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A River of Starlight

Back in the early 1980s, I swapped a pretty good quality 3 inch refractor
for a “so so” 8, inch Newtonian reflector on a fairly rough and ready
German equatorial mounting (to be fair it did have manual slow motion
drives which, after a bit of practice, I got to be fairly good at using, and it
did have quite large and easy to read setting circles). I guess I was greedy
for that extra aperture, which would enable me to see deeper and fainter,
and indeed I had a thoroughly enjoyable couple of years observing deep-
sky objects.

The fact is, as a teenage amateur astronomer in the late 1960s (yes, I
did manage somehow to find the time), I had read that once one had
progressed beyond the beginner level, one should seriously consider spe-
cializing in some specific area of observational astronomy. To be hon-
est I didn’t really like the idea of, for example, spending the rest of my
life just observing Jupiter (no disrespect to Jupiter observers). The trou-
ble was that the books of the time didn’t seem to make any mention of
the fact that there was no “law” that said that if you specialized in one
area of astronomy you were not allowed to investigate other areas. On
the contrary, there was this sense that you were strongly encouraged to
specialize in one thing. I did at the time rather like the idea of observing
what were referred to as “nebulae and galaxies,” etc. (I never came across
the phrase “deep-sky object” until the 1970s.) However I remember
someone — probably an older kid at my school — telling me that there was
no useful work that could be done in this area by amateurs (try telling
that to supernova hunters), so there was no point to it.

K. Robinson, Starlight, Patrick Moore’s Practical Astronomy Series, '!/
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Now of course, deep-sky observing is quite rightly one of the most
popular areas of amateur astronomy, whether or not it is scientifically
useful; hence the acquisition of the Newtonian and “Yah! Boo! Sucks!” to
that long forgotten school kid. However, one clear August evening things
changed.

I had taken the trouble to polar align my equatorial mount, so that I
could use the scope’s setting circles, and I remember quite a feeling of
satisfaction at being able to locate the Dumbbell Nebula, M27, without
even looking at the sky. I also remember that upon enjoying the view
of what I reckon is a more impressive planetary nebula than the Ring
Nebula, M57, I felt a sense of wanting to do some kind of observing that
involved more than just looking.

Astrophotography was out of the question with my scope, so it had to
be some kind of visual observing. On looking up at the sky, I then noticed
that Algol (the famous eclipsing variable star in Perseus) looked distinctly
dimmer than its nearby neighbor Mirfak (Alpha Persei). I happened to
have at hand the Handbook of the British Astronomical Association, and
sure enough, Algol was around half an hour from minimum magnitude.
This was the first time I had ever seen a variable star “in action.”

Some years previously, when considering my “choices” for a special-
ized area of amateur astronomy, I had been distinctly put off the idea of
observing variable stars, simply because those aforementioned books of
the time seemed to suggest that, not only was it possible by making visual
observations to estimate the magnitude of a variable star to an accuracy
of one tenth of a magnitude, but that this was actually some kind of “stan-
dard” that was expected. Maybe I misinterpreted what I'd read, but one
thing’s for sure. I don’t recall coming across any book that gave an illus-
tration of a real (rather than a stylized) light curve of a variable star, which
showed the obvious scatter that you get when pooling the observations
of a group of people. Such light curves clearly show that the 0.1 magni-
tude accuracy thing is a kind of idealized limit, which can more likely be
approached, but not very often actually achieved. I thus arrived a little
late at considering the possibility of becoming a variable star observer,
and it turned out to be quite an adventure.

I managed to get hold of one or two amateur books on variable stars
and variable star observing, and the very first thing that struck me about
this area of amateur astronomy was that it isn’t just “amateur astronomy,”
it is amateur astrophysics. The observations made by amateur variable
observers are real data in the truest scientific meaning of the word, and
to be honest, I found it astounding that such simple observations could
reveal things going on inside distant suns that are so far away that they can
only be seen as points of light. When you have this kind of “revelation,”
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the often spoken of “addictive” quality of variable star observing comes as
no surprise, but in addition to being able to make scientifically valuable
observations on a regular basis, I know that in my own case I wanted to
know more about what really does go on within stars, to make them vary
as they do — or indeed, not vary at all.

After leaving high school I got a degree in physics at my local univer-
sity, and while this helped in my wish to know more about the physics of
stars, the fact is that much of stellar astrophysics is a specialty unto itself
and not the kind of stuff that you are likely to come across in a straight
physics degree course. However, as a result of my new found interest in
variable stars, I got to know a much more experienced amateur variable
star observer who did photoelectric photometry with a real live photo-
multiplier (“live” being very appropriate here, because the high-voltage
power supply that ran his photomultiplier was housed in a washing-up
bowl, which sat on his rather damp lawn). This guy also did some of
his own data analysis, and he was certainly the kind of person that any
novice variable star observer was truly privileged to know. I remember
him, though, complaining on more than one occasion about the lack of
decent books on both variable star physics and for that matter on just
stellar physics itself, which were suitable for amateurs. He himself had to
pick up what effectively were disjointed fragments of information from
professional research papers, specialist monographs, and the occasional
textbook. He just happened to be a science librarian, which was very for-
tunate at a time when there was no Internet. Even these days, much of this
kind of information still very often comes in the form of articles — online
or otherwise, which just don’t have the space to be able to deal with a
subject in the kind of depth that it maybe deserves, or even worse, it gets
the odd paragraph or two in either a more general astronomy book or in
books that are specifically written as practical observing guides. There are
still also, of course, the student textbooks and the research papers.

It goes without saying that textbooks on astronomy are not written
with amateur astronomers in mind. The fact is that any student who
wishes to become a professional observational astronomer has to learn
a lot of background theory — “required reading,” as they say, and there
has always been a plentiful supply of textbooks, some of them veritable
classic works to give students what they need. Where does a serious ama-
teur astronomer get his or her background theory from, though? ’'m sure
that many amateur astronomers probably have a sufficient background
in mathematics and physics to be able to tackle at least the more basic
level textbooks — but then again, there will be many that don’t. There will
surely also be many who would say that for the work they do, they simply
have no need for this kind of theoretical background — but wouldn’t it
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be nice to have it anyway, especially if it could be made more accessible
and didn’t require a higher education level background in physics and
mathematics?

This book is written for those amateur astronomers who would be
inclined to answer “yes” to this question and who do not have said
background in math and physics. Here in the early 21st century, ama-
teur astronomers are uniquely placed in terms of technology in the
form of CCD cameras and computers. Also, there are many resources —
particularly in the form of the Internet — to be able to carry out truly
rewarding and fulfilling programs of astronomical research, which the
whole global astronomical community, both amateur and professional
alike, will want to know about. In this grand scheme of things, a basic
knowledge of stellar astrophysics will surely find its place. It has to be said,
though, that what we present here are really just the basics, but which
nonetheless deal with many of the kinds of topics that would be required
reading for an undergraduate astronomer. The difference is that here we
avoid the kind of mathematical rigor required of the student, while at
the same time hopefully ensuring that the physics and the astrophysics
remain clear and concise.

Stellar astrophysics is an enormous subject with many specialist areas
for which, unfortunately, there just isn’t space here to go into in the depth
that they might deserve. Such areas include binary stars and indeed vari-
able stars themselves. One exception, though, is our discussion of stellar
pulsation, which is itself a wonderful illustration of the kinds of things
that go on inside stars. The discussion of many of the topics included
in a book on this subject inevitably involves describing some aspect of
spectroscopy, and we have done this here when the need has arisen. Spec-
troscopy, though, is so important to all areas of astronomy, including stel-
lar astrophysics, that it certainly does merit a separate book, which can
give it a more in depth treatment. The present book then can certainly
be regarded as a companion to the author’s Spectroscopy — the Key to the
Stars, also published by Springer.

Stellar physics is basically all about learning to interpret and under-
stand the information that is contained in starlight. In many ways
starlight is like a river. As astronomers, we sit facing the mouth of that
river. Just as with a river here on Earth, where a sample of water can
reveal to the Earth scientist a great deal about the river’s journey from
the mountains to the sea, so, too, can the starlight that enters the objec-
tive end of your telescope tell the story of its long journey from its source
in the heart of a distant star, through the star’s outer layers, across inter-
stellar space, and down through Earth’s atmosphere.
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As already indicated, behind the astrophysics there lies a fair bit of pure
physics, which, whenever it is needed, we will be sure to introduce from
scratch, so that even if your memory of high school physics lessons is
growing somewhat dim, there should be no problem. Perhaps the boldest
step we’ve made is to introduce some very basic stuff about numbers right
at the start (all right, extremely basic mathematics if you insist); it really
is harmless stuff, which should not cause any distress. You will in fact
find that being able to input a number into a simple equation in order
to produce another number, which is able to tell us something significant
about stars, is very satisfying, and of course we’ll give detailed step by step
instructions each time on how to do this with a pocket calculator.

The result of being able to make use of some very simple mathematical
equations together with a little knowledge of some basic physics will, as
we shall see, take us a very long way in our understanding of the astro-
physics of stars. Much of what we observe and know of stars will then
seem to be the natural and logical result of basic physical processes going
on within them, and also in the space that lies between them and us.
Finally, you’ll also become familiar with the meaning of many of the ideas
and terms used a lot by stellar astronomers. These include things such
as color indices, color excess, optical depth, absorption, scattering, and
many more, which, if nothing else, might make the business of going
through “that research article” just a bit easier. Let’s begin our jour-
ney, then, along the river of starlight, by becoming familiar with a few
numbers.



Starlight by Numbers

They say that mathematicians drink a toast which goes: “Here’s to pure
mathematics — may it never be of any use to anyone.” Well by that score,
I’m definitely not a mathematician; at least not a pure mathematician.
Let’s face it, for many people (perhaps myself among them) mathematics
reaches the parts of the brain that hurt, so when we do seek to solve a
mathematical equation as we will from time to time, you can be sure that
there’s a real reason for doing this.

One obvious reason is that the number that results from solving an
equation may be of real importance to us; a less obvious reason, but one
that is just as important and perhaps even more important to the learner
is that a simple equation can be used to explore some part of astrophysics.
The basic idea is to use a pocket calculator to try out or to plug different
numbers into the equation; this enables you to get a “feel” for the kind
of numbers that are involved in the solution to the equation (are they
huge numbers or very small ones for example?). This process of “equation
exploration” will also show you how the all-important solution to the
equation actually depends on the different numbers that get plugged in.
For example, will doubling an input number simply double the value of
the answer or maybe multiply it by four. The result is that by doing this
kind of thing you are guaranteed to gain a much deeper understanding of
that particular bit of astrophysics.

You can if you wish ignore the equations we encounter without really
losing anything, but if you have a calculator, then do have a go at using
it to explore an equation; you’ll soon come to realize just how valuable
and even enjoyable this is. As for the kinds of equations that we will come

K. Robinson, Starlight, Patrick Moore’s Practical Astronomy Series, U
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across, have a look further down at Equation (10); if an equation like this
presents you with no problems, then feel free to go to the final section of
this chapter on “Star Distances by Numbers.” The main purpose of this
fairly short chapter is to show you how to solve equations such as this and
thus hopefully give you a solid foundation and a smooth read through the
rest of the book. For any other mathematical points that come up, we’ll
deal with them only when the need arises in order to prevent you from
getting “mathematical indigestion.” So here goes, starting with some very
basic stuff about numbers.
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Large Numbers and Small

Start with the number 100; a “1” followed by two zeros, which of course
also equals 10 x 10, or two number 10s multiplied together. Similarly the
number 1,000 — a “1” followed by three zeros is the same as three num-
ber 10 s multiplied together. The way that mathematicians and scientists
write a number like, for example, 100,000 is 10°. This is a shorthand way
of writing the number “1” followed by five (5) zeros or five number 10s
multiplied together; so “100” becomes 10 and “1,000” becomes 10°. This
clearly avoids the need to write long strings of zeros, but it does more, as
you might expect. One way of saying the number 10° (besides saying “one
thousand”) is of course “ten cubed,” but a more precise way is to say “ten
to the power three” or just “ten to the three,” and then, for example, 10°
can be spoken of as “ten to the power five” or “ten to the five,” and so on.
The process of taking a quantity “x” of the same number and multiplying
them together is called raising the number to the power “x” and in partic-
ular, numbers such as 107, 10%, etc., are often referred to as powers of 10.
The actual number “x” — for example, the “5” in 10° — is called the index
of the power, or just the index and the plural of index here is indices.
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If we multiply 100 by 1,000, we get 100,000, or using our new
“powers of 10” notation,

10% x 10° = 10° (1)

So when we multiply two different powers of 10 together, we simply add
the indices together to get the resulting power of 10. This is a very impor-
tant and powerful rule in mathematics called the rule of indices, and it
can be applied to numbers other than 10. For example, a very important
number that is used a lot by both astronomers and physicists is the num-
ber 2.718 (to 3 places of decimals). Mathematicians give this number the

symbol “e” just like they give the number 3.142 the symbol “r.” So, for
example,

e/ x & =el? =2718" x 2.718° = 2.718" (2)
Provided the number whose powers are being taken (in this case “e” or
2.718) is the same throughout the equation, the rule works. The number
2.718'2 is very large, by the way, and we’ll see shortly how to write such a
number, but first let’s extend this powerful rule of indices.

What about the number 10 itself? It’s simply the number 1 followed by
one zero, so we should be able to write it as 10. We can check that this is
okay by making sure it satisfies the rule of indices; so, for example, 10 x
100, which equals 1,000, can also be written 10! x 10> = 10%; and yes, the
indices do add together correctly. Also by virtue of our example using the
number 2.718, we can say that any number raised to the power “1” is just
the number itself; so “e!” just equals “e.” What about the number “1,” or 1
followed by no zeros? In the powers of 10 notation this would be written
10°, and this too satisfies the rule of indices because, for example, 10° x
102 = 102, which is the same as saying 1 x 100 equals 100. Once again the
rule extends to all numbers so that any number raised to the power zero is
equal to 1; so again, for example, e = 1.

With what we’ve learned so far we can make very large numbers by
raising a smaller number such as 10 or “e” to a very high power. But what
about very small numbers? Start with the number 100,000 or 10°; If we
divide this by 100 or 102, we get 1,000 or 10°. In other words,

10
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So when we divide one power of 10 by another we have to subtract the
index at the bottom; i.e., in the denominator from that at the top in the
numerator. Another way to write Equation (3) is like this:

10°

1
—10° — 103
02 =10 =10 @

So here we've turned the division of two powers of 10 into the
multiplication of one power of 10 with another number that involves
the reciprocal (the reciprocal of any number simply equals the number
1 divided by that number) of a power of 10. This has to satisfy the rule of
indices and the only way that it can do this is to make 1/10? equal to 1072
because then we get

10° x 1072 = 10° (5)

The indices check out because 5 + (-2) is the same as 5 — 2, which equals 3.
This has also told us that a small number such as 1/100,000, or 1/10°, is
written as 107. Extending the idea again to our friend the number 2.718

or “e,” the reciprocal of 2.718 or 1/e would be written as e”!; it equals
0.368.
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Any number can in fact be raised to a power that does not have to be
either a positive or a negative whole number; an important example of

this kind of power would be the number x". We can easily see the mean-
ing of this number by multiplying it by itself and applying the rule of

indices because then we get; x% x x» = x!, which just equals x. So xhis
just the square root of x, and using the same procedure, x'/ is the cube
root of x and so on.

A trickier problem is the meaning of something like x°'°. We can in
fact “kill two birds with one stone” here by thinking about a number
such as (10°)>. Notice that this is not the same as 10> x 10, which would
of course equal 10%. Instead, this is the number 10° multiplied by itself
3 times — in other words, it’s the number 10° raised to the power 3 (a
number raised to a power, which is then itself raised to some other
power). The number 10° multiplied by itself 3 times is the same as
10° x 10° x 10, which of course equals 10", See how the number 15
is just equal to 5 x 3? So if we have a number that is raised to some
power and we raise it again to some other power, we multiply the two
powers together to get the final answer. So in general terms; (x)? is equal
to % or just ¥*. This idea in fact extends to any number of indices,
so for example ((e2)®)* is equal to e2%. We see now that x°/8 is the same
as (x!/8)3; i.e., the eighth root of x multiplied by itself 3 times. We shall
use this important application of the rule of indices in chapter A Star
Story — 10 Billion Years in the Making, where we need to be okay with the

L.
fact that (x>) 2 is the same as x°/2 or x!-°.

Finally we can have numbers like e=%4%; i.e., 2.718 7043, This, however,
is not the kind of thing to try and visualize in any way, nor to try and work
out with pencil and paper. We shall find a need to be able to work out this
sort of thing in chapter Space — The Great Radiation Field, and the best
way is to find the key on your calculator labeled “X¥’” or maybe “y*.” (If
your calculator is not a scientific one then do give serious consideration
to purchasing one — it will become your great friend.)

Try, for example, tapping in the number 2.512, then press the “¥” key;
now tap in the number 2.4 and finally press the “=" key to get the answer
9.121. You’ve just calculated the ratio of brightness for two stars whose
magnitudes differ by 2.4.

Fortunately, working just with powers of 10 is much simpler, but the
need to do so crops up all the time, so it pays to be comfortable when
using them. Following are a few examples to illustrate how things work.

3/8
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So far we’ve learned how to multiply together two powers of 10; so for
example

10° x 10° = 10" (6)
This kind of operation can be extended to any number of terms on the
left-hand side, so, for example

108 x 10° x 10° x 107 = 10% (7)

A quantity such as 10'1/10* can also be written 10! x 107, which of
course equals 107, but note also that you may come across numbers such
as 107! x 10%, which in this case equals 107 (=11 + 4 = 7). Finally, con-

% This is equivalent to 10! x Tl_zl. Go back
to old habits and think of the number 10~ as one ten thousandth, and
ask “How many times does one ten thousandth go into 1?” The answer
is, of course, ten thousand times, or 10%. So, a number such as 1/107™
becomes 10%. The general rule here is that an index in the bottom line or
denominator of an equation can be simply moved up to the numerator or
top line provided you change the sign of the index. So the above expression

becomes

sider an expression such as

1011
T = 10" x 10* = 10" (8)

. —34
We can now put these ideas together; for example, 11%_7 x 108 becomes

107%% x 10% x 107, which equals 107'°. The key to all of this is making
sure that the signs (+ or —) of your indices are correct and that you add
all the indices algebraically — i.e., you take the sign of each index into
account.




1 i/ Starlight

Of course, most numbers do not consist simply of multiples or powers
of 10; here, for example, is a fairly large number, 299792.0. This is, in
fact, the speed of light in kilometers per second, and note that we’ve
included the decimal point. If we divide this number by 10, the dec-
imal point moves one place to the left to give us 29979.2, and divid-
ing again by 10 we get 2997.92, giving us the speed of light divided
by 100.

To get our speed of light back we could simply reverse the process and
move the decimal point two places to the right, but another way to write
the restored number would be 2997.92 x 100, or 2997.92 x 102. Pursuing
this idea further, we can write the speed of light as 2.99792 x 10> km/s.
This is the standard way to write down the speed of light (or indeed any
large number) in what is called scientific notation. A very small number
such as 0.0000005 can be written as 5.0 x 1077 in this notation by mul-
tiplying by 107, thereby moving the decimal point 7 places to the right
and then multiplying by 1077 to give us back the original number. This
number is approximately equal to the wavelength of green light in meters
(more on this in chapter From Light to Starlight). The number 2.718'2,
which we encountered earlier, can be evaluated using your calculator by
entering 2.718 followed by pressing the “x’” key followed by the number
12, and finally followed by the “=" key to give the number 162552.416.
In scientific notation this number is written as 1.62552416 x 10°.

Far from being just an esoteric way to write down large and small num-
bers, scientific notation, as we’ll now see, makes it much easier to get a
useful number out of an equation if the numbers we plug in are in this
form. Here in normal number form is an equation that tells us how much
energy is carried by the green light we just mentioned:

0.0000000000000000000000000000000006626 x 299700000
0.0000005

E(energy) =
(9)

This is not a pretty sight; but when the numbers are written in scientific
notation it looks like this:

_6.626 x 10734

0w 107 X 2.997 x 108 (10)
U X

To get the actual value for the energy out of this equation is very straight-
forward; we divide the whole thing into two parts; one consisting of the
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ordinary numbers like the 6.626 and the other part consisting of the
powers of 10 terms. Now “E” becomes

6.626 x 2.997 1073
E = X

8
=0 07 x 10 (11)

We can now deal with this one a bit at a time. First use your pocket cal-
culator to solve the “normal numbers” part and get the answer 3.972 to
three decimal places, then put this number “to one side” while we do the
powers of ten part. Using the rule of indices, we can put the 10~ onto
the top row by changing the —7 to +7 and then we just have to carefully
add the indices together, taking into account their respective signs; this
gives us

1073 x 108 x 10" = 107" (12)

All we have to do now is to multiply this by the first bit of the calculation
(the 3.972) to get the final answer — 3.972 x 10719,

It can often happen when doing a calculation this way that you end
up with an answer that (just as an example) may look something like
this: 122.434 x 107. You can if you wish leave it like this, but if you’re
a fussy sort of person then you should rearrange it to look like this:
1.22434 x 10°.

If you’re unfamiliar with doing calculations in scientific notation then
using the above method exactly as described is good for practice; it gets
you familiar with handling powers of 10 and with the way in which sci-
entific notation works. However you can, if you wish, enter a number
in scientific notation directly into your calculator. To do this with, for
example, the number 6.672 x 10711, first enter 6.672 in the normal way.
Then press the key marked “Exp” on your calculator; you’ll now have two
small zeros at the top right corner of your calculator display. Now enter
the number 11; this will appear instead of the two zeros. Finally, press the
key marked “+/—;” this will turn the “11” into a “~11.” If you now want
to multiply or divide this number by another scientific notation number
simply press the “x” or the “+” and enter the new number, remember-
ing, of course, that if this number involves a positive power of 10 then
there’s no need to use the “+/=" key. Happy calculating!

So now we’ve calculated the amount of energy carried by light having a
wavelength of 5.0 x 10~/ m, which is equal to 3.972 x 1071°. But 3.972 x
107! what? The quantity of energy that we have calculated here is mea-
sured in units called joules, and judging by the fact that the answer we
got is a very tiny number, maybe we should ask ourselves if the joule is
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perhaps too large a unit of energy for the kind of situation we are deal-
ing with. On the other hand it may be that green light simply doesn’t
carry much energy and leave it at that. We’ll say more about this kind of
thing as the need arises; the important thing here is that you can handle
a calculation like Equation (10) and be confident of getting the correct
answer.
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One of the most important things that can be known about any star is
its distance. This precious number enables astronomers to determine the
true brightness of a star and thus its total power output, or luminosity. It
can even enable an estimate to be made of the star’s temperature. We’ll see
in due course how these things are done, but for the moment and really
for the sake of completeness, we’ll say a word or two about the meaning
of the numbers, which are used when discussing the distances to the stars.

As amateur astronomers we fairly quickly get to know that, when talk-
ing about distances out beyond the Solar System we use the light year —
the distance that a beam of light travels in 1 year. Light travels at a speed
of 2.998 x 108 m/s, and the length of a “year” is 365.242 days (to three
decimal places), or 3.15569088 x 107 s, and so it is a fairly straightfor-
ward calculation to work out that a light year is the mighty distance of
about 9.461 x 10'> m. Even so, the distances to the visible stars are of the
order of around 10 to around 1,000 light years, with many stars in our
galaxy being at much greater distances than this, of course. Professional
astronomers, though, tend to use an alternative star distance measure —
the parsec, or “pc” for short, which stands for “parallax second.”

The parsec comes straight out of the only direct way to measure the
distance to a star, which involves determining with the utmost care the
apparent change in position of the star against a background of more
distant stars (a background of distant galaxies is even better) over a period
of six months — i.e., as Earth swings between opposite sides of its orbit
around the Sun, as shown in Fig. 1. Again as amateur astronomers we
learn very soon that the only way to measure the “distance,” or separation
between any two points in the sky, is in terms of the angle between two
lines drawn from these points, which intersect at our eyes as shown in
Fig. 2.

Using this method, the angular separation between the two pointer
stars of the Big Dipper (the Plough in the U.K.) is about 5°; the angular
sizes of the Sun and Moon are both about half a degree, or 30 arc minutes.
The apparent diameters of the planets are of the order of a few tens of arc
seconds (or “arcsec,” for short), where 1 arcsec is 1/3,600th of a degree.
By the time we get to the separations of close double stars, we’re talking
of the order of maybe a few arc seconds, and it’s well known to amateur
observers that one of the most demanding tests for a telescope is its ability
to separate or resolve close double stars.

The half yearly shift of even relatively nearby stars amounts to less
than 1 arcsec, and so determining these shifts puts even large Earth-based
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telescopes at the very limits of their performance. The result is that until
the Hipparcos satellite considerably improved things, it was very much
the norm for star distances to be accurate only to about 10-20% and the
limiting distance was about 300 light years, or about 100 pc.

* . * Ok e K .
A : « > A e
A A A = : ;
Distant stars or galaxies

»

Figure 1. The apparent position of a nearby star shifts against
a background of more distant stars or galaxies over a period six
months as Earth swings between opposite points in its orbit. By
measuring this (tiny) shift and knowing the Earth-Sun distance, sim-
ple trigonometry enables the distance to the star to be determined.
In reality, the process is rather more involved than this simple dia-
gram would suggest.

Earth’s orbit

The actual parallax of a star is defined to be the angle between two lines
running from the center of the Sun and a point in Earth’s orbit whose
distance from the Sun is 1 astronomical unit (A.U.) (1 A.U. is the average
Earth—Sun distance, which is equal to 1.496 x 10" m) and which inter-
sect at the star itself (as shown in Fig. 3). Thus the parallax is equal to
half of and not the whole apparent angular shift of a star over a period of
six months. So the parallax is the angle at the apex of an extremely thin
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Figure 2. The apparent “separation” of two objects on the sky
(this could also be the apparent shift of one star over a period of
six months) is measured by the angle they subtend at the eye (or
telescope). This angle is measured in degrees, minutes (or arcmin-
utes), and seconds (or arcseconds).

right-angled triangle. The length of the base of this triangle is just 1 A.U.,
and if the parallax of a star were in fact equal to 1 arcsec (1/3,600th or
2.778 x 107 degrees), then its distance, using high school trigonometry,
would be equal to 1 A.U. divided by the tangent of 1 arcsec. If you try
this on your calculator you should get the answer 3.086 x 106 m. This
distance is defined to be equal to 1 parsec, and if we divide it by the number
of meters in 1 light year, then we can see that 1 parsec is equal to 3.262
light years.

The advantage of using parsecs is that if you know the parallax of a
star, then its distance in parsecs is just equal to the reciprocal of the par-
allax. So, as we’ve seen, a parallax of 1 arcsec corresponds to a distance
of 1 parsec; a parallax of 0.5 arcsec results in a distance of 2 parsecs and
so on. So, for example, the parallax of Proxima Centauri the nearest star
is about 0.75 arcsec; the reciprocal of this is 1.333, which is the distance
to Proxima in parsecs that, when multiplied by 3.262, gives us 4.35, or its
distance in light years. The reason that this simple relationship works is
because the baseline of these “parallax right-angled triangles” all have the
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Figure 3. The angle “p” defines the “parallax” of a star; it is
equal to half (not the whole) of the annual apparent shift of the
star’s position. This tiny angle thus forms the apex of a very narrow

right-angled triangle whose base has a length of 1 Astronomical
Unit.
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Figure 4. The use of right-angled triangles makes parallax
trigonometry very simple. If the distance to a star is doubled, its
parallax is halved; triple the distance, and its parallax becomes
one third, and so on.
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same base length, i.e., 1 A.U. (they are, in fact, what mathematicians call
similar triangles), and so if the distance doubles, the parallax halves, etc.,
as shown in Fig. 4.

So there we have it; this is pretty well all the mathematics you’ll need
for now (oh! and do remember that number “e” or 2.718, which we’ll
meet again later) to hopefully get that extra bit out of this book. Read on!



23) Starlight

When the same number is multiplied by itself “x” times, the number
is said to be raised to the power “x.”

The number “x” is called the index of the power, or simply the index
(plural “indices”).

If a number that is raised to the power “x” is multiplied by the same
number raised to the power “y,” then the result is the same number
raised to the power “x + y;” the indices simply add together, and this is
called the rule of indices.

«_1» «_»

For any number “z, “z!” equals “z” and “z°” equals 1.
For any number “z” and index “x,” the number “z7™” is equal to the
reciprocal of z%; i.e., 1/2".

Any number such as (¥)? is equal to ¥, i.e., when a number is succes-
sively raised to several different powers, the final result is equal to the
number raised to the product of all the powers.

Very large and very small numbers are usually written in scientific
notation. For example, 5,000 is written as 5.0 x 10% and 0.005 is writ-
ten as 5.0 x 107,

The number “e,” which equals 2.718, is very important and should be
remembered.

A star at a distance of 1 parsec, or 1 pc, would have a parallax equal to
1 arcsec; no star is as close as this.

The distance in parsecs to any star whose parallax is known is simply
the reciprocal of the parallax.
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During my final year at high school our physics teacher, Mr. Taylor
(Mr. Taylor also ran the truly excellent school astronomical society) told
us that, despite the fact that by that stage we’d learned a lot about elec-
tromagnetic waves and photons, at the end of the day physics could not
actually say exactly what light is. This is, of course, true, but remark-
ably it doesn’t matter (well, it might matter to a philosopher), pro-
vided we accept two very important things about physics. First, what
we generally call the great theories of physics, such as classical electro-
magnetic theory and quantum mechanics, are in fact models, which
physicists use to try and explain as best they can the results of experi-
ments and hopefully to predict the results of future experiments. Sec-
ond, while it is often the case that one theory or model (in this case
quantum theory and photons) supersedes an earlier one (the idea of
electromagnetic waves), the older theory is very often still extremely
useful.

For example, few people these days would subscribe to the idea that
Earth is truly fixed at the center of the universe as prescribed by most
ancient astronomers. However, as modern day amateur and professional
astronomers, we still make frequent use of the idea of the celestial sphere
upon which stars and planets, etc., appear to move around a fixed central
Earth; so here’s an example of an “old dog” that doesn’t necessarily need
to learn new tricks.

Astronomers, too, use these theories of physics to try to explain why,
for example, the light from a star has the properties that we observe. In
this chapter, we’ll look at some of the most basic properties of light using
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the great theories that have been developed to explain them. What’s more,
as indicated above, we’ll be quite happy to make use of the older idea —
namely, that of electromagnetic waves, when it seems that this gives a
perfectly reasonable and maybe even an easier to understand explanation
of things. Then, when necessary, we’ll use the more modern idea — that of
quantum theory and photons — when the old theory just won’t do. This
is what the professionals do; so if they can, we can!
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Despite the fact that Isaac Newton favored the idea that light consisted of
a stream of energetic corpuscles, the first great theory about light dealt
with waves. The whole thing was, in fact, a magnificent coming together
of experiment and theory. Experiments showed that light was clearly
some form of wave motion, but then, like setting the capstone on top
of one of the great pyramids, James Clerk Maxwell showed theoretically
that electric and magnetic fields could travel together as waves through
space. What’s more these electromagnetic waves traveled at a speed that
was equal to the then-known speed of light itself. Voila! Light was an elec-
tromagnetic wave.

Having made such a bold statement, let’s see what we can do with
this tremendous idea. The thing that probably causes most difficulty with
understanding waves is that they are dynamic entities. They are by their
very nature changing constantly in time. Also where light waves are con-
cerned, we have to deal with the rather abstract idea of electric and mag-
netic fields. In addition, the mathematics of wave motion doesn’t come
cheap, but at least we don’t have to go down that particular road. We will
in due course, though, need to get our heads round some numbers, but
to start with let’s establish a few basic facts about waves.

The first thing to do is to take out the time element by imagining that
we can “freeze frame” a wave so that we can poke around and examine it.
The second thing is to take the kind of wave that we are familiar with and
the obvious example here is a water wave. Drop a stone into a pond, and
the water wave spreads out as a series of circular ripples. Now “freeze” this
water wave in time; we see that the “frozen” wave consists of circular areas
where the water level is relatively high, alternating with areas where the
level is relatively low. The high zones are called crests and the low zones
troughs. Most importantly, if we measure the distance between two neigh-
boring crests, we find that it’s the same wherever we are on the wave. This
all important number is called the wavelength, and it is always represented
in the literature by the Greek letter lambda or “A.” For water waves, the
wavelength may be measured in centimeters for a pond or from meters
to kilometers for an ocean.

An even simpler example of a familiar wave is one we can produce
using a length of rope; we tie one end of the rope to a post and then wiggle
the free end up and down. Again, if we make a movie of this and look at
an individual frame, we would see that the distance between two neigh-
boring crests, or the wavelength of our rope wave, was the same all the
way along the rope. If we want, we can vary the speed at which we wiggle
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the free end of the rope. If we do this, we would see that the more rapidly
we wiggle the free end of the rope the shorter the wavelength becomes,
whereas a more leisurely wiggling action produces a longer wavelength.
We can, in fact, be more precise about our wiggling action; by a rapid
wiggling action we mean that we move the free end of the rope up and
down more rapidly, and we can also define “one wiggle” as one complete
up and down movement of the end of the rope. Clearly, a more rapid
wiggling action will result in more “wiggles” in a given interval of time —
say, 1 s. In fact, the total number of complete wiggles that take place in 1s
is called the frequency of our rope wave, and indeed of any kind of wave
we care to think about — it’s always denoted by the Greek letter nu or “v”
in the literature. So more wiggles per second means a higher frequency,
but as we’ve seen rapid wiggles make for a shorter wavelength.

If we were to watch our rope wave movie, we’d see that the wave shape
appears to move along the length of the rope, and if we had tied a piece
of rag to the rope at some point along its length, we’d also see that as
the wave shape moved along, the piece of rag would move up and down
as crests and troughs in the wave came by. This motion of a point on
the wave at right angles to the direction along which the wave pattern
moves means that our rope wave is an example of what’s called a trans-
verse wave. The maximum distance traveled by the piece of rag away from
the mean level of the rope is another important quantity associated with
waves called the amplitude, which measures the height of the crests or the
depth of the troughs. Figure 1 shows the basic “anatomy” of a transverse
wave.

Amplitude Wavelength A

-

Direction in
which wave
travels

Figure 1. The basic “anatomy” of a transverse wave defines the
wavelength as the distance between two neighboring crests and the
amplitude as the maximum height of a crest above the mean level
of the wave.
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Another thing we’d see by carefully watching the movie is that one
complete up and down movement of the piece of rag corresponds exactly
to one single wiggle of the free end of the rope. If the rag starts at the
top of a crest in the wave, it will descend, as the wave moves along, to the
bottom of a trough and then back up again as the next crest comes along.
So after one wiggle, the wave pattern in the rope has moved along by one
wavelength, i.e., by a distance of A as shown in Fig. 2. After v wiggles the
wave will move along by a distance of v x X; v is the number of wiggles
in 1s. So in 1s the wave moves a distance of v x A; the distance the wave
moves in 1 s is of course the wave’s velocity V and so

V=vxi (1)

Point on wave

At time zero

Y2 a ‘wiggle’ later —»>

A Wave has
advanced by one
whole wavelength

Iy
k.

1 “wiggle’ later

Figure 2. After one “wiggle,” i.e., one complete up and down
motion of any point on the wave, the wave pattern advances by
one whole wavelength “A”; after “v” “wiggles,” i.e., after 15, the
wave advances by a distance v x A, and so this distance that is

covered in 1s equals the wave’s velocity “V.”
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This simple but exceedingly important formula applies to any wave,
including light waves. For a given type of wave, the value of the veloc-
ity V is fixed, so this formula confirms what we said above, that if, for
example, we increase the frequency, the wavelength must decrease, i.e.,
become shorter in order to keep the velocity constant.

As you might expect a light wave is more subtle than either a water
wave or a rope wave. In these latter cases, it’s obvious that something
is moving up and down as the wave pattern moves along; not surpris-
ingly, then, once experiments showed that light behaves like some form
of wave, it was of great concern to physicists at the time as to what if any-
thing might be moving, or, in other words, what would be meant by the
“amplitude of a light wave?”

In fact, it turns out that the only thing that “moves” in a light wave is
the wave pattern itself, and this as you’d expect moves along at the speed
of light (always denoted in the literature by a small letter “c”). Clearly,
though, there must be something that we can measure, which is chang-
ing as the light wave moves along, and once more let’s imagine that we
can freeze frame a light wave so that we can examine it. This time, how-
ever, we can’t “see” the light wave, but if we know where the source of
the light is and by means of a detector (a CCD camera, for example) we
know where the light wave ended up (and trusting that light travels in a
straight line), we can at least see the line along which the light wave is
traveling.

What we do now is carefully move along this line with a compass. What
we’d see is remarkable; at first, the compass needle would point in one
direction, and this direction would be at right angles to the light wave’s
line of travel. Then, as we move along, the needle would flip around and
point in the opposite direction. Further along still it would flip around
yet again, and eventually we’d realize that these compass needle flips hap-
pened at equally spaced intervals along the light wave’s path. This tells us
that a magnetic field exists along a light wave, and what’s more, this field
periodically changes direction along the length of the wave.

Hardly able to contain our excitement, we invest in a magnetometer —
a device that can tell us how strong a magnetic field is as well as its direc-
tion. We carry out the same procedure again, this time measuring the
strength as well as the direction of the magnetic field as we move along the
“frozen” light wave. Armed eventually with a mass of data, we can now
plot on a graph the strength and direction of the magnetic field against
distance along the light wave; our graph would itself have a beautiful wave
shape.

So, unlike water waves and rope waves, light waves don’t involve any
sideways movement of something in space. Instead, it is the strength and
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direction of a magnetic field that varies as the wave moves along. At any
given point on the wave, the magnetic field strength increases from zero
to a maximum value, decreases to zero again, and then increases again
but pointing in the opposite direction.

There’s something else, too, that comes straight out of Maxwell’s clas-
sical electromagnetic theory. A magnetic field that varies as it does here
does so because of an electric field that is varying in a similar way; so our
light wave also involves a varying electric field. The direction of the elec-
tric field is at right angles to both the magnetic field and to the direction
along which the wave travels as illustrated (rather crudely) in Fig. 3, and
so we have an electromagnetic wave, which, as with water and rope waves,
is an example of a transverse wave. The wavelength of an electromagnetic

Electric field strength

T Magnetic field strength

' —

e ——

R_\H\;_

Direction in which —
wave travels

Figure 3. This is, it must be admitted, a pretty simplistic repre-
sentation of an electromagnetic wave, i.e., a light wave. It does at
least show that the directions of the electric and magnetic fields are
both at right angles to each other and to the direction of the wave's
travel. It also shows that the electric and magnetic waves are “in
phase,” i.e., crest matches crest and trough matches trough all the
way along the wave. Clearly, trying to represent a light wave that
spreads outward in all directions like this would result in a very
messy diagram.
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wave is the distance between two neighboring points where the electric or
magnetic field strengths are a maximum (the distance is the same in both
cases), and the amplitude of the wave is now measured not by a physi-
cal distance but by the maximum strengths of the electric and magnetic
fields themselves.

At this point, it has to be admitted and most of you have proba-
bly realized that for visible light (even in this era of multi-wavelength
astronomy we still tend to think of visible light first), the wave-
lengths involved are very tiny indeed, and no way could we measure
them with a simple compass. The idea behind this thought exper-
iment, though, is completely sound and fits in perfectly with the
classical wave theory of light. In this theory, the amplitude of the
light wave, i.e., the maximum strengths of the electric and magnetic
fields, determine how bright the light is and the wavelength (and by
implication from Equation (1), the frequency) determines the color of
the light.

Electromagnetic waves (including visible light) can have a whole range
of wavelengths; a range of wavelengths constitutes a spectrum — in this
case, the electromagnetic spectrum, or the “e-m” spectrum. We can some-
times see the visible part of the electromagnetic spectrum spread out in
the sky for us in the form of a rainbow, or, if we can’t be bothered to
wait for it to rain, passing sunlight through a glass prism will do the
same job.

A very obvious but nonetheless very important feature of both rain-
bows and the spectrum of sunlight produced by a prism is that there
are no noticeable gaps between the colors. For example, there’s no gap
between the orange and the yellow or between the blue and the green.
This suggests to us that sunlight contains not just some but all of the col-
ors or wavelengths that make up the visible part of the e-m spectrum.
Obvious though this is, it is important, because when the spectra of the
Sun and most stars are studied in greater detail, it is seen that there are,
in fact, “colors” that are missing. The shortest wavelengths in the visi-
ble spectrum are perceived by us as the color violet; the longest wave-
lengths are perceived as deep red, and all the other colors that we can see
have wavelengths somewhere in between. There are also, of course, other
“colors” that we can’t see.



From Light to Starlight 31)

Nature’s Color Palette - The

An artist will take basic colors from the visible spectrum and mix them
together to give all possible shades, tints, and hues that we see around us
in nature. Alas, what even the greatest artist cannot do is to take nature’s
extra hidden “colors” that come from electromagnetic waves of other
wavelengths and add them to his or her landscape painting.

By contrast, one of the great wonders of modern astronomy is that it
has been able to do just this — to give us a truly awesome view of the great
river of starlight that enters our telescopes. Most amateur astronomers
observe the visible part of the spectrum, but as we shall see later, nature’s
extra “colors” play a crucial and fascinating role in determining what we
see in visible light. Understanding the role played by these invisible parts
of the e-m spectrum enables the amateur astronomer to gain a much
deeper appreciation of his or her observations.

The wavelength A determines the kind of electromagnetic radiation we
are dealing with; it’s a number that can be directly measured, as we’ll see
shortly, but first let’s look at the kind of numbers that are involved. Visi-
ble light has a wavelength of around a few ten millionths of a meter or a
few times 10~ m, but to give a more specific example, light of a particular
shade of green (the color to which the human eye is most sensitive) has a
wavelength of 5.0 x 10~/ m. This is the same as 500 x 10~ m, or 500 nm
(a nanometer being equal to 10~ m). Both physicists and astronomers
use nanometers when talking about the wavelength of visible light, but
astronomers also frequently use another unit, the angstrom, represented
by the symbol “A.” One nanometer equals 10 A, and so once again our
green light can be said to have a wavelength of 500 x 10, or 5,000 A. In
more advanced books and research papers, you’'ll often find a wavelength
written as 15,000 or 16,563, etc. When talking about a range of wave-
lengths in angstroms, this will be written, for example, as AA5,000-7,000.

At this point, it’s worth also having a look at the kinds of numbers that
are involved when we talk about the frequency of visible light. To do this,
we rearrange Equation (1) in the form

V= (2)

where we have substituted ¢ (the speed of light) for V. The speed of light
is very nearly equal to 3.0 x 10® m/s, and using 5.0 x 10~/ m for the
wavelength, the frequency is given by
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3.0 x 108

v=— " —  —60x10" 3
5.0 x 107 (3)

This is a truly enormous number, which also illustrates why astronomers
prefer to use wavelengths when dealing with the visible spectrum; 500 nm
or 5,000 A are much easier numbers to remember than 6.0 x 10,
The frequency does have a very important role, though, as we’ll see later.

Figure 4 shows the way that astronomers by convention divide the
e-m spectrum up into its principal regions. The visible part of the
e-m spectrum (often also referred to by astronomers as the optical spec-
trum) covers a wavelength range of about A14,000-7,000. As we head
from 17,000 at the red end of the visible spectrum into the infrared, or
“IR,” region, we eventually reach a wavelength of 110,000 or 1,000 nm.
One thousand nanometers is equal to 1 pm (short for micrometer) and
so in the infrared region of the spectrum, particularly the far infrared,
wavelengths are usually spoken of in microns — again, 2.3 pm, for exam-
ple, is an easier number to deal with than 23,000 A.

The infrared region is generally considered to extend to wavelengths
of the order of a few hundred microns, whereupon we reach what
astronomers refer to as the submillimeter region. This region takes us to a
wavelength of 1,000 pm, or 1 mm, which by convention marks the short
wavelength end of the microwave region, which covers wavelengths all the
way up to 1 m. Your kitchen’s microwave oven runs on a wavelength of
around 12.24 cm; this wavelength, which incidentally corresponds to a
frequency of 2.45 x 10°, has a profound effect on water molecules — an
effect that has not gone unnoticed by astronomers.

Wavelengths of 1 m and above make up the radio spectrum, and it’s
here that astronomers will often use frequencies rather than wavelengths.
The radio region marks the low-frequency end of the e-m spectrum, but
how low is low? Take for example a wavelength of 1,500 m, which is typ-
ical of traditional analogue long-wave radio broadcasts; the frequency is
given by

3 10° 2 x 10 (4)
v = ——=2X
PO 5% 103

for example, 200,000. Even at the low-frequency end, we have the elec-
tromagnetic equivalent of wiggling the end of a rope 200,000 times every
second. One “electromagnetic wiggle” per second is given the name I
hertz, after the late 19th century German physicist Heinrich Rudolf Hertz.

So our 1,500 m radio wave has a frequency of 200,000 Hz, or 200 kHz.
One important final point; if you ever need to convert a wavelength to a
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frequency and you use a value of 3.0 x 10® m/s for the speed of light, then
the wavelength must also be in meters whatever part of the e-m spectrum
you are dealing with. So, instead of using 6563 A, use 6.563 x 10~/ m in
Equation (2). Conversely, a frequency in hertz (which has units of “per
second”) combined with the speed of light in meters per second will give
the wavelength in meters, which can then if one wishes be converted to
angstroms or nanometers.

The short wavelength end
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Figure 4. The principal regions of the e-m spectrum; wavelengths
are not plotted to scale.

Heading the other way out of the visible spectrum we enter the ultra-
violet region, which covers a wavelength range of A1100—4,000. Medi-
cal practitioners and manufacturers of sunscreen products often make
use of terms such as “UVA” and “UVB,” which refer to specific regions
of the ultraviolet, or UV, spectrum. Astronomers, however, divide this
region into the near ultraviolet (A13,000—4,000), the middle ultraviolet
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(A12,000-3,000), the far ultraviolet (AA1,220-2,000), and finally the
extreme ultraviolet (AA100-1,210) — all pretty logical really except for
those figures of 21,210 and A1,220. An important feature of the e-m
spectrum due to hydrogen (the overwhelmingly most common element
in the universe) is known as the Lyman-alpha line, which has a wave-
length of about 1,215 A, and this, by convention, marks the boundary
between the two shortest wavelength regions of the UV spectrum.

We’re all familiar with X-rays, usually within a medical context but
over recent years astronomers, too, have become familiar with these very
short wavelength (ranging from a mere 0.1 A up to 100 A) electromag-
netic waves. Indeed, at wavelengths as short as these and with the even
shorter wavelength gamma rays, it’s customary for both astronomers and
physicists not to use wavelengths at all but rather to talk in terms of the
energy associated with the radiation.

We’ll have a closer look at this shortly, but having briefly surveyed the
electromagnetic spectrum, a good question to ask is this: How do you
measure the wavelength of an electromagnetic wave in the first place?
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How to Measure the Wavelength

One way to measure the wavelength of light also gives us an opportunity
to look at the classic experiment that showed that light was indeed a form
of wave motion. The experiment was carried out shortly after the start of
the 19th century by the English physician Thomas Young and is referred
to as “Young’s slit experiment.”

The idea is to have two sources of the same kind of light next to each
other. By “same kind of light” we mean two things; first, we need what
is glibly called monochromatic light; that is, light of a single wavelength
or color. We use the word “glibly” because, in reality, it’s impossible to
get light of a single wavelength. The best you can do is to have light that
spans a very narrow range of wavelengths.

One way to do this would be to produce a spectrum by allowing sun-
light to shine through a glass prism and then to block off all the light
from the spectrum except for that which is allowed to shine through a
very narrow slit. Even so, for Young’s slit experiment to work, this slit has
to be of the order of only a few hundredths of a millimeter wide.

The second thing is that the two light waves have to start from two
points very close to each other and also they must start off “in sync,” for
example, if the peak of a wave crest comes out of one of the sources, then
the same thing must happen at exactly the same time for the other source.
The standard way to state this is to say that the two waves are coherent
and are initially in phase. The way that this is done is to have two more
narrow slits, close to each other and situated at the same distance from
the monochromatic source slit. The monochromatic light will then pass
through the two slits, and two coherent light waves will emerge in phase;
then things get interesting.

A white screen is placed to intercept the light from the two slits. What’s
seen on the screen is a striking pattern consisting of an alternating reg-
ular series of light and dark bands. This happens because as the initially
in-sync waves spread out from the two slits, there will be some locations
between the slits and the screen where the waves get totally out of phase.
In this situation the crest of one wave meets with a trough of the other
wave, and the two simply cancel out — what’s called “destructive inter-
ference.” Conversely, there will be other locations where the waves are
in phase, i.e., crest meets with crest or trough meets with trough, and
we have “constructive interference.” This situation also occurs at regular
intervals along the length of the screen.
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To produce a light band on the screen, the waves coming from the two
slits have to be in phase, and for this to be so, the difference between
the two distances traveled by the waves to the screen has to be a whole
number of wavelengths. Conversely, to produce a dark band the waves
must be out of phase, and the difference between the two distances has to
be an odd number of half wavelengths.

Figure 5 shows the set up; clearly the two waves travel the same distance
to the center of the screen and so will arrive in phase and produce a light
band. For the light bands on either side, the waves have traveled distances
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Figure 5. The principal of the Young’s slit experiment. Waves
such as those labeled “1” and “2” reach the white screen along
paths whose distances differ by a whole number of wavelengths
(in this instance the distances are the same); they thus arrive “in
phase” and produce a bright fringe on the white screen. Waves
such as those labeled “3” and “4” cover distances that differ by an
odd number of half-wavelengths; they arrive “out of phase” and
produce a dark fringe on the screen. The actual separation of the
fringes is determined by the wavelength of the light and thus pro-
vides a means of determining the wavelength itself.



From Light to Starlight 37j

that differ by one whole wavelength, two whole wavelengths, and so on.

« _»

Having previously measured with great care the distance “a” between the
two slits and the distance “D” to the screen, the distance “y” between the
central light band and one of its nearest neighbors is measured. This turns

out to be given by

y=AxDJ/a (5)
and so the wavelength of the light A is given by

A=axy/D (6)

If you’re good at trigonometry, you should have no difficulty in figuring
this out; don’t worry, however, if you’re not. What really matters here is
that the alternating pattern of light and dark bands, or interference fringes
as they are often called, could only be explained by assuming that light
was some form of wave motion. Equations 5 and 6 only serve to illus-
trate how straightforward it is to determine the wavelength of the light,
by carefully making a few simple measurements.

Nowadays there are various ways to determine the wavelength of light,
including theoretical calculations based on quantum mechanics. It goes
without saying that astronomers need to be able to routinely measure
wavelengths both in the visible and other parts of the e-m spectrum.
However, as we shall now see, there is more to the visible spectrum than
meets the eye.
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In a laboratory a spectrum can be produced by passing sunlight through
a glass prism. The resulting spectrum is the familiar continuous band
of color ranging from violet through to red. Some of you may remem-
ber, though, being able to look through a spectroscope in the school
physics lab at the spectrum produced by a hydrogen discharge lamp.
This lamp consisted of a narrow glass tube containing hydrogen gas,
which was connected to a high voltage power supply. You may also
remember that when you looked through the spectroscope, you saw not
a continuous rainbow of color but a series of individual bright lines
set against an otherwise dark background. Hmm! Clearly not all spec-
tra are the same. Furthermore, as you developed an interest in astron-
omy you will have soon come across images of the spectra of stars,
which almost always showed the familiar continuous “rainbow” but this
time crossed by dark lines. We shall now see where all of this came
from.

The pioneering work of Robert Bunsen and Gustav Kirchhoff is gen-
erally regarded as the beginning of the science of spectroscopy as we
know it. Indeed it was Bunsen and Kirchhoff themselves who invented
the spectroscope — an instrument that could be used to produce and
analyze the spectra from various sources of visible light. They discov-
ered that there are three basic types of spectra, and in the following
years, astronomers came to realize that all three have a role to play
in the understanding of starlight. The three types of spectra are as
follows:

o The continuous spectrum. This is the kind of spectrum we are all famil-
iar with; a continuous band or “rainbow” of colors running from deep
red through orange, yellow, etc., to violet. Bunsen and Kirchhoff found
that this kind of spectrum is produced by something that is both very
hot and dense. It has to be hot enough to be giving off visible light
and dense enough, meaning that in Bunsen and Kirchhoff’s time,
suitable sources of a continuous spectrum would have been heated
solid objects or perhaps molten metal.

e The emission spectrum. This spectrum consists of a series of discreet
or individual bright lines (called emission lines) set against a dark
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background — just as you may have seen in the school physics lab. This
type of spectrum, they found, was produced by hot, thin gas that they
themselves produced by vaporizing various chemical substances in the
hot flame of Bunsen’s newly invented gas burner (the Bunsen burner).
Their profoundly important discovery about this type of spectrum is
that the pattern of lines is unique to the chemical elements that are
contained in the thin gas. Vaporized copper salts, for example, give a
completely different set of lines to those produced by iron or calcium
salts.

e The absorption spectrum. The light from a very hot, dense substance
is allowed to shine through cool gas (of low density) such as sodium
or mercury vapor. This time the continuous spectrum is crossed by
individual dark lines, and as with the emission lines the pattern of
these absorption lines is unique to the chemical elements in the cool
vapor.

In the following years, astronomers soon discovered that the light
from most stars produces an absorption spectrum, though in some cases
there are also emission lines superimposed on the absorption spectrum.
Straightaway this told astronomers that stars consist of a source of a
continuous spectrum, which must therefore be relatively dense as well
as being hot. There must also be some cooler thin gas involved to pro-
duce the absorption lines, and some stars must also incorporate very hot,
thin gas to produce emission lines. If this wasn’t enough, the patterns
of absorption lines in stellar spectra could be identified with identical
patterns produced by known chemical elements in the laboratory, thus
revealing for the first time not what starlight was made of but what the
stars themselves were made of. And this turned out to be merely the tip
of a truly enormous starlight “iceberg.”

A very logical if rather obvious question at this point is why absorp-
tion or emission features are in the form of lines rather than, say, circular
blobs. The answer is to many also obvious, but as someone once said,
“These things have to be said anyway.”
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The central feature of a spectroscope is the bit that produces the spectrum
from the incoming light. In Bunsen’s and Kirchhoff’s day this was a glass
prism; nowadays the same job is done much more efficiently by a device
called a diffraction grating. Both devices enable light of a given wavelength
to emerge traveling in a direction that depends on the wavelength itself.
The result is that the range of wavelengths that make up a source of light
are sequentially spread out to form a spectrum. This process is called
dispersion, and the greater the dispersion the more the wavelengths are
spread out. A diffraction grating produces spectra with greater disper-
sion than a prism, and this in turn enables finer details in the spectra to
be observed.

Before the light reaches the prism or grating, it first passes through a
narrow slit at the front end of a closed tube called a collimator. A lens
at the other end of the collimator enables what is now the image of the
illuminated slit to be ultimately viewed through a telescope (as in the
high school spectroscope) or to be directly imaged with, say, a CCD cam-
era. What enters the diffraction grating then is the image of the illumi-
nated slit, which when dispersed by the grating, results in what amounts
to a series of slit images spread out according to the wavelength of the
light.

If we’re dealing with an emission spectrum there will be several iso-
lated slit images, one corresponding to each of the wavelengths in the
spectrum. So each emission line is, in fact, the image of the spectroscope’s
collimator slit positioned according to wavelength. By contrast, a contin-
uous spectrum is actually made up of a vast number of slit images all
spread out according to wavelength and resulting in the rectangular band
or strip of light that we are familiar with.

Finally, if light from some of the wavelengths in a continuous spectrum
is removed by having cool gas in the way, then at these particular wave-
lengths no light at all is passing through the slit, so at these wavelengths
the image of the slit is itself dark. So we have dark lines; i.e., absorp-
tion lines, crossing our continuous spectrum. In an absorption spectrum
the continuous component upon which the absorption lines appear to be
superimposed is always referred to as the continuum. Figure 6 summarizes
the main results of Bunsen’s and Kirchhoft’s work.

It took a good half century and the development of quantum mechan-
ics for a full and detailed explanation to be given of many of Bunsen’s and
Kirchhoff’s results. This explanation started as a result of understanding
the way in which light carries energy.
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Figure 6. This summarizes the work of Bunsen and Kirchoff and
shows why spectral lines are in fact in the shape of lines.
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One of the most important things about waves, including light waves, is
that they enable energy to move around. When we wiggle the free end
of our rope, our arm does work and puts energy in; a little while later
and some meters further along the rope, the piece of rag moves up and
down because it has received energy from the rope wave. Light waves,
too, carry energy; sunlight can be used to generate electricity and also
heat the ground, which heats the atmosphere and which in turn warms
our planet.

In the classical electromagnetic wave theory of light, there are two pos-
sible ways to increase the amount of energy carried by the wave; one is to
increase the maximum strength of the electric and magnetic fields along
the wave, for example, to increase the amplitude of the wave by making
the light brighter. This is analogous to making taller wiggles in our rope
wave; we have to put more energy in to do this (our wiggling arm will
start to ache sooner), and in consequence the piece of rag moves further
because it gets more energy. Another way to put more energy into a rope
wave is to wiggle the end of the rope more rapidly (again our arm tires
more quickly); this means increasing the frequency of the wave, and again
the same idea applies to an electromagnetic wave. So waves of higher fre-
quency carry more energy, but as we’ve already seen and as Equation (1)
tells us; a higher frequency means a shorter wavelength; the shorter the
wavelength of light the more energy it carries. Thus, in the visible part of
the spectrum, blue light carries more energy than red light.
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Let There Be Another Idea About

If light consisted of Newton’s energetic corpuscles rather than waves, then
we’'d expect that the two slits in Young’s experiment would each pro-
duce a 12-bore shotgun-type spray of such corpuscles, which would reach
the screen with a totally random distribution, producing a single band
of light; only the wave theory could explain the alternating pattern of
light and dark bands. Isaac Newton himself might well have been rather
grumpy about the development of ideas on the nature of light during
the 19th century; however, he would probably have had cause to smile
around the turn of the 20th century, when it was found that in some sit-
uations the wave theory just didn’t work. What’s more, the theory that
did work resulted from Newton’s corpuscle idea being “reborn” — only
this time the corpuscles were called photons. This more modern theory is
called the quantum theory of light.

In our light wave thought experiments, we didn’t say much about
either the source or the detector of the light wave. Indeed, there was no
need to, because we were concerned about the nature of the light wave
itself, and in fact we could be forgiven for being lulled into getting the
impression that our light wave was some sort of continuous steady thing,
like the rope wave and water wave. The wave would eventually stop, of
course, but only when we switched off the light. The source and the detec-
tor are important, though, because one actually produces the light and
the other enables us to analyze it.

Both source and detector have one very important thing in common —
they involve the interaction of light with matter. It was experiments
involving this interaction, in one case a source of light, in the other a
detector of light that turned out to be the downfall of the wave theory of
light itself.

Without going too much into the details (we can do this later, when
necessary), all matter is made of exceedingly tiny atoms that themselves
are a (very intricate and highly organized) mixture of positive and neg-
ative electric charges. Electric charge is one of those fundamental things
in nature, which as Mr. Taylor, the high school physics teacher, would
probably have said, we’ll never get to the bottom of.

Electric charge is the very source of electric fields, which as we’ve seen
are an integral part of a light wave. The important thing here is that
there are two types of charge, negative and positive. Even more impor-
tant is the fact that, as they say; “likes” repel and “unlikes” attract, so
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negative charges are attracted to positive charges with what turns out to
be a tremendously powerful force. In an atom, the positive charge sits
in a tiny central nucleus that does, however, contain almost all of the
mass of the atom. In a normal (or electrically “neutral”) atom an equal
amount of negative charge is carried by exceedingly low mass particles
called electrons, which have their “place” on the periphery of the atom.
The important point here, though, is not the structure of the atom itself
but simply the fact that these electrons are bound to the atom by a mighty
strong force. To overcome that force and remove an electron from an
atom requires energy. But, as we’ve seen, light waves carry energy, so they
can and do remove electrons from atoms. This wonderful phenomenon
is called the photoelectric effect, and among many other things it makes an
astronomer’s CCD camera work.

Take some solid material and shine a light on it; for some materials this
simple event will cause electrons to be removed from some of the atoms
in the surface layers of the material. These electrons can in turn be led
away along a wire in the form of an electric current that can be measured.
Now let’s see what happens when we decrease the amount of energy in the
incoming beam of light. According to the wave theory, there are two ways
we can do this: one is to decrease the amplitude of the wave, or simply
making the light dimmer. The other way is to decrease the frequency of
the light wave, for example, to increase the wavelength.

Let’s lower the amplitude of the light waves first; as the light dims (pro-
vided we had an electric current coming out of the material in the first
place), we’d find as we’d expect that the current gradually drops to zero
as the light fades. So far, okay for the wave theory. Now let’s lower the fre-
quency (increase the wavelength) of the light; this time something totally
unexpected happens. The current would not gradually drop to zero, but
at some frequency it would suddenly stop. It’s as though light below a cer-
tain frequency just hasn’t got enough energy to shift those electrons. But
surely, we say to ourselves, all we have to do is to turn up the brightness —
increase the wave amplitude to compensate for the energy deficit caused
by lowering the frequency. When we do this, however, nothing happens;
the electric current doesn’t come back on.

Our first thought might be that maybe the amplitude of a light wave is
in some way tied into its frequency, so that lower frequency light waves
have lower amplitudes. This might explain the lack of sufficient energy to
remove an electron from the material’s surface, but as a consequence, we
would have modified the wave theory of light without any justification,
save to account for the experimental result. This has all the hallmarks of
introducing epicycles to explain the motion of the planets. If we think
about it though, even a lower frequency wave with a low amplitude will
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surely after a time pump sufficient energy into an electron to shift it. The
experiments, though, say “no”; it’s like trying to make a hole in a hard
brick wall with a blunt drill. No matter how long we drill for, we just
don’t get anywhere. The bottom line to all of this is that, as we said at
the beginning of this chapter, theories of physics — in this case the wave
theory of light — are models, and here we have a model that’s not working.
Time for a new model then!

Our photoelectric experiment suggests that what’s needed to remove
an electron from the material is a short, sharp kick rather than a steady
push, and what’s more, that kick has to be hard enough or the electron
stays put. In fact, in order to make a new model of light, we have to sup-
pose that this indeed is exactly what an electron gets from light; no steady
push means that the idea of a continuous beam of light that consists of
a continuous steady wave is gone. The short, sharp kick, rather than the
steady push, means instead that light has to come in packages of energy
(Newton’s corpuscles if you wish, but the modern name for them, as we
said, is photons). A photon has to have sufficient energy to knock an elec-
tron out of an atom, because in this new model, to quote an oft-used
expression, the photon only gets one shot. It takes one photon and only
one photon to remove one electron and only one electron from an atom.
It is not possible to remove an electron by “pummeling” it with a rapid
succession of lower energy photons.

Crucial to this new model then is the energy carried by a photon. Just
on a fairly obvious point, all photons travel at the speed of light (c), just
as with light waves, so speed isn’t involved in this. According to our pho-
toelectric effect experiment, the incoming light has to be at least a certain
minimum frequency (as interpreted by the wave theory) in order to eject
the electrons. The quantum theory effectively “steals” this very idea from
the wave theory and uses it as if it were its very own. It gets away with
it, too, because, as we’ve seen, determining the wavelength and hence the
frequency of light is fairly straightforward. It makes the bold statement
that the energy of a photon E is given by

E=hxv (7)

The quantity “h” is a fundamental constant of nature called Planck’s con-
stant, and it has the value; 6.626 x 10734 J s — the joule (as mentioned in
the last chapter) being the standard unit of energy. See if you can work
out the energy of a Lyman-alpha (1,220 A) photon that has a frequency
of 2.46 x 10" Hz. (The answer is about 1.63 x 10718 J.)

This new quantum theory of light doesn’t even bother to try and rein-
terpret the idea of “frequency”; it simply uses it as a convenient way to
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calculate the energy of photons, and if you prefer to use wavelength rather
than frequency, then that isn’t a problem either, because Equation (2) tells
us that

E=hxc/A (8)

So, based on the photoelectric effect experiment itself, the energy of a
photon seems to depend on just one thing, and this is what is interpreted
by the wave theory as the frequency (and by implication the wavelength)
of the light. Indeed, experiments have shown that the energy of electrons
that get kicked out in the photoelectric process is directly related to the
frequency of the incoming light (provided the frequency is sufficiently
high to remove them in the first place).

So we have a somewhat schizophrenic situation here; our new model of
light says that light comes in packages, which are not waves but yet whose
energy is proportional to the frequency that they would have if they were
waves. On bad days this is the kind of thing that could make you feel like
we live in an imperfect universe. However, in reality, it’s more likely our
theories of physics are imperfect.

One thing, though, that we should ask here is where the amplitude
has gone. Photons don’t have an “amplitude.” Instead, when we make
the light brighter we are simply producing more photons, and this results
in more electrons being ejected; we observe an increased current. This is
exactly the same effect as increasing the amplitude of a light wave. How-
ever, the energy of each individual photon is determined only by its fre-
quency.

Summing up: one single photon with a high enough frequency and
thus high enough energy can remove one electron from an atom; it takes
many photons each with sufficient energy to remove many electrons from
many atoms. Once you accept this (without worrying about exactly what
photons are), you are able to understand a whole lot more astronomy
than you could before, because as we shall see, the photoelectric effect is
happening in some form or other all the time throughout the universe.

A good question to ask at this point is, what about those photons
whose frequencies are too low to enable them to remove electrons from
some material? Do they have any effect on the material itself? The answer
is “yes,” and the implications of this answer manifest themselves not only
in the very character of the light from stars, but they also enable some of
the fundamental properties of stars themselves to be determined.
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The Parable of the Two Tables -

It’s a well known fact of everyday life that if you place something by a
window in your house where the Sun shines in, the thing you’ve put there
gets hot. This can of course sometimes have disastrous consequences, but
it also tells us that the energy of a great many of the photons that fall
upon any material is used to raise the material’s temperature rather than
to remove electrons.

Let’s say you have a table, which just happens to be white in color,
by the window in your living room; the table is bathed in the light (i.e.,
electromagnetic radiation) that is streaming in through the window. One
thing that happens is that some of the radiation (particularly, in this case,
radiation in the visible part of the spectrum) is reflected or scattered off
the surfaces of the table, and some of this radiation can enter our eyes,
which is how we are able to see the table in the first place.

Another way of “looking” at this is to note that this reflected or scat-
tered radiation is radiation that the table has failed to absorb; in other
words, our table has done a less than perfect job at being an absorber of
radiation. Some of the sunlight, though, will be absorbed by the table,
and it is this absorbed radiation that causes the table’s temperature to
rise. The most important consequence of this is that the table will emit
its own radiation, besides absorbing and scattering incoming sunlight.
Indeed, any object that is at a temperature above absolute zero (this is
zero degrees, 0 K on the Kelvin temperature scale, or —273°C) will emit
electromagnetic radiation; this radiation comes from many atomic and
molecular processes going on within the object that are directly related
to the object’s temperature, and so it is called thermal radiation. This
means, of course, that even before the Sun shone through the window,
the table was already emitting thermal radiation. The effect of absorbing
the incoming sunlight is to raise the temperature of the table still further,
which results in increased emission of thermal radiation.

Now suppose that we have a special table; this new table absorbs all
of the radiation that falls on it, i.e., all colors and all wavelengths. Every-
thing is absorbed by this special table. Because no light is being reflected
or scattered, the table would now appear as a perhaps rather sinister black
shape with the outline of our table. Just as with the ordinary table, the
temperature of this special table will rise as it absorbs sunlight; however,
because this special table absorbs all of the incoming radiation the tem-
perature rise will inevitably be greater than it was for the ordinary table.
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The result is that the special table will emit more thermal radiation than
the ordinary one. The two tables are shown in Fig. 7.

Figure 7. Here we see two tables; the one on the left is an “ordi-
nary” everyday table, which just happens to be colored white. lts
spectrum will consist partly of an infrared thermal spectrum together
with some reflected and scattered visible radiation. By contrast the
table on the right is a “special” blackbody table. It absorbs all radi-
ation falling on it and emits a purely thermal spectrum that, at room
temperature, will be largely in the infrared region.

The first thing to say about the thermal radiation emitted by both
tables is that at the kind of temperatures that pervade the average domes-
tic living room, this radiation will be in the infrared part of the e-m spec-
trum. A very important question here is why the ordinary table absorbs
some sunlight, but some visible light in particular is reflected or scat-
tered, giving the table its white color. The special table, however, absorbs
this visible light but effectively re-emits it as infrared radiation. So how
did the visible light get changed into infrared radiation?

In a very general way (without going into a detailed discussion of
atomic and molecular absorption and emission processes, which are, in
fact, described in more detail in the author’s Spectroscopy: The Key To The
Stars, also published by Springer), it’s possible for an atom to absorb, say,
a blue photon; this is a fairly high-energy photon for the visible part of the
spectrum. In the quantum theory there is just a possibility that this atom
will then emit an identical blue photon, effectively re-emitting the photon
that it absorbed. However, there is an overwhelmingly greater probability
that the atom, which for a very brief moment has extra energy by virtue
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of having absorbed the blue photon, will lose this energy in the form of a
short “machine gun burst” of lower energy, i.e., infrared photons. In fact,
this process of higher energy photons being degraded into lower energy
photons is something that tends to always happen when light interacts
with matter.

Just a final note here. The chance of an atom absorbing two or more
photons in succession and thus building up an even larger store of extra
energy is even more remote, because a typical atom only holds onto its
extra energy for a period of around a one hundred millionth of a sec-
ond. This feature of the quantum theory enabled it to successfully explain
the spectrum of thermal radiation from hot bodies. The wave theory of
light fell down on this, because it assumed that it was possible for an
atom to absorb energy continuously from an incoming electromagnetic
wave. This energy could then be re-emitted in the form of a very high-
energy electromagnetic wave such as ultraviolet light. This would mean,
for example, that we could get a suntan from our table just by placing
it in the window. This does not happen, so clearly the wave theory is
wrong here.

So we have two tables bathed in sunlight and doing slightly different
things. The way to investigate further the difference between the tables
is to consider the spectrum of electromagnetic radiation running from
the infrared through the visible region, which is coming from them. Our
tables are fairly dense objects and so we expect this to be a continu-
ous spectrum. From the ordinary table some of the radiation has been
reflected or scattered from its surface, and this we would expect to pro-
duce a peak or a “hump” in the visible part of the spectrum. The remain-
ing radiation is thermal, and this would produce a hump in the infrared
region. For the special table, all of the radiation coming off is thermal
radiation, and so there would just be an infrared hump. However we
would expect the infrared hump to be bigger than that for the ordinary
table, because the special table has acquired that extra energy that was
scattered by the ordinary table.

Another way to look at this is to say that the thermal radiation from the
ordinary table is deficient, because some of the incoming radiation has
been lost by being scattered. In fact all “ordinary tables” or all “ordinary
objects” for that matter will have this deficiency in their thermal radia-
tion spectrum, compared to that of our special table. This table produces
the most complete thermal radiation spectrum possible, simply because
it has absorbed all of the radiation that falls on it. Objects like this are
called blackbodies because (as indicated above) they would appear utterly
black at ordinary room temperatures. The thermal radiation emitted by
blackbodies is, not surprisingly, called blackbody radiation.
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Here’s another question: How hot will our tables get? Indeed, could it
be that their temperature will continue to rise for as long as we leave them
there by the window — or at least until the Sun goes down? The answer to
this one at least is, of course, no; the tables will reach a stage when the rate
at which they lose energy by thermal radiation exactly matches the rate
at which they absorb it from the sunlight. A steady state will have been
reached, which is called thermal equilibrium (this is often denoted in the
literature simply as “TE”); for our ordinary table, as indeed is the case for
any “ordinary object,” we would have to carry out regular temperature
checks in order to find out when thermal equilibrium had been reached
by noting that the temperature remained steady. What’s more, the actual
temperature at which thermal equilibrium occurred would be different
for every object, simply because different objects or different materials
scatter — or, more to the point, fail to absorb electromagnetic radiation
in different ways. By contrast our blackbody table, or for that matter any
blackbody, has absorbed all of the radiation, or, in other words, all of
the energy that has fallen on it, so that at thermal equilibrium the total
amount of energy that is radiated each second by each square meter of
the blackbody’s surface effectively equals the rate at which energy is being
absorbed by each square meter of its surface.

Assuming the Sun’s energy output doesn’t change this means that we
could place several blackbodies in our window and at thermal equilib-
rium the rate at which energy is absorbed by each square meter of their
respective surfaces would be the same. The result is that they would all
have the same temperature and would emit the same amount of energy
(E) each second from each and every square meter of their surfaces.
A higher rate of absorption of energy would result in a higher temper-
ature and a correspondingly higher rate of radiation of energy. Thus,
for any blackbody the rate at which energy is radiated from each square
meter of its surface is directly related to its temperature and is given very
simply by

E=5.670 x 10~% x T*W (9)

T is the temperature in degrees Kelvin, and the number 5.670 x 107%
is called Stefan’s constant — usually represented in the literature by the
lower case Greek letter sigma, or “o”. This very simple formula is called
the Stefan—Boltzmann equation, after two 19th century Austrian physi-
cists — Josef Stefan, who worked out the formula by doing experiments
on the way hot bodies cool down, and Ludwig Boltzmann, who derived

it from theoretical principles. Simple as it is, the Stefan—Boltzmann
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equation is, as we shall see later, of huge importance for stellar
astrophysics.

The Stefan-Boltzmann equation tells us two things. First, it tells us
that the rate at which energy is emitted from each square meter of
the surface of a blackbody depends only on the body’s temperature and
is in fact proportional to the fourth power of its temperature. Sec-
ond, it tells us that the actual value of this temperature is determined
by the blackbody being in thermal equilibrium with its local environ-
ment, i.e., the blackbody’s rate of emission of energy equals its rate of
absorption.

What this means is that to increase the temperature of a blackbody, we
need to increase the rate at which it absorbs energy. One way to do this
for our blackbody table would be to move it closer to the equator so that
the Sun is closer to the zenith; this results in the sunlight falling on the
table being more concentrated, resulting in the table getting hotter. Next,
we could take the table out into space and physically move it closer and
closer to the Sun; again this would result in more energy falling on each
square meter of the table’s surface with a subsequent rise in temperature.
So each time we got closer to the Sun, the table’s temperature would cer-
tainly increase, but it would then level off as thermal equilibrium was
reached. Even if our table were made of some indestructible material, as
yet unknown to science, and we moved it right up next to the Sun, the
same thing would happen; the table’s temperature would increase and
then level off as thermal equilibrium was reached. Even our mighty Sun
has its limitations when it comes to raising the temperature of a black-
body.

There is however another way to increase the temperature of a
blackbody, and this is to change the character of the radiation falling
on it; this means having radiation that contains more high-energy
photons such as ultraviolet and maybe even X-ray photons. This
will certainly increase the rate at which energy is absorbed by the
blackbody and will result in a corresponding significant rise in the tem-
perature, accompanied by an increase in the rate of emission at thermal
equilibrium.

If changing the character of the spectrum of radiation absorbed by a
blackbody will change its temperature, the next question then is, how
does changing the temperature of a blackbody affect the spectrum of
thermal radiation that it emits?
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We’ve already suggested that blackbodies must be relatively dense objects
(i.e., they would consist of solid or liquid material or a dense gas). As
we recall from Bunsen’s and Kirchhoff’s experiments, a thin gas could
never act like a blackbody because it will only absorb or emit pho-
tons at selected wavelengths. So the spectrum of thermal radiation from
a blackbody — a black body spectrum — will consist only of a contin-
uum with no absorption or emission lines. Because a blackbody spec-
trum does not necessarily involve visible light, it is standard practice
to represent it by means of a graph that plots energy emitted against
wavelength.

As already mentioned, at room temperatures most of the thermal radi-
ation from a blackbody is in the infrared region of the spectrum. One
thing that is very clear is that if we raise the temperature, the over-
all level of emitted thermal radiation will also rise, and so the black-
body spectrum will move further up the energy scale. The other really
important feature of a blackbody spectrum is the wavelength at which
the largest amount of energy is being emitted. If we adopt our “brute
force” method of raising the temperature of a blackbody by moving it
closer to the Sun, there will be an overall increase in the number of
solar photons absorbed by the blackbody, and this includes an increased
number of higher energy photons. Remember, we said that the chance
of higher energy photons being re-emitted was very small, due to the
overall degrading of absorbed photons; however, an increased number
of higher energy photons absorbed means that there will also be a cor-
responding increase in the number of emitted photons, which them-
selves have higher energies. Our more subtle approach to raising the
blackbody’s temperature by placing it in the presence of radiation, which
contains very high-energy photons, will certainly produce more ther-
mally emitted high-energy photons. The result is that as the temperature
increases the wavelength at which maximum emission occurs will become
shorter.

This process is “seen” (probably by most of us on TV at some time)
when a piece of steel is heated; at first it simply gets hot and emits most
of its thermal radiation in the infrared. As the temperature rises, the steel
begins to glow a dull red. This shows that the peak emission wavelength
has moved into the visible part of the spectrum. With further increase
in temperature the steel glows bright orange and then white, and finally
it may acquire a hint of blue as the peak emission shifts to even shorter
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wavelengths. At this point the significance of the colors of stars becomes
very obvious.

There is in fact a very simple formula (remember, though, that this
formula only works for blackbodies) connecting the wavelength A .x of
this peak emission with the temperature:

Amax = 2.8973 x 107/T (10)

The wavelength Amax here is in angstroms, and the temperature is in
Kelvin. This formula is known as Wien’s law, or sometimes Wien’s dis-
placement law (pronounced “veen” and named after the late 19th cen-
tury/early 20th century German physicist Wilhelm Wien). Try working
out a few maximum emission wavelengths using your calculator by plug-
ging different temperatures into the formula; for example, a temperature
of 5,800 K — the surface temperature of the Sun — gives a Amay of 5,000 A
in the green region of the spectrum.

The actual shape of a blackbody spectrum is that of an asymmetrical
“hump”; the slope of the curve is steeper on the short-wavelength side
than on the long-wavelength side. As the temperature of the blackbody
rises, the spectrum moves further up the energy axis, and the peak of the
curve progressively moves to shorter wavelengths. Figure 8 shows a series
of blackbody spectra plotted for a range of temperatures.

The German physicist Max Planck was the first person to derive a the-
oretical formula for the blackbody spectrum. However, his formula is
rather complicated, and we ourselves (fortunately) don’t really need to
use it. Much more important for our purposes is the relatively simple
Stefan—Boltzmann equation and the Wien’s displacement law.
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Figure 8. These curves plot the emitted intensity of blackbody
radiation against wavelength. Notice first that as temperature
increases, so does the amount of emitted radiation across all wave-
lengths. Second, the plots show very clearly how the wavelength at
which maximum emission occurs decreases with increasing temper-
ature. Notice finally the asymmetrical shape of the curves, i.e., a
sharp rise on the short-wavelength side but a much more gradually
sloping long wavelength “tail.”
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The Parable of the Blackbody

Stars do not radiate as blackbodies; their spectra usually consist of a
continuum together with absorption lines and sometimes emission lines.
The continuum part of a star’s spectrum is, however, similar to a black-
body spectrum — at least to a first approximation. This is a very fortunate
situation for astronomers, because the properties of blackbodies are well
understood; it means, for example, that it is possible to make an estimate
of a star’s temperature without having to send a space probe there with
an attached thermometer.

On a more subtle level, the way in which a star’s spectrum actually dif-
fers from that of a blackbody can probably tell us more about the star than
anything else. We shall begin this subtle journey on the river of starlight
by asking a simple and what at first might seem like a trivial question:
Just how bright is a star? The answer will actually take up the next two
chapters, but at the end we will be able to “take a star’s temperature.”
Figure 9 shows some typical stellar spectra that clearly resemble the black-
body curves of Fig. 8.
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Figure 9. Typical spectra of stars that have a range of tem-
peratures. Notice their obvious resemblance to blackbody spec-
tra of corresponding temperatures. (Spectra reproduced from the
STELIB library of stellar spectra by kind permission of Jean-Frangois
Leborgne at the Laboratoire d’Astrophysique de Toulouse Tarbes,
Université de Toulouse.)
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e In classical (pre-20th century) physics, light was thought to consist of
electromagnetic waves.

The wavelength of an electromagnetic wave determines the color of
the light or the character (infrared, ultraviolet, etc.) of other forms of
electromagnetic radiation.

Electromagnetic radiation carries energy.

The quantum theory assumes that electromagnetic radiation comes in
the form of packets of energy called photons.

The energy carried by a photon is directly related to its classical
frequency.

All bodies with a temperature above absolute zero emit thermal
radiation.

A perfect absorber of radiation is called a blackbody, which in turn
emits the most complete spectrum of thermal radiation.

The continuum part of the spectra of stars resembles a blackbody spec-
trum to a first approximation.



Space — The Great Radiation Field

Space is not empty! Well of course these days we know that it seems
to be full of dark matter and dark energy, but these (can I say?) exotic
things aside, the space between galaxies, between stars, and even between
the particles, molecules, and atoms of the interstellar medium con-
tains an endless river of radiation — electromagnetic radiation, which in
this chapter we’ll simply call “light.” What’s more, aside from the cos-
mic microwave background, most of this radiation began in stars, and
some of it will reach our eyes, our telescopes, and other instruments. As
astronomers we can then use this precious stuff to learn much of what
we know about the stars themselves, their immediate environments, and
even what’s going on in the space between the stars. In this chapter we’ll
investigate the flow of starlight across space and see that in the end it
manifests itself to us as something that is familiar to all astronomers — the
magnitude scale, which, as we’ll see, is a truly elegant way of measuring
the energy that we receive from the stars.

K. Robinson, Starlight, Patrick Moore’s Practical Astronomy Series, 5_9/
DOI 10.1007/978-1-4419-0708-0_4, © Springer Science+Business Media, LLC 2009
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Earth is surrounded by stars, which means that a river of starlight is con-
stantly flowing past us from each and every one of those stars. Physicists
tell us that light carries energy, and this in turn tells us perhaps the single
most important thing about light itself — that it is one of the principal
agents by which energy is transported through space and across the uni-
verse. In any region of space these rivers of light taken together make up
what astronomers call a radiation field. So when you observe with your
telescope either visually or using a CCD camera to do maybe photome-
try, spectroscopy, or to produce deep sky images, you are in fact sampling
and in effect measuring some of the energy contained within the radia-
tion field in our part of space.
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Physicists are always doing “experiments” in their heads; they call these
experiments “thought experiments.” As amateur astronomers we, too,
can carry out thought experiments, but these usually need to be “done” in
space, where Earth’s atmosphere won’t complicate things. So let’s kit our-
selves out as thought experimental astronomers. Aside from the prover-
bial spacesuit, we will need some sort of detector, like maybe a very
advanced CCD camera that can receive and measure energy from the sur-
rounding radiation field. This camera has a larger than average CCD chip,
which measures 1 m by 1 m, i.e., a surface area of 1 m?. In the vicinity of
Earth the surrounding radiation field is overwhelmingly dominated by
one source — the Sun. In order to understand better what a radiation field
is all about, let’s put several light years between the Sun and ourselves,
enough distance so that the Sun looks basically just like all the other
stars that we can see. Now we have a radiation field that results from a
more even distribution of sources; namely all the stars, galaxies, nebulae,
etc., that surround us. This radiation field consists of a flow of light, that
is, a flow of energy coming from many different directions — but not all
directions.

One of the great problems of cosmology was the so called “Olbers’
paradox,” which said that if the apparent gaps between the stars were
in fact occupied by yet more distant stars, then their light, too, would
eventually reach us, and so the space all around us would appear blaz-
ingly bright. This is not the case, of course, so there must effectively be
directional gaps in the radiation field. We can see this if we point our
super CCD camera directly at a star — say a distant sun; the detector can
register and measure the amount of energy it receives. Now if we point the
camera slightly away from that sun, the reading will fall off. This pattern
will repeat itself as we move our camera from star to gap between stars,
to star, etc. So clearly the radiation field is not the same in all directions.

If, on the other hand, we carried out this experiment from the center
of a globular star cluster such as Omega Centauri or M 13, then we would
find it harder to detect those dips in the levels of the radiation field,
because the apparent gaps between the stars would be smaller. Here the
radiation field would be much more uniform in all directions. A radiation
field that is totally uniform in all directions is said to be isotropic. This is
a hypothetical idealized radiation field; in reality, all radiation fields in
space are non-isotropic, or anisotropic — even the microwave background
is anisotropic.
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The size of our detector’s chip means that when we place it in a radi-
ation field consisting, for example, of the light from several distant stars,
the detector measures the total amount of energy that crosses an area of
1 m?. This energy, though, is something that is flowing constantly; every
second, our detector receives a quantity of energy that we can measure.
As mentioned previously, we measure energy in “joules,” named after
the English physicist James Prescott Joule. How many joules our detec-
tor receives in 1 s is measured in another unit; the “watt,” named this
time after the Scottish engineer James Watt. The watt is the basic unit of
power; so power is the rate at which energy is either used or, in our case,
received by the detector. So when we use our detector to measure the sur-
rounding radiation field, we are in fact measuring the power which we
receive from distant stars. Astronomers actually use a different word for
this power in the radiation field; they call it the flux or sometimes the radi-
ant or radiative flux, and this comes in units of so many watts per square
meter.

The radiation field contains energy that is constantly flowing. If we
imagine a transparent box with a volume of 1 m?, at any given instant of
time our box will contain a certain amount of energy. In the next instant
this will be replaced by fresh energy from the flow in the radiation field.
If, while we’re doing our thought experiments, nothing unusual happens
(no supernovae, for example, and let’s for the moment forget about all
those variable stars out there), then we can reasonably expect our one
cubic meter box to contain the same amount of energy from one moment
to the next.

If we now move our box around to different locations in our region of
space and we find that wherever we go the box always contains the same
amount of energy at any given time, then we can come to the grandiose
conclusion that the radiation field in our region of space is homogeneous.
The notion of a homogeneous radiation field is again an idealization, just
like the idea of an isotropic radiation field. In reality, of course, there
are those variable stars out there, and from time to time a nova or even
a supernova would outburst. These things constantly change the energy
density of the radiation field and also modify its isotropy (or strictly its
anisotropy). These constant changes — large or small — rapid or leisurely
in the radiation field surrounding Earth are what make life so interesting
for the astronomer.

Now we aim our detector directly at the distant sun and measure the
flux, i.e., the number of watts per square meter that we receive from it.
Notice we’ve used the word “directly” here; this means that the incom-
ing radiation from the sun arrives at the detector in a direction that is at
right angles to the plane of the detector. Another way to phrase this (used
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extensively in the literature) is to say that the flow of radiation is normal
to the plane of the detector. Of course, radiation from many other stars,
etc., would also be falling on the detector — after all, when you observe
with a telescope either visually or with a camera, you would generally
expect to see more than just one single star in the center of your field of
view. Because our detector isn’t pointing directly at these other sources,
the flow of radiation from them is not normal to the plane of the detec-
tor. The detector in fact presents a cross-sectional area of less than 1 m?
in these other directions, and the further we move away from the line that
is normal to the plane of the detector, the smaller the cross-sectional area
will become, as shown in Fig. 1. This results in the detector receiving less
flux from these peripheral sources.

|//

to the direction

Figure 1. The plane of detector “A” is “norma
of the light from the star and so it receives the maximum possible
flux, whereas detector “B” presents a smaller cross-sectional area
to the direction of the incoming starlight and so measures a lower
flux reading.
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Nonetheless we add up the contributions from all sources to give us
the total flux received by our 1-square meter detector. Now we turn the
detector about face and do the same kind of observation to determine the
total number of watts per square meter coming from the opposite range
of directions. We now have two numbers, measured in watts per square
meter; so now we subtract the smaller number from the larger one to give
the net rate of flow of energy across one square meter of the radiation field,
as shown in Fig. 2. This is called the total radiative flux, or just simply the
total net flux through this point in the radiation field, and as you’d expect
it’s measured in watts per square meter.

Finally, if we confine our attention to one single object, such as a dis-
tant star, then clearly the flux from this one source involves radiation that
is effectively confined to one direction. (In reality, it is confined to a very
narrow range of directions spanned by the diameter of our detector.)

Figure 2. Flux reading “A” minus flux reading “B” gives the total
net flux (per square meter) through a given point in the radiation
field. For a radiation field homogeneous and isotropic, the two
readings “A” and “B” are equal, and the total net flux through
any point is zero.
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In the idealized radiation field, which is homogeneous and isotropic,
the net flux through any region of space would be zero, and what’s
more, this situation would never change. This would make for a very
dull universe; fortunately, though, as we’ve said, real radiation fields are
anisotropic, and the net flux through most any region of space is not zero.
The light from any individual star, for example, would flow in one direc-
tion through a 1 m? area placed in its path. Close to the photosphere of
the star, the anisotropy of its radiation field would be greater still, and
even down inside the star there is a net outward flow of radiation. In fact,
it’s probably not too great a simplification to say that all of astronomy
comes down to knowing how many watts per square meter flow past a
particular point in space.
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Sunlight Is Intense - But Starlight

Okay, we’ve learned that the radiation field is made up of a constant flow
of energy coming in many directions from distant stars’ galaxies and neb-
ulae. Let’s return now to the neighborhood of Earth and examine the
radiation field in our part of space. Of course the radiation field here
is overwhelmingly dominated by the flow of energy from the Sun; our
CCD detector will receive a much greater level of flux from this source
than from the distant stars. There is, however, something else about the
Sun that is different from the other stars. The Sun appears as a disk rather
than as a point of light. This is a very obvious observation, but it intro-
duces to us a subtle and important feature of the radiation field.

Because the Sun has an apparent angular size as seen from Earth (about
half a degree), we are able to observe that some parts of the visible solar
disk, or the photosphere, appear darker than others. Sunspots are dis-
tinctly darker, and the region around the edge or limb appears distinctly
dimmer than the central regions. All of this leads us to conclude that the
flux that emerges is different for these different regions.

If we take a very small area of the photosphere, though — 1 m? is itself
very tiny compared to the size of the Sun — then we can be fairly safe in
assuming that the emergent radiation is uniform across this tiny region.
This radiation will spread outward in all directions — indeed, some of
it will head back down into the deeper layers of the Sun. However, we
cannot assume that the amount of radiation that is heading outward will
be the same in all directions. So, in addition to starting with a tiny surface
area, we also need to take a tiny range of directions so that we can be sure
that the amount of radiation is uniform across this range of directions.
The range of directions that we are most interested in, of course, is that
which includes “our direction.”

A “range of directions” heading outward from a tiny surface area will
actually form a cone-shaped region (actually, a slightly truncated cone),
with the surface area itself forming the “point” of the cone, as shown in
Fig. 3. Now imagine this cone extending outward from the Sun’s pho-
tosphere to very large distances; what we can be sure of is that the total
quantity of radiation that is confined within the cone and which passes
some point in it in 1 s is the same no matter how far away we are from the
photosphere itself. Finally, a narrower cone means less radiation passing
through per second than a slightly fatter cone. What defines the narrow-
ness of the cone — in other words, the range of directions — is the cone’s
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Figure 3. The radiation emitted from a small unit surface area
of the Sun’s photosphere and which is confined to a tiny range of
directions forms a cone shaped region.

so-called opening angle. This is formed by revolving an isosceles trian-
gle about the angle at its apex, and it results in what mathematicians call
a solid angle (in case you're interested, it’s measured in what are called
steradians and not degrees).

If we divide the quantity of radiation by the opening angle of the cone
itself we have the amount of radiation passing per second per unit solid
angle or, in effect, per “unit range of directions.” This is called the inten-
sity or sometimes the specific intensity of the radiation field. It is mea-
sured in watts per square meter per unit solid angle, and as we have seen
it does not change with distance. What does change with distance, of
course, is the cone’s cross-sectional area, which increases, and this means
that the quantity of radiation passing through a unit cross-sectional area
decreases. This is our old friend the flux. If we can catch and measure all
of the radiation confined to this range of directions then we are measur-
ing the intensity; otherwise, we are measuring the flux, as shown in Fig. 4.
This is the case with virtually all distant stars.



68 Starlight

e

Detector

anydsoyoy g

«— Several light years———

Figure 4. If all the radiation confined within a “unit range of
directions” can be collected then it is possible to measure the inten-
sity. With increasing distance the cross-sectional area of the cone
shaped region increases until it is only possible to measure the flux.
This is the case with most stars.
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How Many Light Bulbs Must You

The power rating of a domestic light bulb is given in watts — maybe 100 W.
If we screw the light bulb into the socket in a modest apartment room and
switch it on, the light spreads out in all directions (ignoring the obstruc-
tion caused by the bit that screws in). The room now contains a radia-
tion field just like space; the light will reflect off the walls and furniture,
enabling us to see things. If we now screw in our 100-W light bulb at the
center of an aircraft hanger, we will see immediately that by the time the
light reaches the much more distant walls, the radiation field has become
very weak indeed, resulting in us being able to see very little. Clearly there
is a lesson to be learned here about starlight, if we think of stars as huge
light bulbs — and that’s just what astronomers do!

A star such as the Sun gives out energy that spreads outward in all
directions into the surrounding space. The rate at which the star is pump-
ing out energy gives the power rating of the star; it’s measured in watts,
just like a light bulb, and it’s called the star’s luminosity. The luminosity
of the Sun is a staggering 3.827 x 10%® W, or nearly 400 trillion trillion
watts. So we’d need to screw in about 4 trillion trillion light bulbs to make
a “star” like the Sun. In the literature, luminosity is invariably represented
by a capital “L,” and this in itself would be given in watts. However, more
often than not, the luminosity of a star is given as so many times the
luminosity of the Sun, which is itself denoted by “Ls” (“©” being the
standard astronomical symbol for the Sun, of course). So, for example,
the luminosity of a star that is 10 times that of the Sun is denoted by
10L; one with 0.6 of the Sun’s luminosity is denoted 0.6L, and so on.

The ideal way to take advantage of and make use of this enormous
amount of power flowing from a star would be to construct a sphere that
totally enclosed the star and then live on the inside surface of the sphere,
as shown in Fig. 5. This idea was conceived by the English astronomer
Freeman Dyson, and such a sphere is, not surprisingly, called a “Dyson
sphere.” The idea was used to great effect in an episode of “Star Trek —
The Next Generation,” back in the early 1990s. Here the Dyson sphere
gives us a way to carry out another thought experiment, to explore what
happens to a star’s energy as it spreads out into space.

However big we make our Dyson sphere (whatever its diameter), one
thing’s for sure — the inside surface of the sphere will capture the entire
energy output of the star, which itself is simply a measure of the star’s
luminosity. This energy will be spread around the inner surface of the
sphere, and the distribution of the energy will be completely uniform
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Figure 5. A Dyson sphere could capture the entire luminous out-
put of a star. The flux received over every square meter of the
sphere’s inner surface would be the same, and this would be equal
to the star’s luminosity divided by the sphere’s surface area.

(provided the star doesn’t undergo any kind of eruption, such as a coro-
nal mass ejection, which might send an extra boost of energy in some
preferred direction). The amount of energy received each second by each
square meter of the Dyson sphere’s surface (i.e., the flux) will then be
equal to the star’s luminosity, divided by the sphere’s surface area.

If we now dismantle this Dyson sphere and construct a bigger one, we
still capture all of the energy from the star, but this time the energy is
spread out over a bigger surface area. So the flux received by each square
meter will now be smaller. The surface of this new bigger Dyson sphere
is further away from the star than the previous one, so clearly the flux
we measure depends not just on the star’s luminosity but also on how far
away from the star we are.

The surface area of our Dyson sphere or any sphere of radius “r” for
that matter is equal to 47 x r? (“z” is, of course, the important number
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from high school geometry and is equal to 3.142 to three decimal places),
and if we denote the luminosity of our star by “L,” then the flux “f” at the
surface of the sphere is simply equal to

f= L

47 x r?

(1)

If we double the sphere’s radius, the surface area multiplies by
four (2x 2); if we triple the radius, it multiplies by 9 (3 x 3), and so
on. So doubling the radius of the sphere would reduce the flux from the
star to one quarter, and tripling it would reduce the flux to one ninth of
its original value. The flux, in fact, follows an inverse square law similar
to that for gravity, but here it’s due to the way the surface area of a sphere
increases as we increase the radius.

Now let’s take away the Dyson sphere (it’s still just science fiction at this
stage anyway). We’re out in free space again, as is represented in Fig. 6,
but the same rules still apply; the flux that we receive from a star depends
directly on its luminosity and inversely on its distance squared.

Flux99 4 /|

| T

Figure 6. The flux received from a star decreases as we move
further away from the star, and its value is directly proportional to
the reciproca| of the star’s distance squored.
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Let’s try to get a “feel” for how many watts per square meter, i.e., the
flux that we might expect to get from a star. The best place to start is of
course with the Sun, which as we know is pumping out energy at a rate
of 3.827 x 10*® W. Here on Earth our average distance from the Sun is
about 1.5 x 10! m s (1 A.U.), and so a sphere of radius equal to this dis-
tance would have a surface area of 47 x (1.5 x 10'")? m? s. This equals
approximately 2.8 x 10?2 m?. So to get the flux we need to divide the
Sun’s luminosity by this area, and this gives us about 1.4 x 10> W or
1.4 kW/m?. This value resulting from a slightly approximated calculation
is itself approximately equal to a very important number — the solar con-
stant. This is equal to the amount of flux passing normally (i.e., at an angle
of 90°) through 1 m? at the top of Earth’s atmosphere, and its officially
accepted value is 1.366 kW/m?.

Now let’s “move” the Sun to a distance of 32.6 light years or 10 par-
secs (pc); this amounts to a distance of about 3.1 x 107 ms. A sphere
of radius equal to this distance would have a surface area of 1.2 x 10°°
m?, and once again dividing the Sun’s luminosity by this figure results
in a flux of about 3 x 107'® W/m?. This very small figure gives us some
idea of how much energy we might expect to receive from a modest star,
which is situated at a modest distance from Earth. A star of greater lumi-
nosity at this distance will produce a greater flux value on Earth and will
appear brighter both to our eyes and our instruments. In other words,
the apparent brightness of a star depends on the amount of flux we receive
from it, and this, in turn, depends on both the star’s luminosity and its
distance.

The word “brightness,” though very intuitive and much used when
discussing stars (as we shall indeed do here, where we regard “brightness”
as amounting to the same thing as “flux value”) is nonetheless somewhat
vague. Flux, on the other hand, is a precisely defined quantity; it is the
amount of energy that flows every second normally through a 1 m? area.
So when discussing the apparent brightness of stars, we should in fact be
quoting flux values.

However, when was the last time you heard a friend at your local
astronomy club quote flux values in watts per square meter when, for
example, talking about a newly discovered nova? Of course, when dis-
cussing the brightness of anything in the sky, he or she would use the
word magnitude. The magnitude scale is something that all astronomers
soon become familiar with; it consists of a sequence of simple numbers
that are used to represent the brightness of objects in the sky. This makes
it easy to remember the magnitudes of objects such as the planets, well-
known stars, and deep sky objects; and it certainly beats having to deal
with flux values. Even so, the magnitude of any object must be related in
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some way to the amount of flux that we receive from it. What is really
amazing is that the magnitude scale enables the brightness of everything
in the sky from the Sun to the faintest, farthest galaxy to be covered by
a very small range of numbers. This feature alone makes it worthwhile
getting to know the magnitude system in more detail.
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From Flux to Flux Ratio

Professional astronomers will sometimes go to a lot of trouble to deter-
mine the actual amount of the total radiative flux, which we receive from
a star. For reasons that we’ll elaborate on in the next chapter, it is very
difficult to do this, though it has been done for some stars; however, it
turns out to be very much easier to compare the flux value of one star
with that of another. This process is the basis of astronomical photometry,
and it does not involve knowing the actual flux values themselves.

This might at first seem to make no sense; however, if you think about
it, a visual variable star observer does his or her job by comparing the
apparent brightness (in effect, comparing the flux values) of a variable
star with that of one or more comparison stars. There is no knowledge of
any actual flux values involved. To be sure these comparison stars have
predetermined magnitudes, which enable the variable star observer to
arrive at an estimate of the variable’s magnitude, but it actually isn’t even
necessary to know the comparison stars’ actual magnitudes in advance
in order to be able to carry out the observation. Indeed, on variable star
charts produced by the Variable Star Section of the British Astronomical
Association, comparison stars are identified simply by letters to avoid any
possibility of personal bias in making the observations.

So determining actual flux values of stars is hard, but comparing them
with each other is relatively easy, and by “comparing flux values,” we
actually mean determining flux ratios. We are, in effect, saying that star
“A” appears three times as bright as star “B” or that star “C” appears half
as bright as star “D,” and so on. It might at first seem possible that by
choosing a particular star to serve as some sort of “standard star,” one
could define the “brightness” of any other star simply by the ratio of its
flux value to that of the standard. However, the range of brightness for
stars is enormous; the brightest stars appear many thousands of times
brighter than the faintest ones, so while flux ratios are relatively easy to
measure, because they span a very large range of values they are not prac-
tical for direct use as a measure of the brightness of a star. What we need,
in fact, is a way to turn this large range of numbers into a small range of
numbers.

The key to doing this lies in the well known party trivia question
which says that if you take a standard chess or checkers board with 64
squares and place one coin on the first square, two coins on the second
square, four on the third, and so on, how many coins would there be
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on the 64th square? The astounding answer turns out to be over 9 mil-
lion trillion! Think about what we’ve done here, though; the numbers
1-64 cover a very modest range, yet the range of numbers covered by the
quantity of coins on the squares is truly enormous. What’s more, sim-
ply by knowing how far apart two squares are and knowing the rule that
in this case we double the number of coins for each square moved up
the board or halve the number for each square moved down, we can eas-
ily calculate the ratio of the number of coins on the two squares. Notice
that we don’t need to know how many coins there are on a given square.
In this party piece example, think of the numbered squares of the chess
board as representing “magnitudes” — a modest range of numbers. Think
of the number of coins on a square as representing actual flux values —
these numbers cover an enormous range. Finally, think of the “double
the number of coins” rule as representing the flux ratios between stars of
different magnitudes. This is basically how the stellar magnitude system
itself works, but to get to its present form, it had to deal with its own
history.

The ancient Greek astronomer Hipparchus classified the naked eye
stars according to their brightness; the brightest stars were called stars
of the first magnitude — this, in fact, amounted to about 20 or so stars.
The next brightest group were called second magnitude stars, and so on,
until the faintest stars visible to the naked eye were called stars of the sixth
magnitude.

Hipparchus’ idea to divide the naked-eye stars into six groups might be
an interesting subject for historical discussion. Not long ago there was a
talk at a local astronomy club, about the Greek writer Homer. The speaker
said that according to Homer, Greek society at the time was divided into
six social classes, which may have influenced Hipparchus to divide stel-
lar brightness into six classes or magnitudes rather than, say, five or ten.
Anyway, this could be a good research exercise for those keen histori-
ans among you. The fact is that Hipparchus’ scheme stayed with us right
through to the 19th century, by which time not only had vast numbers of
telescopic (i.e., fainter than sixth magnitude) stars been discovered, but
observational methods, both visual and instrumental, for comparing the
brightness (in effect, determining flux ratios) of stars had been developed.
It was time to bring the magnitude system into the modern age.

The English astronomer Norman Robert Pogson did this in the 1850s;
he did it in a way which basically kept Hipparchus’ division of naked-eye
stars into six magnitude groups, and it also kept the tradition that a larger
magnitude value corresponded to a fainter star.

The first thing to be clear about is that all of the stars that Hipparchus
would have classed as being of sixth magnitude are not all of exactly
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the same brightness, but fall within a range of brightness that is itself
embraced by Hipparchus’ sixth magnitude group. Likewise, the first mag-
nitude stars cover a range of brightnesses, but they still fall within the
first magnitude group. By systematically comparing the brightness of
stars, Pogson discovered that a first magnitude star was approximately
100 times brighter than a sixth magnitude star. He then went on to
refine Hipparchus’ magnitude groupings of stars into an actual number
scale, the magnitude scale, by stating that a star defined to be of mag-
nitude “1.0” is exactly 100 times brighter than a star defined to be of
magnitude “6.0.”

Here, then, is our first flux ratio: we receive 100 times as much flux
from a star of magnitude (mag. for short) 1.0 than we do from a star
of mag. 6.0. A further consequence of having a magnitude scale rather
than a set of magnitude groups is that we can be much more accurate
when specifying a star’s brightness in terms of its magnitude; for example,
rather than a “second magnitude star” we may have a star of mag. 2.34.
What we need to do now is fit Hipparchus’ second, third, fourth, and fifth
magnitude groups into Pogson’s magnitude scale, which, in keeping with
the Hipparchus tradition, runs backward from brighter stars to fainter
stars as the numbers on the scale increase.

What Pogson showed was that a difference of two numbers on the mag-
nitude scale corresponds to a ratio of brightness or flux, and a magnitude
difference of exactly 5.0 means a flux ratio of exactly 100. What about
the flux ratio corresponding to a magnitude difference of 1.0? The first
thing to say is that this flux ratio must be the same wherever we are on the
magnitude scale; so a mag. 1.0 star and a mag. 2.0 star have the same flux
ratio as, say, a mag. 4.0 star and a mag. 5.0 star, and so on; because we’re
looking for just the one number we shall call “x.”

Let’s imagine six stars that conveniently have magnitudes of 1.0, 2.0,
etc., through 6.0, and list them in order of decreasing brightness together
with the flux ratio “x” between each star and its next brighter and fainter
neighbor:

Mag. Flux ratio
1.0
2.0
3.0
4.0
5.0
6.0

R R KRR XK

What we see here is that it takes x stars of mag. 2.0 to produce as much
flux as one star of mag. 1.0. In turn, it takes x stars of mag. 3.0 to produce
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as much flux as each of those mag. 2.0 stars. So it will take x x x, or
x? stars, of mag. 3.0 to match one star of mag. 1.0. And a magnitude
difference of 2.0 corresponds to a flux ratio of x*> whatever “x” is, and by
following the same line of reasoning a magnitude difference of 5.0 means
a flux ratio of x°.

However, we know that this flux ratio is exactly 100 so X equals 100;

«w . »

x” then is equal to the fifth root of 100, i.e., that number which, when
multiplied by itself five times, equals 100. The quick way to find “x” is
to reach for your calculator and enter the number “100”; then press the
“®” (or “y*”) key followed by the number 0.2. On pressing the “=" key
you will see that “x” is a recurring decimal that, to three decimal places,
equals 2.512. This number lies at the very heart of the magnitude system,
and you should try not to forget it, because the number 2.512 raised to
any power, which is itself a magnitude difference, results in the flux ratio
corresponding to that magnitude difference.

With the magic number 2.512 (or, if you want greater accuracy, use the
number your calculator actually gives for the fifth root of 100), we can
easily work out flux ratios for any magnitude difference. Just enter the
number 2.512 followed by the “x” key followed by the magnitude differ-
ence and finally followed by the “=" key to get the answer. For example,
a magnitude difference of 3.0 means a flux ratio of 2.5123C, which equals
15.85. You can even work out flux ratios for magnitude differences that
are not whole numbers; for example, a magnitude difference of 2.83 gives
us a flux ratio of 2.5122%%, which equals 13.55. This is just the kind of
activity to take your mind off things, while sitting in the dentist’s waiting
room. It can also be useful for working out the brightness ratio of a vari-
able star between its maximum and minimum magnitudes. For example,
the long period variable star Chi or x Cygni varies in magnitude from
around 5 to around 15, a difference of 10 magnitudes. The flux ratio
between the star’s maximum and minimum is equal to 2.512!%, or about
10,000. So this is how a large flux ratio can come from a fairly modest
magnitude difference.

Suppose, though, that you have actually measured the flux ratio
between two stars; this is basically what CCD photometry software does.
How do you then work out the corresponding magnitude difference? If
one of the stars is a comparison star whose magnitude is known and the
other a variable star, then this would enable you to calculate the mag-
nitude of the variable. Sorting out this problem will also explain why the
magnitude scale is often (sometimes perhaps rather too casually) referred
to as a logarithmic scale.
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What we have so far is that for any two stars whose magnitudes we’ll
call “m1” and “m2” the value of 2.512"27! equals the flux ratio for the
two stars. The inverse of the problem is, given a flux ratio, what is the
corresponding magnitude difference? For our two stars we’ll let “m1” be
the brighter star so that “m2 — m1” is a positive number. The flux ratio,
we can call “f1/f2”; we don’t know the actual values of “f1” and “f2,” but
we are assigning “f1” to the brighter of the two stars so that “f1/£2” will
be a number greater than one. The basic magnitude formula now tells us
that

2.512M M = f1/f2 (2)

So, if we’re given “f1/f2,” how do we find “m2 — m1?” The simplest way is
to take the logarithm of both sides of this equation. But before we do that,
try the following simple example on your calculator. Enter the number 5
and then press the “LOG” key to get the logarithm of 5. Now multiply this
number by 2; this should give you a number such as 1.39794, which you
should then make a note of or store in your calculator’s memory. After
pressing the clear button, enter the number 25, which of course equals
52; again, press the “LOG” key and lo and behold you will see that this is
the same number that you got before. So what we have shown is that 2 x
Log(5) is the same a Log(52); this is a general mathematical rule, so we
can also say that Log(2.512m2"”1) is the same as (m2-m1) x Log(2.512).
This means that if we take the logarithm of both sides of Equation (2) we
have

(m2 —ml) x log2.512 =log (f1/f2) (3)

The Log of 2.512 (or more precisely the fifth root of 100) is equal
to 0.4, so

0.4 x (m2 —ml) = log(f1/f2) (4)
and the proverbial slight rearrangement gives
m2 —ml = 2.5 x log (f1/f2) (5)

In other words, the magnitude difference between two stars is directly
related to the logarithm of the ratio of the flux values; this is why the
magnitude scale is termed a “logarithmic scale.” Finally, if “m1” is a
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comparison star whose magnitude is known and “m2” is a variable whose
magnitude we need to know, then we have

m2 = ml + 2.5 x log (f1/f2) (6)

One point regarding Pogson’s excellent magnitude scale remains to be
cleared up. We said above that Pogson defined a star of mag. 1.0 as being
exactly 100 times as bright as a star of mag. 6.0. Among all the first mag-
nitude stars, which one if any should we choose to be of exactly mag.
1.0? Or maybe we should pick a star to have by definition a magnitude of
exactly 0.0; either way we need to “fix” the magnitude scale so that it has
a “zero point.”
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There is an interesting and yet very important feature of the magnitude
scale whose significance will become clearer in the next chapter. Because
the magnitude scale is really all to do with flux ratios, which themselves
are related to differences on the scale rather than actual flux values, it
doesn’t in principle matter where, within the vast population of stars,
you actually put the zero point. For example, a seemingly logical choice
might be to define the brightest star in the night sky, Sirius, as having a
magnitude of exactly 0.0. This would simply mean that Sirius was 2.512
times brighter than a star defined to be of mag. 1.0 and 100 times brighter
than a star defined to be of mag. 5.0 on this particular version of the
magnitude scale.

The effect of choosing Sirius as the zero point would, however, make
the fainter stars of Hipparchus’ first magnitude group end up as sec-
ond magnitude stars and so on, until the very faintest naked-eye stars
would now come in at around mag. 7. Pogson himself in the interest of
maintaining the Hipparchus tradition chose Polaris, a star classed by Hip-
parchus as being of the second magnitude to be of exactly mag. 2.0, until
it was discovered that Polaris is slightly variable. The result was that Vega
became the officially adopted zero point of the magnitude scale and was
defined to have a magnitude of exactly 0.0 (for our present purpose this
is fine, but as we shall see in the next chapter, defining a zero point for a
magnitude scale is actually a bit more involved).

So Vega is now defined to be 2.512 times as bright as a mag. 1.0 star,
and it also means that a star of mag. —1.0 is 2.512 times as bright as
Vega; on this scale, Sirius now has a magnitude of —1.47. The Sun and
the Moon, the brighter planets, and the very brightest stars have negative
magnitudes on this scale, and in keeping with Hipparchus, the faintest
naked-eye stars come in at around mag. 6.0. With a fixed zero point, it’s
then possible to establish a set or several sets of “secondary standard stars”
that cover a whole range of magnitudes and which can be used to deter-
mine magnitudes for still more stars. The most well-known set of such
standard stars is the North Polar Sequence, a set of about 100 stars that
are distributed around the north celestial pole.

The final thing to say here is that the magnitude scale is of course
based on how bright stars appear in the sky, either to the naked eye or
as seen visually through a telescope; it is thus more correctly referred
to as the visual magnitude scale. The magnitude of a star or any other
object on this scale is also referred to as the object’s apparent magni-
tude and such magnitudes are always denoted with a lower case “m.” The
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apparent magnitude of a star depends on the amount of radiative flux
that we receive from it, and this in turn depends on both its luminos-
ity and its distance. By contrast a “magnitude” that did not depend on
distance would depend only on a star’s actual luminosity.
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Absolute Magnitude - A Measure

If all stars could be lined up at the same distance from Earth, then
their apparent magnitudes would depend only on their luminosities. In
1922 the International Astronomical Union decreed that such a distance
should be 10 pc, or 32.6 light years, and the apparent magnitude a star
would have if it were this distance from Earth is called the absolute mag-
nitude, which is always denoted by a capital “M.” The absolute magnitude
scale works in exactly the same way as the apparent magnitude scale. As
with the apparent magnitude scale, a magnitude difference of 1.0 on the
absolute magnitude scale also corresponds to a brightness or flux ratio
of 2.512.

In our thought experiment with the Dyson sphere, we saw that the
flux received by each square meter of the inner surface of the sphere was
simply equal to the star’s luminosity “L” divided by the surface area of
the sphere, or L/47 1%, “r” being the radius of the sphere. If the distance
from the star to Earth is “d,” then clearly the flux that we receive is equal
to L/4m d?; we shall call this flux “f” and assume that “d” is measured in
parsecs. If this star were now “moved” to a distance of 10 pc then the flux
we receive would be L/(47r x 10%) or L/(47 x 100); we shall call this flux
“F.” So the ratio of these two flux values is given by

L
=—7 ==
f 47 x d? 100

From the basic magnitude formula (Equation 5), the number 2.5 multi-
plied by the logarithm of this ratio is equal to m — M, i.e., the difference
between the apparent and absolute magnitudes for the star.

Now here’s another little example to try on your calculator. Enter the
number “2” and press the “LOG” key to give log 2 and store the number
or make a note of it. Now determine log 5 in the same way and subtract
log 2 from it; you should get something like 0.39794. Finally, determine
log 2.5 —log 5/2 — and you will get the same answer; so log 5/2 is the same
aslog 5 —log 2, and again this is a general rule. So now we can say that log
d?/100 is equal to log d* — log 100; log 100 equals 2, and remember from
our previous calculator example that log d° is equal to 2 x log d. So

m—M=25x (2logd — 2) (8)
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and
m— M =5logd — 5 (9)

This simple but very important formula is called the distance modulus for-
mula and the difference between the apparent and absolute magnitudes
of a star is called the star’s distance modulus; remember that the distance
to the star “d” must be in parsecs.

Distance moduli for stars divide very simply into two groups. A star
whose distance is more than 10 pc will have an apparent magnitude
fainter than its absolute magnitude, and so m — M will be a positive num-
ber. By contrast, the apparent magnitude of a star closer than 10 pc will
be brighter than its absolute magnitude, and m — M will be negative; a
star at a distance of exactly 10 pc will, of course, have a distance modulus
of zero. Finally, here are a few simple distance modulus examples.

First take Sirius, the brightest night time star with an apparent magni-
tude of m = —1.47. Sirius’ distance of 8.7 light years converts to 2.67 pc.
So plugging these numbers into Equation (9) gives us

— 147 — M = 5log2.67 — 5
Rearranging gives us Sirius’ absolute magnitude as
M= —147 —10g2.67 + 5

This gives Sirius an absolute magnitude of +1.4; so at 10 pc it would be
just about classed as a first magnitude star.

Rigel (p Orionis) has an apparent magnitude of 0.08 and an estimated
absolute magnitude of —7.0, so its distance modulus is equal to 0.08 —
(=7.0), which is 7.8. So using the distance modulus formula, Equation
(9), 7.8 = 5 log d — 5; and so, log d = 12.8/5 = 2.56 where d is Rigel’s
distance in parsecs. The antilog of 2.56 (on your calculator; enter 2.56
then press the “INV” button followed by the “LOG” button) gives Rigel’s
distance “d” as about 363 pc, which when multiplied by 3.26 gives an
approximate distance to Rigel of 1,200 light years.

Finally the Sun has an apparent magnitude of —26.74 to two places of
decimals, and its distance is 1 AU; 1 AU is equal to 4.8544 x 10°° pc. So
Equation (9) gives us

—26.74 — M = 5log (4.8544 x 107°) — 5
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and so the Sun’s absolute magnitude is equal to
M = —26.74 — 5log (4.8544 x 107%) +5

Remember, to enter a number such as 4.8544 x 107° first enter 4.8544
and then press the key marked “EXP.” Now press the key marked “+/-”
followed by the number 6. On pressing the log key you should get —5.314
to three decimal places. Multiply this by 5 to get —26.57, and we now have

M= -26.74 —(—26.57)+5

which equals +4.83.

So at a distance of 10 pc, our Sun would be a dim star of mag. 4.83.

The important thing about doing calculations like this is to take your
time and be careful to get the combination of plus and minus signs right.
The other thing is to use your common sense; if a star is further away
than 10 pc then its absolute magnitude must be brighter than its apparent
magnitude, and conversely if it’s closer than 10 pc, its absolute magnitude
will be fainter than its apparent magnitude.

The magnitude system is a brilliantly succinct and simple way to repre-
sent brightness or flux ratios between stars; however, since Pogson’s time,
things have moved on yet again, and as we shall see in the next chapter,
the magnitude system itself has evolved into an even more refined tool
for investigating starlight.
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e The overall flow of radiation through a region of space is called a radi-
ation field.

e The net rate of flow of energy through 1 m? in the radiation field is
called the flux, which is measured in watts per square meter.

e If the flux is the same in all directions, then the radiation field is said
to be isotropic.

o If the total radiant energy per unit volume is the same everywhere at
all times, the radiation field is said to be homogeneous.

e In practice, radiation fields are non-homogeneous and anisotropic.

e The intensity of a radiation field is the rate of flow of energy through
1 m?, which is confined to a very narrow range of directions.

e Intensity does not change with distance from the source of the
radiation whereas flux does.

e The total power output of a star, measured in watts, is called its
luminosity.

e The apparent brightness of a star as seen from Earth is determined by
how much flux we receive from it.

e The apparent magnitude of a star is a measure of how much flux we
receive from it.

e The absolute magnitude of a star is the apparent magnitude it would
have; that is, it is a measure of how much flux we would receive if the
star were at a distance of 10 pc.

e The distance modulus of a star is equal to the difference between its
apparent magnitude “m” and its absolute magnitude “M.”



A Multitude of Magnitudes
for the Colors of Starlight

There can be no doubt that one of the most significant ongoing contribu-
tions that amateur astronomers make to the science of astronomy is the
regular observation of variable stars. Most amateur observers make visual
observations that basically involve “bracketing” the variable between a
slightly brighter and a slightly fainter comparison star in order to arrive
at an estimate of the variable’s magnitude. A very large number of the
stars observed by amateurs are Mira-type long-period variables and semi-
regular or irregular pulsating stars. Most of these stars are red, and one of
the first things that a visual observer learns is to make their estimates
using short glimpses, rather than long “stares,” because of the way in
which the human eye responds to red light. Red stars appear to grow
brighter the longer one stares at them — a phenomenon called the “Purk-
inje effect.” Even so, it has been said that trying to estimate the magnitude
of a red star by having to compare it with white comparison stars (as is
often the case) is like trying to compare the strength of one cup of tea
with the temperature of another.

For the increasing number of variable star observers who use a
CCD camera to make instrumental magnitude estimates, the situation
becomes even more acute. Surely it has been called into question as to
whether one should always use special photometric filters when mak-
ing observations. After all, if you're trying to get an early image of an
outbursting nova that is still very faint, you don’t want to cut down your
camera’s sensitivity by sticking a filter in front of it. On the other hand,
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it’s expected that novae are likely to change color during the course of
their outburst; the result is that unfiltered observations become of lim-
ited value, and more generally you’ll find that CCD variable star observers
are strongly recommended to use special color filters when making their
observations. All of this is telling us that this magnitude business needs
even further investigation, and that’s what we’ll do here. This will in fact
tell us a great deal about stars themselves and not just whether or which
color filter to use.
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As we saw in chapter From Light to Starlight stellar spectra resemble those
of blackbodies. This means, of course, that like blackbodies, hotter stars
will emit more radiation at shorter wavelengths and will thus appear
bluish, whereas cooler stars will emit most of their radiation at longer
wavelengths and will appear red. There are differences between the spec-
tra of stars and blackbodies, but the overall shape of the continuum part
of a star’s spectrum is that of a curve, which rises relatively steeply on the
short-wavelength side to a maximum value and then falls more slowly on
the long-wavelength side. The differences are there, first because of the
presence of absorption lines and maybe also emission lines in the spectra
of stars. There are also differences within the continuum itself, which are
essentially due to “things” going on in the outer layers of stars and maybe
also in their immediate environment.

As you might expect, working out the true cause of these extra features
present in stellar spectra is one of the most important and most fascinat-
ing areas of stellar astronomy (it can also prove to be very complicated).
As always, though, it’s best to start by doing things in a simple way, and
with stars this means assuming that they radiate just like perfect black-
bodies. We can call such approximated stars “blackbody stars.”

In chapter From Light to Starlight we also saw that the amount of
energy emitted every second (in other words the total flux “F”) from each
square meter of the surface of any blackbody, and that includes the surface
of our “blackbody star,” is given very simply by the Stefan—Boltzmann
equation, i.e.,

F=5.670 x 1078 x T*W/m? (1)
T is the temperature in degrees Kelvin, and the number 5.670 x 1078 is
known as Stefan’s constant; so if we could measure the total flux from a
square meter of a star’s surface, then we could determine its temperature.
Another, perhaps even simpler way to “take a star’s temperature” is to

note from the star’s spectrum the wavelength A,y at which maximum
flux is being emitted. We can then use Wien’s law, which says

Amax = 2.8973 x 107 /T (2)
A simple rearrangement will give

T = 2.8973 X 107 /Amax (3)
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Once again the temperature T is in Kelvin and the wavelength A,y is in
angstroms.

So straightaway by adopting this blackbody approximation we appear
to have not just one but two simple ways to determine or at least make a
reasonable estimate of a star’s temperature. This is an important number,
so let’s give it a go and see if Equations (1 and 3) give us the right kinds
of answers.

If we try Wien’s law first, Amqy for the Sun is about 5,000 A, and divid-
ing 2.8973 x 107 by 5,000 gives 5794.6 K, which is wonderfully close to
the figure of 5,800 K that most of us will have come across at some stage
when reading about the Sun’s surface temperature. Stellar temperatures
determined in this way are perhaps not surprisingly referred to as “Wien
temperatures.”

Before becoming overconfident, though, let’s try using the Stefan—
Boltzmann law to measure the Sun’s temperature. This is a bit more
involved, because we need to know how much flux is radiated from 1 m?
of the Sun’s surface. The most straightforward way to do this is to simply
divide the total flux from the entire Sun (i.e., the Sun’s luminosity) by the
Sun’s surface area. The Sun’s luminosity as stated in chapter Space — The
Great Radiation Field is equal to 3.827 x 102 W, and its surface area (47
X Ro?; where “Rg” is the Sun’s radius) is equal to 6.087 x 10'® m?. So
dividing the luminosity by the surface area gives 6.287 x 107 W/m?2. The
Stefan—Boltzmann equation tells us that this number divided by Stefan’s
constant (using your calculator to do this you should get 1.109 x 101°) is
equal to the Sun’s surface temperature raised to the power four.

With the number 1.109 x 10'° entered on your calculator simply press
the square root key (“y/” or possibly “INV” followed by “x*”) twice. This
should give you about 5,770 for the temperature in Kelvin, again very
close to that figure of 5,800 K. The temperature of a star calculated using
the Stefan—Boltzmann equation is called the effective temperature, and it is
usually written as Tef. So according to our calculation the effective tem-
perature of the Sun is about 5,770 K.

We seem to be doing remarkably well, considering that we’re using
fairly simple equations to calculate something as important as the tem-
perature of a star. Let’s see if it works on a distant star, such as for example
Vega; this is clearly more difficult, because we need to know the distance
to the star in order to determine its luminosity and we also need to know
its radius (and incidentally assume that it is spherical) in order to be able
to calculate its surface area and so work out the flux from 1 m? of its
surface.

The luminosities and radii for a reasonable number of stars includ-
ing Vega are actually known, though we won’t go into the details here of
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how they have been determined; we simply want to test how good our
blackbody approximation is for stars. The luminosity of Vega is equal
to about 37Lg, or about 1.416 x 10?8 W. Vega is not spherical, but its
average radius of 2.52R gives us an approximate surface area of 3.866
x 10" m?. Again, using the Stefan—Boltzmann equation and following
exactly the same procedure as we did for the Sun gives us a surface tem-
perature of 8,965 K; this is about 1,000 degrees below Vega’s accepted
effective temperature of around 10,000 K, but it’s not bad considering we
used one or two approximate values in our calculation.

The wavelength of maximum flux for Vega (and indeed stars like Vega)
is around 4,200 A, and if we apply Wien’s law to this wavelength, then we
get a temperature of only around 7,000 K, which is clearly way off the
mark. If we think about it, though, this result should not be entirely sur-
prising; we know that stars in reality do not radiate as perfect blackbodies,
so we cannot assume that the wavelength of maximum flux for a real star
like Vega is the same as it would be if Vega were a blackbody (in chapter
First Look Inside a Star — The Atmosphere we’ll see why using the Wien’s
law gives such a poor result for stars like Vega).

The calculation that used the Stefan—Boltzmann equation to work out
Vega’s effective temperature seemed to be more successful than using
Wien’s law, and indeed when astronomers refer to the “temperature” of a
star it is usually the effective temperature that they are talking about. As
we saw above, though, calculating the effective temperature of a star, or a
fairly fundamental property of any star, requires prior knowledge of some
other equally fundamental properties of the star — in particular its lumi-
nosity and its radius. What we need is a reliable way to calculate effective
temperatures for stars using real astronomical observations, rather than
fundamental physical properties, which are usually hard to come by, and
ideally we want those astronomical observations to be relatively simple to
carry out.
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From Theories of Physics

Up to now we have been perhaps a bit casual in our use of the word “flux”;
the calculations that we have performed involved using the “total flux,”
i.e., the entire quantity of flux emitted across all wavelengths of the elec-
tromagnetic spectrum. Although, as mentioned in the previous chapter,
this has been determined for some stars, it is exceedingly difficult to do.

In the world of real astronomy, where life seldom runs like a physics
textbook, the “flux” from a star comes in the form of the star’s apparent
magnitude, which as we saw in chapter Space — The Great Radiation Field
is determined by comparing the star to one or more “standard stars.”
Furthermore, necessity forces astronomers to use magnitudes that in fact
do not represent flux values spanning the entire electromagnetic spec-
trum but only a limited part of it, that part received and measured by
our telescopes and detectors. After all, even Pogson’s formalized scale of
magnitudes involved only that part of the flux from a star that could be
detected by the human eye.

In fact, in the mid-19th century this visual magnitude scale was all that
was needed when dealing with the brightness of stars. However, things
began to change when photography was used to make images of stars,
because it was soon realized that the sensitivity of a photographic plate
was different from that of the human eye. To be more specific, a photo-
graphic emulsion worked well in the blue part of the spectrum and even
in the near ultraviolet, but its sensitivity fell off dramatically in the red;
older black and white photographs of Orion, for example, show a miser-
ably faint Betelgeuse compared to most of the other predominantly blue
stars. By contrast the maximum sensitivity of the eye is centered at around
5,000 A in the green part of the spectrum and falls away quite sharply
toward both the blue and the red. The bottom line is that the brightness,
or the magnitude of a star as determined by the eye, is different to that
determined by a photographic emulsion.

It thus became clear that astronomers had to be rather more con-
cise when referring to the apparent magnitude of a star than they had
hitherto been. Previously, there had only been eyes; then there were two
detectors — eyes and photographs — which meant having two magni-
tude scales and hence two possible magnitudes for each and every star.
The diameter of a star’s image on a photograph could be measured and
compared with those of “standard stars” (these were established in the
same way as those on the visual magnitude scale) to give the star’s appar-
ent photographic magnitude, usually designated mpg. As with the visual
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magnitude scale the standard stars themselves serve as reference points
on the photographic magnitude scale, which was established by the Amer-
ican astronomer and co-founder of the American Association of Variable
Star Observers, Edward Charles Pickering. On this scale white stars such
as Vega and Sirius were found to have visual and photographic magni-
tudes that are more or less equal (so, for example, Vega would have both
visual and photographic magnitudes equal to 0.0).

For stars that are not white, the two magnitudes will be different. What
this means, for example, is that a blue star such as Rigel will show up rel-
atively brighter on a photograph and so its photographic magnitude will
be a smaller number than its visual magnitude. By contrast the relatively
faint photographic magnitude of a red star such as Betelgeuse will be a
bigger number than that of its visual magnitude. So straightaway we can
see here that the difference between a star’s two magnitudes serves as a
measure of the star’s color, and, if we think in terms of blackbody stars,
this also means temperature.

The subsequent inclusion of light sensitive dyes into photographic
emulsions extended their sensitivity into longer wavelengths and enabled
them to more closely mimic the spectral response of the eye, provided
they were used in conjunction with a yellow filter (which filters out the
excess shorter wavelength radiation affecting a photographic emulsion
but not the eye). Magnitudes measured in this way more closely resem-
ble visual magnitudes and were called photo-visual magnitudes (denoted
mpy). Thus it was possible to have two photographically determined mag-
nitudes for a star, one that essentially measured light in the green part of
the spectrum and the other in the blue. The difference between the pho-
tographic and photo-visual magnitudes (i.e., mpg — 1,y) was called the
color index of the star or sometimes the international color index.

As before, a blue star would have a brighter, or lower numerical value
for mpg than for mpy, and so its color index would be a negative number,
whereas for red stars (which would be relatively brighter at longer wave-
lengths) the color index would be a positive number. Finally, somewhere
in between there would be stars such as Vega with equal photographic
and photo-visual magnitudes whose color index equaled zero. The term
“color index” now has a more modern meaning, which we’re very shortly
coming to; however, you may still occasionally come across this old form
of the color index in the literature.

In its time the great thing about measuring photographic and photo-
visual magnitudes was that a large number of stars could be measured
on one single image, and this method continued right up until the latter
part of the 20th century. However, even during the opening years of the
20th century, the American astronomer Joel Stebbins was pioneering the
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use of what were called “photosensitive cells,” which used the (then just
freshly explained by Albert Einstein) photoelectric effect to turn starlight
into a measurable electric current.

Over half a century, photosensitive cells gave way to photomultipliers,
which when attached to telescopes became the standard instruments for
measuring the magnitudes of individual stars. Photoelectric photometry,
as the technique is known, proved to be capable of determining mag-
nitudes to a far greater degree of accuracy than either photographic or
visual methods, but it meant that astronomers had to think yet again
about the meaning of the word “magnitude.”
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Star Partners - Color

The old idea of the international color index, which in a sense came about
by chance, nonetheless proved to be extremely useful, because a simple,
easily determined number gives a measure of the color of a star. More
specifically, it is a measure of how much radiation a star is emitting at
the blue end of the visible spectrum, compared to that in the middle (i.e.,
yellow/green region), and, as we know, more emitted radiation at blue
wavelengths means that the star is hotter. This means that the color index
itself must be a measure (yet another one) of the star’s temperature. This
was recognized as being very significant, because if a relation could be
found between the color index of a sample of stars and their effective
temperatures, this relation would then provide a very simple means of
determining the effective temperatures of other stars, without having to
know their luminosities or their surface areas. It would only be necessary
to measure a star’s magnitude at two different wavelengths, and what’s
more, the use of photomultipliers meant that magnitudes could be mea-
sured quickly, easily, and very accurately.

The much greater sensitivity of photomultipliers meant that
astronomers could be choosier when thinking about the color index of
a star. By using specially manufactured color filters, the choice was in fact
not only one of which regions of the spectrum to use for defining star
magnitudes but also how wide in terms of what range of wavelengths
covered those regions should be. The result was a plethora of so-called
photometric systems. Those which employed regions of the spectrum
whose widths were less than 90 A were perhaps not surprisingly called
narrow-band systems. In turn, intermediate-band systems involved regions
of widths 90-300 A, and finally wide-band systems used regions of widths
greater than 300 A. Clearly a narrow-band system will effectively ana-
lyze starlight in more detail than an intermediate system or a wide-band
system, but the downside is that more filters and of course more actual
observations are needed to do the job.

Most photometric systems are used for specialist purposes; for exam-
ple, narrow-band systems may be used to investigate individual absorp-
tion or emission lines in the spectra of stars. The most widely (and
for the amateur, more or less exclusively) used photometric system is a
wide-band system established by American astronomers H. L. Johnson
and W. W. Morgan in the early 1950s. This system initially focused on
three regions of the spectrum, each of width around 1,000 A, which were
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“isolated” by using standardized photometric filters. Two of these filters,
the “B” for blue (centered at around 4,400 A) and the “V” for “visual”
(centered at 5,500 A) effectively provided photoelectric photometry ver-
sions of the old photographic and photo-visual magnitudes, respectively.
The third, “U,” for ultraviolet filter (at 3,600 A), took advantage of the
photomultiplier’s sensitivity in the violet and near ultraviolet part of the
spectrum. A series of plots showing how much radiation is transmitted by
each filter as a function of wavelength (maximum transmission is given
the value “1” in each case) is shown in Fig. 1, each plot being called the
response function of the filter. The actual location of the “U” and “B”
regions was also carefully chosen for another reason, which we’ll come
to later.
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Figure 1. The filter “response functions” for the Johnson and
Morgan “UBV” photometric system. The dashed curve gives the
approximate response function of the human eye.

So the Johnson and Morgan photometric system gives us three differ-
ent magnitude scales and three magnitudes — my, mp, and my — for every
star, and note also that as with the traditional visual magnitude scale, we
can also define absolute U, B, and V magnitudes (written My, etc.) as the
apparent U, B, or V magnitude that a star would have at a distance of 10
pc. This “UBV” system enables two separate color indices to be defined
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for stars; my — mp (often just written as U — B) simply involves taking the
difference between the magnitude of a star as measured through the U
and the B filters. Likewise, B — V involves doing the same thing with the
B and the V magnitudes.

Notice here that the convention is to take the magnitude at the shorter
wavelength and subtract from it the magnitude at the next longer wave-
length; so, for example, a “U — V” color index is not generally used. As
with the older international color index a negative value for B—V implies
a relatively hot star with a brighter B magnitude, and furthermore the
very hottest stars will also have negative values for U — B. Each of these
magnitude scales works in exactly the same way as Pogson’s original visual
magnitude scale and as with the visual magnitude scale. The “U,” the “B,”
and the “V” magnitude scales all have to have zero points or standard stars
against which other stars can be compared.

Two possible scenarios suggest themselves here. The first would be to
have a different standard star for each of the magnitude scales, and this
would likely be a star whose peak emission wavelength corresponded with
that of the magnitude scale itself. So, for example, we could choose Vega
as the standard star for the B magnitude scale and Capella for the V mag-
nitude scale. Let’s see how this would work when it comes to dealing with
color indices.

Vega would have mag. 0.0 on the B scale, but it would be fainter than
Capella on the V scale (i.e., its V mag. would be a positive number,
because being a hotter whiter star it emits less flux in the green part of
the spectrum). So B — V for Vega and stars like it would be negative num-
bers. By contrast, Capella would have mag. 0.0 on the V scale but would
be fainter than Vega on the B scale, and B — V for these kinds of stars
would be positive numbers.

On the face of it, this seems okay, because it means that hotter stars
will have negative values for B — V whereas cooler stars will have posi-
tive values. It also means that somewhere in between stars such as Vega
and those like Capella there ought to be stars whose B — V value equals
0.0. Again, this might seem acceptable, but the crunch probably comes
as a result of the fact that in recent years the Johnson and Morgan pho-
tometric system has been extended to include an “R” for red, an “I” for
infrared, and also additional magnitude scales extending further into the
infrared part of the e-m spectrum. This would mean finding additional
standard stars, and with red stars we run into trouble, because most of
them are variable; in particular two obvious candidates, Betelgeuse and
Antares, are both variable. Even if this problem were overcome, it would
still mean that there would be, in effect, a whole series of different star
types for which the various color indices (B -V, V — R, etc.) are equal to
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zero, and clearly this would make it very difficult to try and relate color
index to effective temperature. It’s perhaps not surprising then that this
method of defining color indices was not used.

The second scenario, the one that is used, takes just one star, Vega, to
be the standard star for all of the photometric magnitude scales, so that
on the U, B, V, R, I, etc., scales the magnitude of Vega is defined to be
exactly 0.0. This means first of all, of course, that each color index (U — B,
B -V, etc.) for Vega is equal to zero, and this also applies to all stars such
as Vega, for example, those stars that have the same distribution of flux
across the e-m spectrum as Vega itself. It also means that all color indices
are defined with respect to this one star, and in consequence the value of
any color index for a given star can tell us whether the star is hotter or
cooler than Vega.

A star such as Capella, which is cooler than Vega, will as expected have
a B —V value, which is positive, and what’s more an even cooler star such
as Betelgeuse will have an even larger positive value for B — V. By contrast,
a star such as Rigel, which is hotter than Vega, will have a negative value
for B —V, and the hotter a star is, the more negative the B —V color index
will be.

Of course, what we have done here is to adjust each of the Johnson and
Morgan magnitude scales to make Vega the zero point for that scale, but
it’s actually okay to do this, because the whole magnitude system “runs”
on comparing flux values, rather than measuring actual flux values. So on
each of the magnitude scales we are simply comparing any star we care to
investigate with Vega.

Two final notes: the result of defining Vega to have mag. 0.0 in all the
regions of the Johnson and Morgan photometric system resulted in Vega
being “shifted” away from the zero point of the Pogson’s visual magni-
tude scale, where it now comes in at mag. +0.03. Secondly, in the 1980s,
observations by the InfraRed Astronomical Satellite showed that Vega had
an “infrared excess” — in other words, it was brighter in a part of the
infrared spectrum than a star of its kind should be. This, it was realized,
was due to dust surrounding Vega, which is warmed by Vega itself and in
consequence produces its own thermal radiation, which effectively con-
taminates Vega’s spectrum. There is also the fact that in order to warm the
dust some of Vega’s radiation (at shorter wavelengths) is absorbed, thus
further altering Vega’s spectrum albeit maybe ever so slightly. Regarding
where this leaves Vega as the “zero star” for all magnitude scales, the jury
still seems to be out on this one.
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The effective temperature of a star is the temperature that the star would
have if it were radiating as a perfect blackbody; more precisely, effec-
tive temperatures are calculated using the Stefan—Boltzmann law. Though
stars are not perfect blackbodies, it would clearly be a good idea to inves-
tigate the B — V color indices for actual blackbodies, which of course
would include blackbody stars of different temperatures. Because the the-
ory of blackbody radiation is well understood, it’s possible to calculate
how much flux is radiated over the wavelength regions covered by, for
example, the Johnson and Morgan B and V bands.

A thoroughly rigorous calculation is not easy, however, due in part to
the shape of the response functions of the filters, but a good approxima-
tion is obtained by calculating just the flux emitted at the peak transmis-
sion wavelength for each filter. Even so, the calculations that make use of
the Planck blackbody radiation formula mentioned in chapter From Light
to Starlight are still pretty involved, so we won’t go into the details here.
Indeed, we don’t need to, because what really matters is the ratio of these
flux values rather than the values themselves, because as we saw in chap-
ter Space — The Great Radiation Field and in particular in Equation (5),
flux ratios convert to magnitude differences, and here these magnitude
differences will give us the B —V color indices for blackbodies.

Table 1 lists the calculated B — V indices for a range of blackbody tem-
peratures, and straightaway we can see that the B — V index for a black-
body temperature of 10,000 K (the effective temperature of Vega) is not
equal to 0.0. Remember, though, that the magnitude scales for real stars
have been adjusted so that the various color indices for stars such as Vega
all equal 0.0, and we can do exactly the same thing here. For a blackbody
temperature of 10,000 K (and only 10,000 K) we can define all of the
Johnson and Morgan color indices to be equal to 0.0. In practice, all that
we have to do is add the same small number to each of the B—V values for
the various temperatures in order to ensure that B—V for 10,000 K equals
0.0. A similar small correction can be applied to the other color indices in
the Johnson and Morgan system, to ensure that their values for 10,000 K
also equal 0.0. What we’ve effectively done is to create a “true blackbody
Vega” having a temperature of 10,000 K against which all blackbody stars
could be compared.

Finally, if we plot the temperatures in Table 1 against the correspond-
ing adjusted B — V indices, as shown in Fig. 2a, we see that we have a
smooth simple curve that has no bumps or wiggles, and this means that
for perfect blackbodies the value of B —V varies in a fairly predictable way
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Table 1. Calculated B -V values for a range of blackbody temper-
atures. Column 3 gives the adjusted B — V values to ensure that B -V
for a temperature of 10,000 K equals 0.0.

Blackbody

temperature

(K) B-V B - V adjusted
3,000 1.152693 1.614203
4,000 0.562975 1.024485
5,000 0.211457 0.672967
5,800 0.01975 0.48126
6,000 -0.01984 0.441669
8,000 -0.30088 0.160634

10,000 -0.46151 0.0

14,000 -0.63293 -0.17142

20,000 -0.74968 -0.28817

with temperature. In addition we have plotted in Fig. 2b the logarithm of
the temperature against B — V. Remember that the Stefan—Boltzmann law
tells us that the temperature of a blackbody is directly related to the flux
emitted from the body’s surface. In turn the log of the temperature will be
related to the log of the flux which, as we saw in chapter Space — The Great
Radiation Field, is effectively equivalent to a star’s magnitude. Indeed, the
shape of the curve in Fig. 2b is significant, as we shall see shortly.
The question now is, what would such a plot look like for real stars?
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Figure 2. In a we have plotted temperature (in Kelvin) against
B -V color index for perfect blackbodies. The smooth shape of
this curve tells us that B — V varies in a very steady fashion with
temperature. Even more revealing is the plot in b of Log (temper-
ature) against B — V, which shows a striking similarity to the over-
all shape of the main sequence region of the Hertzsprung—Russell
diagram (see below).
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Measuring Effective Temperatures

It goes without saying that a tremendous amount of work has been done
over the years (and it is indeed still going on) to determine effective tem-
peratures for stars using the Stefan—Boltzmann law, so that they can be
compared with the stars’ observed color indices. As already outlined,
three pretty fundamental pieces of information are needed about a star
in order to determine its effective temperature. These are its distance, its
radius (or diameter), and the total amount of flux that we receive from it
across all wavelengths of the e-m spectrum.

The distance is probably the easiest piece of information to get at, and
this has certainly been helped over recent years by the Hipparcos space-
craft. Determining a star’s diameter is much more difficult; one method
is to analyze the light curves of eclipsing binary stars, where in princi-
ple the duration of the minima in the light curve, which results from
the passage of one of the stars in front of the other as seen from Earth,
can give information on the size of the component stars. Although this
method can certainly be successful, the main drawback comes from the
fact that the components of an eclipsing binary system are often not what
we might call “normal stars” (the meaning and significance of this will
become clearer shortly) and so are probably not good candidates with
which to try and establish some relation between effective temperature
and color index.

A more direct method initially developed in the 1920s and nowadays
used widely in conjunction with large telescopes employs an instrument
called an interferometer, which is capable of resolving very small angular
separations on the sky — small enough to be able to measure the apparent
size of a star’s visible disk. Provided the distance to the star is known, this
disk size converts into an actual diameter for the star. (The method has
even been used to discover, for example, that some stars, including Vega,
are not spherical.)

This then leaves the business of determining the total amount of flux
that we receive from the star, and this is probably the hardest thing of
all to measure. It means first of all having an array of instruments that
can measure flux in various wavelength regions. Some of these detec-
tors (for example, those for X-rays and for some infrared and ultravio-
let wavelengths) will need to be above Earth’s atmosphere, which would
otherwise absorb the incoming flux. Even so, there are some wavelengths
that “go missing” because they are absorbed out there in interstellar space
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(flux values here have to be “filled in” using theoretical methods), and
even those wavelengths that do reach ground-based detectors need to
have measured flux values, corrected to account for absorption both in
interstellar space and in Earth’s atmosphere. However, total flux values
have been determined for a big enough sample of stars to make a cali-
brated relation between effective temperature and B — V color index pos-
sible. The result of all this effort by what very likely amounts to a lot of
unsung heroes is shown in Fig. 3; notice the similarity of this curve with
that in Fig. 2b. This very reassuringly tells us that the continuous spectra
of stars are indeed similar to those of blackbodies.

Log (Effective Temperature) vs. B-V for Main Sequence Stars
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Figure 3. This plot of the log of the effective temperature against
B -V for a sample of real stars shows a strong similarity to the curve
in Fig. 2b and helps justify approximating stars to blackbodies.

On a final note, the B — V color index is a much better measure of
the effective temperature for those stars that emit much of their radiation
across the “B” and “V” regions. For cooler stars, for example, the shape of
the continuum is much flatter over these regions, and a better indicator
of temperature might be, for example, the V — R, the R — I, or even color
indices further into the infrared.
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We are well familiar now with the idea that observed flux values for stars
are represented by magnitudes on an appropriate magnitude scale. Figure
3 uses measured flux values for a sample of stars covering the entire e-m
spectrum, and the magnitude scale that goes with these total flux values is
called the bolometric magnitude scale. The apparent bolometric magnitude
of a star on this scale is written as #1p0]. As with Pogson’s visual magnitude
scale, we can also define the absolute bolometric magnitude, or My, as
the apparent bolometric magnitude that a star would have at a distance
of 10 pc; in other words, My, is a measure of the total flux received from
a star at a distance of 10 pc and so can be regarded as the true measure of
a star’s luminosity.

The apparent bolometric magnitude itself is not used very much at
all, but it is interesting to note that unlike the case with all other magni-
tude scales, the apparent bolometric magnitude of Vega is not 0.0. The
reason for this, which actually applies to most stars, is that bolometric
magnitudes will always be brighter than either visual magnitudes or, for
example, V magnitudes. This is simply because bolometric magnitudes
include extra flux emitted at other wavelengths and so they are brighter.
The result is that my,) for Vega is equal to —0.3. The magnitude adjust-
ment that results from taking into account the extra flux is called the
bolometric correction, or “BC” — a term used a lot in the literature. Some
authors define BC as being equal to V — m,,], in which case BC is always
a positive number, but more often m,, — V defines BC, which is then
always negative.

The significance of the bolometric correction is that the greater its
value — either more positive or more negative — whichever convention
you use, the more radiation the star will be emitting at wavelengths other
than those in the visible part of the spectrum. This is the case with stars
that are either very hot or relatively cool. Stars with middle-range tem-
peratures emit most of their radiation in the visible part of the spectrum
and so will have small BC values.

This immediately ties in the BC value for a star with its B — V color
index, and the plot in Fig. 4 shows how the bolometric correction varies
with B — V. The BC scale itself has by convention been adjusted so that
stars with a B — V color index of about 0.42 (most of the radiation from
these stars, which have an effective temperature of around 6,500 K, is in
the visible part of the spectrum) have a bolometric correction of 0.0 (the
bolometric correction for the Sun, by the way, is —0.07). This, in turn, of
course will fix the zero point of the my, scale so that instead of having a
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“standard star,” a star of my,] equal to 0.0 is one that produces a total flux
value of 2.48 x 107® W/m? at the top of Earth’s atmosphere.

Bolometric Correction (BC) vs B-V

BC

B-V
Figure 4. The bolometric correction “BC” vs. B - V for “normal”
stars. The BC scale is by convention adjusted to equal 0.0 for a
B - V value of around 0.48. lts increasing negative value on either
side of this point results from both hotter and cooler stars emitting
increasing amounts of radiation at wavelengths other than the visi-
ble region.

Photometric systems such as the Johnson and Morgan UBV system
together with their associated color indices are clearly important and
powerful tools, which are used very extensively these days by both profes-
sional and amateur astronomers. They effectively sample the light from
stars and provide valuable and relatively easy to obtain information on
the manner in which the radiation from a star is distributed across the
various wavelength regions of the e-m spectrum. However, the fact that
they are a sampling tool means that the resulting information has its lim-
itations. A much more detailed analysis of the radiation from stars comes
from their spectra.
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By the beginning of the 20th century it was realized that the spectra of
many stars showed absorption lines due to hydrogen, the simplest of all
chemical elements. So the first attempted system for classifying stellar
spectra was based on the prominence of these hydrogen lines. The idea
was to designate stars with the darkest hydrogen lines as being of spectral
class “A,” those with the next strongest lines of class “B,” and so on. How-
ever, developments in physics, particularly quantum mechanics, together
with the increasing recognition that the chemical composition of many
stars was broadly similar (i.e., a lot of hydrogen, a fair amount of helium,
and essentially traces of many other elements such as calcium, sodium,
and iron) made it evidently clear that what principally determined the
appearance of a star’s spectrum was the temperature of its surface layers.

In addition the idea behind classifying the spectra of stars was to have
some kind of systematic sequence, rather than simply a “pigeon holing”
scheme, so what started off as a hydrogen line sequence became a tem-
perature sequence, running smoothly from the hottest stars through to
the coolest ones. This is why the spectral classification of stars is often
referred to as the spectral sequence.

Much of this work was done at Harvard College Observatory, partic-
ularly by Annie Jump Cannon. The slightly unfortunate thing was that
the initial orderly sequence of letters “A,” “B,” “C,” etc., used to denote
hydrogen line strengths, got a bit messed up when the system converted
to a temperature sequence. Not only did the order of the letters change,
but some letters were actually dropped. Spectral class “A” stars have the
strongest hydrogen lines, but they now fall in after classes “O” and “B”
because they are cooler.

Anyway, all astronomers both amateur and professional soon get to
learn the letters of the spectral sequence, “O B A F G K M,” with the help
of the famous mnemonic “Oh Be A Fine Girl Kiss Me.” Stars become
cooler then as we move through the spectral sequence from class “O”
to class “M,” and their visual spectra become more complex with the
appearance of increasing numbers of absorption lines as the tempera-
ture falls. Indeed, the sheer complexity of stellar spectra necessitated sub-
dividing the letter categories using numbers. So for example the spec-
tral class of the Rigel is B8, Arcturus is K2, Vega is A0, and so on, and
incidentally, the very hottest stars come in at class O5, not OO0. Just on a
matter of terminology, stars are very often referred to in the literature as
being “early” or “late” — this has nothing whatsoever to do with a star’s
“age,” but whether the star’s spectral class puts it earlier or later within the
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spectral sequence, so that classes O, B, and A would be referred to as
“early,” whereas classes K and M would be referred to as “late.” Indeed,
these terms are often applied even within a single spectral class, so that a
G2 star would be “earlier” than a G8 star, and so on.

So like the B — V color index, the spectral sequence is a temperature
scale for stars, which means that the hotter early-type stars should be
the most luminous. Luminosity is another of those very important num-
bers for stars, and clearly any relation between luminosity and tempera-
ture is bound to be an astronomer’s “crowd pleaser.” Once the spectral
sequence had been established the next step was to investigate the rela-
tionship between a star’s spectral class (i.e., its temperature) and its lumi-
nosity. Enter Messrs. Hertzsprung and Russell.
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By the early years of the 20th century a reasonable sample of stars had had
their distances and hence their absolute magnitudes (on the traditional
visual magnitude scale) determined. This enabled the Danish astronomer
Ejnar Hertzsprung and the American astronomer Henry Norris Russell to
independently (though around the same time) investigate the relation-
ship between luminosity and spectral class. The resulting Hertzsprung—
Russell (or HR) diagram, well known as the most important diagram
in all of stellar astronomy, is thus effectively a plot of the luminosity of
stars against their temperature. By convention luminosity, which is rep-
resented by absolute magnitude, runs up the vertical axis, so that while
the most luminous stars appear at the top of the diagram, because the
magnitude scale runs backward, the numbers on the vertical axis run
from top to bottom. In addition, spectral class (in effect, temperature),
which is plotted along the horizontal axis, also runs backward, so that the
hottest stars are on the left of the diagram (all perhaps a little perplexing
for non-astronomers and probably quite bewildering for astronomers, if
it were done any other way).

Since Hertzsprung’s and Russell’s time more data has become avail-
able, enabling more points to be added to the HR diagram, shown in
its most basic form in Fig. 5. Its most striking feature is that the posi-
tions of stars are not distributed randomly over the diagram, but instead
fall within very distinct regions, with some regions being more heavily
populated than others. Most stars fall within a region that runs from the
top left corner, i.e., the hot luminous region of the diagram to the lower
right, or cool, dim region. This group of stars, which includes our own
Sun, forms the main sequence, and it is in every sense a visible illustra-
tion of the spectral sequence itself; furthermore, it clearly shows that as
(approximate) blackbodies, the hotter stars give off more energy and are
thus more luminous. Have a look back at Figs. 2a and 3. It is no coinci-
dence that a plot of the log of the temperature, which is directly related
to the emitted flux against B — V (and thus a measure of a star’s color),
resembles the main sequence on the HR diagram.

The B -V color index for a star comes from making two relatively sim-
ple observations of the star, and the B — V scale forms a continuous run-
ning series of numbers. By contrast, positioning a star in its correct place
on the HR diagram is a much more difficult process, which involves two
separate quantities — the luminosity and the spectral type (astronomers
call this a two-dimensional classification scheme as opposed to the B —V
scale, which is a one-dimensional scheme).
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Figure 5. The most basic form of the Hertzsprung—Russell dia-
gram showing the main population zones for stars.

Fixing the spectral type involves the careful identification and mea-
suring of the relative intensity of perhaps a large number of absorption
lines in the spectrum. The star then has to be placed in what amounts
to the appropriate predetermined “slot” in the spectral sequence. The
luminosity is represented perhaps not surprisingly by the star’s absolute
magnitude, but unless there is some way to either determine or at least
make a reasonable estimate of the star’s distance, or alternatively some
other method of estimating its luminosity, then “that” as they say “is
that.” This can be particularly difficult for the most luminous stars, which
are for the most part very distant and in fact only visible simply because
they are very luminous. Even so, once sufficient data have been acquired
the resulting HR diagram can be used as a kind of template against which
other stars can be compared and hopefully, as a result, reveal important
information about themselves.

In addition to the main sequence, the next most striking feature of
the diagram is that at the high-temperature end, there is a fairly narrow
range of absolute magnitudes (except for the white dwarf stars, which
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are very much a “special case”) and thus a corresponding low range of
luminosities.

By contrast, the coolest stars appear to belong to either the low-
luminosity end of the main sequence or form a group of highly luminous
stars at the top right of the diagram. As approximate blackbodies, cool
red stars will emit less radiation per square meter of their surface layers
than hotter stars. So for a cool red star to be luminous, it must have a
large surface area or, in other words, it must be a giant star — a red giant.
So just as the HR diagram classifies stars according to their spectra, it will
inevitably also categorize stars according to their luminosity, and as we
move toward the cool end of the diagram, luminosity shows itself ever
increasingly in terms of a star’s physical size. This means that there are
stars that can be called “giants” and those that are called “dwarfs.”

Suppose you are studying the spectra of two red stars, and you decide
that both their spectra are of, say, class M3. You don’t have any informa-
tion on their absolute magnitudes, so is there any other way to tell if either
star is a red dwarf or a red giant? The answer is “yes.” Although stars can
vary greatly in both luminosity and size, the masses of stars do not cover
such a large range. What’s more, it is known that giant stars have most
of their mass concentrated at the center, so this means that the outer lay-
ers of giant stars are of very low density (a red giant star has often been
referred to as a “red hot vacuum”).

When absorption lines are produced in a gas that is relatively (but not
too) dense, such as is the case for a red dwarf star, there is a spectro-
scopic effect called pressure broadening, which literally causes absorption
lines to be broader than they would be if produced in a less dense gas,
such as the outer layers of a red giant. So a telltale sign of a red giant
star is that the absorption lines in its spectrum are narrow. The low-
density regime of a red giant also favors the appearance of more actual
absorption lines from the heavier elements which have multi-electron
atoms. These spectroscopic differences even cause the B—V color index to
be slightly larger for a red giant than that of a red dwarf of identical spec-
tral class. This is another way of saying that red giants are redder than red
dwarfs.

So the HR diagram, which came out of the spectral sequence, itself gave
rise to a luminosity classification scheme for stars. The scheme, which
was developed by Morgan, Keenan, and Kellman at the Yerkes Observa-
tory, is often referred to as the MKK system, and its significance makes
more sense when the luminosity classes of stars (see below) are effec-
tively plotted in the form of an HR diagram, as shown in Fig. 6. The
scheme divides the HR diagram into a series of zones that clearly become
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wider with lower stellar temperatures. Unfortunately, there doesn’t seem
to be a catchy mnemonic for remembering luminosity classes, and they
are designated by ancient Roman numerals, which doesn’t help. These
then are the official stellar luminosity classes:

Luminosity classes

Ia Most luminous supergiants
Ib Less luminous supergiants
I Bright giants

11 Normal giants

v Subgiants

\Y% Main sequence (dwarfs)

VI Subdwarfs
VII White dwarfs

MV la
-5 Ib
I
o ]
v
5 -
10
\ﬁ v
15 Vil ¥
20
05 BS A5 F5 G5 K5 M5

Spectral Class

Figure 6. The MKK stellar luminosity classes, plotted according
to absolute magnitude and spectral class.

So now an “ID card” for a star would include the luminosity class as well
as the spectral class; for example, the Sun is classified as G2 V — a main
sequence star of spectral type G2; Betelgeuse, on the other hand, comes
in at M2 Ia — a mighty big but relatively cool star.

A final word here might be to note that stars on the main sequence,
which of course includes our own Sun, are both classed and referred to as
“dwarf stars.” When thinking of dwarf stars, we tend to think of maybe
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white dwarfs or perhaps red dwarfs, but here the term “dwarf” is simply
used to distinguish main sequence stars from the giants. Any star whose
spectrum and luminosity class place it in one unequivocal position on
the HR diagram can be regarded as “normal,” and many stars (usually
the most interesting ones) by this benchmark are not normal.
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The spectrum of a star together with more subtle features that distinguish
the star as either a dwarf or a giant fixes its position on the HR diagram.
The luminosity that is derived for the star can, in theory, produce two
very important numbers, or “parameters,” for the star. The spectrum
itself is a measure of the star’s effective temperature, just like the B -V
color index, and, as we have seen, by approximating the star to a perfect
blackbody, the total flux emitted by each square meter of the star’s sur-
face layers is given by the Stefan—Boltzmann law. The star’s luminosity is
just equal to this value multiplied by the star’s surface area, which itself is
simply equal to 47 R?, R being the star’s radius. So the radius of the star
can be determined.

Secondly, the luminosity — i.e., the total flux emitted by the star — can
be used to determine how much of this flux would be received at a dis-
tance of 10 pc, giving us in turn the star’s absolute magnitude. We can
easily measure the star’s apparent magnitude, and a simple application of
the distance modulus formula then gives us the distance to the star. A dis-
tance measured in this way is called a spectroscopic parallax (there is no
“parallax” as such involved, but the name comes out of the trigonometric
parallax method for measuring star distances). Stellar parameters derived
using the HR diagram can be subject to possibly large errors; nonetheless,
this diagram is clearly a very useful tool.



1 1,4) Starlight

It’s clear now that both the spectral type and the B — V color index are
measures of a star’s temperature, and, as we’ve seen, classifying a star
according to its spectral type is a harder job than determining its B—V
color index. So, instead of plotting absolute magnitude against spectral
type, it’s much easier to plot absolute magnitude against B — V, and what
we have then is usually referred to as an observational HR diagram. We
still have the same kind of distribution of stars on the diagram — the
main sequence, the giants, and the dwarfs; but we now have stars classi-
fied according to their luminosity as well as simply by their B — V values.
When astronomers use “normal stars” to establish a relationship between
B — V and effective temperature, they tend to use main sequence stars.



A Multitude of Magnitudes for the Colors of Starlight 119

Our original aim in this chapter was to “take the temperature” of a star. At
first this seemed to be very straightforward, mainly because the equations
that we used to do the calculations are very simple. We see, however, that
there’s a bit more to it than just plugging numbers into a formula, but
at least on the way we’ve hopefully learned a lot more about the stellar
magnitude system and why those special photometric filters are so useful.
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The continuum part of a star’s spectrum resembles a blackbody spec-
trum.

The temperature of a star, determined using the Stefan-Boltzmann
equation and which assumes that the star radiates as a perfect black-
body, is called the effective temperature, and this is what is almost
always meant by “the temperature of a star.”

The use of photography meant introducing the photographic magni-
tude mpg in addition to the original visual magnitude for every star.

The use of special photographic emulsions and a special filter resulted
in the photo-visual magnitude my, which closely approximated the
visual magnitude itself.

The formula 11,5 — 1,y defines the international color index for a star,
and it is a measure of a star’s temperature.

The development of photoelectric photometry resulted in the intro-
duction of many so-called photometric systems, of which the most well
known is the UBV system of Johnson and Morgan.

The UBV system results in a series of color indices, which are deter-
mined by taking the difference between star magnitudes as measured
using special filters, each of which covers a specific range of wave-
lengths.

The star Vega is defined to have all color indices equal to 0.0 and as
such defines the zero point for all magnitude scales in the Johnson and
Morgan system.

A great deal of work has enabled astronomers to establish a relation-
ship between the B —V color indices for “normal stars” and their effec-
tive temperatures.

A star’s magnitude that results from determining the total flux received
from it across the entire e-m spectrum is called the apparent bolomet-
ric magnitude.
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e A plot of luminosity or absolute magnitude against stellar spec-
tral class results in the famous Hertzsprung—Russell diagram, which
itself showed that stars also need to be classified according to their
luminosity.



The Photons Must Get Through —
Radiative Transfer

If starlight shone clear and uninterrupted across light years of space and
shone just as clear down through Earth’s atmosphere into our telescopes,
life for both professional and amateur astronomers would be much sim-
pler, though possibly nowhere near as interesting. However, a great deal
can and does happen to our river of starlight before it reaches our tele-
scopes and detectors. In fact, even before that starlight can leave the pho-
tosphere it has to get from its source — the nuclear reactor core at the
heart of the star — to the star’s surface layers. This is a relatively short
journey in terms of distance but by far the longest in terms of time,
and much depends on the very structure and composition of the star
itself.

Explaining and describing in detail what goes on between star and
telescope forms a big part of both observational and theoretical stellar
astronomy, and it can involve some pretty grim mathematics, which is
why, perhaps, professional astronomers get paid those big bucks. How-
ever, as amateurs we can still gain a truly fascinating insight into what is
known as radiative transfer, or sometimes radiative transport, with the
ever important bit of basic physics and maybe just the odd equation,
which as before will enable us to easily calculate some important num-
bers. These numbers will in turn give us a better feel for what’s going on.
Oh yes! And this is where we’ll need that number “e,” or 2.718.

K. Robinson, Starlight, Patrick Moore’s Practical Astronomy Series, 1 9
DOI 10.1007/978-1-4419-0708-0_6, © Springer Science+Business Media, LLC 2009
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Absorption - The Photons Get

To the astronomer, the most (all too) familiar thing that can happen
to starlight is that it can be obscured by clouds. Clearly the tiny water
droplets that make up a bank of cloud form a medium that is pretty
opaque to visible wavelength photons. However, to some wavelengths,
for example, in the radio region of the e-m spectrum, this bank of cloud
presents no problem, and the radio photons pass through what to them
is a transparent medium. So, the first thing to be very clear about here
is that when starlight passes through some intervening medium such as
interstellar gas or dust, the effect of this medium will be different and
sometimes very different for the different wavelengths that make up the
starlight. Thus, from now on in this chapter, when we use the terms
“light” or “starlight” we mean light that consists of only a very narrow
range of wavelengths (remember, we said previously that light of a single
wavelength is in practice not feasible), though we are free, of course, to
change from one narrow wavelength range to a different one in another
part of the spectrum.

Let’s start then with a situation where we have starlight shining
through a region of space that is occupied by some absorbing medium
such as a nebula made of gas and/or dust. We have to be very specific
here about the meaning of the word “absorption”; absorption means that
a photon is completely lost to the beam of starlight. There are various
ways in which this can happen. For example, the photon may ionize a gas
atom by removing one of its outer electrons, or the photon’s energy may
serve to warm up ever so slightly a grain of interstellar dust. For whatever
reason, the photon is lost, and because a vast number of such events take
place within such an absorbing medium, a great many photons get taken
out, and so the intensity of the light from the star is diminished. By how
much is it diminished, though?

To keep things simple we need to “pin down” this cloud of material by
first of all giving it a finite thickness or depth of say “s” (“s” could be in
light years or kilometers or whatever). The next thing is to insist that the
density of the material is the same everywhere; in other words, wherever
we are in the cloud, there are the same number of kilograms of material
per cubic meter (in a real nebula there would in fact only be a very tiny
fraction of 1 kg/m?). It also means, for example, that the cloud or nebula
has no fuzzy edges but a sharply defined boundary at both the entrance
and the exit faces for the beam of starlight.
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Finally, the composition of the nebular material must be the same
everywhere, so that if the nebula is a mixture of gas and dust, it must
be the same uniform mixture of the same kind of gas and the same kind
of dust. Clearly a nebula in which the density and/or composition vary
from place to place is capable of affecting an incoming beam of starlight
in an endless number of ways, so it really is vital here to keep things sim-
ple so that we can more easily understand what happens to the photons.
Thus, we must have a completely uniform slab-shaped nebula of a certain
thickness or depth through which a beam of starlight passes.

The first thing that should be fairly obvious about our “standardized”
nebula is that the greater the value of “s” the more the starlight will be
diminished, simply because the greater the distance the light has to travel
through the nebula, the more atoms/dust grains there are to intercept the
photons. This situation also works the other way around, in that a more
intense beam of starlight means that there are more photons in the beam,
which means that to an individual atom/grain there is a greater chance
of encountering one or more photons; again, more photons get taken
out. So the greater the distance traveled through the nebula and also the
more intense the incident beam of starlight, the greater the actual drop
in the intensity of the beam of starlight that emerges from the nebula.
Because we have “standardized” our nebula, its chemical/physical com-
position can be ignored here, but in a real situation this can become the
dominant factor.

The final thing to say here is that even within our simple nebula, there’s
a major element of chance about things. It would be difficult enough to
follow the fortunes of one individual photon as it enters the nebula; it
may get absorbed or it may survive to emerge from the nebula’s far side.
But to follow the individual fates of a vast number of photons is clearly
impossible. We are, in fact, at the mercy of those wretched things called

«_»

statistics. In crude terms this means that if “x” photons enter the nebula
today and “y” photons emerge, then tomorrow the number of photons
emerging from an initial population of “x” photons will probably be very
close to “y” but not exactly the same as “y.” This is actually not some-
thing that we really need to worry about too much; we simply need to be
mindful of the fact that when we talk about the numbers of photons that
get absorbed or which survive, we are dealing with vast numbers of pho-
tons anyway, which may vary ever so slightly from theoretically calculated
values.

A population of starlight photons enters the nebula, and let’s think
about what’s happening as they progress through it. If we know the ini-
tial number of photons (in principle this can actually be calculated by
simply dividing the total energy of the starlight, i.e., its intensity, by the
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energy per photon) and if the same number of photons were absorbed
in each succeeding meter of nebula, then knowing the total depth of the
nebula (“s” in meters), it should be very simple to work out the number
of photons that survive to emerge from the nebula.

However, things don’t work this way, because right from the start,
photons are absorbed, and so the number remaining also starts to drop
immediately, which means that further into the nebula there are progres-
sively less photons to be “grabbed” by a gas atom or a dust grain, and
so the number of absorptions also progressively drops. So rather than
thinking about the actual number of photons that are absorbed in, say,
the first, second, third, etc., meter of the nebula, think instead about the
fraction of the photons absorbed in each successive meter. For an initially
large incident number of photons, “some given fraction” will mean a rel-
atively large number of actual photons are absorbed, whereas a progres-
sively decreasing population would result in a smaller number of photons
being absorbed as the light progresses through the nebula. This is exactly
the kind of behavior we’re looking for; it means that for our standardized
nebula the fraction, rather than the actual number of photons, absorbed
stays the same for each succeeding meter, and because the population of
photons falls off as we move through the nebula, the actual number of
absorptions also falls off. The key then is the fractional drop in the num-
ber of photons per meter (or it could in fact be any small unit distance)
of nebula.

This fractional drop in the number of photons for a small unit or
fixed distance in an absorbing medium is called perhaps rather loosely
the absorption coefficient of the medium. More rigorously it is called the
linear absorption coefficient, and it is almost always represented in the lit-
erature by the lower case Greek letter kappa or “«,.” The actual value of
k depends on the density and composition of the absorbing material,
and clearly a higher value for x means more photons are absorbed and
the medium is relatively opaque, whereas a lower value means that the
medium is more transparent. Finally, just as a reminder, you’ll often see
the absorption coefficient written as « in order to emphasize the fact
that its value is more often than not dependant on the wavelength of the
light being absorbed.

Here’s a very simple (though very unrealistic) example to show how
the linear absorption coefficient works. Let’s say we start with a popu-
lation of 100 photons and a nebula 20 m in depth. Now suppose that
in the first meter of the nebula, 20 photons are absorbed. If 20 photons
were absorbed in each succeeding meter, then clearly the supply of pho-
tons would be exhausted after 5 m (5 x 20 = 100), leaving no surviving
photons to emerge from the nebula. However the fractional drop in the
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number of photons, i.e., the linear absorption coefficient in this case is
20/100, which equals 1/5 or 0.2, and we make the bold assumption that
for our standardized nebula this fraction (the value of «) remains the
same, or constant for each of the 20 m through the depth of the nebula.

So, after the first meter 0.2 x 100, 20 photons are absorbed, which
means that 80 remain. In the second meter 0.2 x 80, 16 photons are
absorbed, leaving 64 to enter the third meter and so on. See if you can
work out how many photons are absorbed in each of the succeeding
meters of the nebula, until you’ve worked out how many emerge from
the nebula’s far side. You'll see that the numbers of photons entering
and emerging from successive meters are now no longer whole numbers.
Don’t worry about this; remember this is an unrealistic example. In real-
ity, there would be a vast population of photons, and the chance element
mentioned earlier means that while the numbers of photons involved
might not agree precisely with the calculated values, they would in fact
be very close, and of course they would be whole numbers.

The numbers of photons that survive after each successive meter of our
simple nebula are listed in Table 1.

Table 1. One hundred photons enter a nebula that has a linear
absorption coefficient “x” equal to 0.2. As we can see, just over
one photon makes it to the other side. In reality, the nebula would
be vastly bigger, but the number of photons would also be vastly

greater.

No. of meters into No. of remaining
nebula photons

100
80
64
51.2
40.96
32.77
26.22
21
16.8
13.44
10.75

11 8.6

12 6.88
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Table 1. (Continued)

No. of meters into No. of remaining
nebula photons

13 5.5

14 4.4

15 3.52

16 2.82

17 2.26

18 1.81

19 1.45

20 1.16

On the face of it then, determining how the intensity of the starlight
diminishes as it progresses through our standardized nebula doesn’t seem
too difficult using the method just described. It gets more difficult when
we try to calculate the number of photons that remain after, say, 0.5 m,
or 5.83 m, or indeed any arbitrary distance into the nebula rather than a
whole number of meters. It is possible with the aid of a calculator and if
your math is up to it you should have no difficulty in working out how
it’s done. However, we won’t go into the details, because the professionals
don’t do it this way, and one of the main reasons for this is that you really
do run into trouble if, as is often the case, the value of k varies as we
move through the nebula. This results from changing conditions within
the nebular material, such as changes in the density.

So here’s how the professionals do it. For the moment we’ll stick
with our simple standardized nebula example with an incident beam of
100 photons and a constant linear absorption coefficient of ¥k = 0.2 m™!,
as before. Again, as before, we’ll consider the situation after 1, 2, 3, etc.,
meters into the nebula until we reach the far side. This time we take the
number of meters into the nebula and multiply this distance by the value
of k to give us 0.2, 0.4, 0.6, etc., and then take the negative of each of these
numbers to get —0.2, —0.4, —0.6, and so on.

Now use your pocket calculator and the “X” key to raise that number
“e” or 2.718 to the power of each of these negative numbers. In other
words, calculate 02, ¢4 706 and so on. Many of you will know that
“e” is one of those recurring decimals (just like “7”). If you prefer to
use a more accurate value then enter the number “1” on your calculator;
now press the button marked “INV” for “invert,” followed by the button
marked “Ln” (this stands for natural or sometimes Naperian logarithm —
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not to be confused with common logarithms that employ the use of the
button marked “LOG”). This will give you a more precise value, such
as 2.718281828, but for now just 2.718 will do. Finally, multiply each of
the resulting 20 numbers by 100 — the number of photons that initially
entered the nebula. The results are listed in Table 2.

Table 2. Here we have calculated the number of remaining pho-
tons, using the number “e” or 2.718. This is how the professionals
do this kind of thing, and while the results are not quite the same
as before, they are similar and in fact in a real situation involving
avery |arge nebula and vast numbers of pho’rons, the results would
be virtually identical.

No. of meters into No. of remaining
nebula photons
0 100
1 81.87
2 67.03
3 54.88
4 44.94
5 36.79
6 30.12
7 24.66
8 20.19
9 16.53
10 13.54
11 11.08
12 9.07
13 7.43
14 6.08
15 4.98
16 4.08
17 3.34
18 2.73
19 2.24
20 1.83

These 20 numbers represent the number of photons that remain after
the first, second, third, etc., meter into our nebula. When compared to
the corresponding values we calculated by the previous method, we can
see that while they are roughly in the same ball park, they are not exactly
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the same. However, as we admitted at the start, our example here is very
unrealistic; a more realistic situation would involve vast numbers of pho-
tons and a nebula that was many, many millions of meters in depth. In
this case there would be essentially no difference between the two sets of
corresponding numbers.

Just as a final illustration, we’ve plotted the number of surviving pho-
tons as we progress meter by meter through our nebula, using both meth-
ods as shown in Fig. 1.
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Figure 1. This shows how the number of photons decreases as
they pass through a “nebula.” The dashed plot uses the results of
our first method for calculating the number of remaining photons.
The solid plot employs the “professional method,” using the num-
ber “e.” In a redlistic situation, these two plots would be indistin-
guishable, but the first method of calculation would be much more
laborious.
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The two plots have almost the same shape, and indeed with more real-
istic parameters, they would be virtually indistinguishable. The really
important point here is that the plot shows just how the intensity of
starlight falls off as it passes through an absorbing medium.

What probably is not so convincing at this stage is why use the num-
ber “e” raised to — of all things — a power that is a negative number, to
calculate the remaining number of photons, rather than the first method,
which perhaps seems more intuitively logical. The second method is actu-
ally entirely equivalent to and is in fact more mathematically rigorous
than the first method, but is arrived at by using calculus, which puts it
beyond the scope of this book.

Suffice it to say that for a professional astronomer with sufficient
mathematical skills, perhaps the aid of a powerful computer, and if it’s
a good day and the value of « varies in a nice, regular way, then the
second method using “e” delivers the goods. Most importantly for us,
though, this second method for calculating the intensity of starlight as
it passes through an absorbing medium introduces us to something very
important in radiative transfer. In order to calculate the intensity, we first
had to multiply the absorption coefficient k by the distance or depth into
the nebula. If « is large, then we don’t have to go very far into the nebula
before the absorption becomes significant.

Conversely, for small values of «, we have to go to greater depths for
there to be significant absorption, so clearly what ultimately determines
how much the intensity of starlight drops is the product of the absorp-
tion coefficient and the distance into the nebula, i.e., k¥ x s. (The “s” here
represents distance into the nebula rather than the entire depth of the
nebula.) This all-important product is called the optical depth and is
invariably represented in the literature by yet another Greek letter, this
time the letter “tau” or 7; note once more that you’ll often see it writ-
ten as 7, to emphasize its wavelength dependence. Figure 2 illustrates the
basic idea behind optical depth. Put simply, a large optical depth means
that much of the incident light is absorbed, whereas a small optical depth
results in most of the light making it through to the other side.
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Figure 2. The optical depth in an absorbing medium depends on
the linear absorption coefficient « and the distance traveled through
the medium.

Now let’s catch our breath by being a bit more specific about something
that, until now, we’ve been rather casual. When talking about starlight
entering a nebula we’ve talked about numbers of photons, though some-
times we’ve used the term intensity, and in the interests of keeping things
simple we’ve tacitly assumed that starlight both enters and emerges from
the nebula, traveling in a direction that is at right angles or normal to the
face of the nebula.

In chapter Space — The Great Radiation Field we saw that the inten-
sity measures the rate of flow of radiation, which is confined to what
amounts to a tiny range of directions, and we made the point that it does
not change with distance. Thus, when talking about the way in which
starlight is affected as it passes through what may be a very large neb-
ula we should indeed talk in terms of its intensity; using the flux that we
know does change with distance would add an extra complication. How-
ever, there is an important situation involving the absorption of starlight
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over such a short distance. This is the passage of starlight through Earth’s
atmosphere, which we shall look at in chapter In the Space Between Stars.

So if we now call the intensity of starlight that enters the nebula “I;;,”
and that which emerges “Io,,” we're talking about light that is traveling in
one specific direction. A very important consequence of this is that if our
beam of starlight enters the slab-shaped nebula at an angle other than 90°
to the nebula’s face. Then, by the time it emerges from the far side, it will
have traveled a greater distance. So the optical depth and hence the drop
in intensity through our nebula is greater along directions that are not
“normal” to the nebula’s face, as shown in Fig. 3; we’ll see the importance
of this when we look at the way in which light travels through the outer
layers of a star and then through Earth’s atmosphere.
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Figure 3. In an absorbing medium (here, for example, we could
have the photosphere of the Sun) with a fixed linear absorption
coefficient, the optical depth depends on the actual distance trav-
eled through the medium. So the optical depth along path “B” is
greater than that along path “A,” which means that for the same
incident intensity, the emergent intensity along path B is less than
that along path A.

Finally we can now be a bit more formal about the “professional
method” for calculating the behavior of starlight as it passes through
an absorbing medium. Calling the initial or incident intensity “I;,,” the
linear absorption coefficient “k” multiplied by the depth “s” into the
medium gives us the optical depth “z,” and the emergent intensity “Iy”
is given by
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Iowt =Lin x e 7 (1)

There’s a general convention or, if you wish, a kind of demarcation
boundary regarding the value of the optical depth “t”; if 7 is less than
1, then the medium is said to be optically thin, whereas for optical depths
of greater than 1 the medium is optically thick. For a value of T = 1, ¢7°
is equal to 0.368 to three places of decimals, and so for an absorbing
medium whose optical depth puts it on the borderline between being
optically thick and optically thin, the intensity of the emergent starlight
is reduced to about one third of that which enters the nebula. Having
said all this, there is no law saying that starlight, which enters a nebula
traveling in one specific direction, must emerge from the nebula travel-
ing in the same direction. This has very interesting consequences, as we’ll
Nnow see.
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The Photon Gets a Second Chance

As emphasized above, absorption involves the effective destruction of
photons in our beam of starlight. The photons are lost because their
energy has been used to do something else, such as warming up dust
grains. However, it is possible for some photons to be removed from the
beam of starlight but yet survive. The photons are effectively removed
because they are simply no longer traveling in their original direction,
and this happens because the photons have been scattered — sent traveling
in other directions by the gas atoms or dust grains rather than absorbed.

[t isn’t necessary here to go into the actual mechanisms that cause scat-
tering; what is important is that the process of scattering is conspiring
with absorption to diminish the intensity of the starlight that we observe;
indeed, just as we introduced the idea of the linear absorption coefficient
as a measure of the relative drop in the intensity for each small unit dis-
tance through the absorbing medium, we can also define the scattering
coefficient (often denoted by the Greek letter sigma or “o”) in exactly the
same way, except that this time the relative drop in intensity is due to
scattering processes. The linear absorption coefficient and the scattering
coefficient can simply be added together to give what is called the extinc-
tion coefficient (this time denoted by the Greek letter chi, or “x”), so that

X=Kk+o (2)

The extinction coefficient is sometimes loosely referred to as the opacity
of the medium. The optical depth for a distance “s” into the nebula is
now given by T = x x s, and the formula for the emergent intensity is
the same as Equation (<eref 1), except that the optical depth now results
from both absorption and scattering.

As with the absorption coefficient, the value of the scattering coef-
ficient depends on the wavelength of the light, but for gas atoms the
degree of scattering is proportional to the reciprocal of the fourth power
of the wavelength of the light, i.e., proportional to 1/A%. In other words,
if you halve the wavelength of light the amount of scattering increases by
16 times. This results in blue light being very much more susceptible to
scattering than red light, which in turn renders our daytime sky blue, and
as we shall see does interesting things to starlight.

By contrast, infrared photons suffer relatively little scattering, which
results in the infrared astronomer being able to “see” much greater dis-
tances and through clouds of interstellar dust.



1 3_5 Starlight

Scattering also plays a “double agent’s game” in radiative transfer; just
as photons can be removed from our beam of starlight and scattered
into other directions, clearly photons, which initially enter the absorbing
medium traveling in some arbitrary direction, can find themselves being
scattered in our direction, and so our beam of starlight gets reinforced by
these imported photons.

It may be that in some situations the additional drop in intensity
caused by scattering is more or less matched by scattering into the beam
from other directions, and an obvious example where scattering comes
into its own is in so-called reflection nebulae (a more appropriate name
for them might indeed be “scattering nebulae”) such as NGC 1977 in
Orion. We observe this nebula because of light from neighboring stars,
initially traveling in some other direction, which has been scattered and
combined into a beam that travels toward us. One thing to note here is
that some of these scattered photons may themselves suffer further scat-
tering, or even absorption, before they reach the side of the nebula nearest
to Earth.
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A good question to ask at this point is when a photon is destroyed, where
does its energy go? We've already mentioned that a visible light photon
can help to warm up a dust grain, for example; the consequence of this
is that the dust grain itself begins to emit thermal radiation — photons.
Because of the dust grain’s relatively low temperature, these emitted pho-
tons will be low energy ones in the infrared part of the spectrum.

What has happened here is that a visible light photon of relatively high
energy has been converted or degraded into several lower energy photons.
Now, if you are an optical astronomer, you would say that the light from
a star that sits behind this cloud of obscuring material has been dimin-
ished, and you might go on to try and work out the optical depth of the
material at visible wavelengths. On the other hand if you happen to be
an infrared astronomer (some amateur variable star astronomers now do
infrared photometry), your knowledge of the star’s other properties tells
you that given its temperature it should emit a certain level of radiation
at infrared wavelengths. What you observe, though, is extra infrared radi-
ation, which is due to emission from the surrounding dust. This, as pre-
viously mentioned in relation to Vega, is called an infrared excess, and it
means that the optical astronomer’s loss is the infrared astronomer’s gain;
it is also, of course, the telltale signature that the star you are observing
may be surrounded by dusty material.

All is not lost for the optical astronomer, though, because this process
of photon degrading and recycling goes on right across the electromag-
netic spectrum, with results that are often spectacular and much loved
by observers of deep sky objects. Just as dust grains can convert optical
photons into infrared photons (i.e., extra infrared emission), high-energy
ultraviolet photons can be converted into visible light photons as a result
of being absorbed by gas atoms. The energy of an ultraviolet photon is
used to ionize, or remove an electron from, a gas atom.

This is, in every sense of the word, a version of the photoelectric effect,
which we encountered in chapter From Light to Starlight. In this case
there is, of course, no “wire” to lead the electrons away in the form of
an electric current. Instead the electrons are free to move around until,
as inevitably happens, they encounter another gas atom, which has itself
lost one or more electrons by this process of photoionization. The posi-
tively charged atom captures the negatively charged electron, which as a
result loses energy. However this energy, which is equivalent to that of the
original ultraviolet photon, which removed the electron from its original
parent atom, is lost in stages as the electron drops down through its new
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atom’s energy levels. This cascade process, as it is often called, causes the
atom to emit a series of lower energy, i.e., visible light photons, which
because of the well-defined energy level structure of atoms results in a
series of emission lines with well-defined wavelengths.

If the gas is some distance away from the source of the ultraviolet pho-
tons, then we “see” a more or less pure emission spectrum, as is the case,
for example, with planetary nebulae. If, on the other hand, the absorb-
ing gas forms a close proximity shell or layer around the star, then we
may see bright emission lines superimposed on the star’s otherwise rel-
atively normal spectrum. Because these lines result essentially from the
recombination of electrons with atoms, they are called recombination
lines. There are in addition other processes going on in nebulae that also
result in emission lines. For more details on this you might want to have
a look at this author’s Spectroscopy — The Key to the Stars (published by
Springer).

So, we see now, that we can have a situation where extra emission
comes from the absorbing medium itself; this medium may be in the
form of a nebula (i.e., low-density gas), but it could also be a layer within
a star, which absorbs high-energy photons from the deeper and hotter
layers and recycles them in the form of lower energy photons, which then
head toward the star’s photosphere.

The difference here is that the stellar material forms a relatively
dense medium, which produces a continuous spectrum rather than an
emission-line spectrum, which we observe in the case of a nebula. What’s
more, just as starlight entering some medium suffers absorption, so, too,
will light emitted by the medium itself. The medium, in fact, acts as an
absorbing medium for its own emission.

Clearly, emission from the far side of this material will suffer more
absorption as it heads in our direction than that which is produced closer
to our side. If we focus on one small region of our absorbing medium, say,
a one-meter cube, then the quantity of radiation being emitted by this
small volume element will first of all depend on what the gas is made of.
Atoms that are more likely to be photoionized will result in more emis-
sion; also, the denser the gas, the more atoms there are, and again the
more emission there will be.

We can also assume that the radiation emitted from within our one-
meter cube spreads outward from the cube equally in all directions, i.e., it
is isotropic, so that the same quantity of energy, or the intensity in every
direction, is the same. This quantity of energy is called the emission coef-
ficient or sometimes the emissivity; it’s usually represented by the Greek
letter epsilon, or “e,” and as you’d expect it is wavelength dependent and
so is often written €;.”
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Figure 4. Here we have a simple slab-shaped nebula of con-
stant extinction coefficient and emission coefficient, divided into
one-meter cubes. Emission from each cube will suffer absorption
within the nebula, depending on how much material lies between
it and the nebula’s near side. The resulting emission seen coming
from the nebula is the sum of the contributions from all the cubes,
plus any unabsorbed or scattered emission from beyond the nebula
itself.

Think once again about a simple slab-shaped nebula, which has a
depth of 5 m and has a constant extinction coefficient “x” (combining
both true absorption and scattering) of 0.2 m~!. We can now imagine
5 one-meter cubes lined up and running from the far side of the nebula
to the side nearest to us, as shown in Fig. 4. Each of these one-meter cubes
emits radiation of an initial intensity ¢ that travels toward us. The light
that travels from the one-meter cube on the far side has to pass through
the intervening 4 m of nebula and so, adapting Equation (1) the intensity
of radiation from this cube that emerges from the near side of the nebula

will be given by
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Eout = € X e 024 (3)
In this case 0.2 x 4 is the optical depth through the 4 m of nebula. In
turn, the emergent intensity from the next cube in will be equal to

Eout = & X e 0273 (4)

and so on. Note that 4, here is different in each case because the optical
depth is dropping as we progress from the far side to the near side of the
nebula.

Finally, emission from the cube at the nearby face emerges more or
less unhindered. To calculate the total emission from our nebula we sim-
ply add together all the separate values of €,y. However, once again, in
order to do this calculation rigorously with a realistic nebula, we would
have to use calculus. The resulting equation for the intensity of emission
emerging from the nebula is at least fairly simple (it is included here just
to show what the actual result is), i.e.,

Eout = - x(l—e™") (5)
X

and “t” here is just the optical depth through the whole nebula. So this
is what we “see” of starlight that has been recycled within the nebula
into the wavelength we are observing and which emerges from the nebula
traveling in our direction. Notice that this equation involves the quantity
“elx,” i.e., the ratio of the emission coefficient to the extinction coeffi-
cient or, in other words, the ratio of the emission to absorption within
each small unit volume element in the nebula. This is an important
quantity in the theory of radiative transfer and is given a special name —
the source function or “S.” A relatively large value for S simply tells us
that at a given wavelength each small volume element within the nebula
produces a lot of emission but suffers little absorption, and so more pho-
tons emerge to eventually reach our detectors.

There’s one further refinement that we can make to the emission coef-
ficient, and that is to include the radiation, which enters a particular vol-
ume element and is then scattered so that it leaves the volume element
traveling in our direction (the scattering “double-agent game” mentioned
above). The scattering coefficient o can simply be added to the emission
coefficient to give us what amounts to a modified emission coefficient,
which we can represent by the symbol eta, or “n.” The final thing to do is
to add this total emission that comes from within the nebula itself to the
starlight that has passed through and emerges from the entire nebula (as
given by Equation 1) to give us one grand equation:
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Iovt =Iin xe " 4+Sx(1—e77) (6)

Without taking too much notice of the actual details of this equation,
what is it actually telling us? If the nebula or indeed any absorbing
medium is optically very thick, such as when the value of “t” is very high,
then the value of e™* becomes so small that it can be assumed to be equal
to zero and then I,y is simply equal to “S,” the source function. This
means in effect that the only radiation that emerges from the medium
is that which is emitted by the layer nearest to us; emission from further
back is completely absorbed.

By contrast, for a medium that is optically very thin, i.e., T is very small
indeed, € becomes approximately equal to ¢”, which as we saw in chap-
ter Starlight by Numbers, is equal to 1. So now I, becomes equal to Iip;
i.e., all the light that enters the medium gets through. Notice also that the
term involving the source function vanishes; this simply means that the
medium is so rarefied and thus there are so few gas atoms to ionize that
there is essentially no emission from within the medium itself.

So, to sum up; starlight of what we might call “our” wavelength enters
a nebula; some of it is absorbed and some of it is scattered, and “our”
beam of starlight is thus diminished. Starlight of a shorter wavelength
is absorbed, and then some of it is recycled at “our” wavelength; some
of this is absorbed and/or scattered, but some survives to intensify “our”
beam of starlight. Finally, starlight of “our” wavelength is scattered so that
it joins “our” beam of starlight — again, some of this is absorbed and/or
scattered and yet again some survives to further brighten “our” beam of
starlight.

Clearly the inside of a nebula is a very busy place. Always remem-
ber, finally, that all of the quantities that go into and come out of Equa-
tion 6 are dependent on the wavelength of the light that we are dealing
with. Figure 5 attempts to sum up the kinds of things that can happen
within some gaseous material capable of absorbing, scattering, and emit-
ting radiation.
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Figure 5. Here we attempt to illustrate the various processes that
could take place within one-cubic meter of, for example, a galactic
nebula. Light of wavelength “A” from stars, either within the nebula
itself or beyond its far side will suffer absorption and a decrease in
intensity according to the value of the absorption coefficient “«; ”
Some of this radiation will be emitted at some other wavelength
and thus contribute to the emission coefficient “c,” of the cube.
Some radiation will undergo scattering, according to the value
of the scattering coefficient “o;,” which may contribute to the
overall extinction “x,” within the cube, or if scattered in the
appropriate direction will further contribute to the emission. All
of the radiation that emerges from the near face of the cube will,
in turn, suffer further absorption/scattering on its way out of the

nebula.
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Symbiotic Nebulae - An

Symbiotic stars are a group of around 150 fascinating variable stars. They
are binaries in which one component is a red giant star — often a semi-
regular or a Mira-type variable and the other is sometimes a bit of a mys-
tery. What is clear is that this other star is much smaller and also very
much hotter, so possible candidates are a hot white dwarf, similar to the
central stars of planetary nebulae, and in some instances a neutron star.

The hot component of a symbiotic binary is a source of high energy
ultraviolet (UV) and sometimes even X-ray photons, while the cool red
giant component, in common with many cool giant stars, emits a slow
moving but relatively dense stellar wind. Among various chemical ele-
ments and simple molecules this wind will contain significant amounts
of neutral hydrogen gas, whose atoms are prime targets for UV photons.
These photons ionize the gas atoms and so are absorbed, resulting in a
drop in the intensity of ultraviolet radiation as we move away from the
hot star.

Electrons in this ionized portion of the cool giant wind or “symbiotic
nebula” subsequently recombine with the ionized hydrogen and in doing
so return the lost energy. However, this “energy debt” is not returned as a
lump sum; we don’t get our UV photons back. Instead it comes as “small
change” in the form of a series of lower energy visible light photons at dis-
crete wavelengths — emission lines. So part of the cool giant wind is made
to glow in visible light, just like the gas that makes up a planetary nebula.
However, unlike a planetary nebula, the source of the ionizing radiation is
offset from the center of the ionized material, and this provides an excel-
lent yet simple demonstration of optical depth in an absorbing medium
at work.

In the 1980s two Canadian astronomers, A. R. Taylor and E. R.
Seaquist, developed a simple model for the shape of symbiotic nebu-
lae in order to shed “light” on the fact that quite a few symbiotic stars
were known to be radio sources. The origin of this radio emission is itself
an interesting example of how starlight is recycled within a nebula. The
ultraviolet photons ionize the gas atoms and clearly, for a time before
electrons recombine with atoms to give us optical wavelength emission,
these electrons will be moving around “free.”
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However, because of the local presence of many ionized atoms, there
will be extensive local electric and magnetic fields. Electrons, which are
themselves, of course, negatively charged, change their motion under the
action of these electric and magnetic fields; in other words, they accelerate
or decelerate, and when this happens they emit electromagnetic radi-
ation, which is of low energy or in fact radio emission. Emissions like
this, which result from accelerating and/or decelerating electric charges,
are known by the German name bremsstrahlung, or “braking radiation,”
and because each individual electron involved starts off as a “free” elec-
tron and ends up as such, albeit with an altered state of motion, it is also
known as “free—free emission.”

Now back to the nebula. We know that what determines the optical
depth in a medium like this is the linear absorption coefficient, together
with the distance traveled through the medium. This, in turn, will deter-
mine by how much the initial intensity of a beam of, in this case UV
radiation, will drop, and of course a sufficiently high optical depth can
cut down a beam of radiation to virtually nothing. The beam simply
runs out of photons. If the absorption coefficient is large, then a relatively
large optical depth is achieved over a relatively small distance, whereas a
smaller absorption coefficient means that the beam travels further before
the photons give out.

In a symbiotic system we basically have the kind of situation shown in
Fig. 6; UV photons leave the hot star traveling in all possible directions as
they head into the cool star’s outflowing wind. What is clear and pretty
obvious is that as we get closer to the cool giant star, the density of the
wind material will increase and, consequently, so will the linear absorp-
tion coefficient, whereas further away the wind density drops and so does
the absorption coefficient. This means that beams of UV photons leaving
the hot star that travel toward the cool giant will peter out after a much
shorter distance than those that head away from the cool star. The result is
that for a hot star with a relatively low UV luminosity, an elliptical-shaped
nebula will result, as shown in Fig. 6a.

The boundary or edge of an ionized nebula is often referred to as the
ionization front, and in this particular situation its location is determined
entirely by where the supply of UV photons gives out. In this case the
nebula is said to be radiation bounded; the nebula glows in the visible
part of the spectrum, but all the UV photons have been absorbed.

Keeping conditions in the cool giant wind the same in terms of compo-
sition and density, but this time with a hotter star of higher UV luminos-
ity, it’s possible for UV photons traveling directly away from the cool star
to actually avoid absorption and escape from the system. In this direction
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the density of the wind material is dropping, and so, too, is the absorption
coefficient; the UV photons simply run out of targets and so this part
of the nebula would have no sharply defined ionization front but would
simply become fainter as it faded away, as indicated in Fig. 6b. This part
of the nebula is then said to be density bounded. Finally, for a hot star that
can hit the cool giant wind with a very high UV photon luminosity, most
of the nebula becomes density bounded, and there remains just a cone-
shaped ionization front, produced by the very densest part of the wind
and by the shielding effect of the cool giant itself, as shown in Fig. 6c.
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Figure 6. Here we see the effect of varying absorption coeffi-
cient and optical depth on the shapes of model ionized nebulae
within symbiotic stars. For a given cool giant wind density distribu-
tion, the resulting nebula will be either entirely radiation bounded
(a) partly density bounded (b), or almost entirely density bounded
(c), depending on the intensity of ionizing photons that are emitted
by the hot star in the system.
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Figure 6. (continued)

This simple model gives a very effective illustration of the kinds of
things that can happen in all types of emission nebulae, where densi-
ties and chemical composition can vary from one location to another.
It also gives us a good start in understanding what happens to our river
of starlight between leaving the photosphere and reaching our detectors.
Finally, the value of the absorption coefficient and the way that it varies
with wavelength is crucial to what happens to radiation, as it makes its
way up through the deeper denser layers of a star and out through the
photosphere.

Now it’s time to take a look inside a star.
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The degree to which intervening material such as gas or dust is opaque
or transparent to starlight depends mostly on wavelength.

Absorption takes place when photons are removed or lost from a beam
of starlight by processes such as ionization.

The fractional drop in the number of photons in a beam of starlight
as it passes through a small unit distance of an absorbing medium is
called the linear absorption coefficient . A high value implies a rela-
tively opaque medium.

Provided conditions such as density, chemical composition, and so on
within an absorbing medium are constant, then the product of absorp-
tion coefficient multiplied by distance into the medium is called the
optical depth t;. If the value of 7, is greater than 1 the medium is said
to be optically thick; otherwise it is optically thin.

Photons that are not absorbed but which are caused to change direc-
tion by atoms or dust grains are said to be scattered.

The fractional drop in the intensity of a beam over a small unit distance
due to scattering processes is called the scattering coefficient . This
can simply be added to the absorption coefficient to give the extinction
coefficient x ;.

Short-wavelength radiation can photoionize gas atoms in an absorb-
ing medium. Recombination of atoms can produce optical wave-
length photons, which are observed as extra emission from within the
medium.

The quantity of nebular radiation that emerges depends on the ratio
of the emission coefficient to the extinction coefficient, i.e., the source
function within the absorbing medium.

All quantities such as optical depth, source function, and so on are
strictly wavelength dependent.



First Look Inside a Star — The
Atmosphere

As astronomers, we soon learn that the blindingly brilliant visible face of
the Sun is called the photosphere, and we could be forgiven for thinking
that this is some kind of precisely defined surface, like the surface of a
planet. However, all stars including the Sun are entirely gaseous, and the
photosphere consists of what amounts to the inner part of a star’s sur-
face layers — in effect, its atmosphere. It is a layer of gas of finite depth
that is relatively dense, and so it is the principal source of the continuum
part of a star’s spectrum. However, photons that are emitted within the
photosphere and which escape from its topmost layers do so as a result of
having traveled along a range of paths of both varying distance and opti-
cal depth. This has interesting consequences for the overall appearance of
the Sun’s photosphere and maybe that of other stars, too.

Both the density and the temperature of the gases of which the pho-
tosphere is composed decrease toward its upper regions, and so it is also
the main source of the absorption lines in the spectrum. In the case of
the Sun and very likely some other stars, too, the atmosphere extends
above the photosphere, to layers that are much less dense. These upper
layers, the chromosphere and the corona, produce emission-line spec-
tra, and the only way they can do this is by being much hotter than the
photosphere.

How can this happen? We've also seen that the continuum part of
a star’s spectrum resembles that of a perfect blackbody, but there are
differences. The atmospheres of distant stars cannot be observed in the
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same kind of detail as that of the Sun, but by taking a closer look at how
stellar spectra differ from blackbody spectra, we can discover some of
the fascinating processes going on in stellar atmospheres that give rise to
these differences.
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Simple Radiative Transfer

Remember in chapter Space — The Great Radiation Field we said that
unlike the vast majority of stars (where we can only measure the total
flux that we receive from them), in the case of the Sun we can measure
the specific intensity of radiation from various parts of the solar disk.
Most amateur astronomers have, at some time, used a small telescope to
safely project an image of the Sun onto a white card or screen in order
to observe sunspots. In the absence of specialist equipment that can be
used to observe features such as solar prominences, the only other really
noticeable feature of the white light solar disk is the fact that the region
around the periphery or the limb appears distinctly dimmer than the cen-
tral regions. This limb darkening is, in fact, a relatively simple example of
radiative transfer in action.

The gases — mostly the hydrogen and helium that make up the solar
photosphere — are not transparent; they absorb radiation that is com-
ing up from the hotter layers down below. What’s more, as we descend
into the photosphere (what a journey that would be!), the gases become
denser, which means that their ability to absorb radiation increases. In
other words, with increasing physical depth the linear extinction coeffi-
cient “x” at a given wavelength, for example 5,000 A, also increases, with
a resulting much steeper rise in the optical depth.

So at the topmost layer of the photosphere the optical depth is effec-
tively zero (though not quite as we’ll see shortly), and photons can escape
freely but go down a certain distance, and the optical depth eventually
reaches a value of one. At this depth, about one third of the radiation
that starts here manages to make it to the surface, while further down,
the photosphere becomes optically thick; by the time we reach an opti-
cal depth of 5, less than 1% of the radiation gets to the surface, and at
an optical depth of 20, virtually no photons get through. They are instead
absorbed and possibly recycled into several emitted lower energy photons
or scattered into other directions — possibly back down to deeper layers.
This effectively marks the “bottom” of the photosphere, which for the
Sun lies at a depth of around 450 km, and it also means that virtually all
of the radiation that leaves the Sun’s surface comes from this remarkably
thin layer of gas. The graph in Fig. 1 shows how the optical depth in the
Sun’s photosphere increases dramatically with physical depth.

Radiation, which is emitted from some way down in the photosphere
and which does make it to the surface may get there by a variety of paths
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Figure 1. This graph shows the dramatic rise in optical depth,
as “we descend” through the photosphere. At a physical depth of
around 450 km, the solar material is essentially totally opaque. This
means that what we “see” of the Sun in visible light comes solely
from the very topmost surface layers; compared to the Sun’s size,
the photosphere is an incredibly thin layer of gas.

that are of different lengths and thus different optical depths. The basic
situation is shown in Fig. 2, where the overall depth of the photosphere
compared to the curvature of its topmost layer is greatly exaggerated. We
have a small volume — say, a cubic meter situated within the lower part
of the photosphere. The two extreme routes by which radiation can leave
this volume in order to get to the surface are toward “A” and toward “B.”

Clearly, path A marks not only the shortest route of escape but also
has the smallest optical depth for the photons, and an observer, who is
situated some 93 million miles away in this direction will observe these
photons apparently coming from the center of the Sun’s disk. By con-
trast route “B” takes the photons through the lowest densest region of the
photosphere and is thus the route of greatest optical depth. Very few, if
any, photons will escape along this route, which to our distant observer
will now appear to come from the limb of the solar disk. Between these
two extremes the specific intensity of radiation and thus the apparent
brightness of the Sun’s disk decrease from the center to the limb. The
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resulting limb darkening is, however, not as extreme as it might at first
seem, because within the photosphere itself there is a lot of scattering
going on, and closer to the surface of the photosphere, there will be radi-
ation that gets scattered in B’s direction.

Photosphere

Less dense
gas

Sub photosphere

Figure 2. Paths “A” and “B” mark the routes to the surface of
smallest and largest optical depth, respectively, for photons leaving
the small unit volume. Very litle radiation will survive the journey
along route B, resulting in the Sun’s limb appearing darker than the
center of the disk. In the outer layers of the photosphere, photons
will get scattered into B’s direction, making the limb appear not
quite so dark as it otherwise would.

With what we learned in the previous chapter, we can in fact be a
bit more specific about the effect of limb darkening. To do this we take
advantage of the fact that the actual known depth of the photosphere
is around 450 km, which makes for a very physically thin layer when
compared to the Sun’s radius of around 700,000 km. This enables us to
make use of what the professionals call the plane-parallel approximation,
which means that we can essentially go back to the slab-shaped absorbing
medium we used in chapter The Photons Must Get Through — Radiative
Transfer and perhaps what’s more to the point, the mathematics becomes
very much simpler.

Figure 3 shows the layout. Notice that the trade off for using this sim-
plification is that light paths, which are parallel to the plane of the pho-
tosphere, go off to infinity, without ever reaching some kind of surface.
So the plane-parallel approximation is okay provided we don’t make the
angle “0” (theta) in Fig. 3 too close to 90°.

The advantage of the plane-parallel approximation is that we can
assume that the topmost layer of the photosphere is flat. This makes for
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Figure 3. Because the Sun’s photosphere is physically relatively
very thin, it can be represented with the “plane-parallel approxi-
mation,” which is shown here. We have, as before, our one meter
cube situated at a vertical depth “h” below the surface. Radiation
travels along the path of length “¢,” which makes an angle 6 to the
vertical direction.

simple trigonometry because any path length through the photosphere

»

“¢,” is given simply by
¢ =h/cos () (1)

The linear extinction coefficient will vary with depth in the photosphere,
but if we assume that it varies in the same way all over the Sun, then we
can in the current situation simply multiply its average value x by the
path length ¢ to get the optical depth 7,.

Tw=x x€=x xh/cos(0) (2)

But x x histhe optical depth straight up through the photosphere, which
we can call 7¢. Thus

7y = 19/ cos (0) (3)

So 74 of course will always be bigger than 7 for a given physical depth in
the photosphere. The flip side to this is that in order to go down to where
the photosphere has some given optical depth —say “1” — you need to go
to a greater physical depth, if your route is in the direction that is normal
to the plane of the photosphere, as shown in Fig. 4. This means that along
this direction, we are seeing deeper into the Sun, and these deeper layers
are correspondingly both denser and hotter. They thus appear brighter.
A careful study of limb darkening can actually enable astronomers to
determine temperatures within the photosphere.

Unfortunately limb darkening cannot be observed for all but a few dis-
tant stars. These “few” are eclipsing binary stars, where the effect of limb
darkening on one or both components manifests itself in the shape of the
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system’s light curve. A computer can be used to model the light curve
of an eclipsing binary system, based on physical parameters such as mass,
radius, separation of component stars, and also limb darkening. The most
famous and widely used eclipsing binary light curve modeling program
is that which was developed over many years by R. E. Wilson and E. J.
Devinney. This program is freely available on the Internet.

Top of photosphere

Bottom of photosphere

Figure 4. Paths A and B have the same optical depth, but as can
be seen, path A enables us to see down to a greater physical depth,
where the solar material is hotter, denser, and brighter. The result is
that the center of the Sun’s disk is the brightest part.

Because the photosphere is a layer of gas of finite thickness, its temper-
ature varies from around 4,500 K at the topmost layer to around 9,000 K
at the bottom, and the average photospheric temperature is that fairly
familiar figure of 5,800 K. An important point to note here is that because
the formation of absorption lines due to various chemical elements is very
temperature dependent, it means that different lines are produced in dif-
ferent layers of the photosphere. An old term — the reversing layer, which
suggests that all absorption lines are produced within one single layer — is
not used these days, though you may still come across it in the literature.
The photosphere itself in fact forms the lowest of the three layers of the
Sun’s atmosphere; above the photosphere, strange things happen.
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The Chromosphere

If the temperature continued to fall above the photosphere, then all that
these cool lofty gases would do is to strengthen slightly the absorption
lines that form in the photosphere itself. The effect would be small, too,
because the optical depth from the uppermost layer of the photosphere
all the way to the top of the Sun’s atmosphere is only of the order of 0.005;
so we’re dealing with stuff that is pretty optically thin.

However, both the middle and upper parts of the solar atmosphere are
emission-line regions, and this means that atoms within this material are
being ionized. In what we might call a more “familiar” kind of emission-
line region, such as a planetary nebula, photoionization by high-energy
ultraviolet photons does the job. However, it was realized many years ago
that the UV flux values from stars such as the Sun are insufficient to make
photoionization a significant “player” here. The other way to ionize a gas
is to raise its temperature just as Bunsen and Kirchoff did by vaporizing
chemical salts in a hot flame. This process is called thermal ionization,
and clearly some process must be pumping energy into the Sun’s upper
atmosphere to raise its temperature to at least 10,000 K. Above this tem-
perature, hydrogen atoms start to ionize.

The layer above the photosphere is seen famously as a thin red arc just
before and just after totality in a solar eclipse. This is the chromosphere,
which extends for about 10,000 km above the photosphere. The strong
red color of the chromosphere, caused by our old friend the Ha line at
6,563 A, suggests that the temperature is of the order of 10,000 K, and
indeed temperatures toward the top levels of the chromosphere are esti-
mated to reach around 20,000 K. Above the chromosphere, the so-called
transition region eventually gives way to the Sun’s corona, which extends
outward for several million kilometers. As we head toward the “roof” of
the solar atmosphere, temperatures themselves go through the roof to
the order of several million degrees. This is known because the highly
rarefied gases of the corona produce emission lines in the far ultraviolet
and even in the X-ray regions of the e-m spectrum. These lines are pro-
duced by heavier elements whose atoms have lost several electrons, and
such a high degree of ionization can only result here from exceedingly
high temperatures.

What causes the chromosphere and the corona to have such high tem-
peratures is still the subject of a great deal of debate. In the late 1940s a
perhaps rather unusual source of at least chromospheric, if not coronal,
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heating was suggested; this was acoustic waves — in other words, “sound
waves” coming from the photosphere.

Observations of the photosphere under very good seeing condi-
tions reveal a speckled appearance, called the “solar granulation.” Each
“speckle” is the top of a “blob” (professional astronomers do indeed use
the word “blob” in this context) of gas — also known as a convective cell —
which has risen up through the photosphere as a result of heating in a
lower layer. This process generates a great deal of turbulence within the
solar gases, which in turn generates acoustic waves. At the top of the pho-
tosphere, the falling density amplifies these acoustic waves as they travel
upward, and their energy heats the chromosphere as it dissipates.

How does an astronomer set out to detect the presence of sound waves
traveling up through the chromosphere, short of dangling a microphone
into the region and listening in?

In a transverse wave, such as the rope wave that we discussed in detail
in chapter From Light to Starlight, the motion of any point on the wave is
at right angles to the direction in which the wave is traveling. For acoustic
waves that travel through a gas, it is the gas atoms that move as the wave
moves along. In this case, though, each gas atom moves backward and
forward in the same direction in which the wave travels; as a result, an
acoustic wave is an example of a longitudinal wave. Instead of the crests
and troughs, which are the key features of a transverse wave, a longitudi-
nal wave consists of a regularly spaced series of alternating zones, where
the gas is denser than normal and more rarefied than normal, as shown
in Fig. 5. These zones are respectively called compressions and rarefactions,
and the distance between the centers of two neighboring compressions
determines the wavelength of the acoustic wave, though with acoustic
waves it is much more common to speak of the frequency, which just
as with transverse waves is equal to the wave’s velocity divided by the
wavelength.

Now imagine an acoustic wave traveling up through the chromo-
sphere, which itself is emitting, for example, Ha emission-line radia-
tion. This ascending acoustic wave will produce within the chromosphere
a series of compressions and rarefactions; in the compressions, the gas
atoms over a limited region will temporarily squeeze together, and the
resulting slightly higher density will slightly increase the brightness and
width of the emission line. By contrast when a rarefaction passes, the
atoms spread out slightly, lowering the local density and producing a
slight narrowing and drop in the brightness of the Ha line. So, in theory,
careful observation of emission lines in the chromosphere should reveal
regular variations in their brightness.
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Figure 5. In a longitudinal wave such as a sound wave, the gas
atoms oscillate backward and forward along the line in which the
wave is traveling. The result is a moving sequence of zones, where
the gas is denser than average (these are called compressions),
alternating with zones of lower than average density gas (these are
called rarefactions).

This process, which is illustrated in Fig. 6, is a very big simplifica-
tion of what are in fact very difficult and complex observations, which
also require very detailed analysis. However, such observations have been
carried out, and they do indeed suggest that acoustic waves are at least
partly responsible for heating the solar chromosphere. Many argue,
though, that acoustic wave heating is not in itself sufficient and that the
Sun’s magnetic field must in fact play a more dominant role, particu-
larly with regard to heating the gases in the corona. The acoustic wave
camp in turn argues that for smaller stars, which rotate relatively rapidly
and in which convection itself plays a much less significant role, mag-
netic fields may indeed be the dominant heating mechanism. However,
for large slower rotating stars such as red giants, acoustic wave heating
is more likely to be the key to chromospheric heating. This debate will
probably go on for some time yet.
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Figure 6. Acoustic waves, i.e., compressions and rarefactions
passing up through the chromospheres, cause slight variations in
the intensity and width of, for example, the Ha line. In reality, the
situation is much more complicated than what is depicted here, and
careful observations followed up with detailed analysis is needed
in order to unequivocally identify these variations.

Time now for a bit of a gear change. With distant Suns, we don’t have
the luxury of being able to study their atmospheres in anything like the
kind of detail provided for us by our own Sun. Yet by making use of the
simple kinds of observations described in chapter A Multitude of Magni-
tudes for the Colors of Starlight, together with the application of a bit of
physics, we can, as we’ll now see, discover some fascinating things about
what goes on in the photospheres of other stars.
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In chapter A Multitude of Magnitudes for the Colors of Starlight we didn’t
say too much about the U — B color index. It’s clearly a measure of
how much radiation is emitted by a star in the near ultraviolet part of
the spectrum, so its value would be negative for those stars that emit
more radiation at these wavelengths. As approximate blackbodies, we
would expect these stars to be very hot, and as a result we’d also expect
them to be very luminous stars. So in addition to seemingly being yet
another measure of temperature (we’ll see shortly, however, why this is
in fact not the case), the U — B color index should also serve as a mea-
sure of the luminosity of a star — another of these very important stellar
parameters.

So if we were to plot U — B against B—V for a sample of stars, we would
in effect be plotting the luminosity of each star against its temperature.
As we've seen, luminosity is related to a star’s absolute magnitude, and as
B -V is related to stellar temperatures, it is also related to the stellar spec-
tral classes. So we are essentially plotting a kind of HR diagram which,
because it involves plotting one color index against another, is referred to
as a color—color diagram. A plot of U — B vs. B—V is sometimes referred to
as the color—color diagram, and you may from time to time come across
other color—color diagrams involving other color indices (not necessar-
ily in the visible spectrum), which are used by astronomers to investigate
various regions of the continuum part of a star’s spectrum.

The first thing to do is to plot on the same diagram the U — B vs. B —
V colors for perfect blackbodies, together with those for main sequence
stars. This we have done in Fig. 7. The first thing to note is that the plot for
blackbody spectra is a smooth gentle curve — indeed, it’s not too different
from a simple straight line. The second thing is that the plot for real stars
generally falls below that for blackbodies. Some authors may adjust the
magnitude scales for real stars so that for example the color indices of
stars such as the Sun match those of a corresponding blackbody. This
then has the effect of raising parts of the color—color plot for real stars
above that for blackbodies.

Strictly speaking, however, the real star color—color plot will always fall
below the blackbody plot. What this is telling us is that the luminosity of
most stars as measured here by the value of U — B is lower than it would be
if the stars were perfect blackbodies. This is to be expected, because as we
can by now well appreciate that the non-blackbody nature of real stellar
spectra results from the simple fact that stars as emitters of radiation are
not as efficient as blackbodies. Aside from these two things, the plot for
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the main sequence stars looks a bit weird. With the help of a bit of physics,
though, this odd shaped U — B vs. B — V curve will teach us a great deal
about what’s going on within the photospheres of stars.
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Figure 7. The color—olor diagram from main sequence stars and

for blackbodies.
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A Photosphere Full of Hydrogen

Among the first things to be identified in the spectra of stars were absorp-
tion lines due to hydrogen. This means that the photosphere, or to be
more specific, its upper layers, must contain hydrogen gas, which is both
cooler and of lower density. It was also soon realized that the intensity of
the hydrogen absorption lines varied as one moved through the spectral
sequence; they start off by being fairly weak for the very hottest class O
and B stars and increase to maximum intensity at class A0. They then
progressively weaken as we move to cooler stars. What this tells us is that
the ability of hydrogen gas or, in other words, hydrogen atoms to absorb
radiation is very dependent on the temperature of the hydrogen gas itself.

A hydrogen atom like all atoms consists of a tiny nucleus, which con-
tains almost all of the atom’s mass and carries a positive electric charge.
Way out on the periphery of our hydrogen atom, there “lies” an elec-
tron, a tiny particle of very little mass but with a negative electric charge
equal in magnitude to that of the positive charge in the nucleus. So gen-
erally speaking our hydrogen atom is an electrically neutral atom. We saw
in chapter From Light to Starlight when we described the photo-electric
effect that it is possible for light (i.e., photons) with sufficient energy to
actually remove electrons from atoms. In general the process of remov-
ing electrons from atoms is called ionization (the end product is called an
ionized atom or simply an ion) and if it is light that does the ionizing, the
process is, as we saw in the previous chapter, called photoionization. This
process, however, does not produce hydrogen absorption lines.
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One of the most important discoveries to come out of the great exper-
imental work of Bunsen and Kirchoff was that absorption lines are not
distributed randomly across a spectrum. For any given chemical element,
and this includes hydrogen, of course, the individual lines have fixed
wavelengths that do not change. In 1885 the Swiss physicist and math-
ematician Johan Jakob Balmer was able to derive a formula that suc-
cessfully calculated the wavelengths of the absorption lines in the visible
spectrum of hydrogen; as a “reward” these lines are now known as the
Balmer lines.

Balmer’s formula was what is known in the trade as an empirical for-
mula, in that it involved the use of numbers that, at the time, really could
be regarded as “fiddle factors,” because their physical significance was
not understood. Balmer’s formula worked, though, and that was a step in
the right direction. In that same year of 1885, the Danish physicist Niels
Bohr was born, who some thirty or so years later gave physical meaning
to those empirical numbers in Balmer’s equation.

The fact that the Balmer lines (and indeed all absorption lines) have
wavelengths that are fixed means that hydrogen atoms like those of all
other chemical elements are only absorbing light of certain specific wave-
lengths. In other words, to produce absorption lines in a spectrum, atoms
can only absorb photons of very specific energies; they do not absorb
photons of energy “somewhere in between” these specific energies. We
know that a photon with sufficient energy will ionize the atom by remov-
ing an electron, and this, in fact, suggests very strongly that the whole
business of atoms absorbing photons involves the electrons and not the
nucleus. So if our hydrogen atom absorbs a photon of a specific energy
(thus contributing to one of the Balmer lines), the electron must have
gone from a state of lower energy to a state of higher energy.

The difference between the “before” and “after” states is equal to the
energy of the absorbed photon, but because the absorbed photons have
to be of very specific energies, it would seem very likely that the “before”
and “after” energy states for the electron itself must also have very specific
values. In other words, the electron in our hydrogen atom (and this
also applies to any electron in any atom) can only reside in very spe-
cific energy states within the atom (energy states are called energy levels).
Niels Bohr followed a more theoretical and of course a more rigorous
line of reasoning to reach the conclusion that electrons can indeed only
exist within atoms in certain specific energy levels. The exact nature of
these energy levels, including the energy that an electron has when it
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resides in one, is determined by the laws of quantum mechanics. This
can become pretty complicated for elements other than hydrogen, which
involve multi-electron atoms. For hydrogen, with its one single electron,
though, things are mercifully much simpler.
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The Ups and Downs

Every hydrogen atom has a set of discrete energy levels, in any one
of which its single electron can reside. Which energy level is occupied
depends on the energy of the electron itself, and to further facilitate
things, the energy levels are each given a number in order to identify
them. This number “n” is called the principal quantum number; n = 1
identifies the level in which the electron would have the lowest possible
energy within the atom. n = 2 corresponds to the next higher energy level
and so on.

A very important feature of the energy levels is that they are not equally
spaced in terms of the actual energy differences between adjacent lev-
els. The lower levels are relatively widely spaced in terms of these energy
differences; they then become increasingly more closely spaced for the
higher energy levels and finally merge together at the very limit of where
the electron can be said to be actually attached to the atom’s nucleus.
A higher energy than this means that the electron has in fact “escaped”
and so the atom has been ionized. The traditional way to represent the
energy levels in an atom is as a series of horizontal lines (rather like
shelves) on a diagram, where the bottom line represents the nucleus of
the atom and the top of the diagram represents the “outside world” away
from the atom. (This outside world is often referred to by physicists as the
“continuum,” and it should not be confused with the continuum part of
a spectrum.)

Making an absorption line is now quite straightforward; our hydrogen
atom sits there with its electron in one of the energy levels, and then along
comes a photon of just the right energy (wavelength), which gets taken
out (i.e., absorbed by “moving” the electron to a higher energy level).
Multiply this event many times within a vast population of hydrogen
atoms and a radiation field containing many photons of the right wave-
length, and lo and behold we have an absorption line. Which absorption
line we get depends, of course, on the two energy levels that are involved
in this particular electron transition. The Balmer lines all result from the
electron starting off in the n = 2 level; the transition from n = 2 to
n = 3 gives us the well-known Ha line at 6,563 A; that from n = 2 to
n = 4 produces the Hp line at 4,861 A; and so on.

Electron transitions that start from other levels give rise to other series
of hydrogen absorption lines. For example, transitions starting on the
bottom or n = 1 level produce the Lyman lines, which are visible in the
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ultraviolet part of the spectrum, and those starting on the n = 3 level pro-
duce the Paschen lines in the infrared. The relative layout of the hydrogen
energy levels and the main electron transitions are summed up in Fig. 8.
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Figure 8. This is how the electron energy levels in an atom
are represented. (Such “Grotrian” diagrams, as they are known,
for multi-electron atoms are much more complicated than that for
hydrogen, which is shown here.) Notice that the energy levels
crowd ever more closely together as we get nearer to the contin-
uum. The familiar Ha line transition at 6,563 A together with that
for the Lyman alpha or La line that was mentioned in chapter From
Light to Starlight are indicated. An upward arrow indicates absorp-
tion of a photon, with a downward arrow indicating corresponding
photon emission.

Finally, as they say, “What goes up must come down.” An electron that
has been elevated to a higher energy level will only stay there for a very
brief interval — something of the order of a one hundred millionth of a
second. It will then drop back down to a lower level, and in dropping it
emits a photon, quite possibly one of exactly the same wavelength as that
which was absorbed. For stars, however, there is a big difference between
the original absorbed photon and the subsequent emitted one. The vast
majority of the absorbed photons come from the deeper, hotter layers of
the photosphere, so they come predominantly from one direction. Had
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they not been absorbed at all, they would continue on their journey out-
ward to become part of the star’s continuous spectrum. The re-emitted
photons, on the other hand, are highly unlikely to head outward in the
original photons’ direction, and indeed they have a roughly 50% chance
of heading back down into the star itself. The net result is a deficit of
photons that are headed our way, and so we “see” an absorption line.
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The Ups and Downs of a

Now our hydrogen atom, together with all its buddies, actually finds itself
within the photosphere of a star. If the star is a relatively cool one, say, of
spectral class K or M, then the electrons for the most part will be in the
n = 1 — the lowest energy level. This is so because this is the “normal”
state for hydrogen atoms; to get the electrons into the higher energy lev-
els takes extra energy, maybe in the form of photons coming in from out-
side the atom or by raising the temperature. This means that in relatively
cool stars, there won’t be many hydrogen atoms with their electron in the
n = 2 level, which is the “starting point” for the formation of the Balmer
lines, and so the Balmer lines in the spectra of these stars are relatively
weak.

Now let’s raise the temperature of the photosphere; this means that our
hydrogen atoms together with atoms of other elements, too, are mov-
ing around faster. “Collisions” between atoms will take place that, pro-
vided the photosphere temperature is not too high, will not be energetic
enough to thermally ionize our hydrogen atoms, but they will carry
sufficient energy to “lift” those electrons from the n =1 level to the n =2
level. This process is called thermal excitation or collisional excitation. By
the time the temperature reaches 10,000 K the n = 2 energy levels of
our vast population of hydrogen atoms are themselves maximally popu-
lated. These atoms are now primed and ready to absorb incoming Balmer
line wavelength photons (one should probably use here the expression
“upcoming,” because most of these photons are coming from the deeper,
hotter layers of the photosphere).

Stars of spectral class A0 have a photospheric temperature of around
10,000 K, and these stars do indeed have the strongest, darkest Balmer
lines in their spectra. With increasing photospheric temperatures,
increasing thermal excitation makes the electrons migrate further up the
energy levels, and so the Balmer lines weaken for spectral classes B and O.
For the very hottest photospheres most of the hydrogen atoms are ion-
ized, and so only weak absorption lines can form.

A hydrogen atom whose electron is in the n = 2 level will be ionized
by a photon whose wavelength is either equal to or shorter than about
3,647 A. This wavelength is in the near ultraviolet part of the e-m spec-
trum, which means that the radiation field within the photospheres of rel-
atively cool stars won’t contain so many of these kinds of photons. Very
hot stars will produce large numbers of these photons, but their pho-
tospheres don’t contain so many hydrogen atoms with electrons in the
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n = 2 level. With spectral class A stars, though, conditions are just right.
These are relatively hot stars, so there are plenty of the right kind of pho-
tons, and as we’ve seen their photospheres contain large supplies of level
n = 2 hydrogen atoms. This situation has the potential to take out not
just individual wavelengths in the visible spectrum but a whole swathe of
the near ultraviolet continuum.

There’s a peculiar thing about quantum mechanics (just one of many
peculiar things, in fact), which is a bit like a resonance effect, whereby,
for example, a bridge can be made to sway or vibrate as a result of peo-
ple walking across it in step and with just the right rhythm. A popula-
tion of level n = 2 hydrogen atoms will absorb photons of the critical
wavelength 3,647 A in vast numbers. As we move away from this value to
shorter wavelengths, the number of absorbed photons falls off and even-
tually peters out. The effect of this absorption on the spectrum is to “cut
out” a saw tooth-shaped depression in the near ultraviolet continuum.
At 3,647 A the continuum drops abruptly to produce what is known as
the Balmer discontinuity or sometimes simply the Balmer jump; the con-
tinuum then recovers as we move further into the ultraviolet. As we’ve
seen, conditions within the photospheres of stars, which are both cooler
and hotter than class A0 stars, have fewer n = 2 level hydrogen atoms in
their photospheres, which makes them less suitable for the Balmer jump
to form, so this feature becomes less prominent.

On the other hand, stars hotter than class AQ will have more hydro-
gen atoms with the electron in the #n = 3 level, and this can give rise to a
“Paschen jump” at 8,212 A in the infrared, which itself affects the visible
part of a star’s spectrum. These two jumps are shown in stylized form in
Fig. 9. So the jumps or discontinuities that are associated with series of
spectral lines can affect a whole region of a star’s continuous spectrum,
making it differ, perhaps significantly, from that of a blackbody spectrum.
Indeed the presence of other chemical elements in the outer layers of stars
can give rise to an assortment of jumps that, in turn, depending on con-
ditions of temperature and the relative abundance of said elements can
also affect stars’ continuous spectra.

The presence of the Balmer jump in stellar spectra can immediately
sort out a problem we encountered in chapter A Multitude of Magnitudes
for the Colors of Starlight.
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Figure 9. This shows in stylized form the effect of the Balmer
jump on the near ultraviolet continuum of a star’s spectrum and
the corresponding effect on the optical continuum of the Paschen
jump. The dotted line represents the corresponding spectrum of a

blackbody.
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When we tried to estimate the temperature of Vega by using Wien’s law,
our result fell a long way short of Vega’s accepted effective temperature
of 10,000 K. Let’s actually try plugging this temperature into the Wien’s
law equation to see what the wavelength of maximum emission for Vega
should be. For an effective temperature of 10,000 K this wavelength of
Amax 1N angstroms is given by

Amax = 2.8973 x 107 /10,000 (4)

This is equal to 2,897.3 A, which puts it well within the Balmer discon-
tinuity zone. The observed spectrum of Vega appears to peak at around
4,200 A; remember, though, Vega is a spectral class A0 star, which means
that its spectrum contains the strongest Balmer lines. These lines crowd
together as we approach the Balmer jump wavelength of 3,647 A, and this
is a consequence of the merging together of the higher energy levels in the
hydrogen atom. These merging Balmer lines cause what should have been
astill increasing continuum level to fall away instead, and then the Balmer
jump itself finishes the job. So the whole top of the continuum part of
Vega’s spectrum has been taken out by virtue of Vega’s photosphere and
those of stars like it, having just the right conditions of temperature in the
presence of the right kind of radiation field. This is shown dramatically
in Fig. 10.

There is a final footnote here, too; the presence of the Balmer jump
means that for many stars the “U” magnitude is not actually representa-
tive of what we would expect. More specifically the temperature of these
stars is not reflected in the emitted flux values over the “U” wavelength
region, and so the U — B color index itself cannot be used as an indicator
of a star’s temperature.
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Figure 10. The spectrum of Vega in the blue and near ultraviolet
region. This dramatically shows how what would otherwise be a
much higher emission maximum at a shorter wavelength is in effect
eroded by increasingly closely spaced Balmer absorption lines and
finally by the Balmer jump itself, to leave a very much reduced near
ultraviolet continuum. (Spectrum reproduced from the STELIB library
of the Laboratoiire Astrophysique de Toulouse by kind permission
of Jean Francois LeBorgne.).
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Return to the Color-Color

Another thing that we mentioned in chapter A Multitude of Magnitudes
for the Colors of Starlight was the choice that Johnson and Morgan made
for the wavelength regions covered by the standard U and B filters in their
photometric system. These two filters in fact cover wavelength regions
that sit on either side of the Balmer discontinuity. The consequence of
this is that whereas the B magnitude (and indeed the V magnitude too)
of a star generally changes quite smoothly with the star’s effective tem-
perature, the U magnitude varies in a more complicated way because of
the effect of the Balmer jump. This in fact can help us make sense of the
weird U — B vs. B—V plot in Fig. 7.

For the very hottest stars, there is virtually no Balmer jump, because
most of the hydrogen atoms in the photosphere are ionized, and the U
magnitude for these stars “shines at full strength,” giving a U — B value
very close to that for a blackbody. As we head toward spectral class A,
though, the increasing Balmer jump weakens the U magnitude by much
more than would result from a simple fall in temperature. The result
is that the value of U — B becomes less negative more rapidly than it
does for blackbodies, and so the plot for the stars falls way below the
blackbody plot.

At spectral class A0 the Balmer jump has its maximum effect on the
U magnitude, but as a result of a dropping photosphere temperature,
which itself weakens the “U” flux, the plot continues to fall for a while and
eventually “bottoms out” at around spectral class A5. Now the diminish-
ing effect of the Balmer jump enables the “U” region of the continuum
to recover and so the U — B color index heads back toward the black-
body value. Beyond spectral class F5 the falling photospheric temperature
means that the strength of the “U” region of the continuum continues to
weaken, and so this recovery cannot be maintained.

There are a couple of other processes, too, which begin to have their
effect as we move to cooler stars. One of these comes from the “trace” of
chemical elements other than hydrogen and helium that exist within stel-
lar photospheres. One point where astronomers differ from chemists is
that they refer to all elements other than hydrogen and helium (and often
to all elements other than simply hydrogen itself) as metals. As we move
through the periodic table of the elements, atoms of these metals incor-
porate increasing numbers of electrons, which are themselves distributed
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(according to the rules of quantum mechanics) among a range of lower
and higher energy levels. These multi-electron atoms are capable of pro-
ducing various series of absorption lines, depending in part on the abun-
dance of a particular element within a star’s photosphere but more so, on
the prevailing temperature.

At the high temperature end of the spectral sequence, atoms of met-
als are multiple-ionized; in other words, they have had the outer elec-
trons removed by both ultraviolet photons and by thermal ionization.
The remaining electrons, for the most part, reside in the lower energy
levels, which require photons of high energy just to excite them to higher
levels. This puts them way out of reach of the lower energy photons of the
visible part of the spectrum, and so for the hottest stars, this appears as
a relatively smooth, clean continuum save for weak Balmer lines and also
lines due to helium.

By contrast, the ultraviolet spectra of very hot stars contain many more
absorption lines. With decreasing temperatures in the photosphere the
metal atoms progressively “regain” their outer electrons, which can be
made to undergo electron transitions by absorbing both visible light pho-
tons and photons in the near ultraviolet (i.e., the “U” band), too. So this
increasing number of absorption lines due to metals helps to keep the
U — B color index depressed, relative to that for a blackbody.

Finally, at the cool, i.e., spectral, class M end of the sequence, tempera-
tures are low enough for simple molecules and “part molecules” (what
chemists call “radicals”) to exist. These entities produce vast numbers
of sets of absorption lines that crowd together to form bands that can
“conspire” to knock out whole chunks of the continuum (including the
near ultraviolet), an effect known as “line blanketing.”

The other effect involves our old friend the hydrogen atom again. As
if just to make life interesting, our hydrogen atom is capable of attracting
and barely holding onto an extra electron. This “intruder” can be thought
of as occupying a very high energy level within the atom, so that very little
energy is required to remove it. It thus follows that this so-called negative
hydrogen ion (written in the literature as “H™,” the minus sign indicating
the presence of an extra negatively charged electron) won’t survive for
very long within the photosphere of a hot star, but it can positively thrive
in the photospheres of cooler stars. Because it doesn’t take photons of
much energy to remove the extra electron (the term used in this case
is photo dissociation rather than photoionization), its most significant
effect is to absorb photons in the infrared part of the spectrum. However,
given a high enough population density of negative hydrogen ions, their
absorbing capabilities can easily extend across the visible and into the
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near ultraviolet, thus further weakening the already low “U” flux levels
for the cooler stars. The overall result is that the value of the U — B color
index is kept below what it might otherwise be, even for the cooler stars,
though the effect is not as dramatic as that produced by the Balmer jump
at the high temperature end of the spectral sequence.
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We have seen that a lot can happen in the atmosphere of a star, and
much of it causes the overall spectrum of a star to differ from that of a
perfect blackbody. The ultimate goal of the stellar astronomer is to pro-
duce a model atmosphere for a star, into which various parameters such
as temperature and absorption coefficient/opacity for a whole range of
wavelengths together with the chemical composition of the star can be
entered. The idea then is that the spectrum that would be produced by
such a model atmosphere can be made to match as closely as possible
the observed spectrum of a star and hopefully, as a result yield valuable
information about the star itself.

This is not an easy task. One technique is to effectively represent the
photosphere as a series of concentric shells, whose effective temperatures
and densities increase with depth. This means, for example, that different
absorption lines can be better modeled by having the appropriate absorp-
tion coefficient vary with depth in the photosphere. The most serious
(and brave) amateur spectroscopists may wish to venture down this road,
in which case they should consult more advanced texts. Good luck!
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The photosphere of a star is the principal source of both the contin-
uum and the absorption lines in the star’s spectrum.

The Sun’s photosphere extends to a physical depth of about 450 km.

The effect of the photosphere’s optical depth means that we can see to
a greater physical depth at the center of the Sun’s disk than in the limb
area; this results in the well-known limb darkening effect.

The Sun’s chromosphere comprises the middle part of the Sun’s atmo-
sphere; it is both hotter and less dense than the photosphere and pro-
duces an emission-line spectrum.

The prevailing (though not conclusive) theory is that the chromo-
sphere is heated by acoustic (sound) waves traveling upward as a result
of convection processes in the photosphere.

The color—color diagram plots the U — B color index against the B—V
index for stars. It provides a vivid illustration of how stars differ from
blackbodies when plotted alongside the blackbody color—color dia-
gram.

One of the principal causes of continuum absorption in modestly hot
stars is the ionization of hydrogen atoms by higher energy photons.
This results in a saw tooth-shaped region of the near ultraviolet con-
tinuum being removed. This is called the Balmer jump.

Other processes, such as jumps from heavier elements, the negative
hydrogen ion, together with increasing numbers of absorption lines
and bands for cooler stars serve to further “degrade” a star’s spectrum
from that of a blackbody.

Professional astronomers develop and use “model atmospheres” as a
means of matching model stellar spectra to real spectra in order to gain
information on the structure of and conditions within a star’s atmo-
sphere.
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The great majority of astronomers, both amateur and professional, would
probably agree that the most interesting part of the Hertzsprung—Russell
diagram is the bit that lies above the main sequence. Here we find most
of the intrinsically variable single stars, and what’s more, the light vari-
ations of these stars are largely due to things that are going on beneath
their surface layers. In some cases, for example, with Cepheid variable
stars, the process is now fairly well understood, but with the red giant
variables, such as Mira-type stars and semi-regular variables, the situa-
tion is much less clear. Professionals are using supercomputers to model
the kinds of things that go on in the vast envelopes of these stars, but
here, perhaps, more than anywhere else, the role of amateur variable-
star observers, who make regular observations of these stars, is pivotal in
furthering our understanding of what goes on in the upper right-hand
corner of the HR diagram.

By contrast, most stars, particularly those that lie along the main
sequence of the HR diagram, are not only stable but very stable for very
long periods of time. For example, geological evidence suggests that the
Sun has been shining in more or less the same way for the past 4 billion
years or so. Stable main-sequence stars represent the stellar astronomer’s
level playing field, and clearly it pays to know what it is that makes a star
stable in order to better appreciate what can make it unstable. The chief
problem here, though, is that unlike the photosphere, there is no way to
directly observe the interior of a star.

Recent work involving certain analytical techniques used by seismolo-
gists has enabled astronomers to detect oscillations in the surface layers of
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stars; these oscillations are then used to investigate the internal structure
of stars.

This area of research, which is called asteroseismology, clearly holds
great potential, but generally, astronomers have to use the laws of physics
together with what data are available to construct theoretical models of
stars, whose “observational properties” can be compared to those of real
stars. Central to this are the equations of stellar structure, which we shall
explain here without going into the mathematical details of the equations
themselves. In fact, the whole business regarding the internal structure of
stars has quite a lot to do with physics, but as always a little bit of physics
brings a big payoff in understanding the astrophysics.
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Stars are vast globes of hot gas — indeed, even the very coolest stars are
far too hot for any part of them to exist in liquid or solid form. Because
of these high temperatures, most of the material that makes up a star
is in the form of atoms, which are either totally ionized (they have lost
all their electrons) or at least very highly ionized. This mix of bare or
almost bare atomic nuclei, together with vast numbers of free electrons,
constitutes a type of gas called a plasma. Stars are, in fact, plasma balls.
So, in order to understand how a star works, we need to investigate the
properties of a hot gas itself, and this means having a look at the part
of physics that deals with heat and temperature. In fact, we’ll see in this
chapter how it will enable us to understand, for example, how a Cepheid
variable star pulsates and why enormous convection currents exist within
the envelopes of red giant stars, and of course it will also tell us why most
stars, including our own Sun, remain stable for very long periods of time.
First, though, let’s establish a few basic facts about gas.

A volume of gas such as exists within a room will contain a vast popu-
lation of atoms and molecules and, as just stated, a volume of gas within
a star will consist of atomic nuclei and free electrons. So, in any gas, we’re
talking about atomic and subatomic particles whose physical dimensions
are very tiny compared with the volume that the gas occupies. The fact is
that in a gas, these particles are free to move around and to cover distances
that are large compared with their size.

By contrast, the movement of particles that make up a liquid is more
restricted, and for a solid, it is very restricted, simply because the particles
are spaced much closer together. The simple fact that the particles in a gas
do move around means that they have energy; physicists call this type of
energy kinetic energy, and in fact, the study of the physical properties of a
gas is often referred to as the “kinetic theory of gases.”

In any volume of gas, the particles will have a range of speeds, but
the average speed is what effectively fixes the temperature of the gas; the
higher the average speed the higher the temperature. So the temperature
of a volume of gas is really a measure of its energy content. This idea
is formalized in what’s known as the first law of thermodynamics, which
essentially just says that heat is a form of energy. This form of energy
makes the inside of a star a very interesting place, but in order to appreci-
ate this, we shall do some thought experiments using just the above basic
facts, together with a simple cylinder of gas.
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From a Cylinder of Gas to the

Our “equipment” consists of a cylinder containing the experimental gas,
with a movable piston that, though completely frictionless, is nevertheless
completely gas tight, as shown in Fig. 1.

piston

cylinder

Figure 1. The “standard apparatus” used to explain basic pro-
cesses in the physics of heat and thermodynamics — a cylinder
containing gas together with a movable piston that is completely
frictionless but is also perfectly “gas tight.”

The first thing to note is that the gas within the cylinder must be sup-
porting the weight of the piston plus the weight of the outside air above
it. If it did not, then clearly the piston would fall further down the cylin-
der. What in effect keeps it suspended is the combined effect of a huge
number of gas particles, constantly colliding with and rebounding off the
piston’s underside. One particle, despite moving with what may amount
to a pretty high speed, doesn’t deliver much of a “punch,”but multiply
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this many billions of times, and the gas in our cylinder can exert enough
force to keep the piston in its place; this process is shown schematically in
Fig. 2.

Weight of
Piston + air
above

Figure 2. The vast population of atoms in a volume of gas are
constantly colliding with their surroundings, which results in the gas
itself exerting a force called the gas pressure, or just simply the
pressure. This is defined as the force exerted on each unit surface
area of the surroundings. Here the pressure of the gas in the cylin-
der supports the weight of both the piston and the air above it.

If the surface area of the piston happens to be one square meter, then
the force exerted by the gas on it is called the gas pressure, or just the pres-
sure. One thing that immediately follows from this is that if we raise the
temperature of the gas, then the particles would be moving around with
higher speeds, which would result in more force, i.e., a higher pressure
being exerted on the piston. So increasing the temperature of a volume of
gas will increase the gas pressure.

For our next experiment, we shall compress the gas, and we could do
this, for example, by adding some extra weight to the piston. The gas
pressure in the cylinder can no longer support all of this weight, and so
the piston falls, and as it falls, the particles in the gas will pick up some
energy from the moving piston. This raises the average speed of the gas
particles and so the gas temperature increases; this in turn raises the gas
pressure.
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Something else is happening, too; by compressing the gas, we are con-
fining the same number of gas particles to a smaller volume. In other
words, we have increased the density of the gas. This results in more “hits”
by gas particles against the underside of the piston in a given interval of
time, which again results in the gas exerting a greater pressure. So raising
the density of a gas also increases the pressure. Eventually, as a result of the
increased pressure, the gas can support the extra weight, whereupon the
piston stops falling. Our conclusion, then, is that if you compress a gas,
the temperature, the density, and, as a result, the pressure all increase.

The reverse operation is to remove the extra weight on the piston. Our
gas now has more than enough pressure to support just the piston plus
air, and so the surplus pushes the piston back up the cylinder. In this sit-
uation, work is being done by the gas in moving the piston; doing work
means using energy, and this is supplied by the motion of the gas parti-
cles. The result of using energy is that the gas particles lose energy; they
slow down, and so the gas temperature falls. In addition, the density falls
as the volume of the gas increases. Our next conclusion, then, is that if a
gas expands, it cools down and the pressure falls. These experiments are
shown schematically in Fig. 3.

We’ll be coming back to our cylinder of gas several times, but what
we know now enables us to understand at least in a qualitative way the
equations of stellar structure. But because we won’t be dealing with actual
“equations” as such, we can also refer to them here as the principles of
stellar structure.
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(b)

Figure 3. In a, we add an extra weight to the piston. The gas
pressure in the cy|inder can now no |onger support the weigh’r, and
so the piston falls. This increases both the temperature and density
of the gas, which results in increased gas pressure, and the piston
stops falling. In b, we remove the extra weight; the gas now has
a surplus of pressure, which forces the piston back up. The gas
uses energy to do this; it expands, the temperature, density, and
pressure all fall, and the piston stops rising.
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A star consists basically of three parts: the core, where as we shall see
later all of the star’s energy is generated; the envelope, which makes up
the bulk of the stellar material; and the surface layers, particularly the
photosphere, which is the only part of a star that can be directly observed.
One of the very first things that we tend to learn about stars is that for
the most part they are stable and that this is the result of a more or less
perfect balance between gravity, which is holding the star together, and
the thermal energy, which makes the star shine, trying to blow it apart.
The correct physics term for when two seemingly opposing forces are in
balance like this is that they are in equilibrium.

So a stable star is in a state of equilibrium, as shown schematically in
Fig. 4. The equations, or in our case, the principles of stellar structure,
essentially put the flesh on the bones of this basic idea. In doing so, they
describe the basic physical properties of stars and how these properties
change, as we go from the surface layers to the very heart of a star. In the
hands of the professionals, these equations are used to construct theoret-
ical models of stars in order to predict their “observational properties.”
These can then, of course, be compared with real observations, which in
turn test how good the models are. They are also used to study the way
in which stars evolve. Most amateur astronomers are not likely to have an
urgent need to do serious work on the equations of stellar structure, but
an understanding of what they tell us is clearly a valuable insight into the
way that stars work.

There are four main equations (principles) of stellar structure, and
these involve the important numbers of the kind that we have already
talked about — namely, the temperature, mass, luminosity, and also the
pressure within a star. In particular, they describe how these impor-
tant quantities change as we move from the stellar core to the sur-
face layers. There are also three sorts of supplementary equations that,
among other things, give further information on the pressure within
a star.

To avoid having to deal with the inevitable complications (these are
always left for the really smart guys, anyway), the stars that we are deal-
ing with are assumed to be perfectly spherical and non-rotating; adopting
this simplification means that the important quantities depend only on
the distance from the center of the star. Here, then, are the most impor-
tant things that you need to know about stable stars.

1. Continuity of mass — This encapsulates the fundamental premise
that gravity holds a star together, and, being an attractive force, it means
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Photosphere

Envelope

Thermal energy Thermal energy

Figure 4. The parts of the “basic star,” which is in a state of
stable equilibrium between gravity trying to make the star collapse
and thermal energy trying to push it apart.

that aside from local minor irregularities, the mass of a star is concen-
trated toward its center. One obvious consequence of this is that the
density of the stellar material decreases, as the distance from the cen-
ter increases, and what’s more this is a steady decrease. This density
gradient is described more precisely by the mathematical form of this
principle.

As an example of the kinds of numbers that we are dealing with, the
average density of the Sun is around 1,400 kg/m® — almost one and a
half times the density of water. The density gradient equation, however,
shows that this ranges from around 1.6 x 10° kg/m? at the center to more
or less zero at the top of the photosphere. Other types of stars will, of
course, have a different density distribution, but central densities will be
very large for all stars. It often turns out, though, to be a good approx-
imation to assume that the entire mass of a star is concentrated at the
center.
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2. Hydrostatic equilibrium — This is the one that explains in more
detail the balance between the gravity and the thermal energy, and
we ourselves can understand this better by returning to our cylinder
of gas.

This time, we have a modified cylinder of gas, which has two pistons
and thus two compartments containing gas, which we have called “gas 1”
and “gas 2,” as shown in Fig. 5a. Remember, the pistons are totally gas
tight, so that these two volumes of gas are isolated from each other. We've
also called the gas above the cylinder as “gas 3.” The pressure of gas 2
supports the weight of the upper piston plus that of gas 3, whereas the
pressure of gas 1 has to support the weight of both gas 2 and gas 3, plus
the weight of the pistons. This is more weight, and so clearly the pressure
of gas 1 has to be greater than that of gas 2.

Now have a look at Fig. 5b; instead of a cylinder of gas, we have a col-
umn of gaseous stellar material, extending all the way from the stellar
core to the star’s surface. The two pistons are gone, of course, and while
the gas within the volumes, which we have again labeled as gas 1, gas
2, and gas 3, might well be free to mix, remember we’re dealing with a
stable star here, and this means that from one moment to the next things
essentially do not change. This, in turn, means that if we take a “snapshot”
of the situation at some particular moment, then we effectively have three
separate volumes of gas.

As with the cylinder experiment, gas 1 has to support the weight of
both gas 2 and gas 3, whereas gas 2 only needs to support the weight of
gas 3. So clearly the pressure at the base of gas 2 must be greater than
that at the top of gas 2 in order to maintain this state of equilibrium.
Another way of stating this is to say that there is a pressure gradient in the
radial direction, running from the center of the star to its surface. It is
this pressure gradient which keeps the star inflated (by exactly the right
amount), to prevent the star from suffering gravitational collapse.

As with the previous principle, the corresponding equation describes
the pressure gradient more rigorously. Astronomers can use this idea to
show that the pressure at the center of a star such as the Sun is at the very
least around 5 x 108 times the atmospheric pressure here on Earth.

On a final note here, for most stars, the thermal energy that supports
the star comes from the gas pressure, i.e., the kinetic energy of the parti-
cles in the stellar material. For very hot stars, a significant contribution to
the thermal energy comes from the energy of the radiation itself. Remem-
ber from chapter From Light to Starlight that photons carry energy. This
energy enables the radiation field within the star to exert its own pressure,
which not surprisingly is called the radiation pressure.
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Figure 5. This illustrates the principle of hydrostatic equilibrium
in a stable star. On the left, we have a cylinder with two gas com-
partments separated by two pistons. Gas 1 has to support more
weight than gas 2, and so the pressure here must be greater. On
the right, we apply this idea to a volume of gas in a stable star. The
pressure P2 at the top face of gas 2 supports the weight (W3) of
the column of gas above it, whereas the pressure (P1) at the bot-
tom face has to support this plus the weight (W2) of gas 2. For this
situation fo remain stable, P1 must be greater than P2, and in fact
there has to be a pressure gradient running not just through the
volume of gas 2 but through the entire star from center to surface.

3. Thermal equilibrium — This is necessary to (if you’ll pardon the pun)
prop up the principle of hydrostatic equilibrium. The most obvious thing
about stars is that they shine, and in so doing radiate energy. It is this
energy that maintains the aforementioned pressure gradient, and because
it is ultimately lost in space, it has to be continually replenished in order
to maintain the status quo.

Recall that the Sun is losing energy at a rate of almost 4 x 10%° Wj this
tells us immediately that the Sun must also constantly generate energy at
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this rate, and incidentally the figure itself points the way in finding what
kind of energy source can do this. As we shall see later, physical condi-
tions such as density and temperature within stars are such that all of the
energy is generated within the central core; there is no actual energy pro-
duction within the greater part of a star’s envelope. This means that the
luminosity of the star gradually builds up, as we move outwards from the
center of the stellar core, but then levels off as we move through the enve-
lope. Once again the corresponding equation of stellar structure gives a
more rigorous form to this luminosity gradient.

4. Energy transport — In order for the energy production within the
core of a star to do its job, the energy has to be able to get out through
the envelope to maintain the pressure gradient and thus maintain
stability.

What actually drives the transfer of energy through a star is the sim-
ple fact that a star is hottest at the center and falls (there is a temperature
gradient) as we move outward toward the star’s surface. This principle in
equation form describes what determines a star’s temperature gradient.
The surface temperature of the Sun is the familiar 5,800 K at the photo-
sphere, but rises to around 15 million degrees at the center.

There are three processes by which energy, which is generated in the
stellar core, can move through the envelope to the photosphere, and the
fact is that whichever of these processes proves to be the most efficient
means of doing this will be the dominant process. Thus conduction, which
works particularly well on many solid materials such as metals (as you’ll
unpleasantly discover if you leave a metal spoon in a pan of boiling water
and attempt to pick it up some minutes later with your bare hands), has
very little part to play within the gaseous “world” of stellar interiors. The
exception is in white dwarf stars and neutron stars, where densities are
exceptionally high, resulting in almost no free movement of atomic par-
ticles, except for electrons in their outer layers. It is the movement of free
electrons in metallic solids that transfers heat energy in the same way as
it does in these extreme stars.

Transport of energy by radiation is just what it says; the energy that
a star generates is initially in the form of gamma radiation. These high-
energy photons gradually work their way through the stellar envelope by
being absorbed, re-emitted, and scattered countless times by the particles
in the stellar plasma, particularly by electrons, because these very much
outnumber the atomic nuclei. These kinds of photon—particle interac-
tions, which result in free electrons (i.e., they are not bound within
atoms) gaining or losing energy, are called free—free transitions. At every
photon—particle event, the original high-energy photon is gradually bro-
ken down into increasing numbers of low-energy photons, which finally
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emerge from the photosphere an estimated 30,000 years after their parent
gamma ray was produced. The sunlight that warms your day is very old
indeed.

Within a star, where energy transport is by radiation involving free—
free transitions, there is a very simple formula for the opacity « of the
stellar material, which is shown in Equation (1). We are already familiar
with this quantity from chapter The Photons Must Get Through — Radia-
tive Transfer where, you will remember, it is used to calculate how much
radiation is absorbed and how much survives to pass through intervening
material.

K = Ko X % (1)
Here « is just a number whose value depends on the composition (i.e.,
the presence and quantity of heavier elements) of the stellar material;
p(rho) is the density of the material, and T is the temperature. The
important thing about this formula is that while opacity increases with
increasing density, as one would expect, it is in fact very much more crit-
ically dependent on the temperature. The fact that the equation involves
the temperature raised to the power 3.5 means that a relatively mod-
est rise in temperature will result in a significant drop in the opac-
ity. This equation, which is called Kramers’ law, named after the Dutch
astronomer Henrick Kramers who derived it in 1923, will play a key role
when we look at how some stars pulsate.

Energy transport by radiation works best and is indeed the dominant
process in stars when the temperature gradient through the star is not too
great and also provided that the stellar material is not so opaque as to seri-
ously inhibit the steady flow of radiation through it. Both of these things
can happen in stars, and when they do, radiation simply cannot shift the
energy fast enough. The result is that the third energy transport mecha-
nism, convection, becomes dominant. This involves large volumes of gas
becoming less dense than their surroundings, until they become buoyant
and rise upwards, whereupon they cool off, become more dense, and sink
back down into the depths. Convection turns out to be a horrendously
complex process to describe and model mathematically, but among other
things, it almost certainly holds the key for understanding red giant stars.
Later, we’ll have a very elementary look at convection (aided again by our
trusty cylinder of gas).

These, then, are the four main principles or equations of stellar struc-
ture; in mathematical form, they basically describe how mass, pressure,
luminosity, and temperature change as we move from the center of a star
to the surface, and this is a good place to show graphically how these
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fundamental quantities vary, for example, inside a star such as the Sun,
as shown in Fig. 6a—d.
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Figure 6. Here the equations of stellar structure have been used
to show how the density, pressure, luminosity, and temperature
chonge from the center of the Sun to the pho’rosphere. The impor-
tant thing to note is that all of these plots show a smooth, steady
variation, with no anomalous bumps or wiggles.
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There are, in addition, three “supplementary” equations, which give
the actual value of the pressure within a star, in terms of the tempera-
ture, density, and also the chemical composition of the stellar material.
For the most part, stellar material consists of hydrogen and helium with
just a trace of heavier elements. Even so, the degree to which hydrogen
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and helium alone are ionized significantly affects the gas pressure. This
particular equation is usually referred to as the “equation of state.”

The second of these equations gives the opacity or the extinction coef-
ficient k of the stellar material — in other words Kramers’ law, which we
introduced above. This equation is crucial for describing how radiation
travels through a star, and the real difficulty for professional astronomers
here is that, in order to achieve the “big picture” in constructing
theoretical models of stars, it is necessary to know the value of « for
every wavelength. This involves in each case determining the value of
in Equation (1), which in turn depends on the chemical composition of
the stellar material and also on the presence and abundance of different
ions. The final equation basically gives the quantity of energy that is gen-
erated by each kilogram of stellar material every second, and this is really
all about what’s going on at the stellar core.

The equations of stellar structure serve among other things to explain
why stars remain stable for long periods of time. However, as any
astronomer, amateur or professional, knows, the interesting stars are
those that are not stable, and there are many processes that can make
a star unstable. Some of these involve the envelope, while others involve
changes within the stellar core. We’ll look at changes in the core in chapter
A Star Story — 10 Billion Years in the Making, but here we’ll look at how
disturbing one of the equations of stellar structure can make a star inter-
esting. First, though, it’s back to our cylinder of gas.
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From a Cylinder of Gas to Stellar

When we added extra weight to the piston in our cylinder of gas, the
piston fell, compressing the gas, but as we’ll now see, there’s a little bit
more going on in this experiment, and here the details are everything. We
add the weight to the piston and the piston falls, compressing the gas; the
energy picked up by the gas atoms, together with the increased density,
enables the gas to exert a greater pressure on the piston, until it is able
to support the total weight of the piston plus extra weights. However, in
addition to simply supporting this new load, the pressure exerted by the
gas has to actually bring the piston plus weights to a complete stop, and
this results in the gas being compressed just an extra bit more.

When the piston has stopped, the gas finds itself with an extra bit of
pressure — enough to push the piston back up a little bit higher than its
rest position. The gas pressure has now dropped a little below that needed
to simply support the weight of the piston, so the piston comes back down
again until the increasing gas pressure stops it again, and so this goes on
effectively ad infinitum. In other words, the piston oscillates about the
position where it would be if the gas pressure inside the cylinder were
just supporting its weight.

What has happened is that the actual motion of the piston, irrespec-
tive of its weight, has given that extra bit of energy to the gas, and the
resulting addition to the gas pressure enables the gas to make the piston
oscillate. In other words, the gas inside the cylinder is itself now oscil-
lating about a mean value for its density, its pressure, its volume, and
even its temperature; it is pulsating. This sequence of events is depicted in
Fig. 7a—f.

Finally, if we removed the extra weights on the piston, the same kind
of thing would happen. The pressure of the gas would push the piston
back up the cylinder, but the motion of the piston would carry it a bit
higher than where the now reduced gas pressure could simply support
the piston’s weight, so the gas is now kind of “overstretched.” The piston
thus drops and ends up a little below the equilibrium position and once
more starts to oscillate.

In this more detailed experiment, we have ensured that our cylin-
der/piston apparatus has been a perfect insulator, which means that no
heat energy is allowed to seep through the walls of the cylinder or the pis-
ton. Remember, in addition, the motion of the piston within the cylinder
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This sequence shows in more detail what happens

when we add extra weight to the piston in our cylinder of gas. In

each case,

the horizontal dashed line represents the position where

Figure 7.



Deep Inside a Star 'I9§.

is perfectly frictionless, so that no energy can be wasted in making the
piston scrape against the cylinder walls.

Finally, we have assumed that the very gas atoms themselves are per-
fectly elastic. This means that when they collide with the walls of the
cylinder and against the face of the piston, they do not lose energy in heat-
ing up the material out of which the apparatus is constructed. In this ide-
alized thermodynamic universe, where we can have no transfer of energy
either into or out of the volume of gas, the compressions, expansions, and
pulsations the gas undergoes are called adiabatic.

In the real world, which of course includes the real “world” of a stellar
envelope, there will inevitably be some flow of energy into and out of the
system, and the result is pulsations that are non-adiabatic. In this case, the
pulsations of a volume of gas would not continue forever, but instead, as
the gas gradually lost that extra bit of pressure due to heat leaking out
of the system, the oscillations would subside or, as they say in the trade,
would be damped.

There is, however, a way to “cheat” the real world and make the pulsa-
tions go on forever. We accept now that the walls of our cylinder do allow
heat to pass through, and so what we do, just at the moment when the
gas in the cylinder is fully compressed, is to briefly apply some heat to the
gas, and what’s more, we do this each time the piston comes down to its
lowest level. In this way, we are repeatedly giving the gas that extra bit of
“push,” or pressure, to compensate for the losses and to keep the piston
going up and down. This process is called “exciting” the pulsation. This is
exactly how a diesel engine works. In this case, though, rather than heat-
ing the cylinder from the outside, fuel vapor in the cylinder ignites at the
moment of maximum compression, which raises the temperature of the
gas and in doing so increases the pressure within the cylinder.

Finally, there is also another way in which we can at least partially cheat
the system, and this is to make sure that any compressions and expansions

A

Figure 7. (continued) the piston would be if the gas pressure
were supporting it and the extra weight, when everything was sta-
tionary. The downward motion, or theinertia of the piston, etc.,
results in the gas being compressed that bit extra, with a resulting
slight excess pressure. This excess pressure enables the piston to
oscillate or pulsate indefinitely, provided there are no energy losses
out of the system.
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of the gas happen as quickly as possible. This means that there is less time
for energy to leak out of the system, thus keeping things as adiabatic as

possible.
Now let’s see if we can use what we know to understand how a Cepheid

variable star can pulsate.



Deep Inside a Star 1?5

Cepheid Variable Stars -

Cepheid variable stars (named after their prototype 8 (delta) Cephei)
are most famous due to the work originally done in 1908 by Henrietta
Leavitt at the Harvard College Observatory. Her work showed that the
longer their period of light variation, the more intrinsically luminous
these stars were. This “period—luminosity relation” led, among other very
great things, to their use by Edwin Hubble to determine the distances to
nearby galaxies (showing that galaxies were indeed “extragalactic”) and
ultimately for revealing the expansion of the universe itself. The rest, as
they say, is cosmology.

Unfortunately, this has, to some extent, resulted in the very nature of
what causes the Cepheid (or the “classical Cepheids,” as they are often
referred to) and related types of variables to actually vary — usually play-
ing “second fiddle” — but not here!

Cepheids are stars that vary in brightness by typically about 1.0 mag.
Their light curves are often, but not always, notably asymmetrical, having
a sharp increase in brightness followed by a more leisurely decline with,
in some cases, a “hump” on the descending part of the light curve. The
variability periods for Cepheids range from about 2 to 60 days, peaking at
around 6 days; the period of § Cephei itself is 5.366 days. Schematic light
curves for Cepheid variables are shown in Fig. 8a, b.

The very first Cepheid variable star to be discovered was actually 1
(eta) Aquilae by the English astronomer Edward Piggot in the year 1784.
He and his young associate John Goodricke were making a systematic
search for new variable stars. (Prior to this time, only a small handful of
variables were known.) Indeed, it was later that same year that Goodricke
discovered 8 Cephei itself and also the famous eclipsing binary star
Lyrae. Goodricke was actually the first person to correctly interpret the
light variations of the famous second magnitude star Algol as being due
to the mutual eclipses of two stars of unequal brightness, which were in
orbit around one another. The fact is that throughout the 19th century
and indeed well into the 20th century, it was generally believed that the
variations of stars such as 8 Cephei and n Aquilae were also the result of
them being eclipsing binary systems.

One important observation that appeared to support this view was
the fact that absorption lines in the spectra of these variables oscillated
regularly about their mean position with a period that exactly matched
their periods of light variation. This was interpreted as being due to the
Doppler effect (see Appendix 3 in this book for a brief account of how
the Doppler effect works), which caused the lines to be slightly shifted
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Figure 8. Stylized light curves for Cepheid variable stars, show-
ing their often asymmetric shape and possible “hump” on the
declining part of the light curve.

alternately towards the blue and the red ends of the spectrum as the vis-
ible star swung around in its orbit (and in so doing moved alternately
towards and away from the observer). In fact, therein lay one of this
theory’s problems. There are many binary stars, eclipsing or otherwise,
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whose component stars are too close to be seen separately in a telescope
but which show themselves as binaries by having a “double” spectrum,
actually, a single spectrum but with two sets of absorption lines. These
are called spectroscopic binaries. As the two stars orbit one another, each
pair of lines alternately separates and merges together.

There are, to be sure, many such systems where only one component’s
spectrum is visible, due maybe to the other star being relatively faint, but
one would have expected that among the Cepheid-type variables there
ought to have been some that showed double spectra. But there were
none. In the late 19th century, August Ritter had proposed the idea that
a star could pulsate, or alternately expand and contract, and certainly
the regular movement of a star’s photosphere towards and away from the
observer would explain the corresponding shifts in the spectral lines.

Perhaps it was because Ritter was a professor of mechanics, rather than
an astronomer, or maybe the very idea that an entire star could expand
and contract just seemed too fantastic; the fact is that hardly any notice
was taken of Ritter’s work. It wasn’t until 1914, when the great American
astronomer Harlow Shapely effectively “buried” the eclipsing binary the-
ory (though research papers on the idea continued to be published into
the 1930s) by pointing out that Cepheids were giant stars and that for
some of them to have the observed light variation periods as a result of
eclipses, the second star would have to be moving within the body of the
main star. The idea of stars being able to pulsate then began to be taken
seriously, particularly by the English astronomer Sir Arthur Eddington.
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Ritter’s idea was that stellar pulsation involves an outward and inward
motion of the entire star. This kind of motion, directed along lines run-
ning from the center of the star to the surface, is called radial pulsation.
Such a pulsation would have to start with some disturbance at the star’s
core — say a drop in the rate at which heat is generated there. The result
would be a drop in the core temperature, accompanied by a drop in the
core’s gas pressure. This would have exactly the same effect as adding
extra weight to the piston in our cylinder of gas, causing the core to shrink
and in so doing become hotter. This, in turn, would cause expansion of
the core, resulting in cooling yet again, and so on.

This radial oscillation of the core would actually have a relatively small
amplitude, because in this part of the star, the density of the gas is
extremely high, and so even with a lot of energy involved, there is a lot
of material to shift. As the oscillation spreads outwards through the star,
very much in the manner of a longitudinal wave consisting of compres-
sions and rarefactions, the density of the gas would fall, and as a result,
the amplitude of the oscillations would increase considerably. Eddington,
in fact, showed that further out in the envelope of the star, the oscilla-
tion becomes increasingly non-adiabatic, and the resulting dissipation of
energy simply cannot be compensated for by what’s going on at the stel-
lar core. The increasingly damped oscillation basically fizzles out, which
simply means that a star cannot pulsate in this way. Time for Eddington’s
plan “B” then!

Plan “B” was, in Eddington’s own words, “fantastic for a thermody-
namic engine, but not necessarily for a star.” It involved a layer further
out in the envelope of a star that could alternately trap and release heat —
in other words, the “driving engine” lies in the stellar envelope rather than
in the core. This indeed proved to be the way forward, but ironically it
was ultimately rejected by Eddington himself, in favor of his original cen-
tral “driving engine” idea, possibly as a result of the fact that, by the late
1920s and 1930s, it was realized that nuclear reactions are the source of a
star’s radiation. Powerful as this energy source might be, it was nonethe-
less shown that it was still inadequate to drive the pulsation of an entire
star.
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Yet Another Gas Cylinder

Imagine a version of our piston and cylinder apparatus in which the
walls of the cylinder are perfect insulators. The piston and the bottom of
the cylinder, however, are made of a transparent material through which
radiation can pass freely, and in addition we have a source of electromag-
netic radiation (i.e., a very bright light source) beneath the bottom of the
cylinder. Under normal conditions and with the gas and piston in perfect
hydrostatic equilibrium with their surroundings, the flow of radiation
through the gas will ensure that this situation is maintained.

Now we compress the gas inside the cylinder in order to attempt to
make the gas pulsate; this would raise the temperature of the gas inside,
but recalling Kramers’ law, the opacity of the gas would drop dramati-
cally. The result would be that radiation would pass even more readily
through the gas and in such a highly non-adiabatic system, any potential
pulsation would be severely damped and would quickly die away; hydro-
static equilibrium would thus be restored. However, with the right kind
of gas, something else can happen.

If the initial temperature inside the cylinder is such that the gas is just
on the brink of becoming ionized, then the energy that compresses the
gas actually goes into ionizing it rather than raising the temperature — so
the temperature hardly changes. The density still increases, of course, but
without the rise in temperature. Kramers’ law tells us that this time, the
opacity of the gas increases, and this results in a buildup of heat, as radi-
ation comes in through the bottom of the cylinder. In addition to this,
because the gas has been compressed, i.e., the distance from the bottom
of the cylinder to the piston has decreased, the result is an increased tem-
perature gradient between the bottom of the cylinder and the piston, and
this results in a higher rate of heat flow into the cylinder. This is equivalent
to an injection of extra heat just at the moment of maximum compres-
sion, and just as with our earlier experiment, this excites the pulsation of
the gas by compensating for any heat losses.

After a while, the buildup of excess heat causes the gas to expand,
become neutral, and cool, but the momentum of the expansion takes it to
a volume that is greater than that which was simply required to maintain
hydrostatic equilibrium. The gas now finds itself “overstretched,” and the
piston falls, its momentum carrying it below the equilibrium level. The
gas becomes ionized again, the heat builds up, and the cycle starts all over
again. We have a volume of gas that is pulsating and whose pulsations are
being maintained this time by the properties of the gas itself.
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We don’t have cylinders of gas in stars, of course, but we can think of
a star as being built from a series of spherical concentric shells, rather
like the layers in an onion. The deeper inside a star we go, the hotter
and denser the shells of gas become, and this, as we have seen, results
in the pressure gradient that maintains hydrostatic equilibrium within
the star. The fact is that a stellar envelope is not a placid kind of place,
and at any time, some layer of gas can be expected to get compressed
by its neighbors. From what we’ve seen, though, the effect of Kramers’
law ensures that such compressions will be sufficiently non-adiabatic to
guarantee the speedy restoration of hydrostatic equilibrium — unless, that
is, there’s a layer of gas within the star that ionizes as it gets compressed.

If this happens, then the layer of gas will act just like the gas in our
cylinder in the previous experiment; the opacity will increase, trapping
the radiation coming from the next layer down in the star. In stars, this is
called the « -process and refers, of course, to the increase in the gas layer’s
opacity k. Also, as with the cylinder experiment, the squeezing of the gas
layer increases the temperature gradient from the bottom of the layer to
the top. This results in even more radiation flowing in from below, which
aids and abets the heat buildup; this is called the y—process. So, provided
we have a layer of the right kind of gas under the right conditions, it is
possible for this layer to undergo pulsations that do not die away but can
raise and lower the very outer layers of what we observe to be a pulsating
variable star.
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The Right Kind of Gas in the Right

The shells or layers of gas in a star will, for the most part, be made up
of hydrogen and helium, so what we are in fact looking for in a poten-
tially pulsating star is one that has a shell of hydrogen or helium that is
on the point of becoming ionized. Such critical layers of gas are called
partial ionization zones. Hydrogen has only one electron to lose, so there
can only be one hydrogen ionization zone, whereas helium has two, with
two corresponding ionization zones. Hydrogen starts to ionize at around
10,000 K; helium becomes singly ionized at around 15,000 K and loses
its second electron at around 40,000 K. It is this second ionization of
helium with its higher associated temperature that is now believed to
be the pulsation-exciting mechanism for Cepheid-type variable stars, but
the hydrogen ionization zone (we can include here also the first ioniza-
tion of helium) does have a role to play, as we shall see shortly.

We can be fairly certain that all stars will contain a layer that is at a tem-
perature of around 40,000 K, except for the very hottest stars, whose pho-
tospheric temperatures exceed this value. The issue then is one of where
within a star the 40,000 K zone should be to ensure maximum pulsation
efficiency, and clearly the lower the temperature of a star’s photosphere,
the deeper down this layer will be.

If we move along the spectral sequence away from the hottest stars,
we’ll come to stars whose effective temperatures are actually around
40,000 K, and this initially suggests that the surface layers of these stars
might be capable of pulsating. However, in this part of a star, where den-
sities are generally very low, any kind of pulsational disturbance is more
likely to permanently eject material from the star rather than induce reg-
ular pulsations. The decreasing density, as we head towards a star’s outer
layers, also shows itself in another more significant way. Basic physics
(you can check out the details by looking in any physics book that gives an
explanation of simple harmonic motion) tells us that when a volume of
gas pulsates (in other words, oscillates about some mean value of volume,
pressure, and density), the time it takes for one complete pulsation cycle
is directly related to the reciprocal of the square root of the mean density
of the gas. So this means that the higher the gas density, the shorter the
pulsation period and vice versa. And the closer a layer of pulsating gas
is to the stellar surface, the longer the period of pulsation. Get too close
to the surface and the pulsation period gets so long that the pulsation
effectively peters out.
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The bottom line to this is that stars must have low enough effective
temperatures so that the helium ionization zone lies at some depth below
the surface. With cooler stars, the ionization zone is deeper down, but
by going to cooler stars, we effectively run into “red giant land,” where it
is known that convection is the dominant energy transport mechanism,
and this, it is believed, could seriously interfere with stellar pulsations.
So the result is an effective temperature zone for stars within which the
helium ionization zone resides somewhat below the surface layers but not
at too great a depth; we might expect such stars to be capable of sustained
pulsation. The place for thinking about stellar temperature zones is, of
course, the Hertzsprung—Russell diagram.

Figure 9 shows the location on the HR diagram of the pulsation zone
for stars, which is referred to as the instability strip. There are three impor-
tant things to note about the instability strip. First, it runs from the main
sequence (involving stars that are somewhat hotter and more luminous
than the Sun) almost to the top of the diagram and so involves stars that
cover a wide range of luminosities. This, in turn, includes several well-
known groups of pulsating variable stars, from the short period 8 (delta)
Scuti stars, which straddle the main sequence, through to the longer
period classical Cepheid variables, which are luminous supergiants.

Secondly, the strip is tilted to the right, which means that the most
luminous stars in this zone have lower effective temperatures than the
less luminous ones. The third thing is probably obvious, but we’ll say
it anyway: the instability strip is not the cause of stellar pulsation but is
the zone where conditions are most favorable for stellar pulsation to be
maintained.

From the lower end of the instability strip to the top end, we move
from variable stars with relatively short periods (8 Scuti stars have peri-
ods of a few hours) to those with longer periods (up to around 60 days
for classical Cepheids as mentioned previously). We are also moving from
relatively low-luminosity stars to high-luminosity stars, so here we see a
visible illustration of the famous period—luminosity relation. The insta-
bility strip also tells us something else about this; the higher luminosity
stars are giants, which have lower density outer layers than dwarf stars,
and as we saw previously, this means that pulsation periods are longer.

So the period—luminosity relation is in fact a period—density relation —
straight from the basic physics of an oscillating volume of gas. The
right-hand tilt of the instability strip results from the fact that the lower
densities in giant star envelopes mean that we need to go to a somewhat
lower effective temperature, so that the ionization zone is just a bit deeper
and the density is a bit higher for efficiently maintained pulsations.
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Figure 9. This shows the location of the main groups of pulsating
variable stars on the Hertzsprung—Russell diagram. Together they
form what is called the instability strip. The left hand or blue side of
the strip is determined by the helium ionization zone, not being too
close to the surface of the star. The red side is probably less well
defined but caused by the increasing dominance of convection as
we move to cooler stars. Notice also the less prominent instability
strip, which is occupied by the B Cephei group of variables.

On a final note, we’ve also indicated on Fig. 9a smaller, less signifi-
cant instability strip right up at the top end of the main sequence where
the hot blue luminous stars are. This is the home of a group of pulsating
stars called either § (beta) Cephei or p Canis Majoris stars. These are very
luminous stars with very short periods and a very small magnitude range.
Little is known about their pulsation-driving mechanism, but it has been
suggested that it may result from a partial ionization zone, which involves
heavier elements. It is also believed that these are stars that are evolv-
ing away from the main sequence, and the fact is that the more familiar
groups of pulsating stars have also at some stage evolved away from the
main sequence — more on this in chapter A Star Story — 10 Billion Years in
the Making. In the meantime, there’s a final matter that we need to clear
up regarding Cepheid variables.
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When the helium ionization zone in a Cepheid variable star gets com-
pressed, the result is that hydrostatic equilibrium (i.e., one of the equa-
tions of stellar structure) in this part of the star is disturbed. It is as if this
layer of gas temporarily cannot support the weight of the overlying layers,
and so they too squeeze down. But consisting chiefly of ionized hydro-
gen, the temperature of this overlying gas increases as it compresses. This
should result in a temporary increase in the luminosity of the star and
a resulting increase in its magnitude, which should peak at the time of
maximum compression.

Spectroscopic observations, which effectively determine the radial
motion of the star’s photosphere, show however, that Cepheids are at
maximum brightness when the star’s photosphere is moving towards us
at its maximum speed. This happens one quarter of a pulsation cycle,
after the time of maximum compression, and is known as the phase lag
problem. It initially caused many problems, but the culprit is the afore-
mentioned hydrogen ionization zone, which of course lies further up
towards the stellar surface. As the overlying gas compresses, this layer,
too, gets compressed but becomes ionized. This keeps the temperature
more or less constant, and as with the helium ionization zone, the opac-
ity increases and thus traps the upcoming radiation, causing a delay in
the rise to maximum magnitude — in other words, a phase lag.

As is well known, red giant stars pulsate, sometimes fairly regularly,
but often more erratically. The main driving mechanism for the red giant
variables is believed to be the hydrogen ionization zone, but what might
otherwise be rhythmic pulsating is probably affected by convection and
the associated turbulence in the envelopes of these stars.
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From a Cylinder of Gas to a Red

For most stars, the main mechanism by which energy gets from the
core through the envelope to the photosphere is by radiation, but in
the envelopes of very hot stars and red giant stars temperature gradients
become too high for energy to be shifted fast enough by this method, and
so the main process is convection. Also as mentioned, this is an extremely
complex mathematical process and currently involves the use of super-
computers to model the exact details of exactly how and also how much
energy is transported through the star. So there’s a pretty serious limit to
what we can do with our cylinder of gas, but we’ll nonetheless have a go.

Notwithstanding the fact that our illustrations of gas cylinders tend to
give the impression that they are constructed out of armor plating, let’s
assume that the cylinder is actually made of very lightweight material, but
also (for the purpose of our “experiment”) capable of withstanding very
high temperatures. The cylinder and piston are also “real” in that they
allow heat energy to pass through, but as is also the case in the real world,
only at some given rate.

Now let’s apply some heat to the base of the cylinder, which will warm
up the enclosed gas and effectively create a temperature gradient between
this and the surrounding gas outside. Provided this temperature gradi-
ent is not too great, the steady supply of surplus heat will simply leak
away into the surroundings before there is any significant buildup of heat
within the gas inside the cylinder. So, essentially, nothing changes, and a
system like this is said to be “stable to convection.”

Now we apply a serious amount of heat to the base of the cylinder; this
time heat is flowing into the cylinder faster than it can dissipate through
the cylinder walls. In other words, we have a much greater temperature
gradient between the cylinder and its surroundings. The result is that the
gas inside the cylinder expands and in doing so becomes less dense than
the outside air. The cylinder consequently becomes buoyant and floats
upwards; furthermore, if we happened to carry our heat source within
the cylinder itself in the form of some bottles of flammable gas and a gas
burner, then our cylinder becomes a hot-air balloon. The large tempera-
ture gradient results in the system, consisting in this case of the cylinder
of gas, becoming “unstable to convection.” If large temperature gradients
exist within certain regions of stars, then the material that makes up these
regions will also be unstable to convection.
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Convection is an alternative and actually a more efficient means by which
heat can flow outwards through a star, but it will only happen if the other
means of energy transport, i.e., radiation, can’t do the job, and as we now
know, this happens when there is a large temperature gradient and con-
sequently the need for a large amount of heat to be transported quickly.
In the surface layers of a star such as the Sun, the various processes that
increase the opacity in these layers, such as absorption by heavier ele-
ments and negative hydrogen ions, reduce the efficiency of radiation as a
means of energy transport. The result is that these layers are unstable to
convection, and this reveals itself in the form of the “solar granulation.”
High-resolution integrated light images of the Sun show the photosphere
to have a “speckled” appearance, each “speckle” being the top of a roughly
1,000-km-wide convection cell.

There is also an important difference between heat transfer by radia-
tion and heat transfer by convection. When heat is transferred by radia-
tion, the stellar material doesn’t move very much from its own neighbor-
hood, but by contrast, convection involves the large-scale movement of
volumes of stellar material through the body of the star. This movement
is also accompanied by a great deal of turbulent, i.e., non-smooth, flow of
the stellar plasma, and this results in the various chemical elements that
make up the star being very thoroughly mixed. A very important conse-
quence of this for red giant stars is that convection currents within the
envelope can “dredge up” heavier elements from the core and physically
transport them to the surface layers, where they can be expelled as part of
a stellar wind and ultimately serve to enrich the interstellar medium.

Clearly convection in most stars has much to do with how conditions
in the stellar core compare with those in the envelope. Time then to look
at what goes on at the very heart of a star.
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The Stellar Core - Source of the

It’s difficult to imagine these days the sheer frustration that many of the
world’s leading late 19th century astronomers must have felt in not being
able to explain how the stars shine. For example, it was quickly realized
that “King Coal,” or indeed any other form of chemical energy, could
only keep a star like the Sun going for a period of maybe several tens of
thousands of years.

A better proposal was put forward by the German physicist Hermann
von Helmholtz; this involved the collapse of material by gravity to form
the Sun, for example, and the conversion of gravitational energy into
thermal energy. This process would give the Sun a lifespan of around 30
million years — and this period of time is still referred to as the Sun’s
dynamical time scale. It is in fact of the same order as the length of time
that it would take the Sun in its present state to cool down in the absence
of any replenishment of its internal energy — called the thermal time scale.

On the face of it, this was perhaps quite reasonable for the time. How-
ever, even then, emerging theories of geology suggested that this was sim-
ply not long enough by far for Earth, which was believed to have formed
around the same time as the Sun, to have evolved to its current form. The
key to this mighty problem in fact lay in the discovery of radioactivity
and the nucleus of the atom — alas, a little too late for Herr Helmholtz.

Most of us are familiar these days with the fact that most of the mass of
any atom resides at the center in the atom’s nucleus. There is an immedi-
ate and obvious problem, though, and this is due to the fact that atomic
nuclei consist of an assembly of particles called protons and neutrons.
Neutrons are electrically neutral; they carry no electric charge, but pro-
tons carry a positive electric charge, equal in magnitude to the negative
charge of the peripheral electrons. The problem is that in an atom, the
nuclear particles, or nucleons, are in very close proximity to each other,
and this will ensure an enormous force of mutual repulsion between the
protons, even though this force may to some extent be screened by the
presence of the neutrons.

So there clearly must be an even stronger attractive force that can
overcome the electrostatic (or “Coulomb,” as it is sometimes known)
repulsion. The details of this nuclear force were worked out in the mid-
1930s by Hideki Yukawa, the first Japanese Nobel prize winner. This force,
which holds the nucleus of an atom together, is nowadays referred to as
the “residual nuclear force,” to distinguish it from the “strong nuclear
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force,” which holds together the quarks and gluons that make up nuclear
particles.

The residual nuclear force, which is also called the “Yukawa potential,”
is enormously strong over exceedingly short distances of the order of the
size of atomic nuclei, but decreases very rapidly — much more rapidly
than the inverse square law for the Coulomb repulsion, once we move
away from the nucleus. The real key to the energy of the stars, though, lies
in the fact that the mass of an atomic nucleus is less than the sum of its
parts, which means that if particles such as protons can get close enough
that the Yukawa potential overcomes the Coulomb repulsion, then this
will mean that there is some mass going spare and, as Einstein said, mass
means energy.

As mentioned so many times now, stars consist largely of hydrogen and
helium, so let’s begin our quest to find the power source of the stars by
looking at the masses of these two atoms. The mass of a basic hydrogen
atom, whose nucleus consists of a single proton, is 1.674 x 1072” kg, and
so four times this mass is equal to 6.696 x 1072’ kg. The mass of a basic
helium atom, whose nucleus consists of two protons plus two neutrons, is
6.645 x 107%” kg. So the difference in mass between four hydrogen atoms
and one helium atom is 5.1 x 107 kg.

Now we get our chance to use the most famous equation on the planet,
in order to make the stars shine. The equation “E = mc ?” inputs the mass
“m” in kilograms and multiplies this by the speed of light (in meters per
second) squared, to give the equivalent energy in joules. The speed of
light squared is 9 x 10'®, which when multiplied by 5.1 x 107 gives
around 4.6 x 10712 J. So this is how much energy we could get by taking
a group of four hydrogen atoms and fusing them together to make one
helium atom. One kilogram of hydrogen will contain 1/1.674 x 1077,
or around 6 x 10%® atoms, which in turn equals 1.5 x 10%° groups of
four hydrogen atoms. This means that from 1 kg of hydrogen, we could
get 4.6 x 10712 x 1.5 x 102%°, which equals 6.9 x 10147.

Not bad, but how long would this supply of energy keep the Sun going
for? The mass of the Sun’s core is about 7 x 103° kg, and if we assume
that when the Sun was formed, around 75% of this was hydrogen, then
we start with about 5 x 10 kg of hydrogen. This then should be able
to supply about 3.5 x 10** J. Observations tell us that the Sun radiates at
a rate of about 4 x 102 W, or 4 x 10%° J/s, and the equations of stellar
structure tell us that in order for the Sun to remain stable, it has to be
generating energy at the same rate. So if we divide the Sun’s total energy
supply by the Sun’s energy production rate, we get the Sun’s expected
lifetime in seconds, and this turns out to be about 8.75 x 10'7. Finally,



Deep Inside a Star 29&

dividing this by the number of seconds in an average year (31,557,600)
equals around 2.8 x 10'° years.

We’ve made a few assumptions and approximations here, but clearly
the fusion of hydrogen into helium can run a star such as the Sun for
around 10 billion years. Geological evidence suggests that Earth formed
around 5 billion years ago. So here, we have it — all the numbers add up,
and thermonuclear fusion is the key to starlight.
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Nuclear Fusion in Stars - The

Thermonuclear fusion of hydrogen into helium can supply the energy
needs of a star; however, the conditions that are needed for this pro-
cess to take place on a scale that is sufficient to maintain the conditions
of equilibrium in a star are temperatures of the order of several mil-
lion degrees, together with high densities. The equations of stellar struc-
ture have shown that these conditions only exist within the very central
regions, or the cores, of stars. The radius of the Sun’s core, for example,
is about 0.2 of the Sun’s radius. Even so, the fact is that the chance of four
hydrogen atoms coming together all at the same time to make one helium
atom, even within the high-temperature, high-density regime of a stellar
core, is pretty well zero. There’s also the business of turning two protons
into two neutrons, which all in all means that the fusion reaction has to
happen in stages.

Probably the main problem with working out the details of thermonu-
clear reactions in stars is that laboratory experiments simply cannot sim-
ulate the conditions in stellar cores. High temperatures can be achieved,
but not the extremely high densities, so that laboratory temperatures
need in fact to be even higher than in stars in order to make the reactions
work. The result is that the “nuclear chemistry” that takes place in stars
has been largely worked out by theory, though the really important prod-
uct of these reactions, namely, the quantity of energy that is released, has
to match that which is ultimately observed. There are in fact two sets of
reactions, both of which convert hydrogen into helium, and it may well be
that in some stars, both of these reactions operate side by side. However,
one of them, the carbon—nitrogen—oxygen, or “CNO,” cycle dominates
in hotter stars, whereas the proton—proton, or “p—p” chain, takes place in
moderate to lower temperature stars.

Even so, as already mentioned, the temperatures required for these
thermonuclear reactions to take place are in the order of millions of
degrees, which means that energy is only generated in the central hottest
region of a star — the stellar core. In turn, it is the temperature of the
plasma in the stellar core that essentially determines the probability that
a particular reaction will happen.

Now, here’s a bit of nuclear chemistry. For hydrogen to be hydrogen,
it must have one and only one proton in the nucleus, and in turn helium
must have two and only two protons. The number of neutrons that these
atoms may contain, however, is a bit more flexible, and there is a stan-
dard kind of notation to distinguish between what are in fact different
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isotopes of these elements. For example, “plain hydrogen” with just the
one proton is written as “'H,” whereas hydrogen in deuterium form with
one proton and one neutron in the nucleus is written as “*H,” and so on.
The lightweight form of helium with two protons but only one neutron
in the nucleus is then written as “*He.”

Figure 10 shows the three main stages in the p—p chain; it’s called a
“chain” because it essentially starts with two 'H nuclei, and two 'H nuclei
pop out at the end to start another link in the chain. Notice that the
only stage in which energy is actually generated in the form of a gamma-
ray photon is the second stage, the other two basically being element-
building stages. The first stage also produces a positron (e*) — the anti-
particle of an electron, or an electron with a positive electric charge. This
will very quickly encounter a normal electron, whereupon the two will
annihilate each other to produce another gamma-ray photon.

In addition, this first stage also produces a particle called a neutrino
(v), which is something of a “will o’ the wisp” kind of particle. Neutri-
nos were conceived by physicists (the name was actually coined by the
great Italian physicist Enrico Fermi and means “the little neutral one”)
to account for an energy deficit in the decay of radioactive elements. As
far as the p—p chain is concerned, there are also some other reactions that
take place that, in addition to producing some energy (around 15% of
the Sun’s total energy output, in fact, the main p—p chain accounting for
85%), produce more neutrinos and also the elements lithium and beryl-
lium as intermediate byproducts.

The hot star power source, the CNO cycle is more complicated and
involves “outside agents,” in the form of nuclei of carbon, nitrogen, and
oxygen. This in itself means, of course, that these nuclei have to be present
in the nuclear core to start with and we shall see in chapter A Star Story
— 10 Billion Years in the Making how they get there. In themselves, they
serve only to enable the conversion of hydrogen into helium to take place,
and they emerge from the process in the same form as they entered it, so
they are in effect the nuclear physicist’s version of what the chemists call
a catalyst. Unless you're seriously interested in nuclear physics, the CNO
cycle is very likely not the kind of thing to try and remember in all its
details, but here they are anyway.
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Figure 10. Here we represent the three stages of the proton-
proton chain. The second stage generates the energy.
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The proton complement for carbon (C), nitrogen (N), and oxygen (O) is
6, 7, and 8, respectively. The other thing to note is that, as the word says,
this process is in the form of a cycle, so that there is no “first stage” as
such, but any particular stage in the process is followed by the next stage
and so on.

RC+H PN+ y

BN ->BC+et +v

13C +1H —>14N +y

14N +1H _)150 + Y
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N +H — 120 +%He
The bottom line here is that we now know that stars have a limited
energy supply, albeit a very powerful one. In time, the fusion of hydrogen
into helium begins to diminish, and this means that all stars eventually
change. Stars evolve, and the story of this evolution and its consequences
are, as we'll see in chapter A Star Story — 10 Billion Years in the Making,
some of the most profound things that astronomy has ever taught us.
First, though, it’s back to our river of starlight and the things that happen
to it on its journey across space.
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e Stars exist in a state of equilibrium between gravity, which would make
the star collapse, and thermal energy in the form of gas (and maybe
radiation pressure), which would make the star expand.

e The equations of stellar structure enable astronomers to work out in
detail how important quantities such as pressure, density, luminosity,
and temperature vary from the center to the surface layers of stars.

e A Cepheid variable star pulsates because a disturbance to the condi-
tion of hydrostatic equilibrium in the star is maintained by a partial
ionization zone, consisting of a shell of singly ionized helium within
the star’s envelope, which allows heat to build up in the layer. This heat
buildup then drives or “excites” the pulsation of the outlying layers of
the star.

e The Cepheid “phase lag” is caused by the partial ionization zone of
hydrogen closer to the star’s surface, which in turn traps upcoming
radiation, causing a delay in the star reaching maximum brightness.

e Energy transfer within a star takes place by convection, when the more
usual process of radiation becomes inefficient. This can happen, for
example, when the temperature gradient within a layer of the star is
too large or if the normal flow of radiation is impeded by absorption
in cooler layers.

e Convection is an extremely complex process, but it probably holds the
key to understanding red giant stars.

e Of all known energy sources, only thermonuclear fusion can supply
sufficient energy over a long-enough time scale to enable stars to shine
with their observed luminosities and lifetimes.

e Conditions of temperature and pressure for nuclear reactions to take
place are such that energy generation only takes place within the cen-
tral core of a star.

e Most stars fuse hydrogen to helium by the p—p chain, but hotter stars
do this by the more involved CNO cycle.



In the Space Between Stars

Another way of defining the photosphere of a star is that it is a layer
within the atmosphere of the star, where a photon of a given wavelength
has a roughly 50% chance of escaping from the star and heading off into
interstellar space. Our “lucky” photon still has a long way to go before
it can reach a detector here on Earth, including two major obstacles in
its way.

The first of these obstacles is the interstellar medium, which includes
anything and everything that lies between the star and the outer layer of
Earth’s atmosphere. Generally, this is pretty thin stuff, but it extends for
as many light years as lie between us and the star, and in fact it’s esti-
mated that a star situated close to the center of the galaxy will have its
light diminished by 30 magnitudes by the time it reaches us.

The second obstacle is Earth’s atmosphere. This extends for only a few
miles, but it’s pretty thick compared to the interstellar medium. So both
of these things can deliver quite a “punch” when it comes to knocking
out starlight, but what they actually do to that starlight serves to give
astronomers a much clearer picture of the stars themselves. Finally, part
of the interstellar medium is in fact “there,” because it is not only photons
that leave the surface layers of a star.

K. Robinson, Starlight, Patrick Moore’s Practical Astronomy Series, 25
DOI 10.1007/978-1-4419-0708-0_9, © Springer Science+Business Media, LLC 2009
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The equations of stellar structure showed us that within the envelope of
a star, there is a pressure gradient that effectively keeps the star “inflated”
and exactly balances the attractive force of gravity, which would otherwise
make the star contract — this situation being referred to as hydrostatic
equilibrium. Within the body of the star, it serves to essentially keep an
individual volume of gas “in its place,” but at the very topmost layer of
the photosphere, the pressure gradient can enable the most energetic (i.e.,
fastest moving) particles to leave the photosphere and migrate upward
into the star’s outer atmosphere — or in the case of the Sun, into the solar
corona.

What’s more, a pressure gradient must also exist within the corona
itself in order to keep it “inflated,” and by the same line of reasoning, it
follows that particles in the corona’s topmost layer can in this case escape
the Sun altogether. Thus the pressure gradient in the solar corona drives
an outflow of what consists mainly of protons and electrons, which we
recognize today as the solar wind. The important point here, aside from
the fact that the solar wind is driven by the pressure gradient in the
corona, is that it results in the Sun continually losing mass. In fact it is
interesting to see how long it would take for the Sun to “evaporate” in
this way.

Since the 1960s space probes have studied the solar wind extensively,
and of course the Apollo astronauts set up solar wind detectors on the sur-
face of the Moon. This enables us to give a few facts and figures about the
solar wind, which we can use to estimate the Sun’s mass loss rate. First,
though, here’s a useful piece of notation that is used extensively by both
physicists and astronomers. When talking about the way in which some
quantity changes with time, it is standard practice to write the symbol
for that quantity with a dot over the top of it. So, for example, the rate
at which the radius “R” of a Cepheid variable was changing with time
would simply be written as “R.” This notation applies to any quantity
whatsoever, but only when we’re talking about how that quantity changes
with time. The rate at which the mass of the Sun Mg is changing as
a result of the solar wind, i.e., the mass loss rate, can then be written
as Mg

The observational evidence tells us that the density of the solar wind
in the vicinity of Earth is equivalent to around 5 x 10® hydrogen atoms
per cubic meter. The velocity of the wind particles is very variable and
depends on where we are in the sunspot cycle, as well as on whether the
particles originate in an active region of the Sun, such as a solar flare or
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in what might be called a “quiet region.” The average velocity is around
400 km/s but can range from around 200 km/s to around 700 km/s.

If we take the solar wind velocity as 400 km/s or 4 x 10°> m/s, then
imagine a spherical shell 4 x 10°> m thick and a radius equal to the Sun—
Earth distance, i.e., 1 A.U. or 1.5 x 10! m. In 1, this shell will “fill up”
with solar wind particles equivalent to 5 x 10 hydrogen atoms per cubic
meter. In the next second the shell will “empty” and fill up again with the
same number of particles. So each second, the Sun is losing mass equiv-
alent to the number of hydrogen atoms that fill the shell. The volume of
the shell is equal to its surface area multiplied by its thickness (this is actu-
ally an approximation, but because the thickness of the shell is very small
compared to its radius, it is a very good approximation) or, 47 x (1.5 X
10'1)% x 4 x 10° m>. With pocket calculator in hand, you’ll discover that
this is equal to; 1.13 x 10%° m>. The mass of a hydrogen atom is 1.674
x 10727 kg and so a density of 5 x 10° hydrogen atoms means a mass of
8.37 x 1072! kg of hydrogen per cubic meter, and so the total mass in the
shell, i.e., the solar mass loss rate per second, is equal to 8.37 x 1072} x
1.13 x 10%, which equals around 9.5 x 108 kg. Taking an average year as
365.25 days or about 3.2 x 107 s, the annual solar mass loss rate is equal
to about 3 x 10'¢ kg. This seems like an enormously large amount of
mass for the Sun to lose each year, but bear in mind that the mass of the
Sun is about 2 x 10°° kg; it would take about 10'* years (the total mass of
the Sun divided by the annual mass loss rate) for the Sun to “evaporate”
as a result of the solar wind. This is effectively an eternity, and things will
happen to cut the Sun’s life short way before this time arrives.

Dividing the annual mass loss rate by the Sun’s total mass, we can
finally say that M, is about 107* My per year, or 1071* solar masses
per year. On a general note it is standard practice when talking about the
mass loss rates for stars that lose mass by whatever means to speak in
terms of solar masses per year.

Mass loss rates as low as that in the solar wind would probably not be
detectable in other stars, but there are stars that are known to have winds
with much higher mass loss rates. However, in these cases, there is a much
more efficient wind driving mechanism than simple gas pressure, and this
is the pressure exerted by the very radiation itself from these stars. This
is called radiation pressure. We know that photons carry energy, and it
goes without saying that photons “move”; anything that carries energy
and that moves can exert a force. In the case of radiation, this force is not
surprisingly directly related to our old friend the radiative flux, which
we met in chapter Space — The Great Radiation Field. In the radiation
field, which is present in the outer layers of a star, large numbers of pho-
tons and specifically large numbers of high energy or short wavelength
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photons will result in large flux values and a correspondingly higher
radiation pressure. So a good place to look is high luminosity hot stars.

Stars of spectral class O and the even hotter Wolf—Rayet stars are
known to have out-flowing winds, with velocities of the order of a few
thousand kilometers per second. The main evidence for this is that the
spectra of these stars include emission lines of hydrogen, so that there is
clearly a very active chromosphere, or layer of hot thin gas, in their lower
atmospheres. However, in many cases, there is an absorption line adja-
cent to and on the blue side of the emission lines, caused by absorption
in an outer layer of hydrogen, which is cooler and also moving toward us.
A layer of hydrogen, which sits “unmoving” between us and a source of
radiation that is producing a continuous spectrum, i.e., a star, will absorb
light at the same wavelengths, which are measured in a laboratory.

However, if this layer of hydrogen atoms is moving toward us, i.e.,
moving away from the light source, then the atoms in the layer will
“see” the incoming photons as being red shifted by the Doppler effect.
For example, a photon coming from the star that we observe to have a
wavelength of, say, 6,555 A and that we would expect to pass unhindered
through the hydrogen layer, could be “seen” by the hydrogen atoms as
having a wavelength that is Doppler shifted to 6,563 A, and so the pho-
ton gets absorbed and forms part of what we see as a blue-shifted Ha
absorption line.

This combination of an emission line and a blue-shifted absorption
line is called a P Cygni profile. Mass loss rates from these very hot stars
are estimated to range from 10~ to 10~* M, per year, and this will result
in these stars losing a significant amount of their mass over the course of
their lifetimes — though, as we shall see in the next chapter, the lifetimes
of these stars are relatively short anyway.
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Cool stars also have winds, though in this case the winds are slow moving
with velocities of around 10-20 km/s. Red giant stars actually have their
own versions of P Cygni profiles in the form of additional blue-shifted
components added to the normal stellar absorption lines.

Despite the low wind velocities, mass loss rates in cool giant stars can
amount from around 107 to as high as 10 Mg, per year. In the case
of these stars, though, the wind material consists not just of hydrogen,
etc., but of dust grains, which are believed to “condense” (by a process as
yet still not fully understood) in the outer layers of these stars. The dust
grains are “pushed” outward by radiation pressure, and it is interesting
to note that the radiation pressure acting on the grains obeys a form of
“inverse-square law,” just like that for gravity. In this sense, the radia-
tion pressure is acting like a form of “anti-gravity,” which if it just exactly
balances the gravitational pull on a dust grain will keep the dust grain
suspended indefinitely in the atmosphere of the star. Furthermore, the
state of exact balance occurs (more advanced books will show you how to
calculate this) when the ratio

Ly

= =625%x107° (1)
M,
Here L, is the star’s luminosity in watts, and M, is its mass in kilograms.
If this ratio exceeds 6.25 x 107 (i.e., increase the luminosity and/or lower
the mass), the radiation pressure overcomes gravity and the grain escapes.
For the Sun the ratio is around 1.9 x 107, and so any dust grains formed
in the outer layers of the solar atmosphere should be able to leave and
become part of the solar wind.

The long-term effect of all of this is, of course, that the material
expelled from stars feeds out into and becomes part of the interstellar
medium.
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One of the great astronomical tomes of the 20th century was the work
carried out by Harlow Shapely in 1918 on the distribution of globular
star clusters. This led to the realization that the Solar System does not
lie at the center of the Milky Way, but what at the time appeared to be a
distance of around 50,000 light years from the center.

Later, however, work by the Dutch astronomer Jan Hendrik Oort (of
“Oort cloud” fame) reduced this distance to around 30,000 light years.
The reason for this was that the Swiss American astronomer Robert Julius
Trumpler had made a comprehensive study of open or galactic star clus-
ters. Trumpler made the (possibly unreasonable) assumption that these
clusters were all of approximately the same actual size and brightness.
What made his assumption reasonable was the fact that the more distant
a cluster was, the fainter it was, fainter than it should have been. If, in fact,
open clusters came in a wide range of sizes and overall brightness, some
of the more distant clusters should have appeared brighter than expected.

This systematic extra faintness for distant open clusters led Trum-
pler to the conclusion that interstellar space contains material that dims
starlight, making relatively close objects appear fainter and hence further
away than they really are. Further investigation showed that it was light
at the short wavelength end of the e-m spectrum that suffered most from
this interstellar extinction. Oort applied these results to the globular clus-
ters, which have a more or less spherical distribution around the galaxy.
This not only “pulled in” the distances to the globular clusters, it also
meant reducing our distance to the galactic center in order to preserve
the correct globular cluster distribution. The long-term result of Trum-
pler’s work was that astronomers must now understand what happens to
starlight as it passes through the interstellar medium, in order that they
can arrive at more accurate estimates of those all important fundamen-
tal stellar parameters, like luminosity, mass, radius, temperature, and, of
course, distance.
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In chapter Space — The Great Radiation Field we talked about the radia-
tion field, which is made up of all those rivers of starlight that crisscross
interstellar space; indeed, this great radiation field is often referred to as
“the interstellar radiation field.” The rest of the stuff, which occupies the
space between the stars, consists of atoms, molecules, and dust grains,
which taken together make up the interstellar medium, or “ISM,” that,
all in all, accounts for about 5% of the “ordinary” matter in the galaxy.

Around 99% of the ISM consists of gas — predominantly hydrogen in
the form of “loose” atoms (atomic hydrogen), as well as molecules con-
sisting of two atoms chemically bound together (molecular hydrogen).
The remaining 1% is called “dust,” though it very likely consists mostly
of tiny grains of frozen gases, including grains of water ice, although there
are also very likely grains of things such as graphite and silicate materials.

One could be forgiven, then, for thinking that interstellar hydrogen
would be the main cause of interstellar extinction. Not so, however, unless
we’re dealing with a special region of the ISM, such as the Orion Neb-
ula. The Orion Nebula and other emission nebulae like it are special,
because they have in their vicinity hot stars that emit high-energy ultra-
violet photons. These photons ionize the surrounding hydrogen; recom-
bination follows ionization in an ongoing process, which causes these
nebulae to glow in the visible spectrum and also causes the ultraviolet
flux from these hot stars to be diminished. The absorption of photons in
emission nebulae actually heats up the hydrogen gas to a temperature of
around 10,000 K, but away from these special regions, space, as they say,
is very cold. This means that hydrogen atoms will have their electrons in
the lowest energy level, and the general lack of sufficiently energetic pho-
tons in the ambient radiation field means that it is very likely how they’ll
remain.

Absorption as a whole, in fact, plays a rather restricted role in what
the ISM does to starlight. There are within the ultraviolet, visible, and
infrared regions of the spectra of some stars weak absorption features
called “diffuse interstellar bands,” which these days are generally ascribed
to complex organic molecules, and there is also a well-known feature
in the ultraviolet at around 2,200 A. This is actually called the “2,200
angstrom extinction bump”; it is believed to be due to grains of carbon,
mostly in the form of graphite, but possibly also in part due to Buckmin-
ster fullerene, which comes in the form of soccer ball-shaped molecules
consisting of 60 carbon atoms. The other mechanism for diminishing
starlight is scattering, but once again hydrogen gas is not the cause.
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We saw in chapter The Photons Must Get Through — Radiative Transfer
that scattering, such as that which takes place in Earth’s atmosphere, is
inversely proportional to the fourth power of the wavelength of the light
that is scattered. The daytime sky is blue, and clearly the sunlight has
to some extent been reddened on passing through the atmosphere. How-
ever, the observational evidence shows that where interstellar reddening is
concerned, the extinction is inversely proportional to only the first power
of the wavelength — in other words, the wavelength dependence is not as
significant as it would be for the scattering of gas atoms.

If light is scattered by particles, such as for example sand grains, whose
size is obviously much greater than the wavelength of light, then the
amount of extinction is pretty well independent of wavelength. The the-
ory of scattering says, however, that for the extinction to be inversely pro-
portional to the first power of the wavelength, the size of the entities that
are doing the scattering must be roughly equal to, in this case, the wave-
length of visible light, which puts them in the range from about 10~ to
10~* cm. This is about the same size as tobacco smoke and is much larger
than the typical size of atoms and molecules. So the “smoking gun” of
interstellar extinction is in fact scattering by the “dust” or the grains in
the interstellar medium.
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The most basic and obvious effect that the interstellar medium will have
on a star is to diminish its apparent magnitude compared to what it would
be if interstellar space were empty. With what we learned in chapter A
Multitude of Magnitudes for the Colors of Starlight, we can be much more
specific about this. Let’s call the U, B, and V magnitudes that a star would
have in the absence of interstellar extinction Uy, By, and Vy, respectively.
The first thing to say then is that as a result of interstellar absorption,
the observed values of U, B, and V will all be fainter, that is, they will
have larger numerical values; and so U — Uy, B — By, and V — V, will all
be positive numbers. What’s more, because interstellar absorption has a
greater effect on shorter wavelengths, U — Uy will be larger than B — B,
which in turn will be larger than V — V. Hence

(U —Up) — (B — Bg) = a positive number (2)
and

(B — Bp) — (V — Vy) = a positive number (3)
We can rearrange both of these:

(U—B) — (Uy — Byg) = a positive number (4)
and

(B—V) — (Bp — Vp) = a positive number (5)

Equations (4) and (5) give us the difference between the color index that
a star is observed to have and that which it would have if there were no
interstellar absorption. This difference in the color index is called the
color excess for the star; it is always a positive number, which gets bigger
with increased interstellar absorption, and it is written in the literature as
E(B-V), etc. So

E(U —-B) = (U—B) — (Up — Bo) (6)
EB—-V)=(B-V)—(Bo— Vo) (7)
The color excess is telling us that interstellar absorption causes the color

indices to get bigger; even an initially negative color index for a very hot
star can turn into a positive value as a result of interstellar absorption. In
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effect, stars appear redder than they should, and so the whole business
is often referred to as interstellar reddening. A better name for it might
be “interstellar de-bluing”, because it is always the blue end of a star’s
spectrum that is weakened the most, but perhaps this doesn’t roll off the
tongue so well.

A good question at this point would be, how do you know whether
or not the light from a star has in fact been reddened at all? Put another
way, how do you, as an observer, know that your observed values for U,
B, and V are not in fact simply the Uy, By, and V values for this partic-
ular star? The answer lies in the appearance of the star’s spectrum, and
a good example here would be a star whose spectrum was fairly weak at
blue wavelengths (suggesting at first that it is a cool star of, say, spectral
class M), but whose red continuum showed a notable absence of the kinds
of spectral features one sees in the spectra of cool red stars. These would
be many absorption lines due to various heavier chemical elements, and
absorption bands due to molecules. This would make you strongly sus-
pect that you are in fact observing a hotter, bluer star that has suffered
significant interstellar absorption.

It is clearly important to know what the spectrum of a star would look
like in the absence of interstellar absorption, and this was achieved by
making careful and detailed observations of nearby stars (as determined,
for example, by trigonometric parallax). These observations can be used
to calibrate important spectral features, such as the relative intensities
of prominent absorption lines for the various spectral classes. This, in
turn, enables the true spectral class of more distant stars to be identi-
fied, despite the “spectrum altering” effects of the interstellar medium. In
addition, these observations enable the true values of the color indices
(Up — Bp) and (By — Vo) to be determined for the various spectral
classes. These true color indices are often referred to as reddening free or
sometimes the intrinsic color indices. This in fact is how the color—color
diagram that was introduced in chapter First Look Inside a Star — The
Atmosphere was produced.

One immediate effect of interstellar reddening, particularly on the hot-
ter, bluer stars (cooler red stars after all don’t have quite so much blue
light to “give away”), is to shift their positions on the color—color dia-
gram. Figure 1 shows what happens; the effect of increased numerical
values for both U — B and B — V is to shift a star’s position down and to
the right by an amount E(U — B) and E(B — V), respectively, compared to
its position in the absence of interstellar reddening. The line that connects
these two positions is referred to as the reddening line.

A very important result here, which has come from extensive studies
of the effects of interstellar absorption, is that the value of the ratio of
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E(U —B) divided by E(B — V) has almost the same value of approximately
0.72 for all main sequence stars, which is another way of saying that this
reddening ratio is more or less independent of both spectral class and dis-
tance. This ratio is simply the gradient, or steepness, of the reddening
line, as plotted on the color—color diagram; it means, for example, that
two stars of the same spectral class but at different distances will lie at dif-
ferent points on the same reddening line. It also means that if you were
to make photometric observations of a star using the standard Johnson
and Morgan filters, in order to determine the U — B and B — V indices,
you could then plot the position of this star on the standard color—color
diagram.

Now you draw a line having the correct gradient, so that E(U — B)
divided by E(B — V) for the star equals 0.72 through the star’s position
and where it intersects the color—color plot. This gives you an estimate
of the star’s un-reddened or intrinsic U — B and B — V colors. Some
ambiguity can occur in the vicinity of the “U-shaped bend” of the color—
color diagram, as a result of the reddening line crossing the U-B vs.
B-V plot at more than one place, and this is resolved by having informa-
tion on the star’s spectral type. Where there is no ambiguity, the intersec-
tion of the reddening line with the color—color plot can of course serve
to give you an actual estimate of the star’s spectral type. So use of the
reddening line enables you to make an estimate of a star’s true colors,
and the estimated value of By — V) gives you an estimate of the star’s tem-
perature, even though the light from the star has been modified by the
interstellar medium.



226, Starlight
5/
-1.5
05
-1
| Reddening line
|
|
=051 Ev-B) { Nearby star
|
o L Distant star
39
0.5
Main sequence
1] stars
M5
Mo
1.5 : : '
-0.5 0 0.5 1 1.5

B-V

Figure 1. The effect of interstellar reddening is to shift the position
of a star downward and to the right of where it would otherwise be
on the color—color diagram. The reddening line, which joins these
two positions, has roughly the same slope for all stars, which means
that two spectroscopically identical stars at different distances will
simply lie at different points on the same reddening line.
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The final stage of a starlight photon’s journey brings it through Earth’s
atmosphere to our detector. One of the first things that every ama-
teur astronomer learns is that you should always observe relatively faint
things, such as stars and deep sky objects, when they are as high above
your horizon as possible, and the reason for this, of course, is that the
distance traveled by the photons through the atmosphere is minimized.

Earth’s atmosphere dims starlight, just like the interstellar medium,
but by how much? After all, when we talk about the magnitude of a star,
what we really mean is the magnitude as observed at the top of the atmo-
sphere. However, failing the possibility of becoming an astronaut, we are
well and truly stuck with making our observations from the bottom of the
atmosphere. So how do we measure a star’s “top of the atmosphere” mag-
nitude? The procedure is actually quite cunning, and it originated with
the 18th century French mathematician Pierre Bouguer, who is regarded
as one of the founders of the general science of photometry; or the basic
measurement of the intensity of light, of which astronomical photometry
is of course a part.

Let’s begin by using a detector such as a CCD camera, or a photo-
electric photometer, to observe a star that is exactly at the zenith as seen
from our observing location. Our detector will produce an output read-
ing directly related (in a way whose exact details we don’t actually need to
know) to the flux value that we receive from the star, so we’ll allow our-
selves to be a bit cheeky and actually call this output reading “the flux.”
What we do know from chapter Space — The Great Radiation Field is that
flux ratios, or in this case the ratios of detector output readings, con-
vert directly into magnitude differences. We can also safely assume that
the flux value that we measure will be less than that, which would be
measured at the top of the atmosphere. This, in turn, means that any
magnitude “m” that we derived for the star would be fainter than the cor-
responding magnitude “m” that the star would have as seen from the top
of the atmosphere, and we want to know by how much.

As Earth rotates, the star will move away from the zenith; we take
another flux reading and also measure the star’s zenith distance “z” (the
angular distance on the sky between the star and the zenith itself). We
continue this process of taking flux readings and zenith distance measure-
ments, while keeping a record of our results. In order to avoid complica-
tions (and there are always complications with these kinds of things and
here, we are avoiding the complications by adopting the plane parallel
atmosphere approximation, just as we did with the Sun’s photosphere),
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we continue our measurements until the star has a zenith distance of
about 60° (so there is in fact still plenty of sky to play with). We would of
course observe that as the zenith distance increased, the observed flux val-
ues for the star decreased, as its light shone an increasing distance through
the atmosphere.

At the zenith itself the starlight is normal to the plane of the atmo-
sphere, and so its path length through the atmosphere is simply equal
to the height of the atmosphere, which we can call “h.” By restricting
the star’s zenith distance to less than 60°, we can ignore the curvature of
both Earth’s surface and the surrounding atmosphere. We can also ignore
the fact that because the density of the atmosphere increases as one gets
nearer to Earth’s surface, the paths of light rays, which come from other
directions than the zenith, are slightly curved because of refraction.

The opacity of the atmosphere; that is, its ability to absorb and scatter
incoming starlight will, of course, vary with height, because the atmo-
sphere gets less dense with increasing height. This varying value of the
opacity will combine with the height of the atmosphere to produce an
optical depth through the atmosphere in the direction of the zenith.

As we shall see, we won’t actually need to know what this zenith optical
depth or “t” actually is, so we don’t need to worry about the exact way in
which the opacity varies with height, and in fact we can simply assume an
average opacity “o” for the atmosphere that, when multiplied by the path
length, will give us the optical depth. We do need to assume, though, that
the opacity of the atmosphere at any given height directly above our head
is the same as that at the same height above the ground in the vicinity
of our observing location, just so that we can assume that this average
opacity stays the same. As before, the best way to ensure this is to keep the
zenith distance within the 60-degree limit, so that points on the starlight’s
path don’t get too far away from our neighborhood. The zenith optical
depth in the atmosphere then is simply given by

To=0 X h (8)

Now consider the star as having “moved” to a zenith distance of “z”; the
new path length for the starlight through the atmosphere, which we can
call “1,” is now equal to h divided by the cosine of the zenith distance, as
shown in Fig. 2. So

¢ =h/cosz (9)

This is, of course, exactly the same formula that we used when talking
about the optical depth of the Sun’s photosphere. The reciprocal of the
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cosine (i.e., 1 divided by the cosine) of any angle is called the secant of the

angle, abbreviated as “sec.” Thus

L =hx secz (10)

+  #

h ¢

Figure 2. For a star having a zenith distance of “z,” the starlight
path length through Earth’s atmosphere, | is equal to h/cos(z),
which equals h x sec(z).

Atmosphere
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So the optical depth “c” through the atmosphere for a zenith distance of
z is equal to

T=0 X hXsecz (11)
for example
T =Ty X secz (12)

In chapter The Photons Must Get Through — Radiative Transfer, we saw
that a beam of starlight with an initial intensity value of I;,, which passes
through an absorbing medium of optical depth t, comes out the other
side with a diminished intensity that we called I,,¢ and whose value is
given by; Ii, X e™* where “e” is the number 2.718. Here the absorbing
medium is the atmosphere, and because it covers a vanishingly small
distance compared to the distance to any star, we are in fact okay to use
flux values rather than intensities in this situation. The optical depth is
given by Equation (11), so the flux value “F” that we receive at ground

level from the star when its zenith distance is “z” is simply
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F=Fyxe " (13)

Fy is the flux value that would be received at the top of the atmosphere.
The ratio of these flux values is just

il =e ' (14)
Fo

Now here’s another of those simple but very important rules involving
logarithms. As an example, the number 5/2 is of course equal to 2.5, and
the logarithm of 2.5 is very nearly equal to 0.4. Now use your calculator to
give you the logarithm of 5 (i.e., 0.7) and subtract from it the logarithm
of 2 (i.e., 0.3); this answer, of course, is the same, i.e., 0.4. This general
rule tells us that log (F/F) is equal to log (F) — log (Fj).

Remember also from chapter Space — The Great Radiation Field we
showed that another general rule involving logarithms is that if we take
the log of a number such as “e™,” then this would give us exactly the
same number, as simply taking the log of “e” and multiplying it by “~7.”
So, if we now take the log of both sides of Equation (14) we’ll get

Log(F) — log (Fy) = —t x log (e) (15)
The log of “e” is equal to 0.4343, and so with a slight rearrangement
Log(F) — log (Fyp) — 7 x 0.4343 (16)

We’ve already seen that “t” is equal to 7y X sec z where 7 is the atmo-
spheric optical depth in the direction of the zenith (we don’t know the

«_»

value of this yet) and “z” is the star’s zenith distance. So then

Log(F) = log (Fp) — 1o x 0.4343 X secz (17)

Our series of observations involves determining the values of F and mea-
suring the corresponding values of z; so for each pair of values we can
note down the log of F and the secant of z. We now plot a graph on which
log (F) runs up the “y” axis, while sec z runs along the “x” axis. If the
universe is being kind to us, our plotted points should follow an approx-
imately straight line, running from the upper left-hand side of the graph
to the lower right.

From the general mathematical rules about graphs that are in the form
of a straight line, the gradient or the slope of our plot is equal to -t X
0.4343, and the best way to determine this is to mark off two points on
the line that are reasonably far apart and form a right-angled triangle,
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as shown in Fig. 3. The gradient is then just equal to the height of the
vertical line of the triangle, divided by the length of the horizontal line.
The negative sign for the line’s gradient tells us that the plot falls to lower
values as we move along the “x” axis. We now divide this gradient by
0.4343, and lo and behold, we’ve determined the zenith optical depth in
the atmosphere and we should be able to tell straightaway how optically

thick or optically thin the atmosphere is tonight.

Log (F)
Gradient or
slope of line = A/B
Log (F,) |
Log (F)) 2 Sec(z,) - Sec(z,)
A
Log (F,) ‘
B N
1’
Sec(z) Sec (z,) Sec(z)

Figure 3. Here we plot the logarithm of the observed “flux” val-
ues “F” for a star against the secant of the corresponding zenith
distance “z.” The plotted points should fall approximately along
a straight line, whose slope or gradient is equal to the differ-
ence between two of the “Log(F)” values divided by the difference
between the corresponding “sec(z)” values. This number divided by
0.4343 gives the optical depth through Earth’s atmosphere in the
direction of the zenith. The point where the line touches the vertical

axis gives the log of the zenith “flux” value for the star.

One of the beauties of this process is that we don’t actually need that
observation of the star at the zenith; the other observations will still give
us the same straight line with the same gradient and the same resulting
zenith optical depth. If that isn’t enough, if we continue or extrapolate
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our straight line plot until it crosses the “y” axis, the point of intersection
gives us the value of Fy; this is the flux value that would be measured at
the top of the atmosphere. Having now derived the value of Fy, we can
use it to work out the relative drop in the star’s magnitude as it sinks
toward the horizon and suffers increasing absorption in the atmosphere.
We do this very simply as follows. Equation (5) in chapter Space — The
Great Radiation Field showed us that the magnitude difference my — m
corresponding to a flux ratio of F/Fj is equal to

mo —m = 2.5 x log (F/F) (18)

We have Fj and we have also measured a series of values for “F” at vary-
ing zenith distances, so my — m is now the difference between the star’s
magnitude at the top of the atmosphere 11y, and that at ground level “m.”
Finally then, how do we get the actual value of m(?

We know that Vega is the astronomer’s “zero star,” in that its magni-
tude in all the various photometric wavelength regions is exactly 0.0. By
carrying out our flux reading vs. zenith distance observations on Vega
(or indeed on any standard star whose top of the atmosphere magni-
tude myg has already been determined by the unsung efforts of previous
astronomers), we can determine the drop in magnitude my — m due to
atmospheric extinction for the standard star. It then follows that to esti-
mate the magnitude of a “target star,” we can apply the same correction
for atmospheric extinction and thus determine its top of the atmosphere
magnitude — all in all, a very neat technique from Monsieur Bouguer. The
basic principles of the method have been subsequently developed over the
years to enable astronomers both professional and amateur to do what’s
known as “all sky photometry.”

There now remains just one story to tell in our introduction to the
physics of starlight. This is the story of the stars themselves — how they
form, evolve, and eventually “pass away,” leaving us a truly wonderful
legacy. It is a story that has many twists and turns, but as always we shall
keep things as simple as possible, so that we can hopefully keep a clear
view of the physics that is involved.
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e

e Stars (probably most of them) produce winds that cause them to lose
mass.

e The pressure gradient in the outer layers of a star will produce a wind
of only a relatively low mass loss rate.

e Winds that are driven by radiation pressure produce much higher mass
loss rates.

e Gaseous winds from very hot stars reveal themselves by the presence
of P Cygni profiles in the stars’ spectra.

e An important component of slow-moving winds from cool giant stars
is dust grains.

e The “dust grains” in the interstellar medium are the prime cause of
dimming the light from stars.

e Dimming is greatest at shorter wavelengths, resulting in distant stars
appearing redder than they would otherwise be, and hence this dim-
ming is called interstellar reddening.

e The amount of interstellar reddening is measured by the difference in
a star’s color indices, compared to what they would be for a star of the
same spectral type and in the absence of reddening. Such a difference
is called a color excess.

e One effect of interstellar reddening is to push a star’s position down-
ward and to the right in the color—color diagram. The line connecting
the star’s reddened and its unreddened position is called the reddening
line.

e The gradient or slope of the reddening line for main sequence stars
has been found by observation to be roughly constant with a value of
around 0.72.

e The “top of the atmosphere” magnitude for a star can be found by
using Bouguer’s method, in which the decrease in a star’s brightness is
measured alongside its increasing zenith distance.



A Star Story — 10 Billion Years
in the Making

These days the story of stellar evolution could almost read like a Holly-
wood epic — and why not?! It is a story that probably began back at the
time of the Renaissance in Europe, when the stars were first suspected
as being distant suns. Over the centuries the “script” has been written by
countless astronomers, both amateur and professional, some well-known
and many unsung heroes. It now stands as one of the greatest of all astro-
nomical tales, equaled probably only by the story of the origin and evo-
lution of the universe itself, and just like that great story, the story of the
river of starlight still has a long way to go before we can write “the end.”

The story of stellar evolution is one that probably best begins not at
the beginning but in the middle, where compared to what comes before
and after, life for a star is relatively tranquil. This is the star’s time on the
main sequence of the Hertzsprung—Russell diagram.

K. Robinson, Starlight, Patrick Moore’s Practical Astronomy Series, 25
DOI 10.1007/978-1-4419-0708-0_10, © Springer Science+Business Media, LLC 2009
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The Middle of the Story - Life

The basic definition of a “star” is an astronomical object that generates
energy and emits radiation as a result of thermonuclear fusion taking
place in its core. Stars, including their cores, consist mostly of hydrogen,
and, as we saw in chapter Deep Inside a Star, hydrogen provides a ready
source of nuclear energy. Because it is so abundant in stars, it should last
for a while, so that stars that are using it to generate energy should remain
stable for a long period of time. All stars on the main sequence are gener-
ating energy by fusing hydrogen into helium, and they are indeed essen-
tially stable. However, they will only stay on the main sequence for as long
they can maintain their energy production rate. But we know that their
supply of hydrogen is finite. The first question to ask, then, is how long is
a star’s main-sequence lifetime?

In the latter part of the 19th century, the typical “gentleman amateur
astronomer’s” telescope would very likely come equipped with a device
called a bifilar micrometer. This enabled the angular separation and rela-
tive orientation (the position angle or p.a.) of the components of double
stars to be measured. Of particular interest were stars that were known to
be physically connected, i.e., bound together and orbiting one another as
a result of their mutual gravitational attraction. The ultimate reason for
making this kind of observation is that it was, and still is, the only direct
way to determine one of the most important numbers associated with a
star — its mass.

In principle the method is “very simple”; over a period of maybe many
years, you make careful measurements of the components of a double
star. In time, you can work out the period “P” (in years) for the system
or the total time taken for the component stars to orbit each other once.
If the distance to the system is known, say from trigonometric parallax
measures, then careful measurement of the angular separation of the two
components can be converted into the actual maximum distance of one
star from the other, “a” in astronomical units. Kepler’s third law of plan-
etary motion now tells us that the sum of the masses M; and M, (in solar
masses) of the stars is given by

M, + M, = a’ /P? (1)

Further careful measures will enable the distances a; and a, of each star
from the system’s center of gravity to be determined and the ratio of the
stars’ masses is given by
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Ml/Mz :az/al (2)

High school mathematics is now all that is needed to enable you to solve
these two equations to calculate the mass of each star in terms of the mass
of the Sun.

However, this procedure, like most things in observational astronomy,
is not straightforward at all. There are many complications, for example,
knowing the inclination of the binary system’s orbit relative to the plane
of the sky. Then there is the matter of whether both components can be
clearly observed and for a long enough period of time, to determine the
orbital period, and not least, of course, is knowing the actual distance to
the system. However, after many years of painstaking observations, mea-
sured stellar masses began to accumulate, and when astronomers have a
measured quantity for a decent-sized sample of objects, they can do great
things.

When sufficient stellar masses had been determined, some of these
masses could be compared with the stars’ luminosities. The result was
a clear and obviously tremendously important correlation between the
two. Because this correlation has been arrived at by purely observational
methods, it is called the empirical mass—luminosity relation. This relation
states that the luminosity of a star L is proportional to its mass M, raised
to the power of somewhere between 3.5 and 4.0.

The most important conclusions for us to draw here is that, first, if we
know the mass of a star, the equations of stellar structure can be used to
estimate how much of the star’s mass is available as nuclear fuel. Second,
by knowing the luminosity, we can estimate the expected lifetime of a
star — at least while it is a main-sequence star, just as we did for the Sun
in chapter Deep Inside a Star.

There is then, of course, the fact that if the luminosity of a star can be
determined by observations (notwithstanding the difficulties mentioned
in chapter A Multitude of Magnitudes for the Colors of Starlight), the mass—
luminosity relation can itself be used to determine a star’s mass.

Finally and perhaps most significantly, the fact that the luminosity is
proportional to the mass raised to the power of somewhere between 3.5
and 4.0 tells us that even allowing for the fact that the nuclear burning
core may differ for different stars, we can be fairly certain that not only
are more massive stars more luminous but they use their nuclear fuel at
a much faster rate. For example, a star of three times the mass of the Sun
could shine with a luminosity 81 times greater (3* = 81). This means that
it would consume nuclear fuel 81 times faster than the Sun and not just
three times faster. The result is that whatever stars do as they evolve, the
more massive and luminous stars will do it faster and thus have relatively
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short main-sequence lifetimes; fainter less massive stars, by contrast, will
live life in the slow lane, but they will live for a very long time.

Finally, to give us a “feel” for actual main-sequence lifetimes of stars,
we can first take that for the Sun to be 1019, i.e., 10 billion years, and we
can also make the approximation that the entire mass of a star (including
the Sun) is available for turning into helium. We can now devise a very
simple way to estimate the main-sequence lifetime of a star. Remember,
that to do this for the Sun we multiply its mass Mg by the speed of light
squared (we’ll call this ¢?) and divide by the Sun’s luminosity Le. In other
words

Mo x ¢t = tg (3)
Lo
Here to denotes the Sun’s main-sequence lifetime. It follows that for
any star of mass M, and luminosity L, its main-sequence lifetime ¢, is
given by
% X & = t, (4)
Ly
The mass—luminosity relation tells us that the luminosity of the Sun and
the star are each proportional to (are equal to) “a constant number” (the
same number in both cases, which we can call “k”), multiplied by their
respective masses, raised to some power between 3.5 and 4.0. If we use
the lowest of these values, i.e., 3.5, then Lg becomes k x Mg'S and L,

becomes k x Mg'S . So now Equations (3) and (4) become

1
s XC =t ®)
o
and
1 2
kx—j\ﬁ-s X 7 =1y (6)

Notice how we’ve used the rule of indices, as described in chapter Starlight
by Numbers, to cancel out the “M” from the numerator in each equa-
tion. For the star, we now write its mass and main-sequence lifetime as
multiples or fractions of those for the Sun, so that M, = M x Mg and
t, =t X to and use these in Equation (6). All we have to do now is divide
Equation (6) by Equation (5), and most things will cancel out to leave us
with

1
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The mass of the star M is in solar masses, and its main-sequence lifetime
is a multiple, or a fraction, of the Sun’s main-sequence lifetime, which we
have taken to be equal to 10'° years. Now we can try out this very simple
equation.

First, we’ll take a hot luminous star — our old friend Rigel. The mass—
luminosity relation has actually been used to estimate Rigel’s mass at
around 50Mg, so that Equation (7) tells us that tgjse equals 1/50% or
5.66 x 107 solar lifetimes, in other words, a little over half a million
years. At the other end of the main sequence lies our nearest stellar neigh-
bor, the class M dwarf Proxima Centauri, with an estimated mass of
0.1Mg and a resulting main sequence life of 1/0.1%> or somewhat over
300 solar lifetimes. This is far longer than the current estimated age of
the universe.

Clearly red dwarf stars are going to be around for some time. So the
main-sequence lifetimes of stars range from around maybe a million
years or so to what to all intents and purposes amounts to an eternity,
and the deciding factor is the star’s mass. The fact is, though, that stars
do not just “appear” out of nowhere on the main sequence — they have to
get there, and this takes us back to the beginning of the story.
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The Beginning of the Story - From

Besides stars, our galaxy contains a large amount of gas and dust; the gas
perhaps not surprisingly consists chiefly of hydrogen with a fair propor-
tion of helium, and this is clearly raw material from which stars could
form. We’ve already seen how the dust, particularly, dims and reddens
starlight; it also has another role to play when stars are formed. The gas
can often show itself in the form of galactic nebulae, but these nebulae
glow, because either the atoms they contain ionize and recombine, as a
result of high-energy radiation from hot stars within them, or they scat-
ter the light from less luminous stars. These nebulae contain stars that
have already formed, but before any stars form, a nebula is cold and dark,
and this is the place where a star’s life begins.

Just as a stable star exists in a state of hydrostatic equilibrium, a cloud
of interstellar gas and dust is in a similar condition. The big difference is
that the temperature is very low, maybe only a few Kelvin, and densities
are also very low. As an example, the gas content of a cold interstellar
cloud amounts to around 10° atoms per cubic meter. By the time this
cloud gets to the stage of being a “nebula” containing stars, the density has
risen to around 10'! atoms per cubic meter, which is still pretty rarefied
when compared to the average density of Earth’s atmosphere, which is
about 10'° atoms per cubic meter.

In order to turn a cold cloud of hydrogen and helium into a nebula
where stars can form, its density needs to increase, and there are sev-
eral ways in which this might happen. One way is the shock wave from
a supernova explosion, which can pile up and thus raise the density of
intervening interstellar gas as it spreads outward. If this were the only
known method of starting star formation, then there would clearly be a
serious “chicken and egg” situation, i.e., how did the star that exploded
as a supernova get formed?

Another process that can potentially squeeze interstellar gas on a grand
scale results from galaxies colliding. However, the colliding galaxies must
contain pre-existing stars, or they would not be galaxies at all but clouds
of intergalactic gas. One thing that does seem clear from observations of
galaxies themselves, particularly spiral galaxies, is that glowing nebulae or
HII (HII standing for singly ionized hydrogen) regions, as they are often
generally referred to, lie exclusively along the spiral arms of the galaxies,
which thus seem to be the favored sites for stars to form. If we think of a
galaxy as a revolving disk of gas initially with no stars, there will inevitably
arise within the gas turbulent motion that could set up longitudinal or
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compression/rarefaction waves, which instead of traveling in a straight
line as an everyday sound wave might, would instead move around the
“galaxy’s” center of gravity. In the compression zones of these revolving
density waves, stars could form, but the question is, how much does the
gas have to be compressed to start making a star?

This basic problem of compressing a volume of gas in order to make
a star was tackled in the early years of the 20th century by the English
astronomer, Sir James Jeans. Essentially the process works like this: sup-
pose we have a large spherical cloud of gas of radius r. which has the same

temperature T and density p everywhere. This means that

M

4 rg
3

o= (8)

M is the total mass of the cloud. Jeans said that under given conditions
of temperature and density, the internal gas pressure of the cloud will
support it against gravitational contraction, provided either its mass or
its radius does not exceed certain critical values. What this means is that,
if we keep the temperature and density constant but add extra layers to the
cloud, thereby increasing both the total mass of the cloud and its radius,
there will come a point when the cloud’s internal pressure can no longer
support it and it will start to contract. The critical mass here is called the
Jeans mass and the critical value of r. effectively measures what’s called
the Jeans length.

Both the Jeans mass and the Jeans length are inversely proportional
to the square root of the cloud’s density — in other words, increasing the
density of the cloud means that it cannot be as big or as massive before it
will start to contract. The Jeans length, which we can call Jj, is also pro-
portional to (denoted by the symbol “ox”) the square root of the cloud’s
temperature, so that
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Because the density p is proportional to r. =, this means that pl/Z is pro-
portional to r. !> and that J; is proportional to 7. If you’re not happy
with this, have a look back at chapter Starlight by Numbers in the section
called “The Rule of Indices for all Indices.”

Now imagine that we have a spherical cloud of gas whose temperature
and density are such that the cloud is at its limit — i.e., its radius is equal
to the Jeans length. Let’s assume at this stage that whatever happens to the
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cloud, its temperature does not change. We shall see shortly that there is
a very good reason why we can allow ourselves to make this assumption.
What we want to do now is to see what happens to the cloud’s Jeans length
when it either expands or contracts. In order to avoid cluttering things up
by including various physical constants and using the exact formula for
the Jeans length (more advanced books will give you this information
if necessary), we shall let the Jeans length /; and the radius of the cloud
rc simply have a value of “1,” or in other words, we don’t even need to
bother with the units.

Let’s see first what happens to the cloud’s Jeans length if the cloud
expands slightly, say to a value of r. = 1.1 units. Expansion means that
the cloud’s density falls and so the Jeans length will increase, and being
proportional to r.!* it effectively becomes equal to 1.1'>, or about 1.15
units. A bigger expansion to, say, r. = 1.5 units results in an effective Jeans
length of 1.84 units. Try using your calculator to input bigger values for
re; you'll see that as r. increases, the Jeans length increases at a faster rate,
so that the cloud always stays inside its Jeans length and remains stable
against gravitational contraction.

Now let’s make the cloud contract to a value of r. = 0.9; this results
in an effective value of j = 0.9, or 0.85, and again r. = 0.5 will give a
Jeans length of 0.35. So for a contracting cloud, the Jeans length shrinks
more rapidly than the cloud itself, and as we’ve seen this means that the
cloud cannot support itself against continued gravitational contraction.
Something else happens here, too; just as the Jeans length for the cloud
shrinks, as the cloud contracts, so does its Jeans mass. This, it is believed,
is what causes the cloud to break up into a number of fragments of vary-
ing mass (depending upon local densities within the cloud), which sub-
sequently go on to become individual stars.

At this point, we would very likely be inclined to point out that, as our
cloud began to contract, the temperature would begin to increase, and
a quick look at Equation (9) tells us that an increase in temperature will
increase the Jeans length of the cloud, effectively canceling out its decrease
due to the increase in cloud density. However, out in the cold depths of
interstellar space, where densities are very low, optical depths are also very
small, save for the very central regions of the cloud. This means that any
heat that is generated by the contraction can easily leak away as infrared
radiation, and dust grains, as well as simple molecules, which are known
to exist within interstellar clouds, actually help in this process. The result
is that the initial stage of the collapse of a cloud of material to form a star
occurs at essentially a constant temperature. Such a contraction is called
isothermal, and it is in a way the very opposite of an adiabatic contraction,
where no heat leaves or enters the system.
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Eventually, though, as the cloud density increases, its temperature will
start to rise, and the cloud’s shrinking radius will start to catch up with its
Jeans length. The contraction will thus slow down, but the rise in temper-
ature means that eventually the cloud will become a significant emitter of
radiation, first infrared and eventually visible radiation, whereupon it will
make its debut on the Hertzsprung—Russell diagram.

At this stage the central part of our contracting cloud of gas has become
a protostar; it will have an effective temperature of around 2,000 K and
be many times the size of the Sun. It will thus resemble a red giant
or supergiant and so will appear somewhere toward the upper right of
the HR diagram. Exactly where it appears will depend on the proto-
star’s mass; a more massive object does not need to contract as much
as a less massive object, in order for its density to cause its Jeans length
to contract to a size that is less than the size of the protostar itself. So
higher mass protostars will have a larger surface area, which results in a
higher luminosity. The more massive a protostar is, the further up the
right-hand side of the HR diagram it will begin its pre-main sequence
evolution.

Protostars also resemble red giants in another way — at temperatures of
around 2,000-3,000 K, the opacity of material inside the protostar is rel-
atively large, and the most efficient way for thermal radiation to reach the
surface is by convection. This initially enables the contracting protostar to
remain at a fairly constant effective temperature, and so as the protostar’s
radius and surface area decrease, the luminosity also falls. The protostar
thus at first follows an almost vertical path downward on the HR diagram,
which is called the Hayashi track, after the Japanese astronomer Chushiro
Hayashi, who in the 1950s basically used the equations of stellar structure
to model this stage in a star’s evolution.

The lowest mass protostars contract more slowly, and so the compres-
sion of the gas in the protostar is more nearly isothermal. Provided the
protostar’s mass is sufficient (the minimum is estimated to be around
0.1Mg ), temperatures at the center will reach around 107 K, enabling the
proton—proton chain reaction to get going. This low-mass protostar has
now become a true star at the lower end of the main sequence — in other
words, an M dwarf.

Also working on pre-main sequence evolution at the same time as
Hayashi was the American astronomer Louis Henyey and his colleagues,
who showed that for more massive protostars (i.e., those more massive
than around 0.5M()), the Hayashi track stage is relatively short lived
(and the more massive the protostar the shorter this stage becomes),
and it is followed by a more or less horizontal track (actually called the
Henyey track) from right to left on the HR diagram. In other words,
the protostar’s effective temperature is increasing, but its luminosity is
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remaining more or less constant. More massive protostars contract more
rapidly, and the resulting compression is in effect more adiabatic, which
means that there isn’t sufficient time for thermal radiation to escape at a
rate that would maintain a constant temperature.

The resulting rise in effective temperature would normally increase the
protostar’s luminosity, but it is still contracting, and the decreasing sur-
face area effectively counteracts this. Hence the Henyey track is more or
less horizontal.

Another thing that happens with more massive protostars is that the
higher temperatures generated inside mean that the opacity of the proto-
stellar material falls (remember Kramers’ Law from chapter Deep Inside
a Star), and so the envelopes of more massive stars become radiative
rather than convective. The relatively rapid temperature rise for more
massive protostars also means that the central core temperature more
quickly reaches the proton—proton chain temperature of around 10’K.
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Figure 1. Broadly specking, the evolutionary tracks across the
HR diagram for contracting protostars divide into two parts. The
Hayashi track is more or less vertical and more extensive for lower
mass stars, whereas the roughly horizontal Henyey track dominates
the pre-main sequence evolution of more massive stars. The time
spent on these tracks ranges from around 104 years for the most
massive protostars fo around 107 years for those of lower mass.
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The result is that the more massive a protostar, the shorter the time from
its first appearance on the HR diagram to arriving on the main sequence.
The core temperatures of the most massive stars will continue to rise
still further, which then favors the CNO cycle. The end points of the
Hayashi/Henyey tracks form a curve, which follows the main sequence on
the HR diagram. This curve is referred to as the Zero-Age Main Sequence,
or ZAMS for short. Figurel shows schematic pre-main sequence tracks
across the HR diagram.

So now we’re back at the middle of the story, but before we move on
to the next part of the story, it’s important to point out that the main
sequence is not a “line” on the HR diagram but what amounts to a fairly
broad band of stars. The fact is that even when a star has reached its place
on the ZAMS, its core is still contracting, albeit fairly slowly, in order to
achieve hydrostatic equilibrium. This raises the core temperature enough
to expand the star’s envelope to some degree, and indeed it has been esti-
mated that during the course of its main-sequence lifetime, the Sun will
have increased its size by a factor of about two. All this time, of course,
the hydrogen in the stellar core is becoming more depleted, so that even-
tually a loss of thermal equilibrium results in a much more serious dis-
turbance to the star’s hydrostatic equilibrium situation. This results in the
star having to essentially “reinvent” itself, and in doing so, it will leave the
main sequence and pursue what to most astronomers is by far the most
interesting part of its life.
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The End of the Story - Life After

When most of the hydrogen in the core of a star has turned into helium,
the core will for a time be inactive as far as nuclear reactions are con-
cerned and will contract under its own gravity. This will happen whether
the star is massive or not so massive. However, the consequences of this
core contraction will be somewhat different for stars of relatively low
mass, say, less than about 2M¢, compared to that for higher mass stars;
ultimately, though, it involves a bit of bizarre physics for both groups of
stars.

In a lower mass star, the inactive helium core will initially have a tem-
perature of around 15 million Kelvin, and as the core contracts its tem-
perature will start to rise. As if jumping on the band wagon, the layer
of hydrogen immediately surrounding the core, which hitherto was not
hot enough for hydrogen fusion, will also contract and heat up to the
point where hydrogen fusion can begin. This now active shell of hydro-
gen in turn heats and expands the main part of the star’s envelope. As it
expands, it cools and turns our low mass star into a red giant.

In the case of a star of 1M, this process is estimated to take around
1 billion years, with stars of slightly higher or lower mass taking corre-
spondingly shorter or longer times, respectively. If we could speed the
process up, we would see the star move upward and somewhat to the
right in the HR diagram, resulting from a drop in effective temperature
as the envelope expanded, but a rise in luminosity as the area of the star’s
photosphere increased in size. The star would be on the red giant branch,
or RGB, of the HR diagram.

Meanwhile, back in the core, strange things are beginning to hap-
pen. The contraction of the core under its own gravity ultimately forces
the two electrons in each helium atom into the lowest energy levels. In
very basic terms, the helium atoms become physically smaller in size,
as they squeeze together, while still maintaining their identity as actual
atoms. While this is going on, the gas pressure in the core is increasing,
as one would expect from the normal kinetic theory of gases. Then, a
fundamental law of quantum mechanics called the Pauli Exclusion Prin-
ciple (named after the Austrian physicist Wolfgang Pauli) comes into
operation. This law states that, within an atom, only one electron can
occupy a given energy level at any one time, so that while an atom has
one or more electrons in its higher energy levels, there is always “some-
where,” i.e., some vacant lower energy levels, that they can go to if need
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be. With electrons filling all the lowest energy levels from the “bottom
up,” there is nowhere for the electrons to go, and any material which is in
this condition is called degenerate. Degenerate electrons in this particular
case resist being compressed any further by a force, which is referred to
as “electron degeneracy pressure,” and this is the maximum pressure that
the stellar core is able at this point to exert.

From this stage any energy that is expended by gravity will barely com-
press the star’s core any further, and indeed extra gravity does “arrive” in
the form of helium that has been created in the hydrogen burning shell
and which adds mass to the core itself. The effect, though, is to make
the helium atoms themselves kind of “slip and slide” around one another
at increasingly greater speeds; in other words, the gravitational energy
is now used solely in raising the temperature of the core itself, until it
eventually reaches a “magic” figure of around 108K. At this temperature
the non-degenerate helium nuclei basically “forget” about the degenerate
electrons and fuse together in a (for this star) brand new thermonuclear
reaction called the triple-alpha process.

The end product of this process is carbon, and indeed some of the
resulting carbon atoms can fuse with another helium nucleus to make
oxygen. Meanwhile, the release of this new source of thermonuclear
energy in turn releases the electrons from their degenerate grip. Because
of the forgoing degeneracy situation and the buildup of the core tempera-
ture to a point that is aptly described as “critical,” the initiation of helium
fusion in lower mass stars is relatively rapid — more in the form of an
explosion deep inside the star, which is referred to as the helium flash.

The removal of electron degeneracy in the core by the helium flash
means that the core behaves once more according to the good old rules of
the kinetic theory of gases; it expands and cools, slowing down the helium
fusion reactions. This core cooling initially makes the star as a whole
contract somewhat, but then as hydrostatic equilibrium is re-established,
energy transport through the envelope (this time by convection) halts
the contraction, while at the same time raising the star’s effective temper-
ature. The star thus moves more or less horizontally to the left across the
HR diagram, along what is known as the horizontal branch.

There is one more phase in the post-main sequence story of our low
mass star, before it reaches its “endgame.” In time the fusion of helium
will cease (estimated to occur after about 100 million years for the Sun),
and there will remain an inactive carbon/oxygen core. This will in turn
contract and become degenerate again, but with a relatively low mass core
this contraction will never generate a high enough temperature for car-
bon atoms to fuse.
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However, something else does happen. The hydrogen burning shell has
now given rise to a shell of helium surrounding the core, which as a result
of the core’s contraction will itself contract, heat up, and undergo a sec-
ond so-called “helium shell flash.” This flash is not as violent as the core
helium flash, because the density here is too low for the gas to become
degenerate, and indeed it can occur in several stages called thermal pulses,
which give rise to instability in the star’s envelope. This will expand our
humble low mass star’s outer layers even further to the extent that it will
move for a time right up to the top right corner on the HR diagram, on
what is called the asymptotic giant branch, or AGB.

The thermal pulses taking place within an AGB star are believed to
contribute to these stars’ pulsational instability, resulting in most of
them being long period or semi-regular variable stars. Probably the most
famous AGB star is Mira.

Finally, the vast and relatively low-density envelopes of these stars (a
1Mo AGB star is estimated to have a radius of around 1.5 A.U.) mean
that much of this material is only held loosely by gravity to the star’s core.
The result is that thermal pulses help to drive material away in the form
of a low velocity stellar wind. As mentioned in chapter Deep Inside a Star,
convection currents dredge up material, such as carbon and oxygen, that
has been synthesized in the helium burning shell.

The final result of this process is to drive most of the star’s envelope
away from the core in the form of a large low density “bubble,” which
is photoionized by high-energy photons from the still very hot (around
10°K) core — a planetary nebula of the kind we all know and love.

In this situation, our low mass star has finally, albeit in “death,” won its
constant battle with gravity to maintain hydrostatic equilibrium. This is
achieved by the electron degeneracy pressure of the remnant core, which
will maintain hydrostatic equilibrium indefinitely as it cools. This core is
now a white dwarf star — it’s hot but small (approximately the same size
as Earth) and hence of low luminosity. This puts its final resting place
near the bottom left corner of the HR diagram, somewhere way below
the main sequence.

Back in chapter Deep Inside a Star, we pointed out that much of a star’s
mass is concentrated in the core, and this means that higher mass stars
have more massive cores. This in turn means that much higher tempera-
tures can be generated within them, when they contract. The first effect of
this is that the contracting helium core of a massive star does not have to
reach the stage of degeneracy before helium fusion begins, and as before,
a shell of fusing hydrogen takes our more massive star on what this time
turns out to be its first “leg” along the giant branch.
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For a more massive, and initially much hotter, star, the relative drop
in effective temperature is much greater as it evolves to a red giant, and
this offsets the effect of an expanding photosphere. The result is that
more massive stars follow a more horizontal RGB across the HR diagram.
Although there is no helium flash, it has been suggested that for what
are generally referred to as “intermediate mass stars” (stars of mass from
around 2.5Mg to 5Mg), there could be a “carbon flash,” as their more
massive and this time degenerate carbon cores initiate carbon fusion. This
happens at a temperature of around 500 million Kelvin, the fusion prod-
ucts being neon, sodium, and magnesium.

What is particularly unclear is whether such a carbon flash could actu-
ally blow the star apart, mainly because it is not known with any certainty
how many neutrinos are produced in such high temperature fusion reac-
tions. In sufficient numbers, they could in theory remove a significant
proportion of the energy produced in a carbon flash, and, as a result,
cool the stellar core; but this one remains firmly in the hands of the
theorists.

Beyond this, thermonuclear reactions for increasingly massive stars
become much more involved and, to be honest, are probably still not fully
understood in all their details. There are a few general points, though, that
can effectively “pull together” this phase in a massive star’s life. First, the
onset of a new form of fusion process will initially cause the stellar core
to expand and cool. As with lower mass stars, this will result in the star
as a whole contracting for a time. This will regulate the fusion reaction
rate and re-establish hydrostatic equilibrium. Thermal energy transport
will then in turn cause the star to move to the left, along the horizon-
tal branch, as its effective temperature rises again. For the most massive
stars, this process can happen several times and results in them pursuing
a kind of “to and fro” track across the HR diagram.

Second, the actual “yield,” or the amount of energy that is released by
the fusion of progressively heavier atomic nuclei, is in turn progressively
lower, though the actual reactions themselves are capable of synthesizing
pretty well all of the chemical elements in the periodic table up to and
including iron. A very important consequence of the post-main sequence
tracks of stars across the HR diagram (this includes lower mass stars) is
that at some point in time they cross, maybe more than once, the Cepheid
instability strip. This, as we have seen, makes them prone to sustained
pulsation within their envelopes and tells us, of course, that Cepheid and
other related variable stars are just “passing through” on their evolution-
ary journey across the HR diagram.

Finally, just as a hydrogen fusing shell developed around the helium
core of our low mass star, here a whole series of fusion shells progressively
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develops, the outermost consisting of hydrogen, which surrounds a
helium shell, which in turn surrounds a carbon shell, etc. The actual
number of these fusion shells is determined by the mass of the star itself,
but even for the most massive stars, the innermost shell ultimately con-
sists of silicon, which is fusing to iron, which adds to the mass of the star’s
iron core. The formation of this core marks the endgame for the most
massive stars. The post-main sequence tracks for stars across the HR
diagram are shown schematically in Fig. 2.
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Figure 2. Schematic post-main sequence evolutionary tracks for
low, intermediate, and high mass stars. The parallel dashed lines
show the approximate location of the instability strip and indicate
the fact that higher mass stars cross this zone several times.

The “fusion game” ends with the production of an iron core. Fusing
iron to make heavier elements actually takes energy in, rather than pro-
ducing it, and so when the last silicon atoms fuse to make iron atoms, the
core contracts for the last time. The increasing density will, as with the
star’s low mass cousins, render the core degenerate, but this time there
is no release mechanism in the form of yet another fusion process that
can free the degenerate electrons. Instead, the extremely high temperature
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within a high mass stellar core (of the order of 10'0 K) starts to break the
iron nuclei apart again, in a process known as photodisintegration.

The energy contained within the core, which has hitherto been used to
maintain thermal equilibrium and hydrostatic equilibrium throughout
the star, is now being used by the core to effectively destroy itself. This
actually releases the electrons, but the consequence is truly catastrophic.
The products of photodisintegration of iron atoms are protons, electrons,
and helium nuclei, and under these conditions, the electrons — all the
electrons — readily combine with the protons to make neutrons. What’s
more, because the electron degeneracy pressure has gone, the core col-
lapses, which in turn squeezes the neutrons together, so that they become
degenerate. The resulting neutron degeneracy pressure prevents the core
from further collapse — but maybe only for the moment.

The loss of thermal equilibrium results in the loss of hydrostatic equi-
librium throughout the star. The result is that the entire outer layers of
the star implode onto the core of degenerate neutrons — and bounce back
to produce a Type II supernova. This, as every astronomer knows, is an
almighty explosion, and as one amateur astronomer said “something that
we really are overdue for in our galaxy.”

What of the stellar core, though? We have a situation where the irre-
sistible force of gravity meets with the immovable object in the form of a
pile of degenerate neutrons — a neutron star — and provided the mass of
this dead stellar core isn’t too high, neutron degeneracy pressure main-
tains hydrostatic equilibrium indefinitely. Once again the star wins, this
time having truly gone out in a blaze of glory.

Neutrons are, of course, electrically neutral particles, but the outer lay-
ers of a neutron star are in fact a plasma, consisting of atomic nuclei and
electrons. What’s more, neutron stars spin very fast, due to a basic prin-
ciple of physics called the principle of conservation of angular momentum.
This principle was “there” back at the start of a star’s life. It made the
interstellar cloud begin to rotate as it contracted. It works very simply.
Any object, or particle for that matter, that is moving possesses, as we
have seen, kinetic energy as a result of its motion. The particle also pos-
sesses another quantity, intimately connected to its kinetic energy, called
its momentum, or more strictly its linear momentum, and this is simply
equal to the particle’s mass “m” multiplied by its velocity “v,” or m x v.
Linear momentum is in a sense a measure of how much force you would
have to apply to stop a body from moving. It would take a lot of force to
stop a slow-moving massive object such as a locomotive, but it would also
take a lot of force to stop a fast-moving low mass object such as a bullet.
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If, instead of moving in a straight line, our particle is effectively mov-
ing around some fixed point, which is at a distance “r,” then its linear
momentum, which is still equal to m x v, gives the particle a kind of
“lever effect” around the fixed point. The greater the particle’s distance
from the point, the greater this lever effect is. This is called the particle’s
angular momentum, and it is equal to m x v x r. The principle of con-
servation of angular momentum says that if the particle’s distance from
the point changes, its angular momentum must nonetheless remain con-
stant. This means that if the distance decreases, the particle must speed up
to compensate and vice versa. A particle within a contracting stellar core
must maintain its angular momentum around the core’s axis of rotation,
and so it, and all its buddies, will speed up; in other words, the stellar
remnant spins faster.

The rapid rotation of the plasma-rich surface layers of a neutron star,
combined with its extremely small size, result in an immensely intense
magnetic field. Charged particles suffer severe acceleration in this field
and emit electromagnetic radiation, often of very short wavelength, pre-
dominantly along two narrow beams that are directed along the axis of
the star’s magnetic field. The rapid rotation of the star itself can result in
one of these beams being observed as a rapid succession of light pulses —
known as a pulsar — of which the most famous example is the one that
lies at the heart of the Crab Nebula supernova remnant in the constel-
lation of Taurus. Over recent years more exotic objects, such as quark
stars (quarks being the fundamental building block of particles such as
protons and neutrons) and even “preon stars,” (preons, in turn, being
the hypothetical building blocks of quarks) have been proposed, but with
sufficient mass remaining in a stellar core, gravity ultimately does appear
to win.

The English physicist Stephan Hawking showed us that, over a period
of time, black holes could lose mass and “evaporate.” The fact is that it
wasn’t until a few decades ago that most astronomers were generally very
skeptical about the very existence of black holes. What changed things
was not so much the idea that massive stars at the end of their lives could
turn into black holes but that they offered a very satisfactory explana-
tion of the enormous luminosity of quasars. By contrast, physicists had
grown accustomed to the idea of black holes in the late 1940s, when J. R.
Oppenheimer used the general theory of relativity to investigate the grav-
itational collapse of massive objects such as very massive stars. Physicists
were generally “okay” with the idea that a star could collapse to the point
where the escape velocity from its surface exceeded the speed of light and
thus form an event horizon, inside of which nothing could escape. How-
ever, the idea that the collapsing object could continue right down to zero
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size and infinite density, in other words a space-time singularity, as general
relativity seemed to predict, was seen as highly improbable.

Thus, it may be said that Hawking’s finest achievement was theoretical
work carried out in the late 1960s and early 1970s, partly in collaboration
with the Oxford mathematician Roger Penrose, on what are now called
the singularity theorems. These basically showed that, provided sufficient
mass can be compressed to the extent that an event horizon does form,
then the inevitable consequence is a true space-time singularity. The final
bottom line here, where gravity seems to have won, is that the existence
of black holes implies the existence of singularities, which in turn implies
that there are regions of the universe where our most fundamental ideas
of physics run out — including general relativity. So, in the end, it may
be that gravity as we know it hasn’t won at all, but instead it is as-yet
unknown physics that has finished the job.
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Probably the most important underlying feature of the evolution of stars
is that more massive stars do it faster — and this means in all stages of their
evolution. The fact that our galaxy contains stars in all stages of evolution
is clearly demonstrated by their various locations on the HR diagram.
The galaxy also contains stars of all ages, because as we shall now see, if
all the stars in the galaxy were of the same age, the HR diagram would
look very different.

There are places in the galaxy, however, where all the stars are of the
same age, and this is in star clusters — open or galactic clusters, such as the
Pleiades and globular clusters such as M13. The starting point for all star
clusters is a contracting cloud of interstellar gas that, as indicated above,
will fragment as the Jeans mass in different parts of the cloud decreases,
at a rate that depends on the local density. These fragments will go on to
form a cluster of stars, in which the most massive fragments will become
the most massive and the fastest evolving stars. Let’s see, then, what the
HR diagram for an evolving star cluster would look like.

The cluster will make its debut on the HR diagram as a growing group
of low temperature objects on the right-hand side. These objects are fol-
lowing their respective Hayashi tracks. The most massive of these objects
will then move toward the left, as they pursue their Henyey tracks, and
these, the most luminous hot stars, will be the first stars to reach what
will be the very top of the ZAMS. The lower parts of the ZAMS will start
to fill, as the less massive protostars begin fusing hydrogen in their cores
and achieve hydrostatic equilibrium, but by the time the lower mass pro-
tostars are reaching the ZAMS line, the most massive stars have already
evolved away from the main sequence to become red giants.

As progressively lower mass stars evolve up the giant branch, the main
sequence basically “peels away,” at what is referred to as the “turn-off
point” from the top down, and indeed, the degree to which this has pro-
gressed gives astronomers a real measure of the star cluster’s age. Mean-
while, the most massive stars have now evolved along the horizontal
branch and onto the AGB, prior to perhaps exploding as supernovae, and
in time, the AGB will fill with less massive stars on their way to becoming
planetary nebulae.

The main difference, then, between a general HR diagram and that for
a star cluster is that the cluster diagram will have a piece of the upper
main sequence missing. In addition, a well-populated horizontal branch
and AGB tells astronomers that they are dealing with an old star cluster. In
this way, astronomers know that globular clusters are generally very old
indeed — maybe as much as 10 billion years, as compared with galactic
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clusters, which in some cases are of the order of only a few million years
old. There are, of course, exceptions, such as the very old galactic cluster
M67 in Cancer and the relatively young globular cluster M71 in Sagitta.

Finally, a tremendous bonus for both professional and amateur
astronomers who wish to investigate star clusters is the fact that all the
stars in a cluster are effectively at the same distance from us, and so the
stars’ luminosities scale directly with their apparent, as well as their abso-
lute, magnitudes. This means that when producing an observational HR
diagram for a cluster, it is only necessary to plot the stars’ V magnitudes
against their B — V color indices. Figure 3 shows schematic HR diagrams
for young, intermediate, and old star clusters
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Figure 3. Here we see three stages in the evolution of a star clus-
ter. As the cluster forms, lower mass stars move on Hayashi tracks
toward the ZAMS, while the more massive stars pursue a more
rapid course along Henyey tracks and reach the ZAMS first, as
shown in a. In a somewhat older cluster, intermediate mass stars
have reached the ZAMS, whereas low mass stars have yet to reach
it. Meanwhile, the highest mass stars are already in their post-main
sequence phase, as shown in b. For an old cluster, such as a globu-
lar cluster, all stars initially on the upper part of the main sequence
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Figure 3. (continued) have evolved to produce well-populated
horizontal branch and AGB regions as shown in c.
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On a final note, the globular cluster M71 mentioned above was initially
thought to be a fairly dense galactic cluster, until more detailed observa-
tions showed that its stars were more like those of a globular cluster than
a galactic cluster. The difference here is not just one of age but of actual
chemical composition.
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Old Stars, Young Stars, and New

The first stars that ever formed consisted of hydrogen and helium
together with a trace of lithium and beryllium, because these were the
only elements that were present after the Big Bang. We’ve now seen that
stars spend their lives synthesizing heavier chemical elements by nuclear
fusion in their cores; more helium is made, followed by the likes of car-
bon, oxygen, etc., right up to and including iron. What’s more, it is
believed that other elements in this part of the periodic table are pro-
duced in “side reactions” that take place alongside the main fusion pro-
cess. What we see here is the fact that the stars are actually the universe’s
chemical factories; what we’ve also seen is that elements further up the
periodic table cannot be synthesized in fusion reactions. These elements
are “here,” though, right up to element number 92, which is uranium.

It’s now known that in the more massive AGB stars, heavier and
rarer elements can form within some of the fusion shells that these stars
contain, and the general name for the processes that occur here is the
“S-process,” which stands for slow neutron capture. Any chemical element
is “defined” by the number of protons in the nuclei of its atoms, and the
nuclei of all elements have a slightly variable number of neutrons. The
actual number of neutrons “defines” an isotope of a particular element,
and while some isotopes are stable, others are not. One of these extra
neutrons can split up or “decay” by emitting an electron — in a process
called B or “beta” decay — because in the years following the discovery of
radioactivity, electrons emitted by atomic nuclei were called “beta rays.”
This then leaves behind an extra proton in the nucleus, which means that
our element is no longer the same element but has in fact become the
next element up in the periodic table.

In the fusion shells of AGB stars, “free” neutrons exist and take part in
the main fusion reaction processes, and each neutron capture/decay event
leads to a nucleus of a heavier element. With the S-process it is a step by
step process of element synthesis, because the quantity of neutrons that
are present in the fusion shells of AGB stars is relatively low, so that
decay takes place before an atomic nucleus can grab itself one or more
further neutrons. Even so, in time, fairly heavy elements can be produced
in this way, and as we have seen, convection processes within these stars
can dredge these elements up into the stars’ surface layers, where they
show themselves in the stars’ spectra (indeed the first hard evidence for
the S-process came in 1952 when the American astronomer Paul Merril
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discovered the element technetium in the spectra of some red giants) and
may subsequently be sent off into interstellar space, as part of a stellar
wind.

The collapse of a supernova provides a very high abundance of free
neutrons, which can attach themselves particularly to the iron nuclei in
the core. What’s more, in this situation, several neutrons may be captured
before any p decay takes place. This process of “rapid neutron capture,”
known as the R-process, can lead especially to the synthesis of the heav-
iest radioactive elements, such as uranium. The explosive character of a
supernova means, of course, that much of this heavy element material is
expelled as part of a supernova remnant.

The bottom line here is that stars enrich the interstellar medium with
heavier elements, which means that younger stars will inevitably con-
tain a higher proportion of these heavier elements than the old ones.
This higher heavy element content will reveal itself in the presence of
more and stronger absorption lines, due to heavier elements in the spec-
tra of younger stars. This kind of distinction in stellar spectra was first
recognized in the mid-1940s by the German-American astronomer Wal-
ter Baade, who defined the terms “population I” and “population II”
when referring to younger and older stars, respectively. Since that time,
the original division has developed more into an evolutionary scale, with
the terms “extreme, intermediate, and old” being applied to the youngest
through to the oldest population I stars and “young, intermediate, and
extreme” being applied to the youngest through to the oldest population
IT stars. Our Sun is considered to be an old population I star.
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Stars end their lives as cooling white dwarfs, neutron stars, or black holes,
but while they shine, they synthesize virtually all of the chemical elements
that feed into the interstellar medium. This material goes on to make
new generations of stars, which themselves contain a greater abundance
of heavier elements. The formation of stars in an environment that is rel-
atively rich in heavy elements results in “heavy element planets,” such as
Earth, forming as part of the process. This, then, is the wonderful legacy
left to us by the stars; in our part of the universe, the ultimate legacy of
the river of starlight — is us!
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This, then, has been our basic introduction to stellar astrophysics. As
mentioned at the beginning, it is an enormous subject with many special-
ist areas that themselves would in some cases require a whole other book
to deal with properly. Even so, if what you have read has taught you some-
thing about stars that you didn’t know before and maybe even opened
your eyes to an area of astronomy that has hitherto been unknown, then
that is certainly reward enough for this author. Most of all, if it has in
some way given a little more meaning to your observations, then it has
done its job.
Clear skies and good observing!
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e The luminosity of a star is proportional to its mass raised to a power
that lies in the range of 3.5—4; this is called the mass—luminosity rela-
tion. It can be used, for example, to estimate the main-sequence life-
time of a star.

e The more massive a star is, the more rapidly it proceeds through all
stages of its evolution.

e If temperature and density conditions within an interstellar cloud are
such that the linear dimensions of the cloud exceed its Jeans length, or
its total mass exceeds its Jeans mass, then the cloud will contract under
its own gravity.

e [t is believed that local density variations in a contracting cloud will
result in the local Jeans mass decreasing at different rates in different
parts of the cloud, leading to fragmentation into units that will ulti-
mately form stars of different masses.

e A contracting cloud fragment will heat up and eventually appear on
the right-hand side of the HR diagram, whereupon it will follow an
initially vertical Hayashi track as it contracts isothermally.

e More massive cloud fragments contract more rapidly, i.e., more adia-
batically, and follow a more horizontal Henyey track to the left of the
HR diagram.

e When the cloud core reaches a temperature of around 106 K, ther-
monuclear fusion of hydrogen begins, and the star has arrived at the
zero-age main sequence, or ZAMS.

e Lower mass main sequence stars, in time, switch from fusing hydrogen
to helium, in favor of fusing helium to carbon and some oxygen in the
triple-alpha process.

e Low mass stars end their lives on the asymptotic giant branch, or AGB,
of the HR diagram, where they in time expel their outer envelope to
become a white dwarf surrounded by a planetary nebula.
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e More massive stars fuse increasingly heavy elements, initially in their
cores, and later in a series of shells surrounding the core. They end
their lives by their outer layers imploding onto an inert iron core, the
“rebound” manifesting itself as a supernova.

e Succeeding generations of stars enrich the interstellar medium with
heavier elements, most of which are synthesized by either the slow or
rapid neutron capture processes.

e Heavier elements made in stars make planets such as Earth and living
creatures like us.



Appendix 1: The Greek Alphabet

This is usually given in most books on observational astronomy, but
we’ve used so many Greek letters in our various equations that we
thought it would be helpful to provide a list of all the lower case letters
here.

a Alpha v Nu
B Beta g Xi
Y Gamma o Omicron
d Delta T Pi
€ Epsilon 0 Rho
C Zeta o Sigma
n Eta T Tau
0 Theta v Upsilon
L Iota [0} Phi
K Kappa X Chi
3 Lambda U Psi
v Mu ) omega
K. Robinson, Starlight, Patrick Moore’s Practical Astronomy Series, 265
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Appendix 2: Astronomical and
Physical Units and Constants

The word “units” means the basic quantities in which things are mea-
sured; for example, distance may be measured in miles or kilometers.
Astronomers can be notorious for using units that often seem a bit
bizarre, such as giving the diameters of stars in centimeters. By contrast,
physicists have over the years standardized things a lot, and they now very
widely use the so-called MKS (for meter — kilogram — second) system,
which is also referred to as the “SI” system, which in French stands for
“Le Systeme International d’Unités.”

The fact is that many quantities are actually a combination of units
of mass, length, and time (hence “meter, kilogram, second”) and maybe
also temperature. A good example is energy, which in the SI system is
of course measured in joules. Energy is equivalent to the work that is
expended or done by some system, and work is defined as force multi-
plied by distance. According to Newton’s second law of motion, force is
equal to mass multiplied by acceleration; acceleration is the rate at which
velocity changes and so is equal to velocity divided by time. Finally, veloc-
ity is equal to distance divided by time. So, denoting distance by “L,” mass
by “M,” and time by “T,” we have

Velocity = L/T

Acceleration = L/T/T = L/T?> = LT?
Force = M x acceleration = MLT>
Energy = force x distance = ML*>T>
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The combination ML?>T2 is referred to as the dimensions of energy
(nothing to do with dimensions of space and time), and indeed all phys-
ical quantities have their respective dimensions. In an equation, dimen-
sions will multiply together and cancel out just like numbers do; a good
example here is Newton’s famous inverse-square law for the gravitational
force “F” between two bodies each of mass “M” and separated by a dis-
tance “L.” This is given by F = G x M?/L?, and G here is the universal
constant of gravitation. We have seen that force has the dimensions of
MLT2 and so the dimensions of G are given by MLT x L?/M?, which
is the same as L>M™1 T2,

An important general rule and a very valuable check in any equation
involving physical quantities is that the dimensions of each side of the
equation should be the same.

Important Units

In addition to the fundamental units of kilogram (kg), meter (m), and
second (s), there are several basic units that, besides being important
in themselves, can also serve to define the units of other quantities.
These are

e Force — the Newton — “N:” defined as the force that will give a mass of
1 kg and an acceleration of 1 ms™2.

e Energy — the joule — “J:” defined as a force of 1 N moving through a
distance of 1 m.

e Power — the watt — “W:” defined as energy expended at a rate of 1 Js~!.

e Temperature — the Kelvin — “K:” defined as one degree on the Kelvin
temperature scale, such that 0° Celsius equals 273 K.

e Frequency — the Hertz — “Hz:” defined as one oscillation per second.

Notice here that it is very common practice to write, for example, “s™1”
instead of “per second,” or “K™*” instead of “per Kelvin to the power
four.” This saves an awful lot of time.
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Although all constant have, as we saw above, their own respective dimen-
sions, it is nonetheless standard practice to give them in their own respec-
tive units. So for example the units of the constant of gravitation are
Nmzkg_z, which do, of course, reduce to the dimensions given above. A
good exercise is to work out what the dimensions are for the various con-
stants given below. The actual value for a constant will more often than
not be a number that is given in scientific notation.

Physical Constants

The speed of light — c = 2.9979 x 10° m s~
Gravitational constant— G = 6.673 x 107! N m? kg2
Planck’s constant — h = 6.626 x 10747
Boltzmann constant — k = 1.381 x 1073 JK!
Stefan’s constant — o= 5.670 x 108 Wm=2 K*

Astronomical Constants

Astronomical unit — A.U. = 1.496 x 10" m
Parsec — pc = 3.086 x 10'® m
Light year —ly = 9.461 x 10> m
1 pc =3.2616ly

Solar mass — M= 1.989 x 10°° kg
Solar radius — Rg = 6.96 x 103 m

Solar luminosity — Lo= 3.826 x 102° W



Appendix 3: The Doppler Effect

There are probably few astronomy books these days that have nothing
to say about the famous Doppler effect, named incidentally after the
early 19 -century Austrian physicist Christian Johann Doppler. Doppler
successfully explained the phenomenon of wave motion that affects the
wavelength and also consequently the frequency of waves that are emit-
ted either by a source whose motion has a component directed toward
or away from the observer or are received by an observer who is moving
relative to the source. This means that light from a star whose motion
is partially or wholly directed toward or away from us is slightly bluer
or redder, i.e., of slightly shorter or longer wavelength, respectively, as a
result.

The most sensitive and accurate way to measure such changes in wave-
length is by using the shifts or wavelength changes in the absorption lines
in the spectra of stars. The change in wavelength “AN\” (pronounced
“delta lambda”) for an absorption line whose laboratory or “rest” wave-
length is Ag is given very simply by

— v
Ak_koxc (1)

Here, v is the relative velocity of the source and the observer, and c is the
speed of light in the same units as that of v. If ) is in angstroms, then A\
is also in angstroms, i.e., the same units once again.

Finally, note that the standard convention is for relative motion
directed away from the observer to have a positive value for v and vice
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versa. Thus a positive value for A\ denotes a red shift; likewise, a neg-
ative value denotes a blue shift. Equation (1) is perfectly okay for most
astronomical situations where v is small compared to the speed of light,
so that there is no need to use the more complicated relativistic Doppler
formula that, needless to say, came some time after Professor Doppler.



Index

A

Absorption coefficient, see Linear
absorption coefficient

Absorption lines, 39, 40, 55, 89,
106, 109, 110, 145, 151,
152, 158, 159-160, 161,
163, 164, 168, 170, 172,
173, 195, 197, 218, 219,
224, 259

Absorption spectrum, 39, 40

Adiabatic, defined, 193

AGB, see Asymptotic giant branch

Amplitude, defined, 26

Angstrom, 31, 33, 53, 90, 96, 167,
168, 221, 271

Anisotropic, see Isotropic, defined

Asymptotic giant branch,
248, 262

B

Balmer discontinuity, 165,
167, 169

Balmer jump, see Balmer
discontinuity

Balmer lines, 159, 161, 164,
167,170

BC, see Bolometric correction

Blackbody radiation, 47-51, 54, 99

Blackbody spectrum, 52, 53, 55,
57,116, 165

Bolometric correction, 104, 105

Bremsstrahlung, 140

C

Carbon—nitrogen—oxygen cycle,
see CNO cycle

CNO cycle, 210, 211, 213, 214, 245

Coherent (light waves), 35

Collimator, 40

Collisional excitation, see Thermal
excitation

Color—color diagram, 156, 157,
169-171, 173, 224, 225,
226, 233

Color excess, defined, 223, 233

Color index, 93, 95, 97, 98, 101,
102, 103, 104, 107, 108,
110, 113, 114, 116, 156,
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167, 169, 170, 171,
173,223
international, 93, 95,97, 116
Conduction (of heat), 186
Continuous spectrum, 38, 39, 40,
49,134, 163, 165, 218
Continuum (of spectrum), 40, 55,
57, 89, 116, 145, 156,
161, 166, 167, 173
Convection, 154, 173, 177, 187,
202, 203, 204, 205, 206,
214,243,247, 248, 258
Corona (of sun), 145, 152,
154, 216

D
Damped (oscillations), 193, 198
Degenerate (material), 247
Density bounded (nebula),

141
Diffraction grating, 40
Dispersion, 40
Distance modulus, 83, 85
Dynamical time scale, 207
Dyson sphere, 69, 70, 71, 82

E

“e”, 10, 21, 124, 125, 127, 229, 230

Effective temperature, 90, 91, 95,
98, 99, 102-103, 104,
113, 114, 116, 167, 169,
172, 201, 202, 243, 244,
246, 247, 249

Emission coefficient, 134, 135, 136,
138, 143

Emission lines, 38, 39, 40, 52, 55,
89, 95, 134, 139, 145,
152,153,173, 218

Emission spectrum, 38, 40, 134

Emissivity, see Emission coefficient

Empirical mass—luminosity
relation, 237

Index

Energy levels, 134, 159, 161, 162,
164, 167, 170, 221,
246, 247

Extinction coefficient, 131, 135,
136, 143, 147, 150, 190

F

Flux, 62, 63, 64, 65, 66, 67, 68, 70,
71,72,73,74-77,78, 80,
81, 82, 84, 85, 89, 90, 91,
92,97, 98, 99, 100, 102,
103, 104, 105, 108, 113,
116, 128, 147, 152, 167,
169, 171, 217, 218, 221,
227,228, 229, 230,
231,232

Flux, total net, 64

Free—free transitions, 186, 187

Frequency, defined, 26

H

Hayashi track, 243, 244, 254, 255,
262

Helium flash, 247, 248, 249

Henyey track, 243, 244, 245, 254,
255, 262

Hertzsprung—Russell diagram,
101, 108-112, 117, 175,
202, 203, 235, 243

Hertz, unit, 33, 268

Hipparchus, 75, 76, 80

Homer, 75

Homogeneous, 62, 64, 65, 85

Horizontal branch, 247, 249,

254, 256

I

Indices, rule of, 10-11, 12, 15, 22,
238, 241

Instability strip, 202, 203, 249, 250
Intensity (of radiation), see Specific
intensity



Index

Interference fringes, 37

International color index, see Color
index, international

Interstellar reddening, 222, 224,
226,233

Intrinsic (color indices), see
Reddening free (color
indices)

Ion, 158,170, 173

Ionization, 140, 141, 143, 152, 158,
170, 173, 201, 202, 203,
204, 214, 221

Ionization front, 140, 141

Isothermal, defined, 242

Isotropic, defined, 61

J

Jeans length, 241, 242,
243,262

Jeans mass, defined, 241

K

Kelvin temperature scale, 47, 268

Kramers’ law, 187, 190, 199,
200, 244

L

Light year, 17, 18, 19, 61, 72, 82,
83,119, 120, 215,
220, 269

Limb darkening, 147, 149, 150,
151,173

Linear absorption coefficient, 122,
123, 124, 128, 129, 131,
140, 143

Longitudinal wave, 153, 154, 198

Luminosity, 17, 69, 70, 71, 72, 81,
82-84, 85, 90, 91, 104,
107, 108, 109, 110, 111,
112,113, 114, 117, 140,
141, 156, 182, 186, 187,
188, 195, 202, 204, 214,
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218, 219, 220, 237, 238,

239, 243, 244, 246, 248,

252,262,269
Luminosity class, 110, 111, 112
Lyman alpha line, 34

M
Magnitude absolute
apparent, 82, 83, 84, 85,
113, 255
bolometric, 104
photographic, 92, 93, 116
photo-visual, 93, 96, 116
Magnitude scale photographic,
92,93
visual, 93
Mass luminosity relation, see
Empirical mass—
luminosity relation
Maxwell, James Clerk, 25
MKK system, see Luminosity class

N

Nanometer, defined, 31

Negative hydrogen ion, 170,
173, 206

Normal, defined, 14, 62

North Polar Sequence, 80

o

Observational HR diagram,
114, 255

Olbers’ paradox, 61

Opacity, see Extinction coefficient

Optical depth, 5, 127, 128, 129,
130, 131, 133, 136,
139-142, 143, 145, 147,
148, 149, 150, 151, 152,
173, 228, 229, 230,
231,242

Optically thick, 130, 143, 147, 231

Optically thin, 130, 143, 152, 231
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P

Parallax, defined, 18

Parsec, 17, 19, 22, 72, 82, 83, 269

Partial ionization zones, 201,
203,214

Pauli exclusion principle, 246

pc, see Parsec

P Cygni profile, 218, 219, 233

Phase lag problem, 204

Photodisintegration, 251

Photoelectric effect, 44, 45, 46,
94,133

Photographic magnitude scale, 93

Photoionization, 133, 152,
158,170

Photometric system, Johnson and
Morgan, 95, 96, 97, 98,
105, 116, 169

Photometry, photoelectric, 3, 94,
96, 116

Photon, 23, 24, 43, 45, 46, 47, 48,
49,51, 52,57, 119-143,
145, 147, 148, 149, 152,
158, 159, 161, 162, 163,
164, 165, 170, 173, 184,
186, 187, 211, 215, 217,
218,221,222, 227,
229,248

Photosphere, 65, 66, 67, 119, 129,
134, 142, 145, 147-151,
152, 155, 157, 158, 162,
164-166, 167, 169, 170,
172,173, 175, 182, 183,
186, 187, 188, 197, 201,
204, 205, 206, 215, 216,
227,228, 246, 249

Photo-visual magnitudes, 93,
96, 116

Planck’s constant, 45, 269

Plane-parallel approximation,
149, 150

Index

Plasma, 177, 186, 206, 210,
251, 252

p—p chain, 210, 211, 214

Pressure broadening (of spectral
lines), 110

Principal quantum number, 161

y—process, 200

k-process, 200

Proton—proton chain, see p—p
chain

Q
Quantum theory of light, 43, 45

R

Radial pulsation, defined, 198

Radiant flux, see Flux

Radiation bounded (nebula), 140

Radiation field, 12, 59-85, 90, 92,
99, 100, 128, 147, 161,
164, 167, 184, 217, 221,
227,230, 232

Radiation pressure, 184, 214, 217,
218,219, 233

Radiative flux, see Flux

Recﬂmocahll,l9,22,7l,l3L
201, 228

Recombination lines, 134

Reddening free (color indices), 224

Reddening ratio, 225

Red giant branch, 246

Reversing layer, 151

RGB, see Red giant branch

R-process, 259

Scattering coefficient, 131, 136,
138,143

Scientific notation, 14-16, 22, 269

Solar constant, 72

Solar granulation, 153, 206

Solar wind, 216, 217, 219



Index

Solid angle, 67
Specific intensity, 67, 147, 148
Spectral sequence, 106, 107, 108,
109, 110, 158, 170,
171,201
Spectroscope, 38, 40—41
S-process, 258
Stefan—Boltzmann equation, 50,
51, 53, 89, 90,91, 116
Stefan’s constant, 50, 89, 90, 269
Steradians, 67

T

TE, see Thermal equilibrium

Thermal equilibrium, 50, 51, 185,
245,251

Thermal excitation, 164

Thermal ionization, 152, 170

Thermal radiation, 47, 48, 49, 50,
51, 52,57, 98, 133,
243,244

Thermal time scale, 207

Transition region, 152
Transverse wave, 26, 29, 153

A%
Visual magnitude scale, 80, 92, 96,
97, 98, 104, 108

w

Watt, defined, 62

Wavelength, defined, 14

Wien’s displacement law, see
Wien’s law

Wien’s law, 53, 89, 90, 91, 167

Wien temperature, 90

Y
Yukawa potential, 208

Z

ZAMS, see Zero-age main sequence

Zero-age main sequence, 245, 262

Zero point (of magnitude scale),
79, 80, 97, 98, 104, 116
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