all the observational con-
straints. Given thisresult, it thus seems highly probable that anisotropy plays akey role
in the solar rotation problem, since cal culationsinvol ving isotropic transport coefficients
awaysyield angular velocities that are constant on cylinders in the models. This effect
isillustrated in the bottom part of Figure 5.2, which depicts a model corresponding to
an isotropic thermal conductivity.

: (5.15)

5.2.2  Global-convection models

In the global-convection theories of the Sun's differential rotation the largest
convective cells are influenced by rotation, leading to a continuous redistribution of
angular momentum, which we observe as a differential rotation. Actually, it isthe com-
bined effect of the spherical geometry and the Coriolis force acting on these large-scale
convective motions that generates variations with latitude and radius of the angular ve-
locity. Extensive numerical calculations have been made, independently, by Gilman and
Glatzmaier intheearly 1980s. Their models solvethe nonlinear, three-dimensional, time-
dependent equations for thermal convection in arotating spherical shell of compressible
fluid. Both sets of models are based on the assumption that the convective velocities are
small compared to thelocal sound speed, thusfiltering out the pressure waves. Moreover,
because it is not possible to resolve all scales of motion, from the largest to the small-
est, it is aso assumed that the small unresolved scales give rise to viscous and thermal
diffusivities, which are specified functions of the coordinates.
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Although the numerical techniques employed in these models are quite different, the
results obtained by Gilman and Glatzmaier are qualitatively the same. In particular, itis
found that their simulated global convection in a rotating spherical shell tends to take
the form of north—south (banana) rolls, the tilting of which yields Reynolds stresses to
drive the zonal flows that maintain differential rotation. Unfortunately, in these early
models the simulated angular velocity in the convection zone is constant on cylinders
coaxia with therotation axis, which isnot in agreement with the helioseismological data
reported in Section 1.2.2.
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As was pointed out by Glatzmaier and Toomre (1995), however, these pioneering
studies of global convection in arotating spherical shell have been restricted by compu-
tational resourcesto deal with nearly laminar regimesfor thelargest scalesof convection.
One plausible explanation for the disparities between theory and observation is that the
numerical resolution of these global-convection modelsis insufficient to attain the fully
turbulent regimes that are observed in the solar convection zone. Indeed, various studies
have shown that the transport properties of turbulent convection can be very different
from those of laminar convection (e.g., Brummell, Hurlburt, and Toomre 1998). Ac-
cordingly, extension of the models into fully turbulent regimes might provide angular
velocity profiles that are in agreement with the observationa data. Three-dimensional
numerical simulationsof fully turbulent convectionin arotating spherical shell havebeen
produced. Advancesin computation permit these simulationsto have aspatial resolution
about tenfold greater in each dimension than those of the earlier studies. In particular, it
isfound that the north—south roll-like convective cells have broken up with the increased
nonlinearity; this orderly convection is replaced by convection dominated by intermit-
tent plumes of matter, with the downflow motions stronger in amplitude than the upflow
motions. Although these extensions to fully turbulent regimes are quite promising, it is
not yet clear at thiswriting to what extent the new global-convection models adequately
describe the observed rotation profile in the solar convective zone.
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53 Meridional circulation in theradiative core

Because the conditionsin the radiative zone of arotating star are not spherically
symmetric, the transport of radiation will in general tend to heat the polar and equatorial
regions unequally, thus causing a large-scale flow of matter in planes passing through
the rotation axis. This problem was aready discussed in Sections 4.3 and 4.4, where we
obtai ned consi stent sol utionsfor the meridional flow and concomitant differential rotation
intheradiative envel ope of anonmagnetic, early-type star. Thissectionisconcerned with
the large-scale circulation generated by the small departures from spherical symmetry
in the Sun’s radiative core. Not unexpectedly, the development with age of a gradient
of mean molecular weight 1 in the hydrogen-burning core makes this problem much
more intricate since, then, any model that possesses full internal consistency necessarily
becomes time dependent in its mean properties. To be specific, starting from an initially
homogeneous radiative core in an unevolved solar model, we shall discuss the effects
of agrowing u-gradient on the meridional flow —making allowance for hydrogen-core
burning asthe model |eisurely evolves away from the zero-age main sequence. However,
since we are chiefly interested in the interaction between the u-distribution and the
rotationally driven currents, we shall “turn off” the solar-wind torque that slows down
the outer convective envelope.

In an inertial frame of reference, the large-scale velocity field v is the combination
of arotation and a meridional flow, as defined in Eq. (5.1). To complete the continuity
equation (Eq. [5.2]) and the momentum equation (Eqg. [3.123]) we must add the energy
equation,

pTu-gradS = penyc + div(x grad T), (5.16)
and Poisson’s equation,
V2V = 47 Gp, (5.17)

where ey iS the rate of energy released by the thermonuclear reactions, x is the coef-
ficient of radiative conductivity, and G is the constant of gravitation. Let us rewrite the
equation of state in the form

P_rL (5.18)

P 0
where R is the universal gas constant. Neglecting diffusion atogether, we must also
prescribe that
e
ot
where Sy istherate of variation of mean molecular weight caused by nuclear burning.
Following current practice, we shall expand about hydrostatic equilibrium in powers
of the small parameter

+ u-grad i = Snye, (5.19)

.- QaR®
GM '’
where ©q is the (constant) overall rotation rate. Hence, we have

(5.20)

U= €Uy + €’Up+ - (5.21)
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and
Q = Qo(wo + ewy + 2wy + - - -). (5.22)

Asexplained in Section 4.3.1, the truncated expansion (5.22) is asymptotically conver-
gent provided onehasty < tes, wherety istheviscoustimeand tgsisthecirculationtime
(see Egs. [4.37] and [4.54]). Since we are neglecting the continuous removal of angular
momentum from the surface convectivelayers, we shall assume strict solid-body rotation
to O(e%?), that is, we shall let wo = 1in Eq. (5.22).

Correct to O(¢), one can write

p = po+€p1 (5.23)

and similar expansions for the pressure and the gravitational potential. Now, because we
want to recover a spherically symmetric model in the limit ¢ — 0, Eq. (5.18) implies
that, correct to O(e), one must write

= jto + €M1 (5.24)

and asimilar expansion for the temperature. By assumption, we have 1o = uo(r, t) and
To = To(r, t) in the spherical model corresponding to e = 0. Since we want to obtain a
solution that possesses full internal consistency, it follows at once from Egs. (5.19) and
(5.21) that the function 1o must satisfy the following equation:

70 2
o1 So, (5.25)

where Sy(r, t) is the (prescribed) rate of variation of the mean molecular weight in the
reference spherical model. Here we shall assume that, in spherical polar coordinates (r,
0, ¢), oneinitialy has

w(r,6,t =0) = uo(r, 0) = constant, (5.26)

where the values of o are then allowed to change in time in a manner that depends on
the given function Sy and on Eg. (5.25).

In Section 4.2.1 we have shown that the functions p;, p;, and V; can be obtained
from Poisson’s equation and the poloidal part of the momentum equation, which do not
depend on 1 and T;. In particular, the continuity of gravity acrossthe outer nonspherical
surface implies that

p1 = p1o(r, t) + p12(r, t) Pa(coso) (5.27)

and similar expansions for p; and V;, where P,(cos6) is the Legendre polynomia of
degree two. By virtue of Eqg. (5.18), however, the expansions for ; and T, contain,
in principle, an infinite number of additive terms of the form 1ty 2 (r, t) Pa(cosd) and
Ty ok(r, t)Px(cosO), withk = 0,1, 2, .... If so, then, the radial component uy, should
also contain an infinite number of additive terms of the form u, x(r, t) Px(cosé), with
k=0,12,.... Obviously, these terms essentially depend on theinitial w-distribution
in the nonspherical model.

Fortunately, by making use of Eq. (5.26), which is a most plausible initial condition,
one can easily show that all terms belongingtok = 2, 3, 4, ... must identically vanish
from 1, Ti, and uy,. Indeed, since py = prok = 0 when k > 2, it follows from
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EQ. (5.18) that one has Ty / To = 1.2/ to (= ax, say) for these values of k. Hence,
for each k (= 2) Eq. (5.16) implies that u; » is alinear and homogeneous function of
ay and its derivatives. Next, linearizing Eq. (5.19) and eliminating u, », one obtains a
homogeneous differential equation for each ay, when k > 2. Now, it readily follows
from Eq. (5.26) that ax(r, 0) = 0 since, by assumption, our initial model is chemically
homogeneous. One can also let ax (0, t) = ax(R,,t) = Ofor al t (= 0), where R, is
the radius of the sphere outside which (at the prescribed level of numerical accuracy)
nuclear burning and the .-gradient may be neglected. Sincefor each k (> 2) thefunction
ay is the solution of a linear and homogeneous differential equation, these initial and
homogeneous boundary conditionsimply that one has ax(r, t) = Ofor al t (> 0), when
k=223,4,....
In other words, starting from an initially homogeneous core, we can rightfully write

p1 = pao(r, t) + pao(r, t) Px(cos6) (5.28)
and asimilar expansion for T;. The corresponding meridional velocity is, therefore,
_ . dPy(cos0)
u; = u(r, t)Px(cosh)l, —ru(r,t)sing “dcosd 1. (5.29)

Equation (5.2) provides the link between the functions u and v. One finds that

11 d, ,
=& oz ar TV (5.30)
where we have omitted the subscript “0” from the density in the spherical model.
Correct to O(e¥?), the back reaction of the first-order part of the meridional flow on
the constant overall rotation is

dP,(cosh)

dPs(cosh)
d cosé ’

w1 = pulr, 1) d coso

+ Ba(r, t) (5.3
The functions 8; and B3 satisfy two equations that are quite similar to Egs. (4.82) and
(4.83), with 98, /0t and 983/9t being retained since u and v depend on time.

Now, it isimmediately apparent that the functions p, , and p; » can be obtained from
Egs. (4.24) and (4.25). By virtue of Eq. (5.18), however, Eq. (4.27) must be replaced by

Tio2 (/0/ P >
e Y (5.32)
T PP
where the function h can be obtained from Eq. (4.23). For shortness, we have also let
a= 12 (5.33)
"

As usual, we have omitted the subscript “0” from the functions in the spherical model
corresponding to € = 0. A prime denotes aderivative with respect to theradial variabler.

I nserting next these sol utionsinto the energy equation, onefindsthat theradial function
u can be written in the form

u = ug(r, t) + ugfa(r, t),r, t], (5.34)
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thus indicating that the large-scale meridiona flow is the sum of “Q-currents’ and “ -
currents’. After collecting and rearranging terms, we obtain

2 n+1
G n_3 Z(aoh + a3h), (5.35)

where the functions ao(r, t) and «4(r, t) depend on the reference spherical model, and
n is the effective polytropic index (see Eq. [4.33]). The function | is the net amount of
energy crossing the spherical surface of radiusr per second, that is,

| = —4mr2yT'. (5.36)

Parenthetically note that Eq. (5.35) merely reduces to Sweet’s function (4.32) in the
outer parts of the Sun’sradiative core, where one hasl = L, ey, = 0, and = constant.
Similarly, one can show that the function uz has the form
I n+1 T a
47Gmp n—3/2 T’ ’
where D"a is a second-order differential operator acting on the function a, that is,
82
D'a= a2 + Ao + Aja, (5.38)
wherethefunctions Ag(r, t) and Aq(r, t) depend on the reference spherical model. Equa-

tions (5.37) and (5.38) were originally obtained by Mestel (1953).
Making use of Egs. (5.19) and (5.25), one also has

Ug = ——

Ur=— (5.37)

d ,_ _
3t (na) + u'u = Sy, (5.39)

where S, depends on the choice that is made for the function Syc. Substituting for u
in accordance with Eq. (5.34), one can cal culate the function a from Eq. (5.39), whichis
parabolic in structure. Thence, the radial function u can be obtained from Egs. (5.34)—
(5.38).

Now, one readily seesthat n — 3/2 near the top of the radiative core, thusimplying
the existence of a mathematical singularity in our frictionless solution. As explained
in Section 4.3.1, this major inadequacy can be resolved by making use of the thermo-
viscous boundary-layer solution depicted in Figure 4.1, letting x = (R, — r)/dc in
Eqg. (4.70) since we are now approaching the singularity from below the inner boundary.
This modification is not essential for the subsequent discussion, however, because the
interaction between the p-distribution and the rotationally driven currents takes placein
the bulk of the Sun’s radiative core, away from the core—envel ope interface.

Numerical calculations have been performed by making use of an evolutionary se-
guence of a standard 1 M, model. Figures 5.3 and 5.4 illustrate at selected instants
the functions u and a in the chemically homogeneous part of the Sun’s radiative core
(see Egs. [5.34] and [5.35]). It isworth noting that the function a always remains much
smaller than unity. To order ¢, it is thus correct to make use of the truncated expansion
(5.24) and the linearized equation (5.39).

It isimmediately apparent from Figure 5.3 that, almost from the start, the p.-currents
oppose the Q-currents — the large-scale circulatory motions die out as the p-gradient
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Solar rotation

Rotation Axis

Equatorial Plane

Fig. 5.5. Streamlines of meridional circulation in the inner core, att ~ 0.5 Gyr (curve 1 of
Figure 5.3). The variabler is measured in units of R,. Source (revised): Tassoul, M., and
Tassoul, J. L., Astrophys. J., 279, 384, 1984.

spreads throughout the Sun’s radiative core. Within the numerical accuracy of these
first-order calculations, thus, a u-gradient virtualy kills off meridional streaming, so
that no substantial advection of matter by circulation may take place between the inner
(inhomogeneous) and outer (homogeneous) regionsin the radiative core. Figures 5.5 and
5.6 illustrate the virtual absence of large-scale meridional currentsin the central region
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Fig. 5.6. Same as Figure 5.5, but at t ~ 5 Gyr (curve 6 of Figure 5.3). Note the virtual
disappearance of meridional currentsinthedomainr /R, < 0.40. Source (revised): Tassoul,
M., and Tassoul, J. L., Astrophys. J., 279, 384, 1984.
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of an evolved solar model. In the chemically homogeneous part of the radiative core,
however, the typical time scale of the rotationally driven currents remains of the order of
the Eddington—Sweet time, tes = R/e|ug| ~ (GM?/RL)/e (see Eq. [4.37]). Typically,
because € ~ 10~* and |ug| ~ 10~° cm s~ in the outer part of the Sun’s radiative core,
one finds that tes = 102 yr, which is much larger than the Sun’s age.

Now, aswas pointed out at the end of Section 4.3.1, ew, describesthe back reaction of
the meridional flow on the basic rotation rate wq (see Eq. [5.22]). It isa simple matter to
show that onehase|wy/wo| & €|puqr /v | ~ tv/tes, where wy isthevertical coefficient
of eddy viscosity and ty isthe viscous time scale. If we let juy = 10N, Where pup, is
the microscopic viscosity and N is a positive number, detailed numerical calculations
indicatethat one has e|w; /wo| ~ €10*~N. Sincee ~ 10~* inthe Sun, onereadily seesthat
amoderate amount of turbulence (N ~ 2-3, say) is amply sufficient to ensure that, to
afirst approximation, the viscous friction acting on the mean azimuthal flow dominates
over the advection of specific angular momentum by the rotationally driven currents.

54 Spin-down of the solar interior

Aswe shall see more closely in Section 7.2, the Sun and solar-type stars sustain
a continuous loss of mass as a result of magnetized stellar winds and/or episodic mass
€jections emanating from their outer convection zones. Therotational deceleration of the
convective envelope that results from the application of this torque leads to the creation
of internal stresses that act to redistribute angular momentum within the radiative core.
Yet, as was pointed out in Section 1.2.2, analyses of helioseismological data strongly
suggest that from the base of the convection zone down tor ~ 0.1-0.2R, the Sun’'s
interior isrotating at arate closeto that of the surface equatorial belt, whiletheinner core
is perhaps rotating more rapidly than the chemically homogeneous parts of the radiative
interior. Because angular momentum is continuously transferred away from the sur-
face convection zone to outer space, it follows at once that there must exist a very
effective mechanism of angular momentum transport inside the Sun, thus keeping the
bulk of the radiative interior rotating approximately uniformly in spite of the inexorable
solar-wind torque.

Broadly speaking, if we describe the mean velocity field as the sum of an overall
rotation and a large-scale meridional flow, three mechanisms can redistribute angular
momentum within the Sun’s radiative interior: (i) the advection of specific angular mo-
mentum by themeridional currents, (ii) thediffusion of momentum arising from turbul ent
friction acting on the differential rotation, and (iii) theinteraction with alarge-scale mag-
netic field. Specifically, making use of Eq. (5.1), one can write the ¢ component of the
momentum equation in the form

d
0 E(sz) + pu - grad(Qw?)
1
= div(pvo?grad Q) + ym H, - grad(eo H,), (5.40)
T
where =r siné and v isthekinematic viscosity (see Eq. [4.146]). The vectorsH , and
H, 1, are, respectively, the poloidal and toroidal parts of the magnetic field.

In Section 5.3 we have shown that the typical speed |u| of the thermally driven merid-
ional currentsisso slow that, to afirst approximation, the advection of angular momentum
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by these currents can be neglected in Eqg. (5.40). In fact, two categories of models have
been proposed. In one of them, angular momentum redistribution istreated as aturbulent
diffusion process, with advection by the meridional flow and magnetic fields being ne-
glected altogether. The other group of modelsisbased on theideathat this redistribution
is dominated by magnetic stresses arising from the shearing of a preexisting poloidal
magnetic field. It is to these two distinct approaches that we now turn.

5.4.1 Rotation and turbulent diffusion
It has long been recognized that standard evolution theory is quite successful in
explaining the main properties of stars. Yet, as more data become available, the limits of
the standard spherical models have become more apparent. For example, the observed
solar lithium abundanceisafactor of 200 smaller than that found in meteorites, indicating
that some downward particle transport has occurred in the outer parts of the Sun’sradia-
tive core. As was noted by Endal and Sofia (1981), rotation might be the ultimate cause
of this slow mixing process, since rotationally induced instabilities will generate awide
spectrum of small-scale motionsthat produceinternal mixing of certain chemical species.
Following these authors, the mechanisms that redistribute angular momentum can be
divided into two categories, dynamical and thermal, according to the time scales asso-
ciated with the triggering mechanisms. Hence, whenever the shear-flow and symmetric
instabilities arise in their models, the angular velocity gradient is instantaneously re-
adjusted to a state of marginal stability by radial exchange of angular momentum (see
Egs. [3.93] and [3.101]).* However, because of the longer time scales for the thermal
instabilities, the overall redistribution of angular momentum and chemical composition
are computed using the coupled diffusion equations:

a2 d 082
r*—=_—(pr*D— |, 5.41
R (’O 8r> (541)
for the angular velocity (r, t), and
8Xi d 8Xi
r2—=1f—(pr’dD=—1, 5.42
PI ot ar <p or > (542)

for the mass fraction X (r, t) of chemical speciesi. The function D, which is sensitive
to both angular velocity and chemical composition gradients, is the coefficient of eddy
viscosity due to the rotationally induced thermal instabilities. (It was denoted by v in
Eq. [5.40].) Note that these equations may be derived at once from Egs. (3.133) and
(3.134), assuming that the ratio of eddy diffusivity to eddy viscosity is equal to the
constant f. As usual, the eddy coefficient D is taken as the product of some typical
length L. and some typical speed V., which is assumed to be the sum of velocities
generated by the Eddington—Sweet currents and some thermal instabilities. Aswas noted
in Section 3.6, however, such a formulation is at best phenomenological because it is
not yet known how to model the variations of the function D with any confidence. In
fact, because the eddy coefficients cannot be calculated from first principles alone, their

* Parenthetically note that the ever-present barotropic and baroclinic instabilities discussed in Sec-
tion 3.4.3 are not taken into account in these models.
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overall magnitude can be determined only by adjusting the constant f and the empirical
formulafor the function D to the observational constraints.

Several evolutionary modelsthat include the combined effects of rotationally induced
mixing and angular momentum redistributionin the Sun’ sradiative core have been cal cu-
lated by Pinsonneault, Kawal er, Sofia, and Demarque (1989). Following current practice,
the effects of rotation weretreated as small distortions superimposed on spherically sym-
metric models (see Section 6.2). For some reason, however, Eq. (5.41) was replaced by

I 0Q d I a2
Z_ = 2_p— 4

PIM ot ar<pr|v| 8r)’ (5.43)
where | is the moment of inertiaand M is the mass of the Sun. In some calculations,
Eq. (5.42) was dso modified to include the combined effects of rotationally induced
mixing and microscopic diffusion. Following Chaboyer, Demarque, and Pinsonneault
(1995), we thus have

r238—>t<l = ail’ |:pr2mem,1Xi +pr2(mem,2+ f D)aa—>r<|:| ) (5.44)
where D, ; and Dy, , are derived from the microscopic diffusion coefficients and mul-
tiplied by the adjustable parameter f.,. Asusual, these equations must be supplemented
by appropriate initial and boundary conditions. In particular, one must prescribe some
general expression for the continuous |l oss of angular momentum due to the magnetically
coupled solar wind.

The evolutionary models have been calibrated to match the usual global properties of
the present-day Sun, aswell asits observed rotation rate. Numerical calculationsindicate
that thevalueof f isapproximately 0.033. Thisresultisin perfect agreement with thefact
that turbulent diffusion of matter isamuch less effective process than turbulent diffusion
of momentum in astably stratified system (see Section 3.6). Note al so that those models
that include rotation and microscopic diffusion have convection zone depths of 0.710R,,,
providing a good match to the observed depth.

As far as rotation is concerned, the models have an oblateness in agreement with
the observed upper limit. This is a consequence of a general feature of these models,
namely, that they al rotate slowly in the outer layers where the contribution to oblateness
is greatest. Angular momentum transport in the models is also remarkably efficient in
smoothing out differential rotation in the radiative core. The possible range of rotation
profiles for models with angular momentum transport is compared to a model with the
same surface rotation velocity but without transport in Figure 5.7. Note that the rotation
curveforr > 0.6R, isamost flat in the models. Inside the radiusr = 0.6R,, however,
thedegree of differential rotation depends on the choice of parameters. Now, aswasnoted
in Section 1.2.2, inversion of the available p-mode oscillation data suggests a nearly flat
rotation curve downtor ~ 0.1-0.2R,. Accordingly, it appears most likely that a more
efficient angular momentum transport mechanism is present in the Sun — one that is not
present in the models devel oped by the Yale group.

Atthisjunctureitisappropriateto mentionthework of Schatzman (1996), who pointed
out that gravity waves generated by turbulent stressesin the solar convection zone might
also contribute to the ailmost uniform rotation of the Sun’s radiative interior. Original
calculations by Kumar and Quataert (1997) and others show that thereis enough angular
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Fig. 5.7. Angular velocity as a function of radius in the present-day Sun for three distinct
models of angular momentum transport. (w is the angular velocity.) The solid line is the
rotation curve the present-day Sun would have if it started with an average initial angular
momentum and evolved to the age of the Sun without any transport of angular momentum
from the radiative interior to the surface convection zone. The long-dashed line is a model
with very inefficient angular momentum transport. The short-dashed line is a model with
very efficient angular momentum transport. Source: Pinsonneault, M. H., Kawaler, S. D.,
Sofia, S., and Demarque, P, Astrophys. J., 338, 424, 1989.

momentum in gravity waves generated by convection that they can forcethe outer parts of
the radiative interior into corotation with the base of the convection zonein about 107 yr.
Even though these results are dependent on the description chosen for the turbulent
motions in the solar convection zone, they clearly show that turbulent diffusion due to
random gravity wavesis aphysical process that cannot be ignored.

5.4.2 Rotation and magnetic fields

In Section 5.4.1, the models for the evolution of theinternal solar rotation have
been computed assuming angular momentum transport solely by hydrodynamica means.
In this section we shall investigate the rotational deceleration of asolar model containing
a large-scale poloidal magnetic field in its radiative core, in response to the torque
applied to it by amagnetically coupled wind. Thefirst quantitative study of this problem
was made by Charbonneau and MacGregor (1992). Their investigation was conducted
using anumerical model that includes treatment of both convection zone braking by the
magnetized solar wind and internal angular momentum redistribution by magnetic and
Viscous stresses.
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For the sake of simplicity, we shall neglect the meridional velocity u in Eq. (5.40), and
we shall assume strict axial symmetry for the large-scale magnetic field. Equation (5.40)
then becomes

1
0 %(sz) = div(pv2grad Q) + y Hp - grad(w H,), (5.45)
TT

wherethe poloidal magneticfield H ,(r, 0) isassumed to be time independent and known
apriori. With these simplifications, the spin-down problem reduces to solving Eg. (5.45)
and the ¢ component of the induction equation,

oH 1

where 8 is the magnetic diffusivity (see EqQ. [4.148]). Both v and 8 are assumed to
be constant throughout the radiative core, with the adopted value for v being small
enough that viscous transport of angular momentum is negligible compared to magnetic
transport. Such a formulation is self-consistent because it takes into account (i) the
generation of the toroidal component H,(r, 6, t) by shearing of the poloidal field and
(ii) the back reaction on the angular velocity (r, 6, t) due to the nonvanishing Lorentz
force associated with the time-varying toroidal component of the magnetic field. When
supplemented by some initial and boundary conditions, Egs. (5.45) and (5.46) describe
atwo-dimensional problem for the two unknown functions, (r, 6, t) and H,(r, 0, t),
governed by two coupled, linear, quasi-hyperbolic equations.

A large set of calculations have been performed by Charbonneau and MacGregor
(1993), starting on the zero-age main sequence from a state of solid-body rotation at
50 times the present solar rate and zero toroidal field. They identify two distinct regions
in the interior: a convective envel ope, which they assume to rotate as a solid body at al
times at the rate Qce(t), and an underlying radiative core. The solutions were computed
for four distinct poloida field configurations, as shown in Figure 5.8, and for poloidal
field strengths B, of 0.01, 0.1, 1, and 10 G. Note that the fields D1 and D2 are such
that direct magnetic coupling exists between the convective envelope and the radiative
core, while for the fields D3 and D4 the envelope is magnetically decoupled from the
underlying core.

These spin-down cal culations enabl e usto draw adetailed picture of the magnetic and
rotational evolution of aninternally magnetized solar-type model, whichisacted upon by
thetorqueassociated with amagnetically coupled wind. Theevolution can bedividedinto
threemoreor lessdistinct phases: aninitial phaseof toroidal field buildup, lasting between
afew thousand to afew million years, depending on thetopol ogy and strength of theinter-
nal poloidal field; asecond periodinwhichlarge-scaletoroidal oscillationsset upinthera-
diative core during thefirst phase are damped; and athird period, lasting from age of about
107 yr onward, characterized by a state of dynamical balance between the total stresses
(magnetic plus viscous) at the base of the convective envelope and the wind-induced
surface torque, leading to a quasi-static internal magnetic and rotational evolution.

Thetime evolution of internal differentia rotation is shown in Figure 5.9. The dimen-
sionlessquantity A2 isconstructed by integrating thedifference 2(r, 6, t) — Qce(t) over
the magnetized part of theradiativeinterior, thus providing aglobal measure of thediffer-
encein angular velocity between the convective envelope and the magnetized part of the
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radiative core. Notethat in all cases AQ initially increases very rapidly before reaching
amaximum at about t ~ 108 yr. At later times, A2 declines at arate nearly independent
of poloidal field strength and configuration. An important common property of these
solutionsistheweak differential rotation that most of them exhibit by the time they have
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the solar age. Except for the D4 configurations, al solutions have AQ < 0.02
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Fig.5.9. Timeevolution of theinternal differential rotation, asdefined in thetext by the quan-
tity A, for various poloidal field configurations and strengths. In (A) are shown solutions
for thefour poloidal configurations of Figure 5.8, al at astrength of 1 G. In (B), (C), and (D)
are shown the effects of varying the poloidal field strength for agiven poloidal configuration.
Source: Charbonneau, P, and MacGregor, K. B., Astrophys. J., 417, 762, 1993.
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att =4.5x10° yr. Thisisin contrast to the unmagnetized models, which often have
significant angular velocity gradientsin their radiative cores even at the solar age.

These quantitative studies are important because, for the very first time, they demon-
stratethe existence of classesof large-scal einternal magneticfiel dsthat can accommodate
rapid spin-down of the surface layers near the zero-age main sequence and yield aweak
internal differentia rotation in the radiative core by the solar age. The lack of significant
differential rotation from the base of the solar convection zone down tor ~ 0.1-0.2R,
would then exclude from further consideration poloidal magnetic configurations of the
D4 type. Within the current observational uncertainties, all D1, D2, and D3 solutions are
compatible with the results reported in Section 1.2.2. However, none of these solutions
exhibit enhanced angular velocity inside theradiusr = 0.2R,, as some helioseismol og-
ical observations have suggested. Following Charbonneau and MacGregor (1992), this
can be achieved by choosing poloidal magnetic fields such that the inner core remains
magnetically decoupled from the surrounding regions. Admittedly, there is no firm jus-
tification for such a choice, but it seems to be the only way to have a rapidly rotating
inner core (if any) in the present-day Sun.

More recently, Rudiger and Kitchatinov (1996) have performed a large set of spin-
down calculations, making allowance for the differential rotation in the convective enve-
lope (see Section 5.2.1). Their work thus combines differential rotation at the base of the
solar convection zone, rotational braking due to amagnetically coupled solar wind, and
an axially symmetric magnetic field in the Sun’s radiative interior. A reasonable picture
emergesonly if the following two conditions are met: (1) viscosity is strongly enhanced
compared to its microscopic value, and (2) the internal magnetic field does not penetrate
into the outer convection zone. As was shown in Section 4.7.2, an axially symmetric
poloidal magnetic field makes the rotation uniform along each field line, although the
constant angular velocity isin general different for each field line. If theinternal poloidal
field was anchored into the differentially rotating convective envelope, the latitudinal ro-
tation inhomogeneity would thus penetrate deep into the radiative interior, which is not
observed. With the magnetic field fully embedded into the core, however, their models
do reproduce the thin layer where a transition from differential to rigid-body rotation
occurs at the bottom of the solar convection zone. (This transition layer is known as
the solar tachocline.) The problem is then presented by the “dead zone” permeated by
the field lines that never come close to the base of the convective envelope (see the D3
and D4 configurations in Figure 5.8). This is the reason why a sizable amount of eddy
viscosity is needed to link this region to the base of the solar convection zone acrossthe
magnetic field. To be specific, the models of Rudiger and Kitchatinov (1996) require an
eddy viscosity of the order of 10% 1., where u,, isthe microscopic viscosity (see alsothe
end of Section 5.3). Asthey noted, however, there is no contradiction at this point with
the models of Charbonneau and MacGregor (1993), since these solutions also require an
amplification factor of the order of 10* in the coefficient of viscosity.

In summary, two independent sets of spin-down calculations have been made. They
differ in one important respect, however. In the Charbonneau—MacGregor models the
convective envelope is assumed to rotate uniformly at all times, whereas the latitudinal
differential rotation of that zoneis properly retained in the Ridiger—Kitchatinov models.
In both sets of models, it is found that there exist large-scale magnetic fields that yield
aweak internal differential rotation by the solar age. In the former case, however, the
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poloidal fieldlinesmay or may not penetrateinto the convectiveenvel ope (see Figures.8).
By contrast, in the latter case, the helioseismological observations are reproduced only
with the poloidal magnetic field fully contained within the radiative core. In both cases,
the models are quite insensitive to the magnitude of the internal magnetic field, provided
the poloidal field strength By islarger than 10~2 G. However, despite the high efficiency
of these magnetic fieldsin transporting angular momentum, turbulent friction is always
needed to enforce almost uniform rotation in the radiative interior by the solar age.

55 Discussion

In Sections 4.3 and 4.4 we have presented a simple but adequate description of
the mean state of motion in a nonmagnetic early-type star that consists of a uniformly
rotating convective core and a surrounding radiative envelope. Assuming no mass loss
from the star’s surface, we have shown that there exists a mean steady solution for the
large-scale motion in the radiative envelope, which is the combination of an overall
differential rotation and slow circulatory currentsin planes passing through the rotation
axis. As was pointed out, however, the major impediment to the complete resolution of
this problem is the lack of quantitative observational data about the velocity field in the
surfacelayers of an early-type star. Thisisin contrast to the late-type stars, asavariety of
recent observational results have shed important new light on both the internal rotation
of the Sun and the rotational evolution of solar-type stars. It is therefore appropriate at
thisjuncture to critically review the degree of development of the main theories of solar
rotation.

It is generally believed that the interaction of rotation with convection plays an es-
sentia role in the generation and maintenance of differential rotation and concomitant
meridional circulation in the solar convection zone. Unfortunately, although it has been
suggested that rotation may beinteracting with either local turbulent convection or global
turbulent convection, no scheme has yet been generally accepted as being basically cor-
rect. In fact, because a general theory of turbulent convection still lies in the distant
future, in all likelihood further progress will result from a balanced approach that in-
volves increasingly reliable helioseismological observations combined with more and
more sophisticated numerical simulations.

Considerable progress has been made in determining the processes that affect the
internal rotation of the Sun. In Section 5.3 we have shownthat thermally driven meridional
currents inexorably advect angular momentum in the chemically homogeneous parts of
the Sun’sradiative core, thustending to induce small departuresfrom solid-body rotation
in these regions. For the rotation rate of the present-day Sun, this large-scale advection
of angular momentum is probably negligible, although in a more detailed study it might
effectively contribute to the angular momentum redistribution within the outer parts of
the Sun’s radiative core.

Two very efficient mechanisms for angular momentum redistribution in the solar
interior have been thoroughly investigated: turbulent friction acting on the differential
rotation and large-scale magnetic fields. As was shown in Section 5.4, both of them
provide the means by which the solar-wind torque is communicated to theinterior, while
enforcing almost uniform rotation in the radiative core by the solar age.

In the turbulent modelsillustrated in Figure 5.7 the angular momentum redistribution
within the Sun’s radiative core istreated diffusively. Aswas repeatedly pointed out, this
approach is, at best, a semiquantitative one (see, e.g., Section 3.6). Indeed, by making
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use of the crude concept of eddy viscosity, one necessarily relegates al eddy and/or
wave events to a passive means of dissipating the large-scale flow, thus implying an
ill-defined energy cascade from the largest to the smallest scales of motion. And because
one cannot calculate the eddy coefficients from first principles aone, it follows that one
must integrate Egs. (5.41) and (5.42) under widely different conditions, thence guessing
the form and values of the empirical formula for the function D that best fit the global
properties of the present-day Sun. Note also that these turbulent models, which often
have significant angular velocity gradientsin their radiative cores even at the solar age,
aregenerally characterized by the presence of asmall, rapidly rotating central core. Such
abehavior is attributable to the fact that the devel opment with age of a gradient of mean
molecular weight in the hydrogen-burning core leads to a much reduced eddy viscosity
in these parts of the solar interior, thus preventing them from participating to the overall
redistribution of angular momentum.

In Section 5.4.2 we have shown that a more efficient means for transporting angular
momentum inthe Sun’sradiative coreisthrough theintermediary of alarge-scaleinternal
magnetic field. Detailed numerical simulations demonstrate the existence of classes of
poloidal fieldsallowing rapid surface spin-down at early epochs, while producing a most
uniform rotation throughout the Sun’sradiative core by the solar age. However, these cal -
culationsshow that acertain amount of aturbulent frictionisawaysrequired to couplethe
field lines. They a so indicate that the observed surface rotation rate isarather poor indi-
cator of the strength and geometry of hypothetical large-scale magnetic fields pervading
the solar radiativeregions. Asfar astheinternal rotation isconcerned, the most important
property of these model sistheweak overall differential rotation that most of them exhibit
by thetimethey have attained the solar age. Thisisin contrast to the diffusive modelspre-
sented in Section 5.4.1, which exhibit enhanced angular velocity in their central regions
r <0.2R,. Since the actual rotation rate inside thisradius is still very uncertain, we are
therefore led to the conclusion that the relative importance of the two basic mechanisms
for angular momentum redistribution deep inside the Sun is aso an open question.
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6
The early-type stars

6.1 Introduction

An inspection of Figure 1.6 shows that the mean projected equatorial velocity
of main-sequence stars increases slowly with spectral type, reaching a maximum of
about 200 km s~ in the late B-type stars. Thence, the mean velocity (v sini) decreases
slowly for later spectral types until about FO, where it starts dropping precipitously
through the F-star region. Asiswell known, this rapid transition to very small rotational
velocities occurs at approximately the spectral type where subphotospheric convection
zones become suddenly much deeper on the main sequence. Accordingly, because Sun-
like stars are most likely to devel op episodic mass g ections and magnetically channeled
stellar winds, it isgenerally thought that these stars are losing mass—and, hence, angular
momentum — as they slowly evolve on the main sequence. Postponing to Chapter 7 the
study of theselow-massstars(M < 1.5M,), in this chapter we shall consider starsmore
massive than the Sun (M Z 1.5M) that are in radiative equilibrium in their surface
layers.

In Chapter 4 we have already discussed the large-scale meridional currents and con-
comitant differential rotation in the radiative envelope of an early-type star, when the
departures from spherical symmetry are not too large. Admittedly, the aim of that chap-
ter was to develop a clear understanding of the many hydrodynamical phenomena that
arise in a rotating star. In the following sections of this chapter we shall instead ex-
amine a selection of practical topics dealing with rotation, meridional circulation, and
turbulencein the early-type stars. The chapter is organized asfollows. The modifications
brought by axial rotation on the overall structure of a main-sequence star are discussed
in Section 6.2.1. Section 6.2.2 is devoted to the effects of rotation on the observable
parameters, which depend on the inclination of the rotation axis to the line of sight.
Section 6.3 presents a detailed study of axial rotation along the upper main sequence.
In Section 6.4, which is of direct relevance to the study of chemically peculiar stars, we
consider the interaction between microscopic diffusion and rotationally driven motions
in a stellar radiative envelope. We conclude the chapter with a brief discussion of the
changes in rotation as an early-type star evolves off the main sequence.

6.2 M ain-sequence models

Themain objective of this section isthe construction of reliable numerical mod-
els of rotating stars consisting of a convective core, in which hydrogen burning istaking
place, and a chemically homogeneous radiative envelope. In fact, very little is known
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about the interaction between rotation and convection in the core of an early-type star.
For mathematical simplicity, it is often assumed that convective cores rotate uniformly;
as was correctly pointed out by Tayler (1973), however, there is till considerable un-
certainty about this point. The state of motion in the outer envelope of an early-type star
has received comparatively much greater attention. Unfortunately, the study of a stellar
radiative zone is complicated by the necessity to come to terms with a whole spectrum
of eddylike motions that continuously interact with the mean flow, that is, the overall
rotation and the slow but inexorable meridional currents. Following Section 3.6, we
shall explicitly resolve these large-scale motions, while parameterizing the smaller-scale
transient eddies through the use of Reynolds stresses and eddy viscosities.

In cylindrical polar coordinates (w, ¢, z), the mean velocity v becomes

V=U+Qwl, (6.1)

where u isthe two-dimensional meridional velocity. Since we are considering an axialy
symmetric configuration, mass conservation implies that

div(pu) =0, (6.2

where p is the mean density. Neglecting the acceleration and inertia of the meridiona
flow, we can rewrite the poloidal part of EqQ. (3.123) in the form

1 1
Zgradp = —gradV + Q®w 1, + = Fp(u), (6.3)
P P

where p isthe pressure, V isthe gravitational potential, and F(u) isthe poloidal part of
the turbulent viscous force per unit volume acting on the circulation. Similarly, by use
of Eg. (6.1), one can show that the ¢ component of Eq. (3.123) has the form

@%mw5+mmgmmw§:FAm, (6.4)

where F,(2) is the azimuthal component of the turbulent viscous force per unit volume
acting onthedifferential rotation (see Eq. [3.133]). To compl ete these equations we must
add Poisson’'s equation,

V3V = 47 Gp, (6.5)
an equation of state,
p= ?pT + %aT“, (6.6)
and the energy equation,
oTu-grad S = penye — div Fy, (6.7)

where Sisthe specific entropy and F; isthetotal (radiative and convective) flux vector
(see Egs. [5.11]5.13]). Remaining symbols have their standard meanings.

The above set of partial differential equations provides seven scalar relations among
the seven unknown functions €2, u, p, p, T, and V. Thus, in principle, the internal
structure of a rotating star with meridional circulation is entirely determined by these
equations, together with someinitial conditionsand the usual set of boundary conditions
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(see Section 2.2.2). The main difficulty of the problem liesin the fact that neither the
internal stratification of a rotating star nor the shape of its free surface are known in
advance. Another difficulty arises because we know very little about the transport of
specific angular momentum, Qe 2, in astellar interior. In principle, the angular velocity
€2 can be calculated from Eq. (6.4), which merely expresses that the advection of specific
angular momentum by the meridional currents must balance the effects of turbulent
friction acting on the mean azimuthal flow. In practice, because the coefficients of eddy
viscosity cannot be calculated from first principles alone, the actual dependence of the
angular velocity on the coordinates and time remains quite uncertain. As was pointed
out in Section 4.8, the precise determination of the rotation law in a stellar radiative
envelope must await the development of numerical models that resolve the transient
eddylike motions in sufficient detail to reproduce their transport properties adequately.
Parenthetically note that the presence of aweak poloidal magnetic field does not solve
the problem either since, aswas shown in Section 4.7.2, such afield does not necessarily
maintain almost uniform rotation throughout the radiative envelope of an early-type star.

With the advent of high-speed computers in the 1960s, significant advances have
been made in the study of the internal structure of rotating stars. However, because the
actual distribution of angular momentum within a star is still largely unknown, in all
numerical models proposed to date the rotation law is aways specified in an ad hoc
manner. | n this section we shall thus assume that there are no internal motions other than
rotation, and we shall merely replace Eq. (6.4) by some prescribed rotation law, either
Q = constant or some function Q = Q(w) that satisfiesthe essential stability condition
definedin Eq. (3.98). If so, then, Eq. (6.3) simplifiesto the usual condition of mechanical
equilibrium for a barotrope,

1
~ gradp = —grad, 6.8)

where
& =V(w,2) - / Q(w)o'do’ 6.9)

(see Section 3.2.1). Given these simplifications, one readily seesthat the basic equations
are quite similar in structure to those for nonrotating stars, except that Eg. (6.5) must
be solved in two dimensions with an outer boundary that isitself an unknown. Another
difficulty stems from the fact that Eq. (6.8) is incompatible with the energy equation
in a circulation-free barotrope (see Section 3.3.1). Accordingly, it is also assumed that,
though radiative equilibrium does not hold at every point, it does hold on average (i.e.,
averaged over each level surface ® = constant).

A great number of techniques have been devised to determinethe equilibrium structure
of rotating polytropes and barotropic stars. To the best of my knowledge, Milne (1923)
was the first to construct barotropic models for slowly rotating stars, using a first-order
perturbation technique and treating the effects of uniform rotation as a small distortion
superimposed on a known spherical model (see Egs. [4.9]-{4.25]). As was originally
shown by Takeda (1934), however, fairly accurate results can be obtained by means of a
double-approximation technique. In the central regions, where the rotational distortion
issmall, afirst-order expansion isused. This solution isthen matched to asolutioninthe
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low-density surface layers, where the gravitational field arises mainly from the matter
present in the slightly oblate inner core. Since, in general, the domains of validity of the
two approximation regimes overlap, self-consi stent solutions may readily be constructed.
More recently, Kippenhahn and Thomas (1970) have shown that the use of two zonesis
unnecessary for the same degree of accuracy can be obtained in choosing an appropriate
geometrical representation for the level surfaces. Their technique has been widely used
because, without much trouble, rotation can be incorporated into the usual programs of
stellar evolution (see, e.g., Section 5.4.1). Unfortunately, although it provides satisfac-
tory results for quasi-spherical models in slow uniform rotation, other methods must
preferably be used when the level surfaces greatly deviate from concentric spheres.

Progress in the study of rapidly rotating barotropes has been made by using full
numerical solutions of all the relevant structure equations. Notably, Ostriker and Mark
(1968) have developed the self-consistent-field method, which was especially designed
torelax atogether therestrictive assumption of quasi-sphericity. Inthismethod, Eqg. (6.5)
isreplaced by itsintegral solution,

V= —G/ P gy (6.10)
\Z

Ir—r

wherethetripleintegral must be evaluated over the volume ) of the configuration. Given
an angular momentum distribution, an iterative procedure is established in which an
approximate expression for thetotal potential ® isderived fromatrial density distribution
oo(w, 2). A new density distribution p;1(w, z) is then obtained from the equilibrium
equations. For convenience, theexternal boundary conditiononthegravitational potential
is applied on a sphere exterior to the model. Thisisthe basis of the self-consistent-field
method, in which Poisson’ sequation and the equilibrium equationsare solved alternately.
This iterative scheme works remarkably well for the more massive stars, but it fails to
converge even for anonrotating main-sequence model if its massisless than about 9M,
(i.e., if itscentral mass concentration issufficiently high). Thisisthereason why Clement
(1978) haspresented atwo-dimensional, finite-difference techniquefor solving Poisson’s
equation simultaneously with the equilibrium equations. The method does not appear to
be limited by the large central concentrations that characterize intermediate mass stars
and those with high angular momentum. Rapidly rotating main-sequence modelsin the
mass range that is not accessible to the self-consistent-field method have been computed
with this two-dimensional numerical technique.

6.2.1 Uniform rotation versus differential rotation

As was originally shown by Milne (1923), uniform rotation has two general
effects on the structure of a star. It leads to (i) a global expansion of the star due to the
local centrifugal force and (ii) a departure from sphericity due to the nonspherical part
of the effective gravity. To be specific, because the centrifugal force takes over from
the pressure part of the burden of supporting the weight of the overlying layers in the
energy-producing regions, the global-expansion effect causes a reduction in the total
luminosity of the star when it is compared to its nonrotating counterpart having the same
mass. Moreover, because a uniformly rotating star is slightly oblate, in its equatoria
belt part of the mass is supported by the centrifugal force whereas this is not the case
in the polar regions. Accordingly, the pressure and hence the net outward flux of energy
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Fig. 6.1. Thecentral temperature T, asafunction of the central density p. for main-sequence
stars. The curve is drawn through the data referring to nonrotating stars (dots). The crosses
refer to critically rotating stars. The numerals along the curve define the mass of the models.
Source: Sackmann, |. J., Astron. Astrophys., 8, 76, 1970.

must also be smaller at the equator than at the poles. In other words, the nonsphericity
effect induces a dependence of effective temperature on latitude, with the polar regions
appearing hotter than the equatorial belt.

Toillustrate these results, | shall summarize the numerica work of Sackmann (1970),
who, by making use of Takeda' s double-approximation technique, has constructed alarge
set of model sfor main-sequence starsinthemassrange 0.8-20M, . Her cal cul ations show
that for each massalong the main sequenceit is possibleto construct aseriesof uniformly
rotating model s, with each seriesterminating with amodel for which the effective gravity
vanishes at the equator. The maximum luminosity change caused by solid-body rotation
isabout 7% for high-mass stars and somewhat smaller for low-mass starswith aradiative
envel ope. (For starswith massesbelow 1.5M,, this change becomes much larger, though
lesscertain.) Figure 6.1 demonstratesthat auniformly rotating star of mass M hassimilar
central propertiesasanonrotating star with massM — AM, where AM > 0. We observe
that thevaluesof T, and p, for rotating starson the verge of equatorial breakup fall exactly
along the curve for nonrotating stars, with their positions being somewhat shifted in the
direction of thelower masses. Note a so that the largest deviation between the valuesfor
critically rotating stars and nonrotating starsis as small as0.001 inlog,, T, and 0.004 in
log,q pc! Following Sackmann, one has

AM 3

— = —¢, 6.11
Y 5 € (6.11)
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Table 6.1. The percentage decreasein
mass necessary to make the central
pressure of critically rotating models
equal to that of a nonrotating model.

M/My  AM/M (%) M/My  AM/M (%)

0.8 3.0 3 2.2
1.0 4.1 5 2.0
14 0.7 7 2.7
15 0.0 9 2.3
18 12 10 2.0
20 14 20 2.8

Source: Sackmann, I. J., Astron. Astrophys., 8, 76,
1970.

where ¢ isthe pressure-weighted average of theratio of centrifugal force to gravity over
the whole star. Table 6.1 illustrates this mass-lowering effect at breakup rotation along
the main sequence. For the sake of compl eteness, in Figure 6.2 we also depict the critical
equatorial velocity v, at the point of equatorial breakup. Note that the velocity v, steadily
decreases as one passes down the main sequence from 20M, to 1.4M, and that it rises
again asthe massis decreased below 1.4M,.

The above results strongly suggest that solid-body rotation can be considered as a
small perturbation superimposed on the structure of a nonrotating star. For differentially
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Fig. 6.2. The critical equatorial velocity v, as a function of mass along the main sequence.
Source: Sackmann, . J., Astron. Astrophys., 8, 76, 1970.
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rotating configurations, however, the situation is quite different because these systems
can storeamuch higher total angular momentum than auniformly rotating model withthe
sameratio of centrifugal forceto gravity at the equator (cf. Section 2.8.3). Accordingly,
we surmise that sequences of stellar models in nonuniform rotation do not terminate,
therefore allowing for much larger observable effects than in auniformly rotating model
onthevergeof equatorial breakup. That thisisindeed the casewas properly demonstrated
by Bodenheimer (1971) and Clement (1979).

Several series of differentially rotating models have been constructed, each with fixed
mass M and fixed angular momentum distribution Qzr2, but with increasing values for
the total angular momentum J. Therotational characteristics of three 30M, models are
illustrated in Figure 6.3. Note that considerable polar flattening occurs, with the ratio of
equatorial to polar radii ranging up to about 4. Yet, none of these models approaches
the limit of zero effective gravity at the equator. Not unexpectedly, in contrast to the
case of solid-body rotation, conditions in the central regions now show large changes
caused by differential rotation. This is illustrated in Figure 6.4, which shows that the
effect of an increase in J isto shift the configuration closely parallel to and downward
along the curve corresponding to nonrotating stars. A similar mass-lowering effect was
found by Clement, who enlarged Bodenheimer’s analysis by constructing sequences of
differentially rotating modelsin the whole mass range 1.5-30M,.

Asmentioned, the problemiscomplicated by thefact that we have no direct knowledge
of the angular momentum distribution within a star. Fortunately, the Bodenheimer—
Clement calculations indicate that, given a mass M and atotal angular momentum J,
the changes in central temperature and density and in total luminosity are not strongly
dependent on the interior angular velocity gradient. In view of the rather arbitrary nature
of the assumed rotation laws, thisis amost useful result.

In summary, uniform rotation has a mass-lowering effect on the internal structure
of a main-sequence star, which gives a rotating model some of the characteristics of a
nonrotating model of lower mass. Thus, uniform rotation leads to lower interior tem-
peratures, lower luminosities, and either higher or lower interior densities depending on
whether the star’smassis greater or smaller than about 1.5M,, which isthe point where
main-sequence stars change from convective cores to convective envelopes. Detailed
calculations strongly suggest that this mass-lowering effect isgenerally valid sinceit ap-
plies to solid-body rotation as well as to various degrees of differential rotation. Thisis
consistent with the view that rotating stars on the upper main sequence have less massive
convective cores and, therefore, shorter lifetimes than their nonrotating counterparts.*

* Recall that all barotropic models presented in this section have rotation lawsthat satisfy the constraint
imposed by dynamical stability with respect to axisymmetric motions; that is, their specific angular
momentum Qo2 increases outward so that their angular velocity falls off more slowly than @ 2,
where @ isthe distance from the rotation axis (see Eq. [3.98]). More recently, Clement (1994) has
probed the limiting case Qw2 = constant, which corresponds to a marginally stable configuration.
Accurate two-dimensional models have been computed, assuming that one has Q o @ ~2 outside the
cylinder containing the convective core and a solid-body rotation inside that cylinder. Calculations
show that these extreme models have more massive convective cores than their nonrotating or rigidly
rotating counterparts, at least for stars with masses below 12M,. In more massive configurations,
however, the convective cores always decreasein massfraction for any distribution of specific angular
momentum.
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Fig. 6.3. Detailed structure of three modelsfor 30M,. R isthetotal equatorial radiusand ve
isthe equatorial velocity. The shaded area indicates the convective core. The upper portions
show isopycnic contours enclosing mass fractions 0.2, 0.4, 0.6, 0.8, 0.95, 0.999, and 1.0. The
lower portions give the ratio of the angular velocity €2 to the central value €2, the fraction
m,, of the total mass interior to the corresponding cylindrical surface about the rotation
axis, and the ratio of the circular velocity v to the surface value ve. The boundary of the
convective coreisindicated by an asterisk. Source: Bodenheimer, P, Astrophys. J., 167, 153,
1971.

6.2.2 Effectsof rotation on the observable parameters

The most conspicuous effect of rotation is to distort a star into an oblate con-
figuration. Thisiswell illustrated in Figure 6.3, although it is not known whether such
high degrees of differential rotation are present in real stars. Yet, it is these departures
from sphericity and the luminosity changes that are of paramount importance for the
observable effects of rotation on the radiation emanating from a star. Aswe recall from
Section 3.3.1, a barotropic model with a radiative envelope has an emergent flux | F|
that varies in proportion to the surface effective gravity g (see Eq. [3.41]). Since this
guantity is smaller at the equator than at the poles, both the local effective temperature
and surface brightness are, therefore, lower at the equator than at the poles. Thisimplies
in turn that the various magnitudes and color indices of arotating star will be functions
of the aspect anglei between the line of sight and the rotation axis.

The theoretical problem divides naturally into three parts. (1) Building an interior
model so that the effectivetemperature and gravity becomeknown asfunctionsof | atitude
on itsfree surface, (2) computing the energy spectrum of radiation asafunction of aspect
anglewhen asuitably realistic model atmosphereisfitted at each point of thefree surface,
and (3) integrating the emergent flux to obtain the usual photometric parameters for
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Source: Bodenheimer, P, Astrophys. J., 167, 153, 1971.

each aspect angle. Figure 6.5 illustrates the results obtained by Maeder and Peytremann
(1970), who have computed the energy spectrum of radiation for uniformly rotating
stars of 5My, 2Mg, and 1.4M,,. Each rotational track represents configurations ranging
from the nonrotating model to the uniformly rotating model for which /. = 0.99,
where Q. isthe angular velocity at breakup rotation. For each mass, different values of
the inclination i have been considered, with the aspect angle increasing fromi = 0°
(“pole-on” stars) toi = 90° (“equator-on” stars). For the 2M, models, the percentage
of stars under the random-orientation hypothesis is also indicated. (This is of course
valid for al masses.) We observe that a pole-on star appears brighter than a nonrotating
star of the same mass, but has almost the same color. Thisis so because oneis directly
facing the brighter polar regions as well as a larger projected area resulting from the
star's oblateness. Figure 6.5 also shows that an equator-on star appears fainter and
considerably redder than a nonrotating star of the same mass. The reason liesin the fact
that limb darkening reduces the brightness of the polar regions while gravity darkening
makes the equatorial belt cooler.

How do these theoretical results compare with the available observational data for
normal main-segquence stars? By comparing their uniformly rotating models with var-
ious observed quantities, Maeder and Peytremann (1970) found that there was agree-
ment with observation for stars earlier than about spectral type A7 but that later types
showed effects at least two times larger than predicted by solid-body rotation. If so,
then, what rotation law do upper-main-sequence stars actually follow? The problem
has been considered by Smith (1971), who made a statistical study of the data avail-
able for rotating stars in the Praesepe and Hyades clusters. In agreement with other
works, it is found that these stars seem not to be rotating uniformly. Unfortunately, a
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Fig. 6.5. Color—magnitude diagram with rotational tracks for 5M,, 2M, and 1.4M,, and
various anglesi. The termination point are for 2/ Q2. = 0.99. Source (revised): Maeder, A.,
and Peytremann, E., Astron. Astrophys., 7, 120, 1970. (Courtesy of Dr. A. Maeder.)

detailed study of the errors involved also shows the uncertainties to be such that the
observations cannot be said to support any particular law of nonuniform rotation. More
recently, Collins and Smith (1985) have made use of detailed stellar atmosphere models
to compute the photometric effects of differential aswell asrigid rotation in the A-type
stars. Their analysis confirms the known qualitative result that differential rotation pro-
duces a larger scatter in the color—magnitude diagram than does uniform rotation. As
was shown by these authors, however, photometry alone can only put rather weak con-
straints on the angular momentum distribution of the upper-main-segquence stars. This
precludes any more definite conclusion about the nature of the rotation law in these
stars.

Let us next consider the modifications brought by rotation on the age estimates of
open star clusters. Aswe know, the age of acluster is obtained from its color—magnitude
diagram by fitting the observed sequence in the turnoff region with isochronous lines
derived from nonrotating stellar models. The effects of rotation on age estimates are
essentially of two kinds: (i) aspect effects on the color and magnitude of each star
belonging to the cluster and (ii) structural effects on the models that are used to draw
the theoretical isochronic lines. Both effects have been considered by Maeder (1971)
under the assumption of uniform rotation on and above the main sequence. His analysis
indicates that the structural effects of uniform rotation on age estimates are negligible
in comparison with the aspect effects. However, because the displacement of arotating
star to the right of the main sequence can mimic the displacement due to evolution,
neglecting the aspect effects leads to an overestimate in age that may reach up to 70%
for clusters with the most rapidly rotating stars. In fact, Maeder has estimated that the
age overestimates caused by the neglect of rotation reach about 60-70% for o Persei
and the Pleiades. By contrast, the ages of the older clusters undergo very little changes,
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approximately 10-20%, because the stars in the turnoff region are less massive and so
are rotating more slowly.

Itisevident that neither theoretical considerations nor observations of the continuum
can give aclear expectation for the actual rotation law in the upper-main-sequence stars.
To what extent can the study of spectral lines yield useful information about the de-
gree of surface differential rotation in these stars? The major effects of axial rotation
on spectral linesisto broaden them, with no change in equivalent width; the amount of
broadening depends upon the degree of axial rotation and the aspect anglei . In principle,
the extent of surface differential rotation and macroturbulence in a star can be deter-
mined from the departures of observed line profiles and concomitant Fourier transforms
from their standard theoretical counterparts. Attempts to extract this information from
line profiles have been made by Stoeckley and Buscombe (1987) and in the Fourier
domain by Gray (1977). Although these and related studies have not yet yielded any
definiteinformation on the surface vel ocity field of astar, Gray' sresults strongly suggest
that differential rotation does not exist or is small in early-type stars. More recently,
Collins and Truax (1995) have investigated the extent to which the actual velocity field
of these stars can be determined by the information contained within a spectral line
profile or its Fourier transform. It is found that one may use the classical model of a
rotating star to determine projected rotational speeds as long as one does not expect
accuracies greater than 10% under ideal conditions, with significantly larger errors for
stars exhibiting extreme rotation. Accordingly, the use of the classical model as a probe
of surface differentia rotation and macroturbulence in a star remains problematic at
best.

6.3 Axial rotation along the upper main sequence

In Section 1.3 we summarized the mean rotational properties of single stars. It
is the purpose of this section to provide further information about the rotation patterns
in specific groups of early-type, main-sequence stars.

6.3.1 Rotation in open clusters

Figure 1.6 provides a comparison between the average rotationa velocities
of cluster and field stars. It is immediately apparent that the (vsini) values of the,
generally younger, cluster stars are similar to those of the field stars, except that for
spectral types later than FO the cluster stars rotate more rapidly than the field stars. A
somewhat different picture emerges when one comparesthe (v sini) valuesfor members
of individual cluster and field stars. That thisisindeed the caseisillustrated in Figure 6.6,
which shows that open clusters and associations often differ in their mean projected
rotational velocities.

The question immediately arises whether the (vsini) values of a given cluster are
unusual because of high or low equatorial velocities, v, or because of preferential in-
clination angles, i, of the rotation axis. Unfortunately, we do not yet know whether the
rotation axes are oriented at random in space or whether there exists a preferential di-
rection in some (if not all) clusters. Hereafter we shall assume that alignment of axes
does not contribute appreciably to the unusual projected rotational velocities that are
observed in some clusters. With regard to the causes of the differences between clusters,
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Fig. 6.6. Mean projected equatorial velocities for several open star clusters compared with
field main-sequence stars. Adapted from Kraft (1970). Source: Gray, D. F., The Observation
and Analysis of Stellar Photospheres, Cambridge: Cambridge University Press, 1992.

three likely explanations have been considered, namely, evolutionary expansion effects,
the proportion of binaries, and the proportion of peculiar stars.

When a star leaves the zero-age main sequence and expands, its rotationa velocity
decreases. Since the brightest stars in a cluster evolve faster than the less luminous
ones, such an evolutionary effect could possibly explain the low rotational velocities
of the brightest stars in, for example, 1C 4665 (see Figure 6.6). However, the fact that
evolutionary expansion is not the main cause of this “turn-down” effect in clusters is
well illustrated by the o Persei cluster, where the evolved stars have larger, rather than
smaller, mean rotational velocities than field stars! As we shall see in Section 6.3.5,
there are at least two ways in which the initial rotational velocities of stars may be
gradually modified: by tidal interaction in closely spaced binaries (e.g., the Am stars)
and by magnetic braking in magnetic stars (e.g., the Ap stars). Thus, if some clusters
differ in their number of spectroscopic binaries or peculiar stars, we might expect that
their (vsini) vaues will aso depart significantly from the mean rotational velocities
of field stars. Detailed studies have shown that clusters with rapidly rotating stars have
far fewer binaries and Ap stars than clusters with stars having normal or low rotational
velocities (e.g., Levato and Garcia 1984). Hence, we conclude that tidal interaction and
magnetic braking are quite effective in reducing rotational velocities, so that alarge part
of the differences between clustersin their (v sini) values can be assigned to different
frequenciesof binariesand Ap stars. But then, aswascorrectly pointed out by Abt (1970),
we have succeeded only in shifting the problem from trying to explain the various mean
rotation rates in clustersto trying to explain these frequency differences.
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6.3.2 Theangular momentum diagram
As was shown in Section 6.2.2, there is as yet no clear expectation for the

angular momentum distribution within an early-type star. At this writing, however, the
most reasonabl e guess seems to be uniform rotation or mild differential rotation. Using
the assumption that these stars rotate as solid bodies, we shall now derive an important
relation between total angular momentum and mass along the main sequence. To the best
of my knowledge, McNally (1965) was the first to obtain that relation.

The total angular momentum of a uniformly rotating body is given by the product of
I, its moment of inertia, and its angular velocity of rotation, 2. Since the observations
give the mean equatorial velocity for each mass interval, we divide this quantity by the
mean radius R to obtain the mean angular velocity. Thus, for randomly oriented rotation
axes, the mean value of the total angular momentum is given by the simple relation
4 (vsini)
(I(M)) = x ROM)

where all quantities are functions of stellar mass. The usual mass—spectral type relation
canbeusedto obtainthe (v sini) valuesasfunctionsof mass. Theoretical modelsprovide
us with the functions R(M) and | (M) for selected mass intervals.

Updating Kraft's (1970) analysis, Kawaler (1987) has re-derived the mean angular
momentum (J(M)) along the main sequence using current stellar models and rotational
velocities. InFigure 6.7 the circlesrepresent asample of normal single stars, whereasdata
indicated by crossesinclude Am and Be starsin the sample. For comparison, also shown
isthe line (J(M)) that corresponds to rotation at breakup velocity v, that is, where

(M), (6.12)
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Fig. 6.7. Mean angular momentum asafunction of stellar mass, assuming solid-body rotation
at thesurfacerate. Thecirclesrepresent the sampleof normal singlestarsof Fukuda(1982); the
crosses represent the same sample, but include Am and Be stars. The solid line represents the
angular momentum for main-sequence model s rotating at breakup velocity. Source: Kawaler,
S. D., Publ. Astron. Soc. Pacific, 99, 1322, 1987. (Courtesy of the Astronomical Society of
the Pacific.)
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surface gravity and centrifugal force are equal with vgi; = (GM/R)Y2. Theseresults are
consistent with the (v sini ) values being the same fraction of the critical velocity v.; for
all main-segquence stars more massive than 1.5M,.

For normal singlestarsearlier than spectral type FO, the rel ation between mean angular
momentum per unit mass, (j) = (J)/M, and stellar massiswell represented by a power-
law relation of the form (j) o« M with @ = 1.09. (When the Am and Be stars are
included in the sample, however, one finds that « = 1.43.)* The low-mass stars (M <
1.5M,) deviatefrom thissimplepower-law relation, asevidenced by their slow rotational
velocitiesin Figure 1.6. Aswe shall seein Section 7.2, this sharp break at mass 1.5M,
can beattributed to angular momentum loss by magnetically controlled windsor episodic
mass g ections from stars with outer convection zones. Accordingly, since the high-mass
stars (M Z 1.5M,) have no appreciable convective envel opes that could support winds
or mass gections, it is generally believed that these stars have retained most of their
initial angular momentum. Hence, it seemslikely that the simple power law (J) oc M@+1
expresses a fundamental relation between the angular momentum content of an early-
type star and its mass, where stars are given, on the average, an amount of angular
momentum in proportion to their masses.f

6.3.3 Therotational velocity distributions
Figure 1.6 isaplot of the (vsini) values against spectral type for single, main-
seguence stars. In this section we shall briefly discussthedistribution of v sini at agiven
spectral type. Extensive surveys of projected rotational velocities have been assembled
by Wolff, Edwards, and Preston (1982). Figure 6.8 illustrates the observed distributions
of vsini for anumber of spectral type ranges.
Itisimmediately apparent that these distributions are al strikingly similar: They peak
at low values of vsini and decrease slowly with increasing rotational velocity, with a
maximum of about 350 km s~ at all spectral types. Note that the early B-type stars are
unique only in having a larger percentage of stars with v sini smaller than 40 km s,
The decrease in rotational velocity for the late A-type stars is also worth noticing since
it indicates that the braking mechanism that spins down the stars of later spectral typeis
aready partially operative in the A-type stars. Note also that these observational results
rule out simple Maxwellian distributions for the v sini s along the upper main sequence.
The similarity of the observed distributions strongly suggests that the same physical
mechanisms are involved in determining the rotational velocities of all upper-main-
sequencestars. Unfortunately, without aclear understanding of the star-formation process
and early stellar evolution, we are still unableto explain why slow rotation (i.e., v sini <
100 km s71) is so prevalent among these stars.

6.3.4 Rotation of Be and shell stars
If one excepts remnants such as neutron stars and pulsars, the stars of most
rapid rotation are the emission-line B stars (i.e., the Be stars). There is now widespread

* Thevalues originally obtained by McNally and Kraft were @ = 0.80 and o = 0.57, respectively.

t As was shown by Brosche (1963) and others, the (J) o« M2 rule is closely obeyed over the mass
range 10'8-10* g, from asteroids up to clusters of galaxies. Explanations have been presented by
Wesson (1979) and by Carrasco, Roth, and Serrano (1982).



176 The early-type stars

I T l T | | I
S O STARS y BLQTTERS B
N
41 N —
<§.
2 S —
3 105 EARLY AO STARS -
£ B STARS
=
019 8: -
> 6H .
=
[/
o 4 |
z
3 21 —
a ==
3 l
o
£ 101 : -
MIDDLE LATE
8 B STARS A STARS
6 _
\
4 —
2+ |
| I ! ! | |
100 300 100 300

v sini (kmsT)

Fig. 6.8. The observed distribution of projected equatorial velocities asafunction of spectral
type. Hatched areas show spectroscopic binaries discovered to date among the stars within
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agreement that matter isleaving the Be stars at their equator, with the resultant equatorial
disk giving the emission seen in the hydrogen lines. Some Be stars also develop, from
time to time, a network of deep and narrow absorption lines and they are then called
shell stars. They arealso characterized by extremely broad absorption lines, which, when
interpreted as due to axial rotation, makes them as a class the most rapidly rotating Be
stars. Aswas pointed out by Slettebak (1979), this suggests that the shell stars are edge-
on normal Be stars: The difference in spectrais due to differences in inclination of the
rotation axes.
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Mean values of the observed v sini s range between about 200 and 250 km s, with
the largest v sinis being in the neighborhood of 400 km s1. This raises at once the
following question: Do the Be and shell stars rotate at their critical velocity at which
centrifugal force balances gravity at the equator? The answer to that questionisflatly no.
Indeed, as can be seen in Figure 6.2, the theoretical breakup velocities are much larger
than 400 km s~ in the mass range 3-15M,,, which corresponds to the masses of normal
B-type stars and probably to those of Be-type objects as well.

In order to gain further insight into the problem, Porter (1996) has made a detailed
statistical study of the projected rotational velocities of these stars. In his discussion the
fundamental parameter isnot v sini, however, but the equatoria velocity of the star asa
fraction of the breakup velocity, w = v/vgit, Where v isthe critical equatorial velocity
of thestar at breakup rotation. Thedistribution functionsof normal Be starsand shell stars
asfunctions of w sini are shown in Figure 6.9. One readily sees that the projected equa-
torial velocitiesfor shell starsare significantly larger than those for normal Be stars. Sta-
tistical tests further indicate that shell stars and normal Be stars are ssmply related by in-
clination. This, taken along with theoretical shell line profilesgenerated in edge-on disks,
leadsto thefollowing conclusions: (i) shell stars are normal Be stars viewed edge-on and
(ii) the shell star distribution withi = 90° is a good representation of the distribution of
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Fig. 6.9. Distribution functions of normal Be stars (top) and Be-shell stars (bottom) as func-
tions of w sini. Source: Porter, J. M., Mon. Not. R. Astron. Soc., 280, L31, 1996. (Courtesy
of Blackwell Science Ltd.)
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Fig. 6.10. Distributions of equatorial rotational velocities for two samples of A5—O0 stars.
Theright distribution isfor 234 normal classV stars plus 23 stars with weak 14481 lines; the
left distribution isfor 133 Ap+Am stars. Source: Abt, H. A., and Morrell, N. I., Astrophys. J.
Suppl., 99, 135, 1995.

theratios v /vt for all Be stars. In accordance with a previous study by Chen and Huang
(1987), it is therefore concluded that the distribution function of all Be starsis sharply
peaked at w = 0.7, although thereisatail of the distribution to the smaller ws.

6.3.5 Rotation of Am and Ap stars

The metallic-line (Am) and peculiar A-type (Ap) stars have small projected
rotational velocities, v sini, relative to the means for normal stars of corresponding
spectral types. Aswe shall seein Section 6.4, the abnormal compositions of the Am and
Ap stars can be explained very well by microscopic diffusion processes. That is, because
these stars are slow rotators, they are most likely to possess quiet radiative envelopesin
which gravitational sorting of the chemical elementsis possible, thus leaving abnormal
atmospheric abundances.

Thedistributionsof equatorial rotational velocitiesfor representative samples of chem-
ically peculiar (Ap and Am) stars and normal A-type stars are shown in Figure 6.10.
Thus, after deconvolving the v sini distribution and assuming random orientation of the
rotation axes, one finds that all the rapid rotators have normal spectra while nearly all
the slow rotators have Am or Ap spectra. There is a 10% overlap, corresponding to 39
too many normal stars with sharp lines in the sample. According to Abt and Morrell
(1995), thisoverlap isdueto their failure to detect all the abnormal stars so that a specific
rotational velocity is probably sufficient to determine whether a star will have a normal
or abnormal spectrum. This statement has been recently challenged by Buda (1996,
1997), however.

It has been known for sometimethat all, or most, Am stars are spectroscopic binaries.
A detailed study of the frequency of Am stars among those binaries has been made
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by Ginestet et al. (1982) and Budg (1996). Their analyses indicate that the orbital
period distribution of the Am stars has a prominent peak in the period range 2—15 days,
which isalso the region where synchronization is observed. Asthey showed, this period
range coincides with the largest gap in the orbital period distribution of nonpeculiar
spectroscopic binaries of spectral types A4-F1, IV and V. To be specific, in the period
range 2-100 days, it is found that about 85% of the binaries are Am stars. However,
although the Am stars are also observed at larger orbital periods, there is a conspicuous
gap in the period range 180-800 days. In Section 8.4.4 we shall explain how tidal
interaction in binarieswith period smaller than 100-200 days can effectively causetheir
components to have low rotational velocities and thus become Am stars.

In contrast to the Am stars, however, the slow rotation of the Ap stars does not appear
to be dueto tidal interaction in close binaries. What is, then, the mechanism responsible
for the abnormally low rotation rates of the Ap stars, when compared to normal stars of
corresponding temperature and luminosity? Unfortunately, whereas their slow rotation
is generaly attributed to some kind of magnetic braking, there remains considerable
controversy as to whether most of their angular momentum is lost before or during
the main-sequence phase. Observations of Ap stars in open clusters and associations
of varying ages can answer that question. According to Wolff (1981), measurements of
v sini values strongly suggest that the Si-type Ap stars lose angular momentum after
they reach the main sequence, whilethose of the Sr—Cr—Eu group might do so prior to the
main-sequence phase. Aswas noted by North (1984) and Borraet al. (1985), however, her
conclusions are based on line-broadening measurements, which are affected not only by
thesini projection factor but also by the magnetic field strength via Zeeman broadening.
This is the reason why they have determined accurate photometric rotation periods of
magnetic Ap stars belonging to open clusters and associations. Both studies show that
the young cluster stars have essentially the same rotation periods as the older field stars,
indicating either that the Ap stars have lost most of their angular momentum before they
reach the main sequence or that they areintrinsically slow rotators from their formation
on. This result has been recently confirmed by North (1998), who found no evidence
for any loss of angular momentum on the main sequence, thus confirming earlier results
based on less reliable estimates of surface gravity.

6.4 Circulation, rotation, and diffusion

It is generally thought that diffusion processes are responsible for most of the
peculiar abundances observed in the chemically peculiar stars. Aswasoriginally noticed
by Michaud (1970), abundance anomalies appear, on the main sequence, in the atmo-
spheres of stars most likely to have stable envelopes and atmospheres. These stars are
slow rotators and so have less meridional circulation, they often have magnetic fields,
and they have an effective temperature for which stellar envel ope model s give the weak-
est convection. In its simplest form, the diffusion model assumes that the region below
the superficial convection layer of a chemically peculiar star is stable enough so that
microscopic diffusion processes can separate the light elements from the heavy ones,
that is to say, those chemical elements absorbing more of the outward going radiative
flux per atom move to the surface, while those absorbing less sink into the interior. Be-
cause those stars where the thermally driven currents are expected to be the slowest also
have the largest abundance anomalies, it is evident that a detailed understanding, from
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first principles, of the interaction between diffusion and meridional circulation becomes
essential if we are to understand stellar abundances.

Aswas pointed out in Section 4.1, because strict radiative equilibriumisimpossiblefor
auniformly rotating star, a state of thermal equilibrium can only be maintained with the
help of energy transport by circulatory currents in meridian planes passing through the
rotation axis. In the case of aslowly rotating, early-type star, this large-scale meridional
flow is quadrupolar in structure, with rising motions at the poles and sinking motions at
the equator (see Figure 4.3). In spherical polar coordinates (r, 6, ¢), we can thus write

d P,(cos6)

= r)P,(cosd)1l, —rv(r)sinéd
U= e |u(r)Pa(cose)l, —ru(r)sing —

1|, (6.13)

where P, isthe Legendre polynomial of degreetwo and ¢ istheratio of centrifugal force
to gravity at the equator,

vZ R
=3 6.14
€= &M (6.14)
By virtue of Eq. (6.2), one also has
11 4d, ,
== — — , 6.15
6 pr2 dr prev) (6.19

so that the meridional velocity u depends on the radial function u only.

In Table 4.1 we list Sweet’s (1950) frictionless solution for a Cowling point-source
model. One readily sees that this solution, which becomes infinite at the free surface,
does not satisfy the essential boundary conditions (4.38). The situation is even worse
when the prescribed rotation law is nonuniform since, for then both components of the
meridional velocity becomeinfinite at thefree surface (see Eq. [4.42]). Infact, no further
progress has been made until it was realized, in 1982, that turbulent friction acting in the
outmost surfacelayersisan essential ingredient of the problem (see Sections4.3and 4.4).
That isto say, unless one makes allowance for athermo-viscous boundary layer near the
upper boundary of the radiative zone, it isimpossible to calculate ameridional flow that
satisfies all the boundary conditions and all the basic equations of the problem.* Table
4.2 lists some of the self-consistent solutions obtained by Tassoul and Tassoul (1982,
1995).

Many characteristics of the chemically peculiar stars can be explained on the basis of
microscopic diffusion in the presence of meridional circulation in their outer radiative
envelopes. Indeed, when this large-scale flow is rapid enough to obliterate the settling
of the diffusion of helium, no underabundance of this element is possible and the su-
perficial He convection zone remains important, making the appearance of some of the
abnormal abundances impossible. Comparing the meridional circulation velocities for
solid-body rotation (i.e., « = 0in Table 4.2) to diffusion velocities of helium below the
He convection zone, Michaud (1982) has shown that this zone disappears only in stars
with equatorial velocities smaller than about 90 km s~2. Thisis in agreement with the

* There has been much confusion in the literature about the existence of thermo-viscous boundary
layersin rotating stars. Thisis discussed in the Bibliographical notes for Section 4.3.
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cutoff velocity observed for the HgMn stars. Given this encouraging result, detailed two-
dimensional diffusion calculations have been carried out by Charbonneau and Michaud
(1988) to determine with greater accuracy the maximum rotational velocity alowing the
gravitational settling of helium.

In order to couple microscopic diffusion and meridional circulation, one writes the
continuity equation in the form
ac
at
wherec(r, 0, t) isthe concentration of the contaminant, measured with respect to hydro-
gen, and D(r) isthe coefficient of diffusion of helium in hydrogen. The velocity field
u(r, #) corresponds to the meridional circulation, while U(r, 6, t) describes the advec-
tive part of the diffusion velocity (e.g., Charbonneau and Michaud 1988, pp. 810-811).
Equation (6.16) is a parabolic equation that must be solved with appropriate initial and
boundary conditions. Calculations have been performed in both 3Mg and 1.8M, stellar
models appropriate, respectively, for HgMn and FmAm stars. The upper limits to the
equatorial velocities allowing the chemical separation of helium are found to be 75 and
100 km s, respectively, for these stars. Given the various approximations that had to be
made in averaging over convection zones and the uncertainties in the meridional circu-
lation velocities near the surface, the agreement with observations is quite satisfactory.
This parameter-free model is not so successful, however, in reproducing quantitatively
the anomalies of a given star in detail. Mass loss has been suggested as an important
ingredient in the FmAm phenomenon.

Now, because turbulent particle transport can also have drastic effects on chemical
separation, Charbonneau and Michaud (1991) have performed additional calculations
that retain both meridional circulation and anisotropic turbulence. Equation (6.16) was
thus replaced by

p— +div[p(u + U)c] = div(p Dy, gradc), (6.16)

ac ,
Pt + div[p(u + U)c] = div(pD gradc), (6.17)
where the total diffusivity tensor can be written in the form
Dlz + DV 0
D= . (6.18)
0 D1, + Dy

(Compare with Eqg. [3.134].) The functions Dy and Dy are the vertical and horizontal
coefficientsof eddy diffusivity duetotherotationally induced instabilities. Unfortunately,
aswas explained in Section 3.6, thereis asyet no reliable theory that could provide firm
analytical expressionsor numerical valuesfor thesetwo coefficients. They areessentially
free quantities that must be chosen, by trial and error, using the observed abundance
anomalies to determine their values. Thus, given some parametric expressions for the
eddy diffusivities, the problem can be treated as a two-dimensional initial-boundary
value problem. Numerica calculations show that the diffusion model for FmAm stars
is particularly constraining regarding the introduction of anisotropic turbulence. In the
presence of meridional circulation, it isfound that the maximum Dy, / D1, ratio tolerable
withthediffusionmodel isof the order of 10; otherwise, helium settlingisoverly impeded
in stars rotating below the observed equatorial velocity cutoff. This sets extremely tight
constraints on turbulence in early-type stars having equatorial velocities of 100 km s™*
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or less. Similar calculations show that the maximum Dy, /D3, ratio tolerable with the
diffusion model for FmAm starsisof the order of 10°; otherwise, helium settling remains
possible in stars rotating above the observed equatoria velocity cutoff. As was pointed
by Charbonneau and Michaud (1991), however, this seems to be a prohibitively large
value of theratio Dy /Dg.

In summary, the above cal cul ations show that microscopic diffusion in the presence of
large-scalemeridional currentsdoesexplaininanatural way the appearance of theHgMn
and FmAm phenomenon in slowly rotating, nonmagnetic stars, without introducing
any strong dependence on arbitrary parameters. These calculations also demonstrate
that the smaller-scale, eddylike maotions cannot be ignored atogether because they, too,
can impede the gravitational settling of helium. In principle, given some solution for
the meridional circulation, one can integrate Eq. (6.17) to derive upper limits on the
coefficients Dy and Dy . As was pointed out in Section 4.4, however, the topology of
the meridional flow in the surface layers of an early-type star is quite dependent on the
gradient of angular velocity in these regions. Since this uncertainty on the circulation
pattern should somewhat reflect on the determination of upper limitson Dy and Dy, it
followsthat the relative importance of meridional circulation and anisotropic turbulence
in reducing chemical separation remains uncertain.

6.5 Rotation of evolved stars

Among the many problems that beset the theory of rotating stars, the re-
distribution of angular momentum in stellar interiors during evolution is by far the least
understood. Aswe know, the post—main-sequence evol ution of a star is accompanied by
astrong contraction of its helium-rich core and by a corresponding expansion of the sur-
rounding envelope. Unless there exists a very efficient transport of angular momentum
from the core to the envelope, it is evident that the former has to spin up appreciably
while at the same time the latter must spin down. The decrease in surface rotation as
a star evolves away from the main sequence has been known for several decades. Un-
fortunately, to compute the gross changes caused by rotation in evolving stars, we are
faced with two largely unresolved questions: |Is the total angular momentum J of a star
conserved or lost during its post—main-segquence evolution? And is there an effective
means to redistribute the specific angular momentum Qe ? during evolution? The most
reliable calculations are those of Endal and Sofia (1979), who have considered different
cases of angular momentum redistribution, assuming in all cases conservation of total
angular momentum. At thetime, their theoretical surface rotation velocitiesfor red-giant
models were in agreement with the observed rotation ratesfor the K giants, so that there
was apparently no need to invoke angular momentum losses among these stars.

A different picture emerged, however, when Gray’s (1982) Fourier analysis of high
signal-to-noise ratio data showed the existence of a discontinuity in rotation for lumi-
nosity class |11 giants.* This sudden drop takes place between spectral types GO |11 and
G3 II. A similar rotational discontinuity was also seen by Gray and Nagar (1985) in
a sample of luminosity class IV subgiants. Near GO |V, a sudden drop in rotation was

* This discontinuity, which was initially reported at spectral type G5 |11, has been confirmed by Gray
(1989) but wasfound to be near GO 111 rather than G5 I11. Thischange results primarily fromimproved
spectral types.
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Fig. 6.11. Projected equatorial velocities as functions of (B — V) color. Triangles refer to
valuestaken from “ The Bright Star Catalogue.” Source: de Medeiros, J. R., and Mayor, M., in
Angular Momentum Evolution of Young Stars (Catalano, S., and Stauffer, J. R., eds.), p. 201,
Dordrecht: Kluwer, 1991. (By permission. Copyright 1991 by Kluwer Academic Publishers.)

observed with advancing spectral type, in complete analogy to the drop seenat GO 11 in
the giants. More recently, a systematic survey of about 2,000 evolved stars was carried
out by de Medeiros and Mayor (1991), covering the spectral range from middle F to
middle K of luminosity classes IV, II, 11, and Ib. Figures 6.11 and 6.12 illustrate the
vsini measurements of their sasmple of stars as a function of the (B — V) color. The
cutoff in the distribution of rotational velocity for each luminosity classislocated at F8
IV, GO II1, FO 11, and near F9 Ib; this corresponds to the (B — V) colors 0.55, 0.70, 0.65,
and about 0.70, respectively.

Note the wide range of vsini values on the left side of the discontinuity for al
luminosity classes. Thislarge spread seems to reflect the broad distributions of rotation
rates along the main sequence, asillustrated in Figure 6.8. Note also that the spread in
vsini values on the left of the cutoff decreases with increasing luminosity. In fact, the
supergiant stars show no sudden decreasein rotation, and there is still alarge fraction of
dow rotators to the left of the discontinuity. This result strongly suggests that the origin
of the rotational discontinuity is not the same for all classes.

Aswas originally suggested by Gray in the 1980s, the rotational discontinuity for the
subgiant and giant stars can be interpreted as a result of a strong magnetic braking due
to the deepening of their outer convective envelopes at some point in their evolution. To
be specific, since the evolution of these stars carries them from hotter to cooler spectral
types, a plot of rotation versus (B — V) color delineates the time sequence of their
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Fig. 6.12. Projected equatoria velocities as functions of (B — V) color. Triangles refer to
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Dordrecht: Kluwer, 1991. (By permission. Copyright 1991 by Kluwer Academic Publishers.)

rotational changes. As their progenitors evolve off the main sequence, the evolutionary
increasein moment of inertiaslowly reducestherotation to the values attained on the left
of the discontinuitiesin Figure 6.11. Sudden changes seen near spectral types GO |V and
GO Il occur because the evolutionary deepening of the convective envel ope has become
sufficient to sustain dynamo activity. Thence, a small amount of material escaping from
the star's surface is caught in the open field lines of the dynamo-generated magnetic
field, so that large amounts of angular momentum can be carried away by the escaping
material (see Section 7.2). In short, the star develops an external magnetic brake that
rapidly decelerates the rotation of at least its outer convective envel ope.

Animportant piece of evidencein support of Gray’s mechanism comes from the work
of Simon and Drake (1989), who have shown that subgiant and giant stars undergo a
sudden decrease in chromospheric activity at spectral types GO 1V and GO |11, which
correspond to the (B — V) colors 0.6 and 0.7, respectively. The fact that in both cases
the observed decline in UV emission coincides with the sharp decrease in surface rota-
tion rates strongly suggests that Gray’s mechanism isindeed operative in these stars. As
they noted, thisjoint decay in activity and rotation marks a transformation from acous-
tic heating in the early F-type stars to a magnetically controlled activity in the cooler
stars, thus inducing a strong rotational braking action by means of stellar winds. De-
tailed calculations by Schrijver and Pols (1993) further indicate that the decrease in the
observed rotational velocities of subgiants and giantsis stronger than expected from the
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increase in moment of inertiaaone, so that loss of angular momentum through magnet-
ically channeled stellar winds must be substantial between the onset of convection and
just beyond the upturn onto the giant branch. For the most luminous classes, however,
the discontinuity in rotational velocities is probably the result of another evolutionary
effect.
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See also my comments in the epilogue.
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The late-type stars

7.1 Introduction

On the main sequence, it has long been known that large mean rotational ve-
locities are common among the early-type stars and that these vel ocities decline steeply
in the F-star region, from 150 km s to less than 10 km s~ in the cooler stars (see
Figure 1.6). As was shown in Section 6.3.2, the observed projected velocities indicate
that the mean value of the total angular momentum (J) closely follows the simple power
law (J) o« M? for stars earlier than spectral type FO, which corresponds to about 1.5M,
(see Figure 6.7). The difficulty is not to account for such a relation, which probably
reflects the initial distribution of angular momentum, but to explain why it does not
apply throughout the main sequence. It has been suggested that the break in the mean
rotational velocities beginning at about spectral type FO might be due to the systematic
occurrence of planets around the low-mass stars (M < 1.5M,,), with most of the initial
angular momentum being then transferred to the planets. Although this explanation has
retained its attractiveness well into the 1960s, there is now ample evidence that it is not
the most likely cause of the remarkable decline of rotation in the F-star region along
the main sequence. Indeed, following Schatzman's (1962) original suggestion, thereis
now widespread agreement that this break in the rotation curve can be attributed to
angular momentum loss through magnetized winds and/or sporadic mass g ections from
stars with deep surface convection zones. This interaction between rotation and surface
activity, which is the basis for understanding much of the evolution of low-mass stars,
will be considered in Section 7.2.

Now, aswas shown by Wilson (1963), the averageintensity of Call emissioninalate-
type dwarf and, hence, the general degree of its chromospheric activity bear an inverse
relationship to its age. A similar trend was found by Kraft (1967) in the rotational
velocities of late-F and early-G dwarfs. From a detailed examination of these data,
Skumanich (1972) has shown that both rotational velocities and Call emission decline
with advancing age according to at=%2 law (see Eq. [1.7]). This coincidence strongly
suggeststhat thereexistsa deep physical connection between rotation and surfaceactivity
among the low-mass stars. Further complexity was added to the problem when van
L eeuwen and Alphenaar (1982) announced the discovery of anumber of rapidly rotating
G- and K-dwarfs in the Pleiades, with equatorial velocities up to 170 km s1. This
important result led to a flurry of interest in the rotational evolution of these low-mass
stars, which spin down faster than predicted by Skumanich’s empirical law shortly upon
arriving on the main segquence. In Section 7.3 we shall briefly review the new rotational
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velocity data for T Tauri stars and late-type dwarfs in young open clusters (see aso
Section 1.3). The major theoretical models devel oped to clarify these new findings will
be considered in Section 7.4.

7.2 Schatzman’s braking mechanism

The relevance of magnetic braking for stars having deep surface convection
zones was first recognized by Schatzman (1962). Very briefly, it is assumed that these
stars generate episodic mass gjections that act as an expanding plasmain alarge-scale
magnetic field. As material is gected from the activity zones, the magnetic field can
enforce approximate corotation until the gas has moved out to distances much larger
than the star’ sradius. Beyond thisregion, because the magnetic stresses become lessand
less important, the outflowing material can thus leave the star, with each mass element
carrying away itsangular momentum. Aswe shall see below, if the gasiskept corotating
with the star, a quite small amount of mass loss yields proportionally a much greater
loss of angular momentum than matter retaining the angular momentum of the star's
surface. Given the efficiency of this mechanism for extracting angular momentum from
stars with outer convection zones, the break in the main-sequence rotational velocities
can be explained as follows. Since high-mass stars spend relatively little time in the
convective phase, magnetic braking is therefore virtually inoperative for these stars.
Hence, they suffer very little loss of angular momentum during their pre-main-sequence
contraction. In contrast, low-mass stars have a more important convective phase since
they retain an outer convection zone all the way to the main sequence. Magnetic braking
can thusoperate during their entire pre—main-sequence contraction and during their much
longer stay on the main sequence. Since the rapid drop in rotational velocity is seen at
approximately the point where main-sequence stars devel op subphotospheric convection
zones, it follows that angular momentum loss preferably occurs in the low-mass stars,
thus causing the observed rotational discontinuity in the F-star region. Aswas shown by
Wolff and Simon (1997), recent data strongly suggest that this sharp decrease in mean
equatoria velocity along the main sequence, from about 1.6M, down to about 1.3M,,
has aready been imposed during the pre-main-sequence phase of stellar evolution. For
masses less than about 1.3M, however, their analysis indicates that further loss of
angular momentum occurs rapidly during main-sequence evolution so that, by the age
of the Hyades (~ 600 Myr), mean equatorial velocities for starsin the spectral range F8
V-K5 V areremarkably uniform at any given mass and decline from about 11 km s~ at
F8V toabout 4kms at K5V (seeFigure 1.8).

Thestrongest support for thisrotation—activity connection comesfrom Wilson’s (1966)
finding that there is a sudden appearance of Call emission in the F-star region along the
main sequence, whereas it is never observed among the more massive stars. Obviously,
the close agreement between the onset of large rotational velocities and the termination
of chromospheresisvery suggestive of Schatzman's braking mechanism. More recently,
Cameron and Robinson (1989) have found another piece of evidence in support of
angular momentum loss via discrete mass egjection. They have obtained time series of
high-resolution spectra of the Ha profile in the active, rapidly rotating G8—KO0 dwarf
AB Doradus. Their spectra show transient absorption features that move through the
Ha emission profile on rapid time scales. These features strongly suggest the existence
of cool, dense clouds embedded in and corotating with the hot extended corona out
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to severa stellar radii from the rotation axis. Their calculations indicate that angular
momentum loss could account for rotational braking on a time scale of no more than
100 Myr. If so, these observations might provide an important clue as to how low-mass
starslose the bulk of their angular momentum upon their arrival on the main sequence.

Another mechanism by which starswith convective envel opes can dispose of aconsid-
erablefraction of their initial angular momentum is provided by stellar winds. Following
Mestel (1968), it is subphotospheric convection that is again the essential feature of the
mechanism. Waves generated in the outer convection zone are dissi pated above the pho-
tosphere, thus supplying the heat responsible for the formation of achromosphere and a
corona. When the coronal temperatures are too low to generate athermal wind, however,
large centrifugal forces acting on the corotating material can generate an outwardly mov-
ing flow (i.e., a centrifugal wind). In both cases, the wind motion accel erates outward
from very low values at the bottom of the corona to supersonic values far away from
the star’'s surface. Detailed studies have shown that the angular momentum loss rate is
equivaent to that carried by awind kept strictly corotating with the star out to aradius
r » in the circumstellar envelope (e.g., Mestel 1968). By definition, the corotating radius
r 5 isthe mean radius of the Alfvén surface defined by

= o

where theindices“ A” indicate that the wind speed v, the poloidal field strength H, and
the density p are evaluated at r = r . In the smple model developed by Weber and
Davis (1967), where the magnetic field in the thermally driven wind is approximately
radial in the corotating frame of reference, the effective corotation prescription givesthe
following expression for the angular momentum loss rate:

dJ 2 dM ra\?
—~-_Z__RQ(-L 7.2
dt 3 dt (R) ’ (7.2)

where Risthe star’sradius and 2 is the angular velocity of rotation. The importance of
the large-scale magnetic field can be seen on the following example. From solar-wind
data, onefindsthat r o ~ 30R, for the Sun; hence, by virtue of Eq. (7.2), the rather weak
solar magnetic field increases the angular momentum loss by three orders of magnitude
over its value calculated without magnetic field.

Now, from Eq. (7.1) and the definition of the massflux atr =r 4,

VA (7.1)

dm
E = —47'[,0A vAl’i , (73)
Eq. (7.2) can be rewritten in the form
dJ 2Q 2

Since the conservation of magnetic flux implies that Har ,{ = Ho R? in the case of a
purely radial field, Eg. (7.4) becomes
dJ = 2 Q

a2 (HoRY, 75
dt 3UA(O ) ( )
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where Hg istheaverage surfacemagneticfield. If alinear relationship of theform Hg oc

is assumed for the dynamo-generated magnetic field, with J o« M R?Q2 Eq. (7.5) yields
(s]9;
dt

After integrating Eqg. (7.6), one obtains

x — Q8. (7.6)

Q ot (7.7)

which isidentical to Skumanich’s empirical law (see Eq. [1.7]). Thisisamost fortunate
coincidence since it implies that a simple formulation of angular momentum loss via
magnetically channeled stellar winds is adequate to describe the rotational evolution
of solar-type stars on the main sequence. As we shall see in Section 7.4.2, however,
such a formulation does not describe adequately the spin-down of the very rapidly ro-
tating low-mass stars in young open clusters. In fact, there is now clear indication that
the angular momentum loss-rate saturates for surface rotational velocities in excess of
1020 kms™2.

To the best of my knowledge, there is as yet no complete theory that explains the
existence of adynamo saturation inthemost rapid rotators. However, thereisincreasingly
convincing observational evidence to support the idea that the dynamo activity of alate-
type star scaleswith itsrotation rate. Dynamo saturation was originally inferred by Vilhu
(1984) from the observation that the chromospheric and coronal emission fluxes depend
only weakly on rotation at high angular velocities. More recently, Patten and Simon
(1996) have undertaken a program to measure photometric rotation periods and X-ray
luminosities for late-type stars in the young open cluster 1C 2391 (age ~ 30 Myr). In
Figure 7.1 we plot the X-ray luminosity Ly against the rotation period P, for solar-type
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Fig. 7.1. The X-ray luminosity Lx as afunction of rotation period P for solar-type stars
in the IC 2391 (filled triangles), o Persei (filled squares), Pleiades (filled diamonds), and
Hyades (open circles) clusters. Source: Patten, B. M., and Simon, T., Astrophys. J. Suppl.,
106, 489, 1996.
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Fig. 7.2. Thenormalized X-ray luminosity Ry = Lx/Lpy asafunction of the Rossby number
Ng. Plotted aredatafor IC 2391 ( filledtriangles), « Persai ( filled squares), thePleiades( filled
diamonds), the Hyades (open circles), and field main-sequence stars (open squares). Source:
Patten, B. M., and Simon, T., Astrophys. J. Suppl., 106, 489, 1996.

stars in 1C 2391 and, for comparison, for older stars from o Persei (age ~ 50 Myr),
the Pleiades (age ~ 70 Myr), and the Hyades (age ~ 600 Myr). One readily sees that
there is an overall decline in the median rotation rate and X-ray luminosity with age.
Note also that the older cluster stars trace out a definite correlation between Ly and Py,
whereasthosein IC 2391 show at best aweak correlation between these two parameters.
Following current practice, in Figure 7.2 we present an alternative representation of this
activity—rotation plot, which greatly reduces the scatter when stars of different masses
are combined together asin Figure 7.1. In Figure 7.2 we depict again the whole sample
of stars, ranging in spectral type from late-F to M. The ordinate is the normalized X-ray
luminosity, Rx = Lx/Lpo, Where Ly is the bolometric luminosity; the abscissais the
Rossby number,

Ng = Pro , (7.8)

Tconv

where 1o 1S the turnover time of turbulent convective motions in the outer convection
zone. (Compare with Eqg. [2.30], which isthe standard definition of the Rossby number.)
Note the clearly defined discontinuity near log,, Nr = —0.5 and the saturation plateau
at smaller values of the Rossby number. The existence of this plateau is often ascribed
to a change in the nature of the stellar dynamo for the most rapid rotators.

7.3 Rotation of T Tauri and cluster stars

Cluestotheinitial angular momentum distribution of solar-type starsare mainly
gathered from observation of much younger objectssuch as T Tauri stars, which are low-
mass pre—main-sequence stars of age less than 10 Myr. Rotation periods and projected
rotational velocities are available for more than one hundred of these stars. Figure 7.3 il-
lustratesthe histogram of rotation periodsfor stars bel onging to the Orion Nebulacluster.
One readily sees that this frequency distribution is distinctly bimodal, confirming the
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Fig. 7.3. Frequency distribution of rotation periods of T Tauri stars in the Orion Nebula
cluster. Source: Choi, P. I., and Herbst, W., Astron. J., 111, 283, 1996.

discovery of Attridge and Herbst (1992). About one third of the stars are rapid rotators
with a median period of 2.55 days and a dispersion of 0.7 days. The others are sow
rotators with amedian period of 8.30 days, a dispersion of 3.8 days, and a sparsely pop-
ulated tail of very slow rotators extending to 34.5 days. It is important to note that this
bimodal distribution of periodsisnot restricted to the Orion Nebulacluster sinceitisaso
apparent in Figure 1.9, which depictsthe histogram of rotation periodsfor T Tauri starsin
other clustersand associations. According to Choi and Herbst (1996), thereislittle doubt
that 4-5 day periods arerare among T Tauri stars and so thishimodal period distribution
isreal.

Edwards et al. (1993) have also measured infrared color excesses for a sample of
thirty-four T Tauri starswith photometrically derived rotation periods and spectral types
later than K5. Their main conclusion is that the observed periods appear to be related
to the presence or absence of a circumstellar accretion disk. Those stars that they infer
to be surrounded by accretion disks (i.e., the classical T Tauri stars) are slow rotators
with periodslarger than 4 days, with amost probable period of 8.5 days, while those that
lack accretion disk signatures (i.e., the weak-line T Tauri stars) cover a wide range of
rotation periods, ranging from 1.5 to 16 days, including a significant number of objects
with periods smaller than 4 days. This result was confirmed by Bouvier et a. (1993),
who made adetailed study of T Tauri stars belonging to the Taurus-Auriga cloud. Their
analysis shows that the mean rotation period is about 4 days for the weak-line T Tauri
stars and about 8 days for the classical T Tauri stars. This apparent bimodality will be
interpreted in Section 7.4.1.

Other clues to understanding the late pre—main-sequence/early main-sequence evo-
lution of solar-type stars have been obtained from the study of late-type stars in the
a Persei cluster (age ~ 50 Myr), the Pleiades cluster (age ~ 70 Myr), and the Hyades
cluster (age ~ 600 Myr). Figure 7.4 illustrates the rotation periods of low-mass stars
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Fig. 7.4. Observations of stellar rotation periods in the open clusters o Persei, the Pleiades,
and the Hyades. Source: Barnes, S., and Sofig, S., Astrophys. J., 462, 746, 1996.

belonging to these three clusters. It isimmediately apparent that thereisasignificant in-
creaseinrotation period between the agesof o Persei and the Hyades (seealso Figures 1.7
and 1.8). In Figure 7.5 we display the observed v sini distributions of solar-type starsin
the (B — V) color range 0.55-0.85, corresponding to the mass range 0.8-1.0M. Again
note the considerable spread in projected rotational velocities for the starsin o Persei.

The salient features of these observations have been summarized by Stauffer (1994).
These are:

1. Very rapid rotators (vsini > 100 km s™1) are present at all spectral typesin o
Persai.

2. Relatively rapid rotators (vsini > 50 km s™1) are still present in the Pleiades
among the K- and M-dwarfs but are nearly absent among the G dwarfs.

3. All of the G- and K-dwarfs in the Hyades are slow rotators (vsini < 10 km
s™1), although there are still one K8 dwarf and some M dwarfs with moderate
rotation (v sini ~ 15-20 km s71) in the cluster.

4. In al three clusters, for al spectral types later than GO, more than half of the
stars are slow rotators, with vsini < 10 kms™.

With the adopted ages for these clusters, the spin-down time during the early main-
sequence evolution is afew 10 Myr for the G dwarfs, several 10 Myr for the K dwarfs,
and afew 100 Myr for the M dwarfs.
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Fig. 7.5. Observed v sini distributions for the open clusters « Persei, the Pleiades, and the
Hyades. Only starswith (B — V) color between 0.55 and 0.85 (or mass between 0.8M, and
1.0M) are shown. Source: Keppens, R., MacGregor, K. B., and Charbonneau, P, Astron.
Astrophys., 294, 469, 1995.

7.4 Rotational evolution of low-mass stars

The challenge for any theoretical modeling of the rotational evolution of low-
mass starsisto provide a convincing scenario that agrees with all of these observationa
facts. To be specific, the distribution of rotation rates that results from evolutionary
calculations must account for the following constraints:

1. the apparent bimodal period distribution of the T Tauri stars,

2. the simultaneous presence of very slow rotators and atail of very fast rotators
in the vicinity of the zero-age main sequence,

3. the rapid spin down of the fastest rotators,

4. the apparent longer spin-down time for the lower mass stars,
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5. thefact that all low-massstarsend up asvery slow rotatorsafter several 100 Myr,
spinning down according to a t~%2 law as they slowly evolve on the main
sequence.

It is to these questions that we now turn.

7.4.1 T Tauri starsand accretion disks

One of the puzzling aspects of star formation is the substantial discrepancy
between estimates of the angular momentum in the cores of molecular clouds and in
the youngest optically visible low-mass stars. To be specific, the typical specific angular
momentum J/M in amolecular cloud is of the order of 10?* cm? s™1, whilein atypical
T Tauri star near the birthline one finds J/M ~ 5 x 10Y cm? s1. Since angular
momentum isapproximately conserved during the near free-fall collapse of aprotostellar
cloud, it has often been suggested that spin angular momentum can be converted into
orbital angular momentum through fragmentation. I n fact, the formation of wide binaries
or multiple systems, aswell astheformation of circumstellar disks around the fragments,
greatly minimizesthe angular momentum problem. However, whereas wide binaries are
most likely reservoirs for the angular momentum of a collapsing molecular cloud, the
existence of close binaries with orbital angular momentum two orders of magnitude
smaller remains an open question. Moreover, detailed numerical calculations by Durisen
etal. (1984) indicate that each individual fragment should berotating near break up at the
end of its gravitational collapse. Thisis not borne out by the observations. The presence
of a circumstellar disk around some T Tauri starsis also a serious problem since they
tend to accrete mass and hence angular momentum from the disk. Following Hartmann
and Stauffer (1989), we find that typical accretion rates of 10-'M, yr—! are sufficient
to spin up a 1M, star to about half of the breakup velocity in a time comparable to
the age of the youngest T Tauri stars, about 1 Myr. Yet, observations reveal that most
of the T Tauri stars surrounded by accretion disks are rotating relatively slowly, with
vsini < 20 km s, Since this value is one order of magnitude lower than the breakup
velocity of aclassical T Tauri star, it appears that the processes that control the rotation
rate of such a star were probably operative during the early phases of its collapse.

Aswaspointed out in Section 7.3. T Tauri stars surrounded by accretion disks not only
haverotational vel ocities much smaller than the breakup velocity but have systematically
longer rotation periods than stars of similar mass and age that do not exhibit accretion
disks. These observations strongly suggest that the accretion disk is acting to counter
the spin-up torque expected both from pre-main-sequence contraction and from the
deposition of high angular momentum material from the disk onto the star. Broadly
speaking, two distinct angular momentum regul ation mechanisms have been proposed,
both of them relying on the interaction between the magnetosphere of arotating star and
acircumstellar accretion disk.

Konigl (1991) has invoked the theory of Ghosh and Lamb (1979) for accreting mag-
netic neutron stars and white dwarfs to explain the slow rotation rate of T Tauri stars as
the result of magnetic coupling to a truncated disk. In this model the poloidal magnetic
field of the star has a closed global structure, modeled as an aligned dipole. Material in
the disk that spirals slowly inward moves aong the closed field lines and is channeled
onto the star at high latitudes. That isto say, the dipolar field disrupts the inner parts of
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the circumstellar disk and the central star becomes effectively coupled to the disk severa
radii out. This possibility was investigated by Konigl, who found that a kilogauss field
could disrupt the disk at a distance of a few stellar radii from the center and that the
spin-down torque transmitted by thefield linesthat thread the disk beyond the corotation
radius could indeed bal ance the spin-up torque applied by accreting material. More re-
cently, Cameron and Campbell (1993) have shown that a T Tauri star could evolveinto a
state of rotational equilibrium within the duration of the Hayashi phase, despite the rapid
contraction of the star. The resulting rotation rates of their models, which have magnetic
fields of afew hundred gauss and an accretion rate of afew 10-8M, yr—1, are also found
to be consistent with the observed rotation rates of classical T Tauri stars.

Alternatively, Shu et al. (1994) have proposed a model in which shielding currents
in the surface layers of the disk are invoked to prevent penetration of the stellar field
lines everywhere except near the corotation radius Ry, Where the Keplerian angular
velocity of the disk matches the angular velocity of the star. Exterior to Ryoror, matter
diffuses onto field lines that bow outward, resulting in a magnetocentrifugally driven
wind with a mass loss rate proportional to the disk accretion rate Mp. Matter interior to
Reorot diffuses onto field lines that bow inward and isfunneled onto the star’ssurface. Itis
found that thisflow actually resultsin atrailing-spiral configuration for themagneticfield
and that it transfers angular momentum from the star to the disk aslong asthe corotation
radius remains significantly greater than the star’s equatorial radius R. Aswas shown by
Ostriker and Shu (1995), for an aligned stellar dipole of strengthm = H R® the corotation
radiusis given by

m4 1/7

Reorot = 0.923 (GMM%) ) (7.9)
where H isthefield strength at the equator, G isthe constant of gravitation, and M isthe
star’'s mass. Parenthetically note that the Ghosh—Lamb theory yields a similar relation,
except for the value of the numerical constant, which isnot exactly known but should be
of order unity. Making use of Kepler’'sthird law, one obtains the star’s rotation period as

m 1/7
Pt = 5.57 <3> . (7.10)
GSMSM

Letting Pt = 8 days, M = 0.5M,, and Mp = 10-"M, yr~1 in Eq. (7.10), one finds
that m = 7.32 x 10% in cgs units. This value corresponds to H ~ 800 gauss and
Reorot & 4.4R for a star with R = 3R,,. Thus, given reasonable values for the stellar
parameters, appropriately slow rotation rates are obtained for the classical T Tauri stars.

The hypothesisof disk-regulated angular momentum providesan attractive framework
for understanding the rotational evolution of low-mass pre-main-sequence stars. No
commonly accepted model exists at the present time, however, since the fine details
of the disk—star interaction are still to be modeled quantitatively. Nonetheless, ample
evidence now exists that an accretion disk may play a fundamental role in regulating
the rotation rate of a classical T Tauri star, holding its angular velocity amost fixed
during Hayashi track evolution. This locking results in net transfer of specific angular
momentum from the central star to the disk, so that the total angular momentum of the
star steadily decreases in time until its regulating accretion disk is fully dissipated. If



200  Thelate-type stars

s0, then the observed bimodal period distribution for T Tauri stars clearly indicates that
the fast rotators are stars that, for one reason or another, are not strongly locked to an
accretion disk during Hayashi track evolution. Hence, because they remain free to spin
up in response to changes in moment of inertia as they contract, they also cover awider
range of rotation periods than their disk-locked counterparts. Aswas noted by Choi and
Herbst (1996), the gap in the histogram of T Tauri starsis evidence of the rapid evolution
through which a star passes on its way to another mechanical equilibrium, once released
from its disk induced rotational lock.

In Section 7.3 we have seen that the rotation distribution among main-sequence dwarfs
of spectral type G and later in very young open clusters consists of a narrow peak at
vsini = 10 km s~ or less and an extended tail of rapid rotators, with v sini > 100 km
s~! (see Figure 7.5). As was noted by Cameron, Campbell, and Quaintrell (1995), the
presence of fast and slow rotatorsin the same cluster suggeststhat this peak-and-tail dis-
tribution is already established when the cluster stars reach the zero-age main sequence.
In order to check the validity of that assumption, they have thus expanded the work of
Cameron and Campbell (1993) to determine how disk braking might affect the histogram
of rotation periodsfor |ow-mass stars on the zero-age main sequence. For disk masses of
afew hundredths of asolar mass or more, and dynamo-generated field strengths of afew
hundred gauss, their numerical calculations indicate that the net (magnetic plus accre-
tion) torqueis sufficient to pull the star’ srotation into quasi-static equilibrium before the
end of the Hayashi phase, with the resulting rotation rate being one order of magnitude
lower than the breakup rate. Thence, by the time this equilibrium breaks down due to
the dwindling accretion rate, the star’s rotation is effectively independent of both the
disk massand the initial angular momentum of the star. For lower disk masses, however,
such an equilibriumis never established so that the star can retain agreater fraction of its
initial angular momentum. The histogram of rotation rates that results from areasonable
choice for the distribution of disk masses has the form of a low-velocity peak and an
extended high-velocity tail. The slow rotators are the stars that evolved into rotational
equilibriumasclassical T Tauri starsand gave away most of their initial angular momenta
totheir former disks; the starsin thetail arethosewith lower initial disk masses, inwhich
rotational equilibrium was never established during the Hayashi phase. If thisisthe case,
thentheir model providesanatural explanation for the histogramsdepictedin Figure 7.5.

7.4.2 Rotational evolution models
Since the early 1990s, much theoretical effort has been expended in trying to
understand the rotational history of a low-mass star, both before and during the main-
sequence phase. Notably, MacGregor and Brenner (1991) have devel oped a particularly
simple description of the transport of angular momentum within the interior of a solar-
type star. In this section | shall briefly describe their model, its use in conjunction with
a suitable parameterization for the angular momentum loss resulting from magnetized
stellar winds, and some of the numerical results obtained by Keppens, MacGregor, and
Charbonneau (1995).
Broadly speaking, their approach to constructing an evolutionary sequence isto sim-
plify matters by separating computation of the rotational evolution from that of the
internal, structural evolution. Accordingly, we shall assume that the effects of rotation
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on internal structure are small, so that an evolutionary track for a spherical star of the
same mass can be used to calculate the star’ sradius R, the radius of the convection zone
base Ry, the mass of the radiative core Mg, and the moments of inertia, |qe, and
| conv, Of the core and envelope. We shall further assume that the radiative core and the
convective envel ope each rotate rigidly, although not necessarily at the samerate. If Qcgre
and Q. are the angular velocities of the core and envel ope, then the angular momenta
of these regions are Joore = lcoreS2core and Jeov = leonvS2conv- With these aSSUmPtiOHS
the equations governing the time evolution of these angular momenta can be derived by
considering the processes by means of which angular momentum is redistributed and
lost.

During pre—main-sequence contraction, angular momentum is reapportioned between
the core and the envel ope as aconsequence of the gradual conversion of thestellar interior
from anearly fully convective state to onein which most of the massis contained within
theradiative core. Thus, if d Mye/dt denotestherate of growth of the core mass, angular
momentum exchange will occur at the rate jdMcore/dt, where

.2
] = é Qconv Réonv (7-11)

is the specific angular momentum of material in the thin spherical shell about the radius
I = Reonv(t) that is undergoing assimilation at the core at time't.

We now assume that the torque exerted by the magnetically controlled wind extracts
angular momentum only from the surface convection zone. The resulting decel eration of
the convective envel ope causes ashear to devel op at the core-envel opeinterface. Inareal
star, this would lead to the creation of interfacial stresses that would act to redistribute
angular momentum between thetwo regions. I|nthe MacGregor—Brenner heuristic model,
one simulates this transport process by assuming that an amount of angular momentum

AJ = |core|oor1v (Qoore _ Qconv) (712)
Icore + ICOﬂV
is transferred from the core to the envelope in a specified time z.. Note that an instan-
taneous exchange of angular momentum A J would equilibrate Q¢ore and Qeony, thereby
restoring an angular momentum distribution that satisfiesthe essential stability condition
defined in Eq. (3.98).
In the absence of magnetic coupling with an accretion disk, the combination of the
foregoing effects can be written down in the form
d Jcore _ A_‘J . d Mcore

= 7.13
dt T +) dt =’ (7.13)

for the core, and
d Jeory _ Ai\] o dMeore  Jeorv

dt B Tc dt Tw 7

for the surface convection zone. In these equations, t. is the prescribed core-envelope
couplingtimeand z,, isthee-folding timefor wind-induced angular momentum ossfrom
the convective envelope. (The time scale t,, needs to be calculated from a reasonable
model for the steady-state expansion of the stellar corona.) Once Reony, d Meore/dt, eore,

(7.14)
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Fig. 7.6. Theevolution of the rotation rate (in units of Qo = 3 x 1076 s72) of the core, Qeore,
and the convective envelope, Qo (thicker lines) for asingle star. Panel A: For a 1M, star,
with initial equatorial velocity veg = 15 km s™* and coupling time scale 7. = 20 Myr, for
three different dynamao prescriptions. The solid linesarefor alinear dynamo; the dashed lines
for adynamo saturated at Qqony > 5Q4; and the dash-dotted lines for a dynamo saturated at
Qeonv > 10Q. Panel B: Therotational historiesfor a1M, star having ves = 15kmstanda
linear dynamo for r, = 5 Myr (dashed lines), 20 Myr (solid lines), and 50 Myr (dash-dotted
lines). Panel C: A 1M, star, with 7, = 20 Myr and alinear dynamo, for veg = 5 km s
(dashed lines), veqg = 15 km s~ (solid lines), and veg = 25 km s~ (dash-dotted lines). Panel
D: For a star of mass 0.8M,, (dashed lines), 0.9M,, (dash-dotted lines), and 1.0M,, (solid
lines), with . = 20 Myr, alinear dynamo, and ve; = 15 cm s 1. Source: Keppens, R,,
MacGregor, K. B., and Charbonneau, P, Astron. Astrophys., 294, 469, 1995.

and |, are known along an evolutionary track, Egs. (7.13) and (7.14) can be integrated
to yield the rotational evolution of the core and envel ope of alow-mass star.

In Figure 7.6 we illustrate the influence of the model parameters on the rotational
evolution of asingle star. Panels A, B, and C are calculated for a 1M, star; they depict
the effect of varying the dynamo prescription, the coupling time scale ., and theinitial
equatorial velocity vey. Panel D illustrates the rotational evolution of stars of different
mass. Obvioudly, an important feature of these solutions is the convergence of rotation
rates after atime of the order of 1 Gyr. It is also apparent that the rotational memory of
a solar-type star is effectively lost at the age of the present-day Sun. In fact, all models
considered end up rotating at nearly the present-day solar rotation rate (2 =~ 3 x 107°
s1), with essentially no internal differential rotation.
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Panel A of Figure 7.6 shows how the phenomenological dynamo prescription influ-
ences the rotation evolution of a 1M, with veg = 15 km s7* and r, = 20 Myr. The
solid line correspondsto alinear dynamo, that is, adynamo for which the strength of the
mean corona magnetic field increases linearly with rotation (see Egs. [7.5] and [7.6]).
The dashed lines and dash-dotted lines correspond to saturated dynamos, in which the
mean coronal field saturates when the star rotates faster than, respectively, 5 and 10
times the present-day solar rotation rate. One readily sees that dynamo saturation re-
duces the angular momentum loss from the stellar wind since a lower field strength
at the base of the corona causes less efficient magnetocentrifugal acceleration of the
plasma. The angular momentum carried away by the stellar wind is therefore reduced,
so that higher rotational velocities are achieved and sustained for alarger time. Aswas
shown by Keppens and coworkers, alinear dynamo produces adequate spin-down early
in the evolution but fails to produce sufficiently rapid rotators at the ages of o Per-
sei and the Pleiades. Their analysis also shows that a saturated dynamo can explain
the observed large spreads in rotation rates but the level of saturation is constrained
by the requirement of achieving spin-down to slow rotation by the Hyades age (see
Figure 7.5).

Making use of their parametric model for the rotational evolution of asingle star, Kep-
pens and coworkers have also investigated how the distribution of rotational velocities
for late-type starsin the massrange 0.8-1.0M, evolveswith age. Starting from an initial
distribution compiled from observations of rotation among T Tauri stars, they found that
reasonabl e agreement with the observationally inferred rotational evolution of solar-type
starsis obtained for: (i) alinear dynamo that saturates beyond 20 times the present-day
solar rotation rate, (ii) acoupling timescale . of the order of 10 Myr, (iii) amix of stellar
masses consisting of roughly equal numbers of 0.8M, and 1.0M, stars, and (iv) disk
regulation of the surface rotation up to an age of 6 Myr for starswith initial rotation peri-
odslarger than 5 days. Thefirst requirement isin agreement with the observed saturation
in chromospheric and coronal emission fluxesin the fastest rotators (see Section 7.2). As
they noted, however, a number of discrepancies remain. In particular, their calculations
fail to produce a sufficiently large proportion of slow rotators (veq < 10 km s™*) on the
Zero-age main seguence.

At this juncture it is appropriate to compare these results with some of the model
calculations made by Barnes and Sofia (1996). Following closely the method described
in Section 5.4.1, these authors have computed the overall redistribution of angular mo-
mentum by making use of a simple diffusion equation and some ad hoc prescription for
their coefficient of eddy viscosity (see Eq. [5.43]). Asusual, the values of that coefficient
were obtained by requiring that the present-day Sun rotates at the observed rate. A suit-
able parameterization was also used to describe the angular momentum loss through the
action of amagnetically channeled stellar wind. An important conclusion of their work
isthat angular momentum losswithout saturation isunable to account for the presence of
thefastest rotatorsin young star clusters, regardless of the initial rotation periods. More-
over, calculations of evolutionary models in the mass range 0.6-1.0M, show that the
saturation threshold is different for G, K, and M stars, with lower-mass stars saturating
at lower angular velocities. Because |ower-mass stars have deeper convective envel opes,
this result seems to indicate that turbulent convection contributes significantly to the
dynamo-generated magnetic fields of low-mass stars.



204  Thelate-type stars

Insofar as comparison is possible, these results are quite similar to those obtained by
Keppens and coworkers. In particular, both studies indicate that dynamo saturation is
required to maintain a considerable spread in rotation rate at least until the age of the
o Persei cluster (see Figure 7.5). Both studies also show that the observed spin-down
of the slow rotators in the young open clustersisin better agreement with differentially
rotating model sthanwith rigidly rotating models. Sincetheseinvestigationswere carried
out by means of modelsthat make use of quite distinct parameterizationsto treat angular
momentum |oss and redistribution, thereis thus compelling evidence that saturated mag-
netized stellar winds, structural evolution, and core—envelope decoupling are the main
agentsdetermining therotational history of alow-massstar. Aswas pointed out in Section
7.4.1, however, the effects of disk regulation during the pre—main-sequence phase should
also be taken into account since disk—star magnetic coupling prevents, to some extent,
spin-up associated with decreasing moment of inertia during that contraction phase.
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Tidal interaction

8.1 Introduction
The main body of the book has been concerned with the effects of axial rotation
upon the structure and evolution of single stars. As was pointed out in Section 1.4,
further challenging problems arise from the study of double stars whose components
are close enough to raise tides on the surface of each other. Indeed, tidal interaction in
a detached close binary will continually change the spin and orbital parameters of the
system (such as the orbital eccentricity e, mean orbital angular velocity Q2q, inclination
w, and rotational angular velocity 2 of each component). Unless there are sizeable
stellar winds emanating from the binary components, the total angular momentum will
be conserved during these exchange processes. However, as aresult of tidal dissipation
of energy in the outer layers of the components, the total kinetic energy of a close binary
system will decrease monotonically. Ultimately, thiswill lead to either a collision or an
asymptotic approach toward astate of minimum kinetic energy. Such an equilibrium state
is characterized by circularity (e = 0), coplanarity (w = 0), and corotation (2 = Q);
that is to say, the orbital motion is circular, the rotation axes are perpendicular to the
orbital plane, and the rotations are perfectly synchronized with the orbital revolution.
To be specific, unless the binary components rotate in perfect synchronism with a
circular orbital motion, each star senses a variable external gravitational field — thus
becoming liable to oscillatory motions that may be described as an “equilibrium tide”
and a“ dynamical tide.” The former isjust the instantaneous shape obtained by assuming
that strict mechanical equilibrium prevails, even though the forcing potential dependson
time, that isto say, it isassumed that theforced oscillations of the star are rapidly damped
out and do not affect the “equilibrium distortion.” The latter refers to the dynamical
response of the star to the tidal forcing of its natural modes of oscillation. As we shall
see in Section 8.2, the effects of turbulent viscosity retarding the equilibrium tide play
an important role in binary components with a deep convective envelope; these stars
experience atorque that tends to induce synchronization. However, because viscosity is
much too small in stars having an outer radiative envelope, a different mechanism must
be invoked to explain the high degree of synchronism and orbital circularization that is
observed in the early-type binaries. In Section 8.3 we shall see that radiative damping
can produce in part the required torque by retarding the dynamical tide in these stars.
In the late 1970s, the theoretical predictions based on these two distinct mechanisms
wereinagreement with the (then current) observations. Unfortunately, aswill beshownin
Sections 8.2.2 and 8.3.1, they are unable to explain all of the most recent observational
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data reported in Section 1.4. This is the reason why in Section 8.4 we shall consider
another braking mechanism, which is much more efficient than the two classical ones
but has hitherto escaped notice. In my opinion, this third mechanism was overlooked
for so long because too much reliance had been placed on the deep-rooted tradition of
celestial mechanics, with the hydrodynamical aspect of the problem being neglected
altogether. Aswe shall seein Section 8.4.2, this mechanismis operativein the early-type
and late-type binaries alike. It involves alarge-scale meridional flow, superposed on the
motion around therotation axis of thetidally distorted star. Thesetransient, mechanically
driven currents are caused by the forced lack of axial symmetry in abinary component;
they cease to exist as soon as synchronization has been achieved in the star. They are
thus quite different from the steady, thermally driven currents presented in Section 4.6,
which, aswerecall, are caused by the forced lack of spherical symmetry in the radiative
envelope of atidally distorted binary component. They are also quite different from the
large-scal e atmospheric motions presented in Sections 2.5.1 and 2.5.2; aswe shall seein
Section 8.5, however, these geostrophic (or astrostrophic) currentsare of direct relevance
to the study of contact binaries.

8.2 Thetidal-torque mechanism

The tidal-torque mechanism was originally discussed by Darwin (1879) with
reference to a planet—satellite system. Aswas shown by Zahn (1966), it is aso effective
in binary-star components possessing an extended outer convection zone. In this model
each component possesses tides lagging in phase behind the external field of force on
account of eddy viscosity inits convective envelope. Accordingly, this misalignment of
the tidal bulges with respect to the line joining the two centers of mass will introduce
a net torque between the components. This torque will cause, in turn, a secular change
in spin angular momentum of the individual components, the effects of which will be
reflected in secular changes in the orbital el ements of the binary.

8.2.1 Darwin’sweak-friction model

For the sake of clarity, | shall first derive the synchronization time for a system
of two rotating starsin circular orbits about their common center of mass; the rotation
axes are assumed to be perpendicular to the orbital plane. We take as the origin of our
system of coordinates the center of mass of the primary (of mass M and radius R). We
shall aso assume that the radii of the components are smaller than their mutual distance
d, so that the secondary may be treated as a point mass when studying the tidesraised on
the primary. To lowest order in theratio r /d, thetidal potential W due to the secondary
(of mass M) is

GM'r2
W(r, 9) = T; P,(cos ). 8.1)

wherer isthe distance from the primary’s center, ¢ is the angle between the direction
to the field point and the line joining the two centers of mass, and P; is the Legendre
polynomial of degree two. The dynamical tide will be neglected altogether.

If viscous dissipation is negligible, the equilibrium tide raised by the secondary can
be described by an effective potential W, whose value at the primary’s surface is given
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by

GM’'R?
where k isthe apsidal-mation constant, which depends on the density stratificationin the
tidally distorted star. Outside the primary, the potential W, will be the external solution
of Laplace's equation, with Eq. (8.1) defining its boundary valueat r = R. One obtains
GM'R®
s P,(cos ), (8.3)

whenever thetidal bulges are symmetrical about the linejoining the two centers of mass.

Turbulent friction introduces a small time lag At, however; the tidal bulges lag (or
lead) by a small angle § if the rotational angular velocity 2 of the primary is smaller
(or greater) than the orbital angular velocity ©¢. This produces a torque component in
the gravitational attraction of the two stars. The tidal torque I" felt by the secondary is
equal to M’ f,d = —M’0W,/adv, where the angular derivativeisevaluated atr = d and
¥ = 4. One readily sees that

3, GM? /R\® . GM? /RY°
Thetidal torque acting upon the primary is exactly opposite of thistorque.

Now, in the so-called weak-friction approximation one assumes that the small angle
8 islinearly proportional to the departure from synchronism, with this angle being aso
proportional to the strength of viscous dissipation. We shall thus write

We(r, 9) =k

5= (Q — Q)AL = (2 — szo)tf?%, (8.5)

where ty = (GM/R3) Y2 is the free-fall time and T is atypical time scale on which
significant changes in the orhit take place through tidal evolution. Since the latter is
inversely proportional to the efficiency of viscous dissipation, we shall further let T =
R? /v, where, isthecoefficient of eddy viscosity (see Section 2.4). Weshall also assume
that the primary goes through a succession of rigidly rotating states, during which the
tidal torque causesaslow but inexorable changein the spatially uniform angular velocity
Q. Onethushas | @ ~ —T", where | is the moment of inertia of the primary about its
rotation axis. (A dot designatesaderivativewith respect to time.) Thence, wecan estimate
the characteristic time for synchronization, tg,, by

. Q-Q HQ-Q) 15T (dY

=g (/)
wherery = (I /M R?)Y2isthefractional gyrationradiusandq = M’/M isthemassratio.
Simultaneously, via the torque I", angular momentum is transferred from the primary’s
spin to the secondary’s orbit. This results in a secular change in the distance ratio d/R
and, hence, in the orbital angular velocity Q.

The weak-friction model is ideally suited for a detailed study of tidal interaction in

detached close binaries that have significant eccentricities. Following Hut (1981), we
shall assume that the deviations from coplanarity are small enough to be treated linearly.

(8.6)
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To simplify the discussion, the secondary is aso assumed to be point like so that only
on the primary tides will be raised. If so, then, it can be shown that the resulting tidal
evolution equaIions for the primary are as follows:

d 8

oAt (3 ) gogEs MO -0-PEA S| @D
d k R\? 11

=1+ 0) (5 g | W@ - - A o | @9
dQ  _k g? ¢ Q a2 Q

&= (3) g | - a-e@ | 89)

do k g2 w Q
W=t (B) s 2 [t - sa-ma-e ) 2.
(8.10)

where a is the semimagjor axis, e is the eccentricity, Q2 is the rotational angular velocity,
and w isthe angle between the orbital plane and the equatorial plane of the primary. For
brevity, we have defined the foll owi ng guantities:

255 ,, 185 5 25

f(€?) =1+ e2 5 €t et u® (8.11)
15 45 5
f =1+ "€+ — = 12
2(€%) +5 &€+ ge +16e (8.12)
15,,5,,5
3 1,
3 4
In EQ. (8.10) we have also let
r2 1+q /RV Q
= g — ) = 8.16
=g e (a) ay (6.16)

which is the ratio of rotational to orbital angular momentum (see Eq. [8.18]). Finaly,
one can write Kepler's third law in the form
GM(1+q)
ad '
where © is the mean orbital angular velocity.
By making use of Egs. (8.7)—8.9), oneeasily verifiesthat thetotal angular momentum
of the system is conserved. Here we have

Q2= (8.17)

d MM’ )
n {I Q+ M T M/[G(M + M)a(l - e2)]1/2} =0, (8.18)
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since the rotational contribution from a point-mass companion can be neglected. In the
case of two extended deformable bodies, Egs. (8.7) and (8.8) can be applied to each
binary component, interchanging the role of primary and secondary and adding both
contributions to the orbital parametersa and e.

The behavior of the solutions of Egs. (8.7)—8.10) around a state of equilibrium has
been thoroughly investigated by Hut (1981). In particular, for moderately small eccen-
tricities, hewasableto derivethetime scalesfor the exponential relaxation of therelevant
parameters. In detached close binaries for which the orbital angular momentum is much
larger than the sum of the rotational angular momenta, Hut found that the characteris-
tic time for orbital circularization, t, is much larger than the other three, which are
of comparable magnitude.* Making use of Eg. (8.9), one easily obtains the linearized
equation

1 daQ 1
®e_ 2 (8.19)
Q—Qp dt tn
where
r2 T /a\®
=3 _ (= 2
=5t o5 (%) 620)

which confirms the order-of-magnitude estimate given in Eq. (8.6). For two extended
bodies in amost circular orbits about their common center of mass, Eq. (8.8) further
implies that

lde 1 1

e dt B tcir(:l-) tcir(z)’
wherethefigures 1 and 2 refer to the primary and secondary, respectively. For the primary

one has
2 T a\®
= —— ——<| = .22
= 20k g+ o) (R) ’ (6.22)

thesecondary (of mass M’ andradius R’, say) makesasimilar contributionto theeffective
circularization time, which is the harmonic mean of the circularization times obtained
for the individual components.

One readily sees from Egs. (8.20) and (8.22) that the ratio ty,/t is of the order
of the parameter n evaluated at equilibrium (see Eg. [8.16]). Since this quantity is
much smaller than one in a detached close binary, we perceive at once that the syn-
chronization of the components proceeds at a much faster pace than the circularization
of the orbit. To the best of my knowledge, Hut (1981) was the first to point out that
the rotation of each component in a detached close binary will synchronize with the
instantaneous angular velocity at periastron, since during each revolution the tidal in-
teraction will be the most important around that position (see Eq. [1.8]). Recall aso
that the inclination w decreases rather quickly while at the same time rotation tends to
synchronize with revolution, whereas the eccentricity of the orbit decreases at a much

(8.21)

* Thisordering of thetime scaleswasoriginally noticed by Alexander (1973, Figs. 7-10), whointegrated
numerically the tidal-friction equations for the close binary system AG Persai.
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slower pace. This property of a detached close binary, which is probably independent
of the exact nature of the underlying dissipative process, is a most likely explanation
for the correlation between synchronism and coplanarity, as reported at the end of
Section 1.4.

In deriving Egs. (8.9) and (8.20) we have explicitly assumed that the tidally distorted
star remains in a state of uniform rotation throughout itstidal evolution. As was shown
by Scharlemann (1982), however, atidally distorted star with an extended, differentially
rotating convective envelope can be synchronized on the average, at aspecific latitude on
the surface of the star. Of course, because the tidal torque is applied mainly to the outer
convectiveregions, the radiative core might rotate at aquite different speed —unlessthere
isastrong coupling between the inner core and the outer envelope. In fact, even though
such a coupling might exist in the late-type stars, once a star has evolved away from
the main sequence it develops a helium-rich core whose rotation becomes decoupled
from that of the envelope. This is particularly relevant to the case of a close binary
star that has achieved synchronism and orbital circularity on the main sequence, since
post—main-sequence expansion will desynchronize the components while maintaining a
circular orbit as they move up to the giant branch. As we shall seein Section 8.4.1, in
that case one must integrate Egs. (8.19) and (8.21) along the evolutionary paths of the
binary components, retaining the time dependence of theradii R and R’ in the functions
twn and -

8.2.2 Application to late-type binaries

For tidally distorted stars possessing a deep convective envelope, it is generally
believed that turbulent friction operating over thewhol e of that envel opeisresponsiblefor
thetidal torqueT", sothat the characteristictime T must beaconvectivefrictiontimescale
derived from stellar envelope parameters (see Egs. [8.4] and [8.5]). Lacking any better
theory of turbulent convectionin astar, weshall thuslet T = R?/vy, and v, = L.V, where
L. isthetypical size of thelargest eddiesand V; isatypical convection velocity. Mixing-
length theory provides crude estimates of these quantities. Following Zahn (1966), we
have that the convective friction time scale T is of the order of (M R?/L)Y3, where
L is the total luminosity of the star. (One has T ~ 160 days for a solar-type star.)
By virtue of Egs. (8.17) and (8.20), this particular prescription for the eddy viscosity
impliesthat the synchronization timets, is proportional to the fourth power of the orbital
period P (= 27/ Qo) — that is, tyn o (a/R)® or tyn o< P%. Similarly, by making use
of Egs. (8.17) and (8.22), one readily sees that ti, o« (a/R)® or tg o P2 These
rather high exponents make the characteristic times ty,, and t;; strongly dependent on
the separation of the components or, equivalently, on the orbital period.

The results obtained in Section 8.2.1 clearly show that the degree of synchronism
and orbital circularization depends on how long the tidal torque has been operative on
the binary components. Accordingly, because main-seguence stars evolve with almost
constant radius, much information can be gained by merely comparing the evolutionary
age of a main-sequence star with the corresponding time scales ty, and t,. The study
of main-segquence close binaries belonging to open clusters is of particular interest,
therefore, since stellar evolution theory provides an estimate of their agesfromisochrone
fitting. Here we shall mainly discuss the problem of orbital circularization, making use
of the observational data summarized in Table 1.2 and Figure 1.12.
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Aswasnotedin Section 1.4, inasampleof |ow-mass mai n-seguence binariesbel onging
to the same cluster, all binaries with periods shorter than a cutoff period — Py, Say —
have circular orbits, whereas binaries with longer periods have orbits with adistribution
of eccentricities. From Table 1.2 it is also apparent that an older sample of binarieshasa
longer transition period, with P, increasing monotonically with the sasmple aget,. This
isin perfect agreement with the fact that in a coeval sample of binaries the cutoff period
is time dependent, because the tidal interaction has more time to extend itsinfluencein
an old cluster than in ayoung one. The crucial test for Darwin’stidal-torque theory isto
check whether the circulation time defined in Eq. (8.22) isindeed shorter than (or equal
to) theaget, at P = Py.

To illustrate the problem, we shall assumethat M = My, R = Ry, andq = 1.
Although k probably lies within the range 0.01-0.02, | shall give an edge to the theory
and let k = 0.05. By virtue of Kepler'sthird law, Eq. (8.22) can be recast in the practical
form

tir(yr) = 6 x 10° T (yr) [P (day)]**". (8.23)

Because we are considering similar binary components, the effective circularization time
may differ from this by a factor of two, which is unimportant for our purpose. Since T
is afree parameter in Eq. (8.23), let us prescribe that for each cluster the characteristic
timetg, isequal toitsaget, at P = Pgy. Letting Py = 18.7 daysat t, = 17.6 Gyr, one
easily verifies that

ta(yr) =3x 10° [ Pcut(day)] 1673 (8-24)

gives a moderately good fit for the other coeval samples listed in Table 1.2. Since
Egs. (8.23) and (8.24) must beequivalentat P = P, onereadily seesthat the mechanism
is operative on the main sequence provided one has

T <5x 10 3yr ~ 2 days, (8.25)

whichismuch shorter than T ~ 160 days. Now, withR~ R, L, ~# R,/10,and T ~ 2
days, the formula T = R?/v, implies that the typical convection velocity V. should be
of the order of 40 km s~1. Obviously, this independent evaluation of T is also too large
by about two orders of magnitude.*

At this juncture it is appropriate to mention the work of Claret and Cunha (1997),
who have integrated Egs. (8.21) and (8.22) using a set of low-mass stellar models that
are slowly evolving on the main sequence. Unless turbulent dissipation is artificially

* Zahn (1989) hasargued that onehasv; o< P inthe short-period binaries, thusimplying that one should
let teyn o P3 and tg oc P33 in these stars. According to Goldman and Mazeh (1991), however,
one has v, o« P2 in the short-period binaries, so that one should let tyn o P? and tg o P13
Unfortunately, although these modified versions of the standard theory can provide a somewhat
better fit to the slope of the observed log t;,—og P, relation, they are still unable to resolve the basic
weskness of the tidal-torque mechanism: Given a reasonable theoretical value for the convective
friction time scale T, the circularization times are much too long a P = P, during the main-
sequence phase. Thisinadequacy has been aso confirmed by the independent analysis of Goodman
and Oh (1997), who concluded that some mechanism other than turbulent convection circularizes
solar-type binaries.
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enhanced by afactor around 100—200, their cal cul ations show that the tidal -torque mech-
anism is most ineffective in inducing orbit circularization on the lower main sequence.
This result thus brings confirmation to the foregoing order-of-magnitude cal culation.

Of direct relevance to the present discussion are the results of Zahn and Bouchet
(1989), who have studied the pre-main-sequence evolution of solar-type binary stars.
During this contraction phase, because a star undergoes great changes in size and struc-
ture, it is necessary to follow in time the dynamical state of the binary star along the
evolutionary paths of its components (see Egs. [8.21] and [8.22]). Their calculations
strongly suggest that most of the orbital circularization takes place during the Hayashi
phase, with the subsequent decrease in eccentricity on the main sequence being quite
negligible. They found that the cutoff period of any sample should lie between 7.2 and
8.5 days, independent of the sample age. Unfortunately, this conclusion is not at all
supported by the observational data reported in Table 1.2, which strongly suggest that
the circularization mechanism is operative during the main-sequence lifetimes of the
stars — pre—main-sequence tidal circularization is permitted but not required by present
observations.

Let us aso note that the tidal-torque mechanism, which is quite ineffective on the
main sequence, may become operative again during the post—main-sequence phases.
Thisis quite apparent from the work of Verbunt and Phinney (1995), who have shown
that turbulent friction acting on the equilibrium tide can generate circular orbits up to
P ~ 200 days in binaries containing giant stars. Yet, Figure 1.12 clearly shows that
there exists amixed population of circular and eccentric orbitsin the whole period range
80-300 days. Obviously, independent calculations based on Egs. (8.21) and (8.22) are
needed to ascertain whether this mechanism can remain operative up to P = 300 days,
or whether an additional circulation mechanism becomes operative during the expanding
phases of stellar evolution.

For completeness, let us briefly discuss the problem of pseudo-synchronism in late-
type main-sequence binaries. This is a much more difficult exercise, however, because
the relevant observations are still very scarce. Letting T ~ 160 days in Eq. (8.22), one
finds that the tidal-torque mechanism does contribute to the synchronization process
up to P ~ 20 days in these binary stars. However, there exist a few binaries, with
orbital periodsin the range 40-50 days, that exhibit a definite tendency toward pseudo-
synchronization in their solar-type components. Accordingly, we are led to conclude
that this mechanism might not wholly account for the presence of pseudo-synchronous
rotators in these binaries. A similar comment was made by Maceroni and van't Veer
(1991) in their study of the dynamical evolution of G-type main-sequence binaries.

Theseresults present quite adilemmaif one assumesthat Darwin’stidal-torque theory
aone can explain the whole set of observational data for the late-type binaries. As we
shall seein Section 8.4.4, thereisnolonger any problem when onerelaxesthe assumption
of strict uniform rotation, thus making alowance for tidally driven meridional currents
in the asynchronously rotating components of a detached close binary.

8.3 Theresonance mechanism

Cowling (1941) was the first to study the natural modes of oscillation in a
centrally condensed star, suggesting that some of the gravity modes may enter into reso-
nancewith the periodic tidal potential in aclose binary. Aswas originally noted by Zahn
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(1975), in abinary component possessing a radiative envel ope the resonances of these
low frequency oscillations are heavily damped by radiative diffusion, which operates
in arelatively thin layer below the star’s surface. Owing to that dissipative process, the
dynamical tide does not have the same symmetry properties as the forcing potential.
Hence, a net torque is applied to the binary component, which tends to synchronize its
axial rotation with the orbital motion.

To evauate the characteristic time for synchronization in an early-type star, one must
calculate the amplitude of the forced oscillation at the star’s surface, taking radiative
damping into account. Following Zahn's (1975) analysis, one can show that the bulge
raised by the dynamical tideis much smaller than that produced by the equilibrium tide;
however, unlike the latter, it can take any orientation with respect to the companion
star, depending on the tidal frequency. Detailed calculations also show that the torque
I'y resulting from the dynamical tide is proportional to the product (R/a)8(Q2 — Q0)®/3,
if the density gradient is assumed to be continuous across the core—envel ope interface.
(Compare with Egs. [8.4] and [8.5].) It is therefore appropriate to introduce a new
synchronization time ty,, defined as

-5/3

1 d ‘Q—Qo
tyn  dt| o

(8.26)

Again letting | @ ~ —I'y and making use of Eq. (8.17), one can estimate the time scale
tyn by

2 17/2
= 55 e (=) 827)
5Es 9?(1+q)*® \ R
wherethe structural constant Es, whichisthe strict anal og of the apsi dal-motion constant
kinEg. (8.2), dependsmainly onthesize of the convectivecore. Along the main sequence,
onehas Es ~ 108 when M = 2M, and Es ~ 10~® when M = 10M,,. For moderately
small eccentricities, one also has

2 tff a 21/2
tyr = — , 8.28
T 21Es q(1+ )18 ( R) (8:28)

with the secondary contributing a similar amount to the effective circularization time of
the binary star. (Compare these two equations with Egs. [8.20] and [8.22], respectively.)

8.3.1 Application to early-type binaries

Becausethe synchronization processinvol vesasecul ar adjustment of the gaseous
componentsin abinary star, Egs. (8.17) and (8.27) clearly show that the degree of syn-
chronism decreases as the distance ratio a/R and the orbital period P increase. Ac-
cordingly, if we consider a sample of binaries with a random distribution of ages, one
may expect to find an increasingly mixed population of asynchronous and synchronous
rotators as the orbital periods approach an upper period limit above which binaries are
nearly all asynchronously rotating. Given any data set, it is therefore essential to check
that the theory can indeed account for the whole period range for which there is still a
significant tendency toward synchronization. The same remark can be made about orbital
circularization.



216 Tidal interaction
Table 8.1. Thecritical valuesa./R and P,.

Synchronization  Circularization

Mass(Me) a/R  Pe(day) a/R  Pc(day)

16 6.11 121 4.44 0.75
2 7.05 1.59 4.99 0.95
3 6.81 192 4.85 1.10
5 6.52 2.19 4.68 133
7 6.72 2.69 4.80 162
10 6.67 3.30 477 2.00
15 7.04 3.98 4.99 2.38

Source: Zahn, J. P, Astron. Astrophys., 57, 383,
1977.

Following Zahn (1977), we shall define the limiting separations for synchronization
and orbital circularization as the distance ratios a./R for which one has, respectively,
tyn/ta = 0.25 and tg/ta = 0.25. (The time t, is the main-sequence lifetime of the
binary star, which consists of two similar components.) Thence, by making use of Egs.
(8.17), (8.27), and (8.28), one can easily obtain the corresponding critical periods P.. In
Table 8.1 we list the numerical values of these limiting separations.

From Table 8.1 it is apparent that synchronism should be theruleup to a/R ~ 67
in the early-type, main-segquence stars. Thisis not in agreement with the observational
resultsreported in Section 1.4, however, sincethey clearly show that the early-type (from
O to F5) close hinaries do exhibit a considerable tendency toward synchronization (or
pseudo-synchronization) up to a/R ~ 20, with deviations from synchronism becoming
therulefora/R Z 20 only. In fact, this mechanism is also much too weak to account for
the high degreeof orbital circularization that isobserved in the early-type, main-sequence
stars. Indeed, whereas Figure 1.11 clearly showsthat some binarieswith A-type primary
stars have circular orbits with periods as long as 10 days, Table 8.1 indicates that the
mechanism is effective only up to P ~ 1-2 daysin these stars.

A similar result was obtained by Claret and Cunha (1997), who have integrated
Egs. (8.21) and (8.28) using a set of early-type main-sequence models. Again, unless
the effects of radiative damping acting on the dynamical tide are artificially increased by
several ordersof magnitude, it isfound that the resonance mechanismisunableto explain
the longest-period circular orbits shown in Figure 1.11. The same result was obtained by
Pan (1997), who found that this mechanism does not explain the observed degree of syn-
chronisminearly-typebinarieswith orbital periods P ~ 4-8 days. In other words, unless
the orbital periods are shorter than afew daysonly, it isamost ineffective tidal process.

Attempts to patch up Zahn’s (1975, 1977) cal culations have been made. In particular,
Goldreich and Nichol son (1989) have pointed out that the synchroni zation process caused
by the tidal forcing of the gravity modes proceeds from the outside toward the inside
of an early-type star. Thence, assuming that the tides induce differential rotation by
synchronizing the outer layers of the star while leaving its interior roughly unaltered,
Savonije and Papaloizou (1997) have shown that rotational effects could significantly
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influence the tidal response in the surface layers of a 20M, main-sequence star. In
particular, in contrast to subsynchronous stars, which tend to spin up toward corotation as
aresult of resonanceswith damped g-modes, it isfound that supersynchronous stars spin
down toward corotation due to resonances with damped r-modes, analogous to Rossby
waves in the Earth’s atmosphere. In my opinion, although these rotational effects might
also improve the efficiency of the resonance mechanism in the less massive stars, they
do not change the inescapable fact that this mechanism is a short-range one, since the
corresponding times ty, and tg, are proportional to (d/R)®° and (d/R)***, respectively.
This is the reason why it is not likely to explain the largest circular orbits reported in
Figure 1.11 and in p. 19n.

8.4 The hydrodynamical mechanism
In Section 8.2 we have assumed that an asynchronous binary component goes

through a succession of rigidly rotating states, thus overlooking the ability of a gaseous
body to develop large-scale currentsin meridian planes passing through its rotation axis.
The possibility that a secondary circulation controls, in part or in toto, the rotation rate
of atidally distorted star is discussed in this section. Admittedly, thisis a comparatively
new devel opment that involves specialized concepts in hydrodynamics. In Section 2.5.3
we have aready discussed the spin-down of acyclonic vortex in the Earth’s atmosphere,
which is the archetype of many situations that are encountered in rotating fluids. For
the sake of clarity, in Section 8.4.1 we shall also consider the spin-up and spin-down of
an incompressible fluid confined between two paralel infinite plates, when these solid
boundariesare subject to an impulsive changein the magnitude of their angular velocity. |
shall then explain how to apply these resultsto the problem of an asynchronously rotating
binary component. The transposition is far from being obvious, however, because one
has to replace boundary conditions on a solid surface by boundary conditions on a free
surface; conditions (2.17) and (2.18) are then replaced by conditions (2.20) and (2.21).

Unless the reader is aready familiar with geophysical fluid dynamics, | recommend
reading Sections 2.5.3 and 8.4.1, which are essential for the understanding of the double-
star problem treated in Section 8.4.2. Sections 8.4.3 and 8.4.4 present practical applica-
tions to detached close binaries; they are ailmost self-contained and can be read without
going through the mathematical derivations made in Sections 8.4.1 and 8.4.2.

8.4.1 Thespin-up and spin-down of a rotating fluid
Consider the problem in which two paralel infinite plates and the fluid between

them initially rotate with the constant angular velocity €2;. The angular velocity of the
two platesisthen impulsively changed to the new constant value €2o. We wish to describe
the manner by which the fluid spins up (when ©; < Q) or spinsdown (when @; > Qo)
to its new angular velocity Q.

As was shown in Section 2.2.3, the equations describing the motion of a viscous
incompressible fluid, in aframe rotating about the z axis with constant angular velocity
Qo, are

au

1
- +u-gradu+2Qpl, x U=ge— — grad p+ vV2u (8.29)
P
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and
divu =0, (8.30)

where u is the velocity in the rotating frame. Remaining symbols have their standard
meanings (see Egs. [2.9] and [2.27]). In cylindrical polar coordinates (@, ¢, z), the
initial and boundary conditions corresponding to the impulsive change (2 — 2o) inthe
magnitude of the angular velocity are: u = () — Qo) 1, fort < 0, andu = 0O, for
t > 0,onthesolidplatesz= +L andz= —L.

In order to discuss the relative importance of the terms u - gradu and 241, x u in
Eq. (8.29), it is convenient to define the dimensionless ratio

€2 — Q2o
€= ————,
Q

which may be described as a Rossby number varying between zero and one (see

Eqg. [2.30]). For the moment, we shall assume that theinitial and final angular velocities

differ by a small amount (i.e, ¢ « 1), so that the nonlinear terms u - gradu can be

rightfully neglected in Eq. (8.29). Accordingly, by taking the curl of this equation, one
finds that

where  Q = max(2;, Qo), (8.31)

]
o (curl u) + 29 curl (1, x u) = v curl(V2u). (8.32)

Equations (8.30) and (8.32) define three scalar equations for the three components of
the velocity vector u. Thisis the so-called linear spin-up (or spin-down) problem. The
corresponding nonlinear problem will be discussed in fine.

In the linear approximation, the unsteady solution is of the form

oV 1 o

u= [ 1, +ul, - — — (wV¥) lz} exp(—Qoat), (8.33)
90z o 0w

where W is the stream function of the large-scale axisymmetric currentsand « is afree

parameter. Aswas shown by Greenspan and Howard (1963), boundary-layer theory can

be used to solve this problem. Retaining only the highest order derivatives, we obtain

92 v
22 Ju—22" = .
(cx + 822> u 57 0 (8.34)
and
92 92 au
— 2 — |Ww+4+2-—-=0 8.35
972 (a + 822> + 0z ’ (839
where § = (v/0)Y2 is the boundary-layer thickness. Parenthetically note that one has
S v 1/2
— = = EY? 8.36
L= (arz) , (8.36)

where E isthe Ekman number of the problem (see Eq. [2.32]).
Here we shall assumethat u = (2; — Qg) for t < 0. The no-dlip condition further
impliesthat, at every instant (t > 0), one has

ow

u=20 and —_—,
0z

(8.37)
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atz=+L andz = —L (seeEq. [2.18]). To ensure that the fluid does not penetrate into
the solid walls, one must aso let, a every instant (t > 0),

v =0, (8.38)

az=+Landz= —L (seeEq. [2.17]).
Making use of conditions (8.37), one can show that the appropriate boundary-layer
solution of Egs. (8.34) and (8.35) is

u=(Q — Qo) (1—e* cosg) (8.39)
and
U= % (Qi — Qo) w[az F e * (cosE + siné)]. (8.40)
Here we have defined the stretched variables
§=L5_Z and g:L:Z, (8.41)

near the upper and lower plates, respectively. In Eq. (8.40) the minus sign refers to the
boundary-layer solution near the upper plate z = +L and the plus sign to that near the
lower platez = —L.
Conditions (8.38) further imply that we must let
1)

a=. (8.42)

Since Eg. (8.33) has a time dependence of the form exp(—Qqat) — or, equivaently,
exp(—t/t) —it follows at once that the e-folding time of the velocity u in the rotating
frameis equal to (208/L)L. Onethus has

1/2

- (g;:) . (8.43)

(Compare with Eq. [2.101].)

The foregoing linearized problem has been aso studied by Greenspan and Howard
(1963) using Laplace transforms of Egs. (8.34) and (8.35). Asthey showed, the detailed
motion consists of three distinct phases: (i) the formation of thin Ekman layers near
the two rotating plates, where viscous friction plays a dominant role, (ii) the formation
of alarge-scale meridional flow that spins up (or spins down) the fluid exponentially,
with an e-folding time of the order of t4(§/L)!, where tq is the dynamical time scale
and §/L is the relative boundary-layer thickness, and (iii) a much slower decay of the
small-amplitude residual motions over the characteristic time of viscous friction, which
is of the order of ty(5/L) 2.

Figure 8.1 illustrates, at a given instant, the transient meridional flow between two
parald infinite plates that are impulsively spun down. Broadly speaking, the initial
impulsive braking of the plates slows down the motion of thefluid, so that aradial inflow
of matter takes place within the Ekman layers. By continuity, thisradial inflow of matter
reguires motion along the rotation axis and a slow compensatory outward radial flow in
the bulk of the fluid. Since viscous friction is negligible away from the solid walls, this
slow outward motion approximately conserves the specific angular momentum Q2.
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Upper Plate

Rotation Axis

Equatorial Plane

Fig. 8.1. Streamlines of the transient meridiona flow in an incompressible fluid between
two parallel infinite plates, with the solid walls being spun down impulsively at t = 0 (solid
lines). Because the configuration is symmetric with respect to the equatorial plane, the lower
half of the fluid is not represented. To illustrate the streamlines near the walls, we have let
§/L = 0.05, which corresponds to arather large viscosity. For comparison, the frictionless
solution, which does not satisfy the boundary condition, is also illustrated (dashed lines).
Source: Tassoul, J. L., and Tassoul, M., Astrophys. J., 395, 259, 1992.

Accordingly, by replacing high angular velocity fluid by low angular velocity fluid, the
large-scale secondary flow serves to spin down the fluid far more rapidly than could
mere viscous friction. An entirely analogous, but reverse, phenomenon occursif the two
plates are spun up dlightly rather than spun down, but 7 isthen the spin-up time.

It is immediately apparent from these discussions that the spin-up and spin-down
times are equal in the linear approximation (i.e., when ¢ « 1). A quite different picture
emergeswhen nonlinear effects are taken into account, that isto say, when therestriction
to extremely small Rossby number is relaxed. Results for impulsive spin-up and spin-
down between paralld infinite plates have been presented by Weidman (1976) for the
completerange0 < ¢ < 1. Of practical interestisthetimeit takesfor the bulk of thefluid
to spin up or spin down. In Figure 8.2 we present these two characteristic times — tgg,
say —in units of the e-folding time , as functions of the Rossby number. (By definition,
they are the elapsed times for which the fluid locally reaches 99% of the change in
angular velocity imposed on the solid walls.) Figure 8.2 obviously shows two important
features of the problem: (1) The nonlinearity monotonically increases the spin-up and
spin-downtimesand (2) anonlinear spin-up isachieved somewhat faster than anonlinear
spin-down. Note al so that the effects of nonlinearity become of paramount importance as
the Rossby number approaches unity, with both characteristic times becoming then much
larger than their common value obtained in the linear approximation (see Eq. [8.43]).

8.4.2 Ekman pumpingin atidally distorted star

Following closely the assumptions made in Sections 8.2.1, we have a gaseous
star (of mass M, radius R, and luminosity L) acted on by tidal forces originating from a
point-mass companion (of mass M’). The primary is assumed to movein acircular orbit
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Fig. 8.2. Characteristic times for spin-up and spin-down between two parallel infinite plates
as functions of the Rossby number (see Eq. [8.31]). Source: Weidman, P. D., J. Fluid Mech.,
77, 685, 1976.

about their common center of mass, with its rotation axis perpendicular to the orbital
plane. Let the center of mass of the primary be taken as the origin of our system of
spherical polar coordinates (r, 9, ¢). Asusual, the x axis points toward the point-mass
companion, and the z axisis parallel to the rotation axis.

If synchronization has not yet been achieved, it isevident that the primary isnot at rest
with respect to the frame corotating with the orbital angular vel ocity Q2. To be specific, if
Q; isatypical value of theinitial rotational angular velocity, then the rotationa velocity
in the corotating axes isu = (i — Qo) 1,. (In this particular frame, thus, a state
of perfect synchronism corresponds to u = 0.) Such a purely azimuthal motion can
only be approximate, however, because the primary is aways elongated in the direction
of the line joining the two centers of mass. This lack of axial symmetry around the
rotation axisisillustrated in Figure 8.3, where thefour arrowsindicate thetidal attraction
corrected for the gravitational attraction at the center of mass of the primary. (The small
tidal lag is not represented because it plays a negligible role in the Ekman-pumping
process. Thisis an approximation, of course, sinceit isthistidal lag that will eventually
permit a secular exchange of energy and of rotational and orbital angular momenta.)
Evidently, if there were no tidal bulges, the motion would remain forever axisymmetric
in the corotating frame. Because of the presence of these tidal distortions, however,
each fluid parcel in the surface layers is forced to move along an ellipse, in a plane
parallel to the equator, with slight accelerations and decelerations along its trajectory.
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Fig.8.3. Differential tidal attraction duetothemasspoint M’ (i.e., thetidal attraction corrected
for the gravitational attraction at the center of mass of the primary), at four places in the
equatorial belt of the primary. Therotation axisis perpendicular to the plane of this schematic
drawing. The vertical arrow indicates the sense of the orbital motion. The small tidal lag is
not represented.

It is a simple matter to demonstrate that there exists a class of geostrophic motions
that satisfy these requirements. However, one can also demonstrate that these purely
azimuthal flows generate atangential stressvector having ameridional component and a
smaller azimuthal component that is proportional to the departure from axial symmetry
(see Tassoul and Tassoul 1992, pp. 607—608). Thence, because both components of the
stress vector must vanish at a free boundary, one can show that slow but inexorable
meridional currents are needed to cancel out its azimuthal component at the surface of
an asynchronousrotator. We may anticipate, therefore, that alarge-scale meridional flow
will always berequired to satisfy all the basic equations and all the boundary conditions,
when synchroni zation has not yet been achieved. Aswe shall see, thesetransient currents
play arolethat is quite similar to that of the secondary flows described in Sections 2.5.3
and 8.4.1.

To formulate the problem in its most genera terms, one should solve simultaneously
the hydrodynamical equations and the equations that describe the tidal interaction be-
tween two deformable bodies. In particul ar, because the magnitude of the orbital angular
velocity Q¢ isslowly varying in time, the correct form of the equations of motion is

ou .
E+u-gradu+2§2012xu+szolzxr

1 1 1
= A — grad (V -5 Qiw? — W) - grad p + A F(u), (8.44)

where A(t) describes the acceleration of the common center of mass with respect to our
frame of reference, W is the tidal potential, and F is the (turbulent) viscous force per
unit volume.* Remaining symbols have their standard meanings (see Egs. [2.27]). A dot
designates a derivative with respect to time.

To make the problem tractable, we shall neglect the nonlinear terms u - gradu in
Eq. (8.44). This implies that one has |u - gradu| <« |2R201; x u|, and |u - gradu| <
lgrad W] (i.e., |92 — Qo < Q0 and |Q; — Qo> « GM’/d3, where d is the mutual

* See, eg., Landay, L. D., and Lifshitz, E. M., Mechanics, Section 39, Oxford: Pergamon Press, 1959.
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separation of the two components). For the sake of simplicity, we shall neglect the
secular variations in time of the orbital angular velocity, and we shall assume also that
the star is a barotrope (see Section 3.2.1). Given these simplifying approximations, by
taking the curl of Eq. (8.44), we obtain

2 (curlu) + 2Qq curl (1, x u) = curl F F(u)} , (8.45)
ot P

which is quite similar to Eq. (8.32). The function F can be neglected in the bulk of the
star; in the surface boundary layer, however, one has

d ou
_ 0 (A L 8.46
- (uv8r> + (8.46)

where uy isthe verticd (i.e., in the direction of gravity) coefficient of eddy viscosity.
To ensure mass conservation we must also prescribe that

div(pu) = 0. (8.47)
Boundary conditions (2.20) and (2.21) further imply that
n-u=20 and nx[n-Tu]=0 (8.48)

on thefree surface of thetidally and rotationally distorted primary. Asusual, n isthe unit
outer normal to the free surface, and T are the Reynolds stresses, which depend linearly
on wy and the first-order derivatives of u (see Section 3.6). Equations (8.45)—8.48)
specify the vector u completely.

Boundary-layer theory can be used to describe the general features of these time-
dependent motions in the corotating frame. To be specific, one writes

u= Z uk(r7 0, (,0) exp(_ZQO/gkt) ’ (849)
k

where the uy can be expanded in terms of radia functions and spherical harmonics
(k=0,1,2,...). Thence, performing a boundary-layer analysis of Egs. (8.45)—(8.47)
and applying boundary conditions (8.48), one can obtain the permissible values for the
Bk in EQ. (8.49). Obviously, the lowest eigenvalue S, is the most important one since it
defines the e-folding time t* of the transient motions, which is equal to (22¢8) 2.
Detailed mathematical calculations show that there always exists a thin Ekman-type
suction layer that induces a large-scale flow of matter within the amost frictionless
interior of an asynchronous binary component. Figure 8.4 illustrates the streamlines
of the tidally induced meridional flow in a model with constant density and constant
eddy viscosity, when the mass ratio is equal to unity (M = M’). In the case of a spin-
down (R2; > ), these motions correspond to a quadrupolar circulation pattern that is
weakly dependent on the longitude ¢, with the fluid entering the boundary layer in the
equatorial belt and returning with decreased angular momentumtothe poles. (Thereverse
phenomenon occurs in the case of a spin-up, when Q; < q.) Given our simplifying
approximations, the typical speed of the meridional flow is of the order of e1(§/R)(2 —
Qo) whilethe e-folding time t* is approximately equal to (22qe758/R)~2, where §/R
is the relative boundary-layer thickness — which is of the order of (v /20Q0R?)Y? —
and e isthe ratio of thetidal attraction to gravity at the equator. For moderately small
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Fig. 8.4. Streamlines of the transient, tidally induced meridional circulation in an asyn-
chronously rotating model with constant density and constant eddy viscosity, when Q; > Q.
The rotation axis is vertical. The streamlines do not penetrate into the free boundary, with
matter flowing from the equator to the polesin the outermost surface layers. Source: Tassoul,
J. L., and Tassoul, M., Astrophys. J., 359, 155, 1990.

eccentricities and masses of comparable magnitude, it follows that

P /s\*M 3
= (-) s (3> , (8.50)
47 \ R M’ \ R
since, for unequal masses, one has
M’ /R\?
=—1(—=]. 8,51
= (3) (851)

Asusual, P (= 2/ Qo) isthe orbital period and a is the semimajor axis.

Aswas already noted, in obtaining these results we have made use of several simplify-
ing approximations. Since | want to avoid any misunderstanding about the applicability
of the time scale t* to a sample of binary stars, | shall conclude this section by making
afew practical remarks.

First, in view of application to actual binary stars, itismuch morereadistic to evaluate
the ratio /R for a model in which p o« (R — r)® in the surface layers. To simulate
the case of an eddy viscosity that islarger than the microscopic viscosity, we shall also
assume that vy = 10N i, Where o is the radiative viscosity and N is a constant
(see Eq. [4.62]). To be specific, if welet p = pp(R —r)® and g = un(R — 1),
a straightforward dimensional analysis shows that §/R = 10N/4(uup/ 020 R*)Y4. For a
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Cowling point-source model with el ectron-scattering opacity, thisrelation takestheform

(8.52)

1/4
% = 3 x 10~>*N/4[ P(day)]¥/* (L/LO ) .

M/Mg

Parenthetically note that the small exponent 1/4 considerably reduces the uncertainties
on the coefficient of eddy viscosity in the surface layers.

Second, in deriving Eqg. (8.50) we have neglected the secular variationsin time of the
orbital angular velocity 4. For the sake of simplicity, we have also assumed that the
free boundary of the primary is nearly coincident with the steady surface correspond-
ing to synchronism. It is evident that these approximations impose a severe restriction
on the mass ratio M’/M. Indeed, if the mass M was much larger than M’, a small
change in the rotational angular velocity €2 would lead to large variations in time of the
guantities ¢ and a/R. Because such large changes were not permitted in our model
calculations, it follows at once that Eq. (8.50) does not apply to binary systems having
extreme mass ratios. Such arestriction is unimportant for binary-star systems, since the
masses M and M’ are in general of comparable magnitude. It is of paramount impor-
tance for planetary-satellite systems, however, for they generally have very small mass
ratios.

Third, because we have neglected the nonlinear terms u - gradu in our analysis,
the e-folding time defined in Eq. (8.50) is no more than a lower limit to the actual
synchronization time, ty, (Say), in area binary star. Indeed, as was properly shown in
Section 8.4.1, nonlinearity increasesthe spin-up and spin-down times of the flow between
parallel infinite plates (see Figure 8.2). Accordingly, because these |aboratory problems
are quite similar to ours, the synchronization time ts,, should also be much larger than
the e-folding time =*. Finally, recall that we have considered barotropic models only;
that is, we have explicitly assumed that Eg. (8.45) contains no term proportional to the
vector grad p x grad p. General considerations in geophysics indicate that baroclinicity
effects inhibit large-scale circulations. Hence, given the great similarities between the
geophysical and astronomical problems, weconcludethatinamorerealistic stellar model
the inherent departures from barotropy should also inhibit the tidally driven currents.
Since the effects of nonlinearity and baroclinicity cannot be ascertained at this time,
hereafter we shall make the reasonable assumption thet ts,, = 10°7*, where o is a
constant of order unity (see Section 8.4.3).

Fourth, in an early-type binary component, the tidally driven currents are most prob-
ably confined to its radiative envelope, since the core—envelope interface can act as an
effective barrier. This fact is of little concern to us, because it is only the surface ro-
tation rates that can be measured. On theoretical grounds, a concomitant braking of
the convective core by turbulent diffusion of linear momentum is quite plausible, how-
ever.

Fifth, sincethetidally driven currents do not depend on eddy viscosity inthe bulk of an
asynchronous binary component, it follows at once that the Ekman-pumping processis
also operativein stars possessing adeep convective envelope. Infact, the hydrodynamical
mechanism should be more effective in late-type binary components than in early-type
ones, because theratio §/ R takes larger valuesin stars that have alarger eddy viscosity
in their outermost surface layers.
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8.4.3 Thecharacteristic times

In Sections 8.2.2 and 8.3.1 we have expounded the main shortcomings of the
two well-known mechanisms that are usually invoked to explain synchronism in the
close binary stars. In Section 8.4.2 we have considered a third mechanism that tends
to synchronize the axial and orbital motions in the components of a detached close
binary. This spin-down (or spin-up) process involves large-scale meridional currents
superposed on the azimuthal motion around the rotation axis of an asynchronous rotator.
Figure 8.4 illustrates these transient motions, which vanish atogether when the tidally
distorted body has reached a state of hydrostatic equilibrium in the frame corotating
with the orbital angular velocity Q, that is, when synchronization has been attained.
They are quite similar, therefore, to thetransient meridional currentsthat are responsible
for the decay of various rotational motions near solid boundaries (see Figures 2.2, 2.3,
and 8.1).

Although problems with solid boundaries have some obvious features in common
with the double-star problem, it is evident that they differ in the manner by which the
secondary meridional flow comesinto existence. For example, inthecase of amidlatitude
cyclonic vortex in the Earth’s atmosphere, turbulent friction acting on the ground slows
down the azimuthal motion, thus producing aradial inflow of matter toward the rotation
axis. By continuity, this horizontal transport isbalanced by asmall vertical flux of matter
into the free atmosphere above the surface boundary layer. It is this upward motion
that eventually produces the secondary flow illustrated in Figure 2.2 (as well as those
illustratedin Figures2.3and 8.1). In contrast, inthedouble-star problemtherearenosolid
boundaries that may spin down (or spin up) the azimuthal motion in an asynchronously
rotating binary component. But then, as was explained in Section 8.4.2, it is the self-
gravitational attraction of the star that acts as the “ container,” forcing the tidal bulgesto
remain amost aligned with the line joining the two centers of mass. Given this severe
constraint on the free surface of atidally distorted star, one can show that it isthisforced
lack of axial symmetry that preventsthe azimuthal motion from being wholly one of pure
rotation in an asynchronous rotator, thus leading to the formation of transient meridional
currents, asillustrated in Figure 8.4.

Note also that the problems with solid and free boundaries differ in their respective
time scales. In the former case, the spin-down time is proportiona to the dynamical
timescae(i.e, thefina period) divided by the relative thickness of the Ekman pumping
layer (see Egs. [2.101] and [8.43]). In the case of atidaly distorted star, however, the
e-folding time t* is proportional to the dynamical time scale (i.e., the orbital period)
divided by the product e7(5/R), where er is a measure of the small departure from
axial symmetry (see Eq. [8.51]) and §/R is the relative boundary-layer thickness (see
Eqg. [8.52]). Obviously, the presence of a free (rather than solid) boundary reduces the
efficiency of the Ekman-pumping process. As we shall see in Section 8.4.4, however,
even though §/R lies in the range 10~° to 10~2 and despite the fact that e is also a
small parameter, thisis quite sufficient to provide the general trend of the observational
data.

Making use of the results presented in Section 8.4.2, one finds that

144 x 100N (Lo \7* (Mo Y8/ R\® ra\®®
win="girge (0) (w) (&) () e
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or, by virtue of Kepler'sthird law,

1/4 5/4 3

tyn(yr) = 5.35 x 102+ N/4 1:q ("f) (l\';l) <R§> [P(day)™*, (8.54)
where g isthe massratio. As explained in Section 8.4.2, these formulae do not apply to
binary systems having extreme massratios. The meaning of the adjustablefactor 10° —N/4
is properly explained at the end of Section 8.4.2 also. Following Claret, Giménez, and
Cunha (1995), the most plausible values are o &~ 1.6, with N ~ 0 in aradiative envelope
and N ~ 10 in a convective envelope. However, future discussions based on a larger
sample of binaries could well lead to a smaller value for o and more refined values
for N.

Simultaneously, because viscous dissipation retards the equilibrium tide, angular mo-
mentum is exchanged between the orbit and the rotation of each component, thus modi-
fying the orbital eccentricity of the binary star. To a good degree of approximation, the
ratio tgn/te is of the order of the ratio of rotational and orbital angular momentum.
Hence, for moderately small eccentricities and masses of comparable magnitude, we can
estimate the time to circularize the orbit by

144 x 100N Lo\ (Mo Y8/ RY® ra\ /e
won =" quag (1) (W) (=) (R) o5

or

1 23 L N\VA /M \B/1R2 5
tar(yr) = 9.4 x 103N/ Chalt )iy 2) (Q) <) (R®> [P(day)]**,
r2 L Mo R

(8.56)

where rq is the fractional gyration radius. As usual, the secondary makes a similar
contribution to the effective circularization time of the binary (see Eq. [8.21]).

At thisjuncture, it is worth noting that the two mechanisms presented in Sections 8.2
and 8.3 aremutually exclusive, inthe sensethat one of them appliesto stars having adeep
convective envelope whereas the other one applies to stars having a radiative envelope.
Because the third mechanism can be operative in both groups of stars, however, the
resonance mechanism and the hydrodynamical mechanism both produce secular changes
in the spin and orbital parameters of the early-type stars. Similarly, because the tidal-
torque mechanism and the hydrodynamical mechanism are not mutually exclusive, both
of them can be operative in the late-type binaries. Aswe shall seein Section 8.4.4, inthe
early-typebinariesit isalwaysthe hydrodynamica mechanism that isthe most effective;
Egs. (8.53) and (8.55) thus provide the dominant contributions to the times tg,,, and tg;.
In contrast, in stars having a deep convective envel ope both the tidal -torque mechanism
and the hydrodynamical mechanism can be operative, albeit for different values of the
parameters R, L, and P. Accordingly, for these binaries Egs. (8.19) and (8.21) can be
used to discuss jointly the synchronization and orbital circularization caused by both
mechanisms, provided that one inserts

1 1 N 1
tyn  tyn(EQ. [8.20])  tyn(EQ. [8.53])

(8.57)
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and, for each component,

1 1 1
o ta(Eq [822) | te(Eq [8.58])

(8.58)

in the corresponding equations.

To conclude this section, it may not be inappropriate to stress again the importance
of solving Egs. (8.19) and (8.21) rather than making comparison between time scales.
Aswas aready noted in Section 8.2.2, the latter approach is probably adequate, in most
cases, for binary components evolving without mass loss on the main sequence. For
rapidly contracting or expanding components, however, it might prove quite misleading.
It is also worth noting that any meaningful comparison between theory and observation
can be made on a statistical basis only, preferably with a large sample of binaries. In
other words, one should not eval uate the merits of atheory by making use of afew short-
period binariesthat display avery eccentric orbit and/or alarge degree of asynchronism.
These binaries may have had a large initial eccentricity, with a large initial departure
from synchronism. Other evolutionary processes, which were not included in the theory,
might also significantly modify both axial rotation and the strength of tidal interaction.
Recall also that the tidal-torque and hydrodynamical mechanisms both depend on two
adjustable parameters: the viscoustime scale T in Egs. (8.20) and (8.22) and the factor
10°~N/4in Egs. (8.53)—(8.56). One should not expect these two quantitiesto be universal
constants, however. As amatter of fact, the mathematical difficulties of the problem are
such that there islittle or no hope of calculating their values from first principles alone.
It would thus seem that progress can be made only through an efficient cooperation
between theory and observation, using —as | said — avery large sample of binaries.

8.4.4 Pseudo-synchronization and orbital circularization

Let usfirst discuss the early-type main-sequence binaries. As was pointed out
in Section 8.3.1, the resonance mechanism is unable to account for the observed degree
of orbital circularization among these stars. However, by making use of Egs. (8.55) and
(8.56), one can show that the hydrodynamical mechanism is quite effective in inducing
orhital circularization during the main-sequence lifetime t, of these stars. Yet, if one
considers a model consisting of two A-type components with little or no turbulence in
their outer layers (i.e., with N =0), a comparison between the times t.; and t, shows
that this mechanism can explain circular orbits up to P ~ 6 days only. Thisis somewhat
shorter than the 10-day cutoff shown in Figure 1.11. This finding strongly suggests
either that turbulence in the outer layers might play a somewhat greater role in these
stars (with N =~ 4, say, instead of N = 0) or that their observed eccentricity distribution
might result from main-sequence and pre—main-seguence circularization. Accordingly,
amere comparison of the time scalest., and t, is probably insufficient in this case; the
prablem requires a direct integration of Egs. (8.21) and (8.55).

Asfar assynchronization is concerned, the hydrodynamical mechanismisalsoamuch
more efficient process than the resonance mechanism, since thetimets,, depends primar-
ily on the factor (a/ R)*'% instead of (a/R)®®° (see Eqgs. [8.27] and [8.53]). The presence
of asmaller exponent makesit along-range mechanism that can enforce synchronization
up to a/ R~ 20 in the early-type main-sequence binaries. Thisisin agreement with the
observations reported in Section 1.4. Note also that the effects of the hydrodynamical
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mechanism can still be felt for larger separations, up to P ~ 100 days (say) — without
bringing complete synchronization beyond P ~ 15-25 days, however. Thisisin agree-
ment with the finding that most late A-type dwarfs in binaries with P < 100 days are
Am stars, with rotational velocities smaller than 100 km s~ (see Section 6.3.5). There
is thus no need to invoke pre—-main-sequence braking to explain the paucity of normal
A-type dwarfs from binaries with orbital periods smaller than 100 days.

Now, in Section 8.2.2 we have shown that the tidal-torque mechanism is quite inef-
fective in inducing orbital circularization in the late-type main-sequence binaries (see
Egs. [8.23]{8.25]). To show that the hydrodynamical mechanism can be operative in
these stars, let us apply Eq. (8.56) to atypical solar-type binary component. For reason-
able values of the parameters, one finds that

ter(yr) = 3 x 10" V[ P(day)] 2, (8.59)

where N isafitting constant. In fact, because we have let i1y = 10N 14, the factor 10N
is some mean value of the Reynolds number Re in the surface layers (see Eq. [2.51]).
Since N is a free quantity in Eq. (8.59), we shall thus prescribe that for each cluster
listed in Table 1.2 one hast,, = t; at P = P.. For the three oldest clusters one obtains
N =~ 9.3-9.7 or Re &~ 10°-10'°. For the Pleiades one must let N ~ 12, whereas the
pre—main-sequencecluster requiresthevalue N =~ 14. Thesetwo values may not be quite
reliable, however, because Eqg. (8.59) is directly applicable only to static stars. Anyhow,
these crude evaluations of N are quite reasonable for late-type main-sequence binaries
because, owing to the extreme smallness of the microscopic viscosity, the outer layers of
aconvective envel ope can easily sustain Reynolds numbers of the order 10°—10%°. Hence,
we conclude that the hydrodynamical mechanism can be responsible for orbital circu-
larization on the main sequence, even though it may not be equally efficient during the
pre—main-sequence contraction. Since the two relevant mechanisms are not mutually ex-
clusive, thisresult strongly suggeststhat the tidal-torque mechanism isthe dominant one
during the pre—main-segquence phase up to 8 days (asreported in Section 8.2.2), whereas
the hydrodynamical mechanism becomes fully responsible for orbital circularization
during the main-sequence phase, at a much slower pace, beyond t, = 1 Gyr (say). If so,
then, the inefficiency of the tidal-torque mechanism on the main sequence is no longer
an issue. Obviously, an integration of Egs. (8.21) and (8.58) would be most welcome.

In Section 8.2.2 we al so pointed out that the tidal-torque mechanism does not wholly
account for pseudo-synchronization in the | ate-type main-sequence binaries. Making use
of Eq. (8.54), onecan show that the hydrodynamica mechanismisoperativeinthesestars,
although it is difficult to quantify with any certainty the counter-effects of magnetically
driven winds on the synchronization process. In this connection, let us mention the work
of van't Veer and Maceroni (1992), who have shown that the hydrodynamical mechanism
ismuch moreeffective than thetidal -torque mechanismin the angular-momentum losing,
G-type binaries belonging to the main-sequence group.

A very interesting case of asynchronism is that of the double-lined eclipsing binary
TZ Fornacis. It is a system with an orbital period of 75.7 days and a circular orbit.
Its components have nearly equal masses (M = 2.05M, and M’ = 1.95M,) but un-
equal radii (R = 8.32R, and R" = 3.96R). The more massive component is rotating
synchronously with the orbital motion while the companion is spinning 16 times faster
than the orbital period rate. This puzzling binary star has been recently investigated
by Claret and coworkers, who integrated Egs. (8.19) and (8.21) along the evolutionary
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path of each binary component. Within the theoretical and observational error bars, these
cal culations describe how the binary components may passthrough a stage characterized
by a synchronous primary and a supersynchronous companion in circular orbits about
their common center of mass. However, two independent sets of calculations strongly
suggest that the case of TZ Fornacis can be explained either by the hydrodynamical
mechanism aone or by a combination of the tidal-torque and resonance mechanisms.
Sinceall three mechanismscan operatein atidally distorted star, one may therefore argue
that they become almost equally efficient during some periods of post—main-sequence
evolution, so that all of them must be taken into account during this expanding phase.

8.5 Contact binaries: The astrostrophic balance

In Sections 4.6 and 8.2-8.4 we have considered detached close binaries, in
which the tidal distortions are relatively small and where components display physical
characteristics that are similar to those of single stars. When the two components are
separated by afew radii only, these tidal distortions may become, however, quite large.
This is well illustrated by eclipsing binaries that exhibit sinusoidal-type light curves,
and for which the first-order scheme of approximation adopted in the above sections
becomes utterly inadequate. In what follows | shall thus consider the Roche model, in
which practically all the mass of each component is concentrated in a central point
surrounded by atenuous envel ope of vanishingly small density.* The importance of this
model stems from the fact that it provides a good approximation for binary components
that arein physical contact and share a common envel ope.

Let M, and M,, denote the masses of the two components, and let D be their mutual
separation. We choose arotating frame of referencewith theorigin at the center of gravity
of the mass M, . The x axis points toward the center of gravity of the mass M, ,, and the
z axisis perpendicular to the orbital plane. The effective gravity at any point P can be
described as the gradient of a potential ¥, where

MI | )2 2

X——D| +
( M; + My, y
inwhichr, andr,, arethe distancesfrom P to the centers of gravity of the two masses.
Let usfurther assume that the rotational angular velocity occurring in Eq. (8.60) isequal
to the Keplerian orbital angular velocity. We thus let
_ G(M; + M)
= T.
If we adopt D as the unit of length and GM, /D as the unit of potential, we can then
write (except for an additive constant)

M My 1
U=G ~ +G— +-Q?

, 8.60
r I 2 ( )

Q? (8.61)

1 1 1
v="14q (ﬁ _ x) £+ +Y)), (8.62)

whereq = M, /M, isthemassratio (q < 1).

* The geometry of the equipotentials that surround arotating gravitational dipolewas originaly inves-
tigated by the French mathematician Edouard Roche (1820-1883) in 1873. For a detailed historical
account the reader should consult Kopal’s (1989) book.
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/——OUTER CRITICAL SURFACE —\

INNER CRITICAL SURFACE = ROCHE LOBEI + ROCHE LOBE II

Fig. 8.,5. The inner and outer critical surfaces of the binary Roche model plotted in the
equatoria plane. The arrows indicate the direction of the effective gravity. For a detached
system, the two stellar surfaces (dashed curves) both lie beneath the inner critical surface;
for a contact binary, the common stellar surface (dash-dotted curve) lies between the inner
and outer critical surfaces. Source: Shu, F. H., Lubow, S. H., and Anderson, L., Astrophys.
J., 209, 536, 1976.

Figure 8.5 represents a section of the equipotentials & = constant cut by the orbital
plane z=0. Quite generdly, level surfaces corresponding to high values of ¥ form
separate lobes enclosing each one of the two centers of gravity and differ little from
spheres. With diminishing values of W, the two lobes become increasingly elongated in
the direction of their common center of gravity until, for acertain critical value ¥ = W,
characteristic of each mass ratio, both lobes will come into contact to form a dumbbell-
like configuration. It will henceforth be called the inner critical surface, and its two
lobeswill be called the Roche lobes. Note that the Roche lobes unite at a point where the
effective gravity vanishes(i.e., at the Lagrangian point L ;). For even smaller valuesof W,
the connecting part of the dumbbell will open up so that singlelevel surfaces encloseboth
bodies, thus providing us with a convenient representation of a contact binary. Below a
critical value ¥ = Wy, (<W;,) characteristic of each mass ratio, however, gravitational
confinement of a binary against the expansive tendency of its internal pressure is no
longer possible. An inspection of Figure 8.5 shows that this outer critical surface also
contains a point where the effective gravity vanishes (i.e., the Lagrangian point L,). For
acontact binary, the common stellar surface thuslies between theinner and outer critical
surfaces corresponding to the equipotentials W = Wi, and W = We.

By definition, contact binary stars have both components filling or overfilling their
Roche lobes. Practically all known contact systems are eclipsing binaries. The light
curves of these extremely close systems have a sinusoidal appearance, which is due to
the severe tidal distortion of the components. They also have eclipse minima of almost
equal depth, implying very similar effective temperatures for both components. In fact,
this property of the contact binaries seemsto be continuous over awide range of spectral
types, from stars as early as O type to stars as late as K type. (They range in orbital
period from 5.6 days to 0.22 days.) The similarity of effective temperatures would not
be surprising if contact binaries consisted of identical stars. However, for some as yet
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unknown reason, these binaries always consist of dissimilar components with unequal
masses. Note al so that the components of contact binaries have luminosity ratiosroughly
equal to the first power of their mass ratio rather than the fourth power or so observed
for single main-sequence stars.

Struve (1948) was the first to recognize that the anomal ous mass-uminosity relation
of the contact binaries might be causally related to the existence of a common envelope
that redistributes and radiates away the luminosities emanating from the two independent
cores. This important suggestion was further discussed by Osaki (1965), who pointed
out that the radiative flux |F| is proportional to the effective gravity |g| in a common
radiative envelope in mechanical equilibrium (see Eq. [3.41]). If this radiative flux is
ultimately radiated away by the photosphere at therate o T;, von Zeipel’slaw of gravity
darkening thus implies that

Tetr o 9%, (8.63)

where Ty istheeffectivetemperatureand g isthel ocal surfacegravity. Now, thecondition
that thefreesurface of acontact binary must bean equipotential impliesarel ation between
the radii and masses of the components. For the binary Roche model, this relation may

be approximated by
Ru _ (m)‘”‘i (8.64)
R M
It follows at once that the average surface gravities (= GM/R?) of the two components
are nearly equal. Hence, by virtue of Eqg. (8.63), their effective temperatures should be
aso nearly equal.
The case of a common convective envelope in mechanical equilibrium was subse-

quently discussed by Lucy (1967), who found that the variation of effective temperature
with local surface gravity is of the form

Terr o 9. (8.65)

Again, because the average surface gravities of the two components are closely equal,
this gravity-darkening law predicts little variation of effective temperature over the free
surface of alate-type contact binary.

Following Osaki (1965) and Lucy (1968), we can now derive a theoretical mass—
luminosity relation that is valid for both the early-type and late-type contact binaries.
It follows at once from Eq. (8.64) that the ratio of surface areas (~ R?) of the two
Roche lobes is closely equal to the mass ratio. Hence, because we have shown that
the components of a contact binary have similar surface brightnesses (=~ L /47 R?), we
obtain the approximate relation

Lo = m (8.66)
L M,
This relation closely agrees with the observational data. We therefore conclude that the
anomal ous mass-Huminosity relation of the contact binaries merely reflects the ratio of
surface areas for components having similar effective temperatures.

It is generally accepted that the main features of the photosphere of a contact binary

star are to be understood in terms of energy transport within a common (radiative or
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convective) envelope. The foregoing discussion clearly shows that the top layers of the
common envelope are barotropic (with equal pressures, densities, and temperatures over
the equipotentials). Yet, because the two underlying radiating cores have unequal masses,
we know that the temperature distribution cannot be uniform over the Roche lobes.
By continuity, temperature differences over each equipotential above the inner critica
surface do exist, therefore implying that the bottom layers of the common envelope
are baroclinic (see Section 3.2.1). We are thus faced at once with the following two
guestions: First, what is the exact nature of the energy flow that brings nearly equal
effective temperatures in the two components of a contact binary? And, second, is it
possible to build a common-envelope model that is barotropic in its outermost surface
layers while being baroclinic near the two dissimilar Roche lobes?

Aswas pointed out by Lucy (1968), the paradox of overluminous secondariesin the
|ate-type contact binaries can be resolved by assuming some lateral energy transfer in a
common convective envelope. The existence of early-type contact binaries makesit clear
that this energy transfer can occur even in contact binaries with radiative envelopes. This
fact strongly suggeststhat there existsatransfer mechanism commonto both thelate-type
and early-type contact binariesthat is quiteindependent of the underlying envel ope struc-
ture. Thisis the reason why it has often been conjectured that the required interchange
of heat and massisdirectly attributable to a lateral temperature or entropy gradient, in a
direction roughly parallel to the equipotentials, near the base of theinner critical surface.
For the sake of simplicity, | shall consider the case of a common radiative envelope.

Inthe framerotating with the Keplerian orbital angular velocity €2, the basic equations
governing the motion in an early-type contact binary are

B
8—’; + div(pu) = 0, (8.67)
au 1 1
§+u-gradu+29xu:—— grad p + grad ¥ + — F(u), (8.68)
P P
S .
pT (m U grad S) — div(x grad T) + penue. (8.69)
1
p= E pT + = aT?, (8.70)
n 3

where u is the velocity relative to the rotating axis, F is the turbulent viscous force per
unit volume, and W isthe Roche potential defined in Eg. (8.62). Remaining symbolshave
their standard meanings (see Section 3.2). These six scalar equations are to be solved
subject to appropriateinitial and boundary conditions at the two stellar centers and at the
top of the common envelope.

Numerous attempts have been made to build a contact-binary model consisting of two
stars having different masses but equal effective temperatures. Yet, asiswell known, the
internal structure of acontact binary remainsapuzzle. Itisnot my intentioninthissection
toreview all theconflicting model sthat canbefoundintheliterature. Rather, | shall briefly
comment on one important but often forgotten ingredient of the problem, namely, the
geostrophic (or astrostrophic) flow that isrequired to prevent the appearance of unwanted
discontinuities in the solutions. Since all proposed models do exhibit discontinuities at
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the base of the common envelope, astrostrophy could well provide the solution for the
existing impasse.

We begin by describing the barotropic modelsoriginally proposed by Shu, L ubow, and
Anderson (1976) because they may be viewed asthe zeroth-order solution for unevolved
main-sequence contact binaries. Following these authors, we make the a priori assump-
tionthat, apart for the slow thermally driven currentsdiscussed in Chapter 4, the systemis
at restinthecorotating frame(i.e., u = 0). Sincethe condition of mechanical equilibrium
isin genera incompatible with the energy equation in a circulation-free barotrope, we
must therefore assume that radiative equilibrium holds on average on each equipotential
W = constant (see Sections 3.3.1 and 6.2). To derive the zeroth-order equations, we shall
also introduce a system of curvilinear coordinates (&, n, ¢) with & =W andwithn and ¢
defining the “ horizontal” position on alevel surface. Assuming further that the chemical
composition is uniform over each equipotential, one finds that p= po(¥), p = po(¥),
and T = To(W¥). Hence, letting u = 0 in Egs. (8.67)—8.69), we obtain

dpo
— = 8.71
dw Lo ( )
and
dTo L
- 8.72
Xaw T gAw) 8.72)

in the radiative regions. As usua, L is the total luminosity, g is the effective gravity
averaged over an equipotential, and A isthe areaof that closed surface. Similar ordinary
differential equations can be written down for the two convective cores in which nuclear
burning is taking place.

Since Eq. (8.62) gives a complete specification of the effective gravitational field, de-
tailed solutions of these ordinary differential equationscan be obtai ned using the standard
boundary conditions at the two centers and at the shared surface. Unfortunately, as was
correctly pointed out by Shu and coworkers, there are too many boundary conditionsto
satisfy for al thermodynamic variablesto be continuous across the inner critical surface.
Because mechanical requirements imply that the pressure po(¥) must be continuous
across the Roche labes, it was therefore concluded that no barotropic solutions with
unequal stellar components exist unless one makes allowance for discontinuous changes
in the density po(W¥) and the temperature To(W) at one of the Roche lobes. This is the
contact-discontinuity hypothesis. Although the model s constructed according to thisidea
look very much like observed contact binaries, they have been widely criticized on the
ground that a contact discontinuity should disappear on a thermal time scale.* | shall
not go into the disputes because, unsatisfactory as these zeroth-order barotropic models
might be, they could provide the foundation for a more satisfactory solution of the basic
equations.

* Lucy (1976) and others have suggested that a newly formed contact binary will evolve on athermal
time scaletoward astate of marginal contact and that, if contact isthen broken, the system will evolve
back into contact, again on athermal time scale. Thisisthethermal-rel axation-oscillation hypothesis.
Aswas pointed out by Shu (1980), however, a contact discontinuity will also naturally arisein these
oscillatory models, with the zeroth-order barotropic models constituting the equilibrium states about
which Lucy’s (1976) models might undergo thermal relaxation oscillations.
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Obvioudly, if the two stellar components had the same mass, their common envelope
could be treated as a barotrope, all the way from the Roche lobes to the photosphere.
Becausethemassratioisnot in general equal to one, however, the luminosities generated
in the two separate cores become necessarily unequal at the inner critical surface. This
uneven distribution of the sources of heat generatesalateral interchange of heat and mass
in the bottom layers of the common envelope. Aswe shall demonstrate, thisinescapable
fact impliesthe existence of alarge-scale astrostrophic flow a ong the equipotentialsthat
lie above the inner critical surface.

In Section 2.2.3 we have seen that the relative importance of the inertial and Coriolis
effects is measured by the Rossby number Ro (= U/ QD), where U characterizes the
scale of the horizontal velocity. In the present case, the Rossby number is of the order of
theratio of the orbital period (= 27/ 2) to the characteristic time of theflow (=~ D/U).
Since thisratio is undoubtedly much smaller than one, the inertia of the relative motion
can be neglected in Eq. (8.68). Hence, restricting attention to steady motions in the
corotating frame, we can rewrite that equation in the form

1
20 xu=——gradp+grad W. (8.73)
P

Note that we have omitted the viscous force becauseit plays anegligible role away from
the boundaries (see, however, below).

To present a self-consistent formulation of the problem, we shall first write each
thermodynamic variable asthe sum of the (known) zeroth-order solution and abaroclinic
“correction.” We thus let

and we write similar expressions for the density and the temperature in the common
envelope. Making use of Eq. (8.71), we can thus rewrite the “vertical” component of
Eqg. (8.73) intheform
9p1
20 (2 =—— , 8.75
P(@xu)y =~ 4 (8.75)

where the subscript “V” designates a component along the effective gravity. Similarly,
the two “horizontal” components of that equation are

2p (2 x u)y = —grad py, (8.76)

where the subscript “H” designates a component parallel to the equipotentials.

The key point to our discussion is that the thickness d of the common envelope is
much smaller than the typical horizontal length D, which isthe mutual separation. Since
the horizontal scale of variation of p; is O(D), it readily follows from Eq. (8.76) that
p: = O(pU D). Accordingly, because in Eq. (8.75) the vertical pressure gradient
op1/0W is O(py/d), onefindsthat ap. /oW is O(p2U D/d). Taking into account that
the vertical component of the Coriolisforceis O(pQ2U), we obtain

lp (2 x u)y| 9

We therefore conclude that the Coriolis acceleration can rightfully be neglected in
Eqg. (8.75).
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Following Pedlosky (1987), we can aso derive an estimate of the density ratio p;1/ 00
since, by virtue of Egs. (8.75) and (8.77), we know that the quantity o9 is of the same
order of magnitude as the vertical component of grad p;. Excepting perhaps the point
L, we can thus write

P1 pQU D>
= — | = T
& O<gd> O( gd ) (679
so that
01 . U QZDZ
;_O(@>o<gd>. (8.79)
Making use of Eq. (8.61) and letting g ~ GM/R?, we obtain
o1 u R?
n_o(L)o(E) e

Becausetheratio R?/Dd is of order onein a contact binary, we therefore conclude that,
aslong as the Rossby number remains much smaller than one, we can let p; < pg inthe
common envelope.

Thus, within the framework of our approximations, Egs. (8.75) and (8.76) become

apl

and
2p0 (€2 x U)y = —grad  ps. (8.82)

Similarly, because the flow produces only dlight density changes as long as the Rossby
number is small, Eq. (8.67) can be approximated by

divu =0, (8.83)

from which it follows that the ratio of the vertical to horizontal speedsis O(d/D) and,
hence, much smaller than one.
Now, adding Egs. (8.71) and (8.81), we obtain

op

EYE o,
which describes an approximate balance in the vertical direction between the vertical
pressure force and the effective gravity. Thisisthe hydrostatic approximation. It is quite
different from the approximation made in Eq. (8.82), in which the horizontal Coriolis
force is made to balance the horizontal pressure force that is permanently maintained
near the base of the common envel ope. Thisisknown asthe astrostrophic approximation,
and it isthe strict analog of the geostrophic approximation discussed in Section 2.5.1.

In order to specify the astrostrophic velocity u in the common radiative envelope of

an early-type contact binary, it is necessary to make explicit use of arelation between
the horizontal pressure and temperature gradients. In the case of asimpleideal gas, this
relation is quite straightforward since Eq. (8.70) then reduces to the linear relation

R
2

(8.84)
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so that Eq. (8.82) becomes

2 x u)y = —E grad, T. (8.86)
m

The necessity for large-scale astrostrophic currents also requires that we solve the non-
linear equation (8.69) for the temperature field in the common envelope. Here we have

poTu-gradS=div(y grad T). (8.87)

By making use of Egs. (2.11) and (8.83), we can also rewrite Eq. (8.87) in the more
convenient form

Cvpou-gradT =div(x grad T) , (8.88)

where cy isthe specific heat at constant volume.

Equations(8.83), (8.86), and (8.88) arethefundamental equationsof theproblem. They
provide asimple but adequate description of the astrostrophic flow and the lateral energy
transfer inacommon radiative envel ope. Asusual, appropriate boundary conditions must
be prescribed at the inner critical surface and at the outer boundary. Moreover, since we
do not expect the astrostrophic flow to penetrate into the Roche lobes, we must ensure
that conditions (2.20) and (2.21) are properly satisfied at the inner critical surface. Not
unexpectedly, these requirements lead to the formation of athin viscous boundary layer
immediately above the Roche lobes. Since the outer part of the common envelope has
to be closely barotropic, we must also require that the baroclinic corrections (i.e., p1,
o1, and T;) and the astrostrophic velocity u vanish at a distance from the inner critical
surface.

Although a detailed solution of this hydrodynamical problem till lies in the distant
future, | hopethat the above discussion has made clear the need for aconsi stent treatment
of the astrostrophic balance at the base of the common envel ope in a contact-binary star
(see Eq. [8.86]). Indeed, there can be little doubt that large-scal e currents flowing along
(and not across) the equipotentials play an essential role in the problem since, without
them, it would be impossible to obtain asolution that satisfies all the basic equations and
all the boundary conditions, while being continuous across the inner critical surface.

Admittedly, | have so far considered the astrostrophic balance in static models only,
that is, binary systemsin which thereis no net flux of matter from one stellar component
to the other. However, one can show that the necessity of having large-scal e astrostrophic
currentsin the lower part of the common envelope also applies to evolving binary con-
figurationsin which one stellar component islosing matter to its companion, so that the
shape of their equipotentials is gradually changing in time. In other words, the concept
of astrostrophy is equally relevant to both the static and evolving systems. A quantitative
study based on Egs. (8.83)—(8.87) would be most useful, therefore, sincethese theoretical
results could provide considerable insight into the nature of the lateral energy transfer in
the common (radiative or convective) envelope of an evolving contact binary.

8.6 Discussion

Chapter 4 and some parts of Chapter 5 have been devoted to the study of large-
scale circulations generated by nonspherical perturbationsto the structure of astar. More
specifically, Section 4.6 was concerned with the steady, thermally driven meridional
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flows that result from tidal distortion and mutual heating of the stellar components in
a detached close binary. The necessity for mechanically driven currents in an asyn-
chronously rotating binary component was further discussed in Section 8.4.2. As was
noted, the importance of these transient motions lies in the fact that they serve to syn-
chronize the axial and orbital motions far more rapidly than could turbulent diffusion
of momentum. For completeness, in Section 8.5 we have also presented a qualitative
study of the astrostrophic currents that arise from the nonuniform heating at the base of
the common envelope in a contact binary. Since each of these four independent flows
exhibits quite distinct features, | shall briefly discuss their differences and similari-
ties.

In all studies of meridional circulation in stars, the assumption is made that turbulent
friction can be neglected atogether in the bulk of the configuration. It is generally
accepted that the flow calculated on the base of a simple frictionless model does provide
an adequate representation of the motion at somedistance from the boundaries. However,
as| have severa times mentioned in the book, africtionless solution does not satisfy the
kinematic boundary condition

n-u=0, with  |u] finite, (8.89)

neither at the free surface nor at the w-barrier defining a core—envelope interface. This
is the basic reason why one must retain turbulent friction in a very thin layer of fluid
adjacent to each boundary. In this thin boundary layer the norma component of the
velocity is diminished continuously from its interior value to a limiting value of zero
at the boundary. It is thus the turbulent viscous force, which contains second-order
derivatives in the velocity u, that allows both the radial component n - u to vanish and
the tangential component n x u to remain finite at the boundaries. In other words, the
presence of viscousfriction increasesthe order of the equationsin the boundary layers so
that it is possible to satisfy as many boundary conditions as the basic equations demand
(see Section 2.2.2). For some reason, however, this well-known fact has been (and still
is) frequently ignored in the astronomical literature.

A good example of the importance of boundary layers in stars is provided by the
reflection effect in detached close binaries. Indeed, as was shown in Section 4.6.2, the
presence of a“hot spot” on the photosphere of abinary component generates large-scale
superficial currents. Itisimmediately apparent from Figure4.9that thisaxially symmetric
circulation remains confined to a thin thermo-viscous boundary layer, with the speed of
the flow decreasing exponentially with optical depth. Of course, to this boundary-layer
flow we must add the steady circulations generated by rotation and tidal attraction alone,
and which are illustrated in Figures 4.3 and 4.8. In each case, the time scale of the
thermally driven currentsis equal to the Kelvin-Helmholtz time, GM?/RL, divided by
asmall number that measures the corresponding departure from spherical symmetry (see
Egs.[4.9],[4.127], and [4.136]). Aswasexplained in Section 4.8, these currentsare quite
different from those encountered in geophysics and laboratory hydrodynamics.

By contrast, there is an evident similarity between the problems treated in Sec-
tions 8.4.1 and 8.4.2. (Compare Figures 8.1 and 8.4.) In each case, the motion con-
sists of three distinct phases: the formation of an Ekman-type suction layer near the
boundaries, the establishment of alarge-scale meridional flow that spins down (or spins
up) the frictionless interior, and finally the viscous decay of small residual oscillations.
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In spite of obvious differences, these two problems have one essential feature in com-
mon, namely, a change in the azimuthal motion near the boundaries. In the laboratory
problem, this change is due to the frictional force acting near the solid walls; in the
double-star problem, it is caused by the tidal attraction that forces the fluid particlesin
the surface layersto move nonuniformly along noncircular orbits (see Section 8.4.3). No
matter whether the boundaries are solid or free, however, the spin-down results mainly
from the conservation of specific angular momentum in the frictionless interior, with
the large-scale advection of angular momentum being regulated by the Ekman layer
near the boundaries. Actualy, the difference between the time scales defined in Egs.
(8.43) and (8.50) can be ascribed to the nature of the pumping mechanism itself: either
an impulsive change in the rotation rate of the two parallel infinite plates or the forced
lack of axial symmetry in the azimuthal motion of an asynchronously rotating binary
component.

Toillustrate this point, let us cal cul ate the spin-down times by means of asimple qual-
itative argument. |n each case, the specific angular momentum is essentially preservedin
the frictionless interior. Hence, in the linear approximation, afluid particle with specific
angular momentum £; zw 2 will acquirethe lower angular velocity Qo by moving radially
outward the distance

19— Qo
2 Q

The spin-down time, which is the time required for the fluid to cover this length at the
speed of the meridional currents, is therefore equal to

I (Qi - Qo)w

|u 2Qolul (8.9
where u isthe typical speed of the meridional flow.

In the laboratory problem, by virtue of Egs. (8.40) and (8.42), one has |u| ~ (§/2L)
(2 — Qo). Hence, making use of Eq. (8.91), one readily seesthat the spin-down time
is of the order of (€208/L)~%, which is the result obtained in Eq. (8.43). In contrast, in
the double-star problem, we have shown that

(8.90)

)
Ul =~ et ﬁ (Q, — Qo)ZD' (892)

Equations (8.91) and (8.92) imply at once that the spin-down time is of the order of
(2Q0e78/R)~1, which is the result obtained in Eq. (8.50).

For small Rossby numbers, there is also a great similitude between a geostrophic
wind in the Earth’s atmosphere and the large-scale circulatory currents in the common
envel ope of acontact binary having dissimilar components (see Sections2.5.1, 2.5.2, and
8.5). Asiswell known, the geostrophic balance is a good approximation for the velocity
field in the free atmosphere, at some distance above the Earth’s surface. It provides
for the wind to follow the direction of the surfaces of constant pressure, and for the
geostrophic velocity to vary with height according to the thermal wind eguation (see
Eq. [2.84]). The situation is quite similar in a contact binary with unequal massesin the
sense that nonuniform heating at theinner critical surface generatesalateral temperature
gradient and, hence, an astrostrophic flow in the bottom layers of the common envel ope.
In this case, however, because it isimpossible to observe the interior of acontact binary,
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one must solve simultaneously the coupled equations for the large-scale motion and the
temperature field in the common envelope (see Egs. [8.83], [8.86], and [8.88]). This
is not expected to be a straightforward task, for the Roche geometry is awkward, to
say the least. As far as | can see, the problem can be made more tractable by using
the triply orthogonal system of Roche coordinates that is associated with purely tidal
distortions (see, e.g., Kopal 1989, pp. 41-44). Obviously, the removal of the centrifugal
potential from Eq. (8.62) is a minor approximation because the flattening caused by
the centrifugal force can hardly affect the energy transfer between the components in
their common envelope. Although the assumed steadiness of the flow is perhaps a more
guestionable approximation, it should be of no serious concern at this stage, however,
since — as was noted in Section 8.5 — static models could prove indispensable to the
development of arational theory of evolving contact-binary stars.
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Epilogue

Although stellar rotation has aroused theinterest of many distinguished astronomers and
mathematiciansfor almost four hundred years, the theoretical study of the basic physical
processes is largely a development of the twentieth century, indeed of the past thirty
years or so. In this book | have attempted to present the theory of rotating stars as a
branch of classical hydrodynamics, pointing out the differences and similarities between
stars and other systems in which rotation is an essentia ingredient, such as the Earth’'s
atmosphere and the oceans. Throughout this volume | have thus assumed that the laws
governing the internal dynamics of a rotating star are the usual principles of classica
mechani cs— basi cally mass conservation, Newton's second law of action, and the laws of
thermodynamics. Asiswell known, one of the reasonswhy fluid motionsin huge natural
systems are so complex derives from the fact that the Navier—Stokes equation of motion
isinherently nonlinear, so that the superposition of two solutions of a given problemis
not necessarily a solution of that problem. In physical terms, this means that it is not
possiblein general to describe only the largest scale motionsin arotating star, since these
flowswill almost certainly interact with awhole spectrum of smaller-scale motions. The
necessity of incorporating these small-scale, eddylike and/or wavelike motionsinto the
large-scale flows remains as one of the important problems to be solved in astrophysical
fluid dynamics.

With very few exceptions, geophysical and astrophysical problemsinvolve motions of
such complexity that progress can be made only through a cooperation between formal
theory and observation. Since the late 1940s, together with the observations there have
been great advances in our theoretical understanding of large-scale phenomena in the
Earth’s atmosphere and the oceans. By contrast, until the mid-1980s astronomers always
had to make use of analytic or numerical models that could not be adequately verified
with the available data base. There is little doubt that this lack of direct measurements
can explain, at least in part, why the theory of rotating starsislagging somewhat behind
the Earth sciences. It cannot be presented as a complete explanation, however, since
prior to the 1970s the oceanographers too had great difficulties in observing the deep
interior of the oceans. As amatter of fact, in thefirst half of the twentieth century, while
the geophysicists were assembling the fundamental mechanisms governing the large-
scale atmospheric and oceanic flows, the astronomers still had to explain, among other
problems, the origin of the energy radiated by the Sun and the stars. Research on stellar
interiors thus became primarily a branch of modern physics, with great emphasis being
laid on the atomic and nuclear processes. Actually, spherically symmetric stellar models
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in hydrostatic equilibrium were so successful in accounting for the major observed
properties of starsthat the most challenging problems of stellar hydrodynamics received
comparatively much less attention.

Meridional currentsin rotating stars provide agood example of the slow maturation of
ideasinstellar hydrodynamics. Indeed, already in 1925, Eddington and Vogt reasoned that
the transport of radiation in arotationally distorted star should cause large-scale motions
in meridian planes passing through the rotation axis. Eddington even went a step further,
noting that “(these) currents will be deflected east and west by the star’s rotation, just
as similar currents in our own atmosphere are deflected by the earth’s rotation.” More
importantly, he also wrote: “ Presumably when the current has attained a moderate speed
asteady state will be reached because the viscosity of the stellar material is considerable
and thefundamental equations of equilibriumwill be modified by the addition of viscous
stresses.”* Important advancesin our knowledge of theinternal dynamicsof arotating star
werethusmadeinthe 1920s. Yet, despite somefar-reaching but incompl ete contributions
made over the next three decades, the building blocks that explain how the meridional
currents and concomitant differential rotation are sustained in an early-type star were not
properly assembled until the 1980s—essentially during the period 1982—1995. Chapter 4
presents an overall picture of these techniques, which have been successfully applied
to the development of analytic modelsin which circulation and rotation are represented
explicitly but the smaller-scale motions parametrically. Undoubtedly, the most exciting
prospects for the future are associated with possibilities of incorporating into numerical
models the transfers achieved by these small-scale mations, resolving individual eddy
events in sufficient detail to reproduce their transfer properties adequately rather than
making use of ad hoc coefficients of eddy viscosity.

Because asteroseismology istill initsinfancy, theinterior of an upper-main-sequence
star has remained so far terra incognita.! Hence, there has been as yet little contact
between observation and the theoretical studies of large-scale flows in the early-type
stars (see, however, Section 6.4). Yet, the accumulation of relatively recent observations
has made it clear that, while we understand the fundamentals of stellar evolution, the
so-called standard models are in error in a number of details. Thisis particularly true
for early-type stars, and stellar rotation is currently the favorite candidate to explain the
discrepancies. Indeed, Herrero et a. (1992) have found that all fast rotators among O-
type stars show large surface helium abundances correl ated with the rotation rate, which
indicates that there is probably a link between rotation and turbulent mixing in these

* Eddington, A. S., The Internal Constitution of the Stars, p. 285, Cambridge: Cambridge University
Press, 1926 (New York: Dover Publications, 1959).

T The number of oscillation modes detected in main-sequence stars and white dwarfs is by many
orders of magnitude smaller than that in the Sun. This number is much too small to determine the
radia structure of a star directly from measured frequencies, as it is done in helioseismology (see
Section 1.2.2). Even in the most favorable cases (such as the white dwarf PG 1159-035, in which
about one hundred frequencies have been identified with high-order g-modes), the observed splitting
of the modes only provides global information about the star’s rotation: the value of its rotation
period, Pt = 1.35 d, and the evidence that it is rotating nearly uniformly. For a recent survey of
asteroseismology, see W. A. Dziembowski, in Sounding Solar and Stellar Interiors (Provost, J., and
Schmider, F. X., eds.), I.A.U. Symposium No 181, p. 317, Dordrecht: Kluwer, 1997.
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stars.* Unfortunately, as was repeatedly pointed out in Sections 3.6 and 5.4.1, it is not
possible at this writing to calculate unequivocally the coefficients of eddy diffusivity in
theradiativeinterior of rotating stars. Accordingly, sincethe choice of these coefficientsis
far from being unique, thiswill necessarily bring about a certain amount of uncertainty in
the numerical treatment of stellar evolution. That isto say, despite the fact that rotation
has long been known to be capable of inducing turbulent mixing in stellar radiative
Zones, we are not yet in a position to provide a fully quantitative explanation for the
data. Moreover, because the practical evaluation of the eddy diffusivities of matter and
momentum in the radiative interior of a rotating star is at least partly an art, not just a
science, thereisso far no clear expectation for the large-scale flow deep inside an upper-
main-sequence star. This could hardly be more different than the situation encountered in
late-type star studies, since new observational techniques have recently provided a grest
deal of information about the internal rotation of the Sun and the rotational evolution of
low-mass stars.

Till the late 1980s, theoretical models invariably predicted that the angular velocity
in the solar convection zone was constant on cylinders concentric to the rotation axis;
moreover, therewerethen someindicationsthat the Sun’sradiative core might berotating
much more rapidly than the surface. According to the most recent helioseismological
data, however, it is now generally thought that the rotation rate in the solar convection
zoneissimilar tothat at the surface, withthe outer partsof the Sun’sradiative corerotating
uniformly at a rate somewhat lower than the surface equatoria rate. (The rotation rate
in the inner core is more uncertain, but recent measurements indicate that these regions
might indeed rotate rigidly down to the center.) The 1980s have thus seen our knowledge
of the Sun’s internal rotation go from the level of mere speculation to that of afield in
which the interplay between theory and observation has become indispensable. Yet, it
is clear that we are still along way from an understanding of the interaction between
rotation and turbulent convection. Furthermore, because we cannot infer the internal
motions of the Sun in a purely deductive manner from the basic equations, our present
understanding of itsrotational history remainsat best phenomenological. Aswas pointed
out in Chapter 5, refined measurements of the Sun’s angular velocity in its most central
regions will be needed to identify unequivocally the mechanisms that are continuously
redistributing the internal angular momentum in response to the rotational deceleration
of the solar convection zone.

The 1990shave al sowitnessed rapid progressinthetheoretical study of low-massstars,
both before and during the mai n-sequence phase. Again, numerical modelshave provided
the opportunity to delve into the component mechanisms responsible for the rotational
evolution of these stars, namely, disk—star magnetic coupling during the early phases
and internal angular momentum redistribution and saturated magnetized stellar winds
during the later phases. It may not be inappropriate to recall, however, that the numerical
simulations presented in Chapters 5 and 7 do not “explain” the current observations but
rather provide new insightsinto processes that are not easily explored with the available

* Herrero, A., Kudritzki, R. P, Vilchez, J. M., Kunze, D., Butler, K., and Haser, S., Astron. Astrophys.,
261, 209, 1992. For a comprehensive review of these and related matters, see Marc Pinsonneaullt,
“Mixing in Stars” Annu. Rev. Astron. Astrophys., 35, 557, 1997.
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instrumentation. This is all the more true in the case of those evolutionary sequences
of rotating models that can reproduce the abnormal abundances of the light chemical
elements in the Sun and solar-type stars. Indeed, because several adjustable parameters
are usually needed to describe the turbulent diffusion processesin theradiative interior of
astar, itisquite clear that these model s cannot providethe kind of understanding that one
would develop from a theory based on first principles alone. Yet, these parameterized
models serve a useful purpose because they can be constrained by requiring that the
present-day Sun depletesthe light elementsin the observed proportions, and so they can
be used to estimate the gross amount of turbulence present in stellar radiative interiors.
Not unexpectedly, the more we progress the more we uncover new, unresolved problems.

In conclusion, it is well to recall that throughout this book | have made use of con-
cepts and methods that were originally introduced in the Earth sciences — barotropy
and baroclinicity, geostrophy, eddy—mean flow interaction, boundary-layer theory, etc.
In particular, following the example set by the meteorologists and the oceanographers,
| have attempted to present consistent solutions that satisfy all the basic equations and
al the boundary conditions. This is the reason why we have found that the large-scale
motions in the radiative or convective regions of a rotating star always consist of an
overall motion around the rotation axistogether with much slower but inexorable merid-
ional currents — a situation not unlike those encountered in the Earth’s atmosphere and
the oceans. In most cases, these secondary flows are dynamically unimportant in the
sense that they have little or no effect on the global structure of arotating star. Thereis,
however, an important exception: the transient meridional currents that advect angular
momentum throughout the interior of an asynchronously rotating binary component. As
was shown in Chapter 8, this mechanism is closely related to Ekman pumping, and so
itisof direct relevance to the study of synchronization and orbital circularization in the
close (and not so close) binary stars. Thisisafairly new concept in astronomy that was
essentially devel oped between 1987 and 1997; hence, unlike other approaches based on
celestial mechanics or resonant interactions with natural modes of oscillation, it has not
yet become apart of the astronomical tradition. Inthis, asin many other debatableissues,
it is the accumulation of new observational data that will eventually resolve the contro-
versy. Inthe present problem, it isessential to improve, observationally, the upper period
limits above which detached binaries are asynchronously rotating or have noncircular
orbits.
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