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PREFACE.

THE discovery of the great law of nature, the law of gravitation, by

NEWTON, prepared the way for the brilliant achievements which have

distinguished the history of astronomical science. A first essential, how-

ever, to the solution of those recondite problems which were to exhibit

the effect of the mutual attraction of the bodies of our system, was the

development of the infinitesimal calculus; and the labors of those who

devoted themselves to pure analysis have contributed a most important

part in the attainment of the high degree of perfection which character-

izes the results of astronomical investigations. Of the earlier efforts to

develop the great results following from the law of gravitation, those of

EULER stand pre-eminent, and the memoirs which he published have,

in reality, furnished the germ of all subsequent investigations in

celestial mechanics. In this connection also the names of BERNOTJILLI,

CLAIRATJT, and D'ALEMBERT deserve the most honorable mention as

having contributed also, in a high degree, to give direction to the inves-

tigations which were to unfold so many mysteries of nature. By means

of the researches thus inaugurated, the great problems of mechanics

were successfully solved, many beautiful theorems relating to the planet-

ary motions demonstrated, and many useful formulae developed.

It is true, however, that in the early stage of the science methods

were developed which have since been found to be impracticable, even

if not erroneous; still, enough was effected to direct attention in the

proper channel, and to prepare the way for the more complete labors of

LAGE-O.NGE and LAPLACE. The genius and the analytical skill of these

extraordinary men gave to the progress of Theoretical Astronomy the

most rapid strides
;
and the intricate investigations which they success-

fully performed, served constantly to educe new discoveries, so that of

all the problems relating to the mutual attraction of the several planets
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4 PREFACE.

but little more remained to be accomplished by their successors than to

develop and simplify the methods which they made known, and to intro-

duce such modifications as should be indicated by experience or rendered

possible by the latest discoveries in the domain of pure analysis.

The problem of determining the elements of the orbit of a comet

moving in a parabola, by means of observed places, which had been

considered by NEWTON, EULER, BOSCOVICH, LAMBERT, and others,

received from LAGRANGE and LAPLACE the most careful consideration

in the light of all that had been previously done. The solution given

by the former is analytically complete, but far from being practically

complete ;
that given by the latter is especially simple and practical so

far as regards the labor of computation ;
but the results obtained by it

are so affected by the unavoidable errors of observation as to be often

little more than rude approximations. The method which was found to

answer best in actual practice, was that proposed by OLBERS in his

work entitled Leichteste und bequemste Methode die Bahn eines Cometen

zu berechnen, in which, by making use of a beautiful theorem of para-

bolic motion demonstrated by EULER and also by LAMBERT, and by

adopting a method of trial and error in the numerical solution of

certain equations, he was enabled to effect a solution which could be

performed with remarkable ease. The accuracy of the results obtained

by OLBERS'S method, and the facility of its application, directed the

attention of LEGENDRE, IVORY, GAUSS, and ENCKE to this subject, and

by them the method was extended and generalized, and rendered appli

cable in the exceptional cases in which the other methods failed.

It should be observed, however, that the knowledge of one element,

the eccentricity, greatly facilitated the solution
; and, although elliptic

elements had been computed for some of the comets, the first hypothesis

was that of parabolic motion, so that the subsequent process required

simply the determination of the corrections tc be applied to these ele-

ments in order to satisfy the observations. The more difficult problem

of determining all the elements of planetary motion directly from three

observed places, remained unsolved until the discovery of Ceres by
PIAZZI in 1801, by which the attention of GAUSS was directed to this

subject, the result of which was the subsequent publication of his

Theoria Motus Corporum Cwlestium, a most able work, in which he gave

to the world, in a finished form, the results of many years of attention
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to the subject of which it treats. His method for .determining all the

elements directly from given observed places, as given in the Theoria

Motus, and as subsequently given in a revised form by ENCKE, leaves

scarcely any thing to be desired on this topic. In the same work he

gave the first explanation of the method of least squares, a method

which has been of inestimable service in investigations depending on

observed data.

The discovery of the minor planets directed attention also to the

methods of determining their perturbations, since those applied in the

case of the major planets were found to be inapplicable. For a long

time astronomers were content simply to compute the special perturba-

tions of these bodies from epoch to epoch, and it was not until the com-

mencement of the brilliant researches by HANSEN that serious hopes

were entertained of being able to compute successfully the general per-

turbations of these bodies. By devising an entirely new mode of con-

sidering the perturbations, namely, by determining what may be called

the perturbations of the time, and thus passing from the undisturbed

place to the disturbed place, and by other ingenious analytical and

mechanical devices, he succeeded in effecting a solution of this most

difficult problem, and his latest works contain all the formulse which are

required for the cases actually occurring. The refined and difficult

analysis and the laborious calculations involved were such that, even

after HANSEN'S methods were made known, astronomers still adhered to

the method of special perturbations by the variation of constants as

developed by LAGRANGE.

The discovery of Astrcea by HENCKE was speedily followed by the

discovery of other planets, and fortunately indeed it so happened that

the subject of special perturbations was to receive a new improvement.

The discovery by BOND and ENCKE of a method by which we determine

at once the variations of the rectangular co-ordinates of the disturbed

body by integrating the fundamental equations of motion by means of

mechanical quadrature, directed the attention of HANSEN to this phase

of the problem, and soon after he gave formulse for the determination

of the perturbations of the latitude, the mean anomaly, and the loga-

rithm of the radius-vector, which are exceedingly convenient in the

process of integration, and which have been found to give the most

satisfactory results. The formulse for the perturbations of the latitude,
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true longitude, and radius-vector, to be integrated in the same manner,

were afterwards given by BRUNNOW.

Having thus stated briefly a few historical facts relating to the

problems of theoretical astronomy, I proceed to a statement of the

object of this work. The discovery of so many planets and comets has

furnished a wide field for exercise in the calculations relating to their

motions, and it has occurred to me that a work which should contain a

development of all the formulae required in determining the orbits of the

heavenly bodies directly from given observed places, and in correcting

these orbits by means of more extended discussions of series of observa-

tions, including also the determination of the perturbations, together

with a complete collection of auxiliary tables, and also such practical

directions as might guide the inexperienced computer, might add very

materially to the progress of the science by attracting the attention of a

greater number of competent computers. Having carefully read the

works of the great masters, my plan was to prepare a complete work on

this subject, commencing with the fundamental principles of dynamics,

and systematically treating, from one point of view, all the problems

presented. The scope and the arrangement of the work will be best

understood after an examination of its contents
;
and let it suffice to add

that I have endeavored to keep constantly in view the wants of the

computer, providing for the exceptional cases as they occur, and giving

all the formulae which appeared to me to be best adapted to the problems

under consideration. I have not thought it worth while to trace out the

geometrical signification of many of the auxiliary quantities introduced.

Those who are curious in such matters may readily derive many beau-

tiful theorems from a consideration of the relations of some of these

auxiliaries. For convenience, the formulae are numbered consecutively

through each chapter, and the references to those of a preceding chapter

are defined by adding a subscript figure denoting the number of the

chapter.

Besides having read the works of those who have given special atten

tion to these problems, I have consulted the Astronomische Nachrichten,

the Astronomical Journal, and other astronomical periodicals, in which

'is to be found much valuable information resulting from the experi-

ence of those wrho have been or are now actively engaged in astro-

nomical pursuits. I must also express my obligations to the publishers,
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Messrs. J. B. LIPPINCOTI & Co., for the generous interest which they

have manifested in the publication of the work, and also to Dr. B. A.

GOULD, of Cambridge, Mass., and to Dr. OPPOLZER, of Vienna, for

valuable suggestions.

For the determination of the time from the perihelion and of the true

anomaly in very eccentric orbits I have given the method proposed by
BESSEL in the Monatliche Correspondent, vol. xii., the tables for which

were subsequently given by BRUNNOW in his Astronomical Notices, and

also the method proposed by GAUSS, but in a more convenient form.

For obvious reasons, I have given the solution for the special case of

parabolic motion before completing the solution of the general problem

of finding all of the elements of the orbit by means of three observed

places. The differential formulae and the other formulae for correcting

approximate elements are given in a form convenient for application,

and the formulas for finding the chord or the time of describing the

subtended arc of the orbit, in the case of very eccentric orbits, will be

found very convenient in practice.

I have given a pretty full development of the application of the

theory of probabilities to the combination of observations, endeavoring

to direct the attention of the reader, as far as possible, to the sources of

error to be apprehended and to the most advantageous method of treat-

ing the problem so as to eliminate the effects of these errors. For the

rejection of doubtful observations, according to theoretical considerations,

I have given the simple formula, suggested by CHAUVENET, which fol

lows directly from the fundamental equations for the probability of

errors, and which will answer for the purposes here required as well as

the more complete criterion proposed by PEIRCE. In the chapter

devoted to the theory of special perturbations I have taken particular

pains to develop the whole subject in a complete and practical form,

keeping constantly in view the requirements for accurate and convenient

numerical application. The time is adopted as the independent variable

in the determination of the perturbations of the elements directly, since

experience has established the convenience of this form
;
and should it

be desired to change the independent variable and to use the differential

coefficients with respect to the eccentric anomaly, the equations between

this function and the mean motion will enable us to effect readily the

required transformation.
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The numerical examples involve data derived from actual observa-

tions, and care has been taken to make them complete in every respect,

so as to serve as a guide to the efforts of those not familiar with these

calculations
;
and when different fundamental planes are spoken of, it is

presumed that the reader is familiar with the elements of spherical

astronomy, so that it is unnecessary to state, in all cases, whether the

centre of the sphere is taken at the centre of the earth, or at any other

point in space.

The preparation of the Tables has cost me a great amount of labor,

logarithms of ten decimals being employed in order to be sure of the

last decimal given. Several of those in previous use have been recom-

puted and extended, and others here given for the first time have been

prepared with special care. The adopted value of the constant of the

solar attraction is that given by GAUSS, which, as will appear, is not

accurately in accordance with the adoption of the mean distance of the

earth from the sun as the unit of space; but until the absolute value of

the earth's mean motion is known, it is best, for the sake of uniformity

and accuracy, to retain GAUSS'S constant.

The preparation of this work has been effected amid many intern; p-

tions, and with other labors constantly pressing me, by which the progress

of its publication has been somewhat delayed, even since the stereo-

typing was commenced, so that in some cases I have been anticipated

in the publication of formulae which would have here appeared for the

first time. I have, however, endeavored to perform conscientiously the

self-imposed task, seeking always to secure a logical sequence in the de-

velopment of the formulae, to preserve uniformity and elegance in the

notation, and to elucidate the successive steps in the analysis, so that the

work may be read by those who, possessing a respectable mathematical

education, desire to be informed of the means by which astronomers are

enabled to arrive at so many grand results connected with the motions

of the heavenly bodies, and by which the grandeur and sublimity of

creation are unveiled. The labor of the preparation of the work will

have been fully repaid if it shall be the means of directing a more

general attention to the study of the wonderful mechanism of the hea-

vens, the contemplation of which must ever serve to impress upon the

mind the reality of the perfection of the OMNIPOTENT, the LIVING GOD !

OBSEBVATOKY, ANN ARBOR, June, 1867.
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THEORETICAL ASTRONOMY.

CHAPTER I.

INVESTIGATION OF THE FUNDAMENTAL EQUATIONS OF MOTION, AND OF THE FOR-

MULA FOB DETERMINING, FROM KNOWN ELEMENTS, THE HELIOCENTRIC AND
GEOCENTRIC PLACES OF A HEAVENLY BODY, ADAPTED TO NUMERICAL COMPUTA-

TION FOR CASES OF ANY ECCENTRICITY WHATEVER.

1. THE study of the motions of the heavenly bodies does not re-

quire that we should know the ultimate limit of divisibility of the

matter of which they are composed, whether it may be subdivided

indefinitely, or whether the limit is an indivisible, impenetrable atom.

Nor are we concerned with the relations which exist between the

separate atoms or molecules, except so far as they form, in the aggre-

gate, a definite body whose relation to other bodies of the system it

is required to investigate. On the contrary, in considering the ope-

ration of the laws in obedience to which matter is aggregated into

single bodies and systems of bodies, it is sufficient to conceive simply
of its divisibility to a limit which may be regarded as infinitesimal

compared with the finite volume of the body, and to regard the mag-
nitude of the element of matter thus arrived at as a mathematical

point.

An element of matter, or a material body, cannot give itself

motion; neither can it alter, in any manner whatever, any motion

which may have been communicated to it. This tendency of matter

to resist all changes of its existing state of rest or motion is known

as inertia, and is the fundamental law of the motion of bodies. Ex-

perience invariably confirms it as a law of nature; the continuance of

motion as resistances are removed, as well as the sensibly unchanged
motion of the heavenly bodies during many centuries, affording the

16



16 THEORETICAL ASTRONOMY.

most convincing proof of its universality. Whenever, therefore, a

material point experiences any change of its state as respects rest or

motion, the cause must be attributed to the operation of something
external to the element itself, and which we designate by the word

force. The nature of forces is generally unknown, and we estimate

them by the effects which they produce. They are thus rendered com-

parable with some unit, and may be expressed by abstract numbers.

2. If a material point, free to move, receives an impulse by virtue

of the action of any force, or
if, at any instant, the force by which

motion is communicated shall cease to act, the subsequent motion of

the point, according to the law of inertia, must be rectilinear and

uniform, equal spaces being described in equal times. Thus, if s, v,

and t represent, respectively, the space, the velocity, and the time, the

measure of v being the space described in a unit of time, we shall

have, in this case,
s = vt.

It is evident, however, that the space described in a unit of time will

vary with the intensity of the force to which the motion is due, and,

the nature of the force being unknown, we must necessarily compare
the velocities communicated to the point by different forces, in order

to arrive at the relation of their effects. We are thus led to regard

the force as proportional to the velocity; and this also has received

the most indubitable proof as being a law of nature. Hence, the

principles of the composition and resolution of forces may be applied

also to the composition and resolution of velocities.

If the force acts incessantly, the velocity will be accelerated, and

the force which produces this motion is called an accelerating force.

In regard to the mode of operation of the force, however, we may
consider it as acting absolutely without cessation, or we may regard

it as acting instantaneously at successive infinitesimal intervals repre-

sented by dt, and hence the motion as uniform during each of these

intervals. The latter supposition is that which is best adapted to

the requirements of the infinitesimal calculus; and, according to the

fundamental principles of this calculus, the finite result will be the

same as in the case of a force whose action is absolutely incessant.

Therefore, if we represent the element of space by ds, and the ele-

ment of time by dt, the instantaneous velocity will be

ds
- V =

~dt>

which will vary from one instant to another.
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3. Since the force is proportional to the velocity, its measure at

any instant will be determined by the corresponding velocity. If

the accelerating force is constant, the motion will be uniformly accele-

rated; and if we designate the acceleration due to the force by/, the

unit of/ being the velocity generated in a unit of time, we shall have

If, however, the force be variable, we shall have, at any instant,

the relation

efc

/ ~~
dt'

the force being regarded as constant in its action during the element

of time dt. The instantaneous value of v gives, by differentiation,

dv _ d*s

~dt~~W
and hence we derive

so that, in varied motion, the acceleration due to the force is mea-

sured by the second differential of the space divided by the square

of the element of time.

4. By the mass of the body we mean its absolute quantity of mat-

ter. The density is the mass of a unit of volume, and hence the

entire mass is equal to the volume multiplied by the density. If it

is required to compare the forces which act upon different bodies, it

is evident that the masses must be considered. If equal masses

receive impulses by the action of instantaneous forces, the forces

acting on each will be to each other as the velocities imparted; and

if we consider as the unit of force that which gives to a unit of mass

the unit of velocity, we have for the measure of a force F, denoting

the mass by Jf,
F= Mv.

This is called the quantity of motion of the body, and expresses its

capacity to overcome inertia. By virtue of the inert state of matter,

there can be no action of a force without an equal and contrary re-

action
; for, if the body to which the force is applied is fixed, the

equilibrium between the resistance and the force necessarily implies

the development of an equal and contrary force
; and, if the body be

free to move, in the change of state, its inertia will oppose equal and
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contrary resistance. Hence, as a necessary consequence of inertia, it

follows that action and reaction are simultaneous, equal, and contrary.
If the body is acted upon by a force such that the motion is varied,

the accelerating force upon each element of its mass is represented by

"7- ,
and the entire motive force F is expressed by

M being the sum of all the elements, or the mass of the body. Since

_ds_

this gives

which
^is

the expression for the intensity of the motive force, or of

the force of inertia developed. For the unit of mass, the measure

of the force is

d?s

and this, therefore, expresses that part of the intensity of the motive

force which is impressed upon the unit of mass, and is what is usually

called the accelerating force.

5. The force in obedience to which the heavenly bodies perform
their journey through space, is known as the attraction of gravitation;

and the law of the operation of this force, in itself simple and unique,

has been confirmed and generalized by the accumulated researches of

modern science. Not only do we find that it controls the motions of

the bodies of our own solar system, but that the revolutions of binary

systems of stars in the remotest regions of space proclaim the uni-

versality of its operation. It unfailingly explains all the phenomena

observed, and, outstripping observation, it has furnished the means

of predicting many phenomena subsequently observed. The law of

this force is that every particle of matter is attracted by every other

particle by a force which varies directly as the mass and inversely as

the square of the distance of the attracting particle.

This reciprocal action is instantaneous, and is not modified, in any

degree, by the interposition of other particles or bodies of matter. It

is also absolutely independent of the nature of the molecules them-

selves, and of their aggregation.
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If we consider two bodies the masses of which are m and m', and

whose magnitudes are so small, relatively to their mutual distance
/>,

that we may regard them as material points, according to the law of

gravitation, the action of m on each molecule or unit of m' will be

,
and the total force on m! will be

m'.
/>'

The action of mf on each molecule of m will be expressed by ,
and

its total action by
m'
-r-

The absolute or moving force with which the masses m and mf tend

toward each other is, therefore, the same on each body, which result

is a necessary consequence of the equality of action and reaction.

The velocities, however, with which these bodies would approach
each other must be different, the velocity of the smaller mass exceed-

ing that of the greater, and in the ratio of the masses moved. The

expression for the velocity of m', which would be generated in a unit

of time if the force remained constant, is obtained by dividing the

absolute force exerted by m by the mass moved, which gives

. 7
and this is, therefore, the measure of the acceleration due to the

action of m at the distance p. For the acceleration due to the

action of mr we derive, in a similar manner,

6. Observation shows that the heavenly bodies are nearly spherical

in form, and we shall therefore, preparatory to finding the equations

which express the relative motions of the bodies of the system, de-

termine the attraction of a spherical mass of uniform density, or

varying from the centre to the surface according to any law, for a

point exterior to it.

If we suppose a straight line to be drawn through the centre of the

sphere and the point attracted, the total action of the sphere on the

point will be a force acting along this line, since the mass of the

sphere is symmetrical with respect to it. Let dm denote an element
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of the mass of the sphere, and p its distance from the point attracted
;

then will

dm

express the action of this element on the point attracted. If we sup-

pose the density of the sphere to be constant, and equal to unity, the

element dm becomes an element of volume, and will be expressed by

dm = dx dy dz
;

x
y y. and z being the co-ordinates of the element referred to a system

of rectangular co-ordinates. If we take the origin of co-ordinates

at the centre of the sphere, and introduce polar co-ordinates, so that

x = r cos <p cos 0,

y r cos (p sin 0,

z = r sin <p,

the expression for dm becomes

dm r2 cos <p dr dy do
;

and its action on the point attracted is

,
f_ r2 cos <p dr d<p do
*-

jf-

If we suppose the axis of z to be directed to the point attracted,

the co-ordinates of this point will be

a being the distance of the point from the centre of the sphere, and,

since

P*=(x- xj + (y
-

</)
2 + (z

-
*')',

we shall have

p*= a? 2ar sin <p -\- r
2
.

The component of the force df in the direction of the line a, join-

ing the point attracted and the centre of the sphere, is

df cos Y)

where f is the angle at the point attracted between the element dm

and the centre of the sphere. It is evident that the sum of all the

components which act in the direction of the line a will express the

total action of the sphere, since the sum of those which act perpen-
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dicular to this line, taken so as to include the entire mass of the

sphere, is zero.

But we have
a= z -j- p cos Y,

and hence

a r sin <p
cos Y = -.

P

The differentiation of the expression for
/>*, with respect to a, gives

dp a r sin <p

-y-= = cos Y.da p

Therefore, if we denote the attraction of the sphere by A, we shall

have, by means of the values of df and cos r,

, . r2 cos (p dr dy dd dpaA. = . =-,

P* da
or

dA = r2 cos <p dr d<p do --=-.

da

The polar co-ordinates r, <p,
and are independent of a, and hence

d-
dA = p

da
Let us now put

, Tr r2 cos <p dr dy do

and we shall have

A- *?
** "

j *

da

Consequently, to find the total action of the sphere on the given

point, we have only to find V by means of equation (2), the limits

of the integration being taken so as to include the entire mass of the

sphere, and then find its differential coefficient with respect to a.

If we integrate equation (2) first with reference to d, for which p
is constant, between the limits = and d = 2x

9
we get

cos
<f>
dr d<f>

P

Thia must be integrated between the limits
tp
=

-f- fa an(^ ^ =
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but since p is a function of
<p,

if we differentiate the expression for

p
2 with respect to

^>,
we have

7 P 7
r cos <p d<p = dp,

a
and hence

Corresponding to the limits of
(p
we have p= a r, and p= a -f r;

and taking the integral with respect to p between these limits, we
obtain

F- />*.a J

Integrating, finally, between the limits r and r = r,, we get

r, being the radius of the sphere, and, if we denote its entire mass by

m, this becomes

F=-.
a'

Therefore,
dV m
da a?

from which it appears that the action of a homogeneous spherical

mass on a point exterior to it, is the same as if the entire mass were

concentrated at its centre. If, in the integration with respect to r,

we take the limits r' and r", we obtain

and, denoting by m the mass of a spherical shell whose radii are r"

and rf

,
this becomes

Consequently, the attraction of a homogeneous spherical shell on a

point exterior to it, is the same as if the entire mass were concentrated

at its centre.

The supposition that the point attracted is situated within a

spherical shell of uniform density, does not change the form of the
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general equation; but, in the integration with reference to
/>,

the

limits will be p = r + a, and p = r a, which give

V=

and this being independent of a, we have

A- - d-?=0^i- - 7
- \Jm

da

Whence it follows that a point placed in the interior of a spherical

shell is equally attracted in all directions, and that, if not subject to

the action of any extraneous force, it will be in equilibrium in every

position.

7. Whatever may be the law of the change of the density of the

heavenly bodies from the surface to the centre, we may regard them

as composed of homogeneous, concentric layers, the density varying

only from one layer to another, and the number of the layers may
be indefinite. The action of each of these will be the same as if its

mass were united at the centre of the shell
;
and hence the total action

of the body will be the same as if the entire mass were concentrated

at its centre of gravity. The planets are indeed not exactly spheres,

but oblate spheroids differing but little from spheres ;
and the error

of the assumption of an exact spherical form, so far as it relates to

their action upon each other, is extremely small, and is in fact com-

pensated by the magnitude of their distances from each other
; for,

whatever may be the form of the body, if its dimensions are small

in comparison with its distance from the body which it attracts, it is

evident that its action will be sensibly the same as if its entire mass

were concentrated at its centre of gravity. If we suppose a system

of bodies to be composed of spherical masses, each unattended with

any satellite, and if we suppose that the dimensions of the bodies

are small in comparison with their mutual distances, the formation

of the equations for the motion of the bodies of the system will be

reduced to the consideration of the motions of simple points endowed

with forces of attraction corresponding to the respective masses. Our

solar system is, in reality, a compound system, the several systems

of primary and satellites corresponding nearly to the case supposed ;

and, before proceeding with the formation of the equations which are

applicable to the general case, we will consider, at first, those for a

simple system of bodies, considered as points and subject to their

mutual actions and the action of the forces which correspond to the
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actual velocities of the different parts of the system for any instant.

It is evident that we cannot consider the motion of any single body
as free, and subject only to the action of the primitive impulsion

which it has received and the accelerating forces which act upon it
;

but, on the contrary, the motion of each body will depend on the

force which acts upon it directly, and also on the reaction due to the

other bodies of the system. The coLsideration, however, of the varia-

tions of the motion of the several bodies of the system is reduced to

the simple case of equilibrium by means of the general principle that,

if we assign to the different bodies of the system motions which are

modified by their mutual action, we may regard these motions as

composed of those which the bodies actually have and of other

motions which are destroyed, and which must therefore necessarily

be such that, if they alone existed, the system would be in equi-

librium. We are thus enabled to form at once the equations for the

motion of a system of bodies. Let m, m', m", &c. be the masses of

the several bodies of the system, and x, y, z, x'
t y', z

f

,
&c. their co-

ordinates referred to any system of rectangular axes. Further, let

the components of the total force acting upon a unit of the mass of

m, or of the accelerating force, resolved in directions parallel to the

co-ordinate axes, be denoted by X, F, and Z, respectively, then will

mX, m Y, mZ,

be the forces which act upon the body in the same directions. The

velocities of the body m at any instant, in directions parallel to the

co-ordinate axes, will be
\

dx dy dz

~di' W dt'

and the corresponding forces are

dx dy dz
m ~j7> m ~jl* m ~jT'

dt dt dt

By virtue of the action of the accelerating force, these forces for the

next instant become

*j + mXdt, .m+mYdt, m
j
+ mZdt>

which may be written respectively:
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dz , dz .. dz

The actual velocities for this instant are

dx , dx dy dy dz dz

and the corresponding forces are

dx , dx dy dy dz . . dz
- -

Comparing these with the preceding expressions for the forces, it

appears that the forces which are destroyed, in directions parallel to

the co-ordinate axes, are

dx
md

-j- -|- mXdt,

-md^ + mYdt, (3)

md-j--{-mZdt.

In the same manner we find for the forces which will be destroyed
in the case of the body m' :

-m'd + m'X'dt,
at

and similarly for the other bodies of the system. According to the

general principle above enunciated, the system under the action of

these forces alone, will be in equilibrium. The conditions of equi-

librium for a system of points of invariable but arbitrary form, and

subject to the action of forces directed in any manner whatever, are

ZX, = 0, ZY, = 0, ZZ, = 0,

S ( T> - X,y) = 0, Z (Xt
z- Z,x) = 0, Z (Z,y

- I =
,

which X,, Yh Z,, denote the components, resolved parallel to then
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co-ordinate axes, of the forces acting on any point, and r, y, z, the

co-ordinates of the point. These equations are equally applicable to

the case of the equilibrium at any instant of a system of variable

form
;
and substituting in them the expressions (3) for the forces de-

stroyed in the case of a system of bodies, we shall have

2m r-5 2mX= 0,
aP

(4)

which are the general equations for the motions of a system of bodies.

8. Let x,, y,, z,, be the co-ordinates of the centre of gravity of the

system, and, by differentiation of the equations for the co-ordinates

of the centre of gravity, which are

2mx 2my 2mz
x, = ^ ) y.

= ^ t z. = ^ >2m 2m 2m
we get

d* 2m dP 2m

Introducing these values into the first three of equations (4), they

become
d*x

f
2mX d*y, 2mY d*z

f
2mZ

t
.

"dP
= '' ~^ y

~dP
~ '

~2m' ~dP
~

~2m
'

from which it appears that the centre of gravity of the system moves

in space as if the masses of the different bodies of which it is com-

posed, were united in that point, and the forces directly applied to it.

If we suppose that the only accelerating forces which act on the

bodies of the system, are those which result from their mutual action,

we have the obvious relation :

= m'X',
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and similarly for ^any two bodies
; and, consequently,

so that equations (5) become

Integrating these once, and denoting the constants of integration by

c, c', c", we find, by combining the results,

and hence the absolute motion of the centre of gravity of the system,

when subject only to the mutual action of the bodies which compose

it, must be uniform and rectilinear. Whatever, therefore, may be

the relative motions of the different bodies of the system, the motion

of its centre of gravity is not thereby affected.

9. Let us now consider the last three of equations (4), and suppose

the system to be submitted only to the mutual action of the bodies

which compose it, and to a force directed toward the origin of co-

ordinates. The action of m' on ra, according to the law of gravita-

tion, is expressed by , in which p denotes the distance of m from m'.

To resolve this force in directions parallel to the three rectangular

axes, we must multiply it by the cosine of the angle which the line

joining the two bodies makes with the co-ordinate axes respectively,

which gives

m'(z'-z)~~

Further, for the components of the accelerating force of m on m', we

have

m(x x') , m(y y
f

) , m(g /)

""?"' ~7 ~7~

Hence we derive

m ( Yx Xy} + m' (TV Xy)
= 0,

and generally
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In a similar manner, we find

Zm (Xi ZOD) = 0, (7)
Im (Zq F) = 0.

These relations will not be altered if, in addition to their reciprocal

action, the bodies of the system are acted upon by forces directed to

the origin of co-ordinates. Thus, in the case of a force acting upon
m, and directed to the origin of co-ordinates, we have, for its action

alone,
Yx= Xy, Xz = Zx, %y=Yz,

and similarly for the other bodies. Hence these forces disappear
from the equations, and, therefore, when the several bodies of the

system are subject only to their reciprocal action and to forces directed

to the origin of co-ordinates, the last three of equations (4) become

d*z

^
d*y

the integration of which gives

2m {xdy ydx) = cat,

Im (zdx xdz) = c'dt, (8;

2m (ydz zdy] = c"dt,

c, c', and G" being the constants of integration. Now, xdy ydx is

double the area described about the origin of co-ordinates by the pro-

jection of the radius-vector, or line joining m with the origin of co-ordi-

nates, on the plane of xy during the element of time dt ; and, further,

zdx xdz and ydz zdy are respectively double the areas described,

during the same time, by the projection of the radius-vector on the

planes of xz and yz. The constant c, therefore, expresses double the

sum of the products formed by multiplying the areal velocity of each

body, in the direction of the co-ordinate plane xy, by its mass; and

c
r

,
G
fr

, express the same sum with reference to the co-ordinate planes

xz and yz respectively. Hence the sum of the areal velocities of the

several bodies of the system about the origin of co-ordinates, each

multiplied by the corresponding mass, is constant; and the sum of

the areas traced, each multiplied by the corresponding mass, is pro-

portional to the time. If the only forces which operate, are those
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resulting from the mutual action of the bodies which compose the

system, this result is correct whatever may be the point in space
taken as the origin of co-ordinates.

The areas described by the projection of the radius-vector of each

body on the co-ordinate planes, are the projections, on these planes, of

the areas actually described in space. We may, therefore, conceive of

a resultant, or principal plane of projection, such that the sum of the

areas traced by the projection of each radius-vector on this plane,

when projected on the three co-ordinate planes, each being multiplied

by the corresponding mass, will be respectively equal to the first

members of the equations (8). Let
, /9,

and
7-
be the angles which

this principal plane makes with the co-ordinate planes xy, xz, and yz,

respectively; and let S denote the sum of the areas traced on this

plane, in a unit of time, by the projection of the radius-vector of

each of the bodies of the system, each area being multiplied by the

corresponding mass. The sum S will be found to be a maximum,
and its projections on the co-ordinate planes, corresponding to the

element of time dt, are

S cos a dt, S cos p dt, S cos Y dt.

Therefore, by means of equations (8), we have

c= S cos a, c
f S cos /?, c" = S cos p,

and, since cos2 a -f- cos
2

/? + cos
2

f = 1,

2= c
2

-f c'
2

-f c"2
.

Hence we derive

c'

COS a =
1/V+ c'

2+ c" 2
1/c

2 + c'
2
-j- c"

2

c"
cos y = -

These angles, being therefore constant and independent of the time,

show that this principal plane of projection remains constantly par-

allel to itself during the motion of the system in space, whatever

may be the relative positions of the several bodies; and for this

reason it is called the invariable plane of the system. Its position

with reference to any known plane is easily determined when the

velocities, in directions parallel to the co-ordinate axes, and the

masses and co-ordinates of the several bodies of the system, are

known. The values of c, c', c" are given by equations (8), and
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hence the values of
, /?,

and
?-,

which determine the position of the

invariable plane.

Since the positions of the co-ordinate planes are arbitrary, we may
suppose that of xy to coincide with the invariable plane, which gives
cos /9

= and cos p = 0, and, therefore, c' and c"= 0. Further,
since the positions of the axes of x and y in this plane are arbitrary,
it follows that for every plane perpendicular to the invariable plane,
the sum of the areas traced by the projections of the radii-vectores

of the several bodies of the system, each multiplied by the corre-

sponding mass, is zero. It may also be observed that the value of 8
is constant whatever may be the position of the co-ordinate planes,
and that its value is necessarily greater than that of either of the

quantities in the second member of the equation,

2= c
2

-f c'
2

-f c"
2
,

except when two of them are each equal to zero. It is, therefore, a

maximum, and the invariable plane is also the plane of maximum
areas.

10. If we suppose the origin of co-ordinates itself to move with

uniform and rectilinear motion in space, the relations expressed by
equations (8) will remain unchanged. Thus, let x,, yn z, be the co-

ordinates of the movable origin of co-ordinates, referred to a fixed

point in space taken as the origin ;
and let X

Q, y ,
z

,
x f

, yj, z/, &c.

be the co-ordinates of the several bodies referred to the movable

origin. Then, since the co-ordinate planes in one system remain

always parallel to those of the other system of co-ordinates, we shall

have

and similarly for the other bodies of the system. Introducing these

values of x, y, and z into the first three of equations (4), they become

The condition of uniform rectilinear motion of the movable origin

gives
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and the preceding equations become

0, (9)

ZmZ=Q.

Substituting the same values in the last three of equations (4), ob-

serving that the co-ordinates x t , y,, z, are the same for all the bodies

of the system, and reducing the resulting equations by means of

equations (9), we get

(/7

2r f]i~ \

*. ^jr
~

*~jjr }

- a*(A -2O = 0, (10)

- r =0.

Hence it appears that the form of the equations for the motion of the

system of bodies, remains unchanged when we suppose the origin of

co-ordinates to move in space with a uniform and rectilinear motion.

11. The equations already derived for the motions of a system of

bodies, considered as reduced to material points, enable us to form at

once those for the motion of a solid body. The mutual distances of

the parts of the system are, in this case, invariable, and the masses

of the several bodies become the elements of the mass of the solid

body. If we denote an element of the mass by c?m, the equations (5)

for the motion of the centre of gravity of the body become

-=zdm, (11)

the summation, or integration with reference to dm, being taken so as

to include the entire mass of the body, from which it appears that

the centre of gravity of the body moves in space as if the entire mass

were concentrated in that point, and the forces applied to it directly.

If we take the origin of co-ordinates at the centre of gravity of

the body, and suppose it to have a rectilinear, uniform motion in

space, and denote the co-ordinates of the element dm, in reference to

this origin, by x
, yQ)

zw we have, by means of the equations (10),
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&XRd*y d\ \ . /-,__ _
N ,

.
v

^ ~dl y
~di? }

~~J
' ~~

y*) ~
'

d'
2xn d*z \ r

z -^-~ x
o-^-JdmJ(Xz

Zx )dm = 0,

d\\, Crr
-%-$- )dm-J(Zy ~Yz )dm =0,

dt2

the integration with respect to dm being taken so as to include the

entire mass of the body. These equations, therefore, determine the

motion of rotation of the body around its centre of gravity regarded
as fixed, or as having a uniform rectilinear motion in space. Equa-
tions (11) determine the position of the centre of gravity for any

instant, and hence for the successive instants at intervals equal to dt;

and we may consider the motion of the body during the element of

time dt as rectilinear and uniform, whatever may be the form of its

trajectory. Hence, equations (11) and (12) completely determine the

position of the body in space, the former relating to the motion of

translation of the centre of gravity, and the latter to the motion of

rotation about this point. It follows, therefore, that for any forces

which act upon a body we can always decompose the actual motion

into those of the translation of the centre of gravity in space, and of

the motion of rotation around this point; and these two motions may
be considered independently of each other, the motion of the centre

of gravity being independent of the form and position of the body
about this point.

If the only forces which act upon the body are the reciprocal action

0f the elements of its mass and forces directed to the origin of co-

ordinates, the second terms of equations (12) become each equal to

zero, and the results indicated by equations (8) apply in this case

also. The parts of the system being invariably connected, the plane

of maximum areas, or invariable plane, is evidently that which is

perpendicular to the axis of rotation passing through the centre of

gravity, and therefore, in the motion of translation of the centre of

gravity in space, the axis of rotation remains constantly parallel to

itself. Any extraneous force which tends to disturb this relation

will necessarily develop a contrary reaction, and hence a rotating body
resists any change of its plane of rotation not parallel to itself. Wo
may observe, also, that on account of the invariability of the mutual

distances of the elements of the mass, according to equations (8), the

motion of rotation must be uniform.

12. We shall now consider the action of a svstem of bodies on a
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distant mass, which we will denote by M. Let x
0) yw zw x f

, 2/ ',
z
Q ',

&c. be the co-ordinates of the several bodies of the system referred

to its centre of gravity as the origin of co-ordinates; x
lt y,, and z,

the co-ordinates of the centre of gravity of the system referred to

the centre of gravity of the body M. The co-ordinates of the body

m, of the system, referred to this origin, will therefore be

and similarly for the other bodies of the system. If we denote by
r the distance of the centre of gravity of m from that of M

y
the

accelerating force of the former on an element of mass at the centre

of gravity of the latter, resolved parallel to the axis of x, will be

mx

and, therefore, that of the entire system on the element ofM
t
resolved

;n the same direction, will be

vmx
r5

"'

We have also

r*= (x, + x
QY + (y, + 2/ )

2 + 0, + *)',

and, if we denote by r
t
the distance of the centre of gravity of the

system from Jf,

r,
= *, + ?, + *,*,

Therefore

|
= O, + *o) (r?+ 2 (x, x + y, y + z,$ + r 2

)

We shall now suppose the mutual distances of the bodies of the

system to be so small in comparison with the distance r, of its centre

of gravity from that of Jf, that terms of the order r 2

may be neglected ;

a condition which is actually satisfied in the case of the secondary

systems belonging to the solar system. Hence, developing the second

factor of the second member of the last equation, and neglecting terms

of the order r 2

,
we shall have

_ _/ , ^o _ 3s, (Xa?o + y/

r3 3
'

, 3 r 5
r, r

f
r

t

and
-mx -m . 2mxn 3rc. ,r == x

,
- + 3 -i (x,SmxQ + y,ZmyQT r, r

f i,

I
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But, since #
, y ,

z
,
are the co-ordinates in reference to the centre of

gravity of the system as the origin, we have

2mx = 0, ZmyQ
= 0, 2wz == 0,

and the preceding equation reduces to

v w# 2m
s
-?=*'^f-

In a similar manner, we find

vmy Im mz ImV =JV r7
=V

The second members of these equations are the expressions for the

total accelerating force due to the action of the bodies of the system
on Mj resolved parallel to the co-ordinate axes respectively, when we
consider the several masses to be collected at the centre of gravity
of the system. Hence we conclude that when an element of mass

is attracted by a system of bodies so remote from it that terms of the

order of the squares of the co-ordinates of the several bodies, referred

to the centre of gravity of the system as the origin of co-ordinates,

may be neglected in comparison with the distance of the system from

the point attracted, the action of the system will be the same as if

the masses were all united at its centre of gravity.

If we suppose the masses m, m', m", &c. to be the elements of the

mass of a single body, the form of the equations remains unchanged;
and hence it follows that the mass M is acted upon by another mass,
or by a system of bodies, as if the entire mass of the body, or of the

system, were collected at its centre of gravity. It is evident, also,

that reciprocally in the case of two systems of bodies, in which the

mutual distances of the bodies are small in comparison with the

distance between the centres of gravity of the two systems, their

mutual action is the same as if all the several masses in each system
were collected at the common centre of gravity of that system ;

and

the two centres of gravity will move as if the masses were thus

united.

13. The results already obtained are sufficient to enable us to form

the equations for the motions of the several bodies which compose the

solar system. If these bodies were exact spheres, which could be

considered as composed of homogeneous concentric spherical shells,

the density varying only from one layer to another, the action of
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each on an element of the mass of another would be the same as if

the entire mass of the attracting body were concentrated at its centre

of gravity. The slight deviation from this law, arising from the

ellipsoidal form of the heavenly bodies, is compensated by the mag-
nitude of their mutual distances; and, besides, these mutual distances

are so great that the action of the attracting body on the entire mass

of the body attracted, is the same as if the latter were concentrated

at its centre of gravity. Hence the consideration of the reciprocal

action of the single bodies of the system, is reduced to that of material

points corresponding to their respective centres of gravity, the masses

of which, however, are equivalent to those of the corresponding

bodies. The mutual distances of the bodies composing the secondary

systems of planets attended with satellites are so small, in comparison

with the distances of the diiferent systems from each other and from

the other planets, that they act upon these, and are reciprocally acted

upon, in nearly the same manner as if the masses of the secondary

systems were united at their common centres of gravity, respectively.

The motion of the centre of gravity of a system consisting of a

planet and its satellites is not affected by the reciprocal action of the

bodies of that system, and hence it may be considered independently

of this action. The difference of the action of the other planets on

a planet and its satellites will simply produce inequalities in the

relative motions of the latter bodies as determined by their mutual

action alone, and will not affect the motion of their common centre

of gravity. Hence, in the formation of the equations for the motion

of translation of the centres of gravity of the several planets or

secondary systems which compose the solar system, we have simply

to consider them as points endowed with attractive forces correspond-

ing to the several single or aggregated masses. The investigation

of the motion of the satellites of each of the planets thus attended,

forms a problem entirely distinct from that of the motion of the

common centre of gravity of such a system. The COL ^deration of

the motion of rotation of the several bodies of the solar system about

their respective centres of gravity, is also independent of the motion

of translation. If the resultant of all the forces which act upon a

planet passed through the centre of gravity, the motion of rotation

would be undisturbed; and, since this resultant in all cases very

nearly satisfies this condition, the disturbance of the motion of rota-

tion is very slight. The inequalities thus produced in the motion

of rotation are, in fact, sensible, and capable of being indicated by

observation, only in the case of the earth and moon. It has, indeed,
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been rigidly demonstrated that the axis of rotation of the earth rela-

tive to the body itself is fixed, so that the poles of rotation and the

terrestrial equator preserve constantly the same position in reference

to the surface; and that also the velocity of rotation is constant.

This assures us of the permanency of geographical positions, and,

in connection with the fact that the change of the length of the

mean solar day arising from the variation of the obliquity of the

ecliptic and in the length of the tropical year, due to the action of

the sun, moon, and planets upon the earth, is absolutely insensible,

amounting to only a small fraction of a second in a million of

years, assures us also of the permanence of the interval which we

adopt as the unit of time in astronomical investigations.

14. Placed, as we are, on one of the bodies of the system, it is

only possible to deduce from observation the relative motions of the

different heavenly bodies. These relative motions in the case of the

comets and primary planets are referred to the centre of the sun,

since the centre of gravity of this body is near the centre of gravity

of the system, and its preponderant mass facilitates the integration

of the equations thus obtained. In the case, however, of the secondary

systems, the motions of the satellites are considered in reference to

the centre of gravity of their primaries. We shall, therefore, form

the equations for the motion of the planets relative to the centre of

gravity of the sun
;
for which it becomes necessary to consider more

particularly the relation between the heterogeneous quantities, space,

time, and mass, which are involved in them. Each denomination,

being divided by the unit of its kind, is expressed by an abstract

number; and hence it offers no .difficulty by its presence in an equa-
tion. For the unit of space we may arbitrarily take the mean dis-

tance of the earth from the sun. and the mean solar day may be

taken as the unit of time. But, in order that when the space is

expressed by 1, and the time by 1, the force or velocity may also be

expressed by 1, if the unit of space is first adopted, the relation of

the time and the mass which determines the measure of the force -

will be such that the units of both cannot be arbitrarily chosen.

Thus, if we denote by / the acceleration due to the action of the

mass m on a material point at the distance a, and by/' the accelera-

tion corresponding to another mass m' acting at the same distance,

we have the relation
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and hence, since the acceleration is proportional to the mass, it may
be taken as the measure of the latter. But we have, for the measure

of/,

Integrating this, regarding /as constant, and the point to move from

a state of rest, we get = i/P. (13)

The acceleration in the case of a variable force is, at any instant,

measured by the velocity which the force acting at that instant would

generate, if supposed to remain constant in its action, during a unit

of time. The last equation gives, when t = 1,

/=2;
and hence the acceleration is also measured by double the space which

would be described by a material point, from a state of rest, during
a unit of time, the force being supposed constant in its action during
this time. In each case the duration of the unit of time is involved

in the measure of the acceleration, and hence in that of the mass on

which the acceleration depends; and the unit of mass, or of the force,

will depend on the duration which is chosen for the unit of time. In

general, therefore, we regard as the unit of mass that which, acting

constantly at a distance equal to unity on a material point free to

move, will give to this point, in a unit of time, a velocity which,

if the force ceased to act, would cause it to describe the unit of dis-

tance in the unit of time.

Let the unit of time be a mean solar day; F the acceleration due

to the force exerted by the mass of the sun at the unit of distance;

and /the acceleration corresponding to the distance r; then will

and k2 becomes the measure of the mass of the sun. The unit of

mass is, therefore, equal to the mass of the sun taken as many times*

as k2
is contained in unity. Hence, when we take the mean solar

day as the unit of time, the mass of the sun is measured by #*; by
which we are to understand that if the sun acted during a mean solar

day, on a material point free to move, at a distance constantly equal

to the mean distance of the earth from the sun, it would, at the end

of that time, have communicated to the point a velocity which, if
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the force did not thereafter act, would cause it to describe, in a unu
of time, the space expressed by ft?.

The acceleration due to the action of the sun at the unit of distance

is designated by F, since the square root of this quantity appears

frequently in the formulae which will be derived.

If we take arbitrarily the mass of the sun as the unit of mass, the

unit of time must be determined. Let t denote the number of mean

solar days which must be taken for the unit of time when the unit

of mass is the mass of the sun. The space which the force due to

this mass, acting constantly on a material point at a distance equal to

the mean distance of the earth from the sun, would cause the point

to describe in the time
t, is, according to equation (13),

But, since t expresses the number of mean solar days in the unit of

time, the measure of the acceleration corresponding to this unit is 2s,

and this being the unit of force, we have

*V=1;
and hence

Therefore, if the mass of the sun is regarded as the unit of mass, the

number of mean solar days in the unit of time will be equal to unity

divided by the square root of the acceleration due to the force exerted

by this mass at the unit of distance. The numerical value of k will

be subsequently found to be 0.0172021, which gives 58.13244 mean

solar days for the unit of time, when the mass of the sun is taken as

the unit of mass.

15. Let x, y, z be the co-ordinates of a heavenly body referred to

the centre of gravity of the sun as the origin of co-ordinates; r its

radius-vector, or distance from this origin; and let m denote the

quotient obtained by dividing its mass by that of the sun; then,

taking the mean solar day as the unit of time, the mass of the sun is

expressed by F, and that of the planet or comet by W&2
. For a

second body let the co-ordinates be x f

, y
f

,
z
f

;
the distance from the

sun, r'; and the mass, ra'F; and similarly for the other bodies of the

system. Let the co-ordinates of the centre of gravity of the sun

referred to any fixed point in space be
, 77, ,

the co-ordinate planes

being parallel to those of x, y, and z, respectively; then will the
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mk*
acceleration due to the action of m on the sun be expressed by .

and the three components of this force in directions parallel to the

co-ordinate axes, respectively, will be

, ,

r3 r3 r3

The action of ra' on the sun will be expressed by

and hence the acceleration due to the combined and simultaneous

action of the several bodies of the system on the sun. resolved par-

allel to the co-ordinate axes, will be

The motion of the centre of gravity of the sun, relative to the fixed

origin, will, therefore, be determined by the equations

= = , = (14)

Let p denote the distance of m from mf

; p
r
its distance from w",

adding an accent for each successive body considered; then will the

action of the bodies m', m", &c. on m be

of which the three components parallel to the co-ordinate axes, re-

spectively, are

The action of the sun on m, resolved in the same manner, is expressed

by

which are negative, since the force tends to diminish the co-ordinates

x, y, and z. The three components of the total action of the othei

bodies of the system on m are, therefore,
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Vx
, wm'tf x)

"T5

"
~7 '

k*y
; X<y y)-

and, since the co-ordinates of m referred to the fixed origin are

+ #> ^ + y, c + 2,

the equations which determine the absolute motion are

eP . (?a? ^ __ m' <X a;)~"

the symbol of summation in the second members relating simply to

the masses and co-ordinates of the several bodies which act on m,
d2
^ d?f) d2ff

exclusive of the sun. Substituting for -^-, , and - - their values
dt* dt2

dt*

given by equations (14), we get

(10)

d?z , z .
,
I z' z z'

\= VZm1 ----- -

i* \ p
3 r 3

I

Since x, y, z are the co-ordinates ofm relative to the centre of gravity

of the sun, these equations determine the motion of m relative to that

point. The second members may be put in another form, which

greatly facilitates the solution of some of the problems relating to

the motion of m. Thus, let us put

m' II W+yyH-aA m" / 1 xx"+yy"+zz"
-+ +

(17)

and we styall have for the partial differential coefficient of this with

respect to x,

dx l +m ffdx rl+m ?" dx
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But, since

we have

dp _ xf

x dp' _ x" x

dx p dx p'

and hence we derive

ldQ\ m' ix' x x' \ . m" [x"x x" \ .

I I
==

I 3 f3~ I H ( ^3 "F I ~f" *&C

or

"We find, also, in the same manner, for the partial differential coeffi

cients with respect to y and 2,

The equations (16), therefore, become

It will be observed that the second members of equations (16) ex-

press the difference between the action of the bodies ra', m", &c. on

m and on the sun, resolved parallel to the co-ordinate axes respect-

ively. The mutual distances of the planets are such that these quan-
tities are generally very small, and we may, therefore, in a first

approximation to the motion of m relative to the sun, neglect the

second members of these equations; and the integrals which may
then be derived, express what is called the undisturbed motion of m.

By means of the results thus obtained for the several bodies succes-

sively, the approximate values of the second members of equations

(16) may be found, and hence a still closer approximation to the

actual motion of m. The force whose components are expressed by
the second members of these equations is called the disturbing force ;
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and, using the second form of the equations, the function J2, which

determines these components, is called the perturbing function. The

complete solution of the problem is facilitated by an artifice of the

infinitesimal calculus, known as the variation of parameters, or of

constants, according to which the complete integrals of equations (16)

are of the same form as those obtained by putting the second mem-
bers equal to zero, the arbitrary constants, however, of the latter

integration being regarded as variables. These constants of integra-

tion are the elements which determine the motion of m relative to the

sun, and when the disturbing force is neglected the elements are pure
constants. The variations of these, or of the co-ordinates, arising

from the action of the disturbing force are, in almost all cases, very

small, and are called the perturbations. The problem which first

presents itself is, therefore, the determination of all the circumstances

of the undisturbed motion of the heavenly bodies, after which the

action of the disturbing forces may be considered.

It may be further remarked that, in the formation of the preceding

equations, we have supposed the different bodies to be free to move,

and, therefore, subject only to their mutual action. There are, in-

deed, facts derived from the study of the motion of the comets which

seem to indicate that there exists in space a resisting medium which

opposes the free motion of all the bodies of the system. If such a

medium actually exists, its effect is very small, so that it can be sen-

sible only in the case of rare and attenuated bodies like the comets,

since the accumulated observations of the different planets do not

exhibit any effect of such resistance. But, if we assume its existence,

it is evidently necessary only to add to the second members of equa-
tions (16) a force which shall represent the effect of this resistance,

which, therefore, becomes a part of the disturbing force, and the

motion of m will be completely determined.

16. When we consider the undisturbed motion of a planet or

comet relative to the sun, or simply the motion of the body relative

to the sun as subject only to the reciprocal action of the two bodies,

the equations (16) become

(19)



MOTION RELATIVE TO THE SUN. 43

The equations for the undisturbed motion of a satellite relative to its

primary are of the same form, the value of &2

, however, being in this

case the acceleration due to the force exerted by the mass of the

primary at the unit of distance, and m the ratio of the mass of the

satellite to that of the primary.

The integrals of these equations introduce six arbitrary constants

of integration, which, when known, will completely determine the

undisturbed motion of m relative to the sun.

If we multiply the first of these equations by y, and the second by

a?,
and subtract the last product from the first, we shall find, by inte-

grating the result,

xdy ydx~

c being an arbitrary constant.

In a similar manner, we obtain

xdz zdx _ , ydz zdy _
~~dT

G
'

~~dt~~

If we multiply these three equations respectively by z, y, and x,

and add the products, we obtain

cz c'y -f- c"x 0.

This, being the equation of a plane passing through the origin of

co-ordinates, shows that the path of the body relative to the sun is a

plane curve, and that the plane of the orbit passes through the centre

of the sun.

Again, if we multiply the first of equations (19) by 2dx, the second

by 2dy, and the third by 2dz, take the sum and integrate, we shall

find

But, since r
2= a? -f f -f z

2

,
we shall have, by differentiation,

rdr= xdx -f ydy + zdz.

Therefore, introducing this value into the preceding equation, we obtain

dat+dtf+ d* 2fr(l + m)
,
A ^ 0> (20)

h being an arbitrary constant.
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If we add together the squares of the expressions for c, c', and c"

and put c
2 + c'

2 + c"2= 4/
2

,
we shall have

(x* -f f + *
2

) (cfe* + dy* + <**
2

) 0*k + ydy -f

dz
2

<ft
2

or

d* "'--
If we represent by dv the infinitely small angle contained between

two consecutive radii-vectores r and r -f- cZr, since dx2 + c??/

2 + c/2^ is

the square of the element of path described by the body, we shall

have
dx* + df -f- dz*= dr* -f r

z
dv*.

Substituting this value in the preceding equation, it becomes

r*dv = 2fdt. (22)

The quantity r2dv is double the area included by the element of path
described in the element of time dt, and by the radii-vectores r and

r -f- dr; and/, therefore, represents the areal velocity, which, being a

constant, shows that the radius-vector of a planet or comet describes

equal areas in equal intervals of time.

From the equations (20) and (21) we find, by elimination,

(23)
l+m) Ar2

4/
2

Substituting this value of dt in equation (22), we get

r
-

(24)
m) hr* 4/

2

which gives, in order to find the maximum and minimum values of r,

dr_ _ rl2rff (1 + m) Ar2

4/
2 _

<fo

"
2/

"

or

2rA;
2

(l + m) hr* 4/
2= C.

Therefore

^ h m)
8

,

and

J 4/
2

\"~"

4/
2

are, respectively, the maximum and minimum values of r. The
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points of the orbit, or trajectory of the body relative to the sun, cor-

responding to these values of r, are called the apsides; the former,
the aphelion, and the latter, the perihelion. If we represent these

values, respectively, by a (I + )
and a(l e), we shall have

m)
; 4f= ak* (1 -f- m) (1

- e^ = Vp (1 + m),

in which p = a (1 e
2

). Introducing these values into the equation

(24), it becomes

^,--,-
-y ^-(E.i-I)'

the integral of which gives

- 1 1 / P
v = u> + cos I

being an arbitrary constant. Therefore we shall have

I 1 1= cos (v w),
e \ r /

from which we derive

r ^^^

e cos (1;

which is the polar equation of a conic section, the pole being at the

focus, p being the semi-para meter, e the eccentricity, and v o the

angle at the focus between the radius-vector and a fixed line, in the

plane of the orbit, making the angle co with the semi-transverse

axis a.

If the angle v co is counted from the perihelion, we have a) = 0,

and

(25)
P
COS V

The angle v is called the true anomaly.

Hence we conclude that the orbit of a heavenly body revolving

around the sun is a conic section with the sun in one of the foci.

Observation shows that the planets revolve around the sun in ellipses,

usually of small eccentricity, while the comets revolve either in

ellipses of great eccentricity, in parabolas, or in hyperbolas, a cir-

cumstance which, as we shall have occasion to notice hereafter, greatly
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lessens the amount of labor in many computations respecting their

motion.

Introducing into equation (23) the values of h and 4f already
found, we obtain

dt = -

m j/aV (a r)
2
'

which may be written

dt=

or

^-(V)/
the integration of which gives

J
ae

(26)

In the perihelion, r = a (1 e),
and the integral reduces to

' = C/

therefore, if we denote the time from the perihelion by t
Q, we shall

have

o
/

-i/a r\ /~ (a r\*\
7 / ^r== cos -

)
e \l --

jfe|/l-f-w\ \ ae j \ \ ae ] ]
(27)

In the aphelion, r = a (1 -f- e) ;
and therefore we shall have, for the

time in which the body passes from the perihelion to the aphelion,

t,
=

Jr, or

1 T-"

r being the periodic time, or time of one revolution of the planet

around the sun, a the semi-transverse axis of the orbit, or mean dis-

tance from the sun, and n the semi-circumference of a circle whose

radius is unity. Therefore we shall have

(28)
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For a second planet, we shall have

and, consequently, between the mean distances and periodic times of

any two planets, we have the relation

fft^ = -

(29)

If the masses of the two planets m and mr are very nearly the

same, we may take 1 -f- m= 1 -f- mr and hence, in this case, it follows

that the squares of the periodic times are to each other as the cubes of
the mean distances from the sun. The same result may be stated in

another form, which is sometimes more convenient. Thus, since rcab

is the area of the ellipse, a and b representing the semi-axes, we
shall have

=f= areal velocity;

and, since b2= a2

(1 e
2

),
we have

T

which becomes, by substituting the value of r already found,

In like manner, for a second planet, we have

and, if the masses are such that we may take 1 -f- m sensibly equal

to 1 -f m', it follows that, in this case, the areas described in equal

times, in different orbits, are proportional to the square roots of their

parameters.

17. We shall now consider the signification of some of the con-

stants of integration already introduced. Let i denote the inclination

of the orbit of m to the plane of xy, which is thus taken as the plane
of reference, and let be the angle formed by the axis of x and the

line of intersection of the plane of the orbit with the plane of xy ;

then will the angles i and & determine the position of the plane of
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the orbit in space. The constants c, c', and c", involved in the

equation
cz c'y -\- c"x = 0,

are, respectively, double the projections, on the co-ordinate planes,

xy, xz, and yz, of the areal velocity// and hence we shall have

e= 2/cosi.

The projection of 2f on a plane passing through the intersection ot

the plane of the orbit with the plane of XT/, and perpendicular to the

latter, is

2/sini;

and the projection of this on the plane of xz
y
to which it is inclined

at an angle equal to &, gives

c' = 2/ sin i cos 1.

Its projection on the plane of yz gives

Hence we derive

z cos i y sin i cos Q> -f- x sin i sin = 0, (31)

which is the equation of the plane of the orbit; and, by means of

the value of f in terms of p, and the values of c, c', c", we derive,

also,

dz dx , 73 ;

T . . ,,,
'-j z -j-

= Jc i/p (1 + *) cos & sm l
> (.&%)

at at

__ = cvpLm sn
Cvv Ctv

These equations will enable us to determine & , i, and p, when, for

any instant, the mass and co-ordinates of m, and the components of

its velocity, in directions parallel to the co-ordinate axes, are known.

The constants a and e are involved in the value of p, and hence four

constants, or elements, are introduced into these equations, two of

which, a and e, relate to the form of the orbit, and two, > and i, to

the position of its plane in space. If we measure the angle v a)

from the point in which the orbit intersects the plane of xy, the con-

stant co will determine the position of the orbit in its own plane.

Finally, the constant of integration C, in equation (26), is the time
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of passage through the perihelion; and this determines the position

of the body in its orbit. When these six constants are known, the

undisturbed orbit of the body is completely determined.

Let V denote the velocity of the body in its orbit; then will

equation (20) become

At the perihelion, r is a minimum, and hence, according to this

equation, the corresponding value of V is a maximum. At the

aphelion, V is a minimum.

In the parabola, a = oo*,
and hence

which will determine the velocity at any instant, when r is known.

It will be observed that the velocity, corresponding to the same value

of r, in an elliptic orbit is less than in a parabolic orbit, and that,

since a is negative in the hyperbola, the velocity in a hyperbolic

orbit is still greater than in the case of the parabola. Further, since

the velocity is thus found to be independent of the eccentricity, the

direction of the motion has no influence on the species of conic section

described.

If the position of a heavenly body at any instant, and the direction

and magnitude of its velocity, are given, the relations already derived

will enable us to determine the six constant elements of its orbit.

But since we cannot know in advance the magnitude and direction

of the primitive impulse communicated to the body, it is only by
the aid of observation that these elements can be derived; and

therefore, before considering the formulae necessary to determine

unknown elements by means of observed positions, we will investi-

gate those which are necessary for the determination of the helio-

centric and geocentric places of the body, assuming the elements to

be known. The results thus obtained will facilitate the solution of

the problem of finding the unknown elements from the data furnished

by observation.

18. To determine the value of k, which is a constant for the solar

system, we have, from equation (28),
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In the case of the earth, a = 1, and therefore

*=
fl/1 4- m

In reducing this formula to numbers we should properly use, for r,

the absolute length of the sidereal year, which is invariable. The

effect of the action of the other bodies of the system on the earth is

to produce a very small secular change in its mean longitude correr

spending to any fixed date taken as the epoch of the elements; and

a correction corresponding to this secular variation should be applied

to the value of r derived from observation. The effect of this cor-

rection is slightly to increase the observed value of r; but to deter-

mine it with precision requires an exact knowledge of the masses of

all the bodies of the system, and a complete theory of their relative

motions, a problem which is yet incompletely solved. Astronomical

usage has, therefore, sanctioned the employment of the value of k

found by means of the length of the sidereal year derived directly

from observation. This is virtually adopting as the unit of space a

distance which is very little less than the absolute, invariable mean

distance of the earth from the sun; but, since this unit may be arbi-

trarily chosen, the accuracy of the results is not thereby affected.

The value of r from which the adopted value of k has been com-

puted, is 365.2563835 mean solar days; and the value of the com-

bined mass of the earth and moon is

~~
354710*

Hence we have log V= 2.5625978148; log j/1 + m= 0.0000006122;

log 2x = 0.7981798684; and, consequently,

log k= 8.2355814414.

If we multiply this value of k by 206264.81, the number of seconds

of arc corresponding to the radius of a circle, we shall obtain its

value expressed in seconds of arc in a circle whose radius is unity, or

on the orbit of the earth supposed to be circular. The value of k in

seconds is, therefore,

log k = 3.5500065746.
o

The quantity expresses the mean angular motion of a planet

in a mean solar day, and is usually designated by //.
"We shall,

therefore, have
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^,

'"
'

| C33)

for the expression for the mean daily motion of a planet.

Since, in the case of the earth, 1/1 -f- m differs very little from 1,

it will be observed that k very nearly expresses the mean angular
motion of the earth in a mean solar day.

In the case of a small planet or of a comet, the mass m is so small

that it may, without sensible error, be neglected ;
and then we shall

have

^ =4 (M)
a

For the old planets whose masses are considerable, the rigorous ex-

pression (33) must be used.

19. Let us now resume the polar equation of the ellipse, the pole

being at the focus, which is

1 -f e cos v

If we represent by <p
the angle included between the conjugate axis

and a line drawn from the extremity of this axis to the focus, we
shall have

sin
<f>
= e;

and, since a(l e
2

)
is half the parameter of the transverse axis,

which we have designated by p, we have .

r
1 -}- sin

(f>
cos v

The angle <p
is called the angle of eccentricity.

Again, since p = a (I e
2

)
= a cos

2

^, we have

1 -}- sin <p cos v

It is evident, from this equation, that the maximum value of r in an

elliptic orbit corresponds to v = 180, and that the minimum value

of r corresponds to v = 0. It therefore increases from the perihelion

to the aphelion, and then decreases as the planet approaches the peri-

helion.
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In the case of the parabola, <p
= 90, and sin

<p
= e = 1

;
conse-

quently,

.

1 -j- COS V

But, since 1 + cos v = 2 cos
2

Jt?,
if we put <?

=
p, we shall have

(36)

iii which ^ is the perihelion distance. In this case, therefore, when
v = rt 180, r will be infinite, and the comet will never return, but

course its way to other systems.

The angle <p
cannot be applied to the case of the hyperbola, since

in a hyperbolic orbit e is greater than 1
; and, therefore, the eccen-

tricity cannot be expressed by the sine of an arc. If, however, we

designate by 4 the angle which the asymptote to the hyperbola makes

with the transverse axis, we shall have

e cos 4 = 1.

Introducing this value of e into the polar equation of the hyperbola,

it becomes

p cos 4

cosv -f- cos 4-'

But, since cos v -f cos 4 = 2 cos ) (v + 4) cos \(v $), ^s giyes

=_ff cos4_
2 cos J

(v + 4) cos i
(v 4)'

It appears from this formula that r increases with v, and becomes in-

finite when 1 + e cosv= 0, or cosv= cost)/, in which case v= 180
- 4 : consequently, the maximum positive value of v is represented

by 180 4? and the maximum negative value by (180 4/
)

Further, it is evident that the orbit will be that branch of the hyper-

bola which corresponds to the focus in which the sun is placed, since,

under the operation of an attractive force, the path of the body must

be concave toward the centre of attraction. A body subject to a

force of repulsion of the same intensity, and varying according to

the same law, would describe the other branch of the curve.

The problem of finding the position of a heavenly body as seen

from any point of reference, consists of two parts: first, the deter-

mination of the place of the body in its orbit; and then, by means

if this and of the elements which fix the position of the plane of the
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orbit, and that of the orbit in its own plane, the determination of

the position in space.

In deriving the formulae for finding the place of the body in its

orbit, we will consider each species of conic section separately, com-

mencing with the ellipse.

20. Since the value of a- r can never exceed the limits ae and

-f ae, we may introduce an auxiliary angle such that we shall have

a r ^- = cos E.
ae

This auxiliary angle E is called the eccentric anomaly ; and its geo
metrical signification may be easily known from its relation to the

true anomaly. Introducing this value of - - into the equation

(27) and writing t T in place of t
Q,
T being the time of perihelion

passage,
and t the time for which the place of the planet in its orbit

is to be computed, we obtain

3

a
2

(38)

I

TTJ,

But - - = mean daily motion of the planet
=

/JL ; therefore

The quantity p(k T) represents what would be the angular distance

from the perihelion if the planet had moved uniformly in a circular

orbit whose radius is a, its mean distance from the sun. It is called

the mean anomaly, and is usually designated by M. We shall, there-

fore, have

M=v(t-T),
M=EesmE. (39)

When the planet or comet is in its perihelion, the true anomaly,

mean anomaly, and eccentric anomaly are each equal to zero. All

three of these increase from the perihelion to the aphelion, where

they are each equal to 180, and decrease from the aphelion to the peri-

helion, provided that they are considered negative. From the peri-

helion to the aphelion v is greater than E, and E is greater than M.

The same relation holds true from the aphelion to the perihelion, if

WQ regard, in this case, the values of v, E, and M as negative.

As soon as the auxiliary angle E is obtained by means of the mean

motion and eccentricity, the values of r and v may be derived. For
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this purpose there are various formulae which may be applied in

practice, and which we will now develop.
The equation

a r- = cos E,
ae

gives
r= a(l ecosE). (40)

This also gives
a r r,-- ae = a cosE ae,

or

P -l = a cos JE/ ae,

which, by means of equation (25), reduces to

r cos v = a cosE ae. (41)

If we square both members of equations (40) and (41), and subtract

the latter result from the former, we get

r2 sm2
v = a2

(l e
2

) sm
2

^,
or

r sin v a-j/1 e
2
sin E= b sin E. (42)

By means of the equations (41) and (42) it may be easily shown

that the auxiliary angle E}
or eccentric anomaly, is the angle at the

centre of the ellipse between the semi-transverse axis, and a line

drawn from the centre to the point where the prolongation of the

ordinate perpendicular to this axis, and drawn through the place of

the body, meets the circumference of the circumscribed circle.

Equations (40) and (41) give

r (1 HH cos v) = a(l e) (1 =F cos E).

By using first the upper sign, and then the lower sign, we obtain, by
reduction,

1/r sin v l/a(l -j- e) sin \E,

Vr cos v= Va(l e) cos %E, (43)

which are convenient for the calculation of r and v, and especially so

when several places are required. By division, these equations give

tan %v = \l
~ tan 1E. (44)
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Since e = sin
<p,

we have

l-e = l^niy = ^ _
1 -}- e 1 + sin p

Consequently,
tan E= tan (45 ?>) tan |v. (45)

Again.

V\-\- e = 1/1 -f sin y = 1/1 -|- 2 sin p cos fop,

which may be written

1/1 -}- e I/sin
2

-|^ -f c s
2

i^ + 2 sin Jp cos Jp,

or _
1/1 -|- e= sin^ -f cos ?

In a similar manner we find

1/1 e= sin \<p -j- cos \<p.

From these two equations we obtain

1/1 + e + 1/1 e= 2 cos J?,

l/F+7 T/f^T= 2 sin jp, (46)

which are convenient in many transformations of equations involving

e or

Equation (42) gives

. ^ r sin v j9 sin v~~ =

but p = a cos
2

^>,
and 6 = a cos ^, hence

r sin v cos ^ sin v. _,
sin E=

1 -f- e GOBV

Equation (41) gives

r cos v + ae p cos v

or

_, ^) cos v + ae ag2 cos v

and, putting a cos
2

(p
instead of _p,

and sin
<p

for e, we get

cosv-f-e
cosE= = :

-!--
1 -|- e cos v

If we multiply the first of equations (43) by cos \E, and the
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second by sin^E, successively add and subtract the products, and

reduce by means of the preceding equations, we obtain

sin j (v -f- E) */- cos \<p sin E,

sin %(v E) =J sin \<p sin jEl (49)

The perihelion distance, in an elliptic orbit, is given by the equa-
tion

5 = o(l e).

21. The difference between the true and the mean anomaly, or

v Mj is called the equation of the centre, and is positive from the

perihelion to the aphelion, and negative from the aphelion to the

perihelion. When the body is in either apsis, the equation of the

centre will be equal to zero.

We have, from equation (39),

Expanding this by Lagrange's theorem, we get

+ -
Let us now take, equation (40),

and, consequently,

F(M) = (I e cos -M")~

a

.

Therefore we shall have

^= (1 e cosM)~
2

2e2
sin

2

M(l e cos Jiff*

d / -\
e
8
-yv> (sin

8

Jf(l e cos IT) )dM v

Expanding these terms, and performing the operations indicated, we

get

^
= 1 + 2e cosM+ -

(6 xjos
2M 4 sin

2

Jf)

-f | (16 cos8M 36 sin
2 Jf cos Jf) -f- . . . ,
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which reduces to

, (51)
i

Equation (22) gives
. 2fdt=

and, since/= }&|/p(l + m), we have

dv= ^j- dt, (52)

or ___
, &V 1 -f- Wl Cl

2

/

But g
=

fa and therefore

a?

2 2 CX

By expanding the factor j/1 e
2

,
we obtain

and hence

Substituting for its value from equation (51), and integrating, we

get, since v = when M=0,

vM=2e sinM+je2 sin2Jf+
-^-

(13 sin 33f 3 sin Jf) +. . . (53)

which is the expression for the equation of the centre to terms involving

e
3
. In the same manner, this series may be extended to higher powers

of e.

When the eccentricity is very small, this series converges very

rapidly ;
and the value of v M for any planet may be arranged in

a table with the argument M.
For the purpose, however, of computing the places of a heavenly

body from the elements of its orbit, it is preferable to solve the

equations which give v and E directly ;
and when the eccentricity is
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very great, this mode is indispensable, since the series will not in

that case be sufficiently convergent.
It will be observed that the formula which must be used in obtain-

ing the eccentric anomaly from the mean anomaly is transcendental,
and hence it can only be solved either by series or by trial. But

fortunately, indeed, it so happens that the circumstances of the celes-

tial motions render these approximations very rapid, the orbits being

usually either nearly circular, or else very eccentric.

If, in equation (50), we put F(E] = E, and consequently F(M]= M, we shall have, performing the operations indicated and reducing,

E=M -f e sinM+^ sin 2M+ &c. (54)

Let us now denote the approximate value of E computed from this

equation by Eot
then will

in which &E
Q
is the correction to be applied to the assumed value of E.

Substituting this in equation (39), we get

M= E -f &EQ
e sin E

Q
e cosE *E

;

and, denoting by MQ
the value of M corresponding to Ew we shall

also have
M

Q
= E

Q
esmE .

Subtracting this equation from the preceding one, we obtain

M-M,---= = A A..
1 e cos -c/

It remains, therefore, only to add the value of &E
Q
found from this

formula to the first assumed value of E, or to Ew and then, using
this for a new value of E

,
to proceed in precisely the same manner

for a second approximation, and so on, until the correct value of E is

obtained. When the values of E for a succession of dates, at equal

intervals, are to be computed, the assumed values of E may be ob-

tained so closely by interpolation that the first approximation, in the

manner just explained, will give the correct value; and in nearly

every case two or three approximations in this manner will suffice.

Having thus obtained the value of E corresponding to M for any
instant of time, we may readily deduce from it, by the formulse

already investigated, the corresponding values of r and v.

In the case of an ellipse of very great eccentricity, corresponding

to the orbits of many of the comets, the most convenient method of
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computing r and v, for any instant, is somewhat different. The
manner of proceeding in the computation in such cases we shall con-

sider hereafter; and we will now proceed to investigate the formulae

for determining r and v, when the orbit is a parabola, the formulse

for elliptic motion not being applicable, since, in the parabola, a= <x>
,

and e 1.

22. Observation shows that the masses of the comets are insensible

in comparison with that of the sun; and, consequently, in this case,

m and equation (52), putting for p its value 2g, becomes

kV2q dt= r*dv,

or

which may be written

kdt
3-^ = 2 (1 -f- tan

2

J-y) sec
2
l>vdv= (!-}- tan2

Jv) d tan 0.

1/2 g
1

Integrating this expression between the limits T and
t, we obtain

^
= tan ^v + I tan8

-^v, (55)

1/2 g
f

which is the expression for the relation between the true anomaly
and the time from the perihelion, in a parabolic orbit.

Let us now represent by r the time of describing the arc of a

parabola corresponding to v = 90
;
then we shall have

2

or

T/2-
1
"

3
'

3k __ 4 f~

Now, ^ is constant, and its logarithm is 8.5621876983; and if we

take q
=

l, which is equivalent to supposing the comet to move in

a parabola whose perihelion distance is equal to the semi-transverse

axis of the earth's orbit, we find

log r
days = 2.03987229, or r = 109.61558 days ;

that is, a comet moving in a parabola whose perihelion distance
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is equal to the mean distance of the earth from the sun, requires

109.61558 days to describe an arc corresponding to v = 90.

Equation (55) contains only such quantities as are comparable with

each other, and by it t T, the time from the perihelion, may be

readily found when the remaining terms are known; but, in order

to find v from this formula, it will be necessary to solve the equation

of the third degree, tan \v being the unknown quantity. If we put
x = tan

Ji?,
this equation becomes

ar + 3z a = 0,

in which a is the known quantity, and is negative before, and positive

after, the perihelion passage. According to the general principle in

the theory of equations that in every equation, whether complete or

incomplete, the number of positive roots cannot exceed the number

of variations of sign, and that the number of negative roots cannot

exceed the number of variations of sign, when the signs of the terms

containing the odd powers of the unknown quantity are changed, it

follows that when a is positive, there is one positive root and no

negative root. When a is negative, there is one negative root and

no positive root; and hence we conclude that equation (55) can have

but one real root.

We may dispense with the direct solution of this equation by

forming a table of the values of v corresponding to those of t T
in a parabola whose perihelion distance is equal to the mean distance

of the earth from the sun. This table will give the time correspond-

ing to the anomaly v in any parabola, whose perihelion distance is

q, by multiplying by q
2

,
the time which corresponds to the same

anomaly in the table. We shall have the anomaly v corresponding

to the time t T by dividing t T by (fy
and seeking in the table

the anomaly corresponding to the time resulting from this division.

A more convenient method, however, of finding the true anomaly
from the time, and the reverse, is to use a table of the form gene-

rally known as Barker's Table. The following will explain its con-

struction :

Multiplying equation (55) by 75, we obtain

(t T) = 75 tan Jv + 25 tan8

>.

M=75 tan v -f 25 tan* |v,

1/2 <

Let us now put
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75k
and C = -

=r, which is a constant quantity ;
then will

v 2

The value of C is

log <7 = 9.9601277069.

Again. let us take

-=?
which is called the mean daily motion in the parabola; then will

M= m (t T) == 75 tan v + 25

If we now compute the values of M corresponding to successive

values of v from v = to v = 180, and arrange them in a table

with the argument v, we may derive at once, from this table, for the

time (t T) either M when v is known, or v when M m
(t T)

is known. It may also be observed that when t T is negative, the

value of v is considered as being negative, and hence it is not neces-

sary to pay any further attention to the algebraic sign of.t T than

to give the same sign to the value of v obtained from the table.

Table VI. gives the values of If for values of v from to 180,
with differences for interpolation, the application of which will be

easily understood.

23. When v approaches near to 180, this table will be extremely

inconvenient, since, in this case, the differences between the values of

M for a difference of one minute in the value of v increase very

rapidly ;
and it will be very troublesome to obtain the value of v

from the table with the requisite degree of accuracy. To obviate

the necessity of extending this table, we proceed in the following

manner:

Equation (55) may be written

1/2 q

(1+3 cot2

and, multiplying and dividing the second member by (1 + cot
2

Jt>)*,

we shall ha\e

F) ,. .,,
'

_ = i tan- 4, (1 + cot'
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2
But 1 + cot

2

Jt;
= -- and consequently

sin v tan v

1/2 5*
~3sin8 v (1 + cot2^)

3
'

Now, when t? approaches near to 180, cot^v will be very small, and

the second factor of the second member of this equation will nearly= 1. Let us therefore denote by w the value of v on the supposition
that this factor is equal to unity, which will be strictly true when
v = 180, and we shall have, for the correct value of v, the following

equation :

V = W + A
,

A
O being a very small quantity. We shall therefore have

and, putting tan %w = 0, and tan \ AO
=

x, we get, from this equation,

"""
6s 1 6x

"""
(1 dx}

y

Multiplying this through by #3

(1 0#)
3
, expanding and reducing,

there results the following equation :

+ 0* (2 + W + W +

Dividing through by the coefficient of x, we obtain

1 + 30 _ 2 .

2
(2 + 60* +

04 1 /5fi
N
v

"U/ o /- i A aZ T

Let us now put
1 + 30*

then, substituting this in the preceding equation, inverting the series

and reducing, we obtain finally

But tan ^AO
=

x, therefore
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Substituting in this the value of x above found, and reducing, we
obtain

2 -f 320* + 1608 + 1008
, , &C'

For all the cases in which this equation is to be applied, the third

term of the second member will be insensible, and we shall have, to

a sufficient degree of approximation,

Table VII. gives the values of A
O, expressed in seconds of arc,

corresponding to consecutive values of w from w= 155 to w= 180

In the application of this table, we have only to compute the vaiue

of M precisely as for the case in which Table VI. is to be used,

namely,
M=m(t T};

then will w be given by the formula

[206

-v-jT

since we have already found

or

Having computed the value of w from this equation, Table VII.
will furnish the corresponding value of A

;
and then we shall have,

for the correct value of the true anomaly,

v w -f- A O ,

which will be precisely the same as that obtained directly from Table

VI., when the second and higher orders of differences are taken into

account.

If v is given and the time t T is required, the table will give,

by inspection, an approximate value of A
, using v as argument, and

then w is given by
w = v A.
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The exact value of A is then found from the table, and hence we

derive that of w and finally t T from

t-T- J?V J- - yy *

GO Bin*to

24. The problem of finding the time t T when the true anomaly
is given, may also be solved conveniently, and especially so when v is

small, by the following process:

Equation (55) is easily transformed into

^- = 3v

from which we obtain, since q
= r cos

2

|v,

~2^~ \ 1/2 /

~
\ 1/2 /

*

Let us now put
sin^v

sm x= 7==,

1/2
and we have

- - -= 3 sin x 4 sin's= sin 3#.

2r*

Consequently,

which admits of an accurate and convenient numerical solution. To
facilitate the calculation we put

~-_ sin 3x
J\

sin v

the values of which may be tabulated with the argument v. "When

v 0, we shall have N= fl/2, and when v = 90, we have N= 1
;

from which it appears that the value of ^V changes slowly for values

of v from to 90. But when v = 180, we shall have N= *
and hence, when v exceeds 90, it becomes necessary to introduce au

auxiliarv different from N. We shall, therefore, put in this case,

W= JV sin v = sin 3#;
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from which it appears that Nf= 1 when v = 90, and that JV'= Jv'iB

when v = 180. Therefore we have, finally, when v is less than 90,

2 f
t T=-7c1-Nr sinv,

OK

and, when v is greater than 90,

o
in which log

= 1.5883272995, from which t T is easily derived
oA/

when v is known.

Table VIII. gives the values of N, with diiferences for interpola-

tion, for values of v from v = to v = 90, and the values of Nr

for those of v from v = 90 to v = 180.

25. We shall now consider the case of the hyperbola, which differs

from the ellipse only that e is greater than 1
; and, consequently, the

formulae for elliptic and hyperbolic motion will differ from each other

only that certain quantities which are positive in the ellipse are nega-

tive or imaginary in the hyperbola. We may, however, introduce

auxiliary quantities which will serve to preserve the analogy between

the two, and yet to mark the necessary distinctions.

For this purpose, let us resume the equation

T=
2 cos J-

(v + 4) cos J (v 4)'

When v 0, the factors cos | fa + ^ an^ cos(v ^) in the de-

nominator will be equal ;
and since the limits of the values of v are

180 4> and (180 $), it follows that the first factor will vanish

for the maximum positive value of v, and that the second factor will

vanish for the maximum negative value of v, and, therefore, that, in

either case, r= oo.

In the hyperbola, the semi-transverse axis is negative, and, conse-

quenlly, we have, in this case,

p ==a (e
2

1), or a p cot* 4.

We have, also, for the perihelion distance,

q= a(e 1).

Let us now put

tan IF= tan ' (56)
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which is analogous to the formula for the eccentric anomaly E in an

ellipse: and. since e=-
,
we shall have

cos 4*

_
e+l~l + COS+~

and, consequently,
tan \F= tan ^v tan ^. (57)

We shall now introduce an auxiliary quantity <r,
such that

whence we derive

t n ff 1 /Kfcv
tan JJF

1=
,

]
(58)

and also

ff== cMl(v *\ (59)
cos (v -j- 4")

This last equation shows that cr= 1 when the comet is in its perihe-

lion; a= oo when v=180 ^; and 0=0 when v = (180 ^>
2tan|^ , ,, ,

Since tanF= TTTr' we shall nave
1 tan' %F

a l\

i 1 \

(60)
- 1^=1]Wi/

Squaring this equation, adding 1 to both members, and reducing we

obtain

cos

Replacing <r in this equation by its value from equation (59), we get

or

1 _ 1 -f cos v cos ^ _ (e + cos v) cos 4>

cosF
~~

2cosi(^H- *) cos i
(v 4)

"~
2 cos (v -f- 4) cos (v

which reduces to
1 ~. f ~ I ^/vc,A

(62)
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If we add ip 1 to both members of this equation, we shall havp

coaF p

Taking first the upper sign, and then the lower sign, and reducing,
we get

VcosF

1/r cos %>= _--) cog ,^ (63)
VcosF

These equations for finding r and v, it will be observed, are analogous
to those previously investigated for an elliptic orbit. These equations

give, by division,

ten v=

which is identical with the equation (56), and may be employed to

verify the computation of r and v.

Multiplying the last of equations (63) by the first, putting for

1 its value tan2

ij/,
and reducing, we obtain

r sin v = a tan 4/ tanF=a tan 4 1 <r -I. (64)

Further, we have

v cos v ar(e -4- cos v)
r cos v= r-^ = ae--!-

,

1 -f- 6 COS V p

which, combined with equation (62), gives

rcosv = a\e--r7l= 2a |2e * -) (65)
\ cosF / \ *J

if we square these values of r sinv and r cosv, add the results to-

gether, reduce, and extract the square root, we find

2
)-

(66)

We might also introduce the auxiliary quantity a into the equations

(63); but such a transformation is hardly necessary, and, if at all

desirable, it can be easily effected by means of the formulae which we

have already derived.



68 THEORETICAL ASTRONOMY.

26. Let us now resume the equation

cos (v 4_~~
cos $ + 4)'

Differentiating this, regarding ^ as constant, we have

, sin 4 ,=
2co8*iO + 4)

'

and, dividing this equation by the preceding one, we get

dff sin 4
ff 2 cos (v + 40 cos 2 (v 40

But

p cos ^__~
2 cos (v H- 4) cos (v

consequently,
d<r _ r tan 4 _

V "

"~^~
Vj

which gives

ff tan 4

Substituting this value of i*dv in equation (22), and putting instead

of 2/ its value ~kVpy
from equation (30), the mass being considered as

insensible in comparison with that of the sun, we get

Then, substituting for r its value from equation (66), and for p its

value a tan2

^/, we have

IcVp dt= a? tan * I \e ( 1 + i) 1)
dff.

Integrating this between the limits T and t,
we obtain

*l/5( T) =
atan^Je(* i)

loge

<7J,
(67)

in which loge <r is the Naperian or hyperbolic logarithm of ff. Sinoe

Vp = Va tan
ij/,

if we put



PLACE IN THE ORBIT. 69

in which v is the mean daily motion; and if we also put

in which N corresponds to the mean anomaly M in an ellipse, we
shall have, from equation (67),

iog.. (68)

If we multiply both members of this equation by A = 0.434294482,
the modulus of the common system of logarithms, and put

we shall have

JV= \ek I <T - 1 log ff,

wherein log A = 9.6377843113, and logM = 7.8733657527.

Let us now introduce J^into this formula; and for this purpose we

have

and also

log ff= log tan (45 -f JJP).

Therefore we obtain

N= el tanF log tan (45 + $F). (69)

This equation will give, directly, the time t T from the perihelion,

when a, e, and .Fare known; but, since it is transcendental, in the

solution of the inverse problem, that of finding the true anomaly
and radius-vector from the time, the value of F can only be found by
successive approximations.

If we differentiate the last equation, regarding ^7" and F as vari-

able, we get

hEence, if we denote an approximate value of F by Fn and the cor-

responding value ofN by Nn the correction *F, to the assumed value

of F may be computed by the formula

F_-
'

'

Ke cosF,}
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This correction being applied to Fn a nearer approximation to the

true value of F will be obtained; and by repeating the operation
there results a still closer approximation. This process may be con-

tinued until the exact value of F is found, and, when several suc-

cessive places are required, the first assumed value may be estimated,

in advance, so closely that a very few trials will suffice. In practice,

however, cases will rarely occur in which this formula will be applied,

since the probability of hyperbolic motion is small, and, whenever

any positive indication of an eccentricity greater than 1 has been

found to exist, it has only been after a very accurate series of observa-

tions has been introduced as the basis of the calculation. For a

majority of the cases which do really occur, the most accurate and

convenient method of finding r and v will be explained hereafter.

27. If we consider the equation

M=E esmE,

we shall see that, when logarithms of six or seven decimals are used,

the error which may exist in the determination of E when M and e

are given, will increase as e increases, but in a much greater ratio;

and, when the eccentricity becomes nearly equal to that of the para-

bola, the error may be very great. In the case of hyperbolic motion,

also, the numerical solution of equation (69), when e 1 is very

small, and with the ordinary logarithmic tables, becomes very un-

certain. This can only be remedied, when equations (39) and (69)

are employed, by using more extended logarithmic tables; and when

the orbit diifers only in an extremely slight degree from a parabola,

even with the most extended logarithmic tables which have been

constructed, the error may be very large. For this reason we have

recourse to other methods, which will give the required accuracy

without introducing inconveniences which are proportionally great.

We shall, therefore, now proceed to develop the formulae for find-

ing the true anomaly in ellipses and hyperbolas which differ but

little from the parabola, such that they will furnish the required

accuracy, when the exact solution of equations (39) or (69) with the

logarithmic tables in common use is impossible.

For this purpose, let us resume equation (22), which, by substi-

tuting for 2/ its value &I/JP, the mass of the comet being neglected

in comparison with that of the sun, becomes

1ci/pdt'=r'
l

dv,
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or

dt=
(1 -f- e cos v

Let us now put u = tanjv, and we shall have

1 u* 2du
COSV

J. W - +l\Ai\AI

=
ru*'

' ~ru
Substituting these values in the preceding equation, and putting
1 e_ .

_ _ 2p* (1 -f w2
) du

or, since p = q (1 + e),

Let us now develop the second member into a series. This may be

written thus:

and developing the last factor into a series, we obtain

(1 + m2
)-

2= 1 2m' + 3iV 4iV + &c.

Consequently,

m)-
3= i 4. tt _ 2(t* + w4

) +

Multiplying this equation through by du, and integrating between

the limits T and
t,
the result is

Aff (>' + X) + &c-

In the case of the parabola, e= 1 and i 0, and this equation becomes

identical with (55).

Let us now put
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and also

then the angle V will not be the true anomaly in the parabola, but

an angle derived from the solution of a cubic equation of the same

form as that for finding the parabolic anomaly; and its value may
be found by means of Table VI., if we use for M the value com-

puted from

75K^ _T) \T2
- 3

*

\ 9
1/2 f

Let U be expanded into a series of the form

which is evidently admissible, a, /?, fy
____ being functions of u and

independent of i. It remains now to determine the values of the

coefficients a, /?, f, &c., and, in doing so, it will only be necessary to

consider terms of the third order, or those involving i
3
, since, for

nearly all of those cases in which the eccentricity is such that terms

of the order i
4

will sensibly affect the result, the general formulae

already derived, with the ordinary means of solution, will give the

required accuracy. We shall, therefore, have

U+ I U3 = U 4- ai + & 4 rP 4 l(u 4 ai 4-& + rW,

or, again neglecting terms of the order i*,

But we have already found, (70),

k(tT)i/l + e = n+ ^ = u + _ 2
.

u, + ^

2g
f

+ 3? (iw
5 + >7

) 4i
3

(>7 + >9
).

Since the first members of these equations are identical, it follows, by
the principle of indeterminate coefficients, that the coefficients of the

like powers of i are equal, and we shall, therefore, have

ua * + (i _|_ w.) p= 4. 3 (>< -f 4r
T
),

3

4- 2wa/9 4- (1 + w2
) r = 4 (>7

4- ^U
9
).

From the first of these equations we find
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The second equation gives

3(K+ ju*)-n.
l + u

or, substituting for a its value just found, and reducing,

g = 3 0* + f-H"
7 + jft* + jftu")

(1 + **)

We have also

_ 4 (i^
7 + X) j

3
2a^ti

r "
1 + u2

and hence, substituting the values of oc and ft already found, and

reducing, we obtain finally

(I -I- <
Again, we have

tan U tan (u {
oil

Developing this, and neglecting terms of the order i
4

,
we get

tan^U^f

Now, since w= tan Ji? and U= tan \ F, we shall have

or

2a .

,,
(72)

Substituting in this equation the values of a, ft,
and ? already found,

and reducing, we obtain finally

(!+')'
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This equation can be used whenever the true anomaly in the

ellipse or hyperbola is given, and the time from the perihelion is to

be determined. Having found the value of F, we enter Table VI.
with the argument F and take out the corresponding value of M;
and l,hen we derive t T from

t _ T= M<

in which log C = 9.96012771.

For the converse of this, in which the time from the perihelion is

given and the true anomaly is required, it is necessary to express the

difference v F in a series of ascending powers of i, in which the

coefficients are functions of U. Let us, therefore, put

u= U 4- o'i -f /3'i
2
-f r'$ + &c .

Substituting this value of u in equation (70), and neglecting terms

multiplied by i
4 and higher powers of i, we get

_ 4 [73^2_ 2 Ua'2

4 U7

1 17') t".

But, since the first member of this equation is equal to U+ J Z7
S
,
we

shall have, by the principle of indeterminate coefficients,

From these equations, we find

s _ IffW + ill! u9+ VftV ff" + fIf u13+ fill + i-VV

(i + tf
2
)
6

If we interchange v and F in equation (72), it becomes, writing a
;

,

0', f' for a, /9, ^,
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2/3' 2a'2
i7

+ /_^___4a^^7_ 2(t7^j) \

Ml + tf
2

(1 + tf
2

)
2

(1 + tf
2
)
3

/

Substituting in this equation the above values of cc/, /?',
and p', and

reducing, we obtain, finally,

_ F[ .

,22

. IfI ^ T+ JIM ^9+ fIff I ^n+ IfIf ^ 18

2

by means of which v may be determined, the angle V being taken

from Table VI., so as to correspond with the value of M derived

from

Equations (73) and (74) are applicable, without any modification,

to the case of a hyperbolic orbit which differs but little from the

parabola. In this case, however, e is greater than unity, and, conse-

quently, i is negative.

28. In order to render these formulae convenient in practice, tables

may be constructed in the following manner:

Let x = v or F, and tan Ja?
=

6, and let us put

<0*+|0s
100(1 -f-

2
)
2 '

^
10000 (1ii
10000 (1 + 2

)
4

1000000(1 + 2

)
6

+ iiii^
9 + flff^

11 + If^13 + jiff*" +
1000000 (1 + ^2

)
6

wherein s expresses the number of seconds corresponding to the

length of arc equal to the radius of a circle, or log s== 5.31442513.

We shall, therefore, have :

v=V+A (1000 + 5(10017+
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and, when x = v,

V=v-A (lOOi) + & (lOOi)
2- C' (lOOi)

8
.

Table IX. gives the values of A, B, B', <7, and C' for consecu-

tive values of x from x = to x= 149, with differences for inter-

polation.

When the value of v has been found, that of r may be derived

from the formula

r= g(l-M)
^

1 -j- e cos v

Similar expressions arranged in reference to the ascending powers

of (1 e) or of I I

^

-
1 II may be derived, but they do not con-

2 \^ \
I 1 I is

1 -f~ & ' i

than
i, yet the coefficients are, in each case, so much greater than

those of the corresponding powers of i,
that three terms will not

afford the same degree of accuracy as the same number of terms in

the expressions involving i.

29. Equations (73) and (74) will serve to determine v or t T in

nearly all cases in which, with the ordinary logarithmic tables, the

general methods fail. However, when the orbit differs considerably

from a parabola, and when v is of considerable magnitude, the results

obtained by means of these equations will not be sufficiently exact,

and we must employ other methods of approximation in the case that

the accurate numerical solution of the general formulae is still impos-

sible. It may be observed that when E or F exceeds 50 or 60, the

equations (39) and (69) will furnish accurate results, even when e

differs but little from unity. Still, a case may occur in which the

perihelion distance is very small and in which v may be very great

before the disappearance of the comet, such that neither the general

method, nor the special method already given, will enable us to de-

termine v or t T with accuracy; and we shall, therefore, investigate

another method, which will, in all cases, be sufficiently exact when

the general formulae are inapplicable directly. For this purpose, let

us resume the equation

= E e sinEt
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which, since q
= a(l e), may be written

If we put

we shall have

^e 201/1 \ 1 l + 9e" *

2

Let us now put
9E -f sin .E

201/2

and

then we have

When jB is known, the value of w may, according to this equation,

be derived directly from Table VI. with the argument

and then from w we may find the value of A. It remains, therefore,

to find the value of B; and then that of v from the resulting value

of A.

Now, we have
2 tan

and if we put tan2

\E= r, we get

Sn = == * -^ r

We have, also,

E= 2 tan"
1

r^= 2r^ (1 JT + Jt
-

^r
8 + Ac.)-
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Therefore,

15 (E sin E) = 2t* (10r

and

9E+ sin E= 2r^ (10 ^T + yr y r8+ ifi* &c.).

Hence, by division,

and, inverting this series, we get

which converges rapidly, and from which the value of may be

found.

Let us now put

A_ l_
r~0 2 '

then the values of O may be tabulated with the argument A; and,

besides, it is evident that as long as A is small C2
will not differ

much from 1 -f- \A.

Next, to find B, we have

-
40.),

and hence

_ 62 . 9~~~
"" T^ ~ 2525^+ 33eST6T

from which we easily find

S= 1 + T|s^2 + ,|^s + riW,^4 + &c.

If we compare equations (44) and (56), we get

tan E= T tan J.P.

Hence, in the case of a hyperbolic orbit, if we put tan2

|.F r', we
must write r' in place of r in the formulae already derived

; and,
from the series which gives A in terms of r, it appears that A is in

this case negative. Therefore, if we distinguish the equations for
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Hyperbolic motion from those for elliptic motion by writing A', Bf

t

and C f in place of A, B, and C, respectively, we shall have

"- Ac.

Table X. contains the values of logB and log C for the ellipse

and the hyperbola, with the argument A, from A = to A = 0.3,

For every case in which A exceeds 0.3, the general formulae (39)

and (69) may be conveniently applied, as already stated.

The equation Hi Q
tan |v = -v/T 5-- tan \E

gives

JL. &

or, substituting the value of A in terms of w,

tan^=(7tan>^^l^. (76)

The last of equations (43) gives

~l+tanf

j-tf

Hence we derive

The equation for v in a hyperbolic orbit is of precisely the same form

as (76), the accents being omitted, and the value of A being computed
from

For the radius-vector in a hyperbolic orbit, we find, by means of the

last of equations (63),

T==
(l

When t T is given and r and v are required, we first assume

B = 1
,
and enter Table VI. with the argument

i
1 B
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in which log CQ
= 9.96012771, and take out the corresponding value

of w. Then we derive A from the equation

in the case of the ellipse, and from (78) in the case of a hyperbolic
orbit. With the resulting value of A, we find from Table X. the

corresponding value of log JB, and then, using this in the expression

for My we repeat the operation. The second result for A will not

require any further correction, since the error of the first assumption
of B = 1 is very small

; and, with this as argument, we derive the

value of log C from the table, and then v and r by means of the

equations (76) and (77) or (79).

When the true anomaly is given, and the time t T is required,

we first compute T from

in the case of the ellipse, or from

in the case of the hyperbola. Then, with the value of r as argu-

ment, we enter the second part of Table X. and take out an approxi-

mate value of A, and, with this as argument, we find logJ? and log C.

The equation

will show whether the approximate value of A used in finding

log C is sufficiently exact, and, hence, whether the latter requires any
correction. Next, to find w, we have

5(1 -H)'

and, with w as argument, we derive M from Table VI. Finally, we

have

(80)

by means of which the time from the perihelion may be accurately

determined.
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30. We have thus far treated of the motion of the heavenly bodies,

relative to the sun, without considering the positions of their orbits

in space ;
and the elements which we have employed are the eccen-

tricity and semi-transverse axis of the orbit, and the mean anomalv

at a given epoch, or, what is equivalent, the time of passing thft

perihelion. These are the elements which determine the position of

the body in its orbit at any given time. It remains now to fix its

position in space in reference to some other point in space from which

we conceive it to be seen. To accomplish this, the position of its

orbit in reference to a known plane must be given ;
and the elements

which determine this position are the longitude of the perihelion, the

longitude of the ascending node, and the inclination of the plane of

the orbit to the known plane, for which the plane of the ecliptic is

usually taken. These three elements will enable us to determine the

co-ordinates of the body in space, when its position in its orbit has

been found by means of the formula already investigated.

The longitude of the ascending node, or longitude of the point

through which the body passes from the south to the north side of

the ecliptic, which we will denote by & ,
is the angular distance of

this point from the vernal equinox. The line of intersection of the

plane of the orbit with the fundamental plane is called the line of

nodes.

The angle which the plane of the orbit makes with the plane of

the ecliptic, which we will denote by i,
is called the inclination of

the orbit. It will readily be seen that, if we suppose the plane of

the orbit to revolve about the line of nodes, when the angle i exceeds

180, & will no longer be the longitude of the ascending node, but

will become the longitude of the descending node, or of the point

through which the planet passes from the north to the south side of

the ecliptic, which is denoted by t5, and which is measured, as in the

case of & ?
from the vernal equinox.

It will easily be understood that, when seen from the sun, so long

as the inclination of the orbit is less than 90, the motion of the

body will be in the same direction as that of the earth, and it is then

said to be direct. When the inclination is 90, the motion will be at

right angles to that of the earth
;
and when i exceeds 90, the motion

in longitude will be in a direction opposite to that of the earth, and

it is then called retrograde. It is customary, therefore, to extend the

inclination of the orbit only to 90, and if this angle exceeds a right

angle, to regard its supplement as the inclination of the orbit, noting

simply the distinction that the motion is retrograde.
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The I'jngitude of the perihelion, which is denoted by x, fixes the

position of the orbit in its own plane, and is, in the case of direct

motion, the sum of the longitude of the ascending node and the

angular distance, measured in the direction of the motion, of the

perihelion from this node. It is, therefore, the angular distance of

the perihelion from a point in the orbit whose angular distance back

from the ascending node is equal to the longitude of this node; or

it may be measured on the ecliptic from the vernal equinox to the

ascending node, then on the plane of the orbit from the node to the

place of the perihelion.

In the case of retrograde motion, the longitudes of the successive

points in the orbit, in the direction of the motion, decrease, and the

point in the orbit from which these longitudes in the orbit are

measured is taken at an angular distance from the ascending node

equal to the longitude of that node, but taken, from the node, in the

same direction as the motion. Hence, in this case, the longitude of

the perihelion is equal to the longitude of the ascending node dimi-

nished by the angular distance of the perihelion from this node.

It may, perhaps, seem desirable that the distinctions, direct and

retrograde motion, should be abandoned, and that the inclination of

the orbit should be measured from to 180, since in this case

one set of formulae would be sufficient, while in the common form

two sets are in part required. However, the custom of astronomers

seems to have sanctioned these distinctions, and they may be per-

petuated or not, as may seem advantageous.

Further, we may remark that in the case of direct motion the sum

of the true anomaly and longitude of the perihelion is called the

true longitude in the orbit; and that the sum of the mean anomaly

and longitude of the perihelion is called the mean longitude, an ex-

pression which can occur only in the case of elliptic orbits.

In the case of retrograde motion the longitude in the orbit is equal

to the longitude of the perihelion minus the true anomaly.

31. We will now proceed to derive the formulae for determining

the co-ordinates of a heavenly body in space, when its position in its

orbit is known.

For the co-ordinates of the position of the body at the time ts we

have

x = r cos v,

3
= r sin v,
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the line of apsides being taken as the axis of x, and the origin being
taken at the centre of the sun.

If we take the line of nodes as the axis of x, we shall have

x = r cos (v -f w),

y= r sin (v -f- w),

to being the arc of the orbit intercepted between the place of the

perihelion and of the node, or the angular distance of the perihelion

from the node.

Ndw, we have co= 7r ft in the case of direct motion, and a) -

ft TT in the case of retrograde motion
;
and hence the last equations

become
x = r cos (v TT qp ft)

y= r sin (v db ?r qp ft)

the upper and lower signs being taken, respectively, according as

the motion is direct or retrograde. The arc v7rq=ft=wis called

the argument of the latitude.

Let us now refer the position of the body to three co-ordinate

planes, the origin being at the centre of the sun, the ecliptic being

taken as the plane of xy, and the axis of #, in the line of nodes.

Then we shall have
x' = r cos u,

y
f = db r sin u cos i,

z' r sin u sin i.

If we denote the heliocentric latitude and longitude of the body, at

the time
t, by b and

I, respectively, we shall have

x' = r cos b cos (I ft ),

y
f = r cos b sin (I ft ),

/ = r sin b,

and, consequently,
cos u= cos b cos (I &),

sin u cos i = cos b sin (7 ft), (81)

sin w sin i= sin 6.

From these we derive

tan (I ft ) tan w cos i,

tan 6 = db tan i sin (f ft ), (82)

which serve to determine I and 6, when ft, w, and t are given. Since
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cos b is always positive, it follows that I & and u must lie in the

same quadrant when i is less than 90
;
but if i is greater than 90,

or the motion is retrograde, I ft and 360 u will belong to the

same quadrant. Hence the ambiguity which the determination of

/ ft by means of its tangent involves, is wholly avoided.

If we use the distinction of retrograde motion, and consider i

always less than 90, I ft and u will lie in the same quadrant.

32. By multiplying the first of the equations (81) by sin u, and

the second by cos u, and combining the results, considering only the

upper sign, we derive

cos b sin (u I -f- ft )
= 2 sin u cos u sin' ^*,

or

cos b sin (u I + ft )
= sin 2u sin8

\i.

In a similar manner, we find

cos b cos (u l-\- ft )
= cos'it -J- sin2w cos i,

which may be written

cos b cos (u 1-\- ft )
= \ (1 -f- cos 2-w) + J (1 cos 2w) cos i,

or

cos b cos (u l-\- ft ) = (1 + cost) -j- i (1 cos i) cos 2u;

and hence
cos b cos (M / -f~ ft )

= cos7
i -f- sin* Ji cos 2u.

If we divide this equation by the value of cos b sin (u I + ft )

already found, we shall have

f 7 * ^\ tan*J*sin2ti ,QO ,

tan (u I + ft) = r
L

2
, . . JT-. (83)

1 -f- tan
2

i cos 2it

The angle u 1+ ft is called the reduction to the ecliptic; and the

expression for it may be arranged in a series which converges rapidly

when i is small, as in the case of the planets. In order to effect this

development, let us first take the equation

n sin. a;

tan v = j :

1 -f- n cos x

Differentiating this, regarding y and n as variables, and reducing, we

find

dy sin a;

~dn 1 -J- 2n cos x -f- ^
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which gives, by division, or by the method of indeterminate coefficients,

-~ = sin x n sin 2x + n2
sin 3# n3

sin 4# -4- &c.
dn

Integrating this expression, we get, since y = when x = 0,

y = n sin x \r? sin 2# -f- |n
3
sin 3# \n^ sin 4# -f- ____ , (84)

which is the general form of the development of the above expression
for tan y. The assumed expression for tan y corresponds exactly with

the formula for the reduction to the ecliptic by making n = tan2

Jt

and x = 2u; and hence we obtain

u I -j- & = tan2

\i sin 2u ^ tan4
i sin 4^ -f~ i tan6

Ji sin Qu

&c.
'

(85)

When the value of i does not exceed 10 or 12, the first two terms

of this development will be sufficient. To express u I -f- & in

seconds of arc, the value derived from the second member of this

equation must be multiplied by 206264.81, the number of seconds

corresponding to the radius of a circle.

If we denote by jRe the reduction to the ecliptic, we shall have

But we have v =M -f the equation of the centre
;
hence

1=M -f TT -f- equation of the centre reduction to the ecliptic,

and, putting L=M -f- TT = mean longitude, we get

I L -f- equation of centre reduction to ecliptic. (86)

In the tables of the motion of the planets, the equation of the

centre (53) is given in a table with M as the argument ;
and the

reduction to the ecliptic is given in a table in which i and u are the

arguments.

33. In determining the place of a heavenly body directly from

the elements of its orbit, there will be no necessity for computing the

reduction to the ecliptic, since the heliocentric longitude and latitude

may be readily found by the formulae (82). When the heliocentric

place has been found, we can easily deduce the corresponding geo-

centric place.

Let x, y, z be the rectangular co-ordinates of the planet or comet

referred to the centre of the sun, the plane of xy being in the ecliptic,
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the positive axis of x being directed to the vernal equinox, and the

positive axis of z to the north pole of the ecliptic. Then we shall

have
x= r cos b cos I,

y= r cos b sin I,

2 =r sin b.

Again, let X
y F, Z be the co-ordinates of the centre of the sun re-

ferred to the centre of the earth, the plane of XY being in the eclip-

tic, and the axis of X being directed to the vernal equinox ;
and let

denote the geocentric longitude of the sun, R its distance from

the earth, and I its latitude. Then we shall have

X=R cos S cos O,
Y= R cos 2 sin O,
Z = R sin 2.

Let x'j y
f

,
z' be the co-ordinates of the body referred to the centre of

the earth
;
and let X and ft denote, respectively, the geocentric longi-

tude and latitude, and J, the distance of the planet or comet from the

earth. Then we obtain

xf= A cos ft cos A,

y
f =Jco8^Bin^ (87)

z' = A sin p.

But, evidently, we also have

and, consequently,

A cos p cos A = r cos b cos l-{- R cos 2 cos O >

A cos p sin A = r cos 6 sin I -J- .R cos 2" sin O > (88)

J sin /?
= r sin b -\- R sin 2".

If we multiply the first of these equations by cos Q, and the second

by sin Q, and add the products; then multiply the first by sin Q,
and the second by cos O ,

and subtract the first product from the

second, we get

A cos p cos (A Q) = r cos b cos (I Q) -J- R cos I,

A cos/3sm(A 0) = rcos6sin(J O), (89)

A sin p = r sin b
-j-
R sin 2".

It will be observed that this transformation is equivalent to the sup-

position that the axis of x, in each of the co-ordinate systems, is
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directed to a point whose longitude is
>
or that the system has been

revolved about the axis of z to a new position for which the axis of

abscissas makes the angle Q with that of the primitive system. We
may, therefore, in general, in order to effect such a transformation in

systems of equations thus derived, simply diminish the longitudes by
the given angle.

The equations (89) will determine A, /9,
and A when r. 6. and I have

been derived from the elements of the orbit, the quantities J?, ,
and

Z being furnished by the solar tables; or, when J, /9, and A are given,

these equations determine
/, 6, and r. The latitude 2

1

of the sun

never exceeds 0".9, and, therefore, it may in most cases be neg-

lected, so that cos 1 and sin =
0, and the last equations become

A cos ft cos 0* Q ) = r cos b cos (I ) -j- R,
A cos/5 sin (A 0) =r cosb sin (I ), (90)

A sin /? =r sin b.

If we suppose the axis of x to be directed to a point whose longi-

tude is &, or to the ascending node of the planet or comet, the equa-

tions (88) become

A cos/? cos (A &) =r cos it -f- ^ cos -T cos (O &),
A cos/? sin (A Q) = r smu cosi + R cos 2 sin (0 &), (91)

A sin /?
= r sin u sin i -f- R sin

,

by means of which /9
and ^ may be found directly from & , i, r, and u.

If it be required to determine the geocentric right ascension and

declination, denoted respectively by a and d, we may convert the

values of f) and A into those of a and 8. To effect this transforma-

tion, denoting by e the obliquity of the ecliptic, we have

cos 8 cos a = cos /? cos A,

cos 5 sin a = cos /? sin A cos e sin sin e,

sin d = cos /5 sin A sin e -f- sin /5 cos e.

Let us now take

n sin JV= sin/?,

w cos JV= cos /? sin A,

and we shall have

COS d COS tt= COS /? COS A,

cos 5 sin a = n cos (JV+ 0>

sin d =n sin (JV -j- )
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Therefore, we obtain

(92)
cosN

tan 5= tan (N+ e) sin a.

We also have
cos (N -f- e) _ cos <5 sin a

cosN cos /? sin A
'

which will serve to check the calculation of a and d. Since ccs d ana

cos /? are always positive, cos a and cos A must have the same sign,

and thus the quadrant in which oc is to be taken, is determined.

For the solution of the inverse problem, in which cc and d are

given and the values of X and
/? are required, it is only necessary to

interchange, in these equations, a and ^, 3 and
/?,

and to write s in

place of e.

34. Instead of pursuing the tedious process, when several places
are required, of computing first the heliocentric place, then the geo-
centric place referred to the ecliptic, and, finally, the geocentric right
ascension and declination, we may derive formulae which, when cer-

tain constant auxiliaries have once been computed, enable us to derive

the geocentric place directly, referred either to the ecliptic or to the

equator.

We will first consider the case in which the ecliptic is taken as the

fundamental plane. Let us, therefore, resume the equations

x' = r cos u,

y'
= d= r sin u cos i,

z' = r sin u sin i,

in which the axis of x is supposed to be directed to the ascending node

of the orbit of the body. If we now pass to a new system x, y, z,

the origin and the axis of z remaining the same, in which the axis

of x is directed to the vernal equinox, we shall move it back, in a

negative direction, equal to the angle &, and, consequently,

x = xf

cos R> if sin

y= x' sin Q -}- y' cos

Therefore, we obtain

fc= r (cos u cos & =P sin'it cos i sin & ),

y= r ( sin u cos i cos & -}- cos u sin & ), (93)

z = r sin u sin i,
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which are the expressions for the heliocentric co-ordinates of a planet
or comet referred to the ecliptic, the positive axis of x being directed

to the vernal equinox. The upper sign is to be used when the

motion is direct, and the lower sign when it is retrograde.

Let us now put
cos Q = sin a sin A,

^F cos i sin & = sin a cos A,
sin a = smbsmB,

cos i cos & = sin b cos B,

in which sin a and sin 6 are positive, and the expressions for the co-

ordinates become

x= r sin a sin (J. -f- u) t

y = rsmb sin (B -f w), (95)

z =r sin i sin it.

The auxiliary quantities a, 6, J., and .B, it will be observed, are

functions of & and i
9 and, in computing an ephemeris, are constant

so long as these elements are regarded as constant. They are called

the constants for the ecliptic.

To determine them, we have, from equations (94),

cot A = q= tan & cos i, cotB cot Q> cos i,

cos & . , sin &sma= -p sm0 = ^-;
sinJ. sin li

the upper sign being used when the motion is direct, and the lower

sign when it is retrograde.

The auxiliaries sin a and sin b are always positive, and, therefore,

sin A and cos & ,
sin B and sin & , respectively, must have the same

signs. The quadrants in which A and B are situated, are thus deter-

mine^.
From the equations (94) we easily find

cos a= sin i sin & >

cos b = sin t cos & . (96)

If we add to the heliocentric co-ordinates of the body the co-ordi-

nates of the sun referred to the earth, for which the equations have

already been given, we shall have

x -j- X= A cos ft cos A,

y + Y= J cos /9 sin A, (97)

2 + Z = A sin /?,
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which suffice to determine A, /?,
and J. The values of a and 8 may

be derived from these by means of the equations (92).

35. "We shall now derive the formulae for determining a and d

directly. For this purpose, let #, y, z be the heliocentric co-ordinates

of the body referred to the equator, the positive axis of x being
directed to the vernal equinox. To pass from the system of co-

ordinates referred to the ecliptic to those referred to the equator as

the fundamental plane, we must revolve the system negatively around

the axis of x, so that the axes of z and y in the new system make
the angle e with those of the primitive system, e being the obliquity
of the ecliptic. In this case, we have

~" ~X X,

2/"
= y cos s z sin e,

z" = y sin e -j- z cos e.

Substituting for x, y, and z their values from equations (93), and

omitting the accents, we get

x= r cos u cos & qc r sin u cos i sin & ,

y r cos u sin & cos s-\-r sin u ( cos i cos & cos e sin i sin e), (98)

z = r cos u sin & sin e-\-r sin u (db cos i cos & sin e -j- sin i cos e).

These are the expressions for the heliocentric co-ordinates of the

planet or comet referred to the equator. To reduce them to a con-

venient form for numerical calculation, let us put

cos & = sin a sin A,

qp cos i sin & = sin a cos A,
sin & cos e = sin b sin i?,

cos i cos & cos e sin i sin e= sin b cos -B,

sin 2 sin e = sin c sin 0,

cos i cos & sin e -f sin i cos e = sin c cos (7;

and the expressions for the co-ordinates reduce to

x = r sin a sin (A -f- u),

y = rsmb sin (. -f u), (100)

2= r sin c sin ( (7 -f- u).

The auxiliary quantities, a, 6, c, JL, jB, and C, are constant so long

as & and i remain unchanged, and are called constants for th( equator.

It will be observed that the equations involving a and A, regard-

ing the motion as direct, correspond to the relations between the

parts of a quadrantal triangle of which the sides are i and a, the
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angle included between these sides being that which we designate by
A, and the angle opposite the side a being 90 Q> . In the case

of b and jB, the relations are those of the parts of a spherical triangle
of which the sides are 6, i, and 90 -f- e, B being the angle included

by i and 6, and 180 & the angle opposite the side b. Further,
in the case of c and (7, the relations are those of the parts of a

spherical triangle of which the sides are c, i, and e, the angle C being
that included by the sides i and c, and 180 & that included by
the sides i and e. We have, therefore, the following additional

equations :

cos a = sin i sin & ,

cos b = cos & sin i cos s cos i sin e, (101)
cos e = cos Q sin i sin s -f- cos i cos e.

In the case of retrograde motion, we must substitute in these

180 i in place of i.

The geometrical signification of the auxiliary constants for the

equator is thus made apparent. The angles a, b, and c are those

which a line drawn from the origin of co-ordinates perpendicular to

the plane of the orbit on the north side, makes with the positive co-

ordinate axes, respectively ;
and A, B, and C are the angles which

the three planes, passing through this line and the co-ordinate axes,

make with a plane passing through this line and perpendicular to the

line of nodes.

In order to facilitate the computation of the constants for the

equator, let us introduce another auxiliary quantity E ,
such that

sin i = e
Q
sinE

Q,

cos i cos Q = eQ cosEw

e
(} being always positive. We shall, therefore, have

tani
~

cos Q,'

Since both e
Q
and sini are positive, the angle E cannot exceed 180;

and the algebraic sign of tanEQ
will show whether this angle is to

be taken in the first or second quadrant.
The first two of equations (99) give

cotA = HP tan & cosi;
and the first gives

cos &sm a = T.

sinA
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From the fourth of equations (99), introducing e
Q and Eti,

we get

sin b cosB = e cos JE cos e e sinEQ sin e= e cos (J^ -{- e)

But
sin 6 sinB = sin & cos e

;

therefore

sin & cos e tan & cosEQ

'

cos e

We have, also,
. , sin cos

sin b= . p .

sm.B

In a similar manner, we find

cot C= C si sin (^Q + e)
~
tan & cos EQ

'

sin e

and
sin O sin e

sine
sin

The auxiliaries sin a, sin 6, and sin c are always positive, and, there-

fore, sin A and cos &, sini? and sin &, and also sin Q and sin &,
must have the same signs, which will determine the quadrant in

which each of the angles A, B, and C is situated.

If we multiply the last of equations (99) by the third, and the

fifth of these equations by the fourth, and subtract the first product

from the last, we get, by reduction,

sin b sin c sin (C B) = sin i sin &.
But

sin a cosA = =F cos i sin & J

and hence we derive

sin b sin c sin ( C B}
sin a cosA

= tan i,

which serves to check the accuracy of the numerical computation of

the constants, since the value of tan i obtained from this formula

must agree exactly with that used in the calculation of the values of

these constants.

If we put A' = A n T &, B' = B n q= a, and C' = C n

^F & ,
the upper or lower sign being used according as the motion is

direct or retrograde, we shall have
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= r sin a sin (A' -f- v),

y = r sin 5 sin (' -f *), (102)
z = r sin c sin ( C' + v),

a transformation which is perhaps unnecessary, but which is con-

venient when a series of places is to be computed.
It will be observed that the formula for computing the constants

a, 6, c, A, By and (7,
in the case of direct motion, are converted into

those for the case in which the distinction of retrograde motion id

adopted, by simply using 180 i instead of i.

36. When the heliocentric co-ordinates of the body have been

found, referred to the equator as the fundamental plane, if we add to

these the geocentric co-ordinates of the sun referred to the same

fundamental plane, the sum will be the geocentric co-ordinates of

the body refeired also to the equator.

For the co ordinates of the sun referred to the centre of the earth,

we have, neglecting the latitude of the sun,

X= RcosQ,
Y=- .Rsin O cose,

Z = R sin O sin e = Ftan e,

in which R represents the radius-vector of the earth, O the sun's

longitude, and e the obliquity of the ecliptic.

We shall, therefore, have

x -}- JT= A cos cos a,

y -f Y= A cos 8 sin a, (103)

z -f Z= Jsind,

which suffice to determine a, d, and J.

If we have regard to the latitude of the sun in computing its geo-

centric co-ordinates, the formulae will evidently become

JT Ii cos O cos S,

Y= R sin Q cos S cos e R sin 2 sine, (104)

Z= H sin O cos sin e -\- JK sin S cos e,

in which, since S can never exceed it 0".9, cos 2 is very nearly

equal to 1, and sin I = I.

The longitudes and latitudes of the sun may be derived from a

solar ephemeris, or from the solar tables. The principal astronomical

ephemerides, such as the Berliner Astronomisches Jahrbuch, the

Nautical Almanac, and the American Ephemeris and Nautical Al-
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manac, contaiD, for each year for which they are published, the

equatorial co-ordinates of the sun, referred both to the mean equinox
and equator of the beginning of the year, and to the apparent equinox
of the date, taking into account the latitude of the sun.

37. In the case of an elliptic orbit, we may determine the co-

ordinates directly from the eccentric anomaly in the following
manner :

The equations (102) give, accenting the letters a, 6, and c,

x= r cos v sin a' sin A' -j- r sin v sin a' cos A',

y =r cos v sin b
r

sin Br

-f- r sin v sin b' cos B',

z = r cos v sin c
r

sin C' -[-r sin v sin c' cos C'.

Now, since r cos v = a cosE ae, and r sin v = a cos
<p

sin E, we shall

have

x a sin a' sin J/ cos E ae sin a' sinA f

-}- a cos ^ sin a' cos J' sin .7?,

y= a sin 5' sin B' cos J? ae sin 6' sin B' -\- a cos p sin 6' cos B' sin jE7,

2 = a sin c' sin C" cos E ae sin c' sin C" -f a cos ^ sin c' cos C^ sin E.

Let us now put

a cos ^ sin a' cos A' = Ax cos Lv
a sin a' sin A' = Ax sin Zrx,

ae sin a' sin A' = eAx sin jkx = vx ;

a cos <p sin 5' cos 1?' = ^ cos _Ly,

a sin V sin 5' = ^
y sin JrT,

ae sin b
f

sin j8' = eAy sinL7
= v

7 ;

a cos p sin c' cos C' = lz cos jLz,

a sin c' sin C" = ^, sin Z/,,

ae sin c' sin 0' = e*t sin JD, = v, ;

in which sin a', sin 6', and sin c' have the same values as in equations

(102), the accents being added simply to mark the necessary dis-

tinction in the notation employed in these formulae. "We shall,

therefore, have
z=:/lx sm( x +.E)-i-vx,

y=ay sin(J-hJB) + vy, (105)

By means of these formula?, the co-ordinates are found directly

from the eccentric anomaly, when the constants ^x, ^,,
^z,
Xx,

L
y, Z/,,

vx,
v
y ,
and vz, have been computed from those already found, or from

a, b
} c, Ay jB, and C. This method is very convenient when a great
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number of geocentric places are to be computed ; but, when only a

few places are required, the additional labor of computing so many
auxiliary quantities will not be compensated by the facility afforded

in the numerical calculation, when these constants have been deter-

mined. Further, when the ephemeris is intended for the comparison
of a series of observations in order to determine the corrections to be

applied to the elements by means of the differential formulae which

we shall investigate in the following chapter, it will always be ad-

visable to compute the co-ordinates by means of the radius-vector

and true anomaly, since both of these quantities will be required in

finding the differential coefficients.

38. In the case of a hyperbolic orbit, the co-ordinates may be com-

puted directly from F, since we have

r cos v = a (e sec jP),

r sin v= a tan 4 tanF ;

and, consequently,

x= ae sin a' sin A' a secF sin a! sinA -\- a tan 4 tan F sin a' cos A',

y = ae sin b
f

sin B' a secF sin b' sin B' -f a tan 4- tan F sin V cosBf

t

z = ae sin c' sin C' a secF sin c' sin C" -{- a tan 4* tanF sin c' cos C".

Let us now put
ae sin. a' sinA = A*,

a sin a' sin A' =^
a tan 4 sin a! cos A' = vx ;

ae sin >' sin B' = A
y,

a sin b
f

sin _B' = ^ty ,

a tan 4> sin b' cosBf = v
y ;

ae sin c' sin C" = >*

a sin c' sin Gr = /*

a tan 4 sin c' cos C" = vz .

Then we shall have

x= Ax -f fj.K sec .F+ vx tan jP,

v = A
y 4- ^ sec jF+ v

y
tan F, (106;

2 = A
s -j- /7.z secF -f- vz tan jP.

In a similar manner we may derive expressions for the co-ordinates,

in the case of a hyperbolic orbit, when the auxiliary quantity a is

used instead of F.

39. If we denote by ;:', ',
and V the elements which determine

the position of the orbit in space when referred to the equator as the



96 THEORETICAL ASTRONOMY.

fundamental plane, and by o) the angular distance between the

ascending node of the orbit on the ecliptic and its ascending node on

the equator, being measured positively from the equator in the

direction of the motion, we shall have

To find Q,' and i', we have, from the spherical triangle formed by
the intersection of the planes of the orbit, ecliptic, and equator with

the celestial vault,
cos if = cos i cos e sin i sin e cos & ,

sin i
r

sin &' = sin i sin ^ ,

sin i' cos &' = cos t sin e -f- sin i cos e cos SI

Let us now put
n sin JV= cos i

t

n cosJV= sin i cos &,

and these equations reduce to

cos i' = n sin (JV e),

sin i' sin &' = sin i sin & ,

sin i' cos &' = n cos (JV e) ;

from which we find

HT cot i cos JV
tan JV=

, tan
' = ^ ^ tan &,

cos 1 cos (JV e)

cot i' = tan (JV e) cos &'.
(107)

Since sin i is always positive, cos JV and cos & must have the same

signs. To prove the numerical calculation, we have

sin i cos Q _
cos JV

sin i' cos
'

cos (JV e)'

the value of the second member of which must agree with that used

in computing & '.

In order to find CD
O, we have, from the same triangle,

sin CM
O sin i' = sin & sin e,

cos a>
n sin i'= cos e sin i -{- sin e cos i cos & .

Liet us now take

m sin Jlf= cos e,

m cos Jlf= sin e cos & ;

and we obtain
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cotM= tan e cos &,

and, also, to check the calculation,

sin e cos & cos Jf

sin i' cos % cos (M i)'

If we apply Gauss's analogies to the same spherical triangle, we

get

cos^' cos^ (' + > ) == cosi cosi (*' + s\ MAQx

sin It sin I (&' ) sin J& sin i (t e),

The quadrant in which \ (&' + ^
)
or K^ ^o) ^s situated, must be

so taken that sin \i
f and cos \V shall be positive ;

and the agreement
of the values of the latter two quantities, computed by means of the

value of \i
f derived from tan Ji', will serve to check the accuracy of

the numerical calculation.

For the case in which the motion is regarded as retrograde, we
must use 180 i instead of i in these equations, and we have, also,

We may thus find the elements TT', & ',
and i

f

y
in reference to the

equator, from the elements referred to the ecliptic; and using the

elements so found instead of
it, &, and i, and using also the places

of the sun referred to the equator, we may derive the heliocentric

and geocentric places with respect to the equator by means of the

formulae already given for the ecliptic as the fundamental plane.

If the position of the orbit with respect to the equator is given,

and its position in reference to the ecliptic is required, it is only

necessary to interchange & and &', as well as i and 180 i', e

remaining unchanged, in these equations. These formulae may
also be used to determine the position of the orbit in reference to

any plane in space; but the longitude & must then be measured

from the place of the descending node of this plane on the ecliptic.

The value of &, therefore, which must be used in the solution of the

equations is, in this case, equal to the longitude of the ascending

node of the orbit on the ecliptic diminished by the longitude of the

descending node of the new plane of reference on the ecliptic. The

quantities & ', i', and w will have the same signification in reference

7
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to this plane that they have in reference to the equator, with this dis-

tinction, however, that & '
is measured from the descending node of

this new plane of reference on the ecliptic ;
and e will in this case

denote the inclination of the ecliptic to this plane.

40. We have now derived all the formulae which can be required

in the case of undisturbed motion, for the computation of the helio-

centric or geocentric place of a heavenly body, referred either to the

ecliptic or equator, or to any other known plane, when the elements

of its orbit are known
;
and the formulae which have been derived

are applicable to every variety of conic section, thus including all

possible forms of undisturbed orbits consistent with the law of uni-

versal gravitation. The circle is an ellipse of which the eccentricity

is zero, and, consequently, M=v = u, and r = a, for every point of

the orbit. There is no instance of a circular orbit yet known
;
but

in the case of the discovery of the asteroid planets between Mars

and Jupiter it is sometimes thought advisable, in order to facilitate

the identification of comparison stars for a few days succeeding the

discovery, to compute circular elements, and from these an ephemeris.

The elements which determine the form of the orbit remain con-

stant so long as the system of elements is regarded as unchanged ;

but those which determine the position of the orbit in space, TT, & ,

and i, vary from one epoch to another on account of the change of

the relative position of the planes to which they are referred. Thus

the inclination of the orbit will vary slowly, on account of the change
of the position of the ecliptic in space, arising from the perturbations

of the earth by the other planets ;
while the longitude of the peri-

helion and the longitude of the ascending node will vary, both on

account of this change of the position of the plane of the ecliptic,

and also on account of precession and nutation. If
TT, &, and i are

referred to the true equinox and ecliptic of any date, the resulting

heliocentric places will be referred to the same equinox and ecliptic ;

and, further, in the computation of the geocentric places, the longi-

tudes of the sun must be referred to the same equinox, so that the

resulting geocentric longitudes or right ascensions will also be re-

ferred to that equinox. It will appear, therefore, that, on account

of these changes in the values of n, &, and i, the auxiliaries sin a,

sin 6, sin c, A, J5, and C, introduced into the formulae for the co-

ordinates, will not be constants in the computation of the places for

a series of dates, unless the elements are referred constantly, in the

calculation, to a fixed equinox and ecliptic. It is customary, there-
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fore, to reduce the elements to the ecliptic and mean equinox of the

beginning of the year for which the ephemeris is required, and then

to compute the places of the planet or comet referred to this equinox,

using, in the case of the right ascension and declination, the mean

obliquity of the ecliptic for the date of the fixed equinox adopted, in

the computation of the auxiliary constants and of the co-ordinatey

of the sun. The places thus found may be reduced to the true

equinox of the date by the well-known formulae for precession and

nutation. Thus, for the reduction of the right ascension and declina-

tion from the mean equinox and equator of the beginning of the

year to the apparent or true equinox and equator of any date, usually

the date to which the co-ordinates of the body belong, we have

A<* =/+ g sin (G + a) tan d,

for which the quantities /, g, and G are derived from the data given
either in the solar and lunar tables, or in astronomical ephemerides,

such as have already been mentioned.

The problem of reducing the elements from the ecliptic of one

date t to that of another date t
f

may be solved by means of equations

(109), making, however, the necessary distinction in regard to the

point from which Q> and &>' are measured. Let d denote the longi-

tude of the descending node of the ecliptic of t' on that of t
y
and

let
T}
denote the angle which the planes of the two ecliptics make

with each other, then, in the equations (109), instead of & we must

write & 0, and, in order that Q,
' shall be measured from the

vernal equinox, we must also write & ' 6 in place of Q,
'
. Finally,

we must write
T]

instead of e, and A<w for o)w which is the variation

in the value of a) in the interval t
f

t on account of the change of

the position of the ecliptic ;
then the equations become

nj(' 8+ AW) = sini(& 0} cos (i ^)>

os (' + Aw) = cosi (& 0) cos (i + 17),

sin Jt* sin J (' Aw) = sin J (& 0) sin J (i 9 ),

sin $i! cosi (' AW) = Cos (& 0) sin J
(t -f r,).

These equations enable us to determine accurately the values of & ',

i', and AW, which give the position of the orbit in reference to the

ecliptic corresponding to the time t
f

,
when d and y are known. The

longitudes, however, will still be referred to the same mean equinox
as before, which we suppose to be that of t; and, in order to refer
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them to the mean equinox of the epoch t', the amount of the pre-

cession in longitude during the interval t
f

t must also be applied.

If the changes in the values of the elements are not of consider-

able magnitude, it will be unnecessary to apply these rigorous formulae,

and -we may derive others sufficiently exact, and much more con-

venient in application. Thus, from the spherical triangle formed by
the intersection of the plane of the orbit and of the planes of the

two ecliptics with the celestial vault, we get

sin 7] cos (ft 0)
= cos i' sin i -f- sin if cos i cos Aw,

from which we easily derive

sin (i
r

i) = sin TJ
cos (ft 0) -f- 2 sin if cos i sin

2

JAW. (112)

We have, further,

sin Aw sin i' = sin f) sin (ft 0),

or

Shl(ft - 0) r+ + n\
sin AW = sm

-TJ

-^-3 -. (113)
sin*

We have, also, from the same triangle,

sin AW cos i' = cos (ft 0) sin (ft' 0)

-f sh (ft 0) cos (ft' 0) cos 17,

which givec

sin (ft' ft) = sin Aw cos if 2 sin (ft 0) cos (ft' 0) sin
2

^,

or
sin (ft' ft)= sin >? sin (ft 0)coti'

2 sin (ft 0) cos (ft' 0) sin1
7. (114)

Finally, we have
TT' TT= ft

f

ft + Aw.

Since ^ is very small, these equations give, if we apply also the pre-

cession in longitude so as to reduce the longitudes to the mean equinox

of the date *'

smi

i
f = i_-^cos(ft 0)

-

8
2

-0), (115)
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in which is the annual precession in longitude, and in which

s = 206264".8. In most cases, the last terms of the expressions for

i
f

, Q'y and TT', being of the second order, may be neglected.

For the case in which the motion is regarded as retrograde, we
must put 180 i and 180 i', instead of i and i', respectively, in

the equations for AO>, i
f

,
and & '

;
and for TT', in this case, we have

which gives

*'= * + (*' 0-^7 7 sin (& 0) tan
' ^s

Civ S

If we adopt BesseFs determination of the luni-solar precession and

of the variation of the mean obliquity of the ecliptic, we have, at the

time 1750 + r,

-^ = 50".21129 + O."0002442966r,
at

^= 0".48892 0/'000006143r,
at

and, consequently,

73
= (0."48892 O."000006143r) (f f) ;

and in the computation of the values of these quantities we must put
T \(t

r
4" 1750, t and t

1

being expressed in years.

The longitude of the descending node of the ecliptic of the time t

on the ecliptic of 1750.0 is also found to be

351 36' 10" 5".21 (t 1750),

which is measured from the mean equinox of the beginning of the year

1750.

The longitude of the descending node of the ecliptic of t
f on that

of t
f
measured from the same mean equinox, is equal to this value

diminished by the angular distance between the descending node of

the ecliptic of t on that of 1750 and the descending node of the

ecliptic of t' on that of
t,
which distance is, neglecting terms of the

second order,

5"31(f 1750);
and the result is

351 36' 10" 5".21 (t 1750) 5".21 (if 1750),

351 36' 10" -10".42( 1750) 5".21(/ *).
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To reduce this longitude to the mean equinox at the time
t,
we must

add the general precession during the interval t 1750, or

50".21 (t 1750),

so that we have, finally,

e = 351 36' 10" + 39".79 (t 1750) 5".21 (if <).

When the elements TT, &, and i have been thus reduced from the

ecliptic and mean equinox to which they are referred, to those of the

date for which the heliocentric or geocentric place is required, they

may be referred to the apparent equinox of the date by applying the

nutation in longitude. Then, in the case of the determination of the

right ascension and declination, using the apparent obliquity of the

ecliptic in the computation of the co-ordinates, we directly obtain the

place of the body referred to the apparent equinox. But, in com-

^uting a series of places, the changes which thus take place in the

elements themselves from date to date induce corresponding changes
in the auxiliary quantities a, 6, c, A, B, and CJ so that these are no

longer to be considered as constants, but as continually changing their

values by small differences. The differential formulae for the com-

putation of these changes, which are easily derived from the equations

(99), will be given in the next chapter; but they are perhaps unneces-

sary, since it is generally most convenient, in the cases which occur, to

compute the auxiliaries for the extreme dates for which the ephemeris

is required, and to interpolate their values for intermediate dates.

It is advisable, however, to reduce the elements to the ecliptic and

mean equinox of the beginning of the year for which the ephemeris

is required, and using the mean obliquity of the ecliptic for that

epoch, in the computation of the auxiliary constants for the equator,

the resulting geocentric right ascensions and declinations will be

referred to the same equinox, and they may then be reduced to the

apparent equinox of the date by applying the corrections for preces-

sion and nutation.

The places which thus result are free from parallax and aberration.

In comparing observations with an ephemeris, the correction for par-

allax is applied directly to the observed apparent places, since this

correction varies for different places on the earth's surface. The cor-

rection for aberration may be applied in two different modes. We
may subtract from the time of observation the time in which the

light from the planet or comet reaches the earth, and the true place

for this reduced time is identical with the apparent place for the time
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of observation
; or, in case we know the daily or hourly motion of

the body in right ascension and declination, we may compute the

motion during the interval which is required for the light to pass
from the body to the earth, which, being applied to the observed

place, gives the true place for the time of observation.

We may also include the aberration directly in the ephemeris by

using the time t 497 S.78^ in computing the geocentric places for

the time
t,
or by subtracting from the place free from aberration, com-

puted for the time t,
the motion in a and d during the interval

497*.78 J, in which expression A is the distance of the body from tlu

earth, and 497.78 the number of seconds in which light traverses the

mean distance of the earth from the sun.

It is customary, however, to compute the ephemeris free from

aberration and to subtract the time of aberration, 497*.78J, from the

time of observation when comparing observations with an ephemeris,

according to the first method above mentioned. The places of the

sun used in computing its co-ordinates must also be free from aberra-

tion; and if the longitudes derived from the solar tables include

aberration, the proper correction must be applied, in order to obtain

the true longitude required.

41. EXAMPLES. We will now collect together, in the proper

order for numerical calculation, some of the principal formulae which

have been derived, and illustrate them by numerical examples, com-

mencing with the case of an elliptic orbit. Let it be required to find

the geocentric right ascension and declination of the planet Eurynome

,
for mean midnight at Washington, for the date 1865 February

24, the elements of the orbit being as follows :

Epoch = 1864 Jan. 1.0 Greenwich mean time.

29' 40".21

20 33 .09^
Ecliptic and Mean

Equinox, 1864.0.

log a = 0.3881319

log fJL
= 2.9678088

P = 928".55746

When a series of places is to be computed, the first thing to oe

done is to compute the auxiliary constants used in the expressions for

the co-ordinates, and although but a single pi ice is required in the

problem proposed, yet we will proceed in this manner, in order to
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exhibit the application of the formulae. Since the elements
it, ,

and i are referred to the ecliptic and mean equinox of 1864.0, we will

first reduce them to the ecliptic and mean equinox of 1865.0. For

this reduction we have t 1864.0, and t
f= 1865.0, which give

rll

5f = 50".239, 9 = 352 51' 41", 7 = 0".4882.
at

Substituting these values in the equations (115), we obtain

i
f

i= At = 0".40, A& = + 53".61, ATT ^ + 50".23 ;

and hence the elements which determine the position of the orbit in

reference to the ecliptic of 1865.0 are

TT= 44 21' 23".32, = 206 43' 33".74, i = 4 36' 50".ll.

For the same instant we derive, from the American Ephemeris and

Nautical Almanac, the value -of the mean obliquity of the ecliptic,

which is

e = 23 27' 24".03.

The auxiliary constants for the equator are then found by means oi

the formulas

cotA = tan & cos i, tan EQ
= --

,

COS do

cosi c

tan & cos E
Q

cos e

Coi0=
tan & cos Q sin e

cos Q> . , sin & cos e . sin & sm e

sm a = r, sm b =-: ^ ,
sm c -: ~ .

sm A SIHJD sm C

The angle E is always less than 180, and the quadrant in which it is

to be taken, is indicated directly by the algebraic sign of tan EQ . The

values of sin a, sin 6, and sin c are always positive, and, therefore, the

angles A, B, and C must be so taken, with respect to the quadrant in

which each is situated, that sin A and cos &, sin B and sin &, and also

sin C and sin & ,
shall have the same signs. From these we derive

A = 296 39' 5".07, log sin a = 9.9997156,

B = 205 55 27 .14, log sin b = 9.9748254,

C= 212 32 17 .74,
-

log sin c = 9.5222192.

Finally, the calculation of these constants is proved by means of the

formula
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. sin b sin c sin ( C -B)
tan i= :

sin a cosA

whic;i gives log tan i = 8.9068875, agreeing with the value 8.9068876

derived directly from i.

Next, to find r and u. The date 1865 February 24.5 mean time

at Washington reduced to the meridian of Greenwich by applying
the difference of longitude, 5* 8m 1P.2, becomes 1865 February
24.714018 mean time at Greenwich. The interval, therefore, from

the epoch for which the mean anomaly is given and the date for

which the geocentric place is required, is 420.714018 days; and mul-

tiplying the mean daily motion, 928".55745, by this number, and

adding the result to the given value of M, we get the mean anomaly
for the required place, or

M= 1 29' 40".21 + 108 30' 57".14 = 110 0' 37".35.

The eccentric anomaly E is then computed by means of the equation

M=E esmE,

the value of e being expressed in seconds of arc. For Eurynome we

have log sin
<p
=

log e = 9.2907754, and hence the value of e ex-

pressed in seconds is

log 6 = 4.6052005.

By means of the equation (54) we derive an approximate value of E,

namely,
4= 119 49* 24",

the value of e
2

expressed in seconds being log e
2= 3.895976; and

with this we get

M
Q
= E

Q
e sin E^= 110 6' 50".

Then we have

M-JI. 372".7 . ,

^^ItrjoiiE 'TOST-

which gives, for a second approximation to the value of E
t

E
Q
= 119 43' 44".3.

This gives M = 110 0' 36".98, and hence
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Therefore, we have, for a third approximation to the value of E,

JE=11943'44".64,

which requires no further correction, since it satisfies the equatior

between .If and E.

To find r and v, we have

1/r sin \v = I/a (1 -f e) sin 1?,

T/r cos^v = l/a(l e) cos J.E,

The values of the first factors in the second members of these

equations are: log l/ofT+l) = 0.2328104, and logVa(le} =
0.1468741; and we obtain

v = 129 3' 50".52, log r = 0.4282854

Since n = 197 37' 49".58, we have

w= v _|_^_^^ 326 41' 40".10.

The heliocentric co-ordinates in reference to the equator as the fun-

damental plane are then derived from the equations

x= r sin a sin (A -f- u),

y =r sin b sin (B -f- it),

z = r sin c sin ( C -f- 1*),

which give, for Eurynome,

x = 2.6611270, y= + 0.3250277, 2= + 0.0119486.

The American Nautical Almanac gives, for the equatorial co-ordi-

nates of the sun for 1865 February 24.5 mean time at Washington,
referred to the mean equinox and equator of the beginning of the

year,

X= + 0.9094557, Y= 0.3599298, Z= 0.1561751.

Finally, the geocentric right ascension, declination, and distance are

given by the equations

y-f F =

the first form of the equation for tan being used when sin a is

greater than cos a.

The value of A must always be positive; and 8 cannot exceed

zfc 90, the minus sign indicating south declination. Thus, we obtain
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a = 181 8' 29".29, 3 = 4 42' 21".56, log J = 0.2450054.

To reduce a and 8 to the true equinox and equator of February
24.5, we have, from the Nautical Almanac,

/= + 16".80, log = 1.0168, = 45 16';

and. substituting these values in equations (110), the result is

AO = + 17".42, A<5 = 7".17.

Hence the geocentric place, referred to the true equinox and equator
of the date, is

a = 181 8' 46".71, 3= 4 42' 28".73, log A = 0.2450054.

When only a single place is required, it is a little more expeditious
to compute r from

r = a (1 e cos jE),

and then v E from

sin i (v JE) = \- sin <p sin E.\ r

Thus, in the case of the required place of Eurynome, we get

log r= 0.4282852, v E= 9 20' 5".92,

v = 1293'50".56,

agreeing with the values previously determined. The calculation

may be proved by means of the formula

sin ^ (v -f- E) = 'y-
cos 4 <p sin E.

In the case of the values just found, we have

J (v + jE) = 124 23' 47".60, log sin J (v + E) = 9.9165316.

while the second member of this equation gives

log sin 1 (v + E) = 9.9165316

In the calculation of a single place, it is also very little shorter to

compute first the heliocentric longitude and latitude by means of the

equations (82), then the geocentric latitude and longitude by means

of (89) or (90), and finally convert these into right ascension and

declination by means of (92). When a large number of places are

to be computed, it is often advantageous to compute the heliocentrio
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co-ordinates directly from the eccentric anomaly by means of the

equations (105).

The calculation of the geocentric place in reference to the ecliptic

is, in all respects, similar to that in which the equator is taken as the

fundamental plane, and does not require any further illustration.

The determination of the geocentric or heliocentric place in the

cases of parabolic and hyperbolic motion differs from the process

indicated in the preceding example only in the calculation of r and v.

To illustrate the case of parabolic motion, let t T= 75.364 days;

log 5
= 9.9650486; and let it be required to find r and v.

First, we compute m from

CL

in which log (7 = 9.9601277, and the result is

logm = 0.0125548.

Then we find M from

which gives

logM= 1.8897187.

From this value of logM we derive, by means of Table VI.,

v= 79 55' 57".26.

Finally, r is found from

cos2

jy
which gives

log r= 0.1961120.

For the case of hyperbolic motion, let there be given t T=
65.41236 days; 4>

= 37 35' 0".0, or log 6 = 0.1010188; and lug a

= 0.6020600, to find r and v. First, we compute ^Vfrom

"
at

in which log A = 9.6377843, and we obtain

logN= 8.7859356; N= 0.06108514.

The value of F must now be found from the equation

N= el tan F log tan (45 + F).
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If we assume F= 30, a more approximate value may be derived

from

which gives F, = 28 40' 23", and hence N,= 0.072678. Then we

compute the correction to be applied to this value of F, by means of

the equation
(N-N,^oS*F

'

l(e cosF,-)
*'

wherein s = 206264".8; and the result is

*F,= 4.6097 (N N
f ~)

s = 3 3' 43".0.

Hence, for a second approximation to the value of F
}
we have

.F,
= 25 36'40".0.

The corresponding value of Nis N, 0.0617653, and hence

AJF, = 5.199 (N NJ s = 12' 9".4.

The third approximation, therefore, gives F,= 25 24' 30".6, and,

repeating the operation, we get

JF
T=2524'27".74.

which requires no further correction.

To find r, we have

which gives

log r = 0.2008544.

Then, v is derived from

tan v cot ^4 tan F,
and we find

v = 67 3' 0".0.

When several places are required, it is convenient to compute
and r by means of the equations
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For the given values of a and e we have logVa(e + 1)
= 0.4782649,

logl
/
a(e 1)

= 0.0100829, and hence we derive

v= 67 2' 59".92, log r= 0.2008545.

It remains yet to illustrate the calculation of v and r for elliptic

and hyperbolic orbits in which the eccentricity differs but little from

unity. First, in the case of elliptic motion, let t T= 68.25 days;
e= 0.9675212; and log q

= 9.7668134. We compute M from

wherein log C = 9.9601277, which gives

log 3f= 2.1404550.

\Yith this as argument we get, from Table VI.,

V= 101 38' 3".74,

and then with this value of V as argument we find, from Table IX.,

A --= 1540".08, B = 9".506, C= 0".062.

^ _ e
Then we have log i = log

= 8.217680, and from the equation
1 -f- e

v = V+ -4(1000
we get

v= V+ 42' 22".28 -f 25".90 -f 0".28 = 102 20' 52".20.

The value of r is then found from

-f e cos v
'

namely,
log r = 0.1614051.

We may also determine r and v by means of Table X. Thus, we

first compute M from

Assuming B = 1, we get log M= 2.13757, and, entering Table VI.

with this as argument, we find w = 101 25'. Then we compute A
from

5(l--eA ~ *

1 9e
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which gives A = 0.024985. With this value of A as argument, we

find, from Table X.,
logB = 0.0000047.

The exact value of M is then found to be

logM= 2.1375635,

which, by means of Table VI., gives

w = 101 24' 36".26.

By means of this we derive

A = 0.02497944,

and hence, from Table X.,

log C =0.0043771.
Then we have

which gives
v = 102 20' 52".20,

agreeing exactly with the value already found. Finally, r is given by

"
(1 -{-AC

2

) cos1

}*'
from which we get

log r = 0.1614052.

Before the time of perihelion passage, t T is negative ;
but the

value of v is computed as if this were positive, and is then considered

as negative.

In the case of hyperbolic motion, i is negative, and, with this dis-

tinction, the process when Table IX. is used is precisely the same

as for elliptic motion; but when table X. is used, the value of A
must be found from

5(e 1)

^(f+
and that of r from

(1 .AC2

) cos8

in'

the values of logB and log C being taken from the columns of the

table which belong to hyperbolic motion.

In the calculation of the position of a comet in space, if the motion
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is retrograde and the inclination is regarded as less than 90, the dis-

tinctions indicated in the formulae must be carefully noted.

42. When we have thus computed the places of a planet or comet

for a series of dates equidistant, we may readily interpolate the places
for intermediate dates by the usual formulae for interpolation. The
interval between the dates for which the direct computation is made
should also be small enough to permit us to neglect the effect of the

fourth differences in the process of interpolation. This, however, is

not absolutely necessary, provided that a very extended series of

places is to be computed, so that the higher orders of differences may
be taken into account. To find a convenient formula for this inter-

polation, let us denote any date, or argument of the function, by
a + na>> and the corresponding value of the co-ordinate, or of the

function, for which the interpolation is to be made, by/ (a -f nco).

If we have computed the values of the function for the dates, or

arguments, a to, a, a -f a>, a -f- 2w, &c., we may assume that an

expression for the function which exactly satisfies these values will

also give the exact values corresponding to any intermediate value

of the argument. If we regard n as variable, we mav expand the

function into the series

f(a + no>) =/() + An + JSn9 + On9
-f &c. (116)

and if we regard the fourth differences as vanishing, it is only neces-

sary to consider terms involving ns in the determination of the

unknown coefficients A, B, and C. If we put n successively equal
to 1, 0, 1, and 2, and then take the successive differences of these

values, we get
I. Diff. II. Diff. III. Diff.

/(<,-) =f(a)-A +B -C

f(a+ 2>) =/(o) + 2A + 4B+ 8 C

If we symbolize, generally, the difference f(a+ nco) f(a -\-(n 1
) <o)

(n |) o>),
the difference/ (a+ (n-+ J) a>) /(a+ (n J) a)

by /" (a -f- wa>), and similarly for the successive orders of differences^

these may be arranged as follows :

Argument. Function. I. Diff. II. Diff. III. Diff.

a a> /(a _a/)
a /(a) /(-iK> f (a)
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Comparing these expressions for the differences with the above, we

get

C=J/"(a + i), J = i/"(a),
A =f (a + J) - if' (a)

-
J/ (a + ,

which, from the manner in which the differences are formed, give

C= $ (/" (a 4- ,) -/" (a)), B= if" (a),

A =/ (a + ) -/(a) - i/" (a)
-

J (/" (a + ,) -/" (a)).

To find the value of the function corresponding to the argument
a + Jw, we have n=

, and, from (116),

/(a + ) =/(a) + 14 +^ + 4 a

Substituting in this the values of A, B, and (7, last found, and re-

ducing, we get

/(a -H0 = i (/(a + +/()) ~ I (i (/" ( + ) +/" W)),

in which only fourth differences are neglected, and, since the place

of the argument for n = is arbitrary, we have, therefore, generally,

/(a + (n + ) ) = i (/( + (* + !) ") +/(a + no,))-
4 (i (/' (+( + 1) +/' ( + ))) (1.17)

Hence, to interpolate the value of the function corresponding to a

date midway between two dates, or values of the argument, for which

the values are known, we take the arithmetical mean of these two

known values, and from this we subtract one-eighth of the arith-

metical mean of the second differences which are found on the same

horizontal line as the two given values of the function.

By extending the analytical process here indicated so as to include

the fourth and fifth differences, the additional term to be added to

equation (117) is found to be

+ no,))),

and the correction corresponding to this being applied, only sixth

differences will be neglected.

It is customary in the case of the comets which do not move too

rapidly, to adopt an interval of four days, and in the case of the

asteroid planets, either four or eight days, between the dates for which

the direct calculation is made. Then, by interpolating, in the case of

an interval co, equal to four days, for the intermediate dates, we

obtain a series of places at intervals of two days ; and, finally, inter-

8
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polating for the dates intermediate to these, we derive the places at

intervals of one day. When a series of places has been computed,
the use of differences will serve as a check upon the accuracy of the

calculation, and will serve to detect at once the place which is not

correct, when any discrepancy is apparent. The greatest discordance

will be shown in the differences on the same horizontal line as the

erroneous value of the function
;
and the discordance will be greater

and greater as we proceed successively to take higher orders of dif-

ferences. In order to provide against the contingency of systematic

error, duplicate calculation should be made of those quantities in

which such an error is likely to occur.

The ephemerides of the planets, to be used for the comparison of

observations, are usually computed for a period of a few weeks before

and after the time of opposition to the sun
;
and the time of the

opposition may be found in advance of the calculation of the entire

ephemeris. Thus, we find first the date for which the mean longitude

of the planet is equal to the longitude of the sun increased by 180
;

then we compute the equation of the centre at this time by means of

the equation (53), using, in most cases, only the first term of the

development, or

v M=

e being expressed in seconds. Next, regarding this value as con-

stant, we find the date for which

L -J- equation of the centre

is equal to the longitude of the sun increased by 180
;
and for this

date, and also for another at an interval of a few days, we compute

u, and hence the heliocentric longitudes by means of the equation

tan (I Q )
= tan u cos i.

Let these longitudes be denoted by I and l
f

,
the times to which they

correspond by t and t'
9
and the longitudes of the sun for the same

times by O and Q '

;
then for the time t

,
for which the heliocentric

longitudes of the planet and the earth are the same, we have

or (118)

the first of these equations being used when I 180 O is less
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than V 180 O'. If the time t differs considerably from t or

t', it may be necessary, in order to obtain an accurate result, to repeat

the latter part of the calculation, using t
Q

for t. and taking t' at a

small interval from this, and so that the true time of opposition shall

fall between t and t' . The longitudes of the planet and of the sun

must be measured from the same equinox.

When the eccentricity is considerable, it will facilitate the calcula-

tion to use two terms of equation (53) in finding the equation of the

centre, and, if e is expressed in seconds, this gives

_M= 2e sin Jf+ 5 . t. sin 2M
9

4 S

8 being the number of seconds corresponding to a length of arc equal

to the radius, or 206264".8
;
and the value of v M will then be

expressed in seconds of arc. In all cases in which circular arcs are

involved in an equation, great care must be taken, in the numerical

application, in reference to the homogeneity of the different terms.

If the arcs are expressed by an abstract number, or by the length of

arc expressed in parts of the radius taken as the unit, to express them

in seconds we must multiply by the number 206264.8
;
but if the

arcs are expressed in seconds, each term of the equation must contain

only one concrete factor, the other concrete factors, if there be any,

being reduced to abstract numbers by dividing each by s the number

of seconds in an arc equal to the radius.

43. It is unnecessary to illustrate further the numerical application

of the various formulae which have been derived, since by reference

to the formulae themselves the course of procedure is obvious. It

may be remarked, however, that in many cases in which auxiliary

angles have been introduced so as to render the equations convenient

for logarithmic calculation, by the use of tables which determine the

logarithms of the sum or difference of two numbers when the loga-

rithms of these numbers are given, the calculation is abbreviated,

and is often even more accurately performed than by the aid of the

auxiliary angles.

The logarithm of the sum of two numbers may be found by meana

of the tables of common logarithms. Thus, we have

If we put
log tan x= J (log b log a),
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we shall have

log (a -f 6) = log a 2 log cos x,

or

log (a -f- 6) = log b 2 log sin x.

The first form is used when cos x is greater than sin x, and the second

form when cos a; is less than sin a;.

It should also be observed that in the solution of equations of the

form of (89), after tan (A 0) using the notation of this particular

case has been found by dividing the second equation by the first,

the second members of these equations being divided by cos (A 0)
and sin (^ ), respectively, give two values of J cos

/?,
which should

agree within the limits of the unavoidable errors of the logarithmic
tables

; but, in order that the errors of these tables shall have the

least influence, the value derived from the first equation is to be pre-

ferred when cos (A )
is greater than sin (^ 0), and that derived

from the second equation when cos (A 0) is less than sin (^ ).

The value of J, if the greatest accuracy possible is required, should

be derived from J cos
/9
when

/9 is less than 45, and from J sin /?

when /? is greater than 45.
In the application of numbers to equations (109), when the values

of the second members have been computed, we first, by division,

find tan|(&' -f- ^ )
an(^ tanj(&' fti ); then, if sin|(&' -f w )

is

greater than cos|(&' + w
),
we find cos^' from the first equation;

but if sin f (&>' -f <w
)

is less than cos| (&' -f <w
),
we find cos^

v from

the second equation. The same principle is applied in finding sin \i
r

by means of the third and fourth equations. Finally, from sin^'
and cos \i

f we get tan %i'\ and hence i
f
. The check obtained by the

agreement of the values of sin \V and cos |i', with those computed
from the value of V derived from tan |z

v
,
does not absolutely prove

the calculation. This proof, however, may be obtained by means of

the equation
sin i

r

sin Q,
' = sin i sin Q, ,

or by
sin i' sin o> = sin e sin & .

In all cases, care should be taken in determining the quadrant in

which the angles sought are situated, the criteria for which are fixed

either by the nature of the problem directly, or by the relation of the

algebraic signs of the trigonometrical functions involved.
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CHAPTER II.

INVESTIGATION OF THE DIFFERENTIAL FORMULAE WHICH EXPRESS THE RELATION
BETWEEN THE GEOCENTRIC OR HELIOCENTRIC PLACES OF A HEAVENLY BODY
AND THE VARIATION OF THE ELEMENTS OF ITS ORBIT.

44. IN many calculations relating to the motion of a heavenly

body, it becomes necessary to determine the variations which small

increments applied to the values of the elements of its orbit will pro-
duce in its geocentric or heliocentric place. The form, however, in

which the problem most frequently presents itself is that in which

approximate elements are to be corrected by means of the differences

between the places derived from computation and those derived from

observation. In this case it is required to find the variations of the

elements such that they will cause the differences between calculation

and observation to vanish
; and, since there are six elements, it follows

that six separate equations, involving the variations of the elements

as the unknown quantities, must be formed. Each longitude or right

ascension, and each latitude or declination, derived from observation,

will furnish one equation ;
and hence at least three complete observa-

tions will be required for the solution of the problem. When more

than three observations are employed, and the number of equations

exceeds the number of unknown quantities, the equations of condi-

tion which are obtained must be reduced to six final equations, from

which, by elimination, the corrections to be applied to the elements

may be determined.

If we suppose the corrections which must be applied to the ele-

ments, in order to satisfy the data furnished by observation, to be so

small that their squares and higher powers may be neglected, the

variations of those elements which involve angular measure being

expressed in parts of the radius as unity, the relations sought may
be determined by differentiating the various formulae which determine

the position of the body. Thus, if we represent by 6 any co-ordi-

nate of the place of the body computed from the assumed elements

of the orbit, we shall have, in the case of an elliptic orbit,
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MQ being the mean anomaly at the epoch T. Let 6 f denote the value

of this co-ordinate as derived directly or indirectly from observation ;

then, if we represent the variations of the elements by ATI, A&, Ai,

&c., and if we suppose these variations to be so small that their

squares and higher powers may be neglected, we shall have

do do
,

do do

d
A*+5a

Aa+-3r A<
+27

do .... dO .

The differential coefficients -
1 , ^ ,

&c. must now be derived from
d* a$>

the equations which determine the place of the body when the ele-

ments are known.

We shall first take the equator as the plane to which the positions

of the body are referred, and find the differential coefficients of the

geocentric right ascension and declination with respect to the elements

of the orbit, these elements being referred to the ecliptic as the fun-

damental plane. Let x, y, z be the heliocentric co-ordinates of the

body in reference to the equator, and we have

9 =/(*, y, z),

or

do .
,

do ,
,

do ,
dO = -j- dx -4- -j- dy 4- -,- dz.

dx r
dy

y dz

Hence we obtain

dO _ d0_
dx

dO_ dy_ dO_
dz

;

~dn dx
'

d-K dy'dTtdz'dn*

and similarly for the differential coefficients of with respect to the

other elements. We must, therefore, find the partial differential co-

efficients of d with respect to #, y, and z, and then the partial differen-

tial coefficients of these co-ordinates with respect to the elements. In

the case of the right ascension we put
=

oc, and in the case of the

declination we put 6 = 3.

45. If we differentiate the equations

x + X= A cos 8 cos a,

y -{- Y= A cos d sin a,

z -\- Z = A sin d,

regarding X, F, and Z as constant, we find
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dx= cos u cos 8 d4 A sin a cos 8 da, A cos a sin d dd,

dy == sin a cos d dA -\- A cos a cos $ da, A sin a sin d dd,

dz = sin d dA -j- A cos d dd.

From these equations, by elimination, we obtain

.. , sin a , cos a , /rk>l
cos d da, = az -| -p cfy, (3)

,, cos a sin d sin a sin d cos<5
<** = dx ~

Therefore, the partial differential coefficients of a and d with respect

to the heliocentric co-ordinates are

da, sin a dS cos a sin <5

dx
~

A ' dx
~

A

do, cos a a*<5 sin a sin 5 ...
cos # -j- = -j , T- = -. , (4)

dy A dy A

da. dd cos#
j
= 0. j

==
^

dz dz A

Next, to find the partial differential coefficients of the co-ordinates

x, y, Zj with respect to the elements, if we differentiate the equations

(100)!, observing that sin a, sin 6, sin c, J., B, C, are functions of ft

and i
y
we get

dx = - dr -f # cot (J. -|- w) efot -J-
-j^-

rfft -f -^r c^i,

df2 = ? dr + 2 cot (0+ u) du +^ rf^ +
-jjjr

di.

To find the expressions for ~, -^, &c., we have the equations
d/oo di'

x = r cos w cos & r sin M sin & cos i,

y r cos -w sin & cos e -j- r sin w cos ^ cos i cos e r sin u sin ^ sin e,

3 = r cos u sin & sin s -j- r sin u cos & cos i sin e -f r sin u sin i cos e.

which give, by differentiation,

-=^- = r cos u sin & r sin u cos & cos i,

d&

_J^ = r cos w cos & cos e r sin w sin ft cos i cos e,
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dz
- = r cos u cos & sin e r sin u sin & cos i sin e.&
dte- = r sm it sin $6 sin *>
ew

<fy~ = r sm u cos & sm ? cos s r sin u cos t sin e,
dl

ds

p-
= T sm it cos & sm i sm e -f~ r sin it cos i cos e.

The first three of these equations immediately reduce to

dx . dy dz . ,

j
= y cos e z sm e, -j~

x cos e, -JQ
= a; sin e

; (5)

and since

cos a = sin 2 sin t,

cos b = cos & sin i cos e cos i sin e,

cos c = cos & sin i sin e -f- cos i cos e,

we have, also,

dx dy . , dz= r sm u cos a,
- = r sm it cos 0. vr- = r sm u cos c.

efo di di

Further, we have

du= dv + dn d&,
and hence, finally,

At

efo= _ dr -f- a; cot (J. -|- w) c?v + a; cot (A -f- w) ctr

4- ( x cot (A -f- w) y cose 2 sin e) c?& + r sin ^ cos a di,

cot (5 + u) dv + 2/
co

/ cot (P + w) + x cos e) ^^ + r sin tt cos b di,

dz = -dr-i-z cot(0+ u)dv + z cot(0+ u) dn

+ ( z cot(C+tO + x sine)d& + r smu cose di.

These equations give, for the partial differential coefficients of the

heliocentric co-ordinates with respect to the elements,

dz dz
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-jj-

= x cot (A+u) y cos e z sin e,
^-j-= y cot (JB+t*)-f-a; cos e,

JQ
= z cot(C+u) + x sine;

dx dy dz

-JT-
r sm u cos a,

~Ji
=r sm w cos ^

~d
r==r sin w cos c; ^

da; _ a; dy _ y ds _ z

dr r* c?r F "3r" f"

When the direct inclination is greater than 90, if we introduce the

distinction of retrograde motion, we have

du = dv dit -f- dQ,
and hence

rfa? da; . dy dy . dz dz .

-j-=-j--ycose 2 sine, j^=~j +*CO*, j -=-5 + a;sme.
o^ dv d& dv d^ dv

The expressions for -=
-^->

and remain unchanged; and we

have, also,

da; dy . dz ,rtN

T^-= rsmttcosa. -^n-= rsmwcoso. -77-= rsmttcosc. (9)
di di di

It is advisable, in order to avoid the use of two sets of formulae, in

part, to regard the motion as direct and the inclination as susceptible

of any value from to 180. If the elements which are given are

for retrograde motion, we take the supplement of i instead of i; and

if we designate the longitude of the perihelion, when the motion is

considered as being retrograde, by (TT),
we shall have

If we introduce, as one of the elements of the orbit, the distance

of the perihelion from the ascending node, we have

du= dv -f~ d* *

and, hence,

dx dx
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The values of >
-

, and must, in this case, be found by means

of the equations (5).

By means of these expressions for the differential coefficients of the

co-ordinates x, y, z, with respect to the various elements, and those

given by (4), we may derive the differential coefficients of the geo-

centric right ascension and declination with respect to the elements

&, ij and n or o>, and also with respect to r and v, by writing suc-

cessively a and d in place of 6, and &, i, &c., in place of TT in the

equation (2). The quantities r and v, however, are functions of the

remaining elements
y>,
M

Q,
and /*; and we have

, dr , dr ,,.. dr ,

, dv j dv , f dv ,

dv =^ -j- d(p -\-
-
J1rF dMQ -f- -j dp.

d<p dM d/j.

Therefore, the partial differential coefficients of x, with respect to

the elements
<f>,

Jf
,
and //, are

dx

d<p

dx

dx

~dr"

dx

dr
'

dx

dr
'
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we shall have

dM= dE(l e cos E) cos <p sinE d<p.

But, since 1 e cos E= -, and cos <p smE=- sin v, this reduces to
a a

or

V TdM= - dE - sin v dy,
a a

dE -dM -f sin v dy.

If we take the logarithms of both members of the equation

tan v = tan ^tan (45 -f p),

and differentiate, we find

dv dE
' O nJ,2 sin v cos v 2 sin^ cos^ '

2 sin (45 + J?) cos (45 -f

which reduces to

snv , snv

Introducing into this equation the value of dE, already found, and

..-. , r sin v
replacing sin E by- > we getJ a cosy

a? cos y j , , . sin v
/

dv =- - ---sn v a cos2

^ . \ ,- + \\d<p.
1r2

cos^\ r

But since a, cos
2

^> =PJ and - = 1 + sin
<f>

cos v, this becomes

QJ COS (P ^ \ ? /< r*N

dv = dM -4- 1 h tan y cos v] sm v c?^. (12)
r2

If we differentiate the equation

r= a (1 e co .E),

we shall have

dr= - da -f ae sin .E <iE a cos ^ cos jEJ dy ;

a

and substituting for dE its value in terms of dM and
cfy>,

the result

is

.__ r
l ^a _}- a tan ^ sin-y dM-\- (ae sin ^J sin v a cos p cos E) dy.
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XT . -n sin v cos <p cos v 4- e
Aow, since sin .#== -

, and cos E= -
, we shall have

1 -f e cos v 1 -j- e cos v

. r, . -r, aecostfsin'v a cose? (cos V -he)
ae sinU Bin v a cos f cos -E= - ----=- - -

1 + e cos v 1 -j- 6 cos v

which reduces to

ae sinE sin v a cos <p cos^= a cos p cos v

Hence, the expression for dr becomes

dr= - da -j- a tan ?> sin v dM a cos <p cos v rf^>. (14)

Further, we have

T being the epoch for which the mean anomaly is Mw and

A; 1/1 + m^=-3
--

a^

Differentiating these expressions, we get

<Of= dM + (t T} dfJL,

da _ 2 dfJL

a~~ -*"7 J

and substituting these values in the expressions for dr and dv, we

have, finally, (2r i

a tan p sin v (t I7

)
J
dp

a cos <? cos v d<p, (15)

^^ _^ a og s
.

nv
f* rz

\ cos <p I

From these equations for dr and dv we obtain the following valuer

of the partial differential coefficients :

dv I 2 \ .= a cos <p cos v, - =1--
\- tan y cos v Ism v,^ \cos9? /

/MrtN

dr = a cos <p cos v, -=
cos9?

dr dv_=atan ?S1n,
. -^= ,
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It will be observed that in the last term of the expression for we

have supposed fj.
to be expressed in seconds of arc, and hence the

factor 206264.8 is introduced in order to render the equation homo-

geneous.

47. The formulae already derived are sufficient to find the varia-

tions of the right ascension and declination corresponding to the

variations of the elements in the case of the elliptic orbit of a planet;

but in the case of ellipses of great eccentricity, and also in the cases

of parabolic and hyperbolic motion, these formulae for the differential

coefficients require some modification, which we now proceed to

develop.

First, then, in the case of parabolic motion, sin
<p
=

1, and instead

of MQ
and fi

we shall introduce the elements T and q, the differential

coefficients relating to TT, Q, ,
and i remaining unchanged from their

form as already derived.

If we differentiate the equation

tan8

regarding T, q, and v as variable, we shall have

kdT _& T ,
,

-

q + i5

or, since r2= <f sec
4
\v,

Jf) y.2

= d
<l + 2 "I ^V

1/2 31/2

Multiplying through by -^- and reducing, we get

(17)

Instead of q, we may use logg, and the equation will, therefore,

become

in which y( is the modulus of the system of logarithms.
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If we take the logarithms of both members of the equation

and differentiate, we find

dr = -
dq -f- r tan ^v dv.

Introducing into this equation the value of dv from (17), we get

^dT. (19)
q r2?

left _ /p)

Now, since - ^ _ =
q (tan \v -f tan3

Jt>),
and q

= r cos
2

Jv, we have

1 3& (* T) tan Jv 1 0-21 i

xi_ =-(14- tan2

\v 3 sm2

\v sm2

\v tan2

q r*V 2q
r

__
cosv

r

We also have

tan 4v

Therefore, equation (19) reduces to

(20)

, ^ N
(21)

-.
I/ 2q

If we introduce cZ log q instead of dg, this equation becomes

From the equations (17), (18), (20), and (21), we derive

dr ksinv dv IcV 2q

dT.
~

V5q 5? r2

dr dv 3& (t T)
V^V/O /. 7 y > V^^y

dq dq

dr_ _qcosv dv 3^ (t T} 1/2?" " "

and then we have, for the differential coefficients of x with respect to

T and q or log 7,
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dx _ dx dr dx dv dx dx dr dx dv

dT
==

~d^"dT+ ~d^"dT' ~dq

=
~dr

'

~efy

+
~dv "dq

dx dx dr dx dv
'

d log q dr d log q dv
'

d log q'

and similarly for the differential coefficients of y and z with respect

to these elements. The expressions for the partial differential co-

efficients of x, y, and z, respectively, with respect to r and v are the

same as already found in the case of elliptic motion. We shall thus

obtain the equations which express the relation between the variations

of the geocentric places of a comet and the variation of the parabolic

elements of its orbit, and which may be employed either to correct

the approximate elements by means of equations of condition fur-

nished by comparison of the computed place with the observed place,

or to determine the change in the geocentric right ascension and

declination corresponding to given increments assigned to the ele-

ments.

48. We may also, in the case of an elliptic orbit, introduce T, q,

and e instead of the elements
<p,
Mw and

//.
If we differentiate the

expression
q = a (1 e\

we shall have
2a ,

,
a ,

da= - da + de.

q
r

q

We have, also,

in which Tis the time of perihelion passage, and

dM= Jcl/T+^i a-f dT fyH/F+~ <*"*(* ^) da.

Hence we derive

dM=- kVl^i or^dT-l (t
- D <tq

Substituting this value of dM in equation (12), replacing sin
<p by e,

and reducing, we get

dv=
qr

_ p _(| +
1
)
dn .

) j-L-
de. (23)
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In a similar manner, by substituting the values of da and dM in

equation (14), and reducing, we find

&11 4-m
dr=-- =!- e sm v dT

,

ir kl+m(t T) 2 . \f -
|
-'

.- \-- \hr, e sm v I

\S 1/2 g*
^l + e /

. (24)

These equations, (23) and (24), will furnish the expressions for the

* i ^-.0? 4.- i cc.
dv dv dv dr dr dr

partial differential coefficients -r , , , , , and , which are
dT dq de dT dq de

required in finding the differential coefficients of the heliocentric co-

ordinates with respect to the elements T, g, and e, these quantities

being substituted for Jf
, //,

and
<p, respectively, in the equations (11).

49. When the orbit is a hyperbola, we introduce, in place of Mw

fjt,
and

<p,
the elements T, q, and $.

If we differentiate the equation

N = e tanF loge tan (45 +
we shall have

cos F

which is easily transformed into

dF tan 4/+ tan F^a cos F cos ^
or

dF a a tan 4

sin F r tan r cos 4/

Let us now take the logarithms of both members of the equation

tan %F= tan Jt; tan ^4/,

and differentiate, and we shall have

7 dF sinv ,

dv = sin v . ^ : d$.
sin jt< sm 4<

Introducing into this equation the value of ^^ already found, we

get
a sin v 7 >T / a sin v tan 4 sin v \ ,

ai? = ^,dJ\ n I 1 h : I 4'
r tan F \ r cos ^ sin ^ /
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Bufc, since r sin v = a tan $ tan F, and p a tan2^ this reduces to

*=^v5i-(| + 1)^d*. (25)

If we differentiate the equation

we get
r , , T, d-F

7

a tan 4* T

dr= - da -f ae tan*F ^ H--^ -- cfy.
a smF cosF cos4-

Trrr

Substituting in this equation the value of ^ we obtain

7 r ,
,

a?e tan F 7
._ / a

2
e tan2 jP a \ tan 4*

dr= - da -\
-- dN

tt
I
----

=f )
a r \ r cos jP/ cos 4

which is easily reduced to

r 7 sinv 7 ,T . pi r ae
dr=

a
da+a^ dN +-r(^-^

But, since

r ae a

cosF
~~

cos2 F
~~

cos F'

this reduces to

r

or

7
r , sin v , ,r . cos v , , n

<Zr= _ ^a + a -;- cZJVi -f p - a*. (2o)
a r

Now, since q
=

a(e 1), we have

7 q , . a tan 4/
da = - da -\* a cos 4<

or

a ,

da -dq .

(/ ^ COS ^
We have, also,

tf
ffl
_rfcrt(* 21

),

and hence

^ = _ y^a
-

f^^_ pa-f (^

By substituting the value of c?a, this becomes
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Substituting this value of dN in equation (25), and reducing, we
obtain

qr
z

(27)
qr*

In a similar manner, substituting in equation (26) the values of

da and dN
,
and reducing, we get

1/J9 cos 4 \S 1/2 g* cos^T/cos-*

l^kVp(t T) sinv /r \ \ d*
-f-

3 -- -- - cos V p 1
-

(28)r
\ q cos^ \ r /sin4

The equations (27) and (28) will furnish the expressions for the

partial differential coefficients of r and v with respect to the elements

T, g, and
<$/, required in forming the equations for cos d da and dd.

It will be observed that these equations are analogous to the equa-
tions (23) and (24), and that by introducing the relation between e

and ^ and neglecting the mass, they become identical with them.

We might, indeed, have derived the equations (27) and (28) directly

from (23) and (24) by substituting for e its value in terms of a//; but

the differential formulae which have resulted in deriving them directly

from the equations for hyperbolic motion, will not be superfluous.

50. It is evident, from an inspection of the terms of equations (23),

(24), (27), and (28) which contain de and d^, that when the value of

e is very nearly equal to unity, the coefficients for these differentials

become indeterminate. It becomes necessary, therefore, to develop

the corresponding expressions for the case in which these equations

are insufficient. For this purpose, let us resume the equation

2?*

in which u = tan Jw, and i= z
--

Then, since

= l + K1 -

we shall have
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3
7
3it

8 + /gw
7
) (1 e)

2

-f- &c. (29)

If it is required to find the expression for -y- in the case of the

variation of the elements of parabolic motion, or when 1 e is very

small, we may regard the coefficient of 1 e as constant, and neglect

terms multiplied by the square and higher powers of 1 e. By
differentiating the equation (29) according to these conditions, and

regarding u and e as variable, we get

= (1 -f- w
2

) du (\u \u* J-w
5
) de;

and, since du = J(l + u2

) dv, this gives

$JL
=&M--KK (30)

The values of the second member, corresponding to different values

of v, may be tabulated with the argument v; but a table of this kind

is by no means indispensable, since the expression for -y- may be

changed to another form which furnishes a direct solution with the

same facility. Thus, by division, we have

de
= -l + A

and since, in the case of parabolic motion,

this becomes

* =A *C<=*2v^-it.4*
-

(3!)

If we differentiate the equation

+ e cos v

regarding r, v, and e as variables, we shall have

dr _ 2r2 sin2
\v . r*esinv

dv_" "
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In the case of parabolic motion, e= 1, and this equation is easily

transformed into

(33)

Substituting for
-j-

its value from (31), and reducing, we get

- -
1/2,

The equations (31) and (34) furnish the values of and to be

used in forming the expressions for the variation of the place of the

body when the parabolic eccentricity is changed to the value 1 -f- de.

When the eccentricity to which the increment is assigned differs but
di)

little from unity, we may compute the value of directly from

equation (30). A still closer approximation would be obtained by

using an additional term of (29) in finding the expression for / but
(JL&

a more convenient formula may be derived, of which the numerical

application is facilitated by the use of Table IX. Thus, if we differ-

entiate the equation

v = v+ A (1000 + B (lOOi)
2 + C(100i)

8
,

regarding the coefficients A, jB, and C as constant, and introducing

the value of i in terms of e, we have

J=^_.|^___^i(10(H-)- 4-^i (1000')

'

in which s 206264.8, the values of A, B, and C
9
as derived from

the table, being expressed in seconds. To find ,
we have

Jc(t

which gives, by differentiation,

Tc(tT} de dV

and if we introduce the expression for the value of M used as the

argument in finding Fby means of Table VI., the result is
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dV
de

Hence we have

dv JfcosF 200J. 400 600(7
,

,
f

3~;(r+^~Kr^ (35)

by means of which the value of is readily found.
de

When the eccentricity differs so much from that of the parabola
that the terms of the last equation are not sufficiently convergent,

dv
the expression for , which will furnish the required accuracy, may

be derived from the equations (75)! and (76)r If we differentiate the

first of these equations with respect to e, since B may evidently be

regarded as constant, we get

dw__ fl k(t T) cosmic (
.

~ ' '

If we take the logarithms of both members of equation (76)j, and

differentiate, we get

dv _ dC . dw __4de_
~7T i ,. 7i i r\~7i i n^"sinv G sinw

To find the differential coefficient of C with respect to e, it will be

sufficient to take

which gives

The equation

gives

tan

and hence we obtain

- smw

Substituting this value in equation (37), we get

dv 20 C3 C*sinv dw 4smv
sm v tan2

^w -
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and substituting, finally, the value of -=-, we obtain

dv_ lc(tT} C2 sinv cos1Aw 20 C>

'ia^-
Si:

4sinw

which, by means of (76)^ reduces to

dv lctT
' '

If we introduce the quantity M which is used as the argument in

finding w by means of Table VI., this equation becomes

dv 9 M cos
2 ^w . 8 tan Av f

\6y)
de
~

2 (1 + 9e)

"

75 tan^w
v

(1 + e) (1 + 9e)'

This equation remains unchanged in the case of hyperbolic motion,

the value of C being taken from the column of the table which cor-

responds to this case-; and it will furnish the correct value of -=- in
de

all cases in which the last term of equation (23) is not conveniently
C?7*

applicable. The value of -- is then given by the equation (32).

When the eccentricity differs very little from unity, we may put
B = 1, and _

tan \w= tan v j/^ (i + ge),

cos2

^w= O2 cos2

%v.

Then we shall have

^2
2k (t T)C2 sm v .- , cos4 4w.

; 1/2 g*
The equation

= (1 + A C") cos2

Jw= (1 + i-^) cos2>,

gives

|

l

= (1 + p) cos
4

Jw= Ccos4 w.

Hence we derive

T)
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[f we substitute this value in equation (39), and put C2

(1 + e) 2,

we get

im
r2

(1 + e) (1 + 9e)'

and when e 1, this becomes identical with equation (31).

51. EXAMPLES. We will now illustrate, by numerical examples,
the formulae for the calculation of the variations of the geocentric

right ascension and declination arising from small increments assigned

to the elements. Let it be required to find for the date 1865 Feb-

ruary 24.5 mean time at Washington, the differential coefficients of

the right ascension and declination of the planet Eurynome with

respect to the elements of its orbit, using the data and results given
in Art. 41. Thus we have

a = 181 8' 29".29, d= 4 42' 21".56, log J = 0.2450054,

log r = 0.428285, v = 129 3' 50".5, u= 326 41' 40".l,

A = 296 39' 5".0, B = 205 55' 27".l, C= 212 32' 17".7,

log sin a = 9.999716, log sin b = 9.974825, log sin c = 9.522219,

log x = 0.425066n , log y = 9.511920, log z = 8.077315,

e= 23 27' 24'
7

.0, tT= 420.714018.

First, by means of the equations (4), we compute the following

values:

log cos d~ = 8.054308, log -^
= 8.668959W,

log Cos d^ = 9.754919 , log -^ = 6.968348 ,

dy dy

log^ 9.753529.

Then we find the differential coefficients of the heliocentric co-ordi-

nates, with respect to TT, &, i, v, and r, from the formulae (7), which

give

ios = io = -399496-

log
--= 7.876553, log

--= 8.830941, log
--= 9.222898.,

log -T-= 8.726364, log
--= 9.687577, log

--= 0.142443
,,,

log
~ =-- 9.996780n , log -^-

= 9.083635, log -^= 7.649030.
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, dx dy .. dz .

In computing the values of -TT-,
-^p

and -TT, those of cos a, cos 6,

and' cos c may generally be obtained with sufficient accuracy from

Bin a, sin 6, and sine. Their algebraic signs, however, must be

strictly attended to. The quantities sin a, sin 6, and sin c are always

positive ;
and the algebraic signs of cos a, cos 6, and cos c are indicated

at once by the equations (101)i, from which, also, their numerical

values may be derived. In the case of the example proposed, it will

be observed that cos a and cos b are negative, and that cos c is positive.

To find the values of cos d -j- and -7-, we have, according to equa-
(ITC CfrTT

tion (2),

. da, ^ da dx
, .dady , .

., N
cos<5 = cos<5- -fcosd --, (41)

dn dx dn dy d*

which give

dd _ dd dx dd dy dd dz

dn
~

dx dn dy dn dz dn'

= + 1.42345, ==_ 0.48900.
n dv dn dv

In the case of &, i,
and r, we write these quantities successively in

place of Tt in the equations (41), and hence we derive

cos 84^ = - 0-03845, -^- = - 0.09533,
dQ> "66

cos d-^- = 0.27641, -2L = 0.78993,
ai

cos d~ = 0.08020, -^-
= + 0.04873

Next, from (16), we compute the following values:

log^= 0.179155, log ^- = 9.577453, log
~ = 2.376581,,G

dy> dM dp

log^ = 0.171999, log -^r = 9.911247, log
~= 2.535234.&

d<f> dMQ dfji

j$y (jy
\Ve may now find

^
,

-^r^,
&c. by means of the equations (11),

and thence the values of cos d -= , -3, &c. : but it is most convenient
d<p , d<p

'

to derive these values directly from cos d = , cos d
,

> -7-, and -7-
dr dv dr dv

in connection with the numerical values last found, according to the
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equations which result from the analytical substitution of the expres-

sions for -j-, -j > -y-, &c., in equation (2), writing successively <p,
M

Q>

and
fJL

in place of TT. Thus, we have

. da, .da,dr. .da, dv
cos <5 - = cos d . --k cos <5 -r- -r

,

a?' ar* a^ av a?>

d<5 __ d dr dd dv

d<p dr dtp dv d<?

and similarly for MQ
and //, which give

cos d -^L =+ 1.99400, 4^- = 0.65307,

cos d rr= + L13004, -r = 0.38023,

cos 5 -^-= + 507.264,
~= 179.315.

<fc d/i

Therefore, according to (1), we shall have

cos d Aa=+ 1.42345ATT 0.03845A ^ 0.27641A* -f 1.99400A^>

+ 1.13004A3f -}- 507.264A/.,

A5 = 0.48900ATT 0.09533A & 0.78993Ai 0.65307A

0.38023A^f 179.315A/Z.

To prove the calculation of the coefficients in these equations, we

assign to the elements the increments

Ajf = + 10", ATT == - 20", A ft = - 10", Ai= + 10",

A^ = + 10", A/ = + 0".01,

BO that they become

Epoch = 1864 Jan. 1.0 Greenwich mean time.

M = 1 29' 50".21

TT= 44 20 13 .09
^

ft = 206 42 30 .13 > Mean Equinox 1864.0

t= 4 37 .51 J

V = 11 16 1 .02

log a = 0.3881288

L = 928".56745

With these elements we compute the geocentric place for 1865 Feb-

ruary 24.5 mean time at Washington ;
and the result is

a= 181 8' 34".81, d= - 4 42' 30".58, log A = 0.2450284,
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which are referred to the mean equinox and equator of 1865.0. The

difference between these values of a and d and those already given, as

derived from the unchanged elements, gives

Aa = + 5".52, COS * Aa = + 5".50, A<S= 9".02,

and the direct substitution of the assumed values of ATT, A&, A*, &c.

in the equations for cos d AOC and A, gives

cos d Aa = + 5".46, Ad = 9".29.

The agreement of these results is sufficiently close to show that the

computation of the differential coefficients has been correctly per-

formed, the difference being due chiefly to terms of the second order.

When the differential coefficients are required for several dates, if

we compute their values for successive dates at equal intervals, tho

use of differences will serve to check the accuracy of the calculation
;

but, to provide against the possibility of a systematic error, it may be

advisable to calculate at least one place directly from the changed
elements. Throughout the calculation of the various differential

coefficients, great care must be taken in regard to the algebraic signs

involved in the successive numerical substitutions. In the example

given, we have employed logarithms of six decimal places; but it

would have been sufficient if logarithms of five decimals had been

used; and such is generally the case.

It will be observed that the calculation of the coefficients of ATT,

A 2, and A^ is independent of the form of the orbit, depending

simply on the position of the plane of the orbit and on the position

of the orbit in this plane. Hence, in the case of parabolic and

hyperbolic orbits, the only deviation from the process already illus-

trated is in the computation of the coefficients of the variations of

the elements which determine the magnitude and form of the orbit

and the position of the body in its orbit at a given epoch. In all

. da
,.
da dd 1 dd .

cases, the values of cos 8 -7-, cos d-^-t -3-, and -7- are determined as
dv dr dv dr

already exemplified. If we introduce the elements T, q, and e, we

shall have
do, do, dr . ,.da, dv

dd _ dd dr dd
dv^

. .~\

dT~dr~"dT+ ~fo"dt'

and similarly for the differential coefficients with respect to q and e.
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,, , , , . . ,, , dr dv dr dv dr
.,
dv

The mode of calculating the values of -7^, -777., -,-, -y-, -j-, and -,-dT dT dq dq de de

depends on the nature of the orbit.

In the case of passing from one system of parabolic elements to

another system of parabolic elements, the coefficients of Ae vanish.

To illustrate the calculation of -7, -7, &c. in the case of parabolic

motion, let us resume the values t T= 75.364 days, and log q= 9.9650486, from which we have found

log r = 0.1961120, v = 79 55' 57".26.

Then, by means of the equations (22), we find

log |^
= 8.095802n , log

~ = 9.242547,

log|^= 7.976397
tt, log^ = 0.064602n.

If, instead of dq, we introduce d log g, we shall have

log -^ = 9.569812, log
-Tf

V~ = 0.391867 .fo d log q
& d log q

From these, by means of (43), we obtain the differential coefficients

of CL and d with respect to T and q or log q. The same values are

also used when the variation of the parabolic eccentricity is taken

into account. But in this case we compute also -7- from equation

dr

de
(31) and f- from (33) or (34), which give, for v = 79 55' 57".3,

log
~ = 8.147367

, log^= 9.726869.
de de

In the case of very eccentric orbits, the values of
-77^, -r^

&c. are

found from

dv klp dr k . ,
.

(44)

.

dq qr* dq q

dr _ r . r*esmv dv

dq q p dq

the mass being neglected.
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To illustrate the application of these formulae, let us resume the

values, tT= 68.25 days, e = 0.9675212, and log q
= 9.7668134,

from which we have found (Art. 41)

v = 102 20' 52".20, log r = 0.1614052.

Hence we derive

logjp = 0.0607328,

and

5log = 7.943137n, log^,= 8.180711.,

log
- = 0.186517., log = 0.186517 .

dq dq

If we wish to obtain the differential coefficients of v and r with

respect to log q instead of q, we have

dv _q dv dr _q dr

dlogq A
fl dq dlogq A dq'

in which ^ is the modulus of the system of logarithms.

Then we compute the value of -7- by means of the equation (30).

(35), (39), or (40). The correct value as derived from (39) is

^= -0.24289.
de

The values derived from (35), omitting the last term, from (40) and

from (30), are, respectively, 0.24440, 0.24291, and 0.23531.

The close agreement of the value derived from (40) with the correct

value is accidental, and arises from the particular value of v, which

is here such as to make the assumptions, according to which equation

(40) is derived from (39), almost exact.

Finally, the value of -7- may be found by means of (32), whicn

gives

^= + 0.70855.
de

When, in addition to the differential coefficients which depend on

the elements T, q, and e, those which depend on the position of the

orbit in space have been found, the expressions for the variation of

the geocentric right ascension and declination become
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COS <5 Aa = COS -^ ATT -f- COS d A & + COS d ~ Az -j- COS d
J*
A I7

7r aQ di dT
.da da,

-f cos d A0 -f cos <5 -i- Ae,
dq de

dd dd dd dd

If we introduce log*/ instead of q, the terms containing q become

respectively cos d A log 7 and
-yj

A log 7. It should be

observed that if ATI, A&, and A?' are expressed in seconds, in order

that these equations may be homogeneous, the terms containing AT,

A<?, and Ae must be multiplied by 206264.8; but if ATT, A&, and AZ

are expressed in parts of the radius as unity, the resulting values of

cos d Aa and A must be multiplied by 206264.8 in order to express
them in seconds of arc.

The most general application of the equations for cos d Aa and A

in terms of the variations of the elements is for the cases in which

the values of cos d Aa and of A<5 are already known by comparison
of the computed place of the body with the observed place, and in

which it is required to find the values of ATT, A&, Ai, &c., which,

being applied to the elements, will make the computed and the

observed places agree. When the variations of all the elements of

the orbit are taken into account, at least six equations thus derived

are necessary, and, if more than six equations are employed, they
must first be reduced to six final equations, from which, by elimina-

tion, the values of the unknown quantities ATT, A&, &c. may be

found. In all such cases, the values of Aa and A, as derived from

the comparison of the computed with the observed place, are ex-

pressed in seconds of arc; and if the elements involved are expressed

in seconds of arc, the coefficients of the several terms of the equations

must be abstract numbers. But if some of the elements are not

expressed in seconds, as in the case of T, q, and e, the equations

formed must be rendered homogeneous. For this purpose we mul-

tiply the coefficients of the variations of those elements which are

not expressed in seconds of arc by 206264.8. Further, it is gene-

rally inconvenient to express the variations AT, Ag, and Ae in parts

of the units of T, q, and e, respectively ; and, to avoid this incon-

venience, we may express these variations in terms of certain parts

of the actual units. Thus, in the case of T, we may adopt as the

mat of AT the nth part of a mean solar day, and the coefficients

of the terms of the equations for cos<5 Aa and A which involve A?



142 THEORETICAL ASTRONOMY.

must evidently be divided by n. In the same manner, it appears
that if we adopt as the unit of A<? the unit of the rath decimal

place of its value expressed in parts of the unit of q, we must divide

its coefficient by 10, and similarly in the case of Ae, so that the

equations become

COS d Aa = COS S ATT -j- COS 3 - A & -j- COS 8 - Al -f
- COS d - A T

d* dQ di n dT
S . da S .da, , . _,.

Ae
'

dd dd dd s dS s d3= ATT + A + TV ^ + -
. A T+

dn d& di n dT 10m dq
s dd

in which s = 206264.8. When log q is introduced in place of q, the

coefficients of A log q are multiplied by the same factor as in the case

of
4*7, the unit of A log q being the unit of the rath decimal place

of the logarithms. The equations are thus rendered homogeneous,
and also convenient for the numerical solution in finding the values

of the unknown quantities ATT, A&, A^, AT, &c. When AT, Ag, and

Ae have been found by means of the equations thus formed, the
A HP A />

coirections to be applied to the corresponding elements are , y^,

and
T7y^7-

In the same manner, we may adopt as the unknown

quantity, instead of the actual variation of any one of the elements

of the orbit, n times that variation, in which case its coefficient in

the equations must be divided by n.

The value of Aa, derived by taking the difference between the

computed and the observed place, is affected by the uncertainty

necessarily incident to the determination of a by observation. The
unavoidable error of observation being supposed the same in the case

of a as in the case of d, when expressed in parts of the same unit,

it is evident that an error of a given magnitude will produce a

greater apparent error in a than in o, since in the case of a it is

measured on a small circle, of which the radius is cos d and hence,

in order that the difference between computation and observation in

a and d may have the same influence in the determination of the

corrections to be applied to the elements, we introduce COS^AOC

instead of Aa. The same principle, is applied in the case of the

longitude and of all corresponding spherical co-ordinates.
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52. The formulae already given will determine also the variations

of the geocentric longitude and latitude corresponding to small in-

crements assigned to the elements of the orbit of a heavenly body.
In this case we put e = 0, and compute the values of A, I>, sin a,

and sin b by means of the equations (94)r We have also (7=0,
sin c= sin i, and, in place of a and d, respectively, we write ^ and

/?.

But when the elements are referred to the same fundamental plane

as the geocentric places of the body, the formulae which depend on

the position of the plane of the orbit may be put in a form which is

more convenient for numerical application.

If we differentiate the equations

xf = r cos u cos ft r sin u sin ft cos i
t

y'
= r cos u sin ft -f- r sin u cos ft cos *,

z' = r sin u sin i,

we obtain

dx
r= dr r (sin u cos ft -f- cos u sin ft cos i) du

r (cos u sin ft -f sin u cos ft cos i) dft -f- r sin u sin ft sin i
cfo',

dtf
= dr r (sin u sin & cos u cos & cos i) du

-f r (cos tt cos ft sin w sin ft cos i) c?ft r sin w cos ft sin i eft, (46)

dz
1 = - dr -{ r cos u sin idu -\- r sin it cos i eft,

r

in which #', /',
z' are the heliocentric co-ordinates of the body in

reference to the ecliptic, the positive axis of x being directed to the

vernal equinox. Let us now suppose the place of the body to be

referred to a system of co-ordinates in which the ecliptic remains as

the plane of xy, but in which the positive axis of x is directed to the

point whose longitude is ft ;
then we shall have

dx = dx' cos & + dtf sin & ,

dy= dx' sin & + dtf cos ft ,

dz = dz',

and the preceding equations give

dx= - dr r sin u du r sin u cos i d& ,

T

dy= - dr + r cos u cos i du -f- r cos u d& r sin it sin i di, (47)

dz = _ dr -f r cos u sin idu ~{-r sin ?f cos i eft.
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This transformation, it will be observed, is equivalent to diminishing
the longitudes in the equations (46) by the angle & through which

the axis of x has been moved.

Let Xn Y,, Z, denote the heliocentric co-ordinates of the earth

referred to the same system of co-ordinates, and we have

x -f- X, = A cos/3 cos 0* Q),

V + F,= Jcos08in(J ),

z -f Z, = A sin /?,

in which ^ is the geocentric longitude and
/9
the geocentric latitude.

In differentiating these equations so as to find the relation between

the variations of the heliocentric co-ordinates and the geocentric lon-

gitude and latitude, we must regard Q, as constant, since it indicates

here the position of the axis of x in reference to the vernal equinox,

and this position is supposed to be fixed. Therefore, we shall have

cos sn

dy= cos sin (A &)d/f A sin /5 sin (A )d-|- A cos/? cos (A

cfe =sin /? dJ H- J cos y9 d/9,

from which, by elimination, we find

sin/? cos (A a) , sin /9 sin (A q) cos /?--_

These equations give

COS p = ==r =
--

-.
-

. j
dx A dx

Q ft
cosj? -j- = 0, -,-

C?3 ^2

If we introduce the distance o between the ascending node and the

place of the perihelion as one of the elements of the orbit, we have

du= dv -{- d<0,

and the equations (47) give

dx x dy y dz z . . .~-=- = cosu, /-=-== smu cos i,
= =- = smw smt;

dr r dr r dr r

dx dx dy dy . dz dz
= = -_ = rsmu, .

y = -.
y-=r cos u cost, = = -=

av aw dv dw dv dot
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^-=rcos, -*l=0j (49)

dx A dy . . c?z

7 .
= 0. =r-= ?* sin w sin ^. ^r-= r sin u cos i.

at at di

If we introduce
TT,

the longitude of the perihelion, we have

du = dv -{- dit a*& ,

and hence the expressions for the partial differential coefficients of

the heliocentric co-ordinates with respect to it and & become

dx dy dz
r= r sm w, 7 r cos u cos ^, , = r cos w sin i ;

f f t ()
dx _ . , , . aw . . t . az

- = 2r sm w sm2

Jt,
~- = 2r cos w sm2

J*, -7 = r cos w sin i.

When the direct inclination exceeds 90 and the motion is regarded
as being retrograde, we find, by making the necessary distinctions in

regard to the algebraic signs in the general equations,

dx dy dz
-rr = 0, -T- = f sin u sin i, j-r

= r sin u cos i ; (51)
di di di

dx dx dx dy ,
and the expressions for -7-, -j-, -TQ-> -f-,

&c. are derived directly

from (49) by writing 180 i in place of i. If we introduce the

longitude of the perihelion, we have, in this case,

du = dv oV + dQ ,

and hence

dx dy dz . .

/- = r cos i* cos i, -j = rcosttsmi;

(52)

-r~- = 2r sin w sin2

i,
-~- = 2r cos tt sin

2

Ji, -^

- = r cos w sin i.

But, to prevent confusion and the necessity of using so many for-

mulae, it is best to regard i as admitting any value from to 180,
and to transform the elements which are given with the distinction

of retrograde motion into those of the general case by taking

180 i instead of i, and 2& n instead of TT,
the other elements

remaining the same in both cases.

53. The equations already derived enable us to form those for the

differential coefficients of ^ and ft with respect to r, v, & , i, and co or

T, by writing successively X and ft
in place of 0, and &, i, &c. in

10
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place of it in equation (2). The expressions for the differential coeffi-

cients of r and v, with respect to the elements which determine the

form of the orbit and the position of the body in its orbit, being

independent of the position of the plane of the orbit, are the same as

those already given; and hence, according to (42) and (43), we may
derive the values of the partial differential coefficients of A and /9

with respect to these elements. The numerical application, however,

is facilitated by the introduction of certain auxiliary quantities.

Thus, if we substitute the values given by (48) and (49) in the

equations
. c?A ctt dx . Q ctt dy

cos /9 -j- = cos /? -=- -j f- cos /5- -/-,dv dx dv
l

dy dv

&L&L ^L\~ ty-+dP-
dv dx dv dy dv dz dv'

and put
cos i cos (A & ) = A

Q
sin A,

sin (A & )
= A

Q
cos A,

sin i = n sin N,
sin (A 2 ) cos i= n cos N,

in which A
Q
and n are always positive, they become

dv dw A

-~= -== (sin /9 cos (A & ) sin u -f- n cos u sin (N+ ft ).

Let us also put
n sin (N+ ft = -B gin -^>

sin /5 cos (A & )
= J? cos jB,

and we have

cos /? -j
= cos /? -j

= ^4 sin (A -\- u -,*
,! CM)

7 TO

The expressions for cos ft -j- and -j- give, by means of the same

auxiliary quantities,

cos -= = ^ cos (J. + u),
dr

(56)

f = -^eos(* + ).

In the same manner, if we put
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cos (/I )= C sin C,

cos i sin (A & )
= (7, cos (7;

1 67)
cos i = D sin Z>

sin fA &) sin i= D cos D;
we obtain

-^-
= =
^ (7 sin

A r
cos /9 JT-=

-j
sin i sin w cos (A & ),

-2(L=-Dfl
sin w sin (D + ).

Cd T

If we substitute the expressions (55) and (56) in the equations

fl
. .

flcos /9 3 = cos /? -=- 3--^- cos /? -j- 3
d? dr dy dv d<f>

and put

__ _ ^._
d<p

~
dr dy dv

dr /. . rr
j =/ sinF= a cos ^ cos v,

r j =/ cosF= I
--

f- tan <p cos v I r sin v,
d^

^
\cos?

'

/

.*L = feMp=lJ_

we get

JF+),

In a similar manner, if we put

dr--TVF = a sin W= a tan ^> sin v,

dv ~ a2 cos <f>--
T

-- = h sinH=
9r \

smv(t T) y-
206264.8

J,

cy , ,-.. a* cos <P ,. ...x

r -T = & cos IT=- (t T\
dp. r
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we obtain

di h (62)

cos/9 JjL
= *

J. sin (^ + Jff+ ),

The quadrants in which the auxiliary angles must be taken are

determined by the condition that A
0)
B

Q,
C

, /, g, and h are always

positive.

54. If the elements T, q, and e are introduced in place of Jf
, //,

and
^>,

we must put

=r-,, (63)

--
-j-,

-
5
-

aq aq

and the equations become

= sn

S 9
(64)

ooi^-^iiaU + Jr+ii),

4^ = \ B sin (jB H- H+ u).

In the numerical application of these formulae, the values of the

second members of the equations (63) are found as already exem-

plified for the cases of parabolic orbits and of elliptic and hyperbolic

orbits in which the eccentricity differs but little from unity. In the

same manner, the differential coefficients of A and ft with respect to

any other elements which determine the form of the orbit may be

computed.
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In the case of a parabolic orbit, if the parabolic eccentricity is

supposed to be invariable, the terms involving e vanish. Further,
in the case of parabolic elements, we have

. ~ dr ksmv dv= --

which give
tan G= tan

V2-, which is the

expression for the linear velocity of a comet moving in a parabola.

Therefore,

<W kl/2 AQ sin (A -f- u %v),

(65)

cos ^ dT
= ~~ A sin (A + u ~

For the case in which the motion is considered as being retrograde,

180 i must be used instead of i in computing the values of Aw

A, n, N, C
,
and (7, and the equations (55), (56), and the first two

of (58), remain unchanged. But, for the differential coefficients with

respect to i, the values of D
Q
and D must be found from the last two

of equations (57), using the given value of i directly ;
and then we

shall have
dk r

cos /? -TV- = -7 sin i sin u cos (A & ),

Mw = L D
Q
gin u sm (j) _|_ ft.

55. EXAMPLES. The equations thus derived for the differential

coefficients of X and /9 with respect to the elements of the orbit,

referred to the ecliptic as the fundamental plane, are applicable when

any other plane is taken as the fundamental plane, if we consider ^

and
/9 as having the same signification in reference to the new plane

that they have in reference to the ecliptic, the longitudes, however,

being measured from the place of the descending node of this plane

on the ecliptic. To illustrate their numerical application, let it be

required to find the differential coefficients of the geocentric right

ascension and declination of Eurynome with respect to the ele-

ments of its orbit referred to the equator, for the date 1865 February
24.5 mean time at Washington, using the data given in Art. 41.
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In the first place, the elements which are referred to the ecliptic

must be referred to the equator as the fundamental plane ; and, by
means of the equations (109) x ,

we obtain

'=353 45' 35".87, i'= 19 26' 25".76, o> = 212 32' 17".71,

and
a/ == w + a> = 50 10' 7".29,

which are the elements which determine the position of the orbit in

space when the equator is taken as the fundamental plane. These

elements are referred to the mean equinox and equator of 1865.0.

Writing a and d in place of ^ and
/9,

and &', i
f

,
w f in place of &, i,

and co, respectively, we have

AQ sinA cos (<*&') cos i
r

, A cosA= sin (a &') ;

n sinN= sin i
f

,
n cosN= cost' sin (a &');

J5 sinB = n sin (N+ #) B
Q
cos -B= sin <5 cos (a &') ;

<7 sin 0= cos (a &'), ^o c<>s C^sin (a &') cosi';

A sin Z>= cos i', D cosD= sin i' sin (a & ') ;

/ sinF=a cos ^ cos v,

/ 2 \

/ cosF= 1
--h tan ? cos v

}
r sin v;

Vcos?' /

gsmG= a tan <? sin v,

T) -- 206264.8 ,

The values of Aw n, BQ,
Cw D , /, g9

and h must always be positive,

thus determining the quadrants in which the angles A, B, &c. must

he taken
;
and these equations give

logA = 9.97497, A = 262 10' 40",

logB = 9.52100, B= 75 48 35 ,

log C = 9.99961, (7= 263 26,
logD = 9.97497, D= 92 3547,
log/ =0.62946, .F= 339 14 0,

log <y =0.34593, = 350 11 16,

log A = 2.97759, ,

H= 14 30 48 ,

uf= v oi'= 179 13' 58".
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Substituting these values in the equations (55), (58), (60), and (62),
and writing a and d instead of ^ and

/?, and u' in place of u, we find

'

- + 1.4235, j, = _ 0.4890,

~cos ~T == + 1.5098, -,= + 0.0176,

cos d-^ = 4 0.0067, -!rr= + 0.0193,
v** tti

cos 5
-^-

==
-f- 1.9940, -~-= 0.6530,

-~r = _ 0.3802,

-^j-
= 4 507.25, ~ = 179.34

;

and hence

cos d Aa = 4- 1.4235 AW' 4 1.5098 A&' 4 0.0067 tf 4 1.9940 A?
4- 1.1300 Aif + 507.25 AAI,

A<? = 0.4890 AW' + 0.0176 A&' 4 0.0193 Ai' 0.6530 A?
- 0.3802 AJf 179.34 AA*.

If we put

A/=r 6".64, *&'= 14".12, AI*= 8".86,

A?? = 4 10", AlT = 4 10", A/*= 4 0".01,

we get
cos 5 Aa= 4 5".47, A<5 = 9".29 ;

and the values calculated directly from the elements corresponding to

the increments thus assigned, are

cos d Aa = 4- 5".50, A<5 = 9".02.

The agreement of these results is sufficiently close to prove the cal-

culation of the coefficients in the equations for cos d AOC and A.
When the values of AW', A& r

,
and Air are small, the correspond-

ing values of AW, A&, and A^ may be determined by means of

differential formulae. From the spherical triangle formed by the

intersection of the planes of the orbit, ecliptic, and equator with the

celestial vault, we have

cos ^ = cos i' cos e 4 sin i' sin e cos & ',

sin i cos & = cos i' sin e 4- sin i' cos e cos Q>
f

,

sin i sin & = sin i' sin & f

>

sin i sin w = sin & '

sin e,

sin i cos w = cos sin i' sin e cos i' cos & ',
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from which the values of &, i, and co may be found from those of

& ' and i
r
. If we differentiate the first of these equations, regarding

e as constant, and reduce by means of the other given relations, we

get
di = cos to di' -f- sin a> sin i' d& '. (68)

Interchanging i and 180 i', and also & and &', we obtain

di'= cos tt> di sin w sin idQ.

Eliminating di from these equations, and introducing the value

sin i' sin &
sini sin&y'

the result is

sin Q sin toK

Biny ami

If we differentiate the expression for cos co derived from the same

spherical triangle, and reduce, we find

da> cos i dl cos i' dQ'.

Substituting for dQ, its value given by the preceding equation, and

reducing by means of

sin & '

cos i'= sin & cos w cos i cos Q, sin w ,

we get
sin tn ein m

(70)

The equations (68), (69), and (70) give the partial differential co-

efficients of & , i, and w with respect to & ; and i', and if we sup-

pose the variations of the elements, expressed in parts of the radius

as unity, to be so small that their squares may be neglected, we shall

have
sin ojn

*^=Esf'"
sin

At= sin ta sin i' AQ f

-f- cos % Ai
r

,

If we apply these formulae to the case of Eurynome, the result is

W
O
= 4.420A&' +

& = _ 3.488A Q' + 6.686A/,
Ai= 0.179A^' 0.843AI*

;
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and if we assign the values

A'= 14".12, Ai'= 8".86, AC//= 6".64,

we get

AOI
O
= + 3".36, A^ = 10".0, Ai= + 10".0, A> = 10".0,

and, hence, the elements which determine the position of the orbit in

reference to the ecliptic.

The elements a/, & ',
and i

f

may also be changed into those for

which the ecliptic is the fundamental plane, by means of equations
which may be derived from (109)! by interchanging & and &' and

180 i'andt.

56. If we refer the geocentric places of the body to a plane whose

inclination to the plane of the ecliptic is i
y
and the longitude of whose

ascending node on the ecliptic is &, which is equivalent to taking
the plane of the orbit corresponding to the unchanged elements as

the fundamental plane, the equations are still further simplified.

Let x'j y'j z
f be the heliocentric co-ordinates of the body referred to

a system of co-ordinates for which the plane of the unchanged orbit

is the plane of xy, the positive axis of x being directed to the as-

cending node of this plane on the ecliptic; and let x, y, z be the

heliocentric co-ordinates referred to a system in which the plane of

xy is the plane of the ecliptic, the positive axis of x being directed

*o the point whose longitude is Q . Then we shall have

dtf
= dy cos i -f- dz sin i

t

dz' = dy sin i -f- dz cos i.

Substituting for dx, dyy
and dz their values given by the equations

(47), we get
xr

dx
f= dr r sin u du r sin u cos i dQ,

dy'
= dr -f- r cos u du -\- r cos u cos i d& y

dz' = dr r cos u sin i dQ> + r sul u di*

It will be observed that we have, so long as the elements remain

unchanged,

a/= r cos u, y
f= r sin u, z'= 0,
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and hi.'nce, omitting the accents, so that x
9 y, z will refer to the plane

of the unchanged orbit as the plane of xy, the preceding equations

give
dx= cos u dr r sin u du r sin u cos i dQ ,

dy = sin u dr -\- r cos u du -j- r cos u cos i dQ ,

dz r cos u sin ^ dQ> -f- r sin i* cfo*.

The value of ^> is subject to two distinct changes, the one arising

fiom the variation of the position of the orbit in its own plane, and

the other, from the variation of the position of the plane of the orbit.

Let us take a fixed line in the plane of the orbit and directed from

the centre of the sun to a point the angular distance of which, back

from the place of the ascending node on the ecliptic, we shall desig-

nate by ff- and let the angle between this fixed line and the semi-

transverse axis be designated by . Then we have

X = a> -f ff.

The fixed line thus taken is supposed to be so situated that, so long
as the position of the plane of the orbit remains unchanged, we have

But if the elements which fix the position of the plane of the orbit

are supposed to vary, we have the relations

dff = cosi dl,
da> = d% cos i d& , (72)

dn = dx + (1 cosi) d& = dx + 2 sm*i d&.

Now, since u = v -f- to, we have

u=v+X ff
*

and
du dv -f- dx dff = dv -f- d% cos i d&

Substituting this value of du in the equations for dx, dy, dz, they

reduce to

dx= cos u dr r sin u dv r sin u dx,

dy= sin u dr -f r cos u dv + r cos u d%, (73)

dz = r cos u sin i dQ, -j- r sin u di.

The inclination is here supposed to be susceptible of any value from

to 180, and if the elements are given with the distinction of

retrograde motion we must use 180 i instead of i.

Let us now denote by 6 the geocentric longitude of the body mea-

sured in the plane of the unchanged orbit (which is here taken as the
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fundamental plane) from the ascending node of this plane on the

ecliptic, and let the geocentric latitude in reference to the same plane
be denoted by y. Then we shall have

x -f- X A cos y cos 0,

y + Y= A cos y sin 0,

z + Z = A sin y,

in which X, F, Z are the geocentric co-ordinates of the sun referred

to the same system of co-ordinates as x, y}
and z. These equations

give, by differentiation,

dx= cos y cos 6 dA A sin y cos dy A cos y sin dOt

dy= cos y sin 6 dA A sin y sin dfy -f~ ^ cos ^ cos ^ ^>
efe = sin y dA -\- A cos ^ cfy ;

and hence we obtain

7
. sin , . cos

cos y do= dx -\ -. dy,

, _ sin y cos ,
__

sin 17 sin .

(74)

These give
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we get
do do r fn

cos >?
-=- = cos y -j- = -, cos (0 u) t

dv d% A
(76)

In a similar manner, we derive

do 1 . fa d^ 1
cos *] 3

= sin (0 u),
~ = sm y cos (0 u)t

dO df) r
cos

V)
-= = 0,

-- = cos yj
sm i cos u, (77 )

do di) . r
COS Tj TV-= 0, yf-

=
-f- COS I]

Sin W.
CM Cw d

If we introduce the elements ^, Jtf"
,
and

//, which determine r and v,

we have, from
de dO dr

,
rf^ c?v

cos i? -j
= cos T? -j- -j h cos i? -j- -j ,1

d<p dr d<f>

[ '

dv dy

df) _ df) dr df) dv

d<p dr dy dv d<p'

if we introduce also the auxiliary quantities/ and F
y
as determined

by means of the equations (59),

cos y -j-= ~
A

cos (0 u F\
-^-
= tsm7]sm(0 u F). (78)

Finally, using the auxiliaries g, h, G, and H, according to the equa-
tions (61), we get

cos >?
-- = ?cos(0 u G),

,, , i I (79)
dO h , dr) h . f

_.
cos r)

= cos (0 u L ). ^ =
-j- sm TJ sm (0 u M ).

d/j- A dp A

If we express r and v in terms of the elements T, g, and e, the

values of the auxiliaries /, g, A, F, &c. must be found by means of

(64) ; and, in the same manner, any other elements which determine

the form of the orbit and the position of the body in its orbit, may
be introduced.

The partial differential coefficients with respect to the elements

having been found, we have

do do do dO
COS JJ A0 = COS r) -- Ay 4- COS f] -7 ACP -f- COS r] -rTT AMn + COS Tt -7- &fJ.

d% dy dMQ dp
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from which it appears that, by the introduction of as one of the

elements of the orbit, when the geocentric places are referred directly

to the plane of the unchanged orbit as the fundamental plane, the

variation of the geocentric longitude in reference to this plane depends
on only four elements.

57. It remains now to derive the formulae for finding the values

of
T)
and 6 from those of X and

/?. Let X
Q, y ,

z be the geocentric co-

ordinates of the body referred to a system in which the ecliptic is

the plane of xy, the positive axis of x being directed to the point

whose longitude is & ;
and let #/, y ',

z
' be the geocentric co-ordi-

nates of the body referred to a system in which the axis of x remains

the same, but in which the plane of the unchanged orbit is the plane

of xy; then we shall have

x A cos /? cos (A ft ), x '= A cos i? cos 0,

yo= J cos /? sin (A Q ), y
' = A cos T? sin 0,

Z
Q
= J sin

,
z

' = A sin iy,

and also

< = *0

yo
= y cos * -f z

o
sin *

z
' = yQ sin i + z cos i.

Hence we obtain

COS r) COS = COS /? COS (A & ),

cos T) sin = cos /? sin (A & ) cos i + sin sin t, (80 )

sin 17
= cos sin (A & ) sin i -\- sin /? cos i.

These equations correspond to the relations between the parts of a

spherical triangle of which the sides are i,
90

57,
and 90 ft

the angles opposite to 90 ^ and 90 ft being respectively

90 -f- (X ^) and 90 0. Let the other angle of the triangle be

denoted by f, and we have

cos 17 sin Y= sin * cos (A & ),

cos T? cos r = sin i sin (A & ) sin ft -f- cos i cos /?.
(81)

The equations thus obtained enable us to determine y, 0, and f from

I and
/9.

Their numerical application is facilitated by the intro-

duction of auxiliary angles. Thus, if we put

,
,

n cos^= cos j9 sin (A ft),
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in which n is always positive, we get

cos TI cos 6= cos /? cos (A & ),

cos rj sin 6 = n cos (N t), (83)
sin

7]
= ra sin (JV i\

from which ^ and may be readily found. If we also put

n' sin N'= cos i,

n' cos JV= sin i sin (A ft ),

we shall have

cotNr - tan i sin (A ^ ),

If f is small, it may be found from the equation

sin* cos (A -S
cos??

The quadrants in which the angles sought must be taken, are easily

determined by the relations of the quantities involved ;
and the

accuracy of the numerical calculation may be checked as already
illustrated for similar cases.

If we apply Gauss's analogies to the same spherical triangle, we get

fiin (45 - j,) sin (45 -
J (0 + r)) =
cos (45 -f i (A

-
)) sin (45 J ( + i)),

sin (45 - j?) cos (45 - J (*+ r)) =
sin (45 + i (A

- &)) sin (45 -
J (0 0),

cos (45 J?) sin (45 j (0 r)) = (87)

cos (45 + i

(A
- 8)) cos (45 - i (p + t)),

cos (45 - ^) cos (45
-

J (<?
-

r)) =
sin (45 + C; - )) cos (45 - J (/?

-
i)),

from which we may derive ^, 0, and y.

When the problem is to determine the corrections to be applied to

the elements of the orbit of a heavenly body, in order to satisfy

given observed places, it is necessary to find the expressions for

cos
7]
A# and A^ in terms of cos /9

AA and A/3. If we differentiate the

first and second of equations (80), regarding & and i (which here

determine the position of the fundamental plane adopted) as con-

stant, eliminate the terms containing dy from the resulting equations,

and reduce by means of the relations of the parts of the spheric!

triangle, we get
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cos i)
do = cos Y cos p dl -f sin F dp.

Differentiating the last of equations (80), and reducing, we find

df]
= sin Y cos p ctt -f cos Y dp.

The equations thus derived give the values of the differential co-

efficients of 6 and y with respect to A and
/9 ;

and if the differences

A^ and A/9 are small, we shall have

cos rj
A0 = cos Y cos p A/* -f sin y A/9,

A>? = sin Y cos /5 AA -f cos y A/1

The value of p required in the application of numbers to these

equations may generally be derived with sufficient accuracy from

(86), the algebraic sign of cosf being indicated by the second of

equations (81) ;
and the values of

rj
and 6 required in the calculation

of the differential coefficients of these quantities with respect to the

elements of the orbit, need not be determined with extreme accuracy.

58. EXAMPLE. Since the spherical co-ordinates which are fur-

nished directly by observation are the right ascension and declina-

tion, the formulae will be most frequently required in the form for

finding rj
and from a and d. For this purpose, it is only necessary

to write a and d in place of A and
/9, respectively, and also & ', V,

co
f

, %', and u' in place of &, i, a), %, and u, in the equations which

have been derived for the determination of
rj

and 0, and for the

differential coefficients of these quantities with respect to the elements

of the orbit.

To illustrate this clearly, let it be required to find the expressions

for cos
rj
A# and &rj in terms of the variations of the elements in the

case of the example already given ;
for which we have

<//= 50 10' 7".29, &'= 353 45' 35".87, i'= 19 26' 25".76.

These are the elements which determine the position of the orbit of

Evsrynome @, referred to the mean equinox and equator of 1865.0.

We have, further,

log/= 0.62946, log# = 0.34593, log h = 2.97759,

F= 339 14' 0", G= 350 11' 16", H= 14 30' 48'
;

,

u'= 179 13' 58".

In the first place, we compute ^, 0, and
7- by means of the formulae
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(83) and (85), or by means of (87), writing a, d, &', and V instead

of ^, ft, &, and i
9 respectively. Hence we obtain

e= 188 31' 9", T]
= 1 59' 28", r= 19 17' 7".

Since the equator is here considered as the fundamental plane, the

longitude 6 is measured on the equator from the place of the ascend-

ing node of the orbit on this plane. The values of the differential

Coefficients are then found by means of the formulae

dO di) r
cos

f) ^7= 0, jr=
- cos

T) sm j cos tr,

de dy ,

r
cos TI -^r

= 0,
-jj-

= 4 - cos rj sm u
,

cos 7] --r= T- cos (0 u') t
--= sin T? sin (0 if),

cos 7] ,,, = cos (e u' G\ ,,, = ^- sin -n sin (0 u' GO,dM A dM AMh
c^(0-u'-H\ ^L=-^ s[n7i sm(e-u'-H)t

dfj. A ^
dfj. A ' '*

which give

008,^
= 0, ^ = + 0.5072,

^ = 0,
A. = + 0.0204,

di! di'

-J-
= + 1.5051,

-|r
= + -

-^- = + 2.0978, -^- = + 0.0422.

dff

=-1-1.1922, -^ = + 0.0143,
ClMn

~ = + 538.00, -^?-= -1.71.

Therefore, the equations for cos
7]
&6 and &y become

cos ^ A0 = 4 1.5051 A/ 4 2.0978 A? 4 1.1922 Ajtf 4 538.00

AT? = 4 0.0086 A/ 4 0.0422 A?. 4 0.0143 AJf 1.71 A/*

4 0.5072 A^'4 0.0204 Ai'.

If we assign to the elements of the orbit the variations
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AO/= -6".64, A&'= 14".12, AI*= 8".86,

A? == -f 10", Aj/ = -|- 10", A// = -f 0".01,

we have

A/= A/ + cos i' A&'= 19".96
;

and the preceding equations give

cos y A0 = + 8".24, AT; = 6".96.

With the same values of AO/, A& ', &c., we have already found

cos 8 Aa = + 5".47, Ad == 9".29,

which, by means of the equations (88), writing a and d in place of

A and
/9, give

cos ti
A0= -f 8".23, AI? = 6".96.

59. In special cases, in which the differences between the calcu-

lated and the observed values of two spherical co-ordinates are given,

and the corrections to be applied to the assumed elements are sought,

it may become necessary, on account of difficulties to be encountered

in the solution of the equations of condition, to introduce other ele-

ments of the orbit of the body. The relation of the elements chosen

to those commonly used will serve, without presenting any difficulty,

for the transformation of the equations into a form adapted to the

special case. Thus, in the case of the elements which determine the

form of the orbit, we may use a or log a instead of
ft,

and the

equation

kVl -f m
"= -IT

gives

dft = j-efo = jyefloga, (89)
a /

in which ^ is the modulus of the system of logarithms. Therefore,

the coefficient of A// is transformed into that of A log a by multiply-

ing it by f ; and if the unit of the rath decimal place of the loga-
A

rithms is taken as the unit of A loga, the coefficient must be also

multiplied by 10~
m

. The homogeneity of the equation is not disturbed,

since
/J.

is here supposed to be expressed in seconds.

If we introduce logjp as one of the elements, from the equation

p = a cos* <p

11
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we get

d logp= I - dfj. 2/* tan <p d<p,

or

dfj.= | y-
d logp 3/A tan

<f> d<p. (90)

Hence it appears that the coefficients of A logp are the same as those

of A log a, but since p is also a function of
<py

the coefficients of &<p

are changed; and if we denote by cos d I -7 I and I -7 I the values of

the partial differential coefficients when the element
fj.

is used in con-

nection with
(p,

we shall have, for the case under consideration,

. da / da \ n p. _. da,
cos o -7

= cos o -7 I 3 - tan y cos o -y-,
d(f> \ d</> i s a/j.

dd I dd\ nfi dd

in which s = 206264".8. If the values of the differential coefficients

with respect to
fjt
and

<p
have not already been found, it will be ad-

dr dv dr dv .

vantageous to compute the values ot -r-> -7 ~n- > and -7-=
- by

d<p d<p d iogp d iogp
means of the expressions which may be derived by substituting in

the equations (15) the value of
dfj. given by (90), and then we may

compute directly the values of cos d-j, cos d -^- , -j , and -ji
---

dtp d logjt? d(p d logp
In place of Mw it is often convenient to introduce L

,
the mean

longitude for the epoch ;
and since

V=*+i
we have

dL = dM +d7t = dM
Q + da + d ft,

and, when is used,

d:/ + (1 cos i) rfft .

Instead of the elements ft and i which indicate the position of the

plane of the orbit, we may use

b = sin i sin ft, c = sin i cos ft,

and the expressions for the relations between the differentials of b

and c and those of i and ft are easily derived. The cosines of the

angles which the line of apsides or any other line in the orbit makes

with the three co-ordinate axes, may also be taken as elements of the
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orbit in the formation of the equations for the variation of the geo-
centric place.

60. The equations (48), by writing I and b in place of ^ and
/S,

respectively, will give the values of the differential coefficients of

the heliocentric longitude and latitude with respect to #, y, and z.

Combining these with the expressions for the differential coefficients

of the heliocentric co-ordinates with respect to the elements of the

orbit, we obtain the values of cos b A/ and A& in terms of the varia-

tions of the elements.

The equations for dx
} dy, and dz in terms of du, dft, and di, may

also be used to determine the corrections to be applied to the co-or-

dinates in order to reduce them from the ecliptic and mean equinox
of one epoch to those of another, or to the apparent equinox of the

date. In this case, we have

du= dn d& .

When the auxiliary constants A, B, a, 6, &c. are introduced, to

find the variations of these arising from the variations assigned to

the elements, we have, from the equations (99) 1?

cot A= tan ft cos i,

cotB = cot & cos i sin i cosec ft tan e,

cot C= cot ft cos i -f- sin i cosec ft cot e,

in which i may have any value from to 180. If we differentiate

these, regarding all the quantities involved as variable, and reduce

by means of the values of sin a, sin 6, and sin c, we get

, . cos i , sin A . . . ,.
dA = . rfft

--
:
- sin ft sm i di,sm2 a sma

dB = .
2 (cos i cos e sin i sin e cos ft ) c?ft

sin b

. . . . \ j- i

-| -. 7- (cos & smi cos e -j- cos i sin e) di -|-. 7

dC= .
2 (cos i sin e -{- sm i cos e cos &) d&

sin c

,
sin C , ... . . .. sinisin

H ;
- (cos ft SHU sm e cos i cos e) di H--

sine sm*c

and these, by means of (101)^ reduce to
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7 . cos i 7 ^dA = . dQ sin A cot a di,2

cos e cos e , . ^ . . . cos a ,

.cfe, (91)

,~ sinecosi 7 _ . ~ T ,
cos a

,dC=--:= a& sm C cot c (fo -f- . 9 cfe.
sin2

c
'

sm* c

Let us now differentiate the equations (101)w using only the upper

sign, and the result is

da= sin i sinA dQ -f cos A di,

db = sin i sinB d& -f cos Bdi-\- cos c cosec b de,

de = sin i sin C dQ -f- cos C di cos b cosec c de.

If we multiply the first of these equations by cot a, the second by
cot 6, and the third by cot c, and denote by ^ the modulus of the

system of logarithms, we get

d log sin a= A sin i cot a sin A d& -f ^o cot a cos ^ di,

d log sin 6= ^ sin i cot b sin 2? c?& -f J cot 6 cos I di -f ^
S

1 . ... ~ -. _, /-v7'

log sinc= A smi cote sin CdQ -\-XQ cote cos Cdi

~

sin o

COS & COS C

a
.

sm c

(92)

The equations (91) and (92) furnish the differential coefficients of

A
t B, Cj log sin a, &c. with respect to &, i,

and e; and if the varia-

tions assigned to &, i,
and e are so small that their squares may be

neglected, the same equations, writing &A, A&, At, &c. instead of

the differentials, give the variations of the auxiliary constants. In

the case of equations (92), if the variations of &, i, and e are ex-

pressed in seconds, each term of the second member must be divided

by 206264.8, and if the variations of log sin a, log sin 6, and log sine

are required in units of the mth decimal place of the logarithms, each

term of the second member must also be divided by 10.
If we differentiate the equations (81)D and reduce by means of the

same equations, we easily find

cos b dl= cos i sec b du -\- cos b dQ sin b cos (I & ) di, /Q O \

db = sin i cos (I Q> ) du -f- sin (I Q> ) di,

which determine the relations between the variations of the elements

of the orbit and those of the heliocentric longitude and latitude.

By differentiating the equations (88)w neglecting the latitude of
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the sun, and considering 1, /9, J, and O as variables, we derive, after

reduction,
r>

cos /? dX = _ cos (A O)dO,

R (94)

dp = -- sin sin A O

which determine the variation of the geocentric latitude and longitude

arising from an increment assigned to the longitude of the sun. It

appears, therefore, that an error in the longitude of the sun will

produce the greatest error in the computed geocentric longitude of a

heavenly body when the body is in opposition.
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CHAPTER III.

INVESTIGATION OP FORMULAE FOR COMPUTING THE ORBIT OF A COMET MOVING IN

A PARABOLA, AND FOR CORRECTING APPROXIMATE ELEMENTS BY THE VARIATION
OF THE GEOCENTRIC DISTANCE.

61. THE observed spherical co-ordinates of the place of a heavenly

body furnish each one equation of condition for the correction of the

elements of its orbit approximately known, and similarly for the

determination of the elements in the case of an orbit wholly unknown ;

and since there are six elements, neglecting the mass, which must

alwr

ays be done in the first approximation, the perturbations not

being considered, three complete observations will furnish the six

equations necessary for finding these unknown quantities. Hence,
the data required for the determination of the orbit of a heavenly

body are three complete observations, namely, three observed longi-

tudes and the corresponding latitudes, or any other spherical co-

ordinates which completely determine three places of the body as

seen from the earth. Since these observations are given as made at

some point or at different points on the earth's surface, it becomes

necessary in the first place to apply the corrections for parallax. In

the case of a body whose orbit is wholly unknown, it i? impossible

to apply the correction for parallax directly to the place of the body ;

but an equivalent correction may be applied to the places of the

earth, according to the formula? which will be given in the next

chapter. However, in the first determination of approximate ele-

ments of the orbit of a comet, it will be sufficient to neglect entirely

the correction for parallax. The uncertainty of the observed places

of these bodies is so much greater than in the case of well-defined

objects like the planets, and the intervals between the observations

which will be generally employed in the first determination of the

orbit will be so small, that an attempt to represent the observed places

with extreme accuracy will be superfluous.

When approximate elements have been derived, we may find the

distances of the comet from the earth corresponding to the three

observed places, and hence determine the parallax in right ascension
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and in declination for each observation by means of the usual formulae.

Thus, we have

?r/> cos <f>' sin (o 0)
A cos d

tanr =
COS (a 0)'

sin <p' sin (pAd =

in which a is the right ascension, d the declination, A the distance

of the comet from the earth, tp

f the geocentric latitude of the place

of observation, the sidereal time corresponding to the time of

observation, p the radius of the earth expressed in parts of the

equatorial radius, and n the equatorial horizontal parallax of the

sun.

In order to obtain the most accurate representation of the observed

place by means of the elements computed, the correction for aberra-

tion must also be applied. When the distance A is known, the

time of observation may be corrected for the time of aberration;

but if A is not approximately known, this correction may be neglected

in the first approximation.

The transformation of the observed right ascension and declination

into latitude and longitude is effected by means of the equations

which may be derived from (92)x by interchanging a and ^, d and
ft,

and writing e instead of e. Thus, we have

AT tan d
tanN= -

,

sin a

, cos(J!V" e) ,.,.tan A =-- =r=^tana, (1)cosN
tan /5

= tan (N e ) sin A,

and also

cos (N s) _ cos /? sin A

cosN ~
cos <5 sin a'

which will serve to check the numerical calculation of ^ and
/?.

Since cos /9
and cos d are always positive, cos A and cos a must have

the same sign, thus determining the quadrant in which A is to be

taken.

62. As soon as these preliminary corrections and transformations

have been effected, and the times of observation have been reduced

to the same meridian, the longitudes having been reduced to the
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same equinox, we are prepared to proceed with the determination of

the elements of the orbit. For this purpose, let
t,

t
r

,
t" be the times

of observation, r, r', r" the radii-vectores of the body, and u, u', u"

the corresponding arguments of the latitude, jR, Rr

,
R" the distances

of the earth from the sun, and O, O', O" the longitudes of the sun

corresponding to these times.

Let [rr
;

] denote double the area of the triangle formed between

the radii-vectores r, r' and the chord of the orbit between the corre-

sponding places of the body, and similarly for the other triangles

thus formed. The angle at the sun in this triangle is the difference

between the corresponding arguments of the latitude, and we shall

have

[rr'~\ rr' sin (u
r

u},

[rr"] =rr"sm(u" u), (2)

[rV']=ry'sin(ti"--tt'),

If we designate by x, y, z, a?', y', z
r

, x", y", z" the heliocentric co-

ordinates of the body at the times
t,

t
r

,
and t", we shall have

x = r sin a sin (A -f- it),

x' = r' sin a sin (A -f- u'\

in which a and A are auxiliary constants which are functions of the

elements Q> and i,
and these elements may refer to any fundamental

plane whatever. If we multiply the first of these equations by
sin (it" it'),

the second by sin (u" it),
and the third by

sin (u
f

it),
and add the products, we find, after reduction,

- sin (u" u'}
~ sin (u" u) -f ^ sin (u' u) = 0,

which, by introducing the values of [rr'], [rr"], and [r'r"], becomes

[//'] x [rr"] x' + [rr'] x" = 0.

If we put
[r'r"] [rr'] ,Q,

n==
D^J

n FT
weget

> " "_ r^

In precisely the same manner, we find

ny */' + n"f= 0, _
>' i ~"~"__n W
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~ince the coefficients in these equations are independent of the posi-
tions of the co-ordinate planes, except that the origin is at the centre

of the sun, it is evident that the three equations are identical, ana

express simply the condition that the plane of the orbit passes through
the centre of the sun

;
and the last two might have been derived

from the first by writing successively y and z in place of x.

Let ^, A', X" be the three observed longitudes, /9, /?', ft" the corre-

sponding latitudes, and A, J', A" the distances of the body from the

earth
;
and let

A cos p= P,
A' cos p= f>',

A" cos p'= //',

which are called curtate distances. Then we shall have

x = p cos A R cos O ,
d= p' cos A' R' cos Q ',

y = p sin A R sin O , y'
=

p' sin X' R' sin O',
z p tan ft, z' = p' tan p,

of'= P
"
cos I" .fl"cosQ",

in which the latitude of the sun is neglected. The data may be so

transformed that the latitude of the sun becomes 0, as will be ex-

plained in the next chapter ;
but in the computation of the orbit of

a comet, in which this preliminary reduction has not been made, it

will be unnecessary to consider this latitude which never exceeds 1",

while its introduction into the formulae would unnecessarily com-

plicate some of those which will be derived. If we substitute these

values of x, x>
',
&c. in the equations (4) and

(5), they become

= n (p cos A R cos O ) (p
r

cos / Rr

cos O ')

+ n" (p" cos A" R" cos O"),
= n (p sin A R sin O ) (p sin X' R' sin O') (6)

+ n" (p" sin A" R" sin "),

= np tan /9 p' tan p -f ri'p" tan ft".

These equations simply satisfy the condition that the plane of the

orbit passes through the centre of the sun, and they only become

distinct or independent of each other when n and n" are expressed

in functions of the time, so as to satisfy the conditions of undisturbed

motion in accordance with the law of gravitation. Further, they

involve five unknown quantities in the case of an orbit wholly

unknown, namely, w, n", py p', and p" ;
and if the values of n and

n" are first found, they will be sufficient to determine p, p', and p".
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The determination, however, of n and n" to a sufficient degree of

accuracy, by means of the intervals of time between the obsei vations,

requires that p
f should be approximately known, and hence, in

general, it will become necessary to derive first the values of n, n"y

and p
r

after which those of p and p
tf

may be found from equations

(6) by elimination. But since the number of equations will then

exceed the number of unknown quantities, we may combine them in

such a manner as will diminish, in the greatest degree possible, tho

effect of the errors of the observations. In special cases in which

the conditions of the problem are such that when the ratio of two

curtate distances is known, the distances themselves may be deter-

mined, the elimination must be so performed as to give this ratio

with the greatest accuracy practicable.

63. If, in the first and second of equations (6), we change the

direction of the axis of x from the vernal equinox to the place of the

sun at the time t'
t
and again in the second, from the equinox to the

second place of the body, we must diminish the longitudes in these

equations by the angle through which the axis of x has been moved,
and we shall have

= n(p cos(A 0') jRcos(O' O)) 0' cos (A' 0') #)
+ n" (P

"
cos (A"_ 00 - R" cos (O"- 00),

= 7i 0> sin (A 0')+jRsm(0' O)) /sin(A' 0')

+ n" (," sin (A"
_ 00 -R" Bin(0"- ')), (7)

= nO>sin(A' A) +jRsin(0 /)) R sin(O' A')

- n" (p" sin (A" A') R" sin (O
"

*')),

= np tan p p' tan p -f ri'p" tan p'.

If we multiply the second of these equations by tan/3', and the

fourth by sin (A' 0'), and add the products, we get

= n"P
"
(tan p' sin (A" O tan 0" sin (A' O 0)

n".R"sin(0" tan jfiH- n/ (tan ^ sin (A 0') tan/?sin(A' OO)
+ nJ2sin(' )tan/3

/

. (8)

Let us now denote double the area of the triangle formed by the

sun and two places of the earth corresponding to R and Rf
fry

and we shall have

[#]= KRf

sm(Q' O),
and similarly

[JH2"] = RR" sin (O " O ),

']
= R'R" sin(O" 00-
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Then, if we put
_ ,

[#']'
~
IEK"Y

we obtain

Substituting this in the equation (8), and dividing by the coefficient

of p", the result is

_ Q _~ p
n"

'

tan ft" sin (A' Q ') tan ft' sin (A" Q ')

V tan ft' sin (A Q ') tan ft sin (A' Q ')

n (A' Q ') tan ft' sin (A" Q '

_!L _^M_J?sin(0' Q)tanff'_
n" N" J tan /3" sin (A'

- Q') tan /3' sin (A" 0')'

Let us also put

M'= tan ^ sin (;
~ Q ')

~ tan ^ sin (*' Q')
~~

tan ft" sin (A' 0') tan ft' sin (A" 0')'

j^ ___sin(0'-0)tanf__
tan/5" sin (A' 0') tan/3' sin (A" 0')'

and the preceding equation reduces to

-*, JTR (11)

"We may transform the values of 3/ r and M" so as to be better

adapted to logarithmic calculation with the ordinary tables. Thus,

if w' denotes the inclination to the ecliptic of a great circle passing

through the second place of the comet and the second place of the

sun, the longitude of its ascending node will be O', and we shall

have
sin (A' O') tan w'= tan ft'. (12)

Let /9 , ftQ

" be the latitudes of the points of this circle corresponding

to the longitudes A and A", and we have, also,

tan ft
= sin (A 0') tan w',

tan ft"
= sin (A" Q') tan w'.

Substituting these values for tan/9', sin (A O 7

)
and sin (A" O ;

)

in the expressions for M' and M", and reducing, they become

sin(/y- /?) cos p' cos ft
"

sin (ft" /3 ")

'

cos ft cos ft

'

=^ Sin(
'-
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When the value of -77 has been found, equation (11) will give the

relation between p and p" in terms of known quantities. It is evi-

dent, however, from equations (14), that when the apparent path of

the comet is in a plane passing through the second place of the

sun, since, in this case, ft /? and ft"
=

/? ", we shall have M'=
^

and Mfr= oo. In this case, theiefore, and also when
/9 ft and

ft" ftQ
" are very nearly 0, we must have recourse to some other

equation which may be derived from the equations (7), and which

does not involve this indetermination.

It will be observed, also, that if, at the time of the middle obser-

vation, the comet is in opposition or conjunction with the sun, the

values of Mf and M" as given by equation (14) will be indeter-

minate in form, but that the original equations (10) will give the

values of these quantities provided that the apparent path of the

comet is not in a great circle passing through the second place of the

sun. These values are

,_ sin (A 0') _ sin(Q' Q)"
sin(A"')'

"
sm(A"_ 0')

'

Hence it appears that whenever the apparent path of the body is

nearly in a plane passing through the place of the sun at the time of

the middle observation, the errors of observation will have great

influence in vitiating the resulting values of Mf and M" and to

obviate the difficulties thus encountered, we obtain from the third of

equations (7) the following value of p" :

_ n sin (A' A)
p ==p f

^E sin (G - A')
-^# sin ('- AO + 12" sin("- X)

(15)

We may also eliminate p between the first and fourth of equa-

tions (7). If we multiply the first by tan/3', and the second by
cos (A' '),

and add the products, we obtain

= n"p" (tan f cos (A" 0') tan /?" cos (A' '))

ri'R" tanp cos(O" 0') + w/> (tan /3' cos (A Q') tan/?cos(A' 00)
nR tan fi cos (O' O) + R' tan /3',

from which we derive
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"_ JL tan ^ cos (A Q ') tan ff cos (A' Q')
p ~~ P n"

'

tan /?" cos (A' 0') tan /5' cos (A" Q ') (16)

R" tan/?' cos(O" 00 + 7 12 tan^ COB (0' 0) R'tan/?

tan /S" cos (A' Q ') tan $ cos (A" Q')

Let us now denote by I' the inclination to the ecliptic of a great
circle passing through the second place of the comet and that point
of the ecliptic whose longitude is 0' 90, which will therefore be

the longitude of its ascending node, and we shall have

cos (A' 0') tan I'= tan p ; (17)

and, if we designate by /9,
and

/?
the latitudes of the points of this

circle corresponding to the longitudes ^ and X", we shall also have

tan /?,
= cos (A 0')tan.T',

tan /?
= cos (A" 0') tan I'.

Introducing these values into equation (16), it reduces to

_ n sin (/9, /9) cos /3" cos /?~ p '

sin (/5" /?) cos /5 cos /?, (19)

tanr cos /5" cos/?,, / f ,.
. n f

. R'
\

rinC9"- A() (^"^(e'-GO + ^^cosCG'-Q)-^).
from which it appears that this equation becomes indeterminate when
the apparent path of the body is in a plane passing through that

point of the ecliptic whose longitude is equal to the longitude of the

second place of the sun diminished by 90. In this case we may use

equation (11) provided that the path of the comet is not nearly in

the ecliptic. When the comet, at the time of the second observation,

is in quadrature with the sun, equation (19) becomes indeterminate

in form, and we must have recourse to the original equation (16),

which does not necessarily fail in this case.

When both equations (11) and (16) are simultaneously nearly in-

determinate, so as to be greatly affected by errors of observation, the

relation between p and p" must be determined by means of equation

(15), which fails only when the motion of the comet in longitude is

very small. It will rarely happen that all three equations, (14),

(15), and (16), are inapplicable, and when such a case does occur it

will indicate that the data are not sufficient for the determination of

the elements of the orbit. In general, equation (16) or (19) is to be

used when the motion of the comet in latitude is considerable, and

equation (15) when the motion in longitude is greater than in latitude.
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64. The formulae already derived are sufficient to determine the

relation between //' and p when the values of n and n" are known,
and it remains, therefore, to derive the expressions for these quan-
tities.

If we put
t(f -f) = r",

k (" - O = r, (20)

and express the values of x, y, z, x
lf

y y", z" in terms of
re', y

f

,
z

r

by

expansion into series, we have

f _dx^ T" J_ dV
r^_ __1_ dV r"8

x
~<ft '* + 1.2* <ft* #

~

1.2.3* <#*# H '

_ <fo' r 1 dV r2
1 #a! r

h "^"*T + L2"^'^" + r^3'^'^~

and similar expressions for y, y", z, and z
ff

. We shall, however, take

the plane of the orbit as the fundamental plane, in which case 2, z',

and z" vanish.

The fundamental equations for the motion of a heavenly body
relative to the sun are, if we neglect its mass in comparison with

that of the sun,

dV *V
d('
+

r"
'

If we differentiate the first of these equations, we get

dV_3^V dr^__ k2

M_
~ti*~''~7^' dt r'

3
'

dt

Differentiating again, we find

JV_/^_12P/d/\
2

3^ dV\ ,6^ dS_
cM

dt ~~\r'
6

"

r'
5

\ dt I

'

h
/*

'

~dP /*
h

r'*

'

dt
'

dt'

Writing y instead of x, we shall have the expressions for -^ and
/l^ r Qv

-j-> Substituting these values of the differential coefficients in equa-

tions (21), and the corresponding expressions for y and y", and

putting
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-i__i^_i_^L ^'+i/l 12/rf/y
3 dy\

2>' 24- + 2'6-3 + ^~ *'

T" r"3 T"* dr
r

'~'

_ 1 __, 1 __ ,

,
3 d

*'3
~
t
"
2 ' + ^''~ 5

" +4 " "'

___ _ .

~yfc
6
^r'

3 nV* dt
" "

we obtaiD

From these equations we easily derive

>

Civ

'
'

(23)

.
.

The first members of these equations are double the areas of the

triangles formed by the radii-vectores and the chords of the orbit

between the places of the comet or planet. Thus,

y'z-s'y =|W], sV-a/y^ry], y"x
-

J'y= [n"], (24)

and x'dy' y'dx' is double the area described by the radius-vector

during the element of time dt> and, consequently, ,
- ia

double the areal velocity. Therefore we shall have, neglecting the

mass of the body,

iii which p is the semi-parameter of the orbit. The equations (23j,

therefore, become

[r/] = bk V>, [//'] = b"k V~p, [rr"] - (aW

Substituting for a, 6, a", b" their values from (22), we find, since
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(25)

From these equations the values of n =
^
J an(^ n" ==

r "n ma7
be derived

;
and the results are

r" ?
A;r'*

'

dt
'"

which values are exact to the third powers of the time, inclusive.

In the case of the orbit of the earth, the term of the third order.

dR'
being multiplied by the very small quantity j- > is reduced to a

dt

superior order, and, therefore, it may be neglected, so that in this

case we shall have, to the same degree of approximation as in (26),

n [r'r"~\From the equations (26) or from (25), since
,
=

TTTT, we find

i
4 _ i i

e -^T~

Since this equation involves r' and -3-, it is evident that the value
dt

of ~, in the case of an orbit wholly unknown, can be determined
Tl

only by successive approximations. In the first approximation to

the elements of the orbit of a heavenly body, the intervals between

the observations will usually be small, and the series of terms of (28)

will converge rap'dly, so that we may take

n r

n"
~

T"'
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and similarly

Wf
=

^'

Hence the equation (11) reduces to

l>"
= ~M'p. (29)

It will be observed, further, that if the intervals between the observa-

tions are equal, the term of the second order in equation (28)

vanishes, and the supposition that
,
=

, is correct to terms of the
71 T

third order. It will be advantageous, therefore, to select observa-

tions whose intervals approach nearest to equality. But if the

observations available do not admit of the selection of those which

give nearly equal intervals, and these intervals are necessarily very

unequal, it will be more accurate to assume

JL- -JL
n"

~~
N'"

and compute the values of N and Nff

by means of equations (9),

since, according to (27) and (28), if r' does not differ much from R',

the error of this assumption will only involve terms of the third

order, even when the values of r and rfr
differ very much.

Whenever the values of p and p" can be found when that of their

ratio is given, we may at once derive the corresponding values of r

and r", as will be subsequently explained.

The values of r and r" may also be expressed in terms of r
'

by
means of series, and we have

j +* dy r
"2 _ &

,
dr' r dV ra

from which we derive

k w
neglecting terms of the third order. Therefore

dr'_k(r"-r) t

~dt~ ~T+V'~'
12



178 THEORETICAL ASTEONOMY.

and when the intervals are equal, this value is exact to terms of the

fourth order. We have, also,

which gives

r)!_r . (31)

Therefore, when r and r" have been determined by a first approxi-

mation, the approximate values of r' and
-^-

are obtained from these

equations, by means of which the value of may be recomputed

from equation (28). We also compute

N _#.B"sin(0"-0')
(32)N"

'

K'sm(C)' 0)

and substitute in equation (11) the values of and -^ thus found.
n" N

designate by M the ratio of the cui

we have

If we designate by M the ratio of the curtate distances
t

o and //',

NR

In the numerical application of this, the approximate value of p will

be used in computing the last term of the second member.

In the case of the determination of an orbit when the approximate

elements are already known, the value of -77 may be computed from

n __rV'sin(0" iQ ,,
"~~ ''

and that of -^ from (32); and the value of M derived by means of

these from (33) will not require any further correction.

65. When the apparent path of the body is such that the value

of Mf

,
as derived from the first of equations (10), is either indeter-

minate or greatly aifected by errors of observation, the equations (15)

and (16) must be employed. The last terms of these equations may
be changed to a form which is more convenient in the approximations
to the value of the ratio of p" to p.

Let Y
t
Yf

,
Y" be the ordinates of the sun when the axis of
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abscissas is directed to that point in the ecliptic whose longitude is

^', and we have
Y =E sin(O *'),

Y' =E' sin (0' A'),

Now, in the last term of equation (15), it will be sufficient to put

n_ N
n"~ Ne"

and, introducing Y, Y', Y", it becomes

cosec -

It now remains to find the value of -77- From the second of equa-

tions (26) we find, to terms of the second order inclusive,

We have, also,

and hence

Therefore, the expression (35) becomes

But, according to equations (5),

NYY'-\-N"

and the foregoing expression reduces to

sin (/'-/)
'

since Y'= Rf
sin (O

r A f

).
Hence the equation (15) becomes

1 \^sin(/-0Q (
.-* (36)
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If we put

... _ _n_ sin (A' ^)

~~"ri" *sin(/l" /)'

JF-! _ .
*"

.

^ '

* sn -
we have

=M=M9F. (37)

Let us now consider the equation (16), and let us designate by X,
X'

y
X" the abscissas of the earth, the axis of abscissas being directed

to that point of the ecliptic for which the longitude is O r

,
then

X = JR cos (0 00,
X'=Kf

,

X"=JR"eos(0" 00.

It will be sufficient, in the last term of (16), to put

Jl JL
n"
~

N" '

and for
77- its value in terms of N" as already found. Then, since

this term reduces to

-l^rfV+yW 1 -1\_^ta
B r

n ^ *
J\ pi E,3

] tanp cog y,_
,

j
_

and if we put

__n_ tan /3' cos (A Q r

)
tan /? cos (A

; Q ;

)~~
"n

77
'

tan ft" cos (A' Q') tan p
r

cos (A" Q')' (38)

tan^'cos (X 0') tan/3oos(X' Q')

the equation (16) becomes

^F'. (39)

In the numerical application of these formulae, if the elements are

not approximately known, we first assume

n

when the intervals are nearly equal, and
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n"
"

N" '

as given by (32), when the intervals are very unequal, and neglect

the factors F and F'. The values of
t

o and p
fr which are thus ob-

tained, enable us to find an approximate value of rf

,
and with this a

more exact value of ,7 may be found, and also the value of F or Ff
.

Whenever equation (11) is not materially affected by errors of

observation, it will furnish the value of M with more accuracy than

the equations (37) and (39), since the neglected terms will not be so

great as in the case of these equations. In general, therefore, it is to

be preferred, and, in the case in which it fails, the very circumstance

that the geocentric path of the body is nearly in a great circle, makes

the values of F and F' differ but little from unity, since, in order

that the apparent path of the body may be nearly in a great circle,

r' must differ very little from Rf
.

66. When the value of M has been found, we may proceed to

determine, by means of other relations between p and p
tr

9
the values

of the quantities themselves.

The co-ordinates of the first place of the earth referred to the third,

are

x, R" cos Q" R cos Q ,
, .^

y,
= E"smO" KsmQ.

If we represent by g the chord of the earth's orbit between the places

corresponding to the first and third observations, and by G the longi-

tude of the first place of the earth as seen from the third, we shall

have

x,
= g cos G, y,

=
ff

sin G,

and, consequently,

12"cos(0" 0) jR= ?cos( O),

jR"sin(" 0) =gsm(G').
If ^ represents the angle at the earth between the sun and comet

at the first observation, and if we designate by w the inclination to

the ecliptic of a plane passing through the places of the earth, sun,

and comet or planet for the first observation, the longitude of the

ascending node of this plane on the ecliptic will be O, and we shall

have, in accordance with equations (81)^

cos * = cos fi cos (A 0),
sin 4 cos w= cos /? sin (A 0),
sin 4 sin w sin&
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from which

tan/5
tan w= -T

sin (A Q)'

tan(A- G )
tan 4 = .

costy

Since cos
ft

is always positive, cos ^ and cos (A 0) must have the

same sign; and, further, a//
cannot exceed 180.

In the same manner, if w" and ij/' represent analogous quantities

for the time of the third observation, we obtain

tan/5"
tanw"= -

sin (A" Q")'

^ (43)

cos 4"= cosf cos (A" 0").
We also have

which may be transformed into

ra= G> sec R cos^ + .ft
2
sin**; (44)

and in a similar manner we find

r"2= (p" sec /3" #' cos V')
1 + #" sin

2
*". (45)

Let K designate the chord of the orbit of the body between the first

and third places, and we have

X>= (*"
_

,.). _|_ (f_ y). + (2
"_ f).

But
= p cos A R cos 0,

2/=i0smA E sin O,
z = p tan /5,

and, since />"
= Mp,

f= Mp sin X" jR" sin O",

from which we derive, introducing g and (r,

a/' #= JW/> cos A"
/> cos A g cos $,

y" V = Mp sm *-"
jO sin A g sin G,

z" z = Mp tan/5" p tan /?.

Let us now put
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Mp cos A" p cos A = ph cos C cos H,
Mp sin A"

/> sin A = ph cos C sin .5", (46)

Mp tan /3" p tan fi= ph sin C.

Then we have

#" x /oA cos C cos IT # cos 6r,

2/" y = ph cos C sin H g sin (2,

z" z = ph sin C.

Squaring these values, and adding, we get, by reduction,

x2=
/>

2
/i
2

2g ph cos C cos ( G .H") + f ; (47)

and if we put
cos C cos ( G H} = cos ?>, (48^

we have
x2=

(/>A y cos ^)
2
-f- <7

2 sin2
y. (49)

If we multiply the first of equations (46) by cos^", and the

second by sin A", and add the products; then multiply the first by
sin X", and the second by cos K r

,
and subtract, we obtain

h cos C cos (H A") =M cos (A" A),

h cos C sin (H-n = sin (/" A), (50)

/i sin C =M tan /3" tan ft

by means of which we may determine A, f,
and H.

Let us now put

g sin ^ = Ay
R sin 4*

= B, h cos = b,

R" sin 4"= JB", - 6", (51)

# cos ?> 6jR cos ^ = c, g cos? b"R" cos 4"= c",

jO/i gr
cos p = d,

and the equations (44), (45), and (49) become

The equations thus derived are independent of the form of the

orbit, and are applicable to the case of any heavenly body revolving

around the sun. They will serve to determine r and r" in all cases

in which the unknown quantity d can be determined. If p is known,
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d becomes known directly; but in the case of an unknown orbit,

these equations are applicable only when p or d may be determined

directly or indirectly from the data furnished by observation.

67. Since the equations (52) involve two radii-vectores r and r"

and the chord x joining their extremities, it is evident that an addi-

tional equation involving these and known quantities will enable us

to derive d, if not directly, at least by successive approximations.
There is, indeed, a remarkable relation existing between two radii-

vectores, the chord joining their extremities, and the time of describing
the part of the orbit included by these radii-vectores. In general,

the equation which expresses this relation involves also the semi-

transverse axis of the orbit; and hence, in the case of an unknown

orbit, it will not be sufficient, in connection with the equations (52),

for the determination of
c?, unless some assumption is made in regard

to the value of the semi-transverse axis. For the special case of

parabolic motion, the semi-transverse axis is infinite, and the result-

ing equation involves only the time, the two radii-vectores, and the

chord of the part of the orbit included by these. It is, therefore,

adapted to the determination of the elements when the orbit is sup-

posed to be a parabola, and, though it is transcendental in form, it

may be easily solved by trial. To determine this expression, let us

resume the equations

lc(t-T}

1/2 jt

and, for the time t"
}

= tan %v -j- I tan* ^v

1/2gi

Subtracting the former from the latter, and reducing, we obtain

1/2 gf

~~
cos J-y" cos ^v \ ~q

cos ^v" cos i> q /

and, since r = q sec
2

^, this gives

On/ 1 t ' C ) Sill 77 \ t/ i/ / I/ ** I r / i * s tt ~\ / /7 I /" r* r\^ = -= i:^
7=r^ 1 r -|- r'+ cos I (v vjvrr (53)

1/2 1/g \ /

But we have, also, from the triangle formed by the chord vc and the

radii-vectores r and rr/

,

x2= r2
-f- r"2 2rr" cos (?/' v)

= (r+ r")
2 4rr" cos' JW v).
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Therefore,

21/W"
Let us now put

r + r" + x = m3
,

r + r" x = n,

m and n being positive quantities. Then we shall have

r + r"=J(m'+*),
2 cos J (v" v) Vrr"= mn

;

and, since m and n are always positive, it follows that the upper sign

must be used when v" v is less than 180, and the lower ^ign when
v" v is greater than 180. Combining the last equation with (53),

the result is

3k (f- = (m + m). (55)
y 2g

Now we have

sin
|- (v" v) = sin v" cos ^v cos ^v" sin ^v.

Squaring this, and reducing, we get

sin2

\ (v" v) = cos2

^v -\- cos2 v" 2 cos Jv" cos |v cos J (t^ v),

or, introducing r and q,

9 1 s n \ Q ,

Bin1

i (w
"

v) =1 -f

Therefore,

i "

--7=

introducing this value into equation (55), we find

sin i
(v" v) = --=% <> =1= n).

Replacing m and n by their values expressed in terms of r, r", and

x, this becomes

6k (if' -?> = (r + r"+ x)t T (r + r"- x)t, (56)

the upper sign being used when v" v is less than 180. This

equation expresses the relation between the time of describing any

parabolic arc and the rectilinear distances of its extremities from each

other and from the sun, and enables us at once, when three of these

quantities are given, to find the fourth, independent of either the
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perihelion distance or the position of the perihelion with respect to

the arc described.

68. The transcendental form of the equation (56) indicates that,

when either of the quantities in the second member is to be found,

it must be solved by successive trials
; and, to facilitate these approxi-

mations, it may be transformed as follows :

Since the chord x can never exceed r + r", we may put

7Ippr
= sin/, (57)

and, since x, r, and r" are positive, sin f
r must aiways be positive.

The value of f must, therefore, be within the limits and 180.

From the last equation we obtain

cosV=> + r")
2 -<

and substituting for Jt
2

its value given by

x2= (r + r")
2 4rr" cos2

(v" v),

this becomes *

4rr" cos2W v)

(r + r,,y

Therefore, we have

cos Y'
= cos | (y" v) .,, (58)

and also

"
r/ ""

Hence it appears that when v" v is less than 180, f belongs to

the first quadrant, and that when v" v is greater than 180, cosf
is negative, and f' belongs to the second quadrant.

Tf we introduce f' into the expressions for m2 and n2
, they becoma

^= (r + ')(!- sin
,

which give
m*= (r + r") (cos tf + sin J/),
W2=

(r 4. /') (-4- cos J/ ip sinyj ;

and, since f ig greater than 90 when v" v exceeds 180, the

equation (56) becomes

= (cosy+ sin /)- (cos J/-siny)
(r
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From this equation we get

= 6 cos2$ sin %/ -f- 2 sin* $/,

or
/> f

^TTT-
= 6 sin !/ 4 sin8 tf ;

and this, again, may be transformed into

6r'

(60)

Let us now put
sn
"

or

sin
\*f'
= l/ 2 sin #,

and we have

= 3 sin # 4 sin3 x = sin 3#. (62)

is less than 180, f must be less than 90, and

hence, in this case, sin x cannot exceed the value |, or x must be

within the limits and 30. When v" v is greater than 180,
the angle f is within the limits 90 and 180, and corresponding to

these limits, the values of sin x are, respectively, \ and \ \/%. Hence,
in the case that vrr v exceeds 180, it follows that x must be within

the limits 30 and 45.
The equation

1/20

is satisfied by the values 3# and 180 3x; but when the first gives

x less than 15, there can be but one solution, the value 180 3x

being in this case excluded by the condition that 3x cannot exceed

135. When x is greater than 15, the required condition will be

satisfied by 3x or by 180 3#, and there will be two solutions,

corresponding respectively to the cases in which vff v is less than

180, and in which v" v is greater than 180. Consequently,

wnen it is not known whether the heliocentric motion during the

interval t
rf

t is greater or less than 180, and we find 3x greater

than 45, the same data will be satisfied by these two different

solutions. In practice, however, it is readily known which of the
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two solutions must be adopted, since, when the interval t" t is not

very large, the heliocentric motion cannot exceed 180, unless the

perihelion distance is very small; and the known circumstances will

generally show whether such an assumption is admissible.

We shall now put
o/

n = -, (63)

sin 3*= -L (64)
T/8

and we obtain

We have, also,
sin ^/= |/2 sin x,

and hence

cos \r'
= i/l 2 sin2 x= I/cos 2x.

Therefore

sin = 2t sin x V cos

and, since JC = (r -|- r") sin f, we have

x = 2% (r + r") sin a; I/cos 2x.

If we put
3sin# /

-^- ,.
x

^ = . o V cos 2x, (b5)
sinoa;

the preceding equation reduces to

From equation (64) it appears that
rj
must be within the limits

and Ji/8- We may, therefore, construct a table which, with ^ as

the argument, will give the corresponding value of //, since, with a

given value of
37,

3x may be derived from equation (64), and then

the value of // from (65). Table XI. gives the values of // corre-

sponding to values of
r]
from 0.0 to 0.9.

69. In determining an orbit wholly unknown, it will be necessary

to make some assumption in regard to the approximate distance of

the comet from the sun. In this case the interval t" t will gene-

rally be small, and, consequently, x will be small compared with r

and r". As a first assumption we may take r = 1, or r 4 r"= 2,

and
fj.
=

1, and then find x from the formula
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With this value of x we compute d, r, and r" by means of the

equations (52). Having thus found approximate values of r and r",
we compute y by means of (63), and with this value we enter Table

XI. and take out the corresponding value of p. A second value

for K is then found from (66), with which we recompute r and r"
',
and

proceed as before, until the values of these quantities remain un-

changed. The final values will exactly satisfy the equation (56),
and will enable us to complete the determination of the orbit.

After three trials the value of r -f r" may be found very nearly
correct from the numbers already derived. Thus, let y be the true

value of log (r -j- r"), and let A?/ be the difference between any
assumed or approximate value of y and the true value, or

2/0
= y + Ay.

Then if we denote by y
f the value which results by direct calculation

from the assumed value yQ, we shall have

2A>' y =/(y )
=

.Expanding this function, we have

2/o' 2/o =/(y) + 4 *y -4- Ay* + Ac.

But, since the equations (52) and (66) will be exactly satisfied when
the true value of y is used, it follows that

and hence, when AT/ is very small, so that we may neglect terms ot

the second order, we shall have

Vo' y,
= 4 Ay = 4 (y y*).

Let us now denote three successive approximate values of log (r + r")

b7 2A 2A/> 2/o"> and let

y
'

yc
= a> y" &' = '

then we shall have
a = A (y y),

a'= -4 (&'-?).

Eliminating A from these equations, we get

y (a
f

o) = a'y
- -

ay ',

from which
' /'

(67;
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Unless the assumed values are considerably in error, the value of

y or of log (r + r") thus found will be sufficiently exact
;
but should

it be still in error, we may, from the three values which approximate
nearest to the truth, derive y with still greater accuracy. In the

numerical application of this equation, a and a' may be expressed in

units of the last decimal place of the logarithms employed.
The solution of equation (56), to find t" t when JC is known, is

readily effected by means of Table VIII. Thus we have

= sin 3#.

l/2(r-f-*-")f

and, when f
1
is less than 90, if we put

.
----

. /~i

sin /
we get

T' = -i 1/2 N sin r
'

(r + r")t, (68)

or

When f exceeds 90, we put

N' = sin 3s,

and we have

/= 4 1/2 JF(r+ /')*

in which log $ j/2 = 9.6733937. With the argument f we take

from Table VIII. the corresponding value of N or JV7

,
and by

means of these equations r' = k (t" t)
is at once derived.

The inverse problem, in which r' is known and K is required, may
also be solved by means of the same table. Thus, we may for a first

approximation put
* = T

'

1/2.

and with this value of K compute d, r, and r" . The value of f
1
is

then found from

and the table gives the corresponding value of N QT JV7
. A second

approximation to x will be given by the equation

S_

1/2
'

NVT-
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or by
3 /sin/

'v^'^'i/T+y'

in which log = = 0.3266063. Then we recompute d, r, and r",
v 2

and proceed as before until x remains unchanged. The approxima-
tions are facilitated by means of equation (67).

It will be observed that d is computed from

and it should be known whether the positive or negative sign must

be used. It is evident from the equation

d= ph g cos y>,

since
/?, h, and g are positive quantities, that so long as

<p (which
must be within the limits and 180) exceeds 90, the value of d

must be positive ;
and therefore

<p
must be less than 90, and g cos

<p

greater than ph, in order that d may be negative. The equation (47)

shows that when x is greater than g, we have

g cos <p < %ph,

and hence d must in this case be positive. But when x is less than

g, either the positive or the negative value of d will answer to the

given value of
^>,

and the sign to be adopted must be determined

from the physical conditions of the problem.
If we suppose the chords g and x to be proportional to the linear

velocities of the earth and comet at the middle observation, we have,

the eccentricity of the earth's orbit being neglected,

= S
rV

which shows that H is greater than g}
and that d is positive, so long

as r
f
is less than 2. The comets are rarely visible at a distance from

the earth which much exceeds the distance of the earth from the sun,

and a comet whose radius-vector is 2 must be nearly in opposition in

order to satisfy this condition of visibility. Hence cases will rarely

occur in which d can be negative, and for those which do occur it

will generally be easy to determine which sign is to be used. How-

ever, if d is very small, it may be impossible to decide which of the

two solutions is correct without comparing the resulting elements

with other and more distant observations.
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70. When the values of r and r" have been finally determined, as

just explained, the exact value of d may be computed, and then we
have

_ d + g cos <p

~h~ (70)

P"=MP)

from which to find p and p".

According to the equations (90) 1?
we have

r cos b cos (I O) = p cos (A Q) R,
r cos b sin (I O) = p sin (A Q), (71)

r sin 6 =
/> tan /?,

and also

r" cos b" cos (r O") = p" cos (A" O") R r

,

r" cos b" sin (r O") = p" sin (A" 0"), (72)

r"sin&" =ytan/9",

in which I and Z
;/ are the heliocentric longitudes and 6, b" the corre-

sponding heliocentric latitudes of the comet. From these equations

we find r, r", I,
l
ff

, 6, and b" and the values of r and r" thus found,

should agree with the final values already obtained. When I" is less

than
I,

the motion of the comet is retrograde, or, rather, when the

motion is such that the heliocentric longitude is diminishing instead

of increasing.

From the equations (82)w we have

tan i sin (I ) = tan 6,

tan i sin (I" & )
= tan b",

which may be written

zt tan i(sin (I x) cos (x &) -f sin (re &) cos (I x))
= tan b,

tan i (sin (" a?) cos (a; & ) -f sin (re ) cos (r #)) = tan b".

Multiplying the first of these equations by sin (I" x) 9
and the second

by sin (I a?),
and adding the products, we get

it tan i sin (x Q, ) sin (f
f - -

F)
= tan b sin (I" x) tan b" sin (I a:) ;

and in a similar manner we find

it tan i cos (a; & ) sin (I" I)
= tan 6" cos (I x) tan b cos (I" x).

Now, since x is entirely arbitrary, we may put it equal to I, and we

have
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tan i sin (I ft )
= db tan b,

. n
'

tan 6" tan 6 cos (?' I) (74)

the lower sign being used when it is desired to introduce the distinc-

tion of retrograde motion.

The formulae will be better adapted to logarithmic calculation if

we put x = \(l"+ 0, whence l"x=l(l" l)
and I x=\(l I")-,

and we obtain

taut sinQ(r-f Q ft) = : 5
- sin

(^+6) -2 cos 6 cos 6" cos J (/" I)
'

'

( jy \

tanicos(Kr+ - O) = g CQ5i

S

C

'P

8 V,

~
|^.

These equations may also be derived directly from (73) by addition

and subtraction. Thus we have

db tan i (sin (I" ft ) -f sin (I ft ))
= tan b" -f tan b,

tani(sin(r ft) sin (7 ft)) = tan&" tan6;

and, since

sin (r ft) -f sin (I ft) = 2 sin (f'+ ^- 2ft ) cos i (r~ O,

sin(r ft) sin^ ft) =2cosi(^'+ ^ 2ft) sin J(^'

these become

< d.(, (r +l)- a)- "_.
which may be readily transformed into (75). However, since b and

b" will be found by means of their tangents in the numerical appli-

cation of equations (71) and (72), if addition and subtraction loga-

rithms are used, the equations last derived will be more convenient

than in the form (75).

As soon as ft and i have been computed from the preceding equa-

tions, we have, for the determination of the arguments of the latitude

u and u",

COS I COS I

Now we have
u= v -f- o>,

in which CO = TC ft in the case of direct motion, and CD = ft K
13
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when the distinction of retrograde motion is adopted; and we shall

have

if.-ea-V' 4
and, consequently,

x2= r2 + r"2 - 2rr" cos (u" u), (78)
or

x2=
(/' r cos O" it))

2 + r8 sin2 (" u). (79)

The value of K derived from this equation should agree with that

already found from (66).

We have, further,

r= q sec2
(u ), **'=

<?
sec2 3 (X' "Of

or

-7= COS ?(U- 0>) ==:-T=, -= COS i (w" >) =
T/g 1/r 1/5

By addition and subtraction, we get, from these equations,

) + cos l(w o>))
= = 4-

frum which we easily derive

~ cosHK"+)-) cosK"- ) =4=
1/3 t/r

But

1 1 1
/ 4/7^ _ 4

T7 +^~^\ X r

and if we put

4 f7r
since

-yf
will not differ much from 1, ^' will be a small angle; and

we shall have, since tan (45 + 0') cot (45 + 6')
= 2 tan 20',
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Therefore, the equations (80) become

1 . 1 e , f . . tan 2^
sin

'

sin | (ti" u) Vrr1'
'

cos
cos w -

from which the values of q and w may be found. Then we shall

have, for the longitude of the perihelion

when the motion is direct, and

* = & *,

when i unrestricted exceeds 90 and the distinction of retrograde
motion is adopted.

It remains now to find T
y
the time of perihelion passage. We have

V = U- 0>, 1/'=u"- to.

With the resulting values of v and v" we may find, by means of

Table VI., the corresponding values of M (which must be distin-

guished from the symbol M already used to denote the ratio of the

curtate distances), and if these values are designated by M and M",

we shall have

*t-T= m m
or

m m
f

in which m = -f, and log CQ 9.9601277. When v is negative, the
gi

corresponding value of M is negative. The agreement between the

two values of T will be a final proof of the accuracy of the numerical

calculation.

The value of T when the true anomaly is small, is most readily

and accurately found by means of Table VIII., from which we

derive the two values of ^V and compute the corresponding values

of T from the equation

2
in which

logg,
= 1.5883273. When v is greater than 90, we de-
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rive the values of N' from the table, and compute the corresponding

values of T from

71. The elements q and Tmay be derived directly from the values

of r, r", and x, as derived from the equations (52), without first

finding the position of the plane of the orbit and the position of the

orbit in its own plane. Thus, the equations (80), replacing u and un

by their values v -\- co and v + &>", become

4dni (^ + tO sinj (v"
-

v) = *

V, Vr Vr

Adding together the squares of these, and reducing, we get

or

Q _

"

'^~'_~~
" "

Combining this equation with (59), the result is

"
r -f- r" >

and hence, since x = (r + r") sin
7-',

5= sin2
(i/' tO co

We have, further, from (78),

from which, putting

sinv = r^H^
t (84)

x

we derive

2i v rr /// > foK."\
cos v = sin J (v v). (85;

x

Therefore, the equation (83) becomes
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= J (r + r") cos2

tf cos'v, (86)

by means of which q is derived directly from r, r", and K, the value

of v being found by means of the formula (84), so that cosv ia

positive.

When f cannot be found with sufficient accuracy from the equa-
tion

we may use another form. Thus, we have

which give, by division,

tan(45-Hr') = \/r_ llllli (87)
~r~ -''--- X

In a similar manner, we derive

tan (45 + ")
= \*_ S/Z (88>

In order to find the time of perihelion passage, it is necessary first

to derive the values of v and v". The equations (59) and (85) give,

by multiplication,
tan (v" v) = tan -/ cos v, (89)

from which v" v may be computed. From (82) we get

If we put

tan /'= */_-., (9u)

this equation reduces to

tan $ (y" + v) = tan (/ 45) cot j (v" v), (91)

and the equations (81) give, also,

tan i (t/' + t>)
= cot i

(i/' v) sin 2^,

either of which may be used to find v" -f- v.
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From the equations

cos |v _ 1 cos \v" 1

Vq Vr Vq Vr"

by multiplying the first by sin \v" and the second by sin \v, add-

ing the products and reducing, we easily find

sin 4 (V' v) sin
|t>

cos \ (v" v) _ 1

Vq Vr
Hence we have

__ .
, _*

T/r

=COS^=-7=,
Vq Vr

which may be used to compute q, v, and v ff when v" v is known.

When \(v" v) and J(v" + v),
and hence t>" and v, have been

determined, the time of perihelion passage must be found, as already

explained, by means of Table VI. or Table VIII.

It is evident, therefore, that in the determination of an orbit, as

soon as the numerical values of r, r", and Y. have been derived from

the equations (52), instead of completing the calculation of the ele-

ments of the orbit, we may find q and T, and then, by means of

these, the values of r f and v f

may be computed directly. When this

has been effected, the values of n and n" may be found from (3), or

that of
,
from (34). Then we compute p by means of the first of

equations (70), and the corrected value of M from (33), or, in the

special cases already examined, from the equations (37) and (39). In

this way, by successive approximations, the determination of para-

bolic elements from given data may be carried to the limit of accuracy

which is consistent with the assumption of parabolic motion. In the

case, however, of the equations (37) and (39), the neglected terms

may be of the second order, and, consequently, for the final results

it will be necessary, in order to attain the greatest possible accuracy,

to derive

M=?"-
P

from (15) and (16). When the final value of M has been found, the

determination of the elements is completed by means of the formula;

already given.
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72. EXAMPLE. To illustrate the application of the formulae for

the calculation of the parabolic elements of the orbit of a comet by
a numerical example, let us take the following observations of the

Fifth Comet of 1863, made at Ann Arbor:

Ann Arbor M. T. a 6

1864 Jan. 10 6* 57m 20-.5 19* Um 4'.92 + 34 6' 27".4,

13 6 11 54 .7 19 25 2 .84 36 36 52 .8,

16 6 35 11 .6 19 41 4 .54 + 39 41 26 .9.

These places are referred to the apparent equinox of the date and

are already corrected for parallax and aberration by means of

approximate values of the geocentric distances of the comet. But

if approximate values of these distances are not already known, the

corrections for parallax and aberration may be neglected in the first

determination of the approximate elements of the unknown orbit of

a comet. If we convert the observed right ascensions and declina-

tions into the corresponding longitudes and latitudes by means of

equations (1),
and reduce the times of observation to the meridian

of Washington, we get

Washington M. T. A (3

1864 Jan. 10 7 ft 24" 3' 297 53' 7".6 -f 55 46' 58".4,

13 6 38 37 302 57 51 .3 57 39 35 .9,

16 7 1 54 310 31 52 .3 + 59 38 18 .7.

Next, we reduce these places by applying the corrections for pre-

cession and nutation to the mean equinox of 1864.0, and reduce th<*

times of observation to decimals of a day, and we have

t = 10.30837, A = 297 52' 51".l, = + 55 46' 58".4,

1? = 13.27682, A' = 302 57 34 .4, /?'
= 57 39 35 .9,

tf'= 16.29299, A" = 310 31 35 .0,
"= + 59 38 18 .7.

For the same times we find, from the American Nautical Almanae,

O =290 6' 27".4, logE =9.992763,

0' =293 7 57 .1, logJ?' =9.992830,

O" = 296 12 15 .7, log #' = 9.992916,

which are referred to the mean equinox of 1864.0. It will gene-

rally be sufficient, in a first approximation, to use logarithms of five

decimals
; but, in order to exhibit the calculation in a more complete

form, we shall retain six places of decimals.

Since the intervals are very nearly equal, we may assume
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-
n"~r"~ N"'

Then we have

M== t"- t tan/5'sin(A O') tan/9sin(A' O')
H t tan ?' sin (A' ') tan jf sin (A" O')'

and

g sin (
- O) = R" sin (0"- Q),

g cos(G O) = R" cos(O" O) R;
h cos C cos (H A") = Jf_ cos (X" A),

A cos C sin (jff A") = sin (A" A),

AsinC =M tan/5" tan/3;

from which to find Jf, 6r, #, IT, C> and ^ Thus we obtain

logM= 9.829827, JET=r 94 24' 1".8,

G = 22 58' 1".7, C= 40 28 21 .9,

log g = 9.019613, log h = 9.688532.

A" cos /?

Since r- =M---^ = 0.752. it appears that the comet, at the time
A cos p

of these observations, was rapidly approaching the earth. The

quadrants in which G O and H k" must be taken, are deter-

mined by the condition that g and h cos must always be positive.

The value of M should be checked by duplicate calculation, since an

error in this will not be exhibited until the values of X f and f}
f are

computed from the resulting elements.

Next, from

cos 4.
= cos /5 cos (A O), cos t"= cos /9" cos (A" 0";,

cos <p
= cos C cos ( G -ET),

we compute cos
oj/,

cos ij/', and cos
<p

and then from

g sin <p
= A, h cos /? = b,

<7 cos <p bR cos 4 = c, g cosy 6"jR" cos 4" = c'',

we obtain J., jB, J5/r
,
&c. It will generally be sufficiently exact to

find sin ^ and sin ty' from cos
i/,

and cos 4/
/r

;
but if more accurate

values of ^ and ^/" are required, they may be obtained by means of

the equations (42) and (43). Thus we derive

log A = 9.006485, log P = 9.912052, log B"= 9.933366,

log b = 9.438524, log b"= 9.562387,

c^ 0.125067, c"= 0.150562.
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Then we have

2r'

from which to find, by successive trials, the values of r, r", and X,

that of
[J. being found from Table XL with the argument 57. First,

we assume

log x = log (Y 1/2) = 9.163132,

and with this we obtain

log r = 9.913895, log r"= 9.938040, log (r + r") = 0.227165.

This value of log(r + r"} gives 7
=

0.094, and from Table XL we

find log //
= 0.000160. Hence we derive

log x= 9.200220, log r= 9.912097, log r"= 9.935187,

log (r + r") = 0.224825.

Repeating the operation, using the last value of log(r -f r"), we get

log x = 9.201396, log r = 9.912083, log r"= 9.935117,

log (r + r") = 0.224783.

The correct value of log (r -f r") may now be found by means of the

equation (67). Thus, we have, in units of the sixth decimal place of

the logarithms,

a = 224825 227165 = 2340, a'= 224783 224825 = 42,

and the correction to the last value of log(r + r") becomes

a a

Therefore,

log (r + t") = 0.224782,

and, recomputing ^, //, x, r, and r", we get, finally,

log x = 9.201419, logr= 9.912083, log/'= 9.935116,

log (r + r") = 0.224782.

The agreement of the last value of log(r + r"} with the preceding

one shows that the results are correct. Further, it appears from the
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values of r and r" that the comet had passed its perihelion and was

receding from the sun.

By means of the values of r and r" we might compute approxi-
/y?*'

mate values of r' and -^- from the equations (30) and (31), and then
dt ._ rn _/V

a more approximate value of
j-,

from (28), that of ^ being found

from (32). But, since rf
differs but little from Rf

,
the difference

n N
between 77 and -^ is very small, so that it is not necessary to con-

sider the second term of the second member of the equation (33);

and, since the intervals are very nearly equal, the error of the as-

sumption
n r

is of the third order. It should be observed, however, that an error

in the value of M affects H
} , A, and hence also A, 6, 6", c, and c",

and the resulting value of p may be affected by an error which con-

siderably exceeds that of M. It is advantageous, therefore, to select

observations which furnish intervals as nearly equal as possible in

order that the error of M may be small, otherwise it may become

necessary to correct If and to repeat the calculation of r, r"
9
and x.

We may also compute the perihelion distance and the time of peri-

helion passage from r, rn
',
and x by means of the equations (86), (89),

and (91) in connection with Tables VI. and VIII. Then r f and v f

may be computed directly, and the complete expression for M may
be employed.

In the first determination of the elements, and especially when the

corrections for parallax and aberration have been neglected, it is un-

necessary to attempt to arrive at the limit of accuracy attainable,

since, when approximate elements have been found, the observations

may be more conveniently reduced, and those which include a longer

interval may be used in a more complete calculation. Hence, as soon

as r, rn
',
and x have been found, the curtate distances are next deter

mined, and then the elements of the orbit. To find p and p
rf

,
we

have
d= + 0.122395,

the positive sign being used since 7, is greater than g, and the formulae

gve
log p = 9.480952, log P

"= 9.310779.
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From these values of p and //', it appears that the comet was very
near the earth at the time of the observations.

The heliocentric places are then found by means of the equations

(71) and (72). Thus we obtain

I = 106 40' 50".5, b = -f 33 1' 10".6, logr = 9.912082,
r=112 31 9.9, b"= + 23 55 5.8, log r"= 9.935116.

The agreement of these values of r and rn with those previously

found, checks the accuracy of the calculation. Further, since the

heliocentric longitudes are increasing, the motion is direct.

The longitude of the ascending node and the inclination of the

orbit may now be found by means of the equations (74), (75), or (70) ;

and we get = 304 43' 11".5, % = 64 31' 21".7.

The values of u and uff are given by the formulae

COS I COS I

u and I & being in the same quadrant in the case of direct motion,

Thus we obtain

u 142 52' 12".4, u"= 153 18' 49".4.

Then the equation

x*= (r" r cos (u" u))* + r2
sin2

(u" u}

gives

log x = 9.201423,

and the agreement of this value of K with that previously found,

proves the calculation of &, i, u, and u".

From the equations

tan (45 -f 0')
=

^/~,

1 . .
1 1

,
,;

v , tan 20'
j= sin i

(i (u 4- u) w) =- ,/ <i \2 ^ I / J t f it *. 4 /
-

Tf'

Vq sin \ (u tt) i/rr

1 > / jy i \ \ sec 20'

(I (t*" -f- ) ,)
=-- -

-j =,
cos I (t* w) K rr

we get

0'= 22' 47".4, w = 115 40' 6'
;

.3, log q = 9.887378.

Hence we have
* = 01 -f = 60 23' 17".S,
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and

i = u > = 27 12' 6".l, v"= ti" = 37 38' 43 '.1.

Then we obtain

logm = 9.9601277 | log 5 = 0.129061,

and, corresponding to the values of v and v", Table VI. gives

logM= 1.267163, log M"= 1.424152.

Therefore, for the time of perihelion passage, we have

and

T=t = t 13.74364,m

T=t' =f 19.72836.m

The first value gives T= 1863 Dec. 27.56473, and the second gives

T= Dec. 27.56463. The agreement between these results is the final

proof of the calculation of the elements from the adopted value of

M= f-.
P

If we find T by means of Table VIII., we have

logN= 0.021616, log N"= 0.018210,

and the equation

2 2
T= t

3 Nr% sin v= if' 3^ N"i"* sin v",

in which log^ = 1.5883273, gives for T the values Dec. 27.56473

and Dec. 27.56469.

Collecting together the several results obtained, we have the fol-

lowing elements:

T 1863 Dec. 27.56471 Washington mean time.

= 6023'17".8 _._ . ,

ic and Mean

log q = 9.887378.

Motion Direct.

73. The elements thus derived will, in all cases, exactly represent

the extreme places of the comet, since these only have been used in

finding the elements after p and p" have been found. If, by means
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of these elements, we compute n and nn
',
and correct the \alue of M,

the elements which will then be obtained will approximate nearer

the true values; and each successive correction will furnish more

accurate results. When the adopted value of M is exact, the result-

ing elements must by calculation reproduce this value, and since the

computed values of A, A", /9,
and ft" will be the same as the observed

values, the computed values of X and ft'
must be such that when

substituted in the equation for M, the same result will be obtained

as when the observed values of X' and
ft' are used. But, according

to the equations (13) and (14), the value of M depends only on the

inclination to the ecliptic of a great circle passing through the places

of the sun and comet for the time
',
and is independent of the angle

at the earth between the sun and comet. Hence, the spherical co-

ordinates of any point of the great circle joining these places of the

sun and comet wilj, in connection with those of the extreme places,

give the same value of M, and when the exact value of M has been

used in deriving the elements, the computed values of A' and ft' must

give the same value for w r as that which is obtained from observa-

tion. But if we represent by if/ the angle at the earth between the

sun and comet at the time ', the values of if/ derived by observation

and by computation from the elements will differ, unless the middle

place is exactly represented. In general, this difference will be small,

and since w' is constant, the equations

cos 4/= cos p cos (A' O')>

sin 4-' cos w'= cos ft' sin (A' '), (93)

sin 4/ sin w'= sin ft,

give, by differentiation,

cos p dl' = cos w' sec p d$
r

,

dp= smufcoa(X O'HV-
From these we get

cosft'dA' tan(*' Q')

dp sin p

which expresses the ratio of the residual errors in longitude and

latitude, for the middle place, when the correct value of M has been

used.

Whenever these conditions are satisfied, the elements will be

correct on the hypothesis of parabolic motion, and the magnitude
of the final residuals in the middle place will depend on the deviation

of the actual orbit of the comet from the parabolic form. Further,
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when elements have been derived from a value of M which has not

been finally corrected, if we compute X r and $' by means of these

elements, and then

the comparison of this value of tan w f with that given by observa-

tion will show whether any further correction of M is necessary, and

if the difference is riot greater than what may be due to unavoidable

errors of calculation, we may regard M as exact.

To compare the elements obtained in the case of the example

given with the middle place, we find

v
f= 32 31' 13".5, u'= 148 IV 19".8, log / == 9.922836.

Then from the equations

tan (f Q> )
= cos i tan u',

tan b
f = tan i sin (l

f & ),

we derive

I'= 109 46' 48".3, V = 28 24' 56".0.

By means of these and the values of O' and Rf

, we obtain

A'= 302 57' 41".l, p= 57 39' 37".0 ;

and, comparing these results with the observed values of X' and
/?',

the residuals for the middle place are found to be

Comp. Obs.

cos p AA'= -f 3".6, A/9= + I'M.

The ratio of these remaining errors, after making due allowance for

unavoidable errors of calculation, shows that the adopted value of

M. is not exact, since the error of the longitude should be less than

that of the latitude.

The value of w1

given by observation is

log tan w'= 0.966314,

and that given by the computed values of A' and
ft' is

log tan w'= 0.966247.

The difference being greater than what can be attributed to errors of

calculation, it appears that the value of M requires further cor-
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rection. Since the difference is small, we may derive the correct

value of M by using the same assumed value of
,, and, instead of

Yb

the value of tan&/ derived from observation, a value differing as

much from this in a contrary direction as the computed value differs.

Thus, in the present example, the computed value of log tan wf
is

0.000067 less than the observed value, and, in finding the new value

of Mj we must use

log tan w' = 0.966381

in computing /?
and /?/' involved in the first of equations (14). If

the first of equations (10) is employed, we must use, instead of tan/9'

as derived from observation,

tan p= tan vf sin (A' 0'),
or

log tan f= 0.966381 + log sin (A' 0') = 0.198559,

the observed value of X' being retained. Thus we derive

logM= 9.829586,

and if the elements of the orbit are computed by means of this

value, they will represent the middle place in accordance with the

condition that the difference between the computed and the observed

value of tan w r shall be zero.

A system of elements computed with the same data from

logM= 9.822906 gives for the error of the middle place,

C.-O.
cos f A;/= 1' 26".2, &p = 40".l.

If we interpolate by means of the residuals thus found for two values

of M, it appears that a system of elements computed from

logM= 9.829586

will almost exactly represent the middle place, so that the data are

completely satisfied by the hypothesis of parabolic motion.

The equations (34) and (32) give

log -^- = 0.006955, log-^ = 0.006831,
/
f\/ JLV

and from (10) we get

logM' = 9.822906, logM"= 9.663729...
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Then by means of the equation (33) we derive, for the corrected

value of My
logM= 9.829582,

which differs only in the sixth decimal place from the result obtained

by varying tanw' and retaining the approximate values
t
= -rf

=j'
74. When the approximate elements of the orbit of a comet are

known, they may be corrected by using observations which include

a longer interval of time. The most convenient method of effecting

this correction is by the variation of the geocentric distance for the

time of one of the extreme observations, and the formulae which

may be derived for this purpose are applicable, without modification,

to any case in which it is possible to determine the elements of the

orbit of a comet on the supposition of motion in a parabola. Since

there are only five elements to be determined in the case of parabolic

motion, if the distance of the comet from the earth corresponding to

the time of one complete observation is known, one additional com-

plete observation will enable us to find the elements of the orbit.

Therefore, if the elements are computed which result from two or

more assumed values of A differing but little from the correct value,

by comparison of intermediate observations with these different sys-

tems of elements, we may derive that value of the geocentric distance

of the comet for which the resulting elements will best represent the

observations.

In order that the formulae may be applicable to the case of any

fundamental plane, let us consider the equator as this plane, and,

supposing the data to be three complete observations, let A, A f

,
A"

be the right ascensions, and D, D', D" the declinations of the sun

for the times
t, t', t". The co-ordinates of the first place of the earth

referred to the third are

x R" cos D" cos A" R cos D cos A,

y = R" cos D" sin A" EcosD sin A,

z=R"smD" EsmD.

If we represent by g the chord of the earth's orbit between the places

for the first and third observations, and by G and K, respectively,

the right ascension and declination of the first place of the earth as

seen from the third, we shall have

x= g cosK cos G,

y = g cosK sin G,

z = g sin K.
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and, consequently,

g cosK cos ( G A) = R" cos D" cos (A" A) R cos D,

g cosK sin ( G A) = jR" cos D" sin (A" A), (96)

g sin iT = .#" sin Z>" jR sin D,

from which #, JT, and G may be found.

If we designate by xn yn z, the co-ordinates of the first place of

the comet referred to the third place of the earth, we shall havf

x,
= A cos 5 cos a -f g cosK cos G,

y,
A cos d sin a -f- g cosK sin (r,

2,
= A sin 5 -f- # sin K.

Let us now put
x,= h' cos C' cos IT,

^ == A' cos :' sin #',

z,
= h' sin C',

and we get

hf

cos % cos (.ff
'

G) = A cos fl cos (a G) + cos JT,

A' cos C' sin GET G) = J cos sin (a (f). C97)

A.' sin C' = J sin <S -j- <7
sm -^

from which to determine H', ',
and h f

.

If we represent by <p

r the angle at the third place of the earth

between the actual first and third places of the comet in space, we
obtain

cos <f>'= cos C' cos H' cos <5" cos a"-\- cos C' sin JET' cos 5" sin a"-}- sin C' sin <5",

or

cos ?/= cos
'

cos <T cos (a" H') + sin C' sin <5"
; (98)

and if we put
e sin/=sin<5",
e cosf= cos d" cos (a" H')

this becomes
cos ?'= e cos (C' /). (99)

Then we shall have

x2= /t'
2+ J"2 2V J" cos?/

or

X2=
(j"_ tf CoS ?') -f h" sin2

?', (1 00)

in which A" is the distance of the comet from the earth coi respond-

ing to the last observation. We have, also, from equations (44) and

(45),
r2 =(J .Rcos*)

2
-f-JR

2
sin

2
4,

r'"= (A" R" cos 4/')
2 + R"* sin1

V',
14
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in which ^ is the angle at the earth between the sun and comet at

the time
t,
and oj/' the same angle at the time t" . To find their

values, we have

cos 4* = cos D cos d cos (a A) -f- sin D sin <5,
,. ~~\

cos *"= cos Z)" cos *" cos (a" A"} + sin D" sin 5",

which may be still further reduced by the introduction of auxiliary

angles as in the case of equation (98).

Let us now put

hf

sin <?'
= C, h' cos

<f>'
=

c,

Rsm*=B, R cos * = b, (103)

R" sin 4,"= ", R" cos 4"= &",

and we shall have
= T/(J" c)

2
-f C 2

,

&)
2 + 2

, (104)

'These equations, together with (56), will enable us to determine J"

by successive trials when J is given.

We may, therefore, assume an approximate value of A" by means

of the approximate elements known, and find r" from the last of

these equations, the value of T having been already found from the

assumed value of J. Then x is obtained from the equation

2r'

fj. being found by means of Table XI., and a second approximation
to the value of J" from

*. (105)

The approximate elements will give A" near enough to show whether

the upper or lower sign must be used. With the value of A" thus

found we recompute r" and x as before, and in a similar manner find

a still closer approximation to the correct value of An'. A few trial?

will generally give the correct result.

When A" has thus been determined, the heliocentric places are

found by means of the formulae

r cos b cos (I A) = A cos d cos (a A) E cos D,
r cos b sin (/ A) = A cos d sin (a A),

r sin b = A sin <5 R sin D ;
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r" cos V cos <7' A") = A" cos V cos (a"- A") K" cos ",

r" cos 6" sin (r A"} = A" cos d" sin (a" 4"), (107)

r" sin 6" = J" sin 5"
"
sin Z>",

in which 6, b"
y I, I" are the heliocentric spherical co-ordinates re-

ferred to the equator as the fundamental plane. The values of r and

r" found from these equations must agree with those obtained from

(104).

The elements of the orbit may now be determined by means of the

equations (75), (77), and (81), in connection with Tables VI. and

VIII., as already explained. The elements thus derived will be re-

ferred to the equator, or to a plane passing through the centre of the

sun and parallel to the earth's equator, and they may be transformed

into those for the ecliptic as the fundamental plane by means of the

equations (109)^

75. With the resulting elements we compute the place of the comet

for the time t
f and compare it with the corresponding observed place,

and if we denote the computed right ascension and declination by a/
and d

Q ', respectively, we shall have

a' + <*'=', *+*= .',

in which a' and d' denote the differences between computation and

observation. Next we assume a second value of J, which we repre-

sent by J -f- dJ, and compute the corresponding system of elements.

Then we have

a!' and d" denoting the differences between computation and obser-

vation for the second system of elements. We also compute a third

system of elements with the distance J J, and denote the differ-

ences between computation and observation by a and d; then we shall

have

and similarly for
c?,

df

,
and d". If these three numbers are exactly

represented by the expression

m

in which J + x is the general value of the argument, since the values

}f a, a', and a" will be such that the third differences may be neg-

lected, this formula may be assumed to express exactly any value of

the function corresponding to a value of the argument not differing
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much from J, or within the limits x = dA and x = -f- <5J, the as-

sumed values J dJ, J, and J + J being so taken that the correct

value of J shall be either within these limits or very nearly so.

To find the coefficients m, n, and o, we have

m n -f- o = a. m a', m -{- n-\- o a",

whence

? = a', n= (a" a), o = (a" -f a) a'.

Now, in order that the middle place may be exactly represented in

right ascension, we must have

which we find

or

In the same manner, the condition that the middle place shall be

exactly represented in declination, gives

In order that the orbit shall exactly represent the middle place, both

conditions must be satisfied simultaneously; but it will rarely happen
that this can be effected, and the correct value of x must be found

from those obtained by the separate conditions. The arithmetical

mean of the two values of x will not make the sum of the squares

of the residuals a minimum, and, therefore, give the most probable

value, unless the variation of cos 3 f

AO/, for a given increment as-

signed to J, is the same as that of &d'. But if we denote the value

of x for which the error in a' is reduced to zero by x', and that for

which &d' = 0, by x", the most probable value of x will be

--

in which n = $(a
ff

a) and nf=
\(d

ff --
d). It should be observed

that, in order that the differences in right ascension and declination

shall have equal influence in determining the value of x
9
the values

of a, a', and a" must be multiplied by cos 8f
. The value of dA is

most conveniently expressed in units of the last decimal place of the

logarithms employed.



NUMERICAL EXAMPLE. 213

If the elements are already known so approximately that the first

assumed value of J differs so little from the true value that the

second differences of the residuals may be neglected, two assumptions
in regard to the value of A will suffice. Then we shall have o = 0,

and hence
m = a

f

,
n = a" a'.

The condition that the middle place shall be exactly represented,

gives the two equations

"' '

0,

Q.

The combination of these equations according to the method of least

squares will give the most probable value of x, namely, that for

which the sum of the squares of the residuals will be a minimum.

Having thus determined the most probable value of #, a final

system of elements computed with the geocentric distance A -f- #,

corresponding to the time
t,
will represent the extreme places exactly,

and will give the least residuals in the middle place consistent with

the supposition of parabolic motion. It is further evident that we

may use any number of intermediate places to correct the assumed

value of J, each of which will furnish two equations of condition

for the determination of x, and thus the elements may be found

which will represent a series of observations.

76. EXAMPLE. The formulae thus derived for the correction of

approximate parabolic elements by varying the geocentric distance,

are applicable to the case of any fundamental plane, provided that

a, d, A, D, &c. have the same signification with respect to this plane
that they have in reference to the equator. To illustrate their

numerical application, let us take the following normal places of

the Great Comet of 1858, which were derived by comparing an

ephemeris with several observations made during a few days before

and after the date of each normal, and finding the mean difference

between computation and observation :

Washington M. T.

1858 June 11.0

July 13.0

Aug. 14.0
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We shall take the ecliptic for the fundamental plane, and con-

verting these right ascensions and declinations into longitudes and

latitudes, and reducing to the ecliptic and mean equinox of 1858.0,

the times of observation being expressed in days from the beginning
of the ye^tr, we get

t = 162.0, A = 135 51' 44".2, p = + 9 6' 57".8,

If = 194.0, *' = 137 39 41 .2, p = 12 55 9 .0,

*"= 226.0, A"= 142 51 31 .8, ^'= + 18 36 28 .7.

From the American Nautical Almanac we obtain, for the true places

of the sun,

Q = 80 24' 32".4, logJ? =0.006774,
O' =110 55 51 .2, log^R' =0.007101,

0"= 141 33 2 .0, log R" = 0.005405,

the longitudes being referred to the mean equinox 1858.0.

When the ecliptic is the fundamental plane, we have, neglecting

the sun's latitude, D = 0, and we must write ^ and
ft

in place of a
and

<5,
and O in place of A, in the equations which have been derived

for the equator as the fundamental plane. Therefore, we have

g cos (Q O) = R" cos (O" O) R,

<7
sin (

- 0) = R" sin (O" - O) ;

cos 4 = cos p cos (A O), cos 4/'= cos /3" cos (A" 0")
R cos 4 = b, 12" cos *"= &",

JB, 12"sin4/'= .B",

from which to find G, g, b, B, b", and Bff

,
all of which remain

unchanged in the successive trials with assumed values of J. Thus

we obtain

G= 201 T 57".4, log B = 9.925092, b = -f 0.568719,

log g = 0.013500, log B"= 9.510309, b"= -f 0.959342.

Then we assume, by means of approximate elements already

known,
log J = 0.397800,

and from
V cos :' cos (jff

'

G) = J cos p cos (A G) + g,

V cos
'

sin (H' G) = Acosp sin (A G\
hr

sin C' =4 sin p,

we find U', C
r

,
and A'. These give

H'= 153 46' 20".5, C'= + 7 24' 16".4, log A'= 0.487484.
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Next, from

cos <p'
= cos C' cos /?" cos (A" J2"') -f- sin C' sm/J",

h' cos /= c, h' sin ^'= (7,

we get

log C= 9.912519, c = 4- 2.961673 ;

and from

we find

log r= 0.323446.

Then we have

A"= c =t 1/x2 C2

,

from which to find J", r", and x. First, by means of the approxi-
mate elements, we assume

log J"= 0.310000,

which gives log r"= 0.053000, and hence we have

TI
= 0.3783, log PL

= 0.002706, log x= 0.090511.

"With this value of x we obtain from the expression for J", the

lower sign being used, since J" is less than c,

log J"= 0.309717.

Repeating the calculation of r", //,
and x, and then finding J" again,^

the result is

log J"= 0.309647.

Then, by means of the formula (67), we may find the correct value.

Thus we have, in units of the sixth decimal place,

a= 309717 310000= 283, a'= 309647 309717 = 70,

and for the correction to the last result for log J" we have

___^_ = _23.

Therefore,

log J"= 0.309624.

By means of this value we get

log r"= 0.052350, log * = 0.090628,
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and tliis value of JC gives, finally,

log A"= 0.309623, log r"= 0.052348.

The heliocentric places of the comet are now found from the equa-
tions (71) and (72), writing A cos/9 and A" cos ft" for p and p",

respectively. Thus we obtain

I = 159 43' 14".2, b = + 10 50' 14".0, logr = 0.323447,

I"= 144 17 47 .8, b"= -f 35 14 28 .7, log r"= 0.052347.

The agreement of these results for r and r" with those already

obtained, proves the accuracy of the calculation. Since the helio-

centric longitudes are diminishing, the motion is retrograde.

Then from (74) we get

= 165 17' 30".3, t = 63" 6' 32".5;
and from

COS I COS I

we obtain

u= 12 10' 12".6, u"= 40 18' 51".2,

the values of u and I & being in the same quadrant when the

motion is retrograde. The equation (79) gives log x
= 0.090630,

which agrees with the value already found.

The formulae (81) give

<o = 129 6' 46".3, log q
= 9.760326,

and hence we have

v= u <*> = 116 56' 33".7, o"= u" a> = 88 47' 55".l,

from which we get T= 1858 Sept. 29.4274.

From these elements we find

log r' == 0.212844, v
f= 107 7' 34".0, u'= 21 59' 12".3,

and from
tan (f &) cos i tan u',

tan b
f= tan i sin (J! & ),

we get
I'= 154 56' 33".4, 6' = + 19 30' 22".l.
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By means of these and the values of O' and R f

,
we obtain

A'= 137 39' 13".3, p= + 12 54' 45".3,

and comparing these results with observation, we have, for the error

of the middle place,
C. O.

/= 27".2, A/5'= 23".7.

From the relative positions of the sun, earth, and cctnefc at the

time t" it is easily seen that, in order to diminish these residuals, the

geocentric distance must be increased, and therefore we assume, for

a second value of J,

log J = 0.398500,
from which we derive

H'= 153 44' 57".6, C'= -f 7 24' 26".l, log h'= 0.488026,

log C= 9.912587, logc= 0.472115, logr = 0.324207,

log A"= 0.311054, log r"= 0.054824, log x= 0.089922,

Then we find the heliocentric places

I = 159 40' 33".8, b = + 10 50' 8".6, logr = 0.324207,
I"= 144 17 12 .1, b"= + 35 8 37 .8, log r"= 0.054825,

and from these,

= 165 15' 41".l, i= 63 2' 49".2,

u = 12 10 30.8, w"=:40 13 26.0,
<o = 128 54 44 .4, log q= 9.763620,

T= 1858 Sept. 29.8245, log /= 0.214116,

v'= 106 55' 43".8, u'= 21 59' 0".6,

r= 154 5332.3, V= + 19 2931.9,
X= 137 3939.7, /5'= + 12 55 2.9.

Therefore, for the second assumed value of J, we have

C. O.

cos jt AA'= 1".5, A/5'= 6".l.

Since these residuals are very small, it will not be necessary to

make a third assumption in regard to J, but we may at once derive

the correction to be applied to the last assumed value by means of

the equations (109). Thus we have

a'= 1.5, a
'= 27.2, d'= 6.1, d"= 23.7,

3 log J = 0.000700,
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and, expressing d log A in units of the sixth decimal place, these

equations give

25.7* 1050 = 0.

17.&B 4270 = 0.

Combining these according to the method of least squares, we get

_ 105X2.57 + 427X1.76
(2.57)

2 + (1.76)
2

Hence the corrected value of log A is

log A = 0.398500 + 0.000106 = 0.398606.

With this value of log A the final elements are computed as already

illustrated, and the following system is obtained :

T= 1858 Sept. 29.88617 Washington mean time.

TT= 36 22' 36".9 ]

ft = 165 15 24 .8 /
Mean E(lumox 1858--

t= 63 2 14.2

log ^= 9.764142

Motion Retrograde.

If the distinction of retrograde motion is not adopted, and we regard
i as susceptible of any value from to 180, we shall have

7T = 294 8'12".7,

* = 116 57 45 .8,

the other elements remaining the same.

The comparison of the middle place with these final elements

gives the following residuals :

C.-O.
cos /5 AA= + 0".2, A = 4".3.

These errors are so small that the orbit indicated by the observed

places on which the elements are based differs very little from a

parabola.

When, instead of a single place, a series of intermediate places is

employed to correct the assumed value of J, it is best to adopt the

equator as the fundamental plane, since an error in a or d will affect

both A and /9; and, besides, incomplete observations may also be used
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when the fundamental plane is that to which the observations are

directly referred. Further, the entire group of equations of con-

dition for the determination of x, according to the formulae (109),

must be combined by multiplying each equation by the coefficient of

x in that equation and taking the sum of all the equations thus

formed as the final equation from which to find x, the observations

being supposed equally good.
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CHAPTER IV.

DETERMINATION, FROM THREE COMPLETE OBSERVATIONS, OF THE ELEMENTS OP
THE ORBIT OF A HEAVENLY BODY, INCLUDING THE ECCENTRICITY OR FORM OB

THE CONIC SECTION.

77. THE formulae which have thus far been derived for the deter-

mination of the elements of the orbit of a heavenly body by means

of observed places, do not suffice, in the form in which they have

been given, to determine an orbit entirely unknown, except in the

particular case of parabolic motion, for which one of the elements

becomes known. In the general case, it is necessary to derive at

least one of the curtate distances without making any assumption as

to the form of the orbit, after which the others may be found. But,

preliminary to a complete investigation of the elements of an un-

known orbit by means of three complete observations of the body,
it is necessary to provide for the corrections due to parallax and aber-

ration, so that they may be applied in as advantageous a manner as

possible.

When the elements are entirely unknown, we cannot correct the

observed places directly for parallax and aberration, since both of

these corrections require a knowledge of the distance of the body
from the earth. But in the case of the aberration we may either

correct the time of observation for the time in which the light from

the body reaches the earth, or we may consider the observed place

corrected for the actual aberration due to the combined motion of the

earth and of light as the true place at the instant when the light left

the planet or comet, but as seen from the place which the earth occu-

pies at the time of the observation. When the distance is unknown,
the latter method must evidently be adopted, according to which we

apply to the observed apparent longitude and latitude the actual

aberration of the fixed stars, and regard this place as corresponding

to the time of observation corrected for the time of aberration, to be

eifected when the distances shall have been found, but using for the

place of the earth that corresponding to the time of observation. It-

will appear, therefore, that only that part of the calculation of the
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elements which involves the times of observation will have to be re-

peated after the corresponding distances of the body from the earth

have been found. First, then, by means of the apparent obliquity of

the ecliptic, the observed apparent right ascension and declination

must be converted into apparent longitude and latitude. Let ^ and

/? , respectively, denote the observed apparent longitude and latitude;

and let O be the true longitude of the sun, 2Q
its latitude, and Rn

its distance from the earth, corresponding to the time of observation.

Then, if X and /9 denote the longitude and latitude of the planet or

comet corrected for the actual aberration of the fixed stars, we shall

have

A J = + 20".445 cos (A Q ) sec/5 + 0".343 cos (/I 281) sec ,9,
..

/?
= 20".445 sin (A Q ) sin ft 0".343 sin (I 281) sin /?.

l ;

In computing the numerical values of these corrections, it will be

sufficiently accurate to use ^ and /9 instead of X and
/5 in the second

members of these equations, and the last terms may, in most cases,

be neglected. The values of X and /9 thus derived give the true place

of the body at the time t 497*.78 J, but as seen from the place of

the earth at the time t.

When the distance of the planet or comet is'unknown, it is impos-
sible to reduce the observed place to the centre of the earth

; but if

we conceive a line to be drawn from the body through the true place

of observation, it is evident that were an observer at the point of

intersection of this line with the plane of the ecliptic, or at any point

in the line, the body would be seen in the same direction as from the

actual place of observation. Hence, instead of applying any correc-

tion for parallax directly to the observed apparent place, we may
conceive the place of the observer to be changed from the actual place

to this point of intersection with the ecliptic, and, therefore, it be-

comes necessary to determine the position of this point by means of

the data furnished by observation.

Let be the sidereal time corresponding to the time t of obser-

vation, <p'
the geocentric latitude of the place of observation, and p

the radius of the earth at the place of observation, expressed in parts

of the equatorial radius as unity. Then # is the right ascension and

<p

r the declination of the zenith at the time t . Let 1 and b denote

these quantities converted into longitude and latitude, or the longitude

and latitude of the geocentric zenith at the time t . The rectangular

co-ordinates of the place of observation referred to the centre of the
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earth and expressed in parts of the mean distance of the earth from

the sun as the unit, will be

x = p9 sin TT
O
cos b9 cos 19,

y = pQ
sin rr cos b

Q
sin I

9f

z
Q
= pQ sin TT

O
sin b

0)

in which TT
O
= 8".57116.

Let J be the distance of the planet or comet from the true place

of the observer, and J, its distance from the point in the ecliptic to

which the observation is to be reduced. Then will the co-ordinates

of the place of observation, referred to this point in the ecliptic, be

Xf = ( J, J ) COS ft COS A,

y,
= (A, 4>) cos sin ^

z, =(4 4>)sin/?,

the axis of x being directed to the vernal equinox. Let us now

designate by O the longitude of the sun as seen from the point of

reference in the ecliptic, and by R its distance from this point. Then

will the heliocentric co-ordinates of this point be

X= R cos 0,
t T/" T> Q^ s~\

The heliocentric co-ordinates of the centre of the earth are

X
Q
= R

Q
cos cos Q ,

Y
Q
= R cos T sin O ,

Z = R sin J .

But the heliocentric co-ordinates of the true place of observation

will be

X+x,, Y+yn Z + z,,

or

and, consequently, we shall have

R cos O (4, 4>) cos ^ cos A= /? cos ro cos Q p sin TT
O cos 5 cos / ,

R sin O (4 ^ ) cos sin A= .R cos ^ sin O Po sin ^o cos ^o sm ^o>

( J, J ) sin /?
= .Ro sin ^? sin ^ sin b .

If we suppose the axis of x to be directed to the point whose longi-

tude is O >
these become
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R cos (0 O ) (4 4>) cos 13 cos (A O )
=

EQ cos 2" p sin TT
O cos 6 cos (7 O ),

.# sin (O Go) (4 4.) cos /? sin (A O )
= (2)

p sin TT
O cos 6 sin (1 O )>

( A, J ) sin /? R
Q
sin 2" pQ sin TT

O
sin 6

,

from which R and O may be determined. Let us now put

Z>; (3)

then, since ;r
,
Sw and O O are small, these equations may be

reduced to

R = D cos (X O ) ^o PQ cos
fy>

cos (1 Q ) + R ,

R (O O )
= D sin (A Q ) 7r

/? cos b sin (J Q 8),

Dtan/? 7r
^o sin6 + ^ ^o-

Hence we shall have, if TT
O
and 2" are expressed in seconds of arc,

(4)

000 . o

206264.8

,

206264.8 D sin (A Q ) TT
O /QO cos b sin (^ )W W ~T~

"

p

from which we may derive the values of O and R which are to be

used throughout the calculation of the elements as the longitude and

distance of the sun, instead of the corresponding places referred to

the centre of the earth. The point of reference being in the plane

of the ecliptic, the latitude of the sun as seen from this point is zero,

which simplifies some of the equations of the problem, since, if the

observations had been reduced to the centre of the earth, the sun's

latitude would be retained.

We may remark that the body would not be seen, at the instant

of observation, from the point of reference in the direction actually

observed, but at a time different from t
Q,

to be determined by the

interval which is required for the light to pass over the distance

A, J . Consequently we ought to add to the time of observation

the quantity
( J, J ) 497'.78 = 497'.7S D sec /9, (5;

which is called the reduction of the time ; but unless the latitude of

the body should be very small, this correction will be insensible.

The value of A derived from equations (1) and the longitude O
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derived from (4) should be reduced by applying the correction for

nutation to the mean equinox of the date, and then both these and

the latitude /9 should be reduced by applying the correction for pre-

cession to the ecliptic and mean equinox of a fixed epoch, for which

the beginning of the year is usually chosen.

In this way each observed apparent longitude and latitude is to be

corrected for the aberration of the fixed stars, and the corresponding

places of the sun, referred to the point in which the line drawn from

the body through the place of observation on the earth's surface in-

tersects the plane of the ecliptic, are derived from the equations (4).

Then the places of the sun and of the planet or comet are reduced

to the ecliptic and mean equinox of a fixed date, and the results thus

obtained, together with the times of observation, furnish the data for

the determination of the elements of the orbit.

When the distance of the body corresponding to each of the

observations shall have been determined, the times of observation

may be corrected for the time of aberration. This correction is

necessary, since the adopted places of the body are the true places

for the instant when the light was emitted, corresponding respectively

to the times of observation diminished by the time of aberration,

but as seen from the places of the earth at the actual times of

observation, respectively.

When /?
=

0, the equations (4) cannot be applied, and when the

latitude is so small that the reduction of the time and the correction

to be applied to the place of the sun are of considerable magnitude,
it will be advisable, if more suitable observations are not available,

to neglect the correction for parallax and derive the elements, using

the uncorrected places. The distances of the body from the earth

which may then be derived, will enable us to apply the correction for

parallax directly to the observed places of the body.

When the approximate distances of the body from the earth are

already known, and it is required to derive new elements of the

orbit from given observed places or from normal places derived from

many observations, the observations may be corrected directly for

parallax, and the times corrected for the time of aberration. We
shall then have the true places of the body as seen from the centre

of the earth, and if these places are adopted, it will be necessary, for

the most accurate solution possible, to retain the latitude of the sun

in the formulae which may be required. But since some of these

formulae acquire greater simplicity when the sun's latitude is not

introduced, if, in this case, we reduce the geocentric places to the
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point in which a perpendicular let fall from the centre of the earth

to the plane of the ecliptic cuts that plane, the longitude of the sun

will remain unchanged, the latitude will be zero, and the distance R
will also be unchanged, since the greatest geocentric latitude of the

sun does not exceed 1". Then the longitude of the planet or comet

as seen from this point in the ecliptic will be the same as seen from

the centre of the earth, and if J, is the distance of the body from

this point of reference, and
/9,

its latitude as seen from this point, we

shall have

A, cos /?,
= A cos /9,

A
t
sin ft,

= A sin /5 J? sin S
,

from which we easily derive the correction
/?, /9,

or A/9, to be applied

to the geocentric latitude. Thus, we find

A/9 =-^> cos /9, (6)
~t

2
Q being expressed in seconds. This correction having been applied

to the geocentric latitude, the latitude of the sun becomes

2=0.

The correction to be applied to the time of observation (already

diminished by the time of aberration) due to the distance J, J

will be absolutely insensible, its maximum value not exceeding
Os

.002. It should be remarked also that before applying the equa-

tion (6), the latitude JT should be reduced to the fixed ecliptic which

it is desired to adopt for the definition of the elements which deter-

mine the position of the plane of the orbit.

78. When these preliminary corrections have been applied to the

data, we are prepared to proceed with the calculation of the elements

of the orbit, the necessary formulae for which we shall now investi-

gate. For this purpose, let us resume the equations (6)3 ; and, if we

multiply the first of these equations by tan /9 sin A" tan /9" sin A,

the second by tan/3" cos A tan /9 cos A", and the third by sin (X )"\
and add the products, we shall have

nR (tan /9" sin (A Q) tan /9 sin (A" Q))
p' (tan /? sin (A" A') tan jf sin (A" A) -f- tan $' sin (A' A))

R' (tan P" sin (A Q') tan ft sin (A" '))

+ n"R" (tan ft" sin (A Q") tan /5 sin (A" 0")).

It should be observed that when the correction for parallax is applied
15
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to the place of the sun, p
f

is the projection, on the plane of the

ecliptic, of the distance of the body from the point of reference to

which the observation has been reduced.

Let us now designate by jfiTthe longitude of the ascending node,

and by I the inclination to the ecliptic, of a great circle passing

through the first and third observed places of the body, and we have

tan p sin (A K} tan J,

tan 0"= sin (A" JE")tanJ..

Introducing these values of tan and tan ft" into the equation (7),

since

sin (A O) sin (A" K) sin (A" Q) sin (A JT) =
sin (A" A) sin (Q JT),

sin (A' A) sin (A" JT) + sin (A" A') sin (A JT) =
-f- sin (A" A) sin (A' K\

sin (A O') sin (A" K) sin (A" G') sin (A JT) =
sin (A" A) sin (G' JD,

sin (A 0") sin (A" K) sin (A" 0") sin (A K) =
sin (A" A) sin (G" K\

we obtain, by dividing through by sin (A" A) tan /,

= nR sin (G -ET) + p' (sin (A' K} tan p
f

cot I)

Let /9 denote the latitude of that point of the great circle passing

through the first and third places which corresponds to the longitude

^', then
tan ft= sin (A' K) tan J,

and the coefficient of p
r in equation (9) becomes

sin (ft ff')

cos ft cos p
r

tan/
Therefore, if we put

we shall have

Bn -"=
cos /. tan/'

,,

This formula will give the value of p
f

t
or of J', when the values of

n and n" have been determined, since a and K are derived from the

data furnished by observation.
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To find K and 7, we obtain from equations (8) by a transformation

precisely similar to that by which the equations (75)3 were derived,

We may also compute K and I from the equations which may be

derived from (74)3 and (76)3 by making the necessary changes in the

notation, and using only the upper sign, since I is to be taken always
less than 90.

Before proceeding further with the discussion of equation (11), let

us derive expressions for p and p" in terms of
,o',

the signification of

p and p
tf

y
when the corrections for parallax are applied to the places

of the sun, being as already noticed in the case of p
f
.

79. If we multiply the first of equations (6)3 by sin 0" tan/3",
the second by cos 0" tan/3", and the third by sin (A" ")> and

add the products, we get

0=w/>(tan"sin(0" A) tan/9sin(0" *")) njRtan/9"8in(0" 0)
-V (tan p' sin (0" A') tan f sin(" A"))+# tanp sin(" Q'),

(13)
which may be written

0=np (tan /? sin (A" 0") tan /?" sin (X ")) rc^tan 0" sin (0" 0)
-f ft (tan /?" sin (A' Q ") tan ft sin (A" "))

-VCtan/S' tanft)sin(A" Q") + # tan/9'
;

sin(O
r;

00-

Introducing into this the values of tan
ft,

tan /3", and tan
/3

in terms

of 1 and
jfif,

and reducing, the result is

Q= np sin (A" A) sin (
"

K) nR sin (
"-

) sin (A" ")

+ Rr

sin (0" 00 sinW -K").

Therefore we obtain

_^/sin(^ AQ q sec^ sin(^ Q^) \
=~

w \ sin (A" A)
+

sin (A" A)

'

sin (Q" K} /

sn
/i sin (A" A)sin(O" JE")

But, by means of the equations (9)3 ,
we derive

"
0) = (N ri) Rsm(O"- 0),
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and the preceding equation reduces to

sin (A" 0")
n\sin(A" A)

'

sin(A" A)" sin(" _ y/ (u.

N\Ksm(Q" Q)8m(A" K)
"~rT/ sin (A" A)sin(O" K)

'

To obtain an expression for p
rf in terms of p

r

,
if we multiply the

first of equations (6)3 by sin tan/9, the second by cos tan/9,

and the third by sin (X ),
and add the products, we shall have

0=V'(tan^sin(A'
/

) tan /S" sin (A )) n"K"tansin(" )

*'
) tan/?' sin (A ))+ JR'tan/5sin(' ). (15)

Introducing the values of tan
/9, tan /9

r

,
and tan

/9
r/ in terms ofK and

/, and reducing precisely as in the case of the formula already found

for p, we obtain

p' I sin (A' A) a sec j? sin (A ) \

n" \ sin (A" A) sin (A" A) sin ( K) /

T^et us now put, for brevity,

. Esm(Q-K) _R'sm(Q
f K)

o =-
j

c i

a a

^_^sin(0
// g) sec/g

f

, _.Rfi"8in(0" 0)
a J ""

sin (A" A)'

in(^ JQ ,
A sin (A .g)-

and the equations (11), (14), and (16) become

(18)

If n and n" are known, these equations will, in most cases, be

sufficient to determine p, //, and //'.
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80. It will be apparent, from a consideration of the equations

which have been derived for p, p
f

,
and p

lf
t
that under certain circum-

stances they are inapplicable in the form in which they have been

given, and that in some cases they become indeterminate. When the

great circle passing through the first and third observed places of the

body passes also through the second plaoe, we have a = 0, and

equation (11) reduces to

n"R" sin (Q" K) + nR sin (0 K} = R' sin (0' K).

If the ratio of n" to n is known, this equation will determine the

quantities themselves, and from these the radius-vector rr
for the

middle place may be found. But if the great circle which thus

passes through the three observed places passes also through the

second place of the sun, we shall have K== O', or K= 180 -j- O',
and hence

n"R" sin (O" 0') nR sin (' O) = 0,

or

n" Jg8in(0' 0)
n ~.R"sm(O" O')'

from which it appears that the solution of the problem is in this

case impossible.

If the first and third observed places coincide, we have ^ = X" and

/9
=

/3", and each term of equation (7) reduces to zero, so that the

problem becomes absolutely indeterminate. Consequently, if the

data are nearly such as to render the solution impossible, according
to the conditions of these two cases of indetermination, the elements

which may be derived will be greatly affected by errors of observa-

tion. If, however, A is equal to A" and /9" differs from
/9,

it will be

possible to derive p
f

,
and hence p and p"; but the formulae which

have been given require some modification in this particular case.

Thus, when J = A", we have K=X'= 1
9 7=90, and ft =90,

and hence a
,
as determined by equation (10), becomes -

Still, in

this case it is not indeterminate, since, by recurring to the original

equation (9), the coefficient of p
f

,
which is a sec ft', gives

a = sin p cot / cos /?' sin (/ K) t (19)

and when A = A", it becomes simply

= cos p sin (A' K).



/ N"\

\ n" /

230 THEORETICAL ASTRONOMY.

Whenever, therefore, the difference A" A is very small compared
with the motion in latitude, a should be computed by means of the

equation (19) or by means of the expression which is obtained

directly from the coefficient of p
1 in equation (7).

When A = X" = K, the values of Jfw Jtf/', M2,
and M2

" cannot

be found by means of the equations (17); but if we use the original
form of the expressions for p and p" in terms of p

f

,
as given by

equations (13) and (15), without introducing the auxiliary angles,

we shall have

= ft_
tan p sin (A" Q") tan p' sin (A' Q")

n
'

tan ft sin (A" 0") tan p' sin (A 0")
/ __N_\_jRtan"sin(0" Q)_M n I tan ft sin (/I" 0") tan ft" sin (A

- 0")
1

tan /? sin (A' Q) tan p sin (A Q)
tan /9 sin (A" 0) tan p" sin (A 0)

jR"tansin(0"-- 0)
tan /? sin (A" 0) tan p' sin (A )'

Hence

_ tan /?' sin (X* ") tan p' sin (A' Q")
1
~~

tan sin (A" 0") tan ft" sin (A 0")
'

_ tan ft sin (A' 0) tan /?' sin (A Q)
MI Z '

tan /S sin (A"
- 0) - tan 0" sin (*)' , ,_J? tan ^ sin(0^0)_

8
~

tan /5 sin (A" 0") tan ft" sin (A ")'

__R" tan ft sin (Q" 0)__
a

= =

tan ft sin (A" 0) tan ft" sin (A )

'

are the expressions for M
lt -Mi", Mz,

and M2
" which must be used

when X= X'
r or when A is very nearly equal to A"; and then p and p

rr

will be obtained from equations (18). These expressions will also be

used when A" X = 180, this being an analogous case.

When the great circle passing through the first and third observed

places of the body also passes through the first or the third place of

the sun, the last two of the equations (18) become indeterminate, and

other formula must be derived. If we multiply the second of equa-

tions (7)3 by tan/3" and the fourth by sin (A" O r

),
and add the

products, then multiply the second of these equations by tan /? and

the fourth by sin (A '),
and add, and finally reduce by means

of the relation

NE sin (' - 0) = N"R" sin (0"- '),

we get
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tan p' sin (A' ') tan ft' sin (A" ')

n tan ft" sin (A ') tan ft sin (A" ')

.#" tan/S" sin (" 0')
tan ft" sin (A ') tan ft sin (A"

tan jt sin (A ') tan ft sin (A' ')

tan ft" sin (A ') tan ft sin (A" ')

R tan /5 sin(')
(21)

tan/S" sin (A 0') tan/? sin (A" 0')

These equations are convenient for determining p and p'
r from // ;

but they become indeterminate when the great circle passing through
the extreme places of the body also passes through the second place

of the sun. Therefore they will generally be inapplicable for the

cases in which the equations (18) fail.

If we eliminate p" from the first and second of the equations (6)3

we get
Q = np sin (A" A) nR sin (A" Q) p' sin (A" A')

+ R' sin (A" 0') ri'R" sin (A" 0"),

from which we derive

p
>

sin(A"-AQ

-;Tsin(A"-A)
nR sin (A" Q ) R sin (A" Q') + ri'R' sin (I" Q ")

n sin (A" A)

Eliminating p between the same equations, the result is

P' sin (A'- A)
p -

n" sin (A" -A)
nR sin (A Q) R' sin (A Q') -f- n"R" sin (A Q")

n" sin (A" A)

These formulae will enable us to determine p and p" from p
1
in the

special cases in which the equations (18) and (21) are inapplicable;

but, since they do not involve the third of equations (6)3, they are

not so well adapted to a complete solution of the problem as the

formulae previously given whenever these may be applied.

If we eliminate successively p" and p between the first and fourth

of the equations (7)3, we get

tan P" cos (X Q ') tan p cos (X
1 Q ')_

p ~

_
P ~"

n tan /3" cos (A Q') tan p cos (A" Q')

tan/3" nR cos (0' Q ) R+ n"R" cos(Q" Q')
n tan /5" cos (A Q ') tan p cos (A" O')

'

tan j3' cos (A Q') tan /9 cos (A' Q ')

n"' tan ft" cos (A Q ') tan ft cos (A" Q')

tan/9 nR cos (Q' Q) JT+ ri'R" cos (0" 0')

n"
'

tan 0" cos (A ') tan/? cos (A" 0')
'
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which may also be used to determine p and p
ff when the equations

(18) and (21) cannot be applied. When the motion in latitude is

greater than in longitude, these equations are to be preferred instead

of (22) and (23.)

81. It would appear at first, without examining the quantities in-

volved in the formula for p
f

,
that the equations (26)3 will enable us

<o find n and n" by successive approximations, assuming first tEat

r .. T"
n =r n =-,,

and from the resulting value of p' determining r f

,
and then carrying

the approximation to the values of n and n" one step farther, so as

to include terms of the second order with reference to the intervals

of time between the observations. But if we consider the equation

(10), we observe that a is a very small quantity depending on the

difference
ft' /9 ,

and therefore on the deviation of the observed

path of the body from the 1 arc of a great circle, and, as this appears

in the denominator of terms containing n and n" in the equation

(11), it becomes necessary to determine to what degree of approxi-

mation these quantities must be known in order that the resulting

value of p' may not be greatly in error.

To determine the relation of a to the intervals of time between

the observations, we have, from the coefficient of p' in equation (7),

a sec p= tan ft sin (A" A') tan /3' sin (A" A) + tan/3" sin (A' A).

We may put
tan/? =tany3' AT" + BT"* ....,

tan/5"= tan/5' + A? + Br* + ....,

and hence we have

sec jf= (sin (A" A') sin (A" A) + sin (A' A)) tan ?
-f (r sin (A' A) r" sin (A" A')) ^+(r

2
sin (A' A)-f-r"

2 sin (A"/))B+. .,

which is easily transformed into

sec p= 4 sin J (A' A) sin \ (A" A') sin j (A" A) tan p (25 )

-f (r sin (A' A) T" sin (A" A'))-A-f(r
2
sin (A' A)+r"

2 sin (A" X))B+. . . ,

If we suppose the intervals to be small, we may also put

sinJ-(A" A) = i(A" A),

and
sin (A" A) =r. A" A, sin (A'

-
A) = A' A.
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Further, we may put

Substituting these values in the equation (25), neglecting terms of

the fourth order with respect to r, and reducing, we get

a = TT'T" (p'
s tan /?' + A'B AB'} cos jt.

It appears, therefore, that a is at least of the third order with

reference to the intervals of time between the observations, and that

an error of the second order in the assumed values of n and n" may
produce an error of the order zero in the value of p

r as derived from

equation (11) even under the most favorable circumstances. Hence,
in general, we cannot adopt the values

omitting terms of the second order, without affecting the resulting

value of p
r
to such an extent that it cannot be regarded even as an

approximation to the true value
;
and terms of at least the second

order must be included in the first assumed values of n and nff
.

The equation (28)3 gives

/"/7*

omitting the term multiplied by -^~, which term is of the third order
/V)

with respect to the times
;
and hence in this value of

, only terms

of at least the fourth order are neglected. Again, from the equations

(26)3 we derive, since r' r -J- r/r
,

n + n"=l + ~, (27)

in which only terms of the fourth order have been neglected. Now
the first of equations (18) may be written :

p
>

sec /?'
= (n + n")

-n -
c, (28)

in which, if we introduce the values of and n + nrr as given by
fi

(26) and (27), only terms of the fourth order with respect to the
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times will be neglected, and consequently the resulting value of
/>'

will be affected with only an error of the second order when a is of

the third order. Further, if the intervals between the observations

are not very unequal, r
2 r"2 will be a quantity of an order superior

to r2

,
and when these intervals are equal, we have, to terms of the

fourth order,

?L= !L'

n r'

The equation (27) gives

2/8
(n + n" 1) = TT".

Hence, if we put

P- n-
n' (29)

we may adopt, for a first approximation to the value of p',

and p
f
will be affected with an error of the first order when the in-

tervals are unequal ;
but of the second order only when the intervals

are equal. It is evident, therefore, that, in the selection of the

observations for the determination of an unknown orbit, the in-

tervals should be as nearly equal as possible, since the nearer they

approach to equality the nearer the truth will be the first assumed

values of P and
,
thus facilitating the successive approximations ;

and when a is a very small quantity, the equality of the intervals

is of the greatest importance.

From the equations (29) we get

1 1/ _^ ( Tf-\ 1 * ~T ;\ t-t \\ /QIA

and introducing P and Q into (28), there results

This equation involves both p
f and r' as unknown quantities, but

by means of another equation between these quantities p
f

may be

eliminated, thus giving a single equation from which rf

may be

found, after which p
f

may also be determined.
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82. Let ty represent the angle at the earth between the sun and

planet or comet at the second observation, and we shall have, from

the equations (93)3 ,

tan/9
7

tan wr=
sin (A' Q')

-, (33^

cos *'= cos p cos (A' 0'),

by means of which we may determine ij/, which cannot exceed 180.
Since cos ft' is always positive, cos i// and cos (A' O ')

must have the

same sign.

We also have
/2= j. + jgr._ 2A'R cos 4,',

which may be put in the form

r'
2= 0>' sec /3' R cos 4? -f R 2

sin
2

4',

from which we get

P
'

sec ,3'
= R' cos 4' VV* jR"sin4/. (34)

Substituting for
/)

r sec ^
r
its value given by equation (32), we have

For brevity, let us put

4, c = km (35)

'
JcoS = 4>

and we shall have

k ^ =R cos V 1/r'
2

jR'
2 sm2

V. (36)

When the values of P and Q have been found, this equation will

give the value of r' in terms of quantities derived directly from the

data furnished by observation. We shall now represent by z' the

angle at the planet between the sun and earth at the time of the

second observation, and we shall have

sm z'
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Substituting this value of rf

,
in the preceding equation, there results

(&
- E' cos 40 sin z' + K sin *' cos z'=

j^jj^-,>
C38 )

and if we put
TJQ

sin C = K sin V,

,o
cos Z = lc

Q
R' cos *', (39)

the condition being imposed that ra shall always be positive, we

have, finally,
sin (X q= C) = m sinV. (40)

In order that m may be positive, the quadrant in which is taken

must be such that % shall have the same sign as 1
,
since sin i// is

always positive.

From equation (37) it appears that sin z' must always be positive,

or 2' < 180; and further, in the plane triangle formed by joining

the actual places of the earth, sun, and planet or comet corresponding
to the middle observation, we have

y
/ sin (X + 4/) K sin (z

r+ *Q
sin 4/ sin z'

Therefore,

and, since p
r
is always positive, it follows that sin (z' + ty) must be

positive, or that z
1 cannot exceed 180 ty.

When the planet or comet at the time of the middle observation is

both in the node and in opposition or conjunction with the sun, we
shall have /?'

=
0, '\J/

= 180 when the body is in opposition, and

vJ/
= when it is in conjunction. Consequently, it becomes impos-

sible to determine rr

by means of the angle z
r

;
but in this case the

equation (36) gives

*.-=-#+.',

when the body is in opposition, the lower sign being excluded by the

condition that the value of the first member of the equation must be

positive, and for \/ = 0,

the upper sign being used when the sun is between the earth and the
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planet, and the lower sign when the planet is between the earth and

the sun. It is hardly necessary to remark that the case of an obser-

vation at the superior conjunction when /9'
=

0, is physically impos-

sible. The value of r' may be found from these equations by trial
;

and then we shall have

when the body is in opposition, and

/ T}f fiJ

when it is in inferior conjunction with the sun.

For the case in which the great circle passing through the extreme

observed places of the body passes also through the middle place,

which gives a = 0, let us divide equation (32) through by c, and we

have

*"
c

1 p' sec /?'

~+7~ ~~T~'

The equations (17) give

and if we put

c c _ r~1 ; 7T ^>n-

we shall have

since c= GO when a = 0. Hence we derive

(42)

But when the great circle passing through the three observed places

passes also through the second place of the sun, both c and C be-

come indeterminate, and thus the solution of the problem, with the

given data, becomes impossible.

83. The equation (40) must give four roots corresponding to each

sign, respectively; but it may be shown that of these eight roots at

least four will, in every case, be imaginary. Thus, the equation may
be written

m sin4
z' sin z' cos C + cos z' sin C,
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and, by squaring and reducing, this becomes

ra 2
sin

8
z' 2m cos C sin5 / -f- sm2 *' sm2 C= 0.

When is within the limits 90 and + 90, cos will be positive,

and, m being always positive, it appears from the algebraic signs of

the terms of the equation, according to the theory of equations, that

in this case there cannot be more than four real roots, of which three

will be positive and one negative. When exceeds the limits 90

and -f- 90, cos will be negative, and hence, in this case also, there

cannot be more than four real roots, of which one will be positive

and three negative. Further, since sin
2

is real and positive, there

must be at least two real roots one positive and the other negative

whether cos be negative or positive.

"We may also remark that, in finding the roots of the equation (40),

it will only be necessary to solve the equation

sin (z = ra sin* /, (43)

since the lower sign in (40) follows directly from this by substituting

180 z
r in place of 2'; and hence the roots derived from this will

comprise all the real roots belonging to the general form of the

equation.

The observed places of the heavenly body only give the direction

in space of right lines passing through the places of the earth and

the corresponding places of the body, and any three points, one in

each of these lines, which are situated in a plane passing through the

centre of the sun, and which are at such distances as to fulfil the

condition that the areal velocity shall be constant, according to the

relation expressed by the equation (30) 1?
must satisfy the analytical

conditions of the problem. It is evident that the three places of the

earth may satisfy these conditions
;
and hence there may be one root

of equation (43) which will correspond to the orbit of the earth, or

give
,'= 0.

Further, it follows from the equation (37) that this root must be

and such would be strictly the case if, instead of the assumed values

ofP and
,
their exact values for the orbit of the earth were adopted,

and if the observations were referred directly to the centre of the

earth, in the correction for parallax, neglecting also the perturbation*

in the motion of the earth.
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In the case of the earth,

sm(Q" Q)'

sm(O" O')

inCO" O)'

and the complete values of P and Q become

_ ^'sinCQ'-G)~
f "" ''

,3
/ ER' sin(0'- Q) + RR' Bin(0"- Q')~

'

\
'" ;

and since the approximate values

P=C Q= rr"

differ but little from these, as will appear from the equations (27)3,

there will be one root of equation (43) which gives z
r

nearly equal
to 180 ij/. This root, however, cannot satisfy the physical con-

ditions of the problem, which will require that the rays of light in

coming from the planet or comet to the earth shall proceed from

points which are at a considerable distance from the eye of the

observer. Further, the negative values of sin z
1 are excluded by the

nature of the problem, since r f must be positive, or z' < 180
;
and

of the three positive roots which may result from equation (43), that

being excluded which gives z' very nearly equal to 180 ij/, there

will remain two, of which one will be excluded if it gives z' greater

than 180 ^r

,
and the remaining one will be that which belongs

to the orbit of the planet or comet. It may happen, however, that

neither of these two roots is greater than 180 ^'j in which case

both will satisfy the physical conditions of the problem, and hence

the observations will be satisfied by two wholly different systems of

Clements. It will then be necessary to compare the elements com-

puted from each of the two values of z' with other observations in

order to decide which actually belongs to the body observed.

In the other case, in which cos is negative, the negative roots

being excluded by the condition that r' is positive, the positive root

must in most cases belong to the orbit of the earth, and the three

observations do not then belong to the same body. However, in the

case of the orbit of a comet, when the eccentricity is large, and the

intervals between the observations are of considerable magnitude, if
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the approximate values of P and Q are computed directly, by means

of approximate elements already known, from the equations

p _ r/ sin (u
r

u)

-/^sirTK^')'
^ _ <ws /

"> sin (u
f- u) + *V' sin (u"- u'}- 2r l

it may occur that cos is negative, and the positive root will actually

belong to the orbit of the comet. The condition that one value of

z
f
shall be very nearly equal to 180 $', requires that the adopted

values of P and Q shall differ but little from those derived directly

from the places of the earth
;
and in the case of orbits of small

eccentricity this condition will always be fulfilled, unless the intervals

between the observations and the distance of the planet from the sun

are both very great. But if the eccentricity is large, the difference

may be such that no root will correspond to the orbit of the earth.

84. We may find an expression for the limiting values of m
c
and

,
within which equation (43) has four real roots, and beyond which

there are only two, one positive and one negative. This change in

the number of real roots will take place when there are two equal

roots, and, consequently, if we proceed under the supposition that

equation (43) has two equal roots, and find the values of m and

which will accord with this supposition, we may determine the limits

required.

"Differentiating equation (43) with respect to z
f

,
we get

cos (d C) = 4m sinV cos z'
;

and, in the case of equal roots, the value of z
f
as derived from this

must also satisfy the original equation

sin (z' C) = m sinV.

To find the values of m and which will fulfil this condition, if we
eliminate m between these equations, we have

sin z' cos (z* C) = 4 cos z' sin (z' C),

from which we easily find

sin (2z' =
1 sin C. (45)

This gives the value of in terms of z' for which equation (43) haa
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equal roots, and at which it ceases to have four real roots. To find

the corresponding expression for m
,
we have

_ sin (Y C) cos (Y C)

; sin
4
z'

~
4 sinV cos /

in which we must use the value of given by the preceding equation.

Now, since sin (2z
f

)
must be within the limits 1 and -f- 1, the

limiting values of sin will be + f and |, or must be within the

limits + 36 52'.2 and 36 52'.2, or 143 7'.8 and 216 52'.2. If

is not contained within these limits, the equation cannot have equal

roots, whatever may be the value of ra
,
and hence there can only be

two real roots, of which one will be positive and one negative. If

for a given value of we compute z' from equation (45), and call

this ZQJ or

sinO '

C) = | sin C,

we may find the limits of the values of m
,
within which equation

(43) has four real roots. The equation for Z
Q
'
will be satisfied by

the values

2* '-C, 180-(2z '-C);

and hence there will be two values of m
,
which we will denote by

m
l
and m

2,
for which, with a given value of

, equation (43) will

have equal roots. Thus we shall have

m= sin(y-C)
sin\f '

and, putting in this equation 180 (2z/ ) instead of 2z '

,
or

90 (V C) in place of z
',

cos<

It follows, therefore, that for any given value of f, if m is not

within the limits assigned by the values of m
x
and m

2 , equation (43)

will only have two real roots, one positive and one negative, of

which the latter is excluded by the nature of the problem, and the

former may belong to the orbit of the earth. But if P and Q differ

so much from their values in the case of the orbit of the earth that

z
1

is not very nearly equal to 180 tj/, the positive root, when
exceeds the limits -f 36 52'.2 and 36 52'.2, may actually satisfy

the conditions of the problem, and belong to the orbit of the body
observed.

16
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When C is within the limits 143 7'.8 and 216 52'.2, there will

be four real roots, one positive and three negative, if m is within the

limits m
l
and m2 ; but, if m surpasses these limits, there will be only

two real roots.

Table XII. contains for values of from 36 52'.2 to + 36 52'.2

the values of m
l
and m

2,
and also the values of the four real roots

corresponding respectively to m
1
and m

2
.

In every case in which equation (43) has three positive roots and

one negative root, the value of m must be within the limits indicated

by m1
and m2 ,

and the values of z
f
will be within the limits indicated

by the quantities corresponding to m
l
and m

2
for each root, which

we designate respectively by z/, z/, z
3',

and z/. The table will show,

from the given values of m and 180 ij/, whether the problem
admits of two distinct solutions, since, excluding the value of z',

which is nearly equal to 180 ij/, and corresponds to the orbit of

the earth, and also that which exceeds 180, it will appear at once

whether one or both of the remaining two values of z
1
will satisfy

the condition that z' shall be less than 180 <$,'. The table will

also indicate an approximate value of z', by means of which the

equation (43) may be solved by a few trials.

For the root of the equation (43) which corresponds to the orbit

of the earth, we have p
f =

0, and hence from (36) we derive

Substituting this value for k in the general equation (32), we have

-

and, since p
r must be positive, the algebraic sign of the numerical

value of 1
Q
will indicate whether r f

is greater or less than Rf
. It is

easily seen, from the formulae for lw b, d, &c., that in the actual

application of these formulae, the intervals between the observations

not being very large, 1 will be positive when /9' /? and sin (O' K)
have contrary signs, and negative when /9

r

/9
has the same sign as

sin (O' jfif). Hence, when O' K is less than 180, r r must be

less than R r
if ft' /9 is positive, but greater than R f

if /?' /9 is

negative. When O' K exceeds 180, r r will be greater than R'

if /9' /? is positive, and less than &' if /?' /9
is negative. We

may, therefore, by means of a celestial globe, determine by inspection

whether the distance of a comet from the sun is greater or less than
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that of the earth from the sun. Thus, if we pass a great circ'e

through the two extreme observed places of the comet, rf must be

greater than R' when the place of the comet for the middle observa-

tion is on the same side of this great circle as the point of the

ecliptic which corresponds to the place of the sun. But when the

middle place and the point of the ecliptic corresponding to the place

of the sun are on opposite sides of the great circle passing through
the first and third places of the comet, r' must be less than R'.

85. From the values of // and r' derived from the assumed values
T
"

P= and Q = rr", we may evidently derive more approximate

values of these quantities, and thus, by a repetition of the calcula-

tion, make a still closer approximation to the true value of p
r
. To

derive other expressions for P and Q which are exact, provided that

rf and p
r are accurately known, let us denote by s

ff the ratio of the

sector of the orbit included by r and r' to the triangle included by
the same radii-vectores and the chord joining the first and second

places ; by s' the same ratio with respect to r and r", and by s this

ratio with respect to r' and r". These ratios s, s
f

,
s" must neces-

sarily be greater than 1, since every part of the orbit is concave

toward the sun. According to the equation (30)^ we have for the

areas of the sectors, neglecting the mass of the body,

and therefore we obtain

s"[r/]=:TV> /[W'J^rV^ s[tV']=Ty$. (46)

Then, since

we shall have

and, consequently,

[r/]-

.. T 8 f , _^==- (47)

T-T" / oV <?</ QQ" \
^ '

I l_ 4. 2__ !* I 9r'8+ "'

Substituting for s, s', and s" their values from (46), we have

["-']-C^"]
. [r/'] . [r'r"]

'

r"

'



244 THEORETICAL ASTRONOMY.

The angular distance between the perihelion and node being denoted

by to, the polar equation of the conic section gives

7) = 1 -f e cos (u w),

- = 1 -f e cos (u" 01).

(50)

If we multiply the first of these equations by sin (u" u'\ the second

by sin (u
ft

u\ and the third by sin (u
f

u), add the products
and reduce, we get

P- sin (u" O sin (u" u
)+^,

sin (u' u) = sin (u" u')

sin (u" u) -|- sin (u
r

u) ;

and, since

sin (u" u') = 2 sin J (w" 1/) cos J (w" w'),

sin (u" u) sin (u' u)= 2 sin | (u" u') cos | (w" -f u' 2w),

the second member reduces to

4 sin i (u" ') sin J (w" w) sin J (w
f

w\

Therefore, we shall have

4rrV" sin \ (u" u'} sin j (u
y/

u) sin j (u
f

u)
^ r-

//' sin (w"_ w')
_ rr sin (w//_ w) ^_ r/ sin ^/_ tty

If we multiply both numerator and denominator of this expression

by
2rr'r" cos i (u" it') cos J (" u) cos J (w

;

u),

it becomes, introducing [rr'], [rr
/r

], and [r'r"],

1____' "

[rV'j + [r/] [rr"]

'

2nV' cos 1 (M" M') cos J (it" w) cos J (*' w)"

Substituting this value of p in equation (49), it reduces to

rr" r'
2

'

rr" cos J (M" t*') cos I (" w) cos j (w
r

w)'
(51)

86. If we compare the equations (47) with the formula (28)3 ,
we

derive
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Consequently, in the first approximation, we may take

If the intervals of the times are not very unequal, this assumption
will differ from the truth only in terms of the third order with respect

to the time, and in terms of the fourth order if the intervals are

equal, as has already been shown. Hence, we adopt for the first

approximation,

the values of r and t" being computed from the uncorrected times

of observation, which may be denoted by t
,

t
f

,
and t

Q
". With the

values of P and Q thus found, we compute r r

,
and from this p

f

, p,

and p", by means of the formulae already derived.

The heliocentric places for the first and third observations may
now be found from the formulae (71)3 and (72)3, and then the angle
u" u between the radii-vectores r and r" may be obtained in

various ways, precisely as the distance between two points on the

celestial sphere is obtained from the spherical co-ordinates of these

points. When u" u has been found, we have

MA*

sin (u" u'} = - sin (u" u),

n"r"
(53)

Xf -v IV I /// \
sin (u u) = sin (u u),

from which u" uf and uf u may be computed. From these

results the ratios s and s" may be computed, and then new and more

approximate values of P and Q. The value of u" u, found by

taking the sum of u" ur and uf
it as derived from (53), should

agree with that used in the second members of these equations,

within the limits of the errors which may be attributed to the

logarithmic tables.

The most advantageous method of obtaining the angles between

the radii-vectores is to find the position of the plane of the orbit

directly from
I, l

fr
, 6, and 6", and then compute it, u', and u" directly

from Q, and i, according to the first of equations (82)!. It will be

expedient also to compute r f

,
I' and b r from p', ^', and /?',

and the

agreement of the value of r', thus found, with that already obtained

from equation (37), will check the accuracy of part of the numerical
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calculation. Further, since the three places of the body must be in

a plane passing through the centre of the sun, whether P and are

exact or only approximate, we must also have

tan b
f = tan i sin (f & ),

and the value of b' derived from this equation must agree with that

computed directly from /?',
or at least the difference should not exceed

what may be due to the unavoidable errors of logarithmic calcula-

tion.

We may now compute n and n" directly from the equations

_r'r" sin (?/'<) _ rr' sm(u'u)~
rr" sin (u" u)

'
~

rr" sin (u" u)
'

but when the values of u, u f

,
and u" are those which result from the

assumed values of P and
,
the resulting values of n and n" will

only satisfy the condition that the plane of the orbit passes through
the centre of the sun. If substituted in the equations (29), they will

only reproduce the assumed values of P and
,
from which they

have been derived, and hence they cannot be used to correct them.

If, therefore, the numerical calculation be correct, the values of n

and n" obtained from (54) must agree with those derived from equa-

tions (31), within the limits of accuracy admitted by the logarithmic

tables.

The differences u" u' and ur u will usually be small, and

hence a small error in either of these quantities may considerably

affect the resulting values of n and n". In order to determine

whether the error of calculation is within the limits to be expected

from the logarithmic tables used, if we take the logarithms of both

members of the equations (54) and differentiate, supposing only n,

n", and uf to vary, we get

= cot (it" u')du',

d loge n" = -j- cot (V u) du'.

Multiplying these by 0.434294, the modulus of the common system

of logarithms, and expressing duf
in seconds of arc, we find, in units

of the seventh decimal place of common logarithms,

d log n = 21.055 cot (u" u') du',

d log n"= + 21.055 cot (u' u) du'.

If we substitute in these the differences between log n and log n" as

found from the equations (54), and the values already obtained by
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means of (31), the two resulting values of du' should agree, and the

magnitude of du' itself will show whether the error of calculation

exceeds the unavoidable errors due to the limited extent of the

logarithmic tables. When the agreement of the two results for n

and n" is in accordance with these conditions, and no error has been

made in computing n and n" from P and Q by means of the equa-
tions (31), the accuracy of the entire calculation, both of the quan-
tities which depend on the assumed values of P and Q, and of those

which are obtained independently from the data furnished by observa-

tion, is completely proved.

87. Since the values of n and n" derived from equations (54)

cannot be used to correct the assumed values of P and
,
from

which r, r f

, u, uf

,
&c. have been computed, it is evidently necessary

to compute the values for a second approximation by means of the

series given by the equations (26)3,
or by means of the ratios s and

s". The expressions for n and n" arranged in a series with respect

to the time involve the differential coefficients of rf with respect to t
}

and, since these are necessarily unknown, and cannot be conveniently

determined, it is plain that if the ratios s and s" can be readily found

from r, r', r/f
, u, uf

,
uff

,
and r, r', r r/

,
so as to involve the relation

between the times of observation and the places in the orbit, they

may be used to obtain new values of P and Q by means of equations

(48) and (51), to be used in a second approximation.
Let us now resume the equation

M=E esinE,

a

and also for the third place

Subtracting, we get

^= E" E 2e sin J (E" E} cos J (E" + JE). (55;
2

This equation contains three unknown quantities, a, e, and the dif-

ference E" E. We can, however, by means of expressions in-

volving r, r
ff

j Uj and it", eliminate a and e. Thus, since p= a(l e
2

),

we have

= oVl^T1

(E"- E- 2e sin (E"- E) cos J (E"+ E}). (56)
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From the equations

V/r sin& = T/g(l-fe) sin %E, V^_ sin &' = l/a(l + e) sin ",

Vr cos Av = 1/0(1 e) cos J^, T/r" cos jw" = l/o(l e) cos .",

since t?" t? = it"
it, we easily derive

Vr? sin i (w" u) = aVle* sin J (" E), (57)
and also

a cos J (." E} ae cos (E
n+ E} = VW' cos \ (u" u),

or

e cos | (E"+ JE) = cos QE"- )
- y " UUB

^
v" ~ ";

. (58)

Substituting this value of ecos|(^
;/+ E) in equation (56), we get

r'p = a2lr=72(" Esm (E" E))

+ 2al/1^72
sin (" E) cos J (M" u) VW',

and substituting, in the last term of this, for al/1 e
2

,
its value from

(57), the result is

= a*iT=# (E" E sin (E'' E)) + rr" sin (u" u). (59)

From (57) we obtain

* "-->
p sn

or _. / rr"sin(tt" M) \_1
=
\2v

/
r/7

cosJ(w" u)l p sin*%("

Therefore, the equation (59) becomes

1 _E- sin "-
C ] ' ( J

Let Jt
r be the chord of the orbit between the first and third places,

and we shall have

x'
2= (r + r")

2 4rr" cos2

J (n" w).

Now, since the chord #' can never exceed r + r/r
,
we may put

x'=(r-fr")sin r', (61)

and from this, in combination with the preceding equation, we derive

7
cos J (M" M) = (r + /') cos /. (62)
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Substituting this value, and \rr"~\
=

-, Vp, in equation (60), it

reduces to

E"-E- Sm(E"-E) r" 1 1 _
sin

3 1 (E" E) "(r+ r")
8 cos3 p

*

7* "*" 7

The elements a and e are thus eliminated, but the resulting equation

involves still the unknown quantities E" E and s
f
. It is neces-

sary, therefore, to derive an additional equation involving the same

unknown quantities in order that E" E maybe eliminated, and

that thus the ratio s
r

,
which is the quantity sought, may be found.

From the equations

r a ae cos E, r"= a ae cos E",
we get

r
" + r= 2a 2ae cos J (E" -f E) cos | (E" E).

Substituting in this the value of ecos%(E"-}- E) from (58), we have

r
"
4. r= 2a sin*

j (E" E) + 21/77' cos j (w'
;

t*) cos J (^" ^),

and substituting for sin l(E
tr

E) its value from (57), there results

But, since

t*"~ u) (l-2sin

r
sin' j (u

;/

M)_ (K r

])
2 = 2ry2

/_1

^>

~
2prr

ff cos2

^ (t*" u)~ s'
2

\ 21/^y
7
cos

we have

from which we derive

which is the additional equation required, involving E" j&and '

as unknown quantities.

Let us now put

(65)

, sin'VJ="WF
"
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and the equations (63) and (64) become

.-
y

f

s'
3 '"'

(66)

When the value of y
f
is known, the first of these equations will

enable us to determine s', and hence the value of #', or sin
2

(i" E}t

from the last equation.

The calculation of f ma7 be facilitated by the introduction of an

additional auxiliary quantity. Thus, let

(67)

and from (62) we find

cos /= cos (u" u) .,
= 2 cos | (u" u} cos'/ tan /,

or

cos /= sin 2/ cos (u" u). (68)
We have, also,

*'2= (r + r'J 4rr" cos2
J (t*" ),

which gives
x

'2=
(r r")

2 + 4rr" sina J (*" u}.

Multiplying this equation by cos
2

J(it
/r

u) and the preceding one

by sin
2

\ (u" u), and adding, we get

x'
2= (r + r")

2 sin
2

(w" u) + (r /r

)
a cos2

^ (w
v

it). (69)

From (67) we get

and, therefore,

cos2/=L-=ir -f- r"

so that equation (69) may be written

_f

2

=: sin2/= sin2
(w

/;

w) + cos2 2/ cos2 j (u" u).

We may, therefore, put

sin / cos G 1= sin ^ (w" w),

sin / sin G' = cos (w" u) cos 2/, (70)

cos / = cos I (" w) sin 2/,
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from which p' may be derived by means of its tangent, so that sin f
f

shall be positive. The auxiliary angle G' will be of subsequent use

in determining the elements of the orbit from the final hypothesis for

P and Q.

88. We shall now consider the auxiliary quantity y' introduced

into the first of equations (66). For brevity, let us put

and we shall have

,_ sm 9
m

2g sin 2g

This gives, by differentiation,

dy' n 4 sin2
q dq

4- = o cot q do -. g-i
y ^9 sm *>9

or
di/
-f-= 2>y cot g 4y

2 cosec g.
dg

The last of equations (65) gives a/ sin
2

#, and hence

dg
- = 2 cosec g.

Therefore we have

dy' _ Qy
f

cos g 8y
fa= 3 (1

- 2aQ y' 4y"
dx'

~
sin

2

g 2x' (1 #')

It is evident that we may expand y
f into a series arranged in refer-

ence to the ascending powers of x 1

',
so that we shall have

y'
=. a, -f- fix' -f- ?%'* ~\- ^'

3 + ^'* -f- C'
5
-f~ &C.

Differentiating, we get

and substituting for
-g*

the value already obtained, there results

afc-r+ (4r 2/9) ^'
2 + (6* 4r) ^'

3+ (8e 65)^+ (IOC

= (3a 4a2

) + (3^ 6a 8a/9) a;' + (3r 6^ 4/5
2

+ (35 6r 8/?r 8a^) x'
3
-f (3e 65 4f 8/?<5 8ae)^

4. (3C 6-- 8r<5 8/?e 8aC) xf& + &c.

Since the coefficients of like powers of x' must be equal, we nave

3 tt
_ 4a2= o, 3{3 6a 8a = 2A

3r 6,5 4;5
2

8<*r = 2 (2r ), &c.
;
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and hence we derive

=
i, P= T

9
o, r=T-5, d=

T

cr _ 6228 f _ 265896
,
_ 191390e 336875*

_ 265896
2TS3e573

Therefore we have

If we multiply through by V, and put

*" + dii-fts*'
5

<=., (72;
we obtain

Combining this with the second of equations (66), the result is

VY+= +/+?'.
If we put

V=____, (74)

we shall have

But from the first of equations (66) we get

7 -*(/-i;;
and therefore we have

^^- (75)
H- ^

As soon as 3/ is known, this equation will give the corresponding
value of s'.

Since '
is a quantity of the fourth order in reference to the differ-

ence | (E" E\ we may evidently, for a first approximation to the

value of y
f

,
take

and with this find s
f from (75), and the corresponding value of x*

from the last of equations (66). With this value of xf we find the

corresponding value of r

,
and recompute ?/, s', and xf

; and, if tL
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value of ' derived from the last value of xf
differs from that already

used, the operation must be repeated.

It will be observed that the series (72) for '

converges with great

rapidity, and that for E" j=94 the term containing #/6 amounts

to only one unit of the seventh decimal place in the value of c'. Table

XIV. gives the values of '

corresponding to values of xf from 0.0

to 0.3, or from E" E=0 to E" E= 132 50'.6. Should a

case occur in which E" E exceeds this limit, the expression

*
~E"E sin (E" E)

may then be computed accurately by means of the logarithmic tables

ordinarily in use. An approximate value of x' may be easily found

with which y' may be computed from this equation, and then ' from

(73). With the value of ' thus found, if may be computed from

(74), and thus a more approximate value of x' is immediately
obtained.

The equation (75) is of the third degree, and has, therefore, three

roots. Since s' is always positive, and cannot be less than 1, it

follows from this equation that rf is always a positive quantity. The

equation may be written thus :

8* a" ,Y 1,/=0,

and there being only one variation of sign, there can be only one

positive root, which is the one to be adopted, the negative roots being

excluded by the nature of the problem. Table XIII. gives the

values of logs'
2

corresponding to values of if from j/=0 to J/=0.6.
When r/ exceeds the value 0.6, the value of s

f must be found directly

from the equation (75).

89. We are now enabled to determine whether the orbit is an

ellipse, parabola, or hyperbola. In the ellipse x = sin* \(E" E)
is positive. In the parabola the eccentric anomaly is zero, and hence

x = 0. In the hyperbola the angle which we call the eccentric

anomaly, in the case of elliptic motion, becomes imaginary, and

hence, since sin \ (E" E) will be imaginary, x' must be negative.

It follows, therefore, that if the value of x' derived from the equa-

tion

is positive, the orbit is an ellipse ;
if equal to zero, the orbit is a

parabola ;
and if negative, it is a hyperbola.
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For the case of parabolic motion we have x r

0, and the second

of equations (66) gives

"=
j'

(76)

If we eliminate s
r

by means of both equations, since, in this case,

y'
=

f, we get
m'l =/* -f- |/l

Substituting in this the values of m and I given by (65), we obtain

q f

= 3 siny cos r
r + 4 sin3

1/,

which gives
6 '

= 6 sin i/ cos2

tf + 2 sin" i/,

or

_f

T

,
= (sin J/ + cos i/)

8 + (sin i/- cos tf?.

This may evidently be written

= sn + - sn

the upper sign being used when f is less than 90, and the lower

sign when it exceeds 90. Multiplying through by (r -j- r
/;

)^, and

replacing (r -f- r") sin ^ by X, we obtain

6r
'= (r + r

" + x)f qz (r + r" - x)f,

which is identical with the equation (5G)3 for the special case of

parabolic motion.

Since x' is negative in the case of hyperbolic motion, the value of
' determined by the series (72) will be different from that in the

case of elliptic motion. Table XIV. gives the value of '
corre-

sponding to both forms; but when x' exceeds the limits of this table,

it will be necessary, in the case of the hyperbola also, to compute the

value of '

directly, using additional terms of the series, or we may
modify the expression for y' in terms of Eff and E so as to be

applicable.

If we compare equations (44)! and (56) 1? we get

tan E= l/^I tan F;
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and hence, from (58)w

We have, also, by comparing (65)! with (41 )w since a is negative m
the hyperbola,

2<7
'

which gives

Now, since

c<

in which e is the base of Naperian logarithms, we have

E1/^1 = loge (cosE -f 1/^T sin E\

which reduces to

or

E= I/HI log. <r.

By means of these relations between jEJ and
<r, the expression for y

x

may be transformed so as not to involve imaginary quantities. Thus
we have

E"-E= (loge *"
-

loge *) V^=l = l/11

sin (^" E) = sin jK" cosE cos J" sin E= a

Zffa

From the value of cosE we easily derive

sin \E=^^ l/^l, cos =
and hence

Therefore the expression for i/

r becomes

'--4
a



256 THEORETICAL ASTRONOMY.

Since the auxiliary quantity a in the hyperbola is always positive,

let us now put

and we have

ic-i-a*
/=-- -- (77)

from which y' may be derived when A is known.

We have, further,

sin"

and therefore

*=- ":.;-^"
y

- (78,

or

These expressions for y' and #' enable us to find ' when x' exceeds

the limits of the table. Thus, we obtain an approximate value of x1

by putting

from which we first find s
f and then x' from the second of equations

(66). Then we compute A from the formula (79), which gives

A = l 2x
f + 2lz' 2

of, (80)

y
r from (77), and ' from (73). A repetition of the calculation, using

the value of ' thus found, will give a still closer approximation to

the correct values of x' and s' and this process should be continued

until ' remains unchanged.

90. The formulae for the calculation of s
f will evidently give the

value of s if we use r, r', r", u
f

,
and u", the necessary changes in the

notation being indicated at once; and in the same manner using T"
',

r, r f

, u, and u f

,
we obtain s". From the values of and s" thus

found, more accurate values of P and Q may be computed by means

of the equations (48) and (51). We may remark, however, that if

!:he times of the observations have not been already corrected for the
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time of aberration, as in the case of the determination of an unknown

orbit, this correction may now be applied as determined by means of

the values of p, p', and p" already obtained. Thus, if t
,
t

',
and t

"

are the uncorrected times of observation, the corrected values will be

t = t Cp sec /?,

t' =t
Q

'

Cp'Becp, (81)

r= V 0"sec/9",

in which log C= 7.760523, expressed in parts of a day; and from

these values of t
y

t
f

j
t" we recompute r, r r

,
and r", which values will

require no further correction, since p, p', and p", derived from the

first approximation, are sufficient for this purpose. With the new
values of P and Q we recompute r, r r

, r", and u, u
f

,
u" as before,

and thence again P and
,
and if the last values differ from the pre-

ceding, we proceed in the same manner to a third approximation,
which will usually be sufficient unless the interval of time between

the extreme observations is considerable. If it be found necessary
to proceed further with the approximations to P and Q after the

calculation of these quantities in the third approximation has been

effected, instead of employing these directly for the next trial, we

may derive more accurate values from those already obtained. Thus,
let x and y be the true values of P and respectively, with which,
if the calculation be repeated, we should derive the same values again.
Let A# and &y be the differences between any assumed values of x

and y and the true values, or

Then, if we denote by #/, yQ

f the values which result by direct cal-

culation from the assumed values x and yw we shall have

x
o

x
o =/GP< 2/o) =/GB -f Aa?, y + Ay).

Expanding this function, we get

Ay + Ely* +....,

and if AO; and Ay are very small, we may neglect terms of the second

order. Further, since the employment of x and y will reproduce the

same values, we have

/(*,2/) = 0,

and hence, since A#= x x and &y= yQ y,

17
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In a similar manner, we obtain

Let us now denote the values resulting from the first assumption for

P and Q by P, and
t , those resulting from P

19 Ql by P2 , Q2,
and

from P2, 2 by P3, 3 ; and, further, let

P1 -P= a, P
f
-P1= a', P3 _P2 _a",

fc-e=ft, e,-ft=ft', e.-c,=y
f

.

Then, by means of the equations for x f X
Q
and y

f

yQ) we shall

have

a = A(P-z B-y), b = A (P -x) + B' (Q -y\
y-), V = A(P-x) + ff^-y),
y), V'= A'(P,-x)+B(Q,-y\

If we eliminate J., B, A f

,
and P' from these equations, the results

are

^ P(o'6" q"6') -f P, ( "6 0^) + P2 (oft' a'6)

(a
'

J"_ a"6') + (a"& ab") + (06' o'6)

- e (o'y
7

a
;yy ) + Q, <x'& ^^o + $2(^ g^)

y -
(a

f

b" a"b'} + ~(a"b ab") + (06' a'6)
'

from which we get

(a" 4. a') (a'b" a"b
f

} + g"(V'6 5'^

'ft"_ "y) 4. (a"b aft")

/ r/ y

~
3

(a'6" a"6') + (a"b ab"} + (a6
r

a'6)"

In the numerical application of these formulae it will be more con-

venient to use, instead of the numbers P, P1?
P

2 , , 1? &c., the loga-

rithms of these quantities, so that a= logPl log P, b= log t log Q,

and similarly for a'
', 6', ar/

,
6 r/

,
which may also be expressed in

units of the last decimal place of the logarithms employed, and we
shall thus obtain the values of log x and log y. With these values

uf log x and log y for log P and log Q respectively, we proceed with

the final calculation of r, r f

, r", and u
9
uf

,
u" .

When the eccentricity is small and the intervals of time between

the observations are not very great, it will not be necessary to employ
the equations (82) ;

but if the eccentricity is considerable, and if, in

addition to this, the intervals are large, they will be required. It

may also occur that the values of P and Q derived from the last

hypothesis as corrected by means of these formulae, will differ so
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much from the values found for x and y, on account of the neglected

terms of the second order, that it will be necessary to recompute these

quantities, using these last values of P and Q in connection with the

three preceding ones in the numerical solution of the equations (82).

91. It remains now to complete the determination of the elements

of the orbit from these final values of P and Q. As soon as & , i,

and u, u', u" have been found, the remaining elements may be de-

rived by means of r, rf

,
and u' u, and also from r f

y r", and u" u'
\

or, which is better, we will obtain them from the extreme places, and,

if the approximation to P and Q is complete, the results thus found

will agree with those resulting from the combination of the middle

place with either extreme.

We must, therefore, determine a' and xf from r, r", and u" u,

by means of the formulae already derived, and then, from the second

of equations (46), we have

y- j~ ->

from which to obtain p. If we compute s and s" also, we shall have

/
sr'r" sin (u" u')\

2
I s"rr

f

sin (u
r

u)\*

and the mean of the two values of p obtained from this expression
should agree with that found from (83), thus checking the calcula-

tion and showing the degree of accuracy to which the approximation
to P and Q has been carried.

The last of equations (65) gives

sm|(" Jg?)
= T/^, (84)

from which E" E may be computed. Then, from equation (57),

since e = sin
<p,

we have

"""'= ^
for the calculation of a cos

<p.
But p = a (1 e

2

)
= a cos

2

(p}
whence

cos r = -2, (86)

which may be used to determine
<p
when e is very nearly equal to

unity; and then e may be found from

e = 1 2 sin
2
(45 J<P).
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The equations (50) give
n\

e cos (u to)
= L 1,

D
e cos (u" w) = ^ 1,

and from these, by addition and subtraction, we derive

ajcoBi(nr'-ii)ooBG(ti"+ )-)=? + -

2e sin '
(u" u) sin Q (u"+ ))=? ,

(87)

oy means of which e and a> may be found.

Since

o ,
r r" - o f

cos 2/=
; n, sm 2y =

; j
r+ r

'
r + r"

we have

g ,
1> o^ _2̂ o

r TF V/r//

sin2/

p p _ 2p cot 2/"
'

and from equations (70),

. ,
sin i (it" w) tan 6r

f

-of cos /
cot 2/ ==- -/-, sm 2/=-T7-77

-r.
cos / cos ^ (u u)

Therefore the formulae (87) reduce to

* sin ,
- "

t* =- == tan G'

(88)

cos (w (?/' + w)) =- x
_ sec J (w

v
w;,

cos/F rr"

from which also 6 and co may be derived. Then

sin <p
=

e,

and the agreement of cos
<p

as derived from this value of
<p
with that

given by (86) will serve as a further proof of the calculation. The

longitude of the perihelion will be given by

* = + ,

or, when i exceeds 90, and the distinction of retrograde motion is

adopted, by K = & co.



DETERMINATION OF AN OKBIT. 261

To find a, we have

p _(a cos ^>)
8

~~

COS2
<f>

~
p

or it may be computed directly from the equation

4s'W cos2

^ (u" u) sm*$ (E" JB

which results from the substitution, in the last term of the preceding

equation, of the expressions for a cos
<p
and p given by (83) and (85).

Then for the mean daily motion we have

We have now only to find the mean anomaly corresponding to any

epoch, and the elements are completely determined. For the true

anomalies we have

V = U <i>, V
f= U to, v" = u" ct>

'

and if we compute r, r'
9
r" from these by means of the polar equa-

tion of the conic section, the results should agree with the values of

the same quantities previously obtained. According to the equation

(45)j, we have
tan \E = tan (45 ?) tan Jv,

tan \E' = tan (45 J?) tan jv', (90)

tan E" == tan (45 j?) tan W',

from which to find E, E'
y
and E" . The difference E" E should

agree with that derived from equation (84) within the limits of

accuracy afforded by the logarithmic tables. Then, to find the mean

anomalies, we have
M =E eswE,
M'=E'esmE', (91;

M"= E"esmE";

and, if M
Q
denotes the mean anomaly corresponding to any epoch Tt

we have, also,

?n the application of which the values of
t,

t>
',
and t" must be those

which have been corrected for the time of aberration. The agree-
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ment of the three values of M will be a final test of the accuracy of

the entire calculation. If the final values of P and Q are exact,

this proof will be complete within the limits of accuracy admitted

by the logarithmic tables.

When the eccentricity is such that the equations (91) cannot be

solved with the requisite degree of accuracy, we must proceed accord-

ing to the methods already given for finding the time from the peri-

helion in the case of orbits differing but little from the parabola.

For this purpose, Tables IX. and X. will be employed. As soon as

v, v f

,
and v" have been determined, we may find the auxiliary angle

V for each observation by means of Table IX.
; and, with V as the

argument, the quantities M9
Mf

,
M" (which are not the mean anoma-

lies) must be obtained from Table VI. Then, the perihelion distance

having been computed from

P

we shall have

in which log (7 = 9.96012771, for the determination of the time of

perihelion passage. The times t, t', t
u must be those which have

been corrected for the time of aberration, and the agreement of the

three values of T is a final proof of the numerical calculation.

If Table X. is used, as soon as the true anomalies have been found,

the corresponding values of log B and log C must be derived from

the table. Then w is computed from

and similarly for w f and w" ; and, with these as arguments, we derive

M, Mr

,
M" from Table VI. Finally, we have

MBq* _

(93)

for the time of perihelion passage, the value of O being the same as

in (92).

When the orbit is a parabola, e = I and p 2g, and the elements

Q and <o can be derived from r, r"
9 u, and u" by means of the equa-
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tions (76), (83), and (88), or by means of the formulae already given
for the special case of parabolic motion.

92. Since certain quantities which are real in the ellipse and para-

bola become imaginary in the case of the hyperbola, the formulae

already given for determining the elements from r, rn
', u, and u"

require some modification when applied to a hyperbolic orbit.

When s
f and x f have been found, p, e

}
and w may be derived from

equations (83) and (87) or (88) precisely as in the case of an elliptic

orbit. Since x f = sin
2

\ (E" E), we easily find

sin i (E" J) = 2 l/V

and equation (85) becomes

sini(t*" u~

But in the hyperbola x f
is negative, and hence Vx r xn will be

imaginary ; and, further, comparing the values of p in the ellipse

and hyperbola, we have cos
2

^ = tan2

^, or

cos <p
= V 1 tan 4*.

Therefore the equation for a cos
<p
becomes

if a is considered as being positive, from which a tan
if/ may be

obtained. Then, since p = a tan
2

if/,
we have

tan $ = f- , (96)

for the determination of
TJ!/,

and the value of e computed from

e = sec 4 1/1 + tan2
4

should agree with that derived from equation (88). When e differs

but little from unity, it is conveniently and accurately computed
from

e = 1 + 2 sin2^ sec 4.

The value of a may be found from

'

(97;
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or from

16s'
2 rr" cos2

(u" u) (a/
2

x'J

which is derived directly from (89), observing that the elliptic semi-

transverse axis becomes negative in the case of the hyperbola.
As soon as to has been found, we derive from u, u

f

,
and uff the

corresponding values of v, v f

,
and v", and then compute the valuos

of F
}
F'

y
and F" by means of the formula (57) x ;

after which, by
means of the equation (69)D the corresponding values of N, Nf

,
and

N' r will be obtained. Finally, the time of perihelion passage w'll

be given by

A0A/

wherein log^^ = 7.87336575.

The cases of hyperbolic orbits are rare, and in most of those which

do occur the eccentricity will not differ much from that of the para-

bola, so that the most accurate determination of T will be effected by
means of Tables IX. and X. as already illustrated.

93. EXAMPLE. To illustrate the application of the principal for-

mula which have been derived in this chapter, let us take the follow-

ing observations of Eurynome :

Ann Arbor M. T. (rtfo, @)u

1863 Sept. 14 15* 53W 37'.2 1* 0" 44-.91 + 9 53' 30".8,

21 9 46 18 .0 57 3 .57 9 13 5 .5,

28 8 49 29 .2 52 18 .90 + 8 22 8 .7.

The apparent obliquity of the ecliptic for these dates was, uespect-

* ively, 23 27' 20".75, 23 27' 20".71, and 23 27' 20".65
; and, by

means of these, converting the observed right ascensions and declina-

tions into apparent longitudes and latitudes, we get

Ann Arbor M. T. Longitude. Latitude.

1863 Sept. 14 15* 53- 37'.2 17 47' 37".60 -f 3 8' 43".19,

21 9 46 18 .0 16 41 36 .20 2 52 27 .46,

28 8 49 29 .2 15 16 56 .35 +2 32 42 .98.

For the same dates we obtain from the American Nautical Alma

the following places of the sun :
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True Longitude. Latitude. log .R .

172 l'42".l 0.07 0.0022140,

178 37 17 .2 + 0.77 0.0013857,

185 26 54 .8 + 0.67 0.0005174.

Since the elements are supposed to be wholly unknown, the places

of the planet must be corrected for the aberration of the fixed stars

as given by equations (1). Thus we find for the corrections to be

applied to the longitudes, respectively,

-
18".48,

-
19".49, 20".8,

and for the latitudes,

+ 0".47, + 0".30, + 0".14.

When these corrections are applied, we obtain the true places of the

planet for the instants when the light was emitted, but as seen from

the places of the earth at the instants of observation.

Next, each place of the sun must be reduced from the centre of

the earth to the point in which a line drawn from the planet through
the place of the observer cuts the plane of the ecliptic. For this

purpose we have, for Ann Arbor,

<?'
= 42 5'.4, log ft,

= 9.99935 ;

and the mean time of observation being converted into sidereal time

gives, for the three observations,

== 3* 29 1-, el= 21* 48- 17',
"= 21* 18- 55',

which are the right ascensions of the geocentric zenith, of which
y>'

is in each case the declination. From these we derive the longitude

and latitude of the zenith for each observation, namely,

4,= 6033'.9, 4'= 35035'.2, ^' = 342 59'.2,

6 = + 22 25.0, & '=4-50 50.9, & "= + 53 41.6.

Then, by means of equations (4), we obtain

= 18".92, A'= 36".94, A0"= 25".76,

A logEQ
= 0.0001084, A log Rj= 0.0002201,

A log # " = 0.0002796.

For the reduction of time, we have the values + OM5, -j~ 0*.28, and

-f-
8

.34, which are so small that they may be neglected.
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Finally, the longitudes of both the sun and planet are reduced to

the mean equinox of 1863.0 by applying the corrections

50".95, -51".52, 52".14;

and the latitudes of the planet are reduced to the ecliptic of the same

date by applying the corrections Or/

.15, Or/

.14, and Or/

.14,

respectively.

Collecting together and applying the several corrections thus ob-

tained for the places of the sun and of the planet, reducing the un-

corrected times of observation to the meridian of Washington, and

expressing them in days from the beginning of the year, we have the

following data :

tQ
= 257.68079, A = 17 46' 28".17, = + 3 8' 43".51,

tj
= 264.42570, A' = 16 40 25 .19, f = 2 52 27 .62,

C' = 271.38625, A" = 15 1544.03, P"= + 2 3242.98,

O =172 0'32".23, log =0.0021056,

O' =178 35 48 .74, logjR' =0.0011656,

0"=185 25 36 .90, log R"= 0.0002378.

The numerical values of the several corrections to be applied to

the data furnished by observation and by the solar tables should be

checked by duplicate calculation, since an error in any of these re-

ductions will not be indicated until after the entire calculation of the

elements has been effected.

By means of the equations

m(0" 0Q _ EEf

sm(Q' Q)
"
RR" sin (O" O)

' RR" sin (" 0)'

tan/3' tan (A' -Q')
cosrf

'

we obtain

logN= 9.7087449, log N"= 9.6950091,

4/= 16142'13".16,

log (R' sin V) = 9.4980010, log (R cos 4/) = 9.9786355..

The quadrant in which -\}/
must be taken is determined by the con-

ditions that i// must be less than 180, and that cos^' and cos (A' O')

must have the same sign. Then from
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tan JsinQ (/' + A)
- K) =|^gf,

sec J (/'
-

i),

tanlcosQ (A" + A)
- K) =

"

, cosec |
-

267
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G" JjQ sec/3' jfcft" sm(G" 0)J~
sin (A" A)' a sin (/>/' A)~~

we compute K, I, $,, a
, 6, c, c?, /, and h. The angle J must be less

than 90, and the value of ft must be determined with the greatest

possible accuracy, since on this the accuracy of the resulting elements

principally depends. Thus we obtain

K= 4 47' 29".48, log tan 1= 9.3884640,

A 2 52' 59"fif , log a = 6.8013583n ,

log 6 = 2.5456342n, log c = 2.2328550W,

log d = 1.2437914, log/= 1.3587437n , log h = 3.924769L

The formulae

, _ sin (A
;

/I) ^ sin (/I Q)
" J

"

gve

sin (A" A)

sin (/" K)

log M, = 9.8946712,

log Jfa = 1.9404111,

hsm(l

log Mf= 9.6690383,

logMz

"= 0.7306625n.

The quantities thus far obtained remain unchanged in the suc-

cessive approximations to the values of P and Q.

For the first hypothesis, from

i? sin Z,=R sin 4/,

T)Q
cos C = & -R' cos 4*',
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we obtain

log r = 9.0782249, log T"= 9.0645575,

logP= 9.9863326, log Q = 8.1427824,

log c == 2.2298567n, log k = 0.0704470,

log 1Q
= 0.0716091, log 7y

= 0.3326925,

C = 8 24' 49".74, Iogm == 1.2449136.

The quadrant in which must be situated is determined by the con-

dition that ^ shall have the same sign as b
The value of z

1 must now be found by trial from the equation

sin (si C) = m sin4
sf.

Table XII. shows that of the four roots of this equation one exceeds

180, and is therefore excluded by the condition that sin/ must be

positive, and that two of these roots give z
f

greater than 180 ij/,

and are excluded by the condition that z
r must be less than 180 -J/.

The remaining root is that which belongs to the orbit of the planet,

and it is shown to be approximately 10 40'
;
but the correct value

is found from the last equation by a few trials to be

z'= 9 1'22".96.

The root which corresponds to the orbit of the earth is 18 20' 41",

and differs very little from 180 ty.

Next, from

we derive

log r'= 0.3025672, log P
' = 0.0123991,

''

log n= 9.7061229, log n"= 9.6924555,

log p = 0.0254823, logf= 0.0028859.

The values of the curtate distances having thus been found, the

heliocentric places for the three observations are now computed from
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r cos b cos (I O) =p cos (A Q) R,
r cos b sin (I Q) =^sin(A Q),
r sin & =

f> tan /? ;

/ cos 6' cos (V Q =y cos (A' ') #,
/ cos V sin (r .0') = P

f

sin (A' '),

r' sin b' />' tan p ;

r" cos 6" cos (r Q") = P
"
cos (A" 0") J2",

r" cos 6" sin (f 0") = /e," sin (A" 0"),

which give

J = 5 14' 39".53, log tan b =8.4615572, logr =0.3040994,
V = 7 45 11 .28, log tan b' =8.4107555, logr' =0.3025673,
I"= 10 21 34 .57, log tan b"= 8.3497911, log r"= 0.3011010.

The agreement of the value of logr' thus obtained with that already

found, is a proof of part of the calculation. Then, from

(\ nn . 7^ r^\ tan 6"-}- tan 6

nG(/ + - Q) = .
.

cos i cos ^ cos i

we get
ft = 207 2' 38".16, t= 4 27' 23".84,

u= 158 8' 25".78, uf = 160 39' 18".13, u" = 163 16' 4".42.

The equation
tan b'= tan i sin (T ft )

gives log tan b r = 8.4107514, which differs 0.0000041 from the value

already found directly from //. This difference, however, amounts

to only O r/.05 in the value of .the heliocentric latitude, and is due to

errors of calculation. If we compute n and n" from the equations

r'r" sin (u" u') rr
r

sin (u' u)n = . ; , n" =
rr" sin (u" U*)'

~
rr" sin (" u)

'

the results should agree with the values of these quantities previously

computed directly from P and Q. Using the values of u, u', and

u" just found, we obtain

log n= 9.7061158, log n"= 9.6924683,
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which differ in the last decimal places from the values used in finding

p and p
ff

. According to the equations

d log n = 21.055 cot (u" ') du',

d log n"= -f 21.055 cot (u
r

u) du',

the differences of logn and logn" being expressed in units of the

seventh decimal place, the correction to u' necessary to make the two

values of logn agree is 0".15; but for the agreement of the two
values of log??/', u' must be diminished by 0".26, so that it appears
that this proof is not complete, although near enough for the first

approximation. It should be observed, however, that a great circle

passing through the extreme observed places of the planet passes

very nearly through the third place of the sun, and hence the values

of p and p" as determined by means of the last two of equations (18)
are somewhat uncertain. In this case it would be advisable to com-

pute p and p", as soon as p
f has been found, by means of the equa-

tions (22) and (23). Thus, from these equations we obtain

log p = 0.025491 8, log p"= 0.0028874,
and hence

I = 514'40".05, log tan b =8.4615619, log r = 0.3041042,
J"=10 2134.19, log tan b" =8.3497919, log/' =0.3011017,

& == 207 2' 32".97, i = 4 27' 25".13,

u= 158 8' 31".47, u'= 160 39' 23".31, u"= 163 16' 9".22.

The value of log tan b f derived from X
f and these values of Q, and i,

is 8.4107555, agreeing exactly with that derived from p
f

directly.

The values of n and n" given by these last results for u, u' and u"
y

are

log n = 9.7061144, log n" = 9.6924640
;

and this proof will be complete if we apply the correction du f= 0".18

to the value of u', so that we have

u" u'= 2 36' 46".09, u' u = 2 30' 51".66.

The results which have thus been obtained enable us to proceed to

a second approximation to the correct values of P and
,
and we

may also correct the times of observation for the time of aberration

by means of the formulae

t = t
Q Cp sec /?, t= t

Q

'

Cp' sec p, t" = t
"

Cp" sec p',

wherein log C= 7.760523, expressed in parts of a day. Thus we get

t= 257.67467, if = 264.41976, *"= 271.38044,
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and hence

log r= 9.0782331, log r'= 9.3724848, log T"= 9.0645692.

Then, to find the ratios denoted by s and s", we have

sin Y cos Q= sin | (u" t/)>

sin Y sin G = cos J (u" u') cos 2/,

cos 7-
= cos ^ (u" u') sin 2/ ;

tan/' =
sin f' cos G"= sin ^ (V w),

sin r" sin G" = cos J (V t*) cos 2/',

cos /' = cos (M' w) sin 2/' ;

r2
. sin

2

")
3 cos3 /

from which we obtain

y = 44 57
f

6".00, /'= 44 56
f

57".50,

r= 1 18 35 .90, r"= 1 15 40 .09,

logm= 6.3482114, logm'
;= 6.3163548,

log.;
= 6.1163135, log/' = 6.0834230.

From these, by means of the equations

m m

V

using Tables XIII. and XIV., we compute s and s". First, in the

case of s, we assume

y = _ = 0.0002675,

and, with this as the argument, Table XIII. gives log s
2= 0.0002581 .

Hence we obtain xf = 0.000092, and, with this as the argument,
Table XIV. gives c = 0.00000001

; and, therefore, it appears that a

repetition of the calculation is unnecessary. Thus we obtain

logs =0.0001290, logs" =0.0001 200.

When the intervals are small, it is not necessary to use the formulae
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in the complete form here given, since these ratios may then be found

by a simpler process, as will appear in the sequel. Then, from

TT" r"

ss" rr" cos J (it" w') cos J (it" tt) cos ^ (M' )'

we find

logP= 9.9863451, log Q = 8.1431341,

with which the second approximation may be completed. We now

compute c
,

7c
Q ,

1
,
z'

',
&c. precisely as in the first approximation ; but

we shall prefer, for the reason already stated, the values of p and p"

computed by means of the equations (22) and (23) instead of those

obtained from the last two of the formulae (18). The results thus

derived are as follows :

log c = 2.2298499n , log Jc = 0.0714280,

log 1 = 0.0719540, log i?
= 0.3332233,

C = 8 24' 12".48, logm = 1.2447277,

z
f= 9 0' 30".84,

log / 0.3032587, log p'
= 0.0137621,

log n == 9.7061153, log n"= 9.6924604,

log/>
= 0.0269143, log/'= 0.0041748,

I = 5M5'57".26, log tan b =8.4622524, logr =0.3048368,
I' = 7 46 2.76, log tan V = 8.4114276, log/ = 0.3032587,

l
rf= 10 22 .91, log tan b"= 8.3504332, log r" = 0.3017481,

a = 207 0' 0".72, * = 4 28
r

35'
r

.20,

u= 158 12' 19".54, u' = 160 42' 45".82, u"= 163 19' 7".14.

The agreement of the two values of logr' is complete, and the value

of log tan b' computed from

tan b'= tan i sin (l
r

Q> ),

is log tan b f= 8.41 1427 9, agreeing with the result derived directly

from p
r
. The values of n and n" obtained from the equations (54)

are

log n = 9.7061156, log n"= 9.6924603,

which agree with the values already used in computing p and p", and

the proof of the calculation is complete. We have, therefore,

tt"_ u> = 2 36' 21".32, u' u= 2 30' 26".28, u" u=5& 47".60.

From these values of ii
n u r and u f

u, we obtain

log s = 0.0001284, logs"= 0.0001193,
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and, recomputing P and Q, we get

logP == 9.9863452, log Q = 8.1431359,

which differ so little from the preceding values of these quantities

that another approximation is unnecessary. We may, therefore, from

the results already derived, complete the determination of the elements

of the orbit.

The equations

sin / cos G' = sin
-^ (u" u\

sin / sin Gr= cos J (u" u) cos 2/,

cos /= cos (u" Uj sin 2/,

m ,= v _sm
" 3 J ""

(r-j-r")
3 cosV

give

/= 44 53' 53".25, /= 2 33' 52".97, log tan G' = 8.9011435

log m'= 6.9332999, log/= 6.7001345.

From these, by means of the formulae

'_ m'

'

""!+/+* ~*'a '^'

and Tables XIII. and XIV., we obtain

logs'
2<=: 0.0009908, loga/= 6.549411U

Then from

we get

logjs
= 0.3691818.

The values of logp given by

s/r" sin (i*" w') \
2

/ s'Vr' sin (w
f

u) \"

are 0.3691824 and 0.3691814, the mean of which agrees with the

result obtained from u" u, and the differences between the separate

results are so small that the approximation to P and Q is sufficient,

The equations

P
cos <p

= -

18
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give

"
E) = 1 4' 42".903, log (a cos ?) = 0.3770315,

log cos <p
= 9.9921503.

Next, from

e sin (at I (n" + u)) =-P
/_ tan G',

cos /V rr"

e cos (,
-

JK + u)) =-^
-

seci (u"- v),
cos/yrr

we obtain

a> = 190 15' 39".57, log e= log sin ? = 9.2751434,

?>
== 10 51 39 .62, TT = , -f-

= 37 15' 40".29.

This value of ^ gives log cos<p
= 9.9921501, agreeing with the result

already found.

To find a and
//, we have

p k

the value of k expressed in seconds of arc being log k = 3.5500066,

from which the remits are

log a = 0.3848816, log ft
= 2.9726842.

The true anomalies are given by

v = u at, v
f= u' o>, v"= u" cw,

according to which we have

v= 327 56' 39".97, v'= 330 27' 6".25, i"= 333 3' 27".57.

If we compute r, r f

,
and r" from these values by means of the polar

equation of the ellipse, we get

log r= 0.3048367, log r' = 0.3032586, log r"= 0.3017481,

and the agreement of these results with those derived directly from

p, p
f

,
and p

rr
is a further proof of the calculation.

The equations
tan {E = tan (45 ?) tan v,

tan ^E' = tan (45 1$0 tan ^,
tan JJE"

= tan (45 ?) tanW
give

E= 333 17' 28' .18, E'= 335 24' 38".00, E"= 337 36' 19".78.
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The \alue of J (E" E) thus obtained differs only 0".003 from that

computed directly from x''.

Finally, for the mean anomalies we have

M= E e sin E, M'= E' e sin E'
y M"= E" e sin E'\

from which we get

M= 338 8' 36".71, M' = 339 54' 10".61, M"= 341 43' 6".97
;

and if Jf denotes the mean anomaly for the date T=1863 Sept. 21.5

Washington mean time, from the formulae

M=M n(t r>

we obtain the three values 339 55' 25".97, 339 55' 25".96, and

339 55' 25".96, the mean of which gives

M9
= 339 55' 25".96.

The agreement of the three results for Jf is a final proof of the

accuracy of the entire calculation of the elements.

Collecting together the separate results obtained, we have the fol-

lowing elements :

Epoch = 1863 Sept. 21.5 Washington mean time.

M= 339 55' 25".96

*= 37 15 40 .29)

ft - 207 72 V
EchPtlc and Mean

06 *J" ' v v I *i / . . -<o/>or\

t= 4 28 35.20J Equinox 1863.0.

<P
= 10 51 39 .62

'

log a= 0.384881 6

log ^= 2.9726842

At = 939".04022.

If we compute the geocentric right ascension and declination of

the planet directly from these elements for the dates of the observa-

tions, as corrected for the time of aberration, and then reduce the

observations to the centre of the earth by applying the corrections

for parallax, the comparison of the results thus obtained will show

how closely the elements represent the places on which they are

based. Thus, we compute first the auxiliary constants for the equator,

using the mean obliquity of the ecliptic,

e = 23 27' 24".96,
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and the following expressions for the heliocentric co-ordinates of the

planet are obtained :

x= r [9.9997272] sin (296 55' 46".05 -f u),

y=r [9.9744699] sin (206 12 42 .79 + u),

z = r [9.5249539] sin (212 39 14 .62 + u).

The numbers enclosed in the brackets are the logarithms of sin a,

sin bj and sine, respectively; and these equations give the co-ordinates

referred to the mean equinox and equator of 1863.0.

The places of the sun for the corrected times of observation, and

referred to the mean equinox of 1863.0, are

True Longitude.
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Observed a. Observed <5.

lh Qm 45M5 + 9 53' 35".3,

57 3 .26 9 13 10 .3,

52 18 .56 +8 22 13 .8.

The comparison of these with the computed values shows that the

extreme places are exactly represented, while the difference in the

middle place amounts to only 0*.01 in right ascension, and to 0".l

in declination. It appears, therefore, that the observations are com-

pletely satisfied by the elements obtained, and that the preliminary
corrections for aberration and parallax, as determined by the equa-
tions (1) and (4), have been correctly computed.

It cannot be expected that a system of elements derived from ob-

servations including an interval of only fourteen days, will be so

exact as the results which are obtained from a series of observations

or from those including a much longer interval of time; and although
the elements which have been derived completely represent the data,

yet, on account of the smallness of
/9

r

/9 ,
this difference being only

31".893, the slight errors of observation have considerable influence

in the final results.

When approximate elements are already known, so that the cor-

rection for parallax may be applied directly to the observations, in

order to take into account the latitude of the sun, the observed places

of the body must be reduced, by means of equation (6), to the point
in which a perpendicular let fall from the centre of the earth to the

plane of the ecliptic cuts that plane. The times of observation must

also be corrected for the time of aberration, and the corresponding

places of both the planet and the sun must be reduced to the ecliptic

and mean equinox of a fixed epoch; and further, the reduction to

the fixed ecliptic should precede the application of equation (6).

If the intervals between the times of observation are considerable,

it may become necessary to make three or more approximations to the

values ofP and
,
and in this case the equations (82) may be applied.

But when approximate elements are already known, it will be advan-

tageous to compute the first assumed values of P and Q directly

from these elements by means of the equations (44) or by means of

(48) and (51) ;
and the ratios s and s" may be found directly from the

equations (46). In the case of very eccentric orbits this is indispen-

sable, if it be desired to avoid prolixity in the numerical calculation,

since otherwise the successive approximations to P and Q will slowly

approach the limits required.



278 THEORETICAL ASTRONOMY.

The various modifications of the formulae for certain special cases,

as well as the formulae which must be used in the case of parabolic

and hyperbolic orbits, and of those differing but little from the

parabola, have been given in a form such that they require no fur-

ther illustration.

94. In the determination of an unknown orbit, if thje intervals are

considerably unequal, it will be advantageous to correct the first

assumed value of P before completing the first approximation in the

manner already illustrated. The assumption of

is correct to terms of the fourth order with respect to the time, and

for the same degree of approximation to P we must, according to

equation (28)3,
use the expression

p L

T
which becomes equal to only when the intervals are equal. The

first assumed values

furnish, with very little labor, an approximate value of rf

;
and then,

with the values of P and
,
derived from

T" i

=V (98)

the entire calculation should be completed precisely as in the example

given. Thus, in this example, the first assumed values give

log r' = 0.30257,

and, recomputing P by means of the first of these equations, we get

logP= 9.9863404, log Q = 8.1427822,

with which, if the first approximation to the elements be completed,

the results will differ but little from those obtained, without this cor-

rection, from the second hypothesis. If the times had been already

corrected for the time of aberration, the agreement would be still

closer.

The comparison of equations (46) with (25)s gives, to terms of the

fourth order,
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and, if the intervals are equal, this value of s' is correct to terms of

the fifth order. Since

log.a= log.(l + (-!))=-! -(-!) + Ac.,

we have, neglecting terms of the fourth order,

lg =
-pl>

(99)

in which log JA
= 8.8596330. We have, also, to the same degree of

approximation,

!< '=71' to^= -5> (100)

For the values

log r= 9.0782331, log r
f= 9.3724848, log r" ** 9.0645692,

log/= 0.3032587,
these formulae give

log s= 0.0001277, log s'= 0.0004953, log
"= 0.0001199,

which differ but little from the correct values 0.0001284, 0.0004954,

and 0.0001193 previously obtained.

Since

sec8 /= 1 + 6 sin
2

tf + &c.,

the second of equations (65) gives

sin' &c-

Substituting this value in the first of equations (66), we get

If we neglect terms of the fourth order with respect to the time, it

will be sufficient in this equation to put y
r=

f, according to (71), and

hence we have

4
3

and, since s
f 1 is of the second order with respect to r', we have,

to terms of the fourth order,
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Therefore,

which, when the intervals are small, may be used to find s
f from r

and r". In the same manner, we obtain

l^r,- (102)

For logarithmic calculation, when addition and subtraction loga-

rithms are not used, it is more convenient to introduce the auxiliary

angles ,

r

,
and ", by means of which these formulae become

KtW (103)

in which log |^
= 9.7627230. For the first approximation these

equations will be sufficient, even when the intervals are considerable,

to determine the values of s and s" required in correcting P and Q.

The values of r, r', r", and r" above given, in connection with

log r = 0.3048368, log r"= 0.3017481,

give

log 5= 0.0001284, log s
f= 0.0004951, log s"= 0.0001193.

These results for logs and logs" are correct, and that for logs' differs

only 3 in the seventh decimal place from the correct value.



ORBIT FEOM FOUK OBSERVATIONS.

CHAPTER V.

DETERMINATION OF THE ORBIT OF A HEAVENLY BODY FROM FOUR OBSERVATIONS,
OF WHICH THE SECOND AND THIRD MUST BE COMPLETE.

95. THE formulae given in the preceding chapter are not sufficient

to determine the elements of the orbit of a heavenly body when its

apparent path is in the plane of the ecliptic. In this case, however,
the position of the plane of the orbit being known, only four ele-

ments remain to be determined, and four observed longitudes will

furnish the necessary equations. There is no instance of an orbit

whose inclination is zero
; but, although no such case may occur, it may

happen that the inclination is very small, and that the elements

derived from three observations will on this account be uncertain,

and especially so, if the observations are not very exact. The diffi-

culty thus encountered may be remedied by using for the data in the

determination of the elements one or more additional observations,

and neglecting those latitudes which are regarded as most uncertain.

The formulae, however, are most convenient, and lead most expe-

ditiously to a knowledge of the elements of an orbit wholly unknown,
when they are made to depend on four observations, the second and

third of which must be complete ;
but of the extreme observations

only the longitudes are absolutely required.

The preliminary reductions to be applied to the data are derived

precisely as explained in the preceding chapter, preparatory to a de-

termination of the elements of the orbit from three observations.

Let
t, t', t", t'" be the times of observation, r, r', r", r'" the radii-

vectores of the body, u, u f

,
un

',
u'" the corresponding arguments of

the latitude, R, R', R", R" r the distances of the earth from the sun,

and O, O', O", O'" the longitudes of the sun corresponding to

these times. Let us also put

= r'r'"sm(u'" u'\

[rV"] = rV" sin (u"
r

u"\
and
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Then, according to the equations (5)3,
we shall have

nx x' -f- ri'x" = 0,

ny _</ + n y =0 ,

.Let ;, A', ;/', A'" be the observed longitudes, /9, /9', 0", /?'" the ob-

served latitudes corresponding to the times
,

t
f

,
t'

r

,
t"

r

, respectively,
and J, A', A", A'" the distances of the body from the earth. Further,
let

A'" cos f"= p'" 9

and for the last place we have

xf"= p'" cos A'" K" cos O'",

y
m= p'" sin *'"

"'
sin O'".

Introducing these values of x'" and y
f

", and the corresponding values

of x, x f

, x", y, y
f

, y" into the equations (2), they become

= n (p cos I R cos Q ) (>' cos A' R' cos O')

+ n"G= n sin A J2 sin O ) (f? sin A
r R sin O'

+ w"
= n'

G/ cos / - R cos O') (p" cos A" #' cos O") (3)

-f n'" (p'" cos X'" R" cos 0'"),= w' (p
r

sin A' ^ sin O') (p" sin X" R" sin 0")
4- n'" (/>"' sin A'" R" sin 0'").

If we multiply the first of these equations by sin ^, and the second

by cos ^, and add the products, we get

= nR sin (A Q) (p* sin (X X) + Rf

sin (A 0'))

+ n" (P" sin (A" A) -f- #' sin (A ")) ; (4)

and in a similar manner, from the third and fourth equations, we
find

= n' (p
f

sin (X" X ) R' sin (X" ')) (5j)-
(p" sin (/" A") K' sin (/" "))

- n'"R" sin (A'" 0'").

Whenever the values of n, n'
9 n", and n//r are known, or may be

determined in functions of the time so as to satisfy the conditions of

motion in a conic section, these equations become distinct or inde-

Dendent of each other
; and, since only two unknown quantities p

1
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and p
n are involved in them, they will enable us to determine these

curtate distances.

Let us now put

cos p sin (/ /I)
= A, cos ft" sin (A" X)=B,

cos ft" sin (/'" A") = C, cos p sin (*'" X)
= D,

and the preceding equations give

Ap' sec ^ Bn"P
"
sec /5"= wJ5 sin (A ) Rr

sin (A Q')

+ n"J2"Biny 0"),

!>>' sec /?' Q/' sec /9"= n'tf sin (/" ') R" sin (A'" Q") (7)

+ n'"R'" sin (/" Q'").

Tf we assume for n and n" their values in the case of the orbit of

the earth, which is equivalent to neglecting terms of the second order

in the equations (26)3,
the second member of the first of these equa-

tions reduces rigorously to zero
;
and in the same manner it can be

shown that when similar terms of the second order in the corre-

sponding expressions for n f and n" are neglected, the second member
of the last equation reduces to zero. Hence the second member of

each of these equations will generally differ from zero by a quantity

which is of at least the second order with respect to the intervals of

time between the observations. The coefficients of p' and p" are of

the first order, and it is easily seen that if we eliminate p" from

these equations, the resulting equation for // is such that an error of

the second order in the values of n and n" may produce an error of

the order zero in the result for p
f

,
so that it will not be even an

approximation to the correct value
;
and the same is true in the case

of p
rr

. It is necessary, therefore, to retain terms of the second order

in the first assumed values for n, n
f

, n", and ii'
1 '

\ and, since the

terms of the second order involve rf and r f/

,
we thus introduce two

additional unknown quantities. Hence two additional equations in-

volving rf

, r", p'j p" and quantities derived from observation, must

be obtained, so that by elimination the values of the quantities sought

may be found.

From equation (34) 4 we have

P' sec p= R' cos 4/ V r'
2 Rr* sin2

4/, (8)

which is one of the equations required; and similarly we find, for

the other eauation,

P
"
sec ft" = R" cos V ' db y r'"

2 R" 2 sin2
4". (9)
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Introducing these values into the equations (7), and putting

x' = l/V 2 -.fl' 2 sin2
47,

x''=V/
r"* # 2 sin2

4/',

we get

Ax' Bri'x"= nR sin (A O) R' sin (A 0')

-f n"R" sin (A O") AR' cos V + n"BR" cos *",

ZtoV Cx"= n'R' sin (X" 0') jR" sin (A"' 0")
-j- n'"R"' sin (A'" 0'") n'DR' cos 4' + CR" cos 4,".

Let us now put
B
-h' D

V>
A ht C

=h
>

or

, _ cos /3" sin (A" A) ,_ cos ff sin (r
r

AQ"
cosf sin (A' A)

'
~

cos jt' sin (A'" A")'

and we have
x' = Kn"x" -f ndT of + n'V,

a;"= A"ny + n'"d" a" -f nV.

These equations will serve to determine xr and x", and hence rf and

rr/

,
as soon as the values of n

f
n f

,
nff

,
and n" 1 are known.

96. In order to include terms of the second order in the values of

n and n", we have, from the equations (26)3,

and, putting

these give
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Lot us now put

T
'"= k cr o, v= (*"' o

and, making the necessary changes in the notation in equations (26)s ,

we obtain

,r-"(r
' + r) ,

T"' (T"*+ T"'T- 1) dr" \

~* fn.
-- -

i^j
---

ar*"fr ** at i ,.

I
.
r (r

' + ^'") , .r(r' + rr'"-r'"0 dr"
fs ^^ ~&7r

~
"df

From these we get, including terms of the second order,

and hence, if we put

P"= ~, "= (' + '"-!)/', (17)

we shall have, since r '= r + r'
/r

,

= n.

When the intervals are equal, we have

P' P"=
777 -pm

and these expressions may be used, in the case of an unknown orbit,

for the first approximation to the values of these quantities.

The equations (13) and (17) give

and, introducing these values, the equations (12) become
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* =W-pr (
1 + % }

(*V+ P'd' + c')
-

1 ff'\
x"=TTpr (

1 + ;* )

(A
'V+ p"d"+ c

"
}

Let us now put

P'cf+c'

An
c" -fC

1 I TV/ J

(21;

1 + P" 1 +

and we shall have

(22)

+e ")-a".

We have, further, from equations (10),

r''=(*/'+P'
2

sinV)',

r
f;

=(a/'+JB"sinV
/

)
f

,

If we substitute these values of r'
3 and r"z

in equations (22), the two

resulting equations will contain only two unknown quantities x' and

x". when P', P", ',
and Q" are known, and hence they will be

sufficient to solve the problem. But if we effect the elimination of

either of the unknown quantities directly, the resulting equation

becomes of a high order. It is necessary, therefore, in the numerical

application, to solve the equations (22) by successive trials, which

may be readily effected.

If z' represents the angle at the planet between the sun and the

earth at the time of the second observation, and z" the same angle at

the time of the third observation, we shall have

, _ E' sin 4/
~'

(24),,_'
sin z"

Substituting these values of rf and r" in equations (10), we get

*'=r>z>
(25)

x"= r" cos z",

and hence
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,
R' sin 4,'

tan z==--
-,

-
,

(26)

by means of which we may find z' and z" as ,soon as xf and x" shall

have been determined
;
and then r' and r" are obtained from (24) or

(25). The last equations show that when xr
is negative, z

r must be

greater than 90, and hence that in this case r' is less than Rf
.

In the numerical application of equations (22), for a first approxi-
mation to the values of xr and x", since Q' and Q" are quantities of

the second order with respect to r or rr//
,
we may generally put

and we have

*'

*"

or, by elimination,

,

1 -/'/"

1 /'/"

With the approximate values of x' and x" derived from these equa-

tions, we compute first r r and r" from the equations (26) and (24),

and then new values of x' and x" from (22), the operation being

repeated until the true values are obtained. To facilitate these ap-

proximations, the equations (22) give

~/'(;+f ).

>;
*/= .

" "^

Let an approximate value of x f be designated by #
',
and let the

value of x" derived from this by means of the first of equations (27)

be designated by x ". With the value of x " for x" we derive a

new value of x f from the second of these equations, which we denote

by a?/. Then, recomputing x" and x', we obtain a third approximate
value of the latter quantity, which may be designated by a?,'; and,

if we put

a?/ x
'= a

Q , #,' xj ',
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we shall have, according to the equation (67)3,
the necessary changes

being made in the notation,

z'= < ?^- = x; PL-. (28)< o o o

The value of x' thus obtained will give, by means of the first of

equations (27), a new value of x", and the substitution of this in the

last of these equations will show whether the correct result has been

found. If a repetition of the calculation be found necessary, the

three values of x' which approximate nearest to the true value will,

by means of (28), give the correct result. In the same manner, if

we assume for x" the value derived by putting Qf= and Q"= 0,

and compute xf

,
three successive approximate results for x" will

enable us to interpolate the correct value.

When the elements of the orbit are already approximately known,

the first assumed value of x' should be derived from

instead of by putting Q
f and Q" equal to zero.

97. It should be observed that when A' = A or A'"= A", the equa-
tions (22) are inapplicable, but that the original equations (7) give,

in this case, either p" or p' directly in terms of n and nff or of n'

and n'" and the data furnished by observation. If we divide the

first of equations (22) by h f

,
we have

The equations (21) give

f 1 /' P 17 ~r~ 17

h'
~~

1 -I- P" A'
~

1 + P'

and from (11) we get

of _ R' cos V B sin (I Q')

A'
~

A' B

1 = tf'cos*" +
^" sin

^-
Q

"), (29;

d' J?sin(A O)
A'~

Then, if we put
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its value may be found from the results for and ^ derived by

means of these equations, and we shall have

When A'= I, we have h' == oo, and this formula becomes

=(
1 + -J )

(*"+ C ')
- d + P'),

the value of
j-,

being given by the first of equations (29) This

equation and the second of equations (22) are sufficient to determine

xf and x" in the special case under consideration.

The second of equations (22) may be treated in precisely the same

manner, so that when Xffr=
X", it becomes

o
=(

and this must be solved in connection with the first of these equations
in order to find xf and xff

.

98. As soon as the numerical values of xr and xn have been

derived, those of rf and r" may be found by means of the equations

(26) and (24). Then, according to (41)4,
we have

X*& MO

The heliocentric places are then found from p
f and p" by means of

the equations (71)3 ,
and the values of r' and r" thus obtained should

agree with those already derived. From these places we compute
the position of the plane of the orbit, and thence the arguments of

the latitude for the times t
f and t".

The values of r', r", u', u", n, n", nf

,
and n"' enable us to deter-

mine r, r" r

,
u

t
and u" f

. Thus, we have

and, from the equations (1) and (3)3,

19
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[rr"] =

Therefore,
n

r sin (u
f

u) = r" sin (u" w')n

r sin (u" u) = - r' sin (it" it'),

(32)

i>" sin ("' ") = 4? r' sin (" '),
71

r'" sin (t*'" *') = ^7
r" sin (u" ')

From the first and second of these equations, by addition and sub-

traction, we get

r sin ((u
f

u) -J- 3 (w" w'))
= sm 2V w')

/-
re

'V"
(33)

r cos ((i/ u) -f- 2 (w" i*'))
= cos J (w" it'),

71

from which we may find r, u
r

it,
and u = ur

(u
f

it).

In a similar manner, from the third and fourth of equations (32),

we obtain

r
m

sin ((u
m

t*") + J (it" i/))
= V sin J (i*"

-
w'),

,/ w (34)

r'" cos ((i*
w M") + A (w" u'))

= - m^- cos J (w" w'),
71

from which to find r'" and it'".

When the approximate values of r, rf

, r", rf

", and w, it', it", u
fn

have been found, by means of the preceding equations, from the

assumed values of P', P", Qf

,
and Q", the second approximation to

the elements may be commenced. But, in the case of an unknown

orbit, it will be expedient to derive, first, approximate values of

and r", using

p' _!_, p" = _L,

and then recompute Pf and P" by means of the equations (14) and
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(18), before finding uf and u". The terms of the second order will

thus be completely taken into account in the first approximation.

99. If the times of observation have not been corrected for the

time of aberration, as in the case of an orbit wholly unknown, this

correction may be applied before the second approximation to the

elements is effected, or at least before the final approximation is com-

menced. For this purpose, the distances of the body from the earth

for the four observations must be determined
; and, since the curtate

distances p
f and p

ff are already given, there remain only p and p'
tf

to

be found. If we eliminate p
f from the first two of equations (3), the

result is

nR sin (A' Q) R sin (A' Q') -f n" R" sin (X 0").

and, by eliminating p" from the last two of these equations, we also

obtain

, ,
n' sin (A" -A')

' : =
/

V'sm(A'"-/')
n1

R' sin (A"
- Q') R" sin (A" Q ") -f ri" R"f

sin (A" "')

n'" sin (A'" /I")

by means of which p and p"
f

may be found. The combination of

the first and second of equations (3) gives

COS (X

nR cos a Q) R' cos (A 0') + n" R" cos (A 0")

/o
= ^ cos (A' A) 2_- cos (A" A) (37)

n n

+

and from the third and fourth we get

/>''

cos(r'_A'o-$'
n'R1

cos (A'" 0') R' cos (A'" 0") -f n'" R'" cos (A'" Q '")

.'"=
^7

cos (A'"
-

A") ^ cos (A'" A') (38)

Further, instead of these, any of the various formulae which have

been given for finding the ratio of two curtate distances, may be

employed; but, if the latitudes
/?, /9', &c. are very small, the values

of p and p"' which depend on the differences of the observed longi-

tudes of the body must be preferred.
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T1ie values of p
f and p

rrf
may also be derived by computing the

heliocentric places of the body for the times t and t'
n
by means of

the equations (82) 1?
and then finding the geocentric places, or those

which belong to the points to which the observations have been

reduced, by means of (90)b writing p in place of Jcos/9. This

process affords a verification of the numerical calculation, namely,
the values of X and X'

fr thus found should agree with those furnished

by observation, and the agreement of the computed latitudes ft
and

ft'" with those observed, in case the latter are given, will show how

nearly the position of the plane of the orbit as derived from the

second and third observations represents the extreme latitudes. If

it were not desirable to compute X and X" in order to check the

calculation, even when ft and ft
flf are given by observation, we mighi

derive p and p"
r from the equations

p = r sin u sin i cot y5,

p'" = r'" sin u"
f

sin i cot p",

when the latitudes are not very small.

In the final approximation to the elements, and especially when

the position of the plane of the orbit cannot be obtained with the

required precision from the second and third observations, it will be

advantageous, provided that the data furnish the extreme latitudes

ft
and ft"

f

,
to compute p and p

f" as soon as p
f and p

ff have been

found, and then find
I,

l
f

", 6, and b'" directly from these by means

of the formulae (71)3. The values of & and i may thus be obtained

from the extreme places, or, the heliocentric places for the times t
r

and t'" being also computed directly from p' and p", from those

which are best suited to this purpose. But, since the data will be

more than sufficient for the solution of the problem, when the extreme

latitudes are used, if we compute the heliocentric latitudes b f and b'"

from the equations

tan b' = tan i sin (I' & ),

tan b" = tan i sin (I" &),

they will not agree exactly with the results obtained directly from p
1

and /?", unless the four observations are completely satisfied by the

elements obtained. The values of r' and rn
', however, computed

directly from p
r and p" by means of (71)3, must agree with those

derived from xr and xn .

The corrections to be applied to the times of observation on account
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of aberration may now be found. Thus, if tw t
f

,
t
Q", and tQ

'" are

the uncorrected times of observation, the corrected values will be

t = t Cp sec/5,

wherein log C== 7.760523, and from these we derive the corrected

values of r, r', r", r'", and r '.

100. To find the values of P', P", Q', and Q", which will be

exact when r, r', r", rf//
,
and w, u'

9 u", u'" are accurately known, we

have, according to the equations (47)4
and (51)4,

since Qf= |,

_ __~" *
ss"

'

rr" cos J (t*" w') cos i (t*" M) cos j (' )'

In a similar manner, if we designate by s
fff the ratio of the sector

formed by the radii-vectores rrr and r'" to the triangle formed by
the same radii-vectores and the chord joining their extremities, we

find

_ i
rr'" r^V : ~ 2
^777

'

ry/, CoS l

(>'" M") COS i (U'" t*') COS J (u" 1*')'

The formulae for finding the value of s'
rr are obtained from those for

s by writing /
/r/

, f ff
,
G" f

,
&c. in place of /, /-, (r, &c., and using

r", r'", w//; u" instead of r', r", and it" M', respectively.

By means of the results obtained from the first approximation to

the values of P', P", Q', and ", we may, from equations (41) and

(42), derive new and more nearly accurate values of these quantities,

and, by repeating the calculation, the approximations to the exact

values may be carried to any extent which may be desirable. When
three approximate values of P' and ',

and of P" and ", have

been derived, the next approximation will be facilitated by the use

of the formulae (82)4,
as already explained.

When the values of P', P", Qf

,
and Q" have been derived with

sufficient accuracy, we proceed from these to find the elements of the

orbit. After &, i, r, r f

,
r"

, r'", u, u', u"
',
and uf/f have been found,

the remaining elements may be derived from any two radii-vectores
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and the corresponding arguments of the latitude. It will be most

accurate, however, to derive the elements from r, r/r/
, u, and u" f

.

If the values of P', P", Q', and Q" have been obtained with great

accuracy, the results derived from any two places will agree with

those obtained from the extreme places.

In the first place, from

cos G = sin (u"
f

u), (43)

sin YQ sin O = cos (V" w) cos 2/ ,

cos r = cos | (u'" u) sin 2/ ,

we find p and 6r . Then we have

r'")S

"to
(44)

from which, by means of Tables XIII. and XIV., to find s and a? .

We have, further,

and the agreement of the value of p thus found with the separate

results for the same quantity obtained from the combination of any
two of the four places, will show the extent to which the approxima-
tion to P;

, P") Q
f

,
and Q" has been carried. The elements are now

to be computed from the extreme places precisely as explained in the

preceding chapter, using r'" in the place of r" in the formula there

given and introducing the necessary modifications in the notation,

which have been already suggested and which will be indicated at

once.

101. EXAMPLE. For the purpose of illustrating the application

of the formulae for the calculation of an orbit from four observations,

let us take the following normal places of Eurynome derived by

comparing a series of observations with an ephemeris computed from

approximate elements.

Greenwich M. T. a {,

1863 Sept. 20.0 14 30' 35".6 + 9 23' 49".7,

Dec. 9.0 9 54 17 .0 2 53 41 .8,

1864 Feb. 2.0 28 41 34 .1 962 .8,

April 30.0 74 29 58 .9 -f- 19 35 41 .5.
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These normals give the geocentric places of the planet referred to the

mean equinox and equator of 1864.0, and free from aberration. For

the mean obliquity of the ecliptic of 1864.0, the American Nautical

Almanac gives
e = 23 27' 24".49,

and, by means of this, converting the observed right ascensions and

declinations, as given by the normal places, into longitudes and lati-

tudes, we get

Greenwich M. T.

1863 Sept. 20.0

Dec. 9.0

1864 Feb. 2.0

April 30.0
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From the equations

tan/5'
tan wf = .

tan to"=

. ,., -j^>
sm(A' O)

tan"
.

,

'

,

sm(A" O )

tan (A' Q')
tan * = ----7=^1

cosw/

tan(A" O")
tan V =--- \

cosw"

we obtain

4/ = 113 15' 20".10,

4,"= 76 5617.75,

cos V) = 9.5896777n,

log (R sin 4,') =9.9564624,

log (#' cos 4")= 9.3478848,

log (R" sin *") = 9.9823904.

The quadrant in which ty must be taken, is indicated by the condi-

tion that cosij/ and cos (A' O') must have the same sign. The
same condition exists in the case of i//' Then, the formulaB

A = cos ff sin (^ A),

C= cos /9" sin (A'" A"),

^-A'A
- h,

B= cos p' sin (A" jl),

Z> = cos f sin (A'" A'),

,, O) ,ft

"
Q'")

give the following results :

logA = 9.0699254n,

logB = 9.3484939,

log h' = 0.2785685n ,

log a! = 0.8834880n ,

log d = 0.9012910n,

log d' = 0.4650841,

log C = 9.8528803,

logD = 9.9577271,

log h" = 0.1048468,

log a" = 9.9752915n,

log c" = 9.7267348w,

log d"= 9.9096469n.

We are now prepared to make the first hypothesis in regard to the

values of P', ', Pf/

,
and Q". If the elements were entirely un-

known, it would be necessary, in the first instance, to assume for these

quantities the values given by the expressions
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then approximate values of r' and r" are readily obtained by means

of the equations (27), (26), and (24) or (25). The first assumed

value of x' to be used in the second member of the first of equations

(27), is obtained from the expression which results from (22) by

putting Q
f= and Q"= 0, namely,

x'= *

after which the values of xf and x" will be obtained by trial from

(27). It should be remarked, further, that in the first determination

of an orbit entirely unknown, the intervals of time between the ob-

servations will generally be small, and hence the value of xf derived

from the assumption of Q
f= and Q" will be sufficiently ap-

proximate to facilitate the solution of equations (27).

As soon as the approximate values of rf and r" have thus been

found, those of P' and P" must be recomputed from the expressions

With the results thus derived for P' and P", and with the values of

Qf and Q" already obtained, the first approximation to the elements

must be completed.

When the elements are already approximately known, the first

assumed values of P', P", Q', and Qf/ should be computed by means

of these elements. Thus, from

_rV'smQ/' t/) r/sinQ/ 1>)~
rr" sin (" v)

'
~

rr" sin (v" v)
'

,rV"sin(y" f/Q w_ rV;

sin(^ i;Q~
r r sin (v v) TT sin (v v )

we find n, n'3 n
rf

,
and n"'. The approximate elements of Eurynom*

givo
v = 322 55' 9".3, logr =0.308327,
it =353 19 26 .3, log/ =0.294225,
v"= 14 45 8.5, log/' =0.296088,
v'"= 47 2332.8, log /"= 0.317278,
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and hence we obtain

log n = 9.653052, log n" = 9.806836,

log n
1= 9.825408, logn'"= 9.633171.

Then, from

P" = ,

we get

log P' = 9.846216, log Q
f = 9.840771,

logP"= 9.807763, log Qf'
= 9.882480.

The values of these quantities may also be computed by means of the

equations (41) and (42).

Next, from

, _ P'd'+ c'
, _ hf

C ~~ =

1 + P" * ~
1 -f- P''

,_Pd"+c" h"
co

= =

x + Pn > J -
fqrp>

we find

log c
' = 0.541344n, log/ = 0.047658.,

log C
Q

"= 9.807665n, log/"= 9.889385.

Then we have
'

*= *"+"" <

, ,,

tan /= --, tan z"=

,_R' sin V _ a/ ,,_jrsinV_ a"

sin/ cos/' sin/7 cos/"

from which to find r' and rrr
. In the first place, from

x'= v 1
jR"sinV,

we obtain the approximate value

log x
f= 0.242737.

Then the first of the preceding equations gives

log *"= 0.237687.
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From this we get

z"= 29 3' 11". 7, log r" = 0.296092
;

and then the equation for x' gives

logo;'
= 0.242768.

Hence we have

z'= 27 20' 59".6, log r'= 0.294249
;

and, repeating the operation, using these results for x r and r', we get

log x"= 0.237678, log of= 0.242757.

The correct value of log a?' may now be found by means of equation

(28). Thus, in units of the sixth decimal place, we have

= 242768 242737= + 31, a
Q

'= 242757 242768= 11,

and for the correction to be applied to the last value of log x', in

units of the sixth decimal place,

Therefore, the corrected value is

log af= 0.242760,

and from this we derive

log a"= 0.237681.

These results satisfy the equations for x' and x", and give

z' = 27 21' 1".2, log/ = 0.294242,

z"= 29 3 12 .9, log r"= 0.296087.

To find the curtate distances for the first and second observations,

the formulae are

oo o
,,= -

sin z' sm z"

which give

log p'
= 0.133474, log p"= 0.289918.

Then, by means of the equations
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r' cos V cos (f 00 = p' cos (X K9

r' cos V sin (? ')
= p' sin (A' QO,

/ sin V = p' tan p,

r" cos ft" cos (r Q'O = P
"
cos (A" 0") J2",

r" cos b" sin (/" Q") = p" sin (A" "),

r" sin ft" = //'tan/S",

we find the following heliocentric places :

r = 37 35' 26".4, log tan ft' = 8.182861n , log / = 0.294243,

r= 58 5815.3, logtanft"= 8.634209n, log r"= 0.296087.

The agreement of these values of log r' and log r" with those obtained

directly from x' and x" is a partial proof of the numerical calcula-

tion.

From the equations

tan i sin ( (I" -f /') )
= J (tan ft" + tan ftO sec j (r 7),

tan i cosQ (J
1

-f I') & )
=

J (tan ft" tan ftO cosec i (/" 0,

tan (^ &0 tan(r ft)
tan w =---r-^ , tan u =

cos i cos t

we obtain

& = 206 42' 24".0, i = 4 36' 47".2,

ur =190 55 6 .6 u"= 212 20 53 .5.

Then, from

we get
log n"= 9.806832, logw =9.653048,

log n' = 9.825408, log n'"= 9.633171,

and the equations

r sin ((u
r - u) + i (u"- w'))

= /+
J'

V'

sin J (i*"
-

0,

r cos ((i*'
- u) + i (w"- tO) = ^= cos i (u" - tif),

r"' sin ((*"'
-

w'O + J (u"- wO) - ,
sin j (t"

- wO,

r"' cos ((u'"
-

i/O -f i (u"
-

1*0)
= cos i (u"-
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give
logr = 0.308379, u = 160 30

;

57".6,

log r"'= 0.317273, t*'"=244 5932.5.

Next, by means of the formulae

tan (I & ) = cos i tan u, tan 6 = tan i sin (/ ft ),

tan (Y" )
= cos i tan w'", tan 6'"= tan i sin ('" ft ),

^ cos (A o )
= f cos 6 cos (7 0) + -K,

jo
sin (A Q ) = r cos 6 sin (7 O),

/o tan /?
= r sin &

;

p
'

Cos (A"' O'") = r'" cos 6'" cos (f" "0 + 12"',

p' sin (A'" O'") = r'" cos 6"' sin (f" 0'"),

//"tan/5"' = r"'sin&'",

we obtain

J = 7 16' 51".8, r = 91 37' 40".0,

b = + 1 32 14 .4, 6"' = 4 10 47 .4,

A = 16 59 9 .0, /" 75 23 46 .9,

/?
= + 2 56 40 .1, /?'"= 3 4 43 .4,

log P = 0.025707, log p'"= 0.449258.

The value of X" f thus obtained agrees exactly with that given by

observation, but / differs O r/
.4 from the observed value. This differ-

ence does not exceed what may be attributed to the unavoidable

errors of calculation with logarithms of six decimal places. The

differences between the computed and the observed values of /9 and

ft" show that the position of the plane of the orbit, as determined

by means of the second and third places, will not completely satisfy

the extreme places.

The four curtate distances which are thus obtained enable us, in

the case of an orbit entirely unknown, to complete the correction for

aberration according to the equations (40).

The calculation of the quantities which are independent of P',

Pff

j Q
f

j
and Q

/f
,
and which are therefore the same in the successive

hypotheses, should be performed as accurately as possible. The
s*

value of
-^-> required in finding x" from x', may be computed

directly from

jf
.

the values of 77 and 77 being found by means of the equations (29);
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and a similar method may be adopted in the case of
j,
r > Further,

in the computation of xf and x", it may in some cases be advisable

to employ one or both of the equations (22) for the final trial. Thus,
in the present case, x" is found from the first of equations (27) by
means of the difference of two larger numbers, and an error in the

last decimal place of the logarithm of either of these numbers affects

in a greater degree the result obtained. But as soon as r" is known
Q"

so nearly that the logarithm of the factor 1 -f -^ remains unchanged,

the second of equations (22) gives the value of x" by means of the

sum of two smaller numbers. In general, when two or more for-

mulae for finding the same quantity are given, of those which are

otherwise equally accurate and convenient for logarithmic calculation,

that in which the number sought is obtained from the sum of smaller

numbers should be preferred instead of that in which it is obtained

by taking the difference of larger numbers.

The values of r, r f

,
r/f

, r'", and u, u
f

y
uff

,
ufff

,
which result from

the first hypothesis, suffice to correct the assumed values of Pf

, P",

',
and Q". Thus, from

"r
77

"

'/
, /r

777
"

sin Y cos G = sin (u" u'), sin /' cos G"= sin A (u
r

u),

sin f sin G = cos J (u" u') cos 2/, sin /' sin G" cos (u
r

u) cos 2/',

cos f = cos | (u" u') sin 2/, cos f" = cos \ (V u) sin 2,%",

sinf cos G'"= sin I (u"
r

w"),

sinf sin G"' = cos (u"
f

u"} cos 2/"
cos /" = cos J (u"' u") sin 2/" ;

T2 COS6
/ __ T" 2 COS6/'m=

COS?'

m

r'
/s cos3

/'

t+j + ? *+/'+*

in connection with Tables XIII. and XIV. we find s, s", and '".

The results are



NUMEKICAL EXAMPLE. 303

log T = 9.9759441,

/= 45 3'39".l,

r=-10 42 55 .9,

logm = 8.186217,

log; = 7.948097,

log s = 0.0085248,

log r"= 0.1386714,

7"=4432' 1".4,

/'IS 13 45 .0,

logm"= 8.516727,

log/'= 8.260013,

log "== 0.0174621,

log T"'= 0.1800641,

/"== 45 41' 55".2,

y"'=16 22 48 .5.

log m'"= 8.590596,

log/"= 8.325365,

log s'"= 0.020406?.

Then, by means of the formulae

a-*V -
2 ,,

y,= , nl' _
2

ss
"f

ry //
cog ^ (yftr un^ cog ^ (jjin ^ CQg ^ ^/ %/y

we obtain

log P' = 9.8462100,

log P" = 9.8077615,

log
' = 9.8407536,

log
"= 9.8824728,

with which the next approximation may be completed.

We now recompute c ', c/', /', /", xf

,
xn

',
&c. precisely as already-

illustrated; and the results are

log c
' = 0.5413485n,

log/ = 0.0476614n,

log x' = 0.2427528,

z
f= 27 21' 2".71,

log/ =0.2942369,

log />'
= 0.1334635,

log n = 9.6530445,

log n' = 9.8254092,

log c
" = 9.8076649n,

log/" = 9.8893851,

log x" = 0.2376752,
z"= 29 3' 14".09,

logr" =0.2960826,

log p" = 0.2899124,

log n" = 9.8068345,

log ri" = 9.6331707.

Then we obtain

/' = 37 35' 27".88,

I" 58 58 16 .48,

log tan V = 8.1828572n,

log tan b"= 8.6342073n,

log/ = 0.2942369,

log /'= 0.2960827.

These results for log rf and log r" agree with those obtained directly

from z
f and z", thus checking the calculation of ty and ty

f and of

the heliocentric places.

Next, we derive

206 42' 25".89,

55 6.27,

t= 4 36' 47".20,

2052.96,
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and from uff
u', r', r", n, n", n f

,
and n" f

,
we obtain

logr =0.3083734, u = 160 30' 55".45,

log/" =0.3172674, w'"=244 5931.98.

For the purpose of proving the accuracy of the numerical results,

we compute also, as in the first approximation,

/= 716'51".54, /'"= 91 37' 41".20,

b = + 1 32 14 .07, b'"= 4 10 47 .36,

A= 16 59 9.38, A'"= 75 2346.99,
= + 2 56 39 .54, p"= 3 4 43 .33,

log P = 0.0256960, log p"
r= 0.4492539.

The values of ^ and \
tn thus found differ, respectively, only 0".04

and Or/.09 from those given by the normal places, and hence the

accuracy of the entire calculation, both of the quantities which are

independent of P', P"', ',
and ", and of those which depend on

the successive hypotheses, is completely proved. This condition,

however, must always be satisfied whatever may be the assumed

values of P', P", Q
f

,
and ".

From TJ r'j u, it', &c., we derive

log a= 0.0085254, log s" = 0.0174637, log s
m= 0.0204076,

and hence the corrected values of P', P", ',
and Q" become

logP' = 9.8462110, log q = 9.8407524,

log P" = 9.8077622, log
"= 9.8824726.

These values differ so little from those for the second approximation,

the intervals of time between the observations being very large, that

a further repetition of the calculation is unnecessary, since the results

which would thus be obtained can differ but slightly from those

which have been derived. We shall, therefore, complete the deter-

mination of the elements of the orbit, using the extreme places.

Thus, from

sin YQ cos G = sin J (u
tn

u),

sin YO sin G = cos J (u"
f

u) cos 2/ ,

cos YO cos (u"' u) sin 2/ ,

5 i i~r Jo

?

- _
"

m _ m
a~~ 7
~
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we get
log r = 0.5838863, log tan GQ

= 8.0521953
W>

n= 42 14' 30".17, logm = 9.7179026,

log s
2= 0.2917731, log x = 8.9608397.

The formula
s rr

m
sm(u

m
t*)\

gves
logp = 0.371 2401;

and if we compute the same quantity by means of

grV'sm(X' iQ \
2

/ g'Vr'sinK u) V I s'VV'sin (u'"- u"} \

I*

the separate results are, respectively, 0.3712397, 0.3712418, and

0.3712414. The differences between these results are very small, and

arise both from the unavoidable errors of calculation and from the

deviation of the adopted values of P', Px/

, Q', and Q" from the

limit of accuracy attainable with logarithms of seven decimal places.

A variation of only Or/
.2 in the values of u' u and ufff uff

wil?

produce an entire accordance of the particular results.

From the equations

smi(V" u) /T,,
C 8 p =

sinK"'-"
P

cos <p
=

we obtain

t ("' E) = 17 35' 42".12, log (a cos <?)
= 0.3796883,

log cos <?
= 9.9915518.

The formulae

e Sin (,
-

J (u"
r+ u)) =- - tan G

,

cos y Vrr'"

e cos (.
-

J (T"+ u)) -- 7==
- sec J (u'"

-
u),

cos ^ rrr*
give

01 = 197 38' 8".48, log e = log sin <p
= 9.2907881,

<p
= 11 15' 52".22, TT = 01

-|- ft = 44 20' 34".37.

This result for ^ gives log cos
<p 9.9915521, which differs only 3

in the last decimal place from the value found from p and a cos
<p.

Then, from
20
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p k

-c^sV
=
JP

the value of k being expressed in seconds of arc, or log&= 3.5500066,
we get

log a = 0.3881359, log ft = 2.9678027.

For the eccentric anomalies we have

tan^jE = tan4O o>) tan (45 ?),

t&n%E' = tani(X oO tan (45 ?>),

tan IE" = tan J O" - o) tan (45
'

p),

tan E'"= tan (u"
r

o) tan (45 ?>)

from which the results are

E = 329 11' 46".01, .E" 12 5' 33".63,
'= 354 29 11 .84,

'"= 39 34 34 .65.

The value of J (E"
f

E) thus derived differs only 0".03 from that

obtained directly from x .

For the mean anomalies, we have

which give

,
M" = E" esmE",

= E r

e sin E', M'"= E'" e sin E'",

M = 334 55' 39".32, M" = 9 44' 52".82,

M'= 355 33 42 .97, JJf'"= 32 26 44 .74.

Finally, if M
Q
denotes the mean anomaly for the epoch T= 1864

Jan. 1.0 mean time at Greenwich, from

M
Q
=M fi (t T) =Mt p(fT)
= M" fJL (f T} = M'" p. (f" T),

we obtain the four values

Jf = l29'39".40
39 .49

39 .40

39 .40,

the agreement of which completely proves the entire calculation of

the elements from the data. Collecting together the several results,

we have the following elements :
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Epoch = 1864 Jan. 1.0 Greenwich mean time.

M= 1 29' 39".42

=
?= 11 15 52 .22

log a = 0.3881359

log ;
= 2.9678027

A* = 928".54447.

102. The elements thus derived completely represent the four ob-

served longitudes and the latitudes for the second and third places,

which are the actual data of the problem ;
but for the extreme lati-

tudes the residuals are, computation minus observation,

A = 4".47, A,?'"= + 1".23.

These remaining errors arise chiefly from the circumstance that the

position of the plane of the orbit cannot be determined from the

second and third places with the same degree of precision as from

the extreme places. It would be advisable, therefore, in the final

approximation, as soon as p
f

, p", n, n' f

,
nf

,
and nrrr are obtained, to

compute from these and the data furnished directly by observation

the curtate distances for the extreme places. The corresponding
heliocentric places may then be found, and hence the position of the

plane of the orbit as determined by the first and fourth observations.

Thus, by means of the equations (37) and (38), we obtain

log P = 0.0256953, log p'"= 0.4492542.

With these values of p and //", the following heliocentric places are

obtained :

I = 716'51".54, log tan b =8.4289064, logr =0.3083732,
l
f"= 91 37 40 .96, log tan b'"= 8.8638549n , log r"' = 0.3172678.

Then from

tan i sin (J (f" + 1) ft) = J (tan V" -f tan 6) sec J (f" Z),

tan i cosQ (f" -f & )
=

i (tan b"' tan 6) cosec J (f I),

we get
^ = 206 42' 45".23, i= 4 36' 49".76.

For the arguments of the latitude the results are

u= 160 30' 35".99, u'"= 244 59' 12".53.
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The equations
tan V = tan i sin (I

1 Q ),

tan V = tan i sin (I" ),

give

log tan &'= 8.1827129^ log tan b"= 8,6342104n,

and the comparison of these results with those derived directly from

p' and p" exhibits a difference of -f 1".04 in &', and of 0".06 in

6". Hence, the position of the plane of the orbit as determined from

the extreme places very nearly satisfies the intermediate latitudes.

If we compute the remaining elements by means of these values

of r, r f

", and u, u"
r

,
the separate results are :

log tan G = 8.0522282n, log m = 9.7179026,

log sj = 0.2917731, log x = 8.9608397,

log j9
= 0.3712405, I (E" E) = 17 35' 42".12,

log (a cos ?) = 0.3796884, log cos <p
= 9.9915521,

w =197 37' 47".72, log e = 9.2907906,

<P
= 11 15 52 .46, log cos <p

= 9.9915520,

log a= 0.3881365, log ,u
= 2.9678019,

E= 329 1 1' 47".24, E'" = 39 34' 35".70,

JW=334 55 40 .46, Jf'" = 32 26 45 .49,

Jf = 1 29 40 .36, 3f = 1 29 40 .37.

Hence, the elements are as follows :

Epoch = 1864 Jan. 1.0 Greenwich mean time.

M= 1 29' 40".36

*= 44 20 32 .95

1 Ecli tic and Mean

P = 11 15 52 .46

log a = 0.3881365

M = 928".5427.

It appears, therefore, that the principal effect of neglecting the

extreme latitudes in the determination of an orbit from four oiser

vations is on the inclination of the orbit and on the longitude of the

ascending node, the other elements being very slightly changed. The

elements thus derived represent the extreme places exactly, and if

we compute the second and third places directly from these elements,

v\*e obtain

M' = 355 33' 43".88, M"= 9 44' 53".73,

^'=354 29 12 .93, E" =12 5 34 .81,

v
r = 353 16 59 .07, v" = 14 42 45 .96.



NUMERICAL EXAMPLE. 80S

log / = 0.2942366, log r" = 0.2960826,

u'= 190 54' 46".79, u"= 212 20' 33".68,

l'= 37 35 27 .75, 7'= 58 58 16 .50,

V= 52 21 .25, b"= 2 27 59 .06,

/= 10 14 17 .35, A"= 29 53 21 .99,

0'= 1 15 47 .67, $'= 2 29 57 .62,

log// = 0.1334634, logp"= 0.2899122.

Ilenec, the residuals for the second and third places of the planet

are

Comp. Obs.

AA' = 0".22, *p = -f 1".53,

A/I"= .00, A0"= .06
;

nnd the elements very nearly represent the four normal places. Since

the interval between the extreme places is 223 days, these elements

must represent, within the limits of the errors of observation, the

entire series of observations on which the normals are based. It

may be observed, also, that the successive approximations, in the

case of intervals which are very large, do not converge with the

same degree of rapidity as when the intervals are small, and that in

such cases the numerical calculation is very much abbreviated by the

determination, in the first instance, of the assumed values of P', Pn
',

',
and "

by means of approximate elements already known. For

the first determination of an unknown orbit, the intervals will gene-

rally be so small that the first assumed values of these quantities, as

determined by the equations

will not differ much from the correct values, and two or three

hypotheses, or even less, will be sufficient. But when the intervals

are large, and especially if the eccentricity is also considerable, several

hypotheses may be required, the last of which will be facilitated by

using the equations (82) 4.

The application of the formulae for the determination of an orbit

from four observations, is not confined to orbits whose inclination to

the ecliptic is very small, corresponding to the cases in which the

method of finding the elements by means of three observations fails,
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or at least becomes very uncertain. On the contrary, these formulas

apply equally well in the case of orbits of any inclination whatever,

and since the labor of computing an orbit from four observations

does not much exceed that required when only three observed places

are used, while the results must evidently be more approximate, it

will be expedient, in very many cases, to use the formulae given in

this chapter both for the first approximation to an unknown orbit

iud for the subsequent determination from more complete data.
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CHAPTER VI.

IHVESTJGATION OF VARIOUS FORMULAE FOR THE CORRECTION CF THE APPROXIMATE
ELEMENTS OF THE ORBIT OF A HEAVENLY BODY.

103. IN the case of the discovery of a planet, it is often conve-

nient, before sufficient data have been obtained for the determination

of elliptic elements, to compute a system of circular elements, an

ephemeris computed from these being sufficient to follow the planet

for a brief period, and to identify the comparison stars used in dif-

ferential observations. For this purpose, only two observed places

are required, there being but four elements to be determined, namely,

&, i, a, and, for any instant, the longitude in the orbit. As soon as

a has been found, the geocentric distances of the planet for the

instants of observation may be obtained by means of the formulae

A =Rcos* -f- I/a2

J"= R" cos 4" + Va? #' sin
2
4",

the values of $ and fy
f

being computed from the equations (42)3
and

(43)3
. For convenient logarithmic calculation, we may first find z

.
f^sin z=-, sin z

1 '=-
, (2)a a

since the formulae will generally be required for cases such that thes't

angles may be obtained with sufficient accuracy by means of their

sines. Then we have

sin (*"*")
-

~
cos/9 '

from which to find p and p". These having been found, we have

tan (7 Crta p Sln (A
~ G)-'

. ,

smb = -
-Z-t

a

for the determination of I and 6, and similarly for I" and 6". The
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inclination of the orbit and the longitude of the ascending node are

then found by means of the formulae (75)3,
and the arguments of the

latitude by means of (77)3 . Since u" u is the distance on the celes-

tial sphere between two points of which the heliocentric spherical

co-ordinates are 1
9 b, and l"

9
b /f

,
we have, also, the equations

sin (u" u) sin B= cos b" sin (I" I),

sin (u" u) cos B = cosb sin b" sin b cos b" cos (I" l\
cos (u" u) = sin b sin b" -f cos b cos b" cos (I" I),

for the determination of u" u, the angle opposite the side 90 b"

of the spherical triangle being denoted by B. The solution of these

equations is facilitated by the introduction of auxiliary angles, as

already illustrated for similar cases.

In a circular orbit, the eccentricity being equal to zero, u" u

expresses the mean motion of the planet during the interval t"
t,

and we must also have

t"- =
T- ("-)' (6)

the value of k being expressed in seconds of arc, or log k= 3.5500066.

These formulae will be applied only when the interval t" t is

small, and for the case of the asteroid planets we may first assume

a = 2.7,

which is about the average mean distance of the group. With this

we compute p and p
ff

by means of the equations (2) and (3), and the

corresponding heliocentric places by means of (4). If the inclination

is small, u" u will differ very little from I" I. Therefore, in the

first approximation, when the heliocentric longitudes have been found,

the corresponding value of t" t may be obtained from equation (5),

writing I" I in place of u" u. If this comes out less than the

actual interval between the times of observation, we infer that the

assumed value of a is too small
;

but if it comes out greater, the

assumed value of a is too large. The value to be used in a repetition

of the calculation may be computed from the expression

log a= (log (t"
- + log k

-
log (u"

-
u}),

the difference u" u being expressed in seconds of arc. With this

we recompute p, p
rt

9
1
9
and I", and find also 6, 6", Q> 9 i, u, and u".

Then, if the value of a computed from the last result for u" u

differs from the last assumed value, a further repetition of the calcu-
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latiori becomes necessary. But when three successive approximate
values of a have been found, the correct value may be readily inter-

polated according to the process already illustrated for similar cases.

As soon as the value of a has been obtained which completely
satisfies equation (5), this result and the corresponding values of &,
i, and the argument of the latitude for a fixed epoch, complete the

system of circular elements which will exactly satisfy the two observed

places. If we denote by u the argument of the latitude for the epoch

T, we shall have, for any instant t,

u being the mean or actual daily motion computed from

Jc

The value of u thus found, and r = a, substituted in the formulse for

computing the places of a heavenly body, will furnish the approxi-
mate ephemeris required.

The corrections for parallax and aberration are neglected in the

first determination of circular elements
;
but as soon as these approxi-

mate elements have been derived, the geocentric distances may be

computed to a degree of accuracy sufficient for applying these cor-

rections directly to the observed places, preparatory to the determi-

nation of elliptic elements. The assumption of rf = a will also be

sufficient to take into account the term of the second order in the first

assumed value of P, according to the first of equations (98)4
.

104. When approximate elements of the orbit of a heavenly body
have been determined, and it is desired to correct them so as to satisfy

as nearly as possible a series of observations including a much longer
interval of time than in the case of the observations used in finding
these approximate elements, a variety of -methods may be applied.

For a very long series of observations, the approximate elements

being such that the squares of the corrections which must be applied
to them may be neglected, the most complete method is to form the

equations for the variations of any two spherical co-ordinates which

fix the place of the body in terms of the variations of the six ele-

ments of the orbit; and the differences between the computed places

for different dates and the corresponding observed places thus furnish

equations of condition, the solution of which gives the corrections to

be applied to the elements But when the observations do not in-
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elude a very long interval of time, instead of forming the equations
for the variations of the geocentric places in terms of the variations

of the elements of the orbit, it will be more convenient to form the

equations for these variations in terms of quantities, less in number,
from which the elements themselves are readily obtained. If no as-

sumption is made in regard to the form of the orbit, the quantities

which present the least difficulties in the numerical calculation are

the geocentric distances of the body for the dates of the extreme

observations, or at least for the dates of those which are best adapted
to the determination of the elements. As soon as these distances are

accurately known, the two corresponding complete observations are

sufficient to determine all the elements of the orbit.

The approximate elements enable us to assume, for the dates t and

t
n

,
the values of A and J"; and the elements computed from these

by means of the data furnished by observation, will exactly represent

the two observed places employed. Further, the elements may be

supposed to be already known to such a degree of approximation that

the squares and products of the corrections to be applied to the

assumed values of A and A" may be neglected, so that we shall have,

for any date,
.. da, . da

COS S Aa = COS d - A J -j- COS d -=---
rr A A ,d d

fR\
d* d3

** = dA^ + ^F AJ '

If, therefore, we compare the elements computed from A and A" with

any number of additional or intermediate observed places, each ob-

served spherical co-ordinate will furnish an equation of condition for

the correction of the assumed distances. But in order that the equa-

tions (6) may be applied, the numerical values of the partial differen-

tial coefficients of a and d with respect to A and d" must be found.

Ordinarily, the best method of effecting the determination of these is

to compute three systems of elements, the first from A and A", the

second from A + D and J", and the third from A and A" -f D", D
and D" being small increments assigned to A and A" respectively.

] f now, for any date t'
y
we compute a/ and d f from each system of

elements thus obtained, we may find the values of the differential

coefficients sought. Thus, let the spherical co-ordinates for the time

t
f

computed from the first system be denoted by a' and 3f

;
those

computed from the second system of elements, by a/ -f a sec 3 f and

6'+ d; and those from the third system, by a'+ a!' sec d' and d'-\- d".

Then we shall have
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.. da! a dd d

,,a__ -..
dA"~ D'" dA"~ D"'

and the equations (6) give

COS d
r

Aa'= ~ A A -f -^77
A J",

d d"
(8)

In the same manner, computing the places for various dates, for

which observed places are given, by means of each of the three systems
of elements, the equations for the correction of A and A"

,
as deter-

mined by each of the additional observations employed, may be

formed.

105. For the purpose of illustrating the application of this method,

let us suppose that three observed places are given, referred to the

ecliptic as the fundamental plane, and that the corrections for parallax,

aberration, precession, and nutation have all been duly applied. By
means of the approximate elements already known, we compute the

values of A and A" for the extreme places, and from these the helio-

centric places are obtained by means of the equations (71)3
and (72)3,

writing A cos /9
and A" cos ft" in place of p and p". The values of

&, i, u, and u" will be obtained by means of the formulae (76)3
and

(77)3 ;
and from r, r" and u" u the remaining elements of the

orbit are determined as already illustrated. The first system of ele-

ments is thus obtained. Then we assign an increment to J, which

we denote by D, and with the geocentric distances A -f- D and A"

we compute in precisely the same manner a second system of ele-

ments. Next, we assign to A" an increment D", and from A and

A" + D" a third system of elements is derived. Let the geocentric

longitude and latitude for the date of the middle observation com-

puted from the first system of elements be designated, respectively,

by V and /9/ ;
from, the second system of elements, by V and /?2

'

;

and from the third system, by ^/ and
/93 '. Then from

It ( -\ I i l\ of fjff O f O f \** s

we compute a, a", d, and d"
',
and by means of these and the values

of D and D" we form the equations
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= CM

for the determination of the corrections to be applied to the f.rst

assumed values of A and An
', by means of the differences between

observation and computation. The observed longitude and latitude

being denoted by X and
/?', respectively, we shall have

COS f A/= (/ A/) COS /?',

ff= ff B' (11)

for finding the values of the second members of the equations (10),

and then by elimination we obtain the values of the corrections AJ

and AJ" to be applied to the assumed values of the distances.

Finally, we compute a fourth system of elements corresponding to

the geocentric distances A -f AA and A" -f AA" either directly from

these values, or by interpolation from the three systems of elements

already obtained
; and, if the first assumption is not considerably in

error, these elements will exactly represent the middle place. It

should be observed, however, that if the second system of elements

represents the middle place better than the first system, A/ and
/?2

r

should be used instead of ^/ and /9/ in the equations (11), and, in

this case, the final system of elements must be computed with the

distances A -f- D + AA and A" + AA". Similarly, if the middles

place is best represented by the third system of elements, the cor-

rections will be obtained for the distances used in the third hy-

pothesis.

If the computation of the middle place by means of the final ele-

ments still exhibits residuals, on account of the neglected terms of

the second order, a repetition of the calculation of the corrections

A/f and AJ", using these residuals for the values of the second

members of the equations (10), will furnish the values of the dis-

tances for the extreme places with all the precision desired. The

increments D and D" to be assigned successively to the first assumed

values of A and A" may, without difficulty, be so taken that the

true elements shall differ but little from one of the three systems

computed ;
and in all the formulae it will be convenient to use, in-

stead of the geocentric distances themselves, the logarithms of these

distances, and to express the variations of these quantities in units

of the last decimal place of the logarithms.

These formulae will generally be applied for the correction of
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approximate elements by means of several observed places, which

may be either single observations or normal places, each derived from

several observations, and the two places selected for the computation
of the elements from A and A" should not only be the most accurate

possible, but they should also be such that the resulting elements are

not too much affected by small errors in these geocentric places.

They should moreover be as distant from each other as possible, the

other considerations not being overlooked. When the three systems
of elements have been computed, each of the remaining observed

places will furnish two equations of condition, according to equations

(10), for the determination of the corrections to be applied to the

assumed values of the geocentric distances
; and, since the number

of equations will thus exceed the number of unknown quantities,

the entire group must be combined according to the method of least

squares. Thus, we multiply each equation by the coefficient of AJ
in that equation, taken with its proper algebraic sign, and the sum
of all the equations thus formed gives one of the final equations

required. Then we multiply each equation by the coefficient of AJ"
in that equation, taken also with its proper algebraic sign, and the

sum of all these gives the second equation required. From these

two final equations, by elimination, the most probable values of AJ
and AZ/;/ will be obtained

;
and a system of elements computed with

the distances thus corrected will exactly represent the two funda-

mental places selected, while the sum of the squares of the residuals

for the other places will be a minimum. The observations are thus

supposed to be equally good; but if certain observed places are

entitled to greater influence than the others, the relative precision

of these places must be taken into account in the combination of the

equations of condition, the process for which will be fully explained

in the next chapter.

When a number of observed places are to be used for the correction

of the approximate elements of the orbit of a planet or comet, it w*! ll

be most convenient to adopt the equator as the fundamental plane.

In this case the heliocentric places will be computed from the assumed

values of A and J", and the corresponding geocentric right ascensions

and declinations by means of the formulae (106)3
and (107)3 ;

and the

position of the plane of the orbit as determined from these by means

of the equations (76)3 will be referred to the equator as the funda-

mental plane. The formation of the equations of condition for the

corrections AJ and AA" to be applied to the assumed values of the

distances will then be effected precisely as in the case of I and
/?, the



318 THEORETICAL ASTRONOMY.

necessary changes being made in the notation. In a similar manner,
the calculation may be effected for any other fundamental plane which

may be adopted.

It should be observed, further, that when the ecliptic is taken as

the fundamental plane, the geocentric latitudes should be corrected

by means of the equation (6)4,
in order that the latitudes of the sun

phall vanish, otherwise, for strict accuracy, the heliocentric places

must be determined from A and A" in accordance with the equations

(39):-

106. The partial differential coefficients of the two spherical co-

ordinates with respect to A and A" may be computed directly by
means of differential formula; but, except for special cases, the

numerical calculation is less expeditious than in the case of the indi-

rect method, while the liability of error is much greater. If we

adopt the plane of the orbit as determined by the approximate values

of A and A" as the fundamental plane, and introduce / as one of the

elements of the orbit, as in the equations (72)2 ,
the variation of the

geocentric longitude 6 measured in this plane, neglecting terms of the

second order, depends on only four elements; and in this case the

differential formulae may be applied with facility. Thus, if we ex-

press r and v in terms of the elements ^, MQ)
and

/*,
we shall have

and

or

In like
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the value of A" remaining unchanged, r" and v" -f / are not changed,

and hence

*1= . ^+i> = o.
dA aA

To find -7-7- and-7
. , from the equationsdA dA

A cos ^ cos = x -f- X,
A cos >? sin = y -{- F",

in which ^ is the geocentric latitude in reference to the plane of the

orbit computed from A and A" as the fundamental plane, and X, Y
the geocentric co-ordinates of the sun referred to the same plane, we

get
dx= cos 7]

cos 6 dA,

dy= cos T?
sin 6 dA,

or, substituting for dx and dy their values given by (73) 2,

cos t]
cos 6 dA = cos u dr r sin u d (v -f- /),

cos
r)
sin O dA = sin udr -\- r cos it c? (v -f~ /).

Eliminating, successively, c? (v + #) and c?r, we get

dr , n x
- = cos ^ cos (6 u),
d

I . , .= - cos ^ sm (6 u).7
-

dA r

Therefore, we shall have

dy
,

dv dv dv

dip dA ' dM
Q

dA dp. dA ,_
dX_ _dif_ d?_ d^_ dM^,dv^_ ^_
dA H " '

dA + ^jfo jj
' '

^
'

^j

_dr^_ ^__' ~^ dA dif dA dfji dA

and if we compute the numerical values of the differential coefficients

of r, r", v, and vtr with respect to the elements
<p,
M

,
and

//,
these

equations will furnish, by elimination, the values of the four un-

d% d<p dM
Q , dfj.

known quantities^^ -^,
and ^j

Tn precisely the same manner we derive the following equations
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for the determination of the partial differential coefficients of these

elements with respect to A" :

dx
,

dv d(p dv dMQ dv dfj. _ ~

dA* + ~dj' ~d^
+ dMl

'

JA 77 "*"
~cfc

'

~dA
Fr
~=

'

dr dtp dr dM^ dr dp. _
~dj"dA*

+
dfio

'

~dA*
nh

~dfl'~dl
f " '

d/ dt/
;

efr <fo" (Of
,

dv" dfi \ . , _ _
( ^^ + ^'^^dM~'~dA*'~]r

dp.' dA"-~^r
* r

> Sm(t U } '

dr" d<? dr" dM
,

dr"

dA" r
dft dA"

Since the geocentric latitude ^ is affected chiefly by a change of the

position of the plane of the orbit, while the variation of the longitude

6 is independent of & and i when the squares and products of the

variations of the elements are neglected, if we determine the elements

which exactly represent the places to which A and A" belong, as well

as the longitudes for two additional places, or, if we determine those

which satisfy the two fundamental places and the longitudes for any
number of additional observed places, so that the sum of the squares

of their residuals shall be a minimum, the results thus obtained will

very nearly satisfy the several latitudes.

Let 0' denote the geocentric longitude of the body, referred to the

plane of the orbit computed from A and A" as the fundamental plane,

for the date t
r of any one of the observed places to be used for cor-

recting these assumed distances. Then, to find the partial differential

coefficients of 6 f with respect to A and A", we have

,
do' .do' dy .do' dy . dtf dMQ

COS rj -7-7- = COS
TJ -j

~-
-f COSy 3 -j-j- + COS ff -7-=- j-fdA d/ dA d<p dA dM

Q
dA

-f- cos f/ -=
T

. ,- K ,

dp. dA (15)

do' _ f
dO' dy,

, ^ ,dtf_ d<p
, f _, dtf_

,
do' dn

and by means of the results thus derived, we form the equation

COS rl *tf = COS r!^
*A + COS V~ A J". (16)

A fourth observed place will furnish, in the same manner, the addi-

tional equation required for finding AJ and AA". If more than two
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observations are used in addition to the fundamental places on which

the assumed elements as derived from A and A" are based, the several

longitudes will furnish each an equation of condition, and the most

probable values of AZ/ and &A" will be obtained by combining the

entire group of equations of condition according to the method of

least squares.

107. In the actual application of these formulae to the correction

of the approximate elements, after all the preliminary corrections

have been applied to the data, we select the proper observed places

for determining the elements from the corresponding assumed dis-

tances A and An
', according to the conditions which have already been

stated, and from these we derive the six elements of the orbit. Since

the data furnished directly by observation are the right ascensions

and the declinations of the body, the elements will be derived in

reference to the equator as the plane to which the inclination and the

longitude of the ascending node belong. These elements will exactly

represent the two fundamental places, and, if the assumed distances

A and A" are not much in error, they will also very nearly satisfy

the remaining places.

We now adopt as the fundamental plane the plane of the approxi-

mate orbit thus determined, and by means of the equations (83)2
and

(85)2 ,
or by means of (87)2 , writing a, d, & ',

and i' in place of A, /9,

Q>, and
, respectively, we compute the values of 0, 37,

and f for the

dates of the several places to be employed. Then the residuals for

each of the observed places are found from the formulae

cos
f)
A0 = sin Y A<5 -f- cos f cos 8 Aa,

Aiy = cos Y A# sin f cos d Aa,

the values of Aa and A for each place being found by subtracting

from the observed right ascension and declination, respectively, the

right ascension and declination computed by means of the elements

derived from A and A". The values of
9 f],

and f being required

only for finding cos y A#, A/7, and the differential coefficients of d and

ry,
with respect to the elements of the orbit, need not be determined

with great accuracy.

Next, we compute -^
and - k

, . from equations (12), and from

,+ n ^ .1 i dr dr" dv dv" dr , / i i

(16), the values of
, , , -= , -r^, &c,, by means of which,

d<? d<p d(p d(p dMQ

using the value of u in reference to the equator, we form the equa-

tions (13). The accent is added to / to indicate that it refers to the

21
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equator as the plane for defining the elements. Thus we obtain four

equations, from which, by elimination, the values of the differential

coefficients of * r

, <p,
Jf

,
and

[JL
with respect to J may be obtained.

In the numerical solution, by subtracting the third equation from
dy

f

the first, the unknown quantity -^r
is immediately eliminated, so that

we have three equations to find the three unknown quantities ,

--TJ,
and

-jj
These having been found,

~
may be obtained from

the first or from the third equation.

In the same manner we form the equations (14), and thence derive

the values of -y^p -7-^, -r--, and -7177- Then, by means of the for-
ofij CL^J d^j U--J

mulse (76)2 , (78)2,
and (79)2 ,

we compute for the date of each place

to be employed in correcting the assumed distances the values of

cos?/ -p, COST/ ,, &c., and hence from (15) the values of
cos^'-r^

and cos r/ The results thus obtained, together with the residuals

computed by means of the equations (17), enable us to form, accord-

ing to (16), the equations of condition for finding the values of the

corrections AJ and &A" . The solution of all the equations thus

formed, according to the method of least squares, will give the most

probable values of these quantities, and the system of elements which

corresponds to the distances thus corrected will very nearly satisfy

the entire series of observations. Since the values of cos r/ A0' are

expressed in seconds of arc, the resulting values of AA and AA" will

also be expressed in seconds of arc in a circle whose radius is equal

to the mean distance of the earth from the sun. To express them in

parts of the unit of space, we must divide their values in seconds of

arc by 206264.8.

The corrections to be applied to the elements computed from A and

J", in order to satisfy the corrected values A -f- AJ and A" -f AA",

may be computed by means of the partial differential coefficients

already derived. Thus, in the case of
j

r

,
we have

from which to find A/' ;
and in a similar manner A^>, A!/

O,
and

may be obt

we compute

may be obtained. If, from the values of --- and
-p
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and apply these corrections to the values of v and v" found from J
and J", we obtain the true anomalies corresponding to the distances

A -}- AJ and J" + AJ". The corrections to be applied to the values

of r and r" derived from A and A" are given by

If AJ and AJ" are expressed in seconds of arc, the corresponding
values of Ar and Ar" must be divided by 206264.8. The corrected

results thus obtained should agree with the values of r and r" com-

puted directly from the corrected values of v, v", p, and e by means

of the polar equation of the conic section. Finally, we have

dz = sin
rj dd,

and similarly for dzff and the last of equations (73)2 gives

r sin u Ai' r cos u sin i' A & ' == sin 7 A J,

r" sin u" Ai' r" cos u" sin i' A ft
'

sin^ A J",

from which to find AIV and A& ',
u and u" being the arguments of

the latitude in reference to the equator. We have also, according to

(72)*
A a/= A/ COS i' A& ',

4^ = A/ + 2 Sin1
t* A &',

from which to find the corrections to be applied to a)
1 and n f

. The
elements which refer to the equator may then be converted into those

for the ecliptic by means of the formula which may be derived from

(109)! by interchanging & and &' and 180 i' and i.

The final residuals of the longitudes may be obtained by substi-

tuting the adopted values of AJ and AA" in the several equations of

condition, or, which affords a complete proof of the accuracy of the

entire calculation, by direct calculation from the corrected elements
;

and the determination of the remaining errors in the values of
rj

will

show how nearly the position of the plane of the orbit corresponding

to the corrected distances satisfies the intermediate latitudes.

Instead of
<p,
Mw and

/*,
we may introduce any other elements

which determine the form and magnitude of the orbit, the necessary
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changes being made in the formulae. Thus, if we use the elements

T, <?,
and e, these must be written in place of Mw p, and

<p y respect-

ively, in the equations (13), (14), and (15), and the partial diiferential

coefficients of r, r", v, and v" with respect to these elements must be

computed by means of the various diiferential formulae which have

already been investigated. Further, in all these cases, the homo-

geneity of the formulae must be carefully attended to.

108. The approximate elements of the orbit of a heavenly body

may also be corrected by varying the elements which fix the position

of the plane of the orbit. Thus, if the observed longitude and lati-

tude and the values of & and i are given, the three equations (91) t

will contain only three unknown quantities, namely, //, r, and u, and

the values of these may be found by elimination. When the observed

latitude /9 is corrected by means of the formula (6)4,
the latitudes of

the sun disappear from these equations, and if we multiply the first

by sin (O &) sin /?, the second (using only the upper sign) by
cos

( O &) sin
/9,

and the third by sin (^ O) cos
/9,

and add

the products, we get

sin /9 sin (O &_)~
cos i sin /? cos (O & ) sin i cos /5 sin (A Q/

from which u may be found. If we multiply the second of these

equations by sin /?,
and the third by cos /?

sin (A &), and add the

products, we find

* / * *
J- /Q

* / } /"V \ ~ **V* \ /
sin u (sin i cot ft sin (A & ) cos i)

The expression for r in terms of the known quantities may also be

found by combining the first and second, or by combining the first

and third, of equations (91)r If we put

n cosN= sin /? cos (Q &),
n sinN= cos /? sin (A O).

the formula for u becomes

tan it . , T ,
... tan (Q &). (21)

cos (JV-|-J

The last of equal ions (91) t
shows that sinw and sin/? must have the

game sign, and thus the quadrant in which u must be taken is deter-

mined. Putting, also,

rmcos =
m sinM= sin u cot sin (A
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we have

r _ cos^
.

R sm (Q & )
(22)

cos (M -\- 1) sin u

When any other plane is taken as the fundamental plane, the

latitude of the sun (which will then refer to this plane) will be re-

tained in the equations (91)i and in the resulting expressions for u

and r.

The value of u may also be obtained by first computing w and ^
by means of the equations (42)3,

and then, if z denotes the angle at

the planet or comet between the earth and sun, the values of u and

2, as may be readily seen, will be determined by means of the rela-

tions of the parts of a spherical triangle of which the sides are

180 (z -j- 4-X 180 -f O &, and u, the angle opposite to the

side u being that which we designate by w, and the side 180 + O Q,

being included by this and the inclination i. Let 8= 180 (z+ -^)f

and, according to Napier's analogies, this spherical triangle gives

, cos i (* tu)
tan i ( -f *}= f77-7 ^ cot i ( O),2

cosJCi-hw)
0,'r, 1 /'/,' ,^ V60/

from which 8 and u are readily found. Then we have

z = 180 *8
sn 2

to find r.

If we assume approximate values of & and
i, as given by a system

of elements already known, the equations here given enable us to find

r, u, r"
',
and u" from ^, /9 and X", ft", corresponding to the dates t

and t" of the fundamental places selected, and from these results for

two radii-vectores and arguments of the latitude, the remaining
elements may be derived. From these the geocentric place of the

body may be found for the date t
r of any intermediate or additional

observed place, and the difference between the computed and the

observed place will indicate the degree of precision of the assumed

values of & and i. Then we assign to & the increment &, i

remaining unchanged, and compute a second system of elements, and

from these the geocentric place for the time t
r
. We also compute a

third system from & and i -j- 3i, and by a process entirely analogous
to that already indicated in the case of the variation of two geocentric
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distances, we obtain the numerical values of the differential coeffi-

cients of A' and ft' with respect to & and i. Thus the equations

COS p AA'= COS jf -^- A ft + COS jf^ Al,ag at ,.
' C '

for finding the corrections A& and A^ to be applied to the assumed

values of these elements, will be formed; and each additional obser-

vation or normal place will furnish two equations of condition for

the determination of these corrections.

If the observed right ascensions and declinations are used directly

instead of the longitudes and latitudes, the elements Q and i must

be referred to the equator as the fundamental plane, and the declina-

tions of the sun will appear in the formulae for u and r obtained from

the equations (91)^ thus rendering them more complex. Their deri-

vation offers no difficulty, being similar in all respects to that of the

equations (19) and (20), and since they will be rarely, if ever, re-

quired, it is not necessary to give the process here in detail. In

general, the equations (23) and (24) will be most convenient for

finding r and u from the geocentric spherical co-ordinates and the

elements Q and
i,

since w, ^, w
ff

,
and ij/' remain unchanged for the

three hypotheses.

When the equator is taken as the fundamental plane, ^ is the

distance between two points on the celestial sphere for which the

geocentric spherical co-ordinates are A, D and a, d, those of the sun

being denoted by A and D. Hence we shall have

sin 4 sinB= cos d sin (a A),

sin 4 cosB= cosD sin 8 sinD cos d cos (a A), (26)

cos 4 = sinD sin d
-}- cosD cos $ cos (a A),

from which to find
ij/

and B, the angle opposite to the side 90 d

of the spherical triangle being denoted by B. Let K denote the

right ascension of the ascending node on the equator of a great circle

passing through the places of the sun and comet or planet for the

time
tj
and let w denote its inclination to the equator; then we shall

have
sin w cos (A -R") = cos B,

sin WQ
sin (A K) = sin B sin D, (27)

cos W
Q

sinB cos D,

from which to find W
Q
and K. In a similar manner, we may com-
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pute the values of u" it, Q, and i from the heliocentric spherical

co-ordinates
I,

b and I", 6".

From the equations

the accents being added to distinguish the elements in reference to

the equator from those with respect to the ecliptic, the values of 8
and u (in reference to the equator) may be found. Let S

Q
denote the

angular distance between the place of the sun and that point of the

equator for which the right ascension is K, and the equation

cot s = cos W
Q
cot (IT A) (29)

gives the value of s
,
the quadrant in which it is situated being deter-

mined by the condition that coss and cos(JT A) shall have the

same sign. Then we have S= SQ
S
Q ,
and

_ E sin 4

sin z

from which to find r.

109. In both the method of the variation of two geocentric dis-

tances and that of the variation of & and i, instead of using the

geocentric spherical co-ordinates given by an intermediate observa-

tion, in forming the equations for the corrections to be applied to the

assumed quantities, we may use any other two quantities which may
be readily found from the data furnished by observation. Thus, if

we compute r' and ur for the date of a third observation directly

from each of the three systems of elements, the differences between

the successive results will furnish the numerical values of the partial

differential coefficients of r f and u' with respect to J and J", or with

respect to & and
i, as the case may be. Then, computing the values

of rf and uf from the observed geocentric spherical co-ordinates by
means of the values of Q, and i for the system of elements to be

corrected, the differences between the results thus derived and thoso

obtained directly from the elements enable us to form the equations

du' dur

... .

jj"i +3F"r-"'
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or the corresponding expressions in the case of the variation of &
and i, by means of which the corrections to be applied to the as-

sumed values will be determined. In the numerical application of

these equations, &uf

being expressed in seconds of arc, Ar' should also

be expressed in seconds, and the resulting values of A// and AJ" will

oe converted into those expressed in parts of the unit of space by

dividing them by 206264.8.

When only three observed places are to be used for correcting an

approximate orbit, from the values of r, rf

,
r" and u

f u', u" obtained

by means of the formulae which have been given, we may find p and

a or the latter in the case of very eccentric orbits from the first
a

and second places, and also from the first and third places. If these

results agree, the elements do not require any correction; but if a

difference is found to exist, by computing the differences, in the case

of each of these two elements, for three hypotheses in regard to J

and A" or in regard to Q> and i, the equations may be formed by
means of which the corrections to be applied to the assumed values

of the two geocentric distances, or to those of & and i, will be

obtained.

110. The formulae which have thus far been given for the correc-

tion of an approximate orbit by varying the geocentric distances,

depend on two of these distances when no assumption is made in

regard to the form of the orbit, and these formulae apply with equal

facility whether three or more than three observed places are used.

But when a series of places can be made available, the problem may
be successfully treated in a manner such that it will only be necessary

to vary one geocentric distance. Thus, let x, y, z be the rectangular

heliocentric co-ordinates, and r the radius-vector of the body at the

time t,
and let X, F, Z be the geocentric co-ordinates of the sun at

the same instant. Let the geocentric co-ordinates of the body be

designated by x
09 yQ,

Z
Q ,
and let the plane of the equator be taken as

the fundamental plane, the positive axis of x being directed to the

vernal equinox. Further, let p denote the projection of the radius-

vector of the body on the plane of the equator, or the curtate dis-

tance with respect to the equator; then we-shall have

x = p cos a, y = p sin a, z p tan d. (32)

If we represent the right ascension of the sun by A, and its declina-

tion by _D, we also have
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Z=RsmD. (33)

The fundamental equations for the undisturbed motion of the planet

or comet, neglecting its mass in comparison with that of the sun, are

but since

and, neglecting also the mass of the earth,

these become

Substituting for a?
, y ,

and 2; their values in terms of a and d, and

putting

we get

+ ^coSa + ,= 0,

+ sina + , = 0,

'

(36)

Differentiating the equations (32) with respect to
t,
we find

dxn dp . da

-d?=
c

f
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Differentiating again with respect to t, and substituting in the equa
tions (36) the values thus found, the results are

If we multiply the first of these equations by sin a, and the second

by cos a, and add the products, we obtain

d'
2a

j gBin.-?COB.-/-
dt

2
rff

57

Now, from (35) we get

sin a ^ cos a = &2
1 -= --

3
I -K cos D sin (a A),

and the preceding equation becomes

The value of -vr thus found is independent of the differential co-

dp
efficients of d with respect to t. To find another value of

-J-, using
dt

all three of equations (38), we multiply the first of these equations

by sin A tan 8, the second by cos A tan
,
and the third by

sin (a A). Then, adding the products, since sin A =
TJ
cos A,

the result is

from which we get

%- cot (a- A)% + **( 2
'

+ cot % ) + i cot*
a/> _ ,

<ft_2_ dt _\ dt2
'_^ /

'

p
=
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When the ecliptic is taken as the fundamental plane, the last term

of the numerator of the second member of this equation vanishes,

and the equation may be written

*=* (41)

the coefficient C being independent of p.

111. When the value of p is given, that of -=2 will be determined

in terms of the data furnished directly by observation and of the

differential coefficients of a and d with respect to t from equation

(39), or from (40), the latter being preferred when the motion of the

body in right ascension is very slow. The value of -77 having been
ut

found, we may compute the velocities of the body in directions

parallel to the co-ordinate axes. Thus, since

x = x + X, y = y + Y, z = z + Z,

the equations (37) give

dx dp . do, dX
dt= co* a di- flSin *dt-W
dy dp ,

da dY_ _ _.__, (42)

dz dp df dZ_= tan^ + , seo.3___I

by means of which -=-t -~, and -7- may be determined.

7 -T7* 7 TT- 7 f7

To find the values of -77 > rr> and -77, the equations
at at at

X= Rcos Q,
Y= jRsin O cose,

Z = R sin O sin e,

give, by differentiation,

dX dR ^dO
^^eosQ..

_ jRsm0 _,

^= sin Q cose^ + R cos cose^ (43)
at at at

dZ dR . n .dQ
-,. = sm O sm e ,, + R cos O sin e -=-.
at at at
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Now, according to equation (52) 1?
we have

dQ _ T(l-e 2

)(l + m )

~dT
z

~ir~

mQ denoting the mass of the earth, and eQ the eccentricity of its orbit.

The polar equation of t^ie conic section gives

dr _ r2
e sin v dv

~dt~ p "ST

Let -T denote the longitude of the sun's perigee, and this equation

gives

.sin(0-r, (45)

If we neglect the square of the eccentricity of the earth's orbit, we

have simply

_

-7-

(4<5)

The values of -^- and -7- having been found by means of these

dX dY
formulae, the equations (43) give the required results for -

, -, and
dZ
-j7,

and hence, by means of (42), we obtain the velocities of the
uit

comet or planet in directions parallel to the co-ordinate axes.

112. The values of x, y, and 2 may be derived by means of the

equations
x= A cos <5 cos a X,

y A cos d sin a Y,

z = A sin d Z,

and from these, in connection with the corresponding velocities, the

elements of the orbit may be found. The equations (32), give im-

mediately the values of the inclination, the semi-parameter, and the

right ascension of the ascending node on the equator. Then, the

position of the plane of the orbit being known, we may compute r

and u directly from the geocentric right ascension and declination by
means of the equations (28) and (30). But if we use the values of

the heliocentric co-ordinates directly, multiplying the first of equa-

tions (93) x by cos &, and the second by sin &, and adding the pro-

ducts, we have
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r sin u = z cosec i,

r cos u = x cos & + y sin & >

from which r and w may be found, the argument of the latitude u

being referred to the plane of xy as the fundamental plane. The

equation
r2 = x* -f if + s

a

gives

dr_x dx.y dy ,

* dz

<ft ~~f
"

^ r 'eft "^f <'

and, since

dr_ r*e sin v cfo efa _ kVp
~dt~ ~^p "di' dt~ ~r*~'

we shall have

V~p dr
esmv = -~- . -T-,

* *
(49)

= -
1,

from which to find e and v. Then the distance between the peri-

helion and the ascending node is given by

to = u v.

The semi-transverse axis is obtained from p and e by means of the

relation

Finally, from the value of v the eccentric anomaly and thence the

mean anomaly may be found, and the latter may then be referred to

any epoch by means of the mean motion determined from a.

In the case of very eccentric orbits, the perihelion distance will be

given by

and the time of perihelion passage may be found from v and e by
means of Table IX. or Table X., as already illustrated.

The equation (21) t gives, if we substitute for / its value in terms

of p, denote by V the linear velocity of the planet or comet, and neg-

lect the mass,

Let
if/

denote the angle which the tangent to the orbit at the ex-

tremity of the radius-vector makes with the prolongation of this

radius-vector, and we shall have
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dr dx
, dy ,

dz

BO that the preceding equation gives

k*p = FV sin
2
4< .

Hence we derive the equations

Vr sin 4 =
dx dy dz

from which Vr and ^ may be found. Then, since

we shall have
P 9Z-2

1 = 1. _F2
, (51)

a r

by means of which a may be determined, and then e may be found

by means of this and the value of p.

The equations (49) and (50) give

F 2

e sin (u w) = r sin 4> cos 4 ,

F 2

e cos (u w) = - - r sin2
4/ 1,

and, since

these are easily transformed into

2ae sin (w a>} = (2a r) sin 24 ,

2ae cos (it w) = (2a r) cos 24> r.

If we multiply the first of these equations by cos u and the second

by sin w, and add the products; then multiply the first by sin it and

the second by cos
it,

and add, we obtain

2ae sin w = (2a r) sin (2^ + w) r sin it, / ^N
2ae cos w = (2a r) cos (2^ + u) r cos u,

These equations give the values of a) and e.

113. We have thus derived all the formulae necessary for finding

the elements of the orbit of a heavenly body from one geocentric

distance, provided that the first and second differential coefficients of

a and d with respect to the time are accurately known. It remains,
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therefore, to devise the means by which these differential coefficients

may be determined with accuracy from the data furnished by obser-

vation. The approximate elements derived from three or from a

small number of observations will enable us to correct the entire

series of observations for parallax and aberration, and to form the

normal places which shall represent the series of observed places.

We may now assume that the deviation of the spherical co-ordinates

computed by means of the approximate elements from those which

would be obtained if the true elements were used, may be exactly

represented by the formula

*0 = A + Bh+ Ch\ (53)

h denoting the interval between the time at which the deviation is

expressed by A and the time for which this difference is A#. The

differences between the normal places and those computed with the

approximate elements to be corrected, will then suffice to form equa-

tions of condition by means of which the values of the coefficients

A, B, and C may be determined. The epoch for which h = may
be chosen arbitrarily, but it will generally be advantageous to fix it

at or near the date of the middle observed place. If three observed

places are given, the difference between the observed and the com-

puted value of each right ascension will give an equation of condition,

according to (53), and the three equations thus formed will furnish

the numerical values of A, J3, and C. These having been deter-

mined, the equation (53) will give the correction to be applied to the

computed right ascension for any date within the limits of the

extreme observations of the series. When more than three normal

places are determined, the resulting equations of condition may be

reduced by the method of least squares to three final equations, from

which, by elimination, the most probable values of A, j5, and C will

bo derived. In like manner, the corrections to be applied to the

computed latitudes may be determined. These corrections being

applied, the ephemeris thus obtained may be assumed to represent

the apparent path of the body with great precision, and may be em-

ployed as an auxiliary in determining the values of the differential

coefficients of a and d with respect to t.

Let f(a) denote the right ascension of the body at the middle

epoch or that for which h = Q, and let/(a dz no)) denote the value of

a for any other date separated by the interval na)
9
in which at is the

interval between the successive dates of the ephemeris. Then, if we

put n successively equal to 1, 2, 3, &c., we shall have
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Function. I. Diff. II. Diff. III. Diff. IV. Diff. V. Diff.

/(a 3a>) ff

/(a -f 3a>)

The series of functions and differences may be extended in the same

manner in either direction. If we expand /(a + nco) into a series.

the result is

/(a-ftt0^:a-|-~nw + 2^ w2ty2 + ^ wVJ 4- A ^^*
cy

* + &c-

or, putting for brevity A = -j-a) )
B = \ -^

- a)
2

, &c.,

/(a + nco) = a -f An -f 5^2 + Oi3
-f Dn4 + &c.

If we now put n successively equal to 4, 3, 2, 1, 0, +1,

&c., we obtain the values of /(a 4co),f(a 3w), ...... /(a -f 4a>)

in terms of A, B, C, &c. Then, taking the successive orders of

differences and symbolizing them as indicated above, we obtain a

series of equations by means of which A, B, C, &c. will be deter-

mined in terms of the successive orders of differences. Finally, re-

placing Ay B, C, &G. by the quantities which they represent, and

putting

ir (<*-*) + if'(<*+jo =/'(),
if'" (

- *-) + if
'"

( + i) =/"' (a), &c.(

we obtain

= A-
(/'(a)

-
I/'" (a) + 3

>

5/'(oO
- Ti^f-(a) + &c.),

= (/"() - */"() + *? 5/"" () - *<>.),

= (/"() -1/-W
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by means of which the successive differential coefficients of a with

respect to t may be determined. The derivation of these coefficients

in the case of d is entirely analogous to the process here indicated for

a. Since the successive differences will be expressed in seconds of

arc, the resulting values of the differential coefficients of a and d with

respect to t will also be expressed in seconds, and must be divided by
^06264.8 in order to express them abstractly.

We may adopt directly the values of -JT> -^p -yr.
and -^ determined

by means of the corrected ephemeris, or, if the observed places do

not include a very long interval, we may determine only the values

of
-jp,

-j, &G. by means of the ephemeris, and then find -=- and
-^-

directly from the normal places or observations. Thus, let a, a/, a"
be three observed right ascensions corresponding to the times

t, t', t",

and we shall have

which give

These equations, being solved numerically, will give the values of -7-

d*a
and , and we may thus by triple combinations of the observed

places, using always the same middle place, form equations of con-

dition for the determination of the most probable values of these

differential coefficients by the solution of the equations according to

the method of least squares.
7

/72/^

In a similar manner the values of
-^

and
-jr may be derived.

114. In applying these formulae to the calculation of an orbit,

after the normal places have been derived, an ephemeris should be

computed at intervals of four or eight days, arranging it so that one

of the dates shall correspond to that of the middle observation or

normal place. This ephemeris should be computed with the utmost
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care, since it is to be employed as an auxiliary in determining quan-

tities on which depends the accuracy of the final results. The com-

parison of the ephemeris with the observed places will furnish, by
means of equations of the form

A + Eh + Ch2 = Aa',

A _f- B'h + C'K = A*,

k being the interval between the middle date t
f and that of the place

used, the values of A, J5, (7, A', &c.; and the corrections to be

applied to the ephemeris will be determined by

A -f Bna> -f Oi2"8 = Aa,

A'

The unit of h may be ten days, or any other convenient interval,

observing, however, that no) in the last equations must be expressed

in parts of the same unit. With the ephemeris thus corrected, we
da d?a dd _ d?8

compute the values of
-j-, -^-, ^7,

and
j-

as already explained, inese

differential coefficients should be determined with great care, since it

is on their accuracy that the subsequent calculation principally de-

. . dX dY , dZ .

pends. We compute, also, the velocities -jr t -rr, and rr by means
7x-v 7

-p
dt at at

of the formulaB (43), ^-
and being computed from (46). The

quantities thus far derived remain unchanged in the two hypotheses

with regard to J.

Then we assume an approximate value of J, and compute

p J cos d
;

and by means of the equation (40) or (39) we compute the value ol

- It will be observed that if we put the equation (40) in the form

dp P C_= _, + _

p
the coefficient

-^
remains the same in the two hypotheses. The three

equations (38) may be so combined that the resulting value of
_J2 ^*^

will not contain -T~> This transformation is easily effected, and may
(J tL

be advantageous in special cases for which the value of
-^

is very

uncertain.

The heliocentric spherical co-ordinates will be obtained from the
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assumed value of J by means of the equations (106)31
and the rec-

tangular co-ordinates from

x = r cos b cos I,

y = r cos b sin I,

z ==r sin b.

The velocities -57, ~, and -r- will be given by (42), and from these

and the co-ordinates x, y, z the elements of the orbit will be com-

puted by means of the equations (32) 1? (47), (49), &c. With the

elements thus derived we compute the geocentric places for the dates

of the normals, and find the differences between computation and

observation. Then a second system of elements is computed from

J 4- $d, and compared with the observed places. Let the difference

between computation and observation for either of the two spherical

co-ordinates be denoted by n for the first system of elements, and by
n f

for the second system. The final correction to be applied to J, in

order that the observed place may be exactly represented, will be

determined by

('_) + n-0. (56)

Each observed right ascension and each observed declination will

thus furnish an equation of condition for the determination of AJ,

observing that the residuals in right ascension should in each case be

multiplied by cos d. Finally, the elements which correspond to the

geocentric distance J -f- AA will be determined either directly or by

interpolation, and these must represent the entire series of observed

places.

115. The equations (52)s enable us to find two radii-vectores when
the ratio of the corresponding curtate distances is known, provided
that an additional equation involving r, r", K, and known quantities

is given. For the special case of parabolic motion, this additional

equation involves only the interval of time, the two radii-vectores,

and the chord joining their extremities. The corresponding equation

for the general conic section involves also the semi-transverse axis

of the orbit, and hence, if the ratio M of the curtate distances is

known, this equation will, in connection with the equations (52)3,

enable us to find the values of r and r" corresponding to a given

value of a. To derive this expression, let us resume the equations
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4 = E" - E- 2e sin (E"- E} cos J (" +
a?

r -f r" = 2a 2ae cos (" ) cos J (" -f- JS).

For the chord x we have

x1 = (r + r")
2 4rr" cos* J (u" w),

which, by means of (58)4, gives

cos4

and, substituting for r + ^r/
its value given by the last of equations

(57), we get

x2= 4a2 sin
2 (" JE) (1 e

2 cos2&E' + E)). (58)

J^et us now introduce an auxiliary angle ^, such that

cos h = e cos CE" H- J5;),

the condition being imposed that h shall be less than 180, and put

then the equations (57) and (58) become

= 2g 2 sin g cos h,

r + r" = 2a (1 cos g
x = 2a sin ^ sin h.

" = 2a (1 cos g cos A),

Further, let us put

h
ff
=

$,

and the last two of equations (59) give

Introducing and e into the first of equations (59), it becomes

s
= sin e) (<5 sin 5). (61)

a?

The formulae (60) enable us to determine e and d from r -f r", x,

and a, and then the time r' = k
(t

ff

t) may be determined from

(61). Since, according to (58)4,

Vrr" cos J (u" u) = a (cos ^ cos 7i)
= 2 sin ^e Bin <?,
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and since sin %s is necessarily positive, it appears that when un it

exceeds 180, the value of sin |<5 must be negative, and when

u" 16 = 180, we have S = Q; and thus the quadrant in which

d must be taken is determined. It will be observed that the value

of Je, as given by the first of equations (60), may be either in the

first or the second quadrant; but, in the actual application of the

formulae, the ambiguity is easily removed by means of the known

circumstances in regard to the motion of the body during the in-

terval t" t.

In the application of the equations (52)3, by means of an approxi

mate value of x we compute d, and thence r and r". Then we com-

pute and S corresponding to the given value of a, and from (61)

we derive the value of

If this agrees with the observed interval t"
,
the assumed value

of x is correct; but if a difference exists, by varying x we may
readily find, by a few trials, the value which will exactly satisfy the

equations. The formulae (70)3
will then enable us to determine the

curtate distances p and p", and from these and the observed spherical

co-ordinates the elements of the orbit may be found.

As soon as the values of u and u" have been computed, since

d = E" Ej we have, according to equation (85)4,

sin i (u" M) ./ 77
cos

<[>
= r^-T

-~ V rr",
8)

which may be used to determine
<p
when the orbit is very eccentric.

To find p and q, we have

p = a cos2
<p, q

= 2a sin2
(45 p) ;

and the value of to may be found by means of the equations (87)4 or

(88),

116. The process here indicated will be applied chiefly in the de-

termination of the orbits of comets, and generally for cases in which

a is large. In such cases the angles and d will be small, so that

the slightest errors will have considerable influence in vitiating the

value of t" t as determined by equation (61); but if we transform

this equation so as to eliminate the divisor a% in the first member, the

uncertainty of the solution may be overcome. The difference sine
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may be expressed by a series which converges rapidly when e is small.

Thus, let us put

e sin s = y sin8

^e, x = sin
2

\et

and we have

-j~
= 2 cosec %e |y cot Je,

i . de = 4 cosec ^s.

Therefore

dy _ 8 6y cos |e _ 4 3y (1 2aQ

eta sin
2

Je 2# (1 a;)

If we suppose y to be expanded into a series of the form

y = a + fa -r r** + ^ + &C.,

we get, by differentiation,

ATP~

j f* r~
s-ij

v
j~~

v'-'**/ r CXv
j

and substituting for -7 the value already obtained, the result is

2#B -f (4r 2/9) #
2
-f (65 4r) z3 + Ac. = 4 3a -f (6 3/9) x

+ (6/9 3r) a
2 + (6r 35) x

9 + Ac.

Therefore we have

4 3<*= 0, 6a 3/9=2/9,

from which we get

4^_6 _4.6.8 J = 4.6.8;iO
&g

Hence we obtain

. 4*lf-11Jt*41 1*41 1*81 |jf 1^/3O^
f sm s= I sin

3

^e I l-{-|sin
3

|-|-p =sm*^e-| _ _
^ snr^-f-<Kc.

j,
(^b^;

and, in like manner,

8 sin d= | sin
3

%dl l-f-gsin
2

j5-[- ^=sin
A
j^-|" g* 7

'

Q sin6 |5-{-Ac.
),

(63)

which, for brevity, may be written

e sin e = | Q sin8
e,
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Combining these expressions with (61), and substituting for sin^e and

Bin |<5 their values given by the equations (60), -there results

6r' = Q (r + r" + x)t + Q' (r + r"- x)f , (65)

the upper sign being used when the heliocentric motion of the body
is less than 180, and the lower sign when it is greater than 180.
The coefficients Q and Q

f

represent, respectively, the series of terms

enclosed in the parentheses in the second members of the equations

(62) and (63), and it is evident that their values may be tabulated

with the argument e or d
}
as the case may be. It will be observed,

however, that the first two terms of the value of Q are identical with

the first two terms of the expansion of (cos Je)"~
* into a series jf

ascending powers of sin Je, while the difference is very small between

the coefficients of the third terms. Thus, we have

(cos Je)~
V2 = (1 sin

2

Je)-* = 1 + f sin2

je +|^ sin4 JeO . 1U

. 6 . 11 . 16 .

and if we put

g=
B', (66)

(cos J) *

we shall have

o
= l + T? 5 sin* i* + 2V-f5 sin6 Je -f Ac. (67)

In a similar manner, if we put

=(^ (68)

we find

-Bo'
= 1 + if 5

sin
4

i* + JJ& sin6 15 + &c. (69)

Table XV. gives the values of B
Q
or B

Q
r

corresponding to or d from-

to 60.
For the case of parabolic motion we have

and the equation (65) becomes identical with (56)8 .

In the application of these formulae, we first compute e and d by

means of the equations (60), and then, having found BQ
and B

9
'

by

means of Table XV., we compute the values of Q and Q' from (66)

and (68). Finally, the time r'= k (t" t)
will be obtained from (65),

and the difference between this result and the observed interval will
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indicate whether the assumed value of K must be increased or di-

minished. A few trials will give the correct result.

117. Since the interval of time I" t cannot be determined with

sufficient accuracy from (65) when the chord x is very small, it

becomes necessary to effect a further transformation of this equation.

Thus, let us put

Q q= 6P, x = sin
2

Je, a?= sin1

JJ,

and we shall have

Now, when x is very small, we may put

cos|e = cos;J<J,

and hence

,
. .

, , i* sin
2 ^ si

x x'= sin2 4e sin*i3 =-f
-

=-=

4 cos2

|

which, by means of equations (60), becomes

r
*

X- X = 5
--r-:

oacos 3*

Therefore we have, when x is very small,

P=
40aL-i

(1 + V *' i + 1? 8in'

is

If we put

t

the equation (65) becomes, using only the upper sign,

(r + /' + X)f
-

(r + r"- x)f = 6r ', (72)

which is of the same form as (56)3
. Hence, according to the equa-

tions (63)s
and (66)3 ,

we shall have

*=<" (73)

toe value of // being found from Table XI. with the argument
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It remains, therefore, simply to find a convenient expression for r/,

and the determination of x is effected by a process precisely the same

as in the special case of parabolic motion.

Let us now put
N

and we shall have

cos 2

je / 1 ,

2. 8 . .3.8.10. .4.8.10.12. . . VN=- l + ~ sm i +"~ Sm4 i+-- sm6 i e+&c -

or, substituting for Q its value in terms of sin Je,

JV= 1 + A sin2
J-e +^ sin* Je + ^% sin J. + &c. (75)

Therefore^ if we put

the expression for r ' becomes

(77)

Table XV. gives the value of logN corresponding to values of e

from e = to e = 60.

If the chord K is given, and the interval of time t" t is required,

we compute Ar/ by means of (76), and, having found r/ from

as in the case of parabolic motion, we have

It should be observed that although equation (76) is derived for the

case of a small value of x, yet it is applicable whenever the differ-

ence d is very small, whatever may be the value of K. For

orbits which differ but little from the parabolic form, it will in all

cases be sufficient to use this expression for Ar/; and for cases in

which the difference between e and 3 is such that the assumption of

cos \s
= cos {3, x + xr=

2x, &c., made in deriving equation (70), does
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not afford the required accuracy, we may compute both Q and Q'

directly, and then we have

+ r"-x)f. (78)

The values of the factor | 1 1 -~- I may be tabulated directly with

r-f-r" x
-r as the vertical argument and -j- as the horizontal argument;

but for the few cases in which the value of N given by the equation

(75) is not sufficiently accurate, it will be easy to compute Q and Q'

by means of the formulae (66) and (68), and then find Ar ' from (78).

Further, when there is any doubt as to the accuracy of the result

given by (76), for the final trial in finding x from r -f r" and r by
means of the equations (73) and (74), it will be advisable to compute
Ar ' from (78).

It appears, therefore, that for nearly all the cases which actually

occur the determination of the value of x, corresponding to given

values of a and Jf= , is reduced by means of the equation (72) to

the method which is adopted in the case of parabolic orbits.

The calculation of the numerical values of r -}- r"-{- x and r+ rf/ K

will be most conveniently effected by the aid of addition and sub-

traction logarithms. If the tables of common logarithms are used,

we may first compute

and then we have

r + r
" + x = 2 (r + r") sin2

(45 + J

r + r" x = 2 (r + r") cos2

(45 +

118. In the case of hyperbolic motion, the semi-transverse axis is

negative, and the values of sin }e and sin \8 given by the equations

(60) become imaginary, so that it is no longer possible to compute
the interval of time from r + r" and x by means of the auxiliary

angles e and d. Let us, therefore, put

sin
2

^e = m2
, sin2

$3= n* ;

then, when a is negative, m and n will be real. Now we have

e = sin""
1V m\ j,d

= sin"
1

V^n\
and

-|e V^I = loge (cos \* 4- T
/^1 sin ).
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Hence we derive

e = 2sin V m2 = -7= loge (1/1 + m2 + w),

d = 2 sin
- 1 l/^T2= = loge (l/l -j- n

2 + n).
X 1

Substituting these values in the equation (61), and writing a in-

stead of a, since

sin e = 2m I/ 1 1/1 -f- w3
,

we shall have

~= 2m l/l -f- m2 2 loge (1/1 + m2 + m)

=P (2n 11 + n* 2 loge

the upper sign being used when the heliocentric motion is less than

180, and the lower sign when it is greater than 180. Therefore,

if we compute m and n from

regarding the hyperbolic semi-transverse axis a as positive, the for-

mula (79) will determine the interval of time r' = k
(t

ff

t).

The first two terms of the second member of equation (79) may
be expressed in a series of ascending powers of m, and the last two

terms in a series of ascending powers of n. Thus, if we put

loge (/I -f m2
-f m) == am -f- /?m

2 + r? +^ + &c.,

we get, by differentiation,

1 = = a + 2/?m + 3rm2

-f 45m
3 + 5em* + &c. ;

m2

and since

1 1-3 1-3-5

we have

Hence we obtain

2 log, (l/iT^
2

"-!- m) = 2m Jm8 + i
|wi

6 -
| m7 + &c.
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We have, also,

2m l/l -f m2 = 2m -f ms

|m
5 + j -^m

7 &c.

Therefore,

and similarly

2?i 1/1 -f- ^ 2 loge (l/l -f n* + n) =

2m 1/1 + m2 2 loge (l/l + m2
-f m) =

(82)

Substituting these values in the equation (79), and denoting the

series of terms enclosed in the parentheses by Q and
', respectively,

we get
6r'= g (r + r" + x)l + '

(r -f r"- x)f (83)

which is identical with equation (65). If we replace m2

by sin
2

|e

and n2

by sin
2^ in the expressions for Q and Q', as given by (81)

and (82), we shall have the expressions for these quantities in terms

of sin |e and sin |<J, respectively, instead of sin %s and sin J<5 as given

by the equations (62) and (63), namely,

Q =1 + f -isin'1, + |
lj sin'-ie + |il4. Siii^ + &c.(

For the case of an elliptic orbit it is most convenient to use the

equations (66) and (68) in finding Q and Q
f

; but, since the cases of

hyperbolic motion are rare, while for those which do occur the eccen-

tricity is very little greater than that of the parabola, it will be suf-

ficient to tabulate Q directly with the argument m. The same table,

using n as the argument, will give the value of Q
f
. Table XVI.

gives the values of Q corresponding to values of m from m= to

m = 0.2.

When the values of r -f r", r f

,
and a are given, and the chord x

is required, we may compute Ar/ from (78), T f from (77), and finally

# from (73).

It may be remarked, also, that the formulae for the relation between

T', r-\-r", K, and a suffice to find by trial the value of a when r-fr"

and x are given. Hence, in the computation of an orbit from assumed
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values of J and J /r

,
the value of X may be computed from r, rft

y
and

u" -
u, and then a may be found in the manner here indicated.

If we substitute in the equations (84) the values of sin ^s and sin \d

in terms of r 4- r", x, and a, and then substitute the resulting values

of Q and Q
f in the equation (65), we obtain

+ sfe ^ ((r + f" + x)* qF fr + *" - x)*) + &c.
f

the lower sign being used when un u exceeds 180. When the

eccentricity is very nearly equal to unity, this series converges with

great rapidity. In the case of hyperbolic motion, the sign of a must

be changed.

119. The formulae thus derived for the determination of the chord x

for the cases of elliptic and hyperbolic orbits, enable us to correct an

approximate orbit by varying the semi-transverse axis a and the

ratio M of two curtate distances. But since the formulae will gene-

rally be applied for the correction of approximate parabolic elements,

or those which are nearly parabolic, it will be expedient to use - and

M as the quantities to be determined.

In the first place, we compute a system of elements from M and

/=-; and, for the determination of the auxiliary quantities pre-
CL

liminary to the calculation of the values of r, r", and x, the equa-
tions (41)s , (50)s, and (51)3

will be employed when the ecliptic is the

fundamental plane. But when the equator is taken as the funda-

mental plane, we must first compute #, K, and G by means of the

equations (96)3 . Then, by a process entirely analogous to that by
which the equations (47)3

and (50)3 were derived, we obtain

h cos C cos (H a") = M cos (a" a),

h cos C sin (H a") = sin (a" a), (86)

h sin C =Mtan 8" tan d,

from which to find H, f, and h; and also

cos <p
= cos C cos Kcos(G H) + sin C sin K, (87)

from which to find
<f>.

In this case, and H will be referred to the

equator as the fundamental plane. The angles ^ and i//' will be

obtained from the equations (102)3, or from equations of the form
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of (26), and finally the auxiliary quantities A, B, B", &c. will be

obtained from (51)3, writing d and d/f in place of
ft
and ft", respect-

ively.

As soon as these auxiliary quantities have been determined, by
means of (52)3 the value of % must be found which will exactly

satisfy equation (65). To effect this, we first compute e from

sin ^e =

and, if it be required, we also find 3 from

using approximate values of r + r" and x. Then we find Q from

(66), and Ar ' from (76) or from (78), the logarithms of the auxiliary

quantities BQ
and N being found by means of Table XV. with the

argument e. The value of r/ having been found from (77), the

equations (73) and (74), in connection with Table XI., enable us to

obtain a closer approximation to the correct value of x. With this

we compute new values of r and r ff

,
and repeat the determination

of x. A few trials will generally give the correct result, and these

trials may be facilitated by the use of the formula (67)3 . It will be

observed, also, that Q and Ar ' are very slightly changed by a small

change in the values of r -j- r fl and x, so that a repetition of the

calculation of these quantities pnly becomes necessary for the final

trial in finding the value of x which completely satisfies the equa-

tions (52)3
and (65). When the value of a is such that the values

of Q and ^V exceed the limits of Table XV., the equation (61) may
be employed, and, in the case of hyperbolic motion, when Q and '

exceed the limits of Table XVI., we may employ the complete ex-

pression for the time r' in terms of m and n as given by (79).

The values of r, r/r

,
and x having thus been found, the equations

will determine the curtate distances p and />". When the equator is

the fundamental plane, we have

p = A cos 9, p"= J" cos d".

From p, p", and the corresponding geocentric spherical co-ordinates,

the radii-vectores and the heliocentric spherical co-ordinates
I, I", 6,

and b" will be obtained, and thence &, i, u, u
ff

, and the remaining
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elements of the orbit, as already illustrated. In the case of elliptic

motion, if we compute the auxiliary quantities e and d by means of

the equations (60), we shall have

e cos J (E" + J) = cos J (e + d),

from which e and \(E
fr

-\~ E} may be found, and hence, since

i(J" J) = i(e ),
we derive .# and J0". The values of q and

i? may then be found directly from these and quantities already
obtained. Thus, the last of equations (43)! gives

cos ^v cos \E cos ^v" cos ^E"

V~q

'

1/r Vq 1/7'

Multiplying the first of these expressions by sin Ju", and the second

oy sin J0, adding the products, and reducing, we obtain

smi(v" v)sin%v_ cos j (v" v) cos %E cos \E"

l/q Vr V7'
'

Therefore, we shall have

_1_ g
.

n _ cosjJg cos E"

V~q

Sm 3V " ~
1/r tan J (M" *) T/7' sin J (t*" uj

1 cos IE-= cos Iv= -,

VQ V
from which q and v may be found as soon as cos \E and cos \E" are

known. In the case of parabolic motion the eccentric anomaly is

equal to zero, and these equations become identical with (92)3
. The

angular distance of the perihelion from the ascending node will be

obtained from
(a = u V.

Since r = a ae co$E, and q
=

a(l e), we have

and hence

1-1
a

(89)
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When the eccentricity is nearly equal to unity, the value of q given

by approximate elements will be sufficient to compute cos^ and

cos^E" by means of these equations, and the results thus derived

will be substituted in the equations (88), from which a new value of

q results. If this should differ considerably from that used in com-

puting cos \E and cos \E", a repetition of the calculation will give
the correct result.

In the case of hyperbolic motion, although E and E f> are imagi-

nary, we may compute the numerical values of cos^ and cos^E''
from the equations (89), regarding a as negative, and the results will

be used for the corresponding quantities in (88) in the computation
of q and v for the hyperbolic orbit.

Next, we compute a second system of elements from M and/ -f Sf,

and a third system from M -f- dM and/, df and dM denoting the

arbitrary increments assigned to / and M respectively. The com-

parison of these three systems of elements with additional observed

places of the comet, will enable us to form the equations of condition

for the determination of the most probable values of the corrections

&M and A/ to be applied to M and /respectively. The formation of

these equations is effected in precisely the same manner as in the case

of the variation of the geocentric distances or of & and i, and it does

not require any further illustration. The final elements will be ob-

tained from M-\- &M, and/-f- A/, either directly or by interpolation.

We may remark, further, that it will be convenient to use logM as

the quantity to be corrected, and to express the variations of logM
in units of the last decimal place of the logarithms.

When the orbit differs very little from the parabolic form, it will

be most expeditious to make two hypotheses in regard to M, putting

in each case =
0, and only compute elliptic or hyperbolic elements

in the third hypothesis, for which we use J/and f=df. The first

and second systems of elements will thus be parabolic.

120. Instead of M and - we may use A and - as the quantities to
a a

be corrected. In this case we assume an approximate value of J by

means of elements already known, and by means of (96)3, (98)3 , (102),,

and (103)3 ,
we compute the auxiliary quantities C, B, B", &c., re-

quired in the solution of the equations (104)3 . We assume, also, an

approximate value of J r/ and compute the corresponding value of r",

the value of r having been already found from the assumed value of

J. Then, by trial, we find the value of x which, in connection witn
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the assumed value of -, will satisfy the equations (104)3
and (65) or

(61). The corresponding value of A" is given by

J"= e i/x2 C\

When A" has thus been determined, the heliocentric places will be

obtained by means of the equations (106)3
and (107)3, and, finally,

the corresponding elements of the orbit will be computed. If the

ecliptic is taken as the fundamental plane, we put D = Q, A = O,
and write ^ and

/9
in place of a and d respectively.

If we now compute a second system of elements from A + dJ and

f= -, and a third system from J and /+<?/", the comparison of the

three systems of elements with additional observed places will furnish

the equations of condition for the determination of the corrections

AJ and A/ to be applied to J and -
respectively.

When the eccentricity is very nearly equal to unity, we may as-

sume /=0 for the first and second hypotheses, and only compute

elliptic or hyperbolic elements for the third hypothesis.

121. The comparison of the several observed places of a heavenly

body with one of the three systems of elements obtained by varying

the two quantities selected for correction, or, when the required dif-

ferential coefficients are known, with any other system of elements

such that the squares and products of the corrections may be neg-

lected, gives a series of equations of the form

mx -f ny p,

m'x -f- n'y =p', &c.,

in which x and y denote the final corrections to be applied to the two

assumed quantities respectively. The combination of these equations

which gives the most probable values of the unknown quantities, is

effected according to the method of least squares. Thus, we multiply

each equation by the coefficient of x in that equation, and the sum

of all the equations thus formed gives the first normal equation.

Then we multiply each equation of condition by the coefficient of y
in that equation, and the sum of all the products gives the second

normal equation. Let these equations be expressed thus:-

[mm] x + [mn\ y = [mp],

\mri\ x + \nri\ y = \np],
23
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in which [mra]=m
2
-{-m'

2
-|-m''

2

-}-&c., [mn]=mw+mV-fra'W'-f&c.,
and similarly for the other terms. These two final equations give,

by elimination, the most probable values of x and y, namely, those

for which the sum of the squares of the residuals will be a minimum.
It is, however, often convenient to determine x in terms of y, or y
in terms of x, so that we may find the influence of a variation of one

of the unknown quantities on the differences between computation
and observation when the most probable value of the other unknown

quantity is used. Thus, if it be desired to find x in terms of y, the

most probable value of x will be

[mp~\ \mn\

[mm] [mm]

If we substitute this value of x in the original equations of condition,

the remaining differences between computation and observation will

be expressed in terms of the unknown quantity y, or in the form

A0 = m + n y. (90)

Then, by assigning different values to y, we may find the correspond-

ing residuals, and thus determine to what extent the correction y may
be varied without causing these residuals to surpass the limits of the

probable errors of observation.

In the determination of the orbit of a comet there must be more

or less uncertainty in the value of a, and if y denotes the correction

to be applied to the assumed value of -, we may thus determine the
CL

probable limits within which the true value of the periodic time

must be found. In the case of a comet which is identified, by the

similarity of elements, with one which has previously appeared, if

we compute the system of elements which will best satisfy the series

of observations, the supposition being made that the comet has per-

formed but one revolution around the sun during the intervening

interval, it will be easy to determine whether the observations are

better satisfied by assuming that two or more revolutions have been

completed during this interval. Thus, let T denote the periodic

time assumed, and the relation between T and a is expressed by

k
'

in which n denotes the semi-circumference of a circle whose radius
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is unity. Let the periodic time corresponding to -
-f- y be denoted

m *
Q>

by ; then we shall have

1 , 1

y = i*~7

and the equations for the residuals are transformed into the form

A f f\ I f \ f(\-\ \A0= (m nj ) -f- n j z*. (91)

If we now assign to 2, successively, the values 1, 2, 3, &c., the re-

siduals thus obtained will indicate the value of z which best satisfies

the series of observations, and hence how many revolutions of the

comet have taken place during the interval denoted by T.

122. In the determination of the orbit of a comet from three ob-

served places, a hypothesis in regard to the semi-transverse axis may
writh facility be introduced simultaneously with the computation of

the parabolic elements. The numerical calculation as far as the form-

ation of the equations (52)s
will be precisely the same for both the

parabolic and the elliptic or hyperbolic elements. Then in the one

case we find the values of r, rf/
,
and x which will satisfy equation

(56)3,
and in the other case we find those which will satisfy the equa-

tion (65), as already explained. From the results thus obtained, the

two systems of elements will be computed. Let /= -> then in the

case of the system of parabolic elements Ave have/=0, and the com-

parison of the middle place with these and also with the elliptic or

hyperbolic elements will give the value of

in which 6
l
denotes the geocentric spherical co-ordinate computed

from the parabolic elements, and 2
that computed from the other

system of elements. Further, let A# denote the difference between

computation and observation for the middle place, and the correction

to be applied to /, in order that the computed and the observed

values of 6 may agree, will be given by

Hence, the two observed spherical co-ordinates for the middle place

will give two equations of condition from which A/ may be found,
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and the corresponding elements will be those which best represent
the observations, assuming the adopted value of M to be correct.

123. The first determination of the approximate elements of the

orbit of a comet is most readily effected by adopting the ecliptic as

the fundamental plane. In the subsequent correction of these ele-

ments, by varying
- and M or J, it will often be convenient to use
a

the equator as the fundamental plane, and the first assumption in

regard to M will be made by means of the values of the distances

given by the approximate elements already known. But if it be

desired to compute M directly from three observed places in reference

to the equator, without converting the right ascensions and declina-

tions into longitudes and latitudes, the requisite formula may be

derived by a process entirely analogous to that employed when the

curtate distances refer to the ecliptic. The case may occur in which

only the right ascension for the middle place is given, so that the

corresponding longitude cannot be found. It will then be necessary

to adopt the equator as the fundamental plane in determining a

system of parabolic elements by means of two complete observations

and this incomplete middle place. If we substitute the expressions

for the heliocentric co-ordinates in reference to the equator in the

equations (4)3 and (5)s,
we shall have

n (p cos a R cos D cos A} (p
r

cos a' Rf

cosU cos J/)

-f n" (P" sin a" R" cos D" cos A"\
= n (p sin a R cos D sin A) (p

f

sin a' E' cos D' sin A') (92)

-f n" (p" sin a" R" cos D" sin A"),
Q = n(pttmd R sin D} (p tan S' R' sin Z>')

-f- n" (p" tan a" R" sin IT),

in which p y //, p
tf denote the curtate distances with respect to the

equator, A, A f

,
A" the right ascensions of the sun, and D, Z>', I/'

its declinations. These equations correspond to (6)3, and may be

treated in a similar manner.

From the first and second of equations (92) we get

= n (p sin (a' a) RcosD sin (ofA)) -fR cos D' sin (a' 4')

n" (P" sin (a" a') -f R" cosZ>" sin (a' A")),
and hence

=? = ^ >4
na-a

p n" Sin (a" a')

?i ft cosD sin (a' A) Rr

cosD' sin (a'- A'}-\-ri'R" cos D" sin (a' A")

pri'sm(a" a')
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This formula, being independent of the decimation d', may be used

to compute M when only the right ascension for the middle place ia

given. For the first assumption in the case of an unknown orbit,

we take

1f sin (a' a)M=
if t sin(a'

/

a')'

and, by means of the results obtained from this hypothesis, the com-

plete expression (93) may be computed. By a process identical with-

that employed in deriving the equation (36)3, we derive, from (93),

the expression

p"=p--j$~$-)
(94)

j
TT f^\tt\i^- \ \Rr

cos D' sin (a' A!}
-g^F^ ^;

\r* #/ sin (a" a')

and, putting

,_. n sin (a' a)

n"
'

sin (a" a')
'

F I '
rr*

(?' T^ cos D' sin (a' A') ^/1__1_\^ g n
'

r"
^T

sin (a' a) p \r'
3 R'3

f'

we have

(95)

The calculation of the auxiliary quantities in the equations (52)3

will be effected by means of the formulae (96)3, (86), (87), (102)3,
and

(51)3. The heliocentric places for the times t and t" will be given

by (106)3
and (107)3,

and from these the elements of the orbit will

be found according to the process already illustrated.

124. The methods already given for the correction of the approxi-

mate elements of the orbit of a heavenly body by means of additional

observations or normal places, are those which will generally be

applied. There are, however, modifications of these which may be

advantageous in rare and special cases, and which will readily suggest

themselves. Thus, if it be desired to correct approximate elements

by varying two radii-vectores r and r", we may assume an approxi-

mate value of each of these, and the three equations (88)j will con-

tain only the three unknown quantities d, b, and /. By elimination,

these unknown quantities may be found, and in like manner the



S58 THEORETICAL ASTRONOMY.

values of J", b"j and I". It will be most convenient to compute
the angles ^ an<^ Vj anc^ then find z and z" from

R sin * R" sinVsm z =-, sm z =-^ ,

or, putting #2 = r2 J?
2
sin

2

^, and x"2 = r"2 -R"2
sin

2

^", from

sin 4
"
sinV

tan z=-, tan z =- .

x x"

The curtate distances will be given by the equations (3), and the

heliocentric spherical co-ordinates by means of (4), writing r in place

of a. From these u" u may be found, and by means of the values

of r, rn
',
and u" u the determination of the elements of the orbit

may be completed. Then, assigning to r an increment dr, we com-

pute a second system of elements, and from r and r" -f- drff a third

system. The comparison of these three systems of elements with an

additional or intermediate observed place will furnish the equations

for the determination of the corrections Ar and Ar/r to be applied to

r and r", respectively. The comparison of the middle place may be

made with the observed geocentric spherical co-ordinates directly, or

with the radius-vector and argument of the latitude computed directly

from the observed co-ordinates; and in the same manner any number

of additional observed places may be employed in forming the equa-

tions of condition for the determination of Ar and Arr/
.

Instead of r and r", we may take the projections of these radii-

vectores on the plane of the ecliptic as the quantities to be corrected.

Let these projected distances of the body from the sun be denoted

by r and r ", respectively ; then, by means of the equations (88)^

we obtain

(96)

from which I may be found
;
and in a similar manner we may find

I". If we put

we have

tan(;-,>) = * sin(A
- 0)

. (97,XQ

Let 8 denote the angle at the sun between the earth and the place

of the planet or comet projected on the plane of the ecliptic ;
then

we shall have
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=180 + O I,

==:R8in(Z-L0) (98)

and

p tan ft
tan 6 = , (99)r

o

by means of which the heliocentric latitudes b and b" may be found.

The calculation of the elements and the correction of r and r " are

then effected as in the case of the variation of r and r" .

In the case of parabolic motion, the eccentricity being known, we

may take q and T as the quantities to be corrected. If we assume

approximate values of these elements, r, r', rff
,
and v, v f

,
v" will be

given immediately. Then from r, r r

,
r'

1 and the observed spherical

co-ordinates of the body we may compute the values of u" u' and

u' u. In the same manner, by means of the observed places, wo

compute the angles u" u' and uf u corresponding to q-\-dq and T
y

and to q and T-+- dT
} 3q and dT denoting the arbitrary increments

assigned to q and T, respectively. The comparison of the helio-

centric motion, during the intervals t" t
1 and t'

i, thus obtained,

in the case of each of the three systems of elements, from the ob-

served geocentric places with the corresponding results given by

w" u'= v" v',

enables us to form the equations by which we may find the cor-

rections A^ and &T to be applied to the assumed values of q and T,

respectively, in order that the values of u" uf and u' u computed

by means of the observed places shall agree with those given by the

true anomalies computed directly from q and T.
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CHAPTER VII.

METHOD OP LEAST SQUARES, THEORY OF THE COMBINATION OP OBSERVATIONS, AND
DETERMINATION OF THE MOST PROBABLE SYSTEM OF ELEMENTS FROM A SERIES

OF OBSERVATIONS.

125. WHEN the elements of the orbit of a heavenly body are known
to such a degree of approximation that the squares and products of

the corrections which should be applied to them may be neglected,

by computing the partial differential coefficients of these elements

with respect to each of the observed spherical co-ordinates, we may
form, by means of the differences between computation and observa-

tion, the equations for the determination of these corrections. Three

complete observations will furnish the six equations required for the

determination of the corrections to be applied to the six elements of

the orbit
; but, if more than three complete places are given, the

number of equations will exceed the number of unknown quantities,

and the problem will be more than determinate. If the observed

places were absolutely exact, the combination of the equations of

condition in any manner whatever would furnish the values of these

corrections, such that each of these equations would be completely

satisfied. The conditions, however, which present themselves in the

actual correction of the elements of the orbit of a heavenly body by
means of given observed places, are entirely different. When the

observations have been corrected for all known instrumental errors,

and when all other known corrections have been duly applied, there

still remain those accidental errors which arise from various causes,

such as the abnormal condition of the atmosphere, the imperfections

of vision, and the imperfections in the performance of the instrument

employed. These accidental and irregular errors of observation cannot

be eliminated from the observed data, and the equations of condition

for the determination of the corrections to be applied to the elements

of an approximate orbit cannot be completely satisfied by any system

of values assigned to the unknown quantities unless the number of

equations is the same as the number of these unknown quantities.

It becomes an important problem, therefore, to determine the par-

ticular combination of these equations of condition, by means of which
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the resulting values of the unknown quantities will be those which,

while they do not completely satisfy the several equations, will afford

the highest degree of probability in favor of their accuracy. It will

be of interest also to determine, as far as it may be possible, the

degree of accuracy which may be attributed to the separate results.

But, in order to simplify the more general problem, in which the

quantities sought are determined indirectly by observation, it will be

expedient to consider first the simpler case, in which a single quantity
is obtained directly by observation.

126. If the accidental errors of observation could be obviated, the

different determinations of a magnitude directly by observation would

be identical
;
but since this is impossible when an extreme limit of

precision is sought, we adopt a mean or average value to be derived

from the separate results obtained. The adopted value may or may
not agree with any individual result, since it is only necessary that

the residuals obtained by comparing the adopted value with the

observed values shall be such as to make this adopted value the most

probable value. It is evident, from the very nature of the case, that

we approach here the confines of the unknown, and, before we pro-

ceed further, something additional must be assumed.

However irregular and uncertain the law of the accidental errors

of observation may be, we may at least assume that small errors are

more probable than large errors, and that errors surpassing a certain

limit will not occur. We may also assume that in the case of a large

number of observations, errors in excess will occur as frequently as

errors in defect, so that, in general, positive and negative residuals

of equal absolute value are equally probable. It appears, therefore,

that the relative frequency of the occurrence of an accidental error A

in the observed value will depend on the magnitude of this error,

and may be expressed by <p (A). This function will also express the

probability of an error A in an observed value. At the limit beyond
which an error of the magnitude A can never occur, we must have

<p(A)
= 0: when A = 0, the value of

<p (A) must be a maximum, and

for equal positive and negative values of A the values of
<p (A) must

be the same. Hence, in a given series of observations, the number m
of observations being supposed to be large, the number of times in

which the error A occurs will be expressed by m<p (J), and the number

of times in which the error A' occurs will be expressed by m<p (J
1

),
so

that we shall have

-f my (J") -\- &c.,
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or

The sum 2 must be taken between the limits for which the accidental

errors of observation are considered possible ;
but since the assignment

of these limits is, in a certain sense, arbitrary, we must evidently

have
A= -foo

?W = 1, (1)

the value of
<p (A) being absolutely zero for the limits -4- oo and oo.

Within any given limits there are an infinite number of values,

any one of which may possibly be the true value of J, and hence

the number of the functions expressed by <p (A) must be infinite.

The probability of an error A is expressed by <p (J), and will be the

same as the probability that the error is contained within the limits A

and A -f- dA. The latter is expressed by the sum of all the functions

(p (A) between the limits A and A -f- dJ, or by

We conclude, therefore, that the probability that an error falls between

the limits a and b is expressed by the integral

and this integral, taken so as to include all possible accidental errors

of observation, is, according to equation (1),

According to the theory of probabilities, the probability that the

errors J, J r

,
&c. occur simultaneously is equal to the continued pro-

duct of the probabilities of the occurrence of these errors separately.

Let P denote the probability that these errors occur at the same time

in the given series of observed values, and we have

p=?(j).?(j').?(.r) ..... (3)

The most probable value of the quantity sought, which we will de-

note by x, must evidently be that which makes P a maximum. If
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we take the logarithms of both members of equation (3), and differ-

entiate, the condition of a maximum gives

n
dJ

,

-dT-'Tx + --dA'-dx- + &c '

Let n, n f

, n", &c. be the observed values of x, and m the number of

observations
;
then we have

and hence

U_dX___dAT_
dx dx dx

Therefore the equation (4) becomes

d log y (n x) d log <? (ri x)

d(n-x) d(n'-x)
- + &C ' (5)

This equation will serve to determine the value of x as soon as the

form of the function symbolized by <p
is known. It becomes neces-

sary, therefore, to make some further assumption in regard to the

errors J, J', A", &c., in order that the form of this function may be

determined; and, although the hypothesis which presents itself gives

directly the most probable value of x, since the function
<p (J) is sup-

posed to be general, we may thus, by the special case, determine the

form of this function; and the result will be applicable when, instead

of the value of a single quantity, it is required to find the most pro-
bable values of several unknown quantities determined indirectly by
observation.

127. The principle may be received as an axiom, that when a

series of observed values of a quantity is given, if the circumstances

under which the separate observations were made are similar, so that

there is no reason for preferring one result to another, the most pro-

bable value of the quantity sought is the arithmetical mean of the

several results. Hence we have

x = m

m being the number of observed values. This expression gives

= (n x) -f (n
1

x} + (n" x) -f- &c., (6)

from which it appears that the algebraic sum of the residuals is equal

to zero. The equation (5) may be written
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d log <f (n x) ,. d log (f> (n' x)
Q = (n x) 7

-
^rjr,

--^ + (ri x) 7-?
&
\\, , , 4- &c.,

(n x) d (n x) (ri x) d (ri x)
'

and the comparison of this with (6) shows that

d log <p (n a?) d log <f> (ri x)

(n x)d(n x) (ri x)d(ri x)
"

k being a constant quantity. Hence we derive

d loge <? (J) = kA dJ,

the integration of which gives

loge c being the constant of integration. From this equation tiiere

results
, ,, ^*A ,

^ (J) = ce
, (8)

in which e is the base of Naperian logarithms. Since
<p (J) diminishes

as A increases, the quantity k must be essentially negative, and if we

put %k
= A2

,
we shall have

c<f (9)

If we substitute this value of (p(A) in the equation (2), we have

00

/ -A3A'
c
J

e dA = 1,

or, putting also t = liA,

c

- 00

This equation will give the value of the constant c, provided that the

value of the integral
/

f -**
/ o

is known. Since the definite integral is independent of the variable,

let us multiply it by a similar one, in which y is the variable ; so

that we have

ID which the order of integration is indifferent. If we put y = te,
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we have, since t is regarded as constant in the integration with respect

toy,
dy= tdz

;

and hence

Then, since we have, in general,

1
7r ,

2a

the preceding equation gives

in which n denotes the semi-circumference of a circle whose radius is

unity. Therefore we have

fa-* eft = !/; (11)
*/ o

and the equation (10) gives

e = 4. (12)
I/*

Hence, the expression for
<p (A] becomes

r(J)=A-. (13)

V*

The constant h, according to the relation tf = \k, must depend on

the nature of the observations, and will be the same in the case of

systems of observations in which the probability of an error A is the

same. Since A2J2 must necessarily be an abstract number, A and
^

must be homogeneous.

128. In a given series of observations, the probability that for any

observation the error will be within the limits d and -f d will be

expressed by
+ 5

JL fe-
A'A
'dJ; (14)

l/?rJ
S

and in another series of observations, more or less precise, the pro-
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bability that the error of an observation is within the limits 3' and

+ 3' will be

r^ dA. (is)

-5'

Since
+ 8 +hS

= -i= f e-
A9A'

i/-J

it appears that the integrals (14) and (15) are equal when h3 = h'3 f
.

Hence, if we put h f=
2h, these integrals will be equal when 3= 23',

and an error of a given magnitude in the first series will have the

same probability as an error of half that magnitude in the second

series. The second series of observations will therefore be twice as

accurate as the first series, and the constant h may be called the

measure of precision of the observations. The greater the degree of

precision of the observations, the greater will be the value of h.

The relative accuracy of two series of observations may also be

determined by a comparison of the errors which are committed with

equal facility in each series. If we arrange the errors of the several

observations in each series in the order of their absolute magnitude
without reference to the algebraic sign, the errors which occupy the

same position in reference to the extremes in each case will serve to

determine the relation sought. We select that, however, which occu-

pies the middle place in the series of errors thus arranged, and since

the number of errors which exceed this is the same as the number

of errors less than this, if we designate the error which occupies the

middle place by r, the probability that an error is within the limits

r and + f will be equal to \. The probability of an error greater

than r being the same as the probability of an error less than r, the

error r is called the probable error.

The relation between r and h is easily determined. Thus, we have

-fi/w

or, putting hA = t,
Ht

dt =^ = 0.44311. (16)
f

t/ o

If we expand e~** into a series of ascending powers of
t, multiply by

dt
y
and integrate between the limits and T, we get
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T
/* npo rni rp9

J n
^ ' s> 1 O ^ 1 2 S

' ^ 1 2 ^J 4 *'

which converges rapidly when T is small. To find the value of T
which corresponds to the value 0.44311 assigned to the integral, we

compute the value of the series (17) for the values 0.45, 0.47, and

0.49 assigned to T, successively, and from the results thus obtained

it is easily seen that when the sum of the terms of the series is

0.44311, we have
T=Jir = 0.47694,

or

0.47694
r =

-j
, (18)

which determines the relation between the probable error and the

measure of precision.

The probability that the error of an observation, without regard to

sign, does not exceed nr, is expressed by

, > I <-/ wi/j ( J.t7 )

VTT^O

and this integral, therefore, indicates the ratio of the number of obser-

vations affected with an error which does not exceed nr to the whole

number of observations. Hence, if we assign different values to n,

the integral (19) computed for the several assumed values of

nhr = 0.47694n

will give the relative number of errors of a given magnitude. Thus,

if we put n = \) we obtain

0.2385

-4:JV" eft= 0.264.

from which it appears that in a series of 1000 observations there

ought to be 264 observations in which the error does not exceed \r.

It has been found, in this manner, that in the case of an extended

series of observations the number of errors of a given magnitude

assigned by theory agrees very closely with that actually given by
the series of observations

;
and hence we conclude that the error com-

mitted in extending the limits of the summation in the expression (1)

to oo and -f oo, instead of the finite limits which it is presumed
that the actual errors cannot exceed, is very slight, so that the form
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of the function
(p (J) which has been derived may be regarded as that

which best satisfies all the conditions of the problem.

129. The relative accuracy of different series of observations may
also be indicated by means of what are called the mean error and the

mean of the errors for each series, the former being the error whose

square is equal to the mean of the squares of all the errors of the

series, and the latter the mean of these errors without reference to

their algebraic sign.

Let denote the mean error
; then, since the number of observa-

tions having the error J is m<p ( J), we shall have, according to the

definition,

m

But the number of possible errors being infinite, the probability of

an error J is expressed by <p (A) dd, and we have

= f JV ( J) dA =Af e-

which gives

Hence, by means of (18), we have

e =-V 1.4826r,
AT/2 (21)

r= 0.67449s,

which determine the relation between e and r.

Let
r}
denote the mean of the errors, and we shall have

/*
01 /'

a

1A<p(A)dA = - -
I (T^'JdJ,

-J//7T

^

which gives

Therefore, we have

T)
= 1.1829r,

r = 0.8453^,

for the relation between r and 3.
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130. Let us denote by v, v', v", &c. the differences between any-

assumed value of x and the observed values for a given series of

observations, the number of observations being denoted by m; then

if we put
[w] = v* + v'

2 + v
n * + Ac., (24)

and similarly in the case of the sum of any other series of similar

terms, we shall have for the probability of the value x,,

P .
fr*

r~W /OCN

~V*
and this probability will be a maximum when [wi] is a minimum
Now we have

o n xn v
r= n' xn v"= n" xn &c.,

w, n', n"j &c. being the observed values of x, and hence

[wj] = \nri] 2 [n] x, -(- mxf

*

M\*
)

It appears, therefore, that [vv] will be a minimum when

*, = (26)

and this is a necessary consequence of the assumption that the arith-

metical mean of the observations gives the most probable value of x,

according to which the form of the function
<p (A] was derived. But

although the arithmetical mean is the most probable value, yet we

cannot affirm that this is the exact value, so long as the number of

observations is finite. It becomes important, therefore, to determine

the degree of precision of the arithmetical mean.

Let X
Q denote the most probable value of x, for which the residuals

are v, v', v"j &c., and let x + d be any other value of #. Then, since

we may put
Wa= v -f.r + ^-j. i.;.o,

and

[vy] = me*,

the probability of the value x ~f- d will be

24
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The probability that the error of the arithmetical mean is zero is in-

dicated by

P _^L_ ,-*** / e
>

V xm

and we have

In the case of a single observation, if P denotes the probability of

the error zero, and Pf the probability of the error d, we have

Hence it appears that if h denotes the measure of precision of the

arithmetical mean of m observations, the relation between h and A,

the measure of precision of an observation, is given by

h *= mh*; (27)

and if r is the probable error of the arithmetical mean, and its

mean error, we have, according to the equations (18) and (20),

(28)

These expressions determine the probable and the mean error of the

arithmetical mean of a number of observations when these errors in

the case of a single observation are known.

131. The expressions for the relation between the mean and pro-

bable errors have been derived for the case of a very large number

of observations, a number so great that the error of the arithmetical

mean becomes equal to zero. In the case of a limited number of

observed values of #, the residuals given by comparing the arith-

metical mean with the several observations will not, in general, give

the true errors of the observations
;
but the greater the number of

observations, the nearer will these residuals approach the absolute

errors. If J, Jr

,
An

',
&c. are the actual errors of the observations,

and v, v f

,
vff

,
&c. those which result from the most probable value of

x, we shall have, denoting the arithmetical mean by xw and the true

value by X
Q -f 3,

A=v S, A'= v' 3, A"= v
"

d, &c.;
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hence
me2 =

[A J] = [W] + m<*
2
. (29)

This equation will enable us to determine the mean error of an ob-

servation when 3 is given ; but, since this is necessarily unknown,
some assumption in regard to its value must be made. If we assume

it to be equal to the mean error of the arithmetical mean, the re-

maining error will be wholly insensible, and hence the equation (29)

becomes
we2 = [iw] + me 2 =

[vv~\ -f-
3
.

Therefore, we shall have

<

and, according to (21),

r= 0.6745

These equations give the values of the mean and probable errors of

a single .observation in terms of the actual residuals found by com-

paring the arithmetical mean with the several observed values.

The probable and the mean error of the arithmetical mean will be

given by

' ^ (32;

r = 0.6745^ |^j_
.

When the number of observations is very large, the probable error

of an observation and also that of the arithmetical mean may be de-

termined by means of the mean of the errors. If we suppose the

number of positive errors to be the same as the number of negative

errors, the mean of the errors without reference to the algebraic sign

gives

and hence we have, according to (23),

r= 0.8453 &i (33)m

For the mean error of an observation we have

e = l/ii = 1.2533 4 (34)
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If the number of observations is very great, the results given oy
these equations will agree with those given by (30) and (31); but for

any limited series of observed values, the results obtained by means

of the mean error will afford the greatest accuracy.

132. The relative accuracy of two or more observed values of a

quantity may be expressed by means of what are called their weights.

If the observations are made under precisely similar circumstances,

so that there is no reason for preferring one to the other, they are said

to have the same weight. The weight must therefore depend on the

measure of precision of the observations, and hence on their probable
errors. The unit of the weight is entirely arbitrary, since only the

relative weights are required, and if we denote the weight by p, the

value of p indicates the number of observations of equal accuracy

which must be combined in order that their arithmetical mean may
have the same degree of precision as the observation whose weight is

p. Hence, if the weight of a single observation is 1, the arithmetical

mean of m such observations will have the weight m. Let the pro-

bable error of an observation of the weight unity be denoted by r,

and the probable error of that whose weight is p
f

by r' then, ac-

cording to the first of equations (28), we shall have

or

For the case of an observation whose weight is p
rr and whose pro-

bable error is r", we have

from which it appears that the weights of two observations are to each

other inversely as the squares of their probable or mean errors, and
f

according to (18), directly as the squares of their measures of precision.

Let us now consider two values of #, which may be designated by
x r and a?", the mean errors of these values being, respectively, e' and

e": then, if we put
X=x'x"

and suppose that both a;' and xtr have been derived from a large num-

ber m of observations (and the same number in each case), so that the

residuals v
9 v/, vn

',
&c. in the case of x f and the residuals v,, v/, v/' t

&c. in the case of xn may be regarded as the actual errors of obser-
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vatiou, the errors of the value of Xt as determined from the several

observations, will be

V V,, V' V,', V" V,", &G.

Let the mean error of X be denoted by E; then we have

mE* =S(v v,y= [w] zh 2 [>,] + [v,vt] ;

and since the number of observed values is supposed to be so great

that the frequency of negative products w, is the same as that of the

similar positive products, so that [vvj]
=

0, this equation gives

or

E 2= e" -I- e" 2
.

Combining X with a third value x" r whose mean error is e'", the

mean error of xf x" x1" will be found in the same manner to be

equal to e
/2 + e

//2
-j- s

///2
;
and hence we have, for the algebraic sum

of any number of separate values,

E= * + e'
2 + e" 2 + Ac., (35)

and, according to the last of equations (21),

R= ir2

-hr'
2 + r"2 + &c., (36)

R being the probable error of the algebraic sum. If the probable

errors of the several values are the same, we have

and the probable error of the sum of m values will be given by

E = rl/m.

Hence tne probable error of the arithmetical mean of m observed

values will be
R r*= =77m Vm

which agrees with the first of equations (28).

Let P denote the weight of the sum X, p
f the weight of a?',

and p/f

that of x" ; then we shall have

p _"
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from which we get

Since the unit of weight is arbitrary, we may take

and hence we have, for the weight of the algebraic sum of any
number of values,

=^ ==
t
/1 + r"2

-f-r'"
2
-{-&c.'

or, whatever may be the unit of weight adopted,

. I

*
I __I

p'
""

p"
'

p'"
'

In the case of a series of observed values of a quantity, if we

designate by rf the probable error of a residual found by comparing
the arithmetical mean with an observed value, by r the probable

error of the observation, by X
Q
the arithmetical mean, and by n any

observed value, the probable error of

n=x +v,
according to (36), will be

.+**=;+ ",

r being the probable error of the arithmetical mean. Hence we derive

m
m 1

and if we adopt the value

/ = 0.8453 ^3
;m'

the expression for the probable error of an observation becomes

r= 0.8453
M

(40)
l/m(m 1)

in which [v] denotes the sum of the residuals regarded as positive,

and m the number of observations.

133. Let n, n
f

, n", &c. denote the observed values of x, and let p,

p', p
ff

}
&c. be their respective weights ; then, according to the defi-
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nition of the weight, the value n may be regarded as the arithmetical

mean of p observations whose weight is unity, and the same is true

in the case of n f

,
nf/

,
&c. We thus resolve the given values into

p + p
f + p" + observations of the weight unity, and the arith-

metical mean of all these gives, for the most probable value of x,

_pn + p'ri + p"n" + Ac. _ [pn\ ,

' '

&c.
' '

The unit of weight being entirely arbitrary, it is evident that the

relation given by this equation is correct as well when the quantities

P) p'y P"> &c - are fractional as when they are whole numbers. The

weight of X
Q
as determined by (41) is expressed by the sum

and the probable error of x is given by

r'

(42)

when r, denotes the probable error of an observation whose weight
is unity. The value of r, must be found by means of the observa-

tions themselves. Thus, there will be p residuals expressed by
n x

Q, p' residuals expressed by n' o?
,
and similarly in the case of

n", n" r

,
&c. Hence, according to equation (31), we shall have

r,
= 0.6745

in which m denotes the number of values to be combined, or the

number of quantities n, n f

, n", &c. For the mean error of #
,
we

have the equations

(44;

If different determinations of the quantity x are given, for which

the probable errors are r, r', r", &c., the reciprocals of the squares

of these probable errors may be taken as the weights of the respective

values n, n', n
rf

, &c., and we shall have

!L L ?L- I ^ L
.,2 ~r ^/2 ~r v//2 T *
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with the probable error

= ' (46)

The mean errors may be used in these equations instead of the pro-
bable errors.

134. The results thus obtained for the case of the direct observa-

tion of the quantity sought, are applicable to the determination of

the conditions for finding the most probable values of several un-

known quantities when only a certain function of these quantities is

directly observed. In the actual application of the formulae it will

always be possible to reduce the problem to the case in which the

quantity observed is a linear function of the quantities sought. Thus,
let V be the quantity observed, and

, y, ,
&c. the unknown quan-

tities to be determined, so that we have

Let
, yw f ,

&c. be approximate values of these quantities supposed
to be already known by means of previous calculation, and let x, y,

z, &c. denote, respectively, the corrections which must be applied to

these approximate values in order to obtain their true values. Then,
if we suppose that the previous approximation is so close that the

squares and products of the several corrections may be neglected, we
have

_
T, dV

,

dV . dV
v-v =d! x

+^y+~dt
z +-->

and thus the equation is reduced to a linear form. Hence, in general,

if we denote by n the difference between the computed and the ob-

served value of the function, and similarly in the case of each obser-

vation employed, the equations to be solved are of the following

form :

ax -f- by "h cz ~f~ du -\- ew -f-/ -j~ n 0,

a'x + b'y -f c'z + d'u + e'w +ft + ri = 0, (47)

a"x 4. y'y 4- c
"
z 4. d"u -f e"w +ft + n"= 0,

&c. &c.

which may be extended so as to include any number of unknown

quantities. If the number of equations is the same as the number

of unknown quantities, the resulting values of these will exactly

satisfy the several equations; but if the number of equations exceeds

the number of unknown quantities, there will not be any system of
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values for these which will reduce the second members absolutely to

zero, and we can only determine the values for which the errors for

the several equations, which may be denoted by v, v', v", &c., will be

those which we may regard as belonging to the most probable values

of the unknown quantities.

Let J, J r

, J", &c. be the actual errors of the observed quantities;

then the probability that these occur in the case of the observations

used in forming the equations of condition, will be expressed by

and the most probable values of the unknown quantities will be those

which make P a maximum. The form of the function
<p (J) has

been already found to be

and hence we shall have

m being the number of observations or equations of condition. In

order that P may be a maximum, the value of

A2J 2 + h'
2J'2 + h"2A"* + &c.

must be a minimum. If the observations are equally good, the ex-

pression for P becomes

p_ hm h2 (A2 + A'Z + A"2 + Ac.)
JT / e

j

Vitm

and the condition of a maximum probability requires that

J2 _j- J' + J"2 + &c>

shall be a minimum. Hence it appears that when the observations are

equally precise, the most probable values of the unknown quantities

are those which render the sum of the squares of the residuals a

minimum, and that, in general, if each error is multiplied by its

measure of precision, the sum of the squares of the products thus

formed must be a minimum.
If we denote the actual residuals by v, v f

, v", &c., and regard the

observations as having the same measure of precision, the condition

that the sum of their squares shall be a minimum gives

dM =0 ^M= 0> ^W^o.&c.,dx * dy dz
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or

dv . ,dv' ,,dv" ,V ~T- + v -J- + *> -T- + 0,
eta

'

eta
n

da?

~

dv . ,dv
r

dv"

I p
**/ .

ff
UU . -

V^ + V ^ + V
dF +---- = >

&c. &c.

If we differentiate the equations

ax -{-by + cz -f- du -j- ew -(-/ + n = v,

a'z + 6'y -f- c'z -f d'w + e'w -\-ft + ^' =v', (49)
a"a; 4. 5"y _j_ c

"
z 4_ rf"M + e"w; +f"t + n"= i;'

r

,

&c. &c.

with respect to x, y, z, &c., successively, we obtain

dv _ dv'
f

dv" o

(50)dv , dv
f

dv
lf

dy dy dy
&c. &c. &c.

Introducing these values into the equations (48), and substituting for

0, v r

,
v
ff

,
&c. their values given by (49), we get

[aa] x -j- [a&] y -f [ac] z -j- [ad] w + [ae] w + [a/] < + [a^] = 0,

[a6] x + [65] y + [6c] 2 + [W] w + \be] w + [6/] t + [6/1]
= 0,

[ac] a; + [6c] y + [cc] z -f [cd] u + [ce] ti; + [c/] * + [c/i]
= 0,

\_ad~] x+ [6d] y + [cd] 3 + [dd] u + [de] w+ [d/] * + [dw] = 0,

[ae] a; + {be] y + [ce] 2 + \de\ u + [ee] w -f [e/] < + [en] = 0,

[/]* -h P/]y + ['/]* + [d/] + [>/]* + [//] * + [>] - 0,

in which

[aa] = aa -f- a'a' -j- a"a" -f- . . . .

[ac] =ac-f-aV+a'V' + ....

[66] = 66 -fW -f V'b" + ____

&c. &c.

The equations of condition are thus reduced to the same number as

the number of the unknown quantities, and the solution of these

will give the values for which the sum of the squares of the residuals

will be a minimum. These final equations are called normal equations.

When the observations are not equally precise, in accordance with

the condition that AV + h/2
v'

2
-\- h

tt2v
m

-\- &c. shall be a minimum,
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each equation of condition must be multiplied by the measure of

precision of the observation; or, since the weight is proportional to

the square of the measure of precision, each equation of condition

must be multiplied by the square root of the weight of the observa-

tion, and the several equations of condition, being thus reduced to

the same unit of weight, must be combined as indicated by the equa-
tions (51).

135. It will be observed that the formation of the first normal

equation is eifected by multiplying each equation of condition by
the coefficient of x in that equation and then taking the sum of all

the equations thus formed. The second normal equation is obtained

in the same manner by multiplying by the coefficient of y; and thus

by multiplying by the coefficient of each of the unknown quantities

the several normal equations are formed. These equations will gene-

rally give, by elimination, a system of determinate values of the

unknown quantities #, y, z, &c. But if one of the normal equations

may be derived from one of the others by multiplying it by a con-

stant, or if one of the equations may be derived by a combination of

two or more of the remaining equations, the number of distinct rela-

tions will be less than the number of unknown quantities, and the

problem will thus become indeterminate. In this case an unknown

quantity may be expressed in the form of a linear function of one or

more of the other unknown quantities. Thus, if the number of

independent equations is one less than the number of unknown

quantities, the final expressions for all of these quantities except one,

will be of the form

X = a + Pt, y= a' -f fit, S= a" -f fi't, &C. (53^)

The coefficients a, /9, a/, /9', &c. depend on the known terms and co-

efficients in the normal equations, and if by any means t can be de-

termined independently, the values of x, y, z, &c. become determinate.

It is evident, further, that when two of the normal equations may be

rendered nearly identical by the introduction of a constant factor, the

problem becomes so nearly indeterminate that in the numerical appli-

cation the resulting values of the unknown quantities will be very

uncertain, so that it will be necessary to express them as in the equa-

tions (53).

The indeterrnination in the case of the normal equations results

necessarily from a similarity in the original equations of condition,

and when the problem becomes nearly indeterminate, the identity of
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the equations will be closer in the normal equations than in the equa-
tions of condition from which they are derived. It should be observed,

also, that when we express x
} y, z, &c. in terms of

t,
as in (53), the

normal equation in
t, which is the one formed by multiplying by the

coefficient of t in each of the equations of condition, is not required.

136. The elimination in the solution of the equations (51) is most

conveniently effected by the method of substitution. Thus, the first

of these equations gives

lab'] [ae] [ad] [ae] [a/] [an] .
it/

- 7/ ~
"p ^r Z '

~p
-^ Zv

~" "*
r- -. IV ~^~*

1^
^^ .

[aa] [aa] [aa] \_aa\ \_aa] [aa]

and if we substitute this for x in each of the remaining normal equa-

tions, and put

[66]
-
|g|

[at] = [M.1], [fc]
-

[gj
[ao] = [Jc.1],

(54)

r i r i

[] - gj [ae] = [ce.ll, [ffl
-

jgj-
[/] = [c/1] ;

[dd]
-

[afl = [<M.l], [a] - [] = [dV.ll

r T- (56)

= [fai.ll [] - [^ = [<OT-^'
|_(ZU'J

-C*-1! [en]-
[ []= [e.l], (58)

we obtain



METHOD OF LEAST SQUARES. 381

[66.1] y 4 [6c.l] z 4 \_U.\-\ u + [6e.l] w + [6/.1] * + [fcn.l]
= 0,

[6c.l] y 4 [cc.l] ^ 4 [cd.l] u 4 [ce.l] u; 4 [c/.l] < + [crc.l]
= 0,

[W.1] y 4 [crf.l] 2 H- [<M.l] M 4 [efe.l] w + [d/.l] * 4 [dn.l] = 0, (59)

O.I] y 4 [ce.l] 2 4 [<I.l] M + [ec.l] w + [e/.l] < + [en*l] = 0,

+ [Cf.l] + [rf/.l] u + [e/.l] w + [//I] + !>!] - 0.

These equations are symmetrical, and of the same form as the normal

equations, the coefficients being distinguished by writing the numeral

1 within the brackets.

The unknown quantity x is thus eliminated, and by a similar pro-

cess y may be eliminated from the equations (59), the resulting equa-
tions being rendered symmetrical in form by the introduction of the

numeral 2 within the brackets. Thus, we put

. = [cc .2], .

= [ce.2], [/.!]
-

[i/.l]
=

. .

and the equations become

(.63)

[cc.2] z + [crf.2] t* + [ce.2] ti; -f [c/.2] < 4- [cn.2] = 0,
1

[cd.2] z 4 [dd.2] M 4 [rfe-2] w 4- [rff.2] < 4 [d-2] = 0,

[ce.2] z + [rfc.2] u 4 [ec.2] to 4 [e/.2] * 4 [cn-2] = 0,

[c/.2] z 4 Hf-2] i* 4 [e/2] w 4- [//2] + [>.2] = 0.

To eliminate z from these equations, we put
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[ee.2]
- l

[e(,2] = [ee.3],

.2]
= [dn.3], [en.2]

-
W21

[/-2]-g|-[e.2]
= [/n.

and we have

[eta.3] M+ [de.3] w -f [d/.3] <+ [d.3] = 0,

[efe.3] ti + [ee.3] w + [e/.3] + [en.3] = 0, (68)

Again we put, in a similar manner,

.3]
-

[dn.3]= [6n.4], (69)

and the equations are

+ [671.4]
= 0,

. . .

Finally, to eliminate w, we put

= [/re .5] ) (71)

and the resulting equation is

0, (72)
which gives

[/n.5]

The value of t thus found enables us to derive that of w by means

of the first of equations (70). The value of w being found, that of

u will be obtained from the first of equations (68). In like manner,
the remaining unknown quantities will be determined by means of

the equations (64), (59), and (51). The determination of the unknown

quantities is thus reduced to the solution of the following system of

equations :
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&&, +M M +M W +m t +M =0
[aa]

r
[aa] [aa]

'

[aa]
r

[aa]

3+ "'f W+ <+ =0>

[cc.2] [cc.2] [cc.2]
'

the coefficients of which will have been found in the process of de-

termining the several auxiliary quantities. It will be observed,

further, that both in the normal equations and in those which result

after each successive elimination, the coefficients which appear in a

horizontal line, with the exception of the coefficient involving the

absolute terms of the equations of condition, are found also in the

corresponding vertical line. The form of the notation [66.1], [&c.l],

&c. may be symbolized thus :

=
[fir. (ft + 1)1 (75)

in which oc, /9, y, denote any three letters, and
fj, any numeral.

The equations (74) are derived for the case of six unknown quan-

tities, which is the number usually to be determined in the correction

of the elements of the orbit of a heavenly body; but there will be

no difficulty in extending the process indicated to the case of a greater

number of unknown quantities, except that the number of auxiliaries

symbolized generally by (75) increases very rapidly when the number

of unknown quantities is increased.

137. In the numerical application of the formulae, when so many
quantities are to be computed, it becomes important to be able to

check the accuracy of the calculation in its successive stages. First,

then, to prove the calculation of the coefficients in the normal equa-

tions, we put
a+&+c+d-fe-f/=s,
a! -|- j' _j_ c

' + d' + e
r

+/' = s
f

, &c.

If we multiply each of the sums thus formed by the corresponding

absolute term n, and take the sum of all the products, we have
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[an] + [5n] + [en] + [an] +M + Lfii]
= [m]. (76)

In a similar manner, multiplying by each of the coefficients in the

original equations of condition, we find

[oa] + [aft] +M + [ad] +M + [of] = M,
[a6] + [ftft] + [ftc] + [ftd] + [be] + [ft/]

-
[ft*],

[ac] -f M + [cc] + [cd] + [ce] + [cf] = [,],

[ad] + [ftd] + [cd] + [dd] -f [de] + [df]
= [da],

[ae] + [fte] + M + [dc] + [ee\ + [e/] - [ea],

[/] + P/1 + [cf] + Hf] + [/] + [//] -
Hence it appears that if we compute the sums

,
s

r

,
s
r/

,
s'

/r
, &c., and

form [as], [6s], [cs], &c. simultaneously with the calculation of the

coefficients in the normal equations, the equation (76) must be satis-

fied when the absolute terms of the normal equations are correct;

and the equations (77) must be satisfied when the coefficients of the

unknown quantities in the normal equations are correct.

The accuracy of the calculation of the auxiliary quantities sym-
bolized by the equation (75) may be proved in a similar manner.

Thus, we have

which, by means of the first and second of equations (77), becomes

= [W] _ [a4] +M _
gi [ac]

or

[ba.l] = [ftft.1] -f [6c.l] + [ftd.l] + [fte.l] + [ft/.l] ; (78)

and similarly we derive the expressions for [cs.l], [cfe.l], &c. It is

obvious, therefore, that the calculation of the coefficients in the equa-
tions (59), (64), (68), and (70) will be checked as in the case of the

coefficients in the normal equations, the auxiliaries depending on 8

being determined as if s, s
f

,
s
ff

,
&c. were the coefficients of an addi-

tional unknown quantity in the several equations of condition. Hence

we must have, finally,

[*.5] - 1>5]. (79)

If we multiply each of the equations (49) by its v, and take the

sum of the several products, we get

[av] x -f [bv] y + [cv] * + [dv] u -j- [ev] w -f- [/v] t + \vn\ = [w],
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But, according to the equations (48) and (50), we have, for the most

probable values of the unknown quantities,

[av] = 0, |>] = 0, [eo] = 0, &c.
;

and hence

[vn~]
= [w]. (80)

If we multiply each of the equations (49) by its n, and take the sum

of all the products thus formed, substituting [vv] for [wi], there re-

sults

[an] x -f- [bri] y -f- [en] + [dn] u -f- [eri] w -f- \Jri\ t ~j- [nn] = [vv].

Substituting in this the value of x given by the first normal equa-

tion, it becomes

[bn.Y] y + [cn.l] z + \_dn.Y] u + [en.l] w + [/n.l] < + [nn.l] = [w],

in which

[n.l]=
[*m]-^[<m]. (81)

Substituting, further, for y its value given by the first of equations

(59), and continuing the process as in the elimination of the unknown

quantities by successive substitution, we obtain the following equa-
tions :

[cn.2] z -f [dn.2] u + [en.2] w -f [/w.2] + [wi.2] = [w],

[dn.3] w + [e.3] w + [>.3] t + [nn.3] = [w],

[e.4]tc+ [>.43<-{-[nn.4]= M, (82)

|>.5]< + [nn.5] = M,
[nn.6] = [vv].

The expressions for the auxiliaries [ww.2], [nn.3], &c. are

[.2] = [.!]-M [in.1], [nn.8] = [n.2]-M [m.2],

[nn.4] = [nn.8]
-

[dn.3], [n.5]= [nn.4]
-

[on.4],

.5]. (83)

The process here indicated may be readily extended to the case of a

greater number of unknown quantities, and we have, in general, when

u denotes the number of unknown quantities,

[vv]
=

[nn.fi"]. (84)
25
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This equation affords a complete verification of the entire numerical

calculation involved in the determination of the unknown quantities
from the original equations of condition. Thus, after the elimination

has been completed, we substitute the resulting values of x, yy 2, &c.

in the equations of condition, and derive the corresponding values

of the residuals v, v f

, v", &c. Then, taking the sum of the squares
of these, the equation (84) must be satisfied within the limits of the

unavoidable errors of calculation with the logarithmic tables em-

ployed. If this condition is satisfied, it may be inferred that the

entire calculation of the values of the unknown quantities from the

given equations of condition is correct.

138. If the values of x, y, z, &c. thus found were the absolutely
exact values, the residuals v, v', v", &c. would be the actual errors

of observation. But since the results obtained only furnish the most

probable values of the unknown quantities, the final residuals may
differ slightly from the accidental errors of observation. Further,
it is evident that the degree of precision with which the several

unknown quantities may be determined by means of the data of the

problem may be very different, so that it is desirable to be able to

determine the relative weights of the different results.

It will be observed that the expressions for either of the unknown

quantities resulting from the elimination of the others is a linear

"unction of n, nf

, n", &c., so that we have

x + an + a!n' + a"n" + a"V" + ....== 0, (85)

in wLich the coefficients a, a/, a/', &c. are functions of the several

coefficients of the unknown quantities in the equations of condition.

If we now suppose the equations of condition to be reduced to the

same unit of weight, the mean error of the several absolute terms of

the equations will be the same, and will be the mean error of an

observation whose weight is unity. Thus, if e denotes the mean

error of an observation of the weight unity, the mean error of an

will be ae, that of a'n' will be o/e', and similarly for the other terms

of (85, ; and, according to the equation (35), the mean error of x

will bt)

z
x
= ]/a2

-f- a'
2

-f a" 2

-f- &C. = l/[aa]. (86)

Hence the weight of x will be expressed by

'
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Let x, denote the true value of x, namely, that which would be

obtained if the true values of v, v f

, v", &c. were retained in the

second members of the equations of condition instead of putting

them equal to zero
;
then it is evident that the expression for x, must

be that which would result by substituting n v in place of n in the

formulae for the most probable value as determined from the actual

data. Hence we have

Xf+ n (n v-) + a>'-t/) + . . . . = 0,

and comparing this with the expression (85), we obtain

Substituting in this the values of v, v f

, v", &c. given by the equations

(49), there results

x,= x+ [aa] X, -f [06] y, + [ac] z, + [ad] u, -f [oe] w, -f [a/] t, + [aw],

and since, according to (85), x -j- [an]
=

0, in order to satisfy this

expression for xn we must evidently have

[aa] = l, [06] =0, [ac]=0, [ad] = 0, [ae] = 0, [a/] = 0. (88)

Since the values of the unknown quantities as determined by the

normal equations must be the same by whatever mode the elimination

may have been performed, let us suppose the method of indeterminate

multipliers to be applied for the determination of a?,
and let these

multipliers be designated by 9, q
f

, q", &c.
; then, the values of these

factors are determined by the condition that the coefficient of x in

the final equation shall be unity, and that the coefficients of the other

unknown quantities shall be zero. Hence we shall have

[aa] q + [oft] q
f + [ac] g" + [ad] q'" + ....= 1,

lab] q + [56] ^ + [be] q" + [bd] q'" +.... = 0, (89)

[ac] q + [be] q' +M 5" +M 5"' -f . . . . = 0,

&c. &c.

and also, retaining the residuals v, v f

, v", &c. in the formation of the

normal equations,

Therefore, since

Xf + [an] = [av],

and since the first member of this equation must be identical with

the first member of (90), we have
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which gives, by expanding the several sums,

aq + bq' + cq" + dq
m

+....= ,

a'q -f Vq' + e'q" + d'q'" + ....=
', (91)

a"? + &'Y + *'Y' + <*'Y" 4- = a",

&c. &c.

Multiplying each of these equations by its cc, and adding the pro-

ducts, the result is

[a] q + [06] q
f + [c] 3

" + [ad] 9
'" + ....== [aa],

which, by means of the equations (88), reduces to

94- (92)

Hence it appears that the eliminating factor q is the reciprocal of the

weight of x, and, since the coefficients of q, q
r

, q
ff

,
&c. in the equa-

tions (89) are the same as those of x, y, z, &c. in the normal equa-

tions, that if we put [an]
=

1, \bn\
=

0, [en]
=

0, &c., in the

normal equations, the resulting value of x will be the reciprocal of

the weight of the most probable value of this quantity.

The equation (90) shows that if, in the general elimination, by
whatever method it may have been effected, we write [av], [bv], &c.

instead of zero in the second members of the normal equations re-

spectively, the coefficient of [at?] is the reciprocal of the weight of x.

It is obvious that it will not be necessary to know the numerical

values of [av\ 9 [bv], &c., since only the coefficient q is required. The

most probable value of x is found from (90) by the condition of a

minimum of the squares of the residuals, namely, that

[av] = 0, [bv] = 0, [co] = 0, &c.

The process here indicated for the determination of the weight of

the final value of x is general, and applies to the case of any other

unknown quantity provided that the necessary changes are made in

the notation. Thus, the reciprocal of the weight of y is determined

by writing, in the normal equations, 1 in place of [bri], and putting

[an], [en], &c. equal to zero, and completing the elimination. It

is also the coefficient of [bv] in the value of y when the elimination

is effected with the symbols [av], [bv], &c. retained in the second

members of the normal equations.

139. It may be easily shown that when the elimination is effected

by the method of successive substitution, as already explained, the
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coefficient of the unknown quantity which is made the last in the

elimination, in the final equation for its determination, is equal to the

weight of the resulting value of that quantity. Thus, in the case of

the equations for six unknown quantities, since the reciprocal of the

weight of the most probable value of t is the value of t obtained

from the normal equations by putting [/n]
=

i, and [an], [bn], [en],

&c. equal to zero, the equations (63), (67), (69), and (71) show that

we have

[>] = I>-1] = l>-2] = |>.3] = |>.4] = [/n.5] = 1,

and hence, according to (72), for the reciprocal of the weight of
t,

which gives
(93)

The weight of t is therefore equal to its coefficient in the final equa-

tion which results from the elimination of the other unknown quan-

tities by successive substitution. Hence, by repeating the elimination,

successively changing the order of the quantities, so that each of the

unknown quantities may have the last place, the weights will be

determined independently, and the agreement of the several sets of

values for the unknown quantities will be a proof of the accuracy of

the calculation. It is not necessary, however, to make so many

repetitions of the elimination, since, in each case, the weights of two

of the unknown quantities will be given by means of the auxiliaries

used in the elimination. Thus, the reciprocal of the weight of w is

obtained by putting [eri\
=

1, and the other absolute terms of the

normal equations equal to zero, and finding the corresponding value

of w. This operation gives

Hence the equation (73) becomes

t= =-

and substituting this value of t in the last of equations (70), we get

f.41
'

or

<*.4], (94)
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which gives the weight of w in terms of the auxiliary quantities

required in the determination of its most probable value.

If the order of elimination is now completely reversed, so that x

is made the last in the elimination, the weights of x and y will be

determined by the equations

p.==[oa.5],

^=M [M .4] .*
[aa.4]

L

A third elimination, in which z and u are the unknown quantities

first determined, will give the weights of these determinations. It

appears, therefore, that when only four unknown quantities are to be

found, a single repetition of the elimination, the order of the quan-
tities being completely reversed, will furnish at once the weights of

the several results, and check the accuracy of the calculation. When
there are only two unknown quantities, the elimination gives directly

the values of these quantities and also of their weights.

140. In the case of three or more unknown quantities, the weights
of all the results may be determined without repeating the elimina-

tion when certain additional auxiliary quantities have been found.

The weights of the two which are first determined are given in terms

of the auxiliaries required in the elimination, that of the quantity

which is next found will require the value of an additional auxiliary

quantity, the succeeding one will require two additional auxiliaries,

and so on. The equations (74) show that when the substitution is

effected analytically the final value of x will have the denominator

D = [ad] [66.1] [cc.2] [eW.3] [ee.4] [jgf.5],

and this denominator, being the determinant formed from all the

coefficients in the normal equations, must evidently have the same

value whatever may be the order in which the unknown quantities

are eliminated. Let us now suppose that each of the unknown

quantities is, in succession, made the last in the elimination, and let

the auxiliaries in each elimination be distinguished from those when

t is last eliminated by annexing the letter which is the coeffi 3ient rf

the quantity first determined
;
then we shall have

D = [ad] [66.1] [cc.2] [dd.3] \_eeA~] [ff.5]

= M, [W.H [<*.2]. [<W.3]. UfAl 0*5]
=

[_aa\ [66.1], [cc.2]d 0*3], [jfjf.4], [cW.5]

= [oa], [66.1] c [eta.2], [ee.3] c [//.4] c [cc.5]

5 [66.5]
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It will be observed, however, that when the order of elimination is

changed, only those auxiliaries which involve the coefficient of the

quantity which is made the last in the changed order will be changed.

Hence, if we add the distinguishing letter only to those auxiliaries

yhich have a different value in the new order, we have

D = [aa] [66.1] [cc.2] [oU3] [ee.4]

= [aa] [66.1] [cc.2] [dd.3] [//.4] [ee.5]

= [aa] [66.1] [cc.2] [66.3] [//.4]d [dd.5]= [aa] [66.1] [dW.2] [66.3]. [//.4] c [cc.5]

= [aa] [cc.l] [aU2]6 [66.3]6 [//.4]6 [66.5]- [66] [cc.1]. [cW.2]. [66.3]. [//.4]a [aa.5],

and from these equations we obtain

[//5]
"

[jfif.4]

p ==
I M -+ I 1 /^ "* I

(96)

p = |_
cc.5j

r= ^.'-'^
1 IOC -' I '^-01 - -_

[66.4]
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and, also,

Egl
=

[ee.2]
-

In like manner we may derive the expressions for the new auxiliaries

introduced into the equations for py
and px . It will be expedient,

however, in the actual application of the formulae, to eliminate first

in the order
a?, y, z, u, w, t,

and the weights of the results for u, w,

and t will be obtained by means of the first three of equations (96),

the single additional auxiliary required being found by means of

(97). Then the elimination should be performed in the order
t, w, u,

Zj y, x, and we shall have

(99)

by means of which the weights of #, y, and 2 will be determined.

The agreement of the two sets of values of the unknown quantities

will prove the accuracy of the numerical calculation in the process

of elimination.

141. The weights of the most probable values of the unknown

quantities may also be computed separately when certain auxiliary

factors have been found, and these factors are those which are intro-

duced when the equations (74) are solved by the method of inde-

terminate multipliers instead of by successive substitution. Thus,
in order to find x, let the first of these equations be multiplied by 1,

the second by A', the third by An
',
the fourth by A'", and so on,

and let the sum of all these products be taken
;
then the equations

of condition for the determination of the several eliminating factors

will be

(ioo)

_ , A> ,

- An
,

-
, jiv-

[aa]
+

t
bb.l

\

A f
[cc.2]

* *" ^ 1 '

_ Ca/1 , [V-l] ., , [#2] ,,U ""
[aa]

+ IWj +
[cc.2]

^
^

[dd.3] [ee.4]
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To determine y from the last five of equations (74), let the eliminating

factors be denoted by B ', "', B*9
and .

v
,
and we shall have

[6e.l] R,,"

_ . [eeJ.2]- + ^ ?
>

[C6.2] , [fo.3] , ,
f *

'

, , [6/4] Ivfj6 fjE
In a similar manner, we obtain the following equations for the de-

termination of the eliminating factors necessary for finding the values

of the remaining unknown quantities :

[ce.2] [rfe.3] ~,,,
"

[6/4] 1T "

(102)

[.4J

The expressions for the values of the unknown quantities will there-

fore become

_- [an] [6ro.l] ,, [ot.2] , [dro.3] . w [en.4] .,
"1 " ""^

[66.1]
'

[cc.2]

r 7 en r AT rf\~\ (1^3)
\_dn.6} \enA\ ^.v L/^AI^r

LW1
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The tiit of these equations will give the reciprocal of the weight of

x, when we put [an]
=

1, and the other absolute terms of the

normal equations equal to zero; the second will give the reciprocal

of the weight of y by putting [bn]
= -

1, and the other absolute

terms of the normal equations equal to zero
; and, continuing the

process, finally the last equation will give the reciprocal of the weight
of t when we put fn = 1, and [an], [bn], [en], &c. equal to zero.

It remains, therefore, to determine the particular values of [6n.l],

[en. 2], &c., and the expressions for the weights will be complete.

If we multiply the first of equations (100) by [an], it becomes

\bn.l-]
=

[an-] A' + [bn]. 104)

Multiplying the second of equations (100) by [an], and the first of

(101) by [bn], adding the products, and introducing the value of

[6n.l] just found, we get

[en-]
-

[cn.l] + j^l [bn.l] + [an] A" + [bn] B" = 0,

which reduces to

[an~] A" + [bn-] B" -f [en] = [cn.2]. (105)

Multiplying the third of equations (100) by [an], the second of (101)

by [bn], and the first of (102) by [en], adding the products, and re-

ducing by means of (104) and (105), we obtain

= Idn]
-

[<fa.l] +^ [Jn.1]

+gj [e.2] + [on] A"
1 + [in]

'" + [] C"",

which, by means of the expressions for the auxiliaries, is further re-

duced to

[an-] A" + [bn] B'" + [en] C'" + [dn] = [dn.3]. (106)

In a similar manner we find, from the remaining equations of (100),

(101), and (102), the following expressions:

[an] A*+ [bn^B+ [cm] C* + \dn\ 1F+ [>] = [en.4],

[an] A* + [bn]Bv + [en] <7
V + \dn\Dv

-f [en] E* + [>] = [/7i.5].
^

The equations (104), (105), (106), and (107), enable us to find the

particular values of [6n.l], [cn.2], &c. required in the expressions for

the reciprocals of the weights. Thus, for the weight of x, we have

Ian] = 1, [bn] = [m] = \dn\ = [en] = [fn] = ;
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and these equations give

[^.1] = _ A'
t [en.2] = A", [dn.3] = - A'",

[6W.4] = A iv

, L/w.5] = A\

For the case of the weight of y, we have

[bn] = 1, [cm] = [CTI]
=

[drc] = [en] = [/w] = 0,

and the same equations give

p ?l.l] = 1, [cn.2] = J3", [dn.3] = J3'",

[en.4] = Biv

, L/k5] = v
.

We have, also, for the weight of z,

|_cn.2]
= 1, [cfri.3]= C"", [en.4]= Civ

, |>.5] = C\

for the weight of w,

[dn.3] = 1, [m.4] = Dly

, [./h.5]
= 7)

T
;

for the weight of w,

[i.4] = -l, [/n.5] = -^;
and finally, for the weight of

,

[/.5]= -1.

Introducing these particular values into the equations (103), the cor-

responding values of the unknown quantities are the reciprocals of

the weights of their most probable values, respectively; and hence

we derive

1 AA ' A"A ' A'"
A>

" ^1Vj[iV AVA*

]7
~

[oa]
^

[56.1]
"*"

[cc.2]
n
"

[dd.3]
T

[ee.4]
T

[jfif.5]

'

1 _J__ jy^ y B'^^^ B*B*

y

~
[SO]

+
[^2j

""

[dd.3]
+

[e6.4]

"

1 1 C'" C'" C IVC IV CVCV

[SSI
H '

LPT

1 _ 1 E VE V

~Wl
1 1

The equations (103) and (108) will serve to determine separately

the value of each unknown quantity and also that of its weight, the
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auxiliary factors A'
', A", B", &c. having been found from the equa-

tions (100), (101), and (102). If we reverse the operation and re-

compose the equations (74) by means of the expressions for the un-

known quantities given by (103), the conditions which immediately
follow furnish another series of equations for the determination of the

auxiliary factors. The ea nations thus derived will give first the values

of A', B", <?'", Div

,
and Ev

; then, those of A", B'", Civ

,
Z>

v
;
and so

on. They are equally as convenient as those already given, provided

that the values of all the unknown quantities are required as well as

their respective weights.

142. The formulae already given for the relations between the data

of the problem and the weights of the most probable values of the

unknown quantities, are those which are of the greatest practical

value. It will be apparent from what has been derived that there

must be a variety of methods which may be applied, but that all of

these methods involve essentially the same numerical operations.

The peculiar symmetry of the normal equations affords also a variety

of expressions applicable to the different phases under which the

problem presents itself.

According to the general theory of elimination, the expression for

any unknown quantity, as determined from the normal equations,

may be put in the form

*= -|[]-f [i]-^M-&c, (109)

in which D is the determinant formed from all the coefficients of tho

unknown quantities in the normal equations, and in which A, A', A",
&c. are the partial determinants required in the elimination. Thus,

A is the determinant formed from the coefficients of all the unknown

quantities except x, in all the equations except the first; A" is the

determinant formed from the coefficients of y, z, &c. in all the equa-

tions except the second
;
and the values of Anr

,
A f

", &c. are formed

in a similar manner. Now, since the value of x which results when

we put [an] 1, and the other absolute terms of the normal

equations equal to zero, is the reciprocal of the weight of the most

probable value of this unknown quantity as given by (109), we have

In like manner, the expression for the most probable value of y will be
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y= -M- [^]-M-&c., (ill)

B, B', B", &c. being the partial determinants formed when the co-

efficients of y are omitted; and for its weight we have

The formulae for the most probable value of z and for its weight are

entirely analogous to those for x and yy
so that the process here indi-

cated may be extended to the case of any number of unknown quan-
tities. It appears, therefore, that the weight of the most probable
value of any unknown quantity is found by dividing the complete
determinant of all the coefficients by the partial determinant formed

when we omit the normal equation corresponding particularly to this

unknown quantity, and when we omit also the coefficients of this

quantity in the remaining normal equations.

The peculiar arrangement of the coefficients in the normal equa-
tions abbreviates somewhat the expressions for the several determi-

nants. Thus, in the case of three unknown quantities, we have

A = [66] [cc] [6c]
2
,
Bf = [ad] [cc] [ac]

2
, C"= [aa] [66] [a6]

2
,

D= [aa] [66] [cc] + 2[a6] [be] [ac] [ad] [6c]
2

[66] [ac]
2

[cc] [a6]
2

,

which are all the quantities required for finding simply the weights
of the most probable values of

a?, y, and z. The expression for the

weight of z is

D

When there are but two unknown quantities, we have

A = [66], B'= [ad], D = [aa] [66] [a6]
2
,

and hence

_ [aa] [66] [a6]
2

_ [oa] [66] [a6]
2

Px ~
[66]

P*~
[aa]

When the number of unknown quantities is increased, the expressions

for the determinants necessarily become much more complicated, and

hence the convenience of other auxiliary quantities is manifest.

143. The case has been already alluded to in which the determina-

tion of the values of the unknown quantities is rendered uncertain

by the similarity of the signs and coefficients in the normal equations,
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and in which the problem becomes nearly indeterminate. Sometimes

it will be possible to overcome the difficulty thus encountered by a

suitable change of the elements to be determined
; but, generally, for

a complete and satisfactory solution, additional data will be required.
It often happens, however, that several of the unknown quantities

may be accurately determined from the given equations when the

values of the others are known, but that the certainty of the deter-

mination of the same quantities is very greatly impaired when all

the unknown quantities are derived simultaneously from the same

equations. Let us suppose that one of the unknown quantities is,

from the very nature of the problem, not susceptible of an accurate

determination from the data employed. The equations will then

present themselves in a form approaching that in which the number

of independent relations is one less than the number of unknown

quantities, so that it will be necessary to determine the other unknown

quantities in terms of that whose value is necessarily uncertain. In

this case the elimination should be so arranged that the quantity
which is regarded as uncertain is that whose value would be first

determined. Then, if its coefficient in the final equation, corre-

sponding to (72), is very small, a circumstance which indicates at

once the existence of the uncertainty when it is not otherwise sus-

pected, the process of elimination should not be completed, and the

auxiliary quantities should be determined only as far as those re-

quired in the formation of the equation which corresponds to the first

of (70). Thus, let t be the uncertain quantity, and we have

[6/4] len.4]W = - -- t - p
-

-pr-,

[ee.4] [ee.4]

which must be substituted for w in the first of equations (68). AVe

thus obtain w, u, z, y, and x as functions of t. If the solution is

effected by means of the equations (103), let xw yw Z
Q,
&c. denote the

values of these unknown quantities when we put
= 0; and then

we shall have

_ [an] _ [bnA.~\ [c?i.2] , [cfoi.3] ., [enA] ,
lv

[cm] [55.1] [ce.2] [cW.3] [ee.4]

[fokl] [e*.2] [d-3] , [en.4] v riij
,

2/0
~ ~

\m\~teS\* ~\ddX\" [66.4]*'

l>*.2] [<foi.3] _
'

[cc.2] [<W.3] [ee.5]
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[Cfa.8] |>.4]

[<W.8] [.4]
"'

= w+E't. <114J

As soon as t is determined by some independent condition or relation,

these equations will give the corresponding values of x
9 y, z, &c. The

mean errors of xw y ,
z

,
&c. having been determined by neglecting t

entirely, if we denote the mean error of the final adopted value of t

by e the mean errors of the corresponding values of the other

variables will be given by

(O'+^MV,^=^+
R
^J*= Ê+,C^> (115)

in which (ex), (ey),
&c. denote the mean errors of xw yw &c. These

formulae show, also, that when one of the variables is neglected, the

equations assign too great a degree of precision to the results thus

obtained.

When there are two or more unknown quantities which cannot be

determined from the data with sufficient certainty, the problem must

be treated in a manner entirely analogous to that here indicated; but,

since cases of this kind will rarely, if ever, occur, it is not necessary
to pursue the subject further.

144. The weights which are obtained for the most probable values

of the unknown quantities enable us to find the mean and probable
errors of these values. Let s denote the mean error of an observa-

tion whose weight is unity; then the mean error of x will be

(116)

and, in like manner, the expressions "for the mean errors of y, z, u,

&c. will be

e ="
'.
= -?- .

= -=,&c. (117)

1/P, Vp. Vp,

It remains, therefore, to determine the value of e by means of the

final residuals obtained by comparing the observed values of the

function with those given by the most probable values of the va-
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riables. If these residuals were the actual fortuitous errors of obser-

vation, the mean error of an observation would be

M
m being the number of equations of condition. This value is evi-

dently an approximation to the correct result; but since by supposing
the residuals v, v f

, v", &c. to be the actual errors of the several ob-

served values of the function, we assign too high a degree of pre-

cision to the several results, the true value of e must necessarily be

greater than that given by this equation. Let the true values of the

unknown quantities be x -f- A#, y -f- Ay, z -f- AZ, &c., the substitution

of which in the several equations of condition would give the

residuals J, J r

, J", &c.
;
then we shall have

&A?/ -f- cAz -f- d&u ---- -f v = A,
' '

&c. &c.

If we multiply each of these equations by its J, and take the sura

of all the products, we get

[oJ] *x -f [6 J] Ay -f [cJ] A^ + [dJ] AW + .... -f [vJ] = [J J].

But if we multiply each of the same equations by its v, take the sum

of the products, and reduce by means of (48) and (50), we obtain

_
= [>*];

and hence we derive

[J J] = [VV] 4 [OJ] AX -f [6J] Ay + [CJ] A3 + [dJ] AW + .... (119)

If we form the normal equations from (118), it will be observed that

they are of the same form as the normal equations formed from the

original equations of condition, provided that we write A in place

of n; and hence, according to (85), we have

A* = aJ + a'J' + a"J'' + .....

We have, also,

[oJ] = aA + a' A' 4 a"A" 4 ,

and the product of these equations gives

[aJ] AX aa J 2
4- aVJ'

2 4 a"a"J"2 + /. . .

4-aa'JJ'-f aa"JJ"4-....

The mean value of the terms containing JJ', Jd",.&c. is zero, and
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for the mean values of J2
,
J'2

,
J"2

,
&c. we must, in each case, write

e
2
. Hence the mean value of the product [aJ] A# will be

and this, by means of the first of equations (88), is further reduced to

[aJ] &x
2
.

In a similar manner, we obtain the value e
2
for the mean value of

each of the products [ftzfJA?/, [cJJA2, &c. Now, the terms added to

[vv] in the second member of the equation (119) are necessarily very

small, and, although their exact value cannot be determined, we may
without sensible error adopt the mean values of the several terms as

here determined, so that the equation becomes

[JJ] = [tw] + pe*, (120)

u being the number of unknown quantities. Therefore, since

[JJ] = me2

,
we shall have

m fj.
* m /j.

by means of which the mean error of an observation whose weight
is unity may be determined. When p = 1, this equation becomes

identical with (30).

For the determination of the probable errors of the final values of

the unknown quantities, if r denotes the probable error of an obser-

vation of the weight unity, we have the following equations:

r = 0.67449

r
=
i/?

145. The formulae which result from the theory of errors according

to which the method of least squares is derived, enable us to combine

the data furnished by observation so as to overcome, in the greatest

degree possible, the effect of those accidental errors which no refine-

ment of theory can successfully eliminate. The problem of the cor-

rection of the approximate elements of the orbit of a heavenly body

by means of a series of observed places, requires the application of

nearly all the distinct results which have been derived. The first

approximate elements of the orbit of the body will be determined

om three or four observed places according to the methods which
26
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have been already explained. In the case of a planet, if the inclina-

tion is not very small, the method of three geocentric places may be

employed, but it will, in general, afford greater accuracy and require
but little additional labor to base the first determination on four

observed places, according to the process already illustrated. In the

case of a comet, the first assumption made is that the orbit is a

parabola, and the elements derived in accordance with this hypothesis

may be successively corrected, until it is apparent whether it is ne-

cessary to make any further assumption in regard to the value of the

eccentricity. In all cases, the approximate elements derived from a

few places should be further corrected by means of more extended

data before any attempt is made to obtain a more complete determi-

nation of the elements. The various methods by which this pre-

liminary correction may be effected have been already sufficiently de-

veloped.

The fundamental places adopted as the basis of the correction may
be single observed places separated by considerable intervals of time;

but it will be preferable to use places which may be regarded as the

average of a number of observations made on the same day or during
a few days before and after the date of the average or normal place.

The ephemeris computed from the approximate elements known may
be assumed to represent the actual path so closely that, for an interval

of a few days, the difference between computation and observation

may be regarded as being constant, or at least as varying proportion-

ally to the time. Let n, n', n", &c. be the differences between com-

putation and observation, in the case of either spherical co-ordinate,

for the dates t,
t
f

,
t
n

', &c., respectively; then, if the interval between

the extreme observations to be combined in the formation of the

normal place is not too great, and if we regard the observations as

equally precise, the normal difference n
Q
between computation and

observation will be found by taking the arithmetical mean of the

several values of n, and this being applied with the proper sign to

the computed spherical co-ordinate for the date
,
which is the mean

of t, I', t", &c.j will give the corresponding normal place. But when

different weights p, p', p
ff

,
&c. are assigned to the observations, the

value of n must be found from

_ np -f n'p' + n"p" + . . . .

>

and the weight of this value will be equal to the sum

P+p'
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The date of the normal place will be determined by

_pt+ P-e + prr + ....
* P+P'+P" + ....

'

]f the error of the ephemeris can be considered as nearly constant,

it is not necessary to determine with great precision, since any date

not differing much from the average of all may be adopted with suf-

ficient accuracy. It should be observed further that, in order to

obtain the greatest accuracy practicable, the spherical co-ordinates of

the body for the date t should be computed directly from the elements,

so that the resulting normal place may be as free as possible from the

effect of neglected differences in the interpolation of the ephemeris.

When the differences between the computed and the observed

places to be combined for the formation of a normal place cannot be

considered as varying proportionally to the time, we may derive the

error of the ephemeris from an equation of the form of (53)6, namely,

the coefficients J., jB, and C being found from equations of condition

formed by means of the several known values of A# in the case of

each of the spherical co-ordinates.

146. In this way we obtain normal places at convenient intervals

throughout the entire period during which the body was observed.

From three or more of these normal places, a new system of elements

should be computed by means of some one of the methods which

have already been given; and these fundamental places being judi-

ciously selected, the resulting elements will furnish a pretty close

approximation to the truth, so that the residuals which are found by

comparing them with all the directly observed places may be regarded

as indicating very nearly the actual errors of those places. We may
then proceed to investigate the character of the observations more

fully. But since the observations will have been made at many dif-

ferent places, by different observers, with instruments of different

sizes, and under a variety of dissimilar attendant circumstances, it

may be easily understood that the investigation will involve much

that is vague and uncertain. In the theory of errors which has been

developed in this chapter, it has been assumed that all constant

errors have been duly eliminated, and that the only errors which

remain are those accidental errors which must ever continue in a

greater or less degree undetermined. The greater the number and
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perfection of the observations employed, the more nearly will these

errors be determined, and the more nearly will the law of their dis-

tribution conform to that which has been assumed as the basis of

the method of least squares.

When all known errors have been eliminated, there may yet remain

constant errors, and also other errors whose law of distribution is

peculiar, such as may arise from the idiosyncrasies of the different

observers, from the systematic errors of the adopted star-places' in

the case of differential observations, and from a variety of other

sources; and since the observations themselves furnish the only means

of arriving at a knowledge of these errors, it becomes important to

discuss them in such a manner that all errors which may be regarded,

in a sense more or less extended, as regular may be eliminated.

When this has been accomplished, the residuals which still remain

will enable us to form an estimate of the degree of accuracy which

may be attributed to the different series of observations, in order that

they may not only be combined in the most advantageous manner,

but that also no refinements of calculation may be introduced which

are not warranted by the quality of the material to be employed.
The necessity of a preliminary calculation in which a high degree

of accuracy is already obtained, is indicated by the fact that, however

conscientious the observer may be, his judgment is unconsciously

warped by an inherent desire to produce results harmonizing well

among themselves, so that a limited series of places may agree to

such an extent that the probable error of an observation as derived

from the relative discordances would assign a weight vastly in excess

of its true value. The combination, however, of a large number of

independent data, by exhibiting at least an approximation to the

absolute errors of the observations, will indicate nearly what the

measure of precision should be. As soon, therefore, as provisional

elements which nearly represent the entire series of observations have

been found, an attempt should be made to eliminate all errors which

may be accurately or approximately determined. The places of the

comparison-stars used in the observations should be determined with

care from the data available, and should be reduced, by means of the

proper systematic corrections, to some standard system. The reduc-

tion of the mean places of the stars to apparent places should also be

made by means of uniform constants of reduction. The observations

will thus be uniformly reduced. Then the perturbations arising from

the action of the planets should be computed by means of formula

which will be investigated in the next chapter, and the observed
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places should be freed from these perturbations so as to give the

places for a system of osculating elements for a given date.

147. The next step in the process will be to compare the pro-

visional elements with the entire series of observed places thus cor-

rected; and in the calculation of the ephemeris it will be advan-

tageous to correct the places of the sun given by the tables whenever

observations are available for that purpose. Then, selecting one or

more epochs as the origin, if we compute the coefficients A, B, C in

the equation
A0 = A + Br + Cr\ (125)

in the case of each of the spherical co-ordinates, by means of equa-

tions of condition formed from all the observations, the standard

ephemeris may be corrected so that it may be regarded as representing

the actual path of the body during the period included by the obser-

vations. When the number of observations is sonsiderable, it will be

more convenient to divide the observations into groups, and use the

differences between computation and observation for provisional

normal places in the formation of the equations of condition for the

determination of A, B, and C. It thus appears that the corrected

ephemeris which is so essential to a determination of the constant

errors peculiar to each series of observations, is obtained without first

having determined the most probable system of elements. The cor-

rections computed by means of the equation (125) being applied to

the several residuals of each series, we obtain what may be regarded

as the actual errors of these observations. The arithmetical or pro-

bable mean of the corrected residuals for the series of observations

made by each observer may be regarded as the average error of obser-

vation for that series. The mean of the average errors of the several

series may be regarded as the actual constant error pertaining to all

the observations, and the comparison of this final mean with the

means found for the different series, respectively, furnishes the pro-

bable value of the constant errors due to the peculiarities of the

observers; and the constant correction thus found for each observer

should be applied to the corresponding residuals already obtained.

In this investigation, if the number of comparisons or the number

of wires taken is known, relative weights proportional to the number

of comparisons may be adopted for the combination of the residuals

for each series. In this manner, observations which, on account of

the peculiarities of the observers, are in a certain sense heterogeneous,

may be rendered homogeneous, being reduced to a standard which
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approaches the absolute in proportion as the number and perfection

of the distinct series combined are increased. Whatever constant

error remains will be very small, and, besides, will affect all places

alike.

The residuals which now remain must be regarded as consisting

of the actual errors of observation and of the error of the adopted

place of the comparison-star. Hence they will not give the probable
error of observation, and will not serve directly for assigning the

measures of precision of the series of observations by each observer.

Let us, therefore, denote by e, the mean error of the place of the

comparison-star, by e, the mean error of a single comparison; then

will 4=- be the mean error of m comparisons, and the mean error of
Vm

the resulting place of the body will, according to equation (35), be

given by

.
= + '.'. (126)

The value of e
,
in the case of each series, will be found by means of

the residuals finally corrected for the constant errors, and the value

of e
s
is supposed to be determined in the formation of the catalogue

of star-places adopted. Hence the actual mean error of an observa-

tion consisting of a single comparison will be

e,
= l/m(>

2

-e,
2

). (127)

The value of e, for each observer having been found in accordance

with this equation, the mean error of an observation consisting of m

comparisons will be

Sf

Vm

The mean error of an observation whose weight is unity being de-

noted by e, the weight of an observation based on m comparisons will

be

, = (128)

The value of e may be arbitrarily assigned, and we may adopt for it

10" or any other number of seconds for which the resulting values

of p will be convenient numbers.

When all the observations are differential observations, and the stars

of comparison are included in the fundamental list, if we do not take

into account the number of comparisons on which each observed
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place depends, it will not be necessary to consider e
t)
and we may

then derive e, directly from the residuals corrected for constant errors.

Further, in the case of meridian observations, the error which corre-

sponds to e
s
will be extremely small, and hence it is only when these

are combined with equatorial observations, or when equatorial obser-

vations based on different numbers of comparisons are combined, that

the separation of the errors into the two component parts becomes

necessary for a proper determination of the relative weights.

According to the complete method here indicated, after having
eliminated as far as possible all constant errors, including the correc-

tions assigned by equation (125) to be applied to the provisional

ephemeris, we find the value of e, given by the equation

ne,*= [row] [m] e,
2

, (129)

in which n denotes the number of observations; m, m', m", &c. the

number of comparisons for the respective observations; and v, v', vff

,

&c. the corresponding residuals. Then, by means of equation (128),

assuming a convenient number for e, we compute the weight of each

observation. Thus, for example, let the residuals and corresponding
values of m be as follows :

Ad m Ad m

+ 2".0 5, 1".0 7,

1 .8 5, + 1 .5 5,

.4 10, +4 .1 8,

5 .5 5, .0 5.

Let the mean error of the place of a comparison-star be

then we have n ~
8, and, according to (129),

8s,
2 =341.78 200.0,

which gives
*,= :4".2.

Let us now adopt as the unit of weight that for which the mean erroi is

then we obtain by means of equation (128), for the weights of the

observations,

2.5, 2.5, 5.1, 2.5, 3.6, 2.5, 4.1, 2.5,

respectively.
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In this manner the weights of the observations in the series made

by each observer must be determined, using throughout the same

value of e. Then the differences between the places computed from

the provisional elements to be corrected and the observed places cor-

rected for the constant error of the observer, must be combined ac-

cording to the equations (123) and (125), the adopted values of p, p',

p"j &c. being those found from (128). Thus will be obtained the

final residuals for the formation of the equations of condition from

which to derive the most probable value of the corrections to be

applied to the elements. The relative weights of these normals will

be indicated by the sums formed by adding together the weights of

the observations combined in the formation of each normal, and the

unit of weight will depend on the adopted value of e. If it be de-

sired to adopt a different unit of weight in the case of the solution

of the equations of condition, such, for example, that the weight of

an equation of average precision shall be unity, we may simply divide

the weights of the normals by any number p which will satisfy the

condition imposed. The mean error of an observation whose weight
is unity will then be given by

the value of e being that used in the determination of the weights p,

p', &o.

148. The observations of comets are liable to be affected by other

errors in addition to those which are common to these and to planet-

ary observations. Different observers will fix upon different points

as the proper point to be observed, and all of these may differ from

the actual position of the centre of gravity of the comet; and fur-

ther, on account of changes in the physical appearance of the comet,

the same observer may on different nights select different points.

These circumstances concur to vitiate the normal places, inasmuch as

the resulting errors, although in a certain sense fortuitous, are yet

such that the law of their distribution is evidently different from

that which is adopted as the basis of the method of least squares.

The impossibility of assigning the actual limits and the law of dis-

tribution of many errors of this class, renders it necessary to adopt

empirical methods, the success of which will depend on the discrimi-

nation of the computer.
If e denotes the mean jerror of an observation based on m com-
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parisons, and e
c
the mean error to be feared on account of the pecu-

liarities of the physical appearance of the comet,

will express the mean error of the residuals; and if n of these

residuals are combined in the formation of a normal place, the mean

error of the normal will be given by

e
n
'=M

-{-./. (130)

The value of e
c

2

may be determined approximately from the data

furnished by the observations. Thus, if the mean error of a single

comparison, for the different observers, has been determined by means

of the differences between single comparisons and the arithmetical

mean of a considerable number of comparisons, and if the mean error

of the place of a comparison-star has also been determined, the

equation (126) will give the corresponding value of 2

;
then the

actual differences between computation and observation obtained by

eliminating the error of the ephemeris and such constant errors as

may be determined, will furnish an approximate value of e
c by means

of the formula

in which n denotes the number of observations combined.

Sometimes, also, in the case of comets, in order to detect the opera~

tion of any abnormal force or circumstance producing different effects

in different parts of the orbit, it may be expedient to divide the

observations into two distinct groups, the first including the observa-

tions made before the time of perihelion passage, and the other

including those subsequent to that epoch.

149. The circumstances of the problem will often suggest appro-

priate modifications of the complete process of determining the rela-

tive weights of the observations to be combined, or indeed a relaxa-

tion from the requirements of the more rigorous method. Thus, if

on account of the number or quality of the data it is not considered

necessary to compute the relative weights with the greatest precision

attainable, it will suffice, when the discussion of the observations has

been carried to an extent sufficient to make an approximate estimate

of the relative weights, to assume, without considering the number

of comparisons, a weight 1 for the observations at one observatory, a
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weight | for another class of observations, J for a third class, and so

on. It should be observed, also, that when there are but few obser-

vations to be combined, the application of the formulae for the mean

or probable errors may be in a degree fallacious, the resulting values

of these errors being little more than rude approximations ;
still the

mean or probable errors as thus determined furnish the most reliable

means of estimating the relative weights of the observations made

by different observers, since otherwise the scale of weights would

depend on the arbitrary discretion of the computer. Further, in a

complete investigation, even when the very greatest care has been

taken in the theoretical discussion, on account of independent known
circumstances connected with some particular observation, it may be

expedient to change arbitrarily the weight assigned by theory to

certain of the normal places. It may also be advisable to reject

entirely those observations whose weight is less than a certain limit

which may be regarded as the standard of excellence below which

the observations should be rejected; and it will be proper to reject

observations which do not afford the data requisite for a homogeneous
combination with the others according to the principles already

explained. But in all cases the rejection of apparently doubtful

observations should not be carried to any considerable extent unless

a very large number of good observations are available. The mere

apparent discrepancy between any residual and the others of a series,

is not in itself sufficient to warrant its rejection unless facts are

known which would independently assign to it a low degree of pre-

cision.

A doubtful observation will have the greatest influence in vitiating

the resulting normal place when but a small number of observed

places are combined
;
and hence, since we cannot assume that the law

of the distribution of errors, according to which the method of least

squares is derived, will be complied with in the case of only a few

observations, it will not in general be safe to reject an observation pro-

vided that it surpasses a limit which is fixed by the adopted theory

of errors. If the number of observations is so large that the dis-

tribution of the errors may be assumed to conform to the theory

adopted, it will be possible to assign a limit such that a residual

which surpasses it may be rejected. Thus, in a series of m observa-

tions, according to the expression (19), the number of errors greater

than nr will be
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and when n has a value such that the value of this expression is less

than 0.5, the error nr will have a greater probability against it than

for it, and hence it may be rejected. The expression for finding the

limiting value of n therefore becomes

2m (131)

By means of this equation we derive for given values of m the cor-

responding values of nhr = 0.47694n, and hence the values of n.

For convenient application, it will be preferable to use e instead of r,

and if we put nf = 0.67449w, the limiting error will be n'e, and the

values of n' corresponding to given values of m will be as exhibited

in the following table.

TABLE.

m
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Corresponding to the value m = 50, the table gives nf -- 2.576, and

the limiting value of the error becomes

and hence the residuals ll /7
.5 and + 7".8 are rejected. Recom-

puting the mean error of an observation, we have

320-4 -193.0S = 1".65.

In the formation of a normal place, when the mean error of an

observation has been inferred from only a small number of observa-

tions, according to what has been stated, it will not be safe to rely

upon the equation (131) for the necessity of the rejection of a doubt-

ful observation. But if any abnormal influence is suspected, or if

any antecedent discussion of observations by the same observer, made

under similar circumstances, seems to indicate that an error of a given

magnitude is highly improbable, the application of this formula will

serve to confirm or remove the doubt already created. Much will

therefore depend on the discrimination of the computer, and on his

knowledge of the various sources of error which may conspire con-

tinuously or discontinuously in the production of large apparent

errors. It is the business of the observer to indicate the circum-

stances peculiar to the phenomenon observed, the instruments em-

ployed, and the methods of observation; and the discussion of the

data thus furnished by different observers, as far as possible in ac-

cordance with the strict requirements of the adopted theory of errors,

will furnish results which must be regarded as the best which can be

derived from the evidence contributed by all the observations.

150. When the final normal places have been derived, the differ-

ences between these and the corresponding places computed from the

provisional elements to be corrected, taken in the sense computation
minus observation, give the values of n, n f

,
n"

}
&c. which are the

absolute terms of the equations of condition. By means of these

elements we compute also the values of the differential coefficients of

each of the spherical co-ordinates with respect to each of the elements

to be corrected. These differential coefficients give the values of the

coefficients a, 6, c, a', &', &c. in the equations of condition. The

mode of calculating these coefficients, for different systems of co-or-

dinates, and the mode of forming the equations of condition, have

been fully developed in the second chapter. It is of great import-
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ance that the numerical values of these coefficients should be care-

fully checked by direct calculation, assigning variations to the ele-

ments, or by means of differences when this test can be successfully

applied. In assigning increments to the elements in order to check

the formation of the equations, they should not be so large that the

neglected terms of the second order become sensible, nor so small that

they do not afford the required certainty by means of the agreement
of the corresponding variations of the spherical co-ordinates as

obtained by substitution and by direct calculation.

As soon as the equations of condition have been thus formed, we

multiply each of them by the square root of its weight as given by
the adopted relative weights of the normal places; and these equa-
tions will thus be reduced to the same weight. In general, tho

numerical values of the coefficients will be such that it will be con-

venient, although not essential, to adopt as the unit of weight that

which is the average of the weights of the normals, so that the

numbers by which most of the equations will be multiplied will not

differ much from unity. The reduction of the equations to a uniform

measure of precision having been effected, it remains to combine them

according to the method of least squares in order to derive the most

probable values of the unknown quantities, together with the relative

weights of these values. It should be observed, however, that the

numerical calculation in the combination and solution of these equa-

tions, and especially the required agreement of some of the checks of

the calculation, will be facilitated by having the numerical values of

the several coefficients not very unequal. If, therefore, the coefficient

a of any unknown quantity x is in each of the equations numerically
much greater or much less than in the case of the other unknown

quantities, we may adopt as the corresponding unknown quantity to

be determined, not x but vz, i/ being any entire or fractional number

such that the new coefficients -, T , &c. shall be made to agree in

magnitude with the other coefficients. The unknown quantity whose

value will then be derived by the solution of the equations will be

vx, and the corresponding weight will be that of vx. To find the

weight of x from that of vx, we have the equation

?.= >*-. (132)

In the same manner, the coefficient of any other unknown quantity

may be changed, and the coefficients of all the unknown quantities

may thus be made to agree in magnitude within moderate limits, th*
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advantage of which, in the numerical solution of the equations, will

be apparent by a consideration of the mode of proving the calcula-

tion of the coefficients in the normal equations. It will be expedient,

also, to take for v some integral power of 10, or, when a fractional

value is required, the corresponding decimal. It may be remarked,

further, that the introduction of v is generally required only when
the coefficient of one of the unknown quantities is very large, as

frequently happens in the case of the variation of the mean daily

motion
//.

When the coefficients of some of the unknown quantities are

extremely small in all the equations of condition to be combined, an

approximate solution, and often one which is sufficiently accurate for

the purposes required, may be obtained by first neglecting these

quantities entirely, and afterwards determining them separately. In

general, however, this can only be done when it is certainly known
that the influence of the neglected terms is not of sensible magnitude,
or when at least approximate values of these terms are already given.

When we adopt the approximate plane of the orbit as the funda-

mental plane, the equations for the longitude involve only four ele-

ments, and the coefficients of the variations of these elements in the

equations for the latitudes are always very small. Hence, for an

approximate solution, we may first solve the equations involving four

unknown quantities as furnished by the longitudes, and then, substi-

tuting the resulting values in the equations for the latitudes, they
will contain but two unknown quantities, namely, those which give

the corrections to be applied to & and i.

151. When the number of equations of condition is large, the

computation of the numerical values of the coefficients in the normal

equations will entail considerable labor; and hence it is desirable to

arrange the calculation in a convenient form, applying also the checks

which have been indicated. The most convenient arrangement will

be to write the logarithms of the absolute terms n, n
f

, n", &c. in a

horizontal line, directly under these the logarithms of the coefficients

a, a', a", &c., then the logarithms of 6, &', 6", &c., and so on. Then

writing, in a corresponding form, the values of logn, logn
r

,
&c. on a

slip of paper, by bringing this successively over each line, the sums

[nri], [an], [6n], &c. will be readily formed. Again, writing on

another slip of paper the logarithms of a, a', a", &c., and placing

this slip successively over the lines containing the coefficients, we

derive the values [aa], [a&], [ac], &c. The multiplication by 6, c, dt
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&c. successively is effected in a similar manner; and thus will be

derived [66], [6c], [bcl], &c., and finally \_ff] in the case of six un-

known quantities. In forming these sums, in the cases of sums of

positive and negative quantities, it is convenient as well as conducive

to accuracy to write the positive values in one vertical column and

the negative values in a separate column, and take the difference of

the sums of the numbers in the respective columns. The proof of

the calculation of the coefficients of the normal equations is effected

by introducing s, s', s", &c., the algebraic sums of all the coefficients

in the respective equations of condition, and treating these as the

coefficients of an additional unknown quantity, thus forming directly

the sums [sn], [as], [6s], [cs], &c. Then, according to the equations

(76) and (77), the values thus found should agree with those obtained

by taking the corresponding sums of the coefficients in the normal

equations.

The normal equations being thus derived, the next step in the

process is the determination of the values of the auxiliary quantities

necessary for the formation of the equations (74). An examination

of the equations (54), (55), &c., by means of which these auxiliaries

are determined, will indicate at once a convenient and systematic

arrangement of the numerical calculation. Thus, we first write in a

horizontal line the values of [aa], [a6], [ac], . . . [as], [an], and di-

rectly under them the corresponding logarithms. Next, we write

under these, commencing with [a6], the values of [66], [6c], [bd],

. . [6s], [6n] ; then, adding the logarithm of the factor = - to the
\_aa\

logarithms of [a6], [ac], &c. successively, we write the value of

p=r [a6] under [66], that of p =r [ac] under [6c], and so on. Sub-
[oa]

L J
[aa]

L J

tracting the numbers in this line from those in the line above, the

differences give the values of [66.1], [6c.l], . . . [6s.l], [6n.l], to be

written in the next line, and the logarithms of these we write directly

under them. Then we write in a horizontal line the values of [cc],

[cd], . . [cs], [en], placing [cc] under [6c.l], and, having added the

logarithm of
^

- to the logarithms of [ac], [ad], &c. in succession,

we derive, according to the equations (55) and (58), the values of

[cc.l], [coM], . . [cs.l], [cn.l], which are to be placed under the cor-

responding quantities [cc], [cd], &c. Next, we subtract from these,

respectively, the products t

[6c - 1] r6on [6e - 1] rwn [ic- 1] rfcn [6^r6n
f6UJ

[6<a]>
[663]

Lftrf -1J> ' '

[663]
L*S' 1J '

f66.11
L

'
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and thus derive the values of [cc.2], [cd2], . . [es.2], [cn.2], which

are to be written in the next horizontal line and under them their

logarithms. Then we introduce, in a similar manner, the coefficients

[dd], [de] y
. . [dn], writing \_dd~] under [ccZ.2] ;

and from each of these

in succession we subtract the products

thus finding the values of [<M.l], [c?e.l], . . [dn . 1]. From these we

subtract the products

]

respectively, which operation gives the values of [dd2], [efe.2], . . .

[c?n.2]. From these results we subtract the products

W 21
. .

[cc.2]
L<

[cc.2J
L<

^J '
' '

[cc.2]
L

and derive [dd.3], [de.3], . . [cfri.3]
under which we write the cor-

responding logarithms. Then we introduce [ee] 9 [ef~], [es] 9
and [eri],

writing [ee] under [rfe.3]. First, subtracting p
=-

[ae], p
-

[a/], . .

[ae]
f r[a7i]> we ge^ [ee'^]j [^/-l]) [6S'1]> an(i [0W-.1]; then subtracting

from these the products

j
' '

[66.1]

we obtain the values of [ee.2], [e/.2], [es.2], and [en.2]. Again,

subtracting

we have the values of [ee.3], [^f.3], [es.3], [cn.3]; and finally, sub-

tracting from these the products

j ' '

E3Z3]
' >

we derive the results for [66.4], [e/.4], [es.4], and [en.4]; under which

the corresponding logarithms are to be written.

If there are six unknown quantities to be determined, we must

further write in a horizontal line the values of [jj/*], [/s], and [/n],
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placing [jgf] under [e/.4], and by means of five successive subtrac-

tions entirely analogous to what precedes, and as indicated by the

remaining equations for the auxiliaries, we obtain the values of [j^.5],

[/a.5], and [/n.5].

The values of [fo.l], [cs.l], [cs.2], &c. serve to check the calcula-

tion of the successive auxiliary coefficients. Thus we must have

[56.1] + [6c.l] -f- [fcd.1] + [6e.l] + [6/.1] = [6s.l]

[6c.l] -f [cc.l] + [cdl] -f [ce.l] -f [c/.l]
= [.l], &c.,

[cc.2] + [ed.2] -f [ce.2] -f [c/.2]
=

[cs.2],

[cd.2] + [eta.2] + [efe.2] + [d/.2]= [cfo.2], Ac.

Hence it appears that when the numerical calculation is arranged as

above suggested, the auxiliary containing s must, in each line, be

equal to the sum of all the terms to the left of it in the same line

and of those terms containing the same distinguishing numeral found

in a vertical column over the last quantity at the left of this line.

There will yet remain only the auxiliaries which are derived from

\_sn~]
and [nri] to be determined. These additional auxiliaries will

be found by means of the formulae

.
,

- .

.3] = [m.2]
-

[es .2] , [m.4] = [m.3]
-

[efe.3], (133)

0.5] = [w.4]
-

[.4], [w.8] = [w.5]
-

and the equations (81) and (83). The arrangement of the numerical

process should be similar to that already explained.

The values of [sw.l], [sw.2], &c. check the accuracy of the results

for [6n.l], [cn.l], [cn.2], [e?n.3], &c. by means of the equations

[bn.l] + [cn.l] -f \dn.V\ + [67i.l] + [>.l] = [i.l],

[c7i.2] + [dn.Z] -f- [e^.2] -f [/7i.2]
== [sw.2],

[dw.3] -}- [e.3] + LM] = [m.3], (134;

It appears further, that, in the case of six unknown quantities, sinct

[/s.5]
=

[jgr.5], we have [n.6] = 0.

Having thus determined the numerical values of the auxiliaries

required, we are prepared to form at once the equations (74), by means

of which the values of the unknown quantities will be determined

27
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by successive substitution, first finding t from the last of these equa-

tions, then substituting this result in the equation next to the last

and thus deriving the value of w, and so on until all the unknown

quantities have been determined. It will be observed that the loga-

rithms of the coefficients of the unknown quantities in these equa-
tions will have been already found in the computation of the aux-

iliaries.

If we add together the several equations of (74), first clearing them

of fractions, we get

= [ad] x + ([06] + [56.1]) y + ([oc] + [6c.l] -f [ee.2]) z

+ (M + [W-l] +
+ (M + [&e-i] +
-f ([/] + P/1] +
+ [aw] + [6n.l] + [m.2] -+ [d.3] + [m.4] + [>.5] ;

and this equation must be satisfied by the values of #, y, z, &c. found

from (74).

152. EXAMPLE. The arrangement of the calculation in the case

of any other number of unknown quantities is precisely similar; and

to illustrate the entire process let us take the following equations,

each of which is already multiplied by the square root of its weight:

0.707z + 2.052y 2.3723 0.221w + 6".58 = 0,

0.471z + 1.347y 1.715s 0.085u + 1 .63 = 0,

0.260* + 0.770y 0.356z -f 0.483w 4 .40= 0,

0.092* + 0.343?/ -f 0.2352 -f 0.469w 10 .21 = 0,

0.414* -f 1.204y 1.5063 0.205w + 3 .99 = 0,

0.040* -f 0.150# + 0.1042 + 0.206w 4 .34= 0.

First, we derive

[nn] = 204.313,

[ol = + 4.815, [oa]^ + 0.971,

[6n] = + 12.961, [06] = + 2.821, [66] = + 8.208,

[en]
-

25.697, [oc]= 3.175, [6c] = 9.168, [cc]
= + 11.028,

[dn]= -10.218, [od]= 0.104, [W]= 0.261, [cd]= + 0.938, [dd] = + 0.594,

[w] =-18.139, [as] = + 0.513, [6s]
= + 1.610, [c] = 0.377, [as] =+1.177.

The values of [sn], [as], [6s], [cs], and [cfe], found by taking the

sums of the normal coefficients, agree exactly with the values com-

puted directly, thus proving the calculation of these coefficients.

The normal equations are, therefore,
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0.971* -f 2.821y 3.1752 0.104w -f 4.815 = 0,

2.821ar -f- 8.208y 9.168s O.'Zdlu -f 12.961 = 0,

3.175* 9.168y + 11.0282 -f- 0.938it 25.697 = 0,

- 0.104* 0.251y + 0.9382 -f- 0.594u 10.218 = 0.

It will be observed that the coefficients in these equations are nu-

merically greater than in the equations of condition; and this will

generally be the case. Hence, if we use logarithms of five decimals

in forming the normal equations, it will be expedient to use tables

of six or seven decimals in the solution of these equations.

Arranging the process of elimination in the most convenient form,

the successive results are as follows :

= + 0.0123, [fcc.l]
= + 0.0562, [6*1] = + 0.0511, [bs.l] = + 0.1196, [fenl]

= 1.0278,

[cc.l]
= -f 0.6463, [ccZ.l]

= + 0.5979, [cs.l]
= + 1.3004, [cn.l]

= 9.9528,

[cc.2]
= + 0.3895, [cd.2] = + 0.3644, [cs.2]

= + 0.7539, [cn.2] = - 5.2567,

[dd.l] = + 0.5829, [ds.l] = + 1.2319, [dn.l]= 9.7023,

[dd.2] = + 0.3706, [ds.2] = + 0.7350, [dre.2]
= 5.4323,

[cW.3] = + 0.0297, [ds.3]
=

-f- 0.0297 [dn.3]= 0.5143,

[nw.l] = 180.436, [sn.l]
= 20.6828,

[nn.2]= 94.552, [sn.2] = 10.6889,

[nn.3]= 23.608, [i.3]= 0.5143,

[wi.4]= 14.698, [sn.4]
= 0.

The several checks agree completely, and only the value of [rw.4]

remains to be proved. The equations (74) therefore give

* -f 2.9052y 3.26982 0.1071w + 4.9588 == 0,

y + 4.56912 + 4.1545w 83.5610 = 0,

z + 0.9356w 13.4960 = 0,

u 17.3165 = 0,

and from these we get

u= -f 17".316, z = 2".705, y = + 23".977, * = 81".608.

Then the equation (135) becomes

r= + 0.9710* + 2.8333y 2.72932 + 0.3412w 1.9838,

which is satisfied by the preceding values of the unknown quantities.

If we substitute these values of x, y, z, and u in the equations of

condition already reduced to the same weight by multiplication by
the square roots of their weights, we obtain the residuals

i Q" gj -^f g^ i 2" 17 2" 01 0".40 0".72

The sum of the squares of these gives

[w] = {nnA'] = 11.672,

and the difference between this result and the value 14.698 already
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found is due to the decimals neglected in the computation of the

numerical values of the several auxiliaries. The sum of all the

equations of condition gives generally

to* + l^y + M* + ld]u + ....+ [n] - 0], (136)

which may be used to check the substitution of the numerical values

in the determination of v, v'
9
&c. Thus, we have, for the values

here given,

1.984s + 5.866y 5.610z + 0.647w 6.75 = [>] = l."63.

It remains yet to determine the relative weights of the resulting

values of the unknown quantities. For this purpose we may apply

any of the various methods already given. The weights of u and z

may be found directly from the auxiliaries whose values have been

computed. Thus, we have

p. = [<H.3] = 0.0297, p,= -
[cc.2]

= 0.0312.

If we now completely reverse the order of elimination from the

normal equations, and determine x first, we obtain the values

[66.2] = + 0.0425, [oa.2] = + 0.0033,

[aa.3] = + 0.00056, [nn.4] 14.665,

and also

x r~ 82/750, y = + 24."365, z = 2."699, u = + 17."272.

The small differences between these results and those obtained by the

first elimination arise from the decimals neglected. This second

elimination furnishes at once the weights of x and y, namely,

P,= l>*-3] 0.00056, p9
=

|^|| [66.2] 0.0072.

We may also compute the weights by means of the equations (96).

Thus, to find the weight of y, we have

[cW.21 = [cM.l]
- -

[crf.l]
= + 0.02977,

and hence

The equations (103) and (108) are convenient for the determination

of the values and weights of the unknown quantities separately.



CORRECTION OF THE ELEMENTS. 421

Thus, by means of the values of the auxiliaries obtained in the first

elimination, we find from the equations (100), (101), and (102),

A' =. 2.9052, A" = -f 16.5442, A'" = 3.3012,
#'= 4.5691, JB"'= + 0.1202, C"" = 0.9356,

and then the equations (103) and (108) give

e= 81".609, y = + 23".977, z = 2".705, u =-- + 17".316f

Pm = 0.00057, pv
= 0.0074, A= 0.0312, Pv = 0.0297,

agreeing with the results obtained by means of the other methods.

The weights are so small that it may be inferred at once that the

values of x, y, z, and u are very uncertain, although they are those

which best satisfy the given equations. It will be observed that if

we multiply the first normal equation by 2.9, the resulting equation
will differ very little from the second normal equation, and hence we
have nearly the case presented in which the number of independent
relations is one less than the number of unknown quantities.

The uncertainty of the solution will be further indicated by deter-

mining the probable errors of the results, although on account of the

small number of equations the probable or mean errors obtained may
be little more than rude approximations. Thus, adopting the value

of [vv] obtained by direct substitution, we have

and hence
r= 1".629,

which is the probable error of the absolute term of an equation of

condition whose weight is unity. Then the equations

r r r
r = . , r = . , r,= , > &c.,*

Vpl
'

VP,
'

Vp.
give

r
x
= 68".25, r

y
= 18".94, r

z
= 9".22, ru= 9".45.

It thus appears that the probable error of z exceeds the value obtained

for the quantity itself, and that although the sum of the squares of

the residuals is reduced from 204.31 to 11.67, the results are still

quite uncertain.

153. The certainty of the solution will be greatest when the coef-

ficients in the equations of condition and also in the normal equation**
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differ very considerably both in magnitude and in sign. In the cor-

rection of the elements of the orbit of a planet when the observa-

tions extend only over a short interval of time, the coefficients will

generally change value so slowly that the equations for the direct

determination of the corrections to be applied to the elements will

not afford a satisfactory solution. In such cases it will be expedient
to form the equations for the determination of a less number of

quantities from which the corrected elements may be subsequently
derived. Thus we may determine the corrections to be applied to

two assumed geocentric distances or to any other quantities which

afford the required convenience in the solution of the problem,
various formulae for which have been given in the preceding chapter.

The quantities selected for correction should be known functions of

the elements, and such that the equations to be solved, in order to

combine all the observed places, shall not be subject to any uncer-

tainty in the solution. But when the observations extend over a long

period, the most complete determination of the corrections to be

applied to the provisional elements will be obtained by forming the

equations for these variations directly, and combining them as already

explained. A complete proof of the accuracy of the entire calcula-

tion will be obtained by computing the normal places directly from

the elements as finally corrected, and comparing the residuals thus

derived with those given by the substitution of the adopted values

of the unknown quantities in the original equations of condition.

If the elements to be corrected differ so much from the true values

that the squares and products of the corrections are of sensible mag-

nitude, so that the assumption of a linear form for the equations does

not afford the required accuracy, it will be necessary to solve the

equations first provisionally, and, having applied the resulting cor-

rections to the elements, we compute the places of the body directly

from the corrected elements, and the differences between these and

the observed places furnish new values of n, n f

, n", &c., to be used

in a repetition of the solution. The corrections which result from

the second solution will be small, and, being applied to the elements

as corrected by the first solution, will furnish satisfactory results. In

this new solution it will not in general be necessary to recompute the

coefficients of the unknown quantities in the equations of condition,

since the variations of the elements will not be large enough to affect

sensibly the values of their differential coefficients with respect to

the observed spherical co-ordinates. Cases may occur, however, in

vhich it may become necessary to recompute the coefficients of one
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or more of the unknown quantities, but only when these coefficients

are very considerably changed by a small variation in the adopted
values of the elements employed in the calculation. In such cases

the residuals obtained by substitution in the equations of condition

will not agree with those obtained by direct calculation unless the

corrections applied to the corresponding elements are very small. It

may also be remarked that often, and especially in a repetition of the

solution so as to include terms of the second order, it will be suffi-

ciently accurate to relax a little the rigorous requirements of a com-

plete solution, and use, instead of the actual coefficients, equivalent
numbers which are more convenient in the numerical operations re-

quired. Although the greatest confidence should be placed in the

accuracy of the results obtained as far as possible in strict accordance

with the requirements of the theory, yet the uncertainty of the deter-

mination of the relative weights in the combination of a series of

observations, as well as the effect of uneliminated constant errors,

may at least warrant a little latitude in the numerical application,

provided that the weights of the results are not thereby much affected.

A constant error may in fact be regarded as an unknown quantity to

be determined, and since the effect of the omission of one of the

unknown quantities is to diminish the probable errors of the resulting

values of the others, it is evident that, on account of the existence of

constant errors not determined, the values of the variables obtained

by the method of least squares from different corresponding series of

observations may differ beyond the limits which the probable errors

of the different determinations have assigned. Further, it should be

observed that, on account of the unavoidable uncertainty in the esti-

mation of the weights of the observations in the preliminary combi-

nation, the probable error of an observed place whose weight is

unity as determined by the final residuals given by the equations of

condition, may not agree exactly with that indicated by the prior

discussion of the observations.

154. In the case of very eccentric orbits in which the corrections

to be applied to certain elements are not indicated with certainty by
the observations, it will often become necessary to make that whose

weight is very small the last in the elimination, and determine the

other corrections as functions of this one; and whenever the coeffi-

cients of two of the unknown quantities are nearly equal or have

nearly the same ratio to each other in all the different equations of

condition, this method is indispensable unless the difficulty is reme



424 THEORETICAL ASTRONOMY.

died by other means, such as the introduction of different elements or

different combinations of the same elements. The equations (113)
furnish the values of the unknown quantities when we neglect that

which is to be determined independently; and then the equations

(114) give the required expressions for the complete values of these

quantities. Thus, when a comet has been observed only during a

brief period, the ellipticity of the orbit, however, being plainly indi-

cated by the observations, the determination of the correction to be

applied to the mean daily motion as given by the provisional ele-

ments, in connection with the corrections of the other elements, will

necessarily be quite uncertain, and this uncertainty may very greatly

affect all the results. Hence the elimination will be so arranged that

A// shall be the last, and the other corrections will be determined as

functions of this quantity. The substitution of the results thus

derived in the equations of condition will give for each residual an

expression of the following form :

Therefore we shall have

[>] = [Vo] + 2 [V] AM -f

which may be applied more conveniently in the equivalent form

M =
[Vo]

- d [v] +M AM + [
'. (138)

The most probable value of A/Z will be that which renders [vv] a

minimum, or

(139)

and the corresponding value of the sum of the squares of the

residuals is

l- (140)

The correction given by equation (139) having been applied to /*,

the result may be regarded as the most probable value of that ele-

ment, and the corresponding values of the corrections of the other

elements as determined by the equations (114) having been also duly

applied, we obtain the most probable system of elements. These,

however, may still be expressed in the form

-f QAM, &c.
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the coefficients A
QJ
Bw C

,
&c. being those given by the equations

(114), and thus the elements may be derived which correspond to any
assumed value of p differing from its most probable value. The

unknown quantity A/* will also be retained in the values of the

residuals. Hence, if we assign small increments to
//,

it nrjy easily

be seen how much this element may differ from its mo^fi probable

value without giving results for the residuals which are i/v,ompatible

with the evidence furnished by the observations.

If the dimensions of the orbit are expressed by mearx.* of the ele-

ments q and e, it may occur that the latter will not be determined

with certainty by the observations, and hence it should be treated as

suggested in the case of //; and we proceed in a similar manner when

the correction to be applied to a given value of tL; semi-transverse

axis a is one of the unknown quantities to be dete mined.
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CHAPTER VIII.

INVESTIGATION OP VARIOUS FORMULAE FOR THE DETERMINATION OF THE SPECIAL

PERTURBATIONS OF A HEAVENLY BODY.

155. WE have thus far considered the circumstances of the undis-

turbed motion of the heavenly bodies in their orbits; but a complete
determination of the elements of the orbit of any body revolving
around the sun, requires that we should determine the alterations in

its motion due to the action of the other bodies of the system. For

this purpose, we shall resume the general equations (18) 1? namely,

m) ,

which determine the motion of a heavenly body relative to the sun

when subject to the action of the other bodies of the system. We
have, further,

m'
/I

xaf + yy + t
\ ,

m" / 1 xx"+ yf+ zz" \

'-lm\ r'
3 J^l m \' r"* P

which is called the perturbing function, of which the partial differen-

tial coefficients, with respect to the co-ordinates, are

dQ_ m' Ix'-x ^\ m" lx"-x x"

fa-l+m\ ff r'*l
+

l + m\ p" r">

dQ _ m' [z'
z J_\ ,

m" jz" z 4'
\ , ^

S"~rfm\ P
3 r^/^l+ml ?'* r"* /

"

and in which m', mr/
,
&c. denote the ratios of the masses of the

several disturbing planets to the mass of the sun, and m the ratio of

the mass of the disturbed planet to that of the sun. These partial

differential coefficients, when multiplied by &2

(l-f-w), express thn



PERTURBATIONS. 427

sum of the components of the disturbing force resolved in directions

parallel to the three rectangular axes respectively.

When we neglect the consideration of the perturbations, the general

equations of motion become

dt*

/7/2
' ^ ' J

,, 3 ' \*^y

the complete integration of which furnishes as arbitrary constants of

integration the six elements which determine the orbitual motion of a

heavenly body. But if we regard these elements as representing the

actual orbit of the body for a given instant of time
t,
and conceive

of the effect of the disturbing forces due to the action of the other

bodies of the system, it is evident that, on account of the change

arising from the force thus introduced, the body at another instant

different from the first will be moving in an orbit for which the

elements are in some degree different from those which satisfy the

original equations. Although the action of the disturbing force is

continuous, we may yet regard the elements as unchanged during the

element of time dt, and as varying only after each interval dt. Let

us now designate by t the epoch to which the elements of the orbit

belong, and let these elements be designated by Mw TT
O, & ,

iw e
,
and

a
;
then will the equations (3) be exactly satisfied by means of the

expressions for the co-ordinates in terms of these rigorously-constant

elements. These elements will express the motion of the body sub-

ject to the action of the disturbing forces only during the infinitesimal

interval dt, and at the time t
Q + dt it will commence to describe a

new orbit of which the elements will differ from these constant ele-

ments by increments which are called the perturbations.

According to the principle of the variation of parameters, or of

the constants of integration, the differential equations (1) will be

satisfied by integrals of the same form as those obtained when the

second members are put equal to zero, provided only that the arbitrary

constants of the latter integration are no longer regarded as pure
constants but as subject to variation. Consequently, if we denote the

variable elements by M, TT, &, i, e, and a, they will be connected

with the constant elements, or those which determine the orbit at the

instant
, by the equations
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di (4)

in which 7-, -r- . &c. denote the differential coefficients of the ele-
at at

ments depending on the disturbing forces. When these differential

coefficients are known, we may determine, by simple quadrature, the

perturbations dM, dn, &c. to be added to the constant elements in

order to obtain those corresponding to any instant for which the

place of the body is required. These differential coefficients, however,
are functions of the partial differential coefficients of Q with respect

to the elements, and before the integration can be performed it

becomes necessary to find the expressions for these partial differential

coefficients. For this purpose we expand the function Q into a con-

verging series and then differentiate each term of this series relatively

to the elements. This function is usually developed into a converg-

ing series arranged in reference to the ascending powers of the eccen-

tricities and inclinations, and so as to include an indefinite number

of revolutions; and the final integration will then give what are

called the absolute or general perturbations. When the eccentricities

and inclinations are very great, as in the case of the comets, this

development and analytical integration, or quadrature, becomes no

longer possible, and even when it is possible it may, on account of

the magnitude of the eccentricity or inclination, become so difficult

that we are obliged to determine, instead of the absolute perturbations,

what are called the special perturbations, by methods of approxima-
tion known as mechanical quadratures, according to which we deter-

mine the variations of the elements from one epoch t
Q

to another

epoch t. This method is applicable to any case, and may be advan-

tageously employed even when the determination of the absolute

perturbations is possible, and especially when a series of observations

extending through a period of many years is available and it is

desired to determine, for any instant
,
a system of elements, usually

called osculating elements, on which the complete theory of the motion

may be based.

Instead of computing the variations of the elements of the orbit

directly, we may find the perturbations of any known functions of

these elements; and the most direct and simple method is to deter-

mine the variations, due to the action of the disturbing forces, of

any system of three co-ordinates by means of which the position of
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the body or the elements themselves may be found. We shall, there-

fore, derive various formulae for this purpose before investigating th<

formulae for the direct variation of the elements.

156. Let X
Q, y ,

z be the rectangular co-ordinates of the body at

the time t computed by means of the osculating elements Mw TT
O, Q ,

&c., corresponding to the epoch t . Let x, y, z be the actual co-ordi-

nates of the disturbed body at the time t; and we shall have

dx, dy, and dz being the perturbations of the rectangular co-ordinates

from the epoch t to the time t. If we substitute these values of x,

y, and z in the equations (1), and then subtract from each the corre-

sponding one of equations (3), we get

Let us now put r = r -f- dr; then to terms of the order ^r2
,
which is

equivalent to considering only the first power of the disturbing force,

we have

and hence

We have also from
r'-z' + ^

neglecting terms of the second order,

(7)
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The integration of the equations (6) will give the perturbations dx,

dy, and dz to be applied to the rectangular co-ordinates xw yw z com-

puted by means of the osculating elements, in order to find the actual

co-ordinates of the body for the date to which the integration belongs.
But since the second members contain the quantities dx

9 %, dz which

are sought, the integration must be effected indirectly by successive

approximations; and from the manner in which these are involved

in the second members of the equations, it will appear that this inte-

gration is possible.

If we consider only a single disturbing planet, according to the

equations (2), we shall have

*'
\

7')'

and these forces we will designate by X, Y, and Z respectively ; then,

if in these expressions we neglect the terms of the order of the

square of the disturbing force, writing .r
, y ,

Z
Q
in place of x, y, z,

the equations (6) become

df r,

(9)

which are the equations for computing the perturbations of the rec-

tangular co-ordinates with reference only to the first power of the

masses or disturbing forces. We have, further,

, = (gf
_

.,.) + ft
-

y) -I- (/ _ zy, (10)

in which, when terms of the second order are neglected, we use the

values x
Q, y ,

z for x, y, and z respectively.

1 57. From the values of 8x, dy, and dz computed with regard to

the first power of the masses we may, by a repetition of part of the

calculation, take into account the squares and products and even the

higher powers of the disturbing forces. The equations (5) may be

written thus:
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d?

in which nothing is neglected. In the application of these formulae,

as soon as dx, dy, and $2 have been found for a few successive inter-

vals, we may readily derive approximate values of these quantities

for the date next following, and with these find

x = x -\-dx, y = 2/ + dy, Z = Z
Q -\- dz,

and hence the complete values of the forces X, Y, and Z, by means

of the equations (8). To find an expression for the factor

-5f

which will be convenient in the numerical calculation, we have

and therefore

. = x 2
g * (y

2 ~T~

Let us now put

?=
and

/}=i

then we shall have

and the values of/ may be tabulated with the argument q. The

equations (11) therefore become

(14)
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The coefficients of 8x, dy, and dz in equation (12) may be found at

once, with sufficient accuracy, by means of the approximate values

of these quantities; and having found the value of / corresponding

to the resulting value of g, the numerical values of ,
2 > , f > and

d*8z

-ITT, which include the squares and products of the masses, will be

obtained. The integration of these will give more exact values of

dx, dy, and dz, and then, recomputing q and the other quantities which

require correction, a still closer approximation to the exact values of

the perturbations will result.

Table XVII. gives the values of log/ for positive or negative

values of q at intervals of 0.0001 from q
= to q

= 0.03. Unless

the perturbations are very large, q will be found within the limits of

this table; and in those cases in which it exceeds the limits of the

table, the value of

may be computed directly, using the value of r in terms of r
Q
and

dx, dy, dz.

In the application of the preceding formulae, the positions of the

disturbed and disturbing bodies may be referred to any system of

rectangular co-ordinates. It will be advisable, however, to adopt

either the plane of the equator or that of the ecliptic as the funda-

mental plane, the positive axis of x being directed to the vernal

equinox. By choosing the plane of the elliptic orbit at the time t

as the plane of xy, the co-ordinate z will be of the order of the per-

turbations, and the calculation of this part of the action of the dis-

turbing force will be very much abbreviated; but unless the inclina-

tion is very large there will be no actual advantage in this selection,

since the computation of the values of the components of the dis-

turbing forces will require more labor than when either the equator

or the ecliptic is taken as the fundamental plane. The perturbations

computed for one fundamental plane may be converted into those

referred to another plane or to a different position of the axes in the

same plane by means of the formulae which give the transformation

of the co-ordinates directly.

158. We shall now investigate the formulae for the integration of

the linear differential equations of the second order which express the

variation of the co-ordinates, and generally the formulae for finding

the integrals of expressions of the form
J f(x)dx and

JJ J(x)dx*
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when the values of f(x) are computed for successive values of x in-

creasing in arithmetical progression. First, therefore, we shall find

the integral of f(x) dx within given limits.

Within the limits for which x is continuous, we have

f(x) = a + {3x + rx* + W+ex*+....; (15)

and if we consider only three terms of this series, the resulting equa-
tion

f(x) ^a + px + rx*

is that of the common parabola of which the abscissa is x and the

ordinate /(#), and the integral of f(x) dx is the area included by the

abscissa, two ordinates, and the included arc of this curve. Gene-

rally, therefore, we may consider the more complete expression for

f(x) as the equation of a parabolic curve whose degree is one less

than the number of terms taken. Hence, if we take n terms of the

series as the value of/(#), we shall derive the equation for a parabola

whose degree is n 1, and which has n points in common with the

curve represented by the exact value of f(x).

If we multiply equation (15) by dx and integrate between the

limits and x', we get

dx =

If now the values of f(x) for different values of x from to xf are

known, each of these, by means of equation (15), will furnish an

equation for the determination of a, /?, 7-,
&c.

;
and the number of

terms which may be taken will be equal to the number of different

known values of /(a?). As soon as a, /?, 7-,
&c. have thus been found,

the equation (16) will give the integral required.

If the values of f(x) are computed for values of x at equal inter-

vals and we integrate between the limits x = 0, and x = n&x, &x

being the constant interval between the successive values of x
y
and

n the number of intervals from the beginning of the integration, we

obtain
x

Cf(x) dx =

Let us now suppose a quadratic parabola to pass through the points

of the curve represented by f(x), corresponding to x = 0, x = &x,
28
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and x = 2&x; then will the area included by the arc of this parabola,

the extreme ordinates, and the axis of abscissas be

'Ibx

J/(aO'<fe
= A*(2<

The equation of the curve gives, if we designate the ordinates of the

three successive points by yQ, yly
and y2 ,

=
2/o, P =

and hence we derive

2Aa?

In a similar manner, the area included by the ordinates y2
and y4 ,

corresponding to a; = 2A# and a? = 4&x, the axis of abscissas, and

the parabola passing through the three points corresponding to y2, y#
and y4,

is found to be

2Aa;

and hence we have, finally,

nAx

J/0)
^=

(n 2) A*

The sum of all these gives

(17)

by means of which the approximate value of the integral within the

given limits may be found.

If we consider the curve which passes through four points corre-

sponding to yw ylf ya ,
and yB9 we have

for the equation of the curve, and hence, giving to x the values 0,

;,
and SAO?, successively, we easily find
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=
yo

i

Therefore we shall have

In like manner, by taking successively an additional term of the

series, we may derive

*) dx= (7y. + 32yt + 12yf + 32y.

x (19)

= (19y + 76y, + 50y3 + 50y3

This process may be continued so as to include the extreme values of

x for which /(a?) is known; but in the calculation of perturbations it

will be more convenient to use the finite differences of the function

instead of the function itself directly. We may remark, further,

that the intervals of quadrature when the function itself is used,

may be so determined that the degree of approximation will be much

greater than when these intervals are uniform.

159. Let us put &x = to, and let the value of x for which n

be designated by a; then will the general value be

/(*) -/(a + n0,

a? being the constant interval at which the values of /(a?) are given.

Hence we shall have

dx= a>dn,

I f(x) dx = (o I /(a -j- TWO) dn.

If we expand the function /(a + no)), we have

na>
f

.

., (20)
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and hence

//(a + n) dn= C + n/(a) + in-^ + JnV

C being the constant of integration. The equations (54)6 give

* ^ =/() - irw + w() - T

-' =/"() - A/*() + */"() - */"() + .

=/" (a)
- \r () + T!*/'

u ()-...,
(22)

=/"
(a)
-

*/VI(a) + '/
""

(a)
~

=/' () -if'" ()+.-.,

iii which the functional symbols in the second members denote the

diiferent orders of finite differences of the function. Hence we obtain

+ no*) cfo = + nf(a)

+ in
1

(/(a)
- I/" (a) + A/* (a)

-
T^/vU

(a) + . .
.)

+ Jn(/"(a) - A/ 1'
(a) + ^/"(a) - vhf^(a) + ...)

Ef we take the integral between the limits n r and +n', the terms

containing the even powers of n disappear. Further, sinc the values

of the function are supposed to be known for a series of values of n

at intervals of a unit, it will evidently be convenient to determine

the integral between the required limits by means of the sum of a

series of integrals whose limits are successively increased by a unit,

such that the difference between the superior and the inferior limit

of each integral shall be a unit. Hence we take the first integral

between the limits J and +J, and the equation (23) gives, after

reduction,
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-f *

f/(a + n0 dn -/(a) + /"() ~ s4Is/
iv

() +J
-i (24)

-4 gf!fl!^/
TiilW + &c.

It is evident that by writing, in succession, a -\- a), a + 2o>, ....

a -f- ia> in place of a, we simply add 1 to each limit successively, so

that we have

%
< + 1 + *

J/(a + na) cfo ==(/(( + + ( i) ) d (n t)

But since

1 *+*

-* -i *

if we give to i successively the values 0, 1, 2, 3, &c. in the preceding

equation, and add the results, we get

i -f i n = i n = i

J/(a + n>) dn = ^f(a + n0 -f- ^? ^/' (a + na>)

t n = i

rCa + ) -I- ^W5^/ vl

( + n) - Ac.

n=0 n=0

Let us now consider the functions /(a), /(a + not), &c. as being

themselves the finite differences of other functions symbolized by '/,

the first of which is entirely arbitrary, so that we may put, in accord-

ance with the adopted notation,

/O) = '/( -fM -
'/(
- J0,

/(a + )
=

'/(a + j,)
-

'/(a + J),

/(a + tia,) = '/(a + (n + J '/(a + (
-

J) >).

Therefore we shall have

n = t

Y/O + no) = '/(a + (i + i) ,)
-

'/(a
- i),

n =
and also

n = i

) =/ (a + (t + J) ) -/ (a - ^),
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Further, since the quantity
f

f(a \a>) is entirely arbitrary, we may
assign to it a value such that the sum of all the terms of the equation
which have the argument a \a> shall be zero, namely,

(26)

Substituting these values in (25), it reduces to

I f(x) dx to I /(a -|~ nw) efoi

a-fc. -i (27)=
{'/( + (*+ i + &/( + (*' + J

In the calculation of the perturbations of a heavenly body, the

dates for which the values of the function are computed may be so

arranged that for n = J, corresponding to the inferior limit, the

integral shall be equal to zero, the epoch of f(a \co) being that of

the osculating elements. It will be observed that the equation (26)

expresses this condition, the constant of integration being included

in '/(a \to). If, instead of being equal to zero, the integral has a

given value when n = J, it is evidently only necessary to add this

value to
f

f(a Jo>) as given by (26).

160. The interval co and the arguments of the function may always
be so taken that the equation (27) will furnish the required integral,

either directly or by interpolation ;
but it will often be convenient to

integrate for other limits directly, thus avoiding a subsequent inter-

polation. The derivation of the required formulae of integration

may be effected in a manner entirely analogous to that already indi-

cated. Thus, let it be required to find the expression for the integra
1

taken between the limits \ and i.

The general formula (23) gives

J,
"
(a)-

and since, according to the notation adopted,

/ () = 1 CT (
-

i") +/'( + i-))= f( + i-) -iT(), (28)
/"()=ro+i) -*/"(),
/'() =/'( + i0 - if" (), &e.,
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this becomes

i

//(a+n-O cfo=l/(a)+J/ (a+j0-&r (a)-,!,/''(+
(29

>

Therefore we obtain

< + *

/(a-j-nw) dn=^f(a+ic

Now we have

\ f(a + nuj) dn= I /(a -|- nai] dn (/(a -f- na>) dn ;

-i -i

and if we substitute the values already found for the terms in the

second member, and also

/" ( + fa) = f(a + (,+ !))_ f(a + (i-l) a,),

/( + i.) =/'" (a + (t + i) -/"' (< + (t
-

i) ),

we get

a + i<a t

/() c?a; = o) I /(a -|" nw) dnJ
-* (32)

which is the required integral between the limits J and i.

161. The methods of integration thus far considered apply to the

cases in which but a single integration is required, and when applied

+o the integration of the differential equations for the variations of

the co-ordinates on account of the action of disturbing bodies, they
_ ddx ddy ddz . .

will only give the values or -,-> -TT-> and ;-> and another integration

becomes necessary in order to obtain the values of dx, dy, and dz.

We will therefore proceed to derive formulae for the determination

of the double integral directly.
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For the double integral j J f(x)
dx2 we have, since dx* = a)

2dn2
,

The value of the function designated by /(a) being so taken that

when n = \,

Cf(a + n0 dn 0,

the equation (23) gives

Therefore, the general equation is

o

J/(a -f n<o~) dn = if(a + nw) dn -f- nf(a)

-f in" + tfn* + Ar -f- Ti^n + Ac.

the values of a, /?, ^, . . . being given by the equations (22). Multi-

plying this by dn, and integrating, we get

Cf

being the new constant of integration. If we take the integral

between the limits | and -j- J, we find

ff/(* + n) c/rz,
2 =

(/(a + na) ^n + ^
-i ^-i

From the equation (32) we get, for i = 0,

o

J/O+ n.) dn= '/(a)
-^f (a) + ^'5/'" (a)

-
gMil/'()+ &<= (33;

Substituting this value, and also the values of a, 7-, e, &c., which

are given by the second members of the equations (22), in the pre-

ceding equation, and reducing, we get

-M

r(fl

-i
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Hence

jfif/(
+ no) dri*= '/(a -f io) 3

'

?/' (a + it*)

+ lils/'" (a H- **") iAVff/
T
(a + tw) -f- Ac.

and

+ t n = t n = t// -V^f ^-wI I // I \ T n ^ T / /*/ I \ j ^^ "/// v
I j(a -j- 7io>J o>i ;= ^ J(CL -\- nw) 2? ^ / (a ~t~ ^w )A/ >^ *i

,17
Q n=

\_, (35)

-f-&c.

n=0 =0

We may evidently consider '/(a Ja>), '/(a + Jw), &c. ae the differ-

ences of other functions, the first of which is arbitrary; 40 that we
have

7(a) = f(a + -J0 + i'/O - i) - i"/(a + )
- if (

-
),

'/(a + *) = J'/(a + i) + i'/(a + ^) - J"/(a + 2) - ^/" (a),

-f i'/( + (^-i))= i7(a+ (

- r/(a + (?l _l)w).

Therefore

n =

Substituting these values in equation (35), and observing that

700 + 7( -
) = 2"/(

-
) + '/(

-
-^)>

/(a) + /(a
-

a,)
= 2/(a)

- / (a
-

Jo,),

/'W +/"() 2/' (a) -/"' (a
- i0, Ac.,

and that, since "f(a to) is arbitrary, we may put

"/(a
-

,)
=

() + 2/" (a ))
- &o.,

(36)
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the integral becomes

* + + *><>

r/ + *

JJ /(*) dx* = >
2

JJ /(a + no,) dn*

l)>) (37)

which is the expression for the double integral between the limits

\ and i + J.

The value of "/(a to) given by equation (36) is in accordance

with the supposition that for n = \ the double integral is equal to

zero, and this condition is fulfilled in the calculation of the pertur-

bations when the argument a \a> corresponds to the date for which

the osculating elements are given. If, for n= J, neither the single

nor the double integral is to be taken equal to zero, it is only neces-

sary to add the given value of the single integral for this argument
to the value of '/(a Jai) given by equation (26), and to add the

given value of the double integral for the same argument to the value

of "/(a ai) given by (36).

162. In a similar manner we may find the expressions for the

double integral between other limits. Thus, let it be required to

find the double integral between the limits J and i.

Between the limits and we have

jjf(a

which gives

dn + J/(a) + &.

+ ssW + 1*4*3* + Ac.

GO
(38)

and this again, by means of (28), gives

**
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Therefore, since

CC rr rr
JJ /O -f no) dn*

=JJ f(a + no) drc,
2

JJ
/(a + n0 d,

-* -t
and

'/( + (* + i) = 7( + (* + 1; ) 7( + '),

A* -K*+ *>)== /(a + (t + l /(<* + *),
/'" (a + (i + i) a,) =/" (a + (i + 1) w) -f" (a -f ,), &c.

we shall have

a -f iw ^

(^) da? =
*0/(a + nai) (fo

8

*w -i (39)

which gives the required integral between the limits J and i.

163. It will be observed that the coefficients of the several terms

of the formulae of integration converge rapidly, and hence, by a

proper selection of the interval at which the values of the function

are computed, it will not be necessary to consider the terms which

depend on the fourth and higher orders of differences, and rarely
those which depend on the second and third differences. The value

assigned to the interval a) must be such that we may interpolate with

certainty, by means of the values computed directly, all values of the

function intermediate to the extreme limits of the integration; and

hence, if the fourth and higher orders of differences are sensible, it

will be necessary to extend the direct computation of the values of

the function beyond the limits which would otherwise be required,

in order to obtain correct values of the differences for the beginning
and end of the integration. It will be expedient, therefore, to take

(o so small that the fourth and higher differences may be neglected,

but not smaller than is necessary to satisfy this condition, since other-

wise an unnecessary amount of labor would be expended in the

direct computation of the values of the function. It is better, how-

ever, to have the interval at smaller than what would appear to be

strictly required, in order that there may be no uncertainty with

respect to the accuracy of the integration. On account of the rapidity

with which the higher orders of differences decrease as we diminish

to, a limit for the magnitude of the adopted interval will speedily be

obtained. The magnitude of the interval will therefore be suggested

by tne rapidity of the change of value of the function. In the coin-
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ptitation of the perturbations of the group of small planets between

Mars and Jupiter we may adopt uniformly an interval of forty days;
but in the determination of the perturbations of comets it will evi-

dently be necessary to adopt different intervals in different parts of

the orbit. When the comet is in the neighborhood of its perihelion,

and also when it is near a disturbing planet, the interval must neces-

sarily be much smaller than when it is in more remote parts of its

orbit or farther from the disturbing body.
It will be observed, further, that since the double integral contains

the factor o>
2

,
if we multiply the computed values of the function by

o>
2

,
this factor will be included in all the differences and sums, and

hence it will not appear as a factor in the formulae of integration.

If, however, the values of the function are already multiplied by w2

,

and only the single integral is sought, the result obtained by the

formula of integration, neglecting the factor o>
2

,
will be to times the

actual integral required, and it must be divided by a) in order to

obtain the final result.

164. In the computation of the perturbations of one of the asteroid

planets for a period of two or three years it will rarely be necessary

to take into account the effect of the terms of the second order with

respect to the disturbing force. In this case the numerical values of

the expressions for the forces will be computed by using the values

of the co-ordinates computed from the osculating elements for the

beginning of the integration, instead of the actual disturbed values

of these co-ordinates as required by the formulae (8). The values of

the second differential coefficients of dx, %, and dz with respect to

the time, will be determined by means of the equations (9). If the

interval CD is such that the higher orders of differences may be neg-

lected, the values of the forces must be computed for the successive

dates separated by the interval o>, and commencing with the date

t
Q \co corresponding to the argument a co, t

Q being the date to

which the osculating elements belong. Then, since the last terms

.. . . . ,

of the formulae for
^~, jp and

7^-
involve ox, oy, and 02, which

are the quantities sought, the subsequent determination of the differ-

ential coefficients must be performed by successive trials. Since the

integral must in each case be equal to zero for the date t
Q,

it will be

admissible to assume first, for the dates t \co and t
Q -f- \co corre-

sponding to the arguments a a> and a, that dx 0, dy
=

0, and

dz= 0, and hence that the three differential coefficients, for each
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date, are respectively equal to Xw Y
Q ,
and Z . We may now by inte-

gration derive the actual or the very approximate values of the

variations of the co-ordinates for these two dates. Thus, in the case

of each co-ordinate, we compute the value of f

f(a \co) by means

of the equation (26), using only the first term, and the value of

"f(a to)
from (36), using in this case also only the first term. The

value of the next function symbolized by "f will be given by

Then the formula (39), putting first * = 1 and then i = 0, and

neglecting second differences, will give the values of the variations

of the co-ordinates for the dates a co and a. These operations will

be performed in the case of each of the three co-ordinates; and, by
means of the results, the corrected values of the differential coeffi-

cients will be obtained from the equations (9), the value of 3r being

computed by means of (7). With the corrected values thus derived

a new table of integration will be commenced
;
and the values of

r

f(a \co)
and "f(a to) will also be recomputed. Then we obtain,

also, by adding '/(a ;)
to /(a), the value of f

f(a -f- Jw), and, by

adding this to "f(a), the value of "f(a -f to).

An approximate value of f(a + to) may now be readily estimated,

and two terms of the equation (39), putting i= 1, will give an ap-

proximate value of the integral. This having been obtained for

each of the co-ordinates, the corresponding complete values of the

differential coefficients may be computed, and these having been

introduced into the table of integration, the process may, in a similar

manner, be carried one step farther, so as to determine first approxi-

mate values of 3x, 8y, and dz for the date represented by the argu-

ment a + 2, and then the corresponding values of the differential

coefficients. We may thus by successive partial integrations deter-

mine the values of the unknown quantities near enough for the cal-

culation of the series of differential coefficients, even when the inte-

grals are involved directly in the values of the differential coefficients.

If it be found that the assumed value of the function is, in any case,

much in error, a repetition of the calculation may become necessary ;

but when a few values have been found, the course of the function

will indicate at once an approximation sufficiently close, since what-

ever error remains affects the approximate integral by only one-

twelfth part of the amount of this error. Further, it is evident

that, in cases of this kind, when the determination of the values of

the differential coefficients requires a preliminary approximate inte-
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gratiou, it is necessary, in order to avoid the effect of the errors in

the values of the higher orders of differences, that the interval (o

should be smaller than when the successive values of the function to

be integrated are already known. In the case of the small planets

an interval of 40 days will afford the required facility in the approxi-

mations; but in the case of the comets it may often be necessary to

adopt an interval of only a few days. The necessity of a change in

the adopted value of co will be indicated, in the numerical applica-

tion of the formula?, by the manner in which the successive assump-
tions in regard to the value of the function are found to agree with

the corrected results.

The values of the differential coefficients, and hence those of the

integrals, are conveniently expressed by adopting for unity the unit

of the seventh decimal place of their values in terms of the unit of

space.

165. Whenever it is considered necessary to commence to take into

account the perturbations due to the second and higher powers of the

disturbing force, the complete equations (14) must be employed. In

this case the forces Jf, Y9
and Z should not be computed at once for

the entire period during which the perturbations are to be determined.

The values computed by means of the osculating elements will be

employed only so long as simply the first power of the disturbing

force is considered, and by means of the approximate values of dx,

dy, and dz which would be employed in computing, for the next place,

the last terms of the equations (9), we must compute also the cor-

rected values of JT, F, and Z. These will be given by the second

members of (8), using the values of x, y, and z obtained from

We compute also q from (12), and then from Table XVII. find the

corresponding value of /. The corrected values of , 2 , ,,2 > and

Ej- will be given by the equations (14), and these being introduced,

in the continuation of the table of integration, we obtain new values

of fix, %, and dz for the date under consideration. If these differ

much from those previously assumed, a repetition of the calculation

will be necessary in order to secure extreme accuracy. In this repe-

tition, however, it will not be necessary to recompute the coefficients

of dx, dy, and dz in the formula for q, their values being given with

sufficient accuracy by means of the previous assumption ;
and gene-
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rally a repetition of the calculation of X, Y, and Z will not be

required.

Next, the values of dx, %, and dz may be determined approxi-

mately, as already explained, for the following date, and by mean*

of these the corresponding values of the forces Jf, F, and Z will be

found, and also/ and the remaining terms of (14), after which the

integration will be completed and a new trial made, if it be con-

sidered necessary. In the final integration, all the terms of the for-

mulae of integration which sensibly aifect the result may be taken

into account. By thus performing the complete calculation of each

successive place separately, the determination of the perturbations in

the values of the co-ordinates may be effected in reference to all

powers of the masses, provided that we regard the masses and co-or-

dinates of the disturbing bodies as being accurately known
;
and it is

apparent that this complete solution of the problem requires very
little more labor than the determination of the perturbations when

only the first power of the disturbing force is considered. But

although the places of the disturbing bodies as given by the tables

of their motion may be regarded as accurately known, there are yet

the errors of the adopted osculating elements of the disturbed body
to detract from the absolute accuracy of the computed perturbations;

and hence the probable errors of these elements should be constantly

kept in view, to the end that no useless extension of the calculation

may be undertaken. When the osculating elements have been cor-

rected by means of a very extended series of observations, it will be

expedient to determine the perturbations with all possible rigor.

When there are several disturbing planets, the forces for all of

these may be computed simultaneously and united in a single sum,

so that in the equations (14) we shall have ZX, SY, and 2Z instead

of X, Y, and Z respectively; and the integration of the expressions
fJ^dx d^ftii d^ds

for
fif-,

~j and ^- will then give the perturbations due to the
Cit Cut ut

action of all the disturbing bodies considered. However, when the

interval to for the different disturbing planets may be taken differently,

it may be considered expedient to compute the perturbations sepa-

rately, and especially if the adopted values of the masses of some of

the disturbing bodies are regarded as uncertain, and it is desired to

separate their action in order to determine the probable corrections

to be applied to the values of m, mf

, &c., or to determine the effect

of any subsequent change in these values without repeating the cal-

culation of the perturbations.
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166. EXAMPLE. To illustrate the numerical application of the

formulae for the computation of the perturbations of the rectangular

co-ordinates, let it be required to compute the perturbations of

Eurynome @ arising from the action of Jupiter from 1864 Jan. 1.0

Berlin mean time to 1865 Jan. 15.0 Berlin mean time, assuming the

osculating elements to be the following :

Epoch = 1864 Jan. 1.0 Berlin mean time.

M9
= 1 29' 5".65

7r = 44 17 12 .17) T
r\ of\a oo K a I Ecliptic and Mean
&6 = ZUO oa O .oy *

i,= 4 36 52.11.

Po = 11 15 51 .02

log a = 0.3881319

Equinox 1860.0

From these elements we derive the following values :

Berlin Mean Time. x y z
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Berlin
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being equal to zero for the dates Dec. 12.0 and Jan. 21.0, and, in the

case of the variation of x, we compute first

'/(a
- K> = - A/' (a j0 = - A (53.71

-
53.00) = - 0.03,

and the approximate table of integration becomes

/(
~ = + 53.00m_>}__ 03 "/(

- *)=
/() = + 53.71

K
"/(a) -=

Then the formula (39), putting first i = 1, and then i = 0, gives

Dec. 12.0 to= + 2.24 + -^p = + 6.66,

Jan. 21.0 dx= + 2.21 + -^
= + 6.69.

In a similar manner, we find

Dec. 12.0 Sy = + 5.85 dz = 0.16,

Jan. 21.0 fy= + 5.82 &= 0.14.

By means of these results we compute the complete values of the

second members of equations (40), dr being found from

and thus we obtain

(PJoj cPtJy .cfrte

Pate " "^ "^ W ^
Dec. 12.0 -|- 53.86 + 47.76 1.45 -f 8.85,

Jan. 21.0 -f 54.23 + 47.25 0.96 + 8.63.

We now commence anew the table of integration, namely,

/ 7 7 / '/ 7 / '/ 7
+53.86 _ 002 + 2.26, +47.76 , 02 + 1.97, -1.45 _ Q2 -0.04,

+54.23 5421 + 2.24, +47.25^ '

+ 1.99, -0.96 _Q98 -0.06,

+56.45, +49.26, -1.04.

the formation of which is made evident by what precedes.

We may next assume for approximate values of the differential

coefficients, for the date March 1.0, +54.6, +46.7, and 0.5,

respectively; and these give, for this date,
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dx= -f 56.45 +~ = + 61.00,
1Z

fy= + 49.26 + ^. = + 53.15,

fe = l.04~4^
= 1.08.

By means of these approximate values we obtain the following
results :

1 864 March 1.0 "2 = + 55.01, "2 r= + 53.86, ^~= - 1.00,

3r= + 71.03.

Introducing these -into the table of integration, we find, for the corre-

sponding values of the integrals,

tx= + 61.03, fy= + 53.75, da = 1.12.

These results differ so little from those already derived from the

assumed values of the function that a repetition of the calculation is

unnecessary. This repetition, however, gives

55.04,

Assuming, again, approximate values of the differential coefficients

for April 10.0, and computing the corresponding values of dx, dy,

and dz, we derive, for this date,

= + 48.06, = + 63.19,

Introducing these into the table of integration, and thus deriving

approximate values of dx, dy, and dz for May 20, we carry the pro-

cess one step further. In this manner, by successive approximations,

we obtain the following results :

Date.

1863 Dec. 12.0
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Date. *
1864 Oct. 27.0 + 34.84

Dec. 6.0 68.79

1865 Jan. 15.0 + 112.64

26.32

47.87

58.39

w2^
+ 4.44,

6.86,

+ 8.68.

The complete integration may now be effected, and we may use both

equation (37) and equation (39), the former giving the integral for

the dates Jan. 1.0, Feb. 10.0, March 21.0, &c., and the latter the

integrals for the dates in the foregoing table of values of the function.

The final results for the perturbations of the rectangular co-ordinates,

expressed in units of the seventh decimal place, are thus found to be

the following :

Berlin Mean Time.
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*Z= rfm'tf (

Z-^ 4, V
\ ^s 575 j

The approximate values of Sx, dy, and dz for Sept. 17.0 given imme-

diately by the table of integration extended to this date, will suffice

to furnish the required values of the disturbed co-ordinates by means
of

and to find p = pQ + dp y
we have

or

in which ^ is the modulus of the system of logarithms. Thus we

obtain, for Sept. 17.0,

d log ^ = + 0.0000084,

<o*X= + 59.09, >*Y= + 32.48, >*Z= + 2.08,

which require no further correction.

Next, we compute the values of

which also will not require any further correction, and thus we form,

according to (12), the equation

q = 0.29996&C + 0.29815fy 0.03237&.

The approximate values of dx, dy, and dz being substituted in thia

equation, we obtain

q= + 0.0000061,

corresponding to which Table XVII. gives

log/= 0.477115.

Hence we derive

7.2 /M2P
(fqx -3x*) = - 44.87, S3* (fqy

-
9y) = - 30.40,
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and the equations (14) give

= + 14.22, = + 2.08,

These values being introduced into the table of integration, the

resulting values of the integrals are changed so little that a repetition

of the calculation is not required.

We now derive approximate values of dx, %, and dz for Oct. 27.0,

and in a similar manner we obtain the corrected values of the differ-

ential coefficients for this date
;
and thus by computing the forces for

each place in succession from approximate values of the perturbations,

and repeating the calculation whenever it may appear necessary, we

may determine the perturbations rigorously for all powers of the

masses. The results in the case under consideration are the follow-

ing:

J^/CttC/*
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The approximate geocentric place of the planet for the same date is

a = 183 28', S = 5 39', log A = 0.3229,

and hence, neglecting terms of the second order, we derive, by means

of the equations (3)2, for the perturbations of the geocentric right
ascension and declination,

Aa = 17".03, A* = + 5".67.

167. The values of dx, dy, and dz, computed by means of the co-

ordinates referred to the ecliptic and mean equinox of the date
t,
must

be added to the co-ordinates given by the undisturbed elements and

referred to the same mean equinox. The co-ordinates referred to the

ecliptic and mean equinox of t may be readily transformed into those

referred to the ecliptic and mean equinox of another date t'. Thus,
let # denote the longitude of the descending node of the ecliptic of t

f

on that of
,
measured from the mean equinox of

t,
and let

TJ
be the

mutual inclination of these planes; then, if we denote by a?', y
f

,
z

r

the co-ordinates referred to the ecliptic of t as the fundamental plane,

the positive axis of x
9 however, being directed to the point whose

longitude is 6, we shall have

x' = x cos -f- y sin 0,

(42)

Let us now denote by a?", y", z" the co-ordinates when the ecliptic

of t is the plane of xy, the axis of x remaining the same as in the

system of x', y
f

,
z'. Then we shall have

y"= y
f

cos i)
z sin 17, (43)

2" = y' sin f) -f- d cos ^.

Finally, transforming these so that the axis of z remains unchanged
while the positive axis of x is directed to the mean equinox of

t,
and

denoting the new co-ordinates by a?,, y,, zn we get

. x, = x" cos (0 + p) f sin (0 +p\
y,
= x" sin (0 + p) + y" cos (0 +p\ (44)

,=",

in which p denotes the precession during the interval t' t. Elimi-

nating x", y", and z" from these equations by means of (43) and (42),

observing that, since y is very small, we may put cos 7
=

1, we get
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x, x cosp y sinp -f-
- z sin (0 -f~ P)>
8

y, xsmp-\-y cosp - z cos (0 + P)> (45)
s

z, =z - x sin 6 -f - y cos 0,
9 S

in which s = 206264.8, rj being supposed to be expressed in seconds

of arc. If we neglect terms of the order j?
3

,
these equations become

A^2 (V\
y*

x,= x ^x - y + -
(sin ^ + P cos 0) 2

>

"3 S S

& = y i|rY+f*- 7(008* .p sin*)*, (46)
o S o

2,
= 2 - x sin + - y cos 0.

s s

These formulae give the co-ordinates referred to the ecliptic and mean

equinox of one epoch when those referred to the ecliptic and mean

equinox of another date are known. For the values of p, y, and 0,

we have

p = (50".21129 + 0".0002442966r) (f t\

TJ=( (T.48892 0".000006143r) (*'-*),
= 351 36' 10" + 39".79 (t 1750) 5".21 (if 0,

in which r = \(t
f

t) 1750, t and t' being expressed in years from

the beginning of the era. If we add the nutation to the value of p,

the co-ordinates will be derived for the true equinox of t'.

The equations (45) and (46) serve also to convert the values of dx
y

%, and dz belonging to the co-ordinates referred to the ecliptic and

mean equinox of t into those to be applied to the co-ordinates re-

ferred to the ecliptic and mean equinox of t' . For this purpose it

is only necessary to write dx, <%, and dz in place of x, yy
and z re-

spectively, and similarly for x,, yn z,.

In the computation of the perturbations of a heavenly body during
a period of several years, it will be convenient to adopt a fixed equi-

nox and ecliptic throughout the calculation
;
but when the perturba-

tions are to be applied to the co-ordinates, in the calculation of an

ephemeris of the body taking into account the perturbations, it will

be convenient to compute the co-ordinates directly for the ecliptic

and mean equinox of the beginning of the year for which the

ephemeris is required, and the values of dx, dy, and dz must be

reduced, by means of the equations (45), as already explained, from

the ecliptic and mean equinox to which they belong, to the ecliptic

and mean equinox adopted in the case of the co-ordinates required.
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In a similar manner we may derive formulae for the transformation

of the co-ordinates or of their variations referred to the mean equinox
and equator of one date into those referred to the mean equinox
and equator of another date; but a transformation of this kind will

rarely be required, and, whenever required, it may be effected by first

converting the co-ordinates referred to the equator into those referred

to the ecliptic, reducing these to the equinox of t
1

by means of (45)

or (46), and finally converting them into the values referred to the

equator of t'. Since, in the computation of an ephemeris for the

comparison of observations, the co-ordinates are generally required
in reference to the equator as the fundamental plane, it would appear

preferable to adopt this plane as the plane of xy in the computation
of the perturbations, and in some cases this method is most advan-

tageous. But, generally, since the elements of the orbit of the dis-

turbed planet as well as the elements of the orbits of the disturbing
bodies are referred to the ecliptic, the calculation of the perturbations

will be most conveniently performed by adopting the ecliptic as the

fundamental plane. The consideration of the change of the position

of the fundamental plane from one epoch to another is thus also ren-

dered more simple. Whenever an ephemeris giving the geocentric

right ascension and declination is required, the heliocentric co-ordi-

nates of the body referred to the mean equinox and equator of the

beginning of the year will be computed by means of the osculating

elements corrected for precession to that epoch, and the perturbations

of the co-ordinates referred to the ecliptic and mean equinox of any
other date will be first corrected according to the equations (46), and

then converted into those to be applied to the co-ordinates referred to

the mean equinox and equator. If the perturbations are not of con-

siderable magnitude and the interval t' t is also not very large, the

correction of dx, dyy
and dz on account of the change of the position

of the ecliptic and of the equinox will be insignificant; and the

conversion of the values of these quantities referred to the ecliptic

into the corresponding values for the equator, is effected with great

facility.

In the determination of the perturbations of comets, ephemerides

being required only during the time of describing a small portion of

their orbits, it will sometimes be convenient to adopt the plane of the

undisturbed orbit as the fundamental plane. In this case the posi-

tive axis of x should be directed to the ascending node of this plane

on the ecliptic, and the subsequent change to the ecliptic and equinox,

whenever it may be required, will be readily effected.
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168. The perturbations of a heavenly body may thus be deter-

mined rigorously for a long period of time, provided that the oscu-

lating elements may be regarded as accurately known. The peculiar

object, however, of such calculations is to facilitate the correction of

the assumed elements of the orbit by means of additional observa-

tions according to the methods which have already been explained;

and when the osculating elements have, by successive corrections,

been determined with great precision, a repetition of the calculation

of the perturbations may become necessary, since changes of the ele-

ments which do not sensibly affect the residuals for the given differ-

ential equations in the determination of the most probable corrections,

may have a much greater influence on the accuracy of the resulting

values of the perturbations.

When the calculation of the perturbations is carried forward for a

long period, using constantly the same osculating elements, and

those which are supposed to require no correction, the secular per-

turbations of the co-ordinates arising from the secular variation of

the elements, and the perturbations of long period, will constantly

affect the magnitude of the resulting values, so that fix, Sy, and $2

will not again become simultaneously equal to zero. Hence it

appears that even when the adopted elements do not differ much

from their mean values, the numerical amount of the perturbations

may be very greatly increased by the secular perturbations and by
the large perturbations of long period. But when the perturbations

are large, the calculation of the complete values of , ,2 > ,
2 > and

j- (which is effected indirectly) cannot be performed with facility,

requiring often several repetitions in order to obtain the required

accuracy, since any error in the value of the second differential coeffi-

cient produces, by the double integration, an error increasing propor-

tionally to the time in the values of the integral. Errors, therefore,

in the values of the second differential coefficients which for a mode-

rate period would have no sensible effect, may in the course of a long

period produce large errors in the values of the perturbations, and it

is evident that, both for convenience in the numerical calculation and

for avoiding the accumulation of error, it will be necessary from time

to time to apply the perturbations to the elements in order that the

integrals may, in the case of each of the co-ordinates, be again equal

to zero. The calculation will then be continued until another change
of the elements is required.
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The transformation from a system of osculating elements for one

epoch to that for another epoch is very easily effected by means of

the values of the perturbations of the co-ordinates in connection

with the corresponding values of the variations of the velocities

-T-, -J-, and -rr- The latter will be obtained from the values of the
at at at

second differential coefficients by means of a single integration ac-

cording to the equations (27) and (32). Thus, in the case of the

example given, we obtain for the date 1865 Jan. 15.0, by means of

(32), in units of the seventh decimal place,

= + 385.9, 40^= + 214.6, 40^= + 9.7.
at at

The velocities in the case of the disturbed orbit will be given by the

formulae

dx_ _dx d8x dy dy d$y dz _ dz ddz
(

.

"dt~~~3r~T"dT ~dt~~~dt~~~dt' ~dt
'""

"dt
'"W ^ '

To obtain the expressions for the components of the velocity

resoHed parallel to the co-ordinates, we have, according to the equa-
tions (6)2,

dx . . f
. , dr . f

. , dv
-j-= sma sm (A -f u) -f- r sin a cos (A -f- u) -j-,
at at at

-~ sin b sin (5 -J- u) r- -f- r sin b cos (L -f- u) =-
at at at

dz . rsi . \dr * ff , \ dv

-jr
= sm c sm ( C + w) -TT + r sm e cos ( C -f- u)

-j--

These equations are applicable in the case of any Fundamental plane,

if the auxiliaries sin a, sin 6, sin c, A, B, and C are determined in

reference to that plane. To transform them still further, we have

rfr

dt

=
dt

in which to denotes the angular distance of the
J
erihelion from the

ascending node. Substituting these values, we ot tain, by reduction,
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dx
/- ((e cos <o -f cos u) cosA (e sin w -j- sin w) sin A) sin a,

(it V T)

i- ((e cos a> -f- cos u) cosB (e sin w -f- sin u) sin5) sin 6,

efe kv\ -\-iMf, N /~ / <v xv*
-ir = 7= ((e cos w -L- cos ) cos C (e sm at -f sm w) sin C) sm c.

Let us now put

"Hhwi
(e sin a> -f- sin w) = Fsin U,

(48)

(e cosa> -f- cos if)
= Fcos i7,

KJ
and we have

= Fsin a cos (J. -f U"),

-|- = Fsin b cos (5 + CO, (49)
dt

^=Fsinccos(a4- CO-

These equations determine the components of the velocity of a hea-

venly body resolved in directions parallel to the co-ordinate axes,

and for any fundamental plane to which the auxiliaries A, B, &c.

belong. When the ecliptic is the fundamental plane, we have

sin c = sin i, (7=0.

The sum of the squares of the equations (48) gives

(*-)'P

and hence it appears that F is the linear velocity of the body.
The determination of the osculating elements corresponding to any

date for which the perturbations of the co-ordinates and of the veloci-

ties have been found, is therefore effected in the following manner :

First, by means of the osculating elements to which the perturba-

tions belong, we compute accurate values of r
,

a?
, yQ ,

z
,
and by

means of the equations (48) and (49) we compute the values of -~,

-jp and -7' Then we apply to these the values of the perturba-

tions, and thus find x, y, z, -J-, ~jt,
and

-^--
These having been
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found, the equations (32)! will furnish the values of ft, i, and p;
and the remaining elements may be determined as explained in Art*

112. Thus, from

Vr sin * = kVp (1

dx . dy ,
dz

we obtain Vr and and from

r sin u = ( x sin ft + y cos ft) sec t,

r cos it = a; cos ft

we derive r and u; and hence Ffrom the value of Vr. When i is

not very small, we may use, instead of the preceding expression for

r sin u,
r sin u = z cosec i.

Next, we compute a from

2a r =
;

and from
2ae sin o> = (2a r) sin (2^ -}- w) r sin w,

2ae cos a>= (2a r) cos (2^ + M) r cos w>

we find to and e. The mean daily motion and the mean anomaly or

the mean longitude for the epoch will then be determined by means

of the usual formulae.

In the case of a very eccentric orbit, after r and u have been found,

-r- will be given by equations (48)6,
and the values of e and v will

be given by the equations (49)6
. Then the perihelion distance will

be found from

P

and the time of perihelion passage will be found from v and e by
means of Table IX. or Table X.

In the numerical values of the velocities -rr -77, &c., more decimals
at at

must be retained than in the values of the co-ordinates, and enough
must be retained to secure the required accuracy of the solution. If

it be considered necessary, the different parts of the calculation may
be checked by means of various formulse which have already been

given. Thus, the values of ft and i must satisfy the equation
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z cos i y sin i cos & -f x sin i sin & = 0.

We have, also,

r'^ + ^-f z\

z = r sin it sin i,

which must be satisfied by the resulting values of F, r, and u; and

the values of a and e must satisfy the equation

p = a (1 e
2
) a cos* ?>.

169. When the plane of the undisturbed orbit is adopted as the

fundamental plane, we obtain at once the perturbations

d (r cos u), 8 (r sin u), fa,

and from these the perturbations of the polar co-ordinates are easily

derived. There are, however, advantages which may be secured by

employing formulae which give the perturbations of the polar co-or-

dinates directly, retaining the plane of the orbit for the date t as the

fundamental plane.

Let w denote the angle which the projection of the disturbed

radius-vector on the plane of xy makes with the axis of x, and
/9 the

latitude of the body with respect to the plane of xy; then we shall

have
x = r cos ft cos w,

y= r cos ft sin w, (50)

z = r sin ft.

Let us now denote by X, Yy
and Zj respectively, the forces which are

expressed by the second members of the equations (1), and the first

two of these equations give

C being the constant of integration. The equations (50) give

dx d(rcosft} Q . dw
- = cos w j.

- r cos ft sm w -r
dt dt at

dy . d(rcoaft) . Q dw~-= smw j.
- -f r cos ft cosw -=-,

dt at at

and hence

dy dx . dw
- -
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Therefore we have

r'cos2 ^T= (Yx Xy)dt+ C.
ut %/

If we denote by S the component of the disturbing force in a direc-

tion perpendicular to the disturbed radius-vector and parallel with

the plane of xy, we shall have

X= S sin iv, Y= S cos w,
and

Therefore

r2 cos2

/5^-= Cs9 r<x*pdt+ C.
at J

In the undisturbed orbit we have /9
=

0, and

and thus the preceding equation becomes

r2 cos2
ft

= $ r cos ft dt + IcVp. (1 + ro). (51)

The equations (1) also give

-f- y^
2

y + zfflz
== ^ y ^

r dt* r2 r r r

If we denote by R the component of the disturbing force in thp

direction of the disturbed radius-vector, we have

We have, also,

R = X- -1- Yy- + Z*-. (53)
r r r

xd*x + yd*y -f zd*z d (xdx -f ydy + 2^2) (<fo
2 + c?2/

J
-f-

= d (rdr) (dr* -f r2Jv2
) rdV rW,

f? denoting the true anomaly in the disturbed orbit, or, since

-f yd*y + 2C?
2
2 = r<Fr r1 cos2

/5 duP

Hence the equation (52) becomes

dw* dp
, P(l-f m) ....-- rp-f

v
<^=J?. 154)
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170. The equations (51) and (54), in connection with the last of

equations (1), completely represent the motion of a heavenly body
about the sun when acted upon by disturbing forces, and, when com-

pletely integrated, they will give the values of w, r, and z for any

point of the orbit; but, since they cannot be integrated directly, we

must, as in the case of the rectangular co-ordinates, find the equations
which give by integration the values of dw, 3r, and z. In the case

of the undisturbed orbit, we have

d\ dwf fr(l+m)
df -d?

'

r 2

If we denote by dw the variation of w arising from the action of the

disturbing force, we have w = W
Q + dw; and hence we easily find,

from (51),

r2 cos2

We have, further,

which gives

Let us now put

. (56)

r'cos'/?'

and we have
9

(58)

The equation (56), therefore, becomes

in which we put
,
fio

If we substitute r + dr for r in equation (54), and combine the

result with the second of equations (55), we get



VARIATION OF POLAR CO-ORDINATES. 465

and if we put

9
"=njhi^r> f'g"=l-^, (61)

we have

'"=rw- (63)

and hence

Finally, we have, from the last of equations (1),

db *'(l+m)
3?
=*- -?

--
*> (64)

by means of which the value of z may be found, since, in the case of

the undisturbed motion, we have z = 0.

The values of/' corresponding to different values of q' may be

tabulated with the argument <?', and, since the equation (62) is of the

same form as (58), the same table will give the value of/" when q"
is used as the argument. Table XVII. gives the values of log/' or

log/" corresponding to values of q
f or q" from 0.03 to -f- 0.03.

Beyond the limits of this table the required quantities may be com-

puted directly.

171. When we consider only terms of the first order with respect

to the disturbing force, we have

and the equations become

~j "I I Bffodt &Tt

at r J r
Q

O~ x. / O7.2/r 1 I ^^ V

(65)

d*z f (1 + m)
~d^~~ ~^~

In determining the perturbations of a heavenly body, we first con-

sider only the terms depending on the first power of the disturbing

force, for which these equations will be applied. The value of dr

30
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will be obtained from the second equation by an indirect process, as

already illustrated for the case of the variation of the rectangular
co-ordinates. Then dw will be obtained directly from the first

equation, and, finally, z indirectly from the last equation. Each of

the integrals is equal to zero for the date tw to which the osculating

elements belong.

When the magnitude of the perturbations is such that the terms

depending on the squares and products of the masses must be con-

sidered, the general equations (59), (63), and (64) will be applied.

The values of the perturbations for the dates preceding that for

which the complete expressions are to be used, will at once indicate

approximate values of dw, dr, and z; and with the values

r = r
Q -j- dr

t
w= w9 -{- dw, sin /5

= _,

the components of the disturbing force will be computed. We compute
also q

f from the first of equations (57), and q" from the first of (61);

then, by means of Table XVII., we derive the corresponding values

of log/' and log/". The coefficients of dr in the expressions for

q and q" will be given with sufficient accuracy by means of the

approximate values of dr and sin
/?,

and will not require any further

correction. Then we compute 8Q
r cos/9, and find the integral

CjS

and the complete value of -^~ will be given by (59). The value

of
Tp-

will then be given by equation (63). The term r I -57
)

will

always be small, and, unless the inclination of the orbit of the dis-

turbed body is large, it may generally be neglected. Whenever it shall

be required, we may put it equal to -
( "JT

/
The corrected values

of the differential coefficients being introduced into the table of inte-

gration, the exact or very approximate values of 3w, dr, and z will

be obtained. Should these results, however, differ much from the

corresponding values already assumed, a repetition of the calculation

may become necessary. In this manner, by computing each place

separately, the terms depending on the squares, products, and higher

powers of the disturbing forces may be included in the results. It

will, however, be generally possible to estimate the values of dw, dr,
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and 2 for two or three intervals in advance to a degree of approxi-
mation sufficient for the computation of the forces for these dates.

In order that the quantity co, representing the interval adopted in

the calculation of the perturbations, may not appear in the integra-

tion, we should introduce it into the equations as in the case of the

variation of the rectangular co-ordinates. Thus, in the determina-

tion of 3w we compute the values of ^rr^ and since the second

member of the equation contains the integral \ S r cos /9 ctt,
if we

introduce the factor a>
2 under the sign of integration, this integral,

omitting the factor at in the formulae of integration, will become

(*)J
S r cos /9 dtj as required. The last term of the equation will be

multiplied by a).

In the case of dr, each term of the equation for - must contain
(Jut

the factor co
2

. If the second of equations (65) is employed, the first

and third terms of the second member will be multiplied by co
2

-,
but

since the value of SQ is supposed to be already multiplied by o>
2

,
the

second term will only be multiplied by a).

The perturbations may be conveniently determined either in units

of the seventh decimal place, or expressed in seconds of arc of a

circle whose radius is unity. If they are to be expressed in seconds,
the factor s = 206264.8 must be introduced so as to preserve the

homogeneity of the several terms, and finally dr and dz must be con-

verted into their values in terms of the unit of space.

172. It remains yet to derive convenient formula for the deter-

mination of the forces S
, R, and Z. For this purpose, it first becomes

necessary to determine the position of the orbit of the disturbing

planet in reference to the fundamental plane adopted, namely, the

plane defined by the osculating elements of the disturbed orbit at the

instant 1
Q

. Let V and & ' denote the inclination and the longitude of

the ascending node of the disturbing body with respect to the ecliptic,

and let /denote the inclination of the orbit of the disturbing body
with respect to the fundamental plane. Further, let N denote the

longitude of its ascending node on the same plane measured from the

ascending node of this plane on the ecliptic or from the point whose

longitude is & ,
and let Nf be the angular distance between the as-

cending node of the orbit of the disturbing body on the ecliptic and

the ascending node on the fundamental plane adopted. Then, from

the spherical triangle formed by the intersection of the plane of the



THEORETICAL ASTRONOMY.

ecliptic, the fundamental plane, and the plane of the orbit of the dis-

turbing body with the celestial vault, we have

sin ^Isin J (.y+ N') = sin (&' - ) sin J (i' + i ),

from which to find N
9
Nf

,
and /.

Let
ft' denote the heliocentric latitude of the disturbing planet

with respect to the fundamental plane, w
r
its longitude in this plane

measured from the axis of x, as in the case of w, and u
Q
f the argu-

ment of the latitude with respect to this plane. Then, according to

the equations (82)w we have

tan (V N) = tan u '
cos I,

If ur denotes the argument of the latitude of the disturbing planet

with respect to the ecliptic, we have

u ' = u' N'. (68)

This formula will give the value of u f

,
and then w f and ft' will be

found from (67). We have, also,

cos u
Q

r = cos ft cos (w' N\

which will serve to indicate the quadrant in which w r J\Tmust be

taken.

The relations here derived are evidently applicable to the case in

which the elements of the orbits of the disturbed and disturbing

planets are referred to the equator, the signification of the quantities

involved being properly considered.

The co-ordinates of the disturbing planet in reference to the plane

of the disturbed orbit at the instant t as the fundamental plane will

be given by
x'= r' cos ft cos w'j

i/
= r' cospsinw', (691

To find the force R, we have

R= X-+ Yy- + Z-.
r

' r
'

r
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and

Substituting in these the values of x'
t y

f

,
z' given by (69), and the

corresponding values of x, yy
z given by (50), and putting

*=^~' (70)

we get

. R= m'k* I h r' cos /3' cos /? cos (w w) + /i r' sin sin /5' -^ ).
(71)

The equation
S rcosj3= Yx- Xy

gives
SQ
= m'k* h r' cos f sin (w

r

w), (72)

from which to find S . Finally, we have

Z=mf

k* lhrf

sin p -
8
),

(73)

from which to find Z.

When we determine the perturbations only with respect to the

first power of the disturbing force, the expressions for R, SQ,
and Z

become

jB= w'*i

(
hr' cospcosW wJ^},

\ Po I

(74)
S = m'k* h r' cos jf sin (w

f

wj,
Z =

To compute the distance p, we have

, = (-,/
_

.) + (y'
-

which gives

^j
_ r

'

_j_ r
2 _ 2r / cos ^9 cos ft cos (/ w) 2r r' sin sin ^, (75)

and, if we neglect terms of the second order, we have

P
* = r'

2 + r 2 2r / cos p cos (w
f w ). (76)

If we put
cos r = cos cos

'

cos (w' w) + sin sin f, (77)

we have

2rr'cosr

+ (r r' cos r)
8

;
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and hence we may readily find p from

^ '

the exact value of the angle n, however, not being required.

Introducing f into the expression for R, it becomes

(79)

by means of which R may be conveniently determined.

173. When we neglect the terms depending on the squares and

higher powers of the masses in the computation of the perturbations,

the forces jR, SQ,
and Z will be computed by means of the equations

(74), pQ being found from (76) or from (78), when we put

cos f= cos p cos (w
f w ).

But when the terms of the order of the square of the disturbing

force are to be taken into account, the complete equations must be

used. Thus, we find p from (78), S from (72), Z from (73), and R
from (71) or (79). The values of dw, dr, and z, computed to the

point at which it becomes necessary to consider the terms of the

second order, will enable us at once to estimate the values of the

perturbations for two or three intervals in advance to a degree of

approximation sufficient for the calculation of the forces; and the

values of R, 8Q,
and Z thus found will not require any further cor-

rection.

When the places of the disturbing planet are to be derived from

an ephemeris giving the heliocentric longitudes and latitudes, the

values of & ' and i
r will be obtained from two places separated by a

considerable interval, and then the values of uf will be determined

by means of the first of equations (82) L
or by means of (85) x

. When
the inclination V is very small, it will be sufficient to take

u' = l'R' + 8 tan2

Jt* sin 2 (l
r -

ft'),

in which s = 206264.8. But when the tables give directly the lon-

gitude in the orbit, u f + &', by subtracting &' from each of these

longitudes we obtain the required values of u r
.

It should be observed, also, that the exact determination of the

values of the forces requires that the actual disturbed values of r',

10', and /?'
should be used. The disturbed radius-vector r' will be
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given immediately by the tables of the motion of the disturbing

body, but the determination of the actual values of w' and ft' re-

quires that we should use the actual values of N', Ny
and I in the

solution of the equations (68) and (67). Hence the disturbed values

of & ' and i
f should be used in the determination of these quantities

for each date by means of (66). It will, however, generally be tho

case that for a moderate period the variation of &' and i
f

may be

neglected; and whenever the variation of either of these has a sensi-

ble effect, we may compute new values of N
9
N r

,
and / from time to

time, by means of which the true values may be readily interpolated

for each date. We may also determine the variations of N, Nf

,
and

/ arising from the variation of &' and i
1

, by means of differential

formulae. Thus the relations will be similar to those given by the

equations (71)2,
so that we have

sin-ZV'
. ,_., - ;

sin(' Q.) smJ

31 = sin N' sin i' $&' -f cos N' 8i
r

,

fh>m which to find dN', 3N, and 81.

When the perturbations are computed only in reference to the first

power of the mass, the change of Q f and i
f

may be entirely neg-

lected; but when the perturbations are to be computed for a long

period of time, and the terms depending on the squares and products

of the disturbing forces are to be included, it will be advisable to

take into account the values of dN, 3Nf

,
and dl, and, using also the

value of u' in the actual orbit of the disturbing body, compute the

actual values of w' and
ft'.

In the case of several disturbing bodies, the forces will be deter-

mined for each of these, and then, instead of R, S
,
and Z, in the

formulae for the differential coefficients, 2R, 28W and 2Z will be used.

174. By means of the values of dw, fir, and z, the heliocentric or

(he geocentric place of the disturbed planet may be readily found.

Thus, let the positive axis of x be directed to the ascending node of

the osculating orbit at the instant t on the plane of the ecliptic;

then, in the undisturbed orbit, we shall have

u denoting the argument of the latitude. Let # y,, z, be the co-or-
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dinates of the body referred to a system of rectangular co-ordinates

in which the ecliptic is the plane of xy, and in which the positive

axis of x is directed to the vernal equinox. Then we shall have

x,= x cos & y cosi sin & + z sin i
Q
sin

,

y,
= x sin & + y cosiQ cos & * sin i

Q
cos & ,

z,=y sin i + z cos t
,

or, introducing the values of x and y given by (50),

Xf=r cos /9 cos w cos & r cos ft sin w cos i sin ^ -f- 2 sin i sin ^ ,

y, =r cos /? cos w sin Q -f- r cos /5 sin w cos i cos & z sin i cos & , (81)

z
t
=r cos /? sin w sin i -f- 2 cos i .

Introducing also the auxiliary constants for the ecliptic according to

the equations (94^ and (96)w we obtain

x
t
= r cos /? sin a sin (J. -(- w) -f- 2 cos a,

y, =r cos /3 sin 6 sin (^ -f w) -f z cos 6, (82)

2,
= r cos /? sin i sin w + 2 cos i

,

by means of which the heliocentric co-ordinates in reference to the

ocliptic may be determined.

If the place of the disturbed body is required in reference to the

equator, denoting the heliocentric co-ordinates by xfn y,, y z,,,
and the

obliquity of the ecliptic by e, we have

xn = x,

y,,=yf
cose z, sine,

zn = yf
sin e -f- z, cos e.

Substituting for xn yn z, their values given by (81), and introducing

the auxiliary constants for the equator, according to the equations

'99) x
and (101)w we get

xn= r cos /? sin a sin (A -f- w} -\- z cos a,

ylt
= r cos /3 sin b sin (B -f- w) -f- z cos b, (83)

z
t ,
= r cos ft sin c sin ( (7 -j- w) -\- z cos c.

The combination of the values derived from these equations with the

corresponding values of the co-ordinates of the sun, will give the

required geocentric places of the disturbed body. These equations

are applicable to the case of any fundamental plane, provided that

the auxiliary constants a, A, b, jB, &c. are determined with respect

to that plane. In the numerical application of the formulae, the

value of w will be found from

w =
it, -f- dwt
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U
Q being the argument of the latitude for the fundamental osculating

elements, and care must be taken that the proper algebraic sign is

assigned to cos a, cos b, and cos c.

If the values of TT
O, & ,

and i
Q used in the calculation of the per-

turbations are referred to the ecliptic and mean equinox of the date

t
',
and the rectangular co-ordinates of the disturbed body are required

in reference to the ecliptic and mean equinox of the date t ", the

value of w must be found from

the value of W
Q
referred to the ecliptic of t

f

being reduced to that of

", by means of the first of equations (115)^ Then & and i
Q
should

be reduced from the ecliptic and mean equinox of t
'
to the ecliptic

and mean equinox of t
Q

"
by means of the second and third of the

equations (115)^ and, using the values thus found in the calculation

of the auxiliary constants for the ecliptic, the equations (82) will

give the required values of the heliocentric co-ordinates. If the co-

ordinates referred to the mean equinox and equator of the date t
Q

"

are to be determined, the proper corrections having been applied to

Q Q
and iw the mean obliquity of the ecliptic for this date will be

employed in the determination of the auxiliary constants a, J., &c.

with respect to the equator, and the equations (83) will then give

the required values of the co-ordinates.

If we differentiate the equations (83), we obtain, by reduction,

-^ = r cos ft sin a cos (A -f w) rr -f- sec ft sin a sin (A -j- w) j-

-f (cos a tan ft sin a sin (A + w)) -rrt

^- = r cos ft sin b cos (B -j- w) -7- -j- sec ft gin & sm C^ + tu) -jr

dz
(84)

-f (cos b tan ft sin b sin (J5 +w)) -77.

A' =rcos/5sinccos((7-f w)- + sec ft sin c sin (C+ w) -j-
dt at

-|-(cos c tan ft sin c sin (C+ to)) -?-,

by means of which the components of the velocity of the disturbed

body in directions parallel to the co-ordinato axes may be determined.

The values of -^ and -^ will be obtained from -^ and
-^ by a

single integration, and then we have



474 THEORETICAL ASTRONOMY.

dw &V
/
pT(l-hm) ,

d$w dr k\/l-\-m ,

I
~ -

-3P I -^T -di'
(85)

from which to find =- and :-
at at

175. EXAMPLE. In order to illustrate the calculation of the per-

turbations of r, w, and z, let us take the data given in Art. 166, and

determine these perturbations instead of those of the rectangular co-

ordinates.

In the first place, we derive from the tables of the motion of

Jupiter the values

' = 98 58' 22".7, i' = 1 18' 40".5,

which refer to the ecliptic and mean equinox of 1860.0. We find,

also, from the data given by the tables the values of u' measured

from the ecliptic of 1860.0. Then, by means of the formulae (66),

using the values of & and i given in Art. 166, we derive

N= 194 0' 49".9, N' = 301 38' 31".7, 1= 5 9' 56".4.

The value of u f
is given by equation (68), and then wf and $' are

found from the equations (67). Thus we have

Berlin Mean Time. log r w = UQ log r wf ft'

1863 Dec. 12.0, 0.294084 192 4' 24".5 0.73425 14 18' 54".6 V 38".l

1864 Jan. 21.0, 0.294837 207 40 52 .2 0.73368 17 21 44 .2 18 9 .1

March 1.0, 0.300674 223 3 5 .9 0.73305 20 25 5 .2 34 39 .9

April 10.0, 0.310864 237 51 38 .3 0.73237 23 28 59 .8 51 7 .6

May 20.0, 0.324298 251 52 47 .9 0.73164 26 33 32 .1 17 29 .7

June 29.0, 0.339745 264 59 30 .0 0.73086 29 38 44 .8 1 23 43 .5

Aug. 8.0, 0.356101 277 10 24 .6 0.73003 32 44 41 .2 1 39 46 .3

Sept. 17.0, 0.372469 288 28 4 .1 0.72915 35 51 24 .6 1 55 35 .2

Oct. 27.0, 0.388214 298 57 16 .3 0.72823 38 58 57 .5 2 11 7 .5

Dec. 6.0, 0.402894 308 43 48 .7 0.72726 42 7 23 .3 2 26 20 .3

1865 Jan. 15.0, 0.416240 317 53 39 .1 0.72625 45 16 43 .9 2 41 10 .6

The values of p may be found from (76) or (78) as already given in

Art. 166.

The forces R, S
,
and Z may now be determined by means of the

equations (74), h being found from (70), and if we introduce the

factor (o
2
for convenience in the integration, as already explained, we

obtain the following results :

Date. 6>2.K u*S r u*Z

1863 Dec. 12.0, + 1".4608 + 0".1476 4 0".0009 + 0".0282

1864 Jan. 21.0. + 1 .4223 .6757 4- .0101 - .2361
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Date.
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1864 Dec. 6.0, 1".6443 3".4009 -f 0".0190 17".85 11".88 +0".83
1865 Jan. 15.0, .45113 .5334 -fO .007918 .9224 .29+1 .05

It has already been found that, during the period included by these

results, the perturbations arising from the squares and products of

the disturbing forces are insensible, and hence the application of the

complete equations for the forces and for the differential coefficients

is not required. The equations (83) will give, by means of the

results for w u -f- dw, r = r -f- dr, and z, the values of the helio-

centric co-ordinates of the disturbed body, and the combination of

these with the co-ordinates of the sun will give the geocentric place.

When we neglect terms of the second order, we have, according to

the equations (84),

y
dx

lf
= X

Q
cot (A -j- w] dw -f _ dr -f z cos a,

ro

dy,,
= y cot (B -f w) dw -f ?? dr -f z cos b, (86)

r
o

dzn = z cot (C -{- w) dw -{- $r -\- z cos c,
r
o

the heliocentric co-ordinates x
0) y0)

Z
Q being referred to the same fun-

damental plane as the auxiliary constants, a, 6, A, &c. Thus, in the

case of Eurynome, to find the perturbations of the rectangular co-or-

dinates, referred to the ecliptic and mean equinox of 1860.0, from

1864 Jan. 1.0 to 1865 Jan. 15.0, we have

A = 296 34X 37x/
.5, B = 206 437

34".4, C=Q,
log cos a= 8.557354n, log cos b = 8.856746, log cos c = log cos i = 9.998590,

log XQ = 0.399807n, log y = 9.838709, log z = 9.148170,,

w= w + 6W= 317 53r 20//.2,

and hence, by means of (86), we derive

3x, = + 36".559, fy,
= + 41".083, dz, = 0".588.

If we express these in parts of the unit of space, and in units of the

seventh decimal place, we obtain

dx,
= + 1772.4, dy,

= + 1991.8, to,
= 28.5,

agreeing with the results already obtained by the method of the va-

riation of rectangular co-ordinates, namely,

9x, = + 1772.6, fy,
= f 1992.3, to,

= 28.2.
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176. By using the complete formulae, the perturbations of r, w,

and z may be computed with respect to all powers of the disturbing

force, and for a long series of years, using constantly the same fun-

damental osculating elements. But even when these elements are so

accurate as not to require correction, on account of the effect of the

large perturbations of long period upon the values of dw and dr, the

numerical values of the perturbations will at length be such that a

change of the osculating elements becomes desirable, so that the

integration may again commence with the value zero for the variation

of each of the co-ordinates. This change from one system of ele-

ments to another system may be readily effected when the values of

the perturbations are known. Thus, having found the disturbed

values of r, w, and z, we have

dv* .-did*
,
dp* Vp(l + ro)_= cos. /?

_ +_ ==__--,

p being the semi-parameter of the instantaneous orbit of the disturbed

body. In the undisturbed orbit we have

_ dv
ffo
~

dt

and hence we derive

dv*

Substituting for -5- the value above given, there results

1 ddw

J n

by means of which p may be determined. To find
--^

we have

d3 1 dz ian/3 dr

~dt rcos/5 ~df r dt

We have, also,

dr kVT+^n, . &l/l-f-m . dfr- _ e sm v= --
/

e sin v + -^-,
dt i/p VpQ

and if we put

(89)( ;

p,
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this equation becomes

e sin v = en sin v -f- aeQ sin v -f- Y. (90)

We have, further.

ecosv = -
1,

r

and, putting

*?-!+* ()
we obtain

e cos r= e cos v -}- /5 .

ro

This equation, combined with (90), gives

e sin (v v )
= aen sin v cos v -f- f cos v $ sin v ,

p
(92)

e cos (v v ) = e -f- ae sin2 v + r sin v + -
ft cos v ,

r
o

by means of which the values of e and v may be found, those of the

auxiliaries a, ft ft being found from (89) and (91). Then we have

e = sin <f>, a=p sec* <f>,

p = ^1/1 +m
, tan $E= tan (45 ?) tan |v,

a^

M=E esinE,

by means of which ^, a, //, and Jf may be determined. In the case

of orbits of great eccentricity, we find the perihelion distance from

and the time of perihelion passage will be derived from e and v by
means of Table IX. or Table X.

It remains yet to determine the values of 2, i, and a> or it. Let

6
C
denote the longitude of the ascending node of the instantaneous

orbit on the plane of the osculating orbit, defined by & and i
Q)
mea-

sured from the origin of w, and let ^ denote its inclination to this

plane. Then we have

tan fj sin (w ) = tan /?,

. , dw O dp (93)
tan i? cos (w 0^ = sec' /?

-^,

and hence
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.dfiw
g + ~df

tan (w O = ^sin 2/9 ^ , (94)

"dT

by means of which may be found. The quadrant in which is

situated is determined by the condition that sin (w )
and tan /3

must have the same sign. The value of % will be found from the

first or the second of equations (93).

If we denote by the argument of the latitude of the disturbed

body with respect to the adopted fundamental plane, we have

cos>?
(95)

and the angle must be taken in the same quadrant as w .

Then, from the spherical triangle formed by the intersection of the

planes of the ecliptic and instantaneous orbit of the disturbed body,
and the fundamental plane, with the celestial vault, we derive

cos \ i sin ( (u C) -f- A (& & ))
= sin J<? cos \ (i T?O),

cos ^ i cosQ (u C) -f- (& &<>)) cos 2^0 cos i (*o ~f~ ^o);

sin ^ i sin (^(u C) i (& &)) = sin A0 sin ^ (t ^ ),

sin \ i cos {^(u C) ^ (& & ))
:r= cos l^o s^n i (*o ~f~ 7o)'

These equations will furnish the values of i, u f,
and ^

hence, since and & are given, those of R> and u. The value of v

having been already found, we have, finally,

a)=U V,

and the elements are completely determined. These elements will

be referred to the ecliptic and mean equinox to which & and i
Q
are

referred, and they may be reduced to the equinox and ecliptic of any
other date by means of the formulae which have already been given.

The elements of the instantaneous orbit of the disturbed body may
also be determined by first computing the values of #, y,,, z,n in

reference to the fundamental plane to which & and i are to be re-

ferred, by means of the equations (83), and also those of
-|p

-,'-',
-~

by means of (85) and (84), and then determining the elements from

the co-ordinates and velocities, as already explained.

It should be observed that when the factor w2

,
or the square of the
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adopted interval, is introduced into the expressions for the forces and

differential coefficients, the first integrals will be

dSr dtiw dz

* "IT "dp

and that when these quantities are expressed in seconds of arc, they
must be converted into their values in parts of the unit of space

whenever they are to be combined with quantities which are not ex-

pressed in seconds. In other words, the homogeneity of the several

terms must be carefully attended to in the actual application of the

formulae.

When the elements which correspond to given values of the per-

turbations have been determined, if we compute the heliocentric

longitude and latitude of the body for the instant to which the ele

ments belong, the results should agree with those obtained by com-

puting the heliocentric place from the fundamental osculating ele-

ments and adding the perturbations.

177. The computation of the indirect terms when the perturba-

tions of the co-ordinates r, w, and z are determined, is effected with

greater facility than in the case of the rectangular co-ordinates,

although the final results are not so convenient for the calculation of

an ephemeris for the comparison of observations. This indirect cal-

culation, which, when the perturbations of any system of three co-

ordinates are to be computed, cannot in any case be avoided without

impairing the accuracy of the results, may be further simplified by

determining, in a peculiar form, the perturbations of the mean

anomaly, the radius-vector, and the co-ordinate z perpendicular to the

fundamental plane adopted.

Let the motion of the disturbed body be, at each instant, referred

to the plane of its instantaneous orbit; then we shall have /9
=

0,

and the equations (51) and (54) become

T>^ = far dt + kl/p^l + m),
at J ,0-

d?r dw*
,

&'(! +m) _

dt*
T

dt3 H
r*

'

in which R denotes the component of the disturbing force in the

direction of the disturbed radius-vector, and S the component in the

plane of the disturbed orbit and perpendicular to the disturbed radius-

vector, being positive in the direction of the motion. The effect of
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the components R and S is to vary the form of the orbit and the

angular distance of the perihelion from the node. If we denote by
Z the component of the disturbing force perpendicular to the plane
of the instantaneous orbit, the eifect of this will be to change the

position of the plane of the orbit, and hence to vary the elements

which depend on the position of this plane.

Let us take a fixed line in the plane of the instantaneous orbit,

and suppose it to be directed from the centre of the sun to a point
whose angular distance back from the place of the ascending node is

0, and let the value of a be so taken that, so long as the position of

the plane of the orbit is unchanged, we shall have

The line thus taken in the plane of the orbit may be regarded as

fixed during all changes in the position of this plane. Let denote

the angle between this fixed line and the semi-transverse axis
;
then

will

* = + ', (98)

and when the position of the plane of the orbit is unchanged, we have

But if, on account of the action of the component Z, the position of

the plane of the orbit is changed, we have, according to the equations

(72)2,
the relations

&, (99)

dn =dz + (l wai)dtt =dfc + 28inf

lida.

We have, further,

v being the true anomaly in the instantaneous orbit.

The two components of the disturbing force which act in the plane

of the disturbed orbit will only vary / and the elements which deter-

mine the dimensions of the conic section. We have, therefore, in the

case of the osculating elements, for the instant t
,

Let us now suppose /I to denote the true longitude in the orbit, so

that we have
J = t;-f7r= v+a>-t-a,

31
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or

* = +* ('); (101)

then, since is equal to TZ when the position of the plane of the orbit

is unchanged, it follows that a & represents the variation of the

true longitude in the orbit arising from the action of the component
Z of the disturbing force. The elements may refer to the ecliptic or

the equator, or to any other fundamental plane which may be adopted.

178. For the instant t we have, in the case of the disturbed motion,

the following relations :

E e sinE= M+ ft (t y,
r cos v = a cosE ae,

fl 02")
r sin v= al/1 e

2 sin E,

*=*+* o a).

Let us first consider only the perturbations arising from the action of

the two components of the disturbing force in the plane of the dis-

turbed orbit, and let us put

(103)

Further, let Jf + /* (t Q -f- 8M be the mean anomaly which, by
means of a system of equations identical in form with the preceding,

but in which the values of a
,
e
Q ,

are used instead of the instanta-

neous values a, 6, and , gives the same longitude ^,, so that we have

r, cos v,
= a cos E, a e

,

r, sin v,
= a T/l e

2 sin E
f

If, therefore, we determine the value of dM so as to satisfy the con-

dition that ^,
= v + ,

the disturbed value of the true longitude in

the orbit, neglecting the effect of the component ^of the disturbing

force, will be known. The value of r, will generally differ from that

of the disturbed radius-vector r, and hence it becomes necessary to

introduce another variable in order to consider completely the effect

of the components R and S. Thus, we may put

r= r,(l + 0, (105)

and v will always be a very small quantity. When dM and v have

been found, the effect of the disturbing force perpendicular to the

plane of the instantaneous orbit may be considered, and thus the

Complete perturbations will be obtained.
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In the equations (97), ^~JT expresses the areal velocity in the in-

stantaneous orbit, and it is evident that, since the true anomaly is not

affected by the force ^perpendicular to the plane ol the actual orbit,

\r^ -jj-
must also represent this areal velocity, and hence the equations

become

^ = fSrdt

,W r
\~dt}^ ~^~

179. If we differentiate each of the equations (104), we get

dr. . dv, . ,., dE,
cos v,

-
r,smv,-j-

= a
a
sm E, -=t* * '

(107)

sin v, -j- + r, cos v,
- = a T/l e

*
cos .E, =--',

(it dt dt

~dt~'
=
~di'

From the second and the third of these equations we easily derive

cosE-ar cos* sm) '.
' '

dt

it 77*

Substituting in this the values of r, sin vn r, cos v,, and ^p and re-

ducing, we get

r
dr
L _

or

W =

JTV

dr,
From the same equations, eliminating ,

we get

r, -^r
= (a l^l e

* r
>
cos v

t
cos^ + aor^

sm v
/
sm -^/)

-gj-'

which reduces to

+-~i (109)

. /-
,

1 ^Jf\ /1AQ> .m v, 1 H ^T-
. (108)

\ HQ
dt 1
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Combining this with the first of equations (106), we get

from which dM may be found as soon as v is known.

The equation (105) gives

dr dr, dv

= (l+v)^ + 2^. + r .

(Li)

Differentiating equation (108) and substituting for -^ its value

already found, we obtain

~d&
=

~~^ \
+

v '~dr)
+

and the last of the preceding equations becomes

^= r,j H
>< e cosv, ^ + ^

. .
,

rfv 2___
eoSm __,__ + 2 __ + -

The equation (110) gives

2 dv 2
s

, ,.
"

which is easily reduced to

~fT d?~^~
<

*~dt ~^v~
'

~dt'~dT'
=

l + v*

and hence we derive

The equation (109) gives
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dv,\*_ ffip (l + m) I 1 d3M\*

and, since

this becomes

,

m 3,0081),,,~~ , (H3)

Combining equations (112) and (113) with the second of equations

(106), we get

^v_l + v p ,= "-*-

From (110) we derive

and the preceding equation becomes

^or at

which is the complete expression for the determination of v.

180. It remains now to consider the effect of the component of the

disturbing force which is perpendicular to the plane of the disturbed

orbit. Let xn yn z
f
denote the co-ordinates of the body referred to

the fundamental plane to which the elements belong, and x, y the

co-ordinates in the plane of the instantaneous orbit. Further, let a
denote the cosine of the angle which the axis of x makes with that

of xn and
/9

the cosine of the angle which the axis of y makes with

that of y,, and we shall have

z,
= ax + {3y. (116)

If the position of the plane of the orbit remained unchanged, these



486 THEORETICAL ASTRONOMY.

cosines a and
/9 would be constant; but on account of the action of

the force perpendicular to the plane of the orbit, these quantities are

functions of the time. Now, the co-ordinate z, is subject to two dis-

tinct variations : if the elements remain constant, it varies with the

time; and, in the case of the disturbed orbit, it is also subject to a

variation arising from the change of the elements themselves. We
shall, therefore, have

dt ~\ dt

in which I -^ 1 expresses the velocity resulting from the constant

elements, and - that part of the actual velocity which is due

to the change of the elements by the action of the disturbing force.

But during the element of time dt the elements may be regarded as

constant, and hence the velocity
-~ in a direction parallel to the

axis of z
f may be regarded as constant during the same time, and as

receiving an increment only at the end of this instant. Hence we

shall have

d*L _(dzL \

dt~\dt]

Differentiating equation (116), regarding a and
/9 as constant, we

get
dz, \ dz, dx dy

and differentiating the same equation, regarding x and y as constant,

we get

(118)

Differentiating equation (117), regarding all the quantities involved

as variable, the result is

d*z,_da dx d? dy d*x <Py Q19)W"~dt ~dt^~~di ~dt *M+*dF

Now, we have
Z, = aX+ 0Y+ Zcosi, (120)

in which Z, denotes the component of the disturbing force parallel

to the axis of z,, and i the inclination of the instantaneous orbit to
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the fundamental plane. Substituting for X and Y their values given

by the equations (1), and reducing by means of (116), w* obtain

or

Comparing this with (119), there results

da, dx . dft dy
TB-sf + TB-aH

181. The equation (120) gives

r. (122J

The component of the disturbing force perpendicular to the plane of

the disturbed orbit does not affect the radius-vector r ; and hence,

when we neglect the effect of this component, and consider only the

components R and S which act in the plane of the orbit, we have

d\
dp
~~

^3

-- z
o + ao^- T

in which z denotes the value of z, obtained when we put Z=0.
Let us now denote by dz, that part of the change in the value of z,

which arises from the action of the force perpendicular to the plane

of the disturbed orbit, so that we shall have

Substituting these in equation (122) and then subtracting equation

(123) from the result, we get

(124))

The equations (116) and (117) give

*-*+ ,* ^* fc +$*
If we eliminate 5/9 between these equations, there results

dy dx \ dy ddz,----
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and since the factor of da in this equation is double the areal velocity

in the disturbed orbit, we have

"25>

Eliminating da from the same equations, we obtain, in a similar

manner,

(126)

Substituting these values in equation (124), it becomes

. _1 ll^dy v dx\, ,
H--/ I X- Y-rr ] dz, -f- (Fa;

A;l/l m\ dt dt]
.

dt

If we introduce the components R and S of the disturbing force, we
have

r r

and hence

r

Yx Xy =Sr.

Therefore the equation (127) becomes

tffc, &2(l+mV

dr\ Srp 5 dr\

\ r jfei/p(l+m)

'

* /

Z
'

We have, further,

which, by means of the equations (108) and (109), gives

dr e sinv, 9 dv, . dv ^

Substituting this value in the equation (128), we obtain
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Sr Iddz, 3z,
(129)

\ ^
"

1 + '
'

which is the complete expression for the determination of dz
t .

182. The equations (110), (115), and (129) determine the complete

perturbations of the disturbed body. The value of v must first bo

obtained by an indirect process from the equation (115), and then dM
is given directly by means of (110). The value of dz will also be

Determined by an indirect process by means of (129).

In order to obtain the expressions for the forces It, S, and Z, let w
denote the longitude of the disturbed body measured in the plane of

the instantaneous orbit from its ascending node on the fundamental

plane to which & and i are referred, it being the argument of the

latitude in the case of the disturbed motion. Let w f denote the lon-

gitude of the disturbing body measured from the same origin and in

the plane of the orbit of the disturbed body, and let $' denote its

latitude in reference to this plane. Finally, let N, N', /, and u '

have the same signification in reference to the plane of the instanta-

neous orbit that they have in reference to the plane of the undisturbed

orbit in the case of the equations (66). Then we shall have

= cos -- sn *

^Jsini (N N') = sin J (ft'

from which to determine N, Nf

,
and /. We have, also,

tan (w
r

N) tan u9

'

cos I, (131)

tan p = tan /sin (uf JV),

from which to find w f and /?',
uf

being the argument of the latitude

of the disturbing body in reference to the plane to which & and i

are referred.

Since, when the motion of the disturbed body is referred to the

plane of its instantaneous orbit, /?
=

0, the equations (71), (72), and

(73) become

R = m'telhi* cosfl cos(w
f

w) -
t },

* p '
(132)

8 = m'tfh r' cos ft sin (w
f

w),

Z =m'k2 hrf

sin/5',
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by means of which the required components of the disturbing force

may be found, the value of h being given by

To find p, we have

f = r'
2 + r8 2rr' cos p cos (yf 10), (133)

or, putting
cos Y cos f? cos (w

f

w),
the equations

P sin w = / sin ?,

p cos n= r r' cos y.

The values of r' and u' for the actual places of the disturbing

body will be given by the tables of its motion, and the actual values

of & ' and V will also be obtained by means of the tables. The de-

termination of the actual values of r and w requires that the pertur-

bations shall be known. Thus, when dM and v have been found,

we compute, by means of the mean anomaly MQ -f- f2 (t
t
) + dM

and the elements a
,

e
0)

the values of v, and r,. Then, since

v -f- % = v, -f- TT
O,
we have, according to (100),

W = V, + 7T ff. (135)
We have, also,

Tn the case of the fundamental osculating elements, we have

which may be used as an approximate value of <r; but the complete
determination of w requires that 0= & -f 8a shall also be deter-

mined. The exact determination of the forces also requires that the

actual values of Q> and i as well as those of Q,
' and i', shall be used

in the determination of N, N', and I for each instant. When these

have been found, it will be sufficient to compute the actual values of

N, N'j and Jat intervals during the entire period for which the per-

turbations are required, and to interpolate their values for the inter-

mediate dates. The variations of these quantities arising from the

variations of Q , i, & ',
and i

f

may also be determined by means of

differential formulae. Thus, from the differential relations of the

parts of the spherical triangle from which the equations (130) aie

derived, we easily find
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,,T ,
smi ,

^., ~x sin .AT ,. sinNdN := -

sini' wjfnt ~N sinJV'
., ,

sinAr (136)

d/ = cos JV di' cos -ZVdi -}- sin sin Nd (ft' ft ).

When i and / are very small, it will be better to use

sin i sin N' sin i
f

sin JV

sin/ sin(ft' ft)' sin/ sin(ft' ft)'
(137)

in finding the numerical values of these coefficients. By means of

these formulae we may derive the values of dN, dN', and dl corre-

sponding to given values of ft, di, ft', and di
1
. The formulae

by means of which da, $ft, and di may be obtained directly, will be

presently considered.

The results for dN, dN', and di being applied to the quantities to

which they belong, we may compute the actual values of w r and
/9'.

The value of r will be found from the given value of v, and that of

w will be given by means of equation (135). Then, by means of

the formulae (132), the forces R, S, and Z will be obtained. The

perturbations will first be computed in reference only to terms de-

pending on the first power of the disturbing force, and, whenever it

becomes necessary to consider the terms of the second order, the

results already obtained will enable us to estimate the values of the

perturbations for two or more intervals in advance with sufficient

accuracy for the determination of the three required components of

the disturbing force; and when there are two or more disturbing

bodies to be considered, the forces for each of these may be computed
at once, and the values of each component for the several disturbing

bodies may be united into a single sum, thus using 2R, 2S, and 2Z
in place of R, S, and Z respectively. The approximate values of the

perturbations will also facilitate the indirect calculation in the deter-

mination of the complete values of the required differential coeffi-

cients.

183. When only the perturbations due to the first power of the

disturbing force are required, the osculating elements ft and i will

be used in finding N9 N', and /, and r
,
w will be used instead of r

and w in the calculation of the values of R, S, and Z. The equations

for the determination of the perturbations dM, v, and dz, 9 neglecting

terms of the secotfi order, are, according to the equations (110),

(115), and (129), the following:
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ddM 1

frq+m),
-5 dz

>-

The value of v is first found by integration from the results given

by the second of these equations, and then dM is found from the first

equation. Finally, dz, is found by means of the last equation. The

integrals are in each case equal to zero for the dates to which the

fundamental osculating elements belong, and the process of integra-

tion is analogous, in all respects, to that already illustrated in the

case of the variation of the rectangular co-ordinates. It will be ob-

d*v

served, however, that the expression for
-^-

involves only one indi-

rect term, the coefficient of which is small, and the same is true in

. d?dz, ddM .

the case of
~^r>

while
j^-

is given directly. When the perturba-

tions have been found for a few dates, the values for the following

date can be estimated so closely that a repetition of the calculation

will rarely or never be required ;
and the actual value of r may be

used instead of the approximate value r in these expressions for the

differential coefficients. Neglecting terms of the second order, we

have
= logr, -f V,

wherein ^ denotes the modulus of the system of logarithms. We
may also use vf instead of V

Q ;
but in this case, since r, and v, depend

on dM, only the quantities required for two or three places may be

computed in advance of the integration.

A comparison of the equations (138) with the complete equations

(110), (115), and (129) shows that, if the values of /3'
and w' are

known to a sufficient degree of approximation, we may, with very

little additional labor, consider the terms depending on the squares

and higher powers of the masses. It will, however, appear from

what follows, that when we consider the perturbations due to the

higher powers of the disturbing forces, the consideration of the effect

of the variation of z, in the determination of the heliocentric place

of the disturbed body, becomes much more difficult than when the

terms of the second order are neglected ;
and hence it will be found

advisable to determine new osculating elements whenever the con-

sideration of these terms becomes troublesome.
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The results may be conveniently expressed in seconds of arc, and

afterwards v and Sz, may be converted into their values expressed in

units of the seventh decimal place, or, giving proper attention to the

homogeneity of the several terms of the equations, in the numerical

operations, SM may be expressed in seconds of arc, while v and 8z
f

are obtained directly in units of the seventh decimal place. It will

be advisable, also, to introduce the interval CD into the formulse in

such a manner that this quantity may be omitted in the case of the

formulae of integration.

184. In the case of orbits of great eccentricity, the mean anomaly
and the mean daily motion cannot be conveniently used in the nu-

merical application of the formula?. Instead of these we must

employ the time of perihelion passage and the elements q and e.

Thus, let T
Q
be the time of perihelion passage for the osculating ele-

ments for the date t
,
and let T + 8T be the time of perihelion pas-

sage to be used in the formulae in the place of T and in connection

with the elements q and e in the determination of the values of r,

and v, 9
so that we have

In the case of parabolic motion we have, neglecting the mass of the

disturbed body,

=s (139)

the solution of which to find v, is eifected by means of Table VI. as

already explained. To find r,, we have

r,
= q sec2

%vt
.

For the other cases in which the elements MQ
and

fjt
cannot be em-

ployed, the solution must be effected by means of Table IX. or Table

X. Thus, when Table IX. is used, we compute M from

wherein log <7 = 9.9601277, and with this as the argument we derive

from Table VI. the corresponding value of V. Then, having found

t = |rr-^ by means of Table IX. we derive the coefficients required
1 H~ e

n

in the equation

v,
= V+ A (1000 + B (1000* + (7(1000', (140)
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from which v, will be determined. Finally, r, will be found from

When Table X. is used, we proceed as explained in Art. 41, using
the elements T T + ST, qw and ew and thus we obtain the required
values of v, and r,.

It is evident, therefore, that, for the determination of the pertur-

bations, only the formula for finding the value of dM requires modi-

fication in the case of orbits of great eccentricity, and this modifica-

tion is easily effected. The expression

gves
^ <X

-
2;)

or, simply,
dM

and the equation (110) becomes

(142)

by means of which the value 3T required in the solution of the equa^
tions for r, and v, may be found.

If we denote by t, the time for which the true anomaly and the

radius-vector computed by means of the fundamental osculating ele-

ments have the values which have been designated by v, and r
ty

re-

spectively, we have

^-, _._: = _,

and the equation (110) becomes

(143)
T";- ^-r*J- /cVp (t (i-\-m)*'

or, putting t,
= t-\- dt,

= 7 ^ 14- 7 r == \ Sr dt. 44)
dt (1 + v)

2 r
(1 + v)

2

k]/p (l+m) J

If we determine dt by means of this equation, the values of the

radius-vector and true anomaly will be found for the time t + dt

instead of
t, according to the methods for the different conic sections,
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using the fundamental osculating elements. The results thus obtained

are the required values of r, and v, respectively.

185. When the values of the perturbations v, Sz,, and dM, 8T, or

dt have been determined, it remains to find the place of the disturbed

body. The heliocentric longitude and latitude will be given by

cos bcos(l ft )
= cos (A ft ),

cos b sin (I ft ) = sin (A ft ) cos t,

sin b = sin (A ft ) sin i,

or, since X = X, a + ft,

cos 6 cos (J & ) cos (A, <r),

cos 6 sin (I ft ) sin (I, <r) cos i
t (145)

sin 6 = sin (A, (r) sin i,

in which ^= 9, -|- ftp If we multiply the first of these equations

by cos (ft h), and the second by sin (ft h\ in which h may
have any value whatever, and add the results; then multiply the first

by (sin ft A), and the second by cos
( ft h), and add, we get

cos b cos (I Ji)=cos (A, <r) cos ( ft K) sin (A, <r) sin ( ft A) cos i,

cos b sin (7 Ji)=cos (A, r) sin ( ft A)-fsin (A, <r) cos (ft A) cos i,

sin 6 ==fiin (A, <r) sin i.

But, since A, <r =
(A, & ) (<r Q ),

these equations may be

written

cos 6 cos (7 A)

=cos (A, ^ ) (cos & ) cos ( A)+sin (<r ^ ) sin (^ A) cos i)

-fsin (A, ft ) (sin (> ft ) cos (ft h) cos (> ft ) sin (ft A) cost),

cos 6 sin (Z A) (146)

cos (A . ft ) (cos (<T ft ) sin ( ft Ji) sin (<r ft ) cos ( ft h) cos i

-fsin (A, ft )(sin (<r ft )sin(ft h)+cos(<r ft )cos(ft K

sin6=sin(A f ft )cos(<r ft )sini cos (A, ft )sin (<r ft ) sin i.

Let us now conceive a spherical triangle to be formed, of which two

of the sides are <r ft and ft A, respectively, and let the angle

included by these sides be i. Since h is entirely arbitrary, we may

assign to it a value such that the other angle adjacent to the side

a ft will be equal to i . Let the third side be designated by
/i ft ,

and the angle opposite to a ft by f]

f
. The auxiliary

triangle thus formed gives the following relations :
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cos(A 0>o)=cos(ff & )cos(& A)4-sin(<r & )sin (& A)cosi,

sin (A & ) sin i =sin (& h) sin i, (147)
sin (hQ & ) cos i sin (<r & ) cos (& A) cos (<r Q ) sin (& A) cos i,

sin (V-& )cosi/=cos(> & )sin (& A) sin (<r & )cos(& A) cost.

Combining these with the preceding equations, we easily derive

cos b cos (/ A)=cos (A, & ) cos (A )-|-sin 0*, ) sin (A & ) cosi ,

cos&s:n (/A) sin (>*, & )cos(A & ) cos t' cos (>*,& ) sin (hQ & )

H-cos(/l, )sin(A ^ )(l-f-cosV) (148)

4-sin (A, & ) ((cos^ cosi ) cos (h ^ )-fsin (<r 2 ) sin (Q A)sin
2

^),

8in&=sini sin(A, ^ )-}-(cos((r ^ )sini sin i* ) sin (A, ^ )

cos (A, 2 o) s in ( ff ^o) s^u i*

Since the action of the component of the disturbing force perpen-
dicular to the plane of the disturbed orbit does not change the radius-

vector, we have
r sin b = r sin i sin (V~&o) H~ *>%

and hence the last of these equations gives

-^
= sin (A, ) (cos (ff & ) sini sin i )

cos (J, ^ ) sin (<r ^ ) sin i.

From the relation of the parts of the auxiliary spherical triangle, we

Have
sin i sin (<r & ) = sin if sin (A ^ ),

sin i cos (<r ^ )
= sin rf cos (hQ ^ ) cos i

Q + cos iy' sin i .

Therefore,

A, ) (cos

cos (I, & ) sin (A & ) sin i)',

A = sin (A, ) (cos to cos (& ^ ) sin if sin i (1 cos if)), ^

and

1
***** v / oo u

COST? ,

151)
cos (A, &<>)sin(A & ) (l + cosi/)-

We have, further, from the auxiliary spherical triangle,

cos i= sin i sin >/ cos (A ^ ) cos to cos if,

from which we get

cos i cos t' = sin t* cos (A & ) sin if cos t* (1 + cos if).

We have, also,
sin (a & ) sin t= sin rj sin (AQ & o)>

sin (& A) sin ?'= sin i sin (Ao & ),
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or

sin (<f &o) sin (& k) sin2
i= sin3

(Ao & ) sin t<> sin if.

Hence we derive

(cos i cos i ) cos (h Q> o) -fsin (<r & ) sin (& h~) sin
2
i sin i sinV

(1-j-cos V) cos i cos (A & ).

Combining this and the equation (151) with the equations (148), we

obtain

cos b cos (I &) cos(A, & ) cos(/t & )-fsin(A,

cos b sin (I A) sin (A, &<>) cos (ho & ) cosi cos (A, & ) sin (h^ &
sin t{ Sz,

sin b =sm (A, & ) sin i^ -\
-.

r

1 COST/ r

If we multiply the first of these equations by cos(A & ), and the

second by sm(/i & ),
and add the results; then multiply the

first by sin (h & )>
and the second by cos (h & ),

and add, we get

cosfc cos(Z ^o (& Ao))=cos(A, ^ )+sin(^o S^o) ~'
*

*

-~,
T

sin b =sin (I, & ) sin ^^ '-

(152)

Let us now put

y= Sin(<r-a ) Smi,

and there results, from (149),

^-
=

q
f

sin (A,
-

fco) -/ cos ft
-

). (154)

Comparing this with equation (150), we observe that

p
f= sn > sn o

c[
= sin V cos (&o ^o) cos ^ sin to (1 cos >?')

Therefore, we have

cos ~ o> = tan *

32
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and, if we put F= h h
,
the equations (152) became

cos b cosMo_r)=cos ft -aJ+_J^_, -

cosfcsin -- - -

sin 6 =sin (A, & ) sin i -]
-

As soon as 7
1

, p', 5', and ^' are known, these equations will furnish

the exact values of I and 6, those of X, and r being found by means

of the perturbations v and dM.

186. The value of F may be expressed in terms of p
f and

<?'.

Thus, if we differentiate the first of equations (147) and reduce by
means of the remaining equations of the same group, we get

d(hQ & ) = cosi/^(ft ^) ~f~ cosi dff -f- smi sm(<j- & )c?i,

and if we interchange & h and h & in this equation, we must

also interchange i and i
,
which are the angles opposite to these sides,

respectively, in the auxiliary spherical triangle, so that we shall have

d (& A) = cos if d(h & ) + cos i d<r,

i being constant. Adding these equations, observing that & is also

constant, we get

(1 COST/) d(Q A-fA)=sm^osm (<r & ) c?i+(cosi4-cosi ) dff', (156)

and since dff = cos i c?&, this becomes

(1 cos V) d(h h ) = sin i sin (<r ^ ) di

-f- (sin
2
i cosV cosi cosi )

-
:,

COS 1

which, since

cos tj
= sin i sin i cos (ff $2 ) cos i cos i

, (157)

may be written

(1 cos i/)dP= sin ^ sin (<r ^ ) di+tsm i (sin i sin i^ cos (<r & )) ^<r-

(158)
The differentiation of the equations (153) gives

dp'= sin (ff & ) cos i di -)- sin i cos (ff

dq'
= cos (ff & ) cos i di sin i sin

(ff

from which we derive
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q'dp p'dc[ = sin2
i d<r sin iQ dp'

= cos i
(

sin i sin
(<r &o) d i-\-tani (sin i sin i9 cos (ff & )) d<r) .

Combining this with equation (158), we get

cos i (1 cos V) dr= q'dp' p'dq',
and hence

r
[ dt * dt j. ,.,_,=J

cos^(l-cosV)^

the integral being equal to zero for the instant to which the funda-

mental osculating elements belong. It is evident from the equations

(153) that p
f and q

f are of the order of the first power of the dis-

turbing forces, and hence, since if differs but little from 180 (fc+fy),

it follows that, so long as i is not very large, Pis at least of the

second order.

The last of equations (145) gives

z
t
= r sin i sin A, cos ff r sin i cos A, sin ff,

and since

x= r cos A,, y= r sin A,,

this becomes

2,
= x sin i sin ff -f- y sin i cos ff.

Comparing this with equation (116), it appears that

a= sin i sin ff, ft
= sin i cos ff, (160)

and hence, by means of (153), we derive

p'= cos & ft sin & ,

q
f= a sin & -f- ft cos & sin i

,

and also

dp' o da, . dft

>0 ~df~
Sm

>0
~dt'

From the equations (118) and (121), observing that

we derive, by elimination,

da _ r sin A, cos i d __ r cos A
;
cos i ,~~ ~

:

""'
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Therefore we shall have

dp' = rcosi sin (A, & ) ^* ~

Al/pCl + m)
r COS * COS (^' &o)

oy means of which p
f and 5' may be found by integration, the inte-

gral in each case being zero for the date t at which the determina-

tion of the perturbations begins.

When the value of dz, has already been found by means of the

equation (129), if we compute the value of q
f

,
that of p

f will be

given by means of (154), or

and if p
f
is determined, q' will be given by

/ I J. f 1 /-V \ I >

If both p
f and q' are found from the equations (162), dz, may be de-

termined directly from (154); but the value thus obtained will be

less accurate than that derived by means of equation (129).

Since the formula for ~
completely determines the perturbations

due to the action of the component Z perpendicular to the plane of the

instantaneous orbit, instead of determining p' and q
f

by an independent

integration by means of the results given by the equations (162), it

will be preferable to derive them directly from dz, and
-^-'-

The

equations (161) give

p' = cos & da sin & d{3, q'
= sin * + cos & dp.

Substituting for a and dfl their values given by (125) and (126),

and putting

x" x cos &, + y sin , y" = x sin & + y cos & ,

we obtain

/ ,,dtz, . dx"\
r dt

' &
'W./-
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Substituting further the values

x" = r cos (J, & ), y"= r sin (J,

and also

(W, _

~dt

-\-m . _ &lp (1 -f- m) e sin v=- 6 Sin V - -
j

1 -j- e cos v

we easily find, since X, v = %,

,
O n) d

JP
= cos

ijp

, . f . ,. ^.x . . / _ v.fe, A
v

f

5'
=+ (Bin (^- ft ) + esm (/- ))-

il/p (1 + m) a*

which may be used for the determination of p
f and q

f
. These equa-

tions require, for their exact solution, that the disturbed values e, %,

and p shall be known, but it is evident that the error will be slight,

especially when e is small, if we use the undisturbed values e
Q) p09

and = TTO . The actual values of X, and r are obtained directly from

the values of the perturbations.

When p
f and q

f have been found, it remains only to find cos i, and

1 cos r/, in order to be able to obtain F by means of the equation

(159). From (153) we get

p'
y
-f- 5" = sin2

i sin 2
i 2q

f

sin i
,

and hence

cos i= 1/1 p'
2

(^ + sini )
2

, (165)

from which cos* may be found. The equation (157) gives

1 cos if = cos i
Q (cos i

Q + cos i) q
f

sin i
, (166)

by means of which the value of 1 cos rf will be obtained.

If we substitute the values of p
f

, q
f

, -Jp
and -~

given by the

equations (153) and (162) in (159), it is easily reduced to

= fJ
**'

Zdt, (167;
(1 cos V) kVp (1 + m)

which may be used for the determination of P. When we neglect

terms of the order of the cube of the disturbing force, in finding P
we may use p in place of p and put 1 cos rf

= 2 cos
2
i0) so that the

formula becomes
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Zdt. (168)Cdz,

187. By means of the formulae which have thus been derived, we

may find the values of all the quantities required in the solution of

the equations (155), in order to obtain the values of I and b for the

disturbed motion. From r, I,
and b the corresponding geocentric

place may be found. The heliocentric longitude and latitude may
also be determined directly by means of the equations (145), provided

that &, 0, and i are known; and the required formula for the deter-

mination of these elements may be readily derived. Thus, the equa-

tions (160) give, by differentiation,

da, . di dff

-TT = sin ff cos i ^ sin i cos a rr,
at at at

d/3 . di
, . . dff

whence

cos ff cos i -=- sin i sm ff ,.

at at at

. . dff da, . d0
sm i -=- = cos ff -=T sm ff -=-,

at at at

. di da . dp
cosi-j- = sm ff -=- -j- cosff-j-.

dt dt dt

Introducing the values of ~rr and -=7- already found into these equa-

tions, and putting

we obtain
d** 1 ^
7-= cot i sin U,*

(169)

cos .

and also, since c?<r= cos i d& ,

1 sin (Ay

(170)

by means of which the variations of <r, i, and & due to the action

of the disturbing forces, may be determined. The integral is in each

case equal to zero at the initial date ^ to which the fundamental os-

culating elements belong and at which the integration is to com-

mence.
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If we find i, and then a & from

fl
- = f ^7-- sin (^,

-
) rZ , (171)^ l/ 1 mm)

true longitude in the orbit will be obtained from

T^ . .
-,

.

It is evident that since the expressions for T-> -7-, and ;? re-
eft d eft

quire, for an accurate solution, that the disturbed values
i, 0, and p

shall be known, and require, besides, that three separate integrations

shall be performed, unless the perturbations are computed only in

reference to the first power of the disturbing force, in which case we
use iw p ,

and & in place of i, p, and
<r, respectively, in the equations

(169) and (170), the action of the component Z can be considered in

the most advantageous manner by means of the variation of z, arising

from this component alone; and even when only the perturbations

of the first order are to be determined it will still be preferable to

derive dz, by the indirect process from the expression for ~, and to

determine the heliocentric place by means of the equations (155).

When we neglect the terms of the second order, these equations

become

cos b cos (I & )
= cos (A, ),

cos b sin (I ) = sin (A, & ) cos i
Q

tan i
Q , (172)

sin b = sin (A, ) sin i +
-^-,

by means of which I and b are determined immediately from the per-

turbations dM
9 v, and dz,. The peculiar advantage of determining

the effect of the action of the component Z by means of the partial

variation of z, is apparent when we observe that the expressions for

-y- and 7^- involve sin i as a divisor
;
and in the case of orbits whose

at at

inclination is small, this divisor may be the source of a considerable

amount of error.

188. The determination of the perturbations so as to include the

higher powers of the masses is readily effected by moans of the com-

ddM d*v d*3z, , , c
plete expressions for

^-, ^ and
-^-,

when the correct values of

E
t S, Z} i,

and p are known. The corrected values of i and p
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which are required only in the case of 3z, may be easily estimated

with sufficient accuracy, since we require only cosi, while Vp ap-

pears as the divisor of a term whose numerical value is generally

insignificant. To obtain the actual values of E, S, and Z, the cor-

rections to be applied to N, Nr

,
and / must first be determined by

means of the formula (136). The values of di f and dQ>' will be

found by means of the data furnished by the tables of the motion of

the disturbing body, and the corresponding corrections for N
y
Nf

t

and I having been found by "means of the terms of (136) involving
dif and d&', there remain the corrections due to di and S&> to be

applied. These may be found in terms of the quantities p
f and q'

already introduced. Thus, the equations

dp'= cos i sin (<r ft ) di -|- sin i cos (<r ft ) dff,

dq
f = cos i cos (<r ft ) di sin i sin (<r ft o) dff,

give
cosi di = sin (<7 ft ) dp' -f- cos (<r ft ) d<f,

sin id<r= cos (ff ft ) dp' sin (a ft ) dq
f

.

The equations (136) give, observing that da cosi dft,

di = cosN di tan i sinN da,

,
,

sinN .. . tan i ,

dN = -j : =- di --: =- cos Ndff,
sin 1 sin 1

and, substituting the preceding values of di and d<r, these become

di = sin (-^ + ^ ^o) d ,
cos (N + ff & o)^

cos i cos i
'

dN, =_CM^-. , ,

sin I cos i sin / cos i

If we neglect the perturbations of the third order, these equations

give

cos i cos i
'

3N' = cosec J( cos N-^r sinN --r I,

\ COS 1
Q COS ? /

by means of which 31 and 3N may be determined, p
r and q

f

being

found by means of the equations (164), using e
ot

TT
O ,
and p in place

of e
t ^ and p. The results for 7 and 3N' obtained from (173)

being applied to the values of I' and Nf as already corrected on

account of di
f and d 3,', give the required values of these quantities.
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When we consider only di and cZ&, since

sin i' cos N' = cos i sin / -j- sin i cos / cos N
9

we easily find

dN= cos I8N' 3*, (174)

and if we add the quantity cosIdN' to the value of N already cor-

rected on account of Si' and S& f

,
and denote the result by Nn the

required value of N will be N, tiff. -Then, according to (131), we

may compute w' + da and
/9' by means of the formulae

tan ((>' 4- <Jff) N,)= tan < cos I, (175)
tan /?'

= tan Jsin ((w
r + d<r) N,),

using the values of N* and J as finally corrected. We have, further.

according to (135),

w + dff = v, -f * & >

by means of which we may compute the value of w -}- d0; then the

value of w f w required in the equations (132), and also in finding

the value of
/?,

will be given by

' w = (w
r

-j- da) (w

and the forces R, 8
9
and Z may be accurately determined.

By thus determining the correct values of H, S, and Z from date

to date, the perturbations 3M, v, and dz, may be determined in refer-

ence to the higher powers of the disturbing forces according to the

process already explained. The only difficulty to be encountered is

that which arises from the quantities 7
1

, p' 9
and q

f
, required in the

determination of the heliocentric place of the disturbed body by
means of the equations (155). If an exact ephemeris for a short

period is required, by means of the complete perturbations we may
determine new osculating elements, and by means of these the required

heliocentric or geocentric places.

189. EXAMPLE. We will now illustrate the application of the

formulae for the determination of the perturbations 3M, v, and 8z, by
a numerical example; and for this purpose let it be required to

determine the perturbations of Eurynome @ arising from the action

of Jupiter from 1864 Jan. 1.0 to 1865 Jan. 15.0, Berlin mean
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time, the fundamental osculating elements being those given in

Art. 166.

In the first place, by means of the formulae (130), using the values

= 206 39' 5".7,

'= 98 58 22 .7,

i=4 36'52'M,
i' = l 18 40 .5,

which refer to the ecliptic and mean equinox of 1860.0, we obtain

N= 194 0' 49".9, N'.= 301 38' 31".7, 1= 5 9' 56".4.

Then, by means of the data furnished by the Tables of Jupiter, we
find the values of uf

,
the argument of the latitude of Jupiter in refer-

ence to the ecliptic of 1860.0, and from the equations (131) we derive

w' and f)
f

. The values of r' are given by the Tables of Jupiter, and

the values of r and v are found from the elements given in Art.

166. The results thus obtained are the following:

Berlin Mean Time.
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Date.
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determination of the radius-vector and true anomaly from given
elements. If we substitute these results for ^,, r, and dz, in the equa-
tions (172), we get

I= 164 37' 59".05, b = 3 5' 32".54,

which are referred to the ecliptic and mean equinox of 1860.0, and

from these we may derive the geocentric place of the disturbed body.
If the place of the body is required in reference to the equinox and

ecliptic of any other date, it is only necessary to reduce the elements

x
, QQ, and i to the equinox and ecliptic of that date; and then,

having computed X, and r, we obtain by means of the equations (172)

the required values of I and 6. In the determination of the pertur-

bations it will be convenient to adopt a fixed equinox and ecliptic

throughout the calculation
;
and afterwards, when the heliocentric or

geocentric places are determined, the proper corrections for precession

and nutation may be applied.

In order to compare the results obtained from the perturbations

8M, v, and dz, with those derived by the method of the variation of

rectangular co-ordinates, we have, for the date 1865 Jan. 15.0,

x = 2.5107584, y = + 0.6897713, z = 0.1406590 ;

and for the perturbations of these co-ordinates we have found

8x= + 0.0001773, 3y= + 0.0001992, dz= 0.0000028.

Hence we derive

x= 2.5105811, y= + 0.6899705, z= 0.1406618,

and from these the corresponding polar co-ordinates, namely,

log r= 0.4162182, I= 164 37' 59".05, b= 3 5' 32".54,

from which it appears that the agreement of the results obtained by
the two methods is complete.

190. When the perturbations become so large that the terms of the

second order must be retained, the approximate values which may be

obtained for several intervals in advance by extending the columns

of differences, will serve to enable us to consider the neglected terms

partially or even completely, and thus derive the complete perturba-

tions for a very long period. But on account of the increasing diffi-

culties which present themselves, arising both from the consideration
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of the perturbations due to the action of the component Z in com-

puting the place of the body, and from the magnitude of the numeri-

cal values of the perturbations, it will be advantageous to determine,
from time to time, new osculating elements corresponding to the

values of the perturbations for any particular epoch, and thus com-

mencing the integrals again with the value zero, only the terms of

the first order will at first be considered, and the indirect part of the

calculation will, on account of the smallness of the terms, be effected

with great facility. The mode of effecting the calculation when the

higher powers of the masses are taken into account has already been

explained, and it will present no difficulty beyond that which is in-

separably connected with the problem. The determination of F
9 p

f

,

and q
r may be effected from the results for -77-, -r-, and -~r by means

dt dt dt J

of the formulae for integration by mechanical quadrature, as already

illustrated, or we may find F by a direct integration, and the values

of p
f and q

f

by means of the equations (164), ^- being found from

-^- by a single integration. The other quantities required for. the

complete solution of the equations for the perturbations will be

obtained according to the directions which have been given; and in

the numerical application of the formulae, particular attention should

be given to the homogeneity of the several terms, especially since, for

convenience, we express some of the quantities in units of the seventh

decimal place, and others in seconds of arc.

The magnitude of the perturbations will at length be such that,

however completely the terms due to the squares and higher powers
of the disturbing forces may be considered, the requirements of the

numerical process will render it necessary to determine new osculating

elements; and we therefore proceed to develop the formulae for this

purpose.

191. The single integration of the values of a)
2

-p- and co
2

^- will

give the values of o> -57- and CD jr* and hence those of
-j

and -rr>

which, in connection with
^

, are required in the determination of

the new system of osculating elements. Since r2

-^ represents double

the areal velocity in the disturbed orbit, we have
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dv, _ TcVp(l-\-m)
dt
~

~7

The equation (109) gives

dv, _kV Po (l+m) I 1 d9M\
'dt

~

r? \ %/ dt r

Hence, since r= r, (1 + v), we obtain

by means of which we may derive p. This formula will furnish at

once the value of p, which appears in the complete equation foi

TOT* and also in the equations (164); and the value of cost may be

determined by means of (165).

In the disturbed orbit we have

dr kyU 4- m

and the equations (108) and (111) give

dr

Therefore we obtain

dv

which, by means of (176), becomes

The relation between r and r, gives

P__ __. Po / I

1 -f e cos v 1 + e cos v,

and, substituting in this the value of p already found, we get

, cos.,,)
(
1 + 1 .^ J

(1 + v)'
- 1. (178)e cos v
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Let us now put

(179)

a and /5 being small quantities of the order of the disturbing force,

and the equations (177) and (178) become

e sin v= e sin v
t -\- ae sin v, -f- /?,

e cos v = e cos v, -f- ae cos v, -f- a.

These equations give, observing that r, (cos v, -f- e
) =p cos .#

e sin (v, v) = a sin v, ft cos vn

e cos (v, v) = e -f cos E,-\- P sin v,,
^*/

from which e, v, v, and ?; may be found; and thus, since

*= * + (,), (181)

we obtain the values of the only remaining unknown quantities in

the second members of the equations (164). The determination of

p
f and (f may now be rigorously effected, and the corresponding

value of cosi being found from (165),
-- and

-g-
will be given by

(162). Then, having found also 1 cos
37' by means of (166), F may

be determined rigorously by the equation (159), and not only the

complete values of the perturbations in reference to all powers of the

masses, hut also the corresponding heliocentric or geocentric places

of the body, may be found.

If we put

Y*= a sin v, p cos vn

and neglect terms of the third order, the equations (180) give

r' *
v v = s s,

e, ej

in which s= 206264".8. These equations are convenient for the
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determination of e and v, v, and hence 7. by means of (181), when
the neglected terms are insensible.

The values of p, e, and v having been found, we have

m
,

a 2

tan A E= tan (45 ?) tan % v, M= Eesin E,

from which to find the elements
<pt a, //, and M. The mean anomaly

thus found belongs to the date
t,
and it may be reduced to any other

epoch denoted by t by adding to it the quantity p. (tQ t).
When we

neglect the terms of the third order, we have

_<, =_sin y- sin y,

cos?n 4(? Po)sin?

and if we substitute for sin
tp

sin
<pQ
= e e the value given bv

the first of equations (183), the result is

2* Bin y
2 sin <pQ

cos 9? d
f

sin <pti
tan

from which we get

d
r

3'* sin <pn Y'
Z

s-

by means of which
y> may be found directly, terms of the third order

being neglected.

In the case of the orbits of comets for which e differs but little

from unity, instead of dM we compute by means of the formula

(142) the value of dT, and since we have

ddT _ _!_ dSM
dt n dt

the equation for p becomes

(jxm
\2

l-^f) (! + ")'; (186)

and for a we have

Then
e, t/,

and q will be found by means of the equations
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e sin (Vf v)
= a sin v, /5 cos v,,

e cos (v, v)
= eQ -f a (cos v, + e ) + /5 sin v,, (188)

P
=IT7

and the time of perihelion passage will be derived from e and v by
means of Table IX. or Table X.

There remain yet to be found the elements
<r, &, and i, which de-

termine the position of the plane of the disturbed orbit in space.

The values of p
f and q' will be found from the equations (164), and

P, whenever it may be required, will be determined as already

explained. Then we shall have

sin i sin (<r & )
=p

r

, (189)

sin i cos (a & )
=

q' -f sin i
Q,

from which to find i and a. When we neglect the terms of the third

order, these equations give

sin i sin in= q' 4- . .a smt
and hence

sm 1

t ,,r
cos I

Q

'

2 cos3
I
Q

'

2 sm t cos I
Q

in which s= 206264".8. The auxiliary spherical triangle which we

have employed in the derivation of the equations (155) gives directly

cos %(i -f- i ) _ tan|(<r & )

cos (i *
) tan ^ (& h -f h & )

and since h h = F, we have

tanK^-^o-O = ^|^~^tanj(^-^o)> (191)

by means of which the value of & may be found. This equation

gives, when we neglect terms of the third order,

= '+ r+^ +2^-^-.). ^2)

Substituting in this the values of ff & and i i given by (190),

we get
1 ~ 3 iri2/1

(193)
sin i cos i, smz

IQ
-~~a - " *
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r being expressed in seconds of arc. Finally, for the longitude of;

the perihelion, we have

*=*+*, (194)'

and the elements of the instantaneous orbit are completely deter-

mined. When we neglect terms of the third order, this equation,

substituting the values given by (190) and (192), becomes

It should also be observed that the inclination i which appears in

these formulae is supposed to be susceptible of any value from to

180, and hence when i exceeds 90 and the elements are given in

accordance with the distinction of retrograde motion, they are to be

changed to the general form by using 180 i instead of
i,

and
;

2& TT instead of TT.

The accuracy of the numerical process may be checked by com-

puting the heliocentric place of the body for the date to which the

new elements belong by means of these elements, and comparing the

results with those obtained directly by means of the equations (155).

We may remark, also, that when the inclination does not differ much
from 90, the reduction of the longitudes to the fundamental plane
becomes uncertain, and F may be very large, and hence, instead of

the ecliptic, the equator must be taken as the fundamental plane to

which the elements and the longitudes are referred.

192. Although, by means of the formulae which have been given,

the complete perturbations may be determined for a very long period

of time, using constantly the same osculating elements, yet, on

account of the ease with which new elements may be found from dM,
.

, f . f .. . , , .

v, oz,, -ji- -ji and
fj->

and on account of the facility afforded in.

the calculation of the indirect terms in the equations for the differen-

tial coefficients so long as the values of the perturbations are small,

it is evident that the most advantageous process will be to compute

8M, v, and 8z, only with respect to the first power of the disturbing

force, and determine new osculating elements whenever the terms of'

the second order must be considered. Then the integration will

Hgain commence with zero, and will be continued until, on account

of the terms of the second order, another change of the elements is

required. The frequency of this transformation will necessarily de-



5io THEORETICAL ASTRONOMY.

pend on the magnitude of the disturbing force; and if the disturbed

body is so near the disturbing body that a very frequent change of

the elements becomes necessary, it may be more convenient either to

include the terms of the second order directly in the computation
of the values of dM, v

y
and dzn or to adopt one of the other methods

which have been given for the determination of the perturbations of

a heavenly body. In the case of the asteroid planets, the consider-

ation of the terms of the second order in this manner will only

require a change of the osculating elements after an interval of seve-

ral years, and whenever this transformation shall be required, the

equations for
<p, i, &, and

TT,
in which the terms of the third order

are neglected, may be employed. It should be observed, however,
that the perturbations of some of the elements are much greater than

the perturbations of the co-ordinates, and hence when terms depend-

ing on the squares and higher powers of the masses have been

neglected in the computation of these perturbations, it may still be

necessary to include the values of the terms of the second order in

the incomplete equations referred to. No general criterion can be

given as to the time at which a change of the osculating elements

will be required; but when, on account of the magnitude of the

values of dM, v, and 3z, 9
it appears probable that the perturbations

of the second order ought to be included in the results, by computing
a single place, taking into account the neglected terms, we may at

once determine whether such is the case and whether new elements

are required.

193. We have already found the expressions for the variations of

and i due to the action of the disturbing forces, and we shall now
consider those for the variation of the other elements of the orbit

directly. Let x, T/,
z be the co-ordinates of the body at any given

time referred to any fixed system of co-ordinates. These will be

known functions of the six elements of the orbit and of the time.

Tf the body were not subject to the action of the disturbing forces,

these six elements would be rigorously constant, and the co-ordinates

would vary only with the time
;
but on account of the action of these

forces the elements must be regarded as continuously varying in order

that the relation between the elements and the co-ordinates at any
instant shall be expressed by equations of the same form as in the

case of the undisturbed motion. The co-ordinates will, therefore, in

the disturbed motion, be subject to two distinct variations: that

which results from considering the time alone to vary, and that which
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results from the variation of the elements themselves. Let these two

kinds of partial variations be symbolized respectively by I -5-
)
and

[j
~\ \ i

jg-j*
and similarly in the case of the other co-ordinates; then will

the total variations be given by

dx_

~dt'~\~dt

_

dt dt~~dt

But if we differentiate twice in succession the equations which ex-

press the values of x, y, and z as functions of the elements and of

the time, regarding both the elements and the time as variable, the

substitution of the results in the general equations for the motion of

the disturbed body will furnish three equations for the determination

of the variations of the elements. There are, however, six unknown

quantities to be determined; and hence we may assign arbitrarily

three other equations of condition. The supposition which affords

the required facility in the solution of the problem is that

and hence that

<te__(d*_\ ^L [^_\ $L [<*L\
dt \ dt I dt \ dt r dt ~\ dt /'

It thus appears that in order that the integrals of the equations (1)

shall be of the same form as those of the equations (3), the arbi-

trary constants of integration which result from the integration of

the latter being regarded as variable when the disturbing forces are

considered, the first differential coefficients of the co-ordinates with

respect to the *ime have the same form in the disturbed and undis-

turbed orbits. But since
^jp H|I

and
-g-

are the velocities of the

disturbed body in directions parallel to the co-ordinate axes respect-

ively, it follows that during the element of time dt the velocity of

the body must be regarded as constant, and as receiving an increment

only at the end of this instant. The equations (197) show also that

\f we differentiate any co-ordinate, rectangular or polar, referred to a
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fixed plane and measured from a fixed origin, with respect to the ele~

ments alone considered as variable, the first differential coefficient

must be put equal to zero, and this enables us at once to effect the

solution of the problem under consideration. It is to be observed,

further, that the functions whose first differential coefficients with

respect to the time when only the elements are regarded as variable

are thus put equal to zero, must not involve directly the motion of

the disturbed body, since the second differential coefficients of the co-

ordinates have not the same form in the case of the disturbed motion

as in that of the undisturbed motion.

194. If we suppose the disturbing force to be resolved into three

components, namely, It in the direction of the disturbed radius-

yector, S in a direction perpendicular to the radius-vector and in the

plane of disturbed orbit, positive in the direction of the motion, and

fi perpendicular to the plane of the instantaneous orbit, the latter

will only vary & and i and the longitude of the perihelion so far as

jt is affected by the change of the place of the node, while the forces

JR and S will cause the elements M, TT, 6, and a to vary without affect-

ing Q> and ?'.

Let us now differentiate the equation

regarding the elements as variable, and we get

2rdrl_ _1_
da 2V l

r L dt J
"

a2
'

dt
+

k2

(1 + m)
'

dt

T

dt tf (1 + m) dt

The differential coefficient is here the increment of the accele-
dt

rating force, in the direction of the tangent to the orbit at the given

point, due to the action of the disturbing force; and if we designate

the angle which the tangent makes with the prolongation of the

radius-vector by ^ ,
we shall have

_ = E cos 4' + S sin 4'v
dt

-Substituting this value in the preceding equation, we obtain
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But we have, according to the equations (50)6,

dv

in wnich v denotes the true anomaly in the instantaneous orbit; and

hence there results

e sn

by means of which the variation of a may be found.

If we introduce the mean daily motion
ft, we shall have

^r
=

^'-^p (199)

and hence

? sin vR + 2-
), (200)

for the determination of dp.

The first of the equations (97) gives

and hence we obtain

d (i/p) =
<ft

or _
(201

m

The equation p= a (1 e
2

) gives

* _. -P <*
Oflfi .

"3T"
-

5T "it
6 ^

Equating these values of
-^-

and introducing the value of
-^

already found, we get

-_.
(202)o
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and since

= 1 -{- e cos v,
= 1 e cos E,

T CL

E being the eccentric anomaly in the instantaneous orbit, this becomes

de 1
(p sin vR -f p (cos v + cos E) S), (203)

which will give the variation of e. If we introduce the angle of

eccentricity <p,
we shall have

and hence

d<p

de dy= cos<p -^, p = a cos2
? t

7= (a cos <p sin vE -f- cos ^ (cos v -f- cos J) #). (204)

195. When we consider only the components R and 8 of the dis-

turbing force, the longitude in the orbit will be

We have, therefore,

.-=1

the differentiation of which, regarding the elements as variable, gives

dp pT dr~\ .. . de--

or

dp de . d%_JL=
rcosVw + ersmv_

Therefore

and, since p cos^= r (cos v + e),
we have

p (1 cos v cos E)=r sin* v,

so that the equation becomes
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^ (
-pco* VIi + (p+r)s[nvS)> (205)

from which the value of ~- may be derived.
at

If we introduce the element co, or the angular distance of the peri-
helion from the ascending node, it will be necessary to consider also

the component Z; and, since co = X,
<r,
we shall have

dot __ d% dff d% . d&
~dt

==
-dt^-dt

==
-dt-

C08
*-ST

>

and hence

(206)

In the case of the longitude of the perihelion, we have

dt dt dt

and therefore

dn 1 1

( p cos vR + (p

sin
2

Ji^. (207)

The first of the equations (15)2 gives

dt*, de

in which M
Q denotes the mean anomaly at the epoch, which is usually

adopted as one of the elements in the case of an elliptic orbit. Sub-

stituting for -=r and -=- the values already found, we get
dt dt

dMLo

{ (p cot <p cos v 2r cos y>) It

f (2 cos2 v cos v cos E} cot y S] (t O->/>
sin v

^ dt

or

dM 1
- . = ((p cot <p cos v 2r cos ^)R (p -\- 7) cot <p sin v/S)w kvp (1 + ?n-)

(* g -^- (208)

Thp equation (205) gives
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cot <p sinvS p cot
<f>

cos vR

d/
-f cos <p --,

dt

by means of which (208) reduces to

""*=-_,)* (209)

which will determine the variation of the mean anomaly at the

epoch.

Since the equations for the determination of the place of the body-

in the case of the disturbed motion are of the same form as those for the

undisturbed motion, the mean anomaly at the time t will be given by

M=M + dM + (t
- + ^),

in which // denotes the mean daily motion at the instant t . There-

fore we shall have

M=M + dt + va (t- <) + (t
-

t,) dt,

the integrals being taken between the limits t
Q
and t. The quantity

expresses the mean anomaly at the time t in the undisturbed orbit ;

and if we designate by dM the correction to be applied to this IP

order to obtain the mean anomaly in the disturbed orbit, so that

we shall have

and hence

Differentiating this with respect to
f,
we get
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Substituting in this the value of ~ from (209), the result is

dM _ __
dx 2r cos ? rd/JL

= E + f^ eft, (210)
l */ at

which does not involve the factor t 1 explicitly, and by means of

which the mean anomaly in the disturbed orbit, at any instant
t, may

be found directly from that for the same instant in the undisturbed

orbit.

To find the variation of the mean longitude L, we have

dL dM d* dx.dM dQ,

and therefore

dL o * ,
- . . ,, ,_.,,2 sm'

-*
' ~ + ( }

To find the variations of & and i, since

u = I, <r,

u denoting the argument of the latitude in the disturbed orbit, we

have, according to the equations (169) and (170),

r sin u

m)

'

sin i
'

(212)

- T COS UZ.

The inclination i may have any value from to 180; and when-

ever the elements are given in accordance with the distinction of re-

trograde motion, they must be converted into those of the general

form by taking 180 i in place of the given value of*, and 2& it

in place of the given value of TT,
before applying the formula which

involve these elements.

196. In the case of the orbits of comets in which the eccentricity

differs but little from that of the parabola, the perturbations of the

perihelion distance q and of the time of perihelion passage T will be

determined instead of those of the elements M and a or //.

The equation
P = 9 C1 + <0

gives
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dq _ 1
dp^ q de

~dt
~~

1 + e

'

~dt

~~
1 + e

'

"3P

and substituting in this the value of -rr already found, and neglect-

ing the mass of the comet, which is always inconsiderable, we get

<fy V q de
~ == ~"'

by means of which the variation of q may be found. In the case of

elliptic motion the value of
-jr may be found by means of (202) or

(203); but in the case of hyperbolic motion the equation (202) will

be employed. It should be observed, also, that when the general

formula? for the ellipse are applied to the hyperbola, the semi-

transverse axis a must be considered negative.

When the orbit is a parabola, the equation (202) becomes

fjf 1~ = -4- dp sin vR + 2p cos' ivtf ), (214)

and for the value of -jr we have
at

It remains now to find the formula for the variation of the time of

perihelion passage. The relation between T and M is expressed by

360 J = /i(r ,

the differentiation of which gives

dM
Q dp. dT.

'

and, substituting for ~ the value given by equation (209), we ge*

dT_2ar aVp dx 1
d^W = =

"F J "F"
"

dt
H *'*"&'

Substituting further the values of -37 and
-^7 given by the equations

(205) and (199), the result is
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dT aR p Sk(t T)
'dt

== ~^r ~e C SV~~
I/" esmv)VP

(216)
. aS Ip + r . Zk(tT)p\
H- ~JT I

sm v-- / I'V \ e
i/p r I

which may be employed to determine the variation of T whenever

the eccentricity is not very nearly equal to unity. It is obvious,

however, that when a is very large this equation will not be con-

venient for numerical calculation, and hence a further transformation

of it is desirable. Thus, if we derive the expressions for -r- and
-j-

from the equations (24)2 and (23)2 ,
we easily obtain

2p dr p 3&( T) p*
r-f- -

-j-
= a(2r cosv--*-?-

- e sm v) + ^-. 75 cos v,
1 -f- e de e y e (1 -\- e)

z

2p dv Ip + r . 3k(t T) p\ p
2

I r\ .

1 r -=- = a I sm v--^ - -
)

- 1 + - smv.
1 + e de \ e

]/p rj e(l + e)
2
\ ^pl

By means of these results the equation (216) is transformed into

which may be used for the determination of -TT- the values of -j~ut de

and -r- being found by means of the various formula? developed in

Art. 50. When a is very large, its reciprocal denoted by/may often

be conveniently introduced as one of the elements, and, for the deter-

mination of the variation of/, we derive from equation (198)

(218)

In the case of parabolic motion we have 6= 1, and p= 2q; and

if we substitute in (217) for -^
and -^

the values given by the equa-

tions (33)2 and (30)2, the result is

(219)
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197. Instead of the elements usually employed, it may be desirable,

in rare and special cases, to introduce other combinations of the ele-

ments or constants which determine the circumstances of the undis-

turbed motion, and the relation between the new elements adopted
and those for which the expressions for the differential coefficients

have been given, will furnish immediately the necessary formulae.

In the case of the periodic comets, it will often be desired to deter-

mine the alteration of the periodic time arising from the action of the

disturbing planets. Let us, therefore, suppose that a comet has been

identified at two successive returns to the perihelion, and let T denote

the elapsed interval. The observations at each appearance of the

comet, however extended they may be, will not indicate with certainty

the semi-transverse axis of the orbit, and hence the periodic time.

But when r is known, by eliminating the effect of the disturbing

forces, we may determine with accuracy the value of the semi-trans-

verse axis a at each epoch, and, from this and the observed places,

the other elements of the orbit according to the process already

explained.

Let HQ
be the mean daily motion at the first epoch, and we shall

have

*<=**,

in which n denotes the semi-circumference of a circle whose radius is

unity. Hence we obtain

*
(220)

by means of which to determine //
. Then, to find the mean daily

motion
/*

at the instant of the second return to the perihelion, we

have

the integral being taken between the limits and r. The provisional

value of the mean motion as given by the observed interval r will be

sufficiently accurate for the calculation of the variations of M and ju

during this interval. The semi-transverse axis will now be derived

by means of the formula

,/F
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from the values of // for the two epochs. Let r' denote the interval

which must elapse before the next succeeding perihelion passage of

the comet, and we have

2r _ T
'

i CdM M

and consequently

'dM_.
5

'

(222)

the integral being taken between the limits t= 0, corresponding to

the beginning of the interval, and t= T f
. We have, therefore,

for the change of the periodic time due to the action of the disturb-

ing forces.

198. The calculation of the values of the components R, S, and Z
of the disturbing force will be effected by means of the formulae

given in Art. 182. It will be observed, however, that not only these

components of the disturbing force, but also their coefficients in the

expressions for the differential coefficients, involve the variable ele-

ments, and hence the perturbations which are sought. But if we

consider only the perturbations of the first order, the fundamental

osculating elements may be employed in place of the actual variable

elements, and whenever the perturbations of the second order have a

sensible influence, the elements must be corrected for the terms of the

first order already obtained. Then, commencing the integration anew

at the instant to which the corrected elements belong, the calculation

may be continued until another change of the elements becomes

necessary. The several quantities required in the computation of the

forces may also be corrected from time to time as the elements are

changed.
The frequency with which the elements must be changed in ordei

to include in the results all the terms which have a sensible influence

in the determination of the place of the disturbed body, will depend

entirely on the circumstances of each particular case. In the case of

the asteroid planets this change will generally be required only after

an interval of about a year; but when the planet approaches very

near to Jupiter, the interval may necessarily be much shorter. The
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magnitude of the resulting values of the perturbations will suggest
the necessity of correcting the elements whenever it exists; and if

we apply the pioper corrections and commence anew the integration

for one or more intervals preceding the last date for which the per-

turbations of the first order have been found, it will appear at once,

by a comparison of the results, whether the elements have too long
been regarded as constant.

The intervals at which the differential coefficients must be com-

puted directly, will also depend on the relation of the motion of the

disturbing body to that of the disturbed body; and although the in-

terval may be greater than in the case of the variations of the co-

ordinates which require an indirect calculation, still it must not be so

large that the places of both the disturbing and the disturbed body, as

well as the values of the several functions involved, cannot be inter-

polated with the requisite accuracy for all intermediate dates. In the

case of the asteroid planets a uniform interval of about forty days will

generally be preferred; but in the case of the comets, which rapidly

approach the disturbing body and then again rapidly recede from it,

the magnitude of the proper interval for quadrature will be very
different at different times, and the necessity of shortening the inter-

val, or the admissibility of extending it, will be indicated, as the

numerical calculation progresses, by the manner in which the several

functions change value.

If we compute the forces for several disturbing bodies by using

2R, 2S, and IZ in the formulse in place of R, S, and Z, respect-

ively, the total perturbations due to the combined action of all of

these bodies may be computed at once. But, although the numerical

process is thus somewhat abbreviated, yet, if the adopted values of

the masses of some of the disturbing bodies are uncertain, and it is

desired subsequently to correct the results by means of corrected

values of these masses, it will be better to compute the perturbations

due to each disturbing body separately, and, since a large part of the

numerical process remains unchanged, the additional labor will not

be very considerable, especially when, for some of the disturbing

bodies, the interval of quadrature may be extended. The successive

correction of the elements in order to include in the results the per-

turbations due to the higher powers of the masses, must, however,

involve the perturbations due to all the disturbing bodies considered.

The differential coefficients should be multiplied by the interval w,

so that the formulae of integration, omitting this factor, will furnish

directly the required integrals; and whenever a change of the inter-
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val is introduced, the proper caution must be observed in regard to

the process of integration. The quantity s= 206264".8 should be

introduced into the formulae in such a manner that the variations of

the elements which are expressed in angular measure will be obtained

directly in seconds of arc; and the variations of the other elements

will be conveniently determined in units of the nth decimal place.

Tt should be observed, also, that if the constants of integration are

put equal to zero at the beginning of the integration, the integrals

obtained will be the required perturbations of the elements.

199. EXAMPLE. We s.hall now illustrate the calculation of the

perturbations of the elements by a numerical example, and for this

purpose we shall take that which has already been solved by the

other methods which have been given. From 1864 Jan. 1.0 to 1865

Jan. 15.0 the perturbations of the second order are insensible, and

hence during the entire period it will be sufficient to use the values

of r, v, and FJ given by the osculating elements for 1864 Jan. 1.0.

The calculation of the forces R, S, and Z is effected precisely as

already illustrated in Art. 189, and from the results there given we

obtain the following values of the forces, with which we write also

the values ofE
Q
:

Berlin Mean Time. 40.R 40
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~~- -= (a cos <p sin vR + a cos <p (cos v -f- cos E) S\
kvp

3a/Jt .

d3M
dt
= 1 / /

&V\p \ \ sm
_ _

sm
cos _

'

and the results are the following:

40 40
dSir

jUHWi
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In order to compare the results thus derived with the nerturbations

computed by the other methods which have been given, let us com-

pute the heliocentric longitude and latitude, in the case of the dis-

turbed orbit, for the date 1865 Jan. 15.0, Berlin mean time. Thus,

by means of the new elements, we find

M= 99 34' 48".81, E= 110 5' 14".15,

logr= 0.4162182, v = 120 19 18 .01,

I= 164 37' 59".04, I = 3 5 32 .54,

agreeing completely with the results already obtained by the other

methods. The heliocentric place thus found is referred to the ecliptic

and mean equinox of 1860.0, to which the elements
;r, 2, and i are

referred
;
and it may be reduced to any other ecliptic and equinox by

means of the usual formulae. Throughout the calculation of the per-

turbations it will be convenient to adopt a fixed equinox and ecliptic,

the results being subsequently reduced by the application of the cor-

rections for precession and nutation.

In the determination of dM, if we denote by AM the value which
7 Ttr

is obtained when we neglect the last term of the equation for jr> we
shall have

which form is equally convenient in the numerical calculation. Thus,

for 1865 Jan. 15.0, we find

AM= + 234".74,

and from the several values of 1600^- we obtain, for the same date
v

by means of the formula for double integration,

Hence we derive

dM= + 234".74 + 56".59 = + 291".33,

agreeing with the result already obtained.

If we compute the variation of the mean anomaly at the epoch, by

means of equation (209), we find, in the case under consideration,

dM = + 165".29,
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and since the place of the body in the case of the instantaneous orbit

is to be computed precisely as if the planet had been moving con-

stantly in that orbit, we have, for 1865 Jan. 15.0,

and hence

dM= 3M + (* 4,) 8?= + 9.91"M.

The error of this result is 0".23, and arises chiefly from the in-

crease of the accidental and unavoidable errors of the numerical cal-

culation by the factor t 1
09
which appears in the last term of the

equation (209). Hence it is evident that it will always be preferable

to compute the variation of the mean anomaly directly; and if the

variation of the mean anomaly at a given epoch be required, it may
easily be found from dM by means of the equation

If the osculating elements of one of the asteroid planets are thus

determined for the date of the opposition of the planet, they will

suffice, without further change, to compute an ephemeris for the brief

period included by the observations in the vicinity of the opposition,

unless the disturbed planet shall be very near to Jupiter, in which

case the perturbations during the period included by the ephemeris

may become sensible. The variation of the geocentric place of the

disturbed body arising from the action of the disturbing forces, may
be obtained by substituting the corresponding variations of the ele-

ments in the differential formulae as derived from the equation (1)2 ,

whenever the terms of the second order may be neglected. It should

be observed, however, that if we substitute the value of dM directly

in the equations for the variations of the geocentric co-ordinates, the

coefficient of
d/j.

must be that which depends solely on the variation

of the semi-transverse axis. But when the coefficient of dp. has been

computed so as to involve the effect of this quantity during the in-

terval t tw the value of dMQ
must be found from dM and substi-

tuted in the equations.

200. It will be observed that, on account of the divisor e in the

expressions for -> -TT-, and
-^p

these elements will be subject to large

perturbations whenever e is very small, although the absolute effect

on the heliocentric place of the disturbed body may be small
;
and on
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account of the divisor sin i in the expression for 5 the variation

of & will be large whenever i is very small. To avoid the difficul-

ties thus encountered, new elements must be introduced. Thus, in

the case of &, let us put

a"= sin i sin & , 0"= sin i cos & ; (224)

then we shall have

da" . di . d
7 = sm & cos i-j- -f- sin t cos & 7 >

at ac at

- cos a cost- - sm * sin

Introducing the values of
-^-

and given by the equations (212),

and introducing further the auxiliary constants a, b, A, and B com-

puted by means of the formulae (94) x
with respect to the fundamental

plane to which & and i are referred, we obtain

7 tl
-j

rZsin a cos (.4 + w).

(225)

6 cos (B + w),
(1 -f m)

by means of which the variations of a." and /9" may be found. If

the integrals are put equal to zero at the beginning of the integration,

the values of da" and dp" will be obtained, so that we shall have

sin i sin & = sin i sin & -f- a",

sin i cos & = sin i cos & -f &&' *

or

sin i sin (& ) = cos #" sin & <5y?",

sin i cos (& $^ )
= sin i + sin ^ ^a" -J- cos ^ dp", (226)

by means of which i and & & may be found.

In the case of #, let us put

y" = e sin /, C" = e cos /, (227 )

and we have

de . dx

d?' de dx
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Substituting for -=- and -j- the values given by the equations (203)

and (205), and reducing, we obtain

-{- m) *

-f-ersin/j/S),

d" 1 I
(228)

p Sin +^ ^ +^ + ') CQS

ercos/j/Sl,

by means of which the values of dy" and ^f" may be found. Then
we shall have

e sin x = e sin TT
O -f &/',

e cos /= e cos TT
O -f- <5C",

or

e sin (/ TT
O)
= cos TT

O &/' sin TT
O <?:",

e cos (/ TT
O)
= e

Q + sin TT
O 5^" -f cos TT

O 5C", (229)

from which to find e and . If, in order to find the variation of TT, we

write TT instead of in these formulae, the terms -f- 2ecos7rsin
2

^i 7

7Q
and 2esin^rsin2

&JT must be added to the second members of

(228), respectively.

201. By means of the four methods which we have developed and

illustrated, the special perturbations of a heavenly body may be de-

termined with entire accuracy, and the choice of the particular method

will depend on the circumstances of the case. By computing the

perturbations of the elements, correcting these elements as often as

may be required, the terms depending on the higher powers of the

masses may be included, and no indirect calculation becomes necessary.

The frequent correction of the elements will also render insensible

the effect of whatever uncertainty remains in regard to their true

values. But, since the perturbations of the elements are in general
much greater than those of the co-ordinates, the effect of the terms

of the second order will be much greater upon the values of the ele-

ments than upon those of the co-ordinates. Hence, the frequency
with which a change of the elements will be required will fully com-

pensate the labor of the indirect part of the calculation in the case

of the perturbations of the co-ordinates.
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The determination of the perturbations of the polar co-ordinates

r, Wj and z, and that of the perturbations dM, v, and dz
f ,

are effected

with almost equal facility, especially when the effect of the disturb-

ing forces is to be determined for a long interval of time. If the

perturbations are required only for a brief period, it will be prefer-

able to determine dM, v, and dz, rather than dw, Sr, and z, since the

indirect part of the calculation will thus be effected with less repe-
tition. In both of these cases the values of the perturbations are

generally smaller than in the case of the rectangular co-ordinates, and

hence they are less affected by terms of the second order; but on

account of the simplicity of the formulae, even when we include the

terms depending on the higher powers of the masses, so long as the

magnitude of the values of dx
9 dy, and dz is not* so large as to

render troublesome the indirect part of the calculation, the method

of the variation of rectangular co-ordinates may be advantageously

employed when the perturbations are to be determined for a long

period.

By whatever method the perturbations are determined, if the fun-

damental osculating elements are correct, the final elements of the

instantaneous orbit will be the same. But, since the effect of the

errors of the elements will differ in degree in the different methods

of treating the problem, if these elements are affected with small

errors, the agreement of the final osculating elements obtained by the

different methods, in connection with the corrections derived by the

comparison of observations, may not be complete.

When the disturbed body approaches very near to a disturbing

planet, the magnitude of the perturbations will be such as to enable

us by means of accurate observations to correct the adopted value of

the disturbing mass. In this case the perturbations, computed by
means of either of the methods applicable, must be converted intc

the corresponding perturbations of the geocentric spherical co-ordi-

nates. Let the variation of either of the geocentric co-ordinates

arising from the action of the disturbing planet be denoted by 80;

then, if we suppose the correct value of the disturbing mass to be

1 -f- n times the assumed value used in computing d6, the correspond-

ing variation of the geocentric spherical co-ordinate will be

(1 -f ri) dff.

The value dd may be included in the determination of the difference

between computation and observation in the formation of the equa-

tions of condition for finding the corrections to be applied to the ele-
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ments; and, finally, the term ndd may be added to each of the equa-
tions of condition, so that we thus introduce a new unknown quantity
n. The solution of all the equations thus formed, by the method of

least squares, will then furnish the most probable values of the cor-

rections to be applied to the adopted elements, and also the value of

n, by means of which a corrected value of the mass of the disturbing

body will be obtained.

202. If the determination of the perturbations of a heavenly body

required that all the disturbing bodies in the system should be con-

stantly considered, the labor would be very great. But, fortunately,

it so happens that the masses of many of the planets are so small in

comparison with* that of the sun, that the sphere of their disturbing

influence is very much restricted. Thus, in the determination of the

perturbations of the asteroid planets, only the action of Mars, Jupi-

ter, and Saturn need be considered
;
and of these disturbing planets

Jupiter exerts the principal influence. It is true, however, that, on

account of the elongated form of the orbits of the periodic comets,

they may at different times be sensibly disturbed by each of the

planets of the system. But since in the remote parts of their orbits

they are very distant from many of the disturbing planets, the deter-

mination of their perturbations will then be much facilitated by con-

sidering them as revolving around the common centre of gravity of

the sun and disturbing planet. When the motion is referred to the

centre of the sun, the disturbing force is the difference of the direct

action of the disturbing body upon the disturbed body and upon the

sun
;
and in the case of those disturbing planets whose periodic time

is short, the term which expresses the action upon the sun will change
value so rapidly that it will be necessary to adopt small intervals in

the direct numerical calculation. But when we refer the motion to

the centre of gravity of the system, which does not receive any
motion in virtue of the mutual attractions of the bodies which com-

pose the system, that part of the disturbing force which expresses the

action of the disturbing planet upon the sun will disappear, and the

magnitude of the disturbing force will be less than that of the force

which disturbs the motion of the comet relative to the sun, so that

the intervals for quadrature may be greatly extended. It will be

observed, further, that, if the distance of the comet from the sun is

far greater than the distance of the disturbing body, the direct action

of the planet upon the comet becomes so small that its effect upon the

motion will be quite insignificant. In this case the motion of the
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coinet will be sensibly the same as the pure elliptic motion around

the common centre of gravity of the sun and disturbing planet.

In order to exhibit these principles more clearly, let us denote by
, 37, ,

the co-ordinates of the sun referred to the centre of gravity
of the system ; by x

, yw z
,
the co-ordinates of the comet

;
and by

a?/, y ',
z

',
the co-ordinates of the disturbing planet referred to the

same origin. Let x, y, z be the co-ordinates of the comet, and

x'
9 y'j z' those of the planet referred to the centre of the sun; then

we shall have

= m'xj, -TI
= m'yj, C = m'z ',

and hence

a; -= x + m'xj, y = y + m'yj, z = z + m'zj,

From these we derive

mV my m'z
9

-IT^' ^ "TT^ 1

"TT^' (23

The equations (15)j are now easily transformed into the following:

d\

_
(231)

_ ,, , , _

which completely determine the motion of the comet about the com-

mon centre of gravity of the sun and planet. The second members

express the forces which disturb the pure elliptic motion; and it is

evident, by an inspection of the terms, that when the comet is remote

from both the planet and the sun these forces become extremely



538 THEORETICAL ASTRONOMY.

small. If, therefore, we compute the perturbations of the motion

relative to the sun as far as to the point at which the second members

of (231) have not any appreciable influence on the results, it will

suffice simply to convert the elements which refer to the centre of

the sun into those relative to the common centre of gravity of the

sun and disturbing planet, and then to regard the motion as undis-

turbed until the comet again approaches so near that the direct per-

turbations must be considered, at which point the motion will again
be referred to the centre of the sun.

203. The reduction of the elements from the centre of gravity of

the sun to the common centre of gravity of the sun and the disturb-

ing planet, may be easily effected by means of the variations of the

rectangular co-ordinates and of the corresponding velocities. To
derive the co-ordinates of the comet referred to the centre of gravity
of the sun and planet, it is only necessary to add to the heliocentric

co-ordinates the co-ordinates of the sun referred to this origin, so

that, according to (230), we shall have

fe=-7T^> (*>

and, also,

dy m' dtf

~dt
=

1-fm'
'

"3T

m' fr

1 -f- m'
'

eft

'

If, therefore, from the elements of the orbit of the disturbing planet

we compute the auxiliary constants for the adopted fundamental

plane by means of the equations (94) x
or (99) 1?

and also V and Ur

from

VP'
(e

r

sin a/ + sin w') =7' sin J7',

l m'

(e
r
cos / + cos ti')

=F cos U',
'

Vp'

the equations (100)! and (49), in connection with (232) and (233),

give

9x=
'

r ,
r' sin a' sin (A* + i*'), (234^
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dy= f
r

'

sin b
f

sin (
f

-f u') t

mf

Sz= -T r r sm c sm ( (J -f- w') ;

X -J- Wi

*" m'

i' + U'), (234)

"*
j,.,

.
,

^ ~, TTf\

If we add the values of dx
9 %, z, 3-j-> J-TT and (5

-yr- to the cor-
w* wt dt

responding co-ordinates and velocities of the comet in reference to

the centre of gravity of the sun, the results will give the co-ordinates

and velocities of the comet in reference to the common centre of

gravity of the sun and disturbing planet, and from these the new
elements of the orbit may be determined as explained in Art. 168.

The time at which the elements of the orbit of the comet may be

referred to the common centre of gravity of the sun and planet, can

be readily estimated in the actual application of the formulae, by
means of the magnitude of the disturbing force. In the case of Mer-

cury as the disturbing planet, this transformation may generally be

effected when the radius-vector of the comet has attained the value

1.5, and in the case of Venus when it has the value 2.5. It should

be remarked, however, that the distance here assigned may be in-

creased or diminished by the relative position of the bodies in their

orbits. The motion relative to the common centre of gravity of

the sun and planet disregarding the perturbations produced by the

other planets, which should be considered separately may then be re-

garded as undisturbed until the comet has again arrived at the point

at which the motion must be referred to the centre of the sun, and at

which the perturbations of this motion by the planet under consider-

ation must be determined. The reduction to the centre of the sun

will be effected by means of the values obtained from (234), when the

second member of each of these equations is taken with a contrary

sign.

204. In the cases in which the motion of the comet will be referred

to the common centre of gravity of the sun and disturbing planet,

the resulting variations of the co-ordinates and velocities will be so

smalJ that their squares and products may be neglected, and, there-
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fore, instead of using the complete formulae in finding the new ele-

ments, it will suffice to employ differential formulae. The formulas

(100), give

dx . . f . dr . . ,
A dv

-Tr= 8iiia sin (A -f u) -%- -f r sm a cos (A + u) -JT*

Hj-
= sin b sin (B + u)^ + r sin b cos ( + u) ^-, (235)

(it ut (it

dz . . , dr . f
~ . dv

-jr
= sm c sm (C+ w) -57 + r sm c cos ( (7 -f- w) -TI-

at at at

If we multiply the first of these equations by 3x, the second by dy}

and the third by dz; then multiply the first by d> the second by
7 7 Ctf

^-^Y* and the third by S-j-> and put
at dt

P= sin a sin (A -{-u) 3x -{- sin 6 sin (JB -}- w

-f- sin c sin ( C -}- w) ^2,

Q= sin a cos (J. + w) 5 -f sin 6 cos (JB -f w

4- sin c cos ((7 -f- u) dz;

P'= sin a sin (4 + i*)
*- + sin 6 sin (B + ti) d-- (236)

g' = sin a cos (J. + w) d-^ + sin 6 cos (B + w) J-~

-f- sin c cos (C+ u) djr*

we shall have, observing that - =
-^=

e sin t? and that -^
=

-^r-

-dt -dT--dr -df-r -dt
v
^t

From the equations

dr dx

_~
df ^

dt'
^

de'
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we get

which by means of (237) become

'+ ! +v
(238)

=-= esinvP'H-^ O^
Xf>

From the equation

V-W-TF *
we get

Substituting the values given by (238), observing also that P=dr,
this becomes

dk dp __ V*r re* sin
2 v esi

T' h^ ^ J

"7T-

and, since

F8= -(l + 2ecosv+e),

we obtain

flr-., (239,

by means of which the variation of
\/p may be found.

The equation

^.= 2P_F
a t

gives

from which we derive
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from which the new value of the semi-transverse axis a may be

found. To find dp we have

1 3k
dfj.
= Ifiad J- /A -, (241 ")

a k
or

Next, to find 8e, we have, from p= a (1 e
2

),

**! '<** (243>

or

jocose smv smv~l/p' f , ^P ,
to = -j P H H r-^1 -P H 77- (cos v + cos E}

The equation (12)2 gives

(2 + e cos i>) to, (245)v2a2
cos? a'cos'p

and from = 1 + e cos v we get

e sin i; re sm v re sin -y

Substituting this value of dv in (245), and reducing, we find

(24<y

/cot, tan^^
(247^

tan,
'

\ r

from which to derive the variation of the mean anomaly.

205. Let us now denote by a", y", 2'' the heliocentric co-ordinates

of the comet referred to a system in which the plane of the orbit is

the fundamental plane, and in which the positive axis of x is directed

to the ascending node on the ecliptic. Let us also denote by xf

, y', z
f

the co-ordinates referred to a system in which the plane of the ecliptic

is the plane of xy, and in which the positive axis of x is directed to

the vernal equinox. Then we shall have
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y" = x' sin & cos i -f- y' cos & cos i -j- z
f

sin i,

2" = xr

sin & sin i y' cos & sin i -\- z' cos i.

If we transform the co-ordinates still further, and denote by x, y> 2

the co-ordinates referred to the equator or to any other plane making
the angle e with the ecliptic, the positive axis of x being directed to

the point from which longitudes are measured in this plane; and if

we introduce also the auxiliary constants a, A, 6, B, &c., we shall

have

dx"= sin a sin A8x-\- sin b sin B dy -f sin c sin C 8z,

dy"= sin a cosA ox -f- sin b cosB dy -f- sin c cos C dz, (248)
dz" cos a dx -\- cos 6 fy -f- cos c <te.

Multiplying the first of these by sin u, and the second by cos M,

adding the results, and introducing Q as given by the second of

equations (236), we get

cos u ty" sin u dx"= Q.

Substituting for dxff and dy" the values given by the equations (73)j,

the result is

r (*o -f %) = Q,

and, introducing the value of dv given by (246), we obtain

Q cosv
d% = --

-. 3e
r esmv r*e sm v

Substituting further for de, dr, and
d(i/p)

the values already ob-

tained, and reducing, we find

_ sinv p cos!? n cos vVp p , (p + r) sin v'~- ~~^

by means of which 8% may be found.

If we put

cos a dx 4- cos bdy + cos c dz=

2 sin v dkT^X1

the last of the equations (248) gives
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dz" = R; (251)

and if we differentiate the equation

dx
,

, dy ,
dz

cos a-j- -f- cos o-^j- -f cos c-jr = 0,
at at at

which exists in the case of the unchanged elements, we shall have

= cos a d-r- -f- cos b d-~ -f cos e 8-=-
at at at

dx . dy . dz
.

-=T- sin a oa -f- sin b do rr sm c Sc.
at at at

Substituting for da, 8b, and do the values given in Art. 60, observing
that de= 0, we have

0=JR'-|-I -^-
sin a sin A -{- -smbsmB -{- -57 sine sin (7 1 sin tfl&

I -j- sin a cosA -j- -j- sin b cosB -f -rr sin e cos C 1 8i.

\ at at at /

From the equations (100) 1? observing that the relations between the

auxiliary constants are not changed when the variable u is put equal

to zero, or equal to 90, we get

sin* a sin2 A -\- sin2 b sin2 B -J- sin2
c sin

2
(7=1,

sin2 a cos'A -j- sin2 b cos2 J2 + sin
2
c cos

2
(7=1,

and from (235) we find

sin* a sin A cos A -f sin
2
5 sin BcosB -\- sin2

c sin CcosC= 0. (254)

Substituting in (252) for
-^ -^-

and the values given by the

equations (49), and reducing by means of (253) and (254), we get

=R FsinU'sin i 3& VcosU 9L (255)

Substituting further for dz" in (251) the value given by the last of

the equations (73)2,
there results

= R -f- r cos u sin i d& r sin u <H. (256)

From these equations we derive, by elimination,
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ecosw-J-cosw 1 rsiuu
,

:
-

-.

- i -\
--=

-.
-- H ,

psmi kV sin i

,. e sin </> -f sin w _
ft = - .# -f-

by means of which 8Q and 8i may be found. To find dot and d;r we
have

&y = <? cos id& ,
d* = d% + 2 sin2

i<5& , (258)

d% being found from equation (249).

Neglecting the mass of the comet as inappreciable in comparison
with that of the sun, the attractive force which acts upon the comet

in the case of the undisturbed motion relative to the sun is P, but in

the case of the motion relative to the common centre of gravity of

the sun and planet this force is P (1 + m'). Hence it follows that

the increment of this force will be m'&2

,
and we shall have

dk

by means of which the value of this factor, which is required in the

formula for ^(i/), fl &c., may be found.

206. The formula? thus derived enable us to effect the required

transformation of the elements. In the first place, we compute the

values of dx, dy, dz, 8 t djr> and d-jr by means of the formulae
Ctv Ctt> Civ

(234) ; then, by means of (236) and (250), we compute P, , R, P'
,

Q
f

,
and jR

r

,
the auxiliary constants a, A, &c. being determined in

reference to the fundamental plane to which the co-ordinates are re-

ferred. When the fundamental plane is the plane of the ecliptic, or

that to which & and i are referred, we have

sinc= sini, 0=0.

The algebraic signs of cos a, cos 6, and cos c, as indicated by the equa-

tions (101) 17
must be carefully attended to. The formulae for the

variations of the elements will then give the corrections to be applied

to the elements of the orbit relative to the sun in order to obtain

those of the orbit relative to the common centre of gravity of the

sun and planet. Whenever the elements of the orbit about the sun

are again required, the corrections will be determined in the same

manner, but will be applied each with a contrary sign.
35



546 THEORETICAL ASTRONOMY.

Since the equations have been derived for the variations of more

than the six elements usually employed, the additional formulae, as

well as those which give different relations between the elements em-

ployed, may be used to check the numerical calculation; and this

proof should not be omitted. It is obvious, also, that these differen-

tial formulae will serve to convert the perturbations of the rectangular

co-ordinates into perturbations of the elements, whenever the terms

of the second order may be neglected, observing that in this case

8k 0. If some of the elements considered are expressed in angular

measure, and some in parts of other units, the quantity s= 206264".8

should be introduced, in the numerical application, so as to preserve

the homogeneity of the formulae.

When the motion of the comet is regarded as undisturbed about

the centre of gravity of the system, the variations of the elements for

the instant t in order to reduce them to the centre of gravity of the

system, added algebraically to those for the instant t' in order to

reduce them again to the centre of the sun, will give the total pertur-

bations of the elements of the orbit relative to the sun during the

interval t
f

t. It should be observed, however, that the value of

dM for the instant t should be reduced to that for the instant t
f

,
so

that the total variation ofM during the interval t
1

t will be

In this manner, by considering the action of the several disturbing

bodies separately, referring the motion of the comet to the common
centre of gravity of the sun and planet whenever it may subsequently
be regarded as undisturbed about this point, and again referring it to

the centre of the sun when such an assumption is no longer admissi-

ble, the determination of the perturbations during an entire revolu-

tion of the comet is very greatly facilitated.

207. If we consider the position and dimensions of the orbits of

the comets, it will at once appear that a very near approach of some

of these bodies to a planet may often happen, and that when they

approach very near some of the large planets their orbits may be

entirely changed. It is, indeed, certainly known that the orbits of

comets have been thus modified by a near approach to Jupiter, and

there are periodic comets now known which will be eventually thus

acted upon. It becomes an interesting problem, therefore, to con-

sider the formulse applicable to this special case in which the ordinary

methods of calculating perturbations cannot be applied.
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If we denote by x f

, y
r

, z', r', the co-ordinates and radius-vector of
the planet referred to the centre of the sun, and regard its motion
relative to the sun as disturbed by the comet, we shall have

fflaf

dP r"

f+ -
1

^s

m) ^ =mp(^-|), (260)

W + ~

~7*~

Let us now denote by , 57,
the co-ordinates of the comet referred

to the centre of gravity of the planet; then will

Substituting the resulting values of #', y
f

,
z
r in the preceding equa-

tions, and subtracting these from the corresponding equations (1) for

*-he disturbed motion of the comet, we derive

These equations express the motion of the comet relative to the centre

of gravity of the disturbing planet; and when the comet approaches

Very near to the planet, so that the second member of each of these

equations becomes very small in comparison with the second term

of the first member, we may take, for a first approximation,

(fy k* (m -f- m') I _ (262)
dt*

"*
>*

_ A

and, since * ^ - is the sum of the attractive force of the planet

on the comet and of the reciprocal action of the comet on the planet,
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these equations, being of the same form as those for the undisturbed

motion of the comet relative to the sun, show that when the action

of the disturbing planet on the comet exceeds that of the sun, the

result of the first approximation to the motion of the comet is that

it describes a conic section around the centre of gravity of the planet.

Further, since xf

, y
f

,
z
f are the co-ordinates of the sun re-

ferred to the centre of gravity of the planet, it appears that the

second members of (261) express the disturbing force of the sun on

the comet resolved in directions parallel to the co-ordinate axes

respectively. Hence when a comet approaches so near a planet that

the action of the latter upon it exceeds that of the sun, its motion

will be in a conic section relatively to the planet, and will be dis -

turbed by the action of the sun. But the disturbing action of the

sun is the difference between its action on the comet and on the

planet, and the masses of the larger bodies of the solar system are

such that when the comet is equally attracted by the sun and by the

planet, the distances of the comet and planet from the sun differ so

little that the disturbing force of the sun on the comet, regarded as

describing a conic section about the planet, will be extremely small.

Thus, in a direction parallel to the co-ordinate the disturbing force

exercised by the sun is

l*_
r'

3
fa I / o I '" I /j

and when the comet approaches very near the planet this force will

be extremely small. It is evident, further, that the action of the

gun regarded as the disturbing body will be very small even when

its direct action upon the comet considerably exceeds that of the

planet, and, therefore, that we may consider the orbit of the comet to

be a conic section about the planet and disturbed by the sun, when it

is actually attracted more by the sun than by the planet.

208. In order to show more clearly that the disturbing force of the

sun is very small even when its direct action on the comet exceeds

that of the planet, let us suppose the sun, planet, and comet to be

situated on the same straight line, in which case the disturbing force

of the sun will be a maximum for a given distance of the comet from
1

the planet. Then will the direct action of the sun be , and that

m'Tc*
of the planet ^-- The disturbing; action of the sun will be
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which, since p is supposed to be small in comparison with r, may btj

put equal to

and hence the ratio of the disturbing action of the sun to the direct

action of the planet on the comet cannot exceed

If the comet is at a distance, such that the direct action of the sun is

equal to the direct action of the planet, we have

p* = m'r\

and the ratio of the direct action of the sun to its disturbing action

cannot in this case exceed 21/m'. In the case of Jupiter this amounts

to only 0.06.

So long as p is small, the disturbing action of the planet is very
m'k*

nearly in all positions of the comet relative to the planet, and

hence the ratio of the disturbing action of the planet to the direct

action of the sun cannot exceed

At the point for which the value of p corresponds to R= R'
y
the

comet, sun, and planet being supposed to be situated in the same

straight line, it will be immaterial whether we consider the sun or

the planet as the disturbing body ;
but for values of p less than this

R will be less than Rf

,
and the planet must be regarded as the con-

trolling and the sun as the disturbing body. The supposition that

R is equal to Rr

gives

and therefore

p = rS/X5
. (263;

Hence we may compute the perturbations of the comet, regarding

the planet as the disturbing body, until it approaches so near the
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planet that p has the value given by this equation, after which, so

long as p does not exceed the value here assigned, the sun must be

regarded as the disturbing body,
If

(p represents the angle at the planet between the sun and comet,

the disturbing force of the sun, for any position of the comet near

the planet, will be very nearly

cos

and when this angle is considerable, the disturbing action of the sun

will be small even when p is greater than rl/^m'
2
. Hence we may

commence to consider the sun as the disturbing body even before the

comet reaches the point for which

and, since the ratio of the disturbing action of the planet to the

direct action of the sun remains nearly the same for all values of ^,

when p is within the limits here assigned the sun must in all cases

be so considered. Corresponding to the value of p given by equation

(263), we have

and in the case of a near approach to Jupiter the results are

P = 0.054 r, #= 0.33.

209. In the actual calculation of the perturbations of any particu-

lar comet when very near a large planet, it will be easy to determine

the point at which it will be advantageous to commence to regard the

gun as the disturbing body; and, having found the elements of the

prbit of the comet relative to the planet, the perturbations of these

elements or of the co-ordinates will be obtained by means of the

formulse already derived, the necessary distinctions being made in the

notation. When the planet again becomes the disturbing body, the

elements will be found in reference to the sun; and thus we are

enabled to trace the motion of the comet before and subsequent to it*s

being considered as subject principally to the planet. In the case of

the first transformation, the co-ordinates and velocities of the comet

and planet in reference to the sun being determined for the instant at

which the sun is regarded as ceasing to be the controlling body, we

shall have
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d__dx__dx' di) _ dy dif dZ __ dz cM
,

~dt~~~dt~~~dt' ~dt~~~dt~~~dt* ~dt" ~dt~~~dt'

and from
, 57, , -^-,

-7-, and -7% the elements of the orbit of the

comet about the planet are to be determined precisely as the elements

in reference to the sun are found from x, yy z, yp j-,
and

-^->
and

as explained in Art. 168. Having computed the perturbations of

the motion relative to the planet to the point at which the planet is

again considered as the disturbing body, it only remains to, find, for

the corresponding time, the co-ordinates and velocities of the comet

in reference to the centre of gravity of the planet, and from these the

co-ordinates and velocities relative to the centre of the sun, and the

elements of the orbit about the sun may be determined. As the in-

terval of time during which the sun will be regarded as the disturb-

ing body will always be small, it will be most convenient to compute
the perturbations of the rectangular co-ordinates, in which case the

values of
, y, , -TJ-> -^->

and -rr will be obtained directly, and then,

having found the corresponding co-ordinates x r

, y', z' and velocities

rr> -Jr 7T of the planet in reference to the sun. we have
at at at

___ _ _ \ I

~dt

~~
~dt

""
~di' dt

~~
dt
"

dt
'

dt
" =

dt
h

dt
'

by means of which the elements of the orbit relative to the sun will

be found. If it is not considered necessary to compute rigorously

the path of the comet before and after it is subject principally to the

action of the planet, but simply to find the principal effect of the

action of the planet in changing its elements, it will be sufficient,

during the time in which the sun is regarded as the disturbing body,

to suppose the comet to move in an undisturbed orbit about the

planet. For the point at which we cease to regard the sun as the

disturbing body, the co-ordinates and velocities of the comet relative

to the centre of gravity of the planet will be determined from the

elements of the orbit in reference to the planet, precisely as the corre-

sponding quantities are determined in the case of the motion relative

to the sun, the necessary distinctions being made in the notation.
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210. The results obtained from the observations of the periodic

comets at their successive returns to the perihelion, render it probable
that there exists in space a resisting medium which opposes the motion

of all the heavenly bodies in their orbits; but since the observations

of the planets do not exhibit any effect of such a resistance, it is in-

ferred that the density of the ethereal fluid is so slight that it can

have an appreciable effect only in the case of rare and attenuated

bodies like the comets. If, however, we adopt the hypothesis of a

resisting medium in space, in considering the motion of a heavenly

body we simply introduce a new disturbing force acting in the direc-

tion of the tangent to the instantaneous orbit, and in a sense contrary

to that of the motion. The amount of the resistance will depend

chiefly on the density of the ethereal fluid and on the velocity of the

body. In accordance with what takes place within the limits of our

observation, we may assume that the resistance, in a medium of con-

stant density, is proportional to the square of the velocity. The

density of the fluid may be assumed to diminish as the distance from

the sun increases, and hence it may be expressed as a function of the

reciprocal of this distance.

Let ds be the element of the path of the body, and r the radius-

vector; then will the resistance oe

K being a constant quantity depending on the nature of the body,

and
<p

I I the density of the ethereal fluid at the distance r. Since

the force acts only in the plane of the orbit, the elements which de-

fine the position of this plane will not be changed, and hence we have

only to determine the variations of the elements M, e, a, and . If

we denote by ^ the angle which the tangent makes with the prolon-

gation of the radius-vector, the components R and 8 will be given by

and, since

> =
Vp

Jc Jct/p ds
V cos (f>

= -7- e sin v, Fsin ^ =--, V= -rr>
r

\ve have
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Substituting these values ofR and 8 in the equation (205), it reduces to

= 2Ky ( - 1 sin v ds.

Now, since

we have

V= -- (I -f- 2e cos v + e,
Vp

ds= Vdt= (l + 2e cos v

and hence

' X
\ f*

' V^OOJ

If we suppose the function

2e cos v -f- e*)
3

,
(
i

j

r3
(1

the value of which is always positive, to be developed in a series

arranged in reference to the cosines of v and of its multiples, so that

we have

^
( 7 )

** C1 + 2e cos v + erf = A + ^ cos v + c cos 2v + &c -> (267>

in which A, B, &c. are positive and functions of e, the equation (266)

becomes
2

ed% = -- (A -j- -B cos v -f- . . . .) sin v dv.

Hence, by integrating, we derive

+ ----), (268)

from which it appears that / is subject only to periodic perturbations

on account of the resisting medium.

In a similar manner it may be shown that the second term of the

second member of equation (210) produces only periodic terms in the

value of dM, so that if we seek only the secular perturbations due to

the action of the ethereal fluid, the first and second terms of the

second member of (210) will not be considered, and only the secular

perturbations arising from the variation of // will be required.

Let us next consider the elements a and e. Substituting in the
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equations (198) and (202) the values ofE and S given by (265), and

reducing, we get

2o
/
1

\ 2
.. | ,

da= r- K<p \ ]r
y
(I -}- 2e cos v + e

z
) av,

\ r I

2 ,/l\ J
(269)

de = K<p I I r2

(1 -f- 2e cos v -\- e*) . (e -f- cos v) dv.

p \ 7* /

If we introduce into these the series (267), and integrate, it will be

found that, in addition to the periodic terms, the expressions for da

and de contain each a term multiplied by v, and hence increasing with

the time. It is to be observed, further, that since A and B are posi-

tive, the secular variation of a, and also that of e, will be negative,

and hence the resisting medium acts continuously to diminish both

the mean distance and the eccentricity.

211. The magnitude of the disturbing force arising from the action

of the resisting medium is so small that the periodic terms have no

sensible influence on the place of the comet during the period in

which it may be observed
;
and hence, since the effect of the resist-

ance will be exhibited only by a comparison of observations made at

its successive returns to the perihelion, the effect of the planetary per-

turbations being first completely eliminated, it is only necessary to

consider the secular variations. Further, since y is subject only to

periodic changes in virtue of the action of the resistance, and since

the mean longitude is subjected to a secular change only through /*,

it will suffice to employ the formulae for dp and de or d<p. The

variations of these elements may be computed most conveniently by

mechanical quadrature from given values of -77 and -37- or -77-, al-
dt ut ut

though their values for one complete revolution of the comet may be

determined directly, the values of the coefficients A and B which

appear in the series (267) being found by means of elliptic functions.

The calculation of the effect of the resisting medium will be made in

connection with the determination of the planetary perturbations, so

that there will be no inconvenience in adding to the results the term?

depending on this resistance. Since

dfi 3 p. da d<p de

~dt
= ~

2" ~a 'W

the equations (269) give, putting K=
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dt r cos y>

n\
\ r I

(270)

It remains now to make an assumption in regard to the law of the

density of the resisting medium. In the case of Encke's comet it

has been assumed that

and this hypothesis gives results which suffice to represent the obser-

vations at its successive returns to the perihelion. Substituting for F
its value in terms of r and a, the equations (270) thus become

dt r'r a

- OM TT- LKr \J

a COS COS E
r

dt v*

l
2 *

1
---

\ r a

by means of which
djy.

and d<p may be found
;
and from any given

value of dp. we may derive the corresponding value of da. The

variation of M, neglecting the periodic terms arising from the first

and second terms of the second member of equation (210), will be

given by

which will be integrated by mechanical quadrature so as to include

the interval of an entire revolution of the comet. The quantity U
has been determined, by means of observations of Encke's comet, to be

This value may be corrected by introducing a term in the equations

of condition precisely as in the case of the determination of the cor-

rection to be applied to the mass of a disturbing planet. Intro-

ducing U into the equation (264), and adopting the hypothesis that

^i
J

= , the expression for the action of the ethereal fluid be-

comes
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Since the constant U depends on the nature of the comet, the value

obtained in the case of Encke's comet may be very different from

that in the case of another comet. Thus, in the case of Faye's comet

the value has been found to be

U=
10.232'

and in the application of the formulae to the motion of any particular

body it will be necessary to make an independent determination of

this constant.

212. The assumption that the density of the ethereal fluid varies

inversely as the square of the distance from the sun, is that which

appears to be the most probable, and the results obtained in accord-

ance therewith seem to satisfy the data furnished by observation. It

is true, however, that the whole subject is involved in great uncer-

tainty as regards the nature of the resisting medium, so that the

results obtained by means of any assumed law of density are not to

be regarded as absolutely correct.

From the formulae which have been given, it appears that, whatever

may be the law of the density of the resisting fluid, the mean motion

is constantly accelerated and the eccentricity diminished, and we may
determine, by means of observations at the successive appearances of

the comet, the amount of these secular changes independently of any

assumption in regard to the density of the ether. Let x denote the

variation of p during the interval r, which may be approximately the

time of one revolution of the comet, and let y denote the correspond-

ing variation of
<p ; then, after the lapse of any interval t T

,
we

shall have

(272)

and, since the average variation of p. during the interval t T
Q

is

M= MQ + AIO (*
- T ) +

~
r

x. (27,r

If we introduce x and y as unknown quantities in the equations of

condition for the correction of the elements by means of the differ-

ences between computation and observation, the secular variations of

fi and <p may be determined in connection with the corrections to b<
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applied to the elements. For this purpose the partial differential co-

efficients of the geocentric spherical co-ordinates with respect to x

and y must be determined. Thus, if we substitute the values of /*,

<p,
and M given by (272) and (273) in the equations (12)2 and (14)2,

we obtain

dr (t Tny 2r t Tn= a tan <p sin v s -5 s,
dx 2r 3/Jt T

dv a2
cos? (t TQy dr t T

-j-= = -
s > -j- = a cos <p cos v -, (274)dx r2 2r rfy T

2dv I

-! =1
dy \
-!

dy \ cos <p

.

h tan #> cos v I sin v

in which s= 206264". 8, /* being expressed in seconds of arc. Com-

bining the results thus obtained with the differential coefficients of

the geocentric spherical co-ordinates with respect to r and v, as indi-

cated by the equations (42)2,
we obtain the required coefficients of x

and y to be introduced into the equations of condition. The solution

of all the equations of condition by the method of least squares will

then furnish the most probable values of y and #, or of the secular

variations of the eccentricity and mean motion, without any assump-
tion being made in rei jrence either t ) the density of the ethereal fluid

or to the modifications of the resistance on account of the changes in

the form and dimensions of the comet, and the results thus derived

may be employed in determining the values of J!f, //,
and

<p
for the

subsequent returns of the comet to the perihelion.

In all the cases in which the periodic comets have been observed

sufficiently, the existence of these secular changes of the elements

seems to be well established
;
and if we grant that they arise from the

resistance of an ethereal fluid, the total obliteration of our solar

system is to be the final result. The fact that no such inequalities

have yet been detected in the case of the motion of any of the planets,

shows simply the immensity of the period which must elapse before

the final catastrophe, and does not render it any the less certain.

Such, indeed, appear to be the present indications of science in re-

gard to this important question; but it is by no means impossible

that, as in at least one similar case already, the operation of the

simple and unique law of gravitation will alone completely explain

these inequalities, and assign a limit which they can never pass, and

thus afford a sublime proof of the provident care of the OMNIPOTENT

CREATOR.
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TABLE I, Angle of the Vertical and Logarithm of the Earth's Kadius,

i
Argument = Geographical Latitude. Compression = 299.15
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TABLE XXI, Constants, &c,

log

of Naperian logarithms e 2.71828183 0.43429448
Modulus of the common logarithms . . A = 0.43429448 9.63778431 10
Radius of a Circle in seconds r = 206264.806 5.31442513

'/ '/ a // minutes r = 3437.7468 3.53627388
" // // degrees r= 57.29578 1.75812263

Circumference of a Circle in seconds .... 1296000 6.11260500
" // // whenr=l. . . . TT = 3.14159265 0.49714987

Sine of 1 second 0.000004848137 4.68557487

Equatorial horizontal parallax of the sun, according to

Encke
'

8".57116 0.9330396

Length of the sidereal year, according to Hansen and

Olufsen 365.2563582 days 2.56259778

Length of the tropical year, according to Hansen and

Olufsen 365.2422008 // 2.56258095

This value of the length of the tropical year is for 1850.0. The annual variation is

0/0000000624.

Time occupied by the passage of light over a distance

equal to the mean distance of the earth from the

sun, according to Struve 497/827 2.6970785

Attractive force of the sun, according to Gauss . k 0.017202099 8.23558144 10

// // // // // // // in se-

conds of arc 3548.18761 3.55000657

Constant of Aberration, according to Struve 20".4451

// a Nutation, // // Peters 9".2231

Mean Obliquity of the ecliptic for 1750 -f t,

according to Bessel .... 23 28' 18".00 0".48368* 0".00000272295<

Mean Obliquity of the ecliptic for 1800 + t,

according to Struve and Peters . . 23 27' 54".22 0".4738< 0".0000014*2

General Precession for the year 1750 + t, according to Bessel 50".21129 + 0".00024429f>6<

/, // u it 'i ii Struve 50".22980 + 0".000226*

MASSES OF THE PLANETS, THE MASS OP THE SUN BEING THE UNIT.





EXPLANATION OF THE TABLES.

TABLE I. contains the values of the angle of the vertical and of the

logarithm of the earth's radius, with the geographical latitude as the

argument. The adopted elements are those derived by Bessel. De-

noting by p the radius of the earth, by <p
the geographical latitude,

and by <p

r the geocentric latitude, we have

y,
=

<p IV 30".65 sin 2? + 1".16 sin 4? &c.,

log p = 9.9992747 + 0.0007271 cos 2? 0.0000018 cos 4? + &c.,

f> being expressed in parts of the equatorial radius as the unit. These

quantities are required in the determination of the parallax of a

heavenly body. The formula for the parallax in right ascension and

in declination are given in Art. 61.

TABLE II. gives the intervals of sidereal time corresponding to

given intervals of mean time. It is required for the conversion of

mean solar into sidereal time.

TABLE III. gives the intervals of mean time corresponding to

given intervals of sidereal time. It is required for the conversion

t)f sidereal into mean solar time.

TABLE IV. furnishes the numbers required in converting hours,

minutes, and seconds into decimals of a day. Thus, to convert

I3h 19m 43.5s into the decimal of a day, we find from the Table

13A =0.5416667
19m =0.0131944

43s = 0.0004977

0.5s = 0.0000058

Therefore ISA 19m 43.5s = 0.5553646
861
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The decimal corresponding to 0.5s is found from that for 5s by

changing the place of the decimal point.

TABLE V. serves to find, for any instant, the number of days from

the beginning of the year. Thus, for 1863 Sept. 14, 15h 53m 37.2s,

we have

Sept. 0.0= 243.00000 days from the beginning of the year.

Ud 15/i 53m 37.2s= 14.66224

Required number of days= 257.66224

TABLE VI. contains the values of M= 75 tan %v -f 25 tan3

\v for

values of v at intervals of one minute from to 180. For an ex-

planation of its construction and use, see Articles 22, 27, 29, 41,

and 72.

In the case of parabolic motion the formulae are

m==f M mO T\

wherein log C = 9.9601277. From these, by means of the Table, v

may be found when t T is given, or t T when v is known. From
v= 30 to v= !SO the Table contains the values of log M.

TABLE VII., the construction of which is explained in Art. 23,

serves to determine, in the case of parabolic motion, the true anomaly
or the time from the perihelion when v approaches near to 180.

The formulae are

8

/200
=Y-

w being taken in the second quadrant. The Table gives the values

of A
O with w as the argument. As an example, let it be required to

find the true anomaly corresponding to the values t T= 22.5 days

and log g
= 7.902720. From these we derive

log M= 4.4582302.

Table VI. gives for this value of log M, taking into account the

second differences,

i> = 16859'32".49;

but, using Table VII., we have

w= 168 59' 29".ll, A
O
= 3".37,
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and hence

v= w + A
O
= 168 59' 32".48,

the two results agreeing completely.

TABLE VIII. serves to find the time from the perihelion in the

case of parabolic motion. For an explanation of its construction

and use, see Articles 24, 69, and 72.

TABLE IX. is used in the determination of the true anomaly 01

the time from the perihelion in the case of orbits of great eccen-

tricity. Its construction is fully explained in Art. 28, and its use in

Art. 41.

TABLE X. serves to find the value of v or of t T in the case of

elliptic or hyperbolic orbits. The construction of this Table is ex-

plained in Art. 29. The first part gives the values of log B and

log C9
with A as the argument, for the ellipse and the hyperbola.

In the case of log C there are given also log I. Diff. and log half II.

Diif., expressed in units of the seventh decimal place, by means of

which the interpolation is facilitated. Thus, if we denote by log (C)

the value which the Table gives directly for the argument next less

than the given value of A, and by &A the difference between this

argument and the given value of A, expressed in units of the second

decimal place, we have, for the required value,

log 0= log (0) + Aj. X I. Diff. + AJ.2 X half II. Diff.

For example, let it be required to find the value of log C correspond-

ing to A= 0.02497944, and the process will be:

(1) (2)

Arg. 0.02, log (C)= 0.0034986 log I. Diff. =4.24585 log halfII.Diff.= 1.778

^ _ 8770.6 log*A =9.69718 21ogA4 9.394

A4 = 0.497944, (2)= 14.8 3.94303 1.172

log = 0.0043771

The second part of the Table gives the values of A corresponding

to given values of r.

TABLE XI. serves to determine the chord of the orbit when the

extreme radii-vectores and the time of describing the parabolic arc

are given. For an explanation of the construction and use of this

Table, see Articles 68, 72, and 117.
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TABLE XII. exhibits the limits of the real roots of the equation

sin (/ C)
= m sin* /.

The construction and use of this table are fully explained in Articles

84 and 93.

TABLES XIII. and XIV. are used in finding the ratio of the

sector included by two radii-vectores to the triangle included by the

same radii-vectores and the chord joining their extremities. For an

explanation of the construction and use of these Tables, see Articles

88, 89, 93, and 101.

TABLE XV. is used in the determination of the chord of the part
of the orbit described in a given time in the case of very eccentric

elliptic motion, and in the determination of the interval of time

whenever the chord is known. For an explanation of its construc-

tion and use, see Articles 116, 117, and 119.

TABLE XVI. is used in finding the chord or the interval of time

in the case of hyperbolic motion. See Articles 118 and 119 for an

explanation of the use of the Table, and also the explanation of

Table X. for an illustration of the use of the columns headed log I.

Diff. and log half II. Diff.

TABLE XVII. is used in the computation of special perturbations

when the terms depending on the squares and higher powers of the

masses are taken into account. For an explanation of its construc-

tion and use, see Articles 157, 165, 166, 170, and 171.

TABLE XVIII. contains the elements of the orbits of the comets

which have been observed. These elements are: T
}
the time of peri-

helion passage (mean time at Greenwich) ; TT, the longitude of the

perihelion; &, the longitude of the ascending node; i, the inclina-

tion of the orbit to the plane of the ecliptic; e, the eccentricity of the

orbit; and q, the perihelion distance. The longitudes for Nos. 1, 2,

12, 16, 91, 92, 115, 127, 138, 155, 156, 159, 160, 162, 171, 173-175

180, 181, 185, 191, 192, 195-199, 201, 203, 204, 207, 208, 212-215,

217-219, 221-228, 230, 233, 234, 237-248, 251-258, 261-267,

269-275, 277-279, are in each case measured from the mean equinox
of the beginning of the year. In the case of Nos. 134, 146, 172,

182, 189, 190, 205, 231, 232, 236, 259, and 268, the longitudes are
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pleasured from the mean equinox of the beginning of the next year.

The longitudes for Nos. 19 and 27 are measured from the me*\n

equinox of 1850.0; for No. 186, from the mean equinox of July 3;

for No. 187, from the mean equinox of Nov. 9; for No. 200, from

the mean equinox of July 1
;

for No. 202, from the mean equinox
of Oct. 1

;
for No. 206, from the mean equinox of Oct. 7

; for No. 211,
from the mean equinox of 1848.0; for No. 216, from the mean equi-
nox of Feb. 20

;
for No. 229, from the mean equinox of April 1

;
foi

No. 250, from the mean equinox of Oct. 1
;
and for No. 276, from

the mean equinox of 1865 Oct. 4.0.

Nos. 1, 2, 11, 12, 20, 23, 29, 41, 53, 80, and 177 give the elements

for the successive appearances of Halley's comet; Nos. 104, 116, 126,

143, 149, 157, 167, 170, 176, 178, 183, 194, 210, 220, 235, 249, and

260, those for Encke's comet, the longitudes being measured from the

mean equinox for the instant of the perihelion passage. Nos. 92,

127, 159, 172, 196, and 222 give the elements for the successive ap-

pearances of Biela's comet; Nos. 187, 216, 250, and 276, those for

Faye's comet; Nos. 197 and 238, those for Brorsen's comet; Nos.

217 and 243, those for D'Arrest's comet; and Nos. 145 and 245,

those for Winnecke's comet. For epochs previous to 1583 the dates

are given according to the old style.

This Table is useful for identifying a comet which may appear

with one previously observed, by means of a similarity of the ele-

ments, its periodic character being otherwise unknown or at least un-

certain. The elements given are those which appear to represent the

observations most completely. For a collection of elements by vari-

ous computers, and also for information in regard to the observations

made and in regard to the place and manner of their publication,

consult Carl's Repertorium der Cometen-Astronomie (Munich, 1864),

or Galle's Cometen-Verzeichniss appended to the latest edition of

Olbers's Meihode die Bahn eines Cometen zu berechnen.

TABLE XIX. contains the elements of the orbits of the minor

planets, derived chiefly from the Berliner Aslronomisches Jahrbiivh

fur 1868. The epoch is given in Berlin mean time ;
M denotes the

mean anomaly, <p
the angle of eccentricity, p the mean daily motion,

and a the semi-transverse axis. The elements of Vesta, Iris, Flora,

Metis, Victoria, Eunomia, Melpomene, Lutetia, Proserpina, and

Pomona are mean elements; the others are osculating for the epoch.

The date of the discovery of the planet, and the name of the dis-

coverer, are also added.
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TABLE XX. contains the mean elements of the oibits of the

major planets, together with the amount of their variations during a

period of one hundred years. The epoch is expressed in Greenwich

mean time, and L denotes the mean longitude of the planet.

TABLE XXI. gives the values of the masses of the major planets,

and also various constants which are used in astronomical calcula-

tions.



APPENDIX.

A. Precession. If we adopt the values for the precession and for

the variation of the position of the plane of the ecliptic given in

Art. 40, and put

M= 171 36' 10" + 39".79 (t 1750),

the formulae for the annual precession in longitude (^) and latitude

(/?) become, for the instant
t,

~ = 50".2113 + 0".0002443 (t 1750)

-|- (0".4889 0".00000614 (* 1750)) cos (A M) tan & (1)

^= (0".4889 0".00000614 (* 1750)) sin (A Jf).

If we denote the planetary precession by a, the luni-solar preces-

sion by ln and the obliquity of the fixed ecliptic, at the time 1750 -f r
f

by e
,
we have, according to Bessel,

~ = 0".17926 0".0005320786 r,

^L= 50^,37572 0".000243589 r,
at

e = 23 28' 18".0 + 0^.0000098423 T,

and if we put

dl, da . dl,

the formulae for the annual precession in right ascension (a) and

declination (8) become

ctt u f,y- = m 4- n tan 8 sin a, -jr= n cos a, ( 2)
at cw

42
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and the numerical values of m and n are, for the instant
,

m= 46".02824 + 0".0003086450 (t 1750),

n = 20".06442 0".0000970zv* (i

To determine the precession during the interval t'
t, we compote

the annual variation for the instant J (t

f+ t)
and this variation mul-

tiplied by t
f

t furnishes the required result.

jB. Nutation. The expressions for the equation of the equinoxes
and for the nutation of the obliquity of the ecliptic are, according to

Peters,

A2 = 17".2405 sin & -f 0".2073 sin 2& 0".2041 sin 2 -f 0".0677 sin
( C F)

l".2694sin 20 + 0".1279 sin (Q r)

0".0213sin(0 + r),

Ae = + 9".2231 cos & 0".0897 cos 2& + 0".0886 cos 2<C

+ 0".5510 cos 20 + 0".0093 cos (0 + r),

for the year 1800, and

AX= 17".2577 sin + 0".2073 sin 2& 0".2041 sin 2C -f 0".0677 sin ( C F)

1".2695 sin 2Q + 0".1275 sin (0 r)

0".0213 sin (Q + r),

Ae= + 9".2240 cos & 0".0896 cos 2^ -f 0".0885 cos 2C
+ 0".5507 cos 20 + 0".0092 cos (0 + r),

for the year 1900. In these equations & denotes the longitude of

the ascending node of the moon's orbit, referred to the mean equinox,

< the true longitude of the moon, the true longitude of the sun, F
the true longitude of the sun's perigee, and P the true longitude of

the moon's perigee. The values of these quantities may be derived

from the solar and lunar tables, and thus the required values of A^

and AS may be found. The equations give the corrections for the

reduction from the mean equinox to the true equinox.

To find the nutation in right ascension and in declination, if we

consider only the terms of the first order, we have

da
,

da
Att=

^r
AA + -^^

dS
,

dd W
*$ = -TT ^ + ~J~ Aff -

cW ds

The values of A/I and A are found from the preceding equations, and

for the differential coefficients we have
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do, dd
-~jY
= cos e

-j- sin e tan o sin a, -r = cos a sin e,

-j- = cos a tan d, -T-= sin a.
as ds

(6)

The terms of the second order are of sensible magnitude only when
the body is very near the pole, and in this case by computing the

second differential coefficients the complete values may be found.

In the reduction of the place of a planet or comet from the mean

equinox of one date t to the true equinox of another date
t', the

determination of the correction for precession and of that for nutation

may be effected simultaneously. Thus, let r denote the interval

t
f

t expressed in parts of a year, and the sum of the corrections for

precession and nutation gives

Aa= mr -f- AA cos s -j- (nr -j- AA sin e) sin a tan d AS cos a tan J,

A<5= (nr -j- AA sin e) cos a -{-AS sin a.

Let us now put

mr -f AA cos e =/,
nr -f AA sin s = g cos G, (7)

Ae = g sin G,

and the equations (6) become

* =/+ ^sin (G + o) tan 3,

A<?= COS(-fa),

as already given in Art. 40.

The astronomical ephemerides give at intervals of a few days the

values of the quantities/, g, and G for the reduction of the place of

the body from the mean equinox of the beginning of the year to the

true equinox of the date; and, in order to obtain uniformity and

accuracy, the beginning of the year is taken at the instant when the

mean longitude of the sun is 280. When these tables are not avail-

able, the values of /, g, and G may be found directly by means of

the equations (7).
The reduction from the true equinox of t' to the

mean equinox of t will be obtained by changing the signs of the

corrections.

C. Aberration. The aberration in the case of the planets and

comets may be considered in three different modes :

1. If we subtract from the observed time the interval occupied by
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the light in passing to the earth, the result will be the time for which

the true place is identical with the apparent place for the observed

time.

2. If we compute the time occupied by light in traversing the

distance between the body and the earth, and, by means of the rate

of the variation of the geocentric spherical co-ordinates, compute the

mot.ion during this interval, we may derive the true place at the in-

stant of observation.

3. We may consider the observed place corrected for the aberration

of the fixed stars as the true place at the instant when the light was

emitted, but as seen from the place of the earth at the instant of

observation.

The formula for the actual aberration of the fixed stars are

AA = 20".4451 cos (A 0) sec ft 0".3429 cos (A JT) sec ft

*p= + 20".4451 sin (X ) sin ft + 0".3429 sin (A /') sin f),
W)

in the case of the longitude and latitude, and

A = 20".4451 (cos Q cos e cos a -f sin sin a) sec 8

0".3429 (cos F cos e cos a + sin ^sin sec d,

Afl= -f- 20".4451 cos Q (sin a sin d cos e cos <5 sin e) (10)

20".4451 sin cos a sin d

-f- 0".3429 cos F (sin a sin d cos e cos d sin e)

0".3429 sin F cos a sin d,

in the case of the right ascension and declination. In these formulae

r denotes the longitude of the sun's perigee, and they give the cor-

rections for the reduction from the true place to the apparent place.

D. Intensity of Light. If we denote by r the distance of a planet

or comet from the sun, by J its distance from the earth, and by C a

constant quantity depending on the magnitude of the body and on its

capacity for reflecting the light, the intensity of the light of the body
as seen from the earth will be

i=-- cm

When the constant C is unknown, we may determine the relative

brilliancy of the comet at different times by means of the formula
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In the case of the planets we adopt as the unit of the intensity of

light the value of I when the planet is in opposition and both it and

the earth are at their mean distances from the sun. Thus we obtain

C='(-!)',
and hence

Let us now denote by R the ratio of the intensities of the light

for two consecutive stellar magnitudes; then, if we denote by M the

apparent stellar magnitude of the planet when J= 1, and by m the

magnitude for any value of J, we shall have

R*
I=S B*

and hence

By means of photometric determinations of the relative brilliancy

of the stars, it has been found that

R = 2.56,

and hence we derive

m=M 2.45 log/, (15)

by means of which the apparent stellar magnitude of a planet may
be determined, I being found by means of equation (13). The value

ofM must be determined for each planet by means of observed values

of m.

EXAMPLE. The value ofM for Eurynome is 10.4; required the

apparent stellar magnitude of the planet when log a= 0.38 795,

log r= 0.2956, and log A= 9.9952.

The equation (13) gives

log 1= 0.5129,

and from (15) we derive

m= 10.4 1.3 = 9.1.

For the values log r= 0.4338, log A = 0.2357, we obtain

log/ =9.7555 10,

and
m= 10.4 + 2.45 X 0.2445 = 11.0.
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E. Numerical Calculations. The extended numerical calculations

required in many of the problems of Theoretical Astronomy, render

it important that a judicious arrangement of the details should be

effected. The beginner will not, in general, be able to effect such

an arrangement at the outset
;
and it would only confuse to attempt

to give any specific directions. Familiarity with the formulae to be

applied, and practice in the performance of calculations of this

character, will speedily suggest those various devices of arrangement

by which skillful computers expedite the mechanical part of the

solution. There are, however, a few general suggestions which may
be of service. Thus, it will always facilitate the calculation, when
several values of a variable are to be computed, to arrange it so that

the values of each function involved shall appear in the same verti-

cal or horizontal column. The course of the differences will then

indicate the existence of errors which might not otherwise be dis-

covered until the greater part if not the entire calculation has been

completed; and, besides, by carrying along the several parts simulta-

neously the use of the logarithmic and other tables will be facilitated.

Numbers which are to be frequently used may be written on slips of

paper and applied wherever they may be required ;
and by performing

the addition or subtraction of two logarithms or of two numbers from

left to right (which will be effected easily and certainly after a little

practice), the sum or difference to be used as the argument in the

tables may be retained in the memory, and thus the required number

or arc may be written down directly. The number of the decimal

figures of the logarithms to be used will depend on the character of

the data as well as on the accuracy sought to be obtained, and the use

of approximate formula? will be governed by the same considerations.

Whenever the formulae furnish checks or tests of the accuracy of the

numerical process, they should be applied; and whenever these are

not provided, the use of differences for the same purpose should not

be overlooked. By proper attention to these suggestions, much time

and labor will be saved. The agreement of the several proofs will

beget confidence, relieve the mind from much anxiety, and thus

greatly facilitate the progress of the work.

THE END.
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