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13.1 INTRODUCTION

Various technologies exist that enable the detoxification/deactivation and removal of toxic com-
pounds from the soil, mostly based on physicochemical extraction methods. They are costly and
totally destroy soil microorganisms. The restitution of life on polluted sites or areas that were
subjected to conventional technologies usually takes a very long time, is difficult, and often requires
human intervention.

Phytoremediation is an alternative to physicochemical methods; it involves the use of plants in
the process of decreasing the level of toxic compounds in soil, stabilizing the soil, and inhibiting
erosion [1]. However, plants need appropriate below-ground ecosystems to establish diverse com-
munities, especially on difficult sites [2–4]. Mycorrhizal fungi play a key role in increasing the
volume of soil explored by the plant in search for nutrients and trace elements. Their activity
directly or indirectly influences the microbial populations, qualitatively and quantitatively, including
bacteria and fungi from the zone called the mycorrhizosphere.

The present chapter will focus on arbuscular mycorrhizal fungi (AMF). Under natural conditions,
they are accompanied by bacteria such as legume symbiotic nodular bacteria, plant growth-promoting
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236 Trace Elements in the Environment
rhizobacteria (PGPR), and fungi, including other mycorrhizal symbionts and saprobic fungi. All of
these organisms build specific consortia that influence the plant by means of interactions with abiotic
[5] and biotic components of the soil [6] or stimulate plant growth through the production of vitamins
and hormones [7,8]. Rebuilding/establishing such consortia is of utmost importance for the effec-
tiveness of phytoremediation processes.

13.2 MYCORRHIZA AND ITS ROLE IN THE ENVIRONMENT

Mycorrhizal fungi are widespread and form symbiosis with a large majority of plant species on
Earth [2]. A common trait of all mycorrhizal fungi is that their mycelium overgrows the soil
surrounding the plant roots; the hyphal net stabilizes the soil and furthermore produces substances
that bind or glue soil particles together [9]. The way in which the root and its surface are colonized
depends on the type of mycorrhiza.

There are two main types of mycorrhiza: ecto- and endomycorrhiza. In the first case, the mycelium
forms a more or less compacted fungal mantle on the surface of the root. Its protective properties
depend on the species of the symbiotic fungus, the mantle’s water-absorbing capacity, the production
of pigments, and organic acids. The mycelium penetrates between cortical cells of the root, forming
the so-called Hartig net, which is the site of exchange of compounds between the partners. Ectomy-
corrhiza is formed by several thousands of fungal species, more or less specific towards host plant
species (usually trees from the temperate zone). These trees are obligate symbionts.

Endomycorrhiza is far more diverse. Its characteristic feature is the possibility to penetrate not
only spaces between cells, but also the inside of live cortical cells, crossing the cell wall and then
developing in touch with the plasma membrane of the plant cell. This type of symbiosis includes
orchid, ericoid, and arbuscular mycorrhiza. In the first two types, the mycelium forms coils inside
cortical cells, but in arbuscular mycorrhiza, characteristic tree-like structures termed arbuscules
develop. Arbuscular mycorrhiza (AM) is the most widespread type of mycorrhiza, occurring in
80% of plant species; it is formed by about 120 species of fungi belonging to the Glomeromycota
[10]. This symbiosis is believed to be phylogenetically the most ancient type of mycorrhiza.

Molecular and paleobotanical studies seem to support the hypothesis of a close relationship of
the AMF with plants since they appeared on land [11,12]. This mycorrhiza plays a key role in the
productivity, stability, and diversity of natural ecosystems. Natural soils with low levels or completely
devoid of AMF propagules are rare. Several factors can influence the quantity (i.e., the number of
propagules) and the quality (i.e., the composition in species) of AM fungi in the soil. The presence
of heavy metals and/or other pollutants, the use of amendments to remediate pollution, and the kind
of vegetation heavily affect the composition and abundance of the Glomalean fungi [13–15].

The disappearance of the propagules leads to serious consequences, such as the degradation of
plant communities; decreased availability of essential elements; and loss of ecosystem stability.
Among examples in which it is necessary to introduce AMF propagules during creation and
rebuilding of plant communities are sites resulting from volcanic activity and cutting down of
forests; industrial wastes; postmining open areas; excessively fertilized agricultural lands; and soils
strongly polluted by toxic compounds such as heavy metals (HM) and xenobiotics [2]. In such
situations, the introduction of mycorrhizal inoculum involving selected fungal strains adapted to
survive in a given toxic environment and under given climatic conditions becomes a key tool in
decreasing the toxicity of these compounds to the plants and in establishing a stable vegetation cover.

Fungi adapted to polluted soils should be a choice of preference for the production of inoculum
for soil remediation. The number of spores in polluted areas can be affected by the presence of
heavy metals, but different fungi show different sensitivity [15] and species-specific (or even strain-
specific) behaviors can be observed. In order to reduce the costs of inoculation, the choice of plants
is also a relevant point. Plants should be efficient in removing or stabilizing the pollutants, and
they should also promote the establishing of strong mycorrhizal and microbial communities because
different plant species can affect the species composition of the Glomalean community [15].
© 2006 by Taylor & Francis Group, LLC



Role of Arbuscular Mycorrhiza and Associated Microorganisms 237
13.3 PHYTOREMEDIATION AND THE BEGINNING OF INTEREST 
IN MYCORRHIZA

At first, the necessity to include soil microorganisms in phytoremediation was neglected. People
used compounds that increase the availability of toxic compounds, therefore stimulating the accu-
mulation of metals in plants [16–18], as well as fertilizers to boost plant biomass production [19].
The most efficient varieties were selected; techniques involving genetic engineering were also used
[20–23]. The plants’ ability to produce organic compounds influencing the rhizosphere and increas-
ing the availability of metals was also acknowledged [24–26].

Among plants that produce high amounts of organic acids in the rhizosphere, researchers’
attention was drawn to the order Lupinus. Its cultivation can successfully replace the use of
chemicals increasing the availability of soil metals. At last the fact that the activity of microorgan-
isms is a factor strongly influencing the processes of mobilizing and immobilizing metals, by means
of precipitating sulphides and hydrated iron oxides or their binding to polysaccharides, was noticed
[24,27]. Elements such as Pb, Zn, and Cu can also bind to carbonates and oxalates produced by
microorganisms [28]. Metals can as well bind to functional groups localized on the surface of the
microorganisms’ cell walls [29].

Biological methods of cleaning up contamination mainly use bacteria and saprobic fungi; the role
of mycorrhizal fungi is still underestimated. Well-developed mycorrhiza can enhance plant survival
in difficult areas because it increases the availability of biogens; reduces stress due to low water
availability; increases the resistance to pathogens; stimulates the production of phytohormones; and
generally improves the soil structure. These factors can significantly enhance bioremediation.

Among the usually considered bioremediation practices, special attention is due to phytosta-
bilization, phytodegradation, and phytoextraction. Briefly, phytostabilization involves the immobi-
lization of toxic compounds in the soil by means of plants that reduce soil erosion; leaking of
contaminants into the ground waters; and their dispersion through wind erosion [30]. Phytodegra-
dation includes various metabolic processes of plants and accompanying microorganisms leading
to the breaking up of organic compounds such as polyaromatic hydrocarbons, pesticides, and
explosives. Phytoextraction takes advantage of the ability of plants to hyperaccumulate metals.
Plants are considered useful if they can take up over 1% of a given metal in the dry mass of their
shoots. Such plants are grown on the given area and their above-ground parts are harvested, dried,
and burned [31,32].

According to Gleba et al. [33], during phytoextraction the “giant underground networks formed
by the roots of living plants function as solar driven pumps that extract and concentrate essential
elements and compounds from soil and water.” This observation has some important implications
and consequences.

First, because heavy metals are taken up and transported in water solution, increased plant
transpiration would increase metal translocation to the shoot. There is no doubt that mycorrhizal
colonization affects the water relations of plants (Smith and Read [2] and references therein). A
number of papers indicate that transpiration rates of mycorrhizal plants are significantly higher
than those observed in nonmycorrhizal ones [34–39]. Mycorrhizal root systems are usually more
branched [40] and therefore they present a larger absorbing surface even in the absence of changes
in root biomass [34]. Also, the increased leaf area can be an important factor leading to increased
transcription [41]; however, even comparing plants of the same size and root system length, the
transpiration rates of mycorrhizal plants remain superior, due to the reduced stomatal resistance [38].

It has been noted that the high stomatal resistance observed in P-deficient nonmycorrhizal
plants is a nutritional effect [38,39]. Nevertheless, stomatal behavior is affected by hormonal
changes, which can depend on P nutrition as well as on mycorrhizal colonization [35,42–44].
Abscissic acid (ABA) is known to block transpiration and, consequently, metal accumulation in
shoots [17]. According to Allen [35], ABA concentrations in leaves of Bouteloua gracilis decreased
following mycorrhizal colonization by Glomus fasciculatum; on the other hand, Danneberg et al.
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238 Trace Elements in the Environment
[43] report higher concentrations of ABA in leaves and roots of maize colonized by Glomus sp.
(isolate T6) in comparison to nonmycorrhizal plants. Once more, the different combination of plant
and fungus species might be important, as well as the growth conditions and the methods utilized
for the measurements. 

In the second place, roots and hyphae of mycorrhizal root systems explore an incredibly larger
volume of soil in comparison with nonmycorrhizal root systems. Even if the contribution of the
external hyphae to water uptake and its translocation to the roots has not been clarified [2], it was
proved that the external mycelium may contribute to the uptake and translocation of some heavy
metals (including Zn, Cu, and Cd [45–47]) to the host roots.

The preceding considerations show, once more, how important it is to gain deeper knowledge
on the basic functioning of the mycorrhizal symbiosis for its exploitation in biotechnology and
environmental applications.

13.4 MYCORRHIZA IN PHYTOSTABILIZATION

Mycorrhiza proved to be especially useful in phytostabilization. Although the first plants that
colonize areas with increased heavy metal levels usually belong to nonmycorrhizal species [48,49],
the development of a dense vegetation cover and improvement of the soil structure require the
presence of symbiotic fungi. This is especially important for sites where postflotation material
originating from zinc and lead ore processing is deposited. Such material is almost devoid of
nitrogen and phosphorus compounds, has poor water-holding capacities, and is vulnerable to wind
erosion [50]. Possible mechanisms of improved resistance of AMF-colonized plants to HMs include
the enhancement of nutrient uptake, particularly phosphorus, and water supply [51,52], as well as
metal sequestration through the production of binding substances or absorption of metals by
microbial cells [47,53].

Recently, a gene called GmarMT1, encoding for a fungal metallothionein, has been identified
in Gigaspora margarita (BEG 34) [54]. Metallothioneins (MT) are Cys-rich polypeptides able to
chelate metal ions and important in the buffering of their intracellular concentration. Heterologous
complementation in yeast revealed that the polypeptide encoded by GmarMT1 confers increased
tolerance to Cu and Cd. The gene expression in the symbiotic mycelia is up-regulated upon Cu
exposure [54]. Spontaneous colonization of polluted substrate by arbuscular fungi takes a long
time. However, it is possible to introduce propagules of selected strains of mycorrhizal fungi in
the form of inoculum. Individual strains show a pronounced diversity in the effectiveness of metal
binding and therefore also in reducing the toxicity of the substratum. Because the mycelium of
certain strains of species, like Glomus mosseae, are tolerant to high heavy metal concentrations,
they can bind a few times more metals than the mycelium of a saprobic species commonly used
in bioremediation — Rhizopus arrhizus [55].

It was demonstrated for cadmium and zinc that, although these elements are detected in the
mycelium developing inside plant roots, their accumulation in above-ground parts might be limited
[46,56]. However, the analysis of tissue concentration and total shoot uptake of Cd, Zn, and Pb in
Plantago lanceolata, grown in rhizoboxes on substratum collected from zinc wastes, inoculated
with a number of arbuscular mycorrhizal fungal (AMF) strains has shown that metal uptake by the
plant differs depending on AMF strain/species [57] (Figure 13.1). 

The ability to bind and detoxify heavy metals in underground parts of plants might be of
importance also for the stimulation of the growth of crops cultivated on polluted soils. Such plants
were inoculated with a Glomus intraradices strain isolated from a metallophyte — Viola calaminaria
[56,58]. AMF also eliminated the toxic effect of Cd on several pea genotypes [59]. It was noted that
strains isolated from polluted areas are far more useful than strains originating from nonpolluted sites
[60–62]. Differences in the effectiveness of metal detoxification and accumulation exist also among
strains and species occurring on polluted sites [63]. This underlines the importance of the identification
© 2006 by Taylor & Francis Group, LLC
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and characterization of the strains, aimed at the selection of the most effective ones. The selected
strains should also effectively compete with other fungi that might occur on the given site.

The inoculation of agricultural fields with mycorrhizal fungi in nonpolluted areas often does
not improve the situation due to the presence of native strains, which are much better adapted to
the given soil conditions, and therefore seems to be ineffective; however, in the case of polluted
places that suffer from reduced propagule number and decreased range of fungal species, inoculation
is far more effective. The recently developed molecular methods enable scientists to track the fate
of the introduced strain in pot cultures as well as in field-collected material. Specific primers exist
for a range of species and strains and allow detection of the presence of the introduced fungi in
root samples stained to reveal the intraradical mycelium, using the nested PCR method [63–65].
In addition to analysis of the parameters of the fungal partner, it is also necessary to investigate
the mechanisms that enable the plant to tolerate metals transferred from the mycelium. Plants show
a range of reactions to heavy metals [66]; they can also regulate the degree of mycorrhizal
colonization [67].

When selecting plant species for phytostabilization, special attention is usually given to
grasses. Although C3 grasses are, under natural conditions, medium or poorly mycorrhizal, they
become strongly colonized by AMF on industrial wastes [68–71] and in areas seriously polluted
by heavy metals [72–74]. Introduction of the AMF inoculum simultaneously with mixtures of
grasses adapted to given conditions is important for the grasses and may be the source of
propagules for the establishment of trees such as Acer and Populus [75]. Similarly, the estab-
lishment of ectomycorrhizal tree plantations such as pine or birch (a common practice on
industrial wastes) allows improvement of the structure of the soil and increases the soil organic
matter content; this in turn creates better growth conditions for herbaceous plants and their
symbiotic organisms [76].

Similarly to arbuscular mycorrhizae, ectomycorrhizae stimulate the growth of trees, protect
them against pathogens, and may alleviate soil toxicity [77]. Ectomycorrhizal fungi appear on
heavily polluted sites faster than arbuscular ones. This is because they form small spores in
fruitbodies that usually expose the reproductive layer above the ground level, enabling easy, long-
distance dispersion by wind. Individual species and strains of ectomycorrhizal fungi also show
diversity in the effectiveness of protecting trees on polluted soils [53,78,79]. This phenomenon is
clearly visible when comparing strains isolated from polluted and nonpolluted sites in laboratory
conditions [80]. The mycelium can immobilize heavy metals and reduce their transfer to plant
tissues, which is regarded as an important protection mechanism allowing trees to survive in polluted
areas [53,74].

FIGURE 13.1 Pb content in shoots of three maize varieties, mycorrhizal/nonmycorrhizal and with/without
EDTA treatment, as examples of different behavior patterns. Different letters above bars indicate statistically
significant differences at p < 0.05. (Modified from Jurkiewicz, A. et al., Acta Biol. Cracov. Bot., 46, 2004.)
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240 Trace Elements in the Environment
The phenomenon is explained by the binding of elements by pigments deposited on the surface
of extraradical mycelium [60,81], within the hyphal wall [82,83], and in phosphate-rich vacuolar
granules [81]. The biofiltration effect of the extraradical mycelium is the most pronounced. The
fungal mantle can sometimes also play this role. Such a situation was described in Rhizopogon
roseolus and Suillus luteus from zinc wastes in southern Poland [84,85]. In mycorrhizae of pines
with the mentioned fungal species, a typical gradient of heavy metals, decreasing towards the inside
of the mantle, was observed. The selection of mycorrhizal strains for the inoculation of tree seedlings
planted in polluted areas is important for their establishment. 

13.5 MYCORRHIZA IN PHYTODEGRADATION AND 
PHYTOEXTRACTION

Phytodegradation consists of accelerated degradation of polluting organic compounds, such as
hydrocarbons, pesticides, or explosives, in the presence of plants. Existing technologies involve
mostly saprobic bacteria and fungi [86–88]. Plants with an abundant root system also have a
favorable effect on the degradation of polyaromatic hydrocarbons (PAH) [89,90]. The introduction
of rhizosphere microorganisms into such cultures is an alternative to chemical compounds that
increase the availability of toxic substances [89,91].

Arbuscular and ectomycorrhizal fungi can enhance phytodegradation [92]. Although the number
of propagules of arbuscular fungi decreases with increasing concentration of xenobiotics [93], they
can still stimulate plant growth by decreasing the stress related to low phosphorus availability [94]
and water deficiency [95]; they can also boost the production of oxidation enzymes [96]. Ectomy-
corrhizal fungi can additionally produce enzymes taking part in preliminary or intermediate stages
of xenobiotics’ decomposition [52,97], which enables their further decomposition by other rhizo-
sphere organisms [98–100]. In addition, soil polluted with organic compounds is usually rich in
heavy metals. Although these metals cannot be degraded, development of the mycorrhizal mycelium
can efficiently alter their availability and plant growth conditions.

Recently, attention has been paid to Phragmites australis, which is commonly used for
constructed wetlands designed to treat organic effluents [101–103]. P. australis was so far believed
to be nonmycorrhizal, but again it was recently found to form the symbiosis with enhanced
frequency when the water level was reduced and during the flowering time [104]. The presence
of potentially mycorrhizal plants in constructed wetlands might be important to enhance phyto-
stabilization and improve the restoration of biodiversity in areas where the processes had ceased.

The least attention was paid to the use of mycorrhiza in phytoextraction. Recent years have
brought an increase of interest in the hyperaccumulation of heavy metals by plants, due to the
commercial potential of phytoremediation in cleaning up contaminated soil [19,105,106], and as
a method to mine metals from low-grade ore bodies [107–110]. Although several reports have been
issued on arbuscular mycorrhiza of plants occurring on heavy metal-rich soils such as serpentines
[111,112] or strip mines [70,76], arbuscular mycorrhiza was only recently reported in a few
hyperaccumulating species belonging to the Asteraceae family growing on nickel-enriched ultra-
mafic soils in South Africa. All plants were found to be consistently colonized by AM fungi,
including an abundant formation of arbuscules.

Among them, the most important for phytomining is Berkheya coddii, which is capable of
accumulating up to 3.8% of Ni in dry biomass of leaves under natural conditions and produces a
high yield exceeding that for most hyperaccumulators [113]. The species can also provide an
excellent model for laboratory studies on mechanisms mediated by AMF fungi that allow for the
phytoextraction process. It has been also shown to form well-developed mycorrhiza under green-
house conditions. Preliminary results have shown that B. coddii inoculated with native fungi
(Gigaspora sp. and Glomus tenue) had not only higher shoot biomass but also significantly increased
Ni content (over two times) in comparison to noninoculated plants. This finding greatly contrasts
© 2006 by Taylor & Francis Group, LLC
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with the conventional opinion that the presence of AMF reduces the uptake of trace elements if
they occur in excessive amounts [53].

Mycorrhizal colonization was also reported in Zn and Pb hyperaccumulating Thlaspi praecox
from the Alps; still, the colonization level of this plant is rather low and decreases with increasing
content of heavy metals in the soil [114]. In addition, it is thus far not possible to obtain the
formation of mycorrhiza of this group of plants under laboratory conditions; this makes the
interpretation of field data hard to confirm.

Although mycorrhiza does not necessarily stimulate phytoextraction, its potential to increase the
biomass of the plants, improve soil conditions, and protect the plants from pathogens offers important
reasons to include this phenomenon in further research. Three possibilities to increase phytoextraction
are being proposed: (1) transgenic plants; (2) hyperaccumulators or high biomass producing crops
such as maize, especially for soils relatively less polluted [115,116], treated with chemical chelating
substances such as EDTA or sulphur; and (3) stimulating the development of or introducing rhizo-
sphere organisms that will increase the uptake of metals by the plants. 

The biotechnological approach aims at producing genetically modified plants characterized by
increased tolerance to toxic compounds, higher biomass, and high uptake of heavy metals. A number
of transgenic plants have already been obtained by transferring appropriate genes from bacteria or
yeasts (see, for example, references 117 through 119) or by generated somatic hybridization between
plants such as Brassica napus and Thlaspi caerulescens [120]. Most transgenic plants have, thus
far, only been tested under artificial conditions [121] and they still need further research before the
application phase will start. Also, the transformation of AM fungi has been approached. The
identification of genes with similar functions can be very important for understanding of the
mechanisms of resistance and tolerance to heavy metals and for selection of the fungal strains most
suitable for phytostabilization and phytoremediation.

However, although the transformation of many animal, plant, and fungal (e.g., Saccharomyces)
species is now a relatively easy practice, standard protocols for the transformation of AM fungi
are not available yet [122]. Beyond technical problems, the huge diversity of the fungal genome
inside one single isolate [123] and the lack of knowledge about the factors controlling the expression
of this diversity represent a major problem for an effective exploitation of this kind of approach.
In addition, the below-ground environment in which the fungi live and their vegetative reproduction
make control of the spread of the transformed fungi very difficult, suggesting a very cautious and
careful introduction.

The use of synthetic chelates has been proposed because the amount of metals extracted
from the soil by plants depends largely on the availability of the metals. In most soils, even
highly polluted ones, only a relatively small percentage of the total metal pool is available to
plants. These compounds mobilize metal ions and displace them into the soil solution. Among
a variety of chelates tested by Huang et al. [116], EDTA was demonstrated to be the most effective
in mobilizing Pb [124], showing that it also increased the availability of other metals such as
Cd, Cu, Ni, and Zn.

Experiments carried out on maize show that this common crop can take up as much as 3000
mg kg–1 Pb in shoots when grown in laboratory conditions with EDTA (0.5 g kg–1 of soil) [116].
A study carried out on 15 commercially available Polish maize varieties inoculated with an AMF
strain and treated with EDTA showed that most maize varieties cultivated on metal-rich substra-
tum had higher shoot biomass; this clearly confirmed the role of mycorrhizal fungi in phytore-
mediation practices, although large differences between varieties have been observed [125].

The data show a large diversity in the effectiveness of phytoextraction among different varieties
of the same species. This finding stresses the necessity to screen a large number of cultivars in
order to select the best ones for further use. Moreover, the effect of individual varieties might vary
when chelators such as EDTA are used (Figure 13.2). Although the use of chemical amendments
should be considered carefully, heavy metal release into water flowing out from EDTA-treated pots
was found to be substantially lower in the case of mycorrhizal plants than in nonmycorrhizal plants.
© 2006 by Taylor & Francis Group, LLC
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This would suggest that mycorrhizal fungi increase the availability of metals to the plants but, at
the same time, may decrease pollutant run-off into the ground water (Figure 13.3). 

Supplementing soil with sulphur can reduce the soil pH and the application of amendments
and fertilizers can cause variations in the abundance of species [14] and modifications in the
colonization of roots, thus increasing the amount of vesicles [15]. Also, the use of chelating
chemicals, like EDTA, should be applied with much care: it mobilizes the toxic substances, but
with the risk of leaching deeper into the soil profile. 

In the general literature, not much attention has been paid to the fact that a large diversity in
the effectiveness of phytoextraction might exist among different varieties of the same species, as
shown by the previously mentioned study. These findings stress the necessity to screen a large
number of cultivars in order to select the best ones for further use.

13.6 INFLUENCE OF SOIL BACTERIA ON MYCORRHIZA 
EFFICIENCY IN POLLUTED ENVIRONMENTS

Rhizosphere bacteria are known to improve mycorrhiza formation and activity by means of a
number of so-called mycorrhizosphere activities, which benefit plant growth and health [126].

FIGURE 13.2 Heavy metal (HM) release into soil solution: (a) without EDTA treatment; (b) after EDTA
treatment. Different letters above bars indicate statistically significant differences at p < 0.05. (Modified from
Jurkiewicz, A. et al., Acta Biol. Cracov. Bot., 46, 2004.)
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Therefore, it is to be expected that, with an appropriate selection of target bacteria, these could
benefit the role of mycorrhiza in phytoremediation [127,128]. Selection procedures involve:

• Isolation of adapted bacteria from HM-contaminated soils
• Ecological compatibility with mycorrhizal fungi also adapted to HM contamination
• Functional compatibility of both types of microorganisms in terms of promoting phy-

toextraction and/or phytostabilization of metals from the polluted soil 

Soil microbial diversity and activity are negatively affected by excessive concentration of HM
[129]. However, indigenous bacterial populations must have adapted in a similar way to mycorrhizal
fungi [14] and metal toxicity and evolved abilities that enable the bacteria to survive in polluted
soils [127]. Adaptation of mycorrhizal fungi and associated bacteria to HM is considered a prereq-
uisite for exploiting their potential role in phytoremediation [49].

The role of a tailored mycorrhizosphere in phytoremediation was investigated in a series of
studies [130–134]. These studies consisted of: 

• Isolation and characterization of microorganisms from a target HM contaminated site
• Development of several phytoremediation experiments
• Analysis of the mechanisms involved to account for the demonstrated phytoextraction

and/or phytostabilization activities found

Under natural conditions, soil becomes contaminated with more than one metal; thus, it is
difficult to determine which metals are responsible for the toxic effects observed [135]. Therefore,
only long-term experiments using soils supplemented with a single metal salt can give the oppor-
tunity to study the individual toxic effects of each heavy metal on the beneficial microbes for a
given time period [136]. In this context, a number of experiments are summarized in the present
chapter, all of them using agricultural soil from Nagyhörcsök Experimental Station (Hungary). This
soil was contaminated in 1991 with suspensions of 13 microelement salts applied separately. Each
salt was applied at four levels (0, 30, 90, and 270 mg kg–1) as described by Biró et al. [136].

FIGURE 13.3 Heavy metal concentration in shoots of nonmycorrhizal and mycorrhizal Plantago lanceolata
cultivated in rhizoboxes filled with zinc industrial wastes: 1: control plants (noninoculated); 2–6 — inoculated
plants: 2: Glomus clarum isolated from zinc wastes; 3: G. geosporum from metal-polluted site; 4: G. geosporum
from salt enriched site; 5: G. claroideum from zinc wastes; 6: G. intraradices from nonpolluted site. (From
Orlowska, E. et al., Polish Botanical Studies, Polish Academy of Science [publisher] 2005.)
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Indigenous mycorrhizal fungi and bacterial strains were isolated from this HM-polluted soil 10
years after contamination. They were tested for their influence on plant growth and on the func-
tioning of native mycorrhizal fungi in the face of Cd, Pb, or Ni toxicity. 

The most efficient bacterial isolates were identified by means of 16S rDNA sequence analysis
and confirmed to belong to the genus Brevibacillus. Particularly, B. brevis was the most abundant
species [130,132]. Glomus mosseae was present in all the HM-polluted soil samples, so it was the
target mycorrhizal fungus used for phytoremediation inoculation experiments. G. mosseae and
Brevibacillus sp. strains from nonpolluted environments were also used as reference inocula.
Trifolium repens L. was used as test plant and inoculated with a suspension of Rhizobium legumi-
nosarum bv trifoli, also an HM-tolerant strain.

In the Cd-contaminated soil [132,133], a high level functional compatibility between both
types of autochthonous microorganisms was demonstrated; this resulted in a biomass increase
of 545% (shoots) and 456% (roots) and in the N and P content compared to nonmycorrhizal
plants. Coinoculation of both microorganisms increased root biomass and symbiotic structures
(nodules and AM colonization) to a highest extent, which may be responsible for the beneficial
effect observed. The results suggest that bacterial inoculation improved the mycorrhizal benefit
in phytostabilization.

Dual inoculation of the Cd-adapted autochthonous Brevibacillus sp. and the AM fungus
lowered the Cd concentration in Trifolium plants. This effect can be due to the ability of the
bacteria to accumulate great amounts of Cd. In spite of that, the total Cd content accumulated
in plant shoots was higher in dually inoculated plants. This indicates a phytoextraction activity
resulting from such a dual inoculation. Further studies [134] demonstrated that the inoculated
Cd-adapted bacteria increased dehydrogenase, phosphatase, and β-gluconase activities in the
mycorrhizosphere, indicating an improvement of microbial activities concerning plant develop-
ment in the polluted test soil. 

With respect to Pb-spiked soil, experiments following the same methodological approaches
[130] showed that B. agri at all Pb-spiking levels assayed consistently enhanced plant growth and
nutrient accumulation in mycorrhizal plants, as well as nodule numbers and mycorrhizal coloniza-
tion. This suggests a phytostabilization activity. Auxin production by the test bacteria can account
for the beneficial role of these bacteria on mycorrhizal plant development [126]. Dual inoculation
increased Pb concentration in plant shoots at the highest level of Pb applied. However, the total
content of this metal in plants was consistently enhanced at all levels of Pb, showing that bacterial
inoculation enhanced phytoextraction activities in plants inoculated with mycorrhizal fungi. 

Dual inoculation of an indigenous Ni-adapted mycorrhizal strain of G. mosseae and a Ni-
adapted bacterium (Brevibacillus sp.) isolated from Ni-contaminated soil was also assayed with
Trifolium plants growing in Ni-polluted soil [131]. Dual inoculation increased total plant content
of this metal at all levels of Ni assayed. This indicates that the tailored mycorrhizosphere carries
out phytoextraction of Ni from polluted soils.

The mechanisms by which the bacterial isolates tested enhanced phytoremediation activities
in mycorrhizal plants can be therefore summarized as follows: 

• Improving rooting, mycorrhiza formation, and functioning
• Enhancing microbial activities in the mycorrhizosphere
• Accumulating metals, thus avoiding their transfer to the aquifers

In conclusion, the dual inoculation of suitable symbiotic and saprophytic rhizosphere micro-
organisms isolated from HM-polluted soils seems to play an important role in the development and
HM tolerance by plants and in bioremediation of HM-contaminated soils.
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13.7 MYCORRHIZA AS INDICATOR OF SOIL TOXICITY AND 
REMEDIATION RATE

Mycorrhizal fungi can also be useful as indicators of soil toxicity [71,137] and the effectiveness
of remediation [76]. The toxicity of heavy metals and other pollutants (xenobiotics, PAH) has been
monitored using AMF spore germination [13], mycorrhizal colonization of roots analyzed by PCR
technique [138], and mycorrhizal infectivity [61]. Recently, the toxicity of zinc wastes of different
ages and resulting from different extraction technologies has been compared using various AMF
strains and species. The activity of the alkaline phosphatase [139], a vital staining of mycorrhizal
colonization, has been found to provide a more sensitive test than the estimation of the total
mycorrhizal development [57,62]. Similarly to other indicator organisms such as plants, earth-
worms, algae, and fish, the disadvantage is that all of them, including AMF, are not specific to
pollutants and also react to soil properties (P and N content, pH, etc.).

The appropriate selection of the control soil seems to be problematic. The examples studied
thus far prove that they are sensitive indicators of the changes that occur during phytoremediation
or during spontaneous succession. Concerning a wider range of soils, the most useful is the
germination test, especially that the technique is presently standardized and may rely on the fungal
strains supplied commercially (Leyval, C., personal communication, 2004). Further approaches
have been recently done to establish new methods considering a wide range of features, such as
abundance of intraradical and extraradical mycelium; formation of vesicles; distribution of lipid
droplets; etc. They seem to react sensitively to pollutants, at least in the case of the most widely
used Glomus mosseae strain, BEG12.

Some AMF can be more sensitive to pollutants than plants [72], although some species,
especially those originating from strongly polluted places, are well adapted to survival under
extremely harsh conditions and their disappearance might be caused only by the lack of the
symbiotic plants. The selection of an appropriate fungal strain and plant varieties is therefore of
utmost importance [76]. Among the plant species analyzed thus far, English plantain (Plantago
lanceolata L.), strongly colonized by arbuscular fungi, deserves special attention as an indicator
used for bioassays. It occurs in diverse habitats and is resistant to a wide range of stress factors;
it is also easy to obtain clones of one plant, which eliminates genetic variability among individuals
in their response to toxic compounds [140–142].

13.8 CONCLUSIONS

Central and Eastern Europe are regions where large industrial wastes, deposits of various kinds of
waste materials, and places polluted by insufficiently secured unused plant protection products —
as well as sites subjected to intense motorization and industrialization — are especially common.
Despite the usually well-designed actions aiming at explaining the problem of pollution to the local
community, one can still see the production of plants destined for human consumption on heavily
polluted soils. Cheap and fast monitoring methods are needed here, followed by low-cost and
effective phytoremediation techniques; mycorrhizal fungi should play the key role. It should be
emphasized that research on this group of fungi should be conducted in a complex way and include
other mycorhizosphere organisms with which the fungi interact [143]. 

The previously mentioned questions illustrate how broad and diverse are the possibilities to
use natural phenomena in solving difficult problems of today’s civilization. This will certainly
stimulate the dynamic development of a range of scientific fields aimed at explaining the mecha-
nisms of the mentioned phenomena and at optimizing their practical applications. 
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