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PREFACE

In this monograph an attempt has been made to present the
theory of stellar dynamics as a branch of classical dynamics—a
discipline in the same general category as celestial mechanics. Such
an attempt clearly runs the risk of making idealizations (as in
chap. i) which in the light of later developments may prove un-
warranted. But the advantages gained for clarifying the fundamen-
tal issues involved and the underlying motivations of the theory are
such as to outweigh, in the author’s opinion, the disadvantages
from which the method may otherwise suffer. Particularly, in stellar
dynamics the deductive method has seemed appropriate, since we
are thus enabled to formulate certain abstract problems (as in
§ 3.4, p- 89) which appear to have an interest for general dynamical
theory even apart from the practical context in which they arise.
Indeed, several of the problems of modern stellar dynamical theory
are so severely classical that it is difficult to believe that they are
not already discussed, for example, in Jacobi’s Vorlesungen. But, in
spite of the purely classical nature of the problems presented,
progress in recent years has been recorded along only two principal
directions.

The first is in relation to the group of problems in which the
question of the time of relaxation of a stellar system occupies the
central position and in which the method consists in analyzing the
effects of stellar encounters in terms of the two-body problem of
classical dynamics (chap. ii). It is now believed that this theory
finds its most fruitful applications in the dynamics of star clusters
(chap. v). In the second group of problems discussion centers around
Liouville’s theorem and the solutions of the equation of continuity;
here the principal problem is to discover the dynamical implications of
the existence of a field of differential motions which appears to be the
most striking kinematical feature of the Galaxy and the extragalactic
systems (chaps. iii and iv). While these methods have contributed
substantially toward the clarification of the peculiarly characteristic

vi



viii PREFACE

aspects of stellar dynamics, an impartial survey of the ground al-
ready traversed suggests that we are perhaps still very far from
having constructed an adequate theoretical framework in which the
physical problems can be discussed satisfactorily. In any case we
can expect that the near future will see the initiation of further
methods of attack on the problems of stellar dynamics. As an ex-
ample of such newer methods, reference may be made to the recent
statistical theory of stellar encounters which has been developed by
S. Chandrasekhar and J. von Neumann since the writing of this
monograph. This statistical theory is still so very much in the early
stages of its development that it has not been possible to include an
account of it in this monograph. But it promises to make fresh
starts on a variety of problems, and it is possible that it is along
such lines that the final physical theory of stellar dynamics will be
evolved. Meantime, it is perhaps of some value to present in a co-
herent and, as far as possible, a logical form the theories already
available, as the present monograph attempts to do.

It remains only to record my indebtedness to Dr. E. Hubble, who
provided five of the plates (Pls. I-IV and VI) which illustrate this
volume; to Dr. R. C. Williams for Plate V; to Dr. N. U. Mayall for
allowing me to quote some of his unpublished results; and, finally, to
the University of Chicago Press for their invariable courtesy and

consideration.
S. C.

YERKES OBSERVATORY
April 1942
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CHAPTER I
KINEMATICS

Stellar dynamics deals with the distribution of matter and motion
in stellar systems. Under the term “stellar system’’ we shall include
any physically significant aggregation of stars. Thus the study of the
motions in our Galaxy, in the external galaxies, and in star clusters
all come within the scope of stellar dynamics. Specifically, in stellar
dynamics the emphasis is on the interpretation of the characteristic
features of a stellar system in terms of the forces which govern the
motions of the individual stars in the system. Consequently, a kine-
matical analysis of the state of motions in stellar systems is a
necessary preliminary for the study of stellar dynamics. In this
chapter we shall therefore attempt to bring together and describe
the essential kinematical features of the observed state of motions
in stellar systems.

1.1. The fundamental standard of rest.—In a general way it ap-
pears that the most convenient method of describing the state of
motions in a stellar system is by specifying an appropriate distribu-
tion function ¥(x, vy, z; U, V, W; t), which gives the number of
stars dN in the element of volume dxdydz at (x, y, 2) and with
velocities in the range (U, U + dU; V,V +dV; W, W + dW) and
at a certain instant of time ¢. Thus,

dN=V(x,y, 2; U, V,W;t)dxdydzdUdVdW . (1.11)

It should be noted that in equation (1.11) U, V, and W represent
the components of the velocity of an individual star in some fixed
frame of reference. We shall refer to this fixed frame of reference as
the fundamental frame of reference or as the fundamental standard of
rest. From a theoretical point of view it is a matter of indifference
how this fundamental standard of rest is chosen, as long as it is fixed.
However, for a stellar system in a steady state the fundamental
standard of rest is best so chosen as to coincide with the centroid of
1



2 PRINCIPLES OF STELLAR DYNAMICS

the motions of all the stars in the system, i.e., in such a way that in
the chosen frame of reference
SU=XV=IW=0, (1.12)

where the summation is extended over all the stars in the system.
On the other hand, for a stellar system in a nonsteady state it can
happen that the centroid of the motions in the system depends on
the time; consequently, the standard of rest defined according to
equation (1.12) is not always suitable for general theoretical discus-

sions.
We may add here a few remarks concerning the manner in which

the centroid of the motions in our Galaxy is determined. At the
outset it is clear that we cannot adopt any direct method for deter-
mining the true centroid, since we do not have detailed information
of ¢ll the motions in the system. Recourse must therefore be had to
some other, indirect method. Now, from the general space distribu-
tion of the globular clusters it appears that they are symmetrically
distributed about a plane perpendicular to the Galaxy and passing
through the sun in the direction of galactic longitude 325° + 2°, with
the same number on each side of the central plane and arranged in
an approximately spheroidal form. This symmetry suggests that
the system of the globular clusters and the system of the stars are
probably concentric. This suggestion appears highly probable when
it is further noted that galactic longitude 325° is in the direction
of Sagittarius, where the star clouds are richest. Quantitatively, the
distribution of the faint stars at great distance from the galactic
plane! indicates a maximum concentration of the stars in the direc-
tion 324° + 3°. On the strength of this evidence, it is now generally
agreed that in the system of the globular clusters we have a fair
sample of objects which are symmetrically distributed about the
center of the Galaxy. It therefore appears reasonable to conclude
that the globular clusters will also determine the true centroid of all
the motions in the Galaxy. The practical problem thus reduces to
one of solving for the solar motion with respect to the system of the
globular clusters. Let X, ¥, and Z denote the components of the
velocity of a globular cluster relative to the sun. If (Uo, Vo, Wo)

1Stars away from the galactic plane are used in this discussion to avoid complica-
tions arising from irregular absorption in the plane of the Milky Way.
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represents the motion of the sun in the fundamental standard of
rest, defined according to equation (1.12), then, according to our
assumption,

2(X+Uo)=2(1/'+ Vo)=E(Z+WO)=0, (1.13)

where the summation is to be extended over all the globular clusters.
In practice, only the radial velocities of 43 globular clusters are
known. But it is clear that we should be able to determine (U,
Vo, We) by the method of least squares, using (1.13) as the equa-
tions of condition. The most recent determination of the solar mo-
tion with respect to the system of the globular clusters is due to
Mayall,? who finds that (in km/sec)

Uo=129i19; V®=153i33; WO=34j:30 (1.14)

in a galactic system of Cartesian co-ordinates.

1.2. The local standard of rest—When we consider “extended”
stellar systems like the Galaxy, it appears that it is possible to define
a unique local standard of rest for describing the motions in a given
relatively small region of space. We shall first formulate this notion
quite abstractly.

Consider the motions in a small region of space, ¢, surrounding
the point (x, ¥, 2). The stars in the element of volume ¢ will define
a certain standard of rest. We assume that, as we make ¢ tend to
zero, we shall obtain in the limit a standard of rest which is inde-
pendent of the manner (i.e., the sequence of shapes) in which we may
let o tend to zero. The standard of rest thus uniquely defined at the
point (x, y, 3) may properly be called the local standard of rest at
(x, ¥, 2). More explicitly, let Uy(o), V(o), and W(c) be such that

U=V (@} =D {V = Vo(a) }

(1.21)
=D {W-Ws(o)} =0,

where the summation is extended over all the stars in the element

2 The author is indebted to Dr. Mayall for providing this information in advance
of publication. But Dr. Mayall wishes to emphasize that the values (1.14) have been
derived after a preliminary discussion of the available data and should therefore be re-
garded as only provisional.
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of volume ¢. In words, [Uo(e), Vo(c), Wo(0)] represents the velocity
of the centroid of the motions in the element of volume ¢ in the
fundamental frame of reference. Our assumption is that [U(o),
Vo(a), Wo(a)] tends to a unique limit as —0. We can thus write

’l'i_rf;[UO (7)7 VO (d))WO ((7) ] = (UO) Vo, Wﬂ) . (1-22)

It is clear from the manner in which we have derived them that
U,, Vo, and W, will in general be functions of position and time.
In the preceding paragraph we have formulated the idealized
abstraction which underlies the notion of the local standard of rest.
We shall now examine the
implications involved in
this notion. It should first
benoted that inintroducing
the distribution function
Y(x, v, 3 U, V, W; 1) the
assumption is implicitly
made that a stellar system
can be treated by methods
strictly applicable to con-
tinuous media. It is, how-
ever, clear that this ideali-
zation of a stellar system
to a continuous medium
mustnecessarily break down
for sufficiently small elements of volume. Consequently, we cannot
strictly carry out the limiting process implied in our definition of
Uy Vo, and W, In practice we contemplate a dependence of
Uy(a), Vi(o), and Wo(s) on o somewhat like that indicated in
Figure 1. It is thus seen that the possibility of our being able to set
up local standards of rest at different points of the system (and at
different instants of time) implies that in the neighborhood of every
point in the system we can find elements of volumes containing num-
bers of stars large enough for the notion of a local standard of rest
to be significant but small enough to be able to neglect the variation
of Uy, Vo, and W, over the spatial extent of the elements of volumes
considered. It is difficult to formulate the conditions thus implied in

Udlo)

o

F16. 1.—Illustrating the circumstances under
which a local standard of rest can be defined.
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a rigorous manner because of the necessarily discontinuous nature of
[U(o), Vo(a), Wo(o)], which is particularly serious as ¢ tends to
zero (see Fig. 1). However, the general implications are clear
enough. Thus it is fairly obvious that the notion of a local standard
of rest will not be of any special significance under the circumstances
envisaged in Figure 2. We cannot, of course, draw a sharp line of
demarcation between the extreme cases indicated in Figures 1 and 2.
On the other hand, it appears reasonable that we should be able to
define local standards of rest in stellar systems like our Galaxy.
Similarly, the notion of
the local standard of rest
is probably of no impor-
tance for the discussion of
relatively small clusters of
stars.

The determination of Udo)
the local standard of rest
in the neighborhood of the
sun in our Galaxy is clear-
ly equivalent to solving
for the solar motion with
respect to the “near-by” o

stars. Let (X, ¥, Z) de- . )

h locit £ F1c. 2.—Illustrating the circumstances under
note the velocity . O @  yhich a local standard of rest cannot be unam-
near-by star relative to biguously defined.

the sun. Further, let (xo,

20, we) be the velocity of the sun in the frame of reference defined
by its own immediate neighborhood; in other words, (¥, 0, wo)
represents the local solar motion. Then, according to our definition
of the local standard of rest,

2(X+uo)=2(Y+vo)=2(Z+'wo)=0, (1.23)

where the summation should strictly be effected over all the motions
in a sufficiently small volume of space (say, a sphere of radius 100
parsecs) about the sun. In practice the local solar motion is deter-
mined by the method of least squares, using the proper motions
and/or the radial velocities of the near-by stars and employing equa-
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tions (1.23) as the appropriate equations of condition. It is found
that the magnitude of the local solar motion is 19.6 km/sec. The
components of this motion along the three principal directions in the
galactic system of co-ordinates are (in km/sec)

uo=16.6; vo=7.2; wo=7.2. (1.24)

So far we have spoken only of the centroid of the motions and not
of the center of mass. Thus, the components U,, V,, and W, of the
motion of the local standard of rest in the fundamental frame of
reference are defined in such a manner that

SU-U)=Z2(V=Vy)=ZW—-W,) =0, (1.25)

where the summation is extended over all stars in a sufficiently
small volume of space surrounding the point considered. In an anal-
ogous manner we can define the motion (Us;, V3, W3) of the local

center of mass such that
Em(U—Us)=Zm(V—-V5)=2mW—-Ws)=0, (1.26)

where m denotes the mass of the star. In equation (1.26) the summa-
tion is to be effected over all the stars in a sufficiently small volume
of space surrounding the point considered. Actually, the two mo-
tions, (U,, Vo, Wo) and (U, V3, W3), need not be the same. How-
ever, as we shall see later in chapter iii, the centroid of the motions
is a more significant notion for stellar dynamics than is the center of
mass.

From the point of view of our present discussion it is seen that we
can divide stellar systems into two kinds: those for which the notion
of the local standard of rest is of significance and those for which it
is not. In the former case the kinematical description of a stellar
system divides itself into two parts: first, the specification of the
distribution function

Y=V (x,y, z;u, v,w; t), (1.27)
where (u, v, w) denotes the residual velocity
u=U~—-U,; v=V—-V,; w=W-W,; (1.28)

and, second, the characterization of the functions U,, V,, and W,
in their dependence on position and time. The quantities U,, V,,
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and W, may be said to define a field of differential motions. Thus, the
state of motions in a stellar system like our Galaxy is completely
described in terms of the distribution of the residual velocities, on
the one hand, and the field of differential motions, on the other. For
stellar systems for which the notion of the local standard of rest has
no physical validity, the kinematical description will consist simply
in the specification of the distribution function ¥ as a function of
the seven variables x, y, 2, U, V, W, and ¢

Finally, we may briefly note how the ideas underlying the notion
of a local standard of rest can be further generalized. It will some-
times be necessary to consider a stellar system as consisting of two
or more distinct subsystems, each of which is described by its own
characteristic distribution function (cf. § 1.5). Under such circum-
stances it would be natural to suppose that in any given small
region of space the different subsystems will define local standards
of rest which will not all be the same. In other words, each con-
stituent subsystem should be considered as defining its own ap-
propriate local standard of rest. It is thus seen that there is no
formal difficulty in considering a stellar system as resulting from
the superposition of two or more subsystems. From the physical
point of view this is, of course, of importance inasmuch as the possi-
bility that a stellar system can be considered as consisting of two or
more subsystems assures us of a certain measure of freedom in
interpreting the observational material. From the theoretical point
of view, on the other hand, the resulting generalization is of a rela-
tively formal nature. Consequently, for the sake of brevity, we
shall, in general, restrict ourselves to a consideration of simple stellar
systems and refer to systems formed by superposition only if any
particular physical situation demands it (cf. § 1.5).

1.3. The distribution of the residual velocities. Schwarzschild's law.
—From our discussion in § 1.2 it is apparent that an important part
of the kinematics of motions in a system like our Galaxy consists in
the specification of the distribution of the residual velocities. As we
should expect, stellar motions in the neighborhood of the sun provide
us with practically the only source of information we have concern-
ing this matter. The parallaxes, the proper motions, and the radial
velocities of the near-by stars represent, of course, the basic obser-
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vational material for this discussion. An analysis of this extensive
material, which is now available, has shown that the distribution of
the residual velocities, (%, v, w), is characterized by (i) randomness,
i.e., in any given direction the number of positive velocities in any
given range equals the number of negative velocities in an equal
range, and (ii) the mean residual speed in a given direction depends
on the direction specified. This latter property of the distribution of
the residual velocities implies that the mean residual speed has a
maximum value in some determinate direction. This direction of
maximum mean residual speed defines a certain preferential direc-
tion of motion or, as it is more commonly called, the direction or the
vertex of star streaming.

Quantitatively, it is found that the distribution of the velocities
in any given direction is Gaussian in character, i.e., the number of
stars with velocities in the range (p, p + dp) in a given direction can
be expressed in terms of the frequency function

L5 e (1.301)

According to this, the mean residual speed in the direction con-
sidered is
5=~1-;f0°° e"”'pdp=;l—};-; : (1.302)
Since the mean speed is a function of direction, it follows that j is
also a function of direction. In particular, j has its minimum value
in the direction of star streaming; in any other direction the dis-
persion of the residual velocities is less. These features of the dis-
tribution of the residual velocities, in the neighborhood of the sun,
are clearly illustrated in Figures 3 and 4, in which the distribution
of the radial velocities in the direction of the vertex (right ascension,
a = 18"16™; declination, § = —12°) and in a direction at right
angles to it (a = 22" § = +55°) are shown.* The appropriate
Gaussian curves which fit the observed distribution of the velocities
are also indicated. These diagrams exhibit in an explicit manner
3 Strictly speaking, we should write [p]. However, it is convenient to omit the sign
for absolute value in writing expressions or equations involving this quantity.

¢I am indebted to Mr. Ralph E. Williamson for collecting the necessary material
and preparing these diagrams (see 4p. J., 93, 511, 1941).
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F16. 3.—The distribution of the radial components of the peculiar velocities of stars near the vertex
of star streaming (a = 18"16™; § = —12°). The full-line curve represents a Gaussian curve with the
same first and second moments as the observed distribution. It is found that the first and the second
moments are —0.3 and 23.4 km/sec, respectively; the latter gives the dispersion of the velocities in the
direction considered (Williamson, 4. J., 93, 511, 1941).
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F1G. 4.—The distribution of the radial components of the peculiar velocities of stars approximately 90°
from the vertex of star streaming and in the galactic plane (a = 22%; § = +55°). The full-line curve
represents a Gaussian curve with the same first and second moments as the observed distribution. It is
found that the first and the second moments are —0.7 and 16.3 km/sec, respectively; the latter gives the
dispersion of the velocities in the direction considered (Williamson, 4. J., 93, 511, 1941).
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the essential physical characteristics of the observed distribution of
the residual velocities.

Again, since 5 is a function of direction, there must be a determi-
nate direction in which p has its minimum value. From general con-
siderations of symmetry we should expect this direction of minimum
mean speed to be at right angles to the direction of star streaming.?
To consider more generally the dependence of j or 5 on the direction,
we shall first set up a system of co-ordinates (w1, 1, 1) such that
the %, and w, axes are along the directions of maximum and mini-
mum values of 5, respectively. Let the values of ; along the three
principal directions be ji, js, and j;. Accordingly, the distribution of
the velocities in these three directions will be given in terms of the
frequency functions

-T—]‘;—z e~im ;‘7;% e~ , and ;;.jiiz' e~iwi . (1.303)
Consider, now, some arbitrary direction which has the direction
cosines /1, m1, and n,. The value of 5 for this direction will naturally
depend on i, m,, and n,; in other words, 5 = p(l, m1, n1). It is clear
that, quite generally, p(/i, m:, #;) must be an even function of J,,
my, and n,. Further, it is evident that
(1,0,0)=a,; 5(0,1,0)=19,; 5(0,0,1)=3w. (1.304)
A simple formula for 5(Ji, 71, #1), which satisfies these requirements,
is

[ (b, myy m) )2 = Hal + mi5]+ niw . (1.305)
From our present point of view the foregoing formula for 5(l, m,, n,)
has been written down purely from considerations of simplicity.
However, detailed comparisons with the data of observations which
have been carried out by Charlier and others have amply confirmed
the adequacy of the formula (1.305) for the mean residual speed in
any given direction. Table 1a summarizes the results of this analysis
by Charlier and his associates. Further in Table 15 we give the re-
sults of a more recent discussion by Nordstrém based on radial ve-
locities.

5 Actually, it is known that the direction of star streaming is approximately an axis

of symmelry, i.e., j (or p) depends only on the angle which the specified direction makes
with the vertex of star streaming.
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TABLE 1la
CONSTANTS OF THE VELOCITY ELLIPSOID
RapiaL VELOCITIES Space Mortions ProPER MoOTIONS
a‘;“’s‘:i:} 1986 646 4182

YV2%i oo 19 9 km/sec 27.9 km/sec 23.4 km/sec
Lo 34192 341°3 33920
bro oo - 5% + 2°8 - 329
1/\/5}: ............. 13.4 km/sec 19 .4 km/sec 15 1 km/sec
Lo i 69°6 71°%4 70°0
bao it L + 1692 + 7% — 13%
1/V2%s .o i 15.6 km/sec 16 1 km/sec 12.1 km/sec
7 T 270°0 233°1 23299
ba o 7298 83°1 + 75°8

DIRECTION OF THE VERTEX (NORDSTROM)

TABLE 15
THE AXES OF THE VELOCITY ELLIPSOID (IN KM/SEC) AND THE

Average

Spectral A 1 1 1 P

Class M:’;:i':‘:;e Vi V2ja V2js !
A........... +0.3 16 12 10 357°+10°
Ao +1.5 19 9 11 356 + 5
F.......... -0 6 20 13 8 321 +12
Fooooooo..... +2.1 21 17 13 312 +15
F. .......... +3 8 27 17 15 350 + 8
gG.......... —-0.4 18 14 16 341 +20
gG.......... +1.4 22 16 16 329 +17
dG.......... +3 8 43 29 20 324 +12
dG.......... +5.5 49 32 13 353 +10
-1.3 17 12 15 343 14
-0.3 23 15 18 339 +11
+0.4 26 18 19 333+ 9
+17 34 18 20 340 + 7
+6.4 40 28 21 336 +14
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Now, a general distribution function which will predict, first, a
Gaussian distribution of the velocities in any given direction and,
second, a formula similar to (1.305) for the dispersion of the veloci-
ties as a function of direction is Schwarsschild’s law of ellipsoidal
distribution of velocities:

dN=N J‘{j{’ emit=ivl=itel duydv,dw,,  (1.306)
where N stands for the number of stars considered. We shall now
show that this ellipsoidal law (1.306) does, in fact, satisfy the two re-
quirements we have stated.

Our problem is to determine the law of distribution of velocities in
some specified direction (li, m,, #:). For this purpose consider two
other directions (l;, ms, ny) and (I, ms, n;), which together with
(b, m1, m) form a new Cartesian system of co-ordinates. Let the
velocities along these three directions be denoted by #, v, and w. The
transformation from the system (u,, v;, w1) to the system (%, v, w)
corresponds to a simple rotation, and it is readily verified that in the
new system the distribution law (1.306) becomes

dN = N 31208 ;~0gyqvduw (1.307)

3/2

where
Q =oau’+bv:+ cw*+ 2 fow+ 2gwu+ 2huv, (1.308)

where, further,

a=lfjf+ mfj§+nfj§; f=lzls]'12+ mzmajg'*' ”2”3]% ,
b=Bitmiiitniit;  g=hhiit mmijitnan g, (1.309)
c=Bii+miji+nsjs;  h=hhii+mmi+ninags.

The quantities a, b, c, f, g, and % are referred to as the coefficients of
the velocity ellipsoid. The number of stars dN(x, v) with velocities
in the range (%, # + du) and (v, v + dv) is obtained by mtegratmg
equation (1.307) over all », i.e.,

AN (u, v) = NJ;{,jj’ Lﬁ e~ Qdwdudv.  (1.310)
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Now our expression for Q can be re-written in the form

Q=11 (ca—grwt o= pv-20g—ho)us) 1t
t+o(wt 228y )

or, more conveniently, as
2
Q=»1 (bot®+ agv?— 2houv) + ¢ (w_*__f_’j_'__i'_g_ﬁ) , « (1.312)

where ay, by, and k, are the minors of a, b, and &, respectively, in the
fundamental determinant associated with the quadratic form
(1.308), namely,

a h g
D={hr b f|. (1.313)
£ /¢

Substituting (1.312) in equation (1.310), we find that the integral is
readily evaluated. We have

dN (u, v) = N]‘] 23— (pttani-thun/edudy . (1.314)8

1/2

To obtain the distribution of the velocities in the #-direction we have
now to integrate the foregoing equation over all values of ». Thus

S A A —_—— (“obo—h Ju? ©
AN () = NI o7, So e iancdvdu, (1.315)

or, after performing the integration,
= il-j—.zé.jg “(“obo—";)“’/"o"
dN (u) =N \/;aoe du . (1.316)
On the other hand, we have the relation
aobo— k3= ¢D. (1.317)
Equation (1.316) can thus be re-written as
= J:!l_!ﬁ —~Dut/a,
dN (u)=N Vo e du . (1.318)

¢ This equation gives the distribution of the transverse velocities in the direction
(h, my, m1) and is thus fundamental to the analysis of the proper motions in this region
of the sky.
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On integrating equation (1.318) over all %, we find that

— yJieds.
N=NZ2SE (1.319)

in other words, we have proved the relation
D= jij373. (1.320)

According to equation (1.320), equation (1.318) can be written in
the form

AN (u) = N*\‘/‘%{“ e~nnmtay gy | (1.321)
0

which thus predicts, as required, a Gaussian distribution of the
velocities in the #-direction. Further, the mean speed in this direc-
tion can be expressed as

o

i = T g Ty ¢
717373

(1.322)

On the other hand, according to equations (1.309), we have
av= (Bji+ mifi+nif) B+ miji+nifd) } (1.323)
- (121::]'? + mzma_ig + ”2”3]'2) : )
or, using Lagrange’s identity,
ao= (many = namy) * i3 /3+ (mals — lan) * 13 /1 ’ (1.324)
+ (lemy — myly) 2]?]3 .

Since (I, my, m1), (2, ms, n2), and (I3, m3, n3) refer to mutually orthog-
onal directions, the foregoing equation reduces to

ao=1j3js+mijsji+mjijs. (1.325)
Equation (1.322) can therefore be expressed in the form
a2 = Ll + mio} + nii} (1.326)

which is clearly equivalent to equation (1.305).
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We thus see that in the neighborhood of the sun the distribution of
the residual velocities takes the form

V= ¢~ (Q+a) (1.327)

where we have written

e =N —g + (1.328)

We do not have equally detailed information concerning the
distribution of the residual velocities in other parts of the Galaxy;
but it does seem reasonable to suppose—and it is consistent with
such indications as we do have—that the distribution is still of the
Schwarzschild ellipsoidal type with, however, different values for
the coefficients of the velocity ellipsoid.

1.4. Observational consequences of a field of differential motions.
The differential rotation of the Galaxy.—Consider the relative motion
of two stars S, and S, at some distance apart. Let the positions of
the two stars be (%1, y1, 21) and (xz, ye, 22), respectively. The relative
motion of the two stars arises from three different sources: first, the
motion of S relative to its immediate local standard of rest at
(21, 91, 21); second, the relative motion of the local standards of rest
at (%1, y1, 21) and (%3, 93, 22); and, third, the motion of S; relative to
its immediate local standard of rest at (x., ¥2, 22). The velocity of S,
relative to S; has, therefore, the components

Uo (%3, 3, 22) +us— Uq (%1, y1, 31) — 4y,
Vo (%2, ¥2, 22) + va— Vo (21, y1, 21) — 91, (1.401)
W (%2, Y2, 32) +ws— Wy (21, 31, 21) —w; .

Thus, the presence of a field of differential motions in a stellar
system introduces in the relative motion of two stars a term which
depends on the position of the two stars only. This differential-
motion term (as it may be called) has the components

Vo (%2, y2, 22) — Vo (21, 31, 21) , (1.402)

Ua (%3, y2, 22) — Uy (21, ¥1, 31) :}
Wo (%2, y3, 28) —Wo (21, 31, 21) .
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Following Ogrodnikoff and Milne, we shall now show that the
differential-motion term in the relative velocity of two not widely
separated stars can be expressed very simply in terms of the local -
gradient of the differential motion (U,, Vo, Wo). For let the two
points (%1, y1, %1) and (xs, ys, 2:) be sufficiently near that we can
express the values of Uy, Vo, and W, at (23, ¥s, 22) in terms of first-
order Taylor expansions from (%1, y1, %1). The quantities (1.402) now
become

AU, = ¢ 25(;_0) 4 831;0) e aU.,)’

AVe= g("V") Q—Vi’) +;("V‘?) b (1.403)

awo= £ (52) +1(50), +: (52,

where, for the sake of brevity, we have written
E=2—21; n=y—y; {=2—25. (1.404)

Further, it is to be understood that all the partial derivatives in
(1.403) are to be evaluated at (x1, 1, 21).

The observational consequences of the term (AU, AV, AW,) in
the relative motion of two stars are best seen in the contribution
which this term makes to the radial and the transverse velocities of
a star as measured by an observer at rest with respect to S; and at
(21, 91, %1). Let AR, be the radial component of the differential-
motion term; let, further, AT{ and AT{” be the transverse com-
ponents of (AU, AV,, AW,) parallel to the (x, y) plane and in the
meridian plane passing through S., respectively. We clearly have

ARy =1 (6ATo+ A Vot (W)

1

AT(e) (52 2) o) 1/2 (

£AVo— nAU,) (1.405)
ATY =—- (s’+ oy (L £+ 17 18Wo— E0aU = nga Vi)

where we have used 7 to denote the distance between the two stars.
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Using in (1.405) the explicit expressions for AU, AV,, and AW,
as given by equations (1.403), we obtain

6U0> £2+(8 Vo> 4 aWo) e
% + ‘_9.V_°)E + QY_‘! + _QKV_"),”-

+ QKI_“ + Q_U_Q) ff]

e 6 V 6U

(aVo an)E _ ‘?_F_O) S«+(‘9V°) (1.406)

s E G CORE "’W°)
+e aWo) _nr 6V0)+ aV.,)
(31l (L),

OUO)_‘__; an)

To bring out explicitly the nature of the foregoing terms in the
radial and the transverse velocities in the relative motion of two
stars, we shall examine their behavior in some arbitrary plane.
Since the orientation of our co-ordinate system has, so far, been left
arbitrary, there is no loss of generality if we suppose that the stars
we are considering all lie in the (xy) plane. We can then put { = 0,
and the equations (1.406) reduce to

ARo—— an) $2+(6V") 2+(6U° + E3——V—°) En] ,
AT — aVo) e an) ,+(aVo _ an) en],| (140

AT = aWo) s aWo)

AT(P)
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Let us now introduce polar co-ordinates (7, \) in the (x, y) plane with
the origin at (x1, y1). We then have

¢=rcos\; g=rsin]\. (1.408)

After some elementary reductions, equations (1.407) become
ARy= r (K+ A sin 2A4C cos 27) , ]

AT = r (B+ 4 cos 22 —C'sin 2))

(1.409)
AT.()’) =7 (ég—o)l cos N+ r(—qg’—q)l sin \,
where
(1.410)

The expressions for the differential-motion term in the radial
velocity and in the proper motion in the (x, ¥) plane can be re-
written alternatively in the forms

ARy=r[K+VA?+C? sin 2(A\+¢) ] (1.411)
and

AT® = r[B+VATFC? cos 2(A+¢) ], (1.412)

where
" tan 2e=CA™!. (1.413)

Consider, first, the differential-motion term AR, in the radial
velocity. According to equation (1.411), for stars in the (x, y) plane
and at a constant distance from S, the relative radial motions con-
tain a constant term rK and, superposed on this, a double wave
r(A? + C?)V2 sin 2(\ + ¢). Further, the term AR, is proportional to
the distance 7; this proportionality with the distance will, however,
break down when we go to such distant stars that the first-order
Taylor expansions we have used in deriving equation (1.411) cease
to be valid. In order to make comparisons with observations, we
shall identify the star S; with the sun and the (x, y) plane with the
galactic plane. Also, we shall assume that the origin of our funda-
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mental frame of reference is at the galactic center and, since it en-
tails no loss of generality, further assume that the x-axis of the funda-
mental frame of reference passes through the sun. Accordingly, A is
the position angle of a star in the galactic plane relative to S; and
measured from the direction of the anti-center. Hence, if J, denotes
the galactic longitude of the center,

A=l+r—1. . (1.414)

Now, according to equation (1.402), the radial velocity of a star in
the galactic plane can be written in the form

R+ (local solar motion) ;= ARy + (s, vs, ws) ;, (1.415)

where the subscript / denotes that the resolved component in the
radial direction of the velocity in parenthesis is meant. In the fore-
going equation the quantity on the left-hand side, which we shall
denote by R*, is simply the motion of the star we are considering,
relative to the local standard of rest at the sun. We can therefore
refer to R* as the radial velocity of the star “corrected” for the local
solar motion. Combining equations (1.411), (1.414), and (1.415), we
finally have

R*=r[K+ VA +Csin 2(1—lo+e€) 1+ (g, v9, w) ;. (1.416)

According to our discussion in § 1.3, the term (u2, vo, w,); is of the
nature of an accidental error and can formally be treated together
with the errors of measurement of the radial velocities (which are
generally quite large).

A direct comparison of equation (1.4i6) with the results of
observations is now possible. For this purpose the most suitable
material is that of Joy on the radial velocities of Cepheid variables.
The particular advantage of the Cepheids for our present discussion
arises from the following circumstances: First, they show a very
marked concentration to the plane of the Milky Way, so that we can
apply equation (1.416). Second, the Cepheids are among the most
distant stars that can be observed for radial-velocity measure-
ments. Third, their distances can be estimated from their apparent
magnitudes and absolute magnitudes, the latter inferred from the
period-luminosity relation. This last, however, is subject to con-
siderable uncertainty on account of space absorption, which affects
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the apparent magnitudes quite seriously. Consequently, the “photo-
metric” distances determined by a straightforward application of
the period-luminosity relation cannot be taken as giving the true
distances. But, using the photometric distances as a general Buide,
Joy has divided the Cepheids for which he had radial velocities into
four main distance groups. The radial-velocity, galactic-longitude
curves for these four groups are shown in Figure 5. These curves
exhibit in a very striking manner the double-wave form predicted
by equation (1.416). The increasing amplitude of the curve with
increasing distance, which is theoretically predicted, is also con-
firmed very satisfactorily (Table 2).

TABLE 2

ANALYSIS OF THE GALACTIC-ROTATION TERM IN THE
RADIAL VELOCITIES OF CEPHEIDS (JOY)

r rA A f
Group (Kpc) (Km/Sec) (Km/Sec - Kpe) 0—e
) 0 42 10.6 25.1+4 8 33292+5%
2 1 06 24.3 22.8+1 6 323 5+2.0
3 1 66 40 6 24 5+1 6 326.5+2.3
4. . 2 31 39.4 17.1+£1.3 325.2+2 6
Mean........ | .ccoiiiiiini i 20.9+£0 8 325 3+1.3

On examining the observational curves a little more closely, we
notice that, within the limits of the uncertainties of the observa-
tional material, there does not appear to be any definite evidence for
the existence of a K-term in the expression for the radial velocity.
In other words, there is no distinct preponderance of stars with
radial velocities of one sign, which would be required if there was an
appreciable K-term.” An adequate representation of the observa-
tional material does not, therefore, require the K-term in equation
(1.416). We can therefore write

R* = i‘\/A2+Cz Sin 2 (l—lo‘{"é) + (uz, Vg, WQ) 1,
K=0,

7 However, Trumpler’s analysis of the radial velocities of galactic clusters (4p. J.,
91, 186, 1940) seems to indicate evidence for a K-term proportional to the distance of
amount, —4.3 km/sec - 1000 parsecs.

(1.417)
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F16. 5.—Rotational curves for groups 1-4 of Table 2. The observed radial velocities
(“corrected” for the local solar motion) are plotted against galactic longitude. The
continuous curves represent theoretical solutions according to equation (1.420) (Joy,
Ap. J., 89, 373, 1939).
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where 7 is used to denote a certain average distance for the stars in
any given group.

Again, an inspection of the curves in Figure 5 shows that the
radial-velocity, galactic-longitude curves have nodes at approxi-
mately / = 325° and ! = 145°. A more careful analysis of the ma-
terial, while confirming this, shows that

lh—e=325°+1°. (1.418)

On the other hand, the longitude of the galactic center is 325° + 2°
Hence, the present indications are that ¢ ~ 0. This result is also
confirmed by an examination of other radial-velocity material (e.g.,
Plaskett and Pearce). We shall therefore assume that ¢ = 0; ac-
cording to equation (1.413) this implies that

C=0, (e=0) . (1.419)
Equation (1.417) now becomes
R*= 74 sin 2 (l—‘ lo) + (uz, Vs, w2) I (1.420)

If the photometric distances for # are used, the different groups do
not give a consistent determination of the constant 4 in equation
(1.420). But, if (following Joy) we assume that space absorption
is present and that it amounts to 0.85 mag. per kiloparsec and reduce
the photometric distances accordingly, the general agreement is then
found to be quite satisfactory (see Table 2).

Under the circumstances which led to equation (1.420) the ex-
pression (1.412) for the transverse velocity in the galactic plane
takes the form

T* = T[B+ A cos 2 (l" lo) ] + (uz, Vg, 'W2) 90°+1 (1.421)
where T* is the transverse velocity corrected for the local solar mo-
tion. An analysis of the existing proper-motion data for the distant
stars shows that equation (1.421) is entirely consistent with our
present knowledge.

The quantities A and B occurring in equations (1.420) and (1.421)
are generally referred to as the Oort constants.

After a careful discussion of the existing observational material,
Oort suggests the following values for his two constants:

A=++0.018 km/sec - parsec ,}
B=-0.013 km/sec - parsec.

(1.422)



24 PRINCIPLES OF STELLAR DYNAMICS

We shall now examine a little more closely the meaning of the
results K = C = 0 (cf. egs. [1.417] and [1.419]). In order to do this,
it is first convenient to introduce cylindrical co-ordinates (w, 6, 3)
and denote by II, ©, and Z the velocities in the radial, transverse,

/
/
’
K
y N
AN

/
N,

/
Q__-_--..-

Fic. 6.—Cylindrical co-ordinates

and z-directions, respectively (see Fig. 6). Further, let the differ-
ential motion be now represented by (Il,, Oy, Zo). As may be readily
verified, we have the elementary transformation formulae

an) _ O, (Uy\ _ 1 9, 6
ox o-o— ow ’ 6y )a—o 8 _67 - E ’
(1.423)
'WO) - 9. ‘”’0) - 196 I
0% Jomg 0@’ 3y Jomy © 9 ta

The expressions for 4, B, C, and K given by equations (1.410) now
become

1 /36, 16110
4= 2\ @ +w EY)
-1(2 9_0_1_0_1_1_0
2 © o 90
> (1.424)

c=1 1@_&_19&

2\ o (o] w 346/
am, 1 99,
k= 2 + +w60




KINEMATICS 25

Hence, K = C = 0 implies that
"H") 0; (I‘Io+—%%9)‘= 0. (1.425)

The simplest representation of the state of differential motions in
the Galaxy is therefore obtained by setting

Ho-"'—‘-o, 60560(6!) . (1.426)

It is, however, important to note that the nonexistence of a K-term
in the radial velocity and the agreement of one of the nodes in the
radial-velocity, galactic-longitude curves with the longitude of the
center do not necessarily imply a pure differential rotation of the
Galaxy according to equations (1.426). Finally, we may add that
within the limits of the observational uncertainties it appears that

W=%7Z=0. (1.427)

For the case of a simple differential rotation the expressions for
the Oort constants 4 and B become

10y 1
A4=3\Gg ~ =)’ B=

d6,
dw+‘ - (1.428)

From the foregoing formulae we derive the purely kinematical rela-
tions

6o de,
B-A=(;)l; B+ A= da) (1.429)
Using the values of A and B according to equation (1.422), we find
that
(%9) = — 1.0 X 1078 radian/sec ;
i ! (1.430)
(———°> =0.005 km/sec - parsec .
o 1

Now, from the space distribution of the globular clusters and other
similar evidence, it appears that the distance to the center of the
galaxy is about 8000 parsecs. Combined ‘with the first of the equa-
tions (1.430) we find

The foregoing result is in general agreement with the determination
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of the solar motion with respect to the system of the globular
clusters. For, according to equations (1.14) and (1.24), in the funda-
mental frame of reference the local standard of rest in the neighbor-
hood of the sun has a motion which has the components

Uy=112+ 19 km/sec,
Vo= 146 + 30 km/sec,} (1.432)
Wyo= 27+ 30 km/sec,
or, in cylindrical co-ordinates,
6p=—184 £+ 30 km/sec,
I=— 8+ 24 km/sec,} (1.433)
Zo=+4 27+ 30 km/sec.

Thus, combining the evidence from the radial-velocity and proper-
motion data with the evidence from the motions of the globular
clusters, we conclude that the Galaxy is a stellar system with differ-
ential motions. More particularly, the simplest representation of
the field of differential motions is obtained on the assumption that
the Galaxy is in a state of differential rotation.

1.5. The asymmetry of stellar motions and the phenomenon of the
high-velocity stars.—In the two previous sections we have described
the essential features of the stellar motions in the neighborhood of
the sun both as regards the distribution of the residual velocities and
as regards the character of the differential motions. There remains,
however, one further aspect of the kinematics which has to be con-
sidered, and that is the extent to which the residual velocities are
truly random in character. The observational evidence concerning
this matter can be summarized in the following terms:

For residual velocities |v| < 63 km/sec the randomness appears
to exist to a high degree, while for |v| >63 km/sec there emerges,
quite abruptly, an asymmetry in the sense that all such stars have
their velocity vectors pointing almost exclusively in one hemisphere.
More particularly, it is found that, but for a few uncertain excep-
tions, the velocity vectors for |v| >63 km/sec occur only in the
hemisphere centered about the direction } = 235° and b = 0° and
avoid the opposite hemisphere.

To illustrate the nature of the phenomenon encountered and its
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extreme generality we shall consider the distribution in galactic
longitude of all stars with radial velocities greater than 75 km/sec
in certain recently published catalogues of radial velocities.® Figure
7 shows the observed distribution.® We notice at once that there are
practically no velocities in the directions included between galactic
longitudes ! = 340°and ! = 130°. This, in essence, is tke phenomenon
of the high-velocity stars and the asymmetry in motions they exhibit.
To discuss this asymmetry more quantitatively we should consider
the space velocities, referred to the local standard of rest correspond-
ing to the 19.6-km/sec solar motion. The problem has been treated
in this manner by Oort and more recently by Miczaika. Figure 8,
taken from Miczaika's paper, illustrates the distribution in galactic

N

o 0o, CPL

25° ™ 12s° 173° 223%° 273%° 325° 13°

Fic. 7.—Illustrating the phenomenon of the high-velocity stars. The distribution
of the directions of the velocity vectors (|v|>75 km/sec) with galactic longitude.

longitude of the high-velocity stars. It is seen that but for a few
exceptions the velocity vectors all occur in the interval of galactic
longitude 130° < / < 350°. There are some which scatter outside
this limit, but they are very few compared to the total number.
Further, the scattering outside the limits stated becomes appreci-

8 W. H. Christie and O. C. Wilson, “Radial Velocities of 600 Stars,” 4p. J., 88,
34, 1938; R. F. Sanford, ‘““The Radial Velocities of Stars of Spectral Classes R and N,”
Ap. J., 82,202, 1935; W. S. Adams and A. H. Joy, ‘“‘A List of Stars with Unpublished
Radial Velocities Greater than 75 Km/Sec,” Pub. 4. S. P., 50, 214, 1938; A. H. Joy,
“Radial Velocities of 67 Variable Stars of the R R Lyrae Type,” Pub. A. S. P., 50, 302,
1938.

? From a theoretical point of view it would have been preferable to have referred the
velocities to the local standard of rest as defined by the bulk of the normal stars. How-
ever, since the velocities considered are large (>75 km/sec) the removal of the 19.6-
km/sec solar motion is hardly necessary when (as in the present connection) our pri-
mary interest is merely to illustrate the general character of the phenomenon we are
dealing with.
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able only for stars with velocities 63 < |v| < 75 km/sec, and this
can largely be attributed to the uncertainties in the parallaxes and/
or the proper motions. In any event it is found that among the
stars of high velocity (63 < |v| < 100 km/sec) only 7 per cent of
them occur outside the interval 130° < J < 350°. Consequently, it
appears that the asymmetry exhibited by the high velocities
(Jv| > 63 km/sec) is probably of considerable kinematical sig-
nificance. This conclusion is further strengthened when it is noted

N
ok —— V= O3 *mfsec
R —-—0-= V& 700 *mfsec
ceoke ¥ & 250 Emfsec
4
K74
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70
0 LX’:(I"‘ g 4 o ‘uv"l’x.
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Fic. 8. —The distribution with galactic longitude of the directions of motion of the
high-velocity stars (Miczaika, 4.N., 270, 254, 1940).

that the hemisphere of avoidance is centered about the direction
} = 55°and b = 0, which is exactly the direction of galactic rotation.

Finally, we should refer to the important fact that the asym-
metry we have described sets in quite abruptly at |v| > 63 km/sec.
This was first made clear by Oort, who showed that if we consider
the distribution in galactic longitude of stars with radial velocities
between 50 and 62 km/sec, the asymmetry is practically nonexistent.
Figure 9, which is taken from a paper by Oort, illustrates the point
under discussion. It is particularly interesting to note that for stars
with proper motions less than 07300 the asymmetry for the radial
velocities greater than 63 km/sec and the symmetry for the velocities
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between 50 and 62 km/sec are clearly established. On the other
hand, among the stars with the larger proper motions ( >07300) the
asymmetry for the larger velocities is not quite so absolute, while
the lower-velocity group also shows indications of a slight asym-
metry. This is, however, as it should be, since for the groups with
the smaller proper motions the true space velocities will not be

2°

270’
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the high-velocity stars. The symmelry in the motions of stars with
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residual velocities less than 63 km/sec is in some respects of much
greater importance and has been very well confirmed by the existing

2!70° 2

F16. gb F16. gc

Fic. 95.—The distribution with galactic longitude of the peculiar radial velocities
greater than 50 km/sec and less than 62 km/sec. Above: stars with proper motions
<07300. Below: stars with proper motions 2 0%300.

F16. 9¢.—The distribution with galactic longitude of the peculiar radial velocities
greater than 63 km/sec and less than 99 km/sec. Above: stars with proper motions
<07300. Below: stars with proper motions 2 0%300.

observational material (cf., e.g., Figs. 3 and 4). On the other hand,
it is found that there exists a considerable excess of velocities greater
than 60 km/sec over what would be predicted on a Schwarzschild
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distribution, with the constants of the velocity ellipsoid determined
to give the best fit with the observational data for the overwhelming
majority of the stars. This feature in the residual motions is well
brought out in an analysis by Oort of the radial velocities in the
Yale catalogue of the bright stars. In Table 3 (taken from Oort’s

TABLE 3
DISTRIBUTION OF RADIAL VELOCITIES (OORT)

Limits of Gaussian Limits of Gaussian
Velocity Observed | 1/ ibu- Velocity Observed | 1.+ ribu-
(Km /Sec) Number tion (Km /Sec) Number tion
0-+5......... 474 498 + 70- 80.. .... 18 4
+ 5-10......... 507 473 80-90....... 19 0
10-15.......... 417 428 90-100....... 16 0
15-20.......... 355 367 100-120....... 12 ...
20-25.......... 303 297 120-140....... L 2 PR
25-30......... 229 231 140-160 ...... 8 ...
30-35.......... 130 172 160-180....... 6 |.........
3540.......... 128 120 180-200 ...... 6 ...
40-45.......... 91 78 200-240...... ) A N
45-50.......... 57 50 240-280. ... .. K 2 P
50—55} ......... 27 60 48 280-320..... . 2 .
23—60 .?.; | gggjoo ....... 2 ...
-65 00....... 0 |.........
) N 18}35 14

paper) a comparison is made between the observed distribution of

the radial velocities and a Gaussian distribution.!® The computed

10 Tt might have been preferable to have referred the velocities to the local standard
of rest, but it is readily seen that this will not provide any special advantages in our
present connection. For, if the stars under consideration are distributed uniformly
over the sky, the frequency function for the uncorrected radial velocities p* is given by
(cf. eq. [1. 301])

2%
F(p*) = f f e 2 el =20 €03 M gin NiNdy (1.51)
where 1o denotes the magmtude of the solar motion, A the angular distance from the

solar apex, and jj, o a function of direction depending on the orientation of the velocity
ellipsoid (eq. [1.305]). We can re-write equation (1.51) in the form

2%
F(p*) = -~ ‘A‘ i ¢ =10 s N gin Nidp (1.52)

where f is a certain mean value of j) . The integration of equation (1.52) over ¢ is
immediate. After some further reductions, equation (1.52) becomes

1 F(o*+00) o i "
L) R a— ~ 7%
Fe") 2x/%0 ‘/J:(n"—vo) ds \/;e (153

In other words, the frequency function F(p*) is approximately a Gaussian function.
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Gaussian distribution is for a modulus j = 0.032 and corresponds to
a mean speed of 17.6 km/sec. It is seen that the observed distribu-
tion agrees with the computed distribution very closely for velocities
less than 60 km/sec. But we also notice that there is observed a
considerable excess of velocities greater than 60 km/sec over the
predicted numbers. A more detailed examination of the stars which
contribute to this excess shows that the velocity vectors of all these
stars are, in fact, confined to the hemisphere centered about the
direction / = 235° and b = 0 and thus exhibit the asymmetry as
well. We can, therefore, finally summarize the situation in the fol-
lowing terms: ‘“There is absolute asymmetry for all velocities greater
than 62 km/sec while those below 63 km/sec do not show any trace
of it” (Oort).

From our discussion in the preceding paragraphs it would now
seem that we should consider the system of the high-velocity stars
as forming a subsystem distinct from the majority of the stars to
which our considerations in §§ 1.3 and 1.4 strictly apply. If this con-
clusion be accepted, it would appear that a procedure satisfactory
from a theoretical standpoint for considering the kinematics of this
system of the high-velocity stars should consist of the following
steps.

First, the solar motion (%, vg, we)x With respect to the high-
velocity stars should be determined. Second, the velocities deter-
mined with respect to the sun should be freed from the solar motion
(%0, e, wo)x. Finally, the distribution of the velocities of the high-
velocity stars in the frame of reference defined by these stars them-
selves should be considered in a manner quite analogous to that
adopted in discussing the distribution of the residual velocities of
the normal stars with respect to local standard defined by them-
selves. A discussion of this kind seems to indicate that the system
of the high-velocity stars determines a standard of rest, which has a
rotational velocity about the galactic center which is different from
that of the normal stars. This conclusion appears to be confirmed
by the following consideration.

According to Miczaika the solar motion with respect to the system
of the high-velocity stars is 56.2 km/sec in the direction ! = 45°,
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b = 8°. The components of this motion in the galactic system of
co-ordinates are

(u®)11=39.3 km/sec; (ve)g=39.3 km/sec;

(wo) #=17.8 km/sec. (1.54)

According to equations (1.24) and (1.54), it now follows that the
standard of rest defined by the high-velocity stars has a motion
relative to the centroid of the motions of the normal stars; the com-
ponents of this motion are

*y = (uo) w=—22.7 km/sec,
vo—(vo){;=-—32.1km/sec, (1.55)

Wy~ (wQ) r=— 0.6 km/sec.

It is readily seen that the components (1.55) define a velocity of
40 km/sec in the galactic plane and in a direction / = 55° = tan—*
32.1/22.7. In other words, we may say that the system of the high-
velocity stars is characterized by a rotational velocity (0,)x which
is less than the rotational velocity 9, of the local standard of rest of
the majority of the stars by about 40 km/sec.

1.6. Extragalactic systems. Structural features.—In §§ 1.3 and 1.4
we have described the state of motions in our galaxy in termsof
certain fundamental notions (§§ 1.1 and 1.3) which appear most
convenient for this purpose. It is evident that an equally explicit
statement of the kinematical situation encountered in extragalactic
nebulae™ cannot be made. However, we now know sufficiently
about the nebulae to analyze in a general way the nature of the
problems presented by these objects. In this and in the following
sections we shall briefly summarize the information which appears
most relevant to the formulation of certain dynamical problems.

In some ways the most interesting aspect of the study of nebulae
is their classification and their structure.*

Most nebulae are “regular” in the sense that they are character-

11 In future we shall drop the adjective “extragalactic” and use the term “nebulae”
to denote the extragalactic nebulae, unless otherwise stated.

12 Qur discussion will follow closely Hubble’s discussion in “The Realm of the
Nebulae,” chap. ii, New Haven, 1937.
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ized by definite patterns and central nuclei. But a few (about 2.5
per cent) do not show these features and are accordingly classed as
‘““irregular’” nebulae. Hubble has shown that the regular nebulae
fall naturally into a continuous sequence of structural forms. This
classification of Hubble appears quite fundamental inasmuch as not
only the structural features but also other physical characteristics
like stellar content, spectral type, color, etc., all vary systematically
through the sequence.

Regular nebulae are divided broadly into two groups: the el-
liptical nebulae and the spirals, with a transition stage between

Srpr

u” s"ta“, s
Fic. 10 —-Hubble s sequence of nebular types

them. Again, the spirals fall into two classes: the “normal” spirals
and the “barred” spirals. But it appears that the elliptical nebulae
and the spirals can all be arranged in a single bifurcating sequence
(cf. Fig. 10).

i) Elliptical nebulae.—Elliptical nebulae range from globular ob-
jects to lenticular bodies with a limiting ratio of the axes of about
3:1. It is generally believed that elliptical nebulae with a higher
value for the ratio of the axes do not probably exist. These nebulae
are apparently very highly concentrated, since indications for the
resolution into stars have not been found. The shapes of these ob-
jects can, of course, be readily estimated by simple inspection. But
these refer to the projected contours on the sky and not to the
actual three-dimensional nebulae. However, on the assumption
that the nebulae are oriented in random directions in space, it is



PLATE I

Mount Wilson Qbservatory
TransiTION TYPES
U pper left: Lenticular system NGC 4530, classed as E7, the flattest of the elliptical nebulae. Upper
right: NGC 4150, the earliest of the transition types SO. A central lens is vaguely differentiated from
the main body of the nebula. Lower: A long and a short exposure of NGC 4526, a more advanced fo:
of the transition type. The central lens is well differentiated, and within the lens is a ring of fine!
vided dark material (negative print).
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possible by statistical methods to estimate the true frequency of
occurrence of a given ellipticity. From an analysis of this kind, it
has been concluded that objects with true forms ranging from
spherical to lenticular shapes do exist. Further, it appears that
truly spherical nebulae are relatively rare and that frequencies in-
crease with increasing ellipticity.

Elliptical nebulae are designated by the symbols EO, E1, ... .,
E7, where the numerical index denotes the integer nearest to ten
times the ellipticity (see Pl. I for examples of elliptical nebulae).

ii) Transition-type nebulae.—Nebulae belonging to this class are
placed at the end of the sequence of elliptical nebulae. According
to Hubble, the first evidence of internal structure is the ‘‘differentia-
tion”” of a bright central lens which has a diameter of about a third
of that of the main body of the nebula. The further development
seems to consist in the emergence of circular patterns of obscuration
in the form of lanes of dark material silhouetted against the luminous
background.

iii) The normal spirals.—Along this sequence the circular patterns
appearing in the transition stage gradually disintegrate and are re-
placed by spiral structure. At the beginning of the sequence the
normal spiral is characterized by a bright semistellar nucleus sur-
rounded by a relatively large nebulosity; further, the spiral arms
themselves are very closely coiled around the main body. However,
as the sequence progresses, the arms become increasingly con-
spicuous and in the very open, well-resolved spirals like M101 the
nucleus appears quite insignificant (see the Frontispiece).

About the middle of the sequence, the resolution into stars be-
comes apparent, the resolution increasing as the sequence progresses.
Toward the end of the sequence the condensations are seen to reach
the nuclear region itself. The stars that can be detected in spirals
are blue supergiants. In this respect the spirals differ from the el-
liptical nebulae, which are known to lack supergiants.!* The normal
spirals are designated by the symbol S.

iv) Barred spirals.—The sequence of barred spirals branches off
from the sequence of normal spirals quite early in the transition-

131t is thought that this may be one of the reasons why individual stars have not
been detected in elliptical nebulae.



36 PRINCIPLES OF STELLAR DYNAMICS

stage nebulae. At first, a bright diameter appears across the lens,
which later develops into a definite bar, which stops at the rim of
the lens (see Pl. II, also the Frontispiece). Meantime, the rim of the
lens has condensed into a ring, and the nebula resembles the letter 4.
Farther along the sequence, the ring appears to break away from the
bar at its ends but on opposite sides—thus: 7> . Beyond this
point the sequence has not been followed in detail. But frequently
the broken ends of the ring seem to drift apart, while the nebula
begins to develop a spiral structure. Finally, in the last stages the
arms are almost completely unwound and become approximate
straight lines. The barred spirals are designated by the symbol SB.

v) Sequence of spirals.—The two sequences of spirals are sub-
divided into three main sections, denoted by the letters @, b, and c.
Thus, Sa, Sb, and Sc represent early-, intermediate-, and late-type
normal spirals. Similarly, SBa, SBb, and SBc¢ denote the cor-
responding types in the sequence of barred spirals. Any spiral can
be assigned a place in one of the two sequences, depending on the
openness of the arms, the extent of the resolution into stars, and the
relative luminosity of the nuclear region and the spiral arms.

vi) The sequence of regular nebulae.—Since the early-type spirals
Sa and SBa have a certain amount of resemblance to the E7 elliptical
nebulae, we can arrange the three classes of regular nebulae in a
single bifurcated sequence (see Fig. 10). The junction of the three
classes may be taken to represent the transition types, in which the
differentiation of a lens from the main body is the most important
characteristic.

vii) The irregular nebulae—These nebulae do not fall into line
with the general sequence we have described, but we may note that
the irregular nebulae themselves can be divided into two roughly
equal groups. Typical examples of the two groups are NGC 520 and
the Magellanic Clouds, respectively. The former consist of chaotic
masses of unresolved nebulosity and dark material. Very little seems
to be known of these highly interesting objects, but presumably they
consist of stars and “dust.” The second group of irregular nebulae
are highly resolved but present no nuclei or any distinct pattern.
The luminosities of the Magellanic type of nebulae range from those
of normal nebulae to “dwarf systems,” which are hardly brighter



PLATE II

EARrLY-TYPE SPIRALS
Upper left: NGC 4440, a barred spiral, SBa. Upper right: NGC 4324, a normal spiral, Sa, in which
a ring structure has developed outside the lens and has partially disintegrated. Lower: NGC 3623, Sa,
in which a spiral pattern has developed within the main body (negative print).







PLATE III

Mount Wilson Observalory
GIANT AND DWARF
Upper: NGC 4594, the brightest known giant, estimated to be 2.3X 10° times as bright as the sun.
Lower: Zwicky’s system in Leo, the faintest known dwarf, estimated to be only 5X 108 times as bright
as the sun (negative print).
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than the globular clusters. Thus, one of these dwarf systems in Leo
is known to be only about as bright as the brightest of the globular
clusters, namely, w Centauri (see Pls. III and IV for examples of
irregular nebulae).

viii) Some general features of the sequence.—One of the most im-
portant characteristics of Hubble’s classification is that nebulae of
any given type are very similar. For it is found that the luminosity
of a nebula of a given type varies directly as the square of the
diameter. In other words, for a given luminosity and type the
nebulae have (on the average) a determinate size. It is further
known that for a given luminosity the sizes increase monotonically
along the sequence from EO to Sc¢ (or SBc).

TABLE 4
STATISTICS ON TYPES OF NEBULAE
Frequency
of Occur- Spectral
Type rence Type Color
(Per Cent)
EO-ET.............. 17 G4 g6
Sa,SBa............. 19 G3 g5
Sb,SBb............. 25 G2 g4
Se,SBe............. 36 F9 7
Irregular............ 2.5 oo

Table 4 gives some further data concerning the variation of other
physical characteristics along the sequence.

1.7. Extragalactic systems. Kinematical features—According to
our discussion in § 1.2 we should expect that, as in the case of our
Galaxy, the kinematics of an extragalactic system would also consist
of two parts: first, the nature of the distribution of the residual
velocities with respect to the immediate local standards at different
points of the system and, second, the character of the differential
motions present. The only means by which information concerning
the former aspect of the kinematics of nebulae can be obtained would
be from an analysis of the contours of spectral lines. For the residual
motions in a given region of space will influence the form of the
spectral lines. Consequently, from the measured line contours we
should be able to infer something about the distribution of the
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residual velocities in various parts of the nebula. But no such
analysis exists at present. On the other hand, our knowledge of the
differential motions present is in a very much more advanced state.
Here our information is limited to a few but well-studied nebulae:
the Andromeda nebula (by Babcock), Messier 33 (by Mayall and
Aller), NGC 3190 (by Hubble and Mayall).
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F16. 11.—The rotation-curve for the Andromeda nebula: The rotational velocity,
6y, expressed in km/sec and the angular velocity, wo, in units of 10~ radians/sec (Bab-
cock, Lick Obs. Bull., No. 498, 1939).

We shall first consider the differential motions which are present
in the Andromeda nebula (see Pl. V). In Hubble’s classification this
nebula belongs to the class Sb. Further, the equatorial plane is be-
lieved to be inclined to the line of sight by about 15°. For this nebula
velocities in the line of sight have been measured by Babcock along
the major axis to a distance of 176 from the nucleus. Allowing for the
inclination of the nebula and assuming that the differential motions
correspond to a pure rotation, we can convert the measured radial



PLATE V

University of Michigan Cbserratory
IsoprOTAL CONTOURS OF THE ANDROMEDA NEBULA
North following is at upper left. Scale: 105" =1 mm. (The sharp linear marking in the photograph
of the nebula is a meteor trail.)
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velocities to give the variation of the rotational velocities, ©,, with
the distance from the center. Figure 11, taken from Babcock’s
paper, illustrates the resulting ‘“rotation-curve.” It should be
pointed out that the measured radial velocities at the points farthest
from the center are particularly reliable, as they have been derived
from the sharp emission-line spectra of certain outlying nebulosities.

In some ways the most striking feature of the rotation-curve is
that, as we recede from the nuclear regions, ©, begins to increase
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F16. 12,—The rotation-curve for M33, the rotational velocity, ©,, expressed in
km/sec (Mayall and Aller).

practically linearly with the distance from the center. As we shall
see later in chapter iv (§ 4.2), this result is of considerable theoretical
significance.

Another case which has been studied in some detail is that of M33
by Mayall and Aller (see Fig. 12). The absolute values of the rota-
tional velocities measured in this nebula are not so large as in the
Andromeda nebula. But the rotation-curve for M33 has been fol-
lowed out to a distance from the center where a decrease in 9, (after
reaching a maximum) is perceptible.

Finally, the rotation of NGC 3190, investigated by Hubble and
Mayall, is of particular interest, since, according to these authors,
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this case establishes the sense of rotation as well. Now, NGC 3190
is an early-type normal spiral, whose fundamental plane is slightly
tilted to the line of sight.!* The major axis of the image is seen to
run northwest-southeast. According to Hubble, long exposures with
the 100-inch reflector at Mount Wilson bring out faint extensions
to the southeast, in which, apparently, an arm can be traced. It
further appears that the arm recedes from the nucleus as it proceeds
from the northwest toward the southeast. Finally, a heavy absorp-
tion lane (tilted about 15° to the fundamental plane) is seen sil-
houetted against the central region. According to Hubble and May-
all, this identifies the part of the image lying southwest as the nearer
side of the nebula.

The spectrographic study of NGC 3190 at Lick and that at Mount
Wilson agree in indicating that the southeast end of the image is
approaching. If we accept Hubble and Mayall’s identification as to
the nearer side of the nebula, then the sense of rotation indicated is
inward along the spiral (toward the center). However, it should be
pointed out that there still exists considerable divergence of views
regarding the true sense of rotation in spiral nebulae. In particuar,
Lindblad has always advocated the opposite sense for rotation—i.e.,
outward along the spiral. We shall return to these questions in
chapter iv (§ 4.5).

1.8. Globular and galactic clusters.—Star clusters are of two kinds
—globular clusters and galactic clusters. A typical example of the
former class is the cluster w Centauri, while the clusters in Pleiades
and Praesepe belong to the latter class.

Star clusters present many interesting dynamical problems, but
unfortunately empirical data which would be of value in such
studies are badly lacking. Thus, in the case of globular clusters the
only information which is entirely reliable for dynamical discussions
is their spherical symmetry. The observed star counts do not give
indications of the true density distribution; for, in practice, no ac-
count is taken of the absolutely faint stars, which are probably very
much more numerous than the brighter stars which are counted.
Again, we have no information concerning the internal motions in
globular clusters, though on other grounds (cf. chap. v) we should

14 See Hubble, o0p. cit., Pl. IIL.
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expect them to be fairly large (~10 km/sec). However, in spite of
this lack of empirical knowledge, the mere fact of their spherical
symmetry combined with the roughest estimates of their densities
and motions should enable us to make some theoretical advances in
our understanding of these objects.

In the case of galactic clusters our knowledge is in a somewhat
better state. The internal motions in the Pleiades and in the
Praesepe clusters have been measured by Titus and by Schilt and
Titus, respectively. These studies present the first reliable measures
of such motions and were made possible by the first-epoch plates of
these clusters having been taken by Rutherfurd as early as in 1870.
The results of the measures of Titus and of Schilt and Titus are

Vur="V92=0.42km /sec (Pleiades) ,

— — (1.81)
Vaui=Vi=0.42km /sec (Praesepe) ,

where » and v are the transverse components of the motions relative
(respectively) to the standards of rest defined by the clusters them-
selves. Table 5 gives some further information concerning these
clusters, which we shall find useful in our dynamical considerations
in chapter v.

TABLE §
DATA ON TWO GALACTIC CLUSTERS
Pleiades Praesepe
Number of stars in the cluster.......... >175; ~200 [ >350, ~400
Total mass of the cluster (solar mass). . .| ~300 ~300
Radius (parsecs)...................... 35 3
Parallax (seconds of arc)............... 07009 07008
Root mean-square velocity (km/sec). .. .. 0.42 0.42

1.9. General remarks.—In concluding our general kinematical con-
siderations we may again draw attention to the importance which
the notion of a dynamical system with differential motions plays in the
whole discussion. Essentially, this implies that in dealing with stel-
lar systems we are able to express the distribution function ¥(x, y, 3;
U, V, W, t) in the form

\P=‘Il(x, Y, 2, U-— Uo, V- Vo,W—Wo; I) y (191)

b
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where U,, Vo, and W, are functions of position and time only.
Sometimes, as when dealing with the system of the high-velocity
stars in our Galaxy, it becomes necessary to generalize equation
(1.91) somewhat and write

¥=DVi(x,y 5 U=U", V=V, W-wi" 1), (1.92)

where the summation over the index 7 corresponds to the fact that
under these circumstances we are to regard the stellar system as
(formally) consisting of several distinct subsystems.

Again, we have seen in § 1.3, how Schwarzschild’s ellipsoidal law
of the distribution of the residual velocities (¥ = U — Uy; v =
V — Vo;w = W — W) enters the discussion in a perfectly natural
way. According to this law, the distribution function ¥(x, y, 2;
%, v, w; t) has the form

a kg~
V= ',)TISVE h b f e—au*-—bv'—cw'—zfvw—zawu—zhuv , ( 1. 93)
e /¢

where the coefficients of the velocity ellipsoid a, b, ¢, f, g, and %
and the number of stars per unit volume, N, are all functions of posi-
tion and time. It would sometimes be useful to regard Schwarz-
schild’s law as a special case of the general ellipsoidal distribution
specified by

¥=¥(Q+o0), (1.94)

where ¥ is an arbitrary function of the argument specified, Q, a
homogeneous quadratic form in the residual velocities, and o, a
function of position and time. For the case of stellar systems con-
sisting of several subsystems we can generalize equation (1.94) to
the form

w=z~m (Qi+0s). (1.95)

The function Z\I/.-(Q.- + ai) represents the most general type of

distribution function which the kinematics of a stellar system requires
us lo consider.
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awaited with keen interest.

§ 1.2.—The practical methods for determining the local solar motion
are described in CAMPBELL (ref. 1, chap. iv), EDDINGTON (ref. 2, chap. v),
PAHLEN (ref. 3, chap. xiii, § I), and SMART (ref. 4, chap. iii). For a more
specifically observational discussion see—

18. H. NorDsTROM, Lund Medd., I1, No. 79, 1936.

§ 1.3.—1It had originally been supposed that a distribution function of
the form

R
v (U) = m €

would prove adequate for the interpretation of the observed motions of
stars with respect to the local standard of rest. But Kobold appears to
have been the first to recognize its inadequacy for accounting for the
observed state of stellar motions:

19. H. KosoLp, 4.N., 125, 65, 1890; 144, 33, 1897; 150, 271, 282, 1899.
See also—

20. H. KoBoLp, Stellar Astronomie, Sonderausgabe aus der Encyk. d.
math. Wiss., Vol. 6, 1926. See particularly pp. 335-346. However, it was
Kapteyn who first clearly recognized the physical nature of the phe-
nomenon encountered:
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21. J. C. KAPTEYN, Brit. Assoc. Rept., p. 257, 1905; also M.N., 72, 743,
1912. But Kapteyn interpreted the phenomenon in what now appears to
be a somewhat too literal manner. For he based his interpretation on an
assumed distribution function of the form

3 -3
.2 .2
v= N,f;}.;, e=illv-vl* 4 N,%’ﬁ e=hlv-u,it

where v; and v are such that
N101+sz}= 0.

This assumption concerning ¥ is clearly equivalent to supposing that
the stars in our neighborhood can be regarded (at any rate, formally) as
belonging to one of two groups, the standard of rest defined by any one
group having a motion (vy, respectively, ve) with respect to their common
local standard of rest. This is the origin of the term ‘‘two star streams.”
On this hypothesis the direction of v; (or ve) will define the direction of
star streaming.

Soon after Kapteyn’s discovery, Eddington developed methods for
analyzing the data of observation on the basis of the two-star-streams hy-
pothesis.

22. A. S. EppiNGTON, M.N., 67, 34, 1906. Also—

23. A. S. EppINGTON, M.N., 68, 588, 1908. An account of these in-
vestigations will be found in EDDINGTON (ref. 2, chap. vi) and SMART
(ref. 4, chap. iv)

As we have explained in the text, Schwarzschild’s ellipsoidal hypothesis
affords a more elegant and at the same time a more satisfactory basis for
interpreting the data of observations. Moreover, from a theoretical
standpoint, the ellipsoidal hypothesis is very much to be preferred com-
pared to the hypothesis of the two star streams. Schwarzschild’s funda-
mental papers are—

24. K. SCHWARZSCHILD, Gittingen Nachrichten, p. 614, 1907, and—

25. K. SCHWARZSCHILD, Gdttingen Nachrichien, p. 191, 1908. Though
Schwarzschild introduced the general ellipsoidal hypothesis, he, however,
restricted himself to a spheroidal distribution of the velocities, while dis-
cussing the observational consequences. And, it is to Charlier and his
associates (particularly, S. D. Wicksell and W. Gyllenberg) at Lund that
we owe the most comprehensive analysis of the data on stellar motions
on the basis of the general ellipsoidal distribution. For a general account
of these studies see—

26. C. V. L. CHARLIER, The Motion and the Distribution of the Stars,
University of California Press, 1926.
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Finally, we may also refer to the relevant chapters in SMART (ref. 4,
chap. v) and PAHLEN (ref. 3, chap. xii).

§ 1.4.—The theoretical standpoint adopted in the text is that of—

27. K. PiLowskl, Zs. f. Ap., 3, 53, 279, 291, 1931; also ibid., 4, 396,
1932.

28. K. OGRODNIKOFF, Zs. f. Ap., 4, 190, 1932.

29. E. A. M1LNE, M.N., 95, 560, 1935. :

The first direct evidence for the existence of differential motions in the
Galaxy was found by Oert:

30. J. H. Oort, B.A.N., 3, 275, 1927. Also—

31. J. H. OorT, B.A.N., 4, 79, 1927, see particularly Figs. 1 and 2 on
pp- 87 and 88. In these papers, the differential galactic-rotation terms in
the expressions for the radial velocities and the proper motions of stars
are derived and compared with the observational material. Further, these
papers also contain the first determinations of the ‘“Oort Constants,” 4
and B. Further studies by Oort are contained in—

32. J. H. Oorr, B.A.N., 4, 91, 1927, and—

33. J. H. Oort, B.A.N., 4, 159, 1928.

The ideas and results of OorT found beautiful confirmation in the in-
vestigations of Plaskett and Pearce on the radial velocities of the O and
B stars.

34. J. S. PLASKETT and J. A. PEARCE, Pub. Dom. Ap. Obs., Victoria,
5, 277,1936. See also PLASKETT (ref. 13). However, the most convincing
evidence is that resulting from the investigations of Joy and Trumpler:

35. A. H. Jovy, Ap. J., 89, 356, 1939.

36. R. J. TRUMPLER, Ap. J., 91, 186, 1940, particularly pp. 195-197.

§ 1.5.—The first indications of the asymmetry in stellar motions ap-
pear to have been noticed by—

37. B. Boss, Popular Astronomy, 26, 686, 1918, and—

38. W. Apams and A. H. Jov, 4p. J., 49, 179, 1919.

The most extensive investigations into the nature of this phenomenon
and the related one of the high-velocity stars are those of—

39. G. STROMBERG, Ap. J., 59, 228, 1924; also ibid., 61, 363, 1925.

40. J. H. OorTt, Groningen Pub., No. 40, 1926.

41. G. Miczaika, A.N., 270, 249 1940.

On the theoretical side Lindblad has always emphasized the importance
of this asymmetry in stellar motions:

42. B. LINDBLAD, Ark. f. mat., astr., ock fysik, No. 21, 1925. Further
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references to Lindblad’s work will be found in the bibliographical notes
for chapters iii and iv.

§ 1.6.—For a complete discussion of the structural features of extra-
galactic nebulae see HUBBLE (ref. 7). Also, for a more recent summary
see—

43. E, HuBBLE, Sci. Monthly, p. 391, November, 1940.

§ 1.7.—The rotation of the Andromeda nebula was first detected by—

44. V. M. SLIPHER, Lowell Bull., 2, 65, 1914; and Popular Astronomy,
25, 36, 1917. Also—

45. F. G. PEASE, Proc. Nat. Acad., 4, 21, 1918.

The most extensive study of this problem is due to—

46. H. BABcock, Lick Obs. Bull., No. 498, 1939.

And finally there exists the unpublished work of Mayall and Aller and
Hubble and Mayall.

§ 1.8.—See SHAPLEY (ref. 8) and TEN BRUGGENCATE (ref. 9).

The internal motions in the Pleiades were first detected by Hertzsprung:

47. E. HERTZSPRUNG, B.A.N., 7, 187, 1934.

Results of higher accuracy for the brighter members are those of Titus:

48. J. Titus, A.J., 47, 25, 1938.

Similarly, the internal motions in the Praesepe are detected and
measured in—

49. J. Scuirt and J. Titus, 4.J., 46, 197, 1938.

§ 1.9.—See reference 12.



CHAPTER 1II
THE TIME OF RELAXATION OF A STELLAR SYSTEM

As we stated in our introduction to the last chapter, in stellar
dynamics we are primarily concerned with interpreting the observed
state of motions in stellar systems in terms of the forces which govern
the motions of the individual stars in the system and the laws of
dynamics. In this monograph it will be assumed that the laws of
Newtonian dynamics are adequate for such purposes. But this is
not to imply that eventually it may not be found necessary to intro-
duce ideas in stellar dynamics which are outside the scope of the
classical laws. It is clearly necessary to work out fully the logical
consequences of a system of stellar dynamics based on Newtonian
laws before we can feel convinced of the need to go outside the
framework of such laws. And it is the object of this monograph to
set out the general principles of such a classical system of stellar
dynamics.

2.1. An analysis of the nature of the forces acting on a star.—Ac-
cording to our remarks in the foregoing paragraph, we shall assume
that the forces governing the motions of the individual stars in a
stellar system are essentially of a gravitational character. In a gen-
eral way it is clear that these forces arise, first, from the smoothed-
out distribution of matter in the system and, second, from the effect
of chance stellar encounters. The forces of the first kind are deriv-
able from a gravitational potential ¥ representing the smoothed-out
distribution of matter in the system. This gravitational potential
is a function of the space and time co-ordinates only. On the other
hand, the forces of the second kind arise from the accidental en-
counters with other stars which happen to be in the neighborhood of
the star we are considering. More explicitly, the manner in which
these two types of forces influence the motion of any particular star
can be described as follows: Consider a star which is at the point
(x, v, 2) at some specified instant of time ¢ = 0 (say). Without loss of

48
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generality we can suppose that at ¢ = 0 the star is not experiencing
appreciably the effects of a chance stellar encounter. The in-
stantaneous force acting on the star at ¢ = 0 will then be given in
terms of the gravitational potential ¥ of the smoothed-out distribu-
tion only. We can therefore write

dtr

—d‘ﬁ=—grad$- (2'11)

The integration of the foregoing vector equation will uniquely de-
termine a theoretical orbit for the star in terms of its position and
velocity at time ¢ = 0. Clearly, the star will follow this theoretical
orbit only as long as stellar encounters have no appreciable” influ-
ence. However, with the passage of time, stellar encounters will
begin to have a cumulative effect and will tend to make the actual
orbit of the star deviate more and more from the theoretical orbit.
The question now arises: How long will it take for the cumulative
effect of stellar encounters to deviate the star so muck from the orbii
derived from (2.11) that it can no longer be described even approximately
by this theoretical orbit? It is the estimation of this time that specifies
the time of relaxation of the stellar system.

The general ideas underlying the estimation of the time of relaxa-
tion of a stellar system outlined in the preceding paragraph can be
expressed somewhat differently as follows: According to equation
(2.11) we have the integral

(2249 + )+ B(x, y, 3, t)=f§§dl+constant. (2.12)

If B is explicitly independent of the time, equation (2.12) reduces to
the energy integral in its standard form. We can regard the existence
of the (formal) integral (2.12) as equivalent to our being able to
consider each star in the system as an independent, conservative,
dynamical system. But this is true only as long as the effects of
stellar encounters can be neglected. We can therefore ask: How
long will it take before the cumulative effect of stellar encounters prevents
us from considering the stars as independent, conservative, dynamical
systems? Again, we can refer to this time as the time of relaxation
of the stellar system.

It is now clear that for lengths of time which are short compared



50 PRINCIPLES OF STELLAR DYNAMICS

to the time of relaxation we can ignore the effect of stellar en-
counters on the motions of stars in the system. Similarly, after a
length of time which is long compared with the time of relaxation
we can be sure that the state of motions present must have arisen as
the result of the occurrence of numerous encounters. The great im-
portance of the notion of the time of relaxation for stellar dynamics
now becomes apparent: in terms of it we are able to judge the rela-
tive importance of stellar encounters in influencing the motions of
the stars.

2.2. The formulation of the problem.—We shall now consider in
somewhat greater detail the problem of quantitatively evaluating the
time of relaxation. Let us suppose that the different encounters can
each be treated independently of the others and that they can be re-
garded individually as two-body encounters.! Each encounter will
therefore result in (i) a deflection, = — 2, of the star from its orig-
inal direction of motion and (ii) an exchange of energy, AE, between
the two stars taking part in the encounter. The actual amounts of
the deflection, # — 2¥, and the energy transferred, AE, will depend
upon the initial conditions defining the particular encounter. We
shall evaluate m — 2% and AE explicitly in §§ 2.3 and 2.4, but mean-
time we shall outline the general method. We evaluate the sums

Zsin?2¥ and ZAE? (2.21)

for all possible encounters and determine their rates of increase with
time. It now appears that, when 2 sin? 2¥ becomes of the order of 1,
the star would most probably have deviated quite considerably from
its original direction of motion. More particularly, if T is the time
required for T sin? 2¥ to become equal to 1, we may say that by
then the star will, on the average, have deviated by an angle /2
from its original direction. Similarly, when the root mean square of
the energy exchanged in stellar encounters, V/ZAE?, becomes of the
same order as the initial kinetic energy of the star, it will no longer
be possible to assume even the approximate validity of the energy
t\zat_lgg_ign (2.12). More particularly, if T is the time required for

ZAE? to become equal to the initial kinetic energy of the star, we
may say that by then the star will, on the average, have altered its

! The limitations introduced by this assumption are considered in § 2.3 (subsec. [iii}).
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original\energy by about an equal amount. We may accordingly
define Tp and Tk as the times of relaxation from the two different
points of view. It is, however, clear that, in general, Tp and T
must be of the same order of magnitude.

2.3. The time of relaxation, Te.—As we have already stated in
§ 2.2, we shall idealize each stellar encounter as an independent two-
body problem. In describing such an encounter it is important to
remember that we should always refer the physically relevant
quantities to some appropriately chosen fixed frame of reference.
Consider, then, the effect of encounters on a star of mass m, with
an initial velocity v, during its motion through other stars. Let m,
and v; denote the mass and the velocity of a typical field star. The
parameters defining such an encounter are five in number. They are
(i) the magnitude v; of the vector vy, (ii) the angle 6 between the
vectors v; and v,, (iii) the azimuthal angle ¢ referred to a system of
co-ordinates the z-axis of which coincides with the direction of vs,
(iv) the impact parameter D and, finally, the angle © between the
orbital plane and the fundamental plane containing the vectors v, and
v, (see Figs. 13 and 14 for the relations between the various angles).
For the sake of brevity we shall denote such an encounter by the
symbol (vy, 8, ¢, D, O).

Now, according to the elementary theory of the two-body prob-
lem (see Appen. I), the velocity of the center of gravity V, remains
constant during the encounter. Further, in the orbital plane each
star describes a hyperbola about the other, and at the end of the
encounter the direction of the relative velocity V is deflected by an
amount = — 2y (in the orbital plane), where

cos Y = . (2.301)2
\/1_*_ Dyt

i) The energy exchanged AE.—We shall now consider the energy
exchanged between the two stars as a result of the encounter:
By definition of V, and V we have

Vo=

7 ™ (myv,+ mavy) ; V=v,—v;. (2.302)

2 This must be distinguished from = — 2¥, which gives the true deflection in a fixed
frame of reference.



Fi16. 13.—Vector model for stellar encounters. The fundamental plane is defined by the
vectors v and v, representing the velocities of the two stars before the encounter. The velocity
of the center of gravity, denoted by V,, remains constant during the encounter. In a frame
of reference in which the center of gravity is at rest, the two stars describe hyperbolae in the
orbital plane, which is, in general, inclined at some definite angle to the fundamental plane.
The vectors ¥ and vy, representing respectively the initial relative velocity and the initial
velocity of one of the stars with respect to the center of gravity, lie in the orbital plane and
are in the same direction. As a result of the encounter, these vectors are deflected by the
same angle r — 2, and become respectively ¥’ and vy,. Finally, v} = vj, + V, defines the
velocity of the star at the end of the encounter. The angle » — 2¥ between the vectors v and
v, measures the true deflection suffered by the star us a result of the encounter (Williamson
and Chandrasekhar, /A p. J., 93, 309, 1941)
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From the relations (2.302) we readily find that

Uz-V -+

m1+m_2v (2.303)

According to equation (2.303), we have

vi=Vi42 — V 14 coscl>+( ida ) Ve, (2.304)

m + 1+ my
where & is the angle between V, and V. Similarly, at the end of the

encounter

2
o= Vit 2 B Y,V s+ (-—-’”—‘——) v, (2.305)

where &’ is the angle between V, and the relative velocity V' at
the end of the encounter. Hence the change in energy, AE, suffered
by the star as a result of the encounter is given by

AE= §my (v)2— v2)
mm: } (2.306)

=2 V V (cos &’ — cos ®) .

Now, let 7 be the angle which the projection of V, on the orbital
plane makes with V,. Further, let ¢ and ¢’ be the angles which
V and V' make with the projection of V, on the orbital plane. We
then have (see Fig. 14)

cos & = cos ¢ cos 1 ; cos &’ = cos ¢’ cos i . (2.307)

We can, therefore re-write equation (2.306) in the form

= M2 '
AE= P V,V (cos ¢’ — cos ¢) cos i, (2.308)
or, alternatively,
2_@113_ L bt L b—9 .
AE= mitm V,V sin 5 sin == cos i (2.309)
On the other hand, we have
¢ —p=mr—2¢, (2.310)

whence
}(0+9¢)=90°—y+9¢; 3(@'—¢)=90°—y. (2.311)
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7
7

Equation (2.309) now becomes

myms

AE==2 ¥ m

V,Vcos(p—y)cosycosi, (2.312)
where y is related to the impact parameter D and V according to
equation (2.301).

ii) The number of encounters (v, 0, ¢, D, ©).—We shall now ob-
tain the expression for the number of (2, 6, ¢, D, ©) encounters which
take place in an interval of time di. Let N(vy, 0, ¢) dvid6dyp be the

P

%
M L\e
§ ORBITAL
¢ PLANE
[o]

Fic. 14.—Illustrating the relationships between the various angles ¢, ®, ¢, and 6.
OM is the projection of V, on the orbital plane. The angles OM'P, OM'M, OMP,
and M’MP are all right angles. We thus have the relations cos ® = cos % cos ¢ and
sin & cos © = cos ¢ sin .

number of field stars per unit volume with velocities in the range
(91, 11 + dvy) and in directions confined to the element of solid angle
sin 8d8dy. The number of encounters sought (which occur in time
dt) is, accordingly, given by

N (os, 6, ¢) dvyd0de - 22

«2wDdD- Vdt. (2.313)
27

Consequently, the contribution of these encounters to the sum
ZAE? can be written as
ZAE?

(v, 0,0, D, 8)

= 22N (1, 0, ¢) AE’VDdD%?—_dvldadwdt; (2.314)
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or, using equation (2.312), we have

_mim, )2

SAE?
mx + ma

(v,, 0,0, D, ©)

=8xN (vy, 6, 0) V3 V?
(2.315)
X cos? £ cos? (¢ — ) cos? ¢ DdD Ep dvld0d¢dt .

Our problem now is to integrate the foregoing expression over the
relevant ranges of the various parameters D, O, ¢, 8, and 2,. We
shall consider the integration over each of these variables in turn.

i) The integration over the impact parameter D.—To integrate
over D we shall introduce a change of variables. According to equa-
tion (2.301)

G*(m+my)? siny

DiD= Vi sy W (2.316)
Hence, we can re-write equation (2.315) as
2 2 Vi
EAE?:: 6,000, 0) 8N (1)1, 6, ‘P) G’mymy ‘_I/Ta
(2.317)

x cos? § 05 (@ = ¥) sin ¢ N 46 d 0d0ded .

On integrating the foregoing expression over the relevant range of ¢,
we shall obtain the contribution to ZAE? by all those encounters
which we can denote by the symbol (v, 6, ¢, 6). We thus have

V2
EAE?v frp ) = 87N (vy, 0, ¢) G*mim; V"
2(¢—y)sin y (2:318)
2 [ @=W)siny , dO
X cos? i f 1 d¢ dvld()dwit

A consideration of the integral occurring in equation (2.318) intro-
duces a new factor into the discussion. At first sight it would appear
that the appropriate limits for  are 0 and /2 corresponding to the
limits 0 and « for D. But we notice that the integral in (2.318)
does not converge at Y = w/2 except in the trivial case ¢ = 0
(ve/n; = ). Further, it is readily seen that (except when ¢ = 0)
the integral in (2.318) diverges logarithmically as ¢ — w/2. This
divergence arises essentially from the improper use of the two-body
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approximation to describe distant encounters in a stellar system; for
the formula (2.312) for the energy exchanged between two stars in-
volved in an encounter assumes them to be initially at an infinite dis-
tance from each other and to separate to an infinite distance at the end
of the encounter. Only then could we set for the deflection (= — 2¢)
the angle between the two asymptotes of the relative orbit given
according to equation (2.301). We should therefore conclude that,
in practice, a ‘‘second” encounter begins to be effective before the
first can be regarded as completed in the strict sense. Hence, the use
of the expression (2.301) for the angle between the two asymptotes
overestimates the actual deflection. This difference between the
actual deflection and the full (theoretical) amount (2.301) is clearly
of no importance for “close’” encounters, i.e., for encounters for
which D is a fraction of the average distance D, between the stars
in the system. However, for encounters for which D becomes of the
same order as D, the errors introduced by using the expression
(2.312) for AE become increasingly serious. Thus, the divergence of
the integral occurring in (2.318) as D — « and ¢ — 7/2 must be
attributed, first, to the general overestimation of the energy ex-
change AE given by (2.312) (which is of particular importance for the
distant encounters) and, second, to the increasing difficulty of de-
scribing stellar encounters on a two-body idealization when the cor-
responding impact parameters become of the same order as the
average distance D, between the stars. On the other hand, if we
arbitrarily disregard all encounters with impact parameters greater
than a certain amount, we shall be ignoring the small but finite
contributions to TAE? arising from these distant encounters. Con-
sequently, by appropriately choosing an upper limit Dyax for the im-
pact parameter D, we can compensate for the errors introduced by
overestimating AE for encounters with D < Dn.x and, by ignoring
AE, for the encounters with D 2 Dn.x. In a general way it is clear
that Dmax should be equal to D, within a factor of 2 or 3. It would
be difficult to estimate Dmax more closely than this without going
into a considerable amount of detailed calculations. However, it is
seen that an error of a factor of 2 or 3 in the chosen value of Dmax
does not introduce any significant error in the final expression for
the time of relaxation. This fortunate circumstance arises from the
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fact that the integral occurring in equation (2.318) diverges only
logarithmically as y — x/2. We shall therefore assume that

Dmnx'—\"DO- (2.319)

Again, for values of D, which come under discussion in the treatment
of actual stellar systems the maximum value of y differs so slightly
from /2 that we can put ¢ = /2 in all terms except those which
diverge at Y = m/2. On these assumptions the evaluation of the
integral in equation (2.318) gives

= 87N (v, 0, ¢) G*mim; —VI—} cos? i

X [4 cos? ¢+sint ¢ (~log cos yo—3) ( (2.320)

EAE?V 0, ¢

+7 sin 2¢] dv,d8dedt.

Using the relations (see Fig. 14)
cospcosi=cosd; singpcosi=sin®cosO®, (2.321)
we can write equation (2.320) more conveniently as

2V,?de
*V 2x

[&coszd>+ log(1+627%) 1} (2.322)

X sin? & cos? O +Z sin 2% cos O] .

ZAE? dv,d8dedt

(v,, 0,0, e)

STN(”ly x?)szl

It is readily seen that in the foregoing expression the logarithmic
term represents the dominant contribution to ZAE?. For,

__ Do _
G (my+ m,)

Consequently, D3V*/G*(m: + ma)* will generally be of the order of
10° — 10%. An inspection of equation (2.322) now shows that the
logarithmic term in this equation will be ten to twenty times as large
as the other terms.® We shall therefore neglect all such terms in the

[ Do/parsec]

[ (my+m,) /©][10 km/sec]? (2.323)

=2.33X10*

3 A more detailed calculation confirms this conclusion (see n. 4).
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future and retain only the dominant term in our calculations.* Ac-
cordingly, in this approximation, equation (2.322) can be written as

14
ZAEE, =4xN (v, 0, ¢) G*mim; ~*
@ o0 @ 4 (2.324)

4 doe
X log ( 4 G 2) sin® & cost© 52 dnid 0ddt .
iv) Integration over the inclination of the orbital plane—The
integration of equation (2.324) over the inclination of the orbital
plane to the fundamental plane is simple. We find that

ZARY, , =220 (v, 0, ¢) Gimim} ‘I',
D (2.325)
|4
X IOg(1+GZ(m1+m2) 2) sin? ® dv,dfdedt .

v) Some auxiliary formulae—The quantities V,, V, and & which
occur in equation (2.325) are all determined by v, v;, and 6. We
shall now obtain the explicit form of these relations.

From our definitions of the vectors V, and V we directly obtain
the formulae

Vi= e +m2)2(m1v1+m202+ 2mymavy v, cos 8)  (2.326)
and .
V2= 924 92— 29,95 cos 6 . (2.327)

On the other hand, since (cf. eq. [2.303])

mo
=V,-——2% _ .
pep i vV, (2.328)
we have

2 __ 2_ R e
R VVcos<I>+( )V’, (2.329)

or, using equations (2.326) and (2.327), we readily obtain

2 V,Vcosd=2

i 22 [ myo}— my o
my+my ° (mi+mg)? " 7272 1 (2.330)
+ vy95 (my— my) cos 0] .

4 For a rigorous evaluation of the sum in equation (2.322), including the nondomi-
nant terms, see S. Chandrasekhar, 4p. J., 93, 285, 1941.
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Hence,

cosd =
mgvﬁ—mlvf+ 'vlv,(ml—»tg)cosa (2 331)
\/(7n202+m2 2+2mymzv, 9, cos 0)(vf+v§-201v2 cos 8) )

From the foregoing relation we find
sin =

vlv2(m1+m2) sin 6 (2.332)
\/(mz'v‘+m2v2+2m1mzvlvz cos 0) (v24v2— 29,9, cos 6) )

Combining equations (2.326), (2.327), and (2.332), we obtain the
relation

2

. sin? 6
032
 sin P =

viv;
PP (v v — 20,0, co8 8) 32

(2.333)

We can now write equation (2.315) in the form

ZAE?

oy, 0,0) = 27N (vy, 0, @) G*mimsvivs

sin? 6

X (v3+ 22— 29,0, cos §) 2 (2.334)

D? (v + v2— 29,9, cos 6) 2
G? (my+ my)?

X log(l + )dvld0d¢pdt.

vi) The integration over the angles 6 and ¢ for a spherical distribu-
tion of the velocities of the fi eld stars.—To effect the integration of
equatnon (2.334) over the angles 8 and ¢ we need to know the
explicit form of the function N(v,, 6, ¢). For a spherical distribution
of the velocities we can write

N (0, 0, ¢) dvidfdp= 4N ] (v) vidv, 11; sin 6d0de, (2.335)

where f(v;) denotes the frequency function defining the distribution
of the velocities »;. For a Schwarzschild ellipsoidal distribution of
velocities the form of the function N(v, 6, ¢) is somewhat more
complicated and will depend on the orientation of the velocity
ellipsoid. It would be entirely feasible to write down the form of
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N(vs, 8, ¢) under these more general circumstances and thus take
into account the phenomenon of star streaming in our analysis of
stellar encounters. We shall not, however, do this but shall restrict
ourselves to the simpler case of a spherical distribution of velocities.
We can then write

N (v, 8, ¢) =£;N(v;) sin 0, (2.336)

where we have used N(v,) to denote
N (v)) = 42N f(v,) v2. (2.337)

_ With the foregoing form for N (1, 0, @) the integration of equation
(2.334) over ¢ is immediate. We find

- 2, 2 2 2 sin® 6
ZAE, ,=7N (1) G'mimy 10z (v3+ v2— 20,95 cos 0)32
(ol olm 2 N (2.338)
o\ 91+ V3 — 2193 COS
Xlog(l+ S, )dvxdodt.
The integration over 6 can now be effected. We have
EAEfl-—- 87N (1)) GPmimiJdv,dt, (2.339)
where J stands for the integral
1202 [T sin® @
J=ton; -/o‘ (v2+ v2— 29,95 cos §) 32
(2.340)

Di(vi+ vi— 29,9, cosG)*)da.

x‘°g(‘+ G* (it ma) ®

To evaluate J we shall use V (cf. eq. [2.327]) as the variable of
integration instead of 6. We find that J reduces to

__1 va(a—V2)(V2-b)
320,08 V?

log (1+¢2V4)dV, (2.341)

where

1 Gt ) (2:342)

and
a=(v2+v,)?%; b= (v2— v1)?. (2.343)
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We verify that equation (2.341) is equivalent to

_ 1 va d [ab
= 3200/ W[’V“"“’”I’)V"%V’] }(2.344)
Xlog (14 ¢2V%)dV.

or, after an integration by parts, to

1 b
=m['a—“+(a+b) V—%V3]103(1+92V4) :l/' (2.345)
va ’
T f (abV2+(a+b) Vi 1V6]1+ 7 dV

It is seen that in the foregoing expression for J the integrated part
represents the dominant term; consequently, we can ignore the non-
integrated part in our scheme of approximation (cf. egs. [2.322] and
[2.324]). We thus find

J=—1— [a¥ (b+4a)log (1+ ¢%a?) } (2.346)

16011)2
— 02(a+10) log (1+ ¢282)].

Again, since ¢ga and gb are both generally of the order of 10¢ — 105
(cf. egs. [2.323] and [2.342]), we can write
log (14 ¢%a?) =~ 2log qa ,}
log (1+ ¢2b?) >~ 2log qb .
An exception arises when v; = v, in which case b = 0. Then log ¢b
diverges to — . However, we need not distinguish between

b2 log (1 + ¢%?) and b'/2 log ¢%?, particularly as both these expres-
sions predict the correct limiting values. We thus have

(2.347)

=§.1;11_1; [a12(b+3a) log ga— b2 (a+3b) log gb]. (2.348)

Substituting for a and & according to equation (2.343), we obtain

=%, D log g (ot 0s)?
— (03— v]) log ¢ (v2— )] (22 1), (2.349)
ETJ [ (v+9}) log ¢ (v +2)°

"'(7’3““”;)1084(”1"'1’2)2] (v2€ v);
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or, after some further rearrangements of the terms, we have

2 2 2
=L 24 U1 -
J~3vzlogqu+3vzlog<1 ﬂi)
2
+£—10g%£_*:-% (022 v)),
o (2.350)
J= —S——z—logqvg-i——mlog( 1)
7)1+_ﬁ >
+3v2 Pap— (912 v3) .

Retaining only the dominant term in equations (2.350), we have

2
J= —,;—l—logqu (v22 1),
(2.351)

2
/]
J='§vill°gqv§ (92 v1) .

Substituting the foregoing expressions for J in equation (2.339), we
finally have

ZAE; = 8w N (0,) G*mim; v, log g vid v,dt

T (2 ), (2.352)

Yz <
30‘ (vz\vl)’

vii) The integration over the velocities vi—We have now evaluated
the contribution to ZAE? by all encounters in which the field stars
have some prescribed value of v,. However, in carrying out the inte-
grations over 0 and ¢ it was further assumed that the distribution of
the velocities of the field stars is a spherical one. In order now to
average over the velocities of the field stars we need to know the
form of the function N(2;). Here we meet certain difficulties of prin-
ciple. Strictly speaking, the problem of the time of relaxation is also
the problem of determining the rate of approach of the system
toward some kind of “thermal” equilibrium. Consequently, there
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exist no a priori considerations (apart from the present ones) which
would suggest a particular form of N(v;). Indeed, we should rather
expect that a correct statistical theory of stellar encounters would
itself lead to a definite form for N(v;). However, in our present
connection we are interested only in finding the effect of a distribu-
tion of the velocities »; on ZAE; and in removing the arbitrariness of
using a particular value of v;. For this purpose a Gaussian distribu-
tion of the velocities of the field stars is likely to be adequate. We
shall therefore assume that (cf. eq. [2.337])

N (o)) doy=292 ye=ri 2 (2.353
v;)dv, = \/;Ne 1oidy,y, 2. )
where N is the number of stars per unit volume. For this form of
N(v)) the integration of equation (2.352) over »; can be readily
effected. We have

ZAE? = 8w NG*mIm2v, log qvidt

4 -3 v, 22 © 22 (2'354
X 5va Lo [ e stdock v [Te s, )

The integrals occurring in equation (2.354) are expressible in terms
of the error function, ®(x,), and its derivative, ®'(x,). We find that

ZAE? = 8w NG*m?m2v,G (x,) log gv2, (2.355)
where x, = jv,, and
1
G(xo)=zt—2 [® (x0) — 2o®’ (%0) ] . (2.356)
[}
The function G(x,) is tabulated in Table 6.
TABLE 6
G(x0)
x G(x0) X G(x0) %, G(xo)
00......... 00 1.0...,.... 0.2138 20........ 0.1192
2. 0734 12........ 2047 3.0........ .0555
4 ... 1368 14...... . .1862 40 ....... .0313
6 ....... .1827 16........ .1634 50........ .0200
0.8. ....... 0.2079 1.8........ 0.1404 ®. ..., 0.0
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We may again draw attention to the fact that in evaluating ZAE?
(eq. [2.355])) we have ignored all but the dominant terms. However,
a rigorous evaluation of the sum, including the nondominant terms,
shows that equation (2.355) gives an accuracy of 10 per cent for
0.6 € %o < 1.8. According to Table 6, the variation of G(#,) in this
range is not very appreciable. We have

G (%) >~ 0.18 (0.6 <2,<1.8). (2.357)

viii) The time of relaxation Tg of a stellar system—Equation
(2.355) gives us the instantaneous rate of increase of ZAE? and will
therefore enable us to follow the star statistically during its motion.
For we can re-write equation (2.355) in the form

SAE? 321rNG2m";G(xo) log qvg

= 7 dt (2.358)

or, more simply, as
AR dt

L (2.359)
where we have written
3
Ty= i - (2.360)
D
327 NGm2G (z,) log, [Eﬁ)—]

From equation (2.359) it follows that Tz gives the time scale which
would be required for stellar encounters to become effective in
seriously invalidating the energy integral (2.12) in the orbit de-
scribed in the general gravitational field of the smoothed-out
distribution of matter in the system. Accordingly, we can take equa-
tion (2.360) as defining the time of relaxation of the system.

When we express the mass, Dy, 2, and & in the units of solar mass,
parsec, 20 km/sec, and number per cubic parsec, respectively, equa-
tion (2.360) becomes

Tp=1.83X 10"

3
% (2.361)
X ears.

NmiG (o) loguo [9.31X 104 Dov2/ (mot ma) |
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In view of equation (2.357), we have, to a sufficient accuracy,

Tg=1.0X 104

3
2 (2.362)
X Nmf logio [9.3X% 104Do'0§/(m1+m,) ] years .

ix) The average rate of increase of emergy of a group of stars.—So
far, we have been concerned only with the expected change in energy
of a particular star through its motion in a field of other stars. While
this is the most important problem related to the time of relaxation
of a stellar system, it is sometimes necessary to know the average
change in energy experienced by a group of stars in their motions
through other stars. For such purposes it is necessary to average
the expression for ZAE? over both v, and v,. We shall now consider
this averaging.

According to equation (2.352), we have

ZAE; = 87N (v,)G*m2m? log qvidv,dt

3o, (2015363

X
-3-;; (v2< v) .

In averaging this expression over v; and v,, we shall adopt different
distribution functions for v, and v.. More particularly, we shall as-

sume that
4

N (v)do=—z; Njtenwinid, (2.364)
and
N (0) dvg= 5 Najle=iiuidn, (2.365)

On these assumptions regarding N(v;) and N(v2), we have
A L2 16 ., . ® 2t ® 2
288 =18 jijp [% ety ([ emitiumaR dn) dos . (2.366)

In effecting this double integration, we shall replace the logarithmic
term log ¢gv3, which occurs in our expression for ZAE? , by a suitable
average and take it outside the integral signs. This procedure will
not introduce any appreciable inaccuracy in the calculations, since
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the logarithmic term is insensitive to variations in .. Equation
(2.366) can thus be expressed in the form

TAE? = 8x NG2m:m2Q log qvidt, (2.367)

where we have written

0= 31 b [f e-—i:v:vg(fv'e‘i:":v:dvl)dvg
t+ [eiing (S emitnido, ) duy).

Inverting the order of the integration in the first of the two foregoing
double integrals, we obtain

= %g VM [_/(;me—i"v‘,'”? (./,‘,me_i:”:vzdvz) dv
+ _/o‘we—':":v; (ﬁ;me"’:”:vld vl) dvg] .

The two inside integrals in equation (2.369) are readily evaluated,
and the expression for Q becomes

1 fo 2,30
0= 31 7id2 [] .[ ¢ ("+”)"'1):d111
1 [ (2.370)
+?§ A e_(ll+1|)1l’v;dv2]

(2.368)

(2.369)

or, finally,

1 ]1]2
Q= 1/2 (]2+Jz)a/z (2'371)

Combining equations (2.367) and (2.371), we have

SAE? = 872 NG*mym; —z—,‘,—i‘—]Z) 37 10g gvidt. (2.372)

For the case j, = j» = j, the foregoing equation becomes
SAE = (87) 2 NG*mim}j " log qvidt . (2.373)

x) The mean time of relaxation, Tz.—We shall define the mean
time of relaxation T'g as the time required for ZAE? to become equal
to E? where

E=}my0?. (2.374)
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Since, for the distribution function (2.365),
— 3

3
v} 77 (2.375)
we have
= 9m§
E2_16j;' (2.376)
According to equations (2.372) and (2.376),
— ;2 2} 3/2
Ty = 9 (Jr1+j2) (2.377)

" 1287'2NG*m? j, 55 log qv?°

For the case j; = j. = j, we have

Ty= 2
716 (87)2NG*m? j* log ¢ v?

(1= je=7j). (2.378)

Equation (2.378) can be expressed more conveniently in terms of
the root mean square velocity (7%)V2. We find (cf. eq. [2.375])

Foo L3\ __ L
Te=1¢ (;) NG*m? log. qv?’ (2.379)

or, expressing the mass, (z%)V2, Do, and N in units of solar mass,
20 km/sec, parsec, and number per cubic parsec, respectively, we
obtain

Tp=1.12X 108
X o2 (2.380)
Nm?logy [9.3X 10 Dy9?/ (my+ my) ] years,

in which form the close similarity with equation (2.362) is evident.

2.4.—The time of relaxation, Tp.—For evaluating the time of re-
laxation of a stellar system from the point of view of the deflections
suffered by stars as a result of stellar encounters, the first problem is
clearly one of expressing the deflection, = — 2¥, suffered, in terms
of the parameters describing an encounter. By definition the deflec-
tion = — 2V¥ is simply the angle between the vectors representing
the initial and the final directions of motion of the star. Thus, if v,
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and v; denote the velocity of the incident star before and after the
encounter, respectively, then
- cos (w—2w) =22 12 (2.401)
Ve ‘02
(see Fig. 13, where the situation is made apparent).
i) The true deflection suffered by a star as the resuilt of.a stellar
encounter.5—In order to determine the true deflection according to

equation (2.401), we first need to specify the vector v;. To do this
we proceed as follows:

Let v, and v,, denote the velocity of the star before and after the
encounter in the frame of reference in which the center of gravity is
at rest. Then

v =v:—V,; v, =v,—V,, (2.402)

where, by definition,

(ml-l- mz) V¢= m1v1+m2v2= mlvl’+ M2v2’ . (2.403)

From equations (2.402) and (2.403) we obtain

V=TV, = m,t'lt-l;z V. (2.404)

Hence the angle between the vectors 5, and vy, is the same as that
between V and V', ie., 7 — 2y, where ¢ is given by equation

(2.301).
Now, according to equation (2.402), we have
Ve e ;= vy (v, +V,) (2.405)
or
990, cos (r—2¥) = v+ vy, + vy - V. (2.406)

The direction cosines of v, with respect to V, a direction in the
orbital plane at right angles to V and a direction perpendicular to
the orbital plane are

cos (—9), —sin(®—9¢)cosO®, sin(d—0)sinO, (2.407)

8 The analysis which follows is taken from a paper by R. E. Williamson and S.
Chandrasekhar, 4p. J., 93, 305, 1941.
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where ¢ is the angle between v, and V,. Again, since vy, is in the
same direction as V’, the direction cosines of v,, with respect to the
same three directions are

cos (¢p'—¢), sin(¢’—¢), O. (2.408)
Hence,
vy« U} = v30; {cos (¢’ — ¢) cos (& — ) } (2.409)
—sin (¢’ — ¢) sin (— &) cos 6} . '
From equations (2.406) and (2.409) we obtain
v cos (w— 2¥) = v {cos (¢’ — ¢) cos (— &) } (2.410)
—sin (¢’ — ¢) sin (— &) cosO}+ V, cos & . '

Since ¢’ — ¢ = 7w — 2y, equation (2.410) can be re-written as

cos 2¥ = —1% { v9g [ cos 2¢ cos (& — &)

2 } (2.411)
+sin 2¢ sin (P — ) cosO]— V, cos 4} .

On the other hand, we have the elementary relations (see Fig. 13)
Vecos (@—8)=v,—v,cos 0; Vsin(d—9)=u9,sin6. (2.412)

Again, multiplying the equation defining V, scalarly by v., we obtain

1

m1+m2(m1vx cos 0+ mzvs) . (2.413)

Vycos & =

Substituting the foregoing relations in equation (2.411) and re-
membering also that vy, = [m/(m; 4+ mo)]V (cf. eq. [2.404]), we

have
cos 2¥ = —~~——1—————; [ my (v, — v, cos ) cos 2y

(my+ m,) v, } (2.414)
1,

-+ m, v, sin @ cos O sin 2y — my v, cos § — Mmy v,

or, after some minor rearrangement of the terms,

1
8 2= T gy gy | 2 (20w cos 0) cos'y } (2.415)

+ 2m, v, sin 0 cos O sin Y cos ¢ — (m; + m,) v, ] .
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We have now to express v, in terms of the known quantities v, v,,
0, and y. We find®

202 — dmy| (myv2— myo?)

= m +M)’{ e

+ (my— ms) v,y cos 0] cos? ¢ (2.416)
— 4m, (my+ my) 9,9, sin 0 cos O sin ¢ cos ¢} .
Substituting for v, in equation (2.415), we have
cos 2¥
. 2my(3— 1 cos 6) cos? ¢+ 2y sin B cos O sin Y cos Y — (m+ma)ve (2.417)
V (my4-ma) 303 — dma (w3 — m1d) + (1 — ma)viva cos ] Cost Y —4m, (my+my) vy sin B cos O sin g cos y

From the foregoing equation we finally obtain

sin?2¥ =4m cos*y
341820103 c0s 0 —[ (22 —1; cos 6) cos -, sin 6 cos O sin yJ?

(ml+mz)‘u§ 4m.[(mw’—mw,’);}-(m, — ma) 122 C0s 6] Cos? ¥ —4my(m1-Fma) iz sin  cos O sin Y cos ¢ °

](2418)

The expression for sm2 2¥ simplifies considerably for distant en-
counters. Under these circumstances ¢ — /2 and equation (2.418)
become

4m}
(my+ma)*e (2.419)

X[ 92+ 92— 29,9, cos 6 — v} sin® § cos’©] cos? ¥,

sin? 2V o~

or, after a slight rearrangement of the terms, we obtain

__J_'ﬁg__[(
(my+ ms) 20?2

sin? 2¥ o~ 9y — ¥y Cos §)2

(2.420)
+ o sin? 6 sin? 6] cos? ¢ .
ii) The time of relaxation Tp.—The number of (v, 0, ¢, D, ©)

encounters is given by equation (2.313), and the contribution of
these encounters to the sum Z sin? 2¥ can be written as

Z sin? 2% (y;.0,0. 0, 0)= 27N (14, 0, ¢)

Xsin? 2¥V DdD % dvdfdedt.

(2.421)

¢ For an exlicit derivation see #bid.
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Using ¢ instead of D as a variable in equation (2.421), we have (cf.
eq. [2.316))

Tsin? 29, . 0.0, 0) = 27N (14, 0, ¢)G* = (m, -{I;sml)_
sin ¢ (2.422)
X sin? 2¥ --— oSy d;/z e dvldad:pdt.

Our next problem is to integrate the foregoing equation over the
relevant ranges of the variables ¢, 6, ¢, 0, and v;. Thus, integrating
over ¥, we have

)
Zsin? 2¥(,,.6,0, 0)= 27N (24, 0, ¢)G? —(—'il—-%m—z)—
. . (2.423)

sin? 2¥ sin ¢ do
x [ v G dndoded:.

If, as in § 2.3, we retain only the dominant terms in evaluating the
sum 2 sin? 2\, then it is clear that it would be sufficient to use for
sin? 2¥ the limiting form (2.420) instead of the general formula
(2.418). On this approximation, equation (2.423) becomes

Zsin? 2¥(,.0.0, 0) = 87N (01, 8, ¢)G*m} Viv"
X [ (v3— v, cos 0)2—{— v?sin’ 6sin? O] } (2.424)

sin 1 Y
x [ g dw aid dvldodcpdt

an integral which diverges logarithmically as ¢ — x/2. This diver-
gence arises, of course, for the same reasons that caused a similar
divergence in the valuation of ZAE? Accordingly, in equation
(2.424) we shall extend the integration over y from 0 to an upper
limit y,, corresponding to D = Dmax =2 Do. We thus obtain

. 1
Zsin? 2¥(y,.0.¢, 0) = 47N (03, 0, ) G*m? —i—; Vi

X [ (va— vy cos 8)% + v sin® 6 sin” O] (2.425)

Div!

X lOg(l—*‘Gz(mx""' my)?

)119 dvd8dedt
27
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or, after integrating over O, we have

Zsin? 2¥(,,0.0) = 47N (1, 0, ¢)G*m? V:

X[(vz—v1c050)2+§v’sin’0] (2.426)

D:v*

108 (1+ G5 e

) duidoded:.
The further integrations over 6, ¢, and 7, can be effected only when
the form of N(vy, 8, ¢) is known. As in § 2.3, we shall first introduce
the assumption of a spherical distribution of the velocities #; (egs.
[2.336] and [2.337]). For this form of N(v, 8, ¢) the integration
over ¢ is immediate. We find

Zsin? 2¥(,.0 = 27N (v,) G*m? V:-zﬂ
X sin 0 (va— vy cos 8)2 +4v2sin? 6] § (2.427)
Dyv!
X log (1 +(_;2—(—7;t-;—:—|-—ﬁ;)—5) dv,dbdt,
where
Vi= 9?4 92— 29,9, cos 6 . (2.428)

The integration of equation (2.427) over @ is straightforward. Re-
taining only the dominant term, we find

Isin? 2¥,, = 86’ 'Z‘N(”‘) dv,dt
D
(3 ”‘)1 G(m,:fzm,) (023 0)), b (2.429)
”210 __.Bi’ig (v:< 9y)
G(m + m,) e

Finally, to effect the integration over v, we shall further specialize
the spherical distribution of the velocities assumed to a Maxwellian
distribution. Using the form of N(v,) appropriate to this case (eq.
[2.353]), we obtain

2
Zsin? 2¥ = _1_rNG2m, H (x,) log = Dovs

o GOmt my) dt, (2.430)
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where x, = jv; and

H(xo)=-2—;;|xofl>'(xo)+(2xg—1)<I>(xo)] (2.431)

(®[xo] and ®'[x,] denote, respectively, the error function and its
derivative). The function H(x,) is tabulated in Table 7. Equation

TABLE 7
H(xo)

£ H(xo) Tp/Tg x0 H(x0) To/Tk
06...... ... 0 421 174 18...... .. 0 849 0.66
08.......... .534 156 20......... .876 .55
10......... 629 1 36 25 ... .920 0.35
12.......... .706 116 30......... 944 ...
1.4......... 766 097 40 ....... 0969 |........
1.6.......... 0.813 0.80

(2.430) can be written in the form

% sin? z\p=gﬁ, (2.432)
D
where
v3
T,= - . (2.433)
) D,

According to equation (2.432), Tp gives the time scale which would
be required for stellar encounters to become effective in deviating
the star from the orbit described by it in the general gravitational
field of the smoothed-out distribution of matter in the system. We
can therefore take equation (2.433) as defining the time of relaxa-
tion.

Comparing equation (2.433) with the formula for the time of re-
laxation Tz obtained in § 2.3 (eq. [2.360]), we notice that the two ex-
pressions are of identical forms. Further, the ratio between the
times of relaxation obtained from the two different points of view
is given by
(2.434)
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This ratio is tabulated in Table 7. It is seen that Tp/Tk varies
from 1.7 to 0.35 as x, varies from 0.6 to 2.5.

Applications of the formulae for the times of relaxation obtained
in this chapter will be found in chapters iii and v.

2.5, The mean free path.—The formulae for the time of relaxation
obtained in §§ 2.3 and 2.4 enable us to evaluate certain other
quantities of interest. The first of these quantities is the.mean free
path. 1t may seem at first sight impossible to assign a meaning to
the mean free path for a system consisting of stars idealized as mere
centers of force. Nevertheless, it is possible to define a length which
plays the same role for stellar dynamics as the mean free path does in
the classical kinetic theory of gases, where the molecules are ideal-
ized as rigid elastic spheres.

Now, according to equation (2.359),

ZAE? i (2.501)

As we have already indicated, VZAE? gives the expectation of the
change in energy that is to be anticipated in time df. And, during
this time d¢, the star will have traversed a distance

dl= v.dt. (2.502)

We can therefore re-write equation (2.501) in the form

ZAE? dl
= 2.503
E? )\1(7’2) ’ ( )
where
4
M(v2) =Tgpoy= Y2 . (2.504)

Do ‘D:
2 2 ————
32rNG*m2G(x,) log, [G(ml—{- mg)]
We can take M\i(v;) as defining the mean free path for a star of
velocity v;. For, according to equation (2.503), the probability that a
star will traverse a distance 1 without suffering the expected change of
energy V'ZAE! is

e M) | (2.505)
We are therefore justified in identifying the length \,(v,) as the ap-
propriate mean free path.
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For a star moving with the average speed #, in the system,

4

M (5) = 2 . (2.506)
_ Dy
2 m 2 . S A
327 NG*m*G (%) log. [G(m gy ]
For a Maxwellian distribution of the velocities s,
_ 2
1)2=1—ri7§'.‘7.. (2.507)
It would, therefore, be sufficient to use for %, the value
Bo=jOg=27~() =1.128. (2.508)
From Table 6 we now find that
G(%)=0.212. (2.509)
With this value of G(%,), equation (2.506) becomes
=4
M () =0.0204 — %2 (2.510)
Dy 3
2y 2 v Te ___
NG "™ logm [G( my+ ms) ]

or, expressing the mass, D, %, and N in units of solar mass, parsec,
20 km/sec, and number per cubic parsec, respectively, we find

X o arsecs }(2'511)
Nm?Togu[9.31X 104 Do02/ (my+mg) ] P2

It is clear that, analogous to the length \i(v;), we can define
another mean free path which will be appropriate for the discussion
of the deflections experienced by stars. Thus, if the probability that
a star with velocity v, will traverse a length / without suffering the
expected deflection sin™! ( V'Z sint 2¥) be expressed as

e~ | (2.512)

then, clearly,
M(v2) =Ty, (2.513)

where T’ is given by equation (2.433).
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There is a simple relation between the free paths A, and \,. For,
according to equations (2.504), (2.513), and (2.434),
)\2( ‘Uz) =4 G(xo)
M (99) H (xo) ~

For stars moving with the mean speed #, in the system, we have
(cf. eq. [2.508])

(2.514)

M(Py) _, G(1.13) '
)\1(52)_4/'/(1-13) =1.24 (2.515)
or, according to equation (2.511),
Xz('l.)z)=2.12x 108
7 (2.516)

X

Nm?logi[9.31 X 108 Dg52/ (my+ my) [ Poroce

2.6. Viscosity—We have seen in § 2.5 how it is possible to give a
meaning to the term “mean free path” for a stellar system. But it
cannot, therefore, be concluded that the related notions of viscosity,
diffusion, etc., of the kinetic theory of gases can also be extended
to stellar systems. The principal difficulty in extending these con-
cepts to stellar systems consists in the fact that the mean free paths
are generally very long compared to the linear dimensions of the
system. Thus, under the circumstances envisaged in stellar dy-
namics, viscosity and the related notions very largely lose their
meanings. It is, however, of interest to compare the expression for
the time of relaxation which we have obtained with the time of re-
laxation of a gas as ordinarily defined in terms of viscosity.

According to Maxwell,? the time of relaxation of a gas is given by

Tg (2.601)

=K
NkT’
where u is the coefficient of viscosity, k is the Boltzmann constant,
and T is the temperature. In order to apply this formula for stellar
systems, we shall first express k7T in terms of the constant j in the
distribution function (eq. [2.353]). Clearly,
m
kT = —2—15 . (2.602)

7Cf., e.g., J. H. Jeans, The Dynamical Theory of Gases, pp. 242-244, Cambridge,
England, 1921.
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#

Equa.tion (2.601) becomes

m
[.L=‘2—}§ NTE. (2.603)
Again, since
- 2
vg=rl/2j (2.604)

an alternative form for u is

NmTg 9. (2.605)

ooy

=

This equation is to be regarded merely as another way of writing
equation (2.601).

We shall now formally substitute for Tk occurring in equation
(2.605) our expression for T g(#,).
We have

y=% NmTy(9,) 92 (2.606)
or, according to equations (2.504) and (2.506),
p=18r-Nm)\1(172)1')2; (2.607)

in this form we recognize the standard formula for the viscosity in
terms of the mean free path

p=3NmVeir (2.608)

which does not differ appreciably from equation (2.607). Substitut-
ing for \s(%,) according to equation (2.510) in equation (2.607), we
obtain

7

= -3
w= 80X 0 e Togn [ Dos?/2m ]

(2.609)

Now Chapman has evaluated the coefficient of viscosity for a gas
with an inverse square law of force between the molecules. With
slight modifications arising from the circumstance that we are now
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dealing with gravitational instead of electrical forces, Chapman’s
formula® becomes
=5
= -~ U
p=7.6X107 g loga [ Doi2/2Gm] ’ (2.610)
which agrees very satisfactorily with equation (2.609).
Expressing 9, m, and D, in the units 20 km/sec, solar.mass, and
parsec, respectively, equation (2.609) becomes
7
m lOgm [ 4.66 X 104 Doi-),f,/m]
To avoid misunderstanding, we should again emphasize that the
applicability of the foregoing formula for u is extremely limited by
the circumstance that, in general, the mean free paths in a stellar
system are several thousand times the linear dimensions of the
system.

C.G.S.units. (2.611)

p=2.9% 101
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tion %o = jv; =~ 0.65. According to equation (2.361) and Table 6,
we have

_ 1.83 X 10
0.1X0.25X0.19 logy [9.31X 104X 2.7] } (3.12)
=7 X 10" years.

Te

From Table 7 we now obtain
Tp=1.7XT7X10%=1.2X 10" years. (3.13)

Under the conditions specified we therefore have (cf. egs. [2.359] and
[2.432)) :

EA_E_’=3><10—°; Zsin? 2¥=1.7X107¢ }(3.14)

E (At=2X 108 years) .

In other words, during an interval of 2 X 108 years a star may be
expected (on the average) to have its energy changed by a fraction
0.0017 and further suffer a deflection of 0.0013 radians (~0.07°)
from its orbit, both, as the cumulative result of stellar encounters.
Since the period of galactic rotation is about 2 X 108 years, it follows
that a star can describe at least a hundred revolutions before any
appreciable perturbations may be anticipated as the result of en-
counters with other stars. Again,

ZAB 4% 107%;  Zsin? 29 =2.5X 105 }(3,15)

£ (At= 3 X 10° years) ;

hence, in 3 X 10? years the energy may be expected to change by a
fraction 0.006; meanwhile a deflection of 0.005 radians (~0.29°)
from its “theoretical orbit” (cf. § 2.1) might occur. Remembering
that the general time scale is itself only of the order of 3 X 10° years,
it appears that a very good first approximation to galactic dynamics
will be provided by disregarding the effect of stellar encounters. In
stating this, we are assuming that the stellar density in other parts
of the Galaxy is not of an entirely different order of magnitude from
that in the general neighborhood of the sun. It should, however, be
noted that even a star density of 10 per cubic parsec will permit the
use of the energy integral (2.12) with an accuracy of 6 per cent for
an interval of time of 3 X 10° years, while the maximum deflection
suffered during this time will be of the order of 3° or 4°. But a more
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serious limitation would be set if the conditions in the Galaxy
3 X 10° years ago had been very different from the present condi-
tions. This is perhaps not altogether unlikely; indeed it appears
even probable that the #mitial conditions for the present state of
motions was provided during those ‘“‘early times” under totally
different conditions. Nevertheless, the Galaxy is at present in a state
in which each star can be idealized as an independent comservative
dynamical system to a very high degree of accuracy.

According to our remarks in the preceding paragraph, the motion
of any given star will be governed by the Hamiltonian

H=2—1m- (et i+ 22 +mB(x, 9, 2, ),
p=mU; py=mV; p.=mW .

(3.16)

The Hamiltonian (3.16) is different for stars of different masses.
However, we can treat all the stars on the same footing by consider-
ing the Hamilionian per unit mass :

O=4(U+ V2+W?2)+B(x, y, 2, 8) . (3.17
The canonical equations now take the forms
3%, _8®. ,_a9
T/ v=9v’ “sawe
2% 2% s (3.18)
U==%ai V=% W=7

Thus, in the variables x, y, 2, U, V, and W the equations of motion
are the same for all stars of different masses.

Now each star can be represented by a point in the six-dimensional
phase space (x, y, z, U, V, W). Consequently, the distribution func-
tion ¥ (x, v, 3; U, V, W; t) defines a continuous density of points in
the phase space, the motion of each point in this space being
governed by the same set of canonical equations (3.18). This is pre-
cisely the situation encountered in the classical treatments of
Liouville’s theorem. In view of the fundamental importance of this
theorem for stellar dynamics, we shall consider it separately in the
next section.
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3.2. Liouville'’s theorem.-—Let us consider a conservative dy-
namical system with # degrees of freedom. A state of the system is
fully defined by specifying the » Hamiltonian co-ordinates (gi, gs,

., g») and their conjugate momenta (g1, ps, . . . ., pn). It can
be conveniently represented geometrically in a space of 2% dimen-
sions whose rectangular Cartesian co-ordinates are the # p's and the
n¢’s. Thisspace s called the pkase space of the system and the point
(1« <y Quy Pry - - . ., Pu) its representative point. The equations
of motion are

. oH Y { 3
Ps_—"“) qs—éiﬁ" (3—1,-..-,7’1), (321)

where H is the Hamiltonian function. Through every point of the
phase space passes a definite rajectory of the system which satisfies
the equations of motion (3.21).

Let ¥ be the density of a “fine dust” of representative points in
any element of phase space. Consider a fixed-volume element in the
phase space bounded by ¢i, g1 +dqy, . . . ., G, gn + dgn, p1, P+
dp1, . . .., Pny P + dpy, of extension dQ(= dg; . . . . dp,). The rep-
resentative points crossing the face p, of area dS(= dg, ..
dps—y dputr . . . . dp,) have a component p, normal to that face
and the rate of increase in Wd? due to motion across this face is

(¥$,dS),, .
There is a similar loss,

(‘I’f,dS) pytdp,

due to motion across the opposite face. Hence the net increase for
this pair of faces is

a ; a ;
—5;; (‘I’pt)d?ads=_'a"z (\I’Pl)dﬂ' (3'22)

Summing over all the 2x pairs of faces, the net increase in ¥dQ due
to the entire motion is

R - (¥h)+50 (i)} do (3.23)
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which gives the rate of increase of ¥ in the fixed element of phase
extension df and is therefore the same as (9¥/d¢)dQ2. Hence,

+2{ (‘Pﬁ.)+——(\lfq.)} 0, (3.24)

=1

or, somewhat differently,

S (30D B () e

a=1

But, according to the equations of motion (3.21), the right-hand side
of the foregoing equation vanishes identically. Hence,

ov 0H 9¥Y A4H ov
EAPN G ELRCED
This is Liouville’s theorem. Equation (3.26) is sometimes written

in the form
=== (3.27)

where D/ Dt stands for the “Stokes operator”

—-D—t— a;+z (1». 3 +q. : (3.28)

Equation (3.27) has a simple physical interpretation. The meaning
becomes apparent when we write it in the form

d+2’( pdit o q.dt) 0. (3.29)

8=]1
.

In this equation the first term on the left-hand side represents the
increment in ¥ due to an increment of d¢ in ¢ (with fixed values of
the co-ordinates and the momenta), while the rest of the expression
represents the increments in ¥ due to increments in the p’s and the
¢’s of amounts $,d¢ and ¢,d¢ (s = 1,....,n). These latter incre-
ments in the p’s and ¢’s are precisely the increments which they
respectively receive during the movement of the system in time d?.
Hence the whole expression on the left-hand side of equation (3.29)
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represents the total increment in ¥ for varying phase of the moving
system, and Liouville’s theorem asserts that this vanishes. We have
thus shown that Liouville’s theorem is equivalent to the statement
that the density of any element of phase space remains constant
during its motion according to the canonical equations (3.21).

3.3. The consequences of Liouville’s theorem for stellar dynamics.—
The importance of Liouville’s theorem for stellar dynamics is now
apparent. For, under the circumstances in which stellar encounters
can be ignored, each star can be idealized as an independent con-
servative dynamical system, the motion of which is governed by
the Hamiltonian (3.17):

S=3(U+ V2 4+W)+B(x,9,2;8) .. (3.301)
Further, as we have already remarked in § 3.1, the distribution
function ¥ (x, ¥, z; U, V, W; t) defines a ‘““fine dust” of representa-
tive points of the dynamical system (3.301) in the six-dimensional
phase space (x, ¥, 2, U, V, W). Liouville’s theorem is therefore di-
rectly applicable to this case. We have (cf. eq. [3.26])

© o 39 ov_39 aby_
6t+z(aU dx dx oU 0, (3.302)

or, more explicitly,
o 9 B v
9z dx AU

_9%B ¥ 9B ov _
dy aV a9z oW

T tui+ v +W
(3.303)
0,

which is our fundamental differential equation for the distribution
function ¥. Equation (3.303) is often referred to as the equation of
continuity, though this must be carefully distinguished from the
ordinary macroscopic equation of continuity of hydrodynamics.

Now Liouville’s equation (3.303) can be regarded either as a
linear homogeneous partial differential equation for ¥ or as a linear
nonhomogeneous partial differential equation for 8. The former is
the more obvious way of looking at it; but the latter appears more
fundamental for stellar dynamics. This will become apparent when
we consider Liouville’s equation (3.303) more closely from the first
of the two points of view stated.
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Equation (3.303) considered as an equation for ¥ is a partial differ-
ential equation of the standard Lagrangian type in the seven vari-
ables z, y, 3, U, V, W, and ¢. The general solution can therefore be
directly written down in terms of six independent integrals of the
Lagrangian subsidiary equations

_dx_dy__dz___z_lg(]ﬁ__il{__dzf/_
d= == ="g " g~ g 30

9% ay 9z

But these are precisely the equations of motion. Hence, if

I, = constant ;....; I = constant , (3.305)

represent six integrals corresponding to the most general solution
of the equations of motion (3.304), the general solution of the equa-
tion of continuity (see Goursat, Mathematical Analysis, 11, Part 1I,
214-225, New York: Ginn & Co., 1917) can be written as

V(x, 9,2, U, V,W;t)=V(I, Is...., Is), (3.306)

where the quantity on the right-hand side denotes anarbitrary
function of the arguments specified. Stated in this manner, it
might appear that we have now solved our problem. But this is far
from being the case! Actually, equation (3.306) represents only a
formal solution, for the explicit form of the general solution can be
given only when all the six integrals Iy, . .. ., Is are known; but
the equations of motion determining these integrals involve the
potential function B(x, y, 3; £), and this is largely unspecified. In-
deed, one of the principal problems of stellar dynamics consists pre-
cisely in the characterization of B(x, y, ; t). However, with suitable
restrictions on B we may be able to write down the explicit form of
one or more integrals of the equations of motion, but it is clear that
it would be difficult to restrict 8 without losing at the same time
some degree of generality. And under no circumstances can we
specify all the six integrals without complete loss of generality. It
is, however, of some ‘nterest to examine the kind of integrals which
can be written down explicitly and the restrictions on 8 which they
correspondingly require.

i) Stationary potential B = B(x, y, z).—If B is explicitly inde-
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pendent of time, the equations of motion (3.304) always admit of
the energy integral

I=1(U+ V2+W?)+ R (=, y, z) = constant . (3.307)

i) Axially symmetrical potential B = B(w, z).—We shall now
consider the case when the potential has an axial symmetry about
some fixed direction in space. Choose a system of cylindrical co-
ordinates (@, 6, z) with the z-axis along the axis of symmetry (see
Fig. 6). Then

B(x,9,2)=V(w, 2). (3.308)
The equations of motion in this system of co-ordinates are readily
obtained in terms of the Lagrangian function

=1 (+ a2+ 22) — B(w, 2), (3.309)
or

=3 (+6°+2) - B(w, 3), (3.310)
where II, O, and Z denote the components of linear velocity along
the radial, transverse, and z-directions, respectively:

II=w; ©O=wf; Z=2%. (3.311)
The Lagrangian equations of motion are
do_ . 9B
71?—6!9 Fro) (3.312)
¢ p)=— 98 _
zz(wé)— 60—0’ (3.313)
and
d?z a3
SE=—S (3.314)

The energy integral (3.307) now takes the form
I=3}(2+062+22)+ B (&, z) =constant .  (3.315)
But, according to equation (3.313), we now have the additional
angular-momentum integral
I,= %0 = 0 = constant . (3.316)
iii) Potential separable in & and z, B(w, z) = Bi(w) + BVa(z).—

This restriction on the form of ¥ may appear artificial. But it may
be appropriate for considering motions which are closely confined to
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the plane of the Galaxy (or to the plane of symmetry in extragalactic
system). Under these circumstances equation (3.314) becomes

d?z _d%z

W= dz (3.317)
and yields the further integral
I;= 322+ B;(z) = constant . £3.318)

In terms of the three integrals I, I;, and I'; we have the special

solutions

Y(I); Y(I,I,); ¥(Iy I, Is) (3.319)
for the three cases enumerated. But since these are only special
solutions, the physical implications of our tacitly ignoring the other
integrals (which must exist in any physical problem) are left
obscure. Also, when we consider stellar systems in nonsteady states,
the potential B will in general be explicitly dependent on time, and
under these circumstances the present method becomes still further
limited in its applications. We are therefore led to consider a differ-
ent line of attack on the equation of continuity (3.303) by regarding
it as a differential equation for B instead of for ¥. As we shall see,
this approach appears less barren for investigation.

3.4. The dynamics of stellar systems with differential motions; the
general theory.—We have seen in § 3.3 that it will be more profitable
to consider the equation of continuity (3.303) as a nonhomogeneous
partial differential equation for B(x, y, 3; ¢) rather than as a homo-
geneous differential equation for ¥(x, y, z; U, V, W; ), though in
the latter case the formal solution can be readily written down.
However, from whichever of the two points of view we may choose
to regard the equation of continuity, there is always an essential
indeterminateness in the information which can in principle be ob-
tained from it; for the equation involves both ¥ and 8, and both
are to a larger or smaller extent “unknown.” On the other hand,
if we consider the equation of continuity as an equation for B(x, y, z;
t), we can make use of our knowledge of stellar kinematics (chap. i).
But in using this information we need not specify the details of any
particular situation; we need only state the broad aspects of the
kinematical descriptions. In this manner we can retain for the
theory a considerable amount of flexibility and generality.
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Now one of the most important characteristics of stellar kine-
matics consists in the introduction of a general field of differential
motions and the ellipsoidal distribution of the residual velocities.
The question at once suggests itself: What restrictions do the
existence of a general field of differential motions and the ellipsoidal
distribution of the residual velocities imply for the dynamical
aspects of the problem? Or, to put the same question somewhat
differently: In what way does the equation of continuity restrict 8
in order that ¥ may correspond to a stellar system with differential
motions and an ellipsoidal distribution of the residual velocities?
More precisely, the mathematical problem which thus presents it-
self can be formulated as follows.

We shall first state our fundamental assumptions in the form of
three postulates. Our first assumption is:

1. At any given point (x,y, z) we can define uniquely a local standard
of rest which is a continuous function of position and time.

Let U,, Vo, and W, denote the components of the motion of the
local centroid at (x, y, z) along the three fixed principal directions.
According to our assumption, U,, V,, and W, are continuous func-
tions of #, ¥, 3, and of the time 2.

The components of the residual motion at (x, y, z) along the three
principal directions are clearly

U-Uy; V—=Vo; W-=W,. (3.401)
Our second assumption is:
I1. The distribution function ¥(x,y, z; U, V, W; t) is of the gen-
eralized Schwarsschild type, i.e.,
Y(x, 9,2 U, V,W;)=¥(Q+0), (3.402)
where Q stands for
Q=e(U~-Ug)2+b(V—Vo)2+c(W—W,)?
+2f(V— Vo) (W—=Wo)+2g(W—Wo) (U~ U,) [ (3.403)
+ 28 (U—Uy) (V—Vo);
further, the coefficients of the velocity ellipsoid a, b, c, f, g, and h and
the function o are all continuous functions of position and time. These
are our only two kinematical postulates. Our third assumption is of
a dynamical nature.
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III. The motions of the individual stars are governed by a potential
function B(x, y, z; t) per unit mass.

This third postulate is, of course, equivalent to asserting the valid-
ity of Liouville’s theorem under the circumstances envisaged in
stellar dynamics and implies that the distribution function ¥ satis-
fies the equation of continuity,
ar 9B v
9z dx aU

0B v 9B oV _

3y oV ez w0

B v w
4 (3.404)

The dynamical problem is: Under what circumstances will the
equation of continuity (3.404), regarded as a partial differential equa-
tion for ¥, admit of a solution of the form (3.402)?

Before we proceed to the mathematical analysis of this problem,
we may draw an analogy between our present problem in stellar
dynamics and a well-known problem of classical dynamics, namely,
to determine the law of force which must act toward a given point
in order that a given curve (e.g., a conic section) may be described.
In stellar dynamics we do not specify the equation of the orbit
described; instead, what we do specify is essentially an integral of the
equations of motion (see below) and require the law of force acting
on the system. More particularly, we require the character of the
field of force in which the dynamical system may possess an integral
which is a general quadratic form in the velocities. In the general
form the problem is, indeed, not new to dynamical theory. It was,
in fact, first considered by Bertrand as early as 1852. However, the
special case of an integral which is quadratic in the velocities does not
appear to have been considered in any detail in the classical litera-
ture. Its importance for stellar dynamics has only recently been
recognized.

A. The fundamental differential equations.—We shall now obtain
the fundamental differential equations of our problem.

Substituting the assumed form for ¥, namely, ¥(Q + ¢), in the
equation of continuity, we have

8 D@+o)_,
a(Q+o0) Dt

(3.405)
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Hence,
D(Q+o0)
e = 1
Di 0, (3.406)
or, more explicitly,
Ié] ;] Ii] i) B 9
GtV stV oyt 55 30 (3.407)
98 5 9B Yoo
dy 0V a4z W :
Now, according to equation (3.403), we have
Q+to=al?+bV2+ W2+ 2fVW+2sWU+ 20UV }(3 408)
— 20U — 20,V —2AW —x,)
where
A1=0Uo+hVo+gWo,
Dy=hUs+ bVo+ fWo, (3.409)
As=gUo+fVo+CWo,
and
—x=Qo+o=alUs+ bVi+ cWo+2f VW,

+2gWoUs+ 2hUoVo+¢r.} (3.410)

1 This is the condition that Q + o is an integral of the equations of motion (see, e.g.,
E. T. Whittaker, Analytical Dynamics, p. 231, Cambridge, England, 1936).
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Substituting in equation (3.407) for Q + ¢ according to equation

(3.408), we obtain

e a1

+2WU"J-+2UV w"Al

GA, ax

_ aA,
2V - W -

+u v ——+V2 +W2 +2VW"f

+ WU ag+2UV~——-2U "A‘

+V[U’-—+ y2 90 +W2 +21’Waf

+2WUag+2UV——ZU§—Aj
—2V%%3—2W%Ay—’—%]
+w [0 24 v 8w 2 pvw U
+2WUag+ZUVah 20 %
—ZV%—2W az’ g’z"]

~ 288 v hv 4 g -a)
X
- 2%—?[hU+bV+fW—-Az]

~ 233 U+ sV W -n]=0

t(3.411)

Equation (3.408) is seen to be a polynomial of the third degree in
U, V, and W. Hence the coefficients of the different power com-
binations of U, V, and W must vanish separately. Thus, equating
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the coefficients of U3, V3, W3, UV, U'W, VU, V*W, WU, W*V,
Uuvw, U, Vs, W2, UV, VW, WU, U, V, W, and the constant terms,
we obtain, respectively,

da . ab oy, 9cC ey L
220 () a—y—O, (i); 5;=0, (ii);
ok |, da _ ey 9g , da _ )
2axtay =0 (V)5 25,450, (V)
ok , b _ . . 9f b _ .
25y taz=0 (V)i 250+52=0, (vii); ¢ @
dg  dc_ 8f dc_ sy
25‘2‘+ax"'0’("1u)s 232+ay 0, (IX),
af dg  dh _ .
5;4'5;4‘5—0: (x);
0A1 _13a 5y, 98 Aok .y,
e -2a Wi gptay =g (V)
94, 196 ..y, 9 94 _df .
3y 291" (ii) ; ay+6z_6t’ (v); 11
04y _19c (..y. 9A1, 9As_9g i) :
Bz 2 i o=, (Vi)
and
o8 , 08B 9B A _ _19x i) - )
sty et =25 (s
oA ..
},9&+b9_§+f9_%_+_._’=_1.6_x_, (ii) ;
ox a9y 9 2 9y | ()

B, B, B A 13x ...
8ot oyt et ="33 ()

a8, , 9B, , IB_ 1ax
Mg Thagrthagr= 3%

P (iv) .

We now see that the twenty partial differential equations which
result break up into three distinct sets of equations. The first group
of ten equations involves only the coefficients of the velocity
ellipsoid. Further, these equations do not involve any differentia-
tions with respect to time. As we shall presently see, these ten equa-
tions are sufficient to determine the dependence of the coefficients
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of the velocity ellipsoid on the space co-ordinates; their dependence
on time is, however, left unspecified.

The second group of six equations involves the A’s and the time
derivatives of the coefficients of the velocity ellipsoid. These equa-
tions, as we shall see, are sufficient to determine the dependence of
the A’s on the space co-ordinates. Further, the equations (II) are
found to introduce some restrictions on the dependence of the co-
efficients of the velocity ellipsoid on time. Thus, if in particular we
consider stellar systems withous differential motions (i.e., U, =
Vo = W, = 0), then the A’s all vanish identically, and the cqua-
tions (II) now imply that the coefficients of the veloaty ellipsoid do
not depend on the time.?

The last group of four equations (IIT) are of a nature different
from the rest and lead to six other integrability conditions (see egs.
[3.448] and [3.450] below).

B. The solution for the cocfficients of the velocity ellipsoid.—A simple
examination of the differential equations (I) reveals that

a is independent of x and quadratic in y and z,
b is independent of y and quadratic in z and z,
¢ is independent of z and quadratic in x and y,
- . . (3.412)
f is linear in y and z and quadratic in x,

g is linear in z and x and quadratic in y,

A is linear in x and y and quadratic in z.

The solutions for f, g, and % must therefore be of the following forms:
f=h+foy+ fiz+ fuyz,

g= g1+ g2zt gax + gazx, (3.413)
h=h1+hzx+h3y+h4xy ,
where (fi, . ..., fd), (g, .- .., gs),and (b, . ..., k) are general

polynomials of the second degree in #, y, and 3, respectively. We can
therefore write
fo=Juot fux+ frex?  (n=1,....,4),
8n=gno+g,uy+g,.zy2 (n=1,....,4), (3.414)
hn = hpo+ by 2+ Ry2 2? (n=1,....,4),

2 It is thus apparent that the consideration of nonsteady states is nontrivial only
for the case of stellar systems witk differential motions.
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where fno, . . . ., hnz are all functions of time, arbitrary in the first
instance. Differentiating equations (iv) and (v) partially with re-
spect to z and y, respectively, we find that
g _ 0%k
dxdy 9x9z’

(3.415)

Similarly from (vi) and (vii) and from (viii) and (ix) we obtain
a?h _ f a?f g
dydz dydx’  dzdx 9zdy’
Substituting for f, g, and % from (3.413) in equations (3.415) and
(3.416), we have

(3.416)

%(gs+ w)='_,,—az (hs+ hyy) ,
2 (hstha) = 2= (fot fu5), (3.417)

"‘% (fst+ fuy) = 5(?}; (g2t gax) .

From equations (3.414) and (3.417) we now find
ga1t+280y+2(ga+280y) = hut2hnz+y (hat2hy3) ,
hat2hs 2+ (hat2hepz) = fut2 frox+2 (f41+2f42x) ,} (3.418)
Sut2 fax+y (fot2fux)= gut+2gny+x( gut2gey) .

Equating the coefficients of x, ¥, z, etc., in the foregoing equations,

we find

ga1= ha ; gu= 2hs; 2832= ha ; 842=hys,
ha= fu; hia=2fn; 2h3= fu; ho= fu ,}(3~419)
fa=gu; fu=2gn; 2f32=ga; fe=gu.

On substituting equations (3.413) and (3.414) in equation (x) of (I)

we obtain

(fu+ 2fux)+(fat+ 2 0x)y+ (fa+ 2 fzx) 2 )
F(fut+2fpx)ys

+ (811+ 2812}’)+(£21+ Zgzzy) 2+ (831+ ngzy)x
+(gu+ 2gey) 22

+ (hu+ 2k122) + (hay+ 2hoez) x + (b + 2hs23) y
+(hu+ 2hnz)x'v =0.)

> (3.420)
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On equating the coefficients of x, y, etc., we find
fut+guthu=0; fa+ ga+he=0,
2futgnt+hn=0; 2fu+2g8at+hu=0,
28+t hut fu=0; 28+ 2hss+ fu=0,

2k + futgn=0; 2hn+2funt+gu=0.
From equations (3.419) and (3.421) we easily find that
Je=—hn=—gn; fo=gu=ha=hae=0,
gu=—fu=—hs; gzz=hsz=fu=fu=0,}(3-422)
hie=—gn=—fa; han= f=gu=gu=0.
Hence, our solutions for f, g, and % are
f=( o+ fur— hax?) +(fo+ fux)y
+(foot+ gux) 2+ fuys,

= (go+ guy — f21y2)+(820+ 8213’) Z
+ (gso+ hary) £+ guozz

h=(ho+hys— gnz?)+(ho+husz)x
+(hao+ fuz)y+ hoxy .
In the foregoing expressions for f, g, and 4 the coefficients fio, g1,
hao, f20, 820, Hoo, f1, 821, hiary [0, G30, Pae, fa0, £40, and ko are all, for the
present, arbitrary functions of time. Of the three remaining co-
efficients—fu, gn, and Ay,—two are again arbitrary, and the third
has to be found from the relation (cf. eq. [3.421])
Su+gu+hu=0. (3.424)
The solutions for ¢, b, and ¢ now readily follow. Thus, from equation
(iv) of (I) we have
98 g (ot hns)—2hey.  (3.425)
ay ox
On the other hand, according to equation (3.412), a is independent
of x and quadratic in 2. Hence, on integrating equation (3.425), we
have

a=—2(ho+hnz)y— koy?— (ao+ 613+ a23?) . (3.426)

where a,, @, and a, are functions of time. From equation (v) of (I)
and equations (3.423) and (3.426) we now have

(3.421)

( (3.423)
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Hence,
= 28%; a:=gu - (3.428)
Our solution for a is therefore given by
a=—2(hyo+h2z2)y—hoy*— (ao+ 2gs02+ guz?). (3.429)
Similarly,
b=—=2(fo+ fux) 2— fwz®— (bo+ 2hnr + hox?),
¢=—2(gn+ gny)x— gux*— (co+ 2 faoy + fuy?) .
Equations (3.423), (3.429), and (3.430) represent, then, the gen-
eral solution of the ten partial differential equations of (I).
C. The solution for the motions of the local centroids.—We shall
now consider the six equations (II). From these equations and the

nature of the dependence of the coefficients of the velocity ellipsoid
on x, y, and z (see eq. [3.412]) we readily conclude that

} (3.430)

4: is linear in y and quadratic in g and «,

4, is linear in x and quadratic in y and 3,
(3.431)
Aj;is linear in 2z and quadratic in x and y.

On the other hand, since g, b, and ¢ are independent of %, ¥, and z,
respectively, we readily infer from equations (i), (ii), and (iii) that

A= ; ?” %+ any?2?+ any? 2+ a2y 2%+ azy? + aoe 22
+oauyz+Bsy+ 23+ 01,
19b
Ay =55 ¥+ Baaz?x? + B 2%x + B1a 322 + P20 2? + Bogx? > (3.432)
+Buzx+ 12+ vsx + o2,
9
As = % —é% 2+ 722’y + 702’y + 7122Y% + v202? + Y02*

+ yuxy + B2+ 11y + 8,/
where as, . ..., 8; are all functions of time and arbitrary in the
first instance. Substituting for A, and A, according to equation
(3.432) in equation (iv), we obtain
% (hrothiz+heox+hsoy— gz +hn 22+ fuzy+hoxy)

= 232232+ 205y 32+ (Batase) 22+ 2B122x + 200y 2
+ (au +Bu) 34 2Box + 2ag9Yy +ﬁa+ s
(hao+h4ox+fnz) t(hzo+h4oy+hzlz)-

(3.433)

“'yat
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Equating the coefficients of the different combinations of the powers
of x, y, and 2 in the foregoing equation, we obtain

ah
—‘d—f‘-—“a22=322=0,
dh ah d
a2o='7:—o; ﬁo2=—d?; le+a12=—-—%; (3.434)
= Ghu _afx
Bu=—7y3 em=—g
and
dh dh
au+ﬁu="d‘tﬂ; Bst+vs= dtm' (3.435)

By cyclically permuting the quantities (a., 8.,v..) and (f,, 8., 4.)
in the foregoing equations, we shall obtain the similar relations

which would result from equations (v) and (vi) of (II). Combining
all these relations, we readily find that

ap=Pfun=v1n=an=Pu=r1n=an=Pr=72=0; (3.436)

f4o, 840, h40, le, 821, hzl are all constants ; (3.437)
dh d d
a2o=—d?; ﬁzo=-gf;9; 'Yao=%y
i ik p (3.438)
¢02=‘ng9; 1302=—d722$ 'Yoz=*df—:2§
d d ah
tm=21 gy, =28 gy =2 (5439)
and
d d dh
ﬁll+711="3f‘;li ‘Yu+a11=‘d£;“l; au+ﬂu=—d‘:‘!- (3.440)

Adding the three equations (3.440) and using equation (3.424), we
find

an+But+r1u=0. (3.441)
We can therefore re-write equations (3.440) in the forms
d d dh
au="—%; 511“—'—*‘%—1; 'Yu="‘d—tu- (3.442)
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Finally, substituting for aso, B20, Y20, @0z, Boz, Yoz, @11, Bu, and yu
according to equations (3.438) and (3.442) in our expressions
(3.432) for the A’s and after some minor rearranging of the terms,
we obtain

dhao dhzo dg:g_ d g _dfu
y(y IR T A A TR 7 di

1d
_§‘~9—°x+/33y+‘yzz+51,
aa=s (s gy ) == (0 G - = )8
L 4B (3.443)
—§~~9y+ﬁ12+73x+52,
_ d g3 d 320) fi_f-'“’ éfﬂ id_}fﬂ
R AN TR T A A TRV T AT
d
-; c°z+32x+71y+5a

We now see that the solution for the coefficients of the velocity
ellipsoid involves fourteen arbitrary functions of time and six con-
stants of integration. The arbitrary functions are a, b, co, f10, g0,
hio, f20, 820, hoo, fao, €30, B30, and any two of the three quantities fy,
gu, and A;. Again, the solution for the A’s introduces six further
arbitrary functions of time. These can be taken to be S, B, Bs,
81, 82, and 8s. (The functions 1, 72, and v are related to By, Bs, Bs,
f10, g10, and Ay according to the relations [3.439]).

D. The integrability conditions.—We have now solved the sixteen
differential equations (I) and (II) for the coefficients of the velocity
ellipsoid and the motions of the local centroids. These solutions are
seen to involve twenty arbitrary functions of time and six constants
of integration. But it should not be concluded that the solution for
the physical problem involves this degree of arbitrariness. Indeed,
the further discussion of the relations (III) will impose restrictions
of a very far-reaching character on the possible solutions. The math-
ematical problem which is presented can be formulated as follows:



100 PRINCIPLES OF STELLAR DYNAMICS

It is convenient to introduce a symbol for the matrix associated
with our fundamental quadratic form. Let

a h g
A=k b f]). (3.444)
g f ¢
Further, let .
A=(Ay A, 4s) . (3.445)

Equations (III) can be written in the forms

A grad 23+—68A7=-—%gradx (3.446)

and
A.grad 8= +16x (3.447)

Taking the curl of both sides of equation (3.446), we obtain
curl (4 grad 23)+ 5; (curl A) = (3.448)

The vector equation (3.448) represents three simultaneous partial
differential equations of the second order for 8.

Again, taking the gradient of both the sides of equation (3.447) we
have

grad (A - grad B) = %grad X; (3.449)

N =

or, using equation (3.446), we obtain

grad (A - grad 58)+ ; (4 grad g)+ 24 aﬂ =0. (3.450)
The vector equation (3.450) again represents three simultaneous
partial differential equations of the second order for 8.

Now, we know the elements of the matrix 4 and the components
of the vector A, apart from some arbitrary functions of time and
some constants of integration. Consequently, in the six simultaneous
partial differential equations of the second order for 8 which the
vector equations (3.448) and (3.450) represent, the coefficients of the
various derivatives of B are of known forms. It is therefore clear
that there should be restrictions on these coefficients of the various
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derivatives of @ in the six equations, in order that all these partial
differential equations may admit of a common solution 8. If we
could enumerate all the different circumstances under which the six
differential equations (3.448) and (3.450) will admit of a common
solution, we would then have solved our dynamical problem com-
pletely. Actually, it has not so far been possible to solve this problem
in its most general form. However, several special solutions are
known, and we shall give an account of some of them in §§ 3.5, 3.6,
3.7, and 4.1.

E. The solutions for the coefficients of the velocity ellipse and the
motions of the local centroids for the two-dimensional problem.—It is
often possible to obtain an insight into the essential features of-a
situation by considering the two-dimensional problem. In this man-
ner we can, in the first instance, avoid the additional complexities
involved in dealing with the general three-dimensional problem. We
shall therefore conclude our discussion of the general theory by writ-
ing down the solution for a, b, %, A,, and A, appropriate for the dis-
cussion of the two-dimensional problem. These can be obtained
quite readily from equations (3.423), (3.429), (3.430), and (3.443)
by setting all the coefficients which occur in the expressions for
¢, f, g, and A; equal to zero. We find

= —ao— 2hyy — hyy?,
= —bo— 2h3x — hyx?, } (3.451)
h=hy+hyx+ hyy+ hyxy
where
k4= constant , (3.452)

and aq, bo, 1, ks, and k; are arbitrary functions of time. Further,

dhy__ dhn)_1d
b=y (y G2 g ) =5 g ety

dhs _dhy\ 1dbd (3:439)
2—"95()’ - # —’Z"T;y'l")‘ax-f-éz,
where 8, and &, are arbitrary frunctions of time and
dh
Batvai=-77; (3.454)
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thus, only one of the two quantities 8; and s can be an arbitrary
function of time.
Finally, we may note that the equations (III) reduce in our

present case to 0B a8 oA 19
1%
L PR T T R PR

DY PG 95, 1 0x .
Wt T ay (3.455)
9% % _ | 19x
Ar gy T4 dy 2 at°

3.5. The helical symmetry of stellar systems with differential mo-
tions and in steady states.—For stellar systems in steady states it is
possible to prove a very general theorem in the dynamics of dif-
ferential motions; for, under the circumstances of a steady state,
equation (3.447) reduces to a simple linear homogeneous partial
differential equation for B:

A-grad 8=0. (3.501)
%(x’ y, Z)E%(Il, 12), (3.502)

where I, and I, are any two integrals of the corresponding subsidiary
equations

Hence,

er_2y_2a:z (3.503)

On the other hand, under steady-state conditions our solution for
the A’s reduces to (eqs. [3.439]) and [3.443])
Ar= B3y — B2+ 01,
Ay = 12— B3x+ 0, , (3.504)
Ay = Box — Py + 03,
where By, Bz, Bs, 01, 02, and 83 are now all constants. The foregoing
solution for the A’s can be written as a single vector equation, as

A=rXp+5, (3.505)

where 7, B, and 8 represent the vectors (x, ¥, ), (81, B2, Bs), and (4,
d,, 83), respectively.

So far, the choice of the origin and the orientation of our co-
ordinate system has been left arbitrary. Since P is some constant
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vector, we can clearly choose the z-axis of our co-ordinate system to
coincide with the direction of B. We can then write

B=1(0,0,8), (3.506)

and the solution (3.505) for A becomes
A=By+ 6 ; Ap=—Bx+ bs; Az=8;. (3.507)
Again, (if |B| = 0), by a translation of the origin to (—&/8,

+ 6,/B, 0), we can further simplify the form of the solutions for the

A’s to
A =By ; Ay=—fx; Az = 03 . (3-508)

We shall assume that the co-ordinate system has been chosen in this

manner.
The equations (3.503) now take the simple forms

dx _ dy _dz

By —Bx &
Two independent integrals of the foregoing equations are readily ob-
tained. Thus, according to equation (3.509), we have

xdx+ydy=0 (1Bl =0) (3.510)

(3.509)

or
x2+ y% = k? = constant , (3.511)
which is one of our integrals. Using this integral in equation (3.509)

we obtain
dx dz

BV (3.512)

The foregoing equation admits of immediate integration. We have

z+%§cos“%=constant (3.513)
or, according to (3.511),
_6__3 -1 _x__: =
2+ 3 cos VT constant , (3.514)

which is our second independent integral of equations (3.509).
In cylindrical co-ordinates (m, 8, z) the two integrals (3.511) and
(3.514) take the simpler forms

@ = constant = [, (3.515)
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and
z+—'sﬁ—30=constant=lg. . (3.516)
The foregoing integrals have simple geometrical interpretations.
The first integral, I), represents right circular cylinders about the
z-axis, and the second integral, I, represents right circular kelicoids,
also about the z-axis. .
Finally, according to (3.502),

%szs(w,z+%!o), (3.517)

where the quantity on the right-hand side stands for an arbitrary
function of the arguments specified. The case of axial symmetry is
included in equation (3.517) as a special case, namely, when §; = 0:

B=B (v, 2) (8;=0). (3.518)

Remembering that, according to our present choice of the orienta-
tion of the co-ordinate system, the z-axis is in the direction of B, the
condition §; = 0 is clearly equivalent to the orthogonality of the
vectors B and 8 in a general co-ordinate system. We have thus
proved the following theorem:

For stellar systems in steady states and with differential motions the
potential B must necessarily be characterized by helical symmetry. The
case of axial symmetry is included as a special case when B and 8 are
orthogonal.

Some further consequences of this fundamental theorem may be
noted. Now we should, in general, require that the potential 8 be
a single-valued function of position. Hence,

B (w, 0, 2)=B(w, 0+ 20w, 2) (3.519)

for all integral values of n (positive or negative). According to
equation (3.517), the foregoing condition for single-valuedness re-
quires that

% (s, s+ 32 0)=3(s z+é[e+2mrl),

—53( 2“” 5‘0) (3.520)
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In other words, B is periodic with period 2wds/B in z. If we now
suppose that the stellar system is of finite extent, we should conclude
that 83 = 0. We have thus proved:

For stellar systems with differential motions, which are in steady
states and are of finite spatial extent, the potential B must necessarily be
characterized by axial symmetry.

The importance of the foregoing theorems for stellar dynamics
consists in the fact that we are thus able to regard the existence of
differential motions, on the one hand, and an axis of symmetry, on
the other, as entirely equivalent in their dynamical implications for
stellar systems in steady states. And it should be remembered in
this connnection that the existence of differential motions and an
axis of symmetry are the two most characteristic features of stellar
systems.

3.6. The two-dimensional problem: stellar systems with circular sym-
metry and in nonsteady states.—In this section our principal problem
will be the isolation of the most general form of a circularly sym-
metrical potential, B(w, £), which will be compatible with equations
(3.455). Apart from its obvious importance, the interest in this case
arises chiefly from the circumstance that under steady-state condi-
tions the circular symmetry can be proved (§ 3.5). It is therefore nat-
ural that we should begin our analysis of the general problem by in-
quiring into the freedom which is gained by making 8 a function of
time as well but retaining its circularly symmetrical character.

The mathematical problem hinges on the discussion of the integra-
bility conditions of the equations (3.455). For the case of circular
symmetry these equations take the forms

0% , 94 _ _19x
(ex+hy) G-+ =—55%"

g _ 18
=29y (3.601)
1ox
291"

B
(x+ar) SB=t

where we have introduced a new variable 7 defined by

r=3}(x2+y?) =}a?. (3.602)
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The conditions for the integrability of the equations (3.601) are

0%2A,
1(ax+h )~~—-}+5§5—t
_ aB 6242
‘“1<hx+b Vort tazar
2l ar+hy) 22+ 20+ L (am+aiy) 28} =0,

9%A,
as

2o +on S+ 22+ 2w +am §F) 0.

> (3.603)

Substituting for a, b, %, A, and A, according to (3.451) and (3.453)
in the foregoing equations and after some further reductions, we ob-

tain

2
{hl(y'z—x2)+(bo—ao)xy+2<hay—hzx)r} =

+ 3 (hsy — hgx) 6t13( dhs xdh2>
+63—73}=0,

2
ef-pr iy dloy, fl~"~‘+61x+6zy} >

+ {—aox+hxy+y(hsy hzx) } ata

I fi_h;!_ dh2 dao
SAtAC A Tk

_6_2_ I dhs dhz) dao
a2 \Y\? @t ¥

ah, 0%

242y +a}

+ 4By + b} =0

[_1,29% 1,95

ah
A S Tl F e TR

2
Tt 52)/} o
+ {—boy+hx — x (hsy — hzx)}
(o8l b b
R S A7t dt)
L3 dhs_ dh b
BT A C A T ) by

6t6

ah, B
2 ““}a—

SRy + 8= 0.

(3.604)

(3.605)

(3.606)
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A simple inspection of the foregoing equations shows that, unless
9?B/97* = 0, the circular symmetry of 8 necessarily requires that
=bo=—x(); hi=0
%0="bo=—x(l) L } (3.607)
B3 = —+v;= B = constant ; 6;=26=0,
and that, further, the ratio of 4, and %; is a constant. We can there-
fore write
hy= hyo ’ h3=}lan¢, (3-608)

where ¢ is a function of time and %y and k3, are two constants.? On
the other hand, if 3°®/d7® = 0, then
B =C(x2+9y2), (3.609)

where C is a function of time only. For this case it is possible to
satisfy all the integrability conditions with none of the coefficients
vanishing. We shall, however, exclude this case from our present
considerations.*

Introducing the conditions (3.607) and (3.608) in equations
(3.604)-(3.606), we obtain

¢(k30y"hzox)(2‘ra _+3 ¢> 0,
y (haoy — h%x)(¢_a_154+¢_ +¢)
dk 0°8 928 de 0B | 1 d%k
e (r G Gt it 2 g 5t )= 0o [ (3:610)
—x (hsoy — hgox)(¢ at_f+¢——+¢)
dk 9*8 2B dk 38 | 1d%
+y ng*a;g'f‘ atar+2dt aT 2dt3) 0.

i) Special case, ha and/or hso # 0.—In this case the integrability
conditions (3.610) reduce to the following three equations:

m%+33%+3%- (3.611)
9B %8
¢Ft5 +¢~_.. +¢ 0, (3.612)

3 These conditions appear fairly obvious, but an explicit proof is somewhat too
lengthy to give, and the interested reader might refer to the appropriate sections in
S. Chandrasekhar, 4. J., 90, 1-154, 1939, and 92, 441-642, 1940.

4 For a consideration of this special case see ¢bid.
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and
dx 3?°Q8 2y drx 8 | 1 d%«

"Gan T e, T a, Taas =0 (3.613)

Equations (3.611) and (3.612) are readily integrated. Consider,
first, equation (3.611). Since we can re-write this equation in the
form

1/2 61 32 ‘”B)__:; «(3.614)

we have )
9_2_3__¢ 24 F(2), (3.615)

or ¢

where F(t) is a function of time only. Again, since equation (3.612) is
clearly equivalent to

(¢ +¢) 0 (3.616)
we have
+38+4=6(n), (3.617)

where G(7) is a function of 7 only. Combining equations (3.615)
and (3.617), we conclude that the compatibility of equations (3.611)
and (3.612) necessarily require that 8B(r, #) be such that

B ¢, 9 1
S =gt s (3.618)
where ¢, is a constant. '
We have, finally, to consider equation (3.613). In our present
connection we are not interested in the most general solution of this
equation.® According to (3.618), we need consider only a solution of

(3.613) which is of the form
Socw+24, (3.619)

where, as we have indicated, C and D are functions of time only.
Substituting, then, equation (3.619) in equation (3.613), we have

3 D d« 1 dD
T3 dt+K T2 dt>+2 (C+ Y7
(3.620)
L1
2d8

5 This is, however, needed for the discussion of the general case and is obtained later
in the present section.
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Since «, C, and D are functions of time only, the foregoing equation
is equivalent to the two equations

aD

3 D + K~ =0 (3.621)
and L
K __
2C +x +2 A= (3.622)
Equation (3.621) admits of immediate integration. We have
« D? = constant = ¢} (say) . (3.623)

Consider, next, equation (3.622). Multiplying this equation
throughout by &, we have

2 —
(xC)-l- dl’ 0. (3.624)
It is, however, readily verified that
d’k d d*c 1 /d«
=l —2(a)} (3.625)
Hence, combining equations (3.624) and (3.625), we have
d k d*x dx
alecrs g -1(G))=o (3.626)
or
1y d*« 1 é_x>2 _
wc+3iegi—3(a) =0 (3.627)

where ¢ is a constant of integration. We can express our solution
(3.627) for C more conveniently as follows:
Itis easily seen that

dK 1 dxk
-3/
dﬁ Vie= 2dt(\/x dt) b “1“ ar " 2\dt } (3.628)

Equations (3.627) and (3. 628) can be combmed to give
1

Finally, substituting for C and D according to equations (3.623) and
(3.629) in equation (3.619), we obtain

B ¢
Br k2 \/_dt’

as a solution of equation (3.613), which is of the required form.

Vi +\/ ,,, (3.630)
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Comparing equations (3.618) and (3.630), we now conclude that in
the latter equation we should set

g=0 and «k=¢? (3.631)

for the compatibility of all the three equations (3.611)-(3.613).
We have thus proved that with the solutions for a, b, &, A,, and

A; of the forms
a=¢*— 2haydy — hey?,
b= ¢?— 2hypx — hyx?,
b= hyodx + hady + haxy (3.632)
Ay =+¢ (hyoy — hyx) y + 002+ By,
Ay =—¢ (hsoy — hox) 2+ ¢y — Bz,
the conditions of integrability of equations (3.601) are satisfied for a
potential function

szs=_§f- 2 Lt T, (3.633)

where qo is a constant and B, is an arbitrary function of time only.

Substituting our present solutions for @, b, &, A;, As, and B (egs.
[3.632] and [3.633)) in the original equations (3.601), we obtain, after
some minor reductions,

1 ax .. 2q0;¢
+—2‘ _6)7__2¢¢T+_172_ ’
10
X et B8 gy sy — hn) 3, (3.634)
14
-3 6§_¢2 -Tf/,g‘ gox (hsoy — hzox)

It is readily verified that the solution for x satisfying the foregoing
equations is given by

—-zx=¢2'r+f—lq,—g(h;,ox+h20y—¢)+constant. (3.635)
This completes our discussion of the special case. The interest in

this case (ks and/or ks > 0) arises chiefly from the circumstance
that the potential function (3.633) can be interpreted as due to a
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central mass and a “flat” uniform spheroidal distribution of mass
coextensive with the system.®

il) The general case.—The discussion of the equations (3.604)-
(3.606) has shown that in our solution for a, b, %, A, and A,

G=by=—x«; B3 = —+v3 = = constant ,

} (3.636)
h1= 51= 62= 0 .

Further, if 4; and %; are not both identically zero, then we are led to
a perfectly definite form for the force function (cf. preceding sub-
section). Consequently, more general forms of the force function be-
come possible only if 4, and #; are also zero. In that case our solu-
tions for a, b, &, A,, and A; reduce to

a=k— hyy?; b=k—hx?; h=haxy, (3.637)
and

d d
LatBy; M=y ry—Br,  (3.638)

A= 2 di

1
2
where %, and 8 are constants. The integrability conditions (3.604)-
(3.606) now reduce to the single equation (3.613). In view of the
great importance of this equation for our present discussion, it will
be of interest to derive it directly from the equations (3.601) with
a, b, h, A, and A, given according to equations (3.637) and (3.638).
Substituting, then, for a, b, &, A,, and A, from (3.637) and (3.638)
in equation (3.601), we obtain

B 18 tox
2 de 29z’
B 1wy _10x (3:639)
“or T2dr)T 29y’
and
LR L +1ax (3.640)

Tdt ar

8 It is of interest to recall in this connection that a model of the Galaxy based on a
potential function arising from precisely such a superposition was first introduced by
Oort from other empirical considerations. For a further discussion of this case see
Chandrasekhar, 4. J., 92, 476-480, 1940, and J. Titus, 4. J., 93, 57, 1941.

7 It should be remembered that in proving this we explicitly excluded the case of the
quasi-elastic field of force.
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From equations (3.639) we readily infer that x is also characterized
by circular symmetry:

x=x(r,1). (3.641)
The two equations (3.639) are therefore equivalent to the single

equation

OB 1d% 1 9x
3 T2 de = "29r

(3.642)
The condition for the integrability of the equations (3.640) and
(3.642) is therefore given by

9 L1 dkdB\_ .
T zd¢2)+ (dt‘é‘r‘)"o' (3.643)

or, after some reductions, we have

dk 9*8 928 dk 3B | 1d3%
T@ar T o T qar Taar -0 (3:644)
which is our fundamental differential equation for B(r, ¢).

To obtain the most general solution of equation (3.644) we pro-
ceed as follows:

First, we notice that we can re-writc equation (3.644) in the form

d dk 08 0B | d«k 1 d3k _
(TG Gt GG By gE ) =0 (3.645)
Hence,
dk 09 1 d3«
fd—t-é~+ (kB)+5 55 7=G(1), (3.646)

where G(#) is an arbitrary function of time. It is now seen that there
is no loss of generality involved in setting G(¢) = 0. For, if we write

B = By (7, ;)+%f‘c(z)dz, (3.647)

it readily follows from equation (3.646) that %, satisfies the differen-
tial equation

ldx

dx 6% _
( %)Jr2 T 0. (3.648)

Tdar

Since the addition of an arbitrary function of time to the gravita-
tional potential has no physical significance, we can simply ignore
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the additive term in equation (3.647). We have thus reduced our
problem to solving a simple linear nonhomogeneous partial differ-
ential equation for «%B:

dx OF oF |, d%
U TR TR TR

FT=0, (3.649)

where we have written
kB=F. (3.650)

Instead of seeking a solution of equation (3.649) directly, we shall
define it by means of an equation not solved for F:

Q(F, r,8)=0, (3.651)

where the function € of the three variables F, 7, and ¢ is now the un-
known function. Equation (3.649) now becomes

dx 32, 00, d asz
Td—tg';‘*‘K—é—t dt3 T 0 ) (3.652)

since, according to equation (3.651),

69 00 aF . 89 9Q aF ,
Equation (3.652) is seen to be a homogeneous linear partial differ-
ential equation for Q in the three variables F, 7, and ¢.
To solve equation (3.652), we first write down the appropriate

subsidiary equations, which are

dr _dt dF
;K == (3.653)
g begm T

These equations can be expressed alternatively in the forms
dr d«

(3.654)
T K
and
dF ds
717"'_% 'th' (3.655)

Equation (3.654) admits of immediate integration. We have

= A = constant . (3.656)

L]
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From equations (3.655) and (3.656) we now find that
dF A d% Ad( dx 1 dx)’} (3.657)

7 I T AR TR T R AN 7]
Hence, s P
! e\ o
F+= RLPTIEAT | = constant , (3.658)
or, using equation (3.656) to eliminate 4, we have
[ d%* dx) _
Pt {eSi—3(5) ] =comstant . (3.659)

The foregoing equation can be expressed more conveniently by using
the elementary relation (3. 628) We find

F+-r\/x \/x—constant (3.660)

Equations (3.656) and (3.660) represent two independent integrals
of the subsidiary equations (3.653). Hence,

QEQ(F+T¢$, é) (3.661)

where the quantity on the right-hand side stands for an arbitrary
function of the arguments specified; further, in equation (3.661) we

have written
k= ¢. (3.662)

It is now clear that, according to equation (3.651), we can express
the solution (3.661) alternatively in the form

F+r¢¢=asl(;g), (3.663)

where %, is an arbitrary function of the argument specified. Finally,
reverting to our original variable B, we have

53=%2_F_ ¢, 41 y;;,(¢2) (3.664)

We have thus proved that the most general form of the potential
function which is compatible with the relations (3.601) is given by
equation (3.664). Further, the solutions for a, b, &, A;, and A; ap-
propriate to this case are given (cf. egs. [3.637] and [3.638]) by

a=¢*+ Kkoy?; b= ¢+ kox?; h=—«kxy, (3.665)%

8 In this equation we have written «: instead of —% as in equation (3.637).
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and
Ar=aUy+hVi=o¢dpx+By, }
Ay=hUy+bV,y= ¢¢y Bz,

where k, and B are two constants. From equations (3.665) and
(3.666) we readily obtain®

(3.666)

¢ By
U°= x+—5 2 2
Vo=£y— Bx .

R A CERD)

Substituting our present solution for B (eq. [3.664]) in equations
(3.640) and (3.642) and remembering that k = ¢?, we obtain

¢ ) 1 6x
2( —1 2 —__ 2
1 1 _a_&
2*“’( ¢+¢4%) t2%
where we have used B, to denote the derivative of B, with respect
to its argument 7/¢% After some further reductions, equations

(3.668) become

(3.668)

, lax
¢2+;ﬁ~2 Bi= 297’
27 10x (3.669)
. T r— 19X
2réd = Bi= =35

It is readily verified that the solution for x which satisfies the fore-
going equations is given by

~ix=¢7+%, (£§)+constant. (3.670)

The corresponding solution for ¢ may also be noted. Since (eq.
[3.410])

—x=Qvt+o=alUs+bVi+2hUsVy+ o,
x= o 0 0 oVo } (3.671)
= U0A1+ V0A2+€' y
? For, according to equations (3.666),
_ bA — kA2 . _aldy — hAy ,
Uo—-‘&‘b—_T, Vl)—-——‘—‘—‘ab_hz . (3.667")

Further, ab — h? = ¢%(¢? + x:m?).
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we have, according to equations (3 666) and (3.667),

Combining equations (3.670) and (3. 672), we finally obtain
B?
a——E;_i_ng-f- 2231( )+constant (3..673)

This completes our discussion of the two-dimensional problem.

3.7. Examples of stellar systems having axial symmelries and in
nonsteady states—In this section we shall generalize the results of
§ 3.6 to three-dimensional stellar systems with axial symmetries.
For this purpose we shall assume for the coefficients of the velocity
ellipsoid and the A’s solutions which are simple generalizations of
the forms proved necessary in the rigorous analysis of the two-
dimensional problem with circular symmetry. Corresponding to the
solution (3.637), we shall assume that

= o2 ; b = x2 , Cc = ;
a= K1+ K2y K1t Ko K3 } (3.701)
=—kxy; [=g=0,

where k; and «; are functions of time and «, is a constant. Again, in
analogy with equation (3.638) we shall assume that

_ 1 dK]_ . 1 dK1 _ 1 il(_a
where 8 is a constant.

Substituting for the coefficients of the velocity ellipsoid and the
A’s according to the foregoing equations in (III) (§ 3.4), we obtain

9% 6% d?k, 1dx
' 2) 9% _ +_ ek _
(rit k2y?) ax ¥ g~ " 20x’

0B 1 d 10y
92 727 a8 = "2ay’

(k14 ko 2) "%" szy

63 d"xs_ 19x | (3.703)

PR L7 R ¥ PE
1da +<1_d_x, RYL
27dt " 2 dt dy
1dks 9% 1dx
T2 ar e 29t
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where according to our assumption,

V=B (w, 3,¢). (3.704)
Let '
=3(x2+93%); =3522. (3.705)

In terms of these variables, equations (3.703) take the simpler forms
B |, a 2Ky 19dx

K1% 3_1'+7 T 2 9x’ (3.706)

9_58 1y d? Kl___l dx
K1y a;+2 dtg - E'b";, (3-707)

8% 1 d%«; 1dx
ot Y38 = 298¢ (3.708)

and
dKl 6% dK3 a% 10x

T TT " 209t (3.709)

From equations (3.706) and (3.707) we readily conclude that
x=x(r,¢,0). (3.710)

Thus, the two equations (3.706) and (3.707) are equivalent to the
single equation
a8, 1d%, _ _19x
“grtaar =35 (3.711)
The integrability condition resulting from equations (3.708) and

(3.711) is

2%
(k3= k1) 5—5 T (3.712)
Hence, either
K3= K3 = K (3.713)
or
28
m?—o . (3.714)

We shall consider these two cases separately.
i) The general case, ks = x; = x.—From equations (3.709) and
(3.711) we now find

2
i ld >+dx6

4
EY NI TEY: “”““) 0, (3.715)
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or, after performing the differentiations, we have

92 dk 98 dk 9?8 de 38 | 1 d% _
“siar T @t arr T ¥ Giarer t2yi5, taas =0 (3.716)

dt d79¢ +

Similarly, from equations (3.708) and (3.709) we obtain

2B dx 928 dk 9B dxk 9B, 1d% _

“awarti G e YT diaser T2 diay T2 db

0. (3.717)
Equations (3.716) and (3.717) can be written alternatively in the
forms

9 [d«x 0B dk 99 de 08 | 1d% _
(@ Bt S T G s o )=
9 /dx B dk 3% de 0B |, 1d% _

a5 (ar B+ 5t g 5t G sp Ty £)=0

(3.718)

From the foregoing equations it readily follows that

a def 99 B\ , 1 & _

2+ (e I+ T 40 =60, (3.719)
where G(¢) is a function of time only. Again, since there is no loss of
generality involved in setting G(#) = O (see p. 112), equation (3.719)
reduces to a simple linear nonhomogeneous partial differential equa-
tion for «%B,

aF dk OF dk OF a3«
K—E’-£+rma—;+§ —(27:9—§'+%(T+;‘)K71t—3=0 , (3.720)

where we have written
kB=F. (3.721)

Equation (3.720) is seen to be the natural three-dimensional gen-
eralization of the equation encountered in our analysis of the two-
dimensional problem (eq. [3.649]). As in the discussion of the earlier
case (p. 113), we shall define the general solution of equation (3.720)
by means of a relation not solved for F:

Q=Q(F, 7, ¢,8)=0. (3.722)
Then,
a0  dQOF _ 92 9Q9F_ 3Q 90 dF _ ,
37 ToFars 0 ar aFa;_O’ st tarar =0 (3.722')
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Hence  satisfies the linear homogeneous equation

a9 dk 9Q dk 0 a3k 00 _ (3.723)

c ittt mart grar YOO GEgET

which can be solved by writing down the appropriate subsidiary
equations

ﬁ?: d;K= @ ___ aF dx (3.724)
TG S %(T+§')x

The foregoing equations can be written alternatively in the forms

dr_de, iing_:, (3.725)
and

dF &

s, (3.726)

According to equations (3.725), we clearly have

%=A=consta.nt; %=B=constant. (3.727)

Using these integrals, equation (3.726) becomes

9FE_ s a+B) %

T (3.728)

dt3 ’
in which form it admits of integration. We have (cf. egs. [3.657]-

[3.660]).
F+ (74 ¢) ¢¢ = constant , (3.729)

where we have written
K= ¢?. (3.730)

Equations (3.727) and (3.729) provide three independent integrals
of the subsidiary equations. Hence

a=0(F+(r+5)0b 35 53), (3.731)

where the quantity on the right-hand side stands for an arbitrary
function of the arguments specified.
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Solving for F, we can express the solution (3.731) as
P-4+ (5 %), (3.732)

where B, is an arbitrary function of the arguments specified. Ac-
cording to equations (3.721) and (3.732) we finally have

%——é(r+r)+—— ‘&(;2,74% . (3.733)

The solutions for the coefficients of the velocity ellipsoid and the
A’s, appropriate to this case, are

a=¢+ kay?; b=+ kex?; c=¢?; h=—xxy (3.734)

and
Ay=aUy+ Vo= ooz + By,
Ay=hUo+ bVo= ¢y — Bx ;} (3.735)
= W, =¢pz .
From the foregoing equations we obtain
_¢ By
R A CETON
b, Bx
R ETACEIOR (3.736)
Wo=% Z.

Substituting for B according to equation (3.733) in equations
(3.708), (3.709), and (3.711) and remembering that for the case
under consideration x; = k3 = x = ¢?, we find (cf. egs. [3.668] and
[3.669])

0B __1 ax . . 0231___125
B oo bt N F Iy F1 S
4B, 9%, ) 19x

/<152 $3(s/69) 29t
It is readily verified that the solution for x which satisfies the equa-
tions (3.737) is given by

—ix=¢2(r+¢)+ Bi(v/¢?% ¢/¢?) +constant . (3.738)

(3.737)

—2(r+0)bb+ 22 ( e
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Finally, let us consider the solution for ¢. By definition (eq.
[3.410))
—x=Q+ =AU+ A Vo+A W+, (3.739)
or, according to equations (3.735) and (3.736), we have
=t (22 +y*)
'+ ko (22 + y?)
Combining equations (3.738) and (3.740) we find
32w2
e
ii) Special case, 0:8/drd¢ = 0.—In this case the integrability
conditions resulting from equations (3.708), (3.709), and (3.711) are
seen to take the forms (cf. egs. [3.715]-[3.717])
B, 4B ,d 9B 1d
“Watar T dt art dt ar 2 dFf
62% dK3 6258 dK3 623 1 dall:;__

“grar T G apr T2 d; ay T2 ap O

+¢2(x2+92+22)+ 0. (3.740)

+ 2%, (%,§)+constant. (3.741)

g =

0,
(3.742)

Equations (3.742) are identical in form with equation (3.644), the
general solution of which has already been found (eq. [3.664]). We
can therefore write
= 8 b L (TN g (£
B2 -l (¢f)+¢§ %2(¢§), (3.743)

where
Ky =@}, k3= ¢2 , (3.744)

and B, and B, are arbitrary functions of the arguments specified.
Further, the solutions for x and ¢ appropriate to this case are clearly

—tx=dtr 55+ (5;) + B (£) + constant,
g 2 (3.745)

B‘Zw2
_¢f+ Kot?

3.8. The physical characteristics of stellar systems with axial sym-
metries.—We shall now examine somewhat more closely the physical
characteristics of the systems considered in the two preceding sec-
tions.

@ 2
+ 2%, ;l>—1)+ 2%, ;p—z)+constant .

g =
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Consider first the two-dimensional case. The results of this
analysis may be expected to be valid for the consideration of stellar
motions confined to the galactic plane. According to our discussion
in § 3.6, the most general form for the gravitational potential (name-
ly, eq. [3.664]) is provided when the coefficients of the velocity ellipse
and the motions of the local centroids are expressible in the forms
(egs. [3.665] and [3.667]) .

a=¢>+ kyy?; b= ¢2+ k22 ; h=—xyxy, (3.801)

and o 8
=2 by .
Vo=t e aa D
b B (3.802)
N= ) T F TGt

Corresponding to the solution (3.801) for g, b, and %, we have the
fundamental quadratic form
Q= (¢*+ x2y?) (U — Uo)?+(¢*+ k23?) (V — V0)?
— 2k2y (U = Uy) (V— Vo).
We shall now refer the velocity ellipse represented by (3.803) to

the radial (II) and the transverse (0) directions at (x, y). The
formulae appropriate to this transformation of the axes are

} (3.803)

x=wcos b ; y=wsin 0§,

. ) } (3.804)
U=Ilcos § —Osin 6 ; V=IIsin §4+0O cos 0.

Direct substitutions in the quadratic form (3.803) now reduce it to
Q=a(I—1I)2+ b (6—6,)2, (3.805)

where we have written
aa=¢*; bo= ¢*+ k.m0 . (3.806)
Further, in equation (3.805) I, and 6, denote the components of the
motion of the local centroid along the radial and the transverse

directions, respectively. From equations (3.802) we obtain the fol-
lowing expressions for II, and 6,:

Ho=%(yVo+on)=%w,
(3.807)

=1 _ P
Oo—a(xVo yUo)-— ¢2+K252'
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(See Fig. 15 where the variation of 0, with @ according to equation
[3.807] is illustrated.)

From equation (3.805) it clearly follows that the principal axes
of the velocity ellipse are along the radial and the transverse direc-
tions; further, the ratio of the axes is given by

1/2 4,
(&) =it (3.808)

1 1 1 1 1 1 1

0 1 2 3 4 5 6 7
F1c. 15.—Illustrating the dependence of 6, on @ predicted by galactic dynamics
for systems with axially (or circularly) symmetrical potentials. According to the theory,

o]
6o = constant i+—w’

if the distance @ from the axis of symmetry is measured in appropriate units.

the major axis being that in the radial direction. Again, according to
equation (3.807), we notice that in addition to differential rotations
represented by O, we also have motions in the radial directions
specified by II,. This field of radial motions corresponds to an ex-
pansion or contraction, depending on the sign of the rate of change
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of ¢. If $ > 0, I, corresponds to a general expansion proportional
to the distance from the center; on the other hand, we have a similar
field of contraction if ¢ < 0. Finally, I, # 0 only when ¢ # 0; in
other words, the field of radial motions is directly connected with the
nonsteady character of the system. Physical considerations seem to
suggest a general expansion rather than a contraction. This would
imply that ¢ > 0. .

It is of interest to evaluate explicitly the coefficients 4, B, and K
(§ 1.4) in the expressions for the radial velocities and proper motions
due to the field of differential motions defined by equation (3.807).
Since (cf. eq. [1.424])

I TEC ) P VY

2how @ oL, 1, 9@ (3.809)
0
K_—i e ta)
we find
K@? ¢? _&’
4= B(¢’+xw2)2’ ﬁ(¢2+xw2)2’ K—E' (3.810)

Thus, according to equation (1.416), we have a K-term proportional
to the distance in the differential-motion term in the expression for
the radial velocity.

From the explicit expression obtained for 4 and 6, we derive the

following relation:

+_A‘“— —1— szz _ ¢2
(80/@) ¢+ kw? P2+ kow? (3.811)
= f;—'f = (ratio of axes)?.
Since, however, B — A = 0,/wm, we also have
B : .
A= (ratio of axes)?. (3.812)

For the values of 4 and B quoted in chapter i (eq. [1.422]), the ratio
of the axes predicted by equation (3.812) is (13/31)2 = 0.65; this
predicted value is in general agreement with the analysis of the
residual motions in the neighborhood of the sun (see Table 1, p. 12).
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When we pass on to the consideration of the general three-
dimensional systems, we notice that, according to equations (3.702)
and (3.736), the characteristics of the motions in the galactic plane
are the same as in the two-dimensional problem. The only addi-
tional features are those which refer to the motions perpendicular to
the galactic plane. In the “general case’” considered in § 3.7

c=as=¢?; Wo=%z. (3.813)

Hence, on this model, the third axis of the velocity ellipsoid (which
is in the z-direction) is of the same length as that in the radial direc-
tion. But this is not in agreement with the results of observations
which indicate, far more, a prolate form for the velocity ellipsoid.
However, to a sufficient approximation, we may suppose that the
motions in the s-directions are largely independent of the motions in
the galactic plane. Under these circumstances, we may use the re-
sults for the ‘“special case” (9?®8/dwdz = 0) considered in § 3.7.
Then the third axis of the velocity ellipsoid (which is in the z-direc-
tion) will, in general, be different from that in the radial direction.
Further, for this special case, W, is given by (¢:/$2)2, where

¢y = c\? (=ad?=9).

Finally, we shall derive an important relation between the dis-
tributions of matter and motion predicted for the systems under con-
sideration. The analysis of §§ 3.6 and 3.7 has disclosed the existence
of a very general relation of the form (cf. eqs. [3.664], [3.673], and
[3.733] and [3.741])

B?w?

m_a_2+¢¢ (a?+ 32) + 2¢28 +constant .  (3.814)1°
2

g=—

Differentiating this equation partially with respect to @ we have

a g _ 2¢>2 ( B*w? 6 %) .
- 2090 . 3.8
(¢2+K2w2)2 aw + ¢¢ ( 15)
10 The formula quoted is valid for the “general case” of § 3.7. But equation (3.815)
and the succeeding equations, which are obtained after a partial differentiation with
respect to @ of equation (3.814), are, however, seen to be valid, quite generally.
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But, according to equation (3.312), the velocity, O, in a circular
orbit of radius @ is given by

2 9%
90—63&—. (3-816)
Hence, using equations (3.807) and (3.816), we can re-write equation

(3.815) in the form

%Jgf (62— %) + 204w . (3.817)

The physical meaning of the relation (3.817) becomes clearer when
we introduce some special form for the distribution function to relate
o explicitly with the number of stars per unit volume, N. Thus, if
we assume that

V(Q+o)=e 7, (3.818)
we have the relation (eq. [1.93])
= constant __
FVEF
From equation (3.819) we obtain
dlog N do K@

e, (3.819)1

(3.820)

Combining equations (3.817) and (3.820), we have
a lOg N K%wz

o} & + ko

= 2¢%(0;—07) — 2¢da?, (3.821)

or, using equations (3.806), we alternatively have

dlog N |, be—
® 3w + be
In the form (3.822) we recognize equation (3.817) as essentially a
relation between the density gradient at any point, the character-
istics of the motions, and the extent of the deviation of the system
from a steady state.
3.9. Stellar systems formed by superposition.—So far, we have
considered only stellar systems which are characterized by one set

— 2 —
% 200(0—0%) — 26 Vaa gﬁ Vas. (3.822)

11 This relation is valid for the “general case” of §3.7. For the “special case” we
have N = constant /|¢1¢2(¢} + x:@?)!/%7].
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of functions and parameters. But, as we have indicated in § 1.5, the
kinematics of stellar motions in our neighborhood requires us to
consider the stars as being the members of one of two subsystems—
the system of the ‘“normal’ stars or the system of the high-velocity
stars. The question now arises as to whether there is any general
principle of superposition for stellar systems. We shall consider this
problem from the point of view of Liouville’s theorem, i.e., from the
point of view of solving the equation of continuity (3.303) for the
distribution function ¥, and more particularly on the basis of an
appropriate generalization of our fundamental kinematical postu-
lates I, I, and III (pp. 89-90).

Now the equation of continuity is linear in ¥; and consequently,
if ¥, and W, are two distinct solutions of equation (3.303), then
WV, + ¥, is also a solution. To be more specific, let

\I’=\I’,;(Q,;+G'l) (i=1,....,n) (3901)

be » distinct solutions of the equation of continuity. In equation
(3.901) the Qs are general quadratic forms in the variables
(U = Uy), (V= V,),and (W — W,); further, the coefficients of the
various quadratic forms, the motions (U;, V;, W,) and the ¢.,’s are
all functions of «, v, 2, and ¢. Then

n
~

= Z‘I" (3.902)
1=1

is also a solution of the equation of continuity, provided certain
conditions of comsislency are satisfied. The reason for the existence
of such conditions is easily understood: According to equation
(3.902), the stellar system can be regarded as consisting of # sub-
systems, described, respectively, by ¥,, ¥,, . ..., ¥,. Since, how-
ever, the motions in each of the subsystems are governed by the
same gravitational potential B(x, y, 3, £), it is clear that there should
be certain restrictions in order that there be no inconsistency result-
ing from the superposition of the different subsystems. The problem

which thus presents itself can be formulated as follows:
What are the circumstances under which we can regard a stellar sys-
tem as consisting of two or more independent subsystems, each of which
satisfies our fundamental kinematical postulates? It is a relatively
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simple matter to give a formally complete answer to this question.
But the establishment of the necessary conditions is explicitly pos-
sible only after we have first solved the problem of the compatibility
of the relations III (p. 93) for a single system. Conversely, for any
particular solution of the integrability equations (3.448) and (3.450)
the necessary conditions for the consistent superposition of two or
more such systems can be easily written down. We shall iHustrate
the principles involved in carrying out such a superposition by con-
sidering some examples.

Let us first consider the superposition of two systems, each of
which provides for the most general form % in the two-dimensional
case (§ 3.6). We accordingly assume that

V=¥ Q1+ 1) + ¥ (Q:+ 02) , (3.903)
where (cf. egs. [3.805] and [3.807])

Q1+ 01=¢>(II—1I}) 2+ (¢? + x213?) (6 —6;)? +01,} (3.904)
Q2+ 0= 2 (I1 —1I3) 2+ ($2 + k20@%) (6 — 03)%+ 02, '
_ b ___ B .
Hl"‘;:wy 0, = ¢2+K21w2’
. (3.905)
L=%a;, o,=-_ 5
? ¢’ ? §+K22532’

where ¢; and ¢, are functions of time and «3, k22, 81, and B are con-
stants. Defined in this manner, ¥; and ¥, are both solutions of the
two-dimensional equation of continuity, provided (cf. egs. [3.664]
and [3.673], also [3.814])

- Be b, ata

2%_¢3(¢f+'<21w2) ¢xw = ¢2 ’
+, b (3.906)

298 = B:@ 2 2+f_2+ C2

E(?E‘:F K@) ¢2 ? ¢;
where ¢; and c; are constants. Again, the consideration of each of the
two subsystems provides for B expressions of the forms (eq. [3.664])

~herye())

1;:_ PN &(%) (3.907)
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From the foregoing equations it follows that, first,

b constant (3.908)
b2

and, second,

1 _ B2t \_1 B
¢f(al+cl+¢f+K215’2)_¢§(02+Cz+¢§+‘<225’2). (3.909)

Equations (3.908) and (3.909) are therefore the conditions which
should be satisfied in order that the motions in the two subsystems
may be governed by the same gravitational potential 8.

The physical meaning of the relation (3.909) becomes clearer if we
consider the special case

VU= e~ (Qita) ; Py= ¢~ (Qtar) | (3.910)
Under these circumstances

N, N, e,  (3.911)

™ . . N S
- ¢ \/$§+ P ¢ b2 \/¢§ + Koow?
where N, and N, are the number of stars per unit area in the two
subsystems. Eliminating ¢, and o, between the relations (3.909) and

(3.911), we readily obtain
N e e — 2 2 2 2 1/4’:
['1;1 b1 \/‘bi + k@? e~ B )/(@, tx,® )]
‘N —— 2 2 2 2 J1/8? (3912)
= [_1;? 2 \/¢§+ Koo@? € Ca— BB )/ gty )] :.

So far we have considered only the conditions resulting from the
superposition of two subsystems. The extension to more than two
systems is, of course, immediate. It is further evident that for a
stellar system formed by the superposition of # distinct subsystems
there will be (# — 1) conditions of the form (3.908) and further
(» — 1) conditions of the form (3.909).

The superposition of the axially symmetrical systems treated in
§ 3.7 can be considered on lines exactly similar to the preceding dis-
cussion of the two-dimensional case. Thus, for the ‘“general case”
of § 3.7, we conclude from equations (3.733), (3.741), and (3.814)
that we are led to relations identical in forms with equations (3.908)
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and (3.909). For the “special case” (§ 3.7) the situation is somewhat
different. According to equations (3.743) and (3.745), we can write

SB= %1(13, t)+ %2(z1 t) ) [ al(w; t)+“2(zy t) ’ (3-913)

where
N 2;‘(4’) 2=_§¢i_ 2+-_232(¢)(.3 914)
and
Ba? .
o= —m;+¢n¢xw2+ 26181+ a1 } (3.915)
o2 = $ob22%+ 26,82+ ¢35

where ¢, and c; are constants. For the superposition of two systems
the necessary conditions are (in an obvious notation)

Su = constant ; $u_ constant , (3.916)
1 (29
and
ot v o )
h mt ot e e ko’ fa ot oty +K2255 (3.917)

T (oa1+ cu) =‘T (o22+ c2) .
21 22

We shall not continue our discussion further to enunciate any
general principle of superposition for stellar systems. As we have
already indicated, such an enunciation will not serve any useful pur-
pose, since the necessary conditions can be explicitly given only after
the integrability conditions have been satisfied for a single system;
and the examples we have considered are sufficiently illustrative of
the general method which should be adopted in any particular case.

BIBLIOGRAPHICAL NOTES

§ 3.3.—The first general application of Liouville’s theorem to stellar
dynamics was made by Jeans:

1. J. H. JEaNs, M.N., 76, 70, 1915 (see particularly pp. 78-81). Also—

2. J. H. JEANs, Problems of Cosmogony and Stellar Dynamics, pp. 229-
236, Cambridge, England, 1919. In particular, Jeans explicitly drew at-
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tention to the fact that an immediate consequence of Liouville’s theorem
to stellar dynamics is that the distribution function must be of the form

‘I’E\II(Il, Ig, ceeey Iﬁ) ’

where I, . . . ., Isare any six independent integrals of the equations of
motion and where the quantity on the right-hand side stands for an arbi-
trary function of the arguments specified. This result has sometimes been
quoted as ‘‘Jeans’s theorem.”” However, in a somewhat different connec-
tion the theorem was also proved by Poincaré:

3. H. PoINCARE, Legons sur les hypothéses cosmogoniques, p. 100,
Paris, 1911.

The importance of the case of axial symmetry for galactic dynamics
has been particularly emphasized by Lindblad. His investigations have
largely centered on the problem of the spiral structure in stellar systems,
and complete references to his work will be found in the next chapter.
But meantime we may note the following references, which are of more
immediate interest in our present connection:

4. B. LINDBLAD, Ark. f. mat., astr., ock fysik 19A, No. 21, 1925; 19B,
No. 7, 1926; and 21A, No. 3, 1928, and—

S. B. LINDBLAD, Stockholms obs. ann., 12, No. 4, 1936.

§ 3.4—We may briefly record here the history of the problem formu-
lated in § 3.4. The problem is essentially one of determining the forces
acting on a system which admits an integral of a certain special form. In
our case the integral is required to be a general nonhomogeneous quad-
ratic form in the velocities (other than the energy integral). In two dimen-
sions under steady-state circumstances the problem has been known for a
long time:

6. J. BERTRAND, J. de math., Ser. 1, 17, 121, 1852, Also—

7. G. DARBOUX, Arch. Néerland., Ser. 11, 6, 371, 1901, and—

8. E. T. WHITTAKER, Analytical Dynamics, p. 331, Cambridge, Eng-
land, 1937. Butit appears that the problem in three dimensions and under
the circumstances of a nonsteady state has not been considered except in
its astronomical context.

Before the existence of differential motions in the Galaxy was recog-
nized, it was natural to suppose that the integral required is a komo-
geneous quadratic form in the velocities (except for a possible additive
function of position). The problem then reduces to finding the circum-
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stances under which a dynamical system will admit an integral of the
form

aw? + bv* 4+ cw? + 2fvw + 2gwu + 2huv + o,

where g, b, ¢, f, g, b, and o are functions of position only. This simplified
problem was first considered by Eddington:

9. A. S. EppINGTON, M.N., 76, 37, 1915. But, unfortunately, Edding-
ton’s treatment was based on a fundamental fallacy. He argues in the
following manner: .

““At any point of the system the directions of the axes of the velocity
ellipsoid determine three directions at right angles. The velocity ellipsoids
thus define three orthogonal families of curves, each curve being traced
by moving step by step always in the direction of an axis of the velocity
ellipsoid at the point reached. These curves may be regarded as the inter-
sections of a triply orthogonal family of surfaces, which we shall call the
principal velocity surfaces. The axes of the velocity ellipsoid at any point
are normals to the three principal velocity surfaces through that point.”

On these premises Eddington goes on to prove that the ‘“principal
velocity surfaces must be confocal quadrics.”

The fallacy in Eddington’s argumentation is clear. It is true that we
can regard the directions of the principal axes of the velocity ellipsoid at
any given point as being tangential to three curves which intersect orthog-
onally at the point considered. But it is no¢ generally true that we can
regard these curves as the intersections of a triply orthogonal system of
surfaces. Consequently, the notion of the principal velocity surfaces intro-
duces severe restrictions on the problem, which are wholly irrelevant and
certainly unnecessary.

The same problem was also considered by Jeans independently of
Eddington:

10. J. H. JEANS, M.N ., 76, 70, 1915 (see particularly pp. 70-78). But
again there are some unfortunate errors which vitiate Jeans’s treatment.
We may note in particular that the general solution for the coefficients of
the velocity ellipsoid contains twenty constants of integration and not
fifteen as Jeans finds.

With the discovery of galactic rotation, the consideration of the more
general case when the quadratic form is nonhomogeneous became
necessary. But the general problem was not immediately formulated.
A number of special problems were, however, considered. Thus, Oort dis-
cussed the case in which the gravitational potential was characterized by
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an axial symmetry and under circumstances of a steady state. He further
restricted himself to integrals of the form

oI + 5(© — 00)? + ¢Z? + 2f(0 — O0)Z + 2gZII + 2AII(6 — B,) + o .

11. J. H. Oorr, B.A.N., 4, 269, 1928 (particularly pp. 274-80).

More recently, the general two-dimensional problem under the circum-
stances of a steady state and circular symmetry of 8 has been considered
by several authors:

12. S. W. SHIVESHWARKAR, M.N ., 95, 655, 1935.

13. B. LinpBLAD, M.N., 96, 69, 1935.

14. O. HEckmaNN, M.N ., 96, 67, 1935.

15. G. L. Crark, M.N., 97, 182, 1937.

16. B. LinpBLAD, M.N., 97, 642, 1937.

In its completely general form and under circumstances of a nonsteady
state the problem was first formulated by Chandrasekhar, who also made
a systematic study of the methods for obtaining the complete solution.

17. S. CHANDRASEKHAR, Ap. J., 90, 1-155, 1939 and—

18. S. CHANDRASEKHAR, Ap. J., 92, 441-642, 1940.

The rest of chapter iv (§§ 3.4-3.9) deals almost exclusively with the
methods and results derived from the foregoing two papers. However, it
has been found possible to simplify the analysis and the argumentation
quite considerably. Also, a more direct approach to the central problems
has been made in the text than in the original investigations. However,
considerations of space have required a drastic restriction of the problems
considered in the text. But we may refer to one general problem which has
considerable practical importance.

It is clear that in any given small region of space in the neighborhood of
a point (xg, ¥o, 20) We may express the gravitational potential B in the
form of a Taylor expansion

B (2, 3, 3)= B30, 30, ) +(53) (x =) +(5;), 0= 30)
( )(z o)+”(32§)(x—xo)’+( )(y Y0)?
+(5R), (5= ) +(5a55), (5= ) (3= 30)
(6yaz)(y ¥0) (2 — 2)
+(Z3 ), (5= 20) (= 20) | +.
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where all the partial derivatives of L (evaluated at xq, yo, 20) and
B(xo, ¥o, 20) may be expected to be functions of time. By a proper choice
of the origin and the orientation of our co-ordinate system we can simplify
the foregoing expression to the form

$=%O(I) +%{a1(t)x2+a3(t)y2+a3(t) 22} +....,

where By, a1, az, and a3 are functions of time. We can now proceed to
discuss the integrability conditions (3.448) and (3.450), when B has the
form just found. This discussion has been carried out by CHANDRASEKHAR
(ref. 18, see particularly pp. 523-573) and the results have some further
applications to problems concerning the evolution of ellipsoidal stellar
systems. In this connection we may also refer to the two following papers:

19. O. HEckMANN and H. StrASSL, Gittingen Verdff., No. 41, 1934,

and—
20. O. HEckMANN and H. StrassL, Gottingen Verdff., No. 43, 1935.



CHAPTER 1V

GENERAL DYNAMICS OF STELLAR SYSTEMS:
SPIRAL STRUCTURE

In this chapter we shall continue to discuss methods of stellar
dynamics based on the assumption that the motions of the individual
stars in a stellar system can be expressed in terms of a gravitational
potential B(x, v, 3, £). As we have already shown in chapter iii, under
these circumstances we can at once write down a partial differential
equation for the distribution function ¥(x, y, z; U, V, W; ¢). The
further discussion of this equation, particularly with a view to dis-
covering the most general forms for the potential and the density
distributions which are consistent with our fundamental kinematical
postulates, will provide one method of approach to the general
dynamics of stellar systems. While this method of approach will be
satisfactory for obtaining information concerning the implications
of the specified kinematical postulates, it yet eliminates any direct
appeal to the actual character of the orbits described by the indi-
vidual stars. On the other hand, it can well be argued that the state
of motions obtaining in a stellar system must, in the final analysis,
depend on the nature of the orbits described by the stars. This
would be particularly important for the consideration of systems
which are on the “verge’’ of stability. For this reason it would be
useful to establish some general theorems on the motions of stars in
given potential fields. While it would be difficult to specify B with-
out, at the same time, losing some degree of generality, it is clear
that the most important case for stellar dynamics is that in which
R is characterized by both an axis and a plane of symmetry.

In developing the general dynamics of stellar systems, we shall
therefore be primarily concerned with the following two problems:
First, an investigation into the most general type of stellar system
whigh is consistent with the notion of differential motions and,
second, the nature of the orbitsin a field 8 characterized by both an

135
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axis and a plane of symmetry. As we shall see, the consideration of
these two problems gives us some insight into the dynamics of
extragalactic systems.

4.1. Stellar systems described by a spherical distribution of the
residual velocities.—To determine the most general type of potential
fields consistent with our fundamental kinematical postulates, we
first notice that, according to the integrability conditions (3.448) and
(3.450), our freedom to specify B is restricted by our solution for the
coefficients of the velocity ellipsoid. More particularly, the greater
the degree of arbitrariness we wish to have in the specification of the
potential B, the less, in general, is the arbitrariness we are left with
in the specification of the velocity ellipsoid, and conversely. Conse-
quently, it would appear that we should impose the maximum re-
strictions on the coefficients of the velocity ellipsoid in order that we
may have the maximum generality for the form of B(x, v, 2, t). Since
we cannot restrict the form of the velocity ellipsoid to a greater
extent than to suppose that it is a sphere, the problem which suggests
itself is the following:

What are the characteristics of a stellar system which is described by
a spherical distribution of the residual velocities?

Now, a spherical distribution of the residual velocities implies
that the distribution function ¥ has the form

‘I’E‘I’{a[ (U'— Uo)2+( V- Vo)2+(W'-’Wo)2] +0’} , (4101)
where a, U, Vo, Wy, and o are, in the first instance, arbitrary func-
tions of #, ¥, 2, and ¢. On the other hand, according to our general
solution for the coefficients of the velocity ellipsoid (eqgs. [3.423],
[3.429], and [3.430]), it follows that

a=«(2), (4.102)
where, as the notation implies, « is a function of time only. Again,
according to equations (3.409), (3.439), and (3.443), we have

1d
A1=on=§7;x+B:«y—ﬁzz+61,

1dx
A2=KV0=-2-717}’+612—B3$+52, (4.103)

1d
Bo= kWo=7 == 2+ Bz — By + 85,

2 dt
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where B;, B, Bs, 81, d,, and §; are all functions of time only. We can
write (4.103) in the form of a single vector equation, as

1d«

A—E dtr+r><§+8 (4.104)
where A, B, and 8 denote the vectors (A, A,, As), (By, Bs, Bs), and
(81, 05, 8s), respectively. It may be further noted that A is pro-
portional to the vector (U,, Vo, W) defining the motion of the local
centroid. Finally, equations (3.448) and (3.450) now reduce to

xgrad%+%%~=—%gradx (4.105)
and
_1dx
A.grad 8 391" (4.106)

where x stands for (cf. eq. [3.410])
—-x=Q+o=«(Us+ Ve+W3)+o. (4.107)
Taking the curl of equation (4.105), we obtain

2 (curl )= 0. (4.108)
But, according to equation (4.104),
curl A= —28. (4.109)
Hence,
ap

in other words, B is a constant vector.
Consider next the integrability condition resulting from equa-
tions (4.105) and (4.106). We have

grad (A - grad%)+ (xgrad‘lS)+ 37 =0.-(4.111)

Substituting for A according to equation (4.104) in the foregoing
equation and remembering that B is a constant vector, we have

2
grad (a- grad%)+-—(xgrad%)+;‘fi; +%¢2§=0‘ (4.112)
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It is readily verified that equation (4.112) is equivalent to

1d%«
grad{A grad%+ (x58)+4- ¥ ’+d~t; r} . (4.113)
Hence,
9 1 d3« a
A-gra,diB-’r-a (KQS)+4 iF ’+7”2 r—-G(t),. (4.114)

where G(#) is an arbitrary function of time only.
In considering equation (4.114), there is no loss of generality if we
set G(t) = 0. For, if we write

B=B,(x, 9, 3, t)+%ft(}(t)dt, (4.115)

it readily follows that %, satisfies the differential equation

1 d3«

A'grad23+: (x%)-{-4 i

2"‘21:2 cr=0. (4.116)

Substituting for A according to equation (4.104), equation (4.116)
takes explicitly the form

L X p+8) - grad B+, (xB) 4 T8 7
¢
\ (4.117)
+d§ r=0.
ir

Equation (4.117) is a linear nonhomogeneous partial differential
equation for B, and it is on this equation that the solution to our
problem hinges.

i) Solution of the differential equation for B.—Since B is a constant
vector, we can choose the z-axis of our co-ordinate system to lie
along the B-direction. With this choice of the orientation of the co-
ordinate system, the vector B has the form (0, 0, 8), and equation
(4.117) reduces to

1d« dF  (1d« aF
5%”"”"1)_*(57“ —Brtd )5S
+(;‘ziilt‘ + 35 +x~—+ (x2+y2+z’)x-—— (4.118)

+ (%8, + yo: + 283) K=
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where we have written
kB=F. (4.119)

Equation (4.118) is seen to be a linear nonhomogeneous partial
differential equation for F, and, following the standard procedure for
solving such equations, we express the general solution of equation
(4.118) in terms of an equation not solved for F:

Q=Q(F,x,9,321)=0, (4.120)
where the function Q of the five variables F, x, y, 3, and ¢ is now the

unknown function. Equation (4.118) now becomes a homogeneous
equation for @ (cf. the similar transformation of eq. [3.720]):

1d« aQ 1d« 9Q
S By ) g +(2d—ty—ﬁx+82)-—~

+(;(fzf + 55 +x~——{4(x”+y2+z)'<“ (4.121)

+(x51+y52+ 28) K} —==0.

To solve equation (4.121), we first write down the appropriate
subsidiary equations, which are

dx dy dz _dt
d
11—'£ac+/3 + & lg—xy—ﬂx'*“sz Sl itd
2 dt 2 dt 2dt (4.122)
_ dF '
(2 4y + zz)x——~+x(x51+y32+ 283)
These equations can be expressed alternatively as
dx ldx
dy ldx
S e b TR LA (4.123)
dz 1d«
G =7 it

and

3 3
I ity ) TE (Bt b ) =0, (4.124)
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We shall first consider the equations (4.123). We notice that these
equations can be re-written more simply in the forms

a( ¥y \__
/23_‘< ;)_ Bx + 6z, (4.125)
d .
32 &
B\ Vi ) %
The following change of variables now suggests itself:
=x. =2. =2. =¢2. 4.126
£ s’ 154’ § FEEE .¢ (4.126)
In terms of these variables, equations (4.125) reduce to
E _ dn _ 8, ds _ 8
5 B + ¢.___ ﬁ§+ @2 P (4.127)

We shall now, introduce a new mdependent variable , defined ac-
cording to the relation
dt tdt
dv= o ; =1 pell
where #, corresponds to an appropriately chosen origin of time.
Equations (4.127) now take the simplified forms

dE d'q

(4.128)

=81 +-—' =—B£+~ (4.129)

and
d s _ 5

S (4.130)

Equations (4.129) can be solved by the method of the variation of
the parameters. The solution of the associated homogeneous system

éf__g fi._”__ —B¢, (4.131)

is
= A cosBi+Bsi ,
¢ 0s Bu+Bsin fu } (4.132)
n=—A sin Bt+ B cos B,
where A and B are constants. For solving the nonhomogeneous
system (4.129), we assume that the solution is of the form (4.132),
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where A and B are now no longer regarded as constants but as func-
tions of . Introducing equations (4.132) in equations (4.129), we

obtain dA
— Cos BL+ sm Bu= il ;

02

¢ )

(4.133)

—d—d{l— sin B¢ + cos B.=

or, solving for d4/d. and dB/dl., we have

%“1 = — (6, cos Bu— &z sin Bi) ,
[
dB

> (81 sin Bu+ 8, cos Be) .
L

Integrating the foregomg equations, we have
A=Ao+.’1; B=Bo+.’2, (4.135)

where 4, and B, are arbitrary constants and

J1=f%(61cosl3z— 8y sin Bu) du ,

(4.134)

i (4.136)
Jz=f 5 (31 sin But 8y cos o) du .

In equations (4.136), the integrals on the right-hand side are in-
definite integrals. Combining equations (4.132) and (4.135), we ob-
tain the required solutions for £ and n. We have

S—EO=A0COS.ﬁL+BoSinﬁL, } (4.137)
7 — no=— Ay sin Bu+ B, cos B¢,
where ; ButJysin B
=J;c sin B¢,
fo=Jy 008 B+ Ty 8in } (4.138)
no=—J;sin B+ JscosBe.

From equations (4.137) we derive two first integrals of the sub-
sidiary equations (4.122). According to equations (4.137), we clearly
have

(£— £0)2+(n—mo)t= Aj+Bj=constant, (4.139)

which is one first integral. Again, according to equations (4.137),

we have .
n— 1o _ — Ao sin B+ B, cos B

t—&  AocosBi+Bysin B’

(4.140)
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or, alternatively, as

n—1n_ tanZ—tanfe _ _
- TronSanp =0 (80, (4141
where B,
tan2—74—=constant (4.142)
0
From equation (4.141) it now follows that .
¢+ B = constant , (4.143)
where
§=tan—1 110 (4.144)
£—&

Equation (4.143) is another first integral of the subsidiary equations.
Consider, next, equation (4.130). This equation admits of im-
mediate integration, and we have

¢ — £o = constant , (4.145)

§0=f%3dc. (4.146)

where

Finally, to integrate equation (4.124), we proceed as follows:
Introducing the variables £, 9, and ¢ (cf. eq. [4.126]), this equation
becomes

dt+l(52+n2+§2)¢2——¢2+¢(£51+n5+§’3)— . (4.147)
Since 2 P .
pre=s(e e [50])=25@8 (4.148)

and remembering that d¢ = ¢?d. (eq. [4.128]), we can re-write equa-
tion (4.147) in the form

Oy (et L (P9 +# (Bt b+ 18 =0, (4.149)
We have

d 1d & 14 2,.d

G=Fa e wawta (4.150)

On the other hand, since we can write

b= dt’(d’ ) AT ( )+2¢d,(6‘)+¢ . (4.151)
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we have (according to egs. [4 150])
8
b= (2)+e (4.152)

We have similar relations for 8, and ;. Introducing these expres-
sions for 8,, §;, and §; into equation (4.149), we have

Tttt L @9 +ed(e 24y 20 h

+ega()+n zz(%>+r?l?(%)=o'

From the equations (4.129) and (4.130) we readily find that

(4.153)

eSpn R B S (e, (4150)
Combiriing equations (4.153) and (4.154), we have
Frisaetrrrion+e (%)

.155)
+ﬂd2(az)+r 2(%)=0. (4.155

Again, using equations (4.129), we find
taa()tr2:(3) W |
=i (F-mn) 0 5 d”+ﬁe)
_5‘25 d"_ ﬂ(£ de ndc

dll ( l.n ) BE

+,s,, df}  (4.156)

e (R O

dl,)}
ST ORHORCE

~5(-e+2)}.
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Similarly, we find that

dﬂr d (. d¢ 1 éi’
‘dﬂ( ) £ d;lf i . ( (4.157)
dng-dL ) 2( )

Combining equations (4.155), (4 156) and (4.157), we have
dF d '
sttt med +5{e (2 +1 2(2)
T f)—a(ﬂn-k—j (4.158)
1 S 176\

—5(-se+g) —3(3)=0

Equation (4.158) can be integrated as it stands, and we have
Frie e te g ()4 2 () +r 5(%)

_%(ﬂn +—$) -3 (—BE+-§) —, (%f) = constant .

Equation (4.159) can be expressed more conveniently in terms of the

vectors
P=(E: ny g-)v 8=(61y 62; 63); B=(())0)ﬂ)' (4160)1

We readily verify that equation (4.159) is equivalent to
F+7¢3¢‘p|2+9 ¢) ’ XB+

Equations (4.139), (4.143), (4.145), and (4.161) represent the gen-
eral solution of the subsidiary equations (4.122) and define the
necessary first integrals. Consequently, the general solution of the
partial differential equation (4.121) can be written as

(F, &, £,0) =0 IF+%<i>3rtilpl2+p 7 (:) xp+

(4.159)

—constant (4.161)

(4.16.

(6= £)7 (n =) tan~ =204 o ¢ ;o},

1 It will be recalled that, according to the choice of the orientation of our system of
co-ordinates, the axis of rotation defined by the vector B is along the z-direction (cf. p.

138).
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where the quantity on the right-hand side stands for an arbitrary
function of the arguments specified.

It is now clear that according to equations (4.120) and (4.162), we
can express our solution for F in the form

’ 3 2 d
F+36%3lpl2+p - (¢) !pXB+ }(4 163)
—581{(5_50)2'1‘(11“710)2 48 ; 3"‘3'0} ’

where %, stands for an arbitrary function of the arguments specified.
Hence,

23(57 7, g‘)'-) F(‘E’ n, ;;L)
d (/8
¢¢Ipl’ ----- 5 (3) g expty|  (a168)
+¢2 Bi{(&— Eo)2+(71'- m0)%; 9+Be; & — Gl
or, somewhat differently, as (cf. egs. [4.126] and [4.128])
1¢ 1d b
B=—Z—r—— — r+~——|r><p+8|’
2"” ¢ dils 2¢° (4.165)
+ %1{(5_ £0)2+(n—mo)?; 0+Be; & — ol -

i) The solution for the density function, ¢.—We shall now obtain
the appropriate solutions for x and ¢. Explicitly, equation (4.105)

takes the form
1 d%«k

7gra.dx--xgrad‘~8+2dt2 +dt’ (4.166)
or, solving directly for x, we have
1 d% dd
K%"}'Z'dtz r+— a1 “T— 5% (%) (4.167)

where x(f) is an arbitrary function of time only. We can suppose
without any loss of generality that in equation (4.167) B denotes
the general solution of equation (4.116). For, since the general solu-
tion of equation (4.116) differs from the general solution of equation
(4.114) only through an arbitrary function of time, we can allow for
this by redefining x,; or, in other words, we can absorb the additive
function of time in equation (4.115) in our definition of x,.
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From equation (4.167) it follows that

1 d3« az 1 dxo

_____ ( kB)+y G5 PHGE T g (4.168)

Combining equations (4.106) and (4.168), we have

1dxo . (7] 1 d3«
3 —A-gad B+ («B)+5om

Since B satisfies the differential equation (4.116), the right-hand
side of the foregoing equation vanishes identically, and we conclude
that x, is a constant. Hence, our solution for x is

1 d*«k
4 dp

r2+ .. (4.169)

—3ix=«B++ 24—%‘;-1'+constant, (4.170)

or, alternatively, in terms of ¢,
—3x=¢"B+3(¢+¢3) r*+8-r+constant . (4.171)

The solution for ¢ is now readily obtained, since
3 2 2 A2
Qu= x (U Vi+Wh = |2 (4.172)
we have (cf. eq. [4.104])
2
Qo= ¢r+%(rxp)+§l . (4.173)

Expanding the right-hand side of the foregoing equation, we find

that

¢

Qo= 4>“’r’+-|r><B+8|2+2 5-r. (4.174)

According to equations (4.107), (4.171), and (4.174), we now have

%a=¢“%+s}¢$r2———4 IrXpB+8|2+8-r
P (4.175)
% 8 - r+ constant .

Simplifying the last two terms in equation (4.175), we have

Yo=0'B+iobrr— 2¢2 !rXB+8|’
(4.176)

+ ¢ 8) -7+ constant .
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Finally, substituting for 9 is solution (eq. [4.165]), we find
$o=B:{ (§— &)+ (n—m0)?; 8+ Be; §— o} +constant . (4.177)
4.2. Physical characteristics of stellar systems described by a
spherical distribution of the residual velocities—In § 4.1 we obtained
the complete formal solution to the problem of stellar systems de-
scribed by a spherical distribution of the residual velocities. We
shall now consider in some detail the physical characteristics of the
solution obtained.
We shall begin this discussion by recalling that our only assump-
tion has been the restriction to a distribution function of the form
V=V{a[ (U= Up)2+(V—Vo)2+(W—=W,)?|+ o}, (4.201)
where a, Uy, Vo, Wy, and o are all functions of x, y, z, and ¢ and
arbitrary in the first instance; further, ¥ is itself an arbitrary func-
tion of the argument specified. Again, it may be pointed out that
this assumption concerning ¥ has been made primarily with a view
to discovering the most general types of potential and density dis-
tributions that are consistent with the notion of differential motions.
The equation of continuity now allows us to derive the following
rigorous consequences of the assumed spherical form for the distribu-
tion function:

i) We have
a=¢?, (4.202)

where ¢ is an arbitrary function of time.
ii) According to equations (4.103), (4.104), and (4.110), we have
¢ 1 5
(Uo, Vo, Wy) = $T+$§ (rx B) +a’¢ ’
where B is a constant vector and 9 an arbitrary function of time.
The three terms which occur in this expression for (U,, Vo, W) have
simple interpretations. The first term corresponds to a radial ex-

pansion (or contraction) of amount

P0=$ ys (4.204)

the second term corresponds to a rotation 6, about an axis through
the origin and parallel to the B-direction given by

(4.203)

0 = —13} @; (4.204")
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and, finally, the third term corresponds to a general translation
which is a function of time.

Since B is a constant vector, we can arrange that the z-axis of
our co-ordinate system is along the B-direction. With this choice of
the orientation of the co-ordinate system B has the form (0, 0, 8),
and equation (4.203) gives

Prt By Va=dyto(—patan;
. (4.205)
W, = J3
¢ +¢2
iii) The gravitational potential B must be expressible in the
form (eq. [4.165])

__1¢ , 1d/% R
B 2¢ M, )r+2¢,lr><p+s| o206
+$§ Bl (E— &)+ (n—m)?; 3+4B; & — G,
where
td
s=tes y=ns; s=te; =[G, (4207)

and %, is an arbitrary function of the arguments specified. Further,
according to equations (4.136), (4.138), (4.143)-(4.146), we have

o= If(_ cos Bu——= sm 64.) d(. cos
(4.208)
+Jf(— sin BL+~— cos Bc) dl. sin B¢,
No = —{/(% cos B — —6—2 sin ﬂl,) du Sin B
(4.209)
If(« sin B +~- cos Bc) dL cos B,
§o=_[%dl, : (4.210)
and
d=tan"! 11 (4.211)
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iv) Finally, the solution for ¢ is given by (eq. [4.177])
o=2B:{(§—£0)2+ (n—mo)?; 8+B:; {— o} + constant . (4.212)

If we now specialize the general spherical distribution (eq. [4.201])
to a Maxwellian distribution, then

V(Q+0) = e—(Qta) = ¢—#W-UYHV=V)I+W-Wt~=s  (4,213)

On integrating the foregoing equation, we obtain for the number of
stars, IV, per unit volume the expression
=y

N(x,y, z, t)=~$3— e (4.214)

According to equation (4.212), we can express N in the form
N = Nl (6= 8T (n=m)®; 9465 £ 5ol , (4.215)

where N, is a function of the arguments specified.

We may also note that the physical meaning of ¢ is that its recip-
rocal is a measure of the dispersion of the residual velocities. For a
Maxwellian distribution the mean residual speed in any given direc-
tion is given by 7= V2¢~'. Thus,

}1‘}55' (4.216)

We shall now consider an important characteristic of the func-
tion ¢.? According to equation (4.212), ¢ involves the time only
implicitly through the functions ¢, &o, 10, and ¢o. The nature of this
dependence of ¢ on ¢ (or ¢) is best understood by considering the
locus of points at which o takes some preassigned value as the time
varies, i.e., by considering the trajectories of points of constant o.
Assuming that ¢ is a single-valued function of its arguments, it fol-
lows that such trajectories will be described parametrically by rela-
tions of the form

(6= &)+ (n—mo)?=c?,
— 4.217
0=tan“%:—%%=cg—ﬂc,} ( )
and
f—f0=63, (4.218)

2 The remarks which follow apply equally well also to the function N, (eq. [4.215]).
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where ¢y, ¢3, and ¢; are constants. In the foregoing equations &, 7o,
and {, are themselves functions of ¢ (egs. [4.208]-[4.210]). From
equations (4.217) and (4.218) it appears that the motions per-
pendicular to, and respectively parallel to, the {-direction can be
considered separately.

Consider, first, the projection of the trajectory in the (£, ) plane.
This is a curve defined parametrically by the relations (4.217). This
locus (4.217) has a simple geometrical interpretation (see Fig. 16).

F16. 16.—The geometrical construction for deriving the trajectories of points of
constant ¢ in the (£, ) plane from a basic (o, 70) locus. While P, describes the (£o, 70)
locus (the full line curve) the “arm” P, P rotates about P, at a constant rate and
traces a possible trajectory (the dotted curve).

According to equations (4.208) and (4.209), the point (£, 7o) will
describe some locus (as ¢ varies) in the (£, 5) plane. The explicit
form which this locus will take will depend on §, and §,; but when &,
and §; are known as functions of ¢, the (£o, 7o) locus will be uniquely
determined. We can regard this (£, 7o) locus as being described by
a moving representative point, Po. The locus (4.217) can be derived
from the (£, 7o) locus by attaching to the representative point P,
an “arm” PP of length ¢, and allowing it to rotate about P, with
a constant angular velocity,® —8. The curve described by P in this
manner is the required locus.

3 This, in a measure of “time’’ according to ¢,
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From the geometrical construction given in the preceding para-
graph it follows that the locus defined by the equations (4.217) is a
transcendental curve of the same general nature as an epitrochoid or
a hypotrochoid.* To transform these loci in the (£, 5) plane into
trajectories in the (z, ) plane we should apply the transformation

. [4.20
(eq. 142070 t=t6; y=1n9, (4.219)
where ¢ is itself a function of . The result of this transformation
will be that the trajectories in the («, y) plane will belong to a gen-
eral class of spirals which may have kinks or may even interpene-
trate themselves.

Considering next the motion in the {-direction, it follows from
equation (4.210) that in the (£, #, {) space the points of constant ¢
always remain at a constant distance from {,. To obtain the cor-
responding motion in the (#, ¥, 2) space, we should apply the trans-
formation

Z=(d; ¢2=Z—f. (4.220)

On the other hand, from equations (4.205) it follows that for “flat”
systems the motions in the s-direction are quite small compared to
the much larger rotational motions present in the (x, y) plane.

To interpret physically the trajectories described by points of
constant ¢ we need a relation expressing ¢ in terms of other physical
parameters. Such a relation will, however, depend on the explicit
form of ¥(Q + ¢). While there is this arbitrariness, it is probable
that the most important case arises when we have a Maxwellian
distribution of the residual velocities. Then (eq. [4.214])

constant _

N=———¢—3—-~e 7, (4221)

where N denotes the number of stars per unit volume. According to

this equation, the dependence of N on the spatial co-ordinates is

governed solely by o. Thus the regions of maximum (or minimum)

density are determined by grad N = 0; but this condition is clearly

equivalent to grad ¢ = 0. Consequently, the orbits described by

4 A useful reference for information concerning these classical transcendental curves

is H. Lamb, Infinitesimal Calculus, chaps. ix and x, pp. 284-367, Cambridge, England,
1938.
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regions of maximum or minimum density will be the same as ap-
propriately selected trajectories of points of constant ¢. More gen-
erally, we may say that the trajectories of points of constant o are
essentially the trajectories of points of constant relative density. As we
have already indicated, these trajectories belong to a very wide
class of spirals derived from a general family of ep1cychcal or tro-
choidal curves.

It thus appears that the present theory can be used as a basis for
interpreting, in a general way, the spiral and other structural fea-
tures of extragalactic nebulae. In suggesting this, we are guided
by the following circumstances: (i) the occurrence of quite general
spiral orbits for points of constant relative density, (ii)+the degree
of permanence which is attributed to the spiral structure, and (iii)
the linearity of the rotational velocity (eq. [4.204']) with distance
which is in general agreement with the velocity-curve derived by
Babcock for the Andromeda nebula (see Fig. 11). In this connection
we should particularly emphasize the fact that the class of spiral
orbits predicted is so wide that it would not be difficult to interpret
almost every structural feature of nebulae on the basis of trajectories
derived from suitable (&, 7o) loci.® Indeed, in this very generality
lies the inherent weakness of the present interpretation as providing
an explicit theory of spiral structure in nebulae; thus the theory gives
no definite indications why certain forms of spiral orbits are pre-
ferred to the exclusion of others. But it should be remembered that
we were not looking for a theory of spiral structure when we began
the study of stellar systems described by a spherical distribution of
the residual velocities. We were interested, far more, in discovering
the most general type of stellar systems consistent with the notion
of differential motions. And the analysis has disclosed that the solu-
tion to the problem of spiral and other structural features of nebulae
is not beyond the range of our fundamental kinematical postulates.

4.3. Circular orbits and nearly circular orbits in an axially sym-
metrical potential field with a plane of symmetry, B(w, z) = B(w, — 2z).
—We shall now consider some general theorems on the orbits de-
scribed by stars in a potential field which is characterized by both

5 For further information on these and related matters see S. Chandrasekhar, 4. J.,
92, 441, 1940 (particularly pp. 611-628).
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an axis and a plane of symmetry. Our assumption concerning 8 can
be expressed analytically by the equations

B(x,y, 2)=B(w, z) (4.301)
B(z, +2)=B(s, —2), (4.302)

where the co-ordinate system has been so chosen that the (x, ¥)
plane and the z-axis are the plane and the axis of symmetry, re-
spectively. (We may remark in this connection that, according to
our current ideas, the galactic plane is supposed to be an approxi-
mate plane of symmetry for the Galaxy.) Equation (4.302) implies
that

and

a8 B _ _
o= 2 =0 (3=0). (4.303)

The equations of motion are (egs. [3.312]-[3.314])

d’w _ 4, 08
E—ﬁ—wé —55 N (4.304)
d o2d) =98 _
5 (@8 =—55=0, (4.305)
and a2 gy
2
SE= "5 (4.306)
These equations admit, of course, the energy inlegral
17, =1 (s + w262+ 22) 4+ B = constant , (4.307)
and the angular-momentum integral
I,=a%0 =06 = k = constant . (4.308)

In equation (4.308) % is the so-called constant of areas.

We may notice that, according to equations (4.303), orbits lying
entirely in the (x, y) plane are possible. For, if at any time, 3 = 0
and 2 = 0, then, according to equations (4.303) and (4.306), = 0
and hence all the higher derivatives also vanish. Thus z vanishes
identically, and the orbit always remains in the (x, y) plane.

i) Circular orbits.—According to equations (4.304) and (4.306),
circular orbits in the (x, y) plane represent possible solutions of the
equations of motion, i.e.,

® = @, = constant ; z=0 (4.309)
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provided
0 = (-~_ . wtl.= O, = k., (4.310)

where we have used O, to denote the circular rotational velocity and
the subscript “0” to signify that the quantity in parenthesis is to
be evaluated at @ = @, and 2z = 0. From equations (4. 310) we

obtain
?_ 593 2 _( Ry
0, = ( s he=\o 33 ), (4.311)
Also, if w. denotes the angular velocity in the circular orbit, then
i 2 (198 _k
0=t =(5 55, % (4.312)

ii) Nearly circular orbits and their stability.—Having shown the
existence of circular orbits in the (x, y) plane, we shall now consider
nearly circular orbits, i.e., orbits for which we can write

T=a+ o ; <L, (4.313)

where @, is a constant, and which do not also deviate very ap-
preciably from the (x, y) plane. Using equation (4.303), we find that
equations (4.304) and (4.306) become

(23

*‘a—? oz s (4.315)

where we have retained only quantities of the first order of small-
ness in @; and 3. Further, we have the angular-momentum integral

(@m+m)20="rh. (4.316)
Eliminating 4 between equations (4.314) and (4.316), we have
2o B (10 %) (32) - (22
1-32)-(5:),~ @ (5a), @311

So far, we have not restricted @, to have any particular value. We
shall now suppose that @, has been so chosen that the constant of
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areas for the circular orbit of radius @, is %, i.e., according to equa-
tions (4.311) and (4.312), we arrange to have

2_ g2 _ 9B\ _ o
W= hc—(ws Fw)o_ (@id,)? . (4.318)

Equation (4.317) now reduces to

4w GEDY 3623
(524220 a. (4.319)

Again, if we write
0=10.+6, (4.320)
where 0. denotes the position angle on the circular orbit, (@, 4.),
then from equations (4.316) and (4.318) we derive

(@o+@)2 (8.4 6,) = b, =m0, ; (4.321)

or, on expanding the expression on the left-hand side and retaining
only quantities of the first order of smallness, we obtain

9,=—2 a ——29—@ (4.322)

The equations of motion for nearly circular orbits are therefore
given by equations (4.319), (4.322), and (4.315). From the first of
these equations, we are at once able to draw an important con-
clusion:

Nearly circular orbils represent stable solutions of the equations of
motion only provided that

aB 3908
Sato5o>0. (4.323)

The condition (4.323) for the stability of the circular orbits can
be expressed alternatively in the form

:’5 (ws %gé)>o; (4.324)

or, in words: a circular orbit of radius w in the (x, y) plane is stable if
and only if the gravitational attraction at w decreases more slowly than
an inverse cube law of force. [This theorem is actually a very special
case of a much more general theorem proved in Appen. I1.]



156 PRINCIPLES OF STELLAR DYNAMICS

Let us assume that the condition for the stability of circular
orbits (eq. [4.323]) is satisfied. Then the solution of equation (4.319)
can be written in the form

m=apsinn, ¢t—t) (@eKm), (4.325)
where @0 and ¢, are constants of integration and

923 3 %

aw‘ = 9m (4.326)

An alternative expression for #} may be noted. From the relation
02 = y(3B/dw), we obtain

2__(69 0. (4.327)

Using equation (4.325), we can write equation (4.322) as

01=“22—:wm sin n (t—tl) ; (4328)
0

or, after integrating this equation,

0, .
01= 2 Eg—,;‘l‘wlo COSs 1 (t—ll)"}'am (4329)

where 6y, is a constant. On the other hand, since 8, must tend to zero
identically as @m0 — 0, it follows that 6,0 = 0. Hence,

O,
01= 2‘{5%";‘; Wy COS 7y (t—tl) . (4.330)

Finally, from equation (4.315) we obtain the solution

2= zpsinn, (t—1t) , (4.331)
where
2P
2 o —
n=(51), (4.332)

and 2,0 and ¢, are two constants.

iii) Nearly circular orbits referred to a rotating frame of reference.—
We shall now refer the orbit considered in (ii) above to a frame of
reference, (9, Y, Z), rotating with the angular velocity w. and
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with its origin at a distance @, from the center. Further, let the
9, Y, and Z axes be in the radial, transverse, and z-directions, re-
spectively (see Fig. 17). Then for a nearly circular orbit we have
(cf. eqs. [4.325], [4.330], and [4.331])

X
A
/k S
P R
T' .’¢ L
!
]
|
I~
l
|
|
|
|
|
|
|
|
Wo
|
|
|
|
|
|
|
|
|
}
|
|
v % Center
Fic. 17
N=w =0y sin ny (t - tl) , (4333)
O,
c.‘]=!3001= 250—"“1 Wy COS My (t—'h) , (4334)

and
Z=2z =zsinn(t—10). (4.335)

i
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Thus, in the rotating frame of reference the projection of the orbit
in the (¥, %) plane is an ellipse:

won;
9C2+2‘19~21 W =g, (4.336)
or, using equation (4.327),
.~2+ﬂ_ 680+9_c> 2 = o2 ‘
X 20.\3a Tw/y Y = P (4.337)

In the nonrotating frame of reference the motion in the galactic
plane (i.e., the [x, ] plane) is therefore an elliptical epicycle.

iv) Motions in the epicyclical orbits—Let © and Il denote the
transverse and the radial components of motion in an epicyclical
orbit. Then

0= (m+o) (6.+ 0, ~web.+ w0, +m6., (4.338)
or, using equations (4.322) and (4.333),

0=90—9~‘E ox. (4.339)
Wo

Again, from equations (4.325) and (4.334), we obtain

2
11 =&, = @on, cos n; (¢— ¢, =%‘—g—" Q (4.340)

or, using the expression (4.327) for #2, we have
a6, , 6,
= -8-5+;)0°);. (4.341)
Finally, the z-component of the motion is

7=2= Z10Mo COS Mo (l“' tz) . (4.342)

Let S be the point (¢, ¥, Z) and S, the point (£C, %, 0) on the
epicycle in the galactic plane. We shall now refer the motion at .S
to the circular orbit passing through So. The II-, ©-, and Z-com-
ponents of the motion in this circular orbit are

IL(S) =0; ©,(S) =0,+ fj%)oex; Z.(S0) =0. (4.343)
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The required relative motion has, therefore, the components

(66 0.

-1 (So) = + J,

60—, (So)——(i’f’_ 9) o, (4.344)

Z—Z(So) = na VZI,— 22,

From the foregoing expressions for II — I1.(S,) and © — 6.(S,) and
equation (4.337) we obtain

[9—9:(50)]2-*"2%0-— = 6) II—11.(S,)] 2= constant . (4.345)

To the order of accuracy in which we are working, we can clearly
evaluate O, and its derivatives (which occur in equations [4.344] and
[4.345]) at S, instead of at the origin of the system (), ¥, Z). We
can therefore re-write equation (4.345) as

| @ 69 O,

+320)) M-S0 ]2

[O_Oc(SO) ]2+126 p-

(4.346)
= constant .

The interpretation of equation (4.346) is the following: If we con-
sider the various epicyclical orbits passing through a given point, S,
and refer the motions in these orbits to the circular orbit passing
through S, then the components of the motions in the radial and
the transverse directions must satisfy a relation of the form (4.346).
The ratio of the axes of this velocity ellipse (4.346) is given by

00, 9
(ratio of axes)’-— \76. ( ) (4.347)
If we now let {cf. eqgs. [1.428])
1/00, 0.\ . 1(2. 0
a=1(%_0) - ( . (4.348)

the relation (4.347) can be expressed alternatively in the form

(ratio of axes) 2= B—g—z , (4.349)

an equation which is identical in form with equation (3.812), which
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we derived from the general theory of differential motions in an
axially symmetrical system.
Again, according to equations (4.327) and (4.348), we have

m=2vVBB-4) . (4.350)

If we use in equation (4.350) the values of 4 and B quoted in chapter
i (egs. [1.422]), we find for the period of description of the.ellipse
(4.337), the time
r__ T
v) On a minimal property of the circular orbits.—We have already
seen that in the field B(w, 2) the equations of motion, trivially, admit
the two integrals

I,=m4+02+7%2*+ 2B (w, z) = constant , (4.352)
I, = ®0 = constant . (4.353)

=1.5X 108 years. (4.351)

and

Lindblad has now proved the following theorem:

Among all the orbits with a given constant of areas in an axially
symmetrical field with a plane of symmetry, that which has the least
energy is the circular orbit in the plane of symmetry, provided this orbit
is stable.

In other words, this theorem states that among the orbits with a
given I,, the circular orbit, if stable, has the minimum /,. To prove
this, we write I, in the form

2
Il=H2+Z’+£—:+2%, (4.354)

and minimize it for fixed I,.
First, the conditions for being stationary are

oI, _dI,_alI,_al,

A =0z~ az w0 (4.355)
These conditions require, respectively,
—0: z=0: 98_
m=0; z=0; 5-=0, (4.356)
and
g 2
08 _I_y (4.357)

e
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Equation (4.357) can be written alternatively as

0B

2 = —_—
0l=w R (4.358)
The conditions (4.356) and (4.358) clearly imply a circular orbit in
the (x, y) plane. But for this circular orbit, I, will be a true minimum
only if all the second derivatives with respect to II, Z, 3, and @ are
positive. The only one of these second derivatives which requires

consideration is

32_11_ <__ L3
ot Aot ) (4.359)
or, using equation (4.357),

O _, (B 308,

9w~ 2\ ow T 9s )’ (4.360)

but the condition for this to be positive is precisely the condition for
the stability of the circular orbit (eq. [4.323]). This proves the
theorem.

We may note that the minimum value of I, for the given value of
I 2 iS

Idmm%-(~+2% (wu~+2% . (4.361)

B=0g; 2=0 B=g; z=0

Thus, in the (I, I.) plane, the locus defining these minima is the
curve defined parametrically by the relations

h—(w~—+23)

2 _ 39_.%
12 (w 0w )0

(4.362)

This locus is sometimes called the “characteristic envelope.”® The
usefulness of this locus in a general discussion of the orbits in the
given potential field B(w, z) will become apparent in the following
sections.

4.4. The characteristic envelope.—We shall now consider the orbits
described in an axially symmetrical field more generally than in § 4.3.

¢ For the significance of “envelope” in this expression see § 4.4.
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Consider an orbit which passes through a given point (=, 0, ).
The permissible values of I; and I, for such an orbit are clearly re-
stricted by the inequality (eq. [4.354])

I—2%B(w, z) =T+22+ Q/Iz, (4.401)

or, alternatively, by
I<o[I,—28(w, 2)]. (4.402)

In other words, the possible values of I; and I, are limited by the
parabola
Ii=a[I,—2%B(w, 2) ] (4.403)

in the (I, I,) plane.

For the purposes of our present discussion there is clearly no loss
of generality if we restrict ourselves to positive values of I» only.
Again, if we consider only those orbits which are permanently in the
finite part of the space, then I; must take only negative values.
Under these circumstances the possible values of I, and I, for an
orbit passing through (@, 6, 2) must be limited by the negative I;-
axis, the positive I,-axis, and the associated characteristic parabola
(leq. 4.403]). The vertex of this parabola is at [28B(s, 2), 0] and the
latus rectum is w*.

Consider, now, the class of orbits passing through points lying on
an equipotential surface. From equation (4.403) it is evident that
the associated characteristic parabolae all have the same vertex
but different latera recta. Suppose now that the stellar system under
consideration is a flattened one. We should then expect that the
maximum abscissa on any given equipotential surface will be at-
tained on the galactic plane. We shall assume that this is the case.
Then, among the characteristic parabolae associated with any par-
ticular equipotential surface, that which has the maximum latus
rectum is the one for which z = 0:

I:=w(2)|11_223(w05 0)], (4404)
where the subscript ‘“0” denotes that the equipotential surface,

B (w, z) = B(m%, 0) = constant , (4.405)
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is under consideration. It is further clear that all the other char-
acteristic parabolae associated with the surface (4.405) must lie in-
side the curve (4.404). Hence, the possible values of I, and 7, for an
orbit passing through a point on the equipotential surface (4.405)
must, a fortiori, be limited by the parabola (4.404), and the I.-axis.

Consider, finally, any orbit in the given potential field. The pos-
sible values of I, and I, for the orbit must evidently be limited by
the envelope to the parabolae,

I=a[I,—28(w,0)]. (4.406)

This envelope has been called by Lindblad the characteristic envelope
associated with the given field.

The equation of the characteristic envelope is found by eliminat-
ing @ between equation (4.406) and the equation derived from this
by differentiating it partially with respect to @, i.e., by the eliminant
of the relations

i— @ (I, —2%B))=0,
0 } (4.407)

=20 (1, — 2%B) + 2&? mw“
where we have used B, to denote the function LB(w, 0). After some

further reductions we find that the characteristic envelope is defined
parametrically by the relations

Il (2} Q’%O'{“ 2%0 ) ]
4.408
II= QEB_" , ( )
LR T

On comparing equations (4.362) and (4.408) we notice that the
characteristic envelope and the locus defining the minimum values
of I, for given I, are both the same. This identity is clearly neces-
sary.

We shall now consider some geometrical properties of the char-
acteristic envelope. According to equations (4.408) we have

ar, 3%, 0By 1 9 6%0)
dw ow? 0z o 9w s
al, 9 9 %o>

26 4 do 9w @’ EYe

(4.409)
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From these equations and equation (4.324) we conclude that
dl,/dw and dI,/dw are both positive for values of ® for which the
circular orbits are stable. Similarly, both these derivatives are
negative when the corresponding circular orbits are unstable. Thus,
along the characteristic envelope, I, and I, both increase or decrease
together, depending on the stability or otherwise of the circular
orbits. Again, for values of @ for which the circular orbit.just be-
comes unstable or ceases to be unstable, the characteristic envelope
has “turning-points.”

From equations (4.409) we also have

g§;=2£§—= 2(%’)= 20, (4.410)
where w. denotes the angular velocity in the circular orbit. Hence,
at the turning-points, the slope of the characteristic envelope must
change continuously.

4.5. The insiability of circular orbits at the peripheries of highly
spheroidal systems.—We shall now illustrate the application and the
usefulness of the method of the characteristic envelopes to practical
problems.

i) Characteristic envelope for a homogeneous oblate spheroid. The
regions of instability of the circular orbits—We shall consider first
the motions in the field of a homogeneous oblate spheroid. According
to elementary potential theory, the potential inside the spheroid can
be written as’

bl =§g’g %Sil‘l_l e — \/thi) w2+§g_jl{é 7-?;;—:;
(4.501)
— —sin™! e) 22— -——sin"! e,

where M, a, and e denote the mass, the major axis, and the ec-
centricity of the spheroid. For motions in the (x, y) plane, the
potential reduces to

%0=3_G£ 1sin“ e — \/1_ ez)wz

date \ e (4.502)

e (w<a).

7 E. J. Routh, Analytical Statics, 2, 106-116, Cambridge, England, 1922.
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Similarly, the external potential in the (x, y) plane is given by
o=ty | (g 2) 0
e (4.503)
® a’e? S

We shall now construct the appropriate characteristic envelope.
According to equations (4.502) and (4.503), we find

9By _ 3GM Tsinte—vIZ)2  (8<a) (4.504)

9w 2ate?
and
9By _3GM (o . ol
S VA B >
9w 2a%e? \/1 ) (m2a). (4.505)

From equations (4.408) and (4.502)-(4.505) we obtain

Il—SG» 3asm—l e — 1:_?)< )
— 3 — sm‘l e (w<a),
, (4.506)
SCTERn
@ T e e
~n V=] @,
and
Iq—é—%g<lsin“c—\/1—-e>( ) (w<a),
o (4.507)
3GMae( sin-t g (1282)( )
=72 ae 3 T ot Nae

The foregoing equations defining the characteristic envelope can
be expressed more conveniently as follows: For @ < @, we clearly
have

6GM lsm_l e—-\/l—-e)h

382

(4.508)
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Hence the part of the characteristic envelope associated with the mo-
tions inside the spheroid is a straight line. There is no such simple
relation for points outside the spheroid. But the characteristic
envelope for these regions can be expressed parametrically by the
relations

Il=3%¥ [(}ﬂ—l)sin‘ll—- \/—3_'2—1] (w2a) .
_ 0 , | (4.509)
It=3GMace [y“ sin“‘;——yz Vy?— 1] (y2e™1)
where we have written
@=aey, (4.510)

so that y = ¢! at @ = a. The characteristic envelope as defined by
equations (4.508) and (4.509) is illustrated in Figure 18.

We shall now show that under certain circumstances the part of
the characteristic envelope defined by the equations (4.509) has
turning-points. As we have already shown in § 4.4, the appearance
of turning-points depends on the existence of regions of instability of
the circular orbits. Inside the spheroid the circular orbits are clearly
stable. Consequently, turning-points can occur only on or outside
the spheroid. Thus the condition for the appearance of turning-
points is

9 (& w——)so (2a), (4.511)

for B, give by equation (4.503). Explicitly, this condition is (cf. egs.
[4.409] and [4.509])

5 (s L=y VI=T)<0 (2 e, (4512)

or, after performing the required differentiation,

L1 4yi—2y _
443 sin 1§_V§5_—;T<0 (y2e™), (4.513)
or
11
3
sint 122 <o (y3e1). (4.514)
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Hence, the instability of the circular orbits at the periphery of the

spheroid requires L
in~1 e— 928 ¢
sin~! ¢ \/1_82\0. (4.515)

1.2 13 1.4 1.5 1.6 17 18 19 20 21 22
0 T T T T T T T T T T I,

I,

Fic. 18.—The characteristic envelope for homogeneous spheroids. The fully drawn
curve represents the (I, I3) locus, determined parametrically by equations (4.509).
(1, and I, are measured in units of [GM]/[ae] and [GM ae]'/?, respectively.) The turn-
ing-point occurs for y = 1.199 corresponding to the solution ¢, = 0.834 of equation
(4.517). The dotted curve (which is a straight line), represents the part of the charac-
teristic envelope for the inside of a spheroid with an eccentricity e = 0.983.

The inequality (4.515) is clearly equivalent to
4 > €1, (45 16)
where e, is defined by

3
sin~! e;—%=0. (4.517)
1

Numerically, it is found that
e;=0.834. (4.518)
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Thus the circular orbit at the periphery of an oblate spheroid within
an eccentricity greater than ¢, is unstable. The associated char-
acteristic envelope has a turning-point at & = a. Further, accord-
ing to equations (4.510), (4.514), and (4.517), it follows that the
region of the instability extends from @ = a to @ = (ae/e;). Hence,
for s<agat (4.519)
the circular orbits are unstable.

We can summarize the main conclusions of the foregoing analysis
as follows:

The characteristic envelope associated with the field of a homogeneous
oblate spheroid has no turning-points for e < e,(= 0.834); fore > e,
there are two turning-points: the first occurs at the periphery of the
spheroid, where the circular orbits are unstable, and the second at
®@ = ae/ey, where the circular orbits just cease to be unstable.

ii) The regions of instability of the circular orbits in the field of a
homogeneous spheroid and a central mass—The appearance of the in-
stability of circular orbits in the outer regions of spheroidal systems
of sufficient eccentricity can be extended to more general types of
systems. Thus, let us consider the case where the gravitational field
arises from a central mass together with a homogeneous oblate
spheroid. We can then write

Bo= B~ L, (4.520)
where the first term on the right-hand side represents the gravita-
tional field of the spheroid, and the second term the field due to the
central mass. In equation (4.520) u denotes the ratio of the central
mass to the mass of the spheroid. The characteristic envelope as-
sociated with the field (4.520) is readily found. We have (cf. egs.
[4.506], [4.507], and [4.509])

I,= 3 M ( sm“e—\/l-—e’X) )
ae?
GM

—;u——3~————sm'l e,
@ ae > (w<a) (4.521)

I3= 3GMG(1 sin~! e — V1 — e’)( )
+ uCMw , )
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and

11_3@[—[(;, - 1)sm"‘§— V7 ~1]

aey L (w2a,y2e ) (4.522)
It=3GMae [y‘ sin™! %—y’\/}_”:—_l_]
+uGMaey ,

where we have written y = @/ae.
The condition for the appearance of turning-points on the char-
acteristic envelope becomes (cf. eq. [4.512])

——(y sm“zy—-—jﬂ\/y -1+ M)’><0 (y2e1). (4.523)

After some further reductions the foregoing inequality becomes (cf.
eq. [4.513)])

o1 4y -2y
4% sin 1—— Vs

2 +3u<0 (2. (4.524)

Hence the condition for the appearance of instability at the periph-
ery of the spheroid is (remembering that at @ = @,y = 1/e)

1,3
sin 18_77__;: 1,850, (4.525)

Let e(u) be such that

sin ¢ ()~ <=2 Ly =05 (4.526)

then, for e > e(u), the circular orbit at the periphery of the spheroid
is unstable, and the region of instability extends from @ = @ to
@ = ae/e(n). (We may note that, according to Lindblad, e(u) =
0.90 for u = 0.9.)

i) The condition for the appearance of turning-points on the char-
acteristic envelope in terms of the density gradient.—The appearance
of the instability of the circular orbits at the edges of flattened
spheroidal systems which we have found is seen to be directly cor-
related with the relatively steep density gradients prevailing in these
regions. Indeed, it can be shown, conversely, that, given a suf-
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ficiently steep density gradient, we should expect the instability of
the circular orbits in thesc regions and the corresponding appear-
ance of turning-points in the characteristic envelope. To show this
we first note that quite generally the density at a point must be re-
lated to the potential by Poisson’s equation

V8 =47Gp , (4.527)
or, in cylindrical co-ordinates,

NV 108, °B _
We shall now apply this equation for a point on the galactic plane.
Assuming, as we have done hitherto, that the galactic plane is a

plane of symmetry, we can write
LBy,
B = '2"(6z2 | 2 + constant (z—0), (4.529)

where the subscript “‘0” indicates that the quantity in parentheses is
to be evaluated on the plane z = 0. We can re-write equation
(4.529) alternatively in the form

B = 2xGpz2+constant (z2—0), (4.530)

where we have defined p by the equation
9% -
& | = 4765 (4.531)
We can, therefore, interpret p as an average density appropriate for,
and relevant to, the discussion of motions in the region under con-
sideration. In a general way, it is clear that for the averaging re-
quired to obtain 5 we might have to include regions which may be
appreciably distant from the particular region to which p refers.
According to equation (4.530), we can re-write Poisson’s equation
in the form

By 10%Bs_ 4 io—5), (4.532)

9 '@ 0w
where, as in § 4.4, B, denotes the function B(w, 0). Now the condi-
tion for the instability of the circular orbit is

', 3 9B o
St toam S0 (4.533)
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Combining equations (4.532) and (4.533), we have the inequality

42G (o~ 1)+ 22D <0 (4.534)

or, somewhat differently,

. 1 198 o
PTPZ9%Cw 3w 27G°

In this form, the criterion for the instability of circular orbits is due
to Lindblad.

Since p refers to the average over a relatively large neighborhood,
the inequality (4.535) is essentially the requirement of a sufficiently
steep gradient of density for the appearance of the instability of the
circular orbits in the region considered.

4.6. Lindblad’s theory of spiral structure in nebulae.—The con-
siderations of the previous sections have formed the starting-point
for a specific theory of spiral structure in nebulae due ¥ Lindblad.
In this theory the phenomenon of the instability offthe circular
orbits, which has been found to be present at the edggs of flattened
spheroidal systems, is regarded as providing the bas,v reason for the
initial development of spiral structure in nebulae.” As evidence for
this suggestion we might refer to the fact that ear}y spirals are highly
elliptical objects and, further, that at the edges/of these systems we
may expect precisely those conditions to prevail as would provide
for the necessary density gradients to sect e the instability of the
circular orbits. In other words, it would ar/pcar that if we follow the
variation of (5 — p) from the center outward® we will reach a point
where this quantity will just become equal to w?/27G (cf. eq.
[4.535]). At this point there will occur a turning-point on the char-
acteristic envelope and, according to our discussion in §§ 4.4 and
4.5, the stars just inside this point will be describing orbits close to
instability. Consequently, we may expect that as a result of acci-
dental disturbances some of these stars may be “ejected”’ into the
region where the circular orbits are definitely unstable. The first
question which arises is therefore concerned with the nature of these
orbits. We shall start our discussion of Lindblad’s theory with the
consideration of this matter.

(4.535)

8 For the definition of p see § 4.5 (eq. {4.531)).
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i) Spiral orbits in the equatorial plane of highly oblate systems.—
We shall consider the orbits described in the field of an oblate
spheroid together with a central mass. According to equations
(4.304), (4.305), (4.505), and (4.520), the equations of motion for an
orbit confined to the (x, y) plane are

d’w  h? 3 GM sin
AT 2 gt \/ ""““ s) Cw6on
and

®@%0 = h = constant . (4.602)

Following the standard procedure for treating the motions de-
scribed under the action of a central field of force, we first introduce
1/ @ as the variable. We then find

# (1), 1 3GH (8Y(8 o ac
d? T2 h \ae/\ae

©
—5 2.2 (4.603)
ale a’e
~V1-S5 1 )
Introduce the new variable u, defined by
u= % (4.604)

Equation (4.603) becomes
\

d2u+ 3GMae 1 {1
dg? 28wl \u

sin"lu— V1 —u_2+%;m2) , (4.605)

which is the general equation for the determination of the orbit.

We shall first consider those orbits which are asympiotic to the
circular orbits at the periphery of the spheroid. We should then re-
quire that the constant of areas % in equation (4.605) be the same as
that for the circular orbit @ = a. Since

e=u for w=ga, (4.606)

we conclude from equation (4.605) that the constant of areas must
be so chosen that

e_;%ﬁi:e(%# +%sin“ e——e1—2\/1—:_e§). (4.607)
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Equation (4.605) now reduces to

d*u et
AT = fueteint e— e Viz e

1 T (4.608)
X(%/‘ +;‘“§ sin~! u —;E\/l - u2).

A first integral of the foregoing equation can be obtained by multi-
plying throughout by du/d6f and integrating. We find

du\*, , el
E§> tui= 2ped+sinle—evi—e? [§uu

1 1 (4.609)
+(2 - ;E) Sin"‘ u +; \/1 - uz] + Co,

where ¢, is a constant of integration. Again, for orbits asymptotic

to the circular orbit @ = g, ¢, is determinate. For we should clearly

require that

82=1;ze3—+—sin‘1 i:-—e\/l——e? [iﬂe
s ) L (4.610)
—i—(2———~2-)sin*1 e+—\/1—e’]+co
e e
or
o= 2 (1—e?)sinte—ev1—el—3pue (4.611)
0= .

sin!e—eV1—er+3ued

Substituting (4.611) in equation (4.609), we finally obtain

du\’ , . _ et ) _
(3@) Tut= 2uet+sin~te—eV1— el [ﬁyu
+(2—’~‘1~2>Sin“‘u+%\/ﬁ—u_2 (4.612)
-i‘%(l—- €?) sin™! e—»zé\/T:_éé— %pe] .

The integration of equation (4.612) for different values of x and e
(e > e[u], where e[u] is given by eq. [4.526]), will be sufficient for
obtaining a general view of these orbits. Lindblad has numerically
integrated equation (4.612) for several values of u and e. In Figure
19 we reproduce some of his orbits.
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As we have already indicated (p. 171), we expect that stars de-
scribing orbits originally nearly circular and just inside the edges of
flattened systems are “ejected” on account of accidental disturb-
ances which may cause changes in their energies and/or constant
of areas. Consequently, the orbits resulting from such disturbed
circular motion are of greater interest. Figures 20 and 21 taken
from a paper by Rosseland? illustrate such orbits. .

AN

AN
I\

k VNS Y

F16. 19.—Orbits asymptotic to the edge of a homogeneous spheroid derived from
equation (4.612) with u = 0. The curves marked 1,...., 6 are for values of e = 1.000,
0.995, 0.980, 0.965, 0.950, and 0.920, respectively (Lindblad, Kungl. Svenska vetensk.
handl., Tredje serien, 4, No. 7, 1927).

i) The process of ejection.—We shall now examine in a general way
the manner in which we may expect the ejection of matter from the
edges of flattened systems to lead to the formation of spiral arms.

As we have already seen, when a mass of material leaves the
region where the instability of the circular orbits is just beginning,
it will depart along orbits of the form illustrated in Figures 19-21.
Since the ejected mass was originally characterized by approximate-
ly the same constant of areas as the matter at the edge of the system,

9 Naturwiss., 27, 129, 1939.
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it follows that on account of its greater distance from the center it
will lag behind the point from which ejection took place. This
ejected matter will in turn cause a deviation in ¥ along the radius
vector joining it to the center. It is seen that this deviation will
consist principally in decreasing the circular angular velocity for the
material immediately beneath it. Consequently, if the equation

(4.613)

2
we

=P =5aG

was originally valid, we should expect that at the later time
2

= po> 5 (4.614)
for the material directly below the ejected mass. In other words, the
region of the instability of the circular orbits will begin nearer the
center beneath the ejected mass than elsewhere. Thus, while the
orbit described by this mass must originally have been on the verge
of stability, it will later become definitely unstable on account of the
tidal effects of the mass already ejected. Hence this mass will also
depart from the edge of the system. In this manner more and more
of the material will be drawn out, and we anticipate the slow forma-
tion of spiral arms.

In following this gradual disintegration of the central system, we
may ask whether under suitable circumstances a state of continuous
and steady ejection can prevail. To examine this we shall introduce
a rotating frame of reference moving with the angular velocity w,
characterizing the circular motion at the edge of the system. From
our remarks in the preceding paragraph it follows that in this frame
of reference the point at which ejection takes place must move with
an angular velocity of sign opposite to that of w.._ It is clear that the
angular velocity actually selected will depend not only on the kind
of tidal field which begins to operate as a consequence of this
velocity but also on the extent to which this disturbing action is in
resonance with the free oscillations of the system. As we have seen
in § 4.3, the frequency of this oscillation is #,/2x where (cf. eq.
[4.327])

nﬁ_—_z?_c 99, , 9.

2 \3m "ol (4.615)
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For 6.« @, n;, = 2w.. If we now suppose that the disturbance is in
resonance with this oscillation, any of its effects may be developed
in the form of a Fourier series

Z{Ancos (2w.it+n0)+B,sin (2wit+n0)}. (4.616)

For a disturbance propagated against the direction of rotation, n takes
only positive values. The term # = 1 in the foregoing expansion cor-
responds to a disturbance which has only one maximum along the
circumference and is propagated with an angular velocity —2w..
According to Lindblad, a disturbance of this character will not be
very effective in disintegrating the system. On the other hand,
when # = 2, we have a disturbance with two opposite maxima
propagated with an angular velocity —w.. In other words, for dis-
turbances of this character the point of ejection remains fixed in
space. For higher values of # the disturbance becomes increasingly
complicated, but it appears that the tidal force is most effective for
n=2.

Now an ejection process to be of interest in our present connection
must increase, rather than decrease, with time. Consequently, we
should require the conditions to be such as to favor the instability of
the system to disturbances which lead to ejection. It is clear that
such conditions will be provided by a considerable flattening of the
system. For, according to Bryan, Maclaurin spheroids first become
unstable at an eccentricity e = 0.9529 for sectorial harmonic waves
which have two opposite maxima—in other words, for disturbances
similar to those we have considered as suitable in the preceding
paragraph. We may thus expect that the ejection of the kind con-
templated will continue only for systems with eccentricities greater
than 0.95. This corresponds to a ratio of the axis of about 3.1, and
this value is in agreement with the upper limit to the ellipticities of
elliptical nebulae (§ 1.6).

In the case where the spiral arms are relatively thin, we may
neglect the decrease in size and mass of the central system. In such
cases the spiral arms must approximate to the orbits of individual
stars. The nebula M 81 is an example of a fairly well-resolved spiral
with thin arms, and we should expect the simple theory to apply to
this case. In Figure 22 we have made, following Lindblad, a com-
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parison of the form of this nebula with the orbits asymptotic to the
edge of a homogeneous spheroid with an eccentricity e = 0.965. It
is seen that the agreement is satisfactory. For the cases where the
arms are ‘“‘heavy’’ such a simple and direct comparison will not be
possible. Lindblad has extended his theory to include these cases
as well. However, we shall not go further into these matters but

F16. 22.—Comparison of the arms of Messier 81 with the theoretical orbits in the
equatorial plane and asymptotic to the edge of a homogeneous spheroid of eccentricity
e = 0.965 (Lindblad, Kungl. svenska vetensk. handl., Tredje serien, 4, No. 7, 1927).

refer the reader to the investigations quoted in the “Bibliographical
Notes’’ at the end of the chapter.

iii) The sense of rotation.—It will be seen that on Lindblad’s
theory the direction of the winding of the spiral arms is such that
they are described outward in the direction of rotation. A confirma-
tion of this predicted sense of the winding of the spirals with respect
to the direction of rotation is, of course, of crucial importance. For
objects with visible spiral arms and with spectrographically meas-
ured rotation this question depends on the true orientation of the
plane of the nebula in space. Several attempts have been made to



GENERAL DYNAMICS 17¢

solve this question by means of the absorption effects of the dark
matter in the nebulae. In the case of objects in which the inclination
of the fundamental plane of symmetry to the line of sight is so small
that the winding of the spirals is no longer clearly visible, we often
observe well-defined absorption bands as in NGC 4594 (see Pl. II1).
In such cases there can hardly be any doubt as to the obscuring
material's being situated on the near side of the edge. With increas-
ing angle of inclination, however, the effect of the obscuring ma-
terial on the distribution of the luminosity does not lend itself to any
such direct interpretation. Indeed, any attempt at interpretation
must depend on the detailed distribution of the absorbing and emis-
sive material in the nebulae. While this is still a matter largely of

F16. 23.—Schematic vertical section, according to Lindblad, of the luminous and
dark material in an extragalactic nebula of small central mass. The fully drawn curves
represent the intersections with the luminous material, while the dotted curves repre-
sent the corresponding intersections with the dark material. The oblique lines indicate
the line of sight.

one’s personal judgment, Lindblad suggests a distribution of the
material indicated in Figure 23, where the full-drawn curves denote
the luminous material, and the dotted curves the obscuring material.
Though the dark matter may have a strong concentration toward
the equatorial plane, it seems probable that the obscuring material
will extend to quite considerable heights over this plane. The effect
of the longer optical path through this absorbing medium on the far
side will produce a much more effective darkening on this side than
on the near side. In this connection it must be remembered that,
if the absorbing medium consists of fine material particles (as in our
own Galaxy), the effect of the phase function in scattering will also
become important in the sense that forward scattering is more effi-
cient than backward scattering. This would further accentuate the
difference in brightness between the near and the far side in favor
of the former.
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According to Lindblad, the disposition of the absorbing and the
emissive matter which he suggests finds confirmation in his photo-
metric investigation of NGC 7331 in different colors. It appears that
in the obscured regions of this nebula the color is nearly uniform and
the decrease of intensity from the nucleus outward in these regions
is nearly the same in the different colors. On the other hand, close
to the nucleus on the brighter side of the nebula, a spiral arm is tlear-
ly visible in the ultraviolet light, while it is hardly perceptible in red
light and seems to merge into the ‘““amorphous” central regions. In
other words, on the brighter side of the nebula the decrease in in-
tensity from the nucleus outward is much more rapid in red light
than in ultraviolet light. It is seen that these effects become readily
intelligible on the distribution of obscuring and luminous matter ac-
cording to Figure 23.

Finally, if we accept Lindblad’s interpretation of the dark lanes
in nebulae, it appears that both in the case of the Andromeda nebula
and in the case of M 33 the predicted and observed senses of rota-
tion with respect to the winding of the spirals agree. We should,
however, point out that this important matter is far from being
settled and that considerable divergence of views still persists.
Thus, as we have already remarked in § 1.7, in the case of NGC 3190
Hubble and Mayall suggest a sense of rotation for this object
which is contrary to Lindblad’s theory. The final decision in this
matter must await future investigations.

4.7. Critical remarks on Lindblad’s theory. Some alternalive sug-
gestions.—According to Lindblad’s theory outlined in § 4.6, the
fully resolved spiral pattern is regarded as an advanced state which
all nebulae will eventually reach in the course of their evolution. On
this view, elliptical nebulae represent early stages from which
spiral arms begin to form on account of the instability of the circular
orbits setting in at the edges of the systems. As a criticism of this
view it has been pointed out that the abundance and the distribution
of elliptical nebulae relative to those of the spirals do not suggest
any difference in their ages. It has been particularly noted in this
connection that clusters of nebulae like the Virgo cluster generally
contain nebulae of all classes with the same order of luminosity.
Also, in spite of Lindblad’s attempts to the contrary, it appears diffi-
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cult to understand how the greater part of the material in a nebula
can find its way to the arms against the gravitational forces from the
original densely packed state. It should be remarked in this connec-
tion that many spirals do give indications that a large part of the
mass is in the arms. Again, it has been argued that the ‘“‘ejection”
of arms from a rotating central body does not provide a sufficiently
broad basis for the complete understanding of the wide variety of
forms which nebulae show. Thus a frequent type of object which
differs radically from both spirals and elliptical nebulae are the
barred spirals (see Frontispiece and Pl. IT). The characteristic fea-
ture of these objects is the appearance of a straight bar which crosses
the central regions, with spiral arms emerging perpendicularly from
the ends of the bar. Sometimes the arms form a circular ring with
the bar as a diameter. It is difficult to see how these configurations
can be interpreted directly in terms of the instability of the circular
orbits, which forms the basis of Lindblad’s theory.

In suggesting an alternative view, both Randers and Hubble
emphasize the fact that a ring or a system of rings appears to be a
rather general feature of most types of nebulac. Thus there exist
spirals in which the impression is one of a set of concentric rings (see
Pl. VI). Again, there are instances of single rings centered on dense
nuclei and also transition types showing characteristics of both
spirals and rings. Accordingly, it is a justifiable point of view to re-
gard the formation of a ring patlern as an essential step in the evolu-
tion of nebulae. But the manner in which this is to be accomplished
is not so evident. What is needed is a mechanism which will “‘gather”
the material in the system in certain rings. It has been suggested by
Randers that viscous forces might provide the necessary agency. We
shall presently see that it is extremely difficult to define the concept
of viscosity in stellar systems. But we shall return to this matter
after describing how this supposed viscosity is expected to operate.

Consider a system in simple differential rotation. The assumed
existence of viscous forces will introduce in such a system tangential
forces (in the transverse directions) of amount

d (1 d
F-—,u;i—a—, azaweo), (471)
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where u denotes the “coefficient of viscosity” and O(w) the field of
differential rotation.

When the force F is positive, the angular velocity of the matter at
the point under consideration will increase; similarly, if F is nega-
tive, the angular velocity will decrease; in both cases radial motions
will be induced which will be directed outward in the former case
and inward in the latter. For any specified distribution of 6, equa-
tion (4.71) will enable us to fix the direction of motion.

To determine the circumstances under which F is positive, zero,
or negative, assume for 6, the form

0y = ka" (>0), (4.72)
where £ is a constant. The expression for F now becomes
F=uk(n?—1)e" 2, (4.73)
Consequently,
F>0 [|n[>1,
F=0 n]=1, (4.74)

F<0 |nl<1.

We therefore conclude that the radial motion resulting from the
force F is outward if ©,/@ increases outward or decreases more
rapidly than @2. (The latter case [z = —1] corresponds to a situa-
tion in which the circular orbits are unstable; for, according to equa-
tion [4.311], in an inverse-cube field of force ©, « @™*.) Similarly,
F will induce inward motions if ©,/@ decreases less rapidly than
o

Hence, if the angular velocity increases outward, the matter will
tend to move outward until it arrives at a point where the angular
velocity attains its maximum. And when wo(=0,/@) begins to de-
crease slowly, after passing through the maximum, the motions will
be directed inward, i.e., again toward the region of maximum w,. At
the point where the instability of the circular orbits sets in, the
matter will begin to be “repelled” from the region of the preceding
maximum of we.

The effects we have described in the foregoing paragraph are re-
versed in the neighborhood of a region of minimum w,, the matter
being directed away from this region on both sides.
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From our discussion in the preceding paragraphs it follows that a
tangential force of the form (4.71) will essentially tend to collect
the material in regions where w. tends to constancy near maxima.
Such a tendency would clearly be in the direction of producing a ring
pattern. We shall not continue this discussion further but return to
the difficulty mentioned at the outset, namely, the impossibility of
giving an adequately satisfactory meaning to the concept of viscosity
in a stellar system.

According to the formulae developed in § 2.5, the mean free path
for a star (with average velocity) is given by

)\1(172) = 1.77

« 10° (4.75)

=4
V2

Nm?logy[9.31X 104Dy32/ (my+ m,) ]

parsecs , }

where the mass, %, Do, and N are expressed in units of solar mass,
20 km/sec, parsec, and number per cubic parsec, respectively.

As representative of the typical conditions to be expected in a
Galaxy, we shall assume that

7,=1.5(=30 km/sec) ; m=0.50 } (4.76)
N = 0.1 stars/ (parsec) 3 ; Dy = 2.7 parsecs . '
From equation (4.75) we find
A (92) = 6 X 10? parsecs , (4.77)

which is at least several thousand times the dimensions of the

Galaxy.
Again, as representative of the extreme possible conditions in a

Galaxy, we shall assume that

7= 0.5 (= 10 km/sec) ; m =10, } (4.78)
N = 100 stars/ (parsec)3;  Do=0.27 parsecs . '
Equation (4.75) now gives
M (F3) = 3 X 104 parsecs , (4.79)

which is of the order of the diameter of the Galaxy.
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1t is very unlikely that the conditions in the Galaxy or in the
extragalactic systems were at any time more extreme than those
represented by equation (4.78). It therefore appears that the notion
of viscosity cannot be introduced into stellar dynamics without a
very much more careful discussion than has been made so far. One
can reach the same conclusion by a somewhat different line of argu-
ment as follows: From the nature of the physical problem it is"clear
that the forces which we normally associate with the concept of
viscosity, to become effective, must operate for times which are long
compared to the time of relaxation of the system. On the other hand,
according to our discussion in § 3.1, in galactic and extragalactic
systems, we encounter systems with very long times of relaxation (of
the order of 10 years). Consequently, the transfer to such systems
of notions valid only for systems averaged over times which are long
compared with its time of relaxation becomes physically without
content. While it is therefore of interest to note that the introduc-
tion of tangential forces depending on the gradient of the angular
velocity will favor the development of a ring pattern in the system,
the idea, even as regards the nature of these forces, is still too rudi-
mentary to form an adequate basis for a satisfactory theory.

Summarizing, we can say that the general theory of stellar sys-
tems described by a spherical distribution of the residual velocities
does provide a basis wide enough for the interpretation of the struc-
tural features of the nebulae. But the very generality of this scheme
precludes it as a specific theory. Lindblad’s theory, on the other
hand, while it draws attention to the undoubtedly important part
which the instability of the circular orbits at the edges of flattened
systems must play in their evolution, yet fails in its further develop-
ments, if the highest standards of rigor are demanded. Finally, at-
tention may also be drawn to the role which the development of a
ring structure might play in the evolution of these objects.

4.8. The equations of stellar kydrodynamics.—In our discussions of
the equation of continuity in chapter iii and in §§ 4.1 and 4.2 the
emphasis has mainly been on seeking explicit solutions of this equa-
tion. It is, however, possible to obtain some general relations which
have considerable practical importance. These are the Aydrody-
namical equations obtained by integrating the equation of continuity
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over the momentum variables after having multiplied the equation
by appropriate factors. We shall now obtain these equations.

i) The equations of stellar hydrodynamics in Cartesian co-ordinales.
—The equation of continuity in Cartesian co-ordinates is (eq.
[3.303])

or 9% ov
dz dx dU
9B 0¥ 9B ¥ _

T 9y oV az oW

o ger o
y (4.801)

Integrate this equation over all the velocities. Since

[ff 2 avavaw =2 [ [wavavaw =5T,

ov
k- U‘w‘; vaw . (4.802)
=5;fff\IlUdUdVdW=5;(NU) ; etc.,

fffba—\gdUdVdW=ffl\Il]Z:f:dVdW=0;etc.,

we obtain

\

aN , 0

N I e

where U, V, and W denote the average values of these quantities.!®
Equation (4.803) clearly expresses the conservation of numbers; it
represents, therefore, the macroscopic equation of continuity.

Next, multiply the equation of continuity (4.801) successively by
UdUdVaW, VdUdVdW, and WdUdVdW and integrate over all the
velocities. In view of

[ & vavavaw = [ [1ev15tzavaw
~ [ [ Jxdviviw =N} (4.504)

fff% vavavaw = [ [1w132* 2 vavaw =o,

10 These averages are clearly functions of position and time.
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and similar relations obtained by cyclically permuting U, V, and W,
we obtain

S Wi+ (NU2)+—- (NTV) +2= (NTW) = —zv"—*i
(NV)+—— (NVU)+~— (N7 + (W) =~ "2; \ (a.805
9%

~-(NW)+ (NWU)+-—(NWV)+——(NW2)—— -N o7

where we have used a bar to denote the average of the corresponding
quantity.

Equations (4.805) represent the macroscopic equations for mass
motions. These hydrodynamical equations are of greatest interest
for axially symmetrical systems. However, in this case, the equa-
tions are most conveniently expressed in cylindrical co-ordinates,
(w, 0, z). It would be possible to obtain the required equations in
this system of co-ordinates by a direct transformation of the vari-
ables. But they are more conveniently derived by first expressing
the equation of continuity in these co-ordinates and then effecting
the appropriate integrations. For this purpose we shall first obtain
the equation of continuity in these co-ordinates.

ii) The equation of continuity in cylindrical co-ordinates.—In § 3.2
we proved Liouville’s theorem in an arbitrary system of canonical
variables. Thus, if ¢i, ¢s, and ¢s are any set of generalized co-ordi-
nates and p1, s, and p; the corresponding set of conjugate momenta,
the distribution function ¥*(qi, g5, ¢s, #1, P2, ps) satisfies the differ-
ential equation (eq. [3.26])

d¥* N0 av* 99 ov*

_(9_t—+2 b‘—f%s—q:—aq‘? ap')=0. (4806)
We now choose ¢i, g2, and ¢s to be @, 6, and 3z, respectively. Then,
according to equation (3.309),

pa=§3=m20=we, (4.807)
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and the Hamiltonian is
o=5(n+L +1>’>+$ (4.808)

In this system of co-ordinates, equation (4.806) therefore becomes

@90 TP 57 “\as 3 po
658 ov* 658 B‘I’*

T 00 9p0 0z dp.

* %* * *
_H,Baw L Pod¥*  avr (9B po oV

(4.809)

Instead of p,, p,, and p. it is more convenient to use the components
of linear velocity II, ©, and Z as the variables. Let ¥ denote the
corresponding distribution function. The relation between ¥* and
¥ is

¥(w, 6, 2;11,0, Z; t) odwd 0d 2d11dOdZ } (4.810)
=V*(w, 0, z; pa, po, p.; t) dwd 0d 2d pad ped p, .
We accordingly have
0V _owr | 0Vt ap 0wt ovt
w 0w dpe 0w dpo’ (4.811)

Q¥ _9¥* ape _ o¥*
30 dps 90 " 9po”

From equations (4.807), (4.809), and (4.811) we now obtain

¥ ¥ 0¥ ¥ 92
R S SCL AT ¢

at 9w @ao dz \ow o (4.812)
109 ne v 9% oY _ 0 ’
=AFY 9z 97 '

ili) The equations of stellar hydrodynamics in cylindrical co-
ordinates—Multiply equation (4.812) by dIIdOdZ and integrate
over these variables. Since

S/ Jre 3—:; andedz - [ [ 1617+ =nanaz
—fffﬂ\lldﬂdedz (4.813)

=—NII
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we readily obtain

aN 9

18 =8 o 1
S5 Tag (VI +— =5 (N8) +o— (NZ)+_ NI=0. (4.814)

Next, multiply equation (4.812) by IIdIId6dZ and integrate over
these variables. Since

fffng%dndedZ= ~ [ [ fwindeaz=~n,

ff nezgz dndedz =~ [ [ [ervdndodz=—Net, ; (4.815)

[ [ fwe 5% ndodz = - [ [ frevanaoaz = - NiE,

we obtain

3 (v + -2 (i) + 2 2 (wite) + % (N1iZ)
+2 NI = SR
Similarly, by multiplying equation (4.812) and OdIId6dZ and
ZdIId6dZ and integrating over all the velocities we obtain, respec-

tively,

4

— P —
Y (N©?) +5'z“ (NOZ)

8=

IS R——
== (N©) + = (Nell) +
at iw (4.817)

R — 199
+ZNoll=—N_ 20

and

19

=8, Y N
E(NZ)'FB‘E(NZH)“FEE‘E(NZ9)+5;(NZ2)
2% (4.818)

FrR

+1NEi=—nN
@

iv) The equations of stellar hydrodynamics for axially symmetrical
systems in steady states—We shall now consider axially symmetrical
systems in steady states. Assuming further that

M=7Z=M6=6Z=ZI1=0, (4.819)
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equations (4.814) and (4.816)-(4.818) reduce to the pair of equations
I v+l viE—o9) = — 9_5§
35 (NI +_ N (P —8%) = —N (4.820)

2 wm=-n23. (4.821)
9z
We can express equation (4.820) somewhat differently as follows:
multiplying this equation throughout by (@/NII?), we have

— 02
99 _o, (4.822)
where we have written o
9 —W‘é‘é" (4.823)
On the other hand, since
0=0,+(6—-6,), (4.824)
where O, represents the motion of the local standard of rest, we have
=0;+(0—00)2. (4.825)
Equation (4.822) now becomes
o097 ol—e?
52 (Iog Vi) 41— P02 000 o0y

iy In?
in this form we recognize the equation as equivalent to equation
(3.822), if we remember that, according to equations (3.805) and
(3.818), I12 is independent of @ and

2 _ (6-6)*
=g 20a= (4.827)

v) Motions perpendicular to the galactic plane.—According to
equation (4.821) %
___(sz)—_zv—_ (4.828)

If 72 is independent of z, the foregoing equation can be integrated
to give

N(®, z)= N(m, 0) e~ B/2" (4.829)

which is essentially the law of isothermal atmospheres.
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If we consider the galactic plane as a plane of symmetry and re-
strict ourselves to regions not far from this plane, we can write, ap-
proximately (cf. egs. [4.530] and [4.531]),

B = 27Gp2?, (4.830)
where p is a certain average density at (@, 0). Equation (4.829) now
becomes .

N(w, z)= N (w, 0) e~2Ga:*/ 27 (4.831)

From this equation it follows that from the observed distribution of
the stars perpendicular to the galactic plane and from a knowledge of
their mean motions in the z-direction, we should be able to deduce a
value of p. This is the principle underlying Oort’s analysis of the
distribution of stars in the z-direction. He finds that in the neighbor-
hood of the sun the value of p is 0.1 solar masses per cubic parsec.

In our present connection it is worth remarking that in the scheme
of approximation leading to equation (4.830) the equations of mo-
tion perpendicular to the galactic plane can be integrated to give (cf.
eqgs. [4.331] and [4.342)])

z=2gpsin n,(t—4); Z=3zgpncosny(t—12), (4.832)

where -
d -
=G0, = 4167 (4.839)

Hence
2

zz+%§=c0nstant (4.834)

2

represents the integral of the equations of motion. Consequently,
in a steady state the distribution function can involve only the
combination (4.834), as far as its dependence on z and Z is con-
cerned (§ 3.3). Accordingly, equation (4.831) implies a complete
distribution function of the form

2% Gp

N(w, 2,2Z)= N (w, 0) - (Zr Z’)V’ e____( +4ng ,  (4.835)

an equation which appears to be in fair agreement with observa-
tions.
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Finally, we may note that, according to equation (4.834) and the
assumed independence of the z-motions from those in the galactic
plane, ¢ Maxwellian distribution of the Z-velocities implies the law of
density distribution (4.831) and conversely.
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In view of the importance which the stability of the circular orbits
plays in the discussion in §§ 4.3-4.6 we may remark that the criterion for
the stability of the circular orbits in a central field of force has been known
in dynamics for a long time. For example, the matter is considered at
length in—

14. L. BOLTZMANN, Prinzipe der Mechanik, 1, 73-87, Leipzig, 1897,
and—

15. H. LaMB, Dynamics, pp. 256-271, Cambridge, England, 1914.

The general problem of the stability of an orbit adjacent to a given one
is considered in—

16. E. T. WHITTAKER, Analytical Dynamics, 2d ed., pp. 395-399,
Cambridge, England, 1917 (we may note that the matter in this form is
not discussed in the more recent editions of this book [see Appen. II]).

§ 4.7.—The discussion in this section is in part based on the remarks
contained in—

17. G. RANDERS, Ap. J., 92, 235, 1940, and—

18. E. HUBBLE, Sci. Monthly, p. 391, November, 1940.

§ 4.8.-—The equation of stellar hydrodynamics were first written down
by Jeans—

19. J. H. JEANs, M.N., 76, 70, 1915 (see particularly pp. 81-82); ibid.,
82, 122, 1922. See also—

20. J. H. Jeans, Problems of Cosmogony and Stellar Dynamics, pp.
230-236, Cambridge, England, 1919.

Equations (4.831) and (4.835) have been used by Oort to analyze the
motions and the density distribution of the stars perpendicular to the
galactic plane:

21. J. H. Oort, B.A.N., 6, 249, 1932. See also—

22. B. Bok, The Distribution of Stars in Space, chap. iii, pp. 88-95,
Chicago, 1937.



CHAPTER V
THE DYNAMICS OF STAR CLUSTERS

The star clusters present dynamical problems which are of an
entirely different nature from those we have considered in chapters
iii and iv. The most striking aspect of this difference consists in the
part played by stellar encounters in effectively controlling the be-
havior of these systems. Further, the galactic and the globular clus-
ters themselves suggest different types of problems in the extent to
which galactic rotation influences the evolution of these objects. In
this chapter we shall survey some of the problems related to the
dynamics of star clusters and indicate the essential factors which
are involved.

5.1. The equations of motion of an isolated star cluster. The
Lagrangian identities—Fundamentally, the dynamics of an isolated
cluster is the dynamics of # mutually attracting mass points. In
other words, the problem is equivalent to the n-body problem of
classical dynamics. We shall therefore begin our study of star
clusters by writing down the general equations of motion and ob-
taining their first integrals.

i) The general equations of motion. The energy and the angular-
momentum integrals.—Let my, ms, . . . ., m, denote the masses of
the different stars. Between any two stars m; and m; there exists
a force Gmm;/r};, where r;, is the distance between the two stars.
The components of this force acting on the star m, are

—Gm,m; fi—;ﬁ—’., —Gm,m; y';g-lf, —Gm,m; f"—;—g’-, (5.101)
17 ij 7]

or a0 a0 Q

ALY ALY, _ 9%

s Sy e (5.102)
where o

Q,;= — 2% (5.103)
7ij
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Consequently, the components of the force acting on the star ¢ due
to the gravitational attraction of all the other stars in the cluster
can be written as

9 99Q; 99Q;
T T (5.104)
where
=50 = — 2:_"_‘1 '
Q=32,i=—Gm; v (5.105)

and where the summations are extended over all j not equal to 7. ©;
is clearly the potential energy of the star under consideration due to
its position relative to the attracting system.

According to equation (5.104), the components of the force acting
on a star is given by the gradient of a function which is different for
the different stars. But we can treat all the stars on the same footing
by considering the function

= mim;

Q= G; L, (5.106)
where the summation is extended over all the different pairs of
stars. For, since the only terms in @ which depend on the co-ordi-
nates (x;, ¥i, 3:), are those included in ;,

02 909, aQ 99 02  99Q;
oz dm  dy: oy dm - amc o107

The quantity Q defined by equation (5.106) is seen to represent
the potential energy of the cluster. For, by considering the sum on
the right-hand side of equation (5.106) term by term, we successive-
ly obtain the potential energy of a second star in the presence of a
first, of a third in the presence of the first two, and so on. And,
since the sum contains just exactly as many terms as there are
distinct pairs of stars (=n[n — 1]/2), we verify that Q does, in fact,
represent the total potential energy of the cluster.

We can now write down the equations of motion for the stars in
the cluster. We have

mig =92 L __%2 . __90
i 3 i el PN (5.108)

ay.-’
(t=1,2,....,n).
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ax, z Z e m,
Zm.3c'¢=2m.~'j,-=2:m,}f.=0. (5.110)

These equations can be integrated to give

Zm,i.~=a1; Zm;g],=a2; }:m;é‘=a3, (5.111)

i

Now

_"—0 (i#=7). (5.109)

Hence

and

Zmlx;=a':2m;=all+b1,
Domy=5> mi=ait+tby, | (5.112)

Zmiz,-= 22 m,=ast+ b3 .
3 ) 3

In equations (5.111) and (5.112) a4, as, as, b, bs, and b; are constants
of integration. Further, in equations (5.112) we have used Z, ,
and z to denote the co-ordinates of the center of gravity of the clus-
ter. We have thus obtained the six integrals corresponding to the
fact that the center of gravity of the cluster moves with a uniform
velocity in a certain definite direction.

Again, we have

Z( 6&2_

‘9z, 'ay
_ o B8 Y=Y
‘ZZ’”‘”"O' e Lsa

ij

—sz m’( yiz;+9;2)=0, (@(GE=j).

Hence,

Zmi(yi.z'i"ziyi)':()- (5.114)
or

S‘mi(yiéi“ziy'i)=€1, (5.115)

oy
i
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where ¢, is a constant of integration. Similarly,

z ml(zlz.l—xl:z.l)= C2,
' (5.116)
Z mz(x;?)i—yzix)= C3 )

where ¢; and ¢; are further constants. These are the three angular-

momentum integrals.
Finally, we have

> m (i A0+ 205

~(. 92 . 90 . 9Q
=‘Z(’fa‘x‘,+%“y‘,+zib‘z‘; (5.117)
-4
Toar’
or, after integration,
D m R e=h, (5.118)

where % is a constant. This is the energy integral.

Equations (5.111), (5.112), (5.115), (5.116), and (5.118) represent,
in fact, the ten general integrals for the motion of a system of
particles moving under their mutual attractions.

il) The equations of motion relative to the center of gravity of the
cluster—We shall now choose a frame of reference in which the
center of gravity is at rest. Let (&;, 7;, {;) be the co-ordinates of m;
in this new frame of reference. Then

£L=xu—§:; 711'=y;"5’; {,=Z.~—z. (5.119)
In equation (5.119), %, ¥, and 2 are defined as in equations (5.112).

Accordingly,
Domiki=D ma= myi=0.  (5.120)

In this frame of reference the equatiors of motion become

mbo 00 0@ . o8
A T T e SRR ¥ (5.121)
(t=1,....,n),



DYNAMICS OF STAR CLUSTERS 197

where @ is the same as before. But 7,, is now given by
ri=(E— &)+ (n—1)+ (5= )2 (5.122)

We shall now transform the angular momentum and the energy

integrals to this new frame of reference.
According to equations (5.115) and (5.119),

1= Z m,(y.2,— 2.7.)

=2 ml(G+1) G+ -G+ G+a)) | (5.123)

=D milnifi— ten) + (55— 25) D ma,
since (cf. eq. [5.120])
me.= Zm.;.= Z mo, = Zm,-;',=0. (5.124)

Using the explicit forms for 4 and z (eq. [5.112]) in equation (5.123),
we obtain

zm,(ms‘.— Co1:) = 1+ (a2bs— azbs) /EZm,=¢|. (5.125)

Similarly,
Zm; (Fidi— £:§) = o+ (a3dy— a1b;) /Zmi= ¢y,
(5.126)
Zm,(Exni— €)= s+ (a1by— asby) /Zmi= .
The energy integral (5.118) becomes
h=0=2 3 mil G+ )7+ (G40 T+ G+ 80
. ' (5.127)
=52 m(EFil+ )+ (ol+ai+al) /Zmi.
Hence, )
72 it +a=w (5.128)
where

h"=h—%(af+a§+a§)/2m.-. (5.129)
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Let T denote the total kinetic energy of the “residual motions”
in the cluster. Then

= 2 m (Ei D (5.130)

Equation (5.128) can now be written in the form
T+ Q=E = constant . {5.131)

iii) Lagrange’s identities.—We shall now derive an important rela-
tion involving the mutual distances of the masses.! We have

22 mim;(E;— £;)*

=D D mami (£ £ - 26:8)

=Zmi£§ . Zm,-{-z mi. Zm;ff- , (5.132)
- 22 mi&i. zmjfi

=2 mi- > mig,
with similar equations for other co-ordinates. Hence
D mimyrli=> mie D om (i (5.133)
%2 B i

Accordingly,
1 a2
Zm; de?
-—2‘_{27” (E £t+’717l|+§- g'z)}

Emimirk;)

=22mi(£2-+7'l¢+?E)+22m‘($'5'+mﬁi+§'ifi) L (5.134)
= sz (£2+ "7|+§2)— 22(Eta£ +7'| 817
2

0!‘

1]J. L. Lagrange, (Euvres, IX, 836; also #b:d., VI, 240. See also C. G. Jacobi, Vor-
lesungen iiber Dynamik (vierte Vorlesung), pp. 19-30, Berlin, 1866.
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On the other hand, since @ is a homogeneous function of the co-
ordinates of degree —1, by Euler’s theorem

S(bgptngttegt)==a. (5139

35‘
Equation (5.134) therefore reduces to (cf. eq. [5.130])
ZEIm g @mimrl) = 2T+, (5.136)
or alternatively, using equation (5.131),
Z:n dt,(zm mire;)=2E—Q. (5.137)

The relations (5.136) and (5.137) are due to Lagrange and Jacobi.?

Equation (5.137) enables us to derive an important condition for
the stability of a cluster. Now Q is essentially negative (cf. eq.
[5.106])). Consequently, if E is positive, the second derivative of
Zmm,r}, will always be positive, and the first derivative will increase
indefinitely with the time. Thus the first derivative, even if nega-
tive initially, will become positive after a certain time and therefore
Zmm;r}; will increase without limit. This implies that at least one
of the distances must tend to become infinite. We have thus shown
that a necessary (but not sufficient) condition for the stability of the
cluster is that E must be negative.

Further applications of Lagrange’s identities to the dynamics of
the clusters will be found in the following sections.

5.2. The dispersion of the velocities in a cluster. The time of relaxa-
tion and the mean free path.—As we have already remarked in § 5.1,
the dynamics of an isolated cluster is strictly equivalent to the
classical #-body problem. If we refer the motions to a frame of refer-
ence in which the center of gravity of the cluster is at rest, then,
quite generally, we can infer the existence of only the energy and the
angular-momentum integrals; in addition to these integrals we also
have Lagrange’s identities. It does not appear that we can go very

2 These relations for the special case of the three-body problem were first obtained
by Lagrange (0p. cit., IX, 836, and VI, 260). However, in their most general forms they
are really due to Jacobi, who derived them in his Kénigsberg lectures during the winter

of 1842-1843. They were later published by Clebsch in 1866 in his very well-known
edition of Jacobi’s Vorlesungen.



200 PRINCIPLES OF STELLAR DYNAMICS

much beyond this from a strictly dynamical point of view. How-
ever, physical considerations would rather suggest that we seek a
statistical description of the star clusters. It is on these lines that we
shall try to analyze the general aspects of the problem.

We shall begin our discussion by assuming that the cluster is in a
statistically steady state. We should then conclude that

Sm;m;r:; = constant . (5.201)

According to Lagrange’s identities (egs. [5.136]) and [5.137]) we now

have
2T+Q=0; 2E—-Q=0, (5.202)

or
2T=—-Q=—2E. (5.203)

It will be remembered that T represents the total kinetic energy of
the residual motions (i.e., the motions relative to the center of
gravity of the cluster). Thus

2T =Zm; (v + vi4v?) . (5.204)
Further,
=Gz B, (5.205)
1)

For the sake of simplicity, we shall first consider the case when
all the cluster members have the same mass, m. We can then write

=nm*=Mo?, (5.206)

where V7 denotes the root mean square velocity of the cluster
stars, and M is the total mass of the cluster. We can obtain a similar
expression for Q. Since the summation on the right-hand side of
equation (5.205) contains #(n — 1)/2 terms, we can write
_1Gmn(n—1)

2 B , (5.207)

Q=

where R denotes the “‘average’” radius of the cluster. For practical
purposes it would clearly be sufficient to write

1Gm’n? _ _1GM*

From equations (5.203), (5.206), and (5.208) we obtain
JiolGnm _1GM
v =t (5.209)
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or, expressing the mass and the radius in units of solar mass and
parsec, respectively, we find

Vr=4.63X10"? \/A—{ km /sec. (5.209")

If we apply this formula to the Pleiades (M = 3000 R =35
parsecs) we find
V9% =0.43 km /sec (5.210)

which is in fair agreement with the observed dispersion of the
velocities (§ 1.8, eq. [1.81]).

More generally, the magnitude of the mean residual motions pre-
dicted by the formula (5.209’) can be seen by an inspection of Table
8 where we have tabulated (7%)/2 as a function of M and R for a few

typical values.
TABLE 8*

THE PREDICTED DISPERSION OF THE VELOCITIES IN CLUSTERS

100 0 46 0.33 023 015 0.07 0 05
409......... 0.93 0 66 0.46 029 013 0.09
108 . ...... 1.47 104 073 0 46 0.21 0.14
104......... 4.63 3.28 23t 147 0.65 0.46
100 ... 23.1 14.7 6 55 4.6
105 66 46

* M in solar masses; R in parsecs; Vi in km/sec.

We shall now consider some further applications of the formula
(5.209) for the dispersion of the velocities in isolated clusters.
i) The time of relaxation of a cluster.—In § 2.3 we found for the
mean time of relaxation, 7'z, the expression (eq. [2.379])
1/2 [ v’]m
=T6( ) NG2m? log, [ Dyv?/2Gm ]’
where N is the number of stars per unit volume and D, is taken to be
the order of the average distance between the stars. With # given
by equation (5.209), we have
Dy v?
2Gm

Ts (5.211)

=%n—%’. (5.212)
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But D, is related to # and R by the equation

3 =
§,,(!;_9)n=§,ga (5.213)
or D 2
'j?£=h7/3" (5.214)
Hence,
;@Go_:;_ e (5.215)

N=—7-—7%;. (5.216)

Again, substituting for 7% from equation (5.209) in the expression for
T and using equations (5.215) and (5.216), we obtain

3r\!/2 nRs 1/2
E 16( ) log, (n/23/2) ’ (5.217)

or, expressing m and R in the units solar mass and parsec, respec-
tively, we find

nR3 1
0 4s vears - (5.218)

= 5 e ————
Ts=8.8X10°V" 1

Applying this formula for the conditions in the Pleiades, we find
Te=29X10"years . (5.219)

Comparing this with the probable time scale of the order of 3X10?
years, we at once realize the importance of stellar encounters for
setting up a statistical equilibrium in clusters. Table 9, showing more
extensively the times of relaxation and computed for different values
of n and R, confirms this conclusion for clusters in general. We
should therefore expect that the distribution of the velocities in
clusters is Maxwellian:

3
de=]\7-173—,z e~ dud ydw (5.220)
where ) 4T -
1 _35_4T_ 29
E =33 (5.221)

i) The mean free path.—Having found that the time of relaxation
of a cluster is short compared to its probable age, it is of interest to
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estimate the mean free path of the cluster members. For this pur
pose we shall again use the results of chapter ii.

If we define the mean free path A(v) to be such that the probabil
ity of a star’s moving with the velocity v and traversing a length .
without suffering the expected change of energy of amount VZAE? s

e~ i@ (5.222)
then (eq. [2.504]) :

24

M) = 35N GimiG (z) log, [ Dov?/2Gm]

(5.223)

where x, = jv and G(x,) is the function tabulated in Table 6.
For stars moving with average speed 7, we have (eq. [2.510])
1‘)4

NGimilogy [ Det?/26m] " (5:224)

A(7)=0.0204

For a Maxwellian distribution of the velocities the relation be-
tween # and 22 is
5= 78— ~0.848877, (5.225)

Hence, according to equations (5.209) and (5.215),

Gnm Dov
D2 = =
92=0.4244 ; Cm

7 =0.4244n28. (5.226)

Substituting the foregoing relations in equation (5.224) and after
some further reductions, we find that

A(9) n

TR 0023 (5.227)
It is remarkable that the quantity A\(7)/R depends only on the
number of stars in the cluster.

In Table 10 we have tabulated the ratio A(#)/ R as a function of #.
An inspection of this table shows that except in the richest of the
galactic clusters the mean free path is of the same order as the
dimensions of the cluster.

In regarding \(?) as defining the average mean free path for the
stars in the cluster, it should be noted that in general the stars would
suffer quite appreciable changes in their energies and directions of
motion even before traversing this length, X\. For, from the manner
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in which we have defined A\, it follows that during the time taken
for a star to describe the mean free path A, the probability that
V/ZAE? becomes equal to E is (1 — ¢~!) = 0.63. Consequently, the
probability that the star suffers appreciable changes in its energy
and direction of motion is quite considerable even for smaller dis-
tances. Thus, aftes traversing a length of only a sixteenth of \, the
probability that a star suffers a change of energy of amount
VZAE? = 0.25E is seen to be 0.63.

We can therefore conclude that the cluster members continue to
wander among themselves. This is certainly true of clusters with
less than 250 stars.

TABLE 10
THE MEAN FREE PATH IN GALACTIC CLUSTERS

" 1000 500 400 300 200 100 75 50 25

A0
0

~

9.5 5.4 45 3.6 2.7 16 13 1.0 0.7

5.3. The rate of disintegration of clusters by the escape of stars.—
As we have already shown in § 5.2, the time of relaxation of a
galactic cluster is very short compared to the general time scale.
Thus, while the time of relaxation is of the order of 3X107 years,
the accepted time scale is more nearly 3 X10° years. This short time
scale raises some quite serious questions concerning the degree of
permanence of these objects. The manner in which such considera-
tions arise may be seen as follows:

We recall that, according to the general ideas outlined in chapter
ii, the time of relaxation is essentially the time required for the
setting-up of a Maxwellian distribution of the velocities in a system.
Alternatively, if the statistical equilibrium of the system is dis-
turbed at any time, it will take a time of the order of T to recover
its original equilibrium. On the other hand, the existence of a
Maxwellian distribution implies that a small, but finite, fraction of
the total number of stars in the system will have velocities sufficient
for their escape from the gravitational attraction of all the other
stars. If and when these stars escape, the statistical equilibrium will
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be disturbed. But after a time Tg, new stars with the necessary
velocities for escape will again come into existence. On the escape
of these new stars with the requisite velocities, the sequence of events
will be repeated. In this manner there will result a continuous loss
of stars from the system, leading to a gradual disintegration of the
system. While we cannot assume that this prqcess will continue
indefinitely, it is clear that the problem we are here encounteying is,
in its broad aspects, analogous to the problem of the escape of mole-
cules from the planetary atmospheres.
According to equation (5.105), the potential energy of a star is
given by
Q=—Gm; y —I. (5.301)

The kinetic energy necessary for this star to escape from the system
is therefore —;. The average value of this quantity is readily ob-
tained. For, by comparing Q; with the expression (5.106) for the
total potential energy of the system, we obtain

S a=10. (5.302)
Hence, )

Eco=‘—;Q, (5.303)
where we have used E= to denote the average kinetic energy required
for escape.

Using equation (5.208) for 2, we find
= Gm?n
or c
L= —%ﬁ ) (5.305)

where (7Z))V/2 represents the root mean square velocity of escape.
Comparing equation (5.305) with the formula (5.209) for %, we
obtain

o2 =402, (5.306)

In other words, the root mean square velocity of escape is twice the
root mean square velocity.
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In statistical equilibrium, the fraction Q of the total number of
stars with velocities greater than (7%)¥2 is given by (cf. eq. [5.220])

,,, f_ e=i™ydy (5.307)

But, according to equations (5.221) and (5.306),

2 =
v =

(5.308)

<%l o

Hence,
(?—_ e—z’dex , (5.309)
1I'1/2 f‘/i

or, as may be readily verified,

0= 2() —6+1——~—f e-#dx.  (5.310)

Numerically, it is found that
) 0=10.0074; (5.311)

this, then, is the fraction of the total number of stars in the cluster
which have velocities greater than the average velocity of escape.
But we cannot therefore conclude that all these stars will necessarily
escape from the cluster. For, if these stars suffer even a few en-
counters before they finally “emerge” from the cluster, they may
lose a sufficient fraction of their energies to prevent them from
escaping. Disregarding this contingency for the present, we may
say that the rate of escape of stars from the cluster is given by

An
= —0.0074 Tz (5.312)

Since the time of relaxation of the galactic clusters is of the order
of 3 X107 years, it follows that equation (5.312) implies a relatively
rapid rate of disintegration of these clusters. This important aspect
in the evolution of the galactic clusters was first fully recognized by
Ambarzumian and Spitzer.?

Finally, substituting for Tk according to equation (5.217),

dn _ 12 (Gmn
o—-16() 0 )log,zm, (5.313)

3 Ann. Leningrad State University, No. 22 (Astronomical Ser., Issue 4), p. 19, 1938;
L. Spitzer, M.N., 100, 396, 1940.
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or, expressing length, mass, and time in units of parsec, solar mass,
and year, respectively, we find

1/2
%%=_8,4x1o—s(—%§) (logw n— 0.45) .  (5.314)

In the form (5.314) we readily see the importance of this phenome-
non for the evolution of clusters.

We shall now return to the matter to which we have already
drawn attention, namely, the question of the mean free path of these
“high-velocity” stars. According to equation (5.223),

— 02 12
A(VL) = —— L Vo] ==, (5.315)
320 NG*m?*G (o) log. [—z—é’;ii]
where x, = j\/ @ Substituting from equations (5.306) and (5.308)
in equation (5.315), we have
[‘zﬁ_]z

NVl = _
2 NG*m2G (V/6) log, [_.7"_]

(5.316)

From the definition of G(x,) (eq. [2.356]) we find that to a sufficient
accuracy

G(V6) =. (5.317)

Finally, substituting from equations (5.209), (5.215), and (5.317) in
equation (5.316), we obtain

MVok) _ 3n
R Tlog, (2in) (5.318)
or, somewhat differently,
M Vah) _ ”
7 _1.301-0gmﬁ—_ﬁﬁ. (5.319)
From this formula we find that
Vi 95  (n=200),
M—=3"—°)-={53 (n=100), (5.320)
30 (n= 50).

On the strength of this evidence it might appear that every star in
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the cluster which has acquired a sufficient amount of energy will
escape without interference from the other stars. But this is not
necessarily true. For, in spite of these apparently long mean free
paths, the stars will suffer quite appreciable changes in their energies
and directions of motions over considerably smaller distances. Thus,
after traversing a length of only one-hundredth of \, the probability
that the star suffers a change in its energy by one-tentk of its initial
energy is 0.63. Consequently, the influence of the other stars in
preventing some of the stars with the requisite energies from escap-
ing cannot be entirely neglected. This is particularly true of the
smaller clusters. But it is clear that the order of magnitude of the
rate of disintegration of a cluster predicted by equation (5.314) is
not likely to be seriously affected by a morc detailed consideration
of the mechanism of escape.

5.4. The escape of stars of different masses from a cluster.—In § 5.3
we consider the gradual impoverishment of a cluster arising from
the loss of stars by escape. But, in estimating the rate of loss, it was
assumed that the members of the cluster are all of the same mass.
We shall now consider the case when there is a small dispersion of
the masses among the cluster members.

First of all, it is clear that the results of § 5.4 will be valid for the
general case, if m is taken to refer to an average mass, 7, of the stars
in the cluster. In other words, we may use equation (5.312) to give
the rate of escape of the average stars. Thus (cf. egs. [5.307] and
[5.312)),

A _amim) _elm) (5.401)

where, according to equation (5.307),

0y =210 [® p=imryag (5.402)
m —1r‘1/2 ‘/;:;_ v 2. .

In equation (5.402), we have used j to indicate that reference is now
being made to an average modulus.

We shall now suppose that the cluster contains a few stars which
have a mass, m,, different from 7. If the total number of these stars
is small compared to n(#%), we can ignore the encounters among
themselves and take into account only their interaction with the
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other stars. We can therefore regard these stars as a group moving
through the field of the average stars. The situation is thus the
same as that contemplated in subsections (ix) and (x) of § 2.3. Ac-
cordingly, the mean time of relaxation of these stars is given by
(eq. [2.377])

9 (2 +42)

T (m) = 1287Y2NG*m?j j5 log qv*’ (5,403)
Hence, Fy(m) 1 .
leg\my) _ 24 s2y3/2

Tg(m) 23/2 (,7 +]2) jg ) (5.404)

or, somewhat differently,

TE (mz) fl ]'2) 3/2 .
-72

Ty (i) (5.405)

There is an approximate relation between the ratio of the j’s and
the corresponding ratio of the masses, which we can write down.
For under the conditions of strict statistical equilibrium we must
require that

v = myv? (5.406)
or, since the root mean square velocities are inversely as the js,
— '2
21, (5.407)
mo ]2

and we can expect this relation to be approximately valid in clusters.
Equation (5.405) therefore becomes

ZT";—((—';’)) (1 m—"i (5.408)

According to this equation, the time of relaxation for stars of masses
which are small compared to that of the average stars is longer.
Thus, for m, = /4, the time of relaxation is about sixteen times
longer.

The increase in the time of relaxation predicted by equation
(5.408) for the smaller masses would tend to reduce the rate of loss
by escape of these stars. But there is another important factor,
which works in the opposite direction. For, according to equation
(5.406), the smaller masses have larger mean velocities, and conse-
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quently a higher proportion of them would have the necessary
velocities for escape. More explicitly, the fraction of the total num-
ber of these stars which have velocities greater than the velocity of
escape is

Q(my) =22 ff e~iiviold, (5.409)

2
Yo

Since (cf. egs. [5.306] and [5.406])

—4gi—gq M2 ._._m‘*’i
4P=4—= vi=6— j.f,' (5.410)
we have
Q(m ) e x2dx . (5.411)
: i/ fmm

Hence (cf. eq. [5.410]),
Q(ma) =2 91”—’) e~/ 41 — (\/6"”)’ (5.412)

where ® stands for the error function.

For my/m < 1, Q(m,) is considerably larger than equation (5.311)
and therefore corresponds to a larger rate of loss by escape. But
this is largely compensated by the increased time of relaxation, ac-
cording to equation (5.408). Thus the fraction of the number of
stars of mass, m,, which escape in the time, Tx(#), is given by

1/2
2 (9..’.”_:?) e—tmi/m 41 — ( 6’”2)
m

0 (s r‘%* " (1 o . (5.413)

The factor (5.413) is tabulated in Table 11. An inspection of this
table reveals the interesting fact that stars of about four-tenths the
average mass are characterized by the maximum rate of loss by
escape. But even at the maximum the rate is only four times
greater than the average. Stars of about one-quarter the average
mass escape only at three times the average rate, and the stars with
somewhat smaller m,/# values do not escape very much more
rapidly than the average stars. Again, stars even appreciably more
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massive than the average stars are characterized by such small rates
of escape that even after 3 X10° years the clusters are likely to have
lost none of their original massive members.

As a result of the differential rate of escape of stars of different
masses from clusters, we may conclude that (i) they retain practical-
ly all the stars more massive than the average; (ii) they have lost a

TABLE 11

THE ESCAPE OF STARS OF DIFFERENT
MASSES FROM A CLUSTER

mz TM:) 0 Ti(m2)

m TE(;) Tg(m)
000 ...... ® 1 000 0 00
005......... 680 0 896 0013
0075 . 256 0 825 0032
010 . 129 0 753 .0058
0125 .... . 76 0 682 0089
015 ... . 50 0 615 0123
020 ......... 26 0 494 0190
025 . ...... 15 8 0 392 0248
0.30 ...... 10 6 0 308 0290
0 35 7 65 0 241 .0315
040 ...... 579 0 187 0323
045.. ...... 4 54 0 145 .0318
050....... 3 67 0 112 .0304
055 . 3 04 0 0858 0282
0 60 . 2 57 0 0658 .0256
070... 191 0 0384 0201
08 ......... 1.49 0 0222 0149
090.......... 1.21 0 0129 0107
1.0..... ..., 1 00 0 00738 .0074
11 0 848 0 00422 .0050
12, 0.731 0 00241 .0033
13. 0 640 0 00137 .0021
14 0.567 0 00078 .0014
15 0 507 0 00044 0.0009

somewhat higher proportion of the stars of about four-tenths the
average mass than either the more or the less massive stars; and
(ili) they probably retain all their least massive members which are
likely to be still far from a state of complete statistical equilibrium.

Finally, it should be remarked that even the differential rates of
escape indicated in Table 11 are likely to be overestimates, for the
less massive stars will have a tendency to be in the less dense regions
of the cluster. This will therefore increase the time of relaxation of
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these stars more than by the factor (5.408); and this, in turn, will
tend to reduce the rate of loss still further. But, broadly, we may
summarize the results of this discussion by saying that, while we
should expect differential rates of escape for stars of different
masses, it is unlikely that factors larger than 3 or 4 are involved.

5.5. The effect of galactic rotation on the dynamics of clusters.—
In the preceding sections we have restricted ourselves to the dy-
namics of isolated clusters. The special simplifying feature of this
case is that the motions can be analyzed into two distinct parts:
the part referring to the motions of the individual cluster members
with respect to their common center of gravity and the part referring
to the motion of the center of gravity. And, since the latter is a uni-
. form motion in a straight line, the only significant aspect of the
dynamics is that relating to the residual motions. But, in practice,
the galactic clusters share in the differential rotation of the Gal-
axy, and under these more general conditions we cannot expect
that the motions can still be analyzed into the same two parts in
any simple manner. Physical considerations would, however, sug-
gest that, to the extent that the notion of a cluster is definable, to
that same extent we should be able to analyze the motions simply
into the two parts referring, respectively, to the motion of the center
of gravity and the motions with respect to it. In a first approxima-
tion we can therefore suppose that the center of gravity of the cluster
describes an orbit in the external field of force represented by the
gravitational potential 8 and that the cluster members have addi-
tional residual motions with respect to the center of gravity. On
this scheme, the force acting on a star in the cluster can be ex-
pressed as the sum of two terms: the first representing the interac-
tion of the star under consideration with the other cluster stars and
the second arising from the general gravitational field.

Now the variation of ¥ over the spatial extent of the cluster will
give rise to what is essentially a tidal field. The question naturally
suggests itself: Will the tidal field succeed in disrupting the cluster?
In a general way it is clear that, if the density of the cluster is
sufficiently high (cf. § 5.6), the disintegrating tendency of the tidal
field can be neglected. But if the cluster is “loose,” then the tidal
effects will become very pronounced. In the former case the ideal-
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ization of clusters as “isolated” is a satisfactory one; in the latter
case this notion largely loses its meaning.

The simplest case of the problem we have outlined above is when
the center of gravity of the cluster describes a circular orbit in the
galactic plane—in other words, the case of a cluster sharing in the

Y

<z
>

o X

Fic. 24.—Illustrating the co-ordinate system appropriate for studying star clusters
sharing in galactic rotation. O denotes the center of the Galaxy and C the center of
gravity of the cluster (distant @ofrom 0). C isassumed to describe a circular orbit about
O with a constant angular velocity w.. The {- and the n-axes are in the radial and the
transverse directions, respectively, and the {-axis (not shown) is perpendicular to the
plane of the paper.

galactic rotation. This problem was first considered by Bok and
later in a more extensive study by Mineur.

We accordingly picture to ourselves a cluster moving in a field
which is characterized by both an axis and a plane of symmetry.
More particularly, the center of gravity of the cluster is assumed to
describe a circular orbit in the galactic plane. If we denote by @,
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the constant distance of the center of gravity of the cluster from the
galactic center, then the rotational and the angular velocities are
given by (eqs. [4.311] and [4.312])
9% 1998
e‘:=<mE N w3=(5—55 X (5.501)
where the subscript 0 is to indicate that the quantity in parenthesis
is to be evaluated at @ = @, and z = 0.

The nature of our present problem suggests that we introduce a
frame of reference rotating uniformly about the z-axis with the angu-
lar velocity w.. We shall choose the origin of this frame of reference to
be at the center of gravity of the cluster and denote by £, 3, and {
the distances measured from this origin along the radial, the trans-
verse, and the sz-directions, respectively (see Fig. 24). The trans-
formation from the stationary frame (x, y, 2) to the rotating frame
(&, m, ¢) is governed by the formulae

@+ E=xcos 0+ ysin 6 ; n=—xsinf@+ycosd (5.502)
and -
x=(@+¢)cos0—nsind; y=(mp+¢)sind+ncosd, (5.503)

where
= wcl. (5.504)
i) The equations of motion in the rotating frame of reference.—The
equations of motion of a star in the cluster are most conveniently
expressed in terms of the Lagrangian function

L=T-mB-Q, (5.505)
where T denotes the kinetic energy and 8 the general gravitational
potential which is a function of @ and z only; finally, Q is the poten-
tial energy of the cluster
g=-Gy ™™ (7). (5.506)

L rij

The explicit expression for T is readily obtained. According to
equations (5.503) and (5.504),

t=§cos0—ssin 0— 0] (mp+ &) sin 6+ ncosb],
= £ cos 0 — fsin 6 — w.y .

} (5.507)
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Similarly,
y =§sinf@+ncos twx. (5.508)

From equations (5.507) and (5.508) we obtain
P24 gt= 4 92— 2w.En+ 209 (@ + §)
+oil (m+ )+t
Hence, the Lagrangian function takes the form
L=m{} (4 7+ {?) — wén+wei (@+ §)
Hiol @+ £) 24221 —mB (lm+ 12417 ) -2

The corresponding Lagrangian equations of motion are

. L 9 Q
sz %% =m(g_wcf,)=6E—m(w.n+wf(wo+5) g T
0% 89

oL
2 -ntitub == m(—at+an-50)-71, - H(5511
d aL . B 90

ag)= ™8 "ot "o

} (5.509)

} (5.510)

or, since

B _w+td8 9B 199
= a5 3y nde (5.512)

we have

m(E= 2w lm+ g]) = —m 2FEID I,

¥ 00

. _ 2 - — _71 g ok
m (5 + 20§ — wen) m- FER (5.513)

0B 0Q
8y ot

The foregoing equations are exact. We shall now suppose that the
dimensions of the cluster are small compared to @, and neglect all
quantities of order higher than the first in £, #, and ¢.

From the relation

m¢ =—m

o= (@ +§)2+1?, (5.514)
we conclude, to the first order,
@ = @y + £ + higher-order terms . (5.515)
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Hence,
oo+ £ a 23 ( ) !
p- + ¢ Y + higher-order terms ,
1 6_ 5§ ( 19 23) —
Py % 9 + higher-order terms , (5.516)

4B 98 .
i ¢ (57)0 + higher-order terms. »

In the last of these equations we have used the fact of the sym-
metry of B about the galactic plane. Substituting from (5.516) in
equations (5.513) and using the relation (5.501), we obtain

mi(gz_2w1ﬁ1+alsu)=—g§£, (5-517)

m:(nl+2wr£z) =—aa;z, (5-518)
and aﬂ‘

m, (£, +asf.) =~37 (5.519)

where we have written
2 2
wm(TB LTy _(PB) (5 )

0wt @ 9w /o 922/,

further, in equations (5.517)-(5.519) we have introduced the sub-
script ¢ explicitly to draw attention to the fact that these are the
equations of motion of a particular star in the cluster and that there
are similar equations for the other cluster members.

il) The energy integral.—Multiplying equations (5.517), (5.518),
and (5.519) by £, 4, and ¢,, respectively, and adding, we obtain

Em; (E:Ei+ i+ §6D) + aZm, f.'f"l'aazmif':i'e }
sa\  dq b(5.521)
——Z(ét +7h +§-ia‘_ =—-(7t—,

an equation which admits of immediate integration. We have
Zmi(Ei+ i+ )+ 2+ daZmiE }(S 522)
+}a;=m ;¢ = constant . '

Equation (5.522) represents the analogue of the energy integral
(5.128).
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iti) The angular-momentum integrals.—From the equations of
motion (5.517)-(5.519) we readily obtain
Zm (= Emi) + 20.2m, (&, £+ n0) — a2y

SSrs ——->}

Zm, ($imi— iifs) = 20Zmil +aa~m;ms“.

“Z(f- L) }(s 524)
and

zmi(giri'— ttft)_ 2w Zm. ¢, + (al_ aa)zm i El

~Z(E. }(5 525)

On the other hand, according to equation (5.113) the right-hand
sides of the foregoing equations vanish identically. Hence,

zm, dit (hiki— €imi) +wZm, Ed—t (249 —aZtm. =0, (5.526)

zm‘%(f"““"’*m 20Zm ¢ b+ aZmmti=0, (5.527)
and

Zmi o (és“. Cit)—2wEm. o0+ (a1—ag)Em, 0 £:=0. (5.528)

These equations do not lead to any immediate integrals of the
equations of motion unless the cluster satisfies certain symmetries.
Thus, if we suppose that the cluster is symmetrical with respect to
the £¢- and/or n¢-plane, then

Em =0, (5.529)
and equation (5.526) leads at once to the integral
Smi (Eti—ni€s) +wEm(§:+12) = Ay = constant . (5.530)
If we further suppose that
Emitbi=Zm i =Zmmif,=2Zm;t:6,=0, (5.531)
then equations (5.527) and (5.528) lead to the'two further integrals
Emi(n:fi— ¢in:) = Ag = constant , }

Zm;(¢:éi— £:§,) = A, = constant . (5.532)
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Equations (5.530) and (5.532) are our present analogues of the
angular-momentum integrals which exist for an isolated cluster.

iv) The gemeralized Lagrangian ideniities.—According to equa-
tion (5.134) we have quite generally

1

2

+2m;(Ei£;+mii.~+§'.§"») ’
or, using the equations of motion (egs. [5.517]-[5.519]),

1

YT dt’ (Em miri) =Zm; (£ + 4+ &

+20.Zm; (£0:— £0.) — a:Zm £ — asZm ¢ (5.534)

‘”E(Et +n'6m+{’3§'

Since @ is homogeneous and is of degree —1 in the co-ordinates, we
have

1

2
s 35 (Smomirt) =D (4 i+ £ +0 }(5.535)

+2wc~ml(£ini 7’12 )—al m, E;“aaa-m g‘l .

If the cluster satisfies the symmetry condition (5.529) we can
simplify equation (5.535) still further by using the angular-momen-
tum integral (5.530). We thus obtain

1

2
S g Smom,rh) = Zms (B i+ £ +0+ 2udr } (5.536)

- Zwrzmi(£z+ﬂ:) - al—'mifz— asﬂmtg-i .

This is our present analogue of Lagrange's identity (5.136).
For a cluster in a statistically steady state equation (5.536) re-
duces to

2T+ Q4 20, As = a,.Zm; &2 + aaZm {1+ 20 Zm (£54+03) , (5.537)

where, as in § 5.1, we have used T to denote the total kinetic energy
of the residual motions in the cluster. In addition to equation
(5.526), we also have the energy integral (eq. [5.522])

T4+Q=—4%{a:Zm;t + asZm ;%) +constant . (5.538)
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5.6. The stability of a homogeneous ellipsoidal cluster—In § 5.5 we
obtained the equations of motion for the stars in a cluster sharing in
the galactic rotation. In continuing our discussion of the dynamics
of such moving clusters, we can have recourse to one of two methods:
Either to consider the clusters as being in statistically steady states
and follow the general lines of §§ 5.2-5.4 but using the relations
(5.537) and (5.538) appropriate to the case on hand or replace the
cluster by a smoothed-out distribution and analyze the motions of the
individual stars in terms of the explicit solutions of the equations of
motion (egs. [5.517]-{5.519]). As to which of these two methods we
should adopt in practice will depend on the time of relaxation of the
cluster under consideration. For the standard galactic clusters the
statistical method should be preferred as physically the more ap-
propriate of the two. However, the second method leads to an inter-
esting criterion for the stability of a cluster against the shearing ef-
fect of differential galactic relation. Accordingly, we shall follow the
second of the two methods in this section. On this scheme, © be-
comes a function of the co-ordinates of the star only and the equa-
tions of motion can be solved in principle.

For the sake of simplicity, we shall suppose that the smoothed-
out distribution in the cluster can be approximated to a homo-
geneous ellipsoid. Then Q will take the form*

Q=—3mBo+3m; (B8 +Bani+Bs8Y),  (5.601)

where B, 81, Bz, and B are constants depending on the density and
the geometry of the ellipsoid. More explicitly, we have

Bz = wGpPB;(a:b:c) ; (5.602)

Br=wGpB] (a:b:c) ; }
Bs = nGpBji(a:b:c),

where p is the density of the ellipsoid and g;, (;, and B; are pure
numbers depending on the ratio of the axes @, b, and ¢ of the ellipsoid
only. Extensive tables of these functions have been published by
Mineur.®

4 Cf. eq. (4.501), which gives the potential of an oblate spheroid.
8 Ann. d’ap., 2, No. 1, 1939; see particularly pp. 199-213.
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For € of the form (5.601) the equations of motion (5.517)-(5.519)
become

E— w1 —0,
f wen+ (ar+B1) € } (5.603)
n+2wc£+ 62773():
and .
£+ (as+Bs)=0. (5.604)
Equation (5.604) admits of immediate integration. We have
¢ =tocos qa(i+1), (5.605)
where {o and ¢; are constants of integration and
gs=as+Bs. (5.606)

Equations (5.603) are two simultaneous linear second-order dif-
ferential equations with constant coefficients for £ and # and can be
solved by standard methods. Substituting

= fpe'rt; g =mnoe't (5.607)

(where&o, 70, and ¢ are constants), in equations (5.603), we obtain
(ar+B1— ¢*) &o— 2wigno=0,

2wigEo+ (Ba— ¢*) mo=0; }

the compatibility of these two homogencous linear equations requires
that

(5.608)

(a1+l31-)~41’ — 2w.iq |=0’ (5.609)
2wiq B2 — ¢*
or, expanding the determinant,
¢*— ¢*(ar+B1+B:+4w) +2(as+B1)=0. (5.610)
Hence,
g =14 (a1 + 81+ B2 +4w0)
£ 3V {aFB8:i+B:t4w) =462 (ar+8) -

Accordingly, there are two possible roots for ¢2. Both these roots are
positive if a; 4+ B; > 0; the corresponding roots for ¢ are therefore
all real. But if a; + 81 < 0, one of the two possible roots for ¢ be-
comes negative, and the corresponding roots for g are therefore
imaginary. In the former case (a; + 81 > 0) the solutions will in-

} (5.611)
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volve only the circular functions and the solutions correspond to
stable oscillations. In the latter case (a; 4+ B; < 0), the solutions
will involve the hyperbolic functions as well, and ¢ and 7 will in-
crease indefinitely. Thus the condition for dynamical stability is

a1 +6:>0. (5.612)

According to equations (5.520) and (5.602), the foregoing condition
takes explicitly the form

#8148
00?2 @ Iw

)o+1erﬂ{>0. (5.613)

The inequality (5.613) can be expressed more conveniently in
terms of observable quantities as follows: From equation (5.501),
we readily obtain the relation

3B _ 1948\ _,6.(d6. 8,

9 won) 2m\dm @l (5.614)
or, in terms of the Oort constants 4 and B (egs. [1.428])
a=44A(B—-A4). (5.615)
Thus the inequality (5.613) is equivalent to
p>p*, (5.616)
where
p"‘=;z;%zA(A—B). (5.617)

In other words, the dynamical stability of a cluster requires that its
density exceed a certain critical value p*.

Expressing the density and the Oort constants in units of solar
mass per cubic parsec and km per second per 1000 parsecs, we find

that
A(4—-B)

B
For the values of 4 and B given in chapter i (eq. [1.422]) (5.618)
becomes

p*=3.0X10"* (5.618)

«_0.165
p B; .
The critical densities required by the formula (5.619) for oblate
spheroidal clusters for various values of the ratio of the axes c/a are

(5.619)
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given in Table 12. It is seen that these critical densities are con-
siderably smaller than those which we ordinarily encounter in
galactic clusters. Thus the average density of the Pleiades (~ 1.7)
is about fifteen times the critical density; similarly for the Praesepe
the corresponding factor is 20.

TABLE 12*

THE MINIMUM DENSITIES OF OBLATE SPHEROIDAL CLUSTERS
FOR DYNAMICAL STABILITY

c/a B o* c/a 8 o*
0.1......... 0.278 0.59 0.5........ 0.946 0.17
2 .499 .33 06...... . 1 048 .16
B .677 24 0.8........ 1211 .14
04......... 0 824 020 1.0........ 1.333 0.12

* The density is expressed in the unit of solar mass/(parsec)3.

Returning to the solutions of the equations (5.603), we have, ac-
cording to equations (5.607) and (5.608),

E= £or cos q1 (¢4 4) + o2 Cos q2 (¢4 1)

_.‘% ——2 £o1 5in ql(t+tl)+ =

oty (5.620)

P oz sin g2 (141) ,

where £o, £z, 41, and £ are constants of integration and ¢, and ¢,
are the two positive roots derived from equation (5.611). The fore-
going solution is valid only when a; + 8; > 0. But when a;, + B is
negative, one of the two (positive) roots becomes imaginary; and,
if we denote this root by 7g,, the solution is seen to be

E= £orcos ¢ (84 4) + %02 cosh g2 (¢+1) ,

=2
T B

2ugs (5.621)

501 sin ¢, (¢4+4) — Bt g2 £o2 sinh g2 (¢4 2) .

5.7. The effect of stellar encounters on the dynamics of clusters.—
In our discussion in § 5.6 we replaced the cluster by a smoothed-out
distribution and assumed further that the interaction of a star
with the other cluster members can be derived from a potential
function Q(, #, ¢). The advantage of this procedure is that the
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equations of motion (egs. [5.517]-[5.519]) then become separable in
the co-ordinates of the different stars, and the motion of any one
of them can be considered independently of the others. On the other
hand, our study of isolated clusters (§§ 5.2-5.4) has shown the pri-
mary importance of stellar encounters in the dynamics of these ob-
jects. It would therefore appear that the procedure adopted in
§ 5.6 is not an entirely satisfactory one for the treatment of clusters.
But we shall now show how the solution obtained in terms of a
potential function 2 can be generalized to take into account the
effect of stellar encounters in a higher approximation.

It appears that in a general way we can describe the interaction
of a star with the rest of the system as follows: Each star describes
an orbit in the gravitational field of the smoothed-out distribution
of matter in the system unless otherwise involved in stellar en-
counters. In other words, we suppose that the motion of a star can
be described in terms of @ except when disturbed by the relatively
near passages of stars. If we ignore ternary and higher-order en-
counters, we can idealize the passages of stars as a succession of
binary encounters. Thus, when not involved in an encounter, the
motion of a star will be governed by the general gravitational field.
But during an encounter there will be an additional force acting on
the star, the magnitude and the duration of which will depend on
the initial parameters describing the encounter.

Quite generally, an encounter will define three functions

FE(I)) Fﬂ(t): and F!‘(t)) (5701)

which give the components of the force acting on a star (per unit
mass) along the three directions indicated and for the duration of
the encounter. A knowledge of these functions will enable us to de-
termine the effect of the encounter on the orbit originally described
under the influence of the field Q. At the end of the encounter the
star will again be left to pursue a new determinate orbit under the
sole influence of the gravitational field. This will continue until the
next encounter occurs. In this manner the effect of stellar encounters
on the motions of stars can be followed.®

We shall illustrate the method outlined in the preceding para-

¢ The method which we have described was originally devised by Jeans.
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graph by considering the motions of stars in a homogeneous el-
lipsoidal cluster.

The general solution of the equations of motion, outside of en-
counters, has already been obtained in § 5.6. We shall re-write the
solutions (5.620) and (5.605) for £, n, and ¢ in the forms

¢= (&1 cos g1t + &2 sin g48) + (£12 cos ot + £aa sin gat), } (5.702)
n=N{(£u sin qui— £a cos g1t) +No( £12 8in gal— £a2 COS ¢at),
and
¢ = ¢isin gst+ &2 cos gst, (5.703)
where &, &1, . . . ., {2 are all constants and
M=l o ey (5.704)

Ba— ¢’ T B— gt

During an encounter the equations of motion (5.603) and (5.604)
become

E — 2w =Fy,
% ".I+(a1+31)£ ¢ } (5.705)
i+ 2w € + Ban =F,,
and
§+(as+Bs) ¢ =Fr. (5.706)

Consider, first, the equations (5.705). The general solution of
these equations can be derived from the solutions of the correspond-
ing homogeneous system by the method of the variation of the
parameters. We assume, therefore, that the solutions (5.705) are of

the form (5.702); but £y, . . . ., &2 are now to be regarded as func-
tions of time. However, we restrict &y, ...., f» to satisfy the
conditions

(£11 cos qui+Ea sin qut)+ (i cos gat+ b sin gat)=0, \

) . (5.707)
M( €1 sin gy2— £y cos 1)+ Ne( 12 sin g1f— g5 cOS ¢o£) =0 . J

Substituting the formal solutions (5.702) in the equations (5.705)
and making use of equation (5.707), we find that we are left with

¢ (£11sin g1z — £, cos g1f) + g2 (€12 sin gaf
— &35 cos got) = —F¢,

Mg1 (£ cos guf + €21 sin if) + Nag2 (€12 cos gt
+ Ezz sin qzl) = Fr, .

(5.707")



226 PRINCIPLES OF STELLAR DYNAMICS

Equations (5.707) and (5.708) can be solved for £y, . . . ., . We

find .
£,= aF,cos git+ N\;bF¢sin ¢yt

£51= aF,sin gt — N\bF;¢ cos q,¢ ,

(5.708)
€= —aF, cos gst — N\ bF¢ sin ¢t ,
. 522 = —akF, sin Q2t+ M bF¢ cos g2, .
where 1 1
1 (5.709)

e b=,

NG Mg Agz— Aaqy
The solutions of equations (5.708) can be readily expressed in the
form of integrals. Thus we have

t t
tn= Ello+aﬁ F, cos q17d7+x2bﬁ Fesin ¢,7d7, (5.710)

where £159 is a constant. There are, of course, similar expressions for
£x, &2, and &y Substituting for the £;;’s, accordingly, in equation
(5.702), we find that the general solutions of the equations (5.705)
take the forms

t
E"—'fo(t)‘*"aAF.,cosql(t—r)dr
t t
—kgb_[lF;sin ql(t—-r)d'r-—a’[l Fycos qo(¢—7)dr
t
+Mb [ Fesin go (1~ 1) dr

t
ﬂ=ﬂo(t)+)\10ﬁFnSin @ (t—r)dr r (5.711)
t
+X1X2b[‘l FE Cos ql(t—'r)d‘r
t
-Azaﬁ Fysin ¢ (¢ —7)dr

t
- klx,bﬁ Frcos q2(¢— 1) dr ) )

where we have written £,(¢) and 7,(¢) for
&0 (£) = £110 COS 12+ £a10 Sin g1f+ £120 COS gat+ £ano sin gof
(5.712)

0 () = M\ (£110 Sin ¢12 — E210 COS ¢18)
4 e (£120 Sin gat — a9 COS @at) ,

where £ng, . . . ., 290 are all constants.
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Equation (5.706) can be solved by similar methods. We find

£ = So()+— [ Fesin ga(t=1)d (5.713)
= {o qx ¢, g q3 T T, .
where

g'o(l)=§'108in Q3t+_§'20COS qat, (5714)

and {10 and {3 are constants.

Now the periods of oscillation associated with the harmonic terms
in the preceding equations are generally of the order of 10® years.
On the other hand, the times during which stellar encounters effec-
tively terminate are somewhat less and are of the order of 10°~7 years.”
We can therefore interpret the solutions (5.711) and (5.713) in the
following manner: The complementary functions £y(¢), 70(¢), and
¢o(t) represent the orbits which the star would have described had
there been no encounter, and the particular integrals refer to the
changes in the co-ordinates induced by the encounter. We can thus
re-write the solutions (5.711) and (5.713) in the forms

E=t () +AE; =n(t)+An; ¢=¢ () +A¢ (5.715)
where

At =alcos g, (¢— 1) —cos g2 (¢ — 75) 1AQ,
— b| Ngsin g1 (¢— 73) — Ay sin ¢2 (¢ — 74) 1AQ:,

An=a[ X\ sin g (¢— 75) — Ay sin g3 (£ — 76) ]AQ, (5.716)
+ MAgb[cos g, (¢ — 77) — cos g2 (¢ — 75) 1AQ%,

Ar=;,‘;[sin gs (1= 19) 1A0s .

In the foregoing equations 7;, . . . . , 7o denote certain appropriately
chosen values of ¢ in the respective intervals of integration. Further,

8= [Fedt; 80 = [Frdt; 8= [Fds, (5.717)

where the integrations are to be carried out for the duration of the
encounter.
TE.g., in the field (5.601) the period of oscillation is 2x/V/ ﬂ_‘; or, according to
equation (5.602), the order of magnitude of the periods involved is given by
2r 5 3x107
VxGoB, = _\/;l.;- years

where we have expressed the density in units of solar mass per cubic parsec.
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Equations (5.716) give the changes in the co-ordinates resulting
from a single encounter. A large number of such independent en-
counters may be expected to compound in the manner of accidental,
uncorrelated errors. The expectations for AE, An?, and A{* may
therefore be expressed as

At = a*[cos ¢, (t— 71) — cos gz (£ — 72) |22A0] .
+ b02[ Nz sin g, (£— 75) — Ny sin g2 (£— 74) | 22AQ0%,

An?=a?[A;sin ¢, (¢ — 75) — Ag sin ¢z (1 — 75) | 22AQ5 (5.718)

+ NiNzb2[cos ¢ (¢ — 77) — cos g5 (1= 74) I"ZAQE

Aft= ;; [sin g5 (1= 70) 12240% .
3

The foregoing expressions give the expectations for one particular
initial phase of the oscillation executed under the influence of the
field Q. A quantity of greater interest is, however, the probable
expeclation, i.e., the expectation averaged over all the possible
initial phases of the oscillation. Without much loss of accuracy we
can then replace the trigonometric terms in equation (5.718) by their
mean values. Thus, for the probable expectations we have

AE = 0?2002+ 3 62 (N + ND) 2AQ%

An? = }a? (A} 4\ 2AQ% 4+ NN b22AQ% (5.719)
sz 1 2
2 - T

The quantities AQ;, AQ,, and AQ; have simple physical meanings.
According to equations (5.717), they represent the impulses per
unit mass produced by a single encounter; or, alternatively, (AQ;,
AQ,, AQ;) denotes the net change in the velocity consequent to the
encounter. An explicit expression for this change in the velocity
can be obtained from our analysis of the deflections caused by stellar
encounters in §2.4. If Av|| and Av. denote the changes in the velocity
parallel to and perpendicular to the original direction of motion of
the star, then

Avjj=vjcos (r—2¥)— vy; Av.=psin 2¥, (5.720)
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where (r — 2¥) denotes the true deflection suffered by the star.
From equations (2.415)—(2.418) we readily obtain for 9| and v.. the
expressions

2m1

Av|]=—;”—;m—2[(v2—vlcos 6) c.osw .
+ v, sin 6 cos © sin ¢ ] cos ¢,
2m, \ \ (5.721)
Ave =7n:—_m“2‘ 1)1+ Vo — 21)11)2 cos 6

— { (vg— v, cos ) cos ¢+ v; sin 6 cosO siny}2]V2 cos ¢.
We now require the sums
ZAvf;  and  ZAdi. (5.722)

If we retain only the dominant terms in the evaluation of these
sums, we verify that

A} =777£ﬁ SAE?;  ZAvi=0Zsin? 2¥. (5.723)

272

Accordingly, we have (cf. egs. [2.355] and [2.430])

SA v} =87 NG*mi G (x,) —:; log qv3dt,
. , ) , (5.724)
SAvE =87 NG*miH (x,) P log qvidt,
2

where x; = jv.. In equations (5.724), N and j both refer to the “field
stars,” i.e., the stars which cause the perturbations in the orbit de-
scribed under the influence of Q.

Equations (5.724) make it evident that the effect of encounters
with the other members of the cluster is very much more important
than the encounters with stars extraneous to the cluster. This arises
as the result of two factors: First, the density of stars in the cluster
is several times the density of the background stars, and, second,
the factors G(xo) and H(x,), while they are of order 1 for the cluster
members (cf. Tables 6 and 7), are very much smaller for the non-
cluster stars.® Assuming, then, that the main source of disturbance

8 This becomes apparent when it is noted that x, is a measure of the velocity of the
cluster stars in the units of an average velocity of the field stars (i.e., the disturbing
stars) in a frame of reference in which the center of gravity of the cluster is at rest. It

may be remarked in this connection that the point of view to which we are led by the
equations (5.724) is contrary to the views which have been expressed by Bok and others.
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are the cluster members themselves, we can re-write equations
(5.724) in the forms (cf. egs. [2.360] and [2.433])

AV =1v5 EAvi=v§£t—, (5.725)
Tp
where Tp and Tz now refer to the times of relaxation of the cluster.

Turning next to the sums ZAQ}, etc., we can expect that on the

average

ZAQE = ZAQ: = ZAQF = ZAQ? (5.726)
and that
ZAQ =} (ZAd} +2A0k) . (5.727)
According to equations (5.725), we therefore have
ZAQ? = vz(g%;+§;;) at, (5.728)
or, more conveniently,
TAQ = v} %’ (5.729)
where ST4Ts
T”’zT;T{-—Zf‘;' (5.730)

Finally, substituting for ZAQ? according to equation (5.729) in
the equations (5.719) and introducing also the expressions for ¢ and
b (eq. [5.709]), we obtain

=== 1 I g dt )
A= 5 o
: [(qux— N2¢2) it 2(Neq1— NM1q2) ’] T,
v A+ MAZ 2 dt
2 kel
An [2(7\191— )\2Qz)2+ (Mﬁ" )\1Q2) 2] o2 T’ ( (5'731)
T 1 dt

Equations (5.731) enable us to draw an important conclusion con-
cerning the constitution of clusters whose densities are larger than
the critical values required for dynamical stability, namely, that for
such clusters the specific effects of galactic rotation are negligible.
For under normal conditions the factors in the square brackets in
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the expressions for AZ and 25:1? are of the order 1028, Hence, even
for velocities of the order of 1 km/sec, the expectations V AZ and

\/Z__ﬁi are already of the dimensions of the cluster after a time of the
order of T,,. And, since the time of relaxation is of the order of
3 X107 years, it follows that such clusters must be in statistical equi-
librium. The dynamical considerations of § 5.6 are therefore valid
only for clusters on the verge of stability. However, equations
(5.731) introduce a new factor into our discussion. For according to
these equations the clusters tend to be “loosened” with time, and
this works in a direction opposite to what results from the loss of
stars by escape (§ 5.3). A rigorous theory of galactic clusters must
therefore take both these factors into account. But such a theory is
not yet available.

5.8. The dynamics of globular clusters.—We shall now return to
the consideration of isolated clusters, but this time specifically with
reference to the dynamics of globular clusters.

After a re-examination of Table 9 (p. 203) we conclude that, with
the possible exception of the richest clusters, these objects are likely
to be well advanced in their evolution toward the state of complete
statistical equilibrium. Even in the richest clusters it is possible that
in the central regions statistical equilibrium obtains. Thus the
analysis of the equilibrium of spherical distributions of stars in sta-
tistical equilibrium forms the natural starting-point for the study of
globular clusters.

We begin our discussion, then, by assuming that at each point in
the cluster we have a Maxwellian distribution of the velocities

3
dN = N (r) L emitwtvtehdudodudzdyds, (5.801)

where N(r) is a function of the distance r from the center of the
cluster only. We shall further suppose that j is a constant and has
the same value throughout the cluster. Under these circumstances
the dependence of N(r) on the gravitational potential B(r) can be
readily written down. We should, in fact, have

N(r)= Noe "B (5.802)

where N, is a constant. Equation (5.802) is simply the expression of
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Boltzmann’s principle for the case under consideration. For, accord-
ing to equations (5.801) and (5.802),

3
dN = N, }Jm e~"Edydydwdxdyds (5.803)

where E denotes the energy (per unit mass) of the star. In the form
(5.803) we also recognize that the distribution function on the right-
hand side belongs to one of the types considered in § 3.3 (p. 87),
since it depends only on the energy integral of the equations of
motion.

Finally, we have Poisson’s equation

7237( 2})=47rcp. (5.804)

For the sake of simplicity we shall suppose that all the stars in the
cluster have the same mass, m. Accordingly, from equations (5.802)
and (5.804) we now obtain

Mr( ___) 47GNome—21"8 . (5.805)

Introdicing the new variables
1

equation (5.805) becomes
1 d
‘gag(fz d‘é =ev. ‘ (5.807)

Equation (5.807) is seen to be identical with the equation of equi-
librium of an isothermal gas sphere.?

Again, if we consider N, in equation (5.802) as referring to the
density of stars at the center of the cluster, then equation (5.807) has
to be supplemented by the boundary conditions

—0. 9¥_ -
vy=0; 35_0 (¢=0). (5.808)

Hence the solution which is needed is also the same as the standard
isothermal function in the theory of gas spheres. In terms of this

9 See, e.g., S. Chandrasekhar, An Iniroduction to the Study of Stellar Structure, pp.
155-170, Chicago, 1939.
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function the structure of the configuration is uniquely determined.
Thus the variation of the density of stars through the cluster is given

by
N = Noe~v. (5.809)

Similarly, the distribution of mass is given by

Nom d#’

M(E)= (8 NGMJ2)3/2E dE

(5.810)

The predicted distributions of mass and density are given in Table
13 (see also Fig. 25).

A quantity of general interest is the variation of star density as
counted on a direct photographic image of the cluster. If »(x) de-
notes the observed number of stars (per unit area) at a distance x
from the center of the cluster, then there is a simple integral relation
between »(x) and the true spatial variation of the density in the
cluster as given by N(r). For, since »(x) represents the total number
of stars (per unit area) in the line of sight, we clearly have

y(x)=f_:°1v(s)ds, (5.811)

where ds is an element of length measured along the line of sight. If
we choose the origin of s at the point nearest to the center of the
cluster, then

s?=r2—x? (5.812)
or vy
ds=7=r=3. (5.813)
Hence equation (5.811) becomes
v(@)=2 7 e N (1) dr. (5.814)
After an integration by parts, the foregoing equation reduces to
v(x)=—2 " vr- -—~dr (5.815)

Equations (5.814) and (5.815) are seen to be integral equations
which relate the true space distributions of the stars in a globular
cluster with the observed distributions on a photographic image of
the cluster. These integral equations can be readily thrown into the



TABLE 13*
ISOTHERMAL DISTRIBUTION

3 ¥ 12" ¥(£)/vo ¢ a4 &' »(&)/vo
0.0..... 1.0000 | 0.0000 | 1.000 6.0....| 0.0848 14.35 | 0.0956
04..... 0.9739 | 0.0210 | 0.980 6.4....| .0726 15.55 |........
08..... 0.9018 0.1604 | 0.922 6.6....] .0673 16.14 |........
12.. 0.7992 0.5031 | 0.839 6.8....| .0626 16.73 |........
1.6..... 0.6841 1.084 | 0.741 7.0....] .0583 17.30 .0525
2.0..... 0.5713 1.895 | 0.641 7.2....| .0543 17.87 |........
24..... 0 4696 2.897 | 0.546 7.6....| .0475 1898 |........
2.8..... 0.3829 4 043 | 0.460 80....| .0418 20.06 .0246
3.2..... 0.3114 5284 | 0.384 8.4....] .0370 2112 |........
3.6.. 0.2537 6 581 | 0.319 8.8.... .0329 2215 |........
4.0..... 0.2076 7.905 | 0.265 9.0....| .0311 22.66 .0076
44.. 0.1709 9232 [........ 92....| .0294 23.16 {........
48 ... 0.1418 | 1055 | ....... 9.6....] .0264 2414 {........
50....] 01295 | 11.20 0.162 |[100....| .0238 25 11 | 0.0000
5.2..... 0.1185 | 11.84 |........ 12.5....| .0137 3074 |........
56..... 0.0999 | 13.11 |........ 20.0....| 0 0045 4525 |........

* The solution of the isothermal equation given in this table is taken from an unpublished integra-
tion by Dr. Gordon W. Wares.
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F1G. 25.—The isothermal distribution for globular clusters. Curve 1 illustrates the
radial distribution e—v (cf. eq. [5.809]), and curve 2 the projected distribution »(£), ac-
cording to equation (5.820).
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standard Abelian forms, and the formal solutions can therefore also
be written down. But we shall not go into these matters here.

According to equations (5.815) and (5.809), the predicted form
for »(x) on the isothermal approximation is

l/-
(21er]2)

where « is now measured in the same units as &.

Unfortunately, we cannot use the isothermal approximation for a
complete description of a globular cluster, for the distribution
(5.809) predicts an infinite mass for the cluster. This arises in the
following manner.

It is known that every solution of the isothermal equation (5.807)
tends asymptotically to the special solution

v(x)= v [ VE= S —wdf*dz, (5.816)

of the differential equation,'® and if we substitute this asymptotic
form for ¥ in equation (5.810) we find that

M (f)—constant - ¢ as t—w, (5.818)

Consequently, the isothermal approximation is seen to be inade-
quate for describing the outer regions at least, of a globular cluster.
The reason for this failure must be attributed among other things to
the deviations from strict statistical equilibrium which should be
expected to become important in the outer regions. For, with de-
creasing density, the time of relaxation will increase, and we must
eventually reach a point where the conditions for statistical equi-
librium no longer obtain. Again, there must be a continual loss of
stars by escape, and this phenomenon must begin to have an increas-
ing importance for the equilibrium of the outer regions. It is prob-
able that it is in terms of such considerations that we should look for
an interpretation of the relatively sharp decrease that is observed
in the density distributions of the globular clusters in the outer
regions.

Anticipating the results of a more detailed investigation on the
lines indicated in the preceding paragraph, we can tentatively as-
sume that the statistical treatment (and the consequent use of the

10 For a proof of this theorem see the reference given in n. 8.
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isothermal distribution) will cease to be valid for ¢ > 10, where the
density is about a fortieth of the central density. Under these cir-
cumstances the number of stars per unit area (as registered on a
photographic plate) will be given by (cf. eq. [5.816))

1/2 s

10 ‘p
v(x)= (21er]z)l/2f VE=P e far, (5819)

or, if v, denotes the star density (per unit area) at the center, we
have
10 e e
w SV e
-"-;-~~=~f - . (5.820)
0 ~V'd
S eewas

The foregoing tunction is tabulated in Table 13 and further il-
lustrated in Figure 25.

BIBLIOGRAPHICAL NOTES

§ 5.1.—As we have already stated in the text, the important relations
(5.136) and (5.137) are due to Lagrange and Jacobi. Following the au-
thorities on celestial mechanics, e.g.—

1. A. WINTNER, The Analytical Foundations of Celestial Mechanics, pp.
235 and 426, Princeton, 1941, we have called these relations the “La-
grange’s identities.”” In this connection we may draw attention to thefact
that in current astronomical literature these identities have often been
wrongly attributed to Poincaré (1911) and/or Eddington (1916).

§ 5.2.—The dispersion of the velocities in a cluster (based on La-
grange’s identity) has been estimated by—

2. A. S. EppiNGgTON, M.N ., 76, 525, 1916, and—

3. O. HEckMANN and H. SipENTOPF, Zs. f. Ap., 1, 67, 1930.

The time of relaxation of a cluster has been computed by HECKMANN
and SIDENTOPF (ref. 3) and also by—

4. H. MINEUR, Ann. d’ap., 2, No. 1, 1939, and—

5. L. Spitzer, M.N., 100, 396, 1940.

But these authors based their estimates on formulae for the time of
relaxation which are not entirely reliable. The analyses in the text are,
however, based on the formulae derived in chapter ii.

The discussion of the mean free path in this section is believed to be
new.
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§ 5.3.—The fundamental physical ideas in this section are those of—

6. V. A. AMBARZUMIAN, Ann. Leningrad State University, No. 22
(Astronomical Ser., Issue 4), p. 19, 1938, and SpITZER (ref. 5). Again the
analyses of these authors have been revised to be in conformity with our
formulae of chapter ii.

§ 5.4—See AMBARZUMIAN (ref. 6) and SPITZER (ref. 5). But these au-
thors do not seem to have noticed that the very lightest stars (like the
more massive stars) are characterized by slower rates of escape than the
stars of normal mass.

§ 5.5.—The general equations of motion of a star in a cluster sharing
in the galactic rotation were derived by—

7. B. Bok, Harvard Circ., No. 384, 1934, and MINEUR (ref. 4). How-
ever, the generalized Lagrangian identity and the other integrals derived
in this section appear to be new.

§ 5.6.—The analysis in this section is derived from Box (ref. 7).

§ 5.7.—The method of analysis in this section goes back to Jeans—

8. J. H. Jeans, M.N., 82, 132, 1922, though Jeans was not himself
considering clusters taking part in the differential rotation of a larger
galactic system.

While following in part the ideas of Bok and Mineur, the actual con-
clusions reached in the text differ from those expressed by these authors.

§ 5.8.—The early investigations on the dynamics of a globular cluster
are those of—

9. A. S. EppINGTON, M.N., 74, 5, 1913; 75, 366, 1915. But in these
investigations the effect of stellar encounters is ignored, and the motions
of the stars.in the cluster are assumed to be governed by the gen-
eral smoothed-out gravitational potential. However, according to our
present ideas, this does not provide a satisfactory basis for the dynamics
of globular clusters. Actually, it appears that the other limiting case of
complete statistical equilibrium is likely to provide a closer approximation
to the true state of affairs. See HECKMANN and SIDENTOPF (ref. 3). Alsc—

10. P. TEN BRUGGENCATE, Sternhaufen, pp. 90-113, Berlin, 1927.






APPENDIX I

DEFLECTION OF A STAR IN THE ORBITAL PLANE
ACCORDING TO THE TWO-BODY PROBLEM

Let r, and r; denote the position vectors of two stars of masses m; and
m; in a certain appropriately chosen fixed frame of reference. The New-
tonian equations of motion are

en_ _Gm, LT . dn__ . oD
ar - sz |Tl"Tzla’ ar - Gml |rg—-n]3' (1)

From these equations we readily obtain

&r a2
m o m =0 (2)
and
2 —G(my+ ma) T2 (3)
dﬂ( —ry) = my T me I’ "72|3

Equation (2) clearly implies the uniform motion of the center of
gravity, for, according to this equation,

miry + mar; =R+ (my+my) Ve, (4)

where V, denotes the constant velocity of the center of gravity and R, its
position at time ¢ = 0.

Equation (3), which determines the relative motion of the two stars,
can be re-written in the form

dar r 1
Zﬁ——kl—rl—,—kgrad7,. (5)
where
r=r—rg; AN=G(mi+m,) . (6)
Multiplying equation (5) vectorially by r we obtain
d¥
TXm=0. (7)

This equation is clearly equivalent to

ai(r ) 0. ®



240 PRINCIPLES OF STELLAR DYNAMICS

Hence, P
r
Tx-d—t=h , (9)

where h is a constant vector. Equation (9) represents the angular-
momentum integral.
Again, multiplying equation (9) scalarly with 7, we obtain
h-r=0; (10)

in other words, the relative orbit is described in some fixed plane.
Returning to equation (5), we notice that the motion in the relative
orbit is determined by the potential function

g=—2 (11)

r

Hence the relative orbit can be specified in terms of the Lagrangian
function

L=T+§, (12)

where T is the kinetic energy (per unit mass) of the relative motion.
In addition to the integrals we have already derived, we also have the
energy integral

r-2=yvs, (13)

where V is the relative velocity at infinite separation.
If we now choose polar co-ordinates (r, 8) in the orbital plane, the
Lagrangian function takes the form

L=} (40 +2, (14)
and the corresponding Lagrangian equations are
.. A
r=r 02 bl ‘;2' (1 5)
and d
L (y28)=
5 (7 4)=0. (16)

Equation (16), which is equivalent to equation (8), yields again the
angular-momentum integral

r20 = h = constant . (17)

Equation (15) can now be re-written as

.k
f—-—;i—‘;i.

(18)
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Introducing # = r~! as a new variable and using equation (17), we can
reduce the foregoing equation to

a’u _

5= u+ (19)

The solution of this equation can be expressed as

u—uocos(0+00)+ (20)

EM
where u, and 6, are constants of integration. Choosing the direction of
maximum # (or minimum r) as the origin of 8, we can re-write equation
(20) as
S (21)
#u MN1l+ecosf’
where e denotes the eccentricity of the orbit.
We shall now express ¢ in terms of the other parameters describing the
encounter. According to equation (21), the distance at closest approach

is given b

g y mo1
AMNi+tel
At this distance 7 clearly vanishes. The energy integral (13), when written
out explicitly for » = r,, therefore becomes

(22)

ro=

f~( ra0)2— =312, (23)

or, according to equations (17) and (22), we have

1 )‘2 2 2 _.x_ o 2
shma+ar]r=x[pa+o =11 ()
After further reductions we obtain
V2h?
et= 1+———— (25)
On the other hand, we can write
k=DV , (26)
where D stands for the impact parameter. Hence
D2 V4
2 — AR
¢ 1+G’(m1+mz)” (27)

where we have also substituted for \ according to equation (6).
Equation (27) enables us to derive an explicit expression for the angle
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2y between the asymptotes of the relative orbit. For, according to equa-
tion (21), at

0=cos"——:;, r=o; (28)
and, since r — ¢ denotes this angle,
cosy = (29)
Hence,
1

cos¢=\/ Sy (30)
L+ &

which is the required expression.
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THE GENERAL THEORY OF THE STABILITY
OF ORBITS

Suppose that a particular solution of the equations of motion derived
from the Lagrangian function

L=3%(2*+9*)— B(x, ) (1)

is known; and consider a solution which is immediately adjacent to the
known solution and for which the constant of energy has the same value.

Let P and Q be the positions of the particle in the known and in the
adjacent orbits, respectively, at time ¢&. Draw QN perpendicular to the
known orbit and let

arcPN=¢§¢; OQN=u. (2)

Further, let s and o be the lengths of the arcs measured along the solution
from some fixed point on it to NV and P, respectively. Then

t=s5s—o. ) (3)

Since the position on the adjacent solution is uniquely determined by %

and s, we can use them as generalized co-ordinates. In these co-ordinates
the Lagrangian function is clearly

L=%d’+%(1 +%)2s'2—23(u, ), (4)

where p is the radius of curvature at N of the known orbit. The cor-
responding Lagrangian equations are seen to be

w)§_ B
(1) =38
and d . 6 d OB
u u\us*dp 9%
a5 )] +(1+5) s 22 =55 (6)
These equations admit, of course, the energy integral
2
}1&’+—;-(1+%)é’+5B=E=constant. )
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We shall now expand the various quantities and neglect all terms of
order higher than the first in % and ¢£. Equations (5) and (7) then become

L S
|

or pp+f( 2.
-G, (), () -

(1+2“)(a2+2a£)+ssp+z(——-) +1(32) =E. (9)

On the other hand, since ¢ and ¢ refer to the known solution,

and

0B
”*(‘“ I A AR (10)
and
46?2+ Bp=E. (11)
Substituting the foregoing equations in (9), we obtain
2
cb—ta+2% 0. (12)
PP
Similarly, equation (8) becomes
2 2
PR L dp) _ ¢
Pp PP do PP ( 13)
¢? 328 929y
(ot (G, (), )
or, alternatively,
._u&z [ o? (3228 , € _ 0*%
="t dc) duac)el "2 5= ¥ \Gur ), (19
But, according to the first of the equations (10),
(_fifgi_) __¢ fd_ﬂ) +29 d d")
duds/)p pL\do/p deU dt (15)
S dP) 2,
do + PP ¢
Equation (14) thus reduces to
. uo? dé £o‘ Yy
% ot 22 Sui). (16)
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Eliminating (¢f — £#) from equations (12) and (16), we finally obtain
(Go), + )
%+ W\ a2 + (17)

or (taking s instead of ¢ as the independent variable and writing v for ¢),

we have
du  1dvdu Yy

3
Tty s s Hu (G ), o= (18)

From equation (17) we can at once deduce consequences relating to the
stability of the known orbit. According to the Sturmian theory,! if we
have a differential equation of the form

#+G()u=0, (19)

where for a certain range of ¢, G(¢) lies between two positive real quanti-
ties a? and b2, then any solution % which is zero for ¢ = ¢, within the range
will have another zero for some other value of ¢ in the range, where ¢ — £,
lies between 7/a and /b, provided the range is sufficiently large com-
pared to this interval. Applying this result to equation (17), we conclude

that, if
2 2
(g 23) +§~"—>0 (20)

ou?

for all points of the known orbit, this orbit will be stable; i.e., if an adjacent
orbit intersects the known orbit once, it will not diverge greatly from it
but intersect it again infinitely many times. The quantity on the left-
hand side of the inequality (20) is therefore called the coefficient of stability
of the orbit.

Our present condition for stability (which is only a sufficient one) is
readily seen to include the result obtained in § 4.3 concerning the stabil-
ity of the circular orbits in a central field of force.

For the case of periodic orbits we can obtain a necessary and sufficient
condition for stability. Suppose, then, that the known orbit is periodic
and has a perimeter S. If # = ¢(s) is a solution of equation (18), then

S0 are
U, =¢(s+nS) (n=1,2,....), (21)
where # is an arbitrary integer.

1 See, e.g., E. L. Ince, Ordinary Differential Equations, chap. x, London: Longmans,
1927.
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Consider three such solutions, %42, #n+1, and #,. Since the differential
equation (18) for u is of the second order, there can be only two inde-
pendent solutions. Since, further, the differential equation is linear, there
must exist a relation of the form

Upts = RUpty + Ertt | (22)

where % and %, must be independent of s and #. On the other hand, we
cannot suppose, without further justification, that & and k, are inde-
pendent of the particular solution # = ¢(s), from which the further solu-
tions (21) have been derived. However, we shall show that this is actual-

ly the case. For, let
=y(s+nS) (r=1,2,....), (23)

be another set of solutions derived from a different basic solution # =
¥(s). Since there must exist a relation of the form

Wp = CUp+1 + C’un (24)

(where ¢ and ¢’ are constants), it is readily seen that the w's also satisfy
relations of the form (22) with the same values for % and 4.
We shall now find the value of the constant k. From the equations

QU 1dvduy | (mﬂS) i -
+ \v’ + p’,, “n=0,

ds® "vdsds ou? (25)
@tnty | 14V dthnyy 32?5)
ds? +vds ds +\v2 EpE + u,.+,-0
we derive
d’u,. d”u,‘ﬂ _1dv ( du, _ dUnt,
Un+1 - ds? — Up — dst = 2ds Un+1 5 ds —‘“—) (26)
or
a Athy _ Aty _ _ 1 13( duy, Qttn+y
ds\"rt1 gy Ty )T Tuds\"tr gy T g (27)
Hence, p
Qun _ Qni1_ g
un+l ds Un ds v ) (28)

where ¢ is a constant. Writing (» + 1) for » in the foregoing equation,
we obtain

Qtn+1 dnts _ g
S

Unte =5 T Untd “ds = (29)
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Combining the two preceding equations and using equation (22), we have

du, dtty+y
Un+1 3—; Un —ds

d d
= (kthprs+ katen) T — sy == (kthars + Raia) ¢ (30)
du, du,
= _kl (un+l % — Uy "u +1) .

ds

Hence, k) = —1.
We have thus shown that the functions «, derived from any basic solu-
tion of (18) satisfy the difference equation

un+2—kun+l+un=0y (31)

where k is a constant which depends only on the original solution. We can
also express the relation (31) differently as

Untz + Un

= constant for all adjacent solutions . (32)
Up+1

Now the general solution of the difference equation (31) must be of

the form

#, = Aa™+Bp", (33)
where a and B are the roots of the equation

AN—kN+1=0, (34)

where 4 and B are arbitrary functions of period S.2 (The arbitrary func-
tions 4 and B introduced in the solution of the difference equation have
to be so chosen that « satisfies equation [18].)

Now the roots of equation (34) are real or complex, according as | k|
is greater than or less than 2. From this it follows that the necessary and
sufficient condition for a given periodic orbit to be stable is that | k| <2. Simi-
larly, the orbit is unstable if | 2| > 2.

2 See S. Barnard and J. M. Child, Higher Algebra, p. 369, Macmillan, 1936. If the
roots of equation (34) are equal (i.e., if £ = 2), then the solution has the form «» =
(A + nB).



APPENDIX III
ASTRONOMICAL CONSTANTS AND DATA

Number Logarithm
Astronomical unit(cm)..... ...... ... ... L. 1.4945%10'3 | 13,1745
Parsec(ecm)..... . .... ....... el ....| 30826X10* | 18.4889
Light year (cm) . . .. . . ... . ... .. .o 9.4605X 1017 | 17.9759
Year (S6C) . . .. oot e i e e e e 3.1558 X107 7.4991
Solar Mass (EM). . . ..ot 1.985x10% | 33.2978
Solar luminosity (erg/sec). R L . ....| 3.780X10% 33.5775
Solar radius (cm). . .............. L .. ....| 6.951x100 10.8420
Solar mass per cubic parsec (gm/cm“) .................. 6.777X1072 | 23.8310
Constant of gravitation, G (dynes cm?/gm?). .. ......... 6 67X1078 8 8241
Velocity of light (cm/sec)... .......... ....... ... .. 2.9978X 10" | 10.4768
Solar motion with respect to the local standard of rest|
(CM/SEC) . o o vttt et 1 96X10¢ 6.2923
a=18%0";_
Co-ordinates of solar apex... .......... . lg";;s'?o
5=21%6
a=274% R
Co-ordinates of the vertex of star streaming............. ! ;47'; 1
b=+0°
The maximum mean peculiar speed (km/sec)............ 24.5
The minimum mean peculiar speed (km/sec).. . . .. ..| 16¢g), 12.4(5)
The ratio of the axes of the velocity spheroid. .. ....... 0.63
Average distance between the stars in the neighborhood of
thesun (Parsec). ... ......ooveeiiiiiins conenn oot
Average local density (stars per cubic parsec)..... ... .. 0.1
Co-ordinates of galacticpole. . g4 ............. ........ a=190%
6; -2|-28°
=206 °;
Co-ordinates of galacticcenter. ....................... {u &= —230°
1=325%b=0
Sun’s distance from the center of the Galaxy (parsec). .. .| 8000
, (km/sec/lOOO parsec) .. ............ 18
Oort’s constants { B (km/sec/1000 parsec) . . —13
Rotational velocity (6¢) (km/sec) 250
Angular velocity ({uo) (radxan/sec) 110718
Period of rotation (year)......... ..... ... ... ... 2X108
Mass of the Galaxy (solarmass)....................... 2X101
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I. GENERAL CONSIDERATIONS: THE COEFFICIENT OF
DYNAMICAL FRICTION

ABSTRACT

In this paper it is shown that a star must experience dynamical friction, i.e., it must suffer from a sys-
tematic tendency to be decelerated in the direction of its motion. This dynamical friction which stars ex-
perience is one of the direct consequences of the fluctuating force acting on a star due ta the varying com-
plexion of the near neighbors. From considerations of a very general nature it is concluded that the
coefficient of dynamical friction, n, must be of the order of the reciprocal of the time of relaxation of the
system. Further, an independent discussion based on the two-body approximation for stellar encounters
leads to the following explicit formula for the coeflicient of dynamical friction:

0 = dxmy (my + m) %’103, [Tﬁ%‘@] fo "Nw)dn,

where m; and m; denote the masses of the field star and the star under consideration, respectively; G, the

constant of gravitation; Dy, the average distance between the stars; |u|?, the mean square velocity of the
stars; N () duy, the number of field stars with velocities between 9, and v + dv;; and, finally, v, the veloc-
ity of the star under consideration. It is shown that the foregoing formula for 7 is in agreement with the
conclusions reached on the basis of the general considerations. Finally, some remarks are made con-
cerning the further development of these ideas on the basis of a proper statistical theory.

1. General considerations.—In a first approximative discussion’ of the fluctuating part
of the gravitational field acting on a star we may conveniently describe it in terms of two
functions: a function W(F), which governs the probability of occurrence of a force F
per unit mass acting on a star, and a function 7'(| F|), which gives the average time dur-
ing which such a force acts. On this assumption we can properly visualize the motion of
the representative point in the velocity space as follows: The representative point suffers
random displacements in a manner that can be described in terms of the theory of ran-
dom flights.2 More specifically, the star may be assumed to suffer a large number of dis-
crete increments in velocity of amounts | F|T(| F|) occurring in random directions. The
mean square increase in velocity which the star may be expected to suffer in a time ¢
(large compared to the mean periods of the elementary fluctuations in F) is then given

by

|[Au|®=[F|*T(|F])¢. (1)

Equivalently, we may describe the same situation by asserting that the probability func-
tion W(u, t), governing the occurrence of the velocity u at time ¢, satisfies the diffusion
equation

18. Chandrasekhar, 4. J., 94, 511, 1941,

* For a general discussion of this and related theories see a forthcoming article by the writer in the
Reviews of Modern Physics.
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where the diffusion coefficient q has the value
g=4}|F[T. (3)

If the star has a velocity u, at time ¢ = 0, then the solution of the diffusion equation (2)
which will be appropriate for describing the distribution of u at later times is clearly
1 —lu—uy
W (u, b o) = gy €7 1wl . ‘(4)
It is now seen that formula (1) is an immediate consequence of the foregoing solution
for W.
We shall now indicate why the considerations of the preceding paragraph can be valid

only for times which are short compared to [u[*/[F[*T, where [u[? denotes the mean
square velocity of the stars in an appropriately chosen local standard of rest. For, if
W(u, ¢; uo) according to equation (4), described the stochastic variations of u for all
times, then the probability for a star to suffer any assigned arbitrarily large acceleration
can be made as close to unity as we may choose by allowing ¢ to be sufficiently large.
This conclusion is, however, contrary to what we should expect on quite general grounds,
namely, that W(u, #; uo) tends to a Maxwellian distribution, independently of u, as
t— o, Expressed somewhat differently, we should strictly suppose that the stochastic
variatiohs in the velocity which a star suffers must be such as to leave an initial Max-
wellian distribution of the velocities invariant. Defining, now, a stochastic process as
conservative if it leaves a Maxwellian distribution unchanged, it is clear that the process
described by equation (2) is nonconservative. Consequently, equation (2) is suitable for
describing the underlying physical situation only for times ¢ which satisfy the inequality

< (5)

The question now arises as to how our earlier approximate considerations can be
modified so as to make the underlying stochastic process conservative. Now, as has been
made familiar in the physical theories of Brownian motion by Ornstein, Uhlenbeck, and
others,? this can be achieved by the introduction of dynamical friction. More particular-
ly, we suppose that the acceleration, Au, which a star suffers in a time Af, which is short
compared to the time intervals during which u may change appreciably but long com-
pared to the periods of the elementary fluctuations in F, can be expressed as the sum of
two terms in the form

Au = du (At) — quAt, (6)

where the first term on the right-hand side is governed by the probability distribution
(cf. eq. [4])
1

v(dulAr]) =W e

—lsu—grad jqat|*/4qAt (7

and where the second term represents a deceleration of the star in the direction of its mo-
tion by an amount proportional to |u|. The constant of proportionality, 5, can therefore
be properly defined as the coefficient of dynamical friction.

With the underlying stochastic process defined as in equation (6) the distribution

3 See the article quoted in n. 2 for further amplifications of what follows in the text.
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function W(u, ¢ + Af) at time ¢ + Af can be derived from the distribution W(u, ) at the
earlier time ¢ by means of the integral equation

W (u, 1+ A1) =f_:ﬁf(u—Au, 1) ¢ (u — Au; Aw) d (Aw) (8)

where Y(u; Au) denotes the transition probability (cf. egs. [6] and [7])

1
(drqanyoi ©

Expanding W(u, ¢ + Af), W(u — Ay, ¢), and Y(u — Au; Au), which occur in equation
(8) in the form of Taylor series, evaluating the various moments of Au according to the
distribution (9), and passing finally to the limit Az = 0, we obtain the following equa-
tion, which is of the Fokker-Planck type:

¥ (u; Au) = —|Au—grad jqAttnu At|tgat (9)

%=diw (g gradu W) +divu (nWu) . (10)

At this point we may explicitly draw attention to the fact that the foregoing equation is
valid also when ¢ and 7 are functions of u.
Finally, the condition that the Maxwellian distribution

3 N2 s
(Eﬁﬁ) ¢—slulv/2Tal (11)

satisfy equation (10) identically requires that g and 5 be related according to

%=§|u]’=constant. (12)

Now the solution of equation (10) appropriate for describing the distribution of the
velocities at time ¢, given that u = u at time ¢ = 0, is
3
W (u, t; Uo) = [2WW<1 — 6—211)

In writing down the foregoing solution we have assumed that ¢ and 5 are constants. We
readily verify that W(u, ¢; u,), according to equation (13), tends to our earlier solution
(4) for ¢ < 7~ in virtue of the relation %12); moreover, it tends to the Maxwellian dis-
tribution (11) as¢ — «. Accordingly, 1~ can be taken as a measure of the time of relaxa-
tion of the system. Combining equations (3) and (12), we have

1_, lul?
1 [F]T

which agrees with the customary definition of the time of relaxation except for a factor
2 4

3/2 T3
] e-dlu—ugtpalulic-enh - (13)

(14)

Summarizing the conclusions reached, we may say that general considerations such as
the invariance of the Maxwellian distribution to the underlying stochastic process require that
stars experience dynamical friction during their motion and that the coeﬁlz;;ent of dynamical
Sriction be of the order of the reciprocal of the time of relaxation of the system.

2. An elementary derivation of the coefficient of dynamical frictior. on the two-body ap-
proximation for stellar encounters.—In the preceding section we have seer how the exist-

4 Cf. Chandrasekhar, Ap. J., 94, 511, 1941 (see particularly §§ 7, 8, and 9).
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ence of dynamical friction can be inferred on quite general grounds. We shall now show
how the operation of such a force can also be derived from a direct analysis of the fluctu-
ating force acting on a star. It is perhaps simplest and most instructive to examine the
problem on an approximation in which the fluctuations in F are analyzed in terms of
single stellar encounters each idealized as a two-body problem. On this approximation
the increments in velocity, Avj; and Av, ,which a star with velocity v, = [pllzl and mass
m suffers as the result of an encounter in directions which are respectively parallel to and
perpendicular to the direction of motion are®

Avn=-—mzrlm [(va— 9y cos ) cos ¢+ v,sin fcosOsin¢] cosy T15)
1 2

and

Av. =+ 2m, [v}+ 93— 29,95 cos 8 — { (9,— 9, cos 8) cos ¢

my+ my (16)
+ 9, sin 0 cos © sin ¢}?] 2 cos ¢,

where m, and v; denote the mass and the velocity of a typical field star and the rest of the
symbols have the same meanings as in Stellar Dynamics, chapter ii (see, particularly, pp.
51-64).

According to equation (16), and as can, indeed, be expected on general symmetry
grounds, Av,, when summed over a large number of encounters, vanishes identically.
But this is not the case with A, for the net increase in the velocity which the star suf-
fers in the direction of its motion during a time A¢ (long compared to the periods of the
elementary fluctuations but short compared to the time intervals during which v; may
be expected to change appreciably) is given by

@ x 2 Do 2w
2Avn=Atfdvlfd0fd¢def g—gth(vl,ﬂ,qo)VDAv”}, an
0 0 0 0 0

where the various integrations are, with respect to the different parameters, defining the
single encounters. The integration over 6, the inclination of the orbital plane to the
fundamental plane containing the vectors vy and s, is readily effected, and we are left
with

© ' 2 Do
SAv) = —4r ml+mgAt[dw{dﬂ_ﬂ/W[dDN(v., 0, o) "
D
X V(vz-—v;cos 0)-1"—'———DTI7';——,
it m

where we have substituted for cos? ¢ from Stellar Dynamics, equation (2.301). The inte-
gral over the impact parameter D when extended from 0 to « diverges; but for reasons
explained in Stellar Dynamics, page 56, we allow for D only a finite range of integration,
namely, from 0 to Dy, where D is of the order of the average distance between the stars.
Performing, now, the integration over D, we obtain

© x or
2801 = ~2emy (my+ m) G0t [ don [ 30 [doN (v, 0, “’)T}‘a 15
0 0 0

X (92— vy cos 8) log (1492V4),

aCf. S. Chqndrasekhar, Principles of Stellur Dynamics, p. 229 (eq. [5.721]). This
monograph will be referred to hereafter as Stellar Dynamics.
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where we have written
e Do
G (my+m,) '

If we now assume that the distribution of the velocities v, is spherical, then N(vy, 6, ¢)
has the form (cf. Stellar Dynamics, eq. (2.336])

N (v, 0, @) =N(m)zl;sin 0. (21)

(20)

Substituting the foregoing form for N(v,, 0, ¢) in equation (19) and performing the inte-
gration over ¢, we obtain

ZAvi = —7xmy(m+ m,)G’Atfdv;N(vl)fdo sin § } (22)

X (vy— v, cos 9) log (1 +§2V4).

To effect the integration over 8, we shall use the relative velocity V as the variable of
integration instead of 0. Since

Vi= 9+ v}— 29105080, «(23)
we have
VdV = v,v,sin 040,
1 2 2 2 (24)
U3 — ¥; COS 0=-2——p—2(V + -1} .
Using relations (24), we find that equation (22) can be reduced to the form
Gt ® 1
ZAv||=—%wm1(m1+m,)7:At£ SN () Jdm, (25)
where we have used J to denote
(v1+v:)
J= l N (1+ - )log(1+wv4)dv (26)
After an integration by parts the expression for J becomes
J=(V— )1og(1+wv4)| "
”l—'xl
27
(v1+vs)
1+vg - vl 92V‘
_4{_” (1 ) T ¢

Now, under most conditions of practical interest #2'*is generally very large compared to
umty (cf. Stellar Dynamics, eqs. [2.323] and [2.347]; also eq. [5.215]). Hence, to a suffi-
cient accuracy we have

=[(v- ”‘)105(1+9=V*)—4(V+ "‘)]‘ F L (28)
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After some further reductions we find that the foregoing equation becomes
2nlog (149 [m+ 0] (1402 [0~ 0] (n<0),

21]1103’(1+16920:) —801 (”l=v2)1 (29)

1492 (014 25) 4
Zvllogm—IGv, (01> ﬂg).

J =

Again, since 92(v; + v,)* and 9%(v — 9,)* are also generally very large compared to unity,
we can further simplify equation (29) to .

89 log 9 (v3— v?) (1< v9),
J= 4v,log479§—-8v1 (v1=195), (30)
8o log X% _ 164, (02> v5).
UV1— Ug

The foregoing formula for J shows that in an approximation in which we retain only the
“dominant term” (cf. Stellar Dynamics, pp. 62-64) we have
8v,log 9 ul? (1< 1)
Ja { 1 [u] 1< v2), } (31)
0 ( U1 > ‘Uz) ’

where |u|? may be taken to denote the mean square velocity of the stars in the system.
According to equations (30) and (31), we havé the remarkable result that fo a sufficient
accuracy only stars with velocities less than the one under consideration contribute to ZAv)).
As we shall see presently, it is precisely on this account that dynamical friction appears
on our present analysis.

Combining equations (25) and (31), we have

ZAv||=—-41rm1(m1+mg)g;log (9W)Atf1\;(v,)dv1. (32)
2 0

Finally, if we assume that the velocities v, are distributed according to Maxwell’s law,
then

. 450
A N(”l)d‘vl:;ﬁiN‘/o. (2 lvidvl, (33)

where N denotes the number of stars per unit volume and j is a parameter which meas-
ures the dispersion of the velocities in the system. Expressing the integral on the right-
hand side of equation (33) in terms of the error integral

2 .
& (x) =F/—2»/; e~*dx (34)
and substituting the result in equation (32), we find that
ZAv) = —4xNmy(m,+ m,)(vi:log (7 |ul?) At[®(x) — 2@ (20)], (35)
2

where we have written xo = ju..
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Equation (35) shows that the star does, in fact, experience dynamical friction and that
the coefficient of dynamical friction has the value

1= 4N m (mt m) S log (4TulD [8(z0) —2'(a0].  (36)
2

It is now of interest to see that with the coefficient of dynamical friction defined as in
equation (36) we can directly verify the existence of a relation of the form (12). For, ac-
cording to equations (2.356) and (5.724) in Stellar Dynamics, we have

2Avﬂ=i1erf—f—j |u|?log (7 |u|?) Af[®(xe) — 2B (%0)]. (37)
2
Hence,
2
EAvn__Z_ my s, (38)

28t 3 mi+m,y

which is to be compared with equation (12). It is thus seen that a detailed analysis of the
fluctuating field of the near-by stars in terms of individual stellar encounters idealized as
two-body problems fully confirms the conclusions reached in § 1 on the basis of certain
general principles.

3. Dynamical friction as o consequence of the statistical properties of the fluctuating
gravitational field of a random distribution of stars—The discussion of dynamical friction
in § 1, while sufficiently general for a first orientation in the subject, suffers, nevertheless,
from certain drawbacks. For example, in writing down the probability distribution for
du (A?) (eq. [7]) we have assumed that it has spherical symmetry. However, to be entire-
ly general we should rather suppose that Y(du[A#]) has the form

@11 @12 @y

¢ ~(ay dutag duitay dul+la, du,duyt2ay,0u,du,t 20, 0u,0u,)/ At , (39)

1
v(Su[Ad]) =37|0n O Gxn

ag Qg2 Q33

where du = (dui, duz, dus) and (a,,) is a symmetric tensor of the second rank. The com-
ponents of (a,) can very well depend on u. While it would not be difficult to write down
for the correspondingly more general form of the transition probability the appropriate
generalization of equation (10), we should not be able to make much practical use of
such an equation without some direct knowledge concerning (a,,). In other words, a de-
tailed statistical analysis of the fluctuating part of the gravitational field acting on a star
must precede a discussion of the necessary generalization of equation (10). A start in
this direction has recently been made by Chandrasekhar and von Neumann in two pa-
pers.® Particularly in their second paper, where all the first and the second moments of

F for given F and v have been evaluated, a direct indication for the existence of dynami-
cal friction on the statistical theory has indeed been found. However, a complete solu-
tion of the problem will require a more far reaching discussion than has yet been under-
taken. But the general outlines of such a theory are not difficult to foresee. For, the essen-

tial information which is needed is, of course, the average force, F, per unit mass acting
on a star at time ¢ when a force Fo acted at time £ = 0. The statistical problem is thus
merely one of finding the joint distribution W(Fq, F.) of Fo and F,, where
T
Fo= GZ_;M.- I (40)

$A4p.J., 95,489, 1942, and 97, 1, 1943,
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and

i+ Vit
F.= GZMsITIvu (41)

In equations (40) and (41) r; and V; denote, respectively, the.position and the velocity of
a typical field star relative to the one under consideration. By an application of Mark-
off’s method (cf. the papers of Chandrasekhar and von Neumann) we readily find that
the required distribution is formally given by

4 4

WPy B) =i [ [esorsnria@oorapao, T (a2

“64r
where P and o are two auxiliary vectors and
A4 (py O) = e~VCPM (43)

and where

cp, ) —fff[l—e“’" BRI} |- 0,00 aMarav. (a8)

In equation (44) 7(V, M) governs the probability of occurrence of a star with a relative
velocity ¥V and with a mass M.

For our purposes it would, however, be sufficient to know the first moment of F, for
given F and v, in which case we shall need only the behavior of C(p, &) for Io'{ —0. Itis
not difficult to push the formal theory a little further, but without going into these de-

velopments here it is clear that in terms of Fy(Fo, v) we shall be able to solve the entire
problem of the stochastic variation of F acting on a star. More particularly the consid-
eration of the integral

me(Fo, v)dt (45)
0

will not only provide us with the means of giving a precise meaning to the notion of the
mean life of F but will also disclose in a direct manner the existence of dynamical friction
on the statistical theory. We shall return to the development of the theory along these
lines on a later occasion.

4. General remarks—To avoid misunderstandings we shall make some remarks (which
are otherwise obvious) concerning the reasons for introducing the new notion of dynami-
cal friction and avoiding the usage of the term ‘“‘viscosity.” First, the physical ideas un-
derlying the concepts of dynamical friction and viscosity are quite distinct: thus, while
the “coefficient of dynamical friction” refers to the systematlc deceleration which indi-
vidual stars experience during their motion, ‘“viscosity,” as commonly undérstood, refers
to the sheering force exerted by one element of gas on another. Second, dynamical friction
is an exact notion expressing the systematic decelerating effect of the fluctuating field of
force acting on a star in motion, in contrast to viscosity, which, as a concept, is valid only
when averaged over times which are long compared to the time of relaxation of the sys-
tem and over spatial dimensions which are large compared to the mean free paths of the
individual molecules. Thus, while the introduction of dynamical friction in stellar dynam-
ics presents no difficulty, the circumstances are very different for a rational introduction
of “viscosity” in the subject (cf. Stellar Dynamics, pp. 76-78 and 184).



II. THE RATE OF ESCAPE OF STARS FROM CLUSTERS AND THE
EVIDENCE FOR THE OPERATION OF DYNAMICAL FRICTION

ABSTRACT

In this paper a general method is described for determining the rate of escape of stars from galactic
and globular clusters which is based on certain general statistical principles. Essentially the method con-
sists in reducing the problem to a boundary-value problem in partial differential equations and in making
use Ofal the interpretation of the stochastic process in the velocity space as a diffusion process of a rather
general type.

The rate of escape has been evaluated, first, ignoring dynamical friction, and, second, making due al-
Jowance for it. It appears that the rate of escape of stars predicted on the first basis is too rapid to be
compatible with a life for galactic clusters even of the order of 5X 108 years. However, the rates of escape
are drastically reduced when dynamical friction is allowed for and permits a time scale of the order of
3X10° years. Itis concluded that in the very existence of galactic clusters like the Pleiades we can look
for direct evidence for the operation of dynamical friction which was predicted on theoretical grounds in
the preceding paper.

1. Introduction—In the preceding paper! we have shown that stars must experience
dynamical friction during their motion. This conclusion, first reached on the basis of
certain very general considerations, was iater confirmed by a more direct analysis of the
fluctuating force acting on a star in terms of the two-body approximation for stellar en-
counters. In this paper we propose to draw attention to certain facts of stellar dynamics
which provide direct evidence for the operation of dynamical friction.

Since the coefficient of dynamical friction is of the order of the reciprocal of the time
of relaxation of the system (cf. I, eq. [14]), it is evident that it is only during times of the
order of the time of relaxation itself that dynamical friction will have a chance to become
an effective agent. Consequently, the effects of dynamical friction will be apparent only
in stellar systems with relatively short times of relaxation. Such systems are provided
by galactic clusters like the Pleiades, which are characterized by times of relaxation of
the order of 6X 107 years.? Since the times of relaxation of the galactic clusters are of this
order of magnitude, it is clear that an important factor in their evolution must be the
escape of stars from them.® For, in times of the order of the time of relaxation, the prob-
ability that a star will, on account of accidental fluctuations, acquire a velocity equal to
or greater than the velocity of escape must be appreciable. And, if this should happen,
we can reasonably expect the star to escape from the cluster. The question now arises
as to the rate at which stars will thus leave the cluster. In this paper we shall show how
this rate can be evaluated on the basis of certain general statistical principles and how

1 Referred to hereafter as “I.”

2Cf. S. Chandrasekhar, Principles of Stellar Dynamics, chap. v. This monograph will
be referred to hereafter as Stellar Dynamics.

In Stellar Dynamics (p. 202) the time of relaxation of the Pleiades is given as 2.9X107 years. How-
ever, in view of the fact that in a sufficient approximation 5™ is equal to twice the time of relaxation as de-
fined in Stellar Dynamics (cf. the remarks in I following eq. [14]), and since for our present purposes ™
provides a better unit for measuring time, we have quoted in the text a value which is twice that given in
Stellar Dynamics.

3 This fact was first clearly recognized by Ambarzumian and Spitzer. For references to these papers
and for a general discussion of the related ideas see Stellar Dynamics, chap v, §§ 5.2-5.4.
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precisely in this rate of escape we can look for evidence for the operation of dynamlcal
friction.

2. A general method for estimating the rate of escape of stors from galactic and globular
clusters.—In the preceding paper we have shown that, when the diffusion coefficient, g,
and the coefficient of dynamical friction, », are functions of u, the equation which
governs the distribution W(u, ¢) of u at time ¢ is

Qg.=diVu(qgraduW+an), (1)

where g and 5 are further related according to

;—%lul’:constant (2)

This differential equation for W leads to an important interpretation of the stochastic
process which takes place in the velocnty space. For, according to equation (1), we can
visualize the motion of the representative points in the velocity space as a process of dif-
Sfusion in which the rate of flow across an element of surface do is given by

— (g graduW +9Wu) « 1ydo, 3)

where 14 is a unit vector which is normal to the element of surface considered. With this
interpretation of the stochastic process in mind, the following method for finding the
raltfe at which a star may be expected to acquire a given velocity naturally suggests it-
se

First, we find the probability, p(vo, #) d¢, that a star with an initial velocity |u| = v
will acquire for the first time a certain preassxgned velocity, |u| = e, say, between ¢
and ¢ 4 dt. We then integrate p(v,, £) over ¢ from 0 to £, to obtain the total probability,
Q(vo, ), that the star will have acquired the velocity v during the entire interval from
0 to ¢. Finally, we average Q(v,, #) over the relevant range of the initial velocities o, to
obtain the expectation, Q(t), that a star will have acquired the velocity ve during a
time £,

The advantage of formulating the problem in the manner described is that the func-
tion p(vo, #) can be determined in terms of a spherically symmetric solution of equation
(1) which satisfies the boundary conditions

"W(lul,H=0 for |u|=rvwforallt>0 (4)
and )
W (|ul, t)-—> 6(lu| 1) ast—0, (5)

where & stands for Dirac’s §-function. If W is such a solution, the required probability
function p(v, £) is given by (cf. the interpretation of eq. [1] in an earlier paragraph)
W (|ul,8)

I’(vo,t)="(474|“|2 alul 1ul=v,,

(6)

The probability Q(v,, £) that a star having an initial velocity v, will have acquired the
velocity v during a time ¢ is then given by

0, n=f°'p(vo, 0 dt. )
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And, finally, the expectation Q(¢) that a star will have acquired the velocity 9 during a
time ¢ is given by

Q(t)=f°"Q(vo, 5 1 () dvo, ‘ (8)

where f(vo) governs the frequency of occurrence of an initial velocity q.
Now the coefficient of dynamical friction 7, as derived on the basis of the two-body
approximation for stellar encounters, is (cf. I, eq. [32] for the case my = ma = m)

Dy[u]? ul

n=8sNmGtlog [ 2% ]|T«1Ffo 7(v)dv. (9)

According to this formula, n tends to a constant limiting value as |u| — 0. But, as
|u] — @, n— 0; however, according to the relation (2), ¢ also tends to zero simultane-
ously with 5. Consequently, by allowing ¢ and 5 to be constants and equal to their re-
spective average values, we shall be compensating for the overestimation of 4 for large
values of |u| by a corresponding overestimation in the diffusion coefficient ¢. In this
paper we shall accordingly restrict ourselves, for the sake of simplicity, to the case where
g and nare constants. In a later paper we shall present the results of a similar calculation
in which due allowance will be made for the dependence of g and non |u|.

3. The rate of escape of stars from galactic clusters—For the reasons explained toward
the end of the last section we shall suppose in this investigation that ¢ and » are both con-
stants and independent of |u|. Equation (1) can then be re-written as (cf. eq. [2])

%’:ﬁ=§|—iﬁﬂvflw+ndivu Wu) . (10)

Let
nw=r1; u=(3}ul)Vp; (11)
or, in words, r measures'the time in units of the time of relaxation; and, if a Gaussian dis-
tribution of the velocities
3
Jgerlutdu (12)

be assumed, p measures the velocity u in units of 7~!. With the transformation of the
variables (11) equation (10) becomes

W AV +dive (W) . (13)

Tt should be noted that in our present choice of the units the diffusion coefficient has the
value 3.
For a spherically symmetric solution, equation (12) reduces to

W 1 a[.,W ow
3;gﬁa_’)(,ﬂa_p.)+(sw+n3; , (14)

where we have used p to denote |p|. And, according to our remarks in § 2, we have to
seek a solution of equation (14) which satisfies the boundary conditions

Wip,7)=0 for py=pw (say) for +>0 (15)
and

W (p, r)-—)z;l—p—zs(p—po)asr—-bo. (16)
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i) The rate of escape of stars from clusters when dynamical friction is ignored—When
dynamical friction is ignored, equation (14) further simplifies to

W

ar 2p’6p( (7

and the solution of this equation satisfying the boundary conditions (15) and (16) is*

n=1

In terms of the foregoing solution we can determine the probability p(po, 7) dr that a
star with an initial velocity corresponding to po will acquire for the first time a velocity
corresponding to pe during 7 and 7 4- dr. Remembering that in our present units the
coefficient of diffusion has the value }, we have (cf. eq. [6])

? (pos r)——21rpw<ap (19)

P"Pw

or, using the solution (18), we have

p (oo, r)——-—}_‘,n( et sin (22 py). (20)

@ pe=]

The total probability Q(p, 7) that the star would have acquired the velocity pe during
the interval (0, 7) is therefore given by

Q(po, 1) = f{’(po,r)dr-—zp‘”z( l)"H(l e, )sm(——po) (21)

0 nm]

Finally, to obtain the expectation that an “average” star will have acquired the velocity
pw in a time 7, we must average the foregoing expression over all po. For this purpose we
shall use for the distribution over py the radial Gaussian function

et (22)5
and extend the range of integration from O to «. Strictly speaking, this is not a valid
procedure, particularly the extending of the range of integration beyond p.,. However,
for the values of po, we shall be normally interested in (cf. egs. [25] and [26], below), the
number of stars with p > po forms a negligible fraction of the total number (see, e.g.,
Stellar Dynamics, p. 207, eq. [5.311]). With this understanding, the averaging of Q(po, 7)
over po leads to the formula

Q(n)= Zi (—1)nH1 (1 — gmnix'r/2el, ) gmnixt/Ael, | (23)

n=l

H. S. Carslaw and J. C. Jaeger, Operational Methods in A pplied Mathematics, p. 235 (Ex.
16), Oxford England 1941,

§ Remembering that in our present choice of the unitsj = 1,
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Now, in a star cluster we have the following relation between the mean square velocity
of escape and the mean square velocity of the stars in the system (cf. ib4d., pp. 206-207,
egs. [5.306] and [5.311))

o2 =4]ul?; (24)
or, in our present choice of the units (cf. eq. [11]), we have
PL=6. (25)

However, in view of the circumstance that a star acquiring a velocity 2(Tu[?)!/ does not
necessarily imply its leaving the cluster unless it acquires a somewhat higher velocity
(cf. ibid., pp. 208-209), we shall suppose that

P6e=8, (26)

to allow a reasonable margin. Table 1 gives the values of Q(7) both for po = V6 and
for po = V3. .
TABLE 1
THE EXPECTATION Q(7) FOR A STAR TO ESCAPE FROM A CLUSTER DURING

A TIME r (MEASURED IN UNITS OF THE TIME OF RELAXATION)
WHEN DYNAMICAL FRICTION IS IGNORED

o) ofx)
T T

Pu=6 | Pu=8 Pu=6 | Pu=8
025.......... 0.069 0 023 2.5 0 82 0.68
05......... . .19 081 [[30.... .... 87 a7
10..... ..... .42 .25 40...... ... .94 .87
1.5.......... .60 .43 5.0 097 093
20......... 0.73 0.57

Remembering that the time of relaxation of galactic clusters is of the order of 6X107
years, an examination of Table 1 reveals that the rates of escape predicted (when dynam-
ical friction is ignored) are far too rapid to be compatible even with lives for these clusters
of the order of 3108 years. This can also be seen directly from equation (23). For, ac-
cording to this equation,

Q(r) ~2e—e% (1 — g~vr/2% ) (r21); (27)
or, for p%, = 6, respectively 8, we have the approximate formulae
(r) ~1.3 (1 —¢—0-827) (p2,=6),
ol } (28)
Q(r) ~1.5(1 — ¢—0.62) (p%,=8).

However, as we shall presently see, the rates of escape are drastically reduced from what
we have just now found when proper allowance is made for dynamical friction.

ii) The rate of escape of stars from clusters when allowance is made for dynamical fric-
tion—Passing now to the case when dynamical friction is not ignored, we have to solve
equation (14), together with the boundary conditions (15) and (16). Introducing the

bl
variable w=Wp, (29)
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equation (14) simplifies to

dw 10w ow
The boundary conditions (15) and (16) now become
w(p,7) =0forbothp=po oand p=0forallz>0 (31)
and )
w(p, 7) —-)mé(p—po)as‘r—m. (32)

We shall now show how the solution of equation (30), together with the boundary condi-
tions (31), can be reduced to a problem in characteristic values.
First we notice that a separation of the variables can be effected by the substitution

w= ¢ (p), (33)

where \ is, for the present, an unspecified constant. Equation (30) now leads to the dif-
ferential equation

&  de _
W+2pd_p+ (2N\+4)¢=0. (34)
Again, writing
o=ery, (35)
we have for ¢ the differential equation
2
Tt @rt3- =0, (36)
, putti
or, putting N (37)
we have
(2 Hy=0
apt Gutl-ey=0. (38)

It is seen that the differential equation (38) for ¥ is the same as the familiar wave equa-
tion for a simple harmonic oscillator. However, the boundary conditions with which we
have now to solve equation (38) are different from those customary in solving the prob-
lem of the simple harmonic oscillator in the quantum theory, for the solution we are now
looking for must satisfy the boundary conditions

=0 for p=0 andalsofor p=pw. (39)

In other words, the ¥’s of our problem are the characteristic functions of a simple har-
monic oscillator bounded at the origin and at p = p, i.e., an oscillator in a “box.” It
is, therefore, clear that the y’s which satisfy the boundary conditions (39) form a com-
plete set of orthogonal functions which can be further normalized.

Let
Vis W2y coeey ¥ny eone (40)

represent the normalized characteristic functions of our problem belonging respectively
to the characteristic values
By B2y covny nyeeees (41)
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The general solution of equation (30) satisfying the boundary conditions (31) can there-
fore be expressed in the form

w= D Aot trerhy, (p) (42)
n=}

where the 4,’s are certain constants which should be so chosen that the boundary condi-
tion for 7 = 0 is satisfied.

Now, since a 6-function can always be built up from any complete set of normalized
orthogonal functions according to

8(p=p0) = ¥a(p)¥alpo) , (43)

ne=1
it follows that the solution which satisfies the boundary conditions (31) and (32) is
e— "= p0)/2 &

W= e~ ta0ry, (p) Y (po) . (44)

41”" n=]

Thus our solution for W takes the form
W= e—(p"=p0)/2 & I
= Trrpe e~ w07y, (p) ¥a (p0) (45)
Using the foregoing solution for W, we find that (cf. eq. [67])
_ —tug=t)r [ _ O¥n .

ploon) =2 rmin et ( 88 yG0i G0
or, for the probability Q(po, 7), we have

Qoo 1) =2 o3 Lt — eoo) (=2 . )

n=] 8

Finally, to obtain Q(r) we must further average the foregoing expression over the rele-
vant range of po. With this we have formally solved the problem. To make the solution
explicit, it remains only to specify the characteristic functions ¥, and the corresponding
characteristic values u,.

The nature of the dependence of the characteristic values u, on the length of the “box”
P can be obtained by following a procedure developed by Sommerfeld in his studies of
the Kepler problem and the problem of the rotator in the quantum theory with “arti-
figal” boundary conditions.®

First, it is clear that when

P30, N (n=1,3,5,....). (48)

(Only the odd integral values of # need concern us here, since the wave function has to
vanish at the origin.) Itis further evident that the functions

¥, = e~*"H,(p) , (49)
where the H,’s are the various Hermite polynomials, formally solve equation (38) with
s = n; and, if # is an odd integer, these functions ¥, satisfy also the boundary condition

6 A, Sommerfeld and H. Welker, Ann. d. Phkys., 32, 56, 1938, and A. Sommerfeld and H. Hartmann,
Ann. d. Phys., 37, 333, 1940,
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at the origin. If it should now happen that p. coincides with a zero of one of the odd
Hermite polynomials, then the corresponding wave function ¥, will satisfy the boundary
condition at p, as well. Thus,

H;=8p%—12p (50)

has a zero at p = (1.5)/2. Accordingly, if po = (1.5)2, p = 3 is a characteristic value
of our problem, and ¥3 for p € (1.5)"/2 is the characteristic function which belongs to
it. This represents, then, a special solution to our problem. Similarly, the higher-order
Hermite polynomials will further provide such special solutions. The advantage in ob-
taining these special solutions is that by plotting the zeros of the various Hermite poly-
nomials in a (4, pe) diagram (as in Fig. 1) we obtain at once a general indication of how
the various characteristic values are modified by the “artificial” boundary condition at

P = P

! 1
2 3 2
Fre. 1

L ot

Now an examination of Figure 1 shows that for po > 2 the first characteristic value
of our problem must be extremely close to unity, so that u; — 1 must be a very small
quantity. On the other hand, the higher characteristic values will lead to values_of
(n— 1) ~ (m— 1) (n> 1, but an odd integer). Accordingly, for values of 7 of the
order of unity and greater, the first term in the series on the right-hand side of equation
(47) will provide ample accuracy. Thus,

Q(po, 7)

p (51)

uzpo(ltl“ 1)

Finally, to determine (u1 — 1) corresponding to the “lowest state” of our artificially
limited simple harmonic oscillator, we proceed as follows:

Writi
riung V= g"l'ﬁf . (52)

et (= S8) G (21
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in equation (38), we obtain the differential equation

atf af

dp,—Zp dp+2#f 0. (§3)
Substituting for f the series
f=Zc.p*, (54)
where s runs through all the odd integers, we obtain the recursion formula

—__2(p=s)
=T LEY G (5)

We already know that the particular characteristic value we are interested in must be
very close to unity. Accordingly, writing

p=1+e (56)

and treating ¢ as a small quantity, we find that all the coefficients ¢, ¢s, . . . ., contain
e as a factor. Retaining only the first-order terms in e and letting ¢ = 1, we readily
find that we can write f in the form

f=r(l—-ex), (57)
where
x=30" ot +alsn Holsn®+.... . (58)
The condition that f has to vanish at some specified p will determine e. Thus it was
found that
e=0.059 (p2,=6),
(59)
e=0.013 (p2, =8);

and, as was expected, ¢ is in fact a very small quantity.
In a first approximation y; can therefore be written as

V1=ae?2p (1 —ex) , (60)

where a denotes the normalizing factor, which can be determined numierically in any
given case.
Substituting for ¥ from equation (60) in equation (51), we obtain

Q(po, 7)

- (61)
LTl [_d_d;; (”'"‘p")],_h[l"‘x(p")] (1-e=) (+R1) }

2¢

It is found that for the cases p%, = 6, respectively 8, the foregoing equation (after aver-
aging over po) takes the simple numerical forms

s (] — g—0.069r 2 =6;r21),
Q(r)~(1-e ) (o2, T )} (62)
Q(r) o (1 — g0.0ur) (h=8;721).

Comparing the formulae (28) and (62), we see that when allowance is made for dy-
namical friction the mean life of a cluster is increased by factors ranging from 15 (pe ~
2.5) to 50 (p ~ 2.8). More particularly, the rates of escape given in Table 2 should be
compared with those of Table 1.

1t is seen that the rates of escape are sufficiently reduced to be compatible with a time
scale of the order of 3X 10° years. Physically, this drastic reduction in the rates of escape
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when dynamical friction is allowed for is readily understood, for dynamical friction oper-
ates essentially in the direction.of preventing a star from being accelerated by too large
amounts with any appreciable probability (cf. the remarks in I, § 1), and it is clearly on
this account that the probability that a star will acquire the necessary high velocities for
escape is so small. Further, it is to be noticed that in the mathematical analysis this re-
duction is brought about by the small numerical values of (i1 — 1), where u corresponds
to the lowest quantum state of an artificially restricted simple harmonic oscillator; and,
as we have seen (cf. Fig. 1) for the values of p which come under discussion, (u1 — 1) is
not only a small quantity but it also depends very sensitively on the precise value of pe
(cf. the values of [ — 1] for the cases p%, = 6 and p%, = 8 given in eq. [62]). We may

TABLE 2

THE EXPECTATION Q(r) FOR A STAR TO ESCAPE FROM A CLUSTER DURING
A TIME r (MEASURED IN UNITS OF THE TIME OF RELAXATION)
WHEN ALLOWANCE IS MADE FOR DYNAMICAL FRICTION

Q(n) Q(r)
T T
Pu=6 Pu=8 ph=6 =8
S.. 0.26 0.064 20 .. ....... 0.95 023
10........... 0.44 0.12 100.......... 0 0eeeinnn 0.73

therefore eonclude that dynamical friction provides exactly the right kind of agency for
preventing too rapid a disintegration of an isolated cluster; and thus, in the very exist-
ence of galactic clusters like the Pleiades, we can look for evidence not only for the opera-
tion of dynamical friction but also for the now generally adopted time scale of the order
of 3X10° years. .

4. Remarks on further developments.—Our discussion of the rate of escape of stars from
clusters has shown that dynamical friction must be a dominating factor in the dynamics
of these systems. The question now arises as to how we can incorporate in a rational sys-
tem of dynamics the stochastic variations in the velocity which a star suffers on account
of the fluctuating force acting on it. It is evident that to build such a system of dynamics
what we need is essentially a differential equation which will be appropriate for discussing
the probability distribution in phase space in contrast to equations of the Fokker-Planck
type, which describe the situation only in the velocity space. In other words, we need a
proper generalization of Liouville’s equation of classical dynamics to include terms cor-
responding to the stochastic variations in u. Such a generalized Liouville equation can
be readily found.

Quite generally we may write (cf. I, eq. [6])

Au = KAt+ du (At) — nuAt ,}
Ar =ult,

(63)

where K denotes the external force per unit mass acting on a star and the rest of the sym-
bols have the same meanings asin I, § 1. Also, analogous to the integral equation in the
velocity space (I, eq. [8]), we now have

W (1, u, t+At)

ot (64)
=/:m [u W (r—Ar, u—Au, t)¥(r—Ar, u—Au; Ar, Au)d(Ar)d(Au),
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where [\If]()r, u; Ar, Au) denotes the transition probability in the phase space. We have (cf.
I,eq.[9

e~lau—grad qat+quat—Katt/aeat

1
(4wgAt) 32 (65)
X 8 (Ax —uxAt) 6 (Ay —u,At) § (Az —u,Al) .

¥ (r, u; Ar, Au) =

Expanding the various terms in equation (64) in the form of Taylor series and proceeding
as in usual deviation of the Fokker-Planck equation, we obtain?

%I/E’_+u - gradr W+ K - gradu W = divu (q gradu W + 9Wu) . (66)

In the foregoing equation ¢ and » can be functions of r and u; they should, however, be
related according to

$lul? (67)

=
]

at all points of the phase space.

Equation (66) is the required generalization of Liouville’s equation of classical dynam-
ics, and it is on the basis of this equation that the dynamics of the galactic and the globu-
lar clusters should be developed. We shall return to these further developments ona
future occasion.

. "For details of the derivation see a forthcoming article by the writer in the Reviews of Modern Phys-
ics.



III. A MORE EXACT THEORY OF THE RATE OF ESCAPE
OF STARS FROM CLUSTERS

ABSTRACT

A more exact estimate of the rate of escape of stars from clusters is made than in an earlier paper by
properly allowing for the dependence of the coefficient of dynamical friction on the velocity. It is found
that the probability that a star will have acquired the necessary velocity of escape (assumed to be equal
to twice the root mean square velocity of the stars in the system) in a time 7 (measured in units of the
time of relaxation of the system) is given by

Q@) = (1 — g-0.00m7) |

On this basis, half-lives for galactic clusters of the order of 3 X 109 years are provided for, and it is further
concluded that dynamical friction provides the principal mechanism for the continued existence of galac-
tic clusters like the Pleiades for times of the order of 3 X 10? years.

1. Introduction.—In the two earlier papers of this series on “Dynamical Friction””
we have shown how stars must experience dynamical friction during their motion and
how in the rate of escape of stars from clusters we can look for direct evidence for the
operation of this force. However, in estimating this rate of escape of stars from clusters
in II we assumed (for the sake of simplicity) that the coefficient of dynamical friction,
7, and the diffusion coefficient, ¢ (in the velocity space), were both constants. On the
other hand, an explicit evaluation of the coefficient of dynamical friction on the two-
body approximation for stellar encounters gave

DU[]y 1 i
= 2
7 =8xmG (1og,[ 22l ap /. ¥, (1)
According to this formula,
7 —>no= constant as|u | —0 (2)
and
n—constant |u|3as|u| oo . (3)

In view particularly of (3) it does not appear entirely satisfactory that we ignore the
dependence of  on |u|. It is therefore a matter of some importance that we make
proper allowance for the variation of 4 with |u| according to equation (1) in estimating
the rate of escape of stars from clusters. This is the main purpose of this paper.

2. The general theory of the rate of escape of stars from clusters allowing for the variation
of n with |u|.—As in II, we shall suppose that, in order that a star may escape from a
cluster, it is only necessary that it acquire a velocity greater than (or equal to) a certain
critical velocity, v.,, which we may call the “velocity of escape.” On this assumption
the probability that a star will have acquired the necessary velocity for escape during
a certain time can be determined very simply in terms of the probability, (v, £) d¢,
that a star having initially a velocity |u| = 9, at time ¢ = 0 will acquire for the first
time the velocity [u| = 9., between ¢ and ¢ + d¢. And as we have already explained in

1These two papers will be referred to as “I” and “II,” respectively.
270
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II, § 2, this probability function p(v, £) can be derived in turn from the spherically
symmetric solution of the equation

f’alf-= divu (g gradu W+ nWu) , 4)
which satisfies the boundary conditions
W(|u|,t) =0 for |u|=1vo forall £>0 (5)
and
. 1
W(Iul,t)ﬁmé(lul—vo)asi—»O, (6)

where § stands for the usual é-function of Dirac.
For the case under discussion we have (I, eq. [36])

Dolu[*1\ 1 (. . ,
1= 8e8 w6 (log, [l ) s e Giluh) = luleGluD], - )

where & and @’ denote, respectively, the error function and its derivative. Further, in
equation (7), j is the parameter which occurs in the assumed Maxwellian distribution
of velocities:

A R A

s e du ’=(2!TI_’ ' ®

3

The formula (7) for 5 can be written more conveniently as

n=nov(jlul), 9)
where
D0|u|2)( 3 )w 4
= 2 2
no=8rNmG* (log, [ S ) 3o (10)
and
3xif2
V(p)=-4—p”[¢(p)—p‘1"(p)]- (11)
With »(p) defined in this manner,
v(p) =1 as p—0 (12)
and )
1/2
v(p) ~ 22D 73 as g, (13)

Again, since ¢ and 5 are quite generally related according to
g=%ul*, (14)
we have
g=4%u|*nor(j|ul). (15)
The function »(p) is tabulated in Table 1.

Returning to equation (4), we now introduce a change of the independent variables
uand ? Let

r=nit; u=(3lulD)¥p. (16)
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Equation (4) now takes the dimensionless form

w .
Tf-=dwp[§v(|p|)grade+v(]P|)WP]. an
For a spherically symmetric solution W(|p|, 7) equation (17) reduces to
ow 0 [ 3 ow . i]
—=—y — -3w 18
i P (p) 13» ap+(p Pwt |, (18)
TABLE 1
THE FUNCTIONS »(p) AND —d log v/dp

0 (p) - d——-—f z 3 (o) ¢ l;: 4
0.00.... ... 1.00000 0.0000 145 . ... 0.33133 1.3062
0.05... 0.99850 0.0600 1.50 . .31026 1.3206
0.10... 0.99402 0.1199 1.55 .29035 1.3323
0.15... 0.98661 0.1795 1.60 27157 1.3413
0.20.. 0.97634 0.2389 1.65 .25392 1.3477
0.25. 0.96332 0.2979 1.70 . 23734 1 3515
0.30.. 0.94770 0.3563 175 22183 1.3528
0.35... 0.92962 0.4141 1.80 20732 1 3518
0.40. .. 0.90927 0.4712 1.85 19379 1.3486
045.. 0.88684 0.5274 1.9 18117 1.3432
0.50 0.86257 0.5827 1.95 16943 1.3358
0.55. 0.83666 0.6369 2.00 15852 1.3267
060 . 0.80936 0 6899 2.05 14839 1.3159
065. 0.78090 0.7417 2.10. 13898 1.3036
0.70. 0.75152 0.7921 215 . 13025 1.2901
075. . 0.72145 0 8409 2.20 12216 1.2754
0.80... 0.69093 0 8881 2.25 11466 1.2597
0.85... 0.66016 0.9336 2.30 10770 1.2433
0.90... 0 62936 0.9772 2.35. 10126 1.2262
009s... 0.59872 1.0188 2.40 09528 1.2087
100. . 0.56842 1.0584 2.45 . 08973 1.1907
1.05... 0.53861 1.0958 2.50 08458 1.1726
1.10. . 0.50944 1.1309 2.55 07980 1.1544
1.15... 0.48104 1.1636 2.60. 07536 1.1361
1.20... 0.45350 1.1939 2.65. 07123 1.1179
125.. 0.42692 1.2216 2.70. . 06739 1.0999
1.30... 0.40137 1.2468 2.75. 06381 1.0820
1.35 .. 0.37689 1.2693 2.80... .06048 1.0645
1.40..... 0.35354 1.2891 2.85.. 0.05737 1.0472

where we have written
o=|pl and w=W,. (19)

According to equations (5) and (6), we require a solution of equation (18) which satisfies
the boundary conditions

w(p, ) =0 forboth p=0 and p=p_ forall 7>0 (20)

and

w(p, 1) = o= 8(p—po) 25 10, (21)
Tpo
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Now, equation (18) is separable in the variables p and 7. Accordingly, we write
w=e¢"2¢(p), (22)

where X is, for the present, an unspecified constant; we then obtain for ¢ the differential
equation

L {10 22+ G- 116} ] +r08=0. (23)

If we now let
p=e"%, (24)
equation (23) reduces to

i’_\f_!_dlogv d¢+[

dp? dp dp

dlogv (1 _
y(p)—pl—3 o= dp ~-—p)]¢/—0. (25)

It is now seen that, in order that a solution of the foregoing equation may vanish both
at p = 0 and at p = po, it is necessary that \ take one of an infinite enumerable set of
discrete values

My Aty v evns Amy vnnn, (26)

which may properly be called the “characteristic values” of the problem. Further, if

!l’x, %,--'-, ‘I’n)-~-- (27)
denote the solutions of equation (25) which satisfy the boundary conditions (20) at
p =0 and at p = p,, and belong, respectively, to the values M, Ny, . ..., As, ...

then it can be readily verified that these solutions form a complete set of orthogonal
functions. Without loss of generality we can therefore suppose that these functions are
all properly normalized. Consequently, in terms of the fundamental solutions

wy = e~ e, (p) (28)

which satisfy the boundary conditions (20) we can construct solutions which will satisfy
any further arbitrary boundary condition for 7 = 0. Thus, the solution

c—(n'—'?.’/’z e~y (p) ¥ (o) (29)

ne=1

B 4“"Po
clearly satisfies the boundary condition (21) for = 0. Corresponding to the solution
(29) for w, we have

_ 1
47ppo

e~/ ey, (p) ¥a (po) . (30)

n=l

Using the foregoing solution for W, we can write down the probability function
$(po, 7). For, since

p(on ) ==20a0 o) () (31)

pmp. '

we have

p(po,r)--—»(p)r(»'-p*mz:e-w( D) o). (32)

n=1
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To obtain the total probability Q(pq, 7) that a star having initially a velocity correspond-

ing to po will have acquired during the time r a velocity corresponding to p.,, we have
simply to integrate equation (32) from 0 to 7. Thus,

Qon ) = [ b (v, 7) dr; (33)

or, using equation (32), we have

Po l
Qbn ) =52 (p,) et =AY L (1= ) - ‘;ﬁ")p_p_w,w . (34)

n=]

Finally, to obtain the expectation, Q (7), that an “average’ star will have acquired the
necessary velocity for escape during a time 7, we must average the foregoing expression
over all po. The final result can therefore be expressed in the form

Q(r) =20 (), (35)
=1
where
0n(r) = A, (1= e77) (36)
and
..L ~pl % enil? 37
A"_Z)\,. pr(p,) e -”(—dp)F,_[Th(po)]- (37)

3. Numerical results.—Now, since in a star cluster the root mean square velocity of
escape is twice the root mean square velocity of the stars in the system,? it is clear that
the values of p., which come under discussion are in the general neighborhood of

p, = V6~2.45. (38)

As we shall see presently, for these values of po, Q(7) can be represented with ample
accuracy by the first term on the right-hand side of equation (35). Accordingly, it
would be sufficient to specify the lowest characteristic value of \ (for a given p,,) and
the normalized characteristic function y, belonging to it. For this purpose the following
procedure appears suitable:

First we assign a value for \ and look for a solution ¥ (p) of equation (25) whose be-
havior near the origin can be described by a series expansion of the form

¥=p+a3p’+ asp’+.... . (39)

For any prescribed value of \ the coefficients as, s, etc., can be successively determined
from the differential equation (25) for ¥. Thus as and ¢; are found to be

es=—}(3+2)\),
es=19[2.2~ 1.2\ +3 (3+21) (0.6+2>\)].}

The higher coefficients can be similarly found, but the explicit formulae in terms of A
have no particular interest. However, it is clear that, starting a solution near the origin
with a series expansion of the form (39), we can continue it for larger values of p by

(40)

2Cf. e.g., S.Chandrasekhar, Principles of Stellar Dynamics, pp. 206-207.
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standard numerical methods until we reach the first zero p, (A) of ¥. Conversely, for
the value of po, thus determined, the solution ¥ satisfies the necessary boundary con-
ditions at the origin and at p = p,. The initially assigned value of X is therefore the
lowest characteristic value of X for this value of p,,. If we now let a denote the nor-
malizing factor for the solution ¥ determined in this fashion, we can express 4, (cf.
eq. [37]) alternatively in the form

2 av gnil?2
=2 —;/2(__) en (41)
Ar=o5 pap(pg) €™ » m_[ o W(Po)]-

Now, it is found that, for the values of p,, in the neighborhood of 2.45, X is very small
and A, is very close to unity. Thus, for X = 0.0075, a numerical integration of equation
(25) gave

p,=2.4518;  A,=0.9966 (\=0.0075). (42)

Accordingly, for this case, equation (35) takes the explicit form

Q(7) =0.9966 (1 — ¢~0-00767) 4 2 An(1—e™) (po=2.4518). (43)

n=2

Since Q(r) must, by definition, approach unity as r — «, it is clear that

©

3 4,=0.0034, (po=2.4518). (44)

n=2

Again, since A\, must he in the neighborhood of 2 (cf. II, p.266) and the higher character-
istic values still larger, it is evident that, for r > 5, sufficient accuracy will be pro-
vided by

0(r) =1 — g=0.005r (1,25). (45)

The situation for other values of p, is quite similar, as is apparent from Table 2, where
the results for a few values of A are collected together.

TABLE 2

THE RATE OF ESCAPE OF STARS FROM CLUSTERS INCLUDING DYNAMICAL FRICTION
AND ALLOWING FOR ITS DEPENDENCE ON |u|

A P vpa) -¥'(pu) a? (P32 g3 9 (0] Qi(r)

0.0025 ....... 2 6642 | 0 07011 0.4077 2 3083 0 9891 1.0000 (1 —¢0-00287
.0050. . ....... 2.5320 .08148 5183 2 3458 .9813 0 9978 (1 —g0-0080r
0075 ........ 2.4518 .08954 5932 2 3787 .9748 0 9966 (1—¢o-0ms7
.0100.......... 2.3936 09601 .6503 2.4089 .9689 0.9941 (1 —0-0w0r

0.0125......... 2.3476 | 0.10156 0 6969 2.4373 0.9634 0.9921 (1 —¢0-0387)

4. The half-life of a cluster—From our results of § 3 it follows that for r > 5 we
can write

Q(r) =1—¢r (r=1not) (46)
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for the values of p, which come under discussion. Since Q(r) glves the expectation that
an average star will have escaped during a time 7 (in units of 75*), we can properly re-
gard 1/M7o as a measure of the half-life of the cluster. Thus,

Half-life of the cluster = (\yn,) !, (47)

where 7, is defined in equation (10). The precise value of M will depend, of course, on
circumstances; but it is clear that greatest interest attaches to a value of pg, 2 2.45.
For this value of p,, we have found that A; 2 0.0075, so that the half-life of the cluster
may be defined by .
Half-life of the cluster = 1334, . (48)

For the Pleiades, 7,  is of the order of 2 X 107 years, so that its half-life is of the order
of 3 X 10° years. In judging this value it should be remembered that, when dynamical
friction is ignored, a half-life for the Pleiades of the order of only 5 X 107 years is pre-
dicted, while our own earlier calculations in II, in which we ignored the dependence of
the coefficient of dynamical friction on |u|, gave half-lives which are about seven to
eight times shorter than those indicated by our present calculations. More explicitly,
we have found that (cf. II, eqs. (28] and [62])

Q(7) ~1.3(1— e082r) (dynamical friction ignored) ,

Q(7) = (1 — g~0.000r) (dynamical friction included, but the depend-
ence of 7 on |u| ignored), (49)
Q(7) = (1 — g=0.0077) (dynamical friction included and the depend-

ence of 1 on |u| allowed for) .

There can thus be hardly any doubt that dynamical friction provides the principal
mechanism for the continued existence of the galactic clusters like the Pleiades for times
of the order of 3 X 10° years. But, even with dynamical friction properly allowed for,
it will be hard to account for such clusters’ half-lives of the order of 10'° years, This,
in turn, provides another strong argument in favor of the “short-time scale.”

The results of Table 2 allow us also to infer something about the relative rates of
escape of stars of different masses: for stars with masses appreciably different from the
average value, p,, may be expected to change according to 3

Pe(m) =(6 —-”T)m. (50)

From Table 2 we now see that even a 10 per cent increase of po, prolongs the half-lives
by a factor of the order 3, while a similar decrease in p,, shortens the half-life by a factor
of the order 2: The general conclusion to be drawn from this is simply that a cluster
loses its less massive members rather more rapidly than the average ones, while the
more massive members continue to remain, on the average, for longer times. We hope
to return to these questions in greater detail on a later occasion.

In conclusion, I wish to record my indebtedness to Mrs. T. Belland, who undertook
most of the numerical work involved in the preparation of this paper, and in particular
for the care with which she performed the necessary numerical integrations.

8 Ibid., pp. 209-213.
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PREFACE

The present paper gives a condensed version of certain new methods
which the author has recently been developing for investigating the
dynamics of stellar systems. In presenting the subject, it was thought
desirable that the emphasis be placed throughout on the physical aspects
of the problems and whenever this has required the suppression of the
mathematical details I have not avoided doing so. This is particularly
true in the more technical parts of the subject.

Since the original version of this paper was submitted to the New York
Academy of Sciences in September, 1942, the subject has advanced
along several directions. The author is therefore greatly indebted to
the Council of the Academy for permission to drastically revise and
recast the entire article.

S. C.

July, 1943.

I. THE STATISTICS OF THE GRAVITATIONAL FIELD
ARISING FROM A RANDOM DISTRIBUTION OF STARS

The Outline of the Statistical Method

One of the principal problems of stellar dynamics is concerned with
the analysis of the nature of the force acting on a star which is a member
of a stellar system.! In a general way, it is clear that we may broadly
distinguish between the influence of the system as a whole and the
influence of the immediate neighborhood. The former will be a smoothly
varying function of position and time while the latter will be subject to
relatively rapid fluctuations (see below).

Considering first the influence of the system as a whole, it appears that
we can express it in terms of the gravitational potential V(r;t) derived
from the function n(r, M; t) which governs the average spatial distribu-
tion of the stars of different masses at time {. Thus

+ o o

Vi) = -G f an(r.,M HdMdr, a

|ry — 1|

where G denotes the constant of gravitation. The potential V(r;¢)
derived in this manner may be said to represent the ‘“smoothed out”
1 See for example, Chandrasekhar, B., “Principles of Stellar Dynamics.”” Chapter II.

281
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distribution of matter in the stellar system. The force per unit mass
acting on a star due to the “system as a whole” is therefore given by

K= — grad V(r; ). (2)

However, the fluctuations in the complexion of the local stellar distribu-
tion will make the instantaneous force acting on a star to deviate from
the value given by (2). To elucidate the nature and origin of these
fluctuations we surround the star under consideration by an element of
volume ¢ which we shall suppose is small enough to contain, on the
average, only a relatively few stars. The actual number of stars, which
will be found in ¢ at any given instant of time, will not in general be the
average number that will be expected to be in it, namely, neo; it will be
subject to fluctuations. These fluctuations will naturally be governed
by a Poisson distribution with variance ne. It is in direct consequence
of this changing complexion of the local stellar distribution that the
influence of the near neighbors on a star is variable. The average
period of such a fluctuation is readily estimated. The order of magnitude
of the time involved is evidently that required for two stars to separate
by a distance D equal to the average distance between the stars. We
may therefore expect that the influence of the immediate neighborhood
will fluctuate with an average period of the order of

D
v
where [[V]2]"? denotes the root mean square relative velocity between

two stars. s
In the neighborhood of the sun, D ~ 3 parsecs, [[V[2]V* ~ 50 km/sec.
Hence,

T= 3)

T (near the sun) ~ 6 X 10* years. 4)

When we compare this time with the period of galactic rotation (which
is about 2 X 108 years), we observe that, in conformity with our earlier
remarks, the fluctuations in the force acting on a star due to the changing
local stellar distribution does in fact occur with extreme rapidity com-
pared to the rate at which any of the other physical parameters change.
Accordingly, we may write for the force per unit mass acting on a star,
the expression

F=K(ryt) + F), (%)
where K is derived from the smoothed out distribution, as in equations
(1) and (2), and F denotes the fluctuating force due to the near neighbors.
Moreover, if At denotes an interval of time, long compared to (3), we
may write
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FAt = KAt + su(t;t+At), 6)
where
t4-At
su(tt+AL) = f F(¢)d¢ at>T). )

t

Under the circumstances stated (At >> T), the accelerations su(t;t+At)
and du(t + At;t + 2At) suffered during two successive intervals (¢,¢+At)
and (¢ + At,t + 2At) will not be expected to show any correlation.
We may therefore anticipate the existence of a definite law of distribu-
tion which will govern the probability of occurrence of the different
values of du(i;t+At). We thus see that the acceleration which a star
suffers during an interval At >> T can be formally expressed as the sum
of two terms: a systematic term, KAt, due to the action of the gravitational
field of the smoothed out distribution and a stochastic term, d12(¢; ¢ + At),
representing the influcnce of the near neighbors. Stated in this fashion,
we recognize the similarity between our present problems in stellar
dynamics avith those which occur in the modern theories of Brownian
motion.?

We proceed now to the outline of a general method which appears
suitable for analyzing the statistical properties of F(t). The force F
acting on a star, per unit mass, is given by

M;
F=G;Zl—rgl—3r" (8)

where M ; denotes the mass of a typical “field” star and r; its position
vector relative to the star under consideration; further, in equation (8)
the summation is to be extended over all the neighboring stars. The
actual value of F given by equation (8) at any particular instant of time
will depend on the instantaneous complexion of the local stellar distribu-
tion. It is in consequence subject to fluctuations. We can therefore
ask only for the probability of occurrence

W (F)dF .dF,dF, = W(F)dF 9

of F in the range F and F + dF. In evaluating this probability distri-
bution we shall suppose, consistent with the physical situations we have
in view, that fluctuations subject only to the restriction of a constant
average density occur. However, the specification of W(F) does noi
provide us with all the necessary information concerning the fluctuating
force F. An equally important aspect of the problem concerns the
speed of fluctuations.

3 See a forthcoming article by the author in the “Reviews of Modern Physics.”
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According to equation (8) the rate of change of F with time is given by
- 9F _ Vi g, (V)

f= a=¢ 2; M {Ifils 3 [rif® }’ (10}

where V,; denotes the velocity of a typical field star relative ® to the star

under consideration. It is now apparent that the speed of fluctuations
in F can be specified in terms of the bivariate distribution

W(F, 1), (11)
which governs the probability of the simultaneous occurrence of pre-
scribed values for both F and f. It is seen that this distribution func-
tion W(F, f) will depend on the assignment of a prior: probability in the
phase space in contrast to the distribution W(F) of F, which depends
only on a similar assignment in the configuration space. While it is
possible by an application of a general method, due to Markoff, to write
down a general formula for W (F, f), it does not appear feasible to obtain
the required distribution function in an explicit form. However, it is
possible to obtain explicit formulae for all the first and second moments
of f for a given F; and it appears possible to make some progress in the
specification of the statistical properties of F in terms of these moments.

The Statistical Properties of F

We require the stationary distribution of F and its simultaneous rate
of change f acting on a given star. Without loss of generality we can
suppose that the point under consideration is at the origin, O, of our
system of coordinates. About O describe a sphere of radius R and con-
taining N stars. In the first instance we shall suppose that

N
_ M
F= G.-Exlr.‘[8 i (12)
and
oy Vi (r.--V;)},
-6 B s - an G2 13)

but we shall later let R and N tend to infinity simultaneously in such a
way that

%-rR’n = N; (R— x; N> x; n = constant). (14)

This limiting process is permissible, in view of the fact that the dominant
contribution to F is made by the nearest neighbor ¢; consequently, the

31t is in this respect that the analysis which follows differs from that contained in Chandrasekhar,
8., & von Neumann, J. Astrophysical Jour. 98: 489, 1942, where the speed of fluctuations in I acting

at lomedﬁzed ‘roint in space is considered.
4 Cf. Chandrasekhar, 8., Astrophysical'Jour. 94: 511, 1041 (see particularly § 4).
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formal extrapolation to infinity of the density of stars obtained only in
a given region of stellar system can hardly affect the results to any ap-
preciable extent.

Using a general method due to Markoff, we can readily write down a
general formula for the distribution function W(F,f). We have *

W(F.f) = 641,., f f e~ {wF+eD A(p,0)dgds, (15)
lol=0 [d|=0
where
3 3 R 4xRin/3
Ae9) = ,‘g‘_";:: [Z%i‘a f f f ei(retew rdrdVdM]- (16)

M=0 |V|=0 |r|=0

In equations (15) and (16) ¢ and ¢ are two auxiliary vectors; n denotes
the number of stars per unit volume;

et y=au(Y — 3TV
é=GM e 4 =GM (|f|“ 3r LB ) (17)
Further,

7dVdM = +(V;M)dVdM (18)

gives the probability that g star with a relative velocity in the range

(V, V + dV¥) and with a mass between M and M + dM will be found.

It should also be noted that in writing equations (15) and (16) we have

supposed that the fluctuations in the local stellar distribution which

occur are subject only to the restriction of a constant average density.
Since

® R @

1;3? f f / aVdrdM = 1, (19)

M=o [r|=0 V=0
we can rewrite (16) as
A(@;d) = © R

Limit | ; _ 3 [1 — eie+-0TrdVdrdM f'm/s (20)
R— o 4xR? . Tard
=0 [rl=0 [V]=0

The integral over r which occurs in equation (20) is seen to be absolutely
convergent when extended over all |r| i.e., also for |r| — . Hence,
we can write

5 Cf. Chandrasekhar, 8., & von Noeumann, J., Astrophysical Jour. 96: 489. 1942. (§2).
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Ae9) = ~ A A 4xRin/3
. e 3 e
it [i- g [ o cweeogavaen [ e
=0 [r|=0[V|=0
or
Ap0) = e=ncte), (22)
where ‘

© +® 4o

Clo,9) = f f f [1 — eie4+4-0YrdrdVdM. (23)

This formally solves the problem. It does not, however, appear that
the integral representing C(p,8) can be evaluated explicitly in terms of
any of the known functions. But if we are interested only in the distri-
bution W(F) of F and in the moments of f for a given F then we need
only the behavior of A(p,s), and therefore also of C(g,d), for |é| — 0,
for the distribution W(F) is clearly given by

W(F) =/W(F,f)df- (24)

Similarly, the first and the second moments of the components f, f,, and
f; of f along three directions £, n and { at right angles to each other are
given by

+
and -
W(F)fﬂf' fW(F f)fnf df (I‘)V = E:’T:;) (26)

Substituting now for W (F,f) according to equation (15) in the foregoing

equations we obtam
+o 4o 4w

W = goe [ [ soreen aeorifieds,
WET, = o f+ m f+ B f+ iwrren Al finds, ) (20

+o 4o 4+

W) = g1 f f f {0 FHeD A(o,9)fuf dfdgds.

—_— ) —® —m
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* But

4+ ©
gl.’ifg—“fd_f = 8(a¢)8(0y)d(a;),

+ =
Elﬂ_a f eI df = ' (a0)d(ay)d(ay),
- (28)

+ »
o [ 1048 = — 3 (00ba080eD,

+
s f eIl df = — ¥(e)¥ (a9)8or),

etc. In equations (28), & denotes Dirac’s é-function and &’ and §” its
first and second derivatives; and remembering also that

+e teo

J1o@w =r0;  [1eee=-ro;

- . @)
[ 1w @ =10,

equations (27) reduce to

+4+ o
W(F) = s_];jfe_i'.' [A(91d)]|¢|-0d91 (30)
..', .. —
W, = — g5 / cor|Zaeo) d @D
and
. + = _
WETT = — g [ e[ a0 |, do @

We accordingly see that the distribution function W (F) and all the
first and the second moments of f for a given F can be evaluated from a
series expansion of A (g,d) [or of C(p,4)] which is correct up to the second
order in |¢|. The development of such a series is long and tedious.
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Omitting, therefore, all the details of the calculations, we give only the
final result. It is found that

C(p0) = 55 (Qm)GIHTglo

+ g 7iG (0 MV + oMV — 20,0 V)

+ o @EIEGUGI S (Bort + 4o — 20H)MTVE ) (33)

+ (40 + 50y — 20) M2V 2
+ (4632 - 2012 - 20’3’)1‘4"2‘]32 - SdgdaM”’VQVa
— 8010:M'2V\ V3 + 2010:M12V,V,] + 0(|8®), ([¢]—0),

where a bar indicates that the corresponding quantity has been averaged
with the weight function 7(V;M) (see equation [18]); further, in equa-
tion (33), (¢1,02,03) and (V,,V,,V;) are the components of ¢ and ¥V in a
system of coordinates in which the 7Z-axis is in the direction of g.

In equation (33) V.= (V1,V,,Vs) denotes of course the velocity of a
field star relative to the one under consideration. If we now let & and v
denote respectively the velocities of the field star and the star under
consideration in an appropriately chosen local standard of rest, then

V=u-—mw (34)

In our further discussion we shall introduce the assumption that the
distribution of the velocities # among the stars is spherical;i.e., the distri-
bution function ¥(u) has the form

Y(u) = Y[7(M)|ul*], (35)

where ¥ is an arbitrary function of the argument specified and the
parameter j (of the dimensions of [veloclty]“) can be a function of the
mass of the star. This assumption for the distribution of the peculiar
velocities # implies that the probability function r(V;M) must be ex-
pressible as

(ViM) = YLD ulIx(M) (36)

where x(M) governs the distribution over the different masses. For a
function 7 of this form we clearly have

MV, = ~Mv; MAEVE=: Mw(u[2 + MRy (i =123) oD
M”’V.‘V,‘ = M”’v,-v,-, [t,j = 1,2,3; % 7% ])].

Substituting these values in equation (33) we find, after some minor re-
ductions, that
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Clod) = 15 @mV @Il — 2 wiGH (0w, + aas — Zows)

+ i (2,)a/zgx12]ml‘zl9|—s/z(ﬁz + 022
__ (38)
+ 538_ (27)32G2 M| | 312 {0 2(50,2 + 4va? — 2052)
+ 0‘22(41)1,2 + S5ve2 — 21)32) + 032(4032 - 2012 - 21)22)
— 803030103 — 80301wst1 + 201012} + O(|6*), (|6]—0).
With a series expansion of this form, we can, as we have already re-

marked, evaluate the distribution W (F) and all the first and the second
moments of f for a given F.

THE DISTRIBUTION W(F)
According to equations (30) and (38) we have

+ o
1 1 3/8
W = sT—'f e~ioF—clotd, (39)
where we have written
o= %(%G)anm“zn. (40)
From equation (39) we derive the formula®
-1 HB
W(F) = Trdt 5 (41)
where
2
=2 - (@lBPiy i
H(B) 166/e 'z sin z dz, 42)

afhd 8 measures |F| in units of Q4 where

Qu = a?3 = 2.6031G (M3/*n)23, (43)
The function H(8) has been numerically evaluated and tabulated in
Chandrasekhar and von Neumann’s paper.

THE FIRST MOMENT OF f: DYNAMICAL FRICTION

Turning next to the first moment of f it is found after some lengthy
calculations that

1= @), o)

where Qy is the normal field defined in equation (43) and
¢ Cf. Chandrasekhar, 8., & von Neumann, J. Astrophysical Jour. 95: 489, 1942. ($ 7).
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f H(g)dB
B@B) = 3*—575-— — 1.
®) = 32— — 1 (5)
The function B(8) has the following asymptotic forms:

B -ar(De 6o,

8 |r (46)
S.I% g
B6) ~S\[E 8- ).
We shall first examine certain formal consequences of equation (44).
Multiplying equation (44) scalarly with F we obtain

F.@ 3761 B(IFI) ©.F) )
but
F. (?if) = IF I(dm> " (48)
Hence, L
(48),. - gromns(S1) 5. 49)

On the other hand, if F; denotes the component of F in an arbitrary
direction at right angles to the direction of v then, according to equa-

tion (44),
aF;\ _ [Fl)v .F
( i )”—- 21rGMnB( IFPF (50)
Combining equations (49) and (50) we have
1(dF; dlF l) X
F:‘( dt )I'v 2 IFI( (51)
Equation (51) is clearly equivalent to
- ,
[ dt(log F;— log |F I)]” =0 (52)

We have thus proved that

(i), o 6

We shall now examine the physical consequences of equation (44)
more closely. In words, the meaning of this equation is that the com-
ponent of
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Sma(De-) o

along any particular direction gives the average value of the rate of
change in the force F per unit mass acting on a star that is to be expected
in the specified direction, when the star is moving with a velocity ¥ in an
appropriately chosen local standard of rest. Stated in this manner, we
at once see the essential difference in the stochastic variations of F with
time in the two cases |#| = 0 and |¥| # 0. In the former case, F = 0;
but this is not generally true when |v| # 0. Or expressed differently,
when |v| = 0 the changes in F occur with equal probability in all direc-
tions, while this is not the case when |v| ¢ 0. The true nature of this
difference is brought out very clearly when we consider

(.. .

according to equation (49). Remembering that B(8) = 0 for 8 = 0,
we conclude from equation (49) that

(%’l') >0 if vF>0, - (56)
t Fy
and
(%tﬂ) <0 if v-F<0. (57)
Fy

In other words, if F has a positive component in the direction of v, |F|
increases on the average, while if F has a negative component in the
direction of v, |F| decreases on the average. This essential asymmetry
introduced by the direction of ¥ may be expected to give rise to the
phenomenon of dynamical friction.

The characteristic aspects of the situation governed by equation (44)
are best understood when we contrast it with the case |¥| = 0. Under
these circumstances, we can. visualize the motion of the representative
point in the velocity space somewhat as follows.” The representative
point suffers small random displacements in a manner that can be ade-
quately described by the problem of random flights or more generally
as Brownian motion. More specifically, the star may be assumed to
suffer a large number of discrete increases in velocity of amounts
T(|F|)F, where T denotes the mean life of the state |F| (see subsection
below). Moreover, these increases may be assumed to take place in

7 Cf. Chandrasekhar, 8., Astrophysical Jour. 94: 511, 1941. (§§2 and 7.)
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random directions. Accordingly, we may conclude that the mean square
increase |Av[? in the velocity to be expected in time ¢ is given by

[av[* = |F[*Tt. (58)
An alternative way of describing the same situation is that if we denote

by W(v;t) the probability that the star has a velocity v at time ¢ when
the velocity at ¢ = 0 is v, then W satisfies the diffusion equation

W _ (W afW oW
at (avl + avs ) (59)
with the “coefficient of diffusion” ¢ hmnng the value
) —
¢ = 5 IFFT- (60)
The solution of equation (59) for our purposes then is
Wwitwo) = g—lv—vi¥/4gt. (61)

(4 t)a/z

The formula (58) is seen to be an immediate consequence of the solution
(61).

Returning to the discussion of the case governed by equations {(44)
and (49), it is at once clear that the idealization of the motion of the
representative point in the velocity space, as a problem in random flights,
can no longer be valid. For, according to (56) and (57), during a given
state of fluctuation of F a star is likely to suffer a greater absolute amount
of acceleration if (v-F) is negative than if (v-F) is positive. But the a
priort probability for (v-F) to be positive or negative is equal. Hence,
when integrated over a large number of fluctuations the star must suffer
cumulatively a larger absolute amount of acceleration in a direction
opposite to its own direction of motion than in the direction of motion.
In other words we may expect a net tendency for the star to be relatively
decelerated in the direction of its motion; further, this tendency is propor-
tional to |¥|. But these are exactly what are implied by the existence of
dynamical friction. (See Part II where the question of dynamical fric-
tion is considered in greater detail.)

THE SECOND MOMENT OF [f] AND THE MEAN LIFE OF
THE STATE [F)

According to equation (32)

+ o
WO = ~g [ 7 944 (00 umode- (62)
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Using the expansion (33) for C(g,d) we find after some lengthy calcula-
tions that

f12 B in2 — nZ o —
[fPry = 2ab H(B){ 2G(8) + 7k[sin?aG(B) — (3sin’a 2)1@)]} l

(63)
BH(ﬁ){ (4 — 3sin?a)BH(B) + 3(3sin’a — 2)K(,3)} s
where a denotes the angle between the directions of F and v,
a = -t QeGP M0, b=} (21)3”Gll’mn,l
2 GH L _ 3 M (6
=3 *GHivin, 7M”’,u=2 5

and

H(@B) = 1—?5 f e~GIP312 3 gin 7 dz,
° 8
o) = 3 [ sy
° o, (65)
1) = g [ pnG(8)ds,

0

8
K(®) = f H(g)dg.

Averaging equation (63) for all possible mutual orientations of the
two vectors F and v we readily find that

——] 1/2(7 2
T = dab {Eo0(1 4 1) 1 £, (66)
or substituting for k and g?/2ab from (64), we find that

= (BRGE) (M 5 W
[ imw = 4ab{ HE) \ 1+ M"’lul’) + 12 ﬂm } @

In terms of equation (67) we can define an approximate formula for
the mean life of the state |F| according to ®

|F|
Tinw = =
\/l.f R

(l; _'(;l. OChandrasekhar, 8., & von Neumann, J. Astrophysical Jour. 98: 489. 1942. Equation

. (68)
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Combining equations (67) and (68) we find that
1
N ()
My~ 127 Mz MU2ul? g12G(g)
where T denotes the mean life when |v| = 0:
Timo = |82 FPH(B),
FOTND @B

Equation (70) suggests that we measure T in terms of the following
unit, ¢, which appears natural to this problem:

1/3
=G (71)

Substituting for a and b from equation (64), we find that
Mezus \1
= (LY L
@EO)r P\ [ppinyr]) P
0.3201([W]l/s>1/z

Wi\ M
And, finally, if we denote by 7(8;|v|) the mean life expressed in this unit,
we have

7(8;lv]) = =(8;0)

Tiriw = Timo o (69)

(70)

(72)

1
Lo M 5 M HE) |
M7yl 12= M2yl g2G(B)
From equation (73) we derive the asymptotic formulae

1
TP []_ + W‘”P 5 levl?. ]1/2 8- 0)) (74)

(73)

My~ 127 MERMEy)?

and
15 1
TN a6 (75)
[+ i

"The function 7(8;0) is tabulated in Chandrasekhar and von Neumann’s
paper. Our present results show that approximately

1
7(8;lv]) ~ 7(8;0) F—:—]rrl—_rlzlv— I’]l/z'

M'Puf?
According to equations (74) and (75), the approximate formula (76) may

(76)
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be expected to give values of r correct to within 15 per cent over the
entire range of 8.

We may particularly draw attention to the very short lives of the
weak fields.

II. DYNAMICAL FRICTION AND THE PRINCIPLES OF
STATISTICAL DYNAMICS

General Considerations

As we have seen in Part I, in a first approximative discussion of the
fluctuating part of the gravitational field acting on a star, we may sup-
pose that the probability function W (u,t) governing the occurrence of the
velocity © at time ¢ satisfies the diffusion equation (see equation [597),

W _ vaw. 77
= qvEW T
According to this equation, the probability distribution of the velocities
u at time ¢ when it is known with certainty that the star had the velocity
U, at time ¢ = 0 is given by

W(u,t;uo) = e~ lu—wlt/dgt, (78)

1

(4wgt)*

We shall now indicate why the considerations outlined above cannot
be valid for times which are long compared to ||2/¢ where |©|? denotes
the mean square velocity of the stars in an appropriately chosen local
standard of rest. For, if W (u,t;u,) according to equation (78) were valid
for all times, then the probability that a star may have suffered any arbi-
trarily assigned large acceleration can be made as close to unity as we
may choose by letting ¢ approach infinity. This is, however, contrary
to what we should expect on general grounds, namely, that W (u,t;u0)
approaches a Maxwellian distribution independently of u, as ¢ — .
Expressed somewhat differently, we should strictly suppose that the
stochastic variations in the velocity which a star experiences must be
such as to leave an initial Maxwellian distribution of the velocities in-
variant. This is evidently not the case with the process described by
equation (77). And the question now arises as to how we can generalize
our earlier approximate considerations leading to equation (77) so that
the underlying stochastic process may satisfy the criterion stated above.
We shall now show how this can be achieved by the introduction of
dynamical friction. More specifically, we shall suppose that the accelera-
tion Au which a star experiences in an interval of time At (long compared
to the periods of the elementary fluctuations in F but short compared to
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the intervals during which ¥ may be expected to change appreciably)
can be expressed as the sum of two terms in the form
Au = du(At) — quAt (79)

where the first term on the right-hand side is governed by the probability
distribution

'p(su[At]) — _(4_1rqlzt_)s_/2.e—lau—xnduq All’/4th. (80)
and where the second term — nuAt represents a deceleration of the star
in the direction of its motion by an amount depending on |¢2|. The
constant of proportionality » can therefore be properly called the coeffi-
cient of dynamical friction.

With the underlying stochastic process defined as in equations (79)
and (80), the probability distribution W (u,t + At) of © at time ¢ + Al
can be derived from the distribution W (1,t) at the earlier time ¢ by means
of the integral equation .

Wu,t+At) = f W(u—Aut)y(u—Au;Au)d(Au), (81)

- ©

where ¢ (u;Au) denotes the transition probability (see equation [80])

‘p(u ;Au) = ______.(41;“)3/2. e—|Au—gradu gAt-+nuAl3/4gAt (82)

Expanding W(u,t + At), W(u — Au,t) and y(u — Au;Au) which occur
in equation (81) in the form of Taylor series, evaluating the various
moments of A# according to equation (82) and passing finally to the
limit we obtain the following equation

%j = div, (¢ grad. W 4+ nWu). (83)
Finally, the condition that the Maxwellian distribution
3\ _
('é;lrl—‘—!_—é) e~ 3lul?/2lul (84)

satisfy equation (83) identically requires that ¢ and 5 be related accord-
ing to

q = 3 [un. (85)

Summarizing the conclusion reached, we may say that general con-
siderations, such as the invariance of the Maxwellian distribution to the
underlying stochastic process, require that stars experience dynamical fric-
tion during their motion.
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The Resolution of Certain Fallacies and an Elementary Derivation of
the Coefficient of Dynamical Friction

The conclusion we have reached in the preceding paragraph appears
contrary to what might be expected on first sight. For we might argue
in the following manner:

(a) Suppose we consider a star with a velocity {1| appreciably less than
the root mean square velocity (|—u—|’)‘/2. We would then expect it to
encounter oftener stars with velocities greater than its own than stars with
velocities less than its own. And, consequently, we might be led to
believe that stars with velocities less than the average would be systemat-
ically accelerated and, similarly, that stars with velocities greater than
the average would be systematically decelerated.

How then does dynamical friction come to operate on all stars?
Before we answer this question we shall state the second paradox.

(b) We might go farther and even argue that the conclusion reached
in (a) is “reasonable.” For, it might be supposed that systematically
different effects on stars with relatively large, respectively small velocities,
are required for the statistical maintenance of the average (i.e., normal)
conditions.

In view of the great importance of dynamical friction for statistical
dynamics, we shall analyze the questions raised above in some detail and
expose the fallacies involved in (a) and (b).

First, it is easy to show that (b) is a plain misunderstanding. For,
there is nothing obvious in the requirement that for the statistical main-
tenance of the average conditions stars differing from the average condi-
tions should be affected differently according to the sense of their de-
parture from the normal state. Indeed, the requirement that the normal
conditions are self perpetuating is to state in a different form one of two
things: Either, that starting from any arbitrary initial state we approach
the normal state (e.g., the Maxwellian distribution of the velocities) as
t— o ; or, that once the normal state has been attained it continues to be
maintained. It is now apparent that these conditions can be met only
if a given star behaves at later times in a manner less and less dependent
on an initial state as time goes on; or expressing the same thing somewhat
differently, we should much rather expect a star to gradually lose all
trace of its initial state as the time progresses. Such a gradual loss of
“memory” can be achieved only by the operation of a dissipative force
like dynamical friction which will gradually damp out any given initial
velocity. Thus, if we assume for the sake of simplicity, that » is inde-

pendent of |1}, then the average velocity at later times will tend to zero
according as
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u = we . (86)

But this is not to imply that the mean square velocity tends to zero.
Indeed, the restoration of a Maxwellian distribution of yelocities from
an arbitrary initial state requires that

u—>0 and |uf?—aconstantast— o. (87

To achieve the first of the two foregoing conditions we need dy_na.mical
friction. Thus, the conclusions reached in (a), if valid, are contrary to
the requirement for the restoration and maintenance of the normal state.
It is therefore necessary to show wherein the argumentation of (a) is in
error, and this we now proceed to do.

The way to refute arguments such as (a) is, of course, to actually verify
directly whether or not a star with a given initial velocity is decelerated
on the average independent of the magnitude of its velocity. For this
purpose, it is perhaps simplest and most instructive to examine the
problem on an approximation in which the fluctuations in F are analyzed
in terms of single encounters each idealized as a two-body problem. On
this approximation the increments in velocity A, and Awy which a star
with a velocity » = |u| and mass m suffers as the result of an encounter
with another star, in directions which are respectively parallel to and
perpendicular to the direction of motion, can be specified in terms of the
parameters defining the encounter. We have®

Ay = -mlzrrm [(x — vicos 6) cosy + v, sin fcos O sinyJcosy, (88)

and

AuyL = imfﬁlm [v:2 + w? — 2uv, cos @ } 89)
— {(u — v, cos 6) tos ¥ + v, sin 6 cos O sin Y} ]2 cos ¥

where m; and v; denote the mass and velocity of a typical field star and
the rest of the symbols have the same meanings as in ‘‘Stellar Dynamics,”
Chapter ii (see particularly, pp. 51-64).

~ According to equation (89), and as can indeed be expected on general
symmetry grounds, Auy when summed over a large number of encounters
vanishes identically. But this is not the case with Ay, for the net in-
crease in the velocity which the star suffers in the direction of its motion
during a time At (long compared to the periods of the elementary fluctua-
tions in F, but short compared to the time intervals during which |u|
may be expected to change appreciably) is given by

9Cf. Chandrasekhar, S., “Principles of Stellar Dynamics,” p. 229 (equa-
tion b5.721). This monograph will be referred to hereafter as “Stellar
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) x 2x Do 2r
SAuy = At f doy f do f de f dD f dON (v1,6,9) VDA, (90)
['] 0 0 [ 0

when V denotes the relative velocity between the two stars, D the im-
pact parameter, and where, further, the various integrations are, with
respect to the different parameters, defining the single encounters. We
shall not go into the details here of theevaluation of the multiple integral
(90), but only state that on carrying out the various integrations the
remarkable result emerges that fo a sufficient accuracy only stars with
velocities less than the one under consideration contribute to =Awu;. This
result conclusively establishes the fallacy in the assertions made in
(a) and, moreover, accounts for the appearance of dynamical friction on
our present analysis. Omitting then the details of the analysis we
find that

G2 Dolul?
EAu,; = —41er1(m, + m) W(log,[(—;#’—nj])

X [2(lu) — jlul®'(lul) 1A,  (91)
where N denotes the number of stars per unit volume, Dy, the average
distance between the stars, ® and &’ the error function

z

&) = e*dz, (92)

=

0
and its derivative, respectively, and j the parameter which occursin the
assumed Maxwellian distribution of the velocities

B gmiurgy; = ( 3 )"’. (93)
w2 oo 2|uf?
Remembering that TAuy = 0 we can write
AU = —quAt (94)

where the coefficient of dynamical friction # has now the value
G2 Doju|?
v = el + m) EF("’“‘[ G 7 )
X [2(jiul) — jlul®'(lu)]  (95)
In order next to verify directly the existence of a relation of the form
(85) we evaluate the sum
Ay (96)
We find that 1

10The details have since been published in Astrophysical Jour. 97: 266,
1943. See p. 251 of this volume.

11“Stellar Dynamics,” Equations (2.366) and (5.724).
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2
ZAu“’ = g‘l'N m;’ I—g’l—,(log.[ G_————(ﬁrlf:_l m) ])
X [8(jiu)) — jlul® (jlu]) Jjul?At.  (97)
Hence,
ZAu?® g my
2At  3m+m,
which is to be compared with equation (85). It is thus seen that a
detailed analysis of the fluctuating field of the nearby stars in terms of
individual stellar encounters idealized, as two body problems, fully con-
firms the conelusions reached earlier on the basis of certain general
principles. In addition we now have an explicit evaluation of the
coefficients ¢ and 1.

Jul, (98)

The Principles of Statistical Dynamics

In the two preceding sections we have seen how we can take into ac-
count the effect of the near neighbors on the motion of a star statistically
through the two coefficients ¢ and 5. In thus representing the effect of
the near neighbors in terms of the diffusion coefficient g (in the velocity
space) and the frictional coefficient n we have abandoned all attempts to
deseribe in detail the motion of any single star and have agreed instead to
follow its motion through the distribution function W (u,t) governing the
probability of occurrence of the velocity # at time £. And as we have
already shown, this probability function W(s,f) satisfies the equation

%’it'i = div. (¢ grada W + nWu), (99)

where it may be recalled that ¢ and 5 are related according to equation
(85). This differential equation satisfied by W leads to an important
interpretation of the stochastic process which takes place in the velocity
space. For, according to equation (99) we can visualize the motion of
the representative points in the velocity space as a process of diffusion in
which the rate of flow across an element of surface do is given by

— (g grada W + nWus).1udo, (100)

where 14 is a unit vector normal to the element of surface considered.
We shall find that this interpretation of the stochastic process which
takes place in the velocity space as a diffusion process has important
consequences for the applications of the theory (see Part III).

So far, we have restricted ourselves to what happens in the velocity
space. We have, moreover, assumed that no external forces were acting.
The question now arises as to how we can incorporate in a rational sys-
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tem of dynamics the stochastic variations in the velocity which a star
suffers on account of the fluctuating force acting on it. It is evident that
to build such a system of dynamics what we need is essentially a differen-
tial equation which will be appropriate for discussing the probability dis-
tribution in the six dimensional phase space in contrast to equation (99)
which operates only in the velocity space. In other words, we require
a proper generalization of Liouville’s equation of classical dynamies to in-
clude terms corresponding to the stochastic variations in ©2. Such a
generalization can be readily found.
Quite generally we may write

Au = KAt 4 su(At) — quAt .

Ar = uAi } (101)
where K denotes the external force per unit mass acting on the star and
Au and Ar the increments in the velocity and position experienced by the
star in a time At. The interval which is chosen must again be such that
it is long compared to the periods of the elementary fluctuations but
short compared to the intervals during which # and r may be expected to
change appreciably. Then analogous to the integral equation (81) we
now have

+o 4o

W(rut+at) = f f W(r—Ar,u—Auyt)

T T W(r—Aru—AuArAw)d(ard(Au), (102)
where V(r,u;Ar,Au) denotes the transition probability in the phase
space. According to equations (82) and (101) we now have

‘I’(f,u ;Af,Au) — W e |au — KAt — ggrad uAt+nuAt|2/4qAt

X 8(Ax — u.A)d(Ay — u,At)d(Az — u.Af). (103)
Expanding the various terms in equation (102) in the form of Taylor
series and proceeding as in the derivation of equation (83) we obtain

Qg + u-grad, W + K grad, W = div, (g grad. W + qWu). (104)

The foregoing equation represents the complete generalization of
Liouville’s theorem of classical dynamics for a single particle. On the
left-hand side we have the usual Stokes’ operator D/Dt operating on W
while on the right-hand side we have the terms incorporating the fluctua-
tions caused by the neighboring stars. It should, however, be noticed
that the Liouville equation now operates in the six dimensional phase
space. This is because we have taken into account the effect of the neigh-
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boring stars statistically through the termsinvolvinggands. Further, it
should be noticed, too, that the relation (85) between g and 5 ensures that
the Maxwell-Boltzmann distribution in the phase space is invariant to
the stochastic process considered (see the section below).

Analytical Dynamics versus Statistical Dynamics
In the preceding sections we have outlined the general principles of a
statistical theory of stellar dynamics. In order that we may emphasize
and further amplify the basic ideas which are involved, we shall contrast
the outlook of statistical dynamics with the point of view familiar in
analytical dynamics.

ANALYT3CAL DYNAMICS STATISTICAL DYNAMICS

1. In analytical dynamics we follow in 1. In statistical dynamics we follow in-
detail the motion of each of the degrees stead the motion of each of the par-
of freedom of the dynamical system. ticles statistically when under the

fluctuating influence of a large number
of other particles belonging also to
the system.

2. The notion of acceleration is funda- 2. For the success of the methods of
mental to analytical dymanics. statistical dynamics it is essential
that time intervals At exist with the

property that they are long compared

to the periods of the elementary

fluctuations but which are at the same

time short compared to the times

necessary for ¥ to chanie appreciably.

Moreover, during such an interval

At the mean square increment in # is

given by
|Au|? = 2qAt.
Accordingly
-————'IAA': B — o as At—0.

In other words, we cannot properly
define acceleration within the frame-
work of statistical dynamics.
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3. The equations of motion governing

a conservative dinamical_ system can
be thrown into the canonical forms

oH . _oH
”"‘aq,' ‘Ir—ap'
(T=1, ) N)r

where H is the Hamiltonian function.
These equations can be interpreted by
the statement that the development of
a conservative dynamical si'stem rep-
resents ‘“the gradual unfolding of a
contact transformation’” (Whittaker).

In the 2N dimensional phase space the
hydrodynamical flow which can be set
up by following each point in this
space according to the canonical equa-
tions is described by Liouville's
theorem. According to this theorem,
an initially assigned density
W(qlr Cy ANy, Py, vty pN)

in the phase space varies according to
the equation *

w z‘: (aHaW _HaW
at &4 apr 9qr aqr dpr

3. In statistical dynamics the funda-

mental assumption is generally made
that the stochastic process which
takes place can be described as a
Markoff chain. More explicitly, we
suppose that the probability distri-

bution
Wi, u, t + At)

at the time ¢ 4 Al can be derived
from the distribution (W(r, u,t) at
the slightly earlier time ¢ through an
integral equation of the form

W(r, u,t + At)
4+ o 4w
==f fW(r—Ar,u—Au,t)
_>< \Il(; — Ar, u — Au; Ar, Au)
X d(Ar)d(au)

where ¥(r, u; Ar, Au) denotes the
transition probability. (The fore-
%‘(;ing integral relation connecting

(r,u,t + At) and W(r, u, t) can be
regarded as defining a, Markoff chain.)
Analogous to the interpretation_of
the canonical equations 1n analytical
dynamics we may describe a Markoff
process as ‘“‘the gradual unfolding of a
transition probability.”

. The probability distribution in the

6-dimensional tphs..s;e space (i.e., the
phase space of a single particle) is
governed by the equation
%u: + u-grad;W + K.grad W

= divy(g gradaW + 1Wu),
where K denotes the external force per
unit mass acting on the particle, and
¢ and 9 the diffusion and the frictional
coefficients describing the stochastic

rocess which takes place in the ve-
ocity space (see 5 below).
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5. The order of the system of equations

governing the development of & dy-

namical system equals twice the
number of degrees of freedom of the
system.

6. The equations of motion of a cou-

servative dynamical system possess
the energy integral
H = Constant.

7. When dealing with counservative dy-

namical systems, dissipative forces
are foreign to the notions of analyti-
cal dynamics. However, dissipative
forces may appear in the discussion
of dynamical systems in their non-
natural forms, i.e., when the system is
considered in a reduced number of co-
ordinates after the process of the ig-
noration of coordinates (Whittaker,
Analytical Dynamics, p. 57).

5.

6.

7.

NEW METHODS IN STELLAR DYNAMICS

In statistical dynamics almost all the
coordinates are ignored. This ignora-
tion of the coordinates of all the neigh-
boring particles becomes possible only
because we are able to represent their
influence on the statistical motion of
any single particle through the two
coefficients ¢ and ». More particu-
larly, the stochastic variations which
take place in the velocity space can
be described as a general process of
diffusion in which the rate of flow
across an element of surface do is
given by

— (g graduW + 7Wu — KW).14,do,
where 14, i8 a unit vector normal to
the element of surface considered.

The generalized Liouville equation in
the 6-dimensional ghase space govern-
ill;g the probability distribution

(r, u,t) is satisfied identically by
the Maxwell-Boltzmann distribution

W = Constant e—3(lu|*+2V)/2/uf}
where
K= —grad V.
It is this circumstance which enables
the restoration of a Maxwell-Boltz-
mann distribution from any arbitrary
initial state.

The occurrence of dissipative forces
like dynamical friction in the sto-
chastic variations in the velocity ex-
perienced by a particle is essential for
the success of statistical dynamics.
For, it is precisely on account of the
occurrence of the term involving
dynamical friction that the restora-
tion and maintenance, for example, of
a Maxwellian distribution of the
velocities among the particles is made
possible. Alternatively, we may ex-
press the same thing by saying that
the operation of a dissipative force
like dynamical friction is exactly
what is needed to conserve the ene

of the assembly as a whole. This
may sound paradoxical at first sight,
but it is intimately connected with the
fact that in statistical dynamics we
have essentially performed an ignora-
tion of the coordinates of the neigh-
boring particles.
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III. THE RATE OF ESCAPE OF STARS FROM CLUSTERS
AND THE EVIDENCE FOR THE OPERATION OF
DYNAMICAL FRICTION

The General Theory of the Rate of Escape of Stars from Clusters

One of the most important factors in the evolution of the galactic
and the globular clusters is their gradual impoverishment due to the
escape of stars.’? Essentially, the mechanism underlying this escape of
stars is as follows:

On account of the fluctuating gravitational field acting on a star we
should expect that there exists a finite probability for a star to acquire a
velocity sufficient to escape from the cluster during any specified length
of time ¢&. And if a star should acquire the necessary velocity it would
naturally escape from the cluster. We shall now show how, on the basis
of the statistical theory developed in Part II, we can evaluate this factor
in the evolution of clusters quite rigorously.

To be specific, we shall suppose that in order that a star may escape
from a cluster it is only necessary that it acquire a velocity greater than
or equal to a certain critical velocity which we shall denote by v,. On
this assumption the probability that a star will have acquired the neces-
sary velocity for escape during a certain time ¢ can be evaluated quite
simply from the probability p(vo,t)At that a star having initially a velocity
|] = vo at time ¢ = 0 will acquire for the first time the velocity |¢| = v,,
during £ and ¢ 4 di. For, on integrating p(vo,t) over ¢ from 0 to ¢ we
shall obtain the total probability Q(v,,) that the star will have acquired
the velocity v, during the entire interval from 0 to¢. And finally averag-
ing Q(vo,f) over the relevant range of the initial velocities, we shall obtain
the expectation Q() that a star will have acquired the velocity v, during
the time ¢.

The advantage of formulating the problem in the manner described
above is that the function p(vo,t) can be determined in terms of a solu-
tion of the equation (see equation [997)

. aal;" = div. (g grad. W + 7Wu) (105)

which satisfies certain appropriate boundary conditions. For, remem-
bering that the stochastic process described by the foregoing equation
has a simple interpretation in terms of general type of diffusion process, it
is evident that p(vo,f) will be given by

1 This fact was first clearly izsed by Amb and Spitser. For an t of these
earlier discussions see “‘Stellar Dyn-mcl,' $8 5.8 and 5.4, pp. 250—213
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where W(ul,t) denotes a spherically symmetric solution of equation
(105) which satisfied the boundary conditions

W(lul,t) = 0 for |u| = v, forallt > 0, (107)
and

W(ul,t) — 4—}”- 5(ul —vy) as t—0, (108)

2

0
where & stands for the §-function of Dirac. We shall now show how we
can obtain such a solution.

For the case under discussion we have (see equation [957)

= 8em{og] 202 ) L pa(u) — jule'Glu}. (109

2Gm |/ [u
This formula for n can be written more conveniently as
1 = nov(jie)) (110)
where
DJuP]\(_3_\" 4
Mo = 81er’G2<logg[ 2°Gm ]) (21—17;;) m (111)
and
32 ,
v(o) = == p[2(p) — p2'(0)]; (112)
with »(p) defined in this manner
v(p) =1 as p—0,
/2
A a

Again, since ¢ and 5 are generally related according to equation (85), we
have

qg= % [ultnov (jlusl). (114)

Returning to equation (105) we introduce the following change of the
independent variables:

2___ 1/2
T=mn; U= (5 Iul’> ' (115)
Equation (105) now takes the dimensionless form

W — vy 4 o) grad W + 5o We | (w16
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For a spherically symmetric solution W ([el|,r) equation (116) reduces to

p?;f ap[ ( ){;p 31::+ (p -~ -> }] (117)

where we have written
p=lel; w=Wp (118)
According to equations (107) and (108) we require a solution of equation
(117) which satisfies the boundary conditions
w(p,r) = 0 for both p = 0 and p = p,, forall r > 0, (119)
and

1
Trpe 8(p — po) as 7—0. (120)

Now equation (117) is separable in the variables p and 7. Accordingly
we write

w(pr) i

w = e ¢(p) (121)
where A is for the present an unspecified constant; we then obtain for ¢
the differential equation

oo{lo® 1 (#- Do) +ae=0
If we now let
o = e (123)
we obtain
@y | dlogvdy [ _ _ﬂog_V(l_ )] -

It is now seen that in order that a solution of the foregoing equation may
vanish at p = 0 and at p = p,, it is necessary that A take one of an
infinite enumerable set of discrete values

Ay Ay oy Ay e (125)
which we may properly call the “characteristic values” of the problem.
Further if

Vi, e, oy ¥y (126)
denote the solutions of equation (124) which satisfy the boundary condi-
tions (119) at p = 0 and p = p,, and belong, respectively, to the values
A, Az ¢y Ag, - - - then it can be readily verified that these solutions
form a complete set of orthogonal functions. Without loss of generality
we can therefore suppose that these functions are all properly normalized.
Consequently, in terms of the fundamental solutions

Wy = e-—hre—p’/k’wn(p) (127)
which satisfy the boundary conditions (119) we can construct solutions
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which will satisfy any further arbitrary boundary condition for » = 0.
Thus, remembering that a é-function can always be constructed in
terms of any complete set of orthogonal functiong according to

5(p — po) = 2.31 Vn(0)¥a(0), (128)

it is evident that

W= g e 3 M () a(oo) (129)

satisfies all the boundary conditions of our problem. Corresponding to
the solution (129) for w we have

Trope (p’—u’)/2nz.:l M7 P o(p) ¥alpo). (130)

Using the foregoing solution for W we can write down the probability
function p(pe,7). For, since

p(pO)f) —27,)00 l'(ptz:) (a‘fj)p-‘m ’ (131)
we have
ploor) = 5= o V(p)em (ot =2 '?_“_,1 e—*n'(— ia%),,., ¥alpo):  (132)

To obtain the probablhty Q(po,7) that a star having an initial velocity
corresponding to po will have acquired a velocity corresponding to p,,
during the time = we have simply to integrate equation (132) from 0 to 7.
Thus we find that

Qo) = £2 pe=wet=2 3 L (1 — o)
a=1 An (133)

(— %)p_m ¥a(pa). 5

Finally to obtain, Q(7), that an average star will have acquired the neces-
sary velocity for escape during a time =, we must average the foregoing
expression over all p. The final result can therefore be expressed in
the form

o) = T @), (134
where
Qa(r) = Aa(1 — en7), (135)
and

Ay = -2——)1“ pmv(p,)e"“’/"(— %'%‘)F .. [e—i %(po)] (136)
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The Evidence for the Operation of Dynamical Friction

We shall now illustrate with some numerical results the theory de-
veloped in the preceding section.

Now, since in a star cluster the root mean square velocity of escape is
twice the mean square velocity of the stars in the system, 8 it is clear
that the values of p, which come under discussion are in the general
neighborhood of

P = VB ~ 2.45. (137)
For values of p,, in this neighborhood it was found that @(r) can be
represented with ample accuracy by the first term on the right-hand
side of equation (134). Accordingly it was sufficient to specify the
lowest characteristic value \; (for a given p,) and the normalized char-
acteristic function y, belonging to it. In this manner it was found that

Q(r) = 1 — g00mr (poo = 2.4518). (138)

(The foregoing equation provides sufficient accuracy for r > 5).

Since Q(7) gives the expectation that an average star will have escaped
during a time 7 (in units of 7,™!) we can properly regard (0.00759,)! as
a measure of the half-life of the cluster. Thus

Half-life of a cluster += 133 5,71 (139)

For the Pleiades no~! is of the order of 2 X 107 years, so that its half-
life is of the order of 3 X 10° years. In judging this value it should be
remembered that (as may be readily verified) when dynamical friction is
ignored, a half-life for the Pleiades of the order of only 5 X 107 years is
predicted. There can thus be hardly any doubt that dynamical friction
provides the principal mechanism for the continued existence of the
galactic clusters like the Pleiades for times of the order of 3 X 10° years.
But, even with dynamical friction properly allowed for (as we have done),
it will be hard to account for such clusters half-lives of the order 10%
years. This, in turn, provides another strong argument in favor of the
now currently adopted “short time scale” of the order of 3 X 10° years.

In concluding this essay, we might draw attention to the far reaching
analogy which exists between these newer methods in stellar dynamics
and methods long familiar in the theory of Brownian movement.
However, while parts of the theory of Brownian motion are heuristic
and appeal to intuitive considerations, it appears that in stellar dynamics
the entire problem can be analyzed explicitly in all its phases.
mmmicl." pp. 206-207.
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This is the second revised edition of one of the most readable ac-
counts of modern physics ever written. In it Max Born, Nobel Laure-
ate, takes you step by step through the modern understanding of
molecules, atoms, subatomic particles, and nuclear physics.

Starting with the air and gases Dr. Born covers such matters as
molecular motion, kinetic theory of gases, laws of chance, conduc-
tion of heat, molecular weight, relativity, mass and energy, elec-
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animate sequences |, 1V, |l, flip the pages from rear to front; to
animate lll, V, VI, VIl flip from front to rear.
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drawings. 315pp. 6% x 9%.
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