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Foreword 

Roger Buis, professor emeritus at the University of Toulouse (INP – Institut 
National Polytechnique) – already the author of a considerable amount of research 
into the biomathematics of growth1 – delivers here a true panorama of the 
relationships between biology and mathematics over time, and in particular over the 
course of the last century, accompanied by a series of profound epistemological 
thoughts, thereby creating a book of great rarity and value. 

As we know, mathematics is ancient, just like the interest taken in living things. 
But the word “biology” only appeared at the beginning of the 19th Century and, 
whilst E. Kant has already confirmed – and as Roger Buis rightly reminds us – a 
piece of knowledge is scientific insofar as mathematics has been integrated into  
it, the explicit idea of applying mathematics to biology is found only with  
C. Bernard2 – one of the great references in the book. 

In contrast with physics, biology resists mathematization, for understandable 
reasons: the variability of living things, their dependence on time and on the 
environment, diversity and the complexity of biological processes, the diffuse aspect 
of causality (sometimes circular) and the difficulty of mastering the operational 
conditions of experiments have made obtaining consistencies problematic. Hence, 

                                 
1 Buis, R. (2016). Biomathématiques de la croissance, le cas des végétaux. EDP-Sciences, 
Les Ulis. 
2 Let us note that, previously, G.-L. Buffon regretted that qualitative mathematics remained in 
limbo and could not be applied in natural sciences. “Everything that has an immediate 
relationship with a position is totally missing from mathematical sciences. The art that 
Leibniz coined Analysis situs has not yet come to light and yet this art that would allow us to 
discover the relationships of position between things would also be useful and perhaps more 
necessary for natural sciences than the art whose only objective is the size of things; because 
we more often need to know the form than the matter.” Refer to Buffon, G.-L. (1774). Œuvres 
complètes, vol. IV, chap. IX. Imprimerie Royale, Paris, 73. 
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the overall appraisal which may be interpreted as disappointing: apart from some 
specific sectors (in particular genetics), few laws are proven in biology, and even 
fewer that express themselves in mathematical language. 

Roger Buis comments on this, but, going further than the “epistemological 
obstacles” – coined by G. Bachelard – he takes up the challenge. Even though the 
description in vernacular language (important in both natural history and Husserlian 
phenomenology), will always remain the most important in biology, in this 
discipline we more readily use “modeling” than “demonstration”. Nevertheless, 
mathematics has transferable applications to biology: beyond the savings made by 
the move to symbols, using mathematical language is not simply using a “language”, 
but a true instrument of thinking, of a remarkable tool of intelligibility which, whilst 
allowing hypotheses to be clearly laid down, will verify the conclusions by the same 
amount. Because – let us not doubt it – in biology and elsewhere, the scientific 
approach is always hypothetico-deductive. Whilst certain preliminary conjectures 
are less significant here than in physics – for example, the choice of a reference 
frame (dominant, certainly, in factor analysis, but hardly relevant, in general, 
elsewhere in biology) – others like approximations or simplifications that we will 
cautiously allow ourselves to use (linearization, or even quasi-stationarity of certain 
processes) are essential in this and necessarily lead to significant consequences. At 
least an advantage is drawn from this: modeling allows controlled experimentation. 
Thus, the modification of a parameter in a model that is elsewhere structurally stable 
is going to be possible at will. Mathematics, as a result, does not only provide 
symbolisms. It also contributes concepts and operating modes that allow real life to 
be simulated3. 

By examining history, we also realize that, to use the expression of Roger Buis, 
mathematics has “sculpted” biology. From the point of view of the continuous, 
geometry, since ancient times, has given rise to the consideration of symmetries  
and continuous transformations, implicitly presented by Aristotle with the  
ago-antagonistic couple of power and action. The first separate formalizations 
appeared from the medieval period onwards, with the famous Fibonacci sequence, 
which, founded on strong hypotheses, provided the first model of the growth of a 
population (as it happened, rabbits). Then, in the Classical epoch, there was the era 
of the first phyllotaxic “laws” relating to the growth speeds of stems or leaves of 

                                 
3 The difference between modeling and simulating can be characterized rapidly as follows: 
the simulation is not opposed to modeling. Simulations (numerical or computerized) are types 
of modeling, “model calculations”, but they appear most often when there is no shorter 
method for evaluation of the result than simulating step by step the behavior of the model. To 
this end, they are “phenomenological models of the behavior of the model”, sorts of “models 
of models”, “square” models. Refer to Varenne, F. (2008). Epistemology of models and 
simulations: Overview and trends. In Les Modèles: possibilités et limites, Lévy, J.-M (dir.). 
Éditions Matériologiques, Paris. 
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plants, as well as to the mechanics of wood and its constraints (G.-L. Buffon, 
L. Euler). Finally, during the 19th Century and especially during the 20th Century, 
calculation of probabilities was based on development of Mendelian genetics, then 
of the genetics of populations, and subsequently on statistical biometrics (R. Fisher). 
Whereas C. Bernard highlighted the stationarity of the interior environment of living 
organisms, principles of optimality, underpinned by the calculation of variations 
(seeking the extremums of a functionality), are going to become dominant in 
biology, in particular in plant biology. Then formalisms from system theory (L. von 
Bertalanffy) encouraged A. J. Lotka and V. Volterra to model the dynamics of 
interactions between species (prey–predator systems, parasitism) with differential 
equations. At around the same time, projective geometry or geometry of 
transformations of coordinates will allow the morphology, shape and growth of 
living things to be summarized. The large project of a universal morphology, 
inaugurated by J.W. Goethe on the subject of plants4, began to be mathematized by 
D’Arcy Thomson, whilst awaiting the development of differential topology. With  
A. Turing and his reaction–diffusion systems, the mechanics of gradient – of which 
R. Thom later made great use in his famous “theory of catastrophes” – began to be 
introduced into the theory of morphogenesis5. Soon, the theory of automatons by  
J. Von Neuman took its turn, and cybernetics by N. Wiener with his command 
theory and retroaction loops, which were used amongst others in the description of 
hormone mechanisms. In addition, Roger Buis does not leave aside the formal 
grammar from N. Chomsky, at the origin of L-systems by A. Lindenmayer (useful to 
formalize the growth of certain algae), networks from Petri, well-suited to the 
logical representation of certain plant morphogenesis, the direct or indirect input 
from quantum physicians (such as N. Bohr, M. Delbrück or E. Schrödinger) to 
molecular biology, the influence, also on this, of information technology, with the 
notion of “program”, of linguistics (R. Jakobson) and of the theory of information  
(C. Shannon) with the notion of “code”. He also collects in great detail all the inputs 
of structuralist thinking in mathematics which, from the theory of Eilenberg–Mac 
Lane categories to that of graphs and networks, have allowed a systematic and 
relational biology to develop, in which the notions of self-organization, emergence,  
 

                                 
4 Von Goethe, J.W. (1790). Versuch die Metamorphose der Pflanzen zu erklären. C.W. 
Ettinger, Gotha. According to the author, all plants are derived from a fundamental prototype, 
by an action which, on the one hand, introduces diversification, and, on the other hand, 
collects organs around a common focal center, “in numerical proportions that are more or less 
fixed, but likely to be altered by circumstances”. 
5 Y. Bouligand was a pioneer on the subject (Bouligand, Y. (1980). La Morphogenèse, de la 
biologie aux mathématiques. Maloine-Doin, Paris). But the collective book published under 
the direction of P. Bourgine and A. Lesne allows measurement to be made of the path 
travelled from (Bourgine, P., Lesne, A. (2006). Morphogenèse, l’origine des formes.  
Belin, Paris). 
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complexity6, scale invariance, order and disorder have become dominant today, 
leading in fine to the construction of biomimetic automatons (artificial life) and the 
development of an entire bio-informatics approach relating to simulation. 

Obviously, given the spontaneous interaction of the disciplines, the existence of 
these empirical developments does not constitute a justification in itself. They 
therefore deserve to be revisited and for us to ask of them: when and under what 
conditions mathematics is really productive in biology? What do we expect to gain 
from applying it? Which mathematics should we use, where and why? Roger Buis, 
in the last chapter of his book, broaches these questions with courage and answers 
them very precisely, underlining each time the benefit that mathematics brings to 
biologists. If not predicting, is it about describing or explaining? Do we aim for 
architectures or processes? In contrast to modern philosophy, which often restricts 
itself, in the manner of Heraclitus, to dwell on the influence of difference, science – 
Roger Buis demonstrates this forcefully and epistemologists can but approve it – has 
the objective of finding invariants. The important thing is not that something 
changes. The important thing is to consider what does not change within things that 
change – because it is an invariant only in its connections to transformations. And 
we find some in biology and in physiology, as well as in physics. F. Cuvier,  
É. Geoffroy Saint-Hilaire and E. Haeckel already explained some. Today, we see 
them in metabolic cycles, macromolecules (DNA and RNA), genetic code (to the 
nearest few exceptions) and cell theory (J. Monod). It remains that in 
biomathematics, they must be linked to time and space. Since then, the use of 
continuous, or discrete, formalisms, of spatialized models of random or kinetic 
regulation processes – models such as those that Roger Buis studies competently and 
in detail – will contribute to their appearance. In conclusion, the singularity of living 
things must not be seen as an obstacle, and even though precautions and a certain 
modesty is required – because the model is not reality, it is, at best, only an 
isomorphic representation7 – there is no doubt about the usefulness of mathematics 
of living things in a well-defined conceptual framework, and that it allows us to 
achieve the objective of all well-understood science: making sense of what we are 
studying. 

                                 
6 Refer, in particular, to Monsef, Y. (1996). Modélisation et simulation des systèmes 
complexes. Technique et Documentation, Paris. 
7 More often, perhaps, only ‘homomorph”. What is more, although the resemblance with the 
real phenomena has rightly been verified, it does not always carry the status of an 
explanation: as Loïc Forest quite correctly points out with regard to L-systems or fractal 
structures, the connection between reality and the model, although it may be excellent, does 
not mean in any way that the rules of description of the latter use real laws of plant 
morphogenesis. See Forest, L. (2005). Models of tissue morphogenesis from integrated 
cellular dynamics. Main application to radial secondary growth of conifers. Modeling and 
simulation. Doctoral thesis, Université Joseph-Fourier – Grenoble I, 69. 
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This eloquent pledge by Roger Buis in favor of biomathematics – a defense and 
illustration of rational models that are available – is much more than a simple 
memento or a catalogue. It is a true epistemological and scientific reflection, precise 
and nuanced, nourished in wide-reaching culture and which overcomes fractures and 
controversies. From Aristotle to G. Canguilhem, great names of Western thinking 
are found, which means that philosophy, and even the honesty of man, is not out of 
place. Going much further: the structure, which also reinforces the convictions of the 
researcher, is suitable ground for germination of new ideas. Without attempting to 
take on the role of a know-it-all, we even have a desire to extend it. 

To mention an initial fact here, which will speak to mathematicians, today we 
know that non-associative algebra models Mendelian genetics, providing what is 
known as “genetic algebra”8 or, more precisely, “gametic”9. Applied to hemoglobin, 
mathematics then intervenes not only as an instrument of description and 
explanation, but also as a forecasting instrument in research into the evolution of 
certain blood diseases and their oscillations. They thus allow calculation to be made 
of the stable states of an infected population, which corresponds to what is known in 
mathematics as “idempotents” of algebra, whose coefficients verify Hardy–
Weinberg’s law10. Each time the law is satisfied, a stable state for the disease will 
have been identified. Another example could involve generalization of the notion of 
an invariant. Roger Buis often highlights the need for well-defined models whose 
applications are valid at a certain scale, although in biology there are also multi-
scale processes. But we are also aware of phenomena of scale invariants, which in 
particular demonstrate fractal structures. Certain forms – in particular, plants – 
follow these models that computer science has brought to the forefront very 
precisely11. Finally, not only what were previously known as primary qualities 
(above all the form), but also the secondary qualities (e.g. the color12), are just as 
easily modeled mathematically, which thus leads to the idea of a kind of 
“algorithmic beauty”13 of nature. Serious ecology itself has for a long time been 

                                 
8 Bertrand, M. (1966). Algèbres non associatives et algèbres génétiques. Gauthier-Villars, 
Paris. In addition, Roger Buis mentions them. 
9 Micali, A., Revoy, P. (1986). Sur les algèbres gamétiques. Proceedings of the Edinburgh 
Mathematical Society, 29, 187–197. 
10 Micali, A. (1998). Formes quadratiques de Hardy-Weinberg et algèbres de Clifford. In 
Clifford Algebras and their Applications in Mathematical Physics, Dietrich, V. et al. (eds.). 
Kluwer Academic Publishers, Dordrecht, 259–266. 
11 Refer for example to Lagües, M., Lesne, A. (2003). Invariance d’échelle, des changements 
d’état à la turbulence. Belin, Paris, 328–342. 
12 Refer to Berthier, S. (2000). Les Couleurs des papillons ou l’impérative beauté, propriétés 
optiques des ailes de papillons. Springer-Verlag-France, Paris. 
13 Kaandorp, J.A., Kübler, J.E. (2001). The Algorithmic Beauty of Seaweeds, Sponges, and 
Corals. Springer-Verlag, Berlin/Heidelberg/New-York. 
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sliding from politics towards science, resolutely entering the world of modeling14. 
On balance, then mathematics no longer has the “severity” that Lautréamont lent it. 
Well understood, it is again gaining favor. But this is also already, more than 
anything else, what Roger Buis’s book does. 

Daniel PARROCHIA 

Honorary professor  
University Jean Moulin-Lyon III 

                                 
14 Refer for example to Coquillard, P., Hill, R.C. (1997). Modélisation et simulation d’éco-
systèmes, des modèles déterministes aux simulations à événements discrets. Masson, Paris. 



 

Introduction 

If in biology we wish to reach understanding of the laws of life,  
it is then necessary not only to observe and notice vital phenomena,  

but in addition the intensity relations in which they are related to each other  
must be set up numerically. 

This application of mathematics to natural phenomena  
is the objective of all science, because the expression of the law  

of phenomena must always be mathematical. 

C. Bernard, 18651 

This opinion from the physiologist C. Bernard is emblematic of the relationship 
that biologists must construct between experimental practice and formulation of their 
observations. Biology, and in particular physiology, an experimental discipline par 
excellence, is thus expressly encouraged to make use of mathematics, in its very 
essence an abstract science. This demanding position caught between two such 
different practices does not come without its problems. First, despite numerous 
examples that prove a positive connection between these two disciplines, its very 
principle sometimes causes incomprehension that is difficult to remove. Let us clearly 
state that some biologists do not fully appreciate the true contribution that they could 
obtain from mathematics, restricting themselves to using it simply to analyze their 
observations statistically, a given law or a given recognized model. Using it more in 
this manner is a calculated exercise, an illustration, than as a means of extracting new 
important information about properties of the processes that they are studying. 

 

                                 
1 Bernard, C. (1984). Introduction à l’étude de la médecine expérimentale. Flammarion, 
Paris, 185. 
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Thus, establishing a connection between these two disciplines and the true 
benefit of combining them leaves some biologists in doubt about the practical 
advantage of attempting an in-depth approach to bringing them together. In their 
defense, it can be said that bringing them together in this way implies an 
“intellectual investment”, which is doubtlessly more rigorous, in any case more 
rigorous, than the introduction of concepts and methods from chemistry and physics 
into biology, disciplines with the common factor of being “sciences of nature” based 
on the observation and measurement of tangible phenomena. Since the situation 
involves both combining or confronting points of view with each other and a 
collaboration of capabilities, we are aware of the difficulties of establishing real 
operational contacts, always subjected to institutional separation in both teaching 
and in the organization of research laboratories. Despite undeniable progress (both 
psychological and sociological), which must be acknowledged, here we have a 
recurring subject of debate that merits an overview, whilst there is an accentuation 
of this general evolution in which many sectors of human activity are being 
“mathematized”. In light of this observation, it is necessary to specify that these 
relations are necessarily marked by what is intrinsic to each discipline in its nature 
and practice. 

The field of mathematics is today a highly diverse body of knowledge in terms 
of objectives and methods. Its current state results, as we know, from a progressive 
extension of its various fields of study. Whilst, in Antiquity, arithmetic, Euclidean 
geometry and trigonometry formed its undeniable foundations, several other axioms 
were laid down afterwards, introducing other points of view that were particularly 
fruitful. As an example, we can reference the extension of the notion of number 
(ranging from natural whole to complex and quaternions), the move from arithmetic 
to algebra (notions of “group” and algebraic structures), the calculation of 
probabilities or even infinitesimal calculus (differential and integral, optimization), 
the diversity and extent of whose applications is well-known. Moreover, this 
evolution continues to the point that “mathematics is currently undergoing an 
extraordinary prosperity” in both qualitative and quantitative terms2. 

We know that there is a link between this evolution and the constant approach by 
mathematicians to always refer to a given referential, which allows them to set up 
the underlying layers to their work by defining an appropriate system of coordinates. 
According to the problems encountered, the mathematician places themselves “like 
a good surveyor” in a given “space”, allowing them to abandon the classic Euclidian 
reference to work in another world, a very varied world, the specifications of which 
are based on the notions of vector space and topological space. A proliferation of 
this kind obviously raises questions for biologists from the moment that they know 

                                 
2 Dieudonné, J. (1982). Penser les mathématiques. Séminaire philosophie et mathématiques 
de l’ENS. Le Seuil, Paris, 16. 
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that the processes they are studying cannot necessarily be reduced to questions of 
distances and metrics. But they also, depending on the case, call on questions  
of vicinity and limits. We are able to see in this the consequence of a sort of 
inhomogeneity of its workspace, which already illustrates, as we will see, the 
diversity of the dynamics of deterministic systems whose behavior can be marked by 
jumps or bifurcations – the point at which biology and mathematics comfortably 
coincide. 

Whilst this mundane remark about the sudden appearance of new paradigms is of 
course true for all disciplines, we can question the status of each of them and 
examine what the specificity of each field of scientific knowledge would be. This is 
true for both epistemological assumptions and methodology, independently so from 
everything that arises from interdisciplinarity3. The question can be raised 
particularly for biology if we base our judgment on the permanence of the 
discussion surrounding the originality of this discipline with a view to specifying if 
and how it is different from physical sciences whilst allowing it to take root more 
and more4. 

In fact, these interdisciplinary relationships are often highly interlinked, in such a 
way that the connections that biology makes with mathematics are not always 
independent of those that are made with physics, where the influence of the latter 
lies in both the clearly more advanced formalization and a certain affinity with 
biology that itself has for a long time involved various physical notions at work in 
the different processes that it examines. Thus, there is a point of view known as 
“physicalistic” (or “mechanistic”) that is obvious and consistent in various forms 
with deducing the properties of biological things from the existence of underlying 
physical mechanisms (or physico-chemical). This undeniably marks the positions of 
principle that biology attempts to establish with a view to a formalized 
representation of the phenomena of living things. In the opposite sense, a strictly  
 
 
                                 
3 Let us recall the confusions underlined by the “Sokal affair” on a purely formal 
interdisciplinarity without a critical examination of conceptual analogies. Refer to Sokal, A., 
Bricmont, J. (1997). Impostures intellectuelles. Éditions Odile Jacob, Paris. On this question 
of analogy, we can recall the prudent words by J.C. Maxwell: “By physical analogy I mean 
this partial resemblance between the laws of sciences and the laws of another science, which 
means that one of the two sciences can be used to illustrate the other” (Maxwell, J.C. (1890). 
Scientific Papers. Cambridge University Press, Cambridge). 
4 Refer, for example, to Jacrot, B. et al. (2006). Physique et biologie: une interdisciplinarité 
complexe. EDP Sciences, Les Ulis. For mathematics and information technology, unless an 
overview is given, covering a wider methodological range, their role is discussed in the 
context of the biology of development and of genetics in Keller, E.F. (2004). Expliquer la vie. 
Gallimard, Paris. 
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mathematical point of view only calls on notions or mathematical concepts without  
needing, at least temporarily, to attach or inject into this a solid interpretation. The 
question of whether this discrimination is schematic is something we are able to 
agree on, as attested to by the variations in vocabulary, where it has been possible to 
describe a single general type of approach as “biophysical” as easily as 
“biomathematical”5. By this term of “formalized representation”, we understand 
(although the term “representation” is itself a subject of debate for certain 
epistemologists, speaking more about “theorization”), a description of objects or 
biological processes – their specific characteristics and their properties – that take 
on a “particular” language, characterized by a specific coding and rules, where 
writing in literary or vernacular language only constitutes an initial approach to a 
description, an initial report on the study. 

To begin, let us lay out the objective of this book a little, using the following 
simple problem: how to mathematically express one of the most-researched 
biological processes – the kinetics of growth. Whether this is, for example, the 
evolution of biomass of an in vitro culture of cells or demographic variations of a 
natural population in situ. 

A first method of expressing this, in a purely empirical way, does not lay down 
any a priori hypothesis on the phenomenon in question. It is simply associated with 
operation of a statistical smoothing of data by a “neutral” equation, meaning without 
a connection to the underlying biological mechanism (cell division, reproduction, 
mortality, etc.). This is the very objective of classic methods of statistical biometrics 
whose principles we recall hereafter. In the present case, we resort to a polynomial 
equation, for which we will need to determine the degree n, ensuring correct 
adequacy. The objective of this kind of statistical regression is to express the 
relationship between an explained variable Y and an explanatory variable X (which 
in this case would be time) according to the following stochastic model: 
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5 Thus, the periodical Bulletin of Biophysical Biology, founded by N. Rashevsky in 1939, 
changed name in 1973, becoming the Bulletin of Mathematical Biology, which is still the 
current title and organ of the Society of Mathematical Biology (United States). Similarly,  
the famous pioneering structure by A.J. Lotka about the differential formalism applied to the 
dynamic of biological associations was initially called Elements of Physical Biology in 1925, 
and was then republished in 1956 under the title Elements of Mathematical Biology. 



Introduction     xix 

This model6 only postulates the probabilistic hypotheses that define the random 
part ε and which correspond to the primary notion of parent population P or 
theoretical set from which we suppose that the sample (the measured Yi) was drawn. 
The distribution law of P and its parameters (the β above) must be estimated from 
the sample data. The difference between this theoretical model estimated in this way 
and the observed data represents the part known as “residual”; differences between 
the observed values and the values predicted by the model. Hypotheses about P and 
the quality of estimations are the basis that is required to allow an analysis of 
variance and decide on the value of n, according to the risk of chosen decision. 

Another approach consists of writing one or several differential equations that 
express the type of presumed variation f that the speed of growth undergoes over 
time, as a function of the biomass or of the instantaneous number, written: 

( )( ) / ( ) , ,dy t dt f y t t= P  

where P is a set of parameters to be identified. This model can be modified by 
adding a delay effect that expresses the action of a previous state g[y(t – τ)], which 
corresponds, for example, to a period of latency or of maturation. We are, therefore, 
led towards formulation of specific hypotheses (that it will be necessary to verify) 
about these functions f and g, and about the parameters P, whilst also basing it on 
what we know by simple empirical observation. Each model of this type is 
characterized by the nature of the hypotheses set down and by the type of 
observations to which we resort in order to found them (e.g. the shape of the growth 
curves with one or several points of inflection). A model of this type is therefore 
mixed in nature in the sense that the hypotheses that define it are not entirely  
“free”. 

Finally, let us add in another way of proceeding that adopts an “axiomatic” 
position so named because it is not based on an experimental basis, but instead on  
a priori ideas that confer to it a character that is considered more theoretical or more 
abstract. For all this, it cannot be considered more “mathematized”. Application of 
the theory of automatons to report a growth or morphogenesis correctly illustrates 
this position of principle. In this case, we lay down as point of departure the 
vocabulary of the different possible states and the rules of transition (generation of a 
new cell, change of state). We will see that the difference with the differential  
 
 

                                 
6 We can refine this principle of simple regression using the method of orthogonal 
polynomials, well suited to determination of the minimal degree n of this regression. See 
Buis, R. (2016). Biomathématiques de la croissance. EDP Sciences, Les Ulis, detailed method 
with example in chapter G of the online companion volume to that book. 
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formalism is not reduced just to the choice of continuous versus discrete, but affects 
the adopted hypotheses. 

This type of discrimination between different types of models (equivalent grosso 
modo to opposing something purely formal with something that is partly empirical) 
of course allows us to add a little order to a varied set of approaches7. However, 
these distinctions are rather conventional, meaning by this that the essential consists 
instead of clearly resting on the three following points: 

i) The underlying motivation (what are we looking for, where do we want to  
get to?); 

ii) The contribution from hypotheses (on what basis?) and observations (of what 
kind?); 

iii) The type of mathematical formalization used: its originality and its 
constraints or limits. 

Moreover, this is not without its link to the traditional debate about the nature of 
mathematics themselves. These, as we know, are not independent of considerations 
of an experimental nature that have contributed to their own development in parallel 
with their fundamental axiomatics. The subject is thus rich with a variety of 
positions, leading to underlining the characteristics, and taking into account the 
historical and epistemological aspects of these connections. 

These aspects will be addressed later concerning the essential “points of view” of 
the biomathematical panorama, which is still in the process of being established and 
justified. But we can agree that this isn’t the place to talk about developments and 
must refer back to more specialized studies when a given fundamental situation 
relating to philosophy of biology takes shape. At least it seems useful for us that this 
place allows the diversity of situations to appear by trying to highlight the pertinence 
and the particularities of representation that each of the considered approaches 
automatically offers. This difficult task is not in vain, as the course of biomathematical 
literature allows distinction to be made between what still comes from simple 
speculations (like a kind of expedition to develop) and what, given a true effectiveness, 
presents itself from now on as a true instrument (both technical and conceptual) that 
the biologist can use for the benefit of their own work. In any case, we believe that 
these conditions must define the complexity of these biological–mathematical 
relationships, and must thus seize the originality of different approaches, which it 
would be better to specify without exaggerating their differences, as then it will not 
lead to irreducibility. In a rather abrupt illustrative manner, we could say that in this  
 
 
                                 
7 Varenne, F. (2010). Formaliser le vivant : lois, théories, modèles ? Hermann, Paris. 
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exploration, there are numerous points of view, yet not all their sources can be easily 
used. Thus, we can contribute in this discussion to the reasoned expectation of 
biologists confronted by the continuous extension of the place of mathematics, itself 
highly varied, in practice of his discipline. 





1 

On the Status of Biology:  
On the Definition of Life 

Stating that biology is the “study of living things”, or processes that take place in 
the latter, comfortably sidelines what is meant by the “life” part of this term, which 
is supposedly their sui generis characteristic in comparison to “non-living things”. 
Without doubt we can make the observation that the definition of life can only be an 
ideal point of view, otherwise seen by some as useless speculation. However, 
insistence on the question demonstrates the originality of biology in comparison to 
other disciplines that do not appear to have this type of requirement. Physics, for 
example, does not need to “define” matter or energy in order to study the 
phenomena in which they intervene, giving them instead the role of “variables” that 
can be manipulated, whether theoretically or experimentally. Let us recall the basics 
of the fundamental concept of force, introduced in Newton’s second law, using 
which we can deduce a satisfactory definition of it by multiplying the mass and the 
acceleration of a movement1. 

Let us return to C. Bernard, who provides an explanation of the notion of life. 
Stating that “physiology is an experimental science [that] has no place giving a 
priori definitions”, he considered that “it is illusory and irrational, contrary to the 
very spirit of science which is to seek an absolute definition”2. In fact, we can state 
that biology ignores the notion of life, whereas this is paradoxically the purpose of 
its field of study. In summary, he goes as far as saying that the field refers to objects 
that common sense describes as “living”. But this does not prevent the definition of  
 
                                 
1 Nevertheless, let us note that Poincaré considered the criss-crossing, the vicious circle, to be 
inextricable and to consist of defining the mass by the force or vice-versa. Poincaré, H. 
(1968). La Science et l’Hypothèse. Flammarion, Paris, 118. 
2 Bernard, C. (1885). Leçons sur les phénomènes de la vie communs aux animaux et aux 
végétaux, vol. 1. Librairie J.-B. Baillère et fils, Paris. 
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“living things” (as opposed to “life” itself) – moreover, we prefer to talk about 
singularity rather than look for a true definition of it – remaining a theme of 
reflection, the subject of university PhDs, stimulated by the latest developments in 
research on the initial conditions of appearance of life, as well as sometimes by 
metaphysical considerations that we do not need to include here. 

Unfortunately, this pragmatism can only sideline, without resolving, the 
remaining reason for the existence of the debate. There is, in fact, a debate to be had 
if we note the diversity of the points of view, ranging, for example, from the 
statement by the biochemist Szent-Györgyi that “life as such does not exist”, to 
attempts at a definition, if not about the word “life” designating a specified entity, 
then at least about the nature of what makes an organism “living”. Although 
Aristotle proposed a fundamental definition of it, based on a property of autonomy 
and self-reproduction (see Chapter 3), modern biology considers that life is an 
abstract entity that it is unable to characterize. François Jacob expresses this in the 
following way: 

“Life is a process, an organization of matter. […] We can therefore 
study the process or the organization, but not the abstract idea of life. 
We can attempt to describe and we can attempt to define what a living 
and a non-living organism is. But there is no ‘living matter’”3. 

Let us agree that the designation “living matter”, refused in the above, is simply 
a convenience of language, like the famous “vital force” advocated by vitalists. And, 
since it is necessary to take a side, let us admit the following position concerning our 
subject, which will be illustrated several times over in the following. 

DEFINITION.– Any living object is a precise assembly of interactive “elements” 
(meaning matter, energy, information), and a system of this kind always faces a risk 
of instability. It is therefore necessary to search for the structural characteristics and 
dynamic properties that ensure correct maintenance, development and reproduction 
of it. 

Faced with this issue, mathematics, which is itself a science of structures and 
transformations, steps up to participate in this study and, better still, to establish a 
coherence of dynamic representation, in part invariant and in part fluctuating 
(adaptation). 

With this in mind, we can refer to the principle stated by H. Atlan (and 
independent of its position with regard to the deterministic/random debate): “The 
only specificity of living things relates to the complexity of their organization and 

                                 
3 Jacob, F. (2000). Qu’est-ce que la vie ? Éditions Odile Jacob, Paris. 
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the activities that accompany them”4. Obviously, we need to specify this notion of 
complexity and distinguish it from what it is in non-living systems (Chapter 3). In 
the meantime, let us say that the notion of life, understood in this way, consists of 
admitting the following property. 

PROPERTY.– The most characteristic processes of any living thing, which can be 
described as sui generis, are autopoiesis (continuity of an autonomous production of 
oneself) and compliant reproduction from one generation to the next. 

Without spending too much time on this question, we at least need to agree on 
what and how biology presents a demonstrated specificity with respect to other 
disciplines, leading us to say, in the words of the biologist E. Mayr, that it is “a 
science unlike any other”5. We call on some past considerations in order to do this. 

Let us first recall that the word “biology” is relatively belated, dating back only 
to 1802, proposed jointly by J.-B. de Lamarck in France and G.R. Treviranus in 
Germany. For G.R. Treviranus, “biology or philosophy of living nature” (“Biologie 
oder Philosophie der lebenden Natur”) must aim to study “various phenomena and 
forms of life, the conditions and laws that dictate its existence and the causes that 
determine its activity”6. For his part, J.-B de Lamarck entitled one of his lessons 
“Biology or considerations on nature, faculties, developments and the origin of 
living bodies” (1812). Moreover, he specified: 

“The name of living bodies has been given to these singular and truly 
admirable bodies… They effectively offer, in themselves and in the 
various phenomena that they present, the materials of a particular 
science that has not yet been founded […] and that I shall name 
biology”7. 

With this new terminology, the objective appears first as the desire to group 
together all the studies, scattered to a greater or lesser extent, that relate to living 
things, going beyond the observation and classification of living things whose 
morphology was the basis for recognition, naming and classification. This first 
requirement did not prevent a reasoned practice of the use of living things 
developing in parallel within this natural history, duly distinguished by their nature 
and their state of development (pharmacopeia, feeding, clothing, housing). This 
implied a technical experimentation that should not at all be considered negligible  
 

                                 
4 Refer to Stewart, J. (2008). La Vie existe-t-elle ? Déterminismes et complexités: du 
physique à l’éthique. In Colloque Cerisy. La Découverte, Paris, 145–158. 
5 Mayr, E. (2004). What Makes Biology Unique?. Cambridge University Press, Cambridge. 
6 Quoted in Encyclopedia Universalis. 
7 Ibid. 
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(harvesting and hunting, then agriculture and domestication). But the most important 
point in this “profession of faith”, namely biology, is now to consider life as a 
singular phenomenon whose two aspects are specified by it as: its generality and its 
diversity. A two-fold task is therefore assigned to this new discipline: (i) looking for 
properties or characteristic laws that have a certain universal value and (ii) studying 
the diversity of how these are manifested in reality, including the truly historical 
aspects8. 

The eruption of the word “biology” is often (wrongly) considered as the 
declaration of the status of this discipline as a true experimental science. At least, 
this was written by F. Magendie (1783–1855), in reference to Galileo, writing in his 
era in his Principe élémentaire de physiologie [An Elementary Treatise on Human 
Physiology] (1833): “in order to know nature […] it was necessary to observe and 
above all interrogate it via experiments”. This position was taken up and developed 
by C. Bernard, who studied the lessons given by Magendie, and whose successor he 
became at the Collège de France. 

In fact, it must not be forgotten that experimentation on living things has been 
around for a long time. Let us recall a few notable examples. In Antiquity, we have 
Hippocrates and his experimental studies on the development of a hen’s egg. Then 
the 17th Century provides us with remarkable research by W. Harper (1578–1657) 
on blood circulation. An important point is that the originality of these studies was 
the methodical implementation of quantitative measures of blood flow under 
different conditions (application of a tourniquet, then its release). Let us note also in 
this era the tests by L. Spallanzani (1729–1799) that led to the disproving of the 
theory of spontaneous generation and the highlighting of the role of gastric juices in 
digestion. 

Natural history therefore realised very early on that the anatomical description of 
structures must precede research into their functioning, without remaining limited to 
questions of compared morphology and classification, which led to progressive 
labeling of the reality of various fields of study of phenomena involving living 
things. 

1.1. Causality in biology 

On the sidelines of this fundamental topic, it is necessary to mention an old 
question that has been around in the field of biology for a long time, in  
 
                                 
8 On this point, interested readers should refer to Gayon, J. (2004). De la biologie comme 
science historique. Sens public [Online]. Available at: https://www.sens-public.org/IMG/pdf/ 
SensPublic_Jean_Gayon_Biologie.pdf. 
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particular in embryology, in reference to whether the development of an organism 
consists of deployment of pre-existing structures in the egg, or, on the contrary, 
whether ontogenesis takes place according to a spatially and temporally organized 
sequence of generating processes. This was the famous dilemma of “preformation 
versus epigenesis”. We all have in mind certain famous figures from the past in 
anthropology, illustrated representations of a miniature being (homunculus) that is 
thought to be housed either in the head of the spermatozoid, or in the ovum. This 
debate was already alive in the era of Aristotle, who was a supporter of epigenesis or 
the progressive formation of a series of structures. For a long period of time, this 
position remained up to date, fed by various staunch positions in which naturalists 
and philosophers played a part, as well as physicians such as Maupertuis who, 
supporting his ideas with interbreeding and cross-breeding, was firmly opposed to 
any idea of preformation. The issue is significant because attributing a causal nature 
to the notion of preformation is the same as being opposed, automatically, to both 
reproduction and evolution. 

Although the debate eased off with the advent of cellular theory at the end of the 
17th Century, which designated the cell as the elementary level where we can site 
both reproductive activity (mitosis) and various morphogenetic and physiological 
processes, the theory of preformation is still present in biology. It is of course a 
renewed form, but one that should be mentioned in relation to the general principle 
of causality. A first aspect of this persistence can currently be seen in the 
significance that it is often necessary to apply to the initial conditions of a 
morphogenetic process. In fact, this consists of taking into account the initial state of 
a cell at the time of its formation, as a material cause (in Aristotle’s sense) of a 
process. Although this idea of predetermination should be distinguished from the 
deployment of a pre-existing structure, the initial state is indeed equivalent to a pre-
requisite driving factor that participates (in part) in the advancement of a process. 
Thus, any change in the initial state can modify, both qualitatively and 
quantitatively, the dynamic of the aforementioned process. Another aspect, amongst 
the most remarkable, was provided to us by genetics as soon as this broke free from 
its initial principle of direct, linear and unidirectional causality, from gene to 
function. The discovery of development genes (with the existence of homeobox 
genes) in fact underlines this fundamental property of the genome that is to possess a 
complex topological and temporal structure, non-linear in its organization and  
its operation. It follows that the ontogenesis of an organism needs to be related  
to this “preformed structure” whose temporal evolution takes on the meaning  
of a multidimensional “deployment”, not of the genome itself as a physical  
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object, but more exactly of the information that is written in it. Which can be 
translated by saying that the “homunculus is indeed represented on chromosomes”9. 

To organize the subject, we first need to sum up the position of the principle of 
causality, the basis for all scientific knowledge. Although it is used very frequently, 
the debate continues around what is meant by “causality”. Let us sum up by saying 
that, in a more general manner, the function of this term can be given as follows: 
“reconstituting links, adding events that at first glance are disjointed into a 
timeframe”10. It is a search for an ordered sequence of elements that are linked not 
necessarily by immediate proximity (spatial or chronological), but by the  
non-circumstantial fact that they find themselves together and in a given orientation 
on a single arrow of time, one which allows a given process to be structured. This is 
illustrated by representation on a directed graph, connecting two elements of the 
same set, covering the immediate direct effects just as much as the delayed effects 
(such as an incubation period or a dormancy period) or retroactions (feedback). 

This point of view, distinguishing causality and correlation, conveys an 
ontological character to the idea of causality: the succession of phenomena over time 
necessarily determines what happens during the evolution of a being or of a 
system11. Remaining on this theme, the question arises of whether there is a link 
between the proven existence of causality and the explanatory nature of our concepts 
and models. Some advocate that there is, believing that a mathematical model works 
(in the sense of simulation) because it explains even a little of the information that 
participates in causality. Now this needs to be explained further, because if a model 
is capable of bringing characteristic properties, the latter can come from a simple 
statistical correlation or from a causality. Moreover, we will see that in terms of 
modeling, we can be brought to make a mathematical distinction between a 
deterministic part and a random part, respectively corresponding to what we study in 
terms of inventoried causes and what we do not know about in terms of unknown or 
inaccessible causes. 

We are aware of how much the natural sciences, including biology, were 
influenced for a long time by the thoughts of R. Descartes, who stated that it is 
necessary to move “from what is most simple to what is most complex in the order 
of deduction” on the basis of “these long chains of very simple and easy reasons that 
geometricians make use of in their proofs”12. The principle of these “chains of 

                                 
9 Prochiantz, A. (1994). Forme et Croissance. Le Seuil, Paris, 19. French translation of 
Thompson, D’A. (1992). On Growth and Form. Cambridge University Press, Cambridge. 
10 Andler, D., Fagot-Largeault, A., Saint-Sernin, B. (2002). Philosophie des sciences, vol. 2. 
Gallimard, Paris, 825. 
11 Refer to Kant’s distinction between necessary causality and free causality, meaning 
between determinism and freedom. 
12 Descartes, R. (1966). Discours de la méthode. Garnier-Flammarion, Paris, 47–48. 
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reasoning”, unidirectional linear sequences, is relayed today by the preeminence 
given in biology to the circular causality linking in both directions two entities that 
are at a lesser or greater distance from each other, which complete or modify the 
direct linear causality13. In ecology, this notion of circular causality was proposed 
for the first time (by Hutchinson in 1948) without the specific connections with the 
principles of cybernetics that were developed in the same era by N. Wiener having 
yet been established. This circular causality takes on different forms up to the 
remarkable existence of loops (e.g. metabolics) or open circuits such as those in  
the hypercycle by M. Eigen. It is clear that currently the notion of causality must  
be designed as much as possible in the context of networks, meaning directed  
graphs connecting various elements that participate in the same type of process (see 
Chapter 3). 

In a general manner, it is sensible to connect these considerations to the usual 
and still relevant distinctions accepted since the time of Aristotle between various 
types of causality14, in particular the efficient cause and material cause. This 
distinction has been taken up by the bio-theoretician R. Rosen (see section 3.12.2) in 
applying it to the classic representation of a biological process with the aid of a 
dynamic system, meaning a set of differential equations differentiated by time, 
dy(t)/dt, expressing the speed of the aforementioned process. A speed equation 
corresponds to an efficient (or formal) cause, since its formalism directly determines 
the advancement of the process. Now, this also depends in general on the initial 
conditions y(t = 0), where these can have a greater or lesser influence on the 
dynamic of the process. Let us specify, without waiting for later developments, this 
question of dependence with respect to the initial conditions by highlighting that it 
cannot be strictly quantitative by simply modifying the order of magnitude of the 
final state. It can also be qualitative. Indeed in certain cases, the initial state can 
condition the very type of dynamic as the evolution towards a particular “basin of 
attraction” (case of multistationary systems). This is, for example, the case for 
certain phase transitions, like in plants the maintenance of a meristem in a vegetative 
state versus its evolution towards a reproductive state (no longer generating leaves 
but flowers instead). The initial state then does indeed have the meaning of a  
cause, known as a matter cause. This means distinguishing, by analogy with 
mechanics, the movement of a body determined by a formal cause (its speed 
equation) and by its presence at the initial time (material cause). For a cell  
 

                                 
13 Concerning this question, refer, for example, to Mossio, M., Bich, L. (2014). Biological 
circularity: concept and models. In Modéliser et simuler, vol. 2, Varenne, F., Silberstein, M. 
(eds). Éditions matériologiques, Paris, 137–169. The general theme of causality was the subject 
of a thematic school of thought within the CNRS (French National Research Institution), entitled 
“Corrélation, causalité et régulation en biologie”, Île de Berder, 2013. 
14 The four types of causality according to Aristotle are the causes known as “material”, 
“formal”, “efficient” and “final”. 
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growth process, we have something equivalent when we distinguish between 
generation (local mitotic activity that generates a new cell of a given size and in a 
given state) and increases in size (subsequent activity of elongation of the wall). 

Apical growth of a mycelial or algal filament if a good illustration of this, since 
the sub-apical cell can, depending on its initial state (independent of other causes), 
either grow without differentiation and participate in extension of the filament in the 
same direction, or be at the origin of a morphogenesis by budding and generating a 
lateral offshoot (ramification). 

In the elucidation of the relationship that is required to exist between two 
phenomena and which can be considered to be of a causal nature (and not simply a 
correlation), two concepts need to be mentioned due to the epistemological 
importance that they had or still have in biology: vitalism and teleology. We have 
seen them, albeit in an exaggerated manner, as past obstacles to biology reaching a 
status of science that can be compared to physics15. It rather appears to us that they 
simply reflect the difficulty of agreeing on the very notion of life. 

1.1.1. Vitalism 

By vitalism, we mean a position of principle that aims to make a fundamental 
distinction between living things and physical material objects. For Descartes, for 
example, a living organism is nothing other than a machine, where no difference is 
seen between living matter and matter known as “inanimate”. On the other hand, 
vitalism considers that living matter has specific properties that cannot be reduced to 
the set of physico-chemical elementary mechanisms, from which we deduce that 
they must result from the existence of a “life force” (vis vitalis) that is specific to it. 

In principle, this concept dates back to Aristotle, with his definition of living 
bodies (On the Soul, volume II, 1). By “life”, he clearly meant “the fact that they 
feed, grow and decay by themselves” (our emphasise). He thus expressed a principle 
of autonomy as a fundamental characteristic of life, meaning something intrinsic that 
inanimate bodies do not have. In a way that is more practical than philosophical, the 
idea of vitalism was laid out by Galen (129–~200). According to him, the study of 
structures and functions cannot be separated from the notion of utility as the very 
objective of life16. It somehow combines determinism and finality. Following this, 
vitalism was illustrated in different ways, in particular by the embryologist  
H. Driesch (1867–1941) in terms of the theory of epigenesis, in contrast  
 
                                 
15 Mayr, E. (2004). What makes Biology unique?. Cambridge University Press, Cambridge. 
16 Galien, C. (n.d.). De l’utilité des parties du corps humain. See Pichot, A. (1993). Histoire 
de la notion de vie. Gallimard, Paris, 130 sq. 
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to the idea of preformation. The philosopher H. Bergson (1859–1941) actively 
participated in this movement in his relationships with evolution. His expression 
“vital impetus” (élan vital) means the existence of a metaphysical principle that is 
established at the very origin of life, the principle of “given once and for all”, which 
then maintains itself as a connecting link between generations (L’évolution créatrice 
(Creative Evolution), 1907). In this concept, H. Bergson sees, in his own terms, “a 
limited force, that always seeks to surpass itself, and always remains inadequate at 
the work that it attempts to produce”17. 

If the existence of a vital impetus cannot be demonstrated as a defined and 
manipulable entity, the debate about vitalism allows us to shed light laboriously on 
the requirement that living mechanisms should not be limited to just the elementary 
laws that govern physico-chemical phenomena. Thus, with C. Bernard, whose 
dialectics are known, we can reject the idea of a vital principle whilst conceding 
alongside him that “It is obvious that living beings, by their evolutive and 
regenerative nature, radically differ from non-living entities, and in this respect, it is 
necessary to agree with vitalists”18. The doctor and contemporary philosopher G. 
Canguilhem follows the same path. 

Let us explore this question of vitalism a little by noting an important point  
that came to light when we became aware that there was definitely a “living  
thing-environment” set that could constitute a particular significant entity, a 
“totality”, the terms of which cannot be dissociated in the study of certain 
phenomena. The biologist J.J. von Uexküll (1934) created the term Umwelt to 
designate the behavioral environment specific to an organism19, which needs to be 
distinguished from the strict topographical environment. Each organism has an 
environment that is well specified lato sensu with which it is in a close relationship. 
Although this concept usually refers to the sensory environment of animal species, 
from an ethological point of view, it is necessary to extend it to the study of other 
organisms where we know that various tactisms and tropisms occur, as necessary 
constitutive deciding factors of their environment. 

Let us note that this is part of a wider set of considerations about the lack of 
reproducibility of the dynamic of a given process when moving from an in vitro 
experimentation to a more integrated in situ study. An example is given to us with 

                                 
17 A comment is made about this by P.-A Miquel (Miquel, P.-A. (2007). Qu’est-ce que la 
vie ?. Vrin, Paris), who insists on two points: (i) life is power: “it is made by it”; (ii) and yet it 
is “inadequate for its work” since it is subject to a limit that is essential (internal) and non-
accidental in nature. 
18 Bernard, C. (1867). Rapport sur les progrès de la physiologie en France. Imprimerie 
impériale, Paris. 
19 Refer to Canguilhem, G. (1980). La Connaissance de la vie. Vrin, Paris, 143 sq., who 
underlines the similarities with Gestaltheorie. 
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the case of plant cell growth (see Figure 3.11). Indeed, control of parietal extension 
leads to intervention in situ of the electrostatic potential of the wall, because this 
modulates the affected enzyme kinetics in terms of their microscopic properties 
exhibited in vitro (and qualified as intrinsic). It is clear that these are not sufficient 
for a correct representation of the dynamics of the growth process20. More generally, 
therefore let us say: 

PROPERTY.– The determining set of interactions of a biological system with its 
environment constitutes an original characteristic of living things. This systemic 
view of nature is specific to biology, without an equivalent in physical sciences. In 
other terms, this is the question of the existence of a fundamental environment: 
dependence that is continuously in place in all ontogenesis. 

With this mindset, the biologist R.C. Lewontin talks about a triple helix, a 
metaphor that is intended to outline, as if on an equal footing, a triple determinism: 
genome, organism and environment21. 

1.1.2. Teleology 

Teleology can be defined as a study of the finality that can be attributed to any 
phenomenon. It lays down the principle of the existence of “final causes”, using 
Aristotle’s distinction between the existence referred to in the above of several types 
of causality, in particular an efficient or immediate cause (a phenomenon that 
produces another) and final cause (objective of the action). Obviously, we can 
reason in a consciously anthropomorphological manner, saying that having an 
objective constitutes in itself the determinism of all actions. More simply, looking 
here from the point of view of the “economy of life”, we will say that it comes down 
to asking the question (for coherence reasons, inescapable): “What is the use of 
this?”. Otherwise expressed, it is a case of elucidating what the “relationships 
between means and ends”22 are, and not becoming fixed on just the “common sense” 
that says it is possible to predict the present from the past (that is known), but not the 
future (that remains unknown), meaning that the cause precedes the effect. 

                                 
20 Ricard, J. (1990). Le fonctionnement des enzymes en milieu cellulaire. La Vie des Sciences, 
7(3), 197–218. 
21 Lewontin, R.C. (2003). La Triple Hélice: les gènes, l’organisme, l’environnement. Le Seuil, 
Paris. Lewontin’s book refers to the genetics of populations and the theory of evolution, and 
his research is marked by its use of mathematical formalism whilst developing its own 
philosophical thinking. 
22 According to the definition in Lalande, A. (1968). Vocabulaire technique et critique de la 
Philosophie. PUF, Paris. 
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Teleology often has bad press amongst biologists, despite the essentially 
metaphorical nature of this term. In terms of evolution, talking about teleology 
comes down to attributing an objective to a particular set of evolutive processes. 
Thus, concerning the formation of organic structures that provide vision, from initial 
rudimentary photosensitive elements to the complex eyes of superior animals, it can 
be said that “the eye is made for you”. 

On this point, C. Darwin himself recognized that it was absurd to believe that the 
eye, with all its adjustment devices, was able to form itself solely through natural 
selection via a series of evolutive processes. From the teleological point of view, this 
evolutive convergence must be interpreted in fact as an optimization of the function 
of vision. Ontologically, the principle of teleology means that the development of a 
living thing, from an embryo to an adult state, has no “objective” other than 
compliant production of physiology and morphology that are characteristic of the 
species in question, adjusted to a lesser or greater extent by environmental 
constraints (morphogenetic plasticity). Anything that is simply a tautology obviously 
disappears and presents a problem when we look at how this remarkable production 
functions, with its certain stability or property of invariance. 

Opposition to the very idea of teleology consists of refusing a final cause that 
would have an explanatory value for life processes23. Certain biologists wanted to 
rid themselves of this cumbersome term with a finalistic connotation by talking 
instead about “teleonomy”. In fact, this changes nothing in the essence of the debate 
since the two terms have the same etymology (teleos = purpose, objective). This 
designation of teleonomy was proposed in 1958 by the biologist C.S. Pittenburgh 
who worked on the circadian rhythms of drosophila. It was taken up by the  
neo-Darwinist E. Mayr, who defined it as an unintentional outcome (“non-purposed 
end-seeking process”), an expression that is very difficult to define. Excluding any 
quibbles from a language point of view, F. Jacob and J. Monod use this term to mark 
out the principle of final cause by laying down a new founding principle: living 
things are “objects equipped with a project”. In place of the principle of an explicit 
final cause, we therefore substitute the idea of a program or a series of determining 
instructions which link structure and function. 

F. Jacob insists particularly on this new concept of program that he sees as the 
possibility of getting rid of old notions of finality and mechanisms. Moreover, he 
notes (The Logic of Life, p. 18) that the idea was already implicitly present in  
C. Bernard, whom we partially quote below: 

                                 
23 Of course, here we are not referring to the idea of “intelligent intent” in the sense that a 
point of view of a metaphysical order does not arise from this current research. 
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“There is something like a pre-established intent of each being and 
each organ, so that if, considered in isolation, each phenomenon of the 
economy is a tributary of the general forces of nature, taken in its 
relationships with the others, it reveals a special link, it seems directed 
by some invisible guide in the road that it follows and brought to the 
place that is occupies”24. 

Of course, in his era, these terms like “pre-established intent” and “guide” thus 
laid down had to appear in a teleological manner. But we know that the dialectics of 
C. Bernard led him to admit pragmatically, and also with a sense of nuances that is 
sometimes fortunately missing from the discussions, that contradictory positions 
exist (see Chapter 3). 

A new debate begins concerning the notion of a “program” which, with its 
connotations of data processing, has the meaning of an algorithm that codes and 
assembles the basic information obtained by molecular biology. On this point, 
advances went up to the point of saying that the keyword of biology was no longer 
“organization” or “organism”, but “information”. “Besides the notions of energy and 
mass in physics, reaction and stereospecificity in chemistry, biology used from then 
on words of information technology and programming25”. In any case, to remain as 
close as possible to the notion of causality that we are discussing, let us say that if 
the gene lato sensu can be a direct cause producing a given effect, it does so in the 
form of a coded instruction or program procedure. We will come back to this 
duality. 

This epistemological evolution leads to the consideration that the originality of 
living things, in comparison with inanimate things, lies in the existence of a kind of 
double causality: every biological process is subject to specific quantitative laws 
(just like any physical phenomenon) at the same time as being determined and 
controlled by genetic programs. However, and without waiting for our later remarks 
on the notion known as the “complexity” of biological processes, the question is not 
closed, because the very term causality should be explained due to another important 
characteristic of biological phenomena; their variability, whose properties we must 
examine. 

                                 
24 Bernard, C. (1879). Leçons sur les phénomènes de la vie communs aux animaux et aux 
végétaux, t. 2. Librairie J.-B. Baillère et fils, Paris. 
25 Maurel, M.-C., Miquel, P.-A. (2001). Programme génétique: concept biologique ou 
métaphore ?. Éditions Kimé, Paris, 41. 
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1.2. Variability in biology 

We first note the underlying difference that exists between a chemical species, 
easily manipulated and reproducible in an identical manner, and a biological species, 
an entity that even in the simplest cases of genetic lineage has a random part, 
including the fact that the genome is not strictly invariant from one individual to 
another within the same species. A precise example is that of the immunological 
characteristics of allotypes and idiotypes concerning the individual specificity of 
immunoglobins, or even the existence of blood groups in mammals. On the other 
hand, we know of the importance of randomness in certain biological phenomena, 
such as sexual reproduction (e.g. the random nature of pollination in allogamous 
plants), occurrence of mutations, replication errors in the genome or even 
chromosomal crossing-over. 

Due to the importance of this notion of variability, we must specify the meaning 
of this term, which is used in varied situations. Depending on the case, we can 
consider it from an ecological and phylogenic point of view or, on the contrary, 
envisage it in relation to the ontogenesis of a given species. On this last point, we 
know that certain macroscopic characteristics of an organism present themselves as 
a matter of fact as random variables. For example, for a given plant species and 
cultivar, the number of metamers of a stem of an annual plant obtained at the end of 
development can vary significantly within the same population. On the contrary, 
although the cases are quite rare, this number is obviously constant in certain highly 
selective species. We observe, for example, in wheat, that the main stem includes 
seven internodes, with little variation of this number, but this is not repeated on the 
organism itself in its entirety including branching. Another example in this order of 
ideas is that in Arabidopsis thaliana, the model plant of molecular biology, on 
certain mutants and for a given light, a constant number of leaves are generated 
before floral induction. Another aspect, at the scale of a population, is that the 
statistical variability of the size of a given organ does itself vary during growth. For 
example, the length of the hypocotyl (= 1st internode of seedling) presents a 
coefficient of highly fluctuating variation (standard deviation/average). Therefore, in 
the papilionaceous plant Lupinus albus, this statistical index fluctuates from 5 to 
60% depending on the stage of growth. 

We can currently specify various elementary causes of variability. Let us 
summarize the two microscopic levels where they take place. An initial source 
consists of the spontaneous and random occurrence of genetic mutations (local 
alterations in the sequence of nucleotides that have repercussions in the metabolic 
functions that follow). These are alterations of a qualitative nature, considered to be 
independent one after the other without an adaptative value. On the same subject, 
another cause of variability lies directly in a stochastic expression of genes.  
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The existence of random phenomena here has the complete properties of a noise, in 
the sense that it is a case of quantitative (and not qualitative) temporal variations of 
proteosynthesis. 

A second type of variation is added to this, known as “epigenetics” since it 
occurs outside gene determinism. We know that this genetic/epigenetic distinction is 
delicate. Effectively, since the discovery of the lactose operon (see Chapter 3), 
meaning a set of genes that intervene for the same metabolic function, the idea of the 
existence of interactions between genes and genetic regulation networks has 
emerged. The term epigenetics needs to be reserved for something else, in particular 
the modification of chromatin (DNA-proteins association) by methylation of histone 
proteins. Such changes, which are indeed epigenetic in nature since they operate 
outside the genes themselves, are not fixed, whereas mutations are stable 
modifications subject to the phenomenon of heredity. To widen this table of causes 
of variability, let us mention, at another level, the intervention of randomness in 
certain enzymatic reactions, like in the case of reactions with two substrates without 
privileged fixing of the enzyme onto one of them. 

From a more general point of view, the significance of biological variability was 
well elucidated in its time by the zoologist and biometrician G. Teissier26, based on 
his research using cultures of micro-organisms in vitro in controlled experimental 
conditions. Whilst this type of rigorous experimental protocol allows fluctuations 
from one test repetition to another to be reduced, it allows significant variability to 
persist as something that is, let us say, “intrinsic” in nature. It is not simply a 
question of precision of physical measures, but of the existence of a large number of 
factors, of which the experimenter can only take into account a very limited number. 
Therefore, let us imagine the well-known difficulty of an exact reproducibility of 
biological tests, because mastery of operating conditions is never total. A very small 
change in an experimental protocol, which can even take place without the 
experimenter’s knowledge, can significantly modify the result, a result of the 
sensitivity of a living thing to its environment, to which it adapts, and due to which 
it modifies its response to a greater or lesser extent. 

We encounter this type of question when we resort to mathematical models of 
test plans (experimental designs) (Chapter 3). These are always stochastic models 
whose random parts represent all factors that are unknown and those that cannot be 
controlled in experiments, without necessarily relating them to the uncertainty of 
measurements. 

                                 
26 Teissier, G. (1936). La description mathématique de faits biologiques. Revue de métaphysique 
et de morale. 43(1), 56–58. 
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Currently, the question of biological variability is asked in a more precise 
manner by considering both time and the various levels of organization. This multi-
scale temporal approach is particularly interesting in development biology. For 
example, during early development of sea urchins, which is one of the organisms 
that has been well-researched with this in mind, inter-individual variability of the 
dynamic of cell proliferation varies according to the scale considered, high over the 
entire population and lower amongst groups of cells of the same type and of the 
same generation27. This being so, we will return to and develop the principle of 
stratification that is well known in population statistics. 

Whatever the source of variability from amongst the summary that we have just 
done of it, the part played by random nature in living things is incomparable to its 
situation in the physical world, where research on it constitutes the well-outlined 
field of physical statistics. We recall that this developed from the kinetic theory of 
gases in light of the macroscopic description of a set of many microscopic 
constituents with random behavior (molecules, atoms, ions and particles) (refer to 
the example of Brownian motion). 

It follows that biology can scarcely be said to have a set of duly inventoried laws that 
are analogous, in their rigor and in the outline of their field of action, to that of physics. 
Nevertheless, we will see some remarkable cases of biological laws (Chapter 4). 

But other considerations need to be taken into account to understand how this 
intrinsic variability affects the perception that the biologist has of living things, thus 
entailing close interest in the relations between biology and mathematics. 
Essentially, as mentioned previously, it is the case that objects and biological 
processes are generally time-dependent, on the one hand, and environment-
dependent, on the other. Let us detail a little further what this entails. 

1.2.1. Time-dependence of biological processes 

At any organizational level that we choose to place ourselves, all processes that 
take place in living things present this characteristic. Let us give some convincing 
examples of this outside the realm of evolution where, by definition, biology is a 
historical science. 

Dynamics of living things are never strictly punctual. We see this, at a molecular 
level, with homeostatic variations of the internal environment, generally subject 
(except for all pathologies) to fluctuations over the course of a nychthemeron  

                                 
27 Refer to Villoutreix, P. (2014). Vers un modèle multi-échelle de la variabilité biologique. 
In Modéliser et simuler, vol. 2. Varenne, F., Silberstein, M. (eds.). Éditions matériologiques, 
Paris, 660 sq. 
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(e.g. variations in glycemia), in such a way that it is more exactly a case of 
homeodynamics. This made C. Bernard mistrustful of average statistical values, 
because they were hiding variational properties that should not be neglected. 
Chronobiology came to life on the basis of this banal statement. More generally, this 
corresponds to the following characteristic dynamic of a living thing: 

PROPERTY.– Independent of the fluctuations in the environment, there are relatively 
few punctual attractors that lead to a unique stable stationary state, but more often 
cyclic attractors (e.g. a limit cycle), where these can themselves fluctuate (“strange 
attractors”). Added to this there is the case of multistationary systems, for which 
there is a possibility of bifurcation or a qualitative change of dynamic. 

Although dynamic properties of this type are not specific to biology (e.g. the 
chaotic dynamic of physical complex systems), we can state that physics concerns 
bodies or objects that are invariant with respect to time, with the exception of the 
well-described phenomena of hysteresis (memory), relaxation or radioactivity. This 
was highlighted by the physician Delbrück when he took an interest in genetics, 
declaring himself surprised to observe the absence of “absolute phenomena” in 
biology where, he noted, “everything depends on time and place”. 

On the other hand, at different organizational levels, living things are constantly 
subject to molecular (metabolic turn-over), cellular and organic (regeneration) 
processes of renewal or repair. An analogous behavior is demonstrated in the 
dynamics of populations and ecosystems, in particular with genetic mixing in 
meiosis (mitosis of sexual cells going from a ploidy of 2n to n chromosomes) and 
therefore the dynamic of genotypes within a given species. 

Plants make up a very remarkable case which, even in annual species, are 
generally subject to continuous embryogenesis throughout their existence by 
maintaining meristematic activity (generation of new metamers by different buds, 
formation of conducting tissues by the cambium of roots and stems). These 
processes of neoformation are associated with diverse renewals of tissue and 
organics (sclerosis of old wood or duramen, replacement following natural 
abscissions, leaves and branches, morphological reiterations in arborescent species). 
Thus, we can state that the life of a plant is confused with its growth28, and that the 
higher plant must be seen as a metapopulation. Development of certain organisms in 
colonies (such as corals) is another example of this, as well as, more generally, the 
process of aging and death, where the latter is consubstantial to life29. 

                                 
28 According to the expression by Hallé, F. (1999). Éloge de la plante. Le Seuil, Paris. 
29 The famous definition by M.F.X. Bichat (1799): “Life is the set of functions that resist 
death” was reviewed by H. Atlan (1979), for whom life was characterized by “functions 
capable of using death”. 
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Underlining these characteristics of time-dependent biology will lead us to 
mention the notion of time in biology, with the search for a time described as 
biological (Chapter 5), different from sidereal time. 

1.2.2. Environment-dependence of biological processes 

In addition to this dependence on time and on the past, objects and biological 
processes are, we have said, under the influence of their environment in the wider 
sense of the term. This is demonstrated in the property of adaptation that is so 
characteristic of living things. By “adaptation”, we mean the operational adjustment, 
both morphogenetic and physiological, to fluctuations of the environment. We will 
talk about this in the context of the autonomy of living systems, which is found just 
as much in the being (“self”) as in the surrounding environment. 

The idea of an influence of the environment on living things is often attributed to 
Lamarck who believed that he saw in this the basis for inheritance of acquired 
characteristics. In fact, the role of the environment dates back to I. Newton, with the 
former physical concept of ether, whereas for R. Descartes, for example, the notion 
of the environment does not exist, and all physical action comes from direct contact. 
For I. Newton, ether places various objects in continuity. He attributed the 
understanding of the physiological phenomenon of vision to it. He considers in fact 
that ether is “continuously in the air, in the eyes, in the nerves, and until then in 
muscles”30. It is the environment that allows a link of dependence to be set up 
between a light source and the movement of muscles. Subsequently, G.-L. Buffon 
continued this explanation, mechanical in nature, in the relationships of every living 
organism with its environment, then J.B. de Lamarck (who was a pupil of G.-L. 
Buffon and a private tutor to his son) took it up in turn by talking about “influential 
circumstances”. Multiple well-documented cases of physiological adaptation 
highlight this truism of the need for this property in order for life to be maintained. 

 

                                 
30 Canguilhem, G. (1980). La Connaissance de la vie. Vrin, Paris, 131. 
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On the Nature of the Contribution  
Made by Mathematics to Biology 

Mathematics is the language that allows  
a question to be expressed and resolved. 

W. Heisenberg1 

In referring to this quote, the classic approach of a physicist, we have the 
intention of continuing on from C. Bernard’s injunction that we cited previously, 
since it is important to present problems correctly and not just to calculate on the 
basis of what is observed. On the margins of this double aspect of circularity (back 
and forth question–answer) that we will be illustrating throughout the various 
chapters, it is necessary to note an obvious and fundamental epistemological 
difference between mathematics and the various sciences that are known as 
experimental. 

In mathematics, as a starting point there is always a precise set of definitions, 
axioms and postulates, a basis that we take care to specify thoroughly and which 
acts as an unambiguous label for any work done by a mathematician. The ultimate 
goal is a demonstration or proof, leading to the statement of a lemma or a theorem. 
At the very least, importance is given to demonstrating the existence of a solution 
that will then need to be specified. For example, the existence of a unique solution to 
a first-order differential equation, [ ]( ) , ( )y' t f t y t= , is clearly formulated by the 

Cauchy–Lipschitz theorem (or conditions), which constitutes a preliminary to the 
use of dynamic systems. Just like in a waiting position, there is the case of 
“conjectures”, which are intuitive proposals for which a comprehensive and total 

                                 
1 Cited by Lévy-Leblond, J.-M. (1982). Penser les mathématiques. Séminaire philosophie et 
mathématiques de l’ENS. Le Seuil, Paris, 196. 
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demonstration is still being sought2. In biology, on the contrary (just like in other 
experimental disciplines), we cannot truly consider this a demonstration. We seek to 
describe and to represent, even to predict, using laws or models to perfect what is 
expressed in a first instance by the direct conclusions of a set of experimental results 
or observations. 

2.1. On the affinity of mathematics with biology 

Let us provide a few more details about this fundamental question of the nature 
of mathematics with regard to experimental disciplines. We know, for example, that 
H. Poincaré (La Science et l’hypothèse, Chapter 6) refuses to consider geometry as 
an experimental science. Although it is the branch of mathematics that is closest to a 
physical reality, it does not manipulate in any way the concrete and tangible objects 
on which it carries out its material experimentation. “The principles of geometry are 
not experimental facts” and no experiment, he insists, can contradict (by definition) 
both the postulate made by Euclid and that made by N.I. Lobatchevsky, each of 
which is the foundation, in an irreducible manner, of a precise type of geometry3. 
This does not prevent H. Poincaré from, of course, admitting that “experiments play 
an essential role in the genesis of geometry”. We should not forget that, originally, 
geometry was a tributary of tangible problems, recalling the classic example of 
calculation of the height of a physically inaccessible point that is resolved by Thales’ 
famous theorem using the shadow cast by this point. Moreover, it was associated, 
through drawing, with the practice of making constructions using a ruler and 
compass. The name “geometrical construction” thus makes a lot of sense. On this 
point, let us remind ourselves on the relationship that is established between 
projective geometry and its applications that were developed, after the work of 
Vitruvius, in the ancient treatises on shadows in architecture. The mathematician  
G. Monge, the inventor of descriptive geometry (a branch of mathematics that was 
taught in the past in secondary education alongside analysis or trigonometry), took a 
keen interest in this. It therefore should not be forgotten that mathematics, just  
like experimental sciences, has two faces, namely a science of observation and a 
science of representation4. An affinity is therefore presented between biology and 

                                 
2 We can cite the well-known case of Fermat’s theorem, which although stated in the 17th 
Century, was not fully demonstrated until the 1990s (A. Wiles) after a series of intermediate 
proposals. Today, we express this theorem in the following way: the equation xn + yn = zn for 
n whole number > 2 only has a solution if one of these three numbers, namely x, y and z, is 
zero. 
3 Which raises the question of the appropriate choice of the type of geometry depending on 
the targeted objective, opening up the debate about the dilemma of conventionalism/realism, 
will be discussed later on. 
4 Bruter, C.P. (1996). Comprendre les mathématiques. Éditions Odile Jacob, Paris, 34–37. 
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mathematics, erasing or qualifying the inevitable but sterile opposition between 
tangible and abstract. 

For any degree of mathematization of the model that describes a given 
phenomenon and of the degree of experimental validation that is associated with it, 
it still obviously remains the case that modeling is not proof. Resorting to a quibble 
of language, we can simply say that “such and such a model ‘shows’ that…”. By 
this we mean that “the model sets out a set of observations”. In other words, we 
establish an agreement between what we measure and what the model expresses, 
meaning a concordance between the physical description by observation and the 
mathematical description by formalized model. There is a coherence between them. 
On condition that experimentation is on the model itself, its simulation function 
contributes to providing a basis of explanation for the process studied. In other 
words, the model guides or enlightens. We reiterate its principal advantage which, 
except for any prediction targets, lies in bringing to light any new properties or 
characteristics. 

The connections maintained by these two disciplines have led to undeniable 
successes at the interface between them, from which biology has widely benefitted, 
much more so than from the importance of its own contribution to mathematics. An 
overview of their history (Chapter 3) highlights a certain number of major points of 
reference in their relationship, which were at the origin of a fertile renewal of points 
of view by means of opening up methodological and conceptual thinking. We can 
state that mathematics, following the example of physics and chemistry, made a real 
contribution to the advance of biology. Nevertheless, these relationships still remain 
rather ambiguous in the eyes of numerous experimenters. Is it just slow progress that 
could explain the (unfavorable) comparison that is usually made with the older, and 
above all narrower, links between physics and mathematics, or does biology indeed 
present some particular aspect that affects the relationship that it can maintain with 
mathematics by limiting it to certain phenomena? 

We are aware of just how much mathematics has been nourished by the physical 
world. In addition to the practical problems of everyday life, observation of given 
striking particularities in our perceived world has always stimulated mathematicians 
to spend time on them in order to describe them and understand why or how they 
occur. Whilst, from this point of view, biology is not in a similar position to physics, 
mathematics is not delayed in studying certain phenomena in living things, seeing in 
this the opportunity to find new problems to be solved, which is an attitude that is 
entirely characteristic of this discipline. 
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In any case, consideration of the relationships between mathematics and natural 
sciences remains a trivial and surprising subject. On the one hand, references to 
Plato and Galileo are easily brought in, as a principle that should very obviously no 
longer pose an existential problem regarding the position and role of mathematics, 
the language of nature. But, on the other hand, it cannot be forgotten that here a 
question arises that still poses a problem for epistemologists and scientists. On this 
point, the physicist P. Dirac ponders as he writes: 

“One of the fundamental characteristics of nature seems to be that the 
fundamental laws of physics are expressed in terms of a mathematical 
theory […] we may wonder why nature is made in this way”5. 

Although this kind of consideration has little effect on the tangible mindset of 
biologists, we can add that, from this point of view, it appears to be required that 
physics and biology, without reducing the latter to the former, should go hand in 
hand. 

Let us specify at this point what this proclaimed affinity between biology and 
mathematics consists of. Thus, we can make an initial statement of affinity using the 
correspondences that take up position between the notion of mathematical 
singularity and the empirically observed existence of many “points of rupture” in 
biology (see Figures 4.1, 4.2 and 4.3). Such is the case of the abrupt transition 
between the phases of accelerated and decelerated growth (point of inflection of a 
kinetic) or discontinuities in the allometric relationships or in action curves 
(threshold). On another point, there are the analogies that have been detected 
concerning the notions of bifurcation (qualitative change in dynamic/brutal 
modification from morphogenesis to sexualization of a plant apex) or homology 
(connection of characters or organs between different species or at different levels of 
the same ontogenesis). Another point to make in this is the notion of symmetry, an 
intuitive notion that is so familiar to morphologist biologists prior to physicists or 
chemists, and to which the correlative one of polarity must be added. 

Numerous biologists still see mathematics primarily as a statistical tool that 
allows them to lay out the interpretation of their observations and measurements 
with some degree of rigor. Their familiarity is now fortunately well established via 
the nature of the conclusions of statistical tests and their language. For example, 
during a comparison of two treatments, it is said: “existence of a significant 
difference at a given risk that is chosen a priori”6. Another aim of application of 
statistical tools is to order and condense representation of the observations, in 
                                 
5 Cited in Hildebrandt, S., Tromba, A. (1986). Mathématiques et formes optimales: 
l’explication des structures naturelles. Pour la science, Paris. 
6 We specify that this is the first kind of risk. The reference to the second kind of risk, which 
results in the power of a test, is rarely explained. 
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particular in the case of very large files, by resorting to exploratory methods of 
analysis of multidimensional data. These methods have now become widespread, 
although sometimes a little blindly so with the trivialization of easily available 
software. 

The position given to statistics in biology is justified by the wide variability of 
measurements made on living things which cannot be reduced to the quality of 
measurements, in part and in contrast to physical phenomena. This did not prevent 
G. Teissier himself from seeing the importance of a coordinated presentation of the 
Lois quantitatives de la croissance, the title of a classic book in an era (1937) where 
mathematics–biology relationships were still quite restricted. 

This issue of a high intrinsic variability does not mean, of course, that the use of 
mathematics by biologists needed to be restricted just to probabilistic tools, so they 
have become necessary in laboratory practices. But going further implies a slightly 
epistemological point of view of the status of these two disciplines. Without going 
into detail, we need to refer to the following few remarks concerning methodology 
and conceptualization. 

1) First, we need to recognize that the description conveyed in vernacular 
language continues to be relevant when quoted in biology (as in the former “natural 
history”). Even if, in one way or another, biology can no longer avoid mathematics 
(no more than chemistry and physics), it would not be able to reduce itself just to 
their point of view. The naturalistic mindset of observation and intuition7 has its own 
virtues, just as it does irrefutable limitations. Whilst it is no competitor for the 
analytical and stimulatory mindset at work when faced with a computer paired up 
with a sophisticated instrument of this kind, it still has an irreplaceable potential for 
perception of phenomena. Regarding this, it is a good idea to constrain ourselves to 
a sort of open mind, which is, of course, valid in both directions. We can therefore 
use the words of the phenomenologist E. Husserl (whom we know was very taken 
with mathematics): 

“It is important to see [...] that exact sciences and purely descriptive 
sciences do indeed have a link between them, but that they can never 
be taken one for the other and that whatever the development of an 
exact science, meaning operating with ideal infrastructure, it cannot 
resolve the original and authorized tasks of a pure description”8. 

                                 
7 Keller, E.F. (1988). L’Intuition du vivant. Éditions Tiercé, Paris; on the discovery of 
transposable elements (“jumping genes”) in corn by B. McClintock. 
8 Husserl, E. (translated by P. Ricoeur, Gallimard, 1950). Idées directrices pour une 
phénoménologie et une philosophie phénologiquement pures.. In Les Mathématiques, texts 
chosen and presented by N. Chouchan, GF Flammarion, Paris, 205. 
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2) For its part, mathematics attaches itself in its applications to an idealization of 
what can be observed. It aims in the end to “replace real objects by ideal objects” 
(A. Lesne). Yet this transition is not automatic, because mathematics has its 
demands that biologists must become aware of, according to the pertinent remark 
made by the biophysicist P. Delattre9: 

“The rigor found in mathematics is not automatically transmitted to 
the disciplines that make use of it. Mathematics is in fact a syntax, 
which only retains its value when it is applied to a specific and 
coherent semantic. This results in the requirement to proceed to a very 
careful conceptual analysis before mathematization of any kind, if we 
wish to avoid reaching unrealistically specific proposals, or true 
logical plays on words”10 (author’s translation). 

Whilst it must be recognized that “unfortunately the pressure of time often 
obliges us to carry out calculations before understanding and conceptualizing”11, the 
long period of toing-and-froing between the two attitudes is quite capable of 
respecting this instruction of rigor as a must. Moreover, it is a mathematician who, 
referring to the physicist Kelvin (1879), alerts us to the harmful effects of what he 
calls “algebrosis”, urging us not to confuse the formula and the fact12, repeating the 
order made by H. Poincaré not to confuse the symbol and reality. An equation is 
simply a representation of a physical fact itself, a distinction pointed out many 
times, for example, by the physicist W. Heisenberg, who explicitly said: 
“Mathematical formulae do not represent nature, but instead the knowledge that we 
have of it”. 

Under the aforementioned reservations, it must be specified that mathematics 
bring much more than rigor of calculation, because they can turn into an instrument 
of thought. But in what way and with what objective in mind can mathematics be a 
useful instrument for biologists? Let us recall its two objectives, namely to be a tool 
of description, of condensed representation and/or forecast, or to constitute a tool of 
intelligibility via the fundamental concepts that it uses. Knowing that “predicting is 
not explaining” according to R. Thom’s famous formula, let us say that, except for 
                                 
9 Pierre Delattre was a founder of the French Society for Theoretical Biology, in particular of 
its Ecoles and its annual Seminars. 
10 Delattre, P. (1974). Concepts de formalisation et concepts d’exploration. Scientia, 109, 
427–458. 
11 Bailly, F., Longo, G. (2008). Situations critiques étendues: la singularité physique du 
vivant. In Déterminismes et complexités, Bourgine, P., Chavalarias, D., Cohen-Boulakia, C. 
(eds). La Découverte, Paris, 57. 
12 Bruter, C.P. (1982). Les Architectures du feu: considérations sur les modèles. Flammarion, 
Paris, 53–72. Citing the words of the physicist Lord Kelvin (1879): “Students are simply too 
inclined to take the easiest path, and to consider the formula and not the fact as physical 
reality”. 
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an objective of pure simulation, the mathematical model can, at the very least, be an 
“instrument of study”, with the aim of becoming an “instrument of intelligibility” 
(according to S. Bachelard’s expression13). Let us examine a few points that 
illustrate this major advantage of the use of mathematics. 

2.2. Mathematics, an instrument of work and thought on biology 

For all problems tackled, the use of mathematics leads to a condensed 
representation in the form of figures, graphs or diagrams that are supposed to give 
an image or an original view that a simple description in literary language cannot 
provide. Due to this, they can in a first instance be a kind of tool for perception of 
the phenomenon under consideration. Although scientists from a variety of horizons 
have taken time to point this out, such as the physicist and chemist R. Boyle in  
the 17th Century, who, going further than his work as an experimenter (refer to the 
Boyle–Mariotte law), sees in this a considerable advantage that he expresses in the 
following way: 

“Diagrams, figures, representations and models represent a 
considerable advantage that mathematics can provide to naturalists: 
they significantly help the imagination to conceive many things, and 
by means of this allow understanding to judge these things and to 
deduce new consequences from them”14. 

1) Use of this mathematics first signifies adoption of a principle of methodology 
that consists of clearly laying out in advance the hypotheses that are at the basis of 
all analysis work. Thus, the conditions that validate the conclusions will be well 
outlined. From this framework, it is then possible to go from a particular case to an 
extension that has a particular degree of generality in accordance with the objective 
that all science pursues as an ideal. 

This is well illustrated, amongst other cases, by the conditions of use of statistics. 
We know that any test of statistical inference (except for non-parametrical methods) is 
based, no matter how robust it is, on probabilistic conditions specified a priori. This 
can be in particular the normal distribution law of the variable being studied or the 
homoscedasticity of the samples collected (homogeneity of variances). It is necessary 
as a preamble to verify the hypotheses that validate the use of an analysis method of  
 
 

                                 
13 Bachelard, S. (1979). Quelques aspects historiques des notions de modèle et de 
justification des modèles. In Élaboration et justification des modèles. Vol. 1. Delattre,  
P. Thellier, M. (eds). Maloine, Paris, 3–19. 
14 Cited in Keller, E.F. (2004). Expliquer la vie. Gallimard, Paris, 94. 
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this kind, a lack of which can lead to entirely opposite conclusions. All teachers 
experience this when faced with the ease of use, sometimes blindly, of “ready-to-use” 
software, which is practical but does not at all have the slightest rigor. 

Amongst the preliminary hypotheses to any mathematical study, the question 
arises of the choice of a reference frame or a system of ad hoc coordinates.  
This fundamental question of analytical geometry is of interest, for example, in 
mechanics in moving from a fixed Galilean reference frame to a reference frame in 
movement. On the other hand, biology appears to take relatively little interest in this 
type of problem, although the latter arises in certain methods that it uses. For example, 
using the principle of all factor analysis, it is necessary to recall that the search for a 
latent structure of a multivaried set of observations of dimension p implies ipso facto a 
change of reference frame, going from a Euclidean reference frame Rp (space for 
observations), first to the orthogonal system of main axes that arises from the method 
(and gives an approximation of it with a dimension m ≤ p), then possibly to a system 
of oblique axes that result from the interpretation of main components (according to 
L.L. Thurstone’s idea of a simple structure developed in his work on quantitative 
psychometry). Another example is the representation of a plant meristem in vector 
analysis (caulinary or root apex) with respect to a system (known as natural) of 
coordinates set out by the topology of the apical dome (parabolic, for example).  
We see that, in these two cases, we are faced with a system known as intrinsic, 
separated in particular from the contingency of measurement units. 

2) In addition to the preliminary hypotheses to be verified, it is worth 
remembering that carrying out an analysis can often require the use of certain 
approximations, for example a development in limited series to a given degree or 
even the linearization of a nonlinear system around a given singular point. It is 
obviously necessary to specify the conditions for validity of these simplifications. 

We have a good example of this with Michaelis–Menten’s model of enzyme 
kinetics in the simple case: 1 enzyme E – 1 binding site on substrate S: 
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Biologists currently refer to this as a base model of substrate dependence, for 
example, in substrate-dependent growth models. In reality, this reference is based on 
the use of a simplified model that results from an approximation of the above 
reactional system, describing all kinetics. 
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This approximation consists of selecting a hypothesis of “quasi-stationarity”, a 
notion that is encountered elsewhere in the analysis of other physical processes. This 
hypothesis states that the intermediate components of a complex reaction are formed 
very rapidly and that their concentration then remains approximately constant. With 
our example, this would be the formation of the enzyme–substrate complex for 
which we state d[ES]/dt = 0. In fact, since we are interested in the very beginning of 
the reaction, we thus only model the initial speed involved in the formation of the 
ES complex according to the well-known hyperbolic function (to saturation), the 
Michaelis–Menten (or Henri–Michaelis–Menten) relation, validated in experiments: 
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In practice, we are therefore led to consider that these kinetics are carried out in 
two different phases. In a transitional phase, there is a rapid formation of the ES 
complex according to a reaction that is supposedly irreversible. A second phase 
follows this where the complex is in a state of equilibrium, summarized as the 
consumption of S and the production of P, and for which we allow this 
approximation of quasi-stationarity. The calculation demonstrates that the 
characteristic time of the transitory phase is completely negligible with respect to the 
characteristic time of the quasi-stationarity phase. In other words, the quantity of 
substrate consumed during the transitory phase is generally very low with respect to 
the initial concentration [S] (t = 0). 

In summary, other than the fact that the formulation is based on the initial speed 
measurements for which the quantity of substrate transformed is negligible, and that 
there is an excess of substrate with respect to the enzyme, the following hypotheses 
have been selected: 

– condition of equilibrium state: we suppose that equilibrium of the formation of 
ES is reached very rapidly and is maintained throughout the duration of the reaction, 
meaning k2 << k– 1 et k1; 

– condition of quasi-stationary state: the speeds of formation and decomposition 
of ES become very weak with respect to the speeds that affect S and P, meaning that 
k2 is no longer negligible with respect to k1 and k– 1. 

3) A related question concerns the structural stability of models (see Chapter 5). 
By “lack of structural stability”, we understand the possibility of qualitative change 
of dynamic following a variation of the value of a parameter. In particular, we  
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recognize the threshold effects that allow us to move, through a minimal change of a 
parameter in a given region of values, from one type of dynamic to another, from 
which an uncertainty can arise, both in the explanation and in the prediction. In fact, 
biomathematicians are steered towards carrying out experimentation on the model 
itself (in silico or “computational” biology). 

4) Other than these considerations of a practical nature, we need to emphasize 
this essential point of accepting that mathematics provides its users with 
fundamental concepts that are likely to direct or renew problematics. In a first 
instance, it is a case of the importance that needs to be attributed, as indicated 
previously, to the existence of singularities during a given process, a valuable 
indication for the human spirit which is always seeking the occurrence of something 
perceptibly discrete or discontinuous within a continuous environment that appears 
to be without form or at least difficult to apprehend (a little like a form with respect 
to the substrate that generates it). This poses the problem of the stability of the 
singularities that are brought to light, leading us to the related notion of an invariant 
as an intrinsic characteristic of a structure or of a process. 

REMARK.– The term “invariant” is used in biology in the particular context of 
morphological invariants (organizational plans of the body) or chemical invariants 
(macromolecules, DNA and RNA, basic metabolic cycles, genetic code). 

In a general manner, we recall alongside J. Monod that “the fundamental strategy 
of sciences in the analysis of phenomena is the discovery of invariants”15. 

Correlatively, we have three connected notions that are completely essential, 
namely the existence of multistationarity, of bifurcation (qualitative change in 
properties) and of attractors. Fundamental in themselves for mathematicians, they 
are also fundamental for biologists in the study of numerous processes. Thus, all 
ontogenesis goes through a series of phases that signify a change of “strategy” with 
respect to the current state of the system or of its environment. For example, in 
higher plants, the sexualization of a caulinary meristem can be viewed as a 
morphogenetic bifurcation. This term bifurcation, with both mathematical and 
biological connotations, is associated with the relatively general idea of an 
epigenetic landscape, a priori with several possibilities. We pick up the principle of 
the notion-metaphor of “chreode”, from the biologist C.H. Waddington, who 
instigated meetings between biologists and mathematicians with a view to setting up 
the foundations of a theoretical biology16. Therefore, there is a “choice”, at a given 
moment and according to the initial state of the system, that will bring a qualitative  
 
                                 
15 Monod, J. (1970). Le Hasard et la nécessité. Le Seuil, Paris, 116. 
16 Waddington, C.H. (ed.) (1968). Towards a Theoretical Biology. Edinburgh University 
Press, Edinburgh. 
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change in behavior, a change determined by the parameters or the variables that the 
mathematician attempted to put into an equation and that the biologist seeks to 
interpret. 

The occurrence of several states of equilibrium signifies the existence of several 
fields that each have their own dynamic properties, an essential question for 
biologists. An example providing a suggestion is the phenomenon of competition 
between several species for which resorting to an appropriate mathematical model 
allows a sort of typology of cases to be obtained where the competition is expressed 
as an exclusion or by a coexistence. When there is predation, it is again a 
mathematical model that can specify the conditions (speed of growth, interactions) 
that do or do not induce a self-maintained oscillatory behavior. With a mathematical 
basis of this kind, optimal control (mathematical optimization) is able to add 
information about the possible intervention by the experimenter to master predation 
or parasitism. 

A well-defined situation is that of a differential formalism jointly involving 
components of reaction and diffusion, and which takes an interest in the  
spatio-temporal evolution of the system, from which we can mathematically deduce 
the existence of singularities and specify their conditions of occurrence. These can 
correspond to localized cellular differentiations, and systems of equations of this 
kind are entirely appropriate for representation of organized processes in time and 
on a given substrate, like those that play a role in morphogenesis. We will give a few 
details of these with A. Turing’s systems generating emerging structures. 

In a very general way, finally, we highlight the importance of the mathematical 
concept of “optimization” for biologists in its use in seeking extremums of a 
function. Pointing out singularities of this kind in the sequence of variations 
exhibited by a given biological process corresponds exactly to this well-known 
observation that “physiology is a problem of minima and maxima”17. 

Thus, for many problems, biologists are invited not to consider mathematics 
under the single aim of a numerical, quantitative description of reality, as if, by 
summarizing a little, it were enough to calculate from an ad hoc formula. It goes 
without saying that this would not be sufficient because, in the long term, biologists 
expect a pertinent representation that can help them understand living things, at  
any scale of observation. Implicit in the above, we can present the following 
hypothesis. 
 

                                 
17 Murray, C.D. (1926). The Physiological Principle of Minimum Work. Proc. Nat. Acad. 
Sci., 12, 207–214. 
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PROPERTY.– For each fundamental mathematical property in the representation of a 
given biological system, there is necessarily a corresponding biological property that 
is also fundamental. 

Mathematics, a guarantor of order and coherence, can be a “revealer” of the 
characteristics of living things in their structure and its functioning. 

These various remarks are capable of explaining and specifying at the same time 
the affirmation by the philosopher E. Kant (1724–1804) that: “in any particular 
theory of nature, there is only as much science as there is mathematics”18. Although 
E. Kant was referring essentially to physics, it is necessary to extend his words to 
biology as the physiologist C. Bernard perceptively already desired far in advance of 
the time when mindsets and methods were ready for this link. Chapter 5 of this book 
illustrates these words with various examples, revealing to us that there can be a 
narrow conjunction between a given mathematical tool and a given observed 
qualitative characteristic. Whilst waiting, we cite here one of these cases, namely the 
distribution of the growth activity within the apical meristem (like a bud in the 
higher plant). Observation under the microscope of the frequency of cell divisions 
and their orientation is found to be transferred by bringing to light specific 
mathematical properties, according to which the direction of mitoses is organized at 
what is known as the principal axes. These axes are mathematical entities 
highlighted by a specific tool that is the “growth tensor”, a tool that goes far beyond 
the first notion of speed. 

It is interesting to note that, as a counterbalance to the fear of naturalists whose 
familiarity with tangible things often makes them skeptical with regard to abstract 
ones, mathematics itself is often the result of a progressive conceptualization that 
contributes to a kind of experimentation. Let us return for an instant to this fact that 
mathematics, motivated by a constant attempt to represent and understand the world, 
is often “the result of a praxis”19. We all have in mind the case of Euclid, who laid 
down the first axiomatic as a foundation for elementary geometry, whose logical 
consistency doubled with its application in the representation of usual physical 
space. However, on the other hand, Greek geometry was also constructed by “a long 
practice of abstraction”. A good example is the calculation of surface areas. 
Provoked by practical requirements, this calculation led to the famous notion of 
quadrature (seeking a square that has the same surface area as a given figure).  
 
 
 
                                 
18 Kant, E. (2017). Premiers Principes métaphysiques de la science de la nature. Vrin, Paris. 
19 Bailly, F., Longo, G. (2008). Situations critiques étendues: la singularité physique du 
vivant. In Déterminismes et complexités, Bourgine, P., Chavalarias, D., Cohen-Boulakia, C. 
(eds). La Découverte, Paris, 58. 
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Before the advent of infinitesimal calculation, this problem was illustrated in 
concrete terms by the search for its solution using a ruler and compass, a technique 
of the work of geometrists that we have already mentioned. Let us go much further 
by reminding ourselves of the irreducible part played by the “perception” of objects 
and of their variation in all mental activity. Perceiving and studying a process means 
recalling that “the most stable physical phenomena at our scale of perception are 
those that have given rise to fundamental notions”20. Let us add that whilst the 
search for an invariant, meaning something stable, constitutes the main objective for 
all analysis, we will need to specify that in its approach or in its vicinity the 
direction of the variations (+ or –) is also an qualitatively essential point (state 
related to derivations of a higher order). It is essential to know what does not change 
during a process, and also the way things that change vary. 

All these considerations are applied by constructing mathematical models. Going 
from an abstract formalization on the basis of well-explained hypotheses to its 
functional implementation through calculation and graphic images is the same as 
allowing certain fundamental properties of the object seen in this way to be brought 
to light. Thus, we aim, in addition to any prediction objectives, not only to describe 
the essential dynamic characteristics, but also to test hypotheses on the underlying 
mechanisms. All this still raises two kinds of questions. An initial problem is the 
identification of parameters. This is something that every modeler known very well, 
in particular when there is multistationarity, because then the dynamic of trajectories 
is determined both by initial conditions and by values assigned to the parameters. On 
the other hand, the relevance of the work is also based on the structural stability of 
the model itself, meaning its relative qualitative independence with regard to a 
minimal change of parameter values. 

Modeling is similar to simulating real life, knowing that there is always a gap or 
a distance between what the model constructs and what the observation offers to us. 
Whether we place ourselves or not in an objective of explanation, we operate what 
we call a “phenomenological reconstruction”. Two examples can be given of this 
with regard to the significance of modeling. Development biology gives us a first 
case which involves plant architecture models21. These lead to quite spectacular 
imagery of the informational construction of a variety of species, from the very 
diverse form of leaves or filaments to the construction of arborescent species. In this 
way, we can follow the progression of plant ontogenesis both as an isolated plant 
and as a population, with the modifications related, for example, to the population 
density. This imagery of plant architectures is founded on discrete algorithms, such  
 

                                 
20 Bruter, C.P. (1996). Comprendre les mathématiques. Éditions Odile Jacob, Paris, 16. 
21 For example, the software GreenLab developed for different situations and species of 
higher plants. 
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as the deterministic language of L-systems or the principle of a probabilistic 
functioning of meristems that generate the formation of new modular units. This 
example of graphic simulation, of which we know various applications, is typical of 
strictly phenomenological modeling. 

The considerations that we have just presented about the role that mathematics 
can play in biology obviously need to be placed in a wider context of scientific 
knowledge in general. Here we bring up an old debate, always marked by strong 
positions about the distance between reality and its mathematization, from Plato and 
his world of Ideas up to L. Wittgenstein and A. Lichnerowicz, the remarkable 
contribution of which was to the way mathematics is taught in secondary education, 
and including the slightly excessive Kantian point of view advocating that this 
discipline can explain everything, something of which B. Pascal was highly 
suspicious. Let us stop here by noting some essential points that biologists and 
mathematicians would be wise to keep in mind in their collaborations, if only due to 
the frequent lack of epistemological culture in the education of students on scientific 
university courses. An overview of the main stages that illustrate the contribution of 
new paradigms or new concepts throughout the history of biology (see Chapter 3) 
will allow the distinction between two very different schools of thinking to emerge 
quite clearly, more or less abruptly but always present. Through this we understand 
what is known as “realism” and “constructivism”. We outline the subject as best we 
can within this book. 

The position known as “realistic” asserts the existence of an independent reality 
of the human mind. The world exists as it is, without a necessary link with the 
representations that we make of it. We talk about an ontological existence of real 
things, independent of the observer. This distinction between perceived reality and, 
let us call it, objective reality dates back to Plato. Thus, mathematical things have 
their own reality and are similar to Plato’s Ideas. This thesis, adopted by many 
mathematicians, is firmly repeated by the theoretical physicist R. Penrose (1997)  
for whom: 

“Each time the mind sees a mathematical idea, it makes contact with 
the Platonic world of ideas […]. When we ‘see’ a mathematical idea, 
our conscience penetrates into this world of ideas and makes direct 
contact with it”. 

This vision is organized around the existence of three different but connected 
worlds: (i) the Platonic world (the essence of mathematics, mathematical beings and 
their laws), (ii) the physical world (tangible reality) and (iii) the mental world 
(analysis and modeling that we carry out and that provide us with “images” of 
perceived reality). The rational explanation that we propose for a given phenomenon  
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or a given tangible object belongs to the Platonic world. Based on this reasoning, J. 
Ricard gives the examples of the trivial notions of communication and organization 
that biology now significantly makes use of at different scales of perception of 
living things. We do indeed see that these fundamental notions can only be 
expressed in logical terms using the idea of probability, where this is coupled with 
entirely abstract axioms22. This is thus a declaration of the degree  
to which the perceived tangible world requires the abstract world to define and 
explain it. 

On the other hand, the position known as “constructivist ” is based on an entirely 
different principle, which states that mathematical things are only idealizations 
proposed by us and pertaining to objects from the perceived world. For M. Planck, 
for example, “the world that surrounds us is in its entirety nothing more than the 
totality of the experiences that we have of it”23. For his part, G. Bachelard asserts: 
“Nothing is self-evident. Nothing is a given. Everything is constructed”24. In reality, 
this name “constructivism” encompasses a variety of attitudes, sometimes 
contradictory. Thus, for H. Poincaré25, “scientific facts are just raw facts expressed 
in a comfortable language”. Referring to this term “comfortable”, with the 
connotation of a practical choice, or by convention, this position is qualified as 
“comfortism” (in French “commodisme”) or “conventionalism”. It demonstrates the 
pragmatic, non-doctrinal nature of H. Poincaré’s reflections. By admitting that 
language and scientific principles are conventional in nature (not totally arbitrary 
and involving no notion of a whim, he specifies26), he shows a point of view, shared 
notably by P. Duhem, that clearly distinguishes him from certain epistemologists, in 
particular from G. Bachelard27. 

                                 
22 Ricard, J. (2008). Pourquoi le tout est plus que la somme de ses parties: pour une 
approche scientifique de l’émergence. Hermann, Paris, 248. 
23 Planck, M. (1963). L’Image du monde dans la physique contemporaine. Éditions Gonthier, 
Paris. 
24 Bachelard, G. (1970). La Formation de l’esprit scientifique. Vrin, Paris. 
25 Poincaré, H. (1911). La Valeur de la science. Flammarion, Paris. 
26 Poincaré, H. (1968). La Science et l’Hypothèse. Flammarion, Paris, 151–153. 
27 G. Bachelard clearly expresses his opposition to H. Poincaré’s conventionalism, saying in 
particular: “When Poincaré demonstrated in the past the logical equivalence of the various 
geometries, he confirmed that Euclid’s geometry would always remain the most comfortable 
and that in the event of conflict of this geometry with physical experience it would always be 
preferable to modify theoretical physics than to change elementary geometry.” (Bachelard, G. 
(1971). Le Nouvel Esprit scientifique. PUF, Paris, 40). But G. Bachelard goes further by 
talking about a “geometric subconscious” whose effect is to “immobilize the perspective of 
intellectual clarity” (p. 41)! A contrario, we know of the arguments presented by H. Poincaré 
on his conception of space: “I am not splitting geometry from experiments. […] experiments 
on solids have just been an occasion that, amongst all the continuous groups for which we 
could have established a geometry, has made us choose the Euclidean group, not as the only 
true one, but as the most comfortable” (Poincaré, H. (1968). La Science et l’Hypothèse. 



34     Biology and Mathematics 

Over and above these epistemological distinctions (which are not at all 
secondary, but that we are not able to look at in further depth here), let us say that 
“objective reality does not consist of the content, but of the structure and the 
relations”. Science cannot reach the things themselves, but simply “the relationships 
between things; outside these relationships, no reality can be known”28. Thus, it is 
up to mathematical laws to express what the human mind considers to be the 
harmony of the world. In one sense, this refers us to Aristotle’s notion of form  
(lato sensu). 

                                 
Flammarion, Paris). This pragmatic side distinguishes him in particular from Riemann, adept 
at a “pure”, abstract geometry, that conveys to him a wider influence. On this subject, let us 
recall that Riemann geometry (introducing the notion of curvature of space) was admitted by 
A. Einstein as a structure of the universe, allowing him to go further than H. Poincaré and to 
establish the theory of general relativity, using tensors as a tool. This geometry is more 
general than Euclidean geometry and encounters the latter as a particular case by cancelation 
of the curvature tensor. Here, we have a typical case of a general formalization that 
encompasses simpler individual formalisms. Away from the essence of this debate, we can 
observe a significant divergence that is psychological in nature. Effectively, H. Poincaré’s 
reflections are not restricted to his outward conventionalism, rebuffed by G. Bachelard, but 
are characterized by a great subtility of mathematics that meant that he embraced various 
aspects or correlates of the question that he had in front of him (e.g. its reference to S. Lie’s 
groups of continuous transformations), a subtlety that does not always appear to be well 
understood. Therefore, we observe that H. Poincaré’s position is indicated by a relatively 
uncommon flexibility, that it is interesting to encounter again in C. Bernard concerning 
vitalism, a concept that the latter rejects as such, whilst recognizing the relevance of some of 
its aspects (refer to section 1.1.1). Refer to the article by Michel, A. (2004). Poincaré et la 
théorie de la connaissance. Philosophiques, 31(1), 89–114. 
28 Poincaré, H. (1968). La Science et l’Hypothèse. Flammarion, Paris, 25. 
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Some Historical Reference Points:  
Biology Fashioned by Mathematics 

This chapter aims to give details about a certain number of founding references 
that laid down the basic principles that have renewed and enriched the quantitative 
approaches to the study of life. Concerning this term – a “quantitative” approach – 
we note in passing the diversity of the terminology. The term “biomathematics” 
automatically succeeds the former name, sometimes a little vague, of “quantitative 
biology”1. However, the term “biometrics”, although from the same etymology, is 
confined by its use to probabilistic and statistical approaches only. 

An initial insight into the place of mathematics in biology is provided in the 
notion of symmetry. We mention this briefly. In fact, the idea of symmetry took root 
in biology very early on, associated with the prevalence of certain numbers that are 
frequently encountered in the description of a morphology, considered here from a 
static point of view, and specifically in the case of plants. Other than the highly 
remarkable case of phyllotaxis (or phyllotaxy), which we will return to later on (with 
its dynamic aspects), the diagnosis and classical classification of species have 
always used characters of morphological symmetry. Thus, the arrangement of 
branching on a plant axis (alternate, opposite, whorled arrangements depending on 
the number 1, 2 or n of lateral appendices in each node) is a basic characteristic that 
participates in the facies and the habit of plants, with significant physiological 
implications (perception of photosynthetic radiation). We can also recall the interest 
attached to the floral diagram or projection onto a plane of the various floral parts 
that constitute this kind of symmetry, which we express with the floral formula 
(number and geometrical arrangement of the various floral whorls). The first 
rudiments of plant morphology indicate in this way various elementary types of 

                                 
1 For example, the well-known Cold Spring Harbor Symposia on Quantitative Biology, held 
annually in the United States since 1933. 
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floral system, radial (actinomorphy) or bilateral (zygomorphy), and the prevalence 
of symmetries of order 3 (monocotyledons) and of order 5 (dicotyledons), with their 
variations in terms of multiplication of the number of whorls or in their movement. 
For example, the type 3 that becomes 2 × 3 = 6 for certain families (iridacaes, 
liliaceaes) or the coexistence of type 4 (sepals and petals) and of type 6 (stamens) 
(cruciferae). In addition, a polarity is added to this, of which the importance in 
animal embryogenesis is known, as well as in all plant ontogenesis where, from the 
time of germination, the development is determined by the two opposite poles, 
racinary and caulinary, or even the apical growth of mycelial or algal filaments. 

Let us round off these preliminary remarks by stating the importance of 
symmetry at a molecular level (question studied mathematically), in particular the 
chirality of certain biological molecules with two enantiomeric forms (symmetrical 
figures, but which cannot be superimposed, like the image given by a mirror). For 
example, the forms d and l (differentiated by their optical activity in polarized light, 
known as dextrogyre or levogyre) amino acids or certain sugars (“oses” – glucose, 
fructose, galactose, lactose, maltose). In their natural state, these molecules are 
always of a particular type, such as natural amino acids that are of type l, with a few 
rare exceptions. Better still, the physiological function can be conditioned in certain 
cases by the type of symmetry, where only one of the forms can be assimilated and 
ensure a normal metabolism, and where the other can turn out to be inactive or even 
pathological. 

We will begin by detailing two essential stages that have had an effect on the 
type of mathematical formalism, respectively the continuous formalism dating back 
to Antiquity, then the discrete formalism from the Middle Ages, two approaches that 
still remain in competition today. Then, with the advent of “classical science”, we 
will observe the emergence during the Renaissance period of the notion of a law, 
precursor of a mathematical model. We will then review some key points that 
punctuated the progressive development of connections between biology and 
mathematics from the 19th Century onwards, up to the constitution of what is known 
today as the methodological corpus of biomathematics. At that point, we will no 
longer follow a strictly historical order due to the sometimes highly interconnected 
nature of the key points. We will instead seek to highlight how the different types of 
approaches can be opposed or mutually enriching. 

This presentation aims to underline the essential points that are in our view the 
most pertinent in order to position the development of biology that we could 
describe as “formalized”, remembering that this term means the revelation of 
suitably “mathematized” properties or relationships. The psychological and/or 
sociological aspects and constraints that relate to the success or the fecundity of  
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some of these ideas will therefore be set to one side, since some of these do not yet 
have a place in reviews of the “state of the art” of biomathematical modeling. 
Similarly, certain epistemological points will often only be evoked, underlying in 
particular the use of the terms “theory” or “axiomatic”, terms for which justification 
is ongoing in biology2. 

3.1. The first remarkable steps in biomathematics 

3.1.1. On the continuous in biology 

Aristotle, by basing his representation of the world not on numbers but instead 
on the continuous, stands out from his predecessors such as Pythagoras and Plato3. 
This is because Aristotle’s “Physics” (in the sense of “natural sciences”) emphasizes 
the notion of change, deemed essential. In particular, all living things are subject to 
“transformations” (= Greek “metabolê”), whether they are processes of growth, 
decline, alteration or generation. The importance of this idea continues to be 
emphasized, taken up again, for example, currently by F. Jacob, underlining that “an 
organism is never just a transition, a stage between what was and what will be”4. 

Concerning this pre-eminence attributed to change, we can observe in passing 
that Aristotle’s thinking is both closely aligned and contradictory to that of his 
predecessor Heraclitus. For the latter, the dominant factor (at least for our subject 
matter) is the existence of a “continuous flow” in the Universe, according to some of 
his expressions that have become famous, like “the sun is new each day”, “no man 
ever steps in the same river twice”. The importance of this general flow is so great 
that fundamentally, there is precedence of the movement on Beings. Aristotle does 
not do this, but instead maintains their duality under the form that we will see later  
 

                                 
2 For example, the presentation of the history and epistemology of these issues in the enquiry 
carried out by F. Varenne (Varenne, F. (2010). Formaliser le vivant: lois, théories, modèles ?. 
Hermann, Paris) can be consulted. 
3 Concerning “Platonic biology”, we will only mention here the essential points that have 
some relation to our study, as a reminder: (i) the concept of a living thing as the association of 
a body (made up of the four elements, earth, water, air and fire) and an immortal soul, which 
moves from body to body (metempsychosis), in other words, with a finalistic objective;  
(ii) the association of life and movement (only the soul undergoes a circular movement known 
as a “circuit”). While for Plato, nature itself as a whole is seen as a living thing, no reference 
seems to be made to plants. Moreover, his famous allegory of the cave is a general interpretation 
of the knowledge of the perceptive world: the only part of the outside world that the man 
chained up in a cave opposite the light outside can see is the shadows projected onto the wall, 
meaning he is without access to the exact nature of things. Concerning Plato’s thinking 
postulating the existence of a world of ideas, see Chapter 2. 
4 Jacob, F. (1970). La Logique du vivant. Gallimard, Paris, 10. 
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on. However, Heracliteus’ reflections are in agreement with Aristotle when he also 
asserts: “All things that are in opposition cooperate. […] All things come into being 
by opposition”. 

Aristotle’s position is entirely fundamental, as pointed out by, for example, both 
the mathematician R. Thom (Esquisse d’une sémiophysique, 1988) and the doctor 
and philosopher G. Canguilhem. We know how much Thom insisted on the 
continuous nature of the phenomena and set himself the objective of “tracing 
apparent discontinuities back to the manifestation of a slow, underlying evolution”5. 

We know that Aristotle was very interested in biology, dedicating several books 
to it such as History of Animals, Parts of Animals and Generation of Animals. His 
point of view on this subject is entirely remarkable, since it is associated with 
detailed research into a variety of living organisms (except plants, however) by 
means of fine dissection6 to discover their structure, accompanied by philosophical 
developments of his thoughts relating to various fields (e.g. his concept of the 
principle of causality). For the subject we have in hand, we can recall one of the 
principal characteristics of his “method” that he explains in the following way: “I 
want to talk about the question of knowing whether each being needs to be 
considered separately and defined in isolation, […] by looking at them individually, 
or whether it is firstly necessary to carry out general research into the characteristics 
that are common to all of these animals”. Let us consider this a premise of the  
19th-Century definition of biology, when, having gone beyond the description/ 
classification stage, the study of the two aspects, namely the unity and the diversity 
of living things, were assigned to it as a fundamental characteristic. 

In his famous treaty On the Soul, he lays out his definition of life as the 
autonomous accomplishment of a particular potential that maintains conformity of 
its main themes. This notion of autonomy highlighted in this way is explained with 
its theory of hylomorphism which postulates that every being arises from two 
principles: (i) matter (hyle = wood in the sense of a construction material); and  
(ii) form (morphe = figure). 

Matter is simply the substrate of form that is in the process of being acquired, 
which means that the dynamic of the act of growth conserves form (meaning the 
formational principle) and not matter. The distinction between the act accomplished 
and the remaining potential is added to this basic duality, i.e. between the current 
state (what has been carried out) and the distance with respect to a characteristic  
 
 
                                 
5 Thom, R. (1991). Prédire n’est pas expliquer. Eshel, Paris, 62 sq. 
6 We can recall, for example, that his name remains associated with the anatomical structure 
known as “Aristotle’s lantern” (masticatory apparatus of a sea urchin). 
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limit value (that which remains to be acquired). Aristotle therefore postulates the 
existence of an ago-antagonistic couple as a dynamic principle: “existence in the 
act” (entelechy) and “existence in power”. The importance of this couple was later 
resumed in the constitution of the foundation for certain mathematical models, in 
particular the well-known logistic law of growth. 

It was not possible for Aristotle to represent these concepts as equations, if only 
due to the state of advancement of mathematics in his era, which was governed by a 
metrical concept of space using Euclidean geometry. Yet, for Aristotle, a biological 
form cannot be reduced to a geometrical form since life means change, something 
that we express today by stating that “life is a process”. In fact, regulation functions 
have demonstrated to us since the time of C. Bernard that what matters is not so 
much the distances between the parties as their relationships. Canguilhem 
summarizes this point of view with these emblematic words: “The whole is at all 
times present in each part”7. 

REMARK.– This dualistic idea is an underlying basis for the mechanical concept of 
movement as defined by Aristotle. For example, he divides the trajectory of a 
projectile into two distinct parts, outlining the existence of a transition, a 
characteristic change from one to the other. We know that this interpretation was 
rejected by Galileo, who postulated the existence of two forces, one due to the initial 
launch and the other one due to the earth’s gravitational force. This results in the 
famous parabolic trajectory of falling bodies. 

3.1.2. On the discrete in biology 

Well before the introduction of the notion of a determinant (Cardan, 16th 
Century) and the development of matrix calculation in the 19th Century, the 
principle of discrete formalism appeared in Medieval times with L. Fibonacci (also 
known as Leonardo of Pisa) (1175–c.1250). His book Liber Abaci (“The Book of 
Calculation” or “The Book of the Abacus”, 1202) contains the famous series of 
numbers known as the “Fibonacci sequence” which is specifically presented for the 
description of biological growth in numbers. 

The Fibonacci sequence is defined by the following recurrence: every element is 
the sum of its two immediate predecessors: 

1 2− −= +n n nu u u  

 

                                 
7 Canguilhem, G. (1983). Études d’histoire et de philosophie des sciences. Vrin, Paris, 362–364. 
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which produces: 1, 1, 2, 3, 5, 8, 13, 21, 34… 

The “growth rate” estimated by the relationship between two consecutive 
numbers has the remarkable property of converging towards the famous golden ratio 
(divina proportione): 

( )1 / 1 5 / 2 1.618n nu n Φ+ → = + ≈
 

where this golden ratio is the solution to the equation x2 – x – 1 = 0 whose two roots 
are (1 ±√5)/2. 

In its operational form (Binet equation, 1843), we have: 

(1 / )

5 5

n n

nu
Φ Φ= +

 

Geometrically, the divina proportione corresponds to the ratio that characterizes 
the segment below: 

 

/ ( ) /a a b b a+ =  

in other words, the relationship of a part to the whole reproduces the relationship of 
the parts between themselves. 

This recurring equation is of interest to biology. Moreover, it was originally 
presented as a description of the growth of a population of rabbits, as shown in 
Figure 3.1. We point out that this outline representation uses a unit made up of the 
parent couple, based on strong hypotheses (maturing time, fecundity, ratio of sexes). 
This, of course, puts the biological scope of this representation into perspective, 
without losing sight of the use of the Fibonacci sequence for the description of 
various phenomena. 

The principle of this recurrence was then generalized as follows: 

;t t m t nn n n m n− −= + ≠
 

More recent and more detailed applications followed, such as the number of cells 
in filamentous organisms (algae, for example), where m and n are the lifetimes 
(maturing) of the two daughter cells of any mitosis. 

a b 
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Figure 3.1. Fibonacci sequence applied to the progeny of a couple of rabbits8 

Associated with this number ,Φ  we define the golden angle: 

2 / 137.5π Φ   

a classic reference measure in phyllotaxis that we will examine in Chapter 5. The 
geometrical properties of the golden ratio are well known. We cite, for example,  
the “golden spiral”, designated as such due to its construction using the geometry of 
golden rectangles (rectangles whose sides produce a ratio equal to )Φ  (Figure 3.2). 

Corresponding to an exponential based on the golden ratio, this is simply a particular 
case in the family of logarithmic spirals9. Here, we are interested in specifying  
the ratio that can exist between the golden ratio and the mathematized representation 
of certain biological forms that feature it. This question calls for the following 
remarks. 

                                 
8 Source: diagram published on the website: http://images.math.cnrs.fr. 
9 The golden spiral is generally defined by the polar equation r = aΦ2θ/π. 
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Figure 3.2. Golden spiral constructed from tangential quarter circles in a series  
of squares which are themselves placed in a series of golden rectangles.  

The numbers (surface areas) correspond to the Fibonacci sequence 

Indeed, we are well aware of the renown of the golden ratio that we have 
observed to be present in various morphologies, whether in artistic, architectural or 
pictorial constructions (shown in particular by the writer and Romanian art critic  
M. Ghyka, 1931) or various natural structures, animals or vegetables. Although 
certain authors such as J.-P. Delahaye have criticized the enthusiasm, deeming it as 
disproportionate and that, in their view, plays a role in establishing a kind of myth 
associated with the golden ratio; focus is transferred very naturally to certain 
remarkable occurrences that it is difficult to describe as pure chance. The biochemist 
J. Yon-Kahn, among others, points this out concerning the geometric configuration 
of certain forms of DNA. Figure 3.3 shows measurements close to the golden ratio 
1.61810 for B-form DNA (which is the most common DNA). 

Returning to our field, let us say that it is appropriate to differentiate, among 
natural structures that appear to develop in the form of a logarithmic spiral, between 
those that correspond to the construction shown in Figure 3.2, the case known as the 
golden spiral which is a particular case of logarithmic spirals. Analogous spirals can 
indeed result from the generic equation r = a exp(mθ), i.e. without referring to 

(1 5) / 2 1.618Φ = +  . This is observed, for example, in certain systematic 

measurements that use museum collections containing many samples of Nautilus 
pompilius11 mollusk shells. This data shows that the exponential argument is of the 
order of 1.3, therefore quite far from the golden ratio 1.618. While the conclusion  
drawn from this type of reading thus points out the inadequacy of the golden ratio as  
a basis for a logarithmic spiral equation, it does not by any means disprove the 

                                 
10 Yon-Kahn, J. (2010). Rencontre de la science et de l’art. L’architecture moléculaire du 
vivant. EDP Sciences, Les Ulis. 
11 Falbo, C. (2005). The Golden Ratio – a Contrary Viewpoint. College Math. J., 36, 123–134. 
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principle of ontogenetic deployment of a spiral curve from this family (see Figure 
3.6). A contrario, the real presence of the golden ratio deduced from the Fibonacci 
sequence is clearly testified to by recent studies on phyllotaxis in plants (this point 
will be detailed at the beginning of Chapter 5). We consider that the subject will 
continue to arouse interest from morphologists and mathematicians. 

 

Figure 3.3. The golden ratio and the structure of  
B-form DNA (A + B)/A = 1.60; A/B = 1.5412 

3.1.3. The notion of laws in biology 

The beginning of the classical era is marked by the formulation of various 
macroscopic physical laws such as the laws of falling bodies (by Galileo in 1602), 
the movement of the planets (by Kepler in 1609 and 1618), optical refraction (by 
Snell–Descartes in 1637), and even gas pressure (by Boyle–Mariotte in 1662 and 
1676), all of which are laws that are today learnt in secondary education as a 
foundation, and which illustrate the application of mathematics in natural sciences. 

In biology, nothing like this was yet in place. However, in the Renaissance, the 
morphology of living things began to take shape as the subject of specific 
quantitative research that was admissible as empirical laws, such as the various 
research works and famous sketches by Leonardo da Vinci (1452–1519). Among the 
different morphometric questions that he was interested in, we cite the remarkable 
example of his law of branching in plants. The aim of this law is to numerically 
express the relationship between the radiuses of branches of successive order, i.e. 
the case of a bifurcation at node i of a stem: 

                                 
12 Yon-Kahn, J. (2010) (see Chapter 3, footnote no. 9), according to Harel, R. et al. (1986). 
Beauty is in the genes of the beholder. TIBS, 11(4), 155–156. 
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2 2 2
1,1 1, 2i i ir r r+ += +

 

This simple statistical relationship does not take into account the branching 
angles, nor especially the mechanical aspects of volumetric flows and viscosity13. It 
was revised and corrected by the law established by C.D. Murray (1926): 

3 3 3
1,1 1, 2i i ir r r+ += +

 

We know of various applications of this, mainly on the facies of plant branching 
and in the arborization of blood vessels. 

In Chapter 4, we will return to the notion of a law in biology, in addition to the 
notion of a model. 

3.1.4. The beginning of classical science: Descartes and Pascal  

We are aware of the often-repeated words of Galileo (1564–1642) asserting that 
the “grand book [of mathematics is] written in the language of mathematics”, in 
such a way that without knowledge of this language “it is humanly impossible to 
understand a single word of it”14. But at that time, it was only a question of physical 
objects and phenomena. Living things were not yet seen by the light of their possible 
relationships with mathematics. R. Descartes (1506–1650) himself hardly dedicated 
any time to biology, apart from his concept of “animal-machines”, an idea revised 
and spread later by J.O. de La Mettrie (1709–1751) with L’Homme Machine (1748). 
In reality, de La Mettrie distanced himself from Descartes, the latter considering that 
humans are made up of a body and a soul. 

In relation to this era, which was a major historical turning point, it must be 
stated that the point of view of Descartes is more often remembered (described as 
analytical and reductionist) than that, entirely different, of his contemporary  
B. Pascal. It is also useful to mention, on the contrary, the very important words of 
the latter, clearly systemic in it inspiration. 

                                 
13 On the subject of the branching angles, we sometimes cite this type of law that Leonardo 
da Vinci is believed to have predicted: “the smaller the diameter of the branch, the further it is 
from the trunk with an angle close to 90°” (according to Blaise, F. (1991). Simulation du 
parallélisme dans la croissance des plantes et applications. PhD thesis, University of 
Strasbourg, quoted in Varenne, F., op. cit., p. 108). This leaves doubts concerning the  
well-known plant facies known as plagiotropy (obliqueness of a branch close to the horizontal, 
variable depending on the species and the stage of development). 
14 Galileo, G. (1623). The Assayer. Translated by Stillman Drake [Online]. Available at: 
https://web.stanford.edu/~jsabol/certainty/readings/Galileo-Assayer.pdf. 
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PROPERTY.– “Since all things have causes and cause in turn, are helped and help in 
turn, are mediate and immediate, and since all things maintain each other by a 
natural and imperceptive connection that connects the furthest away and the most 
dissimilar, I consider it impossible to understand the parts without understanding the 
whole, nor can I understand the whole without understanding the parts separately” 
(Sellier 1976, p. 132). 

These lines foretell in spirit the basic principle of what is known today as 
“systemic biology”. But, in fact, this was the point of view held by Descartes, who 
dominated and for a long time influenced all scientific methodology with his 
concept of direct unidirectional causality that results from his desire to divide the 
whole into elementary parts that are more easily accessible. 

3.1.5. Buffon and hesitations relating to the utility of mathematics in 
biology 

A recurring subject, G.-L. Buffon (1707–1788), provides a good illustration of 
this. The case is indeed remarkable and deserves some discussion due to his 
paradoxical point of view about the relationships between biology and mathematics. 

The author of the monumental Natural History15, Buffon takes an interest in a 
wide variety of subjects, such as the formation of the planets or the propagation of 
heat. For the latter, for example, he carried out tests on the speed of cooling of 
different sizes of iron balls in his smithy in Montbard, noting the ratio between the 
diameter and the time taken for cooling. However, before dedicating himself to his 
principal work as a naturalist, particularly in zoology, his primary center of interest 
was mathematics. Thus, he took on the translation of Method of Fluxions by  
I. Newton (1740), the origin of infinitesimal calculation16. He set up ongoing relations 
with certain mathematicians, like the correspondence that he engaged in with the 
Swiss G. Cramer17 or the support he found in the academic A.C. Clairaut. He also 
translated the Statical Essays by S. Hales (1735), which focused particularly on the 
speed of growth of stems and leaves. On this subject of biomathematics, he wrote a 
dissertation on the number and thickness of ligneous layers (rings) (1737), and about 
the mechanical resistance of wood. 

                                 
15 36 volumes released during his lifetime from 1749 to 1789, supplemented by eight 
volumes released after his death by B.G. de Lacépède. 
16 Fluxion: derivative with respect to time, denoted .x  
17 On the subject of the “St. Petersburg paradox” (mathematical expectation vs. behavior of 
the player that restricts their participations in the game), a question of probability was debated 
by N. Bernoulli and G. Cramer during their era. Buffon talks about a degree of “physical 
certainty” (probability) as opposed to the “moral certainty” that determines the player’s 
decision. 
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We know above all about Buffon’s interest in the calculation of probabilities 
regarding the “game of franc-carreau” (fair-square game) and more particularly the 
associated problem known as “Buffon’s needle”. He enjoyed the support of the 
mathematician Clairaut who was a reviewer when his Mémoire sur le jeu du Franc 
Carreau was presented to the Academy of Science. Written in 1733, this report was 
not published until 1777 in his Essays on Moral Arithmetic. 

The game of franc-carreau (fair-square) consists of throwing a coin onto a tiled 
floor, and looking at the place where it falls. The throw produces a win if the coin 
falls onto a tile without touching its edges (we mean “a true square”). The originality 
of Buffon was to consider this probability problem by relying on infinitesimal 
calculation. 

Buffon’s needle problem (Figure 3.4) considers a similar question with a needle 
thrown onto a wooden floor made up of wood strips of equal width l: what is the 
probability that a needle of length a falls onto a crack in the wooden floor? Buffon 
provided a theoretical expression for this: 

2 /p a bπ=  

 

Figure 3.4. Buffon’s needle problem 

The result of a series of throws provides us with an estimate of the number π. We 
note the experimental validation given to this by M. Wolf in Zurich in 1850. He 
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obtained 2,532 intersections for 5,000 tests (l = 45 mm; a = 36 mm), providing the 
estimate π = 3.1596 (very slow convergence). 

3.1.5.1. On Buffon’s epistemological position 

Two things can explain the point of view of Buffon with regard to the possibility 
of a productive connection between biology and mathematics, between what can be 
observed and what is abstract and could describe the former. Thus, in terms of the 
calculation of probabilities, Buffon considers that the statement that the instance of 
winning a game can only increase with the number of attempted matches is in fact 
not realistic in practice. Faced with the theoretical concept of mathematical 
probability, he sees the requirement to introduce the idea of a principle of utility. We 
can see this association of mathematics and psychology as distantly related to the 
current theory of games, which is based on the idea of strategy. Moreover, Buffon 
mentions analogy a lot more than causality. We see that it was not possible for this 
point of view to favor pursual of what could be a deterministic law of nature in 
biology, which would be distinct from simple statistical laws of occurrence. 

The case of Buffon is an exemplary illustration of what was (and sometimes 
remains) the school of thought of naturalists and experimenters. This is because, 
despite his confirmed enthusiasm for mathematics, Buffon still wonders about the 
existence of ambiguities in the relationships between this and biology. Better still, he 
points out that applications of mathematics to natural objects that are too 
complicated can lead to errors. The reason for this, he says, is that we are led to 
“remove most of the qualities from the subject, to make it into an abstract being that 
no longer resembles the real being”. In summary, “the most delicate point and the 
most important […] is to know how to distinguish correctly what is real in a subject, 
from what we put it in that is arbitrary […], to clearly recognize the properties that 
belong to it and those that we attribute to it” (Buffon 2017). This suspicion goes a 
lot further than his reflections about the calculation of probabilities in practicing a 
game. It leads him to the conclusion that we cannot consider mathematics as 
something that can make a useful contribution to the description of living things. 

With extremely modest results, the relationship that Buffon maintained with 
mathematics has nevertheless left a lasting effect. Having been the first to be closely 
interested in a question of geometric probability, his work on the needle problem is 
not just a diversion. Indeed, he pronounces the application of calculation of 
probabilities to the study of geometrical figures, therefore gaining the interest of 
certain sectors of biology, such as morphometry of cellular structures. This is 
demonstrated by the international colloquium held in Paris in 1977 for the 
bicentenary of the release of his Essays on Moral Arithmetic, and entitled 
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Geometrical Probability and Biological Structures: Buffon’s 200th Anniversary18. 
We note among the work presented, applications of the methods of mathematical 
morphology to solid biological problems, both in cytology (structure of the 
chromatin) and in histology (tessellation or cellular paving). 

Concerning the hesitations surrounding the legitimacy of the use of mathematics 
in biology, we know they still exist, if only due to our lack of knowledge of the 
issue. We have an example of this with the botanist L. Plantefol, who proposed in 
1946 an explanation of the “phyllotaxy” (ordered arrangement of successive leaves 
along a stem) and refused to acknowledge the advantage presented by a 
mathematical description of the observations (see Chapter 5). 

Consequently, in the 19th Century, the biology-mathematics connection began to 
take shape, far removed from Buffon’s apprehension. Without associating ourselves 
with a strict historical order due to the interconnection of so many essential stages, 
we are going to instead consider some of the remarkable points in this development 
according to the type of phenomena in question (from demographics to genetics, and 
from morphogenesis to physiology) and depending on the imbrication of 
approaches. 

3.2. Some pertinent contributions from mathematics in the modern era 

3.2.1. The laws of growth 

The first formulations of the growth of populations came to light in the 18th 
Century with L. Euler (1707–1783) who, with this in mind, noted the interest 
presented by the exponential function (or geometrical): 

0/ ; ; exp( )dx dt r x r Cte x x r t= = =  

as a law of growth defined by the constant nature of the specific speed of growth: 

(1 / ) /x dx dt Cte=  

For the economist and demographer T. Malthus (1766–1834), whose name is 
often associated with this formulation, this law of numbers in a geometrical 
progression is in balance with the arithmetical progression of resources, but a  
 
 
                                 
18 Miles, R.E., Serra, J. (eds) (1978). Geometrical Probability and Biological Structures: 
Buffon’s 200th Anniversary. Springer, Berlin. This contains an extract from Buffon’s essay. 
See the communication by J. Roger, Buffon and Mathematics, 29–35. 
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general law that combines these two components is, however, not established.  
This was, however, already proposed in 1725 by the mathematician A. de Moivre 
based on the principle of a “force of mortality”, which he presumed to be 
proportional to the remaining number of years, where this limit was then fixed  
a priori. 

The first function of growth duly explained and validated was established in 
answer to a practical objective of a forecast of the production of wood. This is the 
law of Hossfeld (1822): 

1
1 1

m
mdx x

C x
dt K

+
−  = − 

   

always used in forestry, as such or with a few variations. 

In the continuation of this demographic, the classic Gompertz (1825) and 
Verhulst or “logistics” (1838) functions were put forward in the same era, under the 
general name of “growth laws”, and are both defined by a differential equation that 
expresses the variation of the specific speed or growth rate μ: 

– logistics law: 
1

1 ; 1
dx x dx x

a x a
dt K x dt K

μ   = − = = −   
   

 (linear decline of μ 

with the variable x); 

– Gompertz law: 
1 d

a
dt

μ
μ

= −  (exponential decline of μ over time). 

3.2.2. Formal genetics 

Research into the distribution of characteristics within a population constitutes 
one of the rare examples where biology has true and specific laws that can be 
compared to the macroscopic laws of physics mentioned previously. These laws 
involve, in different forms, either the progeny of controlled experimental 
hybridizations or the evolution of a natural population that is subject to random 
crossings. In addition, formal genetics involves both the distribution of discrete or 
qualitative characteristics (such as a type of color) and continuous or quantitative 
variables (such as a dimension).  

Let us briefly give an insight into the corresponding methodologies. 
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3.2.2.1. Mendel’s laws 

Mendel’s laws (1822–1862) on the segregation of characteristics in the 
descendants from a hybridization between two homozygotic parents founded formal 
genetics. Published in 1865, they were completely forgotten before being 
rediscovered in 1900, simultaneously by three botanists, the Dutchman H. de Vries, 
the German C. Correns and the Austrian E. von Tschermak. 

G. Mendel first notes in his first law the uniformity for F1 descendants (first 
generation after hybridization). His second law then specifies the genetic 
composition of F2 descendants (second generation) on the basis of certain specific 
hypotheses (see following paragraph). He therefore gives the following proportions: 
(3,1) for monohybridism and (9,3,3,1) for dihybridism. 

The hypotheses made by Mendel are: 

– all characteristics are specified by the existence of hypothetical entities (future 
genes), transmissible as such in the descendants19; 

– these entities or genetic determinants are presented in two forms: dominant/ 
recessive; 

– independence of characteristics is respected. 

Of course, the choice of plant species was decisive in reaching the formulation of 
these laws. For this, in his Czech monastery in Brno, Mendel had a garden in which 
he proceeded to carry out multiple experiments. Following several series of 
empirical tests carried out in advance, he chose the pea Pisum sativum as the subject 
for his experiments, rejecting other species such as Hieracium. The latter species in 
fact undergoes apomixis, with non-sexual reproduction from diploid cells of the 
ovum and not for gametes and which therefore encourages maternal heredity. 

On the contrary, Mendel worked on the segregation of independent 
characteristics. He could not have known, in his era, that the characteristics observed 
in peas themselves (smooth tegument (pea rich in starch)/wrinkled (sweet pea); 
yellow/green in color) were determined by the genes located on different 
chromosomes. 

It remains that the empirical choice he made correctly underlines this general 
fact that all laws are relative to a certain field of application that sets out the limits of 
its validity. 

                                 
19 The term “gene” was proposed by the Danish botanist W. Johannsen in 1909, by 
contraction of pangene used by de Vries, and as a replacement for various other names. 
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From an epistemological point of view, the situation is summarized well by  
E. Mayr: 

“Mendel used the hypothetico-deductive method. When we see how 
he has programmed all his experiences, how he has explained his 
method and how he has chosen his materials, it is difficult to stop 
ourselves from thinking that he already had a pre-determined theory in 
mind, and that his experiences aimed in fact to test it out”20. 

3.2.2.2. The genetics of populations 

In contrast to Mendel who was interested in the descendants of controlled 
hybridizations, and a little after the rediscovery of his laws, another formalism took 
root in the context of the genetics of populations. Its objective is the study of the 
distribution of genotypes within a natural population that is not subject to a 
constraint of self-fertilization. In 1908, the Hardy–Weinberg law was put forward 
jointly by a mathematician (Hardy) and a biologist (Weinberg). It involves a 
panmictic population, meaning one that responds to the following hypotheses: high 
numbers, random crosses, absence of any selection, migration and mutation. For two 
alleles A/a, of probability p and q (of which none are unfavorable), the distribution 
of frequencies of the genotypes formed at the zygote stage {AA, Aa, aa} is: 

{ }2 2,2 , ; 1p p q q p q+ =
 

This law results quite simply from the random meeting of gametes according to 
Mendel’s diagram on the “chessboard of gametes”. In principle, of course, it can 
apply later to individuals that carry these genotypes only by taking account of any 
differences that there may be in their survival and fecundity. Despite the strong 
hypotheses of panmixia, we observe that this theoretical distribution is often quite 
well verified in reality. It constitutes a structure of stable equilibrium, reached more 
or less rapidly. 

Like those of Mendel, this law is a pioneering work. It was not before the 1920s 
that genetics of populations developed from the work of R. Fisher, J.B.S. Haldane 
and S. Wright. In this context, Fisher emitted what is sometimes pompously known 
as the “fundamental theorem of natural selection”. 

This “theorem” related to the variable known as the “selective” or “adaptative 
value” (fitness), referring to which he stated that the rate of increase in fitness of any 
organism at any time is equal to its genetic variance in fitness at that time. Let us 
take note that only the “additive variance” is taken into account (additivity of the 

                                 
20 Mayr, E. (1989). Histoire de la biologie. Fayard, Paris, 659. 
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action of the different alleles) according to the standard model of decomposition of 
the genotypical variance21. On the contrary, the selective value of a genotype is 
equal, to the nearest coefficient, to the probability of survival of individuals that 
carry this genotype from their conception until they reach a reproductive age. In 
summary, we can say that this variable, rather than being a basic concept, is a 
calculation method that measures the propensity of a genotype to maintain itself in 
the population, i.e. the probability of an event occurring. 

From an epistemological point of view, it is interesting to point out that 
Mendelian genetics on the descendants of controlled hybridizations, and on the 
distribution of characteristics in natural populations, both developed through the 
manipulation of an abstract entity, a gene, without consideration of its physical 
nature. It was only much later on that the latter was the subject of specific research 
using molecular biology and beginning with the discovery of the structure of DNA 
in 1953. 

In reality, the very term “gene” is no longer a synonym of a segment of DNA (a 
locus) that is believed to be operational for a given function. It now designates only 
part of the functional genetic unit of transcription that is known as an “operon”. The 
classic example is that of the lactose operon, genetic determinant of the metabolism 
of lactose (seen in the bacteria Escherichia coli, Jacob and Monod, 1961). The 
lactose operon effectively includes the following “genetic elements”: three structure 
genes, two control sites (promoter and operator) and one regulatory gene. Let us add 
the specific case of “transposons” or “jumping genes” (mobile segments of DNA 
that can move on the chromosome). Another type of gene is “homeotic genes”. This 
term designates a DNA sequence whose mutation causes an anomaly in the 
embryonic development with the formation of an organ in an abnormal position (e.g. 
in insects, appearance of legs in place of antenna, or, in plants, the formation of 
petals in place of stamen). For a given species, all homeotic genes have the same 
nucleotide sequence (referred to as homeobox). 

3.2.2.3. Quantitative genetics 

Another field of formal genetics relates to continuously varying characteristics or 
characteristics known as quantitative (such as the size of an organism). This is the 
subject of quantitative genetics which thus concerns multifactorial characteristics 
for which, due to this multiple determinism, Mendel’s laws cannot apply. In reality, 
Mendel’s vision also referred to these quantitative characteristics that he studied in 
particular in the flower color of the Spanish bean Phaseolus multiflorus (= Ph. 
coccineus), of which the heredity did indeed show that it was a continuously varying 

                                 
21 Concerning this conclusion of an average selective value that diminishes as the selection 
goes on, see the comment made by the geneticist A. Jacquard (1977). Concepts en génétique 
des populations. Masson, Paris, 101–107. 
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characteristic that he could not divide up into a given series of shades of colors in 
the way that he could with two-state characteristics studied in Pisum. However, 
without resorting systematically to probabilistic considerations, he could not 
quantify what could have been the analogy of his segregation laws for discrete 
characteristics. 

The principle of quantitative genetics is based on the distinction between several 
types of variances in the distribution of a characteristic. He aims to relate the 
variance of the observations, known as “phenotypic variance P”, to his two 
components that may explain it – the variance known as “genetic G” (related to the 
genes that intervene in the determinism of the observations) and a variance known 
as “environmental E”, which would result from the influence of the environment 
that quantitatively modulates the role of the genes at stake. A standard additive 
model is commonly used, laying out the additivity of these types of variances: 

var( ) var( ) var( )P G E= +   

On this point, we need to recall that in the statistical analyses of variance (see 
section 3.3), the fundamental hypothesis relates to the additivity of the sums of the 
squares of the differences from the average and not to the additivity of the variances, 
since the different components of the total dispersion do not have the same number 
of degrees of freedom. We therefore need to emphasize that the additivity of 
variances postulated in quantitative genetics is based on the hypothesis that the 
effect of the environment is the same for all genotypes. We believe that this 
corresponds to the verification of random environmental dispersion by classic 
experimental devices. 

Some specific notions are defined. Therefore, we state that the phenotypic value 
P of an individual is the sum of its genetic value G and of an environmental term E: 

P G Eμ= + +   

where G and E have independent distributions. In the case of a single locus (case 
where the characteristic studied is determined by a single gene known as a main), 
we define the average effect of an allele as the centered expectation of the 
phenotypic value of individual carriers of this allele. The corresponding theoretical 
model distinguishes, within this term for genetic value G, the result of an additivity 
effect A of the two alleles, and of a dominance effect D, where A is denoted “genetic 
additive value”. That is, for the genotype (i, j): 

i j i j i jG α α δ= + +
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where the α are the respective effects of each of the alleles of the parents and δij is 
the interaction. 

As a result, the notion of “heritability” developed as a measure of hereditary 
transmission, relating the variability observed in the descendants of the 
characteristics to the relative part of what comes from the genetic value with respect 
to the environmental effects. In a wider sense, this parameter is written (Lush 1937): 

2 var( ) / var( )H G P=   

3.2.2.4. The probabilistic point of view 

Besides these classic considerations of quantitative genetics, other much more 
elaborate contributions made by mathematics should be considered and at least 
mentioned. This is thus the case for research by the French mathematician  
G. Malécot (1911–1998) in genetics of populations, which he studied from a 
probabilistic point of view22. Differentiating himself from the strictly statistical 
approaches of Fisher and Wright (based on the calculation of correlations between 
characteristics and oriented towards the idea of a selective value or fitness), the 
originality of Malécot related to an entirely different concept, the pioneering idea of 
genetic identity. The objective was to point out the existence of genetic relations 
between individuals which, in a natural population, are connected in a number of 
ways by random fertilization. Measuring the degree of genetic connection between 
two individuals with alleles in common consists in principle of going back through 
the generations to find common ancestors that have left them with a particular allele. 
We see that this question arises from stochastic processes of branching or 
ramification (see Chapter 5). 

His research led to the calculation of the parameters ad hoc, coefficient of 
consanguinity and coefficient of parentage. The latter is a characteristic for a couple 
of individuals to have had ascendants in common. Concerning the consanguinity of 
an individual, this is a piece of information that corresponds to the fact that their 
parents were more or less related. Mathematically, it is the probability that two 
homologous genes are identical. To summarize what is known as the “relationship 
of genetic identity”, let us consider at a given locus and for a given couple of 
individuals, the occurrences of the four possible alleles (two per parent). Since these 
alleles can be different or identical through the series of ascendants, there is a certain 
number of typical genetic situations that exhaustively describe the possible 
combinations of these alleles. These situations, combinatory in nature, define the 
relationships of genetic identity between individuals. This notion of genetic identity 
was refined in France and in the United States in the decades 1940–1970, and was 

                                 
22 Malécot, G. (1948). Les Mathématiques de l’hérédité. Masson, Paris. 
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founded on the notion that can be designated by the term “genetic structuralism”. M. 
Gillois (1964) then pointed out the existence of 15 different relationships, which 
were then considered in terms of the different ways of grouping them together 
(condensed relationships)23. 

Considered as a pioneering work on the subject, this research, although more 
restricted in its application than the previous model of decomposition of the 
phenotypical variance, has now been well-described by the international genetic 
community, with a justifiable position in treatises on the genetics of populations, in 
particular on the theme of genetic structures of populations. 

3.2.2.5. The algebraic approach 

Finally, we observe the development of an algebraic approach with the aim of 
detailing how hereditary transmission of characteristics within a population takes 
place (that we have seen drawn up by the phenomenological law of Hardy–
Weinberg). The objective of this formalism24 is to constitute a particular type of 
algebra, known as “genetic algebra”, whose properties correspond precisely to the 
laws of Mendelian genetics25. These are thus seen as the result of the existence of 
underlying algebraic structures. Without detailing this specific formalism and 
demonstrating its implications on the structure and the dynamic of the population, 
we note the basic idea in the simplest case of a gene with two alleles (A dominant, a 
recessive, with total dominance). Therefore, it is necessary to construct an algebra 
simulating the Mendelian behavior that expresses in classic terms the chessboard of 
gametes. While this table of contingency is read simply as the combination of 
elements (line ×  column intersections), we look for an algebra that can explain it 
with a series of operations between elements. We formulate this in our example by 
considering a population of individuals denoted u1 and u2 (corresponding to the two 
types of alleles, respectively dominant and recessive with total dominance) for 
which the law of internal composition (multiplication) is: 

2 2
1 1 1 2 1 2 2 2

1 1
; ;

2 2
u u u u u u u u= = + =

 

 

                                 
23 The first research by Cotterman dated back to 1940 (thesis), but it was not published until 
1974. Consider, for example, Jacquard, A. (1966). Logique du calcul des coefficients 
d’identité entre deux individus. Population. 21(4), 751–776, with the presentation of various 
genetic situations and proposed groupings. 
24 Etherington, I.M.H. (1940). Genetic Algebras. Proc. Roy. Soc. Edinburgh. B, 59, 242–258. 
25 In the modern sense of the term, we understand by algebra the study of the properties of 
any set of mathematical beings in general (and not only of numbers), a set that contains  
well-defined laws of composition. 
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This law (which is not associative) is equivalent to the Mendelian behavior of 
genes A and a where the “product” AA gives A, aa gives a and Aa gives A and a in 
equal parts. On this basis, we can study the effect of a given mutation rate on the 
distribution of alleles. 

The property of non-associativity is clearly shown in the descendance of a series 
of gametic encounters according to the method of successive crossings. For 
example, by representing A, B and C, three individuals who are likely to come 
together, and without taking into account here their allelic composition, there are 
two possible trees of encounters, depending on whether the first union is ( )A B×  or 

( )B C× , showing the non-associativity: ( ) ( )A B C B C A× × ≠ × × . 

REMARK.– In passing, we note the importance of this type of formalism in taxonomy 
or biological classification, a theme whose current importance is known in various 
fields (phylogenetics, for example). The algebraic approach renews the statistical 
methods of multidimensional data analyses (such as discriminatory factorial 
analysis)26 by specifying the theoretical foundations of the representations of 
branched trees (algebra of classification trees)27. 

3.3. Introduction of the notion of a probabilistic model in biology 

The use of a mathematical model as a tool in the analysis of experimental data 
is at the foundation of what we call “statistical biometry”. It began in agronomics 
for the study of nutrition of cultivated plants (fertilization/yield relationships), as 
well as for the comparison of different cultivars in the creation of varieties. 
Experimental agronomics played a pioneering role in perfecting experiment designs: 
sampling and arrangement in situ of the “individuals” experimented on, statistical 
analysis of variance, comparison of sample averages. 

The block randomization method (simple blocks) by the British statistician R.A. 
Fisher, archetype of experimental designs, is founded on the following stochastic 
model, intended for the study of a factor A and of a repetition factor B (blocks): 

i j i j i jX μ α β ε= + + +
 

                                 
26 Since the classic research works by Sokal, R.R., Sneath, J.H.A. (1963). Principles of 
Numerical Taxonomy. Freeman, New York, then by Benzecri, J.P. (1976). L’Analyse des 
données, I: La taxonomie. Dunod, Paris. 
27 Parrochia, D., Neuville, P. (2013). Towards a General Theory of Classifications. 
Birkhauser, Bâle, 93–124. 
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We postulate that the experimental data Xij (e.g. the biomass produced) is 
additively expressed by a deterministic parametric part {μ, αi, βj} and a random term 
εij. These parameters represent, other than a general average effect μ, the action αi of 
the factor studied A on its modality i (i = 1,…, p), and that of βj of the repetition 
factor B (block j : j = 1,…, n). By “block”, we mean a set of “individuals” (e.g. p 
experimental plots that each receive one of the p modalities of the factor A). 

Specific probabilistic hypotheses are associated with random variables εij 
(independence, Gaussian distribution, homogeneity of variances) in such a way as to 
be able to correctly carry out a variance analysis. The principle of this consists of 
comparing the variance due to the study factor A and the variance of random nature, 
taking into account the part of variation due to the differences between blocks. The 
rule of decision (effect deemed globally significant between the various modalities 
of factor A) is probabilistic in nature, setting up a priori a given risk of error. 
Finally, the modalities of A that are different are sought out, two by two, and those 
that are not, still for the same risk of error. Let us specify that the validity of this 
model of simple blocks implies that there is only one type of variation between the 
repetitions. In the case of an in-situ experimentation in the field, this means that the 
environment only presents a priori a single direction of spatial heterogeneity 
(ground, microclimate). The blocks are then arranged perpendicular to this direction, 
in such a way that the variation between blocks can estimate this environmental 
cause of variation. Of course, in the case where there are clearly several causes of 
heterogeneity due to the environment, another model must be targeted, including 
several parameters that estimate these causes of variation. 

In Great Britain, the first agronomic station was created in 1843 (Rothamsted 
station, still in use, grouped together with other stations), which was repeated in 
various other countries. France is well-equipped for this, with the network of 
stations in the INRA (French National Institute for Research into Agronomy), first 
in Versailles, then in various regions), added to by experimentations carried out by 
various professional institutions (such as the Technical Institute of Cereals and 
Forages), as well as by various industrialists. For example, the former French 
National Industry Office for Nitrogen (ONIA) had its own station for agronomic 
testing of compound fertilizer formulae in Toulouse. Analogous experimentations 
were carried out, among others, by the Alsace Commercial Company for Potassic 
Fertilizers. The agronomic stations of the INRA widened their initial field of study 
to various other sectors (improvement of plants, protection of crops, pedology, 
bioclimatology, zootechnics). 

Concerning these questions of applied statistics, of which agronomy was the 
initial driving force, the important role played by Fisher (1890–1962) needs to be 
kept in mind, on the one hand, with his theoretical contribution about the principle 
of estimation of the maximum likelihood and the notion of information in statistics 
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(we are referring to “Fisherian statistics”), and, on the other hand, with the 
methodology of variance analyses that he implements at the station at Rothamsted. 
The latter are intended for a comparison between controlled factors and random 
fluctuations. The previously mentioned elementary case of simple blocks known as 
“Fisher randomized” (1 study factor + 1 repetition factor) was completed with the 
simple Latin square (1 study factor + 2 repetition factors) and the Graeco-Latin 
square (1 study factor + 3 repetition factors), then with testings known as factorial 
(several study factors combined with the study of their interactions) and series of 
testings (on several stations and over several years). The industry appropriated this 
type of experimental methodology, in particular becoming interested in the 
estimation of relationships between the effect of a compound and its concentration. 
Moreover, let us give a reminder of the principle of polynomial regression that is 
noted in the introduction. 

3.4. The physiology of C. Bernard (1813–1878): the call to mathematics 

In his two significant works, An Introduction to the Study of Experimental 
Medicine (1865) and Lectures on the Phenomena of Life Common to Animals and 
Plants (1878), Bernard was the first to analyze the question of the pertinence of 
quantitative laws that can summarize the relationships between various biological 
functions. The philosopher H. Bergson considered that Bernard’s works were to 
biology, what Discourse on the Method by Descartes was to physics. In reality, 
Bernard’s reflection makes do with pragmatisms of a dialectic between the different, 
or contradictory, positions, notably combining “mechanicism” (determinism of 
physico-chemical laws) and “vitalism” (life is more than physics)28, as we have 
previously noted (Chapter 1). 

An experimenter first and foremost, as well as with an eye for epistemology, 
Bernard clearly set out his thoughts on the place for mathematics in physiology, as 
demonstrated by his words that we have used as an epigraph and where we believe 
we can hear echoes of Galileo. However, he specifies: “I am convinced that the 
general equation is impossible for the moment, since the qualitative study of 
phenomena must necessarily precede a quantitative study of them”29. 

 

                                 
28 A more flexible position, also richer than that, for example, of the doctor A. Carrel, who 
believed that “mechanicism and vitalism must be rejected in the same way as any other 
system” (Carrel, A. (1935). L’Homme, cet inconnu. Plon, Paris, 38). 
29 Bernard, C. (1984). Introduction à l’étude de la médecine expérimentale. Flammarion, 
Paris. 
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In summary, Bernard shows great interest in the application of mathematics to 
physiology while at the same time considering their implementation as premature. 
For him, the degree of mathematization of a science is an image of its state of 
advancement. Let us add a certain reticence regarding the use of statistics. 

Thus, on the subject of his observations on glycemia, Bernard questions the 
correctness of taking the average of measurements, because this hides the reality of 
the oscillations on a nychthemeron (chronobiology, with the analysis of time series, 
had not yet surfaced). 

A key notion arises from the physiology of Bernard: the property of autonomy of 
living things. This property is demonstrated, on the one hand, with autopoiesis 
(continuous production of “oneself”, elements, structures) and, on the other hand, 
with homeostasis (regulation of the physiological variations that ensure the internal 
environment is constant); two points that he was constantly focused on. 

This property of autonomy of living things, which was already apparent in the 
work of Aristotle (refer to his definition further on), was picked up by P. Vendryès 
(1981), who gave it a specific interpretation30. It is no longer a case of linking this 
property exclusively to homeostasis of the internal environment and also, and above 
all according to Vendryès, of relating it to the variations in the external environment. 

In a more nuanced way, we can say the acquisition of the autonomy of living 
things would mean that there is both prevalence of its own internal determinisms 
and reaction to external determinisms. Otherwise stated, physiology manages to 
admit a “certain compatibility between the autonomy of living things and its 
submission to universal laws”31. 

Another important contribution of the thoughts of Bernard, despite a way of 
writing that can sometimes cause confusion through its dialectics, is the term of 
autonomy of the parts of an organism that is repeated in contrast to their 
interdependence. He effectively asserts that these elements, although different and 
autonomous, do not play the role of simple associates and that their union expresses 
more than the addition of their separate parts. 

With this remarkable phrase regarding non-additivity, the property of emergence 
is announced, which would be involved later on with the self-organization of 
biological systems. 

                                 
30 Vendryès, P. (1981). L’Autonomie du vivant. Maloine, Paris. 
31 Pichot, A. (2011). Expliquer la vie. Éditions Quae, Versailles, 347. 
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3.5. The principle of optimality in biology 

One of the essential outcomes of Bernard’s reflections was to highlight the 
stationarity of the internal environment of any living organism thanks to a 
continuous set of regulations. Added to this there is this specification that under this 
term of “constancy”, there is in fact a trend that copes with transitory variations. 
Physiological invariants are still dynamic in nature; its values are located between 
given fluctuation limits (except for pathological situations). 

This fundamental idea of control is combined with the banal observation that has 
already been mentioned that “physiology is a question of minima and maxima”32. It 
refers, for example in plants, to maximizing the flow of circulating sap or to 
minimizing the resistance to its transport. From a methodological point of view, 
biology is thus required to pay attention to what mathematics calls the “calculation 
of variations”, whose objective is to precisely seek out the extremums of a function, 
or more generally of a functional (meaning the function of a function, for example 
the integral of a function f(x)). This is designated by the mathematical term 
“optimization”, because this search for an extremum corresponds, by the nature of 
the chosen function, to obtaining an optimal solution in the exact sense of the term 
(optimum = the best). For example, minimizing a duration or a cost, maximizing a 
biomass. 

In relation to these remarks, we see that, in quite a general manner, biology is 
presided over by a principle of optimality, meaning a “principle of adequate design” 
according to the words of the biotheoreticians N. Rashevsky and R. Rosen (1973), 
also following the work of D. Cohn (1954) concerning the optimization of the 
branching of blood vessels in relation to the “economy” of the heart motor. We can 
remark that this idea established itself very progressively in biology as in fact an 
underlying concept to various manifestations of living things, as much in 
morphology and ecology as in physiology, which means a more or less teleonomic 
condition, a good “economy of life”. Furthermore, as if to satisfy a psychological 
requirement searching for coherence in its rational representation of the world, it is 
also essential in physics and in mechanics. For example, seeking out, in metric 
terms, a geodesy (the shortest path between two points) or, in terms of time, of a 
brachistochrone (the shortest time period), as well as the famous principle of least 
action (or of minimal work) by P.L.M. de Maupertuis, the subject of many debates 
with P. de Fermat (optical) and G.W. Leibniz, and that was developed in 
mathematics by L. Euler and J.-L. Lagrange, and continued by W.R. Hamilton.  

                                 
32 According to the expression by Murray (1926), of which we have seen the branching law, 
optimizing the flow of fluid transported in a circulatory system (blood vessels, xylem of 
plants). 
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The importance of this notion of control, fundamental in physiology, is at the 
foundation, on the one hand, of cybernetics and, on the other hand, of the optimal 
command of systems. This, widely used in physics, begins to take place in biology 
for various applied problems. For example, in the higher plant, modeling of the 
transition from vegetation development to reproductive development that optimizes 
biomass from a given compartment (production of seeds, for example, rather than 
vegetative organs) or management of a given bio-industrial process, or even an aid 
to controlling the development of parasites in a culture. In this field, the essential 
notions that the biologist must use are based on the classic formalisms of L. Euler 
and Lagrange, renewed by Hamilton (1833). In fact, the development of these 
variational methods oriented towards an optimal command of systems by the set of 
control variables was permitted by the research carried out by the Russian school of 
thought in the 1950s, with Pontryagin’s principle of maximums, specifying the 
necessary conditions for optimality33. 

3.6. Introduction of the formalism of dynamic systems in biology 

Analysis of the development of multispecific populations, whose diversity of 
behavior and in particular whose temporal stability was already known, was 
considered from the point of view of mathematics in the period 1918–1939 and 
became an important research topic. During this era, seen as the “golden age of 
theoretical ecology”, A.J. Lotka (1880–1949) and V. Volterra (1860–1940) 
described simultaneously, but independently from each other, the mathematical 
bases of the dynamic of populations. Let us cite their fundamental books: 

– by Lotka: Elements of Physical Biology (1925), Elements of Mathematical 
Biology (1956), Analytical Theory of Biological Populations (1934); 

– by Volterra: Leçons sur la théorie mathématique de la lutte pour la vie (1931, 
republished in 1990), Principes de Biologie mathématique, published in Acta 
Biotheoretica (1937). 

The principle of these studies consists of postulating a system of equations for 
the speed of variation of the population numbers (or of biomass) of each species in 
association. The innovation is not simplified by using a differential formalism, 
where the latter was already used as a foundation of the first growth laws. In any 
case, the dynamic of populations was the first large field of biology that could then 
be understood from the point of view of formal principles of statistical mechanics. 
Effectively, in this field that is so rich in varied observations, it was possible to 
establish the existence of an invariant which was maintained throughout a 

                                 
33 In the case of a linear system, Pontryagin’s principle establishes a necessary and sufficient 
condition for optimal control. See (Cherruault 1983, p. 80 sq). 
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conservation process (first integral, in the sense of the equivalent of the constancy of 
movement in mechanics). 

But another new aspect needs to be pointed out, which relates to the conjugation 
of two components that are supposed to represent, on the one hand, the potential or 
“intrinsic” growth of each species (= as if it were alone) and, on the other hand, the 
interactions between species. Thus, by taking prey–predator models as examples, we 
are dealing with two types of interactions, intraspecific (competition) and 
interspecific (predation or parasitism), i.e. in the additive form for species i in 
association with species j: 

( ) ( , )i
i i i i j

dx
f x g x x

dt
= +  [3.1] 

In other words, we now know how to treat a biological association as a sort of 
system in the integrated sense (not simply additive) of this term, i.e. the sense that 
takes into account the existence of interactions between constitutive elements. 

First, the method consists of looking for the stationary point(s) defined by 
dxi/dt = 0, then of determining their stability conditions. A great diversity of 
dynamic behavior can present itself (see Chapter 5). Finally, we need to verify 
whether the stability properties are modified or not following a slight variation in 
parameters of [3.1]. If they are conserved qualitatively, we talk about “structural 
stability”. 

This methodology was illustrated with many examples of various types of 
biological associations (prey–predator, species in competition, mutualism). Thus, 
this pioneering work led to an explanation of the decisive conditions, for example 
the exclusion of a species versus maintenance of a coexistence or the occurrence of 
an oscillatory behavior and its characteristics. Following this, many models continue 
to be perfected depending on the situations, as a function of the type of potential 
growth (exponential or logistical, for example) and of the type of interactions. Thus, 
for prey–predator systems, there are well-documented quantitative relationships that 
have been validated with various types of responses known as “functional” 
(consumption of prey per unit of predator) and “numerical” (specific speed of the 
predator). 

The significance of this work easily surpasses this framework of theoretical 
ecology, because following this, the differential formalism occupied a prime 
position in biology. The methodology of dynamic systems (differential equations or 
equations with partial derivatives) thus became a basic tool for studying all kinds of 
processes. 
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We note that a discrete formalism (recurrence equations) presented itself a little 
while afterwards, in concurrence with the differential systems by Lotka and 
Volterra, with models known as “matrix models”, developed subsequent to P. Leslie 
(1942). These became a tool of choice in the dynamics of populations organized into 
classes based on a given criteria: age (matrices by Leslie), size (matrices by Usher) 
or any other criteria of state. 

It is important to highlight the difference between this approach by differential 
equations and models of statistical biometry that we have seen be developed from 
the first experimental designs in agronomy. We do indeed note that Fisherian 
probabilistic models are focused, in themselves and via analyses of variance, on the 
observed effect more than on the cause. According to their language, their objective 
is to “control” the variability of observations by considering the probability of 
repetitions. From an explanatory point of view, we can say that this is passive 
control: controlling is then calculating a posteriori rather than truly mastering. 
Moreover, we know that this term “control” can have various meanings (control also 
meaning control value or lack of treatment), in particular in the field of the “optimal 
control” of processes (see section 5.3.4.3), where the term “command” is often 
preferred (to clearly mean action). 

It is more important to keep in mind that the approach by Lotka and Volterra has 
the characteristic of being based on hypotheses set down a priori and which define 
how a conjugation is set up quantitatively between potential growth and interactions 
that result from the association of several species. In other words, this is a 
prefiguration of a systemic point of view. Thus, some researchers talk about 
hypothetical or theoretical models to distinguish them from empirical models in 
statistical biometry. Let us explain this distinction by remarking that the hypotheses 
of these differential models in the dynamics of populations are not purely 
theoretical, in the sense that they can also rely on various empirical relationships. 
For example, the empirical formulation of different types of consumption of prey by 
predators depending on their abundance leads to an enrichment of the initial 
approach made by Lotka and Volterra, leading to a greater variety of dynamic 
behaviors. 

3.7. Morphogenesis: the need for mathematics in the study of 
biological forms 

Physiology and morphology are two extremely different fields in terms of their 
nature and their approach. Like many others, Bernard considered it important to 
carefully distinguish between them. In physiology, which has the advantage of being 
able to experiment, he opposed morphology, in which we can only scarcely observe 
because we are not masters of its determinism, which depends mainly on heredity, 
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which escapes us. “We separate absolutely vital phenomenology, the objective of 
physiology, from organic morphology whose laws are studied by naturalists […], 
but which escapes us experimentally and which is not within our reach”34. That is, 
these “laws of organic morphology” cannot be verified by experiments, and we are 
obliged to conclude that, in fact, “form is given in advance”. Moreover, this last 
expression is revised, at least implicitly, by D’Arcy Thompson, a great observer of 
the living forms that sidelined heredity, and which we are going to examine. 

In reality, while these remarks bear witness to an actual situation, of a sort of 
frequent divorce between these two branches of biology, they should no longer have 
a reason for being so. The external morphology is dependent on the internal 
functioning. Both of them need to be related at the same time to a complex genetic 
determinism and to the existence of various constraints, mechanical or other in 
nature (let us say epigenetic lato sensu). We will attempt to demonstrate through 
many examples the evidence for this position. For the moment, let us examine how 
mathematics intervenes in the study of biological forms by focusing as much as 
possible on the principle of non-separation of the form, of the structure and of the 
functioning. We invoke Buffon who, implicitly, related the external form that he 
was studying (in the same way as a sculptor would) to the existence of an “internal 
mold” that he presumed to be generating or modifying. 

In the extremely vast field of biological morphogenesis, two different routes 
were drawn up, corresponding either to an overall study of forms (morphometry) or 
to an analysis of their dynamics (genesis and stability of morphological structures). 

3.7.1. General principles from D’Arcy Thompson 

Research into forms was historically influenced by the unique book by D’Arcy 
Thompson (1860–1948) On Growth and Form (two volumes, 1917, republished 
many times), who developed his main ideas using a great number of examples: 

– “the form of organisms is directly determined by the action of physical forces”; 

– the principle of a mathematical transformation must allow different related 
forms to be connected. We show some well-known examples Figure 3.5, using 
changes in the coordinate system. Other examples are given on the variations of 
external morphology of the shell of crustaceans or even on those of the human skull. 

                                 
34 In Bernard, C. (1879). Leçons sur les phénomènes de la vie communs aux animaux et aux 
végétaux, vol. 2. Librairie J.-B. Baillère et fils, Paris. 
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Figure 3.5. Examples of transformations of forms  
according to D’Arcy Thompson 

It is time to briefly recall, subsequent to D’Arcy Thompson, the mathematical 
description of certain forms of animal organisms (Figure 3.6), such as the shells of 
nautiluses or ammonites, based on the logarithmic spiral (or equiangular spiral): 
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The length of the radius vector increases in a geometric progression when it 
sweeps through successive equal angles. 
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Figure 3.6. Examples of biological forms with a logarithmic spiral 

It is useful to spend some time thinking about the way in which D’Arcy 
Thompson approached the role of mathematics in biology35. Its primary role, he 
said, arises from their fundamental propensity to produce and manipulate symbols, 
thus allowing a simple description to be condensed in natural language, i.e. by 
“economizing thought”. He explicitly quotes (pp. 267–269) the famous words of 
Galileo concerning nature expressed in mathematical language, going back to 
Plato’s idea of “God as a geometrist”. In response to those who see in mathematics a 
series of excessively rigid definitions, he responds, with a certain degree of lyricism, 
that “it is precisely in its rigor that its infinite liberty lies”, making reference to the 
case of conics whose definition expressed by their general equation (i.e. an 
invariant) elegantly encompasses various types of curves of very different “facies”. 
These curves are thus found to be grouped together by the property of homology. 
Mathematical study of forms illustrates this power of mathematics as a tool that is 
both descriptive and analytical. 

This important notion of homology led D’Arcy Thompson to the meaning of the 
concept of form that had therefore been mathematized, resulting in a two-fold 
comparison between forms, both static and dynamic. Thus, he confirms, we can 
move “towards the comprehension of forces” which has given rise to the 
morphology that is observed. While waiting to reach this ambitious objective of 
“comprehension of forces”, D’Arcy Thompson explicitly asks the question: what is 

                                 
35 We refer here to the quotes of Chapter 9 of the French translation of Forme et croissance. 
Le Seuil, Paris, 1994. 
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a change of form if not the result of “a movement of matter”? Here, we can see the 
implicit announcement of the notion of what we will later call a “field of growth” 
whose analysis will develop from the 1940s onwards with the use of vector analysis 
to correctly define the local growth activity in terms of intensity and direction. 

Finally, another role of mathematics is mentioned, associated by D’Arcy 
Thompson with H. Poincaré, meaning “the very particular power of mathematics: 
combining and generalizing”. It is this power that makes mathematics appropriate 
for the study of natural phenomena that are naturally composite in nature. Thus, 
“growth and form are entirely composite in nature”, calling for the use of 
mathematical models that allow “large amounts of phenomena or more elementary 
actions” to be processed. Of course, today this statement needs to be revised with the 
advent of the notion of complexity which places the focus not only on the sum in the 
sense of the simple addition of components, but also on the importance of their 
interactions. D’Arcy Thompson adds to this (without developing it) another point 
that is not at all secondary, in the form of a piece of advice given to biologists 
(always faced with the variability of what they observe), which is to “learn from 
mathematicians to eliminate, to move away from and only keep the essential notion 
in order to reject what is particular, […] sacrificing what is accessory in favor of 
what is typical” (p. 269). 

We see that these pages by D’Arcy Thompson reveal in their style a new way of 
thinking that must modify the analysis of biological morphogenesis. The 
fundamental importance that he attributes, sometimes with lyricism, to the position 
of mathematics in biology does not at all prevent him from having a sense of limits. 
Thus, he notes that “there are, even within physical sciences, a certain number of 
problems that are outside the scope of mathematics today”. In any case, many 
commentators do indeed underline the rather paradoxical destiny of D’Arcy 
Thompson’s work. His book is in fact often cited as a pioneering book established 
on the basis of a broad culture. However, although it constitutes a source of 
inspiration for many problems of biological form, its direct applications are still 
considered to be very restricted. It is also useful to add the following remarks. 

Indeed, D’Arcy Thompson’s ideas about the search for a coordinate 
transformation system to formalize changes in form are not at all unknown. Better 
than that, they were revised and widely developed, particularly in the United States 
by F.L. Bookstein who dedicated a large amount of work in the decade 1980–199036 
to morphometry, considered, according to his words, as an “empirical fusion of 
geometry with biology”. It is an association of two sources of data: (i) the  
 
                                 
36 Bookstein, F.L. (1978). The measurement of biological shape and shape change. Lecture 
Notes Biomath., 24; Bookstein, F.L. (1996). Biometrics, biomathematics and the morphometric 
synthesis. Bull. Math. Biol., 58(2), 313–365. 
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geometrical position, with respect to a given reference framework, of a set of 
reference points (landmarks); (ii) the biological homology or correspondence 
between these reference points whose bijection needs to be studied in order to 
analyze the transitions of form between related objects. Various applications have 
been made in anthropology and for medical purposes (morphology of the skull and 
the face) for which Bookstein carried out an important methodological renewal of 
D’Arcy Thompson’s proposals. The analogy of changes in form induced by growth 
compared to the deformations of a solid due to mechanical constraints in a 
continuous environment was in fact postulated; a problem that is now treated using 
tensor calculus37. This methodology highlights the existence of principal axes of 
growth that determine the transition or movement of reference points. These 
directions are defined by eigen vectors of the growth tensor (symmetrical matrix 
made up of constraints in various directions). Independent of this general 
morphometrical work, we encounter this important notion of axes or principal planes 
of growth in the distribution of mitoses within a plant meristem, a distribution that is 
therefore directly determined by the properties of the growth tensor (Hejnowicz). To 
finish, let us add that all this applies either during development (ontogenesis) or 
between related species (phylogenesis). That is, at least for the latter point of view, 
this methodology does indeed correspond to the study of continuous, gradual 
variations, rather than abrupt variations in the form of leaps. 

It is worthwhile giving a little more information about the significant remarks of 
D’Arcy Thompson when he mentioned the evident point about morphology, its 
reason for being, which consists in the end of linking together the whole and its 
parts. 

“Biologists and philosophers learn to recognize that a whole is not 
simply the sum of its parts […]. It is not the case of a simple 
juxtaposition of parts, but of an organization of these parts, of a 
reciprocal arrangement of parts that are adapted to each other”38. 

While he, of course, sees in this something fundamental, which underlines the 
basis of the law of compensation and balanced growth by É. Geoffroy Saint-Hilaire, 
it is useful to note more generally that Thompson is one of the biologists who was 
able to prefigure (here restricting themselves to morphogenesis) the installation of 
an integrated or systemic biology that we will return to later on. 

 

                                 
37 On the basis of the contribution of tensor calculus to the analysis of a morphogenesis, see 
Bookstein, F.L. (1984). A statistical method for biological shape comparisons. J. Theor. Biol., 
107(3), 475–520. 
38 Thompson, D’A. (1992). Forme et Croissance. Le Seuil, Paris, 263. 
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REMARK.– At the margins of biological morphometry, as we have just illustrated, 
various studies are currently underway as part of what is known as the “recognition 
of forms”. This rising theme currently comes more from bioinformatics than from 
explanatory mathematical modeling. Ranging from the level of cellular 
infrastructures to recognition of the form of organs, we can cite as an example 
certain software programs such as MorphoLeaf, which is designed for computer 
analysis of the variation of the form of leaf blades in plants. The morphology of the 
outline was studied on Arabidopsis39, including the formation of teeth and sinuses 
that outline characteristic leaf lobes. This tool is dedicated particularly to the 
variations related to the growth and the position of the leaf on the carrier axis 
(heteroblasty). This research is therefore to be differentiated from a field analysis 
that is interested in the distribution of the local activity that induces a regionalization 
of the field and therefore of the form (see section 6.3). 

3.7.2. Turing’s reaction–diffusion systems (1952): morphogenesis, a 
“break of symmetry” 

In biological morphology, another question is asked, which is to describe not a 
given form, but its appearance, considering that all morphogenesis is a generating 
process. From this point of view, very different from the previous notions of 
homology, a major innovation in the explanation of biological structurations was 
made by the mathematician and computer scientist A. Turing (1912–1954). It was 
explained in detail in his famous article from 1952: “The chemical basis of 
morphogenesis”. The question that Turing considered was the following: how can a 
form, a structuration, appear in an embryo or a tissue that initially appears 
homogeneous, symmetrical? In other words, how can a morphogenesis be related to 
a fracture of symmetry? 

While it is indeed necessary to refer to mechanisms that are chemical in nature 
by postulating the intervention of substances called morphogens, innovation mainly 
refers to the mathematical formalism used. Turing effectively postulates that the 
local differentiation of cellular structures can be expressed from a system of 
differential equations that specify (i) reactions between morphogens; and (ii) their 
unequal diffusion within an initially homogeneous tissue. 

Due to the establishment of differential gradients between morphogens, the 
substrate becomes highly inhomogeneous (except for thermodynamic equilibrium). 
Native inhomogeneity can thus be broken following the occurrence of a random 
disturbance. Turing based his work on the analysis of the stability of his system 

                                 
39 Biot, E. et al. (2016). Multiscale quantification of morphodynamics: MorphoLeaf software 
for 2D shape analysis. Development. 143(18), 3417–3428. 



70     Biology and Mathematics 

following this “break of symmetry”. He shows that a precise distribution of 
morphogens can result from it just as it can correspond to the facies of certain 
biological structurations. The distribution of morphogens has the value of a  
“pre-pattern”, a prior condition to a specific cellular differentiation. We are referring 
to reaction–diffusion systems and to Turing’s structures, drawing a link between 
a continuous microscopic level (concentrations) and a discontinuous macroscopic 
level (discrete forms). 

We can point out that the notion of morphogen was then just as hypothetical (and 
very often remains so) as the notion of gene at the origin of genetics. We will come 
back to the formalism of the differential equations used. Subsequently, Turing’s 
principle of reaction–diffusion systems was widely used as a generally applied 
formalism that can describe carried morphogeneses, whether they are, for example, 
animal regeneration (with the famous case of the hydra), pigmentation motifs, or 
even the differentiation of new tissues or organs in plants and in vascular 
histogenesis or branching. Among the widely cited examples of spatio-temporal 
structurations, we can indicate the differentiation of pigmented zones on the 
epidermis of mammals or the shells of mollusks, as well as the Belousov–
Zhabotinsky oscillatory reaction in chemistry. This methodology, now widespread, 
is thus appropriated to a certain type of emerging process. 

3.8. The theory of automatons and cybernetics in biology 

In competition with Turing’s differential systems, the analysis of discrete 
systems took place in biology. The perception of numerous phenomena is indeed 
found in a population of physically distinct elements, such as the cells or modules of 
a spatially organized set. The study of cases of this kind can then be approached 
according to a principle known as “cellularity” (lato sensu), and not of 
concentration. In this context, biologists observe and measure the generation of new 
elements and their evolution, and not the existence of gradients or of singularities of 
a continuous variable. 

3.8.1. The theory of automatons 

At the origin of its link to biology, ideas were applied from the mathematician 
and computer scientist J. von Neumann (1903–1957), who sought to design a 
machine that could self-reproduce, the principle of which is known as “cellular 
automatons”. These were popularized by the famous “game of life”, proposed by the 
British mathematician J. Conway in 1970. He envisaged the format of a  
two-dimensional grid of boxes or cells, where each can take on two states, alive (1) 
or dead (0). The evolution of each cell is determined by simple deterministic rules as 
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a function of its own stage and of the state of adjacent cells. J. Conway attempted 
several sets of rules, remaining particularly interested in the simulation of periodic 
structures. Here is an example with the following conditions: 

– birth: from one dead cell with three live neighbors; 

– survival: one living cell with three live neighbors; 

– dead: one living cell that has less than two or more than three live neighbors 
dies (by “suffocation” or by “isolation”). 

We indicate here (Figure 3.7) three cases of development of a population of cells 
arranged as indicated, restricted to the future of the cell marked with a “?”. A 
colored box means “living cell”; and an empty box means “dead cell”. 

 

Figure 3.7a. Simple example of Conway’s game of life 

 

Figure 3.7b. Simple example of Conway’s game of life (second part) 

Stable structures filling a grid of this kind can be obtained with this type of 
cellular automaton. For example, with rules other than the previous ones, we can 
obtain the periodicity of the following motif: 
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Figure 3.8. Example of periodic structuring with Conway’s game of life 

Over and above this particular device, chosen here due to its simplicity, the 
notion of automaton has experienced a development of its application in biology as  
a basis for the explanation or simulation of certain morphogeneses. Without 
necessarily being subject to a cellular substrate, like Conway’s grid, the principle of 
automatons in biology consists of subordinating the behavior of a given element (a 
cell, for example) to a set of rules that determine its evolution. This principle is at 
the root of L-systems, well-known models in plant morphogenesis (section 3.8.3). 

The question naturally arises of the comparison of this discrete approach to 
analysis by differential equations, where these are effective in emphasizing the 
properties of the dynamic of evolution of the system. A classic case is to compare 
the function of logistic growth in the continuous (function of Verhulst, Chapter 5), 
defined by the well-known differential equation: 

/ (1 / )dy dt a y y K= −  

which generally presents two stationary states: 0 (unstable) and K (stable), to the 
logistics known as discrete: 

[ ]( 1) 1 ( )y t a y t+ = −
 

This displays a varied dynamic depending on the value of the parameter a, 
evolving either towards a unique stable stationary state, or towards a regular 
oscillatory regime (with a variable number of cycles), or even towards the 
installation of a chaos whose detail is conditioned by the initial conditions. 

This latter function is an entirely classic example of bifurcation, meaning an 
abrupt change of dynamic at each of the threshold values of a given parameter. 
Although the notion of bifurcation is general in scope, because it is observed in 
many multistationary differential systems (existence of attracting sets), its 
occurrence visualized by discrete logistics is a good illustration of the possibility and 
the importance of an evolving behavior. Thus, we are able to observe its importance, 
not for a simple elementary function, but for a discrete system of cellular 
automatons that is more or less widespread. Otherwise stated, we can reasonably 
expect to see certain discrete systems being able to exhibit, under certain conditions, 
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a variation in dynamics that can carry it towards a chaotic behavior. We see the 
connotation with the principle of order carried by the property of self-organization. 

Certain authors (such as T. Toffoli in 1994) thus considered that cellular 
automatons are more appropriate than the differential formalism to model an 
evolving physical system, since they can represent the underlying dynamic in a 
discrete form with the appearance of transitory situations without waiting for the 
completion of calculations of the overall dynamic (integration of a differential 
system). We will look at this delicate question in more detail with “complex” 
network systems (section 3.12.4). This subject, which has been widely studied since 
the 1990s, is of great interest in biology where the notions of order and stability can 
be deduced from the functioning of Boolean genetic networks (Kauffman in 1993). 

3.8.2. The contribution of cybernetics 

Since its beginnings, cybernetics has referred to biology, and its inventor  
N. Wiener defined it in 1947 as “the scientific study of control and communication 
in the animal and the machine”. Although the term itself dates back to Antiquity 
with Plato and although there were precursors to retroaction mechanisms (like the 
adjustment system in a mill consisting of a crook string and a twist peg or the 
centrifugal governor by J. Watt, 1788), the advent of cybernetics constitutes a major 
stage in the study of the phenomena of regulation. Following the theory of 
communication by C. Shannon (1948), it is not a simple corollary, because it 
contributed a valuable addition to this due to the fact that it had been marked since 
its beginnings by the functional analogy that it set up between the activity of the 
nervous system and the control of a machine. In reality, a long time before this 
connotation was made by the neurologist W.R. Ashby (1952), physiology presented 
itself as a true prefiguration of cybernetics. It was effectively the discovery of 
hormones (by Bayliss and Starling in 1902) that clearly explained the principle of a 
causality defined by the “effector (hormone = excitation, beginning of motion) → 
remote receiver” couple. Later on, still without referring to cybernetics, the 
discovery of the effects of hormonal retroactions occurred. 

The originality of cybernetics, according to the terms of Ashby, is to “not be 
concerned with objects but instead behaviors”. It does not ask the question “what is 
this?” but “what does that produce?”. It thus generalizes the notion of action: it is no 
longer just an action in the mechanical or physical sense, but of all types of signals 
(such as chemical, hormonal, or other actions) and more generally of all kinds of 
information. 
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On the contrary, the two following points characterizing cybernetics are added to 
the basic notions of automatons (state, inputs, outputs). Its founding idea effectively 
postulates that commands for all actions are internal (which obviously does not 
exclude the role of external agents). In addition, it adds a circular causality to direct 
unidirectional stimulus → response causality, as a condition of self-regulation: the 
effect acts on the source to control the operation (retroaction or feedback). 

3.8.3. The case of L-systems 

This remarkable type of cybernetics automatons was proposed and developed in 
1968 by the Hungarian biologist A. Lindenmayer. The initial applications of this 
new formalism related to the growth and morphogenesis of single-series filamentous 
systems (1 row of cells in the same way as for certain species of algae or 
mushrooms), before being extended to branched systems. The simulation of plant 
architectures, including those of higher plants, then benefitted from this type of 
automaton that was developed in particular by P. Prusinkiewicz in the 1980s. 
Computer science tools dominate here, largely promoted in the book by 
Prusinkiewicz and Lindenmayer40. 

The formalism of L-systems arises from the research of the American linguist  
N. Chomsky in the 1950s into formal grammars. Applied to our subject, this term 
designates the set: 

{vocabulary of cellular states, rules of production or syntax, initial state} 

These grammars are described as generative, because we proceed in an iterative 
manner by re-writing the state of each cell at each stage of development (by stage 
we mean a step in the operation of the algorithm). For example, in the case of a 
single-series filament or of a tissue (cellular paving), each cell evolves according to 
its state and the various inputs received. Its development is thus determined, at least 
in part, by a set of cellular genealogies (notion of “ancestral memory”, J. Lück, 
1977). More generally, the principle of L-systems applies to a great variety of 
situations, in 2-D (cellular paving of a tissue) and in 3-D (embryogenesis, branched 
systems). 

3.8.4. Petri’s networks 

This methodology from the mathematician C.A. Petri (1962) proposes a dynamic 
graphic tool designed originally for qualitative modeling of discrete elements. 

                                 
40 Prusinkiewicz P., Lindenmayer, A. (1990). The Algorithmic Beauty of Plants. Springer, 
New York. 
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Following this, extensions to these standard networks were developed for systems 
where certain variables can vary in a continuous manner (hybrid networks)41. This 
formalism began to be used in biology, in particular for the study of biochemical 
networks or networks of morphogenetic processes, for which it constitutes a useful 
stage in their study and that we are going to describe in broad terms. Without 
waiting for the more general question of networks (which will be envisaged later 
on), here we briefly examine what Petri’s networks are, in comparison with  
L-systems, where each formalism has its specificities in the field of biological 
applications. A simple illustration of this is provided in Figure 3.9, limited to a 
single enzymatic reaction, glucose phosphorylation, the first stage of the 
phenomenon of glucolysis. This reaction is “discretized” according to a qualitative 
or logical point of view: the triggering of the reaction or not, without referring to the 
usual kinetic notions (molar concentrations, reaction speed). On this basis, we see 
the possibilities of extension to metabolic networks made up of variables of various 
natures, biochemical or genetic, and subject to various interactions. 

Petri’s networks are made up of two types of knots, denoted “places” and 
“transitions”, linked by directed arcs (graphs). Each of the variables in the system in 
question is attributed to a given place that is described as “marked”. Any change in 
state corresponds to the passage of a mark (or “counter”) of one place to another, a 
passage that is subordinate to crossing a transition under a condition of validation. A 
transition is validated if various entry places are marked. Various cases can be 
presented depending on the existence of conflict between several transitions (when 
these have a shared entry point), or on the contrary, when there are structurally 
parallel transitions (no shared entry point). 

 

Figure 3.9. Diagram of a simple Petri net, describing the reaction of glucose 
phosphorylation. The places are indicated by circles for each of the variables. The 
rectangle represents the transition, validated here by the presence of hexokinase  

that triggers the reaction (relation of influence noted by the double arrow) 

                                 
41 There is an active community that groups together researchers and users of Petri’s networks 
(Petri Nets World). Website address: www.informatik.uni-hamburg.de/TGI/PetriNets. 

Glucose Glucose 

ATP
ATP

ADP 
ADP 

Glucose-6-phosphate Glucose-6-phosphate 
hexokinase 

hexokinase 



76     Biology and Mathematics 

The functioning of a Petri net consists of an evolution of the marking of different 
places via the crossing or execution of transitions. The formalism is based on (i) an 
initial vector M0 (occupation or marking in different places); (ii) matrices of the arcs 
between places and transitions Pre = (P×T) and between transitions and places  
Post = (T×P). The state of a variable is specified, in a discrete manner, by the 
number of marks that occupy the place that is attributed to them. A transition is said 
to be “validated” (operational) if each of its entry places contains at least the number 
of marks required (meaning the weight of the arc involved), hence triggering of this 
transition of which the effect is to modify the marking of the entry and exit points, 
respectively by retreat and exit. 

Figures 3.9 and 3.10 provide simple examples of standard Petri nets for discrete 
and non-temporized events. Let us point out, as an extension, the type known as 
“colored Petri net”, in which we distinguish various types of marks that are specified 
or weighted by a given color. 

 

Figure 3.10. Standard Petri net with four places (p) and three transitions (t) 
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COMMENT ON FIGURE 3.10.– The weight of arcs is specified, except if it is equal to 1. 
The particularity of place p1 is to correspond to an action of influence 
(unconsumable resource). Pre: preconditions to transitions (marking of entry 
places); post: productions (marking of exit places). Incidence matrix: assessment for 
each transition between productions and consumptions. The state equation indicates 
the markings on the net after the transitions have been crossed (according to the 
notion of the Parikh vector indicating the number of occurrences per transition; see 
Chaouiya, C. (2007). Petri net modeling of biological networks. Briefings in 
Bioinformatics. 8(4), 210–219). 

Petri nets are a formalism well-adapted to the logical representation of a 
morphogenesis, meaning a set of discrete modifications (qualitative change of state 
or generation of a new element), stages that mark out the course of an ontogenesis. 
This is the case, for example, of a series of morphogenetic events that characterize 
the development in plants of a caulinary axis determined by the functioning of an 
apical meristem generating new modules, where these can be qualitatively different 
or not (depending on the passage to the reproductive state by sexualization of the 
apex). This method allows a global representation to be obtained of the structural 
relations between the development, simultaneous or delayed, of the various 
subsystems in the plant. For example, the phenomenology of the development of a 
cutting of Erica related to the processes of organogenesis and growth at various sites 
(neoformation and root and leaf growth). Let us again cite the modeling of 
meristematic functioning of a plant axis using a Petri net, taking into account the 
interactions between the genes involved (WUS and CLV genes) at different levels of 
integration (stem cell, meristem, metamer). Each functional cycle of this net leads to 
the generation of a module on the stem42. 

From a more general point of view, we can draw a parallel between the two 
discrete formalisms, namely Petri nets and L-systems. Both methodologies stem 
from the theory of automatons. This clearly shows us, for example, their application 
to the simulation of various models of plant architectures43. L-systems, characterized 
by re-writing the new state at each iteration and/or neoformation of all the elements 
in the system, are entirely suitable for demonstrating genealogies and related cellular 
groups. This being the case, they are equivalent to spatialized models, a character 
that we only encounter very indirectly in Petri nets. These, apparently simpler in 
their vocabulary, highlight the validity of transitions, hence a more explicit dynamic 
character that inspired them to study biological networks, independent of their own 
nature, whether molecular, cellular or of another type. In particular, it must be noted 
that Petri nets are based on relationships involving the consumption of 

                                 
42 Barlow, P., Lück, J. (2007). Rhythms in Plants. Springer, New York, 219–242. 
43 Prusinkiewicz, P., Remphrey, W.R. (2000). Characterization of architectural tree models 
using L-systems and Petri nets. In The Tree 2000, Labrecque, M. (ed.), 177–186. 
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resources/production, due to the existence of two types of nodes, places and 
transitions. Their function consists, essentially as it happens, of triggering a 
transition, i.e. an activation action, leaving to one side what would come from an 
action of inhibition. On the contrary, due to their qualitative nature, these networks 
are well-suited to the study of systems for which only a little data of kinetic nature is 
available (e.g. genetic networks). Since we are referring here to the field of standard 
Petri nets, let us say that the processes of –/+ regulation are currently better taken in 
account by another discrete formalism, that of models of kinetic logic by R. Thomas, 
to which the evolved Petri nets can moreover be related (Chapter 5). 

These different methodologies intended for the graphical generation of biological 
forms are sometimes currently grouped together under the name of “informational 
morphogenesis” (rather than mathematical). A more general view of this, without 
being exhaustive, is presented by J.-L. Giavitto and A. Spicher44, who justify this 
approach by taking up the principle: “calculating a form in order to understand it”, a 
question of debate that is connected to the status of the representation and of 
simulation (see the end of Chapter 2). 

3.9. Molecular biology 

Among the new ideas that have been set out in the above sections and their 
contribution to the advent of systemic biology, which was an indirect result of them, 
it is necessary to focus a little on the subject of molecular biology to illustrate the 
interlinked nature of these different points of view. Due to its fundamentally 
reductionist nature, it was inevitable that this new biology would lead to a large 
number of reactions that contributed specifically to a change of paradigm, after a 
rather euphoric period marked with undeniable innovative results. 

This discipline, thus named by W. Weaver in 1938, naturally arose from a 
coherent series of concepts and data: the notion of “gene” (theoretical entity 
implicitly postulated by Mendel in 1865), the discovery of chromosomes as the 
carriers of genes (Morgan, 1866–1945), then their location on DNA 
(deoxyribonucleic acid) and not on proteins (by Avery, MacLeod and McCarthy 
1944), the double helix structure of DNA (Watson and Crick 1953) and lastly the 
nature and functioning of “genetic determinants” at a higher level of organization, 
that of operons or coordinated systems of several genes that intervene for a given 
function (Jacob and Monod 1961). 

 

                                 
44 Bourgine, P., Lesne, A. (eds) (2006). Morphogenèse. L’origine des formes. Belin, Paris. 
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This disciplinary field initially developed due to the great interest that several 
physicists were showing for the problem of heredity. Concerning this momentum, 
which has been widely discussed elsewhere, we will limit ourselves to citing, among 
other important names, those of N. Bohr (1885–1962) and above all of M. Delbrück 
(1906–1981) and E. Schrödinger (1867–1961). Delbrück thus participated in setting 
up a “phage group” from which bacterial genetics originated. The importance of this 
group at the time was more to do with its original approach than with the results 
obtained in the replication of bacteriophages without the use of their biochemical 
information45. Concerning this historic contact between physicists and biologists, we 
can take note of Delbrück’s comments in 1949 on the surprise experienced by 
physicists on coming into contact with living things, a surprise that he attributed to 
“the lack of absolute phenomena in biology”, because “everything depends on the 
time and place […] each living cell carries within it billions of years of experience 
from its ancestors”46. 

Regarding this critical era in the history of biology, we should remember that the 
contribution made by physics related to the ideas produced much more than the 
concrete results that arose from them, no doubt except in the case of the physicist 
and chemist L. Pauling (1901–1994), with his work on the explanation of sickle cell 
anemia (deformation of red blood cells) described as a “molecular disease”. Thus, in 
1954, G. Gamov proposed the idea of a genetic code (a little after the discovery of 
the structure of DNA in 1953) as a simple hypothesis establishing a necessary link 
between DNA and proteins, but without providing it with experimental validation or 
precise correspondence to the observation. Here, we wish to point out that this 
conceptual renewal that biology enjoyed can in part be related to the mathematical 
background of these various physicists who were first and foremost theoreticians. To 
this end, their objective was to look for a representation that was both unifying and 
universal, able to bring together various distinct phenomena. Their motivation was 
to see biology achieve what physics had already acquired by this time, the mid-20th 
Century. This was the exact thought of Bohr for whom it was necessary to “carry out 
an ‘epistemological transfer’, to find out how the new vision of the physical world 
modified the view of living things”47. 

Let us return for an instant to Schrödinger’s point of view that he developed in 
his famous book What Is Life? (1944), to which a suitable subtitle could be “From 
physics to biology” since it is emblematic of this period in which many physicists 
demonstrated their interest in biology. Taking inspiration from statistical physics 
(the representation of a system with numerous microscopic variables using a small 
number of macroscopic values), Schrödinger aimed to describe heredity in terms of 
                                 
45 Morange, M. (2003). Histoire de la biologie moléculaire. La Découverte, Paris. 
46 Cited in Jacrot, B. et al. (2006). Physique et biologie : une interdisciplinarité complexe. 
EDP Sciences, Les Ulis, 24. 
47 Morange, M. (2003). Histoire de la biologie moléculaire. La Découverte, Paris. 
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molecular structure and thermodynamic stability, a novel position in biology at the 
time. Among the ideas he proposed about genetic code, we will not retain the detail 
of his hypotheses, but instead the necessity of the existence of genetic code that he 
sets out as a condition for maintaining the order that characterizes each living 
organism. Let us summarize what he said about the notion of a gene, far in advance 
of the discovery of the structure of DNA: (i) “chromosomal fiber contains the entire 
future of the organism, expressed in a sort of miniature code”; (ii) genetic 
information  is included in the configuration of covalent links at the heart of a series 
of given molecules. This is not a monotonous series of a single “motif” that is 
reproduced identically, but instead an ordered arrangement of several motifs (an 
“aperiodic crystal”) that provides the possibility to code a very large number of 
possibilities. Concerning this biological question, Schrödinger clearly points out his 
thinking: “the existing order demonstrates the ability of self-maintenance and of the 
production of ordered events” (Chapter 7, p. 183), which refers, we should say, to a 
principle of autonomy. The principle of “order from disorder”, which is often on the 
agenda at the moment, seems in his view and, on the contrary, to be completely 
foreign to life (Chapter 7, p. 188). 

Another essential motivation that supported Schrödinger’s thinking was the 
conviction that it was necessary to go beyond structural aspects of Delbrück’s 
molecular model. He effectively postulates that the code must be “in exact 
correspondence with a very complex and very elaborate development plan and must 
contain at the same time the means to put it into practice” (Chapter 5, p. 153). Yet 
Delbrück’s model “seems to contain no indication of how the hereditary substance 
accomplishes its function”, hence its call to an association with “biochemistry 
guided by physiology and genetics” (Chapter 6, p. 165). He concluded that: 

“Living substances, whilst not eluding the ‘laws of physics’ as they 
have been known to us until now, probably depend ‘on other laws of 
physics’ that have been unknown until now, but which, once revealed, 
will constitute an integral part of this science in the same way as the 
first ones” (Chapter 6, p. 166). 

The theoretical considerations made by Schrödinger are often cited as an 
epistemological historical reference of the connection between physics and biology. 
At this level, they have had a significant influence, as recognized by the physicist 
J.A. Crick (1918–2004), coauthor with the biologist J. Watson of the double helix 
molecular structure of DNA. On this well-known subject, we underline the major 
importance now attributed to considerations that are both metric and topological 
(number and connections of nucleic bases, their spatial arrangement) that 
Canguilhem summarizes in order to achieve a good understanding of what has now 
become knowledge of living things. 
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Following the discovery of the structure of DNA, there was some curiosity about 
a “central dogma”, an expression by Crick who wanted to indicate the importance of 
this new paradigm. This designation, which remained in use for a long time, refers 
to the following unidirectional linear transition, which has a major explanatory role: 

DNA segment (locus) → transcription onto the RNA messenger → 
synthesis of a protein (translation) → function 

In the following section, we present a few major points regarding the 
interpretation of this fundamental representation of molecular biology in order to 
fully appreciate its scope in relation to our objective of the formalization of living 
things. 

3.9.1. On genetic information 

First, we clearly see that this representation questions the status of this genetic 
determinism in terms of causality48. In other words, what do we understand exactly 
by “genetic information” and what is its role? Of course, genes lato sensu can be 
seen as a direct cause, without retroaction of the effect produced (such as protein 
synthesis) on the cause. However, this cause is specific in that it is a form of 
instruction that is intended to maintain morphophysiological conformity with the 
characteristics of the species. We express this by saying: in giving an order to work, 
a gene in fact acts as a standard, signifying this particular characteristic that a gene is 
not like other types of causality. 

This genetic determinism operates via the execution of a program, meaning an 
algorithm that connects a set of instructions or procedures in computer science. The 
introduction of this idea in biology (see Chapter 1) thus creates another question: by 
“genetic program”, do we mean a relevant biological concept or do we use it as a 
simple metaphor? Is it an artificial comparison or, on the contrary, a useful analogy? 
We will only cite the suggestion made by Mayr concerning the advantage of putting 
the language of molecular biology in relation to the language of computer science. 
Here, we underline instead the more serious and more precise critiques that were 
presented by H. Atlan on the principle of simplifying the action of genes to acting 
only as triggers for instructions in the program. These critiques concerned the 
development of biology in particular49. 

                                 
48 Concerning this paragraph and the following, see Maurel, M.-C., Miquel, P.-A. (2001). 
Programme génétique : concept biologique ou métaphore ?. Éditions Kimé, Paris, 40 sq. 
49 Atlan, H. (1999). La Fin du “tout génétique” ? Vers de nouveaux paradigmes en biologie. 
INRA editions, Versailles. See in particular the section “L’ADN : programme ou données ?”, 
32 sq. 
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We summarize by stating that, according to Atlan, genes are both work 
instructions in computer science and data that can be used elsewhere. On the one 
hand, their action is indeed located on a program. However, on the other hand, they 
also intervene as part of the machinery of the cellular metabolism. This new position 
relies on the fact that there is uniqueness, invariance of a genome within a given 
organism, whereas there is a great diversity of structures and functions of one cell or 
of one tissue to another. In addition, we know through genetic engineering that any 
cell has the capacity to read any DNA (even from another species) and to execute its 
instructions. 

The essential argument is that the implementation of a program in computer 
science implies the requirement for a very close link with an interpreter who can 
read it and execute it50. It is not sufficient to talk about a program of coded 
instructions; it is also necessary to have a device that is capable of deciphering it in 
order to implement it. While DNA is strictly a program, its interpreter must be 
located within its cellular machinery. While, on the contrary, DNA plays the role of 
data, the use of it implies that the program of instructions is located in the 
framework of a system of biochemical reactions (metabolisms and transports), a 
system that Atlan considers to be a Boolean network of automatons. In this case, the 
program presents itself as distributed, in the same way as a parallel computer. Of 
course, these two points of view are truly complementary. 

However, regarding this concept of the operational sharing of instructions, we 
are required to consider some questions. Effectively, from the computer science 
point of view (logical) in which we place ourselves here, the status of program that 
is attributed to cellular machinery leads to consideration of the latter as a Boolean 
system (cellular automatons). Yet can we state that a cell behaves exactly like a 
given logic network? The question does indeed arise, because biochemical networks 
evolve over the course of ontogenesis (time-dependence), leading to a connectivity 
between elements in the system that is not permanently fixed51. 

With this revised viewpoint of molecular biology that we have just described, we 
see that processing of genetic information, as the determinism of the functioning of 
an organism, begins to resemble a computer science approach rather than referring 
to concepts that are strictly mathematical such as those associated with system 
dynamics. 

 

                                 
50 In a highly schematic explanation: in contrast to the compilator, the interpreter allows the 
program to be executed by reading it instruction by instruction. 
51 A brief comment is given in Miquel, P.-A. (2007). Qu’est-ce que la vie ?. Vrin, Paris, 126. 
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Another current aspect of molecular biology needs to be mentioned, resulting 
from the need to process a large mass of varied data, pertaining both to the genome 
itself and to its productions, transcriptome and proteome. Due to this diversity of 
nature and to the interactions at play, analysis of biochemical nets of this type now 
benefits from the methodology of networks, such as Petri nets, a formalism that was 
developed in 1962 (see section 3.8.4). 

3.9.2. The linguistic model in biology 

Let us recall that Schrödinger (1944) believed that chromosomes contain the 
entire future of the function and development of living organisms in the form of 
what he called a “script code”. In this way, he anticipated the notions of genetic 
information (without using the term information which was first used by Shannon in 
1948) and of genetic programming52. Heredity was becoming a question of 
information formatted in codes and messages, whose elementary operational unit 
consisted of a combination of four chemical radicals (the bases of nucleotides) 
arranged in the form of triplets (codons) that are valid as code for protein synthesis. 

Here, we have seen an analogy between heredity and linguistics. Thus, the 
linguist R. Jakobson sought to bring together genetic code and verbal code, both 
based on a combination of elements (respectively chemical radicals and phonemes), 
from which their meaning is drawn. The term “linguistic model” in biology 
corresponds to this formal analogy on which Jacob made an interesting comment in 
197453. First, it is necessary to note that “formation of the complex through 
combination of the simple, hierarchized levels of construction through successive 
integrations of units of a lower rank do not only make up linguistic and genetic 
systems”. The common factor between the latter is the linearity of the structures that 
they create. The distinction between the verbal and the genetic is found in the fact 
that genetic material has two distinct roles: the functioning of the organism and 
hereditary transmission. While the linearity of the genetic message allows (via the 
translation) various functions to be controlled, it cannot lead to a reproduction of 
structures in 3D. On this point, Jacob recalls the idea of an internal mold, proposed 
by Buffon as a necessary condition for reproduction in 3D (a qualifier that was badly 
understood in its time, which intended to point out the difference as opposed to a 
sculptor’s mold whereby the latter produces the imprint of the surface but not the 
internal structure). Using Buffon’s terms: “Nature is capable of making molds from 
which it produces, not only the external figure, but also the internal form”54. 

                                 
52 See Pichot, A. (1999). Histoire de la notion de gène, Chapter VIII. Flammarion, Paris. 
53 Jacob, F. (1974). Le modèle linguistique en biologie. Critique, 322, 197–205. 
54 Cited by Jacob, F. (1974). Le modèle linguistique en biologie. Critique, 322, 93. 
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The advantage of the linguistic model as observed by Jacob thus lies in the fact 
that it applies both to the structure and the functions of genetic material. In any case, 
it played a deciding role in the explanation of mutations (assimilated to copy errors 
input by the copyist or the printer of the verbal message) as well as the punctuation, 
which ensures a significant discontinuity in a continuous nucleic chain. 

3.10. Information and communication, important notions in biology 

The term information, an intuitive notion of everyday life, corresponds to a 
basic concept in the study of communication between an emitter (or source) and a 
receiver, which are all terms that biology has seen in experimental reality. For 
example, genetic information (DNA → RNA → protein), conduction of a nervous 
signal and transmission of a hormone from its site of synthesis (endocrine gland) to 
its site of action (target). The notion of a source-sink couple, so familiar in 
physiology in various processes, arises from this framework. 

From the point of view of terminology, we should note (Gayon 2018) that while 
the various usual terms that describe a communication process (message, translation, 
transcription, editing) are indeed like linguistic metaphors, this is not the case for the 
now ubiquitous use of the particular term “information” in general. In contrast to 
genetic information, which can be looked at in parallel with linguistics (see section 
3.9.2), it is necessary to state a concept of a much more general scope that applies to 
a great range of phenomena in which this type of analogy does not at all occur. For 
example, a reference to information about fixing a hormone to its receptor needs to 
be considered as a transmission that does not operate according to a specific coding 
of a genetic determination type in which there is correspondence term by term 
between nucleotides and amino acids. It follows that currently, the concept of 
information is of very wide-reaching importance, in the same way as matter or 
energy55. 

By information, in its general sense, we understand a theoretical concept that 
arises from the notion of probability. As an attribute, its quantification is based on 
basic axioms of the calculation of probabilities, which convey a strong character of 
abstraction to it. That is, an event A of probability P(A). Achievement of it 
constitutes a piece of information that is all the more important since its probability 
of occurrence is low (the achievement of a certain event brings no information!). 
This is expressed as a function known as the “quantity of information” in the form: 

1
( )

( )
H A f

P A

 
=  

 
 

                                 
55 See (Ricard 1999, 2001). 
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under the conditions: 

– for a certain event: 
1

lim ( ) 0 ;
P

f P
→

=  

– for two independent events: 1 2 1 2( ) ( ) ( ).f P P f P f P+ = +  

Hence, the choice of a logarithmic function for f. 

This notion was developed by the mathematician and engineer Shannon in his 
theory of communication (1948), whose objective was to study the quantity of 
information contained within a message conveyed on a given communication route. 
Continuing from the previous subject, the principle consists of associating the 
emitter with a discrete random variable X in n states i of probability Pi, which 
correspond to the emission of a message containing n symbols. The quantity of 
information contained in this message is given by the Shannon function, known as 
“Shannon entropy”: 

2
1

( ) log
n

i i
i

H x P P
=

= −  [3.2] 

This is the mathematical expectation of the variable log2 P. Using the bit (binary 
unit) as a unit (two possible values: 0 or 1), a logarithm with base 2 is chosen. 

In the event of equality of probabilities Pi = p = 1/n, we have: 

2 2( ) log logH x p n= − =  

The quantity of information H is a measure of uncertainty. It is the number of 
questions with a binary response (yes/no) to ask at the source in order to reduce the 
uncertainty. We see its formal equivalence to the nearest sign in the entropy of 
thermodynamics, which leads to the name “negentropy” (or negative entropy) from 
Brillouin. 

This definition is extended using quantities of conditional information: 

2( ) log ( )H B | A P B A= − |  (transmission of B, where A has already been emitted) 

and of mutual information: ( , ) ( ) ( )H A B H A H A B= − |  (joint transmission of A 

and of B). 

Let us now consider the data set in a communication (letters of an alphabet, for 
example) which correspond to the emitter and the receptor and which are designated 
respectively X and Y. 
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That is, the value H(X, Y), known as joint entropy of the communication 
channel, which measures the uncertainty of the couples (xi, yi). H(X) and H(Y) 
represent the respective “self-information” X and Y, calculated as the average 
uncertainties of these two sets of data (alphabets), i.e. by averaging the expressions – 
log2 p(x) and [– log2 p(y)]. During the communication, noise can be introduced, in 
such a way that what is effectively transferred corresponds to a mutual information 
denoted I(X, Y). Knowing that the mutual information of two random variables 
measures their dependence in terms of probability (not in the sense of a causality, 
but simply of a statistical correlation, such as the classic Bravais–Pearson coefficient 
r of a linear correlation), we have: 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( , )I X Y H X H X Y H Y H Y X H X H Y H X Y= − = − = + −
 

The sum of the self-information is in general greater than or equal to the 
information that transits: 

( , ) ( ) ( )H X Y H X H Y≤ +  

(property known as “subadditivity”)56. 

This purely formal notion of quantity of information constitutes a theoretical 
basis for studying biological systems that exhibit self-organization, and that we are 
going to discuss. From a methodological point of view57, we note that the Boolean 
approach of communication circuits was introduced by the Shannon theory. Biology 
benefitted from this in the logical formalization of regulation phenomena (e.g. 
networks of genetic regulation, see Chapter 5). 

3.11. The property of self-organization in biology 

This theme of very general scope is inextricably linked to the notions of 
information and communication that we have just summarized as the basis of all 
organization of a set of connected elements. Initially attributed to physical systems, 
these notions rapidly became increasingly useful for biology. Let us give a brief 
presentation of them. 

The term “self-organization” designates the property of a living system to 
manage by itself to reach a certain structural and functional organization, to make 
this grow and to maintain it throughout its ontogenesis. It is an intrinsic property of 
the system and is fundamentally different to the action of external forces alone 

                                 
56 Concerning these basic notions, see, for example, (Ricard 2006, Chapter 7). 
57 See the detailed review by Ricard (2006). 
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(which naturally can contribute to it). This is an important aspect of the general 
property of the autonomy of living things. 

The very act of self-organization is in opposition to the trend of increasing 
thermodynamic entropy, i.e. to the evolution of the system towards equilibrium 
(homogeneity) or disorder. Let us say that this maintains a characteristic order 
despite or thanks to the multiple causes of variation. 

With the Austrian physicists H. Quastler (1908–1963) and H. von Foerster 
(1911–2002), the importance of this notion in biology took shape. It was also at the 
origin of cybernetics, in reference to Ashby. With Turing and von Neumann, the era 
was a prosperous time for new concepts and provided renewed thinking in biology. 

3.11.1. Structural self-organization 

The use of Shannon’s quantity of information first gives rise to a static view of a 
structural self-organization (Quastler, The Emergence of Biological Organization). 
Quastler and S. Dancoff (1953) applied Shannon’s theory to genetics to study the 
occurrence of errors in the transmission of genetic information. 

The opinion of von Foerster (Self-Organizing Systems, 1960), different to that of 
Quastler, advocated an operational self-organization in which time intervenes on the 
variation of the interdependence of the elements of a system. In addition, he 
conceded that the environment can act on these interactions, focusing particularly on 
the importance of random fluctuations. This is the principle of the “creation of order 
through noise”, for which mathematical theory was specified by the physicist  
H.P. Yockey (1958, 1974) who applied it to biology, in particular to the problem of 
the origin of life. This theory was finalized by the biophysicist and doctor Atlan 
(L’Organisation biologique et la théorie de l’information, 1972, 1992)58. According 
to von Foerster, self-organization has been repeated by numerous authors, such as  
I. Prigogine and collaborators on the thermodynamics of irreversible processes. 

The idea that this principle of self-organization causes joint interaction between 
internal interactions and the action of the environment is fundamentally different 
from the idea of Schrödinger (1944), which has already been described, who 
believed that in living systems, there is a “formation of order from a pre-established 
order”. 

                                 
58 This theme was the subject of a lively controversy with Thom. See, for example, his comment: 
Thom, R. (1980). Halte au hasard, silence au bruit. Le Débat, 3, 119–132. 
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3.11.2. Self-reproductive hypercycle 

An important theoretical contribution was added to these classic considerations 
with the concept of the self-reproductive hypercycle, imagined by the German 
biophysicist M. Eigen (1971). A hypercycle is a cyclic system with an enzymatic 
function that connects a series of self-replicating units (autocatalysis) in relation to 
external entries. Its operation can be formulated by a dynamic system of differential 
equations that couple the various elements at stake. 

 

Figure 3.11. Model of a hypercycle that represents the ionic regulation of the 
multienzyme system of plant cell walls (Ricard and Noat 1986). Pi: carbohydrates 
incorporated into the wall under the action of enzymes Vi ; Xi : intermediate 
compounds. The transition Xn → X0 is associated with the increase in the density of 
charge, after it has been reduced by growth triggering during the stage: Xn – 1 → Xn 

Its application to RNA has been proposed as an explanation to the self-
organization of prebiotic systems59. Two key points are envisaged in particular in 
this new context: the emergence of a cellular structure with membrane, then the 
advancement to multicellular organisms60. Let us illustrate this concept with a model 
of regulation of the growth of plant cells (Figure 3.11). The contribution made by 
the application of the principle of hypercycle to this is being able to put into 
interaction the various elements of a complex set that is characterized by the 
temporal coordination of multienzyme activity, of the progressive incorporation of 
the structural elements that constitute the wall and of the variation of the ionic 

                                 
59 Eigen, M., Schuster, P. (1977). The Hypercycle. A Principle of Natural Self-Organization. 
Springer, New York. 
60 For an overview, see Ricard (1999, pp. 333–352). 
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charge of the latter. Growth is subordinate to a given stage of this cycle, which is 
determined by the state of the parietal electrostatic potential. 

The principle of this structured arrangement of various elements in a circuit is 
used in addition to many other phenomena. For example, the system Evolon is 
associated with it, coupling an ordered series of various components that are 
involved in the same growth phenomenon61. This system provides an interesting 
phenomenological formalization of multi-agent situations in which the autocatalytic 
replication of elements and the set of their interactions are coupled together. This 
provides a basis for the interpretation of various biological processes that are usually 
understood via a global univariate mathematical function. For example, certain 
growth functions y(t) = f(t) are explained as a structured set of interdependent 
elementary compounds

,
j k

j k

x x 62. 

3.12. Systemic biology 

In order to develop what is represented by this new theme, we need to remember 
that its genesis results from the eruption, which occurred more or less jointly in 
biology, of the theory of automatons and notions of cybernetics, as we have pointed 
out above. Let us add some essential considerations that explain their connections 
despite the differences in motivation. 

3.12.1. On the notion of system 

If we refer to the property of autonomy of living things, we do indeed see that a 
biological system has the characteristics of Prigogine’s dissipative structures, 
meaning structures that are maintained far from the state of equilibrium (therefore of 
a homogeneous state without local differentiations) by a flow of matter and energy, 
a flow which is controlled, at least in part, by the system itself. The term 
“equilibrium”, in the thermodynamic sense, means the homogeneity of the various 
state variables and consequently a lack of structuring. Thus, we reach this new name 
for “biology of systems” or “systemic biology”, whose current success testifies to a 
salutary reaction to the necessarily reductionist nature of biology that is attracted to 
the supremacy, if not the almost-exclusivity, of the molecular. Whether molecules 
are constituents of a living thing (since they are themselves made up of atoms and 
these again of elementary particles), it obviously does not mean that we can reduce 
it to an elementary level of organization. In addition, the intertwined nature of 
                                 
61 Peschel, M., Mende, W. (1986). The Predator–Prey Model: Do We Live in a Volterra 
World?. Springer, New York. 
62 See, for example, Buis, R. (2016). Biomathématiques de la croissance. EDP Sciences, Les 
Ulis, 459 sq. 
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several layers of organization evidently reinforces the weight of this term of system 
whose meaning needs to be specified a little. 

The development of this trend of thought needs to be related to the work of the 
Austrian biologist L. von Bertalanffy, considered to be the founder of systemics. 
Returning to various previous research publications, the scope of his pioneering 
book (General System Theory, 1968) overtook biology alone, presenting itself as a 
universal paradigm (which inspired social sciences). Let us note that the contribution 
made by von Bertalanffy to biology, by insisting on the idea that biological systems 
are open systems (implying that they take input and output flows into account), 
relates in particular to the modeling of allometric relations and biological growth. 
Concerning this point, with respect to many classic formulations, its originality is to 
connect the laws of biological growth to the existence of various metabolic types. 

3.12.2. Essay in relational biology 

Within the sphere of influence of ideas that included the theory of automatons 
and cybernetics, on the one hand, and those of von Bertalanffy, on the other hand, 
concerning the very principle of what a system in biology can be, a movement was 
drawn up in the 1950s–1960s under the motivation of theoretical biologists  
N. Rashevsky (1899–1972) and R. Rosen (1934–1998). Their numerous works 
brought about a new current that they designated “relational biology”. 

This description needs to be justified, because it obviously does not surprise any 
biologist who is trained in the physiological thinking of Bernard, for whom 
everything is a relation in a living organism. 

The name effectively needs to be understood in the mathematical sense of the 
theory of categories, which developed from the proposals made in the 1940s by the 
mathematicians S. Eilenberg and S. MacLane. Let us summarize the basic ideas: 

– by “category”, we understand a specific collection of objects {A, B,…} whose 
relationships we seek to formalize by a transformation or projection (mapping) in a 
given direction: A → B ; 

– a function f assigns to each ordered pair of objects (A, B) a projection denoted 

H(A, B): (A, ) (A, )fB H B⎯⎯→ . 

The sets of projections H(A, B) constitute an essential characteristic of the 
structure of the category in question. 
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Having correctly specified the objects in question and the transformations that 
they will undergo63, these basic principles are completed by the classic axioms of 
composition and associativity, meaning: (i) a composition function that assigns a 
transformation denoted g f (composed of g and f) in H(A, C), to pairs (f, g) of 
transformations such as f ϵ H(A, B) and g ϵ H(B, C); and (ii) a property of 
associativity: if f ϵ H(A, B), g ϵ H(B, C), h ϵ H(C, D), then h(g f) = (h g)f. 

Generally, this theory aims to look at the existing relationships between various 
sets or different mathematical structures. The basic ideas that characterize this 
approach of establishing relations involve, on the one hand, the general notion of 
morphism (in the sense of the relations between two sets) and, on the other hand, 
what is known in algebraic topology as “homotopy” (pathway linking two 
structures). We will focus on the continuous transformation (in a given application) 
of an object or of an algebraic structure into another. For example, the 
transformation of a circle into an ellipse or the relationship between two vector 
spaces. We see the correspondence of this (in its principle) with everything that 
biology studies as part of interconnected metabolic and genetic networks according 
to a representation on directed graphs that are simply graphics of transformations. In 
other words, this theory focuses on the correlations between observables that have 
the nature of a morphism and that we seek to integrate into a diagram of categories. 

In the simple transformation diagram between A and B that is determined by an 
application or projection f, the operation needs to be described in the following 
terms of causality: 

A B

f

↓
− − → − −  

A is the material cause and f is the effective or driving cause (to repeat 
Aristotle’s terms) of this transformation. This, for example, can correspond to a 
given stage in metabolism. Concerning this basic principle, Rosen developed the 
case of systems denoted metabolism-repair (M, R) which describe, at a cellular 
level, the relationships between two compartments: (i) cytoplasm (site of metabolic 
reactions); and (ii) nucleus (providing renewal, continuity of the metabolism). By 
“repair”, he meant the reconstitution of components that have been destroyed or 
inhibited over the course of the metabolism. Since each reactional sequence has a 
given duration (lifetime), we can add a repair component Ri to each metabolic  
 

                                 
63 See Rosen, R. (1958). A relational theory of biological systems. J. Math. Biophysics, 20, 
245–260 and 317–341; Varenne, F. (2013). Rev. Hist. Sci, 66, 167–197. 
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component Mi, where the components are connected to each other by a set of inputs-
outputs. Through a representation of Rosen’s idea, we will select the characteristic 
of these entities for our explanation, meaning: enzymatic for M, RNA for R and 
DNA for the projection that defines this transformation system. 

Let us add an interesting theoretical point regarding what we call a “natural 
transformation” (or “equivalence”)64. This name is related to a property of “functor” 
or application transforming a category into another. By “natural transformation”, we 
mean the transformation of one functor into another, which respects the internal 
structure as it is defined by the law of composition of morphisms. Thus, in the very 
theoretical context of Rosen’s ideas, we can imagine that a qualitative change of 
dynamic (bifurcation) has the characteristic of a natural transformation that would be 
determined by a given functor. 

In his summarizing work in 1973, completed by his last essay, “Life itself” in  
1991, Rosen highlights the analogy between his own representation in terms of 
algebraic topology and that of the interactive networks that relate to genetic 
regulations. He insisted in particular on the close underlying relationship that he saw 
between the graphical representation of the topological relations imagined by 
Rashevsky and himself, and the recognized relationship to the function of genetic 
determinants such as the lactose operon (set of genes that play a role in the use of 
this ose in cellular energy), which was an archetypical genetic network. During this 
search for theorization, another pioneering work was proposed by Rosen (1958) as 
the illustration of its method, that of the founding model of automatons by 
McCulloch–Pitts, which describes the logical properties of nerve conduction by 
formal neurons. It attributes to a “version” in the terms of its theorization of 
categories. Let us remark that this example is suitable for this, since the notion that 
is common to the two approaches is that of black boxes that are simply understood 
to be the flow of inputs and outputs, leaving to one side what is inside (which is 
related to what is called “the underlying mechanisms”). In this attempt to see the 
principle of this relational biology applied to phenomena that are physically highly 
diverse, Rosen obviously makes widespread use of the analogy, considering, for 
example, that in the formal unit of the operon, the same properties are found as those 
of excitable nervous elements. Unfortunately, these relations are scarcely explained 
in the same level of detail that a comparison between the two kinds (topological 
transformation and the dynamic of processes studied) could produce. 

 

                                 
64 Concerning this theoretical question that has still not been applied much in biology, see 
Varenne, F. (2013). Théorie mathématique des catégories en biologie et notion d’équivalence 
naturelle chez Robert Rosen. Rev. Hist. Sci., 66(1), 167–197. 
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Relying on the theory of categories conveys a highly abstract nature to this 
relational biology, which up to the present has not limited itself to its applications, 
an analogue observation that can moreover take place for other theories, such as the 
theory of catastrophes by Thom. Accepting the difficulty, Rosen sees in his 
undertaking the very principle of a true theorization in biology, which presents the 
dilemma: “is there a unified mathematical biology?”65. 

In other words, this relational biology would like to be more of a theory than a 
model. Maintaining that it is a guide to modeling, it is thought to have a much more 
general scope than the contribution from a specific model66. Nevertheless, more 
simply, the principles of this relational biology, by the topological nature that it 
presents to any biological transformation, constitute an interesting and original stage 
in mathematical biology connections, an approach that it is necessary to cite here  
in principle, given the paths taken today in light of a formalized representation  
of biological processes. We add that this work by Rosen was revised by  
D.C. Mikulecky (2007) as a theoretical basis for complexity in biology. 

3.12.3. Emergence and complexity 

In the face of inevitable limits to reductionism while maintaining a syncretic 
holism that is difficult to master and which can lack precision or coherence, there 
was a progressive increase in taking into account this property that is denoted 
complexity67, an idea that is currently taking root but is not yet well-formalized in 
many scientific fields. To distinguish between complexity and complication68, a 
complex system is defined as a set of elements in interaction whose behavior cannot 
be predictable with the individual properties of its elements alone. Let us say that the 
general definition of a system of this kind is completed in this way: 

DEFINITION.– The most essential characteristic of a complex system lies in a 
property of non-additivity of the parts in the function of the whole, in such a way 
that the whole is more than the sum of its parts. 

 

                                 
65 According to the title of the last instalment of the master work of which he is the editor: 
Foundations of Mathematical Biology, 3 volumes, 1973, Academic Press. 
66 This question has long been debated by Varenne (Varenne 2010). 
67 “Complex”, an adjective, from the latin complexus, interwoven; from complectere, to 
embrace. 
68 Let us specify that in mathematical/computer science terms, the algorithmic complexity or 
Kolmogorov complexity is a function that quantifies the size of the smallest necessary 
algorithm that can generate a series of characters. 
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We describe it as an “emerging system” in order to underline its property of 
exhibiting new properties (known as collective properties), which are different from 
those of its parts considered separately. It is not the number of elements that enter 
into the game, but the fact that a deciding role is attributed to the interactions and 
not the elements taken in isolation, which implies a change of point of view69. 

Here, it is necessary to correctly understand the difference between emergence 
and potentiality. This term “potentiality” is given the meaning of a powerful act by 
Aristotle, as we have seen. It is also favored by molecular biologists, such as  
J. Monod, whose point of view we have already seen and according to which the 
properties of all biological systems are already potentially present in the structure 
and the functions of their elements, and more precisely of their macromolecules, 
genome and proteome. Hence, the idea quite naturally occurs, associated with the 
principle of an organizing program, of knowing in detail the parts in order to know 
the system as a whole. Everything arises from this principle of executive code + 
program. In summary, it would mean going from a microscopic level of organization 
to a macroscopic level by simple additivity, combined with a program that exerts the 
role of an organizer. Thus, the genotype → phenotype transition is seen by Monod 
(1970) as an epigenetic construction which, except for all ideas of emergence, is 
equivalent to a simple “revelation” of what is already potentially present. 

A first example, borrowed from biochemistry, is the well-known process of 
glycolysis. Effectively, we know that this essential metabolic route for the 
production of energy at a cellular level is capable of exhibiting a periodic behavior, 
whereas none of the enzymatic reactions at play present a property of this kind in 
isolation. The periodicity observed in the system has the nature of an emerging 
property. An entirely different example, borrowed from plant biology, can be noted 
here to illustrate the generality of this question. This is the description of growth of a 
stem that we could naively deduce, in the same way as a tautology, from the sum of 
its different constitutive internodes. Both experimentally and in reference to a 
mathematical model of growth, the sum of “local” kinetics cannot restitute all the 
properties of elongation of the global stem, in particular the existence of oscillations 
of the instantaneous speed of growth that each of the internodes does not at all 
exhibit. The whole is oscillatory, whereas its parts are not. Admitting the additivity 
of the local functions comes down to neglecting the non-synchronism of local 
growth. Effectively, each internode of rank j + 1 is only generated (let us say 
phenomenologically) when that of rank j acquires a certain age, meaning it reaches  
a certain stage of development. Although this consequence of a sequential 
organogenetic process is very different from the set of biochemical interactions that  
 

                                 
69 A presentation of the notion of complexity that emphasizes the contribution of the work of 
Rosen that we have just seen is given by (Mikulecky 1996). 
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occur in a chain or in a metabolic cycle, we can say that the spatio-temporal 
connection between the various internodes of the same axis has the same 
“explanatory” value here. 

The origin of the term “emergence” dates back to the English philosopher and 
economist J. Stuart Mill (1843), for whom the appearance of an unexpected novelty, 
one that is known as emerging, meant an opposition to the “law of the composition 
of causes”, because this is supposed to allow prediction based on known elementary 
causes. Stuart Mill forged the term of “laws” or of “heteropathic effects” to specify 
situations of this kind in which the observed effect does not correspond to the sum 
of the effects of elementary causes. The notion of emergence and the reflection of 
Stuart Mill were revised a little later by the English philosopher G.H. Lewes (1874) 
who, by relying on physical sciences70, highlighted the difference between emerging 
facts (that cannot be predicted) and resulting facts (predictable from what precedes 
it). For his part, von Bertalanffy (1945) refers explicitly to emergence as a 
characteristic of complex systems. 

This notion of emergence was rapidly accepted “in practice” by numerous 
English-speaking biologists. In particular, we cite the biochemist J. Needham or the 
embryologist and geneticist C.H. Waddington, both interested in a theoretical 
biology of morphogenesis71. For his part, the epistemologist C.D. Broad (1925) 
makes use of this to resolve the debate on vitalism. On the contrary, it appears that 
in France, the term “emergence” has not really entered the usual vocabulary of 
biology, whereas, meaning the contribution of an innovation, it is “something” 
essential in all biological processes of which we attempt to understand the dynamic, 
in particular via its singularities72. We can but give a reminder of how much the 
question is completely fundamental, “unavoidable”, in these two particular domains 
of the theory of evolution and embryogenesis. In their respective contexts, it goes 
without saying that the demonstration of any innovation has a fundamental property 
value, whether it is a case of abrupt variations (not gradual) within a phylum or of 
the generation of a new structure at certain stages of an organism’s development. 
Here, it is sufficient for us to cite the reference examples of the development of  
 

                                 
70 As a reminder, we can cite the famous argument of Lewes, who considered that the 
properties of the water molecule, different from those of its components H and O, must result 
from their interaction, therefore with the nature of an emergence. 
71 Waddington instigated meetings that brought together researchers from different fields, 
biologists and mathematicians (B. Goodwin, S. Kauffman, J. Maynard Smith, R. Thom,  
L. Volpert participated in this) in the 1960s. See the book that resulted from this, Waddington, 
C.H. (dir.) (1968). Towards a Theoretical Biology. Edinburgh University Press, Edinburgh. 
72 As a reminder, let us remember the point of view of Bernard; he pointed out the opposition 
between “life is creation”, and the experimental demonstration by L. Pasteur of the 
impossibility of spontaneous generation of any kind. 
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the eye over the course of evolution or the formation of polarized axes that are  
well-defined at certain stages of embryogenesis, a major factor in any organization 
plan. Let us recall, for example, that in causal embryology, an important acquisition 
was the notion of an organizational center, a zone that needs to be defined in  
spatio-temporal terms for each of the differentiated outlines. Embryogenesis could 
thus be seen as a series of distinct morphogenetic inductions. Inclusion of a principle 
of self-organization in all ontogenesis, animal or plant, was later equated to a change 
of scale. 

For any observation scale, emergence is presented as a discontinuity, in contrast 
with the continuum that is the underlying medium for it, let us say the form versus 
the basis or substrate. We see the connection with the mathematical notion of 
singularity, which refers back to the general continuous-discontinuous dilemma. 

It is also a surprise to observe how little attention is attributed to this concept of 
emergence, or even the lack of it, in a range of works outlining thoughts on  
the general theme of “explaining life”. Let us add that, even in epistemology,  
the importance of this notion was recognized in France late and with a certain degree 
of reticence. The classic reference dictionary by J.J.L. de Lalande demonstrates this 
(Vocabulaire technique et critique de la philosophie), in creating late on (in the 
1940s) an entry for the term “emergence”, and in addition only attributing a 
descriptive value to it, while refusing to see it in the sense of an explanatory 
hypothesis or a promise of intelligibility. This surprising characteristic is  
well-described by A. Fagot-Largeault73, who discusses at length the meaning and the 
means of this notion of emergence in some wider interdisciplinary concepts (besides 
form and causality). 

It is different for the problem of epigenesis, which seems connected but which in 
reality is very different. Under this term, effectively, there is firstly its historic 
opposition to the former idea of preformation in which an egg is seen as a miniature 
being which simply needs to be deployed. More generally, by epigenesis or 
epigenetics, we mean everything which, in particular throughout embryonic 
development, not only relates to genetic determinism, but is also controlled by other 
factors, which can cover a great variety of issues or processes (see section 1.2). For 
example, cellular differentiation varies locally depending on the site, whereas all the 
cells in an organism have the same genome, a recurring point that was put forward 
in the 1920s by T. Morgan in his key research into the genetics of drosophila. Let us 
add that the term “epigenetic” was outlined in morphogenesis by Waddington, by  
 
 

                                 
73 In Andler, D., Fagot-Largeault, A. and Saint-Sernin, B. (2002). Philosophie des sciences,  
vol. 2. Gallimard, Paris, 939–1048. 
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attributing a very general theoretical meaning to it that expresses a plurality of 
potential development routes (denoted “chreodes”). This is the famous designation 
of an epigenetic landscape, including potential wells and potential barriers. With 
this idea, a choice of morphogenetic behaviors operates with a principle of 
optimality in response to the exercise of constraints that play the role of control 
variables. 

In passing, it is useful to return to the thoughts of Stuart Mill (Système de logique 
déductive et inductive, 1843) who proposed a distinction between two types of laws. 
Certain laws, which he described as “homeopathic”, correspond to a “composition 
of causes”, in analogy with the vector addition of forces in mechanics. On the 
contrary, other laws, denoted “heteropathic”, do not comply with this principle of 
vector composition (this would be the case for chemical reactions). If living 
organisms are very strictly composed of physical elements, their properties would 
result from these heteropathic laws, thus violating the principle of a simple 
composition of the properties of their constituents. Along the same lines, Broad 
referred to “intra-ordinal” laws for those that connect the elements of a particular 
organizational order (e.g. neurons) and “trans-ordinal” laws for relations between 
elements of different orders (in fact limited to between contiguous orders). We can 
observe in this an outline of the position held today by the interactions between 
elements in the same system or even of the multi-scalar approach. 

While research into complex systems became the declared objective of certain 
laboratories, such as the Santa Fe Institute (United States of America), founded for 
this objective in 1984, in reality the need for a change of paradigm took shape much 
earlier and very progressively. Without revisiting the points of view of the 
biotheoreticians Rashevsky and Rosen, it is useful to note J. Bonner’s comments on 
the subject in 1960, i.e. a little after the discovery of the structure of DNA in 1953. 
In an editorial entitled simply Thoughts about biology74, Bonner was already 
indicating the need to take up a position at a level of abstraction above classical 
biology, by making the following statement of ambitious intent: “Biology is 
becoming a rigorous science with sophisticated laws and operational rules and 
theorems”. 

Since statements of this kind, which took a long time to be accepted, this 
ambitious objective has a history in itself, which we will talk about further on, 
concerning the panorama of mathematical tools in biology that we draw up (Chapter 
5). For the moment, let us note that in its general meaning, the use of the formalism  
 
 

                                 
74 Bonner, J. (1960). Thoughts about biology. Amer. Inst. Biol. Sci. Bull., 10(5), 17. 
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for dynamic systems (differential equations) extended progressively in the following 
stages: 

– a single global variable y(t) as is seen in a univariate law of growth (population 
numbers); 

– p interdependent variables y(t), y vector; 

– effect of position in a field x: y(t, x) (local variations in activity); 

– reaction + transport (diffusion, for example): models of reaction-diffusion 
which describe the process as spatio-temporal in nature; 

– structured model: several classes of the same variable (stratification in classes 
of functional equivalence, age classes in a population, classes of cellular states); 

– multi-agent model: several groups of individuals (biological associations); 

– multi-scale model: consideration of several organizational levels (molecule, 
cell, tissue, organism, ecosystem). 

3.12.4. Networks 

According to a general definition, “a network is a set of objects that are 
interconnected and united by their exchanges of matter and information”75. We have 
already had the opportunity to refer to this formalism, having seen in particular the 
specific case of Petri nets. It is now necessary to situate it in a more general manner 
as a basic concept in the study of many biological phenomena, from cell biology to 
biology of populations and ecology. 

In fact, this term designates a type of system organization which is based on the 
theory of graphs, more exactly in our words on directed graphs. The objective is to 
obtain a precise representation of the relations between the different objects or 
elements of the system. We therefore have a set of N nodes that feature the various 
elements, which are variously connected to each other by a number k of directed 
arcs which signify their relationships ℜ. Here, we will only look at non-valued 
connections. A network is a given combinatorics of the relationships between nodes, 
where each node is connected only to a precise number of other nodes. We observe 
that every directed arc that corresponds to the existence of a relationship in a given 
direction (source–target type: x → y), i.e. x ℜ y, has the connotation of a direct 
causality, let us say local. But globally, of course, the principle of causality is 
presented as diffuse, distributed over the entire network, which provides a 
considerable extension of the principle of circular causality by T.A. Hutchinson 
(1948), which at the time completed the direct linear connection. 
                                 
75 Parrochia, D. (1993). Philosophie des réseaux. PUF, Paris. 
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This principle of representation, relatively recent in its theoretical aspects, is 
currently an important theme in mathematics. It has universal scope, applying to a 
wide variety of systems that are encountered in both social sciences or economic 
sciences, and to natural sciences. This notion of a network is particularly relevant to  
biology, and is now considered to be an essential concept to understand living 
things. Thus, as significant examples, we can cite metabolic or genetic networks, 
neural networks or even ecological networks, all of which are communication 
networks (lato sensu) according to highly varied graphs that can be (but are not 
necessarily) of large dimensions and above all subject to variation (evolution of the 
arcs between nodes). The notion of a network in biology is both structural and 
functional in nature. Let us note in passing the significant difference with certain 
physical networks, like those used in crystallography, such as Bravais networks that 
were proposed in 1838 as a representation of the plant facies phyllotaxis (with well-
known critiques from the botanist Plantefol concerning this strictly structural aspect 
considered a priori as purely hypothetical) (we will summarize this in Chapter 5). 

Developed in the second half of the 20th Century, graph theory originated from a 
problem of mathematical recreation examined by L. Euler in 1735 and known under 
the name the “problem of the Seven Bridges of Königsberg”. Königsberg (today 
known as Kaliningrad) is a city of Old Prussia, established on the two banks of a 
river and on two islands, and includes seven bridges that connect the four districts of 
the city. One of these bridges connects the two islands together, and the six others 
connect the islands to the two banks of the river. The following question then arose: 
is there an itinerary going from any point in the city which takes each of the seven 
bridges, and only once, before coming back to the starting point? The constraint 
applied to the graph construction is to use the various connections only once (here, it 
is a case of simple pathways, not directed graphs). L. Euler showed that there is no 
solution to this problem. Subsequently, it was necessary to wait until the 1990s to 
see the effective use of graphs that allow a natural network to be described or that 
allow one to experiment with the consequences of a variation of connections. 

Mathematically, a graph G pertaining to a set or a system S is a sub-set of a 
Cartesian product of S by itself: 

G S S⊂ ×  

which defines the nature of the relationships between nodes. That is, xi ℜ xj is the 
relationship between elements xi and xj. 
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Different types of networks need to be considered depending on the type of 
relationship between nodes76. One of the important points relates to the evolution 
possibilities of a given network. In effect, it is not sufficient to describe a system 
like this in a mathematical graph, because it is also important to specify the variation 
possibilities of the connections between nodes. This can be seen by means of an  
experimentation or simulation on the network itself. On this subject, let us note that 
various algorithms have been designed for the generation of networks (e.g. the 
Barabási–Albert model for the generation of scale-free networks). 

Concerning the evolution of networks, we emphasize that the modifications of 
the connections within a natural system can have a sense of reaction or adaptation in 
response to this kind of constraint or stimulus (such as modifications of neural 
connections during learning or the failure of a biochemical site in a metabolic 
network). An important practical point is the robustness of a network, meaning its 
capacity to resist disturbances that can dismantle it. This property depends, of 
course, on the network topology, as well as on the probability of node deletion 
(existence of a threshold or a critical probability). 

3.12.4.1. Random networks 

Random networks are described by a distribution of the frequencies of the 
number of connections that follow the Poisson law of probability (a law that we will 
describe in Chapter 5, regarding random processes) (a bell curve of frequencies). In 
networks of this kind, there is therefore a small number of nodes that are either 
weakly or strongly connected, and a large number of nodes with an average degree 
of connection. It is useful to study the evolution of this type of network. Effectively, 
its size can be modified by making an experimental modification of the ratio of the 
number of nodes connected by arcs of a given length and the number of arcs present. 
This ratio has a threshold value beyond which there is a significant increase in the 
number of nodes, which can lead to a network of a very large size being created. 
This property of abrupt transition is observed in the phenomenon of percolation for 
which the mathematical model was introduced in 1957 (J. Hammersley). The well-
known typical example is the movement of a fluid in a porous medium. This process 
has been studied using a network of specific sites that allow information (here the 
fluid) to be transmitted in given directions. Another situation is a set of sites that can 
fix a ligand with a given probability. This principle is reused in the study of the 
propagation of various evolving physical or biological processes (forest fires, for 
example). 

                                 
76 Concerning the notion of network, refer to (Ricard 2008, Chapter 6) and (Zwirn 2006). 
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3.12.4.2. Small-world network 

An important category of networks is the “small-world” category. Advocated by 
the American psychologist S. Milgram in 1967, this type of network is based on the 
following hypothesis: any individual can be connected to another via a short chain 
of connections. Milgram deduced the concept of “six degrees of separation”  
(using the average number of connections recorded) from his experience  
in psychosociology, studying the average path length for social networks. 
Subsequently, this question was studied by the physicists D.J. Watts and S.H. 
Strogatz, who proposed in 1998 the first model of the small-world network. 
Experimentally, on a regular network, they observed that the random addition of a 
few connections allows the direct length between two nodes to be reduced (from 
“very long” to “very short”). It appears that their work originated from observations 
of crickets’ stridulations, whose behavior testified to a strong coordination between 
individuals over large distances. 

Two properties characterize small-world networks grosso modo: 

– the average distance between two nodes is proportional to the logarithm of the 
number of nodes (whereas in a mesh, the average distance is proportional to the 
number of nodes); 

– the neighbors of a given node are often connected to each other (this does not 
take place in random networks). 

3.12.4.3. Scale-free networks 

A scale-free network is a network with an average degree of node connection k 
(number of arcs that connect a node to other nodes) that follows a power law: p(k) = 
k– γ; γ > 0. A network of this kind has a limited number of highly connected nodes, 
and a large number that are weakly connected. The comparison between frequency 
curves that follow the Poisson law and those that follow this negative power 
function illustrates the difference with random networks. In terms of growth of a 
scale-free network, highly connected nodes tend to establish new links with other 
nodes, which weakly connected nodes cannot do (property of “preferential 
attachment”). In networks of this type, “hubs” are created through which various 
internode relations pass. Many networks are of this kind, for example the Internet, as 
well as metabolic networks77. These networks are considered to be resistance to the 
loss of a node or of an arc (e.g. inhibition of a metabolic function or of the 
regulation of a gene). Due to the network topology, accidents of this kind only 
modify the general behavior a little, hence the name scale-free, in which the 
dominant aspect is the importance of highly connected nodes. On the contrary, if 
these super-nodes are damaged, the network becomes vulnerable. 

                                 
77 Albert, R. (2005). Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957. 
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Two examples of simple networks are indicated in Figures 3.12 and 3.13, based 
respectively on Goodwin’s system of differential equations for genetic regulation 
and on qualitative modeling of logical kinetics by Thomas (see section 5.7). 

 

Figure 3.12. Genetic regulation network based on Goodwin’s differential formalism 
(indicated in B). C: result of a simulation (initial conditions and parameters set up in 
advance) that leads to a stable stationary state; the three curves correspond to the 
numbers of RNAm (m) molecules, of enzymatic protein (e) and of the metabolite G 
(corepressor g) (according to Thieffry and de Jong (2002)). For a color version of this 
figure, see www.iste.co.uk/buis/biology.zip 

The importance of the notion of network in biology has now been completely 
acquired in principle. It has been outlined by various authors, in particular  
S. Kauffman (The Origin of Order, 1993) who insisted on the property that certain 
complex systems have of exhibiting a spontaneous order. Thus, the order of a 
network configuration can emerge, meaning a parallel functioning (and not in 
sequence like how an algorithm would advance step by step) due to the fact that 
several nodes can be in activity at the same time. Enriched by the mathematical side 
of networks, this agrees with the principle of genetic determinants that is founded, 
for the execution of a given function, on the coordination of several genes 
(according to the notion of operon). It is also necessary to note that, in many 
situations, there are in fact networks of networks, such as metabolic networks. In the 
latter, the nodes are the metabolites and the arcs represent multi-enzymatic 
transformation reactions, where these are actually networks in themselves78. 

                                 
78 (Ricard 2008, Chapter 10). 
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Figure 3.13. Network associated with the Boolean modeling of logical kinetics  
of a system of two mutually exclusive genes. For a color version of this  

figure, see www.iste.co.uk/buis/biology.zip 

COMMENT ON FIGURE 3.13.– B: synchronous functioning. The equations express the 
fact that at a given instant (t + 1), the coding gene for the first repressor (variable x) 
will only express itself if the second repressor (variable y) was previously absent (at 
instant t) (the same is true for the expression y). The system has two stable states 
[10] and [01] according to a cycle in which the two genes turn on and switch off in 
an exactly synchronous and indefinite manner. C: asynchronous functioning. The 
same stable states as in B, but the evolution depends, according to the states, on the 
commutation transition times (arrows), which is why one repressor can reach its 
action threshold more rapidly that the other (according to Thieffry and de Jong 
2002). 
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3.12.5. Order, innovation and complex networks 

Let us return to this important question of the evolution of networks. Based on 
the behavior of these evolutionary systems that are described as complex systems, 
Kauffman points out the necessity of now being able to conjugate these two 
principles of general scope: self-organization and natural selection. This is in effect 
entirely insufficient to reflect biological evolution. If the genome is a network, and 
so dynamic at a cellular level and therefore the ontogenesis of an organ or of an 
organism, it cannot only depend on Darwinian selection, but additionally (and above 
all) on the founding principles of the representative network. This subject has been 
helped in recent years by the notion of the edge of chaos, the region of transition 
between order and chaos. This expression, proposed by C. Langton in 1990 and used 
in reality as a metaphor, results from mathematical simulations on the dynamic of an 
evolving system such as a cellular automaton, near its transition towards an 
unpredictable chaotic behavior. This research demonstrates that certain complex 
systems can tend towards self-organization (as shown by Kauffman in 1991). 
Biologists will willingly refer to an adaptative system to underline its connotation 
with the property of living things that are constantly able to adapt and to survive 
(dynamic homeostasis), and therefore possibly able to innovate. 

Kauffman’s work relates to the behavior of a Boolean network of N nodes 
(values of 0 or 1), such that each note depends on K other nodes (network NK). The 
basic idea is based on the concept of operon by Jacob and Monod. Thus, in the 
simplest case of a circuit of two genes, where one is the repressor of the other, we 
have two possible stable configurations depending on the gene that is activated, 
determining two different physiological functions for an identical genome. As an 
extension to this principle, Kauffman studies the dynamic of a genetic network in 
which each gene depends on K other genes. The transition from order to chaos 
depends on the relationship between the frequency of the numbers 1 and 0 in the 
whole network. The parameters P and K determine this transition. Whatever the 
value of K, there is a value of P for which the network has a non-chaotic dynamic 
(order side of the region). 

This is the moment to describe the outlines of the current framework for different 
types of stability of a dynamic complex system. In addition to the three types of 
dynamic behaviors that are already well-documented in the context of differential 
systems: (1) stability (punctual or multiple by multistationarity depending on the 
initial conditions); (2) regular oscillatory regime (limit cycle); (3) instability by 
disordered and unpredictable oscillations (chaos), there is in effect a fourth type, 
which corresponds to the regime known as the edge of chaos. The effect of a 
disturbance is weak and relatively brief for the two initial cases (structural stability), 
significant and irreversible for the characterized chaos. Concerning the edge of 
chaos, the effect is in principle localized and long-term. Additionally, in contrast to 
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other cases, it presents a capacity for innovation which has the meaning of  
self-organization. Observed in sociology and economics, this property is advocated 
by Kauffman for genetic networks. The simulation of its cellular automatons 
demonstrates that adaptative systems evolve towards this region of phase transition 
at the order–chaos border. The meaning of this behavior, in contrast to an ordered 
regime in the sense of classic stationarity of differential systems, is seen as an 
equilibrium or a compromise between stability and flexibility, which allows  
long-lasting innovation. However, this still remains a working hypothesis. The very 
useful contribution made by simulations using Boolean automatons that we have just 
drawn up does indeed require proof or validation that biological systems could 
themselves offer79. 

3.13. Game theory in biology 

It was without doubt Buffon who, in relation to his thoughts on the “franc-
carreau” game that we previously considered, insisted first on the role of psychology 
in the calculation of probabilities. He considered that in a random draw game, a kind 
of utility principle intervenes automatically in the player, meaning that their 
behavior is likely to influence the result. In other words, theoretical mathematical 
expectation is added to the question of behavioral strategy. 

This is the objective of game theory, which is to formalize an optimal strategy 
among various possibilities or possible decisions. The mathematician E. Zermelo 
was the forerunner of this in 1913. His work was revised and developed by von 
Neumann and O. Morgenstern (1944). Initially attributed to the study of economic 
problems, this theory had initial applications in biology in the 1970s, with a view to 
modeling animal behavior, in particular in research by J. Maynard-Smith (1920–
2004)80. This biologist was interested in the applications of mathematics in ecology 
and particularly in genetics (he was a student of J.B.S. Haldane), mainly in his 
relations with Darwinian evolution. In contrast to the economy, in which there is a 
certain liberty of decision, evolving processes are considered to be blind processes. 

Let us draw up a representation of the principle of this approach in the problem 
of aggressiveness in animal populations, asking the question: does the course of 
evolution favor aggressive animals or is there a stable equilibrium that restricts the 

                                 
79 Concerning this idea of self-organization and evolution at the edge of chaos, see  
the reservations that it provokes in ethology (Theraulaz, G., Spitzt, F. (dir.) (1997).  
Auto-organisation et comportement. Hermès, Paris). 
80 Maynard-Smith, J. (1982). Evolution and the Theory of Games. Cambridge University 
Press, Cambridge. In 1968, this author published Mathematical Ideas in Biology with the 
Cambridge University Press, a small book (152 pages) that presents an outline of the way in 
which some basic biological processes are approached mathematically. 
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proportion of them? This is the dilemma known as “dove strategy versus hawk 
strategy”. An aggressive individual (= hawk) intending to occupy territory or take 
power (e.g. a male with respect to females and in opposition with his competitors) 
puts his life in danger because he risks not transmitting his genes. Hence, from a 
teleonomic point of view (although this term is rejected), research focuses on the 
effect of behavioral strategies, such as flight or attempting to find a compromise, for 
example the approach rituals acting as a warning which can avoid a damaging 
confrontation. Maynard-Smith proposed a mathematical model based on game 
theory from which the concept of evolutionarily stable strategy (ESS) arose and has 
now become classic. We will provide an outline of this as a simple example of game 
theory in biology. 

By means of some simplifying assumptions, we look for the gain G that results 
from the hawk F-dove Co game, in various meeting situations: (F, F), (Co, Co),  
(F, Co), (Co, F). The meeting noted (I, J) designates an individual that uses  
strategy I compared to an individual that adopts strategy J. The games matrix Γ 
groups together the average results of these encounters in terms of gains G and costs 
C: 

2

0
2

G C
G

G
Γ

− 
 

=  
 
    

For example, the meeting between two hawks leads to a conflict with the average 
result of a shared gain G-cost C balance, each of them presumed to have the same 
probability of winning. 

The gain of an average individual, meaning the probability of the adopted 
strategy, is a function of the proportions x(t) and y(t) of these two groups F and Co 
in the population: 

[ ] x
x y

y
Δ Γ  

=  
   

Finally, we presume that the choice of a strategy of this kind also depends on the 
difference (+ or –) between the resultant gain and the average gain of individuals in 
the population. Hence, the evolution equation of the group F: 

1
(1 )( )

2
x x x G C x= − −
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This equation presents three possible stationary states. Other than the cases of 
exclusion of one or the other of the groups, there is an equilibrium solution known 
as a stable “polymorph” in which both groups co-exist. The proportion of hawks is 
then: x* = G/C, an example of an evolutionarily stable strategy. 

In this basic model, strategies are qualitatively set up a priori. An initial 
interesting extension consists of laying down the principle of an adaptation of the 
strategy depending on the meeting. This game model is known as retaliatory. The 
strategy R (retaliator) is added to the preceding strategies F and Co: a dove 
individual adopts a hawk strategy if they are subject to the aggression of a hawk 
individual, otherwise they remain a dove. The game matrix becomes: 

2

0

v u v v u

v v

v u v v

Γ
− − 

 =  
 −    

where v = G/2 and u = C/2. Taking into account the condition of normalization of 
the numbers in the three groups x(t) = y(t) = z(t) = 1, we have the dynamic system: 

( )2/ 2 ( ) 2

/ ( 2 2 )

dx dt x u u x u v y u x y u x

dy dt x y u v u x u y

= − + + + − −

= − − −  

One of the solutions (depending on the values of u and of v, with v < u) can 
(depending on the initial conditions) be the stable equilibrium (x*, y*, 0) of the 
coexistence between the hawk and the dove. However, in their initial proportions, an 
elimination can take place instead of the hawk strategy, since the population ends up 
containing only the dove and “retaliator” types (Figure 3.14). 

 

Figure 3.14. Hawk-dove-retaliator game. u = 2; v = 1 
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Another basic game is “rock-paper-scissors”. These illustrative terms signify 
three types of strategy with the results: (i) the scissor wins over the paper but is 
blunted by the rock (and so becomes inert); and (ii) the paper wins over the rock 
because it can cover and therefore paralyze it. The matrix of gains is given as: 

0 1 1

1 0 1

1 1 0

Γ
− 

 = − 
 −   

We demonstrate that the trajectories representing the variations in quantities x(t), 
y(t), z(t) are closed curves around a center of equilibrium (1/3, 1/3, 1/3). This game 
then leads to regular oscillations in the proportions of individuals that play this 
strategy a priori R, C or P. In this case, characteristics of oscillations (amplitude, 
period) depend on the initial state. The introduction of a parameter that modifies the 
previous behavior can determine a bifurcation of the dynamic, which leads either to 
the installation of a unique closed trajectory (limit cycle) (i.e. regular oscillations), 
or to a damped oscillatory regime that leads in the end to a unique (punctual) stable 
state. 

Other more elaborate games need to be pointed out, such as games with two 
gains matrices Γ that correspond to situations in which two groups co-exist, each 
with their own strategy (e.g. males and females), or even games with a cooperation 
strategy (on the basis of the classic game known as the prisoner’s dilemma, based on 
cooperation by admitting and/or denouncing vs. denying). The latter leads to an 
altruistic effect, where the gains can increase due to cooperation between players. 

This issue of behavioral strategy applied to evolutionary genetics results in a new 
vision of natural selection by Darwin, consisting of looking at the gene level and not 
at the level of the species, which resulted in the concept of the selfish gene (Dawkins 
in 1976). This metaphorical expression, presented without a teleonomic a priori, is 
not contradictory to an altruistic effect and its starting point is moreover the 
prisoner’s dilemma game, where a cooperation strategy can be equivalent to an 
appearance of altruism. It simply means that if this gene dominates, it is “as if” the 
selection was favoring its expansion, which would be determined by its behavior 
towards others. A debate followed, on the one hand, concerning the pertinence of the 
“gene level” in question and, on the other hand, concerning the facts of conflict with 
altruistic behaviors that benefit the group or the species. Regardless of the case, 
game theory has taken up an important place in genetics, where we consider that 
current genes are those that, during evolution, have benefitted from the best possible 
strategy, a condition of their expansion at the scale of the population of the genomes 
determined at their conception. 
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In a wider sense, beyond this particular branch of genetics, a new field has been 
created, known as evolutionary biology. Its objective is the analysis of population 
dynamics whose development results, other than the classic state variables of the 
state of the system, from an additional determinant designated under the generic 
term “strategy”. 

Moreover, this term is well-known in biology in the designation of two types of 
population growth, animals and plants, depending on whether the reproduction rate 
(increase and precociousness of the fecundity or vegetative multiplication) or the 
capacity of the environment in terms of available resources (increase in individual 
biomass and lifetime) is favored. Beyond the first research works that were above all 
aimed at research into food, these two types of demographic strategy in a fluctuating 
environment are designated (Pianka in 1966) by the terms “r-strategy” and  
“K-strategy”, in reference to the parameters r and K of the logistical growth model 
that we have mentioned. Returning to this idea, game theory consists of taking into 
account the fundamental property of living things which is the ability to adapt to the 
environment. 

3.14. Artificial life 

The term “artificial life” was proposed by C. Langton around 1980 to designate 
the application on an artificial medium of the principles or laws of living systems. 
This artificial medium can either be abstract in nature, like a grid or a lattice that 
represents a field of living cells in development on a given substrate, or physical in 
nature, in the same way as everything that relates to the construction of biomimetic 
automatons that simulate the behavior of a superior animal. 

Although the name “artificial life” can be applied to all work, even simply 
calculational or graphical (e.g. the simulation of plant architectures) which results in 
reproduction of these properties of a living system (i.e. a kind of synthetic biology 
where our opinion on the pertinence of this designation is not important), which is 
used in particular for everything that relates to the theory of automatons. 

We have seen that the origin of this theory lies in a set of research works, in 
particular those of von Neumann in the 1950s–1960s and those inspired by 
cybernetics such as the science of regulation of a system (Wiener in 1947). Let us 
summarize the connection that can be established between artificial life and biology 
itself. 
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3.14.1. Biomimetic automatons 

Mankind has always attempted to construct machines inspired by living things 
which simulate their effects or behavior81. A long time before the developments in 
robotics that we are currently experiencing, various automatons were created. 
Particularly well-known works are those of Leonardo da Vinci during the 
Renaissance, then those of J. de Vaucanson in the 18th Century, with his numerous 
and famous mechanical constructions. Vaucanson’s82 duck is often mentioned, an 
automaton with 400 parts that had various functions (breathing, digestion, excretion, 
locomotion, but not reproduction). However, there is no biological aspect to the 
design of these machines. On the contrary, with the advent of cybernetic automatons 
(the “electronic animals” of the physiologist G. Walter and the engineer A. Ducrocq, 
the Homeostat of Ashby), a step forward was made, because they were founded on 
notions of regulation and control that we knew were common to living things and to 
electronic machines. In fact, the creation of cybernetic machines was the preliminary 
to the project for artificial life. 

Regarding this analogy between living organisms and machines, we often 
consider, along with Jacob, that “animal and machine, each of the systems then 
becomes a model for the other […] animals can be described in light of machines. 
Organs, cells and molecules are then united by a communications network”83. In 
reality, physiology preceded cybernetics with the demonstration of hormonal 
regulations determined by communication between the production site (endocrine 
gland) and the reception site. Discovery of the first hormone, secretin, was made in 
1902 by W. Bayliss and E. Starling. Of course, the role of cybernetics was essential 
in generalizing and reinforcing the importance of the notion of communication in all 
systems at the same time as directional diversity and the sign of connections 
(feedback, feedforward). 

A new objective then appeared with the issue of learning. The importance of 
learning processes is already recognized in living things where adaptation is a 
condition for survival, and also in all machines which target a performance with 
respect to an assigned objective, namely prefiguration of the robot. Thus, in this 
field that relates to our subject, a connection is established between these “bionic 
machines” which originate from artificial intelligence methods and animal 
psychophysiology, both of which attribute great importance to mathematics and 

                                 
81 The idea of a material automaton seems to have taken shape very early on, in the 4th 
Century B.C., through the philosopher and mathematician Archytas who created a bird that 
was capable of flying, a precedent to Leonardo da Vinci and Jacques de Vaucanson. 
82 A diagram is provided of this by Giavitto, J.-L., Spicher, A. (2006). Morphogenèse 
informatique. In Morphogenèse. L’origine des formes, Bourgine, P., Lesne, A. (dir.). Belin, 
Paris, 328. 
83 Jacob, F. (1970). La Logique du vivant. Gallimard, Paris, 273–274. 



Biology Fashioned by Mathematics     111 

computer science and which can moreover be considered more technical than 
conceptual. This aspect draws up a relationship between this research and what is 
commonly known as bioinformatics. 

3.14.2. Psychophysiology and mathematics: controls on learning 

At the interface between physiological mechanisms and cognitive sciences, a 
significant contribution has been made by mathematics and subsequently developed, 
meaning that of networks of formal neurons (or artificial neurons). 

By “network of formal neurons”, we mean a structured set of numerous 
interconnected units of calculation that work in parallel and have connections that 
are likely to evolve. A connectionist network of this kind is capable of learning to 
recognize and class forms, by means of learning in advance from examples proposed 
by the operator with a view to a certain objective or a project to implement. 

The first mathematical model of a neuron was created by the neurologists  
W. McCulloch and W. Pitts in 1943, designed as an analogical tool to analyze 
relations that may exist between a computerized calculation algorithm and the function 
of the human brain. From this basic model, other types of formal neurons were 
developed. In the same way as dendrites and the axon of a biological neuron, a formal 
neuron is a mathematical object that has several inputs and an output, and that has a 
learning function that modifies internal connections. Each input is weighted by a 
“synaptic weight”, and the output is determined by an activation function. This, in the 
model by McCulloch and Pitts, is the Heaviside function which takes the values 0 or 1 
(step function) (this is a primitive version of the Dirac distribution). Other models use 
a less abrupt function, such as the logistics function or the hyperbolic tangent function. 
Due to the calculation errors that are a necessary part of learning, a second derivative 
function is used. A valuable extension, which greatly increases the calculation power, 
was designed in 1957 by F. Rosenblatt under the name of “multilayer perception”. It 
consists of a set of layers of neuron networks, connected between themselves in a 
given direction from the input layer to the output layer. 

This research is within the realm of what is known as “artificial intelligence”. 
An initial development of this relates to what we call expert systems. By “expert 
systems”, we mean software that responds to a certain number of questions in order 
to then act as a decision tool. It functions with a set of varied information 
(knowledge basis) and logical rules (reasoning). As examples of application, we can 
mention diagnostics tools in medicine and reasoned management of a crop in 
agronomy (choice of inputs, taking into account the nature of the soil, the climate, 
etc.). For a number of years, research has focused on the question of deep learning, 
a term that combines powerful computer methods of automatic learning, using in 
particular large networks of multilayered artificial neurons. These methods are  
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fast-growing, aimed, for example, at the problems of recognition of forms (images, 
faces, texts) (see section 3.7) or voice recognition (without mentioning the 
confrontations in the games between humans and computers that have received so 
much media attention). 

Here, let us look in detail at the development of this analogy of calculation in 
this particular field of psychophysiology. A new term was created from this: 
“animate”. In this term that combines both the animal and the material, we designate 
any artificial entity that is not purely abstract, that has a high calculation capacity 
and an ability to adapt, and which is able to simulate a biological behavior  
(higher animals) (Wilson in 1985). We thus evolve towards another field, robotics,  
where animates associate mechanics (movement), electronics (regulation) and 
calculation (recognition and decision). The aspect that is of interest to us here is that  
these artificial systems possess a property of self-organization, where the 
connections of formal neurons are subject to reorganizations brought about by 
learning. Regarding the use of this term in biology, it is necessary to specify that 
here, this consists of self-organization in a weak sense according to the distinction 
made by Atlan. In other words, there is a programming of general, non-specific 
learning rules, and the meaning of functioning is defined a priori by the designer. 

In summary, on the basis of this fundamental idea that a bionic system is 
necessarily capable of adapting its operation to different situations, we encounter 
one of the characteristics of the history of biology, namely the tendency to reject or 
at least minimize everything relating to a strict predetermination or a preformation, 
however without allowing ourselves to exclude these points of view, which are in 
part true. This tendency or position of principle therefore promotes the idea of 
natural selection and widens its scope. Leaving behind its initial field of the 
evolution of natural living things, it is at the origin of genetic (or evolutionist) 
algorithms whose field of application widely surpasses that of biology. 

3.15. Bioinformatics 

Under this name, as is heard most often in practice, it is not at all a case of 
grouping together all applications of computer science in biology, but instead of the 
well-defined field of investigation of the interpretation of genetic information. 

Based on the analysis of DNA sequences, it has various objectives, from 
molecular modeling to taxonomy (molecular phylogenics). This biology has the 
particular characteristic of requiring the processing of enormous quantities of data 
and the use of gene banks for comparison, requiring the use of appropriate computer 
science algorithms. Due to this necessarily technical aspect, in which correlations or 
similarities are sought rather than relationships of causality, bioinformatics is 
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located a little outside the scope of our subject, which we dedicate to a review of the 
connections between mathematical concepts and living phenomena that mark the 
development of biology. Due to this, we simply note here the important position that 
it holds in contemporary research. 

More generally, it is also necessary to think about the position held by computer 
science given the widespread use of computers. Since by means of its calculation 
power and graphical imagery, this allows processes to be simulated, it sometimes 
takes precedence in the work of a mathematization, meaning help in understanding a 
phenomenon through its properties and not only through its phenomenological 
reconstruction. This explains the recognized reticence of some biologists and 
mathematicians and not to mention philosophers with regard to what they see as a 
risk of misappropriation, whereas this can and must be an original aid that is well 
defined by its objective, rather than a competitor that is sometimes disconcerting. A 
simple but very illustrative example is brought to us with the case of 
multidimensional statistical analyses (factor analyses) that are very widely used to 
process large files of data, in particular in ecology and social sciences. Imposing the 
limit of this exploratory objective, however valuable it is, means forgetting to look 
for what these methods can demonstrate, meaning the existence of a latent structure 
whose interpretation needs to be provided concerning the biological nature of factors 
that are outlined in this way84. However, of course, everything depends on the 
objective or the motivation involved when biologists use a particular mathematical 
or computer science tool… Finally, let us recall this other type of simulation, 
currently well-developed, and that we have already talked about, namely the 
construction in computing of plant architectures, whether this is based on the 
principle of formal grammar that generates all kinds of morphogenesis, or that of 
random processes of growth and branching. 

                                 
84 This question is discussed in Buis, R. (2016). Biomathématiques de la croissance,  
Chapter 21. EDP Sciences, Les Ulis. 





4 

Laws and Models in Biology 

We have previously mentioned the terms “law”, “model” and “theory” several 
times. Without detailing the epistemological distinctions concerning them1, we need 
to specify the way in which biology works and what it tends to do when it speaks of 
“law” or “model”, in a mathematized form, whether for the simple technical purpose 
of representation or to claim to see in it some prolegomena that are still embryonic 
in a theory to come. 

The term “law” is widely used in different disciplines with the notable exception 
of mathematics, where its use is limited to a few well-specified areas. This is the 
case of the “laws of probability” fixing the distribution of a random variable (density 
law and its integral or distribution law) and that of the “laws of algebraic structure” 
(laws of internal and external compositions, morphisms). Elsewhere, we do not 
speak of “laws” but of “lemmas”, theorems or corollaries that we carefully 
distinguish from simple conjectures, which are only proposals not yet proven. Thus, 
we do not say “law of the square of the hypotenuse”. As F. Gonseth remarks, “where 
everything is law, we no longer mention the word law”2. Why the thing and not the 
word? We can think that this reluctance of language is linked to the idea of cause, 
underlying the laws of physical phenomena, but considered absent from the mind of 
the mathematician who navigates a world of abstraction (without not also being 
interested in its applications). It is nevertheless clear that “the mathematical 
language intends to be that of causal rigor”3. 

 

                                 
1 On this recurring theme in philosophy of science, see, among others, the works by Andler  
et al. or Varenne, previously cited. 
2 Gonseth, F. (1934). Science et Loi. 5th International Synthesis Week. Alcan, Paris, 12 (cited 
by Delsol, M. (1985). Cause, Loi, Hasard en Biologie. Vrin, Paris, 81). 
3 Bruter, C.P. (1996). Comprendre les mathématiques. Éditions Odile Jacob, Paris, 287. 

Biology and Mathematics: History and Challenges, 

First Edition. Roger Buis. 
© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc.



116     Biology and Mathematics 

In experimental sciences, the term “law” generally refers to any repeatable 
relationship, either between variables or measurable characteristics or between 
processes, and having a certain degree of generality that associates a defined domain 
of validity with it. Before looking at the situation in biology, it is worth clarifying a 
little bit how physics and chemistry, with their arsenal of laws expressed in 
mathematical language (which is their preferred language), conceive this term4. 

First of all, it may be noted that the terms “law” and “principle” are not always 
very well distinguished in their use. We speak unambiguously of “principle” to 
designate a fundamental basis in scientific discourse, of a nature quite similar to 
what an axiom or postulate is in mathematics. In mechanics, for example, we have 
the principle of equality of action and reaction and the principle of inertia. We can 
also mention the principles of mass and energy conservation. Thermodynamics, on 
the other hand, is based on its two principles that introduce the concept of entropy. 
The various physical laws respect such basic principles. However, there are cases 
where principle and law are used interchangeably. This is the case for Newton’s 
laws, in particular, his second law expressing the mathematical relationship between 
force, mass and acceleration, a fundamental relationship that is described as both 
“principle” and “law”. In biology, the term “principle” is sometimes favored by 
some authors, as in the 19th Century with É. Geoffroy Saint-Hilaire. Specifically, he 
set forth three “principles” governing the morphology of animal organisms, which 
are considered as invariants: the principle of unity of plan or organic composition, 
the principle of connections and the principle of organ balancing. For his 
contemporary F. Cuvier, it is a question of both principle and law to underline the 
importance of organic correlations.  

How to define a law? We can agree on the simple and ideal position of  
C. Bernard, for whom a law is none other than the clearly explained relationship of 
an observed variable to its cause, according to its well-known purpose: “the law 
gives us the numerical ratio of effect to cause, and this is the goal at which Science 
stops”. It is understood that these words are to be taken in the plural, since any 
observation can result from several elementary causes, and any cause can affect 
several processes. Substituting cause by factor, we will speak of “multifactorial 
determinism”. On this reference to the principle of causality, we can use the words 
of Montesquieu, who, in another field but undoubtedly marked by his own studies 
and scientific experiments, said that the law is the “necessary relationship that 
derives from the nature of things”. 

Let us remain on these generalities5 for a moment to specify that laws are 
conditioned, i.e. their validity is always related to a specific domain setting the range 

                                 
4 Buis, R. (1994). Lois et modèles en biologie. Trans-disciplines, 8, 8–16. 
5 See Ullmo, J. (1969). La Pensée scientifique moderne. Flammarion, Paris. 
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of magnitude of the variables studied. One of the examples often cited is that of 
classical mechanics, for which Newton’s laws are only valid for very low speeds in 
relation to the speed of light, or the case of geometric optics, for which the laws 
cease to apply for distances close to the wavelength in question.  

It follows that divergence from a given law either leads to the establishment of a 
more general law (by changing the formalism or by introducing other determinants) 
or is a sign of its limitation to the domain of values considered until then. We know 
the famous case of the Boyle–Mariotte law, linking pressure and volume of a gas: 
PV = Cte. Established for a given temperature and a relatively low pressure, it is 
generalized by the law of perfect gases that involves temperature T: PV = RT, where 
R is the constant of the perfect gases. J.C. Maxwell has clearly shown that this  
law illustrates the duality of macroscopic (phenomenological) law/microscopic  
law based on a statistical approach at the particle level (velocity distribution of 
collision-prone molecules). Under some assumptions that the pressure results from 
the collision of molecules and that the temperature is equivalent to the average 
kinetic energy, J.C. Maxwell finds the empirically established Boyle–Mariotte 
macroscopic law. Its demonstration establishes the introduction of the calculation of 
probabilities in the description of physical phenomena using laws duly specified in 
their scope of application, a step also marked in thermodynamics by L. Boltzmann 
with the notion of entropy.  

In physics, A. Einstein distinguished between “integral law” and “differential 
law”. This simple formal distinction is well illustrated by the mechanical example of 
movement. Kepler’s laws (planetary motion) are of the first type: they express the 
result of an action. Newton’s second law, by its differential form, refers to the 
“how” by using the concept of force as the cause of motion. It focuses on the 
variation of the system in question (elementary variation per unit of time). This 
implies specifying the nature of the force invoked. For example: gravitational force 
meaning an interaction between two bodies. In short, it is a question of 
distinguishing descriptive law from causal law. This distinction is hardly operational 
in biology, first because it often speaks of laws outside any mathematical 
formalization and especially because it can only rarely refer to a well-established 
causality, at least in a simple and condensed way. It follows that in biology, the term 
“model” is used (as a system of interactive equations), which would be more 
appropriate than that of “law”. With these general remarks in mind, let us now 
consider some specific examples of laws, first those expressed in vernacular 
language (which have their own interests) and then those, more elaborate, that take 
the form of mathematical relationships.  
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4.1. Biological laws in literary language6 

The following two examples, to which we limit ourselves, illustrate well this 
kind of biological law, the degree of generality to which they claim at the same time 
as their qualitative empirical basis (which does not exclude their interest).  

4.1.1. The law of Cuvier’s organic correlations (1825)  

“All being organized forms a whole, a single and closed system, 
whose parts correspond to each other, and contribute to the same final 
action through a reciprocal reaction. None of its parts can change 
without the others changing also, and therefore each of them, taken 
separately, indicates and gives all the others.” 

This holistically inspired law accounts for the physiological point of view at the 
level of the organism, the form being linked to functioning. It prefigures the 
objective of a systems biology.  

Associated with this law as its corollary, F. Cuvier sets out a principle of 
hierarchy, the principle of subordination of characteristics, from which it follows 
that it becomes possible to reconstitute the entire organism if some of its parts are 
available. “He who rationally possessed the laws of organic economics could 
remake the whole animal”. Therefore, the foundation of these new disciplines was 
established: comparative anatomy and paleontology. 

4.1.2. The fundamental biogenetic law  

This very general term also corresponds to different statements such as von 
Baer’s law (1828) and Haeckel’s law (1868, 1884). 

Haeckel’s law states that “the embryonic development of an animal species 
reproduces the different stages passed through by its ancestors during the evolution 
of the species”, or “ontogenesis is a brief summary of phylogenesis”. The  
well-known examples are the development of the respiratory system in vertebrates, 
with the metamorphoses of amphibians (from the embryo to the terrestrial adult, 

                                 
6 Le Guyader, H. (1985). Les langages de la théorie en biologie. Doctoral thesis, Université 
de Rouen, Rouen; (1988). Les Langages de la théorie en biologie. Vrin, Paris, Chapter 3, 
from which we borrow the quotations in this section. 
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passing through the aquatic form of the tadpole), or the gill slits of the mammalian 
embryo, a transitional state, a “memory” of an ancestral disposition7.  

Contrary to E. Haeckel’s conception of the increasingly early appearance of the 
adult stages of ancestors, von Bauer’s law considers that “the appearance of general 
characters precedes, during the ontogeny of a given species, that of special 
characters”.  

It can be noted with G. Canguilhem that in E. Haeckel’s case, this biogenetic law 
“is less the inductive conclusion of a research than the guiding principle of a 
universal system”8. It is therefore not in vain that this “law” is referred to as 
“recapitulation theory”. 

Another example of the link between law and theory is given with the 
interpretation of “young forms of leaves” in botany. Since the shape of the leaf blade 
can vary greatly during the ontogenesis of a plant, the so-called “youthful” leaves 
normally appear (without any trauma) at the beginning of ontogenesis.  

According to H. Gaussen’s “theory of pseudo-cyclical evolution or over-
evolution”, youthful leaves are a primitive type corresponding to a return to an 
ancestral form, showing the link between ontogenesis and phylogenesis (see Y. de 
Ferré on gymnosperms).  

NOTE.– On this question, we will simply note that in general “a law reflects a set of 
observations, while a theory reflects a set of laws”. On the other hand, “a theory 
applies to several phenomena”9. For example, the Newtonian theory of universal 
attraction, with a well-marked validity domain, explains Kepler’s laws (planetary 
motion) as well as Galileo’s laws on the movement of an object on an inclined plane 
or that of the pendulum.  

4.2. Biological laws in mathematical language  

Such laws are rare in biology, incomparable to the number and diversity of laws 
in the physical sciences. The most remarkable are undoubtedly the laws of formal 
genetics (Mendel, Hardy–Weinberg), first because of the simplicity of  
 
 

                                 
7 Gould, S.J. (1977). Ontogeny and Phylogeny. Harvard University Press, Cambridge, 66–68. 
8 Canguilhem, G. et al. (1962). Du développement à l’évolution au XIXe siècle. PUF,  
Paris, 39. 
9 Holland, J.H. et al. (1986). Induction: processes of inference, learning and discovery. MIT 
Press, Cambridge. 
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their formalism and also because they are based on the concept of the gene under its 
two allele states (dominant/recessive), a concept that was completely abstract at the 
time when these laws were proposed. Two main reasons explain this situation of 
relative rarity of these laws in biology. 

On the one hand, because of the variability of biological observations previously 
highlighted, many relationships are statistical in nature, combining in the same 
equation a deterministic part (the law itself) and a random part (reflecting the 
intrinsic variability of the observations). We have seen this with regard to 
experimental designs validated by analysis of variance. We will discuss this again 
with the formalism of random processes (Chapter 5).  

On the other hand, this other characteristic of biological processes, that of being 
the work of systems, leads to the need to pose problems via a set of relationships, 
rather than to focus on the simplicity that laws with a limited number of variables 
themselves carry. Therefore, biology cannot mention a corpus of elementary 
macroscopic laws that are specific to it and as simple as, for example, Ohm’s law in 
electrokinetics or Snell–Descartes’ law in geometric optics (refraction).  

Let us illustrate this with the example of the formalization of a growth process. 
The biologist has a kind of catalog of growth laws, which is still being extended in 
order to improve their suitability for observations (see their review in Buis (2016). 
Many of these laws result from changes in a small number of basic equations (such 
as exponential or logistics). However, these are often minor modifications,  
which are more a simple addition of parameters than a call to new basic quantities  
or assumptions. Without ignoring their possible practical interest for a 
phenomenological description of a particular phenomenon, we know that a more 
satisfactory solution consists of a change of reference frame, i.e. dimensions, from a 
single growth equation to a set of interactive differential equations. For example, in 
the formulation of variations in the N population size of a population, it is the 
transition from a simple global law N(t) to a structured model based on the existence 
of several categories within that population. It is the consideration of several states 
of growth (such as those defined by the age structure of the population) and 
therefore of several variables, instead of reducing the problem to the behavior of a 
single global variable, that would be sufficient to describe the phenomenon. What 
seems trivial in demography is not always so for many growth phenomena where the 
number and nature of state classes can remain problematic. 

With regard to these two remarks, let us develop a little bit this distinction 
between statistical or empirical laws and theoretical laws. 
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4.2.1. Statistical laws 

Here, we empirically search by induction for a mathematical relationship 
between a variable called “explained variable” and one or more observed variables 
called “explanatory variables” or predictors, according to the general formalism of a 
multiple regression:  

( )1 2, ,..., ,...,j py f x x x x=  

For example, the classical methodology of multiple linear regression (f being a 
first-degree polynomial with separate variables without interaction) easily allows the 
best predictors xj to be chosen from a set of p variables assumed a priori to explain 
y. The term “explain” has a simple statistical connotation of correlation, not 
causality. For this purpose, appropriate software of the “stepwise regression” type 
with analysis of variance at each calculation step is available, allowing only a 
number m < p of “statistically useful” predictors to be retained.  

Another multivariate formalism is the so-called “multidimensional data analysis” 
In principle, quite different from multiple regression, where we distinguish between 
explained variables and explanatory variables, the aim here is to treat p-correlated 
variables on an equal footing, whose dependence on underlying variables called 
“endogenous” or “latent” variables, factors or components is sought. This is the 
distinction between regression and correlation. The standard method is factorial 
analysis in principal components. Developed by H. Hotelling in 1933 and originally 
confined to the analysis of psychometric test results, this methodology has seen 
considerable development of its applications in various fields using computer 
technology, particularly for analyzing large data files (e.g. in ecology or the human 
sciences). From this type of correlation analysis, we do not, strictly speaking, draw 
explicit laws linking the variables considered. Exploratory in nature (at least at  
the beginning of the work), the originality of factorial analyses is to highlight the 
existence of groups of variables on the one hand and, on the other hand, the 
antagonisms of some of these groups. It should be noted that these methods basically 
consist of searching for a latent structure, i.e. detecting the relationships between 
observed variables and factors. It is these relationships between the observed and 
the hidden underlying that can have the value of laws, at least to the extent that it is 
possible to give a biological interpretation to these latent variables.  
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4.2.1.1. The law of allometry  

As an example of a statistical law, let us take the law of allometry, widely used 
in biology to numerically express the relationship between two variables. Originally, 
it was the relationship between two dimensions of an organ or an organism, or the  
relationship between the mass of an organ and the total mass of an organism. It is a 
first approach for studying the shape and differential growth of the different parts of 
a whole.  

This was initially the purpose of Huxley–Teissier’s law (1932–1934)10 according 
to a power function linking the variables y1 and y2: ݕଶ = or	ଵ௔ݕܾ ݈݊( (ଶݕ = ݈݊( ܾ) + ܽ ݈݊(  ଵ)  [4.1]ݕ

Parameters a and b are referred to as allometric scaling factor and 
proportionality or normalization coefficient, respectively. Thanks to this 
linearization in log–log graph, it is possible to highlight and test by statistical 
regression the existence of an allometry line. The principle of this relationship was 
applied to a number of situations depending on the species and variables, which can 
be both physiological (such as metabolic indicators) and morphological (dimensions 
or biomasses). 

The success of this law is explained by the possibility, when this relationship is 
verified, of highlighting either the existence of a single allometric line whose 
parameters a and b characterize the species (or group of species) and the character 
pair, or on the contrary the existence of a partition of the value domain. In quite a 
few cases, we can indeed have not a single line in log–log coordinates, but two or 
more lines corresponding to a plurality of relationships according to the order of 
magnitude of the variables. This is referred to as slope rupture or discontinuity. A 
value of a ≠ 1 indicates the fact of a differential growth of these two variables 
(heterogony or growth disharmony). If a = 1, there is isometry. 

Different types of allometry should be considered depending on whether one is 
interested in a set of species or phyla (phyletic allometry), or the same species at a 
given stage (size allometry) or during its development (growth allometry or 
ontogenetic allometry). It is therefore either a static study or a dynamic study.  

 

                                 
10 The names of J. Huxley and G. Teissier are generally associated with each other; their 
work was almost concomitant and their terminology was clarified in a common note 
published in 1936 jointly in Nature and in C.R. Soc. Biol. Fr.  
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The latter type of situation is well illustrated by the relationship between the 
mass of certain organs and the total biomass of the individual over the course of 
mammalian development. For some organs, the constancy of their relationship is 
observed, while for others, there is a clear discontinuity in their covariation, which 
generally coincides with a specific ontogenetic stage. In this type of case, it is noted 
that this change in the law in the interdependence of the two variables, i.e. their 
differential growth, is of a physiological hormonal nature (Figure 4.1). Many other 
examples are known, such as in plants where the change in the relationship between 
root organ biomass and aerial organ biomass is related to the sexualization of  
the apical meristem (floral induction) (Figure 4.2). Another example is a change in 
environment during animal ontogeny, such as the change in pressure during the 
transition from embryonic and fetal condition to postnatal growth (Figure 4.3). 

Dynamic allometry is of particular interest to us because of its relationship to the 
growth law of each of the variables. From their first works, J. Huxley and  
G. Teissier showed that their relationship could simply be explained by the 
proportionality of the specific growth rates of the two variables,  

2 1

2 1

1 1dy dy
k

y dt y dt
= , [4.2] 

under the following two assumptions: (i) proportionality of each of these growths to 
the consumption rate of the same nutrient pool; (ii) constancy of nutrition/growth 
efficiency during growth. 

This important issue of a connection between this allometric law and the growth 
law of each of the covariate variables is often overlooked because, for most 
published observations, sampling is not based on the homogeneity of growth states. 
However, it is easy to show that the Huxley–Teissier relationship is only verified in 
certain cases, particularly when the two variables are in a phase of exponential 
growth during which the specific velocity is constant: 

1 i

i

dy
Cte

y dt
= .  

However, this only corresponds to a part of most growth curves. In particular, 
the famous logistic law of growth, a classic function for sigmoid curves, can only 
allow the Huxley–Teissier relationship for the approximately exponential phase of 
the beginning of growth. We show that over the entire logistics curriculum, the 
allometry relationship is, in fact, a hyperbolic function and not a power function. 
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Figure 4.1. Growth allometry in rats: mass variations of various organs  
(in ordinates) as a function of the total mass of the organism  

(in abscissa) (based on (Teissier 1937)) 

2 1
2

1 1(1 )

K y
y

K yα α
=

+ −
  

where K1 and K2 are the limit values of these two growths and α is a parameter 
depending on the relative position of the inflection points of the two sigmoids. In 
this case, the power function [4.1] is inaccurate. The same is true for other usual 
growth laws (such as the Gompertz function), each with its own allometric 
relationship. Huxley–Teissier’s relationship is therefore not a general law. Given its 
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frequency of use, it should at least be presented as a simple approximation that can 
be used on only one growth phase. 

 

Figure 4.2. Weight growth allometry between underground  
organs and aerial organs during developments of the  
grass Lolium multiflorum (based on Troughton (1960)) 

 

Figure 4.3. Physiological allometry: relationship between the cardiac  
cycle and body mass in humans. ●: embryonic growth; o: postnatal  

growth (based on Günther et al. (2003)) 

4.2.1.2. Physiological or metabolic allometry 

The principle of an allometric relationship is of particular importance for 
physiological variables that can be used as metabolic indicators, such as heart rate or 
caloric exchanges in animal physiology. Long before J. Huxley and G. Teissier, it 
was F. Sarrus and J.F. Rameaux who first studied the question in 1839, followed by 
M. Rubner (in 1883, 1908) with his famous experiments on heat production in dogs.  
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The experiments of these authors led to what is called the “law of surfaces” on 
the proportionality between the energy consumption measured by caloric loss Q per 
unit of time and the surface area of the organism, i.e. 2/3 of its mass M:  

2/3Q k M=  [4.3] 

Of course, this empirical law is related, in principle, only to homeothermic 
animals and under basic metabolic conditions. Under this condition, it is particularly 
true when comparing oxygen consumption (respiratory frequency × volume) in two 
animals of the same species, from which a correspondence between geometric 
similarity and physiological similarity can be deduced.  

In terms of dimensional analysis, which is often used, heat production per unit of 
time has the dimension of a power (energy/time): M L2 T 

– 3. On the other hand, if we 
refer to the theory of similarity in biology, developed by L. Lambert and G. Teissier 
(1927), who a priori posed the dimensional equivalence between the two 
independent dimensional quantities T and L, it shows that there is indeed 
proportionality between heat production and body surface area according to the 
relationship [4.3]. However, this presupposes that this total area itself is proportional 
to the actual radiant area, making it difficult to apply this law of surfaces to a set of 
different species or to different growth stages in their morphology. In other words, 
this law of surfaces has the meaning of a relationship of geometric similarity. 

In reality, this relationship [4.3] is far from universal. In fact, other empirical 
relationships are known that reflect many and varied observations quite well, such as 
Kleiber’s law (1961), which adopts the value of exponent a = 3/4:  

3/4Q k' M=  [4.4] 

This relationship remains very empirical without any solid theoretical basis. Let 
us give some illustrations. For example, the power function [4.4] is valid, among 
others, in small aquatic organisms and unicellular organisms, i.e. under 
physiological conditions where hydrostatic thrust modifies the effect of gravity. This 
condition is also found in embryonic and fetal development in utero (see  
Figure 4.3). In another situation, this exponent value 3/4 applies to very different 
species, such as large mammals (cattle), which Brody (1945) extensively studied for 
growth energy, while it is the value 2/3 that applies to small mammals. On this 
subject, let us note as quite different the search for a height allometry on species of 
varied body mass. This is the case of the application of the relationship [4.1] to a 
very diversified set of mammals whose adult mass varies from a few grams (mouse) 
to several tons (elephant) in order to verify the constancy of the metabolic rate by 
relating the allometric relationship to the individual mass. It should also be noted 
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that this exponent 3/4 applies to physiological variables of a completely different 
nature, such as the xylemic flow in plants (transport of crude sap) compared to 
individual biomass.  

This extreme diversity of observations shows that the value of this type of law is 
more phenomenological than explanatory. It is therefore appropriate to review the 
previous argument on the similarity relationship as an explanation of the law of 
surface areas. In particular, we can question the generality of the equivalence of the 
dimensions T and L. Taking up the fundamental work of R. Rosen (in 1983) and that 
of B. Günther, E. Morgado and R. Jiménez (in 1982, 2003), it is useful to distinguish 
different types of similarity with a role in physiological allometry, in particular:  

– mechanical similarity: for the constancy of gravity in our terrestrial conditions 
g = LT 

– 2 = Cte, the dimensional equivalence is deduced: T = L1/2 ; 

– biological similarity: according to Lambert and Teissier’s postulate, the 
equivalence of the two basic quantities is assumed a priori: T = L. 

In addition, there is another very different case when, in addition to strictly 
metabolic questions, there is the use of mechanical constraints. In such cases, we 
speak of “elastic similarity”, the importance of which is known in large organisms, 
such as tree plants where mechanical constraints link trunk growth in height and 
diameter (McMahon in 1973, 1983). Using a stress decomposition in two orthogonal 
directions of length (longitudinal l and transverse d: l = d2/3), we must use Hooke’s 
law here: σ = Eε, giving a linear approximation (units: Pa) of the stress s as a 
function of Young’s modulus of elasticity E and strain ε.  

4.2.1.3. Physiological allometry and growth: Bertalanffy’s theory 

The relationships between metabolic allometry and growth were theorized by  
L. von Bertalanffy in the 1940s and 1960s. This work is part of a general growth 
model, which posits that the instantaneous rate of weight growth is equivalent to the 
balance between the processes of anabolism and catabolism, i.e. the building and 
degradation of body mass y, developing the idea proposed by Pütter in 1920. Each of 
these elementary processes is defined by a power relationship of metabolic 
allometry of exponents m and n: 

m ndy
a y b y

dt
= −  [4.5] 
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Only three types of growth were explained by L. von Bertalanffy, according to 
the values of m {2/3, 1, 2/3 < 1}, with n = 1. This simplifying hypothesis for n, 
which facilitates the integration of [4.5], implies a proportionality of catabolism with 
body mass, which would be considered plausible on the basis of observations on 
weight loss in a diet. 

Few developments have been undertaken on this function apart from the cases 
explained by L. von Bertalanffy, namely: 

– m = 2/3: mammal and fish growth; 

– m = 1: larval insect growth; 

– 2/3 < m < 1: growth of gastropod mollusks. 

The first case (where there is sigmoid weight growth and linear length growth) is 
known as the “Beverton and Holt model” in its applications to fisheries 
management. 

Abundant literature continues to be devoted to this issue of physiological 
allometry in order to agree on a general expression that can account for the 
relationships (variable according to species) between a particular metabolic indicator 
and the organism’s mass or dimensions. Referring to the many examples published, 
it is still difficult to conclude, and the debate continues over some of the most 
frequent values of exponent a, namely: 1, 2/3, 3/4, or a multiple of 1/4. It should be 
noted that this problem is not reduced to a question of dimensional analysis and 
similarity, as various other determinants currently under study must be taken into 
account, such as energy transduction at the level of cell membranes (Demetrius) or 
the conditions for optimizing circulatory flow in the vascular network in terms of 
fluid mechanics (West, Brown and Enquist). A review can be found in (Buis 2016). 
In any case, this theme constitutes a case study highlighting the difficulties  
in establishing what the status can be of a biological law that is expressed 
mathematically and supposed to have a certain degree of generality.  

4.2.1.4. Laws of action of a factor: effect/concentration relationships 

Another category of statistical laws concerns the mathematical formalization of 
the action of a given factor as a function of its concentration. This raises the question 
in a framework similar to that of chemical kinetics. This analogy is still successful 
despite the difficulties of biological interpretation resulting from the substantive 
distinction between molar concentration and “quantity of living matter”. 
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A first case, historically important, concerns the mineral nutrition of cultivated 
plants for the purpose of controlling their fertilization. This question gave rise to 
various classical expressions, such as the so-called “law of the minimum” (Liebig in 
1840) and “law of limiting factors” (F.F. Blackman in 1905), the practical role of 
which in agronomy and plant physiology is well known.  

The purpose of these laws is to simply state that the yield of a crop is limited by 
the nutrient that is in the lowest concentration. They were included in the first 
scientific popularization of agricultural chemistry in the 19th Century, based on the 
famous image of a barrel whose different staves are of unequal length so that the 
filling is limited by the shortest stave.  

More specifically, under the name of the law of “less than proportional yields”, 
the nonlinearity between dose and effect was highlighted. This followed the old 
economic considerations of the French minister Turgot (in 1768) on a “law of 
diminishing returns”, linking productivity and the factor of production, a notion that 
the English economist D. Ricardo sought to theorize (in 1817). Mathematically, this 
led in 1909 to Mitscherlich’s first law, which, in chemistry, concerned the action 
curves of a factor (response vs. concentration).  

This is an interesting significant problem with the frequent use of chemical 
kinetics to interpret a biological relationship. Formally, Mitscherlich’s law can 
correspond to two kinds of chemical kinetics. On the one hand, it is customary to see 
it as the result of a monomolecular chemical kinetics (hence, its former name of 
“monomolecular law”), the action of the factor considered being supposed to 
correspond to the transformation of A into B:  

kA B⎯⎯→  

As a function of the product formed, [ ]( )
t

y t B= , the speed of the reaction is 

written as:  

[ ] [ ] [ ] [ ]{ }0
( )t t

t

d B d A
v k A k A y t

dt dt
= = − = = −  

Analogically, this law was used to model the growth of a variable y as a function 
of its own value, consisting of linking the instantaneous speed to the growth 
potential, i.e. to the growth still to be achieved, the latter being assumed to be  
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proportional to the “quantity of remaining factor”. This corresponds to cases where 
growth activity decreases continuously during the process: 

( )
dy

a K y
dt

= −  [4.6] 

giving by integration: 

[ ]1 exp( )y K b a t= − −  [4.7] 

For example, in a plant, it may be the tissue growth by cell growth, without 
multiplication, of a population of meristematic cells, the initial stock of which 
defines the growth potential.  

On the other hand, the same law may correspond to a completely different 
reaction scheme, that of a balanced reaction:  

1

k

k
A B

−

⎯⎯→←⎯⎯
 

where the instantaneous state of the transformation is interpreted as a deviation from 
the equilibrium noted y*. We draw the expression: 

[ ]{ }*
1 1( ) 1 exp ( )y t y k k t−= − − +  [4.8] 

which is formally equivalent to [4.7]. With this second reaction scheme, 
Mitscherlich’s law explains growth as a process of relaxation with respect to the 
equilibrium value y*, meaning the cessation of the growth process. 

This effect/concentration law obviously does not consider the fact that certain 
concentrations, above a given threshold, can have a negative toxicity effect when the 
response function is characterized by the existence of an optimum. It was 
Mitscherlich’s second law (1928) that allowed this property to be taken into account. 
Like the previous one, this law is also used as a growth law in complex processes 
where there is a succession of growth and decline (e.g. in population dynamics). 

In this type of problem, another example of a statistical law, Weber–Fechner’s 
law, is the relationship between the intensity S of a stimulus and the perception or 
effect felt I: 

ln( )I k S=   
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whose applications in acoustics (audiometry) are well known. It should be noted that 
this relationship is sometimes referred to as a “pseudo-law” because of its 
approximation. 

4.3. Theoretical laws 

Unlike these empirical laws, which essentially result from a statistical smoothing 
of a set of observations, biology has a few laws called, for convenience, “theoretical 
laws” (or hypothetical), whose characteristic is to refer either to notions or entities 
postulated a priori, or to explicit hypotheses on the functioning of the process they 
claim to explain or predict. A first example is Mendel’s laws, which are well 
illustrated by their simplicity. These laws initially used a completely imaginary 
concept, that of gene. On the other hand, they formulate precise hypotheses on the 
role played by these new “objects” in explaining the distribution properties of 
characters in a progeny. Two other areas will then be used to present this approach, 
namely growth laws and population dynamics. It is simply for convenience of 
language that we will not distinguish between “law” and “model” here.  

4.3.1. Formal genetics 

We have already presented this historical step, which was the elaboration of 
Mendel’s laws (segregation of characters in the progeny of controlled 
hybridizations) and Hardy–Weinberg’s laws (dynamics of a population of genes  
in panmictic conditions – random mating), which offer us two remarkable examples 
of theoretical laws. Let us return for a moment to Mendel’s laws to highlight their 
status as theoretical laws.  

G. Mendel’s hypotheses on monohybridism (only one characteristic at stake) 
postulated that (i) the first-generation hybrid receives “hereditary elements” made 
without modification by each of the parents; (ii) two kinds of these determinants 
correspond to each characteristic, called dominant or recessive, respectively rated A 
or a; and (iii) any characteristic appears (= phenotype) only if there is the presence 
of A, or otherwise, it remains latent (dominated). These two categories being of the 
same number, it follows that the F1 progeny of hybrids of homozygous parents is 
equivalent to the encounter of the elements, A or a, that they bring during 
pollination.  
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Let us quote G. Mendel himself to emphasize his originality: “The differential 
characteristics of two plants may therefore ultimately be based only on differences 
in the quality and grouping of the elements”11. If the choice of the Pisum species and 
that of the experienced characteristics (which were associated with different 
chromosomes) were eminently favorable to the expression of this law, as we have 
previously noted, the fundamental and innovative point is this idea of a 
combinatorial approach between completely hypothetical elements. In the words of 
F. Jacob: “The symbolic interpretation of the results becomes the place of 
articulation between theory and experience”12. 

G. Mendel’s symbolism was not exactly that of our current writing of allele pairs 
(AA, Aa or aa) in coherence with the fact of diploidy, because it assumed that the 
postulated elements, if they were identical, fused after fertilization. Today, we have 
the representation of the table (known as the “gamete chessboard”) whose column × 
row entries show the alleles carried by each parent’s gametes. The meeting of these 
elements (self-fertilization of F1 individuals) corresponds in the case of 
monohybridism to the mathematical development of the product (A + a)(A + a), 
fixing the distribution in F2, i.e. {1AA, 1Aa, 1aA, 1aa}, or the phenotype {3, 1}.  

It is known that the existence of exceptions to these theoretical rules by the 
recombination of characteristics (following a crossing over between chromosomes 
matched during meiosis) does not invalidate the principle of these laws based on the 
combinatorics of these “genetic elements”. It is this same combinatorial method that 
makes it possible to calculate the recombination percentage and verify its validity.  

4.3.2. Growth laws 

The starting point is the formalization of a growth with only one variable y(t), y 
being, for example, an organism’s size or the size of a population. In these relatively 
simple cases, the shape of the growth curves is very varied, indicating the existence 
of a large number of growth laws. In fact, in such a catalog, many formulations use a 
small number of basic laws, variously arranged with the (somewhat empirical) 
addition of parameters to improve data adequacy. Some methodological points of 
this problem (which we have discussed in detail elsewhere) will be included in 
Chapter 5. 

 

                                 
11 In Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution and 
Inheritance. Harvard University Press, Cambridge. 
12 Jacob, F. (1970). La Logique du vivant. Gallimard, Paris, 224. 
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In the multivariate case where y(t) is vectorial, we have to process a system of 
growth equations where the intrinsic growth of each variable occurs yj(t); j = 1,…, p 
and their interactions f(yj, yk) which can be very diverse in nature. The dynamics of 
biological associations is the classic domain of such models. A wide variety of 
concrete situations have thus been formalized, depending on whether they involve 
interactions such as competition, predation (or parasitism) or mutualism, a theme 
previously discussed with the pioneering work of A.J. Lotka and V. Volterra.  

4.3.3. Population dynamics 

An emblematic case is the association between a prey species and a predator 
species, an archetype of population dynamics models. Its principle is to write the 
growth rate of each species as a balance between a so-called intrinsic rate (“as if it 
were alone”) and the intensity of their interaction. This is of sign + for the predator 
and – for the prey. The predator that depends exclusively on this prey can only 
decrease in its absence. 

From a biological point of view, the most appropriate approach is to write the 
mathematical hypotheses with reference to specific velocities (1/y)(dy/dt) which 
express behavior per unit (rather than absolute speeds):  

– each species, considered separately, grows according to an exponential law 
(constant specific velocity); 

– their interaction is proportional to their number of individuals (linearity of their 
interdependence).  

These are the simplest assumptions that can be made about the dynamics of this 
association. This model therefore follows a kind of economic principle. Of course, 
more refined models have been developed, either by modifying these assumptions or 
by considering associations of a larger number of species. We therefore highlight 
different types of stability of stationary states: the existence of a stable limit cycle 
(ensuring the maintenance of the oscillation of numbers or biomasses) or, on the 
contrary, either a fixed point, an exclusion or a multistationarity resulting from the 
partition of the space of the phases into distinct attraction basins. 





5 

Mathematical Tools and  
Concepts in Biology 

The purpose of this chapter is to review a series of mathematical methods in their 
applications to biology, according to a choice that would be as representative as 
possible of the diversity of biological phenomena encountered and the mathematical 
tools proposed for their analysis. In doing so, we try to avoid both the pitfall of a 
long technical presentation of each of the tools presented and a list of methods 
claiming to be exhaustive, but which would simply be a superficial sprinkling of the 
subject. The essential aim is to show, as well as possible, through a diversity of 
approaches that sometimes compete, how mathematics can reveal their usefulness 
when their aim is in connection with this or that biological phenomenon is correctly 
established. In other words, it is a question of seeing what each method brings and 
what it implies as basic hypotheses, as a mirror of what each biological process  
has to offer and what it imposes as experimental constraints on measurement or 
variability. 

As a preamble, it is necessary to return to a general question that sets forth the 
goal of any mathematization of reality, namely the duality of representation: 
whether to use mathematics to describe or explain? 

We know that in practice, this dilemma leads to positions that often remain 
foreign to each other, this irreducibility having nothing to do with the situation 
offered by the fact of a diversity of explanatory models for the same phenomenon. It 
is in the field of morphology, when it is interested in the geometric description of 
biological forms, that such examples are most particularly found. Let us choose for 
this the famous case of phyllotaxis or study of the spatial arrangement of the 
sequence of leaves and flowers along a plant axis. 

Biology and Mathematics: History and Challenges, 

First Edition. Roger Buis. 
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It is indeed interesting to summarize this question of morphogenesis, because 
due to the diversity of the works that have been devoted to it for a long time, it 
offers us an illustration of this problem of representation. 

5.1. An old biomathematical subject: describing and/or explaining 
phyllotaxis 

Some see phyllotaxis primarily as an architectural problem, while others 
approach it in terms of processes, seeking to know how this organization or 
assembly of elements appears and then develops during ontogeny. Of course, the 
architect is also interested in the forces underlying the building’s construction, as 
D’Arcy Thompson saw it. However, the point of view remains more morphological 
than physiological, whereas the study of a functioning necessarily integrates time, 
therefore the dynamics and stability of forms.  

From the simple observation of a stem or inflorescence, it is often easy to 
visualize the existence of fictitious spirals called “parastic”, each of which 
corresponds to a well-ordered series of contiguous elements. Thus, on a sunflower 
head (inflorescence), 34 sinistral spirals and 55 dexter spirals can be easily 
distinguished, while on a pine cone, 8 and 13 can be observed, respectively. 
However, in these examples, these numbers are two successive terms of the 
Fibonacci sequence. Another observation is that the angle of divergence of two 
successive units is often close to 137.5°, which is the value of the golden angle 
2π/Φ1. Therefore, the question arose to deduce from it a kind of law that would 
regulate the phyllotactic characteristics by relating them to the Fibonacci sequence. 
This idea’s interpretation, which goes back to A. Braun (1831), continues to be 
debated, as well as more generally, the meaning that the golden number would have 
in different dimensional relationships (e.g. the golden number is found in certain 
geometric characteristics of the DNA molecule, as explained in Figure 3.3).  

There is no question of reviewing here the various works on phyllotaxis, a 
subject in which many authors have been interested since Aristotle and Pliny the 
Elder, followed by L. da Vinci, before the first precise measurements were 
undertaken by the Swiss naturalist C. Bonnet (1754). Bonnet underlined the spiral 
character of the location of the leaves on a stem, from which the parastic notion was 
deduced as the basic figure of a phyllotactic organization. The subject went beyond 
botany to crystallography, with the Bravais brothers (1838), who, in mathematicians 
seeking to link chemistry and geometry, made a representation of phyllotaxis by  
 
                                 
1 A statistical study conducted on a thousand sunflower head readings concluded that the 
137°.508 value for divergence was well-suited (Okabe, T. (2015). Extraordinary accuracy in 
floret position of Helianthus annuus. Acta Soc., Bot. Pol. 84, 79–85). 



Mathematical Tools and Concepts in Biology     137 

means of a network of points (lattices) on a cylindrical surface. In addition, from the 
1990s onwards, biophysics became interested in the subject (particularly with P. 
Green) based on the shape of the meristem and the role of mechanical stresses 
within the cellular foundations of the latter. The interest of A. Turing’s reaction–
diffusion equations was also highlighted to account for the formation of “patterns” 
on the caulinary meristem that could determine the emergence sites of the sequence 
of foliar primordia.  

The first explanation proposed for the foliar arrangement along a stem is that of 
Hofmeister in 1868. This one approaches the problem from a purely spatial point of 
view, considering that any new primordium is formed in “the largest available 
space”. This idea of space occupation was taken up by various authors, such as the 
Snows, who, in the 1930s, carried out numerous microsurgery experiments on the 
caulinary apex. Subsequently, it was decided to add, from a teleonomic point of 
view, the role of the environment. Phyllotaxis would then be considered by analogy 
as a control variable contributing to the optimization of the perception of 3D light 
radiation. However, this is to be qualified, because this perception largely depends 
on internodal growth, as well as the twisting or nutation of the stem, so that the 
effect of shading within the photosynthetic foliar system is much later than the 
generation of primordia. Despite their interest in the “economy” of foliar 
physiology, let us leave this work to return to the strictly geometric aspects, 
specifically those that had so interested the first researchers studying the parastic 
notion.  

C. Schimper and A. Braun in 1830 and 1835 set out a hypothesis, which was 
sometimes considered fundamental, consisting of the assumption that all the 
elements of a stem are arranged along the same line called the “generating spiral”. 
This qualifier of “generator” implies that there would be a link between kinship (in 
the sense of the order of succession) and geometry. In other words, it would be 
confusing a chronological spiral with an ontogenetic spiral. In any case, we can see 
the difference with the previous idea of several parastics. Botanist L. Plantefol 
strongly opposed this idea of a single spiral that observation could not verify. In 
particular, he stressed the need to consider the exact anatomy of the leaf outline, 
which cannot be reduced to a point, because the underlying “foliar segment” must 
also be considered. Thus, the foliar dot on the Bravais lattice is not real for a 
botanist. In any case, L. Plantefol proposed another theory that postulates the 
existence of multiple leaf helixes, which can better reflect the observed 
arrangements. The essential question became that of being able to relate the  
spatio-temporal origin of each of these foliar helixes to a particularity, observable or 
hypothetical, manifesting itself during the ontogeny of the meristem. For our 
purpose, it is a question here of underlining the epistemological position of  
L. Plantefol. While he rightly states the principle of referring to the functioning of 
the vegetative point (apical meristem), he considers it unnecessary to focus on the 
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search for an “ideal” geometric figure. According to him, “Explaining the 
phyllotaxis of a stem does not mean finding numerical relationships between  
the points representative of the leaves and whose position on a stem will ideally 
have been theoretically rectified to a geometric shape. It means recognizing the 
relationships that exist on this real stem between the real elements”. In other words, 
it means posing that there is a contradiction between these two objectives, thus 
advocating a priori the irreducibility between the description of the geometrician 
and the explanation of the botanist.  

Although this question of the relationship between physiology and geometry is 
still far from being resolved, we currently have special insights that renew its 
approach. Very different points of view from each other, it is worth considering 
them despite their still theoretical nature.  

First, let us summarize what simulations based on the role of dynamic 
interactions within a set of sequentially generated elements. Two types of 
simulations were carried out, either experimentally using a physically-controlled 
device or digitally. In both cases, an ordered set of elements is generated to 
reproduce apical organogenesis (Douady and Couder 1992, 1996). The experimental 
device used consists of a circular disk subjected to a vertical magnetic field, and 
such that the minimum is at the center and the maximum is at the periphery. This 
disk supports a dish with an oil layer, in the center of which a series of droplets of a 
ferrofluid are dropped, according to a given period T. Each new droplet or particle, 
being subject to the repulsion from the previous ones, is placed in a position where 
this repulsion is minimal. It can be observed that this position is a function of a 
parameter without dimension G = VT/R0, where V is the velocity of displacement 
(advection), T the generation period and R0 the radius where the particle is placed 
(the viscosity of the oil is not taken into account). Biologically, T corresponds to the 
plastochronous (organogenesis rate)2 and V to the rate of growth of the apical dome 
after each primordium differentiation. For a high value of T, each new particle 
interacts only with the previous one, resulting in a 180° divergence corresponding to 
the phyllotactic facies of alternate opposing leaves. However, we observe a 
threshold below which its position will depend on the two previous ones, either 
randomly on one side or the other in relation to the segment connecting them. This 
results in the direction of rotation of the spiral thus formed. We can describe it as 
“parastic”, but not “generating”, in order not to give it an explanatory connotation 
related to the mechanism of meristematic functioning. A decrease in T results in an 
increase in the number of particles interacting with any new ones, and correlatively 
in the number of these parastic spirals.  
                                 
2 The G parameter of Douady and Couder corresponds to the plastochronic ratio P of F.J. 
Richards (1951), which is the ratio of radial distances to the center of two successive 
primordia. Since apical growth is exponential and although the temporal and dimensional 
scales are different, we have a relationship of the type P = exp(G). 
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In addition, a sufficiently long numerical simulation (up to 400 iterations to 
reach a stable regime) uses this principle of antagonism and advection to specify the 
effect of this G parameter down to very low values. For this purpose, a sequence of 
material points is sequentially arranged (at a given frequency) on a circle of radius, 
R, each being subjected to a radial movement at velocity, V. The position of each 
point is determined according to the overall repulsion or sum of the repulsion 
potentials (which can be varied) emanating from the different points already 
generated. The interest of this numerical simulation is to explore in more detail 
different possible arrangements and to draw a diagram between G and the 
divergence angle φ. Such a diagram makes it very clear that with the decrease in G, 
there is a series of bifurcations corresponding to the emergence of parastics, i.e. the 
existence of thresholds of G conditioning the formation of parastics (so-called 
“phyllotactic transitions” stages during development). For example, at G values 
0.01, 13 and 21, parastics are formed. It can be seen that, below this threshold, there 
is instability in the angle of divergence φ. Indeed, when G decreases, φ also 
decreases, but oscillating until it reaches a limit value. This is equal to the golden 
angle of Fibonacci: 137.5°. Ultimately, the combined existence of multiple repulsive 
interactions (i.e. a simple and universal “mechanism”) between primordia is 
sufficient to reproduce the two basic phyllotactic characteristics, the number of 
parastics and the angle of divergence, and to link them to the Fibonacci sequence.  

If these simulations remain phenomenological without biological validation, they 
allow us to give more credit to the connection between phyllotaxis and Fibonacci 
sequence. On the other hand, it is important to underline the interesting biological 
connotation of the G parameter. Its variations, as used in physical or digital 
simulations, are not purely theoretical. Indeed, they are closely related to the 
ontogenetic evolution of the apex, particularly the non-stationarity of the 
plastochrone and the modification of the geometric shape of the apical dome. What 
is quite remarkable is that these ontogenetic variables are presented as coordinates, 
since they act via this single G parameter. 

Let us now complete this question with the contribution of two other points of 
view that provide, if not direct validation, at least interesting insights, each based on 
the hypothesis of a generating mechanism.  

An original first contribution is offered, in an indirect way, by the development 
of a 2D cell population formalized by an L-system. The genealogical tracking of the 
cells whose multiplication is governed by this automaton shows the spiral 
arrangement of the same family of cells. Without detailing the rules used to 
determine the spatial and temporal organization of cell divisions (e.g. length of cell 
cycles, asymmetry and orientation of mitoses), let us say that, from the cybernetic 
point of view of these formal grammars with ancestral memory, we have here a 
system generating multiple helices. By simple analogy, it is possible to compare it to 
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what the action of the hypothetical “organizing center” postulated by L. Plantefol 
would be for its multiple leaf helices. However rudimentary it may be in relation to 
the phyllotactic organizations observed, these spiral facies are an image that does 
not seem to have an equivalent.  

Another point of view would be that of reaction–diffusion systems, 
implemented, in particular, by H. Meinhardt in 1975–1980. Already envisaged by A. 
Turing himself and discussed at the time with botanist C. Wardlaw, this had to go 
beyond the role of an inhibitor fixing the position of any new primordium. This is 
obviously in line with, but only partially, all the work inspired by Hofmeister’s 
hypothesis, including the simulations treated analogously by A. Douady and Y. 
Couder. The question of the Turing activator–inhibitor pair remains. It must be 
recognized indeed that, following H. Meinhardt’s presentation of graphic 
simulations, the few studies that were devoted to phyllotaxis remain too fragmentary 
to constitute a basis for a real explanation.  

To conclude this review, let us add that recent work3, broadening the ecological 
point of view previously noted (shading), is oriented towards the relationship 
between phyllotactic organization and the physiological optimization of the foliar 
apparatus. It is indeed necessary to distinguish the phyllotactic disposition of the 
primordia and the subsequent arrangement of the leaves, because this is more or less 
modified by any 3D stem growth movement (internodal elongation + nutation). It 
appears that phyllotaxis contributes to the minimization of the energy required by 
the torsion of the stem. In addition, the 137.5° divergence would be an adaptive 
value (fitness) minimizing the number of phyllotactic transitions (bifurcations) that 
occur during the plant’s ontogenesis. Without being an explanation in terms of 
physiological mechanism, this view opens the field of phyllotaxis by associating it 
with growth as both contributing to the morphological optimality of ontogenesis. 
During this phase, the spiral geometry concerns both the stage of organogenesis at 
the level of the meristem generator and the subsequent stem growth stage, which 
depends on it. These various considerations clearly show the relevance of a 
biomathematical approach to such a phenomenon, where morphogenesis and 
physiology, i.e. geometry and functioning, are closely linked.  

5.2. The notion of invariant and its substrate: time and space  

Let us return to the notion of the invariant, the importance of which we 
emphasized in Chapter 2, but which presents itself very differently according to the 
discipline.  

                                 
3 Okabe, T. (2015). Biophysical optimality of the golden angle in phyllotaxis. Sci. Reports, 5 
(art. 15358). 
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In mathematics, the notion of invariant is linked to that of transformation. An 
invariant is a characteristic that does not change as a result of a given transformation 
(such as a change in coordinates). Let us give two simple examples. The angles and 
distance ratios are invariant with the transformation rotation, translation and 
reflection. The Euclidean distance is invariant with orthogonal rotation. Another 
well-known case is that of all conics (sections of a cone by a plane according to its 

position). These curves, defined in Cartesian coordinates 2  by a general equation 
of the second degree, have as invariant the quadratic expression ax2 + bxy + cy2 = 0, 
which constitutes its signature. Indeed, depending on the value of the parameters, it 
is the value of the discriminant Δ = b2 – 4ac (<0, 0, >0) which characterizes the type 
of conic, respectively, an ellipse, a parabola or a hyperbole. The interest of the 
mathematical invariant is thus to establish a relationship between different objects, 
to make them a kind of typology. 

Biology, while it speaks rather little explicitly of invariant, offers us some 
remarkable examples. In general morphology, we have the notion of an 
organizational plan. For higher organisms, this was one of the main themes of 
debate in the 19th Century, with F. Cuvier, É. Geoffroy Saint-Hilaire and E. 
Haeckel. In biochemical and physiological terms, we have very fundamental notions 
such as the universality of basic metabolic cycles, cellular energetics (role of ATP), 
macromolecules (DNA and RNA) or genetic code (with very rare exceptions). 
Following cell theory (the premises of which date back to the 17th Century with A. 
Van Leeuwenhoek and R. Hooke), this notion of invariant constitutes the very 
condition of what is called the “unity of the living”. We remember the famous 
statement (attributed to J. Monod) that “what is true of the colon bacillus must be 
true for the elephant”. This aphorism, concerning the genetic code, is repeated 
moreover on the thinking of biochemists A. Kluyver and J.L. Denker who, in 1926, 
said that “from elephants to butyric bacteria, everything is the same”. In a 
completely different way, we will try to clarify how the general idea of invariant can 
be expressed in biology through some remarkable mathematical properties.  

In biology, it is necessary to associate with this concept of invariant what 
constitutes its substrate, i.e. the notions of time and space as biology uses them. 
They will serve as a guideline for the development of connections between biology 
and mathematics, which we will then have to specify on the basis of a few 
illustrative examples showing the mathematical methodology at the service of 
biology – both on the technical level of the tools and in the manner of asking the 
questions. 
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5.2.1. Physical time/biological time 

To speak here of time, without any epistemological or metaphysical 
consideration, is not an empty question. This old and recurring problem deserves a 
word about it in relation to our subject. The question arises as to the choice of the 
temporal reference frame: do we simply adopt physical time or sidereal time, as we 
do for the study of a Galilean reference frame movement (uniform and isotropic 
space, uniform time) or the advancement of chemical kinetics? On the other hand, 
can we define what would be a biological time, specific to the phenomenon studied 
and what would be its value? In other words, can we say: “To each their own time?”4 

On this subject, we can mention the following three approaches because of their 
merit in not limiting themselves to mere speculation, but seeking validation of the 
proposed model. 

5.2.1.1. The physiological time of Lecomte du Noüy (1936)5 

With a highly practical aim concerning the healing of war wounds, P. Lecomte 
du Noüy sought to formulate the duration of wound healing by considering that  
two distinct variables – both of a temporal nature – should be taken into account:  
(i) physical time as a unit of measurement to quantitatively express the kinetics of 
wound coverage and (ii) the condition of the wound, and particularly its age, which 
determines its own capacity to react. In other words, there would be two temporal 
components of physical time: (i) its current course at the level of the injury itself and 
(ii) the temporal mark that remains inscribed in the injured person as an integration 
of the elapsed physical time as a descriptor of his physiological state. This last 
component is not related to the instantaneity of physical time, but to a duration that 
has just occurred in the organism studied, according to the philosopher H. Bergson’s 
well-known idea. 

5.2.1.2. Backman’s biological time (1942)6 

The objective here is to find a growth function that would be invariant in order to 
apply to different species. On the one hand, it would be independent of adult 
dimensions (standardization). On the other hand, its kinetics would differ, depending 
on the species, from a transformation of the measured variable, allowing us to 
highlight the singularities of development. This would be tantamount to obtaining a 
kind of intrinsic phenology of fundamental stages. This question arose in the 1920s 

                                 
4 We use here the title of the book by Pacault, A., Vidal, C. (1975). À chacun son temps. 
Flammarion, Paris, which exposes time in its various manifestations, from physics to 
psychology and economics. 
5 Lecomte du Noüy, P. (1936). Le Temps et la vie. Gallimard, Paris.  
6 Backman, G. (1942). Das Wachstum der Bäume. Das Wachstum einiger Kulturpflanzen. 
Wilhelm Roux’ Archiv. 141, 455–499, 770–816. 
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in Brody, who was one of the pioneers of biological growth laws – particularly with 
regard to the weight growth of animal species. It was developed by G. Backman, 
who clarified this issue of major ontogenetic stages as invariants. This crucial 
question was occasionally taken up by some authors, without yet reaching an 
experimental validation, coming up against the difficulty of a good temporal signage 
of these singularities.  

5.2.1.3. Plastochronic time in higher plants (according to Erickson 1957)7 

The development of a higher plant can be described by taking as a marker the 
occurrence of the formation of a new morphological unit (generation of a new 
module {node, leaf, axillary bud}). It should be recalled that “plastochronous” refers 
to the duration (in physical unit) of generation of a new leaf primordium, i.e. the 
duration of the meristematic functioning cycle of the caulinary apex. In fact, to 
avoid observation by dissecting the bud, non-destructive measurements such as the 
acquisition by the young leaf of a reference size perceptible macroscopically are 
agreed. Another difficulty is that this principle is based on a stationary regime of 
meristematic functioning, which is generally not the case, the plastochrone varying 
more or less during ontogenesis. In any case, botanical literature still refers to this 
type of intrinsic time.  

5.2.1.4. The change of state of the system  

More generally, but still very theoretically, this idea of a time that would be 
specific to the object under study can be referred to, according on R. Vallée8, in the 
occurrence of a change in the state of the system. It means considering that physical 
time or duration is only data external to the process. What is essential is the 
perception of the system itself. According to this point of view, the passage of time 
must be related to the change in the state of the system, i.e. the definition of an 

intrinsic duration between two measuring moments t1 and t2:
2
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This implies having an adequate formalization of the velocity of the process. 

5.2.2. Metric space/non-metric space  

Due to the generally inhomogeneous nature of biological objects, the notion of 
“field” is in principle of particular importance for the study of spatialized processes. 
Certainly, we do not have in biology what would be the equivalent of what physics 
knows with electromagnetic fields and the formalism of J.C. Maxwell’s equations. 

                                 
7 Erickson, R.O., Michelini, F.J. (1957). The plastochron index. Amer. J. Bot. 44, 297–304. 
8 Vallée, R. (2005). Time and systems. Kybernetes, 34, 1563–1569. See Buis, R. (2016).  
Biomathématiques de la croissance. EDP Sciences, Les Ulis (web companion, Chapter F).  
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On the other hand, growth and morphogenesis are quite dependent on field analysis. 
For example, in plants, growth is almost always very unevenly distributed within the 
different organs. Whether in dimension 1 (root elongation), 2 (extension of a planar 
leaf blade) or 3 (functioning of the meristem of a bud)9, there are clear growth 
gradients (uneven distribution of local activity) and anisotropy (variation in activity 
depending on direction). Animal embryology leads us to similar considerations, to 
which is added the role of cellular migration. All growth and morphogenesis are by 
nature spatio-temporal processes that take place in a space considered “Euclidean”. 
The study of biological forms also uses a Euclidean metric, as we have seen for 
dimensional allometry establishing growth disharmonies between different regions 
of a tissue or organism. However, the question is complicated by the theory of shape 
transformation as illustrated by D’Arcy Thompson using curvilinear coordinate 
systems (see Figure 3.5). Let us also add the use of modern morphometric methods 
(mathematical morphology, image analysis) in biology, where specific metric 
questions are raised.  

5.2.2.1. Metric space 

According to a completely different objective, the biologist may be required to 

work in a space with p dimensions, say p , for example, for the representation of a 
statistical correlation diagram of a series of individuals on which p variables or 
characteristics have been measured. The Pythagorean theorem then remains valid in 
a generalized form. The distance between two individual vectors xi and xi’ or norm 
of their difference is written (the operator being the usual scalar product I): 
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However, by staying within these kinds of questions, there are other metrics, 
such as those used in the analysis of multi-dimensional data. First, let us note the 
Euclidean metric used in the principal component analysis of H. Hotelling (1936), 
an archetype of factor analysis. This gives the same “weight” to the n individuals, in 
the form of a diagonal matrix, whose elements are all equal to 1/n, used for their 
spatial representation of the principal components (calculation of the inertia of the 
cloud of individuals in relation to the different main axes). The situation is different 
with correspondence factor analysis, which works differently because instead of 
raw data, it uses a contingency table, consisting of a set of line and column profiles 
(resulting from weighting according to marginal distributions). The particularity of 
this method (which makes it successful) is to allow a joint representation of 

                                 
9 Note in passing the fractional dimension of natural fractal objects such as highly branched 
systems (bronchial arborization, vascular network, root system, mycelial filamentous system). 
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individuals and variables in the same vector space. This implies taking into account 
the differences in the marginal numbers of rows and columns. In order to avoid 
giving more importance to some of them, a special metric, called “metric of the χ2 ” 
(chi-2). The distance between rows i and k (on q columns) will therefore be: 
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j i kj

n nn
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notations of the type . jn  designating marginal distributions.  

Another case is that of canonical analysis, a generic term for the analysis of 
several series of data. H. Hotelling was the first to investigate the relationships 
between two data sets, i.e. two sets of individuals on which p variables were 
measured. One of its well-known applications is discriminant factor analysis, some 
of whose algorithms allow the choice of m variables, m ≤ p, maximizing 
discrimination (= distance) between the two series. This optimization is achieved by 
a linear combination of the characteristics considered. For educational purposes, we 
can cite a simple example of an application made by R.A. Fisher in 1936, 
concerning the discrimination of three species of Iris on the basis of p = 4 flower 
size characters (data published online). In such studies, a non-Euclidean metric 
called “Mahalanobis distance” is used as a measure of the similarity of two data sets. 
Instead of giving equal weight to different individuals, a weight is given according 
to their inverse dispersion. This is the same idea as judging data that are far removed 
from the majority of the sample as “aberrant” or “atypical”. The weight of data with 
a low probability of occurrence is therefore minimized. In the case of a cloud of 
observations measured on interdependent variables, the distance between two 
vectors x and y is defined by taking into account the dispersion of the variables and 
their correlations, namely:  

1/21(x , y) (x y) (x y)T
MD Σ − = − −    

where Σ is the variance–covariance matrix, the exponent T designating the matrix 
transposition. 

If Σ = I (identity matrix), we find the Euclidean distance mentioned above. 

It should also be noted that the multi-dimensional data analysis involves various 
techniques using non-Euclidean distances to measure similarities. An example is the 
dynamic cloud method of E. Diday, consisting of obtaining step-by-step an optimal 
aggregation of groups of individuals from nuclei that can be reworked, or numerical 
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taxonomy algorithms that use particular metrics that are unnecessary to detail here 
(see Sokal and Sneath 1972). Apart from these phylogenetic considerations, we can 
mention its interest in the study of the polymorphism of current natural populations 
(resulting from gene flows in situ), such as the interesting example of the forage 
grass Panicum maximum, with the study of about 30 characteristics to clarify its 
heterogeneity and especially to deduce similarities in the context of a genetic study 
of grain domestication10.  

5.2.2.2. Non-metric space 

In biology, we now know that everything related to space is not reduced to these 
classic and relatively simple questions of metrics. Thus, molecular genetics 
distinguishes between different kinds of “distances”, depending on the type of 
genetic mapping considered (whose name is not always precise). Distances can be 
related to two different levels: that of a given chromosome or that of an entire 
genome. In the first case, we work on the linear sequence of the locus of the same 
chromosome. The physical distance between two loci can then be simply estimated 
by the number of nucleic base pairs (bp) separating them. However, another type of 
measurement is also used, based on the crossing-over phenomenon, to which any 
chromosome is subject with its counterpart during mitosis (at the meiotic stage). 
This results in an exchange of locus called “recombination”. The probability of 
segment exchange between paired chromosomes is proportional to its length, i.e. the 
distance between the two loci that define it. This distance, which is different in 
nature from the previous one, is measured by a recombination frequency. The unit is 
centiMorgan: 1 cM = 1% recombination. Finally, at the global level of the genome, 
we are interested in another kind of distance. It is not about two linked loci, but 
between two “molecular markers”. By marker, of which there are different types, we 
mean here a detectable DNA sequence whose polymorphism makes it possible to 
characterize an individual genome. Thus, for the biologist, this term of distance may 
no longer be an entity of a geometric nature, but may address a variety of physical 
realities beyond the previous simple question of metrics. 

However, the most remarkable thing is the importance that should be given at 
this time to the topological aspects of certain processes. In this context, we can 
recall the classic question of the different types of protein structure. We thus move 
from the linear sequence of amino acid linkages to the conformation properties 
(tertiary and quaternary structures) resulting, on the one hand, from the folding of 
peptide chains and, on the other hand, from the existence of typically arranged 
subunits. Then again, with the evolution of the conception of what is meant  
 

                                 
10 Work by Pernès et al., at ORSTOM in 1960–1980; see Pernès, J. (1983). La génétique de 
la domestication des céréales. La Recherche. 146, 910–919.  
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by “gene” that we have talked about, we must rethink G. Canguilhem’s general 
purpose about what has become of the knowledge of life.  

PRINCIPLE.– Knowledge of life “does not resemble architecture or mechanics, as it 
was when it was simply anatomy and macroscopic physiology. But it looks like 
grammar, semantics, and syntax [...]. To understand life, it is necessary to use a  
non-metric theory of space, i.e. a science of order, a topology.” 11 

We should not neglect the fact that mechanical constraints are spatially linked to 
the growth and development of large organisms such as tree species.  

5.2.3. Multi-scale processes 

Let us leave these general considerations behind and highlight this characteristic 
that biology is now becoming aware of, namely that certain phenomena have the 
particularity of taking place on several time and/or space scales. With respect to 
time, it has long been known that some oscillatory systems exhibit a characteristic 
slow dynamic/fast dynamic association, as seen in Van der Pol’s well-known 
system, where there may be a regular succession of these two behaviors (Figure 5.3). 
Observation of certain biological processes attests to their reality in various 
situations, such as the rhythmic morphogenesis of the acrasial amoeba 
Dictyostelium, which can change from a free form to cellular aggregation.  

Space itself can be subject to this kind of duality, which must distinguish 
between macro- and microscopic structures. For example, the behavior of a material 
is related to both (i) its macroscopic aspect seen as a large-scale continuum and  
(ii) the existence of microstructures at a crystalline microscopic scale where the 
aging and degradation processes of the material take place. From this rheological 
point of view, we have an equivalent with some so-called “hierarchical” biological 
structures, such as bone tissue. More generally, it is the interest of a statistical 
physics approach that takes place in biology.  

5.3. Continuous formalism 

Let us consider the representation of a biological process by a dynamic system 
(ordinary differential equations, partial differential equations or integro-differential 
equations) that can express some fundamental characteristics. The main focus is on  
 
 

                                 
11 Canguilhem, G. (1983). Études d’histoire et de philosophie des sciences, 5th edition. Vrin, 
Paris, 362–364. 
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(i) the existence of spatial or temporal singularities whose mathematical importance 
reflects an essential biological property (local extremum of an activity),  
(ii) the possible dependence on initial conditions in cases of multistationarity and 
(iii) the role of exogenous variables or fluctuations on the stability of the steady 
state. The dynamics of the last two cases is conditioned by the existence of a 
bifurcation or qualitative change in the dynamic regime. Let us describe this 
methodology in some detail, the biology of which has been progressively used 
according to the nature of the phenomenon.  

5.3.1. Dynamics of a univariate process 

The process can be approached by a single global variable, which is supposed to 
be sufficient to describe it as do the basic kinetic models used in the classical 
formulation of growth laws:  

( ),P,
dy

f y t
dt

=  [5.1] 

If the speed of the process depends only on constant P parameters, the model is 
called “autonomous deterministic”. We assume here an instantaneity of the 
cybernetic relationship, the current state y(t) determining its own variation in sign 
(growth or decrease) and value (acceleration or deceleration):  

( ) ( ) /ky t dy t dt⎯⎯→  

Here are some common examples of the formalization of a growth based on the 
assumption that the instantaneous velocity dx/dt = f(x) is autonomously defined. 
Some growth laws postulate the limit value (theoretically asymptotic for a simple 
mathematical constraint) set a priori as a parameter (representing, for example, the 
biotic capacity of the environment, often denoted K).  

P.F. Verhulst’s logistic model is the archetype of this kind of formulation by 

posing as a velocity equation: 1
dx x

a x
dt K

 = − 
 

, i.e. the ago-antagonistic association 

of a potentiality qualified as Malthusian (exponential) and a deceleration braking, 
giving a symmetrical sigmoid curve. Various avatars, called “generalized logistics”, 
have been proposed to generate asymmetric sigmoids with a variable position of the 
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maximum activity time (inflection point), for example: 1
ndx x

a x
dt K

   = −     
 or 
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. 

Another kind of formulation poses the growth process as the balance between 
anabolism and catabolism, both functions of a power of the growing variable: 

m ndx
a x b x

dt
= −  (Bertalanffy, Blumberg), the limit value is not fixed a priori.  

5.3.2. Structured models 

Despite the interest of these univariate models, which were and still are the basis 
for various models, clearly, they can only lead to a strong approximation of reality, 
because they do not take into account the heterogeneity of the population studied. 
Beyond a first study, it is therefore necessary to address so-called structured models, 
based on a partition (or stratification) of the system or population into different 
classes or compartments, each of which is relatively homogeneous (we can speak of 
functional equivalence of individuals of the same class) according to such state 
criteria. In addition to the specific kinetics of each category, the transition rates 
between classes must therefore be considered.  

5.3.2.1. The univariate function of Gompertz 

Let us illustrate this principle with the famous univariate function of Gompertz 
(competitor of logistics) that can be defined as a non-autonomous model by an 
exponential decrease in the specific velocity over time: 

1
exp( )

dx
k at

x dt
= −

 

This function is of great interest to biologists outside its initial demographic 
field, particularly because of its applications, which have become classic for 
malignant growth. It is precisely in relation to this type of application that this 
function was rewritten by different authors in a form that takes into account the 
heterogeneity of a total cell population N subject to tumor evolution. For this 
purpose (we summarize), two categories of cells were considered: the  
P-proliferating cells and the Q-quiescent cells, according to Figure 5.1. 
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Figure 5.1. Two-compartment diagram of the Gompertz model  
(depending on the version of (Kozusko and Bajzer 2003)) 

formalized by the dynamic system:  
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where μP and μQ are the mortality rates of these two cell types, β the division rate 
and the transitions r0 and r1 between these two compartments depending on N(t). 
Various simulations of this model were performed depending on the value of the 
parameters and their validation for different types of malignant growth. 

Of course, this principle of discrete structuring into state classes applies to many 
other growth functions. Thus, the logistic classic is presented as belonging to 
kinetics of different cellular categories, taking as a stratification criterion the lifetime 
(or generation time) of each sister cell of an asymmetric mitosis (which is a common 
characteristic of the ontogenesis of filamentous organisms, fungi or algae). A second 
condition criterion concerns the consideration of the evolution of these lifetimes 
during the development of the organism (senescence effect) (Buis and Lück 2006). 

5.3.2.2. Multi-compartment models 

This principle of structured models, which we have just shown in a simple way, 
is used for many kinetics studies, whenever there is a relevant basis for 
compartmentalization. One example is the many models developed in 
pharmacodynamics (human or veterinary biology). This flexibility provided by 
compartmentalization can be illustrated with the example of chemostat cell growth. 
The experimental device used (reactor) allows continuous growth monitoring  
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(by sampling in each class, and partial renewal called “dilution”) with control of 
nutrients and culture medium inputs (Figure 5.2).  

 

Figure 5.2. Growth in chemostat of unicellular green algae  
Cryptomonas sp., compartment model (after J. Arino 2001))  

The dynamics of such a monospecific population is addressed by stratifying into 
different classes on a given criterion, which is here the stage of growth. In addition 
to the class transitions by growth, there are also the dilution outputs corresponding 
to the partial renewal of the culture medium. The growth of the biomass xi of each 
class is written as: 

1 1/i i i i i idx dt x x xα μ α− −= + +  

The overall dynamics thus integrates the kinetics of each of these categories and 
the class transitions, knowing that these result from processes of activation, 
differentiation, quiescence or cellular mortality.  

5.3.3. Oscillatory dynamics 

The use of differential formalism can lead to a wide variety of dynamic 
behaviors. Indeed, unlike the previous univariate growth laws, which are asymptotic 
in nature, some systems can exhibit large oscillations with great qualitative diversity 
depending on the system studied. Indeed, depending on the case, we observe either a 
damping of the periodicity or, on the contrary, their increase (explosion by 
instability), or a chaotic dynamic (irregularity of the sequence of periods, sensitivity 
to initial conditions, non-predictability) (see Goldbeter 1990; Françoise 2005). Not 
being able to detail this diversity of behaviors, let us cite an illustrative example 
particularly interesting in physiology. These are systems that can have two types of  
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dynamics along their trajectories, namely an ordered sequence of “slow” and “fast” 
dynamics. The Liénard-Van der Pol oscillator is the classic model. It is defined by 
the system:  

31
( , )

3

( , )

dx x
f x y x y

dt

dy
g x y x

dt

ε

ε

 
= = − +  

 

= = −
 

Figure 5.3 illustrates this particular dynamic. We have a stable limit cycle that  
is characterized not only by its immediate singularities (extremums), but also by  
pre- and post-extremum variations. Here, it is the parameter ε that determines the 
type of dynamics, in particular, the property that any maximum can be framed by 
two very different phases, – at high speed, then at low speed. It should be noted that, 
depending on the value of the parameter ε, this system can generate a completely 
different behavior, that of regular sinusoidal oscillations.  

This type of dynamic system is of great interest to certain physiological 
processes, such as the rate of heartbeat (slow ventricular waves/rapid) or the 
propagation of nerve impulses (action potential). More generally, this duality is 
found in the combination of metabolic variables (generally fast dynamic) and 
genetic variables (transcription and translation, slower dynamic). 

 

Figure 5.3. Van der Pol Oscillator. ε = 0.1. Left: stable limit cycle generated  
from two different initial conditions; right: asymmetrical shape of the oscillations 

This characteristic behavior is quite distinct from the dynamics determined by a 
delay effect that occurs when the instantaneous velocity depends both on the current 
state of the variable y(t) and on one or more previous states y(t - τ). The delay τ (lag) 
can correspond, for example, to a period of maturation or incubation that must be 
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considered in population dynamics. We know various logistics with delay (e.g. the 
Cunningham model) whose dynamics can be varied, including oscillatory behaviors. 

For this type of problem, it is interesting to add the interest of moving from a 
univariate form to a more general form of a dynamic two-variable system, the aim 
being to be able to draw an exhaustive picture of the different possible dynamics, 
detailing different cases of stationarity. For this, we consider two state variables:  
(i) the variable measured y itself (a dimension or a number, for example) and (ii) the 
specific velocity (1/y) (dy/dt). The reason for this formalism is to be able to envisage 
a wide variety of initial conditions. In other words, these two state variables are 
considered as separate variables at the beginning of the process, giving a potentially 
important role to the initial state of the object being studied, as indicated by many 
experimental situations. Let us take the example of a mycelial or algal filament, 
where we know that growth and morphogenesis of any neoformed cell depends on 
its state at birth: its size, its relationship with the mother cell it inherits in part, its 
position within the filamentous system, etc., from which will result not only its adult 
dimensions, but also its morphogenetic becoming, which may or may not be the seat 
of budding that will be at the origin of a lateral branching. 

In the same vein, let us add that such a value of a process velocity does not have 
the same biological significance according to whether it is increasing or decreasing, 
i.e. according to the sign of its acceleration (second derivative). This is taken into 
account by the logical kinetics approach (see section 5.7).  

REMARK.– With regard to the choice of a model, numerous works have been done to 
compare different mathematical functions for a given process, mainly interested in 
their respective quality of adjustment to the data. In reality, the issue goes well 
beyond this statistical point of view of a significant correlation between estimates 
and observations. Among other examples, we can cite the competition for the 
formalization of a growth process, the logistics law of P.F. Verhulst with other 
functions. We know of a few cases where this is a commonplace formal 
equivalence. For example, the hyperbolic tangent function (which was proposed for 
growth kinetics) is exactly the same as the quadratic velocity equation of logistics. 
On the other hand, the comparison with other very different functions is a matter of 
debate. This is seen, for example, with the proposed use of the Laplace–Gauss 
normal law of probability (distribution function). In this case, the decision is clear. 
On this choice, indeed, it is necessary to underline the interest of the logistics law, 
which is to propose an interpretation of the process (interpretation which can 
therefore be put to the test). In comparison, its substitution by the normal law of 
probability remains, in general, purely technical, without interest of the biologist 
seeking a hypothesis on the possible explanation of the process.  
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5.3.4. On the stability of dynamic systems 

5.3.4.1. Structural stability, an implicit assumption of dynamic systems 

We will remain in relatively simple cases to present now some important 
remarks on the stability property presented by stationary states. On this subject, the 
term structural stability of a model refers to a major property of a dynamic system 
that is of the same nature as the robustness of a behavioral or statistical test, i.e. 
leading to the reliability of the conclusions displayed by the model. This means that 
there is relative independence from local variations or disturbances affecting 
parameters or the environment. We will look at the theoretical situation before 
presenting some critical examples of this notion, adding the role of exogenous 
variables exercising the role of process control or command, i.e. intervening on the 
quality of stationary states, a question related to the general question of optimality. 

From a mathematical point of view, this term strictly refers to topological 
considerations. It means that a deformation of a vector field (leading to a change of 
norm) does not modify its topological characteristics (we speak of “homeomorphism 
of two vector spaces” in the sense of one-to-one and two-continuous application). 
Taking up R. Thom’s remarks (Thom 1972, p. 31), the term applies to any object or 
figure that common sense refers to as a “subjectively identifiable form”. The reason 
for the name is that any object is “always subject to disturbing influences from the 
external environment”, influences which, while making some modifications, leave 
the object in the same equivalence class, i.e. there is permanence of the “form” in 
the usual sense of the word. R. Thom adds that “the hypothesis of structural stability 
of a process appears as an implicit postulate of any observation”.  

Thus defined, this notion would therefore have to be distinguished from the 
stability in the dynamic sense that we typically use, and which simply refers to  
the well-marked properties of a steady state (stable versus unstable, plus cases of the  
so-called “neutral” or “conditional” stability). In accordance with well-established 
practice, we will accept this extension, focusing on the quality that such a dynamic 
system can have (its formal structure and the domain of the numerical values of its 
parameters) as a means of highlighting our essential objective, which is to achieve 
the invariance of the intrinsic characteristics of the biological process studied.  

Let us illustrate this stability issue using a simple two-species predation system 
(system resource = prey/consumption = predator). We know that the archetypal 
model of such a biological association of prey–predator or host–parasite is that of 
Lotka–Volterra, already mentioned many times because of the historical reference it 
continues to have in epistemology. It should be recalled that the original purpose 
was to seek an explanation of D’Ancona’s observations in the Adriatic Sea on the 
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increase in the density of certain predatory fish species (selachians) following World 
War I, which amounted to protecting prey by reducing fishing.  

This very simple model, which generates self-sustaining oscillations, has the 
disadvantage of its strong dependence on initial conditions, which determine the 
period and amplitude of oscillations. It cannot, therefore, identify an autonomous 
dynamic that is characteristic of the interactions between the two species.  

Let us recall its formulation on the basis of the following assumptions: (i) the 
potential demographics of each species (prey x and predator y) considered in 
isolation follow an exponential law (prey growth and predator decline); (ii) the 
predation rate (“functional response” or prey consumption per unit of predator) is 
proportional to the prey density; (iii) the predator growth rate (“numerical 
response”) is linear with respect to the prey density. This gives the following 
velocity equations: 

; , , , 0

dx
a x b x y

dt
dy

c y d x y a b c d
dt

= −

= − + >
 

This very simple system has a single stationary state S, intersection of the two 
isoclines parallel to the axes: 

*

*

: / 0 /

: / 0 /

isocline x dx dt x c d

isocline y dy dt y a b

=  =

=  =  

S is not an attractor r (neutral stability): any position of the current point in the 
vicinity of S is normally maintained in an orbit close to S. On the other hand, any 
minimal disturbance (displacement outside a given trajectory determined by the 
initial conditions) leads to a change of orbit without returning to the previous 
trajectory.  

These disadvantages have been addressed by modifying (somewhat empirically) 
the above basic assumptions. In particular, the choice of more realistic assumptions 
focuses on the potential growth of each species, which can be described as 
asymptotic in nature such as logistics (rather than Malthusian). On the other hand, 
based on various observations depending on the species and rejecting the linear 
approximation accepted above, the predation rate is assumed to be limited, for 
example, with a negative hyperbolic or exponential saturation effect. Practicing a 
kind of experimentation on the initial formalism of Lotka–Volterra, the literature 
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proposes different alternative models (May, Tanner, etc.) for which a mathematical 
stability study should be carried out.  

Kolmogorov’s theorem precisely defines the necessary stability conditions for a 
predation system according to the following general form:  

( , )

( , )

dx
x f x y

dt
dy

y g x y
dt

=

=
 [5.2] 

– In summary, let us say that the existence of either a stable stationary point or a 
stable limit cycle is determined by the following main conditions: 

– f and g are continuous functions with continuous first derivatives (at least on 
the positive domain of x and y); 

– ( ) ( )/ 0 ; / / 0f y x f x y f y∂ ∂ < ∂ ∂ + ∂ ∂ < ; 

– ( ) ( )/ 0 ; / / 0g y x g x y g y∂ ∂ < ∂ ∂ + ∂ ∂ > ; 

– (0,0) 0f > . 

5.3.4.2. The paradox of enrichment: the Rosenzweig–MacArthur model  

One of the well-known forms of the system [5.2] is the Rosenzweig–MacArthur 
model, which was at the origin of what is called the “paradox of enrichment”. We 
know that predation can be considered as a factor regulating natural ecosystems. We 
observe this with the existence of oscillations affecting both prey and predator, a 
qualitatively well-documented behavior in different associations of very diverse 
species. The effect of such variations (which some models can generate through a 
stable limit cycle) allows the maintenance of a dynamic equilibrium ensuring the 
permanence of each species without the risk of exclusion of the prey.  

The reality is not so simple, however, because such systems, due to their 
structural instability, may be subject to destabilization. This is the well-known case 
of eutrophication of an environment: an increase in nutrient resources does not only 
have the primary effect of stimulating prey growth, but can also destabilize the 
system itself. This amounts to considering that this enrichment has the nature of a 
disturbance that the ecosystem cannot regulate, without the possibility of evolution 
towards a new situation of equilibrium between species. This is because nutrient  
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enrichment (natural or induced) is equivalent, for the model that is supposed to 
explain the dynamics, to a change in the value of certain parameters of the growth of 
the prey species, and therefore interactions related to the rate of predation. As a 
result, as some models may specify, the combined effect of these two components is 
sufficient to modify more or less strongly the value or even the occurrence of the 
equilibrium state and especially its possible stability. In other words, instability  
must be seen, not as an exception or a paradox, but simply as an intrinsic property of 
the model.  

Let us schematically look at the elementary association one prey–one predator, a 
simple case where we can easily specify how the relationship between the prey’s 
growth function and its consumption function is presented. Rather than the general 
form given in [5.2], use the following variant of the Rosenzweig–MacArthur model 
with logistic growth of the prey and hyperbolic limitation of the predation rate:  

1
1

1

dx x x y
x

dt c x

dy x
b y a

dt x

 = − −  + 

 
= − + + 

 [5.3] 

Let us graphically illustrate this dynamic using the plot of the corresponding 
isoclines whose intersection S is governed by the numerical value of the 
parameters12.  

Figure 5.4 simply indicates the existence of different cases of stability of the 
theoretical stationary point S: no equilibrium (A), a stable equilibrium (B) and (C) 
and an unstable equilibrium (D). By moving the vertical isocline dy/dt = 0 from right 
to left, the dynamic regime change is visualized as it passes from the top of the 
parabolic isocline dx/dt = 0: in the region to its left, point S becomes unstable, 
changing the type of demographic evolution of each species.  

The corresponding phase portraits would show the details of the trajectories. In 
case (B), the trajectories converge towards the stationary point S attractor. In (D), 
where S is a repellent (of the unstable focus type), the trajectories evolve towards a 
stable limit cycle (permanent oscillations of the two species). Case (C) is still of the 
point attractor type, but due to the structural instability of the system, the occurrence 
of a disruption may lead to a switch to the case (D).  

                                 
12 For example, you can consult the CNRS Experimentarium Digitale interactive site (digital 
examples). 
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Figure 5.4. Rosenzweig–MacArthur predation model: b = 1 ; c = 5 ;  
A: a = 0.85 ; B: a = 0.8 ; C: a = 0.6 ; D: a = 0.4 ; *: equilibrium point S 

Of course, before these remarks, we must question the relevance of the model 
itself, reminding us how empirical the attempts to improve the initial Lotka–Volterra 
model were. For example, abandoning the strong (or even unrealistic) assumption of 
Malthusian growth for the prey species is not necessarily self-evident, because 
predation limitation may justify neglecting its autonomous self-limitation when it is 
very low in relative values compared to the intensity of its consumption by the 
predator (moreover, this type of approximation is often accepted without difficulty 
in many models). However, above all, the logistics of P.F. Verhulst, which is often 
used, is not the only appropriate formalism. Similarly, it is empirically known that 
the predation rate can be formulated very differently (there is no general law linking 
consumption and abundance). These remarks underline the importance of the a 
priori choice of the components of the model on which the type of dynamics will 
depend. The models are very often built on the basis of components that appear 
“plausible” in the absence of an exact mathematical description of a particular 
process. However, it appears that some models are very sensitive to even minor 
changes in formalism. We talk about “super-sensitivity to structure”.  
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All this can lead to uncertainty about the quality of the model, and therefore 
about the possibility of a good prediction. Various studies periodically13 highlight 
this, both by mathematicians and biologists, motivated by a desire for formal rigor 
or simply a requirement for calculation. This has been denounced many times, 
especially concerning the modeling of biological associations. In this field, the use 
of functions that are very similar and have the same capacity to describe 
phenomenologically a nutrient consumption process can lead to quite different 
behaviors at the level of the integrated system (through interactions).  

Nevertheless, the mathematical formalization of the problem is the only way to 
be able to detect the conditions of existence of a relational invariant in the 
phenomenology of the studied phenomenon. What is now practiced with an 
experimentation called in silico, completing in its own way what was the approach 
of in vitro experimentation compared to observation in situ.  

5.3.4.3. Stability and optimal process control 

A question related to the dynamic quality of stationary states and the principle of 
optimality concerns the role of control variables. The problem of stability then arises 
to look for the control surface whose morphology may include sudden breaks or 
jumps in the value of stable stationary states.  

A remarkable formalization is given by R. Thom’s theory of catastrophes, which 
highlighted the existence of seven cases called “elementary disasters”. The simplest 
is what is called the “cusp” corresponding to the system: a variable u and a control 
parameter a according to the equation F(u ; a) = u3 + au. A slightly more 
complicated case is called the “dovetail”, which corresponds to a fifth-degree 
equation and three control parameters, etc.14.  

Let us briefly summarize this variational approach with the simple case of the 
pleat (cusp) (Figure 5.5), an image name that represents the shape of the response 
surface of the variable u according to the value of the two control variables r and q. 
Its equation is: F(u ; (r, q)) = (1/4)u4 + (1/2)u3 r + q u = 0, including the cancelation 
of its derivative u3 + ru + v = 0 gives the shape variation of the potential function 
(number and stability of stationary states u*) (Figure 5.6).  

                                 
13 Wood, S., Thomas, M.B. (1999) Super-sensitivity to structure in biological models. Proc. 
Roy. Soc. London B. 266, 565–570; Fussmann, G.F., Blasius, B. (2005). Community response 
to enrichment is highly sensitive to model structure. Biol. Lett. 1, 9–12. 
14 A summary presentation is given by Ekeland, I. (1977). La théorie des catastrophes. La 
Recherche. 81, 745–754.  
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Figure 5.5. Gathering type control surface. One state variable u and two control 
variables (q, r). u*: stationary states. The pleat disappears at the critical point 0 

 

Figure 5.6. Variation of the potential function (vertical section in Figure 5.5).  
In the center: two minimum stable and one maximum unstable,  

corresponding to the shaded area of Figure 5.5 

5.3.5. Multivariate structured models 

5.3.5.1. Droop’s model 

The need to compartmentalize a particular variable may be based on something 
other than a standard-state criterion (such as age or activity as we have seen above). 
In particular, we can physically distinguish, for a given substance, its external 
concentration in the environment, an absorbed but not yet metabolized fraction 
(intracellular storage) and a directly usable fraction. Droop’s model (1968) was the 
first of its kind, developed for the study of the chemostat growth of the unicellular 
alga Monochrysis lutheri. Based on J. Monod’s substrate-dependence model to study 
the action of a limiting nutrient s (in this case, vitamin B12, a growth-limiting factor 
for this phytoplankton species), it introduces a new variable q representing the 
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concentration of this nutrient stored in the cell before its metabolism (called 

“intracellular quota”), ins  and D being the parameters for continuous renewal of the 

culture medium:  
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Various extensions of this Droop’s model allow us to take into account two or 
more nutrients, with applications to the study of the eutrophication of a natural 
environment (high content of N and P). 

5.3.5.2. Models of enzymatic kinetics 

Another area of application of this principle is in enzymatic kinetic models, of 
which here is a basic overview in the case of a chain of n coupled biochemical 
reactions. The regulation of such a sequential system with a loop connecting the 
extreme links can be described on the basis of the following two principles: (i) the 
final product inhibits the first reaction according to a given function f(xn) (negative 
feedback with delay determined by the number n of steps) and (ii) each of the 
intermediate reactions is subject to class transitions according to linear kinetics:  
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B.C. Goodwin’s model (1965)15 adopts for regulation function f a classical 
saturation function of the type: 
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15 Not to be confused with the American economist Richard M. Goodwin (work on economic 
growth).  
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Inhibition of the first reaction of the sequence is the result of the combination of 
ρ molecules of the final product xn with the enzyme catalyzing this reaction (as a 
denominator of the coefficient k1).  

The value of parameter ρ (Hill’s coefficient16) ensures a qualitative distinction of 
regime:  

– for ρ = 1, the equilibrium point, locally stable, is an overall attractor for this 
system; there is no periodic solution;  

– if ρ ≥ 2, there is cooperative inhibition (sigmoid response, becoming threshold 
for large ρ). 

In particular, it is shown that for ρ ≥ 2 with n large enough, there may be an 
unstable equilibrium and oscillations. The mathematical analysis of the model (using 
the Laplace transform) gives us the stability equation explaining the conditions of 
instability and the establishment of an oscillatory regime, solutions (coefficient 
values) to be validated experimentally.  

The principle of this type of negative feedback applies to the formulation of 
genetic regulation. In the elementary case of an enzymatic reaction (one enzyme x2) 
controlled by the product x3 whose formation it catalyzes, regulation is carried out 
by inhibition (repression) of the transcription of the gene encoding messenger RNA 
(x1) according to the graph:  
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So follows the written dynamic system with the corresponding concentrations:  
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16 Hill’s equation was developed for the fixation of O by hemoglobin: V = (y 

ρ)/(1 + y 

ρ), 
where y is the concentration of free ligand. The fixation curve (in fraction of sites) is a 
sigmoid for ρ ≥ 2.  
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An interesting and biologically relevant modification consists in replacing the 
linear degradation of product P by the saturation function of a kinetics of Michaelis–
Menten:  

3 1 3
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2 3
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dt k x
= −

+  

With this formulation, the model allows an oscillatory dynamic of the limit  
cycle type.  

This classic model can be interpreted in terms of the number of active genes GA 
and of repressed genes GR in the total population of GT genes encoding this mRNA 
in the sample studied:  
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5.3.6. Dynamics of spatio-temporal process 

As a general rule, any process of a spatio-temporal nature requires the joint 
reporting of kinetic and transport equations, which should also distinguish the 
movement of metabolites or reactants and that of cells or individuals. In the diversity 
of experimental situations, only a few points will be specified in the following, in 
order to highlight the contribution of some essential mathematical tools to 
understand the dynamics of a biological process. 

5.3.6.1. Growth–diffusion–advection models 

The kernel of these models deals with both temporal kinetics (growth type) and 
transport action. “Transport” means either a simple movement of the substrate as a 
diffusion or a movement affecting the state variable. This is the case, for example, of 
the dynamics of natural populations whose individuals are subject to displacement 
(see below for so-called “spatialized” models). In addition, there is the effect of 
substrate structuring when the substrate has a strong topographic heterogeneity of 
the gradient type.  
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In this context, we present growth–diffusion models, the typical case of the 
famous Fisher equation (also known as Kolmogorov–Fisher or Kolmogorov–
Petrovsky–Piskunov, named after the authors who studied it mathematically). For 
his part, R. Fisher focused on its use in population genetics to analyze the spread of 
a gene in a natural population. He considered this model as the fundamental 
equation of his theory of natural selection (1930). Let us remember here its 
formalism, which combines the principle of logistical growth and displacement by 
diffusion according to Fick’s law. Either, in standard form for the variable C of the 
diffusion coefficient D:  

2

2
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C C
C C D

t x
α∂ ∂= − +

∂ ∂  

0 , 0Dα > > , unidirectional diffusion according to x.  

This completely classical model presents some constraints on the initial 
conditions for obtaining a mobile growth wave, a question that has been well 
studied. Other considerations are also of practical importance, such as the problem 
of critical size in a limited environment. It should be noted that logistic growth 
subject to diffusion over a sufficiently large habitat results in a stable distribution of 
the steady state. We limit ourselves here to the presentation of some trajectories 

corresponding to the existence of a wave under the condition 2 (c Dα≥ , explained 

in Figure 5.7, after changing variables: C(x, t) = U(z) ; z = x – ct.  

 

Figure 5.7. Fisher’s equation of logistic growth with diffusion.  
Stationary points: S1 (stable) and S2 (unstable), c = 2.2 (see text)  

5.3.6.2. Reaction–diffusion models 

We have previously noted the contribution of mathematician and computer 
scientist A. Turing to morphogenesis modeling (section 3.7.2). In this field, in fact, 
the phenomenon studied, regardless of its physical nature, is posed as belonging to a 
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double dimension, spatial and temporal, which formalism must explain. Any 
differentiation (e.g. such cellular differentiation in an even more or less totipotent 
tissue) must be studied from a kinetic point of view (its conditions of realization), on 
the one hand, and from a spatial point of view (in which site), on the other hand. 
Any morphogenesis is by definition concerned by this dual organization: it occurs 
only at a given time and in a given place. In addition, particularly in liquid 
environments, there are possible displacements (structuring waves) such as for 
certain oscillating chemical reactions (such as the famous Belousov–Zhabotinsky 
reaction).  

These reaction–diffusion models are designed on the principle of coupling 
between state variables called “morphogens”, whose evolution results from their 
interaction (as for any kinetics) and their diffusion on a given substrate. However, 
they are not quite field models in the sense that only the velocity equations of the 
morphogens Y are posed, i.e. in the case of diffusion in only one direction x:  
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 [5.4] 

R(Y) being the reaction functions of morphogens. 

A field model stricto sensu (see below) would study the displacement of any 
point in the field as a function of both local morphogen concentration and position, 
which equation [5.4] does not do.  

A first illustration of this model considers with A. Turing the elementary case of 
a ring of n indexed cells i, (i = 1,…, n) and two morphogens X and Y scattering 
between adjacent cells. Such a physical system can be seen as a simplified analogue 
of certain biological structures (e.g. blastula in animal embryology or, for the 
primary structure of plants, the annular region delimiting the cortex and medullar 
parenchyma where the conductive vessels, phloem and xylem will differentiate).  

Suppose that this system is close to equilibrium. The deviations from this, noted 
xi and yi, can be expressed as a first approximation by the linear system:  
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With this coupling of local reactions and linear diffusion, we can expect a priori 
an evolution towards uniformity of concentrations. This system can therefore only 
generate a spatial structuring according to conditions on the value of the parameters. 
Let us say, in short, that a Fourier transformation of these x and y leads to a new 
system, whose solutions include time exponentials affected by complex numbers. 
However, we know that the dynamics of a very simple linear system of dimension 
2(x, y) qualitatively depends on the properties of the coefficient matrix (more 
precisely on the algebraic nature of its eigenvalues, their sign and their real or 
complex nature). A. Turing gives a very simple theoretical example, based on  
a set of coupled autocatalytic reactions. By numerical simulation, it shows the 
possibility of generating stationary structuring waves (defined by local morphogen 
concentrations).  

Turing’s ideas have inspired various models of natural phenomena, including in 
biology the work of A. Gierer and H. Meinhardt, which emphasizes L. Wolpert’s 
(1969) notion of positional information. H. Meinhardt’s models are based on the 
catalytic coupling of two morphogens, an activator A and an inhibitor H, with very 
different diffusion coefficients, hence the establishment of clear concentration 
gradients, quite different from each other in amplitude and extent. It is the H 
inhibitor, much more diffusive, which provides the positional information function 
for any cell in the field thus traversed, namely:  

2 2
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2
2

2
;

A A A

H H H H A

A A A
c A D

t H x

H H
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t x
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To this basic formalism are associated other equations according to the type of 
process studied. For example, for cell differentiation determined by activator A, two 
other variables are involved: S, of a trophic nature (subject to depletion), and Y, 
whose role is to qualitatively switch or bifurcation to the differentiated state. This 
implies that this variable Y has multistationarity. Mathematically, we have the 
following solution, resulting from a classical saturation mechanism (see J. Monod’s 
substrate dependence model) limiting the synthesis of this variable Y according to 
the equation: 

2

21

Y Y
d A eY

t Y

∂ = − +
∂ +

 [5.5] 
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Figure 5.8. Meinhardt model of cell differentiation.  
Equation[5.5]. *: stable stationary states S1 and S2 

Figure 5.8 shows how this coupling works (S, Y). In the absence of an activator 
(A = 0), there are three stationary states dY/dt = 0 (two stable S1 and S2, and one 
unstable). In the vicinity of S1 at low concentrations of Y, we have dY/dt < 0, so that 
the system evolves to S1, where Y* = 0 (no differentiation). The differentiated state 
S2 can only be achieved for a particular initial state (high concentration of Y)  
and above a threshold located in this figure by the unstable stationary point between 
S1 and S2. A contrario, in the presence of A, we have dY/dt > 0, showing that  
even with a very low initial concentration of Y, there is evolution towards the 
differentiated state S2.  

The regeneration phenomenon, so important in animal or plant morphogenesis, 
benefits from this reaction–diffusion approach. A good example is the regeneration 
of the green algae Acetabularia, modeled by a mechanochemical model (Goodwin 
and Trainor). This is a natural phenomenon that occurs in the spring after the winter 
beheading of this algae. This model differs from the previous ones in that it takes 
into account both the mechanical stresses and the kinetics of the calcium subjected 
to diffusion. The role of Ca as a morphogen is to act on the viscoelastic properties of 
the cytogel. Mathematically, this study uses specific mathematical tools well known 
in continuous media mechanics, stress and displacement tensors. This makes it 
possible to simulate the regeneration of the cap of these algae, reproducing the 
geometry of the apex and the periodic structure typical of the apical crown of whorls 
(Brière and Goodwin).  

REMARK.–The notion of “tensor” generalizes that of vector, according to the 
following distinction of the dimensions of quantities: scalar, vector, matrix and 
tensor. For example, a pressure is represented by a scalar (dimension 1), a force by a 
vector (three numbers in R3 in relation to the chosen base). A mechanical stress is 
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defined by a set of six numbers called “stress tensors”. It is an invariant (i.e. 
independent of any reference system) that is written in the form  of a matrix 3 3×  

symmetrical. Diagonal terms are the normal stresses on the faces of the element 
under consideration; extradiagonal terms are the tangential stresses. They 
correspond to the displacements or modifications by elongation and shearing. 

5.3.6.3. Field models 

Since any biological object is inhomogeneous by nature, field models are 
intended to locally describe a particular physiological or morphogenetic activity17. 
The principle of the notion of field is a little ubiquitous in biology, both in the nature 
of the process considered and in the importance that should be given to the local. To 
illustrate this notion, let us turn to the exemplary and well-studied type of study of a 
growth field in plants, organisms in which the growth activity within a tissue or 
organ is generally very unevenly distributed. 

This distribution concerns, on the one hand, the growth rate itself, and on the 
other hand, its direction (anisotropy). For example, for the growth field constituted 
by the expansion of a planar leaf blade, the consequences of these two aspects of 
tissue inhomogeneity may relate to a change in the shape considered in 2D 
(affecting the usual length/width allometry) and/or its local variations in thickness 
(embossed leaf faces). The measurement of an overall growth intensity must 
therefore be extended by a mathematical characterization of the growth field that can 
be related both to local mitotic activity (frequency and direction of mitosis) and to 
specific metabolic properties.  

Let us present the principle of analysis of a growth field in the relatively simple 
case of unidirectional growth, such as the elongation of a young root. Beyond the 
macroscopic distinction of its different regions (meristematic, cellular elongation, 
maturation, branching) well known since H.L. Duhamel du Monceau in the 18th 
Century, the analysis of a root field did not begin until the 1940s to the 1950s on 
young maize roots, with the definition of a particular quantity, called “specific 
elementary speed of growth in length” (R.O. Erickson), which expresses the activity 
of an element of root length. The problem is thus posed in the context of vector 
analysis considering the analogy between the growth of a tissue or organ with the 
dynamics of a continuous medium.  

The calculation of the elementary specific growth rate in length is based on the 
kinematics of markers or particles deposited on the root surface, whose displacement 

                                 
17 The growth field considered here has nothing to do with the term “morpho-genetic field” 
(or “morphic”) used in a completely different context and especially without the precision 
provided by the mathematical treatment presented in this chapter based on the definition of 
duly measurable field variables.  
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is monitored during organ elongation. Let x be the position of a given material point 
M (measured with respect to the root tip O) and v the growth velocity of the OM 
segment. Knowing that the growth of an element of root length dx depends on its 
position x and time t, the fundamental equation of local growth is written:  

v v
dv dx dt

x t

∂ ∂= +
∂ ∂  

In practice, in its usual use, it is generally assumed that it is stationary. The field 
of growth velocity is assumed to be time-independent: / 0v t∂ ∂ = . Under these 

conditions, the specific rate of elemental growth is defined as the divergence of the 
velocity vector:  

(v)élém
d dx dv

v div
dx dt dt

 = = = 
   

The mathematical treatment of this notion of the rate of growth of an infinitesimal 
element makes it possible to go further, with the possibility, as in the dynamics of 
continuous environments, of a double physical representation, called Eulerian and 
Lagrangian, which provides additional information on the growth process. 

The Eulerian or spatial representation corresponds to the function	ݐ|ݔ)ݒ	(݀݁ݔ݂݅, 
experimentally estimated by photographic recording of the displacement of the 
markers. Its derivative ( )/ xv t∂ ∂  has the meaning of acceleration. With the 

Lagrangian or material representation, we are interested, not in what happens at the 
position x on the organ, but to a given material element that has been visualized by a 
particle M deposited on the surface of the organ. From the displacement of this 
“particle” (i.e. of a particular cell or group of cells), the Lagrangian derivative for 
the point M, write:  

( )(M) , ( )M OM
Dv v v

v x t x v
Dt t x

∂ ∂= = +
∂ ∂  

In this expression, the last member distinguishes between local changes at 
position x and the displacement of point M. The use of the Lagrangian description is 
justified from a biological point of view, because the interpretation of the analysis of 
a physiological field is based on what happens at such a tissue site (say such a cell 
that ideally should be followed) rather than at a point fixed by its geometric position 
and which is not occupied by the same cell.  

In 2D growth, for example, the expansion of a leaf blade, also uses the previous 
vector analysis. Let us summarize the developments it brings. On the one hand, it 
allows a mapping of local growth activity and its variation during ontogenesis, in 
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particular, the identification of the displacement of the fastest growing region. On 
the other hand, it makes it possible to express growth anisotropy and, correlatively, 
its variation during the organ growth. In addition, the variation in direction of the 
highest elongation, or vorticity, is measured, by analogy with the rotational motion 
of a fluid particle, by the vortex or rotational vector of the growth vector18, to which 
we associate a vorticity tensor. 

Finally, let us note the importance of certain 3D growth fields. Thus, in the 
functioning of apical meristems, an essential role is assigned to the privileged 
orientation of mitoses (called anticlines or periclines according to their direction 
perpendicular or parallel to the surface of the meristem). The field analysis 
highlights a fundamental notion that is the existence of principal growth axes 
(Figure 5.9). The main point of this study (Z. Hejnowicz) applied to a meristem is to 
show that cells divide according to the principal planes defined by the growth tensor. 
Let us add, in the analysis of the dynamics of these meristems, the use of a 
curvilinear coordinate system, called “natural system in accordance with the 
geometry of the apical dome” (e.g. paraboloidal system). 

 

Figure 5.9. Root apex (simplified scheme after Nakielski and Hejnowicz (2003)).  
a): Initial state of cells located in the various quadrilaterals specified in different 
arrangements. The deformation of these quadrilaterals indicates the direction of the 
principal growth axes. b): Cell elongation without division. c): Growth with division. 
For a color version of this figure, see www.iste.co.uk/buis/biology.zip 

                                 
18 This rotational is the vector ω rot(v) v= = ∇ ∧ , where ∧  refers to the vector product.  
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Another important aspect of this concept of a growth field is that local 
distribution can have dynamic properties that modify the field facies during tissue 
ontogeny. This is because it is not only enough to describe local variations in 
inhomogeneity, but also to specify their relative stability. We know that if a given 
plant tissue can be seen as a “patchwork” of micro-regions of very diverse activities, 
their distribution can be subject to remarkable oscillations. In short, let us say that 
each of these micro-regions is likely to cyclically evolve from a state of high activity 
to a state of inhibition or latency. Such cases, known as “mosaic growth”, can be 
observed in plant cells where it has been clearly demonstrated that the wall 
extension is in the form of a hypercycle, i.e. a type of loop network coordinating 
spatio-temporally different elementary components (multi-enzymatic processes 
under the dependence of the electrostatic state of the wall, incorporation of new 
parietal elements) (see Figure 3.11).  

5.3.6.4. The notion of hypercycle 

With these new models, the position variable is not explicit. The spatial 
component intervenes in a completely different way, in the form of external inputs 
within a cycle of autocatalytic processes. These inputs are specified by their point of 
impact on the cycle, i.e. on the progress of the process. There are in a way two types 
of effectors; on the one hand, the inputs that correspond to the dependence on a 
substrate associated with the studied process, and on the other hand, the evolution 
within a series of reactions until the achievement of an anticipated ad hoc state. For 
example, the determinism of plant cell growth here jointly results from the 
electrostatic state (ionic charge) of the cell wall, the incorporation of new materials 
(wall extension) and the development of a multi-enzymatic process. Such a model 
makes it possible to resolve the contradiction between the properties of enzymes 
deduced from in vitro studies and their effective behavior in situ (fixed enzymes, 
parietal electrical potential). We refer to section 3.11.2 that presents the overall 
regulatory scheme (Figure 3.11).  

This review of different types of continuous models is far from exhaustive.  
For example, all biomechanical models involving one or more mechanical variables 
(turgidity, particularly important water potential in plant physiology) and where 
specific quantities (stress or strain tensors) must be taken into account have been  
left out.  

5.3.7. Multi-scale models 

This elaborate form of structured models has quite recently developed from the 
first studies that focused on material stability. It also has its place in the analysis of 
living systems, as soon as we want to take into account in some detail the fact  
that there is indeed a multi-scale (or multi-level) organization in many biological 
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processes. Indeed, many phenomena often occur or result from the coordinated 
intervention of several organizational levels that interact, from the molecule to the 
organism and the ecosystem. See the overview of A. Lesne (Lesne 2009) on the 
multi-scale organization of living systems.  

It is no longer just a question of structuring a set of variables as when we 
establish classes or categories of cells according to their state (age, activity classes, 
etc.), whose interactions and respective evolutions would simply have to be 
analyzed. Other levels of functioning that may be involved in the process are added. 
Example: the bonds between the molecular level and the cellular level, any molecule 
or, more precisely, any molecular network or cycle, acting on a certain cellular site 
with which it interacts.  

The principle of this approach can be summarized in the following simplified 
way19. Let us consider two kinds of variables and their related spaces:  

– a macroscopic variable N in a space x (physical space where the cells are 
located);  

– a microscopic variable n that represents a set of cellular states in a space 
between which we place a system of equations describing their respective dynamics: 

- macroscopic dynamics on x: Fx(N, n) = 0; 

- microscopic dynamics on y: fy(N, n, x) = 0. 

As an example of interpretation, let us say that N = N(x, t) can represent the cell 
density on x, and n = n(x, t ; y), the distribution of cellular states y at a given  
x-position. We see the application of this principle and its extension to the study of 
cancerous growth, which depends on several determinants: genetic transformations, 
growth of already individualized tumors, interactions with the body and the 
environment. Similarly, this principle can be applied to any other situation, such as 
in ecology, where the importance of a chain or network of different levels is 
essential in the dynamics of a particular type of process.  

From this point of view, it is clear that most of the dynamic systems used in 
biology can be seen as approximations that, for one reason or another, neglect the 
reality of this organizing principle. Even reaction–diffusion systems, such as those 
well-documented by A. Turing (morphogenesis with emergence of spatial 
structuring) and Kolmogorov–Petrovskii–Fisher (gene dynamics in a population), 
are, if we can put it that way, only relatively simplified tools, as they do not take into 
account the interplay between organizational levels. The only interactions they take 
                                 
19 We are inspired by the presentation given by Bernard, S. (2013). Modélisation  
multi-échelles en biologie. In Le Vivant discret et continu, Glade, N., Stephanou, A. (eds.). 
Éditions matériologiques, Paris, 65 sq.  
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into account are all at the same level. With A. Turing, for example, we consider the 
interactions at the molecular level of morphogens according to a classical kinetics, 
the cellular level being apprehended only by the role played by positional 
information. It is not the addition of the genetic regulation level (Meinhardt 1978, 
1982) that in itself can be sufficient to talk about a multi-scale model, as their 
interweaving should be clarified. Another example of complexity is the modeling of 
a chemotaxis phenomenon where two types of transport are considered: the 
movement of cells and the diffusion of substances (nutrients or others). We then 
base ourselves in a completely classical way on their own kinetics (formation, 
degradation, consumption) and on their transport, but neglect the interaction 
between these two interdependent levels, namely the cellular population and 
molecular distribution. However, of course, the practical choice of the type of model 
depends on the objective pursued, the development of a highly integrated model 
involving on the one hand referring to a corpus of sufficiently explicit hypotheses 
and, on the other hand, having experimental possibilities for validation, not to 
mention the mathematical solution of equations quickly becoming rather 
complicated (especially in the case of partial derivatives).  

An example of a multi-scale approach is the cell dynamics model of V. Volpert 
et al (2013), applied in particular to the regulation of erythropoiesis20. The 
generation of red blood cells (erythrocytes) in the bone marrow and their fate are 
subject to two types of regulation at two distinct levels. Without detailing the 
mathematical formalism used, let us summarize the principle of the elementary 
process involved, which it is necessary to jointly insert into a system of differential 
equations. First of all, it is necessary to consider the essential importance of 
intracellular regulation with the key role of two protein precursors (called ERK and 
Fas) in a competitive state, hence a bistable dynamic that improves the choice 
(bifurcation) between very different behaviors: either proliferation without 
differentiation or differentiation and then mortality (apoptosis). Second level to 
consider, it is necessary to add the existence of an extracellular regulation where 
different compounds can play, but which can be modeled by a reaction–diffusion-
type process with a medium-dependent particle movement (referred to Darcy’s 
physical law). Let us remember with this example the methodological evolution that 
it entails in relation to Droop’s model already mentioned (section 5.3.5.1), which 
was simply based on an elementary structure distinguishing three levels, the 
extracellular fraction, an intracellular fraction absorbed and stored on standby, and 
the directly usable metabolized compartment. These were then simple categories and 
not real organizational levels characterized by differences in time scales.  

                                 
20 Volpert, V., Bessonov, N., Eymard, N., Tosenberger, A. (2013). Modèle multi-échelles de 
la dynamique cellulaire. In Le Vivant discret et continu, Glade, N., Stephanou, A. (eds.). 
Éditions matériologiques, Paris, 91–111.  
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5.4. Discreet formalism 

Let us recall the introduction of a discreet formalism in biology with the 
mathematical Fibonacci sequence:  

1 2n n nu u u− −= +
 

This prototype of linear recurrence equations was given as a representation of a 
biological growth phenomenon on which we specified the strong hypotheses that 
could justify its use. A first extension was considered by modifying Fibonacci time 
lags 1 and 2: 

;t t m t nn n n m n− −= + ≠
 

This sequence applies to the development of an algal filament, with n being the 
number of cells of which there are two categories according to their lifespan m or n 
(i.e. their division times, fixed according to their position at birth, such as their 
polarity with respect to the direction of development of the filament). 

Another generalization leads to the principle of well-known autoregressive 
models for the study of time series, which can be complicated in various ways with 
the abandonment of the linearity hypothesis:  

( ), , , ',i t i i t h j t hx f x x− −=
 

and the introduction of a delay h, which can be multiple.  

The interest of a discrete formalism concerns in particular the various models 
inspired by the Automata theory, in particular the L-systems whose application we 
have seen to model a morphogenesis. Another well-specified case is that of linear 
models, known as matrix models, widely used in structured population dynamics:  

n ( ) M n ( 1)t t= −   

with n being the vector of the numbers of the different state classes (age, for 
example) and M the transition or projection matrix. In the case of a structuring in 
age groups, we speak of “Leslie’s matrix”, referring to the pioneering work of this 
author (1945, 1948). Let us underline the hypotheses: linearity of relationships, no 
memory or delay effect. 
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These matrix models (Caswell 1989) are to be compared to Markov processes, 
which are random processes where the probability of occurrence of a state depends 
only on the probability of the previous state. 

5.5. Spatialized models 

Two very different types of spatialized processes are to be considered. We have 
seen a first type with Turing’s reaction–diffusion systems, then with field models, 
both corresponding to the study of phenomena of a spatio-temporal nature by 
studying local singularities. We take up this question here from two other points of 
view. On the one hand, it is a question of introducing the idea that these are often 
collective phenomena involving an interest in individual behavior and not only in 
average values. This is the purpose of some multi-agent models, explicitly referred 
to as “individual-centered models”. On the other hand, we have another category 
of models based not on the dynamics of usual statue variables (such as numbers or 
concentrations) but also on the formation and displacement of an electrical potential 
(electrophysiological processes). We will give an overview showing their 
mathematical particularities, compared to the models previously presented. 

5.5.1. Multi-agent models: dynamics of a biological association of the 
individual-centered type 

We have seen that the spatial representation of a biological process can be 
studied using a dynamic system with one or more diffusion and/or advection terms. 
The remarkable case of Turing reaction–diffusion systems thus allows the study of 
the spatial distribution of state variables with, in particular, the existence of 
stationary displacement front and the formation of a structure. In these classical 
models, space is considered as a field of concentration or density related to state 
variables without making any material reference to the “individual” themselves 
(with the exception, however, of the so-called material or Lagrangian representation 
of a univariate growth field).  

There is another approach that is particularly suitable for biological associations. 
Unlike the classic formulations of A.J. Lotka and V. Volterra, which give an 
“average” view of the behavior of each species, it is important to be interested in the 
fact that these are collective phenomena that involve taking into account locally, on 
the basis of state variables, the dynamics of individuals. These are simply 
distinguished by their membership in a particular group, each group having its own 
spatial and temporal kinetics. This is the case, for example, of multi-species models 
of association of competing species with the objective of detailing the spatial 
distribution of each agent (as such species) in an evolving inhomogeneous field. 
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This spatialization problem concerns various processes at different organizational 
levels, from cellular to ecosystem. For example, in ecology, the identification and 
monitoring of areas of territory mainly devoted to a certain group (regionalization or 
patchiness). The method consists in monitoring the movement of any individual 
according to their own growth and local interactions with their surroundings (of the 
same species or not), hence the name individual-centered models.  

From a practical point of view, this approach is, therefore, not limited to the 
classical dynamics of state variables alone but involves a simulation of the 
probabilistic behavior of any individual. Computer programs, such as NetLogo, 
NetBioDyn or Stella, meet this objective of a dynamic spatialized representation for 
collective phenomena whose nature can be very varied. Figure 5.10 provides a 
simple example for a predator–prey model applied to the association of two 
vegetation–herbivore species, whose growth rates are determined, with the 
multiplication of the herbivore being determined by the level of its consumption.  

  

Figure 5.10. Individual-centered predation model of the rabbit–grass association. 
Simulation by NetLogo software. The rectangles represent an area of grass 

development. Left: initial stand; right: evolution after 200 iterations. For a color 
version of this figure, see www.iste.co.uk/buis/biology.zip 

5.5.2. Electrophysiological models: transmission of electrical signals 

With the first evidence of electrical activity in animals by L. Galvani in the 18th 
Century, the analogy was made between “nervous fluid” and “electrical fluid”. 
Later, the first electrocardiogram recordings came at the beginning of the 20th 
Century. However, it was only in the 1930s that this new field of physiology, 
electrophysiology, was really born, with the notion of membrane potential, the 
measurement of which became possible through the use of microelectrodes. 



Mathematical Tools and Concepts in Biology     177 

Referring to Nernst’s electrochemical law for a given ionic compound (e.g. K), the 
membrane potential resulting from a difference between intra- and extracellular 
ionic concentrations can be expressed by the relationship: 

[ ] [ ]( )ln /
e i

V k K K=  

where the potential V is in volts. Parameter k depends on the number of electrons 
exchanged, the temperature (in Kelvin) and the constants of the perfect gases and of 
Mr. Faraday.  

On this particular subject, we can briefly recall some basic elements of 
electrophysiology (well summarized, for example, in (Françoise 2005)). It is known 
that, in the case of an excitable element (neuron), the effect of an electrical 
stimulation is to cause locally, beyond a threshold of excitability and according to an 
all-or-nothing law, a sudden and transient inversion of its resting potential 
(depolarization), then its repolarization with the appearance of an action potential 
(nervous influx) that propagates without modification along the excited element. By 
analogy with an electrical circuit of intensity I comprising in series a capacitance  
C and a resistance R, the electrical potential v(t) of a neuron is determined by the 
equation:  

( ) ( )
dv

v t R I t
dt

τ = +
 

where τ = RC is a time constant.  

Writing for the threshold value: vs = v(tf), we have the following expression of 
the potential:  

0
( ) exp exp ( )
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s

t t t s
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τ τ
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For t < tf (integral zero), the potential increases by an initial value v0 = vs exp 
(– tf/τ) to vs, then decreases sharply before resuming exponentially. The effect of a 
generating pulse can be represented by a sum of functions of P. Dirac, resulting in 
the characteristic shape of a series of peaks of action potentials. 

The basic mathematical model of electrophysiology is the Hodgkin–Huxley 
model, experimentally developed on the giant axon of squid (1952). Its formulation 
is based on the transmembrane currents of the Na+ and K+ ions, responsible for  
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depolarization and repolarization of the axon, respectively, according to the electric 
charge balance equation:  

m Na K f
dV

I C I I I
dt

= + + +
  

with Ix representing the different ionic currents (sodium, potassium and other 
currents noted f for leakage current). The model state variables here are not 
concentrations, but ion activation functions: K n(t) activation, Na m(t) activation and 
Na h(t) inactivation functions. Finally, taking into account some hypotheses that are 
not necessary to detail here, T. Hodgkin and J. Huxley establish their relationships 
with the equilibrium potentials for each ion according to Nernst’s law and the 
corresponding membrane conductances. In addition to these three differential 
equations on time, there is the equation of the resulting action potential dv/dt.  

The FitzHugh–Nagumo model is a simplification of the Hodgkin–Huxley 
equations, taking into account the important fact of a difference in scale between the 
rapid activation of sodium and the slower electrical response. The system is reduced 
to two relatively simple equations that can be written according to new variables x 
and y: on the one hand, dv/dt of the fourth degree in n and the third degree in m, and 
on the other hand, dn/dt linear in n. With a change of variables, this model becomes: 

( )34
dx

k y x x
dt
dy

x b y c
dt

= − + −

= − −
 

5.6. Random processes in biology 

It is known that the introduction of a random term into a velocity equation can 
significantly alter dynamic behavior. Thus, in population dynamics, the 
deterministic predation model of Lotka–Volterra provides for an oscillatory dynamic 
whose temporal characteristics are determined by the initial conditions with the 
coexistence of the two species maintained. This model is sometimes presented as a 
basis on which to make it more realistic by adding a random component. However, 
in fact, this can lead to a change in the dynamic regime that can lead to the 
extinction of one of the species. Technically, this can be easily obtained using a 
Langevin equation of the type dy/dt = f(y) + g(y)ξ(t), ξ(t) representing “white noise” 
(a time-independent Gaussian variable with no expectation and a given variance). 
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However, such a modification carried out by simulation21 does not allow, as is 
sometimes written, us to give this addition the meaning of an interaction between 
organizational levels. It is simply the introduction of a Brownian motion transport 
component, not a multi-scale game. This remark means the risk of confusion in the 
statement of assumptions preliminary to any modeling, which are supposed to 
support a biological interpretation, otherwise model simulation exercises lose their 
explanatory value. 

The raison d’être for this type of methodology is the great variability of 
biological quantities. Let us present the consideration of this property by referring to 
one of its important fields of application, the dynamics of a population, whether 
cells or higher organisms. Even when a population has fairly precise global 
characteristics by closely monitoring, for example, a deterministic growth law (such 
as a logistics for sigmoid kinetics), it is by nature made up of an inhomogeneous set 
of individuals. For example, it is known that a cell population in in vitro culture, 
under experimentally well-controlled conditions, always exhibits a high variability 
in the lifetime of the different cells. There is never a rigorous synchronization of cell 
divisions, even from an initial implant that is as homogeneous as possible. It is on 
this double observation that an approach by random (or stochastic) processes is 
justified, the principle of which is as follows. 

PRINCIPLE.– From the random behavior of an individual (microscopic level), we try 
to deduce the behavior of the population (macroscopic level), these two levels being 
characterized by different scales, dimensions and time.  

“Stochastic process” refers to the evolution of one or more time-dependent 
random variables t: {X(t)}, variables and times can be continuous or discrete. These 
are models with a good degree of generality, regardless of the nature of the 
population (gene, cell, organism, sub-population), which also apply to processes 
other than demographic change. 

As the evolution of the population size is basically a balance between birth rate 
and death rate, the phenomenon emerges from a birth–death process. Let us give an 
overview in the simple case of Markovian behavior. In this context, a Markov 
process is defined as follows: an individual is born or dies regardless of what has 
previously happened and regardless of the behavior of other individuals in the 
population. In other words, being a process without memory, adding information  
 
 

                                 
21 Bernard, S. (2013). Modélisation multi-échelles en biologie. In Le Vivant discret et 
continu, Glade, N., Stephanou, A. (ed.). Éditions matériologiques, Paris, 77. 
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about previous states is useless, which is mathematically written in terms of 
conditional probabilities:  

1 0 1( ,..., ) ( )n n n nP X x X X P X x X+ += = =| |
  

The state of the population at the time n is: 

0
1

n

n i
i

X X Z
=

= + 
  

with Zi being independent random variables and of the same law:  

( 1) ( 1) 1/ 2i iP Z P Z= = = − =   

We have a formal analogy with random walking or Brownian motion. 

The first work on this question was that of I.J. Bienaymé (1845) on the 
probability of extinction of a family name (probability that a man still has 
descendants bearing his surname after n generations). Long forgotten, this 
genealogical subject was taken up again in 1873 by F. Galton and H.W. Watson. It 
is because of the diagram graphically representing the sequence of filiations that 
these studies were given the name “branching process” (or “ramification process”) 
or “tree” or “Galton–Watson process”. Such a process is simply a random sequence 
of generation-by-generation numbers (Figure 5.11). If we assume that the individual 
probability of having k descendants in each generation is pk, this basic process is 
equivalent to a Markov chain. By extension, this idea was adopted for other subjects, 
such as population genetics (estimation of a recombination rate), species evolution 
(already by F. Galton who was a cousin of C. Darwin) or epidemiology.  

The basic mathematical tool is the density functions, the integral of which 
(distribution function) gives the demographic evolution of a population. In reality, 
density functions are multivariate in nature, because it is necessary to take into 
account this or that criterion of continuous population structuring. For example, the 
cell density of the size is written n(t,x). An extension of this principle of temporal 
connection consists in what is called a spatial connection for which the reproduction 
law (probability pk of the number of descendants) is associated with a topographic 
dispersion law. 
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Figure 5.11. Diagram of a simple time connection process 

Without going back to the general principle of time-series autoregressive models, 
let us quickly see how the idea of a random process takes place in biology, 
extending what Leslie’s matrix models offer us in a deterministic version for the 
population growth number of a population.  

5.6.1. Poisson process 

This archetype of Markovian random process is a strict birth process (without 
mortality) in continuous time. It studies the occurrence times of a given event (birth) 
under the following hypotheses: (i) the probability of occurrence in a small time 
interval is proportional to the length of that interval according to a proportionality 
coefficient λ ; (ii) independence of the number of occurrences in disjointed intervals 
(= independent increases); (iii) the probability of more than one occurrence in a 
small interval is assumed to be zero or negligible. Such processes are said to be 
“homogeneous over time”, the increase does not depend on time. We show that, 
under these conditions, the probability of k occurrences at time t is given by 
Poisson’s law of parameter λ:  
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The interval between two successive occurrences (or waiting times) is thus a 
random variable obeying this law. Either the probability of a queue of j elements 
between instants t and t’:  

[ ] ( )( ')
( ) ( ') exp( ( ')

!

jt t
P N t N t j t t

j
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λ

−
− = = − −

  

The expectation of a Poisson variable being equal to the parameter λ, this 
counting process shows a linear growth trend: E[N(t)] = λt. The parameter λ has the 
meaning of a birth speed coefficient: dN(t)/dt.  

REMARK.– With this counting Poisson process, the probability that a cell will divide 
into an interval Δt is λΔt. The corresponding birth process must take into account 
that the probability of concomitant division of several cells over the entire 
population is λN(t)Δt. It is, therefore, no longer homogeneous over time. 

5.6.2. Birth–death processes 

A death process can be defined in a similar way to the previous one by generally 
assuming that the distribution of lifetimes follows an exponential law of parameter 
μ. The probability of life of any cell being exp(–μt) = p(t), the distribution function 
N(t) approximately follows a binomial law ( )0( ) , ( )N t N p t≈ B  whose expectancy is: 

E(N(t)) = N0 exp(–μt).  

A simple birth–death process can be established on these bases, combining the 
two previous processes. These processes are of course only approximations that we 
give here as basic examples. It must be considered that the functions of birth rate 
and mortality are generally density-dependent: λ(N) et μ(N). For example, we can 
have a term for logistical birth braking: λ(1 – N/Nmax). In addition, there are certain 
decisive kinetic criteria (affecting birth rate and/or mortality), not to mention the 
existence of correlations between daughter cells and mother cells involving a 
memory effect (contrary to previous Markovian behavior). Thus, different models 
are available depending on the multivariable nature of the N(t) cell density function. 
The structuring criterion that differentiates them can be, for example, by referring to 
the most classical models, age (Sharpe–Lotka and McKendrick–von Foerster 
models) or maturation rate (Rubinov, Frenzen–Murray). 
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Let us clarify a little the handling of these density functions with the example of 
McKendrick–von Foerster’s model of structuring on an age density n(t, a). Let us 
look at the evolution of the age class a in terms of cell density: 

( , ) ( , ) ( ) ( , )n t dt a dt da n t a da a n t a da dtλ+ + − =  

where λ = λ(a) is a simple exit coefficient from age group a (and not from birth). By 
serial Taylor development in the vicinity of (t, a), we obtain the following partial 
differential equation: 

( , )
n n

n t a
t a

λ∂ ∂+ = −
∂ ∂  

which is the conservation equation for the number of cells in age group a. From its 
integration (theoretically up to ∞, where n(t, ∞) = 0), we obtain the evolution of the 
age group a:  

0
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α λ
∞

= − 
 

where α(t) represents entries into age class a (actually by maturation from other 
classes). The model also formalizes the birth process (B of birth) according to the 
equation (called “renewal”): 

0

( ) ( ,0) (( ) ( , )B t n t a n t a daβ
∞

= = 
  

where β(a) expresses the age dependency of the birth rate. 

With this presentation, which is obviously only a very simplified view of a 
random process of population growth, we see the complexity of the problem and its 
approach through the principle of random processes. Two essential points of this 
formalization should be highlighted: (i) the choice between several density criteria 
(age, maturation, size) and (ii) the variation of these criteria during the process itself. 
As the problem becomes very complicated, it should be noted that we have 
approached solutions when we look at the long term where standard models lose 
their quality of adequacy (see, for example, Segel 1980).  
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5.7. Logic kinetics of regulation 

The classical formalism of differential dynamic systems, with its search for 
singularities and their stability, is not the only methodology suitable for the analysis 
of a biological process. An alternative was developed in the 1970s by R. Thomas 
and S. A. Kauffman, consisting of a Boolean approach to biological regulation 
circuits (following C. Shannon, who himself used G. Boole’s algebra in his 
communication theory).  

The principle of a logical kinetics is to set a set of logical rules assigned to 
Boolean variables (of value 0 or 1) to replace the usual differential equations 
describing the kinetics of continuous state variables. This discreet formalism differs 
from the practice of automata theory. This logical kinetics aims to provide a 
representation of the regulation process (which is not the case with A. 
Lindenmayer’s L-systems). We are interested in any change from + to - or vice 
versa, rather than simply tracking the successive values of each variable. This is 
particularly appropriate in cases of complex networks that are intended to be 
described in this way in a refined manner, especially when precise quantitative 
kinetic data are not available. In short, let us say that the usual notion of state 
variables (such as a concentration or population density) is associated with a 
function describing the meaning of their variation. With these pairs of variables and 
functions considered together as basic elements, we are as close as possible to the 
exercise of regulation, since we highlight not numerical values, but their direction of 
variation. A graphical representation symbolizes this approach, where nodes are the 
elements at play and arcs the regulations.  

The simplest configuration is that of a monomolecular autocatalysis. Let us 
consider the variable α, with its variation noted here a = α according to the kinetics:  

aα α⎯⎯→  

The correspondence matrix: 

Variable α Function a 
0 0 

1 1 

Table 5.1. Monomolecular autocatalysis. Logical rules of transformations 

means that in the presence of α (α = 1) there is continuous growth, i.e. positive 
feedback behavior triggering a runaway (no regulation).  
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The current development of these Boolean methods focuses on genetic 
regulatory networks. To give the principle (Figure 5.12), let us consider an 
elementary case where each gene is associated with a variable S (1: active gene; 0: 
mutated gene) and a function s (on/off gene). The product is considered as a 
memory variable noted σ, which records the value of s. See Figure 5.12b, which 
shows the system as: 

s S

a A

α
σ

=
=   

 

Figure 5.12. Logical kinetics. Schematic representation  
of the regulation of a gene (Thomas 1978) 

For a more detailed illustration (Thomas and D’Ari 1989), let us consider the 
naive logical description of genetic regulation in the simple case of two linked genes 
X and Y whose respective products are noted x and y. Product x activates gene Y, 
whose product y represses gene X:  

x y
+

−
⎯⎯→←⎯⎯
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By posing: 

1X =  if and only if 0y =  (X if and only if y is absent) 

1Y =  if and only if 1x =  (Y if and only if x is present) 

the system is written22: 

X y

Y x

=
=

 

with as transition matrix Table 5.2. 

x y X Y 
0 0 1 0 

0 1 0 0 

1 1 0 1 

1 0 1 1 

Table 5.2. Transition matrix 

This gives the time sequences according to the loop:  

00 10

0 1 11

x

x

y y

⎯⎯→
↑ ↓

←⎯⎯
 

As another example of logical regulation, consider the dynamics of biological 
prey–predator association as described by Lotka–Volterra’s classical system 
(Richelle in Thomas, 1979). In its simplest Boolean version, each population is 
assigned the following pair: a variable describing the population density (prey α, 
predator β) and a function (a, b) describing its variation +/- (growth or decrease) 
according to whether the density is below or above a given threshold. The kinetic 
pattern of this biological association is a retroactive loop:  

α β
+

−
⎯⎯→←⎯⎯

  

                                 
22 The line above y  means the logical complement to y (NO y). 
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Hence, the following chart: 

0 0 10

0 1 11

→
↑ ↓

←  

showing stable cyclic behavior of this biological association. This corresponds to the 
directions of variation when crossing isoclines in the classical phase portrait of  
the Lotka–Volterra dynamic system, where the trajectories are closed curves, i.e.  
self-sustaining oscillations (whose period and amplitude depend on the initial 
conditions).  

This representation can be detailed to some extent by considering several 
Boolean variables to describe the density of each population. Remaining in a still 
very simple approach, a first extension would be to describe the density of each 
population by two Boolean (00, 01, 11) according to Table 5.3. 

 Variable (density) Function (variation) 

(0 0) Absence No growth 

(0 1) Some individuals Slow growth 

(1 1) Many individuals Rapid growth 

Table 5.3. Logical kinetics of growth regulation. Population  
density described by two Boolean variables 





 

Conclusion 

The panorama, the main lines of which we have just outlined on the relationships 
that have been woven between biology and mathematics, shows that the evolution of 
ideas has been a journey, not a chaotic one, but rather a marked one through a series 
of important stages, often intertwined or sometimes remaining in a state of latency. 
Thus, some innovative ideas may retain a level of abstraction with little or still no 
experimental validation. On the other hand, important innovations emerged or were 
taken up and contributed, more or less quickly, to the fact that biology began to 
reconsider a certain number of principles and methods. As in other disciplines, these 
were changes of point of view that modified the way in which we question 
ourselves, often very profoundly, in order to address the various specific problems 
of biology. This question of the specificity of biology as a field of knowledge and 
investigation remains an essential point that is still under debate. Posing this 
problem at the epistemological level where it should be placed, the question remains 
open about what a living being is. On this point, the physicist prefers to speak of the 
singularity of life, while the philosopher focuses more on trying to specify or define 
what life is.  

Some figures are particularly emblematic of this evolution. We make a choice 
below, certainly a little subjective, based on their position and not on their real 
contribution to biomathematics. There is nothing paradoxical about this. Better still, 
it is interesting to note that innovation often results more from an idea or concept 
than from the systematic implementation of a properly constructed mathematical 
method. Hence, we would like to mention, first of all, the case of G.L. Buffon, a 
typical example of a naturalist who is very enamored with mathematics. Despite his 
pronounced taste for mathematics, G.L. Buffon remained marked by strong doubts 
about both the validity and operational effectiveness of mathematics in biology. 
Better still, he was convinced of an opposition, which he considered irreducible, 
between the properties of the observed real being and those of the abstract being that 
could be deduced from a mathematical approach, which we can specify today by 
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saying that a mathematical equation is only an image, a formal structure posed at 
best as an isomorph of the real. Nevertheless, we cannot forget that G.L. Buffon had 
some very relevant insights. Thus, he was led to distinguish (without the help of any 
formalism) the external form of an organism and the existence of an “internal mold”, 
which, in his time, could only be a simple hypothesis, or even free speculation. The 
significance accorded to this dual principle (internal mold + exterior directly  
measurable) is equivalent to a slight announcement of a new viewpoint, both  
topological and multiscaling.  

Another essential and less paradoxical figure was that of physiologist  
C. Bernard, who clearly established the development of mathematical laws as a 
fundamental objective of his discipline. This claimed association between 
experimentation and formalization was historically, at least from an epistemological 
point of view, one of the strong points of the connections between biology and 
mathematics, especially as it was beyond any possible use of the mathematical 
methods then available. This position of principle, accepted today, was already 
observed in a remarkable way with Aristotle, again despite an unfavorable 
mathematical context, dominated at the time by the Euclidean metric that could not 
suit him. Indeed, it was without a mathematical apparatus that Aristotle implicitly 
expressed the fundamental principle of what we call an “ago-antagonist couple”, 
clearly illustrated in the combination of acquired growth and remaining growth to be 
achieved, i.e. more generally, the existence linked, on the one hand, to the current 
state of a system (as a consequence of its initial conditions and its history), and, on 
the other hand, to what remains of its virtual potentialities. Another essential 
contribution of Aristotle was of course his concept of form (of a nature that is not 
reducible to geometry alone), or more precisely of the substance/formative principle 
couple, or, if we prefer, of a structure that individualizes itself within an amorphous 
or well-balanced substrate, which predicted A. Turing’s famous symmetry breaking.  

Mathematics and the perception of the singularities of the living 

In our presentation of the connections between biology and mathematics, we 
stressed the primary purpose of any formalization, which is to highlight the 
properties of the biological system under study, particularly the existence of 
singularities. Admittedly, this objective is not always highlighted, some 
mathematical models being rather focused on the quality of the representation to 
ensure a good phenomenological reconstruction of the process under study. 
Graphical imagery and simulation can then be the reason behind the use of 
mathematics and computer science. Our conclusion would therefore be to insist on 
what this outlook may leave out.  
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We will agree that the objective of the use of mathematics is, first of all, to 
promote the perception of the object or phenomenon, which can thus be reduced to 
what we consider to be most essential at the scale considered, in the image of a form 
detached from an undifferentiated background. A phenomenon is best perceived 
when it is revealed by the description of its spatiotemporal singularities (extremums 
of a function representative of such a process, possibly discontinuities of them) that 
necessarily have a double meaning, mathematical and biological.  

On this point, it should be recalled that the mathematical tool goes well beyond 
the immediate particularities that the biologist can detect if it is limited to the mere 
consideration of the extremes of a function. What matters, in fact, is not only the 
occurrence of minimums or maximums (of which L. Euler was very fond) in the 
monitoring of a process, but also the nature of the states accompanying these 
extremes (which is of great interest to logical kinetics). The question is to specify 
which is (via higher-order derivatives) the direction of variation of a given variable, 
especially if it is in the acceleration or deceleration phase. For example, for the same 
extreme of the growth rate, it is necessary to distinguish between the anterior and 
posterior states of this extreme, states that do not have the same biological 
significance since they correspond either to a stimulation phase or to an inhibition 
phase of the process. This calculation of variations (classic objective in 
mathematical analysis) is in line with the essential question posed by any process 
trajectory, which is to look at the above, even if we do not explicitly assume the 
existence of delay effects. The importance of a memory effect in the sense of the 
path taken is well-known with hysteresis behaviors, whose importance in various 
fields is now recognized in biology.  

This enterprise leads to or passes through what is known as a “law” or a 
“model”. Our present review thus considers what could eventually be considered as 
the bases or prolegomena of a theory, with relevant concepts. Within the limit we 
have set for ourselves, i.e. without naively pretending to talk about theory itself, we 
have been able to underline the importance of certain concepts or themes according 
to the particular way in which mathematics describes or translates what it is 
studying. This is, of course, marked by the comparison that always comes to mind 
when comparing biology with physics, repeating time and again that the former does 
not seem ripe for the much more advanced objectives of the latter. Moreover, in the 
eyes of a physicist (the so-called “physicalist” position, often adopted in these 
comparisons), these terms of theory and concept are sometimes used a little 
strangely by biologists. Consider, for example, the expression used by R. Fisher for 
his “fundamental theorem of natural selection”, which he saw as the equivalent in 
importance of the 2nd principle of thermodynamics in physics (on the concept of 
entropy), a very excessive statement, generated by enthusiasm more than by reality.  
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A very simple example can be noted in this conclusion, concerning what is 
called the logistic theory of growth. We have seen that it is based on a notion of 
distance measuring the instantaneous state of the variable with respect to its initial 
state and its final state. This amounts to a priori posing the existence of a stable 
stationary state at the end of the process, which is supposed to be a predetermined 
state. This can then be seen as genetic in nature, the constancy of parameters 
meaning native characteristics, neglecting the intervention of a fluctuating 
environment, i.e. a possibility of adaptation. Developing this “pre-training” point of 
view (let us say “instructionist”) implies above all specifying this notion of distance 
(its metric lato sensu), leading to different forms of logistics. Of course, we can use 
other axiomatics, positing, for example, with L. von Bertalanffy, that growth activity 
results directly from the interplay of stimulation processes (anabolism) and 
inhibition processes (catabolism), the adult or saturated state being a simple 
consequence of this. In this simple example, we see that a reflection, combined with 
numerical experimentation on the assumptions underlying a type of model or on the 
value of parameters, can be a kind of prerequisite for the subsequent development of 
something that may have achieved the rank of theory.  

Although this question is of general scope and is reflected in the choice of 
parameters for many biological process models, it is appropriate to focus our 
conclusion on the most essential points involved in the relationships that the 
biologist is led to establish with mathematical formalism. However, these  
biology–mathematics relationships go beyond the choice of the type of mathematical 
tools to be used, because any method carries an important biological and 
epistemological connotation that must be highlighted. By this we mean what is implied 
by the deliberate choice to be made in two kinds of dilemmas: continuous/discrete, on 
the one hand, and determinist/random, on the other. In addition, there is the question 
of the choice of the observation scale, reminding us of the statement by the physicist 
Guye that “it is the scale of observation that creates the phenomenon”.  

Discrete versus continuous 

To shed light on the debate on the discrete/continuous dilemma, as it often arises 
in biology, let us refer to these two paths defined, on the one hand, by the Automata 
theory developed in the wake of J. von Neumann, and on the other hand, by the 
theory of differential dynamic systems derived from the thoughts of H. Poincaré. In 
the first case, we have seen that we are interested in the behavior of discrete units 
(such as cells) whose evolution is determined by their own instantaneous state and 
by the inputs from neighboring units, state and inputs being expressed in discrete 
language. To work like this is to establish a principle of cellularity. In the second 
case, which we have also illustrated under different situations, we put forward a 
completely different principle, according to which any process is the result of 
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progressive transitions taking place on a certain substrate and therefore can be 
understood by continuous variables (possibly with discontinuities). It is a way to 
generalize the emblematic case of chemical kinetics, moving from the notion of 
molar concentration to that of population density, a completely classical approach 
since A.J. Lotka and V. Volterra. The problem is posed in terms of the 
spatiotemporal dynamics of continuous state transitions, which is finer and more 
flexible than reducing an evolution to a series of discrete jumps. 

Of course, these two qualifiers of discrete and continuous are always more or 
less mixed. Thus, in any morphogenesis, any growth phenomenon is first based on a 
discrete 0/1 generation process resulting from mitotic activity, such as lateral 
budding in a mycelial or algal filament that will cause branching. Thereafter, for 
each cell of the branch thus initiated, it will be a question of a dimensional growth, 
i.e. an evolution in the continuous. 

While these two approaches can be considered as complementary because they 
simply emanate from two different points of view, the fact remains that they are two 
irreducible paths in their very principle and in the assumptions they entail. Among 
the various debates thus generated, let us choose, to clarify our conclusion, the 
opposition between the discrete nature of A. Lindenmayer’s automata (mainly aim 
morphogenetic) and the continuum of differential equations dealing with metabolic 
reactions generating a spatiotemporal organization (both physiological and 
morphogenetic) according to the classical analysis made by B.C. Goodwin. 

For A. Lindenmayer and his L-systems, it is all about the behavior of each cell 
subject to precise transformation rules based on functions (current state/inputs) → 
(new state/outputs). On the other hand, B.C. Goodwin is a proponent of the notion of 
a field carrying gradients of activity whose evolution leads to singularities and 
eventually to the emergence of local structures. This leads him to the strong idea that 
morphogenesis is an inherently robust process1. If local structures are discrete in 
nature, they are very different from the changes of state exhibited by automata, 
because they are linked, not to a priori rules, but to the establishment of stationary 
asymmetries. More precisely, B.C. Goodwin takes up the idea of the genetic operon 
of F. Jacob and J. Monod and treats it mathematically, in the form of a network that 
describes the simultaneous and cybernetically coupled variations of different 
metabolites. Of course, it is necessary to add that which is a “mixed” approach, 
qualified as qualitative in relation to the continuous characteristic of differential 
equations, known as “logical kinetics” (Boolean), developed by R. Thomas, which 
we have also presented. If the current development of formalizations by networks 
(metabolic, genetic) shows the possibility of combining the two approaches, it is 

                                 
1 Goodwin, B.C, Kauffman, S., Murray, J.D. (1993). Is morphogenesis an intrinsically robust 
process? J. theor. Biol. 163(1), 135–144. 
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important to include in our general conclusion this discrete/continuous debate, 
because it reveals an important divergence from an epistemological point of view.  

Thus, B.C. Goodwin’s position highlights the concept of regulation, a 
fundamental notion for a physiologist that is of a variational nature, and therefore 
related to a theme that is absolutely essential in mathematical analysis. On the 
contrary, A. Lindenmayer offers us a view that could be described as both 
behavioral and instructional. This is reminiscent of a statement by philosopher  
H. Bergson abruptly saying: “There are no things; there are only actions” (in 
Creative Evolution). Every state is an instant view; what matters is, following 
Heraclitus, what flows, i.e. what the differential equations describing a given 
process express in transitions, shall we say.  

In the end, this opposition can be summarized as follows: the Automata theory 
would only allow a purely formal modeling that would be analogical in nature. The 
cell would function as a computer that calculates its own state at each iteration and 
modifies it according to programmed instructions (the syntax of the production rules 
of the formal grammar defining the L-system at stake) without correspondence 
either with the biochemical level where interactions and transformations are 
performed, or with the existence of mechanical or topological constraints. The DNA 
control program is seen as the counterpart of the production rules, the driving force 
behind the automata’s functioning. Clearly, it is the opposition between a physicalist 
point of view and a symbolic point of view. The first (differential equations) aims at 
a certain explanation of the phenomenon, while the second (production rules) is 
equivalent to a representation. On the one hand, we have an operational formalism 
capable of simulating the phenomenology of a population of cells or modules. On 
the other hand, it is the implementation of regulations that occur continuously during 
a dynamic process. In other words, the structuralism claimed by B.C. Goodwin 
(without focusing on what this term sometimes evokes as a debate) refers to an 
organized set of autocatalytic processes required to maintain a characteristic 
homeostasis, which gives it an ontological value (hence the term “natural model”), 
which is not provided by the symbolism inherent in any definition of automata. To 
conclude this debate, we can recall the comparison that can be made between 
powerful computer models simulating plant architecture and the explanation 
expected from a model showing how the plant regulates the growth and branching of 
its different modules on the basis of its physiology and physical and mechanical 
constraints. In other words, in substance, simulating does not necessarily explain 
two different views of what mathematics can bring to biology.  



Conclusion     195 

Microscopic versus macroscopic levels 

We will not repeat the question of stochastic mathematical models, such as those 
we have seen in experimental designs or in quantitative genetics, combining a set of 
deterministic parameters and a stochastic part corresponding to what the model does 
not consider, including the randomness of the measurements. The question we 
would like to examine now is of a different nature and more general scope, relating 
to the type of quantities that can describe a phenomenon. Two kinds of characters 
are indeed to be considered according to the scale of perception of the phenomenon. 
We know that this is a classic question in physics where, for example, the state of a 
gas can be described macroscopically by temperature and density (or pressure and 
volume), while microscopically, what is at stake is directly the speed and position of 
the molecules of this gas that are subjected to interactions (collisions). The problem 
that statistical physics has been addressing since L. Boltzmann and W. Gibbs is to 
derive the overall properties of a system from the microscopic elements that make it 
up. It is the relationship between fine-scale statistical behavior and broader-scale 
deterministic behavior. Of course, biology also has these kinds of problems, which 
are well illustrated in population dynamics, for example. The overall refers to the 
average generation time and the average population growth rate; the microscopic is 
related to fertility and mortality rates, which are properties that arise at the 
individual level. It should also be added that, theoretically, this position results from 
what is called the “ergodic hypothesis” which, in essence, consists of saying that, at 
equilibrium, the average value of a microscopic (statistical) quantity is equal to the 
time average of this variable measured on a given particle at different times. For 
example, the average velocity of all particles at a given time (spatial aspect) is 
equivalent to the velocity of a given particle at different times (temporal aspect).  

However, this is only a first distinction of scale. It should be pointed out that the 
macroscopic state of a dynamic system supposed to represent the evolution of a real 
material system results from the interplay of three kinds of variables, which 
physicists call external, mechanical and thermal. Let us review again the case of the 
kinetic theory of gases. For the first category, we have the volume and number of 
particles, and for the second category, the pressure and energy (which are averages 
of microscopic quantities). As for thermal quantities, they do not have a direct 
microscopic interpretation, being only statistically apprehended, such as the concept 
of entropy. The function called entropy refers to the number of microscopic states of 
the same energy level.  
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It is clear that this question of principle also arises in biology. Thus, in 
population dynamics, we often limit ourselves to two types of classical quantities, 
namely the size of each species and its growth rate (intrinsic growth + interactions). 
An approach inspired by statistical mechanics involves working on a population 
structured into age groups (according to the usual criteria). The number of such 
species is a mechanical quantity (resulting from the average of individual 
behaviors), while thermal quantities relate to other considerations, average 
generation time and entropy. The entropy of a population depends on the 
distribution of fertility and mortality rates (it is zero if there is only one fertile age 
class). Fertility and mortality are seen as analogues of an energy level. Its interest is 
to be a measure of the complexity of the population in terms of life cycles. Hence, it 
can be pointed out that A.J. Lotka’s classic notion of stable population is equivalent 
to that of stochastic equilibrium in thermodynamic terms (invariance of age-class 
proportions).  

Thus, such a probabilistic-based study of dynamic systems representative of a 
biological process leads to the introduction and quantification of the intuitive notion 
of organization (or disorder, associated with the concept of entropy) whose general 
significance in biology is known, from the morphogenesis of an organism during  
its ontogenesis to the balance of multi-specific associations or the kinetics of  
multistationary enzymatic systems. To shed some light on this overview, the reader 
may refer to the demographic treatment of the Leslie matrices we have discussed, 
consisting of assigning to each age group its size and rates of change (fertility, 
mortality in the sense of class transition). Hence a representation in the form of 
graphs expressing the genealogy of each individual, of which we can note in passing 
the difference with the families or cell lines of the L-systems.  

These two absolutely classic continuous/discrete and determinist/probabilistic 
dilemmas that we have just summarized retain their importance, both 
epistemological and operational, as they determine the reasoned choice of the type 
of approach, i.e. the way in which a phenomenon is questioned and studied. 
However, leaving aside this kind of debate, which is not new, our conclusion must 
now be to highlight what the still recent evolution of biology implies.  

The new trends in biology  

Like the current academic designations for the name of major thematic streams 
in biology, a word should be said on the use of the terms “integrative biology” and 
“systemic biology” (or “systems biology”). In reality, these two qualifiers are by no 
means equivalent. The integration of two subsystems into a coherent whole means a 
reduction in the number of degrees of freedom with few or no innovative properties. 
On the contrary, the constitution of a complex system, with an increase in the 
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number of degrees of freedom, is manifested by the appearance or emergence of new 
collective properties. These concepts concern a number of situations or processes such 
as, for example, a protein network, where complexity may simply result from 
competition between ligands for the same binding site, or from a change in molecular 
conformation, an unprecedented consequence of the joint consideration of several 
components or subsystems. In fact, an appropriate vocabulary would be to speak, 
according to the current trend, of “complex systems” to specify that there are emerging 
new properties in relation to the subsystems that constitute it. Does complex mean that 
what is not apparent results from the simple additivity of the parties?  

Simple examples of networks were given to illustrate this systemic approach, 
showing the link between the principle of representation by oriented graphs and two 
types of formalization of biological regulations. The first example (Figure 3.12) 
illustrates the transition from classical differential formalism, such as that used by 
B.C. Goodwin (temporal organization of cellular activity), to its translation into a 
network whose nodes are genetic and/or metabolic in nature. The second example 
(Figure 3.13) takes up this idea but based on R. Thomas’ qualitative representation 
of logical kinetics.  

We know that the evolution of ideas in biology has led to the recent clarification 
and extension of the scope of this notion of complexity. Of course, it should not be 
forgotten that the objective was often of a practical nature: to be able to study a large 
and diversified set of data, i.e. to overcome what at first sight appears to be 
something very “complicated” without always clearly distinguishing it from what is 
called “complex”. In fact, the term “complex systems” has a precise meaning, 
probably still in the process of being clarified.  

This reaction is somewhat related to the use of statistical methods for 
multidimensional data analysis, which are supposed to overcome the “data 
overflow” (as Big Data now calls it) carried by large files (such as those that must be 
processed in ecology). However, we are well aware that the principle of any factorial 
analysis, which makes it original, is to identify what is called a “latent structure” or 
intrinsic organization that is hidden from the simple gaze of the experimenter. 
Although of different thinking, systemic innovation also leads to a new framework, 
that of networks whose specificity is to link levels of a different nature, according to 
the so-called multi-scale approach, such as the various metabolic and genetic 
circuits, or the components of any ecosystem in situ.  

Two characteristics should be highlighted in this regard. On the one hand, the 
principle of causality, which we have had the opportunity to discuss, is here to be 
taken up in a new form, which is now distributed among several effectors. On the 
other hand, a network is generally not a fixed configuration (it is in fact a fuzzy 
whole, as links between nodes are subject to fluctuation), which is one of the new 
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aspects of this general property of adaptation of any living being. The maintenance 
of what makes the sui generis nature of a living system is, as we know, its autonomy 
and homeostasis. Posing such a phenomenon in terms of a network connecting 
different entities at different organizational levels appears today as a new paradigm 
of biology which, without ignoring what other approaches have made possible, has 
become necessary for many phenomena.  

The need for the connection between biology and mathematics is now 
recognized, regardless of its inherent or temporary limitations, for certain types of 
problems. There are indeed many concrete situations where the so-called naturalistic 
mind, not inclined to any mathematical formalization, retains a prominent place. 
This evidence leads us to recall B. Pascal’s famous distinction between the spirit of 
finesse and the spirit of geometry. The spirit of finesse is based, he says, on 
principles that are “in common use” and for which “it is only a question of having 
good eyesight”. As for the spirit of geometry, B. Pascal clearly considers that 
“geometricians have a straight mind, but only if all things are well explained to them 
by definitions and principles”. Nowadays, this reflection can be interpreted as the 
distinction between explanation (mind of geometry) and understanding (mind of 
finesse).  

As we have often pointed out, the particularity of mathematics is well in this 
spirit of geometry: it is always based on definitions and hypotheses (even if it means 
restricting the meaning of nuances so strongly in biology, where the importance of 
variability often leaves doubt on the relevance of too-strict typologies2), resulting in 
a well-defined field and way of investigation. Its natural outcome towards an 
explanation (via modeling) is necessarily marked by this limitation of its field of 
study and the point of view adopted. However, this is only a trivial observation for 
any methodology that can only provide its own explanatory potential.  

But what exactly is meant by this term “explanation”, which is opposed to 
simple “description”? If we are to limit the debate, let us refer to an interesting 
classic definition, which says that “a fact has been explained when we have a 
mathematical or logical form capable of generating the description of that fact”  
(J. Largeault). In connection with this property of being able to generate a structure 
or function, we can consider, with R. Thom, that the causal explanation thus posed 
allows a reduction in the arbitrariness of the description, purifying in a way the 
diversity of descriptive characteristics, which are of very variable relative 
importance, and are sometimes more or less redundant. Nevertheless, there is no 
agreement on this proposal, as some believe that a simulation with a good prediction 
can be used as an explanation since it provides information on how the system 

                                 
2 On this general theme of boundaries and categories, see Parrochia, D. (1991). Mathématique 
et existence. Éditions Champ Vallon, Seyssel. 
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works when seen as a black box. Consequently, from a dynamic point of view (an 
essential point since any system is subject to constraints that lead it to adapt and 
evolve), the explanation must be consubstantial with the functioning, and not only 
with the structure. All this cannot prevent us from thinking of the image of a 
projective geometry. If the model always has something to do with reality, it is, by 
its nature, equivalent to a projection of the mind (the chosen formalism) on the 
reality, of which we cannot say a priori the part of invariance that this projection 
respects and the part of deformation or masking that it cannot avoid.  

Thus, we tend to bridge the gap or distance between the mathematically 
expressed biological object and the concrete real object, whereas in itself, the 
explicit mathematical structures can at best only be isomorphic to reality, or, to use 
L. Wittgenstein’s words, mathematics is nothing more than grammar rules, distinct 
from the meaning they convey. While there is no question of rejecting the idea that 
the mathematized object remains in the domain of ideas without close bijection with 
the concrete real object, the question arises as to whether or not the mathematical 
formalization of life can be endowed with the status of prolegomena that would 
initiate a certain understanding of the studied phenomenon. Of course, the 
equationization of a process and its insertion into a network of relationships remains 
essentially a representation, the comparison of which comes to mind with  
R. Magritte’s famous painting entitled The Treachery of Images. This painting 
represents a pipe whose title states: “this is not a pipe”, meaning that its painting is 
not reality, but its representation by the eye and the brush. However, this risks being 
a prevarication, which prevents us from admitting that a set of properties highlighted 
by a mathematical approach is quite likely to contribute to better understanding, if 
not the essence, then at least the expression of the living, what makes it manifest 
itself to us and makes us recognize it as such. In other words, let us repeat, 
mathematics can be a tool of perception which, without being an end in itself, has no 
reason to exist but to lead towards a better knowledge of living things as they appear 
to the observer who measures and formalizes them, and then, eventually, simulates, 
predicts and reconstructs them.  

The meeting of these two disciplines cannot ipso facto lead to a duly argued 
demonstration. On the other hand, what is important to note is that the intrinsic 
properties of living that the mathematical tool can detect on a given system or 
organism constitute an original asset, not redundant with the data of experience. 
Within the framework of the mathematical concepts used, its value is to be provided 
with a certain coherence, allowing it to claim to improve knowledge of living. It is 
therefore to agree a priori with the postulate that an important mathematical 
property of a given biological system corresponds to an equally important property 
of a biological nature.  
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Underlying these discussions is the unavoidable anthropic principle, namely the 
recognition of an agreement between the order of nature and the requirements of 
rationality and coherence of the human mind. Many authors have expressed it, such 
as A. Einstein, whose famous aphorism is well known: “The most incomprehensible 
thing about the world is that it is understandable”. In the absence of the further 
development that this subject deserves, and although our view is scientific and not 
philosophical, we cannot avoid this fundamental question, which is the existence of 
a double enigma, as formulated by A. Koyré, before it was taken up and specified by 
K. Popper. In short, let us say that today it is no longer a question of solving only the 
enigma of the physical universe, but also that of the human spirit that is attached to 
its study3.  

In the end, it is a question of assessing whether the use of such concepts 
implemented by a particular mathematical method to study a particular biological 
object makes it possible to better identify this object by a sui generis set of 
characteristic properties that are considered essential. Moreover, the search for these, 
like an identity card (containing generic characters and particular signs), has always 
been the primary scientific objective of the human mind when confronted with the 
enigma of nature, including the existence of the famous biological variability that 
has surprised many physicists, such as M. Delbrück, interested in the modeling of 
living. In this regard, we can recall the naturalistic position of the first field 
observers of the time when biology was called “natural history”. For them, the first 
task was to recognize and specify (before classifying) the species, the organ, the 
developmental stage and even the environment that shapes it, in order to ensure that 
it was used wisely and without making unfortunate errors in diagnosis. The proper 
use of medicinal plants illustrates this old imperative, which goes beyond a simple 
static morphological description. A detailed study of the structure and, above all, the 
functioning of a given biological system also requires this basic principle of signage.  

These are the challenges of this necessary encounter between biology and 
mathematics, an encounter that aims to better understand and bring coherence to 
what is being studied experimentally elsewhere. In other words, we set ourselves, if 
only implicitly, the ideal objective of giving meaning to what we are studying. By 
this expression, “to give meaning”, we mean to obtain a set of properties that seem 
to be specific to the object or process under study and thus contribute to clarifying 
its identity, a little like a detailed definition, with what is specific to it and what has 
a more general scope at a broader level, such as species or cell population. This 
objective of research into the intrinsic properties, distinct from (and possibly 
complementary to) phenomenological reconstruction, goes far beyond what is called 
a description, justifying, if necessary, the fundamental interest of a mathematization 
of living within a well-defined conceptual framework.  

                                 
3 Cited by Parrochia, D. (1991). Le Réel. Bordas, Paris, 160 and 163 sq.  



 

Glossary 

This glossary contains various terms or names used in mathematics or biology, in 
order to place them in a wider context while specifying the more contextualized use 
that is made of them at various points in the text.  

Bifurcation 

In mathematics, this term designates the attribute of a dynamic system by which 
it shows an abrupt change of trajectory caused by a small variation of a parameter. 
This is then a modification of the system stability, going against the principle of 
structural stability, which is the objective (see entry for “stability”).  

The classic example is discrete logic: [ ]( 1) 1 ( )y t a y y t+ = − , the dynamic 

behavior of which qualitatively varies in response to the value of parameter a. A 
progressive variation in a leads to a change from a single stable fixed point 
(asymptotically) to the establishment of an oscillating dynamic, which is itself 
variable in response to a sequence of doubled time intervals (number of oscillation 
peaks) before generating chaotic behavior. This is characterized by the 
unpredictability of dynamics and by its dependence on initial conditions.  

The remarkable point is the uncertainty produced by a very simple autonomous 
model of this kind, which is a priori deterministic, since it does not contain any 
random terms. A well-documented classic type is the Hopf bifurcation, which 
relates, from a theoretical point of view, the bifurcation property to the evolution of 
the complex nature of the eigenvalues of the system (studied on the linearized 
system), in particular the change from behavior at a stable fixed point (damped 
oscillations) to the establishment of a stable limit cycle. The general issue of a 
qualitative change of dynamic is particularly relevant to multistationary systems.  
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The evolution of these systems is marked by the existence of attracting sets attached 
to each of the stationary points (stable or unstable). The possibility of moving from 
one region to another depends, on the one hand, on the initial conditions and, on the 
other hand, on a variation in the value of the parameters.  

This bifurcation property, as an abrupt change in dynamic, can be observed in 
biology, where processing the question through mathematics can be a basis for its 
formalization. A good example is provided by the sexualization of a caulinary 
meristem in plants. At a given stage of ontogenesis and taking into account the 
appropriate environmental conditions (length of the day), this meristem undergoes a 
change of state that leads to a series of stages (flower induction, then flower 
evocation and finally initiation) that modify the nature of neoformed tissues. The 
meristem now no longer generates a sequence of plant metamers (internodes and 
leaves), but instead a set of elementary floral parts, which are themselves spatially 
organized in a sequence of flowers. A new morphology results from this, moving 
from phyllotaxis of vegetative organs to the typical architecture of reproductive 
organs (inflorescence). This transition in development from vegetative to 
reproductive is generally not simultaneous on different axes of the same plant. 

Another remarkable case is the behavior of the ameba Dictyostelium discoïdeum 
as a function of the nutritional environment. This protist has two types of 
development, either a single-cell form of free mobile protists or, in the event of a 
nutritional deficiency and by chemotactism, their aggregation in characteristic 
compact colonies (pseudoplasmodia). This multi-cellular phase is marked by 
triggering the process of differentiation that leads to sporulation. In this case, the 
bifurcation is reversible, mainly determined by the environment, which leads to an 
alternation between the free form and the aggregate form.  

Calculation of the variations or variational calculus  

This designation is connected with the study of the optimization of a function (a 
given function, a function of a function, an integral, etc.). Seeking out a peak in fact 
corresponds to the optimum with regard to the practical objective that the given 
function expresses, hence the interest of employing it in multiple fields. For 
example, in differential geometry, there is the geodesic or shortest path that is 
sought between two points in a given space. In physics, these methods are at the 
basis of the Maupertuis principle of least action. It is also used in biology, for 
example, as an orientation strategy of ontogenesis.  

This branch of analysis was developed on the basis of the Euler–Lagrange 
equations, then revised by the Hamilton formula. Its applications constitute what is 
known as “optimal control”, using control variables. 
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Cambium  

See “Meristem”. 

Caulinary 

Relates to a plant stem or branch. 

Conservative 

In biology, this term describes any system that is not subject to a process of 
mortality. It concerns, for example, in vitro cell cultures in a reactor such as a 
chemostat with renewal of the environment allowing generation and biosynthesis, 
but excluding all mortality (this is a specific case of a reactor). In mathematics, a 
conservative system is characterized by the existence of a function f (known as the 
first integral of the system) that remains constant throughout any trajectory. In 
mechanics, the term applies to any force whose effect is independent of the pathway 
previously taken (lack of memory). 

On the other hand, we have the behavior of systems with memory, such as 
hysteresis in which we experimentally observe that the variation of the control 
variable does not lead to the same dynamic for increasing or decreasing variation, 
for example, in physics, the variation of the intensity of a magnetic field on the 
behavior of a magnetic material. This type of behavior is observed in biology for 
various processes, in particular in biochemistry or in ecology. For example, the 
regeneration capacity of a prairie is a function of the variation, increasing or 
decreasing, of the density of herbivorous predators, which determines the number 
and stability of the stationary states.  

A specific case of non-conservative process is that of the Markovian processes, 
discrete models in which any state depends only on the state immediately preceding 
it (which means it is qualified as a process without memory).  

Continuous, discontinuous, discrete 

For these commonly used terms, here we specify their interpretation that is used 
comparatively in biology and in mathematics. 

Biologists are familiar with the term “discrete”, which relates to any generation 
or any abscission of a specified element (cell, module or individual in a growing 
population), such as processes of birth and mortality for which proven mathematical 
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models are available to them. However, many biologists add to this the idea of a 
principle known as “cellularity”, which would be an unavoidable basic principle for 
a formalized approach to all morphogenesis. Constructed as a hypothesis, this 
principle actually opposes the idea of continuous.  

In biology, “continuous” relates to any element (of matter or of dimension) of 
any object that cannot be specified and discretized macroscopically. The 
mathematical reference (concerning analysis and topology, outside the set theory) is 
the differential whose significance lies in the notion of a limit Δx → dx (see the 
change from the secant to the tangent in the geometrical interpretation of the 
derivative of a function). In the same way as the use of vector calculus in mechanics 
of continuous environments (e.g. in fluid mechanics), biology takes on an analogous 
position for local analysis of activity (growth, metabolism) within a given biological 
field. The remarkable thing is that the idea of a continuum is presumed in advance in 
biology. In contrast to the “cellularistic position”, which favors the idea of discrete 
states for which we seek to establish vocabulary (over and above the simple fact of 
the neoformation of entities), the idea of continuity is equivalent to attributing 
fundamental importance ipso facto to the notion of transition (infinitesimal) of a 
given state towards a later state, depending on the connotation that chemical kinetics 
provides. There are many differential models that have a reaction interpretation of 
this type. This principle of elementary transformation per unit of matter and unit of 
time is based on two fundamental ideas; movement or flow, and form (lato sensu). 

The distinction between discrete and continuous is not reduced to a simple 
question of scale of perception, but instead refers to the importance to be given, or 
not, to a double notion of transformation, whether it is in a metabolic or dimensional 
sense of the term, and that of singularity in a functional sense within a continuum. In 
addition, what is continuous presents the advantage of being associated locally with 
the discontinuous, meaning with the existence of a point of rupture in the evolution 
of a system. This is the notion of bifurcation, an essential marker of certain 
dynamics, as important in biology as in mathematics (see entry for “bifurcation”). 

Finally, let us note that a kind of bridge can be established between the strictly 
discretized design of a series of different states and the design of a continuum of 
elements of matter that are subject to transformation. This is the approach known as 
“kinetic logic” that brings together the Boolean logic (states 0/1) and the differential 
formalism, with the objective of formalizing the fundamental notion of regulation. 
More generally, the formalization in networks associates the two points of view of 
discrete (nodes) and continuous (transitions by directed graphs). 
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Growth 

There is a great variation in biological growth depending on the relative part of 
the basic processes, division and increase in size (elongation) of cells. Many 
mathematical models (“growth laws”) express the process phenomenologically and 
several of them have biological bases for interpretation (structured models). 

Various types of growth need to be distinguished depending on the typology of 
the process, in particular for plants, where it is necessary to distinguish between 
“polarized growth” (e.g. in filament organisms, fungi or algae, where the 
development of the filament is determined by the mitotic activity of the apical cell) 
and “distributed growth”, where the activity is spread over a field of growth (such as 
in the surface extension of a leaf blade). From a cellular point of view, the extension 
of the wall is the result of several elementary mechanisms: hydric flows that modify 
the turgescence, extensibility/relaxation of the wall and enzymatic incorporation of 
new metabolites (microfibrils of cellulose assembled by a matrix of hemicelluloses 
and by pectins). In addition, in contrast to animals, plants are characterized by 
symplastic growth, a term that indicates the maintenance of liaisons between cells. 
By the term “symplast”, we understand the continuum between adjacent cells, a 
continuum that is ensured by the existence of channels (plasmodesmata) passing 
through  
the walls. 

The old, classic definition of growth as an irreversible increase of the dimensions 
of an organ must be reconsidered. On the one hand, the phenomenon of growth can 
be periodic in nature, sometimes with clear phases of latency or dormancy. On the 
other hand, following the example of demography, we cannot separate out various 
morphogenetic processes that coincide in a coordinated manner in the dynamics of 
one and the same ensemble that is developing, for example, the generation of new 
elements, their increase, their differentiation and then their aging and mortality. The 
term growth must therefore be taken lato sensu, since it pertains to a unit ensemble 
of increases, decreases and changes of state that interlock within a given biological 
system.  

Heteroblasty 

Heteroblasty is a property of ontogenesis that consists of an unequal distribution 
of a quantity or of a biological activity depending on the position within the 
organism. This effect of position, added to the implementation of axes of polarity, 
characterizes in particular the set of the processes of embryogenesis, whether animal  
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or plant. This property is also highly important in the post-embryonic development 
of a plant axis.  

For example, the dimensions and form of leaves vary as a function of the 
insertion level on the stem, which contributes to the construction of a characteristic 
architecture and to the photosynthesis phenomenon of the plant (capturing light 
energy). A heteroblastic function allows these variations to be mathematically 
expressed, such as the evolution of the growth function parameters, whether for 
leaves or internodes, depending on the position on the carrying axis. 

Hypothetico-deductive method 

This is a classic experimental approach that consists of formulating a hypothesis, 
observing the consequences that allow conclusions to be drawn by logical deduction 
about the validity of this hypothesis. This position of principle, traced back to R. 
Bacon (1267), who noted the advantage presented by mathematics for the study of 
natural sciences, was justifiably highlighted by C. Bernard (1865), insisting on the 
essential role of the hypothesis: “Without a hypothesis, meaning without an 
anticipation in the mind of the facts, there is no science”1. This is the scheme of 
work: “The fact suggests the idea, the idea directs the experience, the experience 
judges the idea”. This refusal of precedence for “raw facts” is picked up by K. 
Popper in opposition to the empiricism of the inductive approach.  

Latent structure/latent variables 

This is a founding notion of factorial analyses expressed by the following 
fundamental hypothesis: the correlations between observed variables result (in the 
same way as a phenotype) from their dependence with respect to hypothetical 
variables known as latent variables. Thus, we distinguish between “observed 
variables” (or manifest variables) and “latent or underlying variables” (also called 
factors or components). The term latent is used here to mean something hidden (or 
virtual), entirely different from the meaning in the designation of the latency phase 
that is used in process kinetics (prior to the beginning of strong exponential growth). 
These latent variables are not physically observable, but they are brought to light by 
the calculation (see the method of principal components analysis in linear algebra). 

 

 

                                 
1 Bernard, C. (1974). Principes de médecine expérimentale. PUF, Paris, 77. 
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This hypothesis is linked with a principle of conditional independence: the 
observed variables are conditionally independent of the latent variables. Let us give 
a reminder of what conditional probability is: for example, in the case of three 
observed variables X, Y and Z, we say that X is independent of Y under the 
condition Z if:  

( ), ( ) . ( )P X Y P X Z P Y Z| Ζ = | |  

We refer back to Fisher’s elementary statistical notion of “partial correlation” 

.X Y Zr , which is the Bravais–Pearson correlation between X and Y when we remove 

their dependence on Z. 

The reason for the existence of this notion of latent structure is to provide an 
explanation of the diversity of the observed correlations within a set of data that 
pertain to a given phenomenon. It is of interest in the interpretation (in biological 
terms) of the nature of latent variables that are hypothesized in this way. Its 
explanation is found in moving from what is apparent to what is underlying.  

The reference to this principle (often not explicitly explained) attributes a 
specific status to the factor analysis, which makes it stand out from procedures of 
descriptive statistics (ordered in a set of observables) or inferential statistics (tests on 
samples). 

Meristem 

This is a botanical term that describes a localized ensemble of young totipotent 
cells, in a state of multiplication prior to any differentiation. There are two types of 
meristems depending on their location and the nature of their descendants. By 
“primary apical meristem”, we understand the region of a more or less ovoid shape 
located at the extremity or in the axil of an axis (bud of a stem, tip of a root) where 
new cells are generated by directed mitotic activity. These well-defined territories, 
called “vegetative points”, are at the origin on a caulinary axis (stem) of new 
internodes (extension of the stem) and new leaf primordiums (see “Phyllotaxis”). 
The cambiums or secondary meristems are differently organized in the form of 
cellular foundations, which are more or less continuous, located inside a plant axis 
(their ring shape corresponds to one of the cases envisaged by A. Turing in his 
reaction–diffusion systems).  
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Their mitotic activity is at the origin of two types of tissues depending on the 
direction, for example, the neoformation of conducting tissues, liber (or phloem) on 
the external side and sapwood or young wood (xylem) on the internal side. The 
formation of cork (suber) is also of this type, resulting from the activity of a layer 
known as “subero-phellodermic”, like the libero-ligneous cambium, that participates 
in the radial growth of plants. The dynamic of the cambial activity is particularly 
important in arborescent species whose growth is specifically marked by an 
ensemble of mechanical, radial and longitudinal constraints.  

Metamer 

A metamer is a morphological unit or constitutive module of certain developing 
organisms along a polarized axis. Metamerization or segmentation is a typical plan 
of a biological organization. In animals, each segment can be repetitive (e.g. in 
certain worms or annelids) or, on the contrary, can be the site of a particular 
morphogenesis (e.g. in insects).  

In the higher plant, this term, also known as “phytomere”, designates all the 
organs generated by an apical caulinary meristem (internode, leaf, axial bud). 
Outlined between two consecutive nodes, this module is generated in each of the 
meristematic operation cycles. Very generally, these successive modules, although 
they are repetitive in broad terms, present characteristics of growth (dimensions) and 
of morphogenesis (ramification, sexualization) that are variables depending on their 
position on the axis. This property, said to be “heteroblasty”, is an important 
characteristic of plant development (aerial organs) that intervenes in the architecture 
and physiology of plants.  

Mitosis 

We distinguish two types of cellular divisions depending on their direction. A 
cellular division is said to be “anticlinal”, or respectively “periclinal”, if the axis of 
division is perpendicular, or respectively parallel, to the surface of the tissue. These 
distinctions are of particular importance for plant tissues, conditioning the variations 
in shape of an organ. See their correspondence with the notion of main axes of 
growth of an apical meristematic dome in 3D.  

The two daughter cells of a mitosis need to be considered a priori as possibly 
dissimilar. The occurrence of asymmetric mitoses, observed in highly diverse 
organisms, contributes to the diversity of cellular populations. For example, it is an 
important morphogenetic property in filamentous organizations of apical growth  
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(fungi, algae). The daughter cell in apical position takes over from the mother cell 
(growth without differentiation), whereas the sub-apical (of different sub-dimension 
and polarity) can be at the origin of the branching of a side shoot. 

By “meiosis”, we understand a division of a particular type, which intervenes 
during the formation of gametes for which the haploid number (n chromosomes) 
requires a chromatic reduction of initial somatic cells to 2n chromosomes.  

Normal probability law  

This law, also known as the Gaussian or Laplace–Gauss law, describes the 
probability distribution of a continuous random variable, of parameters μ 
(expectation) and σ2 (variance) and of the field of definition [– ∞, + ∞]. By a 
transformation, we obtain the “normal centered reduced law” for parameters 0 and 1. 
Graphically, the distribution law (sum of probabilities) is an asymptotic, sigmoid 
and symmetrical curve. The law of density (probability by value) gives a bell-shaped 
symmetrical curve (one maximum in μ and two inflexion points in μ ± σ).  

The normal law is stable by additivity (the sum of independent Gaussian 
variables is also Gaussian), hence its statistical interpretation as a law of 
measurement errors. The normal law is also stable by linear transformation.  

This law generalizes into a multi-dimensional normal law. 

Null hypothesis/alternative hypothesis 

These are designations used in all statistical inference. Consider the simple 
example of comparison of the means of such a variable (like a dimension or content) 
measured for two samples, let us say m1 and m2. That is, μ1 and μ2 are the 
theoretical values that the corresponding parent populations would give us if these 
were accessible to us (in precise terms, mathematical expectation). The comparison 
test of the two averages is based on the hypothesis, known as the “null hypothesis” 
H0, of an absence of a difference in the level of parent populations: μ1 = μ2. It is not 
a case of mathematically demonstrating an equality but instead of being able to 
attribute a probability of occurrence to the difference empirically observed between 
the samples, meaning rejecting the null hypothesis in favor of a complementary 
hypothesis, known as the “alternative hypothesis” H1. The conclusion does not 
express a strict equality, but instead the existence of a significant difference. 
Depending on the context, H1 corresponds either to a simple inequality μ1 ≠ μ2 or to 
a relative order μ1 < μ2 (or vice versa). The rejection decision is probabilistic in 
nature (see “Risk of errors”).  
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Ontogenesis 

This is the ordered sequence of morphological and physiological processes that 
are achieved during the development of a living organism or of one of its parts or 
sub-systems. Various characteristic phases thus follow, first during the embryonic 
life right from the first cellular proliferations and the differentiation of the first 
outlines, then during postnatal life in which morphogenesis, growth and aging are 
embedded, spatially and temporally.  

Plant ontogenesis is distinguished from animal development by a continuous 
embryogenic property. Any higher plant (or any filamentous organism) is the almost 
permanent site of morphogenetic processes, since the generation of new organs 
(through maintenance of totipotent meristems) is combined with abscission (natural 
pruning) of organs that have become inactive. The life of a plant is confused with its 
growth: the plant is by nature an evolutive metapopulation of organs. The 
development of large organisms (arborescent species) leads to characteristic 
architectures (morphological notion that is more than a simple outline or a 
silhouette). Formation and extension of these plant architectures can be done by 
reiteration or taking up (copying) modules or sub-systems that were previously 
differentiated. Similar questions relate to the development of fixed colonial 
organisms such as corals. Their ontogenesis is presented as a spatial assembly of 
individual entities (polypes), and as their morphophysiological integration in a 
complex structure known as “superorganism”. 

Optimal control (or command) 

Methodology arising from Maupertuis’s physical principle of “least action” (or 
minimal work), which is widely discussed in mechanics and optics, intended to 
control how a process plays out via one or several exogenous variables known as 
“control variables”. It was developed in research work based on the Pontryagin 
school of thought, setting up the necessary/sufficient conditions for a solution. Prior 
to this, mention must be made of the property of multistationarity of many dynamic 
systems, where their evolution towards such or such a fixed point depends on the 
value of certain parameters. Mathematically studying how these, depending on their 
interval of variation, can determine a given development strategy is equivalent to 
considering them to be control variables, hence a possibility of command of the 
process.  

From a theoretical point of view, the principle of least action has a finalistic 
connotation depending on the phrase that can be attributed to P.L.M. Maupertuis: “If 
a change occurs in nature, the quantity of action required to accomplish it must be 
the least possible”.  
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In addition to its multiple applications in physics and mechanics, the idea of 
optimal control has great practical importance in biology today, for example, for the 
choice of a development strategy of a cultivated plant (encouraging production of 
biomass in the form of vegetative organs or seeds) or the optimization of a  
bio-industry process (cellular cultures in vitro in reactors). 

Plastochron 

This is a botanical term that designates the time lapse separating the 
differentiation of two consecutive metamers (internode + leaf) of a stem or of a 
branch of the higher plant. The plastochron stricto sensu corresponds to the period 
of cyclic operation of an apical caulinary meristem. The volume of the apical 
meristematic dome varies, increasing by mitotic activity during generation of a new 
leaf initium and becoming minimal after uplifting or emergence of the constitutive 
draft (leaf primordium). In practice, the term is used, under the designation 
“phyllochron”, to monitor the kinetics of macroscopic appearance of successive 
leaves on an axis, where the estimate can be made in a non-destructive manner 
(without dissection of the bud), by basing itself on the acquisition time of a 
dimension given a priori. The plastochron must be considered, on an agreed basis 
for its estimation, as a variable that is likely to fluctuate during caulinary 
ontogenesis. 

Potential function 

Notion relating to a dynamic conservative system, known as a “gradient system”, 
in which the displacement of any point in the field in question (e.g. an element  
of matter in a growth field) only depends on their position (and not on the path 
taken). The elementary circulation of a vector V is V(x)dx. This property is 
associated with the local value of the gradient of a given function, known as a 
potential function φ. The speed of displacement to the position xi is expressed by: 

/ ( )i iv x grad xϕ ϕ= ∂ ∂ = . Its representation on a graph sets out the existence of 

local extremum and barriers to potential. 

Refutation of a theory 

The hypothetico-deductive method leads to being able to accept, or refute, the 
hypotheses laid down a priori. K. Popper insists on the importance of the refutation 
operation (The Logic of Scientific Discovery). It is a case of refutation because the 
hypotheses are shown to be false.  
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According to K. Popper, any scientific approach (except for mathematics) must, 
instead of demonstrating that a proposal is true, establish that it cannot be disproved. 
Actually, the value of a theory thus rests on its current resistance to attempts at 
refutation, rather than on obtaining proof of truth. 

Risk of error 

Any decision about statistical inference is a choice between acceptance and 
rejection of the null hypothesis H0. This approach is probabilistic in nature since any 
test statistic S is a random variable. In any decision-making, two different situations 
can appear. We can, in effect, either accept a false hypothesis (risk of first-type error 
α) or reject a true hypothesis (risk of second-type error β), which is written in terms 
of probability as: P(H1|H0) = α; P(H0|H1) = β. 

The complements of these risks are, respectively, named the “confidence” and 
“power” of the test. In practice, the risk of the first-type error α is chosen a priori, 
hence its arbitrary character, for example, the value α = 0.05 that is often adopted, 
leading to the expression “having a chance of 5 in 100 of making a mistake”. The 
logic situation is given in the table of occurrences with two inputs, true 
hypothesis/selected hypothesis: 

Probability of the decision H0 true H1 true 

Accept H0 1 α−  β  

Reject H0 α  1 β−  

Stability 

Stability is a property of a stationary state of a dynamic system (cancelation of 
state variables dyj/dt = 0), characterized by the fact that following any deviation or 
disturbance away from the stationary state, the system returns to its stationary 
position. Usually this is an asymptotic stability known as “Lyapunov stability”. 
Stability comes from the properties of the Jacobian J (determinant of the matrix of 
partial derivatives of the linearized dynamic system around the stationary state). It is 
conditioned by the existence of negative eigenvalues (in their real part) of J. See the 
text for various kinds of stability, punctual (fixed point) or oscillatory, with the 
remarkable case of the stable limit cycle. 

A multistationary system can present one or several metastable states. Such 
states correspond to the existence of local energy minimums (wells) associated with 
barriers of potential.  
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The designation “structural stability” describes the resistance of the behavior of a 
system, meaning that any variation in the value of its parameters does not 
qualitatively modify its dynamic.  

Stationary state/equilibrium state  

By “stationary state”, we understand the state of a variable x that does not vary 
over time: dx(t)/dt = 0. This term generally corresponds to the term steady state. 
However, depending on the context, there can be some ambiguity with the constant 
nature of a speed of transformation, whether absolute dx(t)/dt = Cte or relative 
(1/x)dx(t)/dt = Cte. For example, steady state sometimes describes a phase of 
exponential growth (also designated logarithmic phase) that is defined by the 
invariance of the growth rate (and not of the variable itself).  

“Stationary state” and “equilibrium state” are generally seen as equivalent. The 
reference to equilibrium means more specifically the equality of input and output 
flows of a given system (e.g. a reversible chemical reaction at the equilibrium state). 
We also talk about “thermodynamic equilibrium” for the state of a system with 
constant entropy: 0SΔ = , and, a contrario, of “systems far from equilibrium” or 

“dissipative systems”.  

The term “multistationarity” designates the property of a dynamic system to 
include several stationary states of variable stability. 

Statistical inference 

This term designates the statistical tests approach, for example, in the 
comparison of samples, with a view to having a precise idea of the homogeneity of a 
population or of the efficiency of an experimental treatment. “To infer” is to move 
from a given level (measured sample) to a more general level, which is that of the 
inaccessible theoretical population (parent population) for which the sample is a 
representation of a probabilistic nature (i.e. randomized type). The estimate of the 
law of probability of a variable and of its parameters from sample data also arises 
from this approach. To infer means to interpret in order to conclude.  

All inference, since it is probabilistic in nature, is attributed with a certain risk of 
error (refer to this term). From a philosophical point of view, to infer is to advance 
from assumptions to the conclusions that they potentially carry.  
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Any inference work uses a variable known as a “test statistic”. Classic inference, 
known as “parametric”, is based on the probabilistic properties of this test statistic 
(for which tables provide values for a series of probabilities). Using it often requires, 
for example, the variable studied to be normal (Laplace–Gauss law). In the  
non-parametric tests, the approach is different, mainly based not just on the 
statistical distribution of values, but on the information given by their classification 
in a ranking. These non-parametric tests are generally more robust (more flexible 
application conditions) than parametric tests, where these are more powerful in 
terms of risk of errors of second species.  

Vector analysis 

The aim of vector analysis is to study the spatial distribution of a given variable. 
More specifically, there is a focus on local properties based on vectors associated 
with all material elements in the field in question, for example: field of speeds of 
growth in an appropriate Euclidian space to represent a given biological object, such 

as 1  for the extension of a root, 2 for the extension of a flat leaf blade (unfallen 

leaves) or 3  for mitotic activity in various directions (anticlinal or periclinal in 
particular) of an apical caulinary meristem.  

Classic first-order operators (first derivatives) are the gradient, divergence and 
rotation. They are expressed as a function of a basic operator denoted nabla, written
∇ , which expresses the gradient of the quantity in question (partial derivatives with 
respect to the reference directions). In practice, by “gradient operator”, we more 
specifically understand the variation of a scalar, such as a concentration. Expressed 
as the value of a function F, this gradient is written as: 

( )/ , / , /grad F or F F x F y F z∇ = ∂ ∂ ∂ ∂ ∂ ∂  

A gradient has the nature of a vector.  

The “divergence” operator describes the variation of the components of a vector 

V


: ( )/ , / , /x y zdivV or V V x V y V z∇ = ∂ ∂ ∂ ∂ ∂ ∂
 

.  

Finally, the variation of the direction of V


 is given by the rotational operator, 
which leads to intervention of differences of the components of the divergence 

vector two by two. This is the vector rotV V= ∇∧
 

 ( ∧ : vector product bringing the 

angle between the directions in question into play). 
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By way of respective examples of the use of these operators, we have the 
evaluation of local variations in concentration of a given substance (importance in 
diffusion or convection processes), in the speed of growth (regionalization of an 
inhomogeneous field) and in the anisotropy of growth (vorticity or change of 
direction of growth). 

By way of a classic second-order operator (second derivatives) on a scalar or on 

a vector, we have the Laplacian, written as 2orΔ ∇ : ( )F div FΔ = ∇ =

( )2 2 2 2 2/ , / /F x F y F z∂ ∂ ∂ ∂ ∂ . Expressing variations of a speed, it takes on the 

nature of an acceleration, involving, for example, the speed of evolution of a 
physical quantity in a given field.  

Vector analysis is extended with tensor calculus, which considers the partial 
derivatives of the components of the speed vector in such a way as to express all the 
constraints that any element in the field is subjected to. A tensor is an extension of 
the notion of vector. It takes the form of a symmetrical matrix whose diagonal 
elements are the normal constraints and whose extra diagonals are the tangential 
constraints, for example: growth or deformation tensor (strain rate tensor), vorticity 
tensor and conductivity tensor (study of flows of matter such as hydric flows in 
plants). 
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