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Preface to the Second Edition

More practice makes you even more perfect. Many readers of the first edition of this
book have followed this advice. We have received very helpful comments of the
users of our book and we have tried to make it more perfect by presenting you the
second edition with more quantlets in Matlab and R and with more exercises, e.g.,
for Exotic Options (Chap. 9).

This new edition is a good complement for the third edition of Statistics of
Financial Markets. It has created many financial engineering practitioners from the
pool of students at C.A.S.E. at Humboldt-Universität zu Berlin. We would like to
express our sincere thanks for the highly motivating comments and feedback on
our quantlets. Very special thanks go to the Statistics of Financial Markets class
of 2012 for their active collaboration with us. We would like to thank in partic-
ular Mengmeng Guo, Shih-Kang Chao, Elena Silyakova, Zografia Anastasiadou,
Anna Ramisch, Matthias Fengler, Alexander Ristig, Andreas Golle, Jasmin Krauß,
Awdesch Melzer, Gagandeep Singh and, last but not least, Derrick Kanngießer.

Berlin, Germany, January 2013 Szymon Borak
Wolfgang Karl Härdle
Brenda López Cabrera
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Preface to the First Edition

Wir behalten von unseren Studien am Ende doch nur das, was
wir praktisch anwenden.
“In the end, we really only retain from our studies that which we
apply in a practical way.”

J. W. Goethe, Gespräche mit Eckermann, 24. Feb. 1824.

The complexity of modern financial markets requires good comprehension of
economic processes, which are understood through the formulation of statistical
models. Nowadays one can hardly imagine the successful performance of financial
products without the support of quantitative methodology. Risk management,
option pricing and portfolio optimisation are typical examples of extensive usage
of mathematical and statistical modelling. Models simplify complex reality; the
simplification though might still demand a high level of mathematical fitness. One
has to be familiar with the basic notions of probability theory, stochastic calculus
and statistical techniques. In addition, data analysis, numerical and computational
skills are a must.

Practice makes perfect. Therefore the best method of mastering models is
working with them. In this book, we present a collection of exercises and solutions
which can be helpful in the advanced comprehension of Statistics of Financial
Markets. Our exercises are correlated to Franke, Härdle, and Hafner (2011). The
exercises illustrate the theory by discussing practical examples in detail. We provide
computational solutions for the majority of the problems. All numerical solutions
are calculated with R and Matlab. The corresponding quantlets – a name we give to

these program codes – are indicated by in the text of this book. They follow the
name scheme SFSxyz123 and can be downloaded from the Springer homepage of
this book or from the authors’ homepages.

Financial markets are global. We have therefore added, below each chapter title,
the corresponding translation in one of the world languages. We also head each
section with a proverb in one of those world languages. We start with a German
proverb from Goethe on the importance of practice.
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viii Preface to the First Edition

We have tried to achieve a good balance between theoretical illustration and
practical challenges. We have also kept the presentation relatively smooth and, for
more detailed discussion, refer to more advanced text books that are cited in the
reference sections.

The book is divided into three main parts where we discuss the issues relating to
option pricing, time series analysis and advanced quantitative statistical techniques.

The main motivation for writing this book came from our students of the course
Statistics of Financial Markets which we teach at the Humboldt-Universität zu
Berlin. The students expressed a strong demand for solving additional problems
and assured us that (in line with Goethe) giving plenty of examples improves
learning speed and quality. We are grateful for their highly motivating comments,
commitment and positive feedback. In particular we would like to thank Richard
Song, Julius Mungo, Vinh Han Lien, Guo Xu, Vladimir Georgescu and Uwe
Ziegenhagen for advice and solutions on LaTeX. We are grateful to our colleagues
Ying Chen, Matthias Fengler and Michel Benko for their inspiring contributions
to the preparation of lectures. We thank Niels Thomas from Springer-Verlag for
continuous support and for valuable suggestions on the writing style and the content
covered.

Berlin, Germany Szymon Borak
Wolfgang Härdle

Brenda López Cabrera
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Symbols and Notation

Basics

X; Y random variables or vectors
X1; X2; : : : ; Xp random variables
X D .X1; : : : ; Xp/> random vector
X � � X has distribution �
�; � matrices
˙ covariance matrix
1n vector of ones .1; : : : ; 1

„ ƒ‚ …

n-times

/>

0n vector of zeros .0; : : : ; 0
„ ƒ‚ …

n-times

/>

Ip identity matrix
1.:/ indicator function, for a set M is 1 D 1 on M , 1 D 0

otherwise
i

p�1

) implication
, equivalence
� approximately equal
˝ Kronecker product
iff if and only if, equivalence
SDE stochastic differential equation
Wt standard Wiener process
N Positive integer set
Z Integer set
.X/C jX j � 1.X > 0/
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xiv Symbols and Notation

Œ�� Largest integer not larger than �

a:s: almost surely
˛n D O.ˇn/ iff ˛n

ˇn
�! constant, as n �! 1

˛n D O.ˇn/ iff ˛n

ˇn
�! 0, as n �! 1

Characteristics of Distribution

f .x/ pdf or density of X

f .x; y/ joint density of X and Y

fX .x/; fY .y/ marginal densities of X and Y

fX1.x1/; : : : ; fXp .xp/ marginal densities of X1; : : : ; Xp

Ofh.x/ histogram or kernel estimator of f .x/

F.x/ cdf or distribution function of X

F.x; y/ joint distribution function of X and Y

FX .x/; FY .y/ marginal distribution functions of X and Y

FX1.x1/; : : : ; FXp .xp/ marginal distribution functions of X1; : : : ; Xp

fY jXDx.y/ conditional density of Y given X D x

'X.t/ characteristic function of X

mk kth moment of X

�j cumulants or semi-invariants of X

Moments

E X; E Y mean values of random variables or vectors
X and Y

E.Y jX D x/ conditional expectation of random variable or
vector Y given X D x

�Y jX conditional expectation of Y given X

Var.Y jX D x/ conditional variance of Y given X D x

�2
Y jX conditional variance of Y given X

�XY D Cov.X; Y / covariance between random variables X and Y

�XX D Var.X/ variance of random variable X

	XY D Cov.X; Y /
p

Var.X/ Var.Y /
correlation between random variables X and Y

˙XY D Cov.X; Y / covariance between random vectors X and Y ,
i.e., Cov.X; Y / D E.X � EX/.Y � EY />

˙XX D Var.X/ covariance matrix of the random vector X



Symbols and Notation xv

Samples

x; y observations of X and Y

x1; : : : ; xn D fxi gn
iD1 sample of n observations of X

X D fxij giD1;:::;nIj D1;:::;p (n � p) data matrix of observations of X1; : : : ; Xp

or of X D .X1; : : : ; Xp/>
x.1/; : : : ; x.n/ the order statistic of x1; : : : ; xn

Empirical Moments

x D 1

n

n
X

iD1

xi average of X sampled by fxi giD1;:::;n

sXY D 1

n

n
X

iD1

.xi � x/.yi � y/ empirical covariance of random variables
X and Y sampled by fxi giD1;:::;n and
fyi giD1;:::;n

sXX D 1

n

n
X

iD1

.xi � x/2 empirical variance of random variable
X sampled by fxi giD1;:::;n

rXY D sXYp
sXX sY Y

empirical correlation of X and Y

S D fsXi Xj g empirical covariance matrix of X1; : : : ; Xp

or of the random vector X D .X1; : : : ; Xp/>
R D frXiXj g empirical correlation matrix of X1; : : : ; Xp

or of the random vector X D .X1; : : : ; Xp/>

Distributions

'.x/ density of the standard normal distribution
˚.x/ distribution function of the standard normal distribution
N.0; 1/ standard normal or Gaussian distribution
N.�; �2/ normal distribution with mean � and variance �2

Np.�; ˙/ p-dimensional normal distribution with mean � and
covariance matrix ˙

B.n; p/ binomial distribution with parameters n and p

lognormal.�; �2/ lognormal distribution with mean � and variance �2

L�! convergence in distribution



xvi Symbols and Notation

P�! convergence in probability
CLT Central Limit Theorem

2

p 
2 distribution with p degrees of freedom

2

1�˛Ip 1 � ˛ quantile of the 
2 distribution with p degrees of freedom
tn t-distribution with n degrees of freedom
t1�˛=2In 1 � ˛=2 quantile of the t-distribution with n degrees of freedom
Fn;m F -distribution with n and m degrees of freedom
F1�˛In;m 1 � ˛ quantile of the F -distribution with n and m degrees of

freedom

Mathematical Abbreviations

tr.A/ trace of matrix A
diag.A/ diagonal of matrix A
rank.A/ rank of matrix A
det.A/ or jAj determinant of matrix A
hull.x1; : : : ; xk/ convex hull of points fx1; : : : ; xkg
span.x1; : : : ; xk/ linear space spanned by fx1; : : : ; xkg

Financial Market Terminology

OT C over-the-counter
self � financing a portfolio strategy with no resulting cash flow
riskmeasure a mapping from a set of random variables (represent-

ing the risk at hand) to the real numbers



Some Terminology

Кто не рискует, тот не пьёт шампанского. 
No pains, no gains.

This section contains an overview of some terminology that is used throughout the
book. The notations are in part identical to those of Harville (2001). More detailed
definitions and further explanations of the statistical terms can be found, e.g., in
Breiman (1973), Feller (1966), Härdle and Simar (2012), Mardia, Kent, and Bibby
(1979), or Serfling (2002).

adjoint matrix The adjoint matrix of an n�n matrix A D faij g is the transpose of
the cofactor matrix of A (or equivalently is the n � n matrix whose ij th element
is the cofactor of aj i ).

asymptotic normality A sequence X1; X2; : : : of random variables is asymptoti-
cally normal if there exist sequences of constants f�ig1

iD1 and f�i g1
iD1 such that

��1
n .Xn ��n/

L�! N.0; 1/. The asymptotic normality means that for sufficiently
large n, the random variable Xn has approximately N.�n; �2

n/ distribution.
bias Consider a random variable X that is parametrized by � 2 �. Suppose that

there is an estimator b� of � . The bias is defined as the systematic difference
betweenb� and � , Efb� � �g. The estimator is unbiased if Eb� D � .

characteristic function Consider a random vector X 2 R
p with pdf f . The

characteristic function (cf) is defined for t 2 R
p:

'X.t/ � EŒexp.i t>X/� D
Z

exp.i t>X/f .x/dx:

The cf fulfills 'X.0/ D 1, j'X .t/j 	 1. The pdf (density) f may be recovered
from the cf: f .x/ D .2
/�p

R

exp.�i t>X/'X .t/dt .

xvii



xviii Some Terminology

characteristic polynomial (and equation) Corresponding to any n � n matrix A
is its characteristic polynomial, say p.:/, defined (for �1 < � < 1) by
p.�/ D jA � �Ij, and its characteristic equation p.�/ D 0 obtained by setting
its characteristic polynomial equal to 0; p.�/ is a polynomial in � of degree n

and hence is of the form p.�/ D c0 C c1� C � � � C cn�1�
n�1 C cn�n, where the

coefficients c0; c1; : : : ; cn�1; cn depend on the elements of A.
conditional distribution Consider the joint distribution of two random vectors

X 2 R
p and Y 2 R

q with pdf f .x; y/ W RpC1 �! R. The marginal density of X

is fX .x/ D R

f .x; y/dy and similarly fY .y/ D R

f .x; y/dx. The conditional
density of X given Y is fX jY .xjy/ D f .x; y/=fY .y/. Similarly, the conditional
density of Y given X is fY jX .yjx/ D f .x; y/=fX .x/.

conditional moments Consider two random vectors X 2 R
p and Y 2 R

q with
joint pdf f .x; y/. The conditional moments of Y given X are defined as the
moments of the conditional distribution.

contingency table Suppose that two random variables X and Y are observed on
discrete values. The two-entry frequency table that reports the simultaneous
occurrence of X and Y is called a contingency table.

critical value Suppose one needs to test a hypothesis H0 W � D �0. Consider a test
statistic T for which the distribution under the null hypothesis is given by P�0 . For
a given significance level ˛, the critical value is c˛ such that P�0.T > c˛/ D ˛.
The critical value corresponds to the threshold that a test statistic has to exceed
in order to reject the null hypothesis.

cumulative distribution function (cdf) Let X be a p-dimensional random vec-
tor. The cumulative distribution function (cdf) of X is defined by F.x/ D
P.X 	 x/ D P.X1 	 x1; X2 	 x2; : : : ; Xp 	 xp/.

eigenvalues and eigenvectors An eigenvalue of an n�n matrix A is (by definition)
a scalar (real number), say �, for which there exists an n � 1 vector, say x, such
that Ax D �x, or equivalently such that .A � �I/x D 0; any such vector x is
referred to as an eigenvector (of A) and is said to belong to (or correspond to) the
eigenvalue �. Eigenvalues (and eigenvectors), as defined herein, are restricted to
real numbers (and vectors of real numbers).

eigenvalues (not necessarily distinct) The characteristic polynomial, say p.:/, of
an n � n matrix A is expressible as

p.�/ D .�1/n.� � d1/.� � d2/ � � � .� � dm/q.�/ .�1 < � < 1/;

where d1; d2; : : : ; dm are not-necessarily-distinct scalars and q.:/ is a polynomial
(of degree n� m) that has no real roots; d1; d2; : : : ; dm are referred to as the not-
necessarily-distinct eigenvalues of A or (at the possible risk of confusion) simply
as the eigenvalues of A. If the spectrum of A has k members, say �1; : : : ; �k , with
algebraic multiplicities of �1; : : : ; �k , respectively, then m D Pk

iD1 �i , and (for
i D 1; : : : ; k) �i of the m not-necessarily-distinct eigenvalues equal �i .

empirical distribution function Assume that X1; : : : ; Xn are iid observations of
a p-dimensional random vector. The empirical distribution function (edf) is
defined through Fn.x/ D n�1

Pn
iD1 1.Xi 	 x/.



Some Terminology xix

empirical moments The moments of a random vector X are defined through
mk D E.Xk/ D R

xkdF.x/ D R

xkf .x/dx. Similarly, the empirical moments
are defined through the empirical distribution function Fn.x/ D n�1

Pn
iD1

1.Xi 	 x/. This leads to bmk D n�1
Pn

iD1 Xk
i D R

xkdFn.x/.
estimate An estimate is a function of the observations designed to approximate an

unknown parameter value.
estimator An estimator is the prescription (on the basis of a random sample) of

how to approximate an unknown parameter.
expected (or mean) value For a random vector X with pdf f the mean or expected

value is E.X/ D R

xf .x/dx:

Hessian matrix The Hessian matrix of a function f , with domain in R
m�1, is the

m � m matrix whose ij th element is the ij th partial derivative D2
ij f of f .

kernel density estimator The kernel density estimator bf h of a pdf f , based on a
random sample X1; X2; : : : ; Xn from f , is defined by

bf h.x/ D 1

nh

n
X

iD1

K

�

x � Xi

h

�

:

The properties of the estimator bf h.x/ depend on the choice of the kernel
function K.:/ and the bandwidth h. The kernel density estimator can be seen as
a smoothed histogram; see also Härdle, Müller, Sperlich, and Werwatz (2004).

likelihood function Suppose that fxi gn
iD1 is an iid sample from a population with

pdf f .xI �/. The likelihood function is defined as the joint pdf of the observations
x1; : : : ; xn considered as a function of the parameter � , i.e., L.x1; : : : ; xnI �/

D Qn
iD1 f .xi I �/. The log-likelihood function, `.x1; : : : ; xnI �/ D log L.x1; : : : ;

xnI �/ D Pn
iD1 log f .xi I �/, is often easier to handle.

linear dependence or independence A nonempty (but finite) set of matrices (of
the same dimensions .n � p/), say A1; A2; : : : ; Ak , is (by definition) linearly
dependent if there exist scalars x1; x2; : : : ; xk , not all 0, such that

Pk
iD1 xiAi D

0n0>
p ; otherwise (if no such scalars exist), the set is linearly independent. By

convention, the empty set is linearly independent.
marginal distribution For two random vectors X and Y with the joint pdf

f .x; y/, the marginal pdfs are defined as fX .x/ D R

f .x; y/dy and fY .y/ D
R

f .x; y/dx.
marginal moments The marginal moments are the moments of the marginal

distribution.
mean The mean is the first-order empirical moment x D R

xdFn.x/ D n�1
Pn

iD1 xi

D bm1.
mean squared error (MSE) Suppose that for a random vector C with a distribu-

tion parametrized by � 2 � there exists an estimatorb� . The mean squared error
(MSE) is defined as EX .b� � �/2.

median Suppose that X is a continuous random variable with pdf f .x/. The
median ex lies in the center of the distribution. It is defined as

R Qx
�1 f .x/dx D

R C1
Qx f .x/dx D 0:5.



xx Some Terminology

moments The moments of a random vector X with the distribution function F.x/

are defined through mk D E.Xk/ D R

xkdF.x/. For continuous random vectors
with pdf f .x/, we have mk D E.Xk/ D R

xkf .x/dx.
normal (or Gaussian) distribution A random vector X with the multinormal

distribution N.�; ˙/ with the mean vector � and the variance matrix ˙ is given
by the pdf

fX .x/ D j2
˙ j�1=2 exp

�

�1

2
.x � �/>˙�1.x � �/

�

:

orthogonal matrix An .n � n/ matrix A is orthogonal if A>A D AA> D In.
probability density function (pdf) For a continuous random vector X with cdf F ,

the probability density function (pdf) is defined as f .x/ D @F.x/=@x.
quantile For a random variable X with pdf f the ˛ quantile q˛ is defined through:
R q˛

�1 f .x/dx D ˛.
p-value The critical value c˛ gives the critical threshold of a test statistic T for

rejection of a null hypothesis H0 W � D �0. The probability P�0.T > c˛/ D p

defines that p-value. If the p-value is smaller than the significance level ˛, the
null hypothesis is rejected.

random variable and vector Random events occur in a probability space with a
certain even structure. A random variable is a function from this probability
space to R (or Rp for random vectors) also known as the state space. The concept
of a random variable (vector) allows one to elegantly describe events that are
happening in an abstract space.

scatterplot A scatterplot is a graphical presentation of the joint empirical distribu-
tion of two random variables.

singular value decomposition (SVD) An m � n matrix A of rank r is expressible
as

A D P
�D1 0

0 0

�

Q> D P1D1Q>
1 D

r
X

iD1

si pi q
>
i D

k
X

j D1

˛j Uj ;

where Q D .q1; : : : ; qn/ is an n � n orthogonal matrix and D1 D diag.s1; : : : ; sr /

an r � r diagonal matrix such that Q>A>AQ D
�D2

1 0
0 0

�

; where s1; : : : ; sr are

(strictly) positive, where Q1 D .q1; : : : ; qr /, P1 D .p1; : : : ; pr / D AQ1D�1
1 ,

and, for any m � .m � r/ matrix P2 such that P>
1 P2 D 0, P D .P1; P2/,

where ˛1; : : : ; ˛k are the distinct values represented among s1; : : : ; sr , and where
(for j D 1; : : : ; k) Uj D P

fi W si D˛j g piq
>
i ; any of these four representations

may be referred to as the singular value decomposition of A, and s1; : : : ; sr are
referred to as the singular values of A. In fact, s1; : : : ; sr are the positive square
roots of the nonzero eigenvalues of A>A (or equivalently AA>), q1; : : : ; qn are
eigenvectors of A>A, and the columns of P are eigenvectors of AA>.
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spectral decomposition A p � p symmetric matrix A is expressible as

A D ��� > D
p
X

iD1

�i �i�
>
i

where �1; : : : ; �p are the not-necessarily-distinct eigenvalues of A, �1; : : : ; �p

are orthonormal eigenvectors corresponding to �1; : : : ; �p, respectively, � D
.�1; : : : ; �p/, D D diag.�1; : : : ; �p/.

subspace A subspace of a linear space V is a subset of V that is itself a linear space.
Taylor expansion The Taylor series of a function f .x/ in a point a is the

power series
P1

nD0
f .n/.a/

nŠ
.x � a/n. A truncated Taylor series is often used to

approximate the function f .x/.
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Chapter 1
Derivatives

Don’t put all eggs in one basket

A derivative (derivative security or contingent claim) is a financial instrument whose
value depends on the value of others, more basic underlying variables. Options,
future contracts, forward contracts, and swaps are examples of derivatives. The aim
of this chapter is to present and discuss various options strategies. The exercises
emphasize the differences of the strategies through an intuitive approach using
payoff graphs.

Exercise 1.1 (Butterfly strategy). Consider a butterfly strategy: a long call option
with an exercise price of 100 USD, a second long call option with an exercise price
of 120 USD and two short calls with an exercise price of 110 USD. Give the payoff
table for different stock values. When will this strategy be preferred?

The payoff table for different stock values:

Strategy ST � 100 100 < ST � 110 110 < ST � 120 120 < ST

A long call at 100 0 ST � 100 ST � 100 ST � 100

A long call at 120 0 0 0 ST � 120

Two short calls at 110 0 0 2.110 � ST / 2.110 � ST /

Total 0 ST � 100 120 � ST 0

This strategy is preferred when the stock price fluctuates slightly around
110 USD.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 1, © Springer-Verlag Berlin Heidelberg 2013
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Exercise 1.2 (Risk of a strategy). Consider a simple strategy: an investor buys
one stock, one European put with an exercise price K, sells one European call with
an exercise price K. Calculate the payoff and explain the risk of this strategy.

Strategy ST � K ST > K

Buy a stock ST ST

Buy a put K � ST 0
Sell a call 0 �.ST � K/

Total K K

This is a risk-free strategy. The value of portfolio at time T is the exercise price
K , which is not dependent on the stock price at expiration date.

Exercise 1.3 (Bull call spread). One of the most popular types of the spreads
is a bull spread. A bull-call-price spread can be made by buying a call option
with a certain exercise price and selling a call option on the same stock with a
higher exercise price. Both call options have the same expiration date. Consider a
European call with an exercise price of K1 and a second European call with an
exercise price of K2. Draw the payoff table and payoff graph for this strategy.

Strategy ST � K1 K1 < ST � K2 K2 < ST

A long call at K1 0 ST � K1 ST � K1

A short call at K2 0 0 K2 � ST

Total 0 ST � K1 K2 � K1

Suppose that a trader buys a call for 12 USD with a strike price of K1 D 100 USD
and sells a call for 8 USD with a strike price of K2 D 120 USD. If the stock price
is above 120 USD, the payoff from this strategy is 16 USD (8 USD from short call,
8 USD from long call). The cost of this strategy is 4 USD (buying a call for 12 USD,
selling a call for 8 USD). If the stock price is between 100 and 120 USD, the payoff
is ST � 104. The bull spread strategy limits the trader’s upside as well as downside
risk. The payoff graph for the bull call spread strategy is shown in Fig. 1.1.

Exercise 1.4 (Straddle). Consider a strategy of buying a call and a put with the
same strike price and expiration date. This strategy is called straddle. The price
of the long call option is 3 USD. The price of the long put option is 5 USD. The
strike price is K D 40 USD. Draw the payoff table and payoff graph for the straddle
strategy (Fig. 1.2).

The advantage of a straddle is that the investor can profit from stock prices
moving in both directions. One does not care whether the stock price goes up or
down, but only how much it moves. The disadvantage to a straddle is that it has a
high premium because of having to buy two options. The initial cost of the straddle
at a stock price 40 USD is 8 USD (3 USD for the call and 5 USD for the put). If
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Payoff ST � K ST > K

Payoff from call 0 ST � K

Payoff from put K � ST 0
Total payoff K � ST ST � K

the stock price stays at 38 USD, we can see that the strategy costs the trader 6 USD.
Since the initial cost is 8 USD, the call expires worthless, and the put expires worth
2 USD. However, if the stock price jumps to 60 USD, a profit of 12 USD (60-40-8) is
made. If the stock price goes down to 30 USD, a profit of 2 USD (40-30-8) is made,
and so on. The payoff graph for the straddle option strategy is shown in Fig. 1.3.

Exercise 1.5 (Butterfly spread). Consider the option spread strategy known as the
butterfly spread. A butterfly spread involves positions in options with three different
strike prices. It can be created by buying a call option with a relatively low strike
price K1, buying a call option with a relatively high strike price K3, and selling
two call options with a strike price K2 D 0:5.K1 C K3/. Draw the payoff table and
payoff graph for the butterfly spread strategy.

Position ST � K1 K1 < ST � K2 K2 < ST � K3 ST > K3

First long call 0 ST � K1 ST � K1 ST � K1

Second long call 0 0 0 ST � K3

Two short calls 0 0 �2.ST � K2/ �2.ST � K2/

Total payoff 0 ST � K1 K3 � ST 0
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Fig. 1.2 Example of a straddle with the S&P 500 index as underlying

Suppose that the market prices of 3-month calls are as follows:

Strike price (USD) Price of call (USD)

65 12
70 8
75 5
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Fig. 1.3 Bottom straddle SFSbottomstraddle

A trader could create a butterfly spread by buying one call with a strike price of
65 USD, buying one call with a strike price of 75 USD, and selling two calls with
a strike price of 70 USD. It costs 12 C 5 � 2 � 8 D 1 USD to create this spread. If
the stock price in 3 months is greater than 75 USD or less than 65 USD, the trader
will lose 1 USD. If the stock price is between 66 and 74 USD, the trader will make
a profit. The maximum profit is reached if the stock price in 3 months is 70 USD.
Hence, this strategy should be used if the trader thinks that the stock price will stay
close to K2 in the future. The payoff graph for the butterfly spread using call options
is shown in Fig. 1.4.

Exercise 1.6 (Butterfly spread). Butterfly spreads can be implemented using put
options. If put contracts are used, the strategy would necessitate two long put
contracts, one with a low strike price K1 and a second with a higher strike price
K3, and two short puts with a strike price K2 D 0:5.K1 C K3/. Draw payoff graph
for the butterfly spread using put options.

Suppose that the market prices of 3-month puts are as follows:

Strike price (USD) Price of put (USD)

65 5
70 8
75 12

The payoff graph for the butterfly spread using put options is shown in Fig. 1.5.
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Fig. 1.5 Butterfly spread created using put options SFSbutterfly

Exercise 1.7 (Strangle). Consider the option combination strategy known as the
strangle. In the strangle strategy a trader buys a put and a call with a different
strike price and the same expiration date. The put strike price, K1 is smaller than
the call strike price, K2. Draw the payoff table and payoff graph for the strangle
strategy.
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Position ST � K1 K1 < ST < K2 K2 � ST

Profit from call 0 0 ST � K2

Profit from put K1 � ST 0 0
Total profit K1 � ST 0 ST � K2
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Fig. 1.6 Bottom strangle SFSbottomstrangle

The aim of the strangle strategy is to profit from an anticipated upward or
downward movement in the stock price. The trader thinks there will be a large
price movement but is not sure whether it will be an increase or decrease in price.
The risk is minimized at a level between K1 and K2. Suppose that the put price is
5 USD with a strike price K1 D 40 USD, the call price is 4 USD with a strike price
K2 D 50 USD. The payoff graph for the strangle strategy is shown in Fig. 1.6.

Exercise 1.8 (Strip). Consider the option combination strategy known as a strip.
A strip consists of one long call and two long puts with the same strike price and
expiration date. Draw the payoff diagram for this option strategy.

The aim of the strip is to profit from a large anticipated decline in the stock price
below the strike price. Consider a strip strategy in which two long puts with the
price of 3 USD for each and a long call with the price of 4 USD are purchased
simultaneously with strike price K D 35 USD. The payoff graph for the strip
strategy is shown in Fig. 1.7.

Exercise 1.9 (Strap). Consider the option strategy known as a strap. A strap could
be intuitively interpreted as the reverse of a strip. A strap consists of two long
calls and one long put with same strike price and expiration date. Draw the payoff
diagram for this option strategy.
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The aim of the strap is to profit from a large anticipated rise in the stock price
above strike price. The following payoff graph is drawn with two long call options,
C0 D 3 USD and one long put option, P0 D 4 USD. The strike price is K D 35 USD
for both options. The payoff graph for strap strategy is shown in Fig. 1.8.
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Fig. 1.9 S&P 500 index for 2008

Exercise 1.10 (Choosing a Strategy). The Bloomberg screenshot depicting the
S&P 500 index in Fig. 1.9 illustrates the rapid decline in stock prices in the fall
of 2008. Name possible strategies to make profit from such a downturn. What is
decisive for choosing a strategy?

Under circumstances like in the fall of 2008, several strategies can be thought of to
make profit. Among those strategies are bull call spread, bear spread created using
put options, bottom straddle, butterfly spread created using call options and butterfly
spread created using puts options. The expectation formation about the future price
developments determines which strategy should be chosen.

Exercise 1.11 (Straddle). You are long a straddle with strike price K D 25 USD
and price St D 25. The straddle costs you 5 USD to enter. What price movements
are you looking for in the underlying?

A straddle is a long call plus long put with the same strike price. If you hold the
straddle until maturity, then you need a price change of more than 5 USD either
way in the underlying in order to profit. A smaller price change, however, can lead
to profits if it occurs before maturity.

Exercise 1.12 (Butterfly spread). Call options on a stock are available with strike
prices K1 D 15 USD, K2 D 17:5 USD, K3 D 20 USD and time to maturity in
3 months. The prices are 4, 2 and 0:5 USD respectively. Explain how the options
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can be used to create a butterfly spread. Construct a payoff table that shows how
profit varies with stock prices for the butterfly spread.

A butterfly spread can be created by buying call options with strike prices K1 D
15 USD and K3 D 20 USD and by shorting two call options with strike prices
K2 D 17:5 USD. The total investment is 4 C 0:5 USD � 2 � 2 USD D 0:5 USD.

Position ST � 15 15 < ST � 17:5 17:5 < ST � 20 ST > 20

First long call �4 .ST � 15/ � 4 .ST � 15/ � 4 .ST � 15/ � 4

Second long call �0:5 �0:5 �0:5 .ST � 20/ � 0:5

Two short calls 4 4 �2.ST � 17:5/ C 4 �2.ST � 17:5/ C 4

Total payoff �0:5 .ST � 15/ � 0:5 .20 � ST / � 0:5 �0:5



Chapter 2
Introduction to Option Management

The prize must be worth the toil when one stakes one’s life on
fortune’s dice.

Dolon to Hector, Euripides (Rhesus, 182)

In this chapter we discuss basic concepts of option management. We will consider
both European and American call and put options and practice concepts of pricing,
look at arbitrage opportunities and the valuation of forward contracts. Finally, we
will investigate the put-call parity relation for several cases.

Exercise 2.1 (Call and Put Options). A company’s stock price is S0 D 110 USD
today. It will either rise or fall by 20 % after one period. The risk-free interest
rate for one period is r D 10 %.

(a) Find the risk-neutral probability that makes the expected return of the asset
equal to the risk-free rate.

(b) Find the prices of call and put options with the exercise price K D 100 USD.
(c) How can the put option be duplicated?
(d) How can the call option be duplicated?
(e) Check put-call parity.

(a) The risk-neutral probability in this one period binomial model satisfies

.1 C r/S0 D EQ St ;

where Q denotes the risk neutral (Bernoulli) measure with probability q.
Plugging in the given data S0 D 110; S11 D 110 � 1:2; S12 D 110 � 0:8

and r D 0:1 leads to:

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 2, © Springer-Verlag Berlin Heidelberg 2013
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.1 C 0:1/ � 110 D q � 1:2 � 110 C .1 � q/ � 0:8 � 110

1:1 D 1:2q C 0:8.1 � q/

0:3 D 0:4q

q D 0:75

Hence the risk neutral probability measure Q is

PQ.S11 D 1:2 � 110/ D 0:75

PQ.S12 D 0:8 � 110/ D 0:25

(b) The call option price is C D .1 C r/�1 EQ �.S1; K/, with K D 100 and
�.S; K/ D 1.S�K > 0/.S�K/. Denote cu D �.S11;K/ and cd D �.S12; K/.
Then C D ˚

qcu C .1 � q/cd
�

=.1 C r/ is the expected payoff discounted by
the risk-free interest rate. Using the prior obtained values we know that the
stock can either increase to S11 D 110 � .1 C 0:2/ D 132 or decrease to S12 D
110 � .1�0:2/ D 88, whereas the risk-neutral probability is q D 0:75. Given the
exercise price of K D 100, the payoff in case of a stock price increase is cu D
max.132 � 100; 0/ D 32, in case of a decrease is cd D max.88 � 100; 0/ D 0.
Thus, the call price is C D .0:75 � 32 C 0:25 � 0/=.1 C 0:1/ D 21:82 USD.

Then the put option price is calculated using P D ˚

qpu C .1 � q/pd
�

=.1 C r/.
Given the exercise price of K D 100 the payoff for a stock price increase is pu D
max.100 � 132; 0/ D 0 and for a decrease is pd D max.100 � 88; 0/ D 12. Thus,
the put price is P D .0:75 � 0 C 0:25 � 12/=.1 C 0:1/ D 2:73 USD.

(c) Given an increase in the stock price, the value of the derivative is pu D �S11 C
ˇ.1 C r/, where � is the the number of shares of the underlying asset, S11 is
the value of the underlying asset at the top, ˇ is the amount of money in the
risk-free security and 1 C r is the risk-free interest rate.

The value of pd is calculated respectively as pd D �S12 C ˇ.1 C r/. Using
pu D 0, pd D 12, S11 D 132 and S12 D 88 we can solve the two equations:
�132 C ˇ.1 C 0:1/ D 0 and �88 C ˇ.1 C 0:1/ D 12 and obtain � D �0:27, ˇ D
32:73. This means that one should sell 0:27 shares of stock and invest 32:73 USD
at the risk-free rate.

(d) For the call option, we can analogously solve the following two equations:
�132 C ˇ.1 C 0:1/ D 32, �88 C ˇ.1 C 0:1/ D 0. Finally, we get � D 0:73,
ˇ D �58:18. This means that one should buy 0:73 shares of stock and borrow
58:18 USD at a risk-free rate.

(e) The principle of put-call parity refers to the equivalence of the value of a
European call and put option which have the same maturity date T , the same
delivery price K and the same underlying. Hence, there are combinations of
options which can create positions that are the same as holding the stock itself.
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These option and stock positions must all have the same return or an arbitrage
opportunity would be available to traders.

Formally, the relationship reads C CK=.1C r/ D P CS0. Refer to Franke et al.
(2011) for the derivation. Plugging in the above calculated values yields 21:82 C
100=1:1 D 2:73 C 110. Obviously, the equivalence holds, so the put-call parity is
satisfied.

Exercise 2.2 (American Call Option). Consider an American call option with a
40 USD strike price on a specific stock. Assume that the stock sells for 45 USD
a share without dividends. The option sells for 5 USD 1 year before expiration.
Describe an arbitrage opportunity, assuming the annual interest rate is 10 %.

Short a share of the stock and use the 45 USD you receive to buy the option
for 5 USD and place the remaining 40 USD in a savings account. The initial cash
flow from this strategy is zero. If the stock is selling for more than 40 USD at
expiration, exercise the option and use your savings account balance to pay the
strike price. Although the stock acquisition is used to close out your short position,
the 40 � 0:1 D 4 USD interest in the savings account is yours to keep. If the stock
price is less than 40 USD at expiration, buy the stock with funds from the savings
account to cancel the short position. The 4 USD interest in the savings account and
the difference between the 40 USD (initial principal in the savings account) and the
stock price is yours to keep (Table 2.1).

Exercise 2.3 (European Call Option). Consider a European call option on a stock
with current spot price S0 D 20, dividend D D 2 USD, exercise price K D 18 and
time to maturity 6 months. The annual risk-free rate is r D 10 %. What is the upper
and lower bound (limit) of the price of the call and put options?

The upper bound for a European call option is always the current market price
of the stock S0. If this is not the case, arbitrageurs could make a riskless profit
by buying the stock and selling the call option. The upper limit for the call is
therefore 20.

Based on P C S0 � K exp.�r�/ � D D C and P � 0, the lower bound for the
price of a European call option is given by:

C � S0 � K exp.�r�/ � D

C � 20 � 18 exp.�0:10 � 6=12/ � 2

C � 20 � 17:12 � 2

C � 0:88

Consider for example, a situation where the European call price is 0:5 USD. An
arbitrageur could buy the call for 0:5 USD and short the stock for 20 USD. This
provides a cash flow of 20 � 0:5 D 19:5 USD which grows to 19:5 exp.0:1 � 0:5/ D
20:50 in 6 months. If the stock price is greater than the exercise price at maturity,
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Table 2.1 Cash flow table for this strategy

CFT

Action CFt ST < 40 ST � 40

Short a share of the stock 45 �ST �ST

Buy a call �5 0 ST � 40

Rest to savings account �40 44 44
Total 0 .40 � ST / C 4 4

the arbitrageur will exercise the option, close out the short position and make a profit
of 20:50 � 18 D 2:50 USD.

If the price is less than 18 USD, the stock is bought in the market and the short
position is closed out. For instance, if the price is 15 USD, the arbitrageur makes a
profit of 20:50 � 15 D 5:50 USD.

Thus, the price of the call option lies between 0:88 and 20 USD.
The upper bound for the put option is always the strike price K D 18 USD, while

the lower bound is given by:

P � K exp.�r�/ � S0 C D

P � 18 exp .�0:10 � 0:5/ � 20 C 2

P � 17:12 � 20 C 2

P � �0:88

However, the put option price cannot be negative and therefore it can be further
refined as:

P � maxfK exp.�r�/ � S0 C D; 0g:
Thus, the price of this put option lies between 0 and 18 USD.

Exercise 2.4 (Spread between American Call and Put Option). Assume that the
above stock and option market data does not refer to European put and call options
but rather to American put and call options. What conclusions can we draw about
the relationship between the upper and lower bounds of the spread between the
American call and put for a non-dividend paying stock?

The relationship between the upper and lower bounds of the spread between
American call and put options can be described by the following relationship:
S0 � K � C � P � S0 � K exp.�r�/. In this specific example, the spread between
the prices of the American put and call options can be described as follows:

20 � 18 � C � P � 20 � 18 exp.�0:10 � 6=12/

2 � C � P � 2:88
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Table 2.2 Portfolio value for some future time t 0

St 0 � K1 K1 � St 0 � K� K� � St 0 � K0 K0 � St 0

1. �.K1 � St 0 / 0 0 0
2. .1 � �/.K0 � St 0 / .1 � �/.K0 � St 0 / .1 � �/.K0 � St 0 / 0
3. �.K� � St 0 / �.K� � St 0 / 0 0
Sum 0 �.St 0 � K1/ .1 � �/.K0 � St 0 / 0

Exercise 2.5 (Price of American and European Put Option). Prove that the
price of an American or European put option is a convex function of its exercise
price.

Additionally, consider two put options on the same underlying asset with the
same maturity. The exercise prices and the prices of these two options are K1 D 80

and 38:2 EUR and K2 D 50 and 22:6 EUR.
There is a third put option on the same underlying asset with the same maturity.

The exercise price of this option is 60 EUR. What can be said about the price of this
option?

Let � 2 Œ0; 1� and K1 < K0. Consider a portfolio with the following assets:

1. A long position in � puts with exercise price K1

2. A long position in .1 � �/ puts with exercise price K0

3. A short position in 1 put with exercise price K�
defD �K1 C .1 � �/K0

The value of this portfolio for some future time t 0 can be seen in Table 2.2:
The value of the portfolio is always bigger than or equal to 0. For no arbitrage to

happen, the current value of the portfolio should also be non-negative, so:

�PK1;T .St ; �/ C .1 � �/PK0;T .St ; �/ � PK�;T .St ; �/ � 0

The above inequality proves the convexity of the put option price with respect to
its exercise price.

The price of a put option increases as the exercise price increases. So in this
specific example:

P50;T � P60;T � P80;T

and hence:

22:6 � P60;T � 38:2

Moreover, we also know that the prices of call and put options are convex, so

�K1 C .1 � �/K2 D 60

� D 1=3
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Table 2.3 Cash flow table for this strategy

CFT

Action CFt ST < 235 ST � 235

Buy a put � 5:25 235 � ST 0
Short a call 21.88 0 235 � ST

Buy a forward with K D 235 �16:17 ST � 235 ST � 235

Total 0.46 0 0

1=3 � 38:2 C 2=3 � 22:6 � P60;T

27:8 � P60;T

The price of the put option in this example should be between 22:6 and 27:8 EUR

Exercise 2.6 (Put-Call Parity). The present price of a stock without dividends is
250 EUR. The market value of a European call with strike price 235 EUR and time
to maturity 180 days is 21:88 EUR. The annual risk-free rate is 1 %.

(a) Assume that the market price for a European put with same strike price and
time to maturity is 5:25 EUR. Show that this is inconsistent with put-call parity.

(b) Describe how you can take advantage of this situation by finding a combination
of purchases and sales which provides an instant profit with no liability 180 days
from now.

(a) Put-call parity gives:

PK;T .St ; �/ D CK;T .St ; �/ � fSt � K exp.�r�/g
D 21:88 � f250 � 235 exp.�0:01 � 0:5/g
D 21:88 � 16:17

D 5:71

Thus, the market value of the put is too low and it offers opportunities for
arbitrage.

(b) Puts are underpriced, so we can make profit by buying them. We use CFt to
denote the cash flow at time t . The cash flow table for this strategy can be seen
in Table 2.3.

Exercise 2.7 (Hedging Strategy). A stock currently selling at S0 with fixed div-
idend D0 is close to its dividend payout date. Show that the parity value for
the futures price on the stock can be written as F0 D S0.1 C r/.1 � d/, where
d D D0=S0 and r is the risk-free interest rate for a period corresponding to
the term of the futures contract. Construct an arbitrage table demonstrating the
riskless strategy assuming that the dividend is reinvested in the stock. Is your result
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Table 2.4 Cash flow table for this strategy

Action CF0 CFT

Buy one share immediately �S0 ST

Reinvest the dividend 0 ST d=.1 � d/

Sell 1=.1 � d/ forwards 0 .F0 � ST /=.1 � d/

Borrow S0 euros S0 �S0.1 C r/

Total 0 F0=.1 � d/ � S0.1 C r/

consistent with the parity value F0 D S0.1 C r/ � FV.D0/ where the forward value
FV.x/ D .1 C r/x? (Hint: How many shares will you hold after reinvesting the
dividend? How will this affect your hedging strategy? )

The price of the stock will be S0.1 � d/ after the dividend has been paid, and the
dividend amount will be dS0. So the reinvested dividend could purchase d=.1 � d/

shares of stock, and you end up with 1 C d=.1 � d/ D 1=.1 � d/ shares in total.
You will need to sell that many forward contracts to hedge your position. Here is
the strategy (Table 2.4):

To remove arbitrage, the final payoff should be zero, which implies:

F0 D S0.1 C r/.1 � d/

D S0.1 C r/ � S0.1 C r/.D0=S0/

D S0.1 C r/ � D0.1 C r/

D S0.1 C r/ � FV.D0/

Exercise 2.8 (No-Arbitrage Theory). Prove that the following relationship holds,
using no-arbitrage theory.

F.T2/ D F.T1/.1 C r/T2�T1 � FV.D/

where F0.T / is today’s futures price for delivery time T, T2 > T1, and FV(D) is
the future value to which any dividends paid between T1and T2 will grow if invested
risklessly until time T2 (Table 2.5).

Since the cashflow at T2 is riskless and no net investment is made, any profits
would represent an arbitrage opportunity. Therefore, the zero-profit no-arbitrage
restriction implies that

F.T2/ D F.T1/.1 C r/T2�T1 � FV.D/

Exercise 2.9 (Arbitrage Opportunity). Suppose that the current DAX index is
3,200, and the DAX index futures which matures exactly in 6 months are priced
at 3,220.
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Table 2.5 Cash flow table for this strategy

Action CF0 CFT1 CFT2

Long futures with T1 maturity 0 S1 � F.T1/ 0
Short futures with T2 maturity 0 0 F.T2/ � S2

Buy the asset at T1, sell at T2. 0 �S1 S2 C F V .D/

Invest dividends paid until T2

At T1, borrow F.T1/ 0 F.T1/ �F.T1/ � .1 C r/T2�T1

Total 0 0 F.T2/ � F.T1/�
.1 C r/T2�T1 C F V .D/

(a) If the bi-annual current interest rate is 2.5 %, and the bi-annual dividend rate
of the index is 1.5 %, is there an arbitrage opportunity available? If there is,
calculate the profits available on the strategy.

(b) Is there an arbitrage opportunity if the interest rate that can be earned on the
proceeds of a short sale is only 2 % bi-annually?

(a) The bi-annual net cost of carry is 1Cr �d D 1C0:025�0:015 D 1:01 D 1 %.
The detailed cash flow can be seen in Table 2.6.

Thus, the arbitrage profit is 12.

(b) Now consider a lower bi-annual interest rate of 2 %. From Table 2.7 which
displays the detailed cash flow, we could see the arbitrage opportunity has gone.

Exercise 2.10 (Hedging Strategy). A portfolio manager holds a portfolio that
mimics the S&P 500 index. The S&P 500 index started at the beginning of this year
at 800 and is currently at 923:33. The December S&P 500 futures price is currently
933:33 USD. The manager’s fund was valued at ten million USD at the beginning
of this year. Since the fund has already generated a handsome return last year, the
manager wishes to lock in its current value. That is, the manager is willing to give
up potential increases in order to ensure that the value of the fund does not decrease.
How can you lock in the value of the fund implied by the December futures contract?
Show that the hedge does work by considering the value of your net hedged position
when the S&P 500 index finishes the year at 833:33 and 1; 000 USD.

First note that at the December futures price of 933:33 USD, the return on
the index, since the beginning of the year, is 933:33=800 � 1 D 16:7 %. If the
manager is able to lock in this return on the fund, the value of the fund will be
1:1667 � 10 D 11:67 million USD. Since the notional amount underlying the S&P
500 futures contract is 500 � 933:33 D 466; 665 USD, the manager can lock in the
16.67 % return by selling 11,666,625 / 466,665 = 25 contracts.

Suppose the value of the S&P 500 index is 833:33 at the end of December. The
value of the fund will be 833:33=800 � 10 D 10:42 million USD. The gain on the
futures position will be �25 � 500.833:33 � 933:33/ D 1:25 million USD. Hence,
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Table 2.6 Cash flow table for this strategy

Action CF0 CFT

Buy futures contract 0 ST �3,220
Sell stock 3,200 �ST � 0:015�3,200
Lend proceeds of sale �3,200 3,200 �1:025

0 12

Table 2.7 Cash flow table with a lower interest rate

Action CF0 CFT

Buy futures contract 0 ST � 3,220
Sell stock 3,200 ST � 0:015�3,200
Lend proceeds of sale �3,200 3; 200 � 1:02

0 �4

the total value of the hedged position is 10:42C1:25 D 11:67 million USD, locking
in the 16.67 % return for the year.

Now suppose that the value of the S&P 500 index is 1,000 at the end of
December. The value of the fund will be 1,000=800 � 10 D 12:5 million USD. The
gain on the futures position will be �25 � 500.1,000 �933:33/ D �0:83 million
USD. Hence, the total value of the hedged position is 12:5 � 0:83 D 11:67 million
USD, again locking in the 16.67 % return for the year.

Exercise 2.11 (Forward Exchange Rate). The present exchange rate between the
USD and the EUR is 1:22 USD/EUR. The price of a domestic 180-day Treasury bill
is 99:48 USD per 100 USD face value. The price of the analogous EUR instrument
is 99:46 EUR per 100 EUR face value.

(a) What is the theoretical 180-day forward exchange rate?
(b) Suppose the 180-day forward exchange rate available in the marketplace is

1:21 USD/EUR. This is less than the theoretical forward exchange rate, so an
arbitrage is possible. Describe a risk-free strategy for making money in this
market. How much does it gain, for a contract size of 100 EUR?

(a) The theoretical forward exchange rate is

1:22 � 0:9946=0:9948 D 1:2198 USD/EUR:

(b) The price of the forward is too low, so the arbitrage involves buying forwards.
Firstly, go long on a forward contract for 100 EUR with delivery price
1:21 USD/EUR. Secondly, borrow exp.�qT / EUR now, convert to dollars at
1:22 USD/EUR and invest at the dollar rate.

At maturity, fulfill the contract, pay 1:21 � 100 USD for 100 EUR, and clear your
cash positions. You have .1:2198 � 1:21/ � 100 D 0:0098 � 100 USD. That is, you
make 0:98 USD at maturity risk-free.



22 2 Introduction to Option Management

Table 2.8 Cash flow table for zero-net-investment arbitrage port-
folio

Action CF0 CFT

Short shares 2,500 �.ST C 40/

Long futures 0 ST �2,530
Long zero-bonds �2,500 2,576.14
Total 0 6.14

Exercise 2.12 (Valuation of a Forward Contract). What is the value of a forward
contract with K D 100, St D 95, r D 10 %, d D 5 % and � D 0:5?

The payoff of the forward contract can be duplicated with buying exp.�d�/

stocks and short selling zero bonds with nominal value K exp.�r�/. So

VK;T .St ; �/ D exp.�0:05 � 0:5/ � 95 � 100 � exp.�0:10 � 0:5/

D �2:4685

Thus, the buyer of the forward contract should be paid 2:4685 for this deal.

Exercise 2.13 (Put-Call Parity). Suppose there is a 1-year future on a stock-index
portfolio with the future price 2,530 USD. The current stock index is 2,500, and a
2,500 USD investment in the index portfolio will pay a year-end dividend of 40 USD.
Assume that the 1-year risk-free interest rate is 3 %.

(a) Is this future contract mispriced?
(b) If there is an arbitrage opportunity, how can an investor exploit it using a zero-

net investment arbitrage portfolio?
(c) If the proceeds from the short sale of the shares are kept by the broker (you do

not receive interest income from the fund), does this arbitrage opportunity still
exist?

(d) Given the short sale rules, how high and how low can the futures price be
without arbitrage opportunities?

(a) The price of a future can be found as follows:

F0 D S0 exp.r�/ � D

D 2500 � exp.0:03/ � 40

D 2576:14 � 40

D 2536:14 > 2530

This shows that the future is priced 6:14 EUR lower.
(b) Zero-net-investment arbitrage portfolio Cash flow for this portfolio is described

in Table 2.8.
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Table 2.9 Cash flow table for the no interest income case

Action CF0 CFT

Short shares 2,500 �.ST C 40/

Long futures 0 ST � 2; 530

Long zero-bonds �2,500 2,500
Total 0 �70

Table 2.10 Cash flow table for this strategy

Action CF0 CFT

Short shares 2,500 �.ST C 40/

Long futures 0 ST � F0

Long zero-bonds �2,500 2,500
Total 0 2,460�F0

(c) No interest income case

According to Table 2.9, the arbitrage opportunity does not exist.

(d) To avoid arbitrage, 2,460�F0 must be non-positive, so F0 � 2,460. On the
other hand, if F0 is higher than 2,536.14, an opposite arbitrage opportunity (buy
stocks, sell futures) opens up. Finally we get the no-arbitrage band 2,460� F0 �
2,536.14 (Table 2.10)

Exercise 2.14 (Hedging Strategy). The price of a stock is 50 USD at time t D 0.
It is estimated that the price will be either 25 or 100 USD at t D 1 with no dividends
paid. A European call with an exercise price of 50 USD is worth C at time t D 0.
This call will expire at time t D 1. The market interest rate is 25 %.

(a) What return can the owner of the following hedge portfolio expect at t D 1 for
the following actions: sell 3 calls for C each, buy 2 stocks for 50 USD each and
borrow 40 USD at the market interest rate

(b) Calculate the price C of a call.

(a) By setting up a portfolio where 3 calls are sold 3C , 2 stocks are bought �2 �
50 and 40 USD are borrowed at the market interest rate at the current time t ,
the realised immediate profit is 3C � 60. The price of the call option can be
interpreted as the premium to insure the stocks against falling below 50 USD. At
time t D 1, if the price of the stock is less than the exercise price (St < K) the
holder does not exercise the call options, otherwise he does. When the price of
the stock at time t D 1 is equal to 25 USD, the holder does not exercise the call
option, but he does when the price of the stock at time t D 1 is 100 USD. Also at
time t D 1, the holder gets the value 2S1 by purchasing two stocks at t D 0 and
pays back the borrowed money at the interest rate of 25 %. The difference of the
value of the portfolio with the corresponding stock price 25 USD or 100 USD
at t D 1 is shown in Table 2.11. At time t D 1, the cash flow is independent of
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Table 2.11 Portfolio value at time t D 1 of Exercise 2.14

Action CF0 CF1.S1 D 25/ CF1.S1 D 100/

Sell 3 calls 3C 0 �3.100 � 50/ D �150

Buy 2 stocks �2 � 50 D �100 2 � 25 D 50 2 � 100 D 200

Borrow 40n �40.1 C 0:25/ D �50 �50

Total 3C � 60 0 0

the stock, which denotes this strategy as risk-free. That is, the owner does not
expect any return from the described hedge portfolio.

(b) The price of the call of this hedge portfolio is equal to the present value of the
cash flows at t D 1 minus the cash flow at t D 0. In this case we have that the
present value of cash flows at t D 1 is equal to zero and the cash flow at time
t D 0 is 3C � 60. Therefore, the value of the call option is equal to C D 20.
Here the martingale property is verified, since the conditional expected value of
the stock price at time t D 1, given the stock prices up to time t D 0, is equal
to the value at the earlier time t D 0.



Chapter 3
Basic Concepts of Probability Theory

If you don’t enter the tiger’s den, how can you catch the tiger’s
cub?

The Book of the Later Han: the Biography of Ban Chao

This part is an introduction to standard concepts of probability theory. We discuss a
variety of exercises on moment and dependence calculations with a real marketing
example. We also study the characteristics of transformed random vectors, e.g.
distributions and various statistical measures. Another feature that needs to be
considered is various conditional statistical measures and their relations with
corresponding marginal and joint distributions. Two more exercises are given
in order to distinguish the differences between numerical statistic measures and
statistical properties.

Exercise 3.1 (�2 distribution). If X � N.0; 1/ then X2 has �2
1 distribution with a

pdf shown in Fig. 3.1. Calculate the distribution function and the density of the �2
1

distribution.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 3, © Springer-Verlag Berlin Heidelberg 2013
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1 distribution SFSchisq

For t > 0

P.X2 � t/ D P.�p
t � X � p

t/ D ˚.
p

t/ � ˚.�p
t/

D 2˚.
p

t / � 1 D 2

 
Z 0

�1
'.x/dx C

Z
p

t

0

'.x/dx

!

� 1

D 2

 

1

2
C 1p

2�

Z t=2

0

.2z/�1=2e�zd z

!

� 1 D 1p
�

Z t=2

0

z1=2�1e�zd z

The function � .t/ D R1
0

xt�1e�xdx is called gamma function and has the fol-
lowing properties: � .1/ D 1, � .1=2/ Dp

� , � .t C 1/ D t� .t/. The lower incom-
plete gamma function is defined by �.a; t/ D R t

0
xa�1e�xdx. Therefore the cdf of

�2
1 can be expressed as �.1=2; t=2/=�.1=2/.

To calculate the density one takes the derivative with respect to the upper limit of
the integral, which yields f .t/ D f� .1=2/2tetg�1=2

Exercise 3.2 (�2 distribution). If X1; : : : ; Xn are i.i.d. � N.0; 1/ then
Pn

i D 1 X2
i

has �2
n distribution with pdf as in Fig. 3.2. Calculate mean and variance of the �2

n

distribution.

As the second and fourth moments of the standard normal distribution are 1 and
3 correspondingly, we have:

E.

n
X

iD1

X2
i / D nEX2

1 D n

Var.
n
X

iD1

X2
i / D nVarX2

1 D n.EX4
1 � EX2

1 / D n.3 � 1/ D 2n
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5 distribution SFSchisq

Exercise 3.3 (Random Walk). Check that the random variable X with P.X D 1/

D 1=2, P.X D � 4/ D 1=3, P.X D 5/ D 1=6 has skewness 0 but is not distributed
symmetrically.

� D E.X/ D 1 � 1=2 C .�4/ � 1=3 C 5 � 1=6 D 0

E.X ��/3 D 1 �1=2C.�4/3 �1=3C53 �1=6 D 0, which implies that its skewness
E.X � �/3=�3 is 0. It is easy to see that the random variable is not distributed
symmetrically.

Exercise 3.4 (Independence). Show that if Cov.X; Y / D 0 it does not imply that
X and Y are independent.

Consider a standard normal random variable X and a random variable Y D X2,
which is not independent of X . Here we have

Cov.X; Y / D E.XY / � E.X/E.Y / D E.X3/ D 0:

Exercise 3.5 (Correlation). Show that the correlation is invariant w.r.t. linear
transformations.

Since Corr.X; Y / D Corr.Y; X/, it suffices to show Corr.aX Cb; Y / D Corr.X; Y /

since then Corr.aXCb; cY Cd/ D Corr.X; cY Cd/ D Corr.X; Y / for a > 0. From
the definition

Corr.aX C b; Y / D ŒEf.aX C b/Y g � E.aX C b/E.Y /�=�.aX C b/�.Y /

D aCov.X; Y /=a�.X/�.Y / D Corr.X; Y /:
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Note that the correlation does not need to be invariant to nonlinear transforma-
tions, see Exercise 3.4. More generally, if Y D Xn, we have

Corr.X; Y / D Cov.X; Y /
p

Var.X/Var.Y /

D E.XY / � E.X/E.Y /
p

Var.X/fE.Y 2/ � E2.Y /g D E.XnC1/ � E.X/E.Xn/
pfE.X2/ � E2.X/gfE.X2n/ � E2.Xn/g

So we could see that Corr.X; X/ is not always equal to Corr.X; Y / in general. Thus
correlation is not always invariant under nonlinear transformations.

Exercise 3.6 (Independence). Let fXign
i D 1

i:i:d:� N.�; �/. Show that the random
variable X and Xi � X are independent for all i.

Since both variables are normal, it is enough for independence to show that they
are uncorrelated.

Cov.X; Xi � X/ D EŒX.Xi � X/�

Since

EŒXi � X� D EŒ� 1

n
X1 � : : : C .1 � 1

n
/Xi � : : : � 1

n
Xn�

D .�n � 1

n
/� C .1 � 1

n
/� D 0

But

EŒ.
1

n
X1 C : : : C 1

n
Xi C : : : C 1

n
Xn/Xi � D n � 1

n
EŒX1Xi � C 1

n
EŒX2

i �

D n � 1

n
�2 C 1

n
.�2 C �2/

D �2 C �2

n

and from VarŒX� D EŒX
2
� � .EŒX�/2 we get EŒX

2
� D �2

n
C �2.

Then EŒXXi �X
2
� D �2C �2

n
�. �2

n
C�2/ D 0 and therefore Cov.X; Xi � X/ D 0.

Exercise 3.7 (Correlation). We consider a bivariate exchange rates example, two
European currencies, EUR and GBP, with respect to the USD. The sample period is
01/01/2002–01/01/2009 with altogether n D 1,828 observations. Figure 3.3 shows
the time series of returns on both exchange rates.

Compute the correlation of the two exchange rate time series and comment on
the sign of the correlation.
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Fig. 3.3 Exchange rate returns. SFSmvol01

The correlation r D 0:7224 SFSmvol01 says that the relationship between
EUR/USD and GBP/USD exchange rates is positive as predicted by the economic
theory. This also confirms our intuition of mutual dependence in exchange markets.

Exercise 3.8 (Conditional Moments). Compute the conditional moments E.X2 j
x1/ and E.X1 j x2/ for the pdf of

f .x1; x2/ D
�

1
2
x1 C 3

2
x2 0 � x1; x2 � 1

0 otherwise

The marginal densities of X1 and X2, for 0 � x1; x2 � 1, are

fX1.x1/ D
Z 1

0

f .x1; x2/dx2 D
�

1

2
x1x2 C 3

4
x2

2

�1

0

D 1

2
x1 C 3

4

and

fX2 .x2/ D
Z 1

0

f .x1; x2/dx1 D
�

1

4
x2

1 C 3

2
x1x2

�1

0

D 1

4
C 3

2
x2:

Now, the conditional expectations, for 0 � x1; x2 � 1, can be calculated as
follows:
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Exercise 3.9 (Probability Density Function). Show that the function

fY .y1; y2/ D
(

1
2
y1 � 1

4
y2 0 � y1 � 2; jy2j � 1 � j1 � y1j

0 otherwise

is a probability density function.

The area for which the above function is non-zero is plotted in Fig. 3.4.
In order to verify that fY .y1; y2/ is a two-dimensional pdf, we have to check that

it is nonnegative and that it integrates to 1.
It is easy to see that the function fY .y/ is nonnegative inside the square plotted

in Fig. 3.4 since y1 � 0 and y1 � y2 implies that y1=2 � y2=4 > 0.
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It remains to verify that the function fY .y/ integrates to one by calculating the
integral

Z

fY .y/dy

for which we easily obtain the following:

Z Z

fY .y1; y2/dy2; y1 D
1
Z

0

y1
Z

�y1

fY .y/dy2dy1 C
2
Z

1

2�y1
Z

y1�2

fY .y/dy2dy1

D
1
Z

0

y1
Z

�y1

1

2
y1 � 1

4
y2dy2dy1 C

2
Z

1

2�y1
Z

y1�2

1

2
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4
y2dy2dy1

D
1
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�
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�
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C 2

3
D 1:

Exercise 3.10 (Conditional Expectation). Prove that EX2 D EfE.X2jX1/g,
where E.X2jX1/ is the conditional expectation of X2 given X1.

Since E.X2jX1 D x1/ is a function of x1, it is clear that E.X2jX1/ is a random
vector (function of random vector X1).

Assume that the random vector X D .X1; X2/
> has the density f .x1; x2/. Then

EfE.X2jX1/g D
Z �Z

x2f .x2jx1/dx2

�

f .x1/dx1

D
Z �Z

x2

f .x2; x1/

f .x1/
dx2

�

f .x1/dx1 D
Z Z

x2f .x2; x1/dx2dx1

D EX2:

Exercise 3.11 (Conditional Variance). The conditional variance is defined as
Var.Y jX/ D EŒfY � E.Y jX/g2jX�. Show that Var.Y / D EfVar.Y jX/g C Var
fE.Y jX/g.
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EfVar.Y jX/g D E.EŒfY � E.Y jX/g2jX�/

D EŒE.Y 2jX/ � 2EfY E.Y jX/jXg C EfE.Y jX/2jXg�
D EfE.Y 2jX/g � 2EfE.Y jX/E.Y jX/jXg C EŒEfE.Y jX/2jXg�
D EfY 2 � E.Y jX/E.Y jX/g (3.1)

VarfE.Y jX/g D E.ŒE.Y jX/ � EfE.Y jX/g�2/
D EfE.Y jX/E.Y jX/g � 2EfE.Y jX/E.Y /g C E.Y /2

D EfE.Y jX/E.Y jX/g � E2.Y /: (3.2)

Summing up (3.1) and (3.2) yields EfVar.Y jX/g C VarfE.Y jX/g D E.Y 2/ �
E2.Y / D Var.Y /.

Exercise 3.12 (Marginal Distribution). Consider the pdf

f .x1; x2/ D 1

8x2

expf� .x1=2x2 C x2=4/g x1; x2 > 0:

Compute f .x2/ and f .x1jx2/.

The marginal distribution of x2 can be calculated by integrating out x1 from the
joint pdf f .x1; x2/:

fX2 .x2/ D
Z C1

0

f .x1; x2/dx1

D �1

4
exp.�x2=4/

Z C1

0

�1=.2x2/ exp .�x1=2x2/ dx1

D 1

4
exp .�x2=4/ Œexp.�x1/�

C1
0

D 1

4
exp .�x2=4/

for x2 > 0, in other words, the distribution of X2 is exponential with expected value
E.X2/ D 4.

The conditional distribution f .x1jx2/ is calculated as a ratio of the joint pdf
f .x1; x2/ and the marginal pdf fX2.x2/:

fX1jX2Dx2
.x1/ D f .x1; x2/=fX2.x2/

D exp .�x1=2x2/ =.2x2/;

for x1; x2 > 0. Note that this is just the exponential distribution with expected value
2x2.
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Exercise 3.13 (Asymptotic Distribution). A European car manufacturer has
tested a new model and reports on the consumption of gasoline (X1) and oil
(X2). The expected consumption of gasoline is 8 L per 100 km (�1) and the expected
consumption of oil is 1 L per 10.000 km (�2). The measured consumption of gasoline
is 8.1 L per 100 km (x1) and the measured consumption of oil is 1.1 L per 10,000 km
(x2). The asymptotic distribution of

p
n

��

x1

x2

�

�
�

�1

�2

��

is N

��

0

0

�

;

�

0:1 0:05

0:05 0:1

��

:

For the American market the basic measuring units are miles (1 mile � 1.6 km)
and gallons (1 gallon � 3.8 L). The consumptions of gasoline (Y1) and oil (Y2) are
usually reported in miles per gallon. Can you express y1 and y2 in terms of x1 and
x2? Recompute the asymptotic distribution for the American market.

The transformation of “liters per 100 km” to “miles per gallon” is given by the
function

x liters per 100 km D 1:6x=380 gallons per mile

D 380=.1:6x/ miles per gallon:

Similarly, we transform the oil consumption

x liters per 10000 km D 38000=.1:6x/ miles per gallon:

Thus, the transformation is given by the functions

f1.x/ D 380=.1:6x/

f2.x/ D 38000=.1:6x/:

According to Härdle and Simar (2012, Theorem 4.11), the asymptotic distribution is

p
n

��

f1.x1/

f2.x2/

�

�
�

f1.�1/

f2.�2/

��

� N

��

0

0

�

; D>
�

0:1 0:05

0:05 0:1

�

D
�

;

where

D D
�

@fj

@xi

�

.x/

ˇ

ˇ

ˇ

ˇ

xD�

is the matrix of all partial derivatives. In our example,
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D D
 � 380

1:6x2
1

0

0 � 38000

1:6x2
2

!ˇ

ˇ

ˇ

ˇ

ˇ

xD�

D
 � 380

1:6x2
1

0

0 � 38000

1:6x2
2

!

D
��3:62 0

0 �19628:10

�

:

Hence, the variance of the transformed random variable Y is given by

˙Y D D>
�

0:1 0:05

0:05 0:1

�

D

D
��3:62 0

0 �19628:10

��

0:1 0:05

0:05 0:1

���3:62 0

0 �19628:10

�

D
�

1:31 3552:69

3552:69 38526230:96

�

:

The average fuel consumption, transformed to American units of measurements is
y1 D 29:32 miles per gallon and the transformed oil consumption is y2 D 19,628.10.
The asymptotic distribution is

p
n

��

y1

y2

�

�
�

f1.�1/

f2.�2/

��

� N

��

0

0

�

;

�

1:31 3552:69

3552:69 38526230:96

��

:



Chapter 4
Stochastic Processes in Discrete Time

Processus artis coniectandi, qui spatio temporis discreto fiunt
Vitam regit fortuna, non sapientia.
Fortune, not wisdom, rules lives.

Marcus Tullius Cicero, Tusculanarum Disputationum LIX

A stochastic process or random process consists of chronologically ordered random
variables fXt I t � 0g: For simplicity we assume that the process starts at time
t D 0 in X0 D 0: This means that even if the starting point is known, there are many
possible routes the process might take, some of them with a higher probability.
In this section, we exclusively consider processes in discrete time, i.e. processes
which are observed at equally spaced points of time t D 0; 1; 2; : : : : In other
words, a discrete process is considered to be an approximation of the continuous
counterpart. Hence, it is important to start with discrete processes in order to
understand sophisticated continuous processes. In particular, a Brownian motion is
a limit of random walks and a stochastic differential equation is a limit of stochastic
difference equations. A random walk is a stochastic process with independent,
identically distributed binomial random variables which can serve as the basis for
many stochastic processes.

Typical examples are daily, monthly or yearly observed economic data as stock
prices, rates of unemployment or sales figures.

In order to get an impression of stochastic processes in discrete time, we plot
the time series for the Coca-Cola stock price. The results are displayed in Fig. 4.1.
If prices do not vary continuously, at least they vary frequently, and the stochastic
process has thus proved its usefulness as an approximation of reality.

Exercise 4.1 (Geometric Brownian Motion). Construct a simulation for a ran-
dom stock price movement in discrete time with the characteristics given in Table 4.1
from a geometric Brownian motion.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 4, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 Stock price of Coca-Cola

Table 4.1 Characteristics to
simulate a random stock price
movement in discrete time

Default values

Initial stock price S0 49
Initial time 0
Time to maturity T 20 weeks
Time interval �t 1 week
Volatility � p.a. 0.20
Expected return � p.a. 0.13

The numerical procedure to simulate the stock price movement in discrete time
with characteristics described in Table 4.1 is given by defining the process Si D
Si�1 expfXi�

p

T=n C .� � �2=2/T=ng, with i D 0; : : : ; n where n denotes the
number of time intervals, �t D T=n and X � N.0; 1/ denotes a standard normal
r.v. Fig. 4.2 displays the simulation of a random stock price movement in discrete
time with �t D 1 week and 1 day respectively.

Exercise 4.2 (Random Walk). Consider an ordinary random walk Xt D Pt
kD1 Zk

for t D 1; 2; : : :, X0 D 0, where Z1; Z2; : : : are i.i.d. with P.Zk D 1/ D p and
P.Zk D �1/ D 1 � p, p 2 .0; 1/. Calculate

(a) P.Xt > 0/

(b) P.Xt D 1/

(c) P.Z2 D 1jX3 D 1/

(a) Let Yk D .Zk C 1/=2 then Bt D Pt
kD1 Yk has binomial distribution B.t; p/. It

is easy to see that Xt D 2Bt � t .

P.Xt > 0/ D P.2Bt � t > 0/ D P.Bt > t=2/ D Pt
kDdt=2C1e

�

t

k

�

pk.1 �
p/t�k , where dxe means the largest integer not larger than x.

(b) P.Xt D 1/ D P.2Bt � t D 1/ D PfBt D .1 C t/=2g
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Fig. 4.2 Simulation of a random stock price movement in discrete time with �t D 1 day (up) and

1 (down) week respectively. SFSrwdiscretetime

If t is even P.Xt D 1/ D 0 and in case t is odd

P.Xt D 1/ D
�

t
1Ct

2

�

p
1Ct

2 .1 � p/
t�1

2

In particular P.X3 D 1/ D 3p2.1 � p/.
(c)

P.Z2 D 1jX3 D 1/ D P.Z2 D 1 ^ X3 D 1/=P.X3 D 1/

D P.Z2 D 1 ^ Z1 D �Z3/=P.X3 D 1/

D 2p2.1 � p/=3p2.1 � p/ D 2=3

Exercise 4.3 (Random Walk). Let V be a random variable and V D 1 with
probability 1=2 and V D 1=2 with probability 1=2. Consider a random walk
Xt D Pt

kD1 Zk for t D 1; 2; : : :, X0 D 0, where Z1; Z2; : : : are i.i.d. with
P.Zk D 1/ D V and P.Zk D �1/ D 1 � V . Think as if one would toss a coin
at an inception and on tails Xt would follow the ordinary random walk, while on
heads it will deterministically increase. Calculate
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(a) P.Xt > 0/

(b) P.Xt D 1/

(c) P.Z2 D 1jX3 D 1/

(a) P.Xt > 0/ D P.Xt > 0jV D 1/P.V D 1/ C P.Xt > 0jV D 1=2/P.V D
1=2/ D 1=2 CPt

kDdt=2C1e
�

t

k

�

1
2

tC1
, where dxe means the largest integer not

larger than x.
(b) For t D 1 P.Xt D 1/ D 1=2 C .1=2/ � .1=2/ D 3=4; and for other odd t

P.Xt D 1/ D
�

t
1Ct

2

�

1
2

tC1

(c) Since X3 D 1 can happen only if V D 1=2 then P.Z2 D 1jX3 D 1/ D P.Z2 D
1jX3 D 1 ^ V D 1=2/P.V D 1=2/ D 1=3:

Exercise 4.4 (Random Walk). Consider an ordinary random walk Xt D Pt
kD1 Zk

for t D 1; 2; : : :; X0 D 0, where Z1; Z2; : : : are i.i.d. with P.Zi D 1 / D p and
P.Zi D � 1/ D 1 � p. Let � D minft W jXt j > 1g be a random variable denoting
the first time t when jXt j > 1. Calculate E � .

It is easy to observe that P.� D 2k C 1/ D 0 for k D 0; 1; : : : and hence X� D 2

or �2. One can then obtain

P.� D 2/ D p2 C .1 � p/2 D q

P.� D 4/ D f1 � P.� D 2/gP.� D 2/ D .1 � q/q (4.1)

The first term in (4.1) corresponds to the probability that � > 2. The second
term corresponds to the two consecutive up or down movements given that X2 D 0.
Similarly

P.� D 6/ D f1 � P.� D 2/ � P.� D 4/gq D q.1 � q/2

If P.� D 2k/ D q.1 � q/k�1 then

P.� D 2k C 2/ D f1 � P.� D 2/ � : : : � P.� D 2k/gq
D f1 � q � q.1 � q/ � : : : � q.1 � q/k�1gq

D
�

1 � q
1 � .1 � q/k

q

�

q

D q.1 � q/k:

Using induction P.� D 2k/ D q.1 � q/k�1 for k D 1; 2; : : :. Therefore � has a
geometric distribution with parameter q D p2 C .1 � p/2 and E � D 2fp2 C .1 �
p/2g�1.
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Exercise 4.5 (Random Walk). Consider an ordinary random walk Xt D Pt
kD1 Zk

for t D 1; 2; : : :, X0 D 0, where Z1; Z2; : : : are i.i.d. with P.Zi D 1/ D p and
P.Zi D �1/ D 1 � p. Consider also a process Mt D maxs�t Xs . Calculate

(a) P.X3 D M3/

(b) P.M4 > M3/

(a) fX3 D M3g D fZ1 D Z2 D Z3 D 1 _ Z1 D �1; Z2 D Z3 D 1 _ Z1 D Z3 D
1; Z2 D �1g and hence P.X3 D M3/ D p3 C 2p.1 � p/.

(b) P.M4 > M3/ D P.X3 D M3/P.Z4 D 1/ D p4 C 2p2.1 � p/

Exercise 4.6 (Random Walk). Let Xt D;
Pt

kD1 Zk be a general random walk for
t D 1; 2; : : :, X0 D 0, and Z1; Z2; : : : are i.i.d. with Var Zi D 1. Calculate
Cov.Xs; Xt/.

Cov.Xs; Xt / D Cov.
Xs

iD1
Zi ;

Xt

j D1
Zj / D X

i;j
Cov.Zi ; Zj / Dmin.s; t/ Var Z1 D min.s; t/

Exercise 4.7 (Random Walk). Let Xt D Pt
kD1 Zk be a general random walk for

t D 1; 2; : : :, X0 D 0, and Z1; Z2; : : : are i.i.d. and symmetric random variables.
Show that

P.max
i�t

jXi j > a/ � 2P.jXt j > a/:

Denote an event that the level t is breached for the first time in the i -th step by
Ai D fjXj j � t for j D 1; 2; : : : ; i � 1; jXi j > tg. One may show that

Ai � .Ai \ jXt j > a/ [ .Ai \ j2Xi � Xt j > a/

because given that jXi j > a then j2Xi � Xt j > a or jXt j > a since

2a < jXt C 2Xi � Xt j < jXt j C j2Xi � Xt j:

Note that Xt D Xi C Xt � Xi and 2Xi � Xt D Xi � .Xt � Xi / have the same
distribution because of the independence and symmetry of Zi . Therefore

P.Ai / � P.Ai \ jXt j > a/ C P.Ai \ j2Xi � Xt j > a/ D 2P.Ai \ jXt j > a/

and

P.max
i�t

Xi > a/ D
t
X

iD1

P.Ai / � 2

t
X

iD1

P.Ai \ jXt j > a/

D 2P.max
i�n

Xi > a; jXt j > a/

� 2P.jXt j > a/
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Exercise 4.8 (Binomial Process). Consider a binomial process Xt D Pt
kD1 Zk

for t D 1; 2; : : :, X0 D 0, with state dependent increments. Let P.Zt D 1/ D
1=.2jXt�1jC1/ if Xt�1 � 0 and P.Zt D 1/ D 1�1=.2jXt�1jC1/ otherwise. To complete
the setting P.Zt D �1/ D 1 � P.Zt D 1/. Calculate the distribution of Xt for the
first five steps.

As

P.Zt D �1/ D
(

1 � 1=.2jXt�1jC1/ if Xt�1 � 0

1=.2jXt�1jC1/ if Xt�1 < 0

is equivalent to:

P.Zt D 1/ D
(

1=.2jXt�1jC1/ if Xt�1 � 0

1 � 1=.2jXt�1jC1/; if Xt�1 < 0

The table of states probabilities must be symmetric. Therefore we only have to
consider cases where Xt � 0.

When t D 1,

P.Zt D �1/ D P.Zt D 1/ D 1=2

P.Xt D 1/ D P.Xt D �1/ D 1=2

When t D 2; Xt D 1

P.Zt D 1/ D 1=4

P.Zt D �1/ D 3=4

According to the symmetry, we have:

P.Xt D 2/ D P.Xt D �2/ D 1=2 � 1=4 D 1=8

P.Xt D 0/ D 1=2 � 3=4 � 2 D 3=4

Calculations for t D 3; : : : are quite similar and are not covered here.
The distribution of the first five steps could conveniently be illustrated by the

following table of states probabilities. Note that with this construction of the
probabilities the process tends to level 0 (Table 4.2).

Exercise 4.9 (Geometric Binomial Process). Suppose Xt is a geometric binomial
process with X0 D 1. Further the return Rt D Xt=Xt�1 is identically and indepen-
dently log-normal distributed: Rt � lognormal.0; 1/. Calculate the expected value
EŒX6jX4 D 1; X3 D 2�.
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Table 4.2 The distribution of Xt for the first five steps. SFS5step

Xt Probabilities

5 1/32,768
4 1/1,024
3 1=64 587/32,768
2 1=8 139/1,024
1 1=2 31/64 3,949/8,192
0 1 3=4 186/256

�1 1=2 31/64 3,949/8,192
�2 1=8 139/1,024
�3 1=64 587/32,768
�4 1/1,024
�5 1/32,768

t 0 1 2 3 4 5

As the return Rt D Xt =Xt�1 is i.i.d., X6 D X4R5R6 D R5R6, we have EŒX6jX4 D
1; X3 D 2� D EŒR5� EŒR6�. From the property of standard lognormal distribu-
tion, EŒRt � D exp .0 C 0:5 � 1/ D exp .1=2/, so EŒX6� D exp .1=2/ D exp .1=2/ �
exp .1=2/ D e



Chapter 5
Stochastic Integrals and Differential Equations

Intégrals Stochastique et Équations Différentielle
Prudence est mère de sûreté
Discretion is the better part of valour

In the preceding chapter we discussed stochastic processes in discrete time. This
chapter is devoted to stochastic processes in continuous time. An important contin-
uous time process is the standard Wiener process fWt I t � 0g. For this process it
holds for all 0 � s � t :

EŒWt � D 0; Var.Wt / D t

Cov.Wt ; Ws/ D Cov.Wt � Ws C Ws; Ws/

D Cov.Wt � Ws; Ws/ C Cov.Ws; Ws/

D 0 C Var.Ws/ D s

In the context of this chapter we also consider the Itô process fXt I t � 0g:

dXt D �.Xt ; t/dt C �.Xt ; t/dW t (5.1)

The time and state dependent terms � and � represent the drift rate and the variance
respectively. A precise definition of a solution to (5.1) is a stochastic process
fulfilling the integral equation:

Xt � X0 D
Z t

0

�.Xs; s/ds C
Z t

0

�.Xs; s/dWs (5.2)

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 5, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 5.1 Graphic representation of a standard Wiener process Xt on 1,000 equidistant points in

interval Œ0; 1�. SFSwiener1

Exercise 5.1 (Wiener Process). Let Wt be a standard Wiener process. Show that
the following processes are also standard Wiener processes:

(a) Xt D c� 1
2 Wct for c > 0

(b) Yt D WT Ct � WT for T > 0

(c) Vt D
(

Wt if t � T

2WT � Wt if t > T

It is easy to check that all processes start at 0, have a zero mean and independent
increments since Wt has independent increments. One has to additionally check the
variance of the increments for t > s � 0.

(a) Var.Xt � Xs/ D Var.c� 1
2 Wct � c� 1

2 Wcs/ D c�1.ct � cs/ D t � s (b) Var.Yt �
Ys/ D Var.WT Ct � WT � WT Cs C WT / D Var.WT Ct � WT Cs/ D t � s (c) For
s < t < T and T < s < t one directly obtains the increments of Wt . For s < T < t

one has:

Var.Vt � Vs/ D Var.2WT � Wt � Ws/ D Var.WT � Wt / C Var.WT � Ws/ D
t � T C T � s D t � s:

The additivity of variance follows from the independent increments of Wt .
Corresponding to (a), Fig. 5.1 gives the plot of Xt on 1,000 equisidtant points in

intervall Œ0; 1� with c D 2. Similar plots for (b) and (c) are omitted here, and detailed

codes could be found in SFSwiener2 and SFSwiener3.
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Fig. 5.2 A Brownian bridge. SFSbb

Exercise 5.2 (Covariance). Calculate Cov.2Wt ; 3Ws�4Wt / and Cov.2Ws; 3Ws�
4Wt/ for 0 � s � t .

Cov.2Wt ; 3Ws � 4Wt / D Cov.2Wt ; 3Ws/ � Cov.2Wt ; 4Wt/ D 6s � 8t:

Cov.2Ws; 3Ws � 4Wt / D Cov.2Ws; 3Ws/ � Cov.2Ws; 4Wt/ D 6s � 8s D �2s:

Exercise 5.3 (Brownian Bridge). Let Wt be a standard Wiener process. The
process Ut D Wt � tW1 for t 2 Œ0; 1� is called Brownian bridge. Calculate its
covariance function. What is the distribution of Ut .

Cov.Ut ; Us/ D Cov.Wt � tW1; Ws � sW1/ D Cov.Wt ; Ws/ C ts Cov.W1; W1/�
t Cov.W1; Ws/ � s Cov.Wt ; W1/ D min.t; s/ � ts:

The distribution of Ut is normal with mean 0 and variance: Var.Wt � tW1/ D
Var.Wt / C 2 Cov.Wt ; �tW1/ C Var.�tW1/ D t � 2t2 C t2 D t.1 � t/

Figure 5.2 displays one example of a Brownian bridge.

Exercise 5.4 (Reflection Property). Using the reflection property (see Exercise
4.6), i.e. P.sups�t Ws > x/ D 2P.Wt > x/ for x � 0, calculate the density of
sups�t Ws .

P.sups�t Ws � x/ D 1 � 2P.Wt > x/ D 2P.Wt � x/ � 1 D 2˚.x=
p

t/ � 1:

This result implies in particular that the Wiener process has both positive and
negative values on interval Œ0; t � for each t .
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The density of Mt D sups�t Ws is then given by:

fsup W .x/ D 2'.x=
p

t/=
p

t D p

2=.�t/ expf�x2=.2t/g for x � 0 and
fsup W .x/ D 0 otherwise.

Exercise 5.5 (Integration). Calculate E
�
R 2�

0
WsdWs

�

According to the rule of integration by parts, we have:
R 2�

0
WsdWs D 1

2
.W 2

2� � 2�/.
Together with Var.W2�/ D E W 2

2� � E2 W2� , we get:

E
1

2
.W 2

2� � 2�/ D 1

2
Var.W2�/ � � D 0

Exercise 5.6 (Brownian Motion). Find the dynamics of Yt D sin.Wt/ for a
Brownian motion Wt .

According to Itô’s lemma:

dY t D dg.Xt /

D fdg

dX
.Xt/�.Xt ; t/ C 1

2

d 2g

dX2
.Xt/�

2.Xt ; t/gdt C dg

dX
.Xt/�.Xt ; t/dWt;

together with Xt D Wt ; g.Xt / D sin.Wt /; � D 0; � D 1, we have dY t D
cos.Xt /dW t � 0:5 sin.Wt/dt

Exercise 5.7 (Dynamics). Consider the process dSt D �dt C �dW t . Find the
dynamics of the process Yt D g.St /; where g.St ; t/ D 2 C t C exp.St /:

According to Itô’s lemma:

dY t D @g

@s
dSt C @g

@t
dt C 0:5

@2g

@s2
.dSt /

2 C 0

D exp.St /.�dt C �dW t / C dt C 0:5�2 exp.St /dt

D f1 C .� C 0:5�2/ exp.St /gdt C � exp.St /dW t

Exercise 5.8 (Brownian Motion). Derive
R t

0
W 2

s dWs , where Wt is a Brownian
motion.

Choose Yt D 1
3
W 3

t . According to Itô’s lemma:

dY t D W 2
t dW t C Wtdt:

Thus Yt D R t

0
W 2

s dWs C R t

0
Wsds and hence

Z t

0

W 2dWs D 1

3
W 3

t �
Z t

0

Wsds:
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Exercise 5.9 (Wiener Process). Let Wt be a standard Wiener process. Compute
then EŒW 4

t �.

Let Xt D W 4
t ; g.X/ D X4; g0.X/ D 4X3; g00.X/ D 12X2. By applying Itô’s lemma

we get:

dXt D .4W 3
t � 0 C 1

2
� 12W 2

t � 1/dt C 4W 3
t dWt

D 4W 3
t dW t C 6W 2

t dt

Integrating both parts, we get:

Xt � X0 D 4

Z t

0

W 3
s dWs C 6

Z t

0

W 2
s ds

Xt D 4

Z t

0

W 3
s dWs C 6

Z t

0

W 2
s ds

Computing the expectation leads to:

E.Xt/ D E.W 4
t / D 4 E

�Z t

0

W 3
s dWs

�

C 6 E
�Z t

0

W 2
s ds

�

D 6

Z t

0

E.W 2
s /ds D 6

Z t

0

sds D 6

�

t2

2

�

D 3t2

Exercise 5.10 (Differential Equation). If g D g.y/ is a function of y, and suppose
y D f .w/ is the solution of the following ordinary differential equation:

dy D g.y/dw

Show that Xt D f .Wt / is a solution of the stochastic differential equation:

dXt D 1

2
g.Xt /g

0.Xt /dt C g.Xt /dW t

If Xt D f .Wt /, then by applying Itô’s lemma we obtain the following result:

dXt D df .Wt /

D
�

@f

@Wt

� 0 C 1

2

@2f

@W 2
t

� 1

�

dt C @f

@Wt

� 1dWt

D @f

@Wt

� dW t C 1

2

@2f

@W 2
t

dt

D f 0.Wt /dW t C 1

2
f 00.Wt /dt:
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From the standard calculus

f 0.w/ D dy

dw
D g.y/ for y D f .w/;

f 0.w/ D g ff .w/g ;

f 00.w/ D g0 ff .w/g � f 0.w/

and by substituting we get:

dXt D f 0.Wt /dWt C 1

2
f 00.Wt/dt

D g ff .Wt /g dWt C 1

2
f 00.Wt/dt

D g ff .Wt /g dWt C 1

2
g0 ff .Wt /g g ff .Wt /g dt

D g.Xt /dW t C 1

2
g0.Xt /g.Xt /dt

Exercise 5.11 (Stochastic Differential Equation). Apply the previous result to
solve the following SDE’s

(a) dXt D p
Xt dWt C 1

4
dt

(b) dXt D X2
t dW t C X3

t dt

(c) dXt D cos2 XtdW t � 1
2
.sin 2Xt/ cos2 Xt dt

(a) One may easily check that the stochastic differential equation

dXt D
p

XtdW t C 1

4
dt

is of the form discussed in Exercise 5.10

dXt D g.Xt /dW t C 1

2
g0.Xt /g.Xt /dt:

By comparing the term of dW t one obtains:

g.Xt / D
p

Xt

1

2
g0.Xt/g.Xt / D 1

2
� 1

2
p

Xt

�
p

Xt D 1

4

In the next step one finds the function Xt D f .Wt /; this solves the ordinary
differential equation
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f 0.w/ D g ff .w/g D p

f .w/

f 0.w/ D df

dw

df

dw
D p

f .w/

df
p

f
D dw

Integrating both parts, it results in:

2
p

f .w/ D w C C

p

f .w/ D w C C

2

f .w/ D
�

w C C

2

�2

Xt D
�

Wt C C

2

�2

:

For t D 0:

X0 D
�

W0 C C

2

�2

I W0 D 0

X0 D
�

C

2

�2

C D 2
p

X0 with X0 � 0:

Therefore the solution is:

Xt D
�

Wt C 2
p

X0

2

�2

(b) Here the function g.x/ has the form

g.Xt / D X2
t

g0.Xt / D 2Xt

1

2
g0.Xt / � g.Xt / D 1

2
X2

t � 2Xt D X3
t :
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To find f one has

f 0.w/ D g ff .w/g D ff .w/g2

df

dw
D f 2.w/

df

f 2.w/
D dw

�d

�

1

f .w/

�

D dw

Integrating both parts gives:

�1=f .w/ D w C C

f .w/ D �1=.w C C /

Xt D �1=.Wt C C /:

In order to determine the constant C , we use the initial condition

X0 D �1=.W0 C C /; W0 D 0

C D �1=X0:

The solution is then:

Xt D �1=.Wt � 1=X0/

(c) In this example function g has the form

g.Xt / D cos2 Xt

g0.Xt/ D �2 cos Xt sin Xt D � sin 2Xt

1

2
g0.Xt / � g.Xt / D �1

2
sin 2Xt � cos2 Xt :

We solve the ordinary differential equation

f 0.w/ D g ff .w/g D cos2 f .w/

df

dw
D cos2 f .w/

df

cos2 f .w/
D dw

d tan f .w/ D dw
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Integrating both parts we obtain:

tan f .Wt / D Wt C C

Xt D f .Wt / D arctan.Wt C C /

The initial condition gives:

X0 D arctan.W0 C C /; W0 D 0

X0 D arctan C

C D tan X0

The solution is then:

Xt D arctan.Wt C tan X0/

Exercise 5.12 (Martingale). Let Bt be an Itô process and Mt D f .t; Bt / where
f .t; x/ D exp .x/ cos.x C at/. Use Itô’s lemma to determine a constant a so that

Mt D exp .Bt / cos.Bt C at/

is a martingale.
Hint: to show that Mt is a martingale, one has to show that Mt is of the form

Mt D
Z t

0

g.s; Bs/dBs

and that

E

"
�Z t

0

g.s; Bs/dBs

� 2
#

< 1

See the Novikov condition in Franke et al. (2011).

We apply Itô’s lemma to derive at first dMt .
If f .t; x/ D exp .x/ cos.x C at/, then

@f .t; x/

@t
D � exp .x/ � a � sin.x C at/

@f .t; x/

@x
D exp .x/ cos.x C at/ � exp.x/ sin.x C at/

@2f .t; x/

@x2
D exp .x/ cos.x C at/ � exp .x/ sin.x C at/

�fexp.x/ sin.x C at/ C exp .x/ cos.x C at/g
D exp .x/fcos.x C at/ � sin.x C at/ � sin.x C at/ � cos.x C at/g
D �2 exp .x/ sin.x C at/
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and

dMt D @f .t; Bt /

@t

D @f .t; x/

@t
jxDBt dt C @f .t; x/

@x
jxDBt dBt C 1

2

@2f .t; x/

@x2
jxDBt dt

D exp .Bt /fcos.Bt C at/ � sin.Bt C at/gdBt

C exp .Bt /f�a sin.Bt C at/ � sin.Bt C at/gdt

Mt � M0 D
Z t

0

exp .Bs/ fcos.Bs C as/ � sin.Bs C as/g dBs

C
Z t

0

exp .Bs/ f�a sin.Bs C as/ � sin.Bs C as/g ds:

Additionally

M0 D exp .B0/ cos.B0 C 0/

D exp .0/ � cos 0 D 1

Mt is a martingale, if a satisfies:

Z t

0

exp .Bs/f�a sin.Bs C as/ � sin.Bs C as/gds D 0:

such that

Mt D 1 C
Z t

0

exp .Bs/fcos.Bs � s/ � sin.Bs � s/gdBs

is a stochastic integral.
To show that Mt is a martingale, we also have to show that:

E

 
�Z t

0

exp .Bs/ fcos.Bs C s/ � sin.Bs � s/g dBs

	2
!

< 1

If we write exp.Bs/ fcos.Bs C s/ � sin.Bs � s/g as h.s/, together with

E
�Z t

0

h.s/dBs

� 2

D
Z t

0

˚

E.h2.s/



ds;
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one obtains:

E
�
h
R t

0
exp.Bs/ fcos.Bs C s/ � sin.Bs � s/g dBs

i2
�

D
Z t

0

E

2

6

4exp.Bs/ fcos.Bs � s/ � sin.Bs � s/g
„ ƒ‚ …

�2

3

7

5

2

ds

�
Z t

0

E
˚

exp.2Bs/ � 22



ds

D 4

Z t

0

E fexp.2Bs/g ds

D 4

Z t

0

exp.2s/ds < 1

Here we use the formula for the expectation of a geometric Brownian motion
E fexp.2Bs/g D exp.2�s C �2s/, where � and � are the mean and standard
deviation of Bs . In our case � D 0 and � D 1, due to the fact that Bs is a standard
Wiener process.

The set of a such that Mt is a martingale is:

faj
Z t

0

exp .Bs/f�a sin.Bs C as/ � sin.Bs C as/gds D 0g

Exercise 5.13 (Product Rule and Integration by Parts). If Xt and Yt are two
one-dimensional Itô processes with:

Xt D X0 C
Z t

0

Ksds C
Z t

0

HsdWs

Yt D Y0 C
Z t

0

�sds C
Z t

0

�sdWs

Then we have:

Xt � Yt D X0 � Y0 C
Z t

0

XsdYs C
Z t

0

YsdXs C
Z t

0

dXt dY t

D X0 � Y0 C
Z t

0

.Xs�s C YsKs C Hs�s/ds C
Z t

s

.Hs�s C YsHs/dWs

Differentiating both sides leads to:

d.XtYt / D Xt dY t C Yt dXt C dXtdY t :
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This expression represents another form of the product rule, in differential form.
The differential form of the two Itô processes is

dXt D Kt dt C Ht dW t

dY t D �t dt C �t dW t

d.Xt C Yt /
2 D d.X2

t C 2XtYt C Y 2
t /

D dX2
t C 2d.XtYt / C dY2

t

In order to derive the expressions for dX2
t and dY2

t we apply Itô’s lemma. Let

g.X/ D X2 g0.X/ D 2X g00.X/ D 2;

then

dX2
t D dg.Xt/

D .2XtKt C 1

2
2H 2

t /dt C 2XtHt dW t

D .2XtKt C H 2
t /dt C 2XtHt dW t

Analogously, we obtain for dY2
t

dY2
t D dg.Yt/ D .2Yt�t C �2

t /dt C 2Yt�t dW t

Let

Zt D Yt C Xt

D X0 C Y0 C
Z t

0

.Ks C �s/ds C
Z t

0

.Hs C �s/dWs

dZt D .Kt C �t /dt C .Ht C �t /dW t

then, by applying the same principle as above, we get:

dZ2
t D ˚

2Zt .Kt C �t / C .Ht C �t /
2



dt C 2Zt .Ht C �t /dWt

D ˚

2.Xt C Yt/.Kt C �t / C .Ht C �t /
2



dt C 2.Yt C Xt/.Ht C �t /dW t

2d.XtYt / D dZ2
t � dX2

t � dY2
t

D ˚

2.Xt C Yt/.Kt C �t / C .Ht C �t /
2



dt C 2.Yt C Xt/.Ht C �t /dW t

� ˚.2XtKt C H 2
t /dt C 2XtHt dW t


 � ˚

.2Yt�t C �2
t /dt C 2Yt�t dW t




D f2.XtKt C Xt �t C Yt Kt C Yt�t � XtKt � Yt �t /

C.H 2
t C �2

t C 2Ht�t � H 2
t � �2

t /gdt

C2.YtHt C Yt �t C Xt Ht C Xt �t � XtHt � Yt �t /dW t
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D 2.Xt�t C YtKt C Ht �t /dt C 2.YtHt C Xt�t /dWt

d.XtYt / D .Xt�t C YtKt C Ht �t /dt C .YtHt C Xt�t /dW t

D Xt�t dt C YtKt dt C Ht �t dt C YtHt dWt C Xt �t dW t

D Xt.�t dt C �t dW t / C Yt.Kt dt C Ht dW t / C Ht �t dt

D XtdY t C Yt dXt C Ht �t dt

In order to prove the equality above, we still have to show that

dXt dY t D Ht �t dt

Hence, dXt � dY t D .Ktdt C Ht dW t /.�t dt C �t dW t /

D Kt�t .dt/2 C Kt �t dtdWt C Ht �t dWt dt C Ht �t .dW t /
2

The terms .dt/2 and dt dW t are O.dt/, together with .dW t /
2 D dt it follows then:

dXtdY t D Ht �t .dW t /
2

D Ht �t dt

We have shown that:

d.XtYt / D XtdY t C Yt dXt C dXt dY t

by integrating back, we obtain:

Xt Yt D Y0X0 C
Z t

0

XsdYs C
Z t

0

YsdXs C
Z t

0

dXsdYs

D Y0X0 C
Z t

0

Xs.�sds C �sdWs/ C
Z t

0

Ys.Ksds C HsdWs/ C
Z t

0

Hs�sds

D Y0X0 C
Z t

0

.Xs�s C YsKs C Hs�s/ds C
Z t

0

.Xs�s C YsHs/dWs

Exercise 5.14 (Ornstein-Uhlenbeck process). Prove that the following process:

St D exp.��t/S0 C �f1 � exp.��t/g C exp.��t/

Z t

0

� exp.�s/dWs (5.3)

is a solution of the Ornstein-Uhlenbeck SDE:

dSt D ��.St � �/dt C �dW t (5.4)

where �; � and � are parameters and Wt is a standard Wiener process.



56 5 Stochastic Integrals and Differential Equations

Fig. 5.3 Graphic representation of an Ornstein-Uhlenbeck process with different initial values.

SFSornstein

Starting from (5.3) we have

St D exp.��t/

�

S0 C
Z t

0

exp.�s/�dWs

�

C �f1 � exp.��t/g

D exp.��t/.S0 C Xt � �/ C �

with

Xt D
Z t

0

exp.�s/�dWs

dXt D exp.�t/�dW t :

By differentiating both sides we obtain:

dSt D d fexp.��t/.S0 C Xt/ � �g
D �� exp.��t/.S0 C Xt � �/dt C exp.��t/dXt

D �� exp.��t/.S0 C Xt � �/
„ ƒ‚ …

St ��

dt C exp.��t/ exp.�t/�dW t

D ��.St � �/dt C �dW t :

To see the intuition of this process, W.L.G. we choose � D 1; � D 1:2 and
� D 0:3. Figure 5.3 displays the plot. Dark green and blue lines correspond to
different initial values 2 and 0.
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Exercise 5.15 (Stochastic Differential Equation). Apply the result from Exercise
5.14 to solve the following SDE:

dXt D aXt .� � log Xt/dt C �Xt dW t (5.5)

Dividing both sides of (5.5) by Xt we obtain:

dXt

Xt

D a.� � log Xt /dt C �dW t

Define now:

Yt
defD g.Xt / D log Xt

and observe that:

g0.Xt/ D 1=Xt g00.Xt / D �1=X2
t

Comparing coefficients with an Itô process, we get:

�.Xt / D aXt .� � log Xt/

�.Xt / D � � Xt

By applying Itô’s lemma, we obtain:

dY t D
�

@g

@X
.Xt/ � �.Xt/ C 1

2

@2g

@X2
.Xt / � �2.Xt/

�

dt C @g

@X
.Xt/ � �.Xt /dW t

D
�

1

Xt

aXt .� � log Xt/ C 1

2
.� 1

X2
t

/�2X2
t

�

dt C 1

Xt

�Xt dWt

D
�

a.� � log Xt/ � 1

2
�2

�

dt C �dW t

D a

�

� � log Xt � �2

2a

�

dt C �dW t

D a

�

� � �2

2a
� Yt

�

dt C �dW t

Hence, Yt follows the path of an Ornstein-Uhlenbeck process (5.4).

dY t D a.� � �2

2a
� Yt/dt C �dW t

D �a

�

Yt � .� � �2

2a
/

�

dt C �dW t
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The solution of the SDE in Yt is then:

exp.at/Yt D Y0 C
Z t

0

exp.as/a

�

� � �2

2a

�

ds C
Z t

0

� exp.�s/dWs

D Y0 C
�

� � �2

2a

�

exp.as/jt0 C
Z t

0

� exp.as/dWs

D Y0 C
�

� � �2

2a

�

fexp.at/ � 1g C
Z t

0

� exp.as/dW s

Yt D exp.�at/Y0 C
�

� � �2

2a

�

f1 � exp.�at/g C exp.�at/
Z t

0

� exp.as/dW s

thus for Yt D log Xt; Y0 D log X0 it follows that:

Xt D exp

�

exp.�at/ log X0 C
�

� � �2

2a

�

f1 � exp.�at/g

C exp.�at/
Z t

0

� exp.as/dWs

	



Chapter 6
Black-Scholes Option Pricing Model

Modelul Black-Scholes de Evaluare a Optiunilor
Ulciorul nu merge de multe ori la apă.
The pitcher goes so often to the well that it comes home broken
at last.

The Black-Scholes formula is one of the most recognizable formulae in quantitative
finance. The formula for the price C.S; �/ of a European call option is given by:

C.S; �/ D expf.b � r/�gS˚.y C �
p

�/ � exp.�r�/K˚.y/; (6.1)

where we use y as an abbreviation for

y D log .S=K/ C ˚

b � �2=2
�

�

�
p

�
(6.2)

and b � r denotes the cost of carry b subtracted by the interest rate r .
The corresponding Black–Scholes formula for the price P.S; �/ of a European

put option can be found, for example, by using the put–call parity as in Franke et al.
(2011):

P.S; �/ D C.S; �/ � S expf.b � r/�g C K exp.�r�/:

From this and Eq. (6.1) we obtain

P.S; �/ D exp.�r�/K˚.�y/ � expf.b � r/�gS˚.�y � �
p

�/: (6.3)

The stop–loss strategy is a strategy to decrease the risk associated with a long call
as an expensive hedging strategy, i.e. the bank selling the option takes an uncovered
position as long as the stock price is below the exercise price, St < K; and sets up
a covered position as soon as the call is in–the–money, St > K:

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 6, © Springer-Verlag Berlin Heidelberg 2013
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Table 6.1 Parameters for the
European call

Strike price K 50.00

Time to maturity � 20 weeks D 0.3846
Riskfree rate r p.a. 0.05
Annualized stock volatility � 0.20
Number of shares 100,000

Table 6.2 Stock price movement

t 0 1 2 3 4 5 6 7 8 9 10

St 49.00 49.75 52.00 50.00 48.37 48.25 48.75 49.62 48.25 48.25 51.12
C.�105/ 2.40 2.72 4.07 2.69 1.75 1.61 1.75 2.10 1.34 1.25 2.67

t 11 12 13 14 15 16 17 18 19 20
St 51.50 49.87 49.87 48.75 47.50 48.00 46.25 48.12 46.62 48.12
C.�105/ 2.82 1.69 1.56 0.91 0.40 0.41 0.06 0.18 0.00 0.00

Exercise 6.1 (European Call Option). Consider the European call detailed in
Table 6.1 and the corresponding stock price movement given in Table 6.2. We
assume, that there are no transaction costs nor opportunity costs arising from
binding capital. However bear in mind that in this example it’s only possible to
sell or buy stocks at K ˙ ı.

(a) Calculate the BS price of the call and the cost of hedging.
(b) Modify your quantlet for S0 D 51, i.e. the call is in the money.

(a) The solution is provided in Table 6.3, where a dummy variable indicates the
need of a hedge strategy and the resulting consequences, e.g. the number of
shares purchased, the costs of buying shares, the revenues due to selling shares
and the cumulative costs.

When the stock price crosses K D 50 at time point 2, the open position is
hedged at a price of St D 52, resulting in costs of 5,200,000. In the next period,
as St � K , we close the position at a price of St D 50 and receive 5,000,000.
These transactions results in a loss of 2 per share, i.e. a loss of 200,000. We
continue the stop- loss strategy, checking every period whether St � K and
St � K respectively.

At the exercise point T D 20, if St � K we will hold 100,000 shares bought
at St � K and will be able to serve the call option for which we receive K units
per share. If St � K the option will not be exercised and we hold no shares, as
we will have sold them at some St � K .

SFSstoploss

(b) The solution is provided in Table 6.4. Note the difference in the final costs
compared to Table 6.3

SFSstoploss



6 Black-Scholes Option Pricing Model 61

Table 6.3 Solution for Exercise 6.1 (a)

Stock Hedge Shares Cost of Revenue of Cumulative
Time price strategy purchased shares shares costs

0 49.00 0 0 0 0 0
1 49.75 0 0 0 0 0
2 52.00 1 100,000 5,200,000 0 5,200,000
3 50.00 0 0 0 5,000,000 200,000
4 48.37 0 0 0 0 200,000
5 48.25 0 0 0 0 200,000
6 48.75 0 0 0 0 200,000
7 49.62 0 0 0 0 200,000
8 48.25 0 0 0 0 200,000
9 48.25 0 0 0 0 200,000
10 51.12 1 100,000 5,112,000 0 5,312,000
11 51.50 1 0 0 0 5,312,000
12 49.87 0 0 0 4,987,000 325,000
13 49.87 0 0 0 0 325,000
14 48.75 0 0 0 0 325,000
15 47.50 0 0 0 0 325,000
16 48.00 0 0 0 0 325,000
17 46.25 0 0 0 0 325,000
18 48.12 0 0 0 0 325,000
19 46.62 0 0 0 0 325,000
20 48.12 0 0 0 0 325,000

Exercise 6.2 (Stop-Loss Strategy). Check the performance measure of a Stop-
Loss strategy for an increasing hedging frequency �t:

(a) Consider the stock outlined in Table 6.1 and simulate m D 500 stock paths
starting from S0 D 49:00.

(b) Calculate, via a quantlet, the costs �m for applying the Stop-Loss strategy over
all m. Thereby set �t D 5.

(c) Calculate the variance �2
� of these costs.

(d) Calculate the following performance measure

L D
q

�2
�

C.S0; T /

(e) Modify your quantlet to calculate the performance measures L for �t D f4; 2;1;

0:5; 0:25g.

Compare these differing values of L, as it has exemplary been done in Table 6.5.
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Table 6.4 Solution for Exercise 6.1 (b)

Stock Hedge Shares Cost of Revenue of Cumulative
Time price strategy purchased shares shares costs

0 51.00 1 100,000 5,100,000 0 5,100,000
1 49.75 0 0 0 4,975,000 125,000
2 52.00 1 100,000 5,200,000 0 5,325,000
3 50.00 0 0 0 5,000,000 325,000
4 48.37 0 0 0 0 325,000
5 48.25 0 0 0 0 325,000
6 48.75 0 0 0 0 325,000
7 49.62 0 0 0 0 325,000
8 48.25 0 0 0 0 325,000
9 48.25 0 0 0 0 325,000
10 51.12 1 100,000 5,112,000 0 5,437,000
11 51.50 1 0 0 0 5,437,000
12 49.87 0 0 0 4,987,000 450,000
13 49.87 0 0 0 0 450,000
14 48.75 0 0 0 0 450,000
15 47.50 0 0 0 0 450,000
16 48.00 0 0 0 0 450,000
17 46.25 0 0 0 0 450,000
18 48.12 0 0 0 0 450,000
19 46.62 0 0 0 0 450,000
20 48.12 0 0 0 0 450,000

Table 6.5 Exemplary values for Exercise 6.2. SFShullhedgeratio

�t 5 4 2 1 0.5 0.25

L 1.041 0.928 0.902 0.818 0.777 0.769

Exercise 6.3 (Delta Ratio). Calculate the value of � D @C
@S

, the ratio of change of
the option price with respect to the underlying stock price, for a European call with
strike price K and maturity T .

The BS formula for a European call may be written as follows:

C.S; �/ D S˚.d1/ � K exp.�r�/˚.d2/;

where we use the abbreviations

d1 D y C �
p

�;

d2 D y

y D log S=K C ˚

r � �2=2
�

�

�
p

�
:

A simple derivative of the formula yields
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@C.S; �/

@S
D ˚.d1/ C S

@˚.d1/

@S
� K exp.�r�/

@˚.d2/

@S
;

where we again assume b D r to clarify the calculations.

By inserting the following intermediate results

@˚.d1/

@S
D '.d1/

@d1

@S

@˚.d2/

@S
D '.d2/

@d2

@S

@d1

@S
D @d2

@S
D �

S�
p

�
��1

'.d2/ D '.d1/ exp.r�/
S

K

we obtain the following delta ratio:

@C.S; �/

@S
D ˚.d1/ C S'.d1/

�

S�
p

�
��1

�K exp.�r�/'.d1/ exp.r�/
S

K

�

S�
p

�
��1

D ˚.d1/:

Exercise 6.4 (Delta Hedging). Calculate the delta ratio � D @C.S;�/

@S
for the Euro-

pean call stated in Exercise 6.1. Furthermore think of the consequences resulting
from the delta hedge, e.g. the amount of shares to be held and the cumulative costs
for holding these stocks across t .

To calculate the delta ratio, which changes across time t due to the stock price St

and the declining time to maturity � , we use the result from Exercise 6.3, namely

@C.S; �/

@S
D ˚

(

log S=K C �

r � �2=2
�

�

�
p

�
C �

p
�

)

:

With this ratio, we can calculate the number of shares we need to hold at any t and
the resulting costs for holding these shares across time. The solution is provided in
Table 6.6.

Exercise 6.5 (Delta Neutral Position). A bank sold 3,000 Calls and 2,500 Puts
with the same maturity and exercise price on the same underlying stock. � Call is
0.42 and � Put is �0.38. How many stocks should the company sell or buy in order
to have a delta neutral position?
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Table 6.6 Solution to Exercise 6.4. SFSdeltahedging

Stock Delta Shares Cost of Revenue of Cumulative
Time price Hedging purchased shares shares costs

0 49.000 0.5216 52,160 2,555,840.0 0.0 2,555,840.0
1 49.750 0.5675 56,750 228,352.5 0.0 2,784,192.5
2 52.000 0.7051 70,510 715,520.0 0.0 3,499,712.5
3 50.100 0.5861 58,610 0.0 596,190.0 2,903,522.5
4 48.375 0.4587 45,870 0.0 616,297.5 2,287,225.0
5 48.250 0.4429 44,290 0.0 76,235.0 2,210,990.0
6 48.750 0.4751 47,510 156,975.0 0.0 2,367,965.0
7 49.625 0.5397 53,970 320,577.5 0.0 2,688,542.5
8 48.250 0.4197 41,970 0.0 579,000.0 2,109,542.5
9 48.250 0.4105 41,050 0.0 44,390.0 2,065,152.5
10 51.125 0.6581 65,810 1,265,855.0 0.0 3,331,007.5
11 51.500 0.6918 69,180 173,555.0 0.0 3,504,562.5
12 49.875 0.5420 54,200 0.0 747,127.5 2,757,435.0
13 49.875 0.5376 53,760 0.0 21,945.0 2,735,490.0
14 48.750 0.3998 39,980 0.0 671,775.0 2,063,715.0
15 47.500 0.2362 23,620 0.0 777,100.0 1,286,615.0
16 48.000 0.2615 26,150 121,440.0 0.0 1,408,055.0
17 46.250 0.0619 6,190 0.0 923,150.0 484,905.0
18 48.120 0.1818 18,180 576,958.8 0.0 1,061,863.8
19 46.620 0.0067 670 0.0 816,316.2 245,547.6
20 48.120 0.0000 0 0.0 32,240.4 213,307.2

Let’s call the number of stocks needed for a delta neutral position x. The � of
the stock is 1. From Franke et al. (2011, p. 114) we will have

0:42 � .�3000/ � 0:38 � .�2500/ C x � 1 D 0

x D 310

So, the bank will have a delta neutral position when it buys 310 stocks.

Exercise 6.6 (Gamma and Delta Hedging). Mrs. Ying Chen already has a portfo-
lio with � D �300 and � D 250. She wants to make her portfolio � and � neutral.
In the market, she can buy/sell stocks and call options to achieve this. She calculated
the � and � of the call option as 0.55 and 1.25 respectively. What should Mrs. Chen
do in order to realize her goal?

Let us call the additional number of calls and stocks that Mrs. Chen will need as
x and y respectively. For a � and � hedged portfolio, we can write the following
equations from the corresponding Gamma and Delta Hedging equations:

1:25 � x C 250 D 0

0:55 � x C y � 1 � 300 D 0
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After solving this set of equations, we see, that Mrs. Chen should buy y D 410 stocks
and short sell x D 200 call options in order to achieve a � and � neutral position.

Exercise 6.7 (Option Pricing with Black-Scholes Model). Consider a European
call option on a stock when there are ex-dividend dates in 3 and 6 months. The
dividend on each ex-dividend date is expected to be 1, the current price is 80, the
exercise price is 80, the volatility is 25 % per annum, the annually risk free rate is
7 %, the time to maturity is 1 year, calculate the option price using the Black-Scholes
model.

The present value of the expected dividends can be calculated as

exp.�0:25 � 0:07/ C exp.�0:5 � 0:07/ D 1:9483:

We deduct this present value of the dividends from the stock price at t D 0 to arrive
at the purely random component of the stock price:

S0 D 80 � 1:9483

D 78:0517:

Afterwards, as a first step, we calculate ˚.y/ and ˚.y C �
p

�/ according to the
formulas given in Exercise 6.3:

˚.y/ D ˚

"

log. 78:0517
80

/ C ˚

0:07 � .0:25/2=2
� � 1

0:25 � p
1

#

D ˚.0:0564/

D 0:5225

˚.y C �
p

�/ D ˚
�

0:0564 C 0:25 � p
1
�

D ˚.0:3064/

D 0:6203

We now possess all information we need to calculate the price of the call:

C.78:0517; 1/ D 78:0517 � 0:6203 � 80 � exp.�0:07 � 1/ � 0:5225

D 9:4462

SFSBSCopt1

Exercise 6.8 (Delta, Gamma and Theta of Portfolio). An investor longs a
3 months maturity call option with K D 220, and shorts a half year call with
K D 220. Currently, S0 D 220, risk free rate r D 0:06 (continuously compounded),
and � D 0:25. The stock pays no dividends.



66 6 Black-Scholes Option Pricing Model

(a) Calculate the � of the portfolio.
(b) Calculate the � of the portfolio.
(c) Calculate the � of the portfolio.

(a) We calculate � D ˚.y C �
p

�/ for both calls separately and sum up the results
to obtain the overall delta of the portfolio:

Call to be longed:
�1 D 0:6018

Call to be shorted:
�2 D � 0:5724

The delta of the portfolio is therefore

�1 C �2 D 0:6018 C .�0:5724/

D 0:0294

(b) To obtain the portfolio’s gamma we calculate

� D 1

�S
p

�
'
�

y C �
p

�
�

for each call:

Call to be longed:
�1 D 0:0099

Call to be shorted:
�2 D � 0:0142

This leads to the following overall gamma:

�1 C �2 D 0:0099 C .�0:0142/

D �0:0043

(c) By the derivative of the BS formula with respect to t

� D @C.S; �/

@t

D � �S

2
p

�
'
�

y C �
p

�
� � rK exp.�r�/˚.y/
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we can calculate the theta for each call:

Call to be longed:
�1 D � 21:827

Call to be shorted:
�2 D � 28:279

The theta of the portfolio may then be calculated as:

�1 � �2 D �21:827 C .�28:279/

D �50:106

SFSgreeks

Exercise 6.9 (Collar Portfolio). Mr. Wang constructed a collar portfolio, which
was established by buying a share of a stock for 15 JPY, buying a 1-year put
option with exercise price 12.5 JPY, and short selling a 1-year call option with
exercise price 17.5 JPY. If the BS model holds, based on the volatility of the stock,
Mr. Wang calculated that for a strike price of 12.5 JPY and maturity of 1 year,
˚.yC�

p
�/ D 0:63, whereas for the exercise price of 17.5 JPY, ˚.yC�

p
�/ D 0:32

where we use y as an abbreviation for

y D log S=K C �

b � �2=2
�

�

�
p

�
: (6.4)

(a) Draw a payoff graphic of this collar at the option expiration date.
(b) If the stock price increases by 1 JPY, what will Mr. Wang gain or lose from this

portfolio?
(c) What happens to the delta of the portfolio if the stock price becomes very high

or very low?

(a) The payoff can be drawn as in the Fig. 6.1.
(b) The resulting consequences for Mr. Wang’s portfolio may be calculated via the

delta of the portfolio, which indicates any losses or gains. In detail, the value of
the stock will raise by 1 JPY, the loss on the long put and on the short call will
amount to 0.37 and 0.32 JPY respectively. For the whole portfolio, this leads to
a gain of 0.31 JPY, as stated in Table 6.7.

(c) For very large stock prices: the delta of the collar approaches zero, because both
˙˚.yC�

p
�/ approach 1. The value of the portfolio is simply the present value

of the exercise price of the call, and is unaffected by small changes in the stock
price.

For very small stock prices: as stock price approaches zero, the delta also
approaches zero, because both ˙˚.y C �

p
�/ terms approach 0. The value of the

portfolio is simply the exercise price of the put, and is unaffected by small changes
in the stock price.
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Fig. 6.1 Payoff of a collar. SFSpayoffcollar

Table 6.7 Delta of the collar Action Delta

Long a stock 1.00
Long a put ˚.y C �

p
�/ � 1 D � 0:37

Short a call �˚.y C �
p

�/ D � 0:32

Portfolio 0.31

Table 6.8 Portfolio on a
particular stock

Type Position Delta Gamma

Call �2,000 0.5 2.5
Call +1,500 0.7 0.7
Put �4,000 �0.4 1.1

Exercise 6.10 (Gamma and Delta Neutral Positions).
A financial institution has the portfolio given in Table 6.8 of OTC options on a

particular stock.
A traded call option is available which has a delta � D 0:3 and a gamma

� D 1:8. What position in that traded option and underlying stock would make the
portfolio both gamma neutral and delta neutral?

We can calculate the current position of portfolio:
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� D �2000 � 0:5 C 1500 � 0:7 � 4000 � .�0:4/

D �1000 C 1050 C 1600

D 1650

� D �2000 � 2:5 C 1500 � 0:7 � 4000 � 1:1

D �5000 C 1;050 � 4;400

D �8350

In order to become Gamma-neutral according to Franke et al. (2011, Sect. 6.4), one
should buy traded options:

8350

1:8
D 4638:89:

This will make the delta of the position equal to

1650 C 4638:89 � 0:3 D 3041:67:

Therefore, to become delta neutral we need to sell 3,041.67 shares.

Exercise 6.11 (Hypothetical Call Option). Knowing that the current price of oil
is 100 EUR per barrel, a petrochemical firm PetroCC plans to buy a call option on
oil with strike price D 100 EUR. The volatility of oil prices is 10 % per month, and
the risk-free rate is 3 % per month.

(a) What is the value of the 4-month call option?
(b) Suppose that instead of buying 4-month call options on 100,000 barrels of oil,

the firm will synthetically replicate a call position by buying oil directly now,
and delta-matching the hypothetical call option. How many barrels of oil should
it buy?

(c) If oil prices increase by 1 % after the first day of trading, how many barrels of
oil should it buy or sell?

(a) We can calculate the call option price using BS formula directly:

C.S; �/ D S˚.y C �
p

�/ � exp.�r�/K˚.y/

where S D 100; K D 100; � D 0:1; b D r D 0:03 and � D 4.
Then,

y C �
p

� D log S=K C .b C �2=2/�

�
p

�

D 0 C .0:03 C 0:102=2/ � 4

0:10 � p
4

D 0:7000
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y D 0:7000 � �
p

�

D 0:5000

˚.y C �
p

�/ D 0:7580

˚.y/ D 0:6915

C.S; �/ D S˚.y C �
p

�/ � exp.�r�/K˚.y/

D 100 � 0:7580 � exp.�0:03 � 4/ � 100 � 0:6915

D 14:4695

So the price of 4-month call option should be 14.4695 EUR.

(b) Since the delta of the call option is,

� D @C

@S
D ˚.y C �

p
�/ D 0:7580

and the delta of the stock is 1.
So, we should buy 75,800 barrels of oil, which can provide the same delta value
as the call options.

(c) If the oil price increases by 1 %, then the y C �
p

� also increases, so as the
delta.

y C �
p

� D log S=K C .b C �2=2/�

�
p

�

D 0:01 C .0:03 C 0:102=2/ � 4

0:10 � p
4

D 0:8000

˚.0:800/ D 0:7881

The delta increases 0:7881 � 0:7580 D0:0301, so one should buy an additional
3,010 barrels of oil.

Exercise 6.12 (Implied Volatility and Delta Neutrality). There are two calls on
the same stock with the same time to maturity (1 year) but different strike price.
Option A has a strike price K1 D 10 USD, while option B has a strike price K2 D 9:5

USD. The current stock price is St D 10 USD. The stock does not pay dividend. Risk
free rate is 3 %. One applies the Black-Scholes equation as the option pricing model.
Yet despite that fact that one is confident that the appropriate volatility of the stock
is 0.15 p.a. One observes option A selling for 0.8 USD and option B selling for 1
USD.
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(a) Is the implied volatility of Option A more or less than 15 %? What about that of
option B?

(b) Determine a delta-neutral position in the two calls that will exploit their
apparent mispricing. Use � D 0:15 to compute Delta.

(a) We can calculate the call option price using BS formula directly:
For option A:

y C �
p

� D log S=K C .b C �2=2/�

�
p

�

D 0 C .0:03 C 0:152=2/ � 1

0:15 � p
1

D 0:28

y D 0:28 � �
p

�

D 0:13

˚.y C �
p

�/ D 0:6103

˚.y/ D 0:5517

CA.S; �/ D S˚.y C �
p

�/ � exp.�r�/K˚.y/

D 10 � 0:6103 � exp.�0:03 � 1/ � 10 � 0:5517

D 0:75 < 0:8

For option B:

y C �
p

� D log S=K C .b C �2=2/�

�
p

�

D 0:051 C .0:03 C 0:152=2/ � 1

0:15 � p
1

D 0:62

y D 0:62 � �
p

�

D 0:47

˚.y C �
p

�/ D 0:7324

˚.y/ D 0:6808

CB.S; �/ D S˚.y C �
p

�/ � exp.�r�/K˚.y/

D 10 � 0:7324 � exp.�0:03 � 1/ � 9:5 � 0:6808

D 1:05 > 1
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For Option A, the real price is higher than the Black-Scholes value when using
0.15 as the volatility. For option B, the price is lower. Thus, for option A, the
implied volatility should be higher than 0.15, and the implied volatility of option
B is lower than 0.15.

(b) From task (a), it is clear that option A is overvalued, and option B is
undervalued. Thus, we can long option B and short option A to do arbitrage.
For every option A we short, we should long �A=�B D 0:6103=0:7324 D
0:8333 option B.

Exercise 6.13 (Implied Volatility). E-Tech Corp. stock sells for 80 EUR and pays
no dividends. A 6-month call option with exercise price 80 EUR is priced at 7.23
EUR, while a 6-month call option with exercise price 90 EUR is priced at 5.38. The
risk-free interest rate is 8 % per year.

(a) What is the implied volatility of these two options?
(b) Based on the above information, construct a profitable trading strategy.

(a) From Black-Scholes formula, we have:

C.S; �/ D S˚.y C �
p

�/ � exp.�r�/K˚.y/ (6.5)

y C �
p

� D log S=K C .b C �2=2/�

�
p

�
(6.6)

After substituting data in this example, solve the equations w.r.t. � , we have the
implied volatility of the call option with exercise price 80 EUR is 25 %; the implied
volatility of the call option with exercise price 90 EUR is 35 %. (The calculations in
this question can also been done in the DerivaGem Options Calculator software of
John Hull.)

(b) Based on implied volatilities, the call option with exercise price 90 EUR is
overpriced. Thus we can exploit this by constructing a delta-neutral position:
buy the call with exercise price of 80 EUR and write the call with exercise price
of 90 EUR.

To calculate delta, we need to know � . One strategy is to use the middle point
of 25 and 35 %, i.e., � D 35 %. When � D 35 %, the delta of the call with exercise
price of 80 EUR is 0.616, and the delta of the call with exercise price of 90 EUR is
0.397. Thus the delta-neutral proportion is 0.616/0.397 = 1.552. So we buy one call
with exercise price of 80 EUR, and write 1.552 calls with exercise price of 90 EUR.
The net position is delta neutral, but since 7:32 � 1:552 � 5:38 D � 1:03, there is an
initial cash inflow (profit) of 1.03 EUR.

Exercise 6.14 (Greeks). The Black-Scholes price of a call option with strike price
K , maturity T is defined as follows in t 2 Œ0; T / at a stock price x:

	.x; T � t/ D x˚fdC.x; T � t/g � K expf�r.T � t/g˚fd�.x; T � t/g
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r 2 R denotes the riskless interest rate and � > 0 the volatility of the stock. The
function dC and d� are given by

d˙.x; r/ D flog x=K C .r ˙ �2=2/�g=�
p

�

Calculate the “Greeks”

(a) � D @
@x

	.x; T � t/

(b) � D @2

@x2 	.x; T � t/

(c) � D @
@t

	.x; T � t/

and verify that 	 solves the partial differential equation

�

�2

2
x2 @2

@x2
C rx

@

@x
� @

@t

�

	.x; t/ D r	.x; t/ on .0; 1/ � .0; 1/

and satisfies the boundary condition

	.x; T � t/ ! .x � K/C for t ! T

From the Black-Scholes formula,

	.x; T � t/ D x˚fdC.x; T � t/g � K expf�r.T � t/g˚fd�.x; T � t/g

where ˚ is the distribution function of the standard normal distribution and
.T � t/ D � the time to maturity.
Recall (Exercise 6.3), the ratio of change of the option price with respect to the
underlying stock price (Delta, � D @	

@x
) can be expressed as:

(a)

@

@x
	.x; T � t/ D ˚fdC.x; T � t/g C x'fdC.x; T � t/g @

@x
dC.x; T � t/ �

'fd�.x; T � t/g @

@x
d�.x; T � t/ (6.7)

Note that,

dC.x; �/ � d�.x; �/ D
( 

r C �2

2

!

� �
 

r � �2

2

!

�

)

=�
p

� D �
p

�

@

@x
d˙.x; �/ D k=.�

p
�xk/ D 1=x�

p
�

'.d�.x; �// D expf�d2=2 � .x; �/g=2
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D expf�.dC.x; �/ � �
p

�/2=2g=p
2


D expf�.d2 C .x; �/ � 2d C .x; �/�
p

� C �2�/=2g=p
2


D 'fdC.x; �/g expf�p
�dC.x; �/ � �2�=2g

D 'fdC.x; �/g exp.log x=K C r�/

D 'fdC.x; �/gx=K exp .r�/

By substitution in Eq. 6.7,

Delta: � D @	

@x
D ˚fdC.x; T � t/g C x'fdC.x; T � t/g @

@x
dC.x; T � t/ �

'fd�.x; T � t/g @

@x
d�.x; T � t/ D ˚fdC.x; T � t/g

(b) The ratio of change of the option � with respect to the underlying stock price
(Gamma, � D @	

@�
) can be expressed as:

� D @	

@�
D @

@x2
	.x; T � t/ D @

@x
˚fdC.x; T � t/g

D 'fdC.x; T � t/g @

@x
dC.x; T � t/

D 'fdC.x; T � t/g
x�

p
T � t

(c) The ratio of change of the price of the underlying with respect to time (Theta,
� D @	

@t
) can be expressed as:

� D @

@t
	.x; T � t/ D x'fdC.x; T � t/g @

@t
dC.x; T � t/

�kr expf�r.T � t/g˚fd�.x; T � t/g

C expf�r.T � t/g'fd�.x; T � t/g @

@t
d�.x; T � t/

D x=k'fdC.x; T � t/g

D x'fdC.x; T � t/g @

@t
.dCd�/.x; T � t/ �

�kr exp f�r.T � t/g ˚fd�.x; T � t/g
D � x�

d
p

.T � t/
'fdC.x; T � t/g

�kr expf�r.T � t/g˚fd�.x; T � t/g
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To verify that 	 solves the partial differential equation, we need to show that the
Black-Scholes option price model gives the same price as a model free no-arbitrage
approach. Applying ItOo’s lemma:

d	.x; t/ D �x
@	

@x
dWt C

�

�x
@	

@x
C �2

2
x2 @2	

@x2
C @	

@t

�

dt:

Consider a portfolio ˘ containing an option and �� units of the underlying stocks:

˘ D 	.x; t/ � �x

d˘ D d	.x; t/ � �dx

d˘ D d	.x; t/ � �.�xdt C �xdWt /

For � D @	.x;t/

@x

d˘ D
�

�2

2
x2 @2	

@x2
C @	

@t

�

dt

Now if ˘ was invested in riskless assets it would see a growth of r˘dt in the
interval of length dt. Then for a fair price we should have d˘ D r˘dt:

r˘dt D
	

�2

2
x2 @2	.x; t/

@x2
C @	.x; t/

@t




dt

Hence,

r

	

	 � @	.x; t/

@x
x




D �2

2
x2 @2	.x; t/

@x2
C @	.x; t/

@t
:

Re-arranging gives

�2

2
x2 @2	.x; t/

@x2
C rx

@	.x; t/

@x
C @	.x; t/

@t
� r	.x; t/ D 0;

satisfying 	.x; �/ ! .x � K/C for t ! T:

Exercise 6.15 (Black-Scholes Price of a Call Option and Vega).

(a) Show that for x; y > 0 with x ¤ t , the following holds:

j	.x; t/ � 	.y; t/j < jx � yj;
	.x; t/ � 	.y; t/

	.y; t/
>

x � y

y
for x > y;

and

	.x; t/ � 	.y; t/

	.y; t/
<

x � y

y
for x < y
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for the special cases, where 	.x; t/ is the Black-Scholes price of a call option
with stock price x, time to expiration of the option as t.

(b) Show that the “Vega” D @
@�

	.x; t/ is always positive and calculate the value x
where “Vega” is maximal.

(a) For 	.x; T � t/ (see, question Exercise 6.14), let time to maturity � D T � t:

It holds that
@

@x2
	.x; �/ D 'fdC.x; �/g=x�

p
� > 0;

hence
	.x; �/ is strictly convex on .0; 1/

Following Lipschitz condition, j	.x; �/�	.y; �/j < jx�yj for x; y > 0; x ¤
y j	.x; �/ � 	.y; �/j D j	x.z; �/jjx � yj

It holds 8 z 2 .0; y/:

	.x; �/ � 	.y; �/

x � y
>

	.y; �/ � 	.z; �/

y � z
;

therefore
	.x; �/ � 	.x; �/

x � y
>

	.y; �/

y

Also for x < y;
	.x; �/ � 	.y; �/

	.y; �/
<

x � y

y
;

if and only if

y � x

x
<

	.y; �/ � 	.x; �/

	.x; �/

(b) The “Vega” is the rate of change the option with respect to the volatility. For a
European call option on a non-dividend-paying stock,

Vega:
@	.x; �/

@�
D 'fdC.x; �/gp�

D x
p

�p
2


exp.�d 2
1 =2/;

where

d1 D log x=K C �

r � �2=2
�

�

�
p

�
;

which is always positive. Let V = Vega, then
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V 0 D
p

�p
2


exp.�d 2
1 =2/

�

1 � d1

�
p

�

�

:

Solving for x in V 00, the value for which the Vega reaches maximum is obtained:

V 00 D 1p
2


exp.�d 2
1 =2/

	

�d1 C .d 2
1 � 1/

�
p

�




;

with maximum Vega at x D k expf.�2 � r/�=2g
Exercise 6.16 (Price of Risk, Stochastic Process and Girsanov Transformation).
In the Black-Scholes model, the stock price is modelled by

dS.t/ D S.t/ f�dt C �dW.t/g ;

where � denotes the drift, � the volatility and W t , the standard Brownian motion.

(a) The market price of risk is defined as excess return. How is this defined in the
Black-Scholes framework?

(b) Give the explicit form of the stochastic process S.t/

(c) Suppose now that a class of parametrized class of equivalent probabilities Q

are introduced via the Girsanov transformation:

W � .t/ D W.t/ �
Z t

0

�.u/du

where � is a real valued, bounded continuous function. By using the Girsanov
Theorem there exists an equivalent probability measure denoted Q� so that
W � .t/ is a Brownian motion for t . Show the dynamics of S.t/ under Q�

(a) The market price of risk is the rate of extra return above r per unit risk. In the
Black-Scholes model, the stock price is modelled by

dS.t/ D S.t/ f�dt C �dW.t/g :

Under an equivalent risk neutral measure the model can be expressed as

dS.t/

S.t/
D .� � r/dt C �dW.t/:

By setting Xt D ��r

�
, the market price of risk:

dS.t/

S.t/
D �fXt dt C dW.t/g;

where r is the constant risk-free interest rate.
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(b) By ItOo’s formula,

d log S.t/ D �

� � �2=2
�

dt C �dW.t/;

so that S.t/ satisfies the Black-Scholes model, if and only if

S.t/ D S.0/ exp
˚�

� � �2=2
�

t C �W.t/
�

(c) We construct under Q� a martingale price process:

dS.t/ D S.t/f.� � r/dt C �dW.t/g;
where (by Girsanov transformation)

W � .t/ D W.t/ �
Z t

0

�.u/du

is a Q��Brownian motion. Applying the Radon- Nicodym derivative, 
t D dQ

dQ� ,
gives:


t D exp

	

�
Z t

0

�.u/dW.u/ � 1

2

Z t

0

�2.u/du




:

From dS.t/ D S.t/f.� � r/dt C �dW.t/g and by definition of W �.t/, it holds that

dS.t/ D S.t/�dW � .t/:

Applying ItOo’s lemma the dynamics of the stochastic process is expressed as

S.t/ D S.0/ exp

	

�
Z t

0

�dW � .u/ � 1

2

Z t

0

�2d.u/




:



Chapter 7
Binomial Model for European Options

Binomialni model za europske opcije
Najveći je rizik ne riskirati!
The greatest risk is not to take risk!

For a large range of options such as the American options the boundary conditions
of the Black-Scholes differential equation are too complex to solve analytically.
Therefore, one relies on numerical price computation. The best known method is to
approximate the stock price process by a discrete time stochastic process, or, as in
the approach followed by Cox, Ross, Rubinstein, to model the stock price process
as a discrete time process from the start. The binomial model is a convenient tool
for pricing European options.

Exercise 7.1 (Value of a Call Option). Assume a call option with exercise price
K D 8 at T D 2. We are now at t D 0. The current price of the stock is 10. For the
first period, the stock market is expected to be very variable, and the underlying
stock’s price is expected to increase or decrease by 20 %. For the second year,
a more stable market is expected and the stock price is expected to increase or
decrease by 10 %. Assume that the risk-free rate is zero. What is the value of this
call option? The intrinsic value at T is denoted as CT .

t D 0 t D 1 t D 2 CT

13.2 5:2

12
10.8 2:8

10
8.8 0:8

8
7.2 0:0

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 7, © Springer-Verlag Berlin Heidelberg 2013
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The price movement of the stock and the option price at maturity can be seen
in the table above. To calculate the current value of the option, we should first find
option prices at the end of period 1 by making use of the intrinsic values of the call
option at the end of period 2. Afterwards, we will be able to price the call option for
period 0 following a similar procedure.

We use the martingale measure approach to price the call option. Let us consider
the upper part of the stock tree first:

t D 1 t D 2 CT

13.2 5:2

12
10.8 2:8

The probability associated with the movements from t D 1 to t D 2 is:
q � 13:2 C .1 � q/ � 10:8 D 12, therefore q D 0:5. Hence, the corresponding

option price at the end of the period 1 is:

C1 D 0:5 � 5:2 C 0:5 � 2:8 D 4; as exp.r � 4t/ D 1 for r D 0:

We repeat the whole procedure for the lower part of the tree:

t D 1 t D 2 CT

8.8 0:8

8
7.2 0:0

For the transition probability, it holds: q � 8:8 C .1 � q/ � 7:2 D 8, therefore
q D 0:5. The option price at the end of the period 1 in the lower part of the tree is:
C1 D 0:5 � 0:8 C 0:5 � 0 D 0:4.

Now, we can construct a stock tree with intrinsic values of the call option in the
1st period:

t D 0 t D 1 C1

12 4:0

10
8 0:4

We compute the transition probability from the stock prices:
q � 12 C .1 � q/ � 8 D 10 gives q D 0:5, and afterwards the call option price at

the t D 0: C0 D 0:5 � 4 C 0:5 � 0:4 D 2:2.
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Exercise 7.2 (Trinomial Process). Assume that a stock’s daily returns exhibit
a trinomial process. With equal probabilities (p = 1/3), the stock’s price either
increases 3 or 2 %, or it decreases 4 % each day. What can be said about the price
of this stock at the end of the year, assuming a T D 260 work days and an initial
stock price of X0 D 100?

The stock price Xt follows a geometric trinomial process:
Xt D Zt � Xt�1 with P.Zt D 1:03/ D P.Zt D 1:02/ D P.Zt D 0:96/ D 1=3:

For the stock price at time t , we can write:

Xt D X0 �
t
Y

kD1

Zk

and

log Xt D log X0 C
t
X

kD1

log Zk

Denote QZk D log Zk , and observe that:

P. QZk D log 1:03/ D P. QZt D log 1:02/

D P. QZt D log 0:96/

D 1

3

Define QXt D log Xt , and then:

QXt D QX0 C
t
X

kD1

QZk

Since the sample size T D 260 is sufficiently large, the trinomial process QXt

follows approximatively a normal distribution with following parameters:

� D E. QXt /

D E. QX0/ C t � E. QZ1/

D log 100 C 260 � 1

3
.log 1:03 C log 1:02 C log 0:96/

D 5:35

�2 D Var. QXt /

D Var. QX0/ C t � Var. QZ1/

Since Var. QX0/ D Var.log 100/ D 0 and Var. QZ1/ D E. QZ2
1 /�fE. QZ1/g2, see Härdle

and Simar (2012), for the variance of QXt holds:
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�2 D t �
h

E. QZ2
1/ � ˚

E. QZ1/
�2
i

D 260 �
�

1

3

˚

.log 1:03/2 C .log 1:02/2 C .log 0:96/2
�

�

� 260 �
�

1

9
.log 1:03 C log 1:02 C log 0:96/2

�

D 0:25

Since the trinomial process QXt D log Xt is approximately normally distributed, the
stock price Xt D exp. QXt / is approximately lognormally distributed with mean:

E.Xt / D exp

�

� C 1

2
�2

�

D 238:89

and variance:

Var.Xt / D exp
	

�2 C 2 � �

 � ˚exp

	

�2

 � 1

� D 16355:48

For the 90 %-confidence interval, we therefore obtain:

X260 2
h

E.Xt/ � 1:64 �
p

Var.Xt/; E.Xt/ C 1:64 �
p

Var.Xt /
i

or

X260 2 Œ28:53; 449:25�j

Exercise 7.3 (Binomial Tree). A European put option with a maturity of 1 year
and a strike price of 120 EUR is written on a non-dividend-paying stock. Assume
the current stock price S0 is 120 EUR, the volatility � is 25 % per year, and the risk-
free rate r is 6 % per year. Use a two-period binomial tree to value the option.

(a) Construct an appropriate two-period pricing tree and check whether early
exercise is optimal.

(b) Describe the replicating portfolio at each node. Verify that the associated
trading strategy is self-financing, and that it replicates the payoff.

(a) We start with the calculation of the stock prices, in the two-period binomial tree
4t D 1

2
. The rate which the price moves up with equals:

u D exp.� C p4t/ D 1:19

The stock prices in the upper part of the tree are: S1
1 D S0 � u D 143:20 and

S2
2 D S0 � u2 D 170:89. The prices in the lower part of the tree move with the

rate d D 1=u such that: S0
1 D S0=u D 100:56 and S0

2 D S0=u2 D 84:26.
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After construction of the stock binomial tree, we can calculate the put option
prices at maturity: P.K D 120; S

j
2 / D .K � S

j
3 /C for j D 0; 1; 2. To obtain

option prices at period 1 and 0, we calculate the transition probability as
follows:

.1 � p/p D �24t

flog.u2/g2
D 1; yielding p D 1

2
:

Applying the following equation, we calculate the put option prices at t D 1

and t D 0:

P
	

K; Sk
n


 D exp.�r4t/
n

pP
�

K; SkC1
j C1

�

C .1 � p/P
�

K; Sk
j C1

�o

for k; j D 0; 1 :

Stock price Option price

170.89 0.00
143.21 0.00
120.00 8.41 0.00
100.00 17.34

84.26 35.74
Time 0.00 0.50 1.00

(b) The replicating portfolio at time 0 has .0 � 35:74/=.170:89 � 84:26/ D
�0:41 units of stock with value of �49.50, and long a bond with value
8.41 + 49.50 = 57.91. The value of the replicating portfolio is equal to that of
the option. This trading is self financed.

Exercise 7.4 (One Period Trinomial Model). Show that the payoff of a call
option cannot be replicated by stock and bond in a one period trinomial model.
Assume zero interest rate for simplicity.

Let S0 be the price of a stock at time t D 0, and Su, Sm,Sd be the corresponding
upper, middle and down movement prices. Construct the replicating strategy of x

stocks and y bonds for the call option with strike price K where Sd < K < Su. At
time t D 1 the strategy should produce the payoff:

8

<

:

xSu Cy D .Su � K/C
xSm Cy D .Sm � K/C
xSd Cy D .Sd � K/C

This system has a solution only when Su D Sm or Sm D Sd , which in fact
reduces this model to the one period binomial model.

Exercise 7.5 (Hedging Strategy in One-Period Trinomial Model). Find the
hedging strategy for a call option in a one period trinomial model such that the
quadratic hedging error is minimal. The quadratic hedging error is understood as
the square distance between the actual payoff of the option and the final value of the
hedge portfolio. Assume zero interest rate for simplicity.
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Consider the trinomial model as in Exercise 7.4. If Su > Sm > Sd and Sd <

K < Su one cannot perfectly replicate the payoff. Hedging errors "u; "m; "d appear
in the system of equations.

xSu Cy D .Su � K/C C"u

xSm Cy D .Sm � K/C C"m

xSd Cy D .Sd � K/C C"d

The hedging strategy .bx;by/> minimizing the quadratic hedging error is given by
the solution of the following least squares problem:

min
x;y

jjA	 x
y


 � bjj2

where

A D
0

@

Su 1

Sm 1

Sd 1

1

A ; b D
0

@

.Su � K/C
.Sm � K/C
.Sd � K/C

1

A

The solution is:
.bx;by/> D .A>A/�1A>b

Exercise 7.6 (Risk Neutral Probabilities). Consider the one period trinomial
model with the price S0 D 100 at time t D 0. At time t D 1 the three possible stock
prices are Su D 120, Sm D 100 and Sd D 80. Find the risk neutral probabilities
qu, qm, qd of the up, middle, and down movements such that the price of the
call option with strike K is equal to the price of the hedging portfolio minimizing
the quadratic hedging error (see Exercise 7.5) at time t D 0. Consider the cases
K1 D 110, K2 D 100 and K3 D 90. Assume zero interest rate for simplicity.

The risk neutral condition together with unit requirement for the sum of
probabilities yield two equations. The third one comes from the call option pricing
scheme i.e.

Suqu C Smqm C Smqd D S0 (7.1)

qu C qm C qd D 1

.Su � K/Cqu C .Sm � K/Cqm C .Su � K/Cqd D bxS0 Cby

where the form of .bx;by/> is given in Exercise 7.5. Solving the system (7.1) for K1,
K2 and K3 gives the probabilities qu D qm D qd D 1=3. Note that the probabilities
do not depend on K . Check also that for different price trees one obtains different
risk neutral probabilities which are again independent on the choice of K .

SFStrinomialSB



7 Binomial Model for European Options 85

Exercise 7.7 (Three-step implied Binomial Tree). Construct a three-step implied
binomial tree for stock prices, transition probabilities and Arrow-Debreu prices
using the Derman-Kani algorithm. Assume the current value of the underlying
stock S D 100, with no dividend, time to maturity T D 1 year and the annually
compounded riskless interest rate r D 3 % per year for all time expirations. In
contrast to Cox-Ross-Rubinstein (CRR) binomial tree we use a nonconstant function
for the implied volatility, let us assume the following convex function of moneyness,
defined as log.K=St/:

b�.K; St/ D �0:2=Œflog.K=St/g2 C 1� C 0:3 :

First, we set the starting node of level zero to the current value of the underlying
stock: S0

0 D 100. In the next step, we calculate the stock price in the upper node of
the first level S1

1 from the equation:

S1
1 D S0

0

˚

C .S; 4t/ exp.r4t/ C �0
0S

0
0 � �u

�

�0
0F

0
0 � exp.r4t/C

	

S0
0 ; 4t


C �u

D 105:94 ;

where �0
0 D 1, �u D

0
X

j D1

�
j
0 .F

j
0 � S0

0 / D 0 and F 0
0 D exp.r4t/S0

0 D 101:01.

Using the implied volatility for K D S0
0 and St D S , � D b�.S0

0 ; S/, we calcu-
late the call option price for strike price K D S0

0 from the CRR binomial tree,
C
	

S0
0 ; 4t


 D 3:37.
As we calculate the stock prices in an odd level, the stock price in the lower node

must adjust the logarithmic spacing condition:

S0
1 D

	

S0
0


2

S1
1

D 94:39:

Now, we can calculate the transition probability of making a transition from node
(0,0) to node (1,1):

p0
1 D F 0

0 � S0
1

S1
1 � S0

1

D 0:5726 :

The Arrow-Debreu prices in the first level are:

�0
1 D exp.�r4t/

˚

�0
0.1 � p0

1/
� D 0:5669

�1
1 D exp.�r4t/

	

�0
0p

0
1


 D 0:4231

In the next (even) level, we start with the central node and define S1
2 D S0

0 D 100.
Then we use the formula for stock price in the upper node:
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S2
2 D S1

2

˚

C
	

S1
1 ; 24t




exp.r4t/ � �u
�� �1

1S
1
1

	

F 1
1 � S1

2




C
	

S1
1 ; 24t




exp.r4t/ � �u � �1
1

	

F 1
1 � S1

2


 D 112:38 ;

with F 1
1 D exp.r4t/S1

1 D 107:00 and �u D
1
X

j D2

�
j
1 .F

j
1 � S1

1 / D 0. We obtain the

call option price from the CRR binomial tree with � D b�.S1
1 ; S/, C

	

S1
1 ; 24t


 D
2:05.

To compute the stock price in the lower node we use the following formula:

S0
2 D S1

2

˚

exp.r4t/P
	

S0
1 ; 24t


 � �l

� � �0
1S

0
1

	

F 0
1 � S1

2




exp.r4t/P
	

S0
1 ; 24t


� �l C �0
1

	

F 0
1 � S1

2


 ;

with F 0
1 D exp.r4t/S0

1 D 95:34 and �l D
�1
X

j D0

�
j
1

�

S0
1 � F

j
1

�

D 0. The put

option price is calculated from the CRR binomial tree with � Db�.S0
1 ; S/,

P
	

S0
1 ; 24t


 D 0:97.
The transition probabilities from node (1,0) to node (2,1) and from node (1,1) to

node (2,2) are:

p1
1 D F 0

1 � S0
2

S1
2 � S0

2

D 0:5658 ;

p1
2 D F 1

1 � S1
2

S2
2 � S1

2

D 0:5807 :

Now, we can calculate also the Arrow-Debreu prices in the second level:

�0
2 D exp.�r 4t/�0

1.1 � p1
1/ D 0:3176

�1
2 D exp.�r 4t/f�0

1p
1
1 C �1

1.1 � p1
2/g D 0:4870

�2
2 D exp.�r 4t/�1

1p1
2 D 0:1757 :

Analogously, we proceed the calculation for the last level n = 3 to get the complete
IBT. Check your results with the quantlet http://www.quantlet.com/mdstat/codes/

sfs/SFSIBTdk.html SFSIBTdk, see Figs. 7.1–7.3.
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Fig. 7.1 DK stock price tree

Fig. 7.2 DK transition
probability tree

Fig. 7.3 DK Arrow-Debreu price tree

Fig. 7.4 BC stock price tree
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Fig. 7.5 BC transition
probability tree

Fig. 7.6 BC Arrow-Debreu price tree

(0,0) (1,0) (1,1) (2,0) (2,1) (2,2) (3,0) (3,1) (3,2) (3,3)
0

0.2

0.4

0.6

0.8

1

Nodes of the tree

Arrow-Debreu prices

Fig. 7.7 Arrow-Debreu prices from the BC tree

Exercise 7.8 (Method of Barle-Cakici). Consider the call option from Exer-
cise 7.7 and construct the IBTs using the method of Barle-Cakici (BC). Assume
an exercise price K D 100 EUR/USD and compute the option price implied by the
binomial tree. Make a plot of the Arrow-Debreu prices.
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First, we construct the BC IBT using the quantlet http://www.quantlet.com/mdstat/

codes/sfs/SFSIBTbc.html SFSIBTbc. The BC construction is similar to the DK
algorithm from Exercise 7.8, one set the central nodes Si

nC1 D S0
0 exp.rn4t/ and

uses the Black-Scholes call and put option prices C.F i
n ; .nC1/4t/ and P.F i

n ; .nC
1/4t/, respectively.

To compute the call option price from an IBT, we use the Arrow-Debreu prices
and the stock prices in the last level of the tree. In our discrete model, the call option
price is (Figs. 7.4–7.7):

C.K; .n C 1/4t/ D
nC1
X

iD0

�i
nC1 max.Si

nC1 � K; 0/ : (7.2)

The stock prices in the last level are: S0
3 D 86:60; S1

3 D 97:73; S2
3 D 108:65; S3

3 D
123:53. Corresponding Arrow-Debreu prices in the third level are �0

3 D
0:1170; �1

3 D 0:3898; �2
3 D 0:3699; �3

3 D 0:0938. For the call price at maturity
and exercise price K D 100 then follows:

C.100; 1/ D
3
X

iD0

�i
3 max.Si

3 � K; 0/ D 5:41 EUR/USD :



Chapter 8
American Options

Opsi Amerika
Memang di dalam kehidupan ini tidak ada yang pasti. Tetapi
kita harus berani memastikan apa-apa yang ingin kita raih.
Indeed, there is uncertainty in this life. But we must dare to
make sure what we want to achieve.

Up to now we have considered mainly European options. This chapter however
focuses on American Options. An American option is an option that can be
exercised anytime during its life. The time at which the holder chooses to exercise
the options depends on the spot price of the underlying asset St . In this sense, the
exercising time is a random variable itself. It is obvious that the Black-Scholes
differential equations still hold as long as the options are not exercised. However the
boundary conditions are so complicated that an analytical solution is not possible.

The right to early exercise implies that the value of an American option can never
drop below its intrinsic value. For example, the value of an American put should not
go below max.K � St ; 0/ with the exercise price K . In contrast, this condition does
not hold for European options. That is because American puts would be exercised
before expiry date if the value of the option drop below the intrinsic value. Because
of their freedom to exercise American options at any point during the life of the
contract, they are more valuable than European options which can only be exercised
at maturity.

Exercise 8.1 (Relations). Explain the relation between American call and put, and
the following: value of the underlying asset, exercise price, stock volatility, interest
rate, time to exercise date.

The payoff of an American call option with exercise time t� 2 Œt0; T � is max.St� �
K; 0/, and is max.K � St� ; 0/ for the put option. Increasing the value of the
underlying asset would possibly increase the call option price. While for the put
option, the price will possibly decrease.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 8, © Springer-Verlag Berlin Heidelberg 2013
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In the same way, increasing the exercise price K would possibly decrease the
payoff max.St� � K; 0/ for call options and raise the payoff max.K � St� ; 0/ for
put options.

Increasing stock volatility and time to exercise date would both raise the risk of
buying put and call, therefore increase the price.

Increasing the interest rate would increase the profit of saving money, so the price
of a call would be higher, since the option allows one to save money before exercise.
Since for put options one requires to buy the underlying in advance to sell at t�,
one loses the opportunity to save money in bank, and the cost of carry increases.
Therefore the profit decreases, leading to a decrease of the put option prices.

The next table summarizes that how the American call and put options prices
change when the corresponding variables change (increase(C)/decrease(�)):

Increase Call option Put option

Value of the underlying asset C �
Exercise price � C
Stock volatility C C
Interest rate C �
Time to exercise date C C

Exercise 8.2 (Price of an American Call Option). Consider a stock whose price
increases by 20 % or decreases by 10 % in each period. We are now at t D 0 and
we have an American call option on this stock with an exercise price of 10:5 and
a terminal value at T D 2. What will be the price of this American call option at
t D 0? Will it be different from the price of a European call option? (Set the interest
rate and dividend equal to 0, and denote the intrinsic value at time T as CT .)

t D 0 t D 1 t D 2 CT

14:4 3:9

12

10 10:8 0:3

9

8:1 0:0

The movement of the stock prices can be seen above. Let us find the value of
this call option at t D 1 on the upper branch of the tree. We will use the martingale
measure approach to find the price of the call option.

t D 1 t D 2 CT

14:4 3:9

12

10:8 0:3
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q � 14:4 C .1 � q/ � 10:8 D 12

q D 1=3

C1 D 1=3 � 3:9 C 2=3 � 0:3

D 1:5

The intrinsic value of the option at t D 1 is also 12 � 10:5 D 1:5. So, the value
of the American option will not change whether it will be exercised at t D 1 or kept
until t D 2.

Now, let’s look at the other branch:

t D 1 t D 2 CT

10:8 0:3

9

8:1 0:0

q � 10:8 C .1 � q/ � 8:1 D 9

q D 1=3

C1 D 1=3 � 0:3 C 2=3 � 0

D 0:1

The intrinsic value of the option at t D 1 is 0. So, to exercise the American call
option, it will be optimal to wait until t D 2.

Now, we can calculate the value of this American call option at t D 0:

t D 0 t D 1 C1

12 1:5

10
9 0:1

q � 12 C .1 � q/ � 9 D 10

q D 1=3

C0 D 1=3 � 1:5 C 2=3 � 0:1

D 0:566

As we have seen, it is optimal to keep the American call option until the maturity.
The early exercise possibility of the American call option does not create any value
here. So it will not be early exercised and its price is equal to the European call
option.
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Exercise 8.3 (Option Value and Put-Call Parity). A stock price is currently 50.
The price can increase by a factor of 1:10, or fall by a factor of 0:90. The stock pays
no dividends and the yearly discrete compounding interest rate is 0:05. Consider
American put and call options on this stock with strike price 50, and 2 years’ time
to maturity and 1 year’s step length.

(a) What will be the price of this American call option at t D 0? Will it be different
from the price of a European call option?

(b) What will be the price of this American put option with the same strike price?
(c) Does the put call parity hold?

(a) The stock price is:

t D 0 t D 1 t D 2

60:5

55

50 49:5

45

40:5

Risk neutral probability is

q D 1 � 1:05 � 0:9

1:1 � 0:9
D 0:75

The call pricing tree without early exercise:

t D 0 t D 1 t D 2

10:50

7:50

5:36

0:00

0:00

Note for the call, there are no nodes at which early exercise is optimal.
(b) The put pricing tree without early exercise:

t D 0 t D 1 t D 2

0:00

0:12

0:71 0:50

2:62

9:50
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For the American put, early exercise is optimal at t D 1, St D 45 since the
intrinsic value is 50 � 45 D 5, which is larger than the value 2:62 of the option.

The American put pricing tree with early exercise:

t D 0 t D 1 t D 2

0:00

0:00

1:19 0:00

5:00

9:50

(c) Put call parity: P D C � S C K=.1 C r/�

European Options: 0:71 D 5:36 � 50 C 50=1:052

American Options: 1:19 > 5:36 � 50 C 50=1:052;

where K=.1 C r/� is the discounted strike price.

For non-dividend paying stocks, the European and American calls are of the same
value, but the American put is worth more than the European put. Since put-call
parity holds for the European options, American puts are generally worth more than
their simple parity values.

Exercise 8.4 (Option Value and Put-Call Parity). Consider the same model as in
Exercise 8.3. Assume that there is no dividend, and use continuous compounding
interest rate.

(a) Find the value of both European and American call options with strike prices
of 50 and maturities of 2 years. The yearly compounding risk-free rate is 5 %.

(b) Find the value of both European and American put options with strike prices of
50 and maturities of 2 years. The yearly compounding risk-free rate is 5 %.

(c) Is the put-call parity relation satisfied by the European options? For the
American ones? Would you predict that the American put price will be higher
than its parity value in general? Explain.

(a) Again we would first calculate the price movement and intrinsic value CT

accordingly.

t D 0 t D 1 t D 2 CT

60:5 10:5

55

50 49:5 0:0

45

40:5 0:0

Based on martingale approach, the call option price at time t is just the
discounted expected return.
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So at t D 1, we have:
When St D 55, the call option price is

fq � 10:5 C .1 � q/ � 0:00g � exp .�r/ D 7:554;

where q is the risk neutral probability calculated from:

fq � 60:5 C .1 � q/ � 49:5g � exp .�r/ D 55

q D 0:756

When St D 45, similarly, we get that the call price is 0.
Comparing the price with the intrinsic value at t , we notice:

7:554 � .55 � 50/

Therefore the American call option would not be early exercised, and the
European and American call options would be of the same price C0.

fq � 55 C .1 � q/ � 45g � exp .�r/ D 50:0

q D 0:756

f0:76 � 7:55 C .1 � 0:76/ � 0g � exp .�r/ D C0

D 5:435

(b) The stock prices and intrinsic values are shown as below:

t D 0 t D 1 t D 2 CT

60:5 0:0

55

50 49:5 0:5

45

40:5 9:5

At t D 1, we have:
When St D 55, the put option price with q D 0:756 is,

fq � 0:0 C .1 � q/ � 0:5g � exp .�r/ D 0:116

When St D 45, it is,

fq � 0:5 C .1 � q/ � 9:5g � exp .�r/ D 2:561
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As 2:561 � .50 � 45/, the American put option could be early exercised,
and American and European option prices deviate.

Then the European put option price would be:

C0 D f0:756 � 0:116 C .1 � 0:756/ � 2:561g � exp .�r/

D 0:677;

whereas the American put option price is:

C0 D f0:756 � 0:116 C .1 � 0:756/ � 5g � exp .�r/

D 1:240:

(c) Yes, plug in the European option price derived above to check whether:

C � S C K � exp.�r�/ D P;

with � D 2.
Since we have:

C � S C K � exp.�r�/ D 5:435 � 50 C 50 � 0:904

D 0:677

D P

The put call parity is satisfied for European option prices.

But with P D 1:240, we know P > C � S C K � exp.�r�/ for American option
prices, thus the put call parity is not satisfied. That is due to the early exercise of the
put option.

Exercise 8.5 (Option Value, Dividends and Put-Call Parity). Consider the same
model as in Exercise 8.3. However, this time we know that there will be a dividend
payment at t D 1 equal to 5.

(a) Find the value of both European and American call options with strike prices
of 50 and maturities of 2 years. The yearly compounding risk-free rate is 5 %.

(b) Find the value of both European and American put options with strike prices of
50 and maturities of 2 years. The yearly compounding risk-free rate is 5 %.

(c) Is the put-call parity relation satisfied by the European options? For the
American ones? Would you predict that the American put price will be higher
than its parity value in general? Explain.

(a) We first calculate the price movement and intrinsic value CT using a discounted
initial value.

QS0 D S0 � D1 � exp.�r/
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t D 0 t D 1 t D 2 CT

54:7 4:7

49:8

45:2 44:7 0:0

40:7

36:6 0:0

Then we calculate the European call value:

t D 0 t D 1 t D 2

4:75

3:41

2:46 0:00

0:00

0:00

But for the American call price, we need to compare the value with intrinsic
value max.St � K C D; 0/ at each state t . Then we have the value as below:

t D 0 t D 1 t D 2

4:75

4:77

3:43 0:00

0:00

0:00

So we see that the American call option with dividend would possibly be
early exercised.

(b) Following the price movement in (a), we have the European put option value:

t D 0 t D 1 t D 2

0:00

1:21

2:45 5:21

4:28

13:35

Compared with the intrinsic value max.K � St � D; 0/, the American put
option has the same value. So we notice that dividend would decrease the
chance of early exercise for American put.
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80.5(0.00)

73.2(0.01)

66.6(0.05) 65.9(0.05)

60.5(0.18) 59.9(0.18)

55(0.56) 54.5(0.59) 53.9(0.61)

50(1.63) 49.5(1.76) 49.0(1.88)

45(5.00) 44.6(5.45) 44.1(5.90)

40.5(9.50) 40.1(9.90)

36.5(13.55) 36.1(13.91)

32.8(17.19)

29.5(20.5)

129.7(0.00)

107.2(0.00)

107.2(0.00) 106.1(0.00)

97.4(0.00) 96.5(0.00)

88.5(0.00) 87.6(0.00) 86.8(0.00)

79.7(0.00) 78.9(0.00)

72.5(0.01) 71.7(0.00) 71.0(0.00)

65.2(0.03) 64.6(0.00)

59.3(0.17) 58.7(0.14) 58.1(0.00)

53.4(0.61) 52.8(0.59)

48.5(1.98) 48.0(2.08) 47.5(2.45)

43.7(6.34) 43.2(6.77)

39.7(10.31) 39.3(10.70) 38.9(11.1)

35.7(14.28) 35.4(14.63)

32.5(17.52) 32.2(17.85) 31.8(18.2)

29.2(20.80) 28.9(21.06)

23.9(26.09) 26.3(23.69) 26.0(23.96)

23.9(26.09) 23.7(26.32)

21.5(28.17) 21.3(28.69)

19.4(30.62)

17.4(32.56)

Fig. 8.1 Binomial tree for
stock price movement and
option value (in parenthesis)
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(c) Put call parity in this setting:

C � S C K � exp.�r�/ C D D P;

Since we have:

C � S C K � exp.�r�/ C D D 2:46 � 50 C 50 � 0:904 C 5 � 0:951

D 2:45

D P

The put call parity is satisfied for European option.

However, for American option, we notice a higher price for American call option
due to early exercise. So

C � S C K � exp.�r�/ C D > P:

Exercise 8.6 (Option Value in 10-step Binomial Model). Consider the same
model as in Exercise 8.3, but extend the binomial model to 10 steps in 2 years for an
American put option.

The movement of the stock price and American call value (in parenthesis) are shown
in Fig. 8.1. The critical nodes (marked red) show the nodes where the value is
less than the intrinsic value. Once touching those nodes, the option would be early
exercised. Thus, the blue line is the critical bound for stock prices. The put would
be early exercised if the stock price touches the bound. There are two paths of stock
price (in magenta) demonstrating the above idea. The two paths branch at the 6th
step when the stock price is 48:5. For one path, we see that when the stock price
falls to 43:7 in the 7th step, the put would be early exercised. While for the other,
the put would not be early exercised because it did not touch the critical bound,
so the vanished path after is shown in gray. Check your results with the quantlet

SFSbitreeNDiv.



Chapter 9
Exotic Options

A man with one watch always knows what time it is, a man with
two watches is never sure.

Exotic options are financial derivatives which are more complex than normally
traded options (vanilla options). They are mainly used in OTC-trading (over the
counter) to meet special needs of corporate customers. For example, a compound
option allows one to acquire an ordinary option at a later date, and a chooser option
is a form of the compound option where the buyer can decide at a later date which
type of option he would like to have.

Compared to straight call and put options, exotic options are more difficult to
price. However, we can still obtain some insights by using a standard approach,
such as the Black Scholes formula or binomial trees to valuate them. But indeed,
exotic options may lead to challenging problems in valuation and hedging.

Exercise 9.1 (Compound Option). A compound option is also called option on
option. It allows the purchaser to acquire an ordinary option at a later date.
Consider a European Call-on-a-Call option, with the first expiration date T1, the
second expiration date T2, the first strike price K1, and the second strike price K2.
(a) Determine the value of the compound option at time T1. (b) Let T1 D 4 months,
T2 D 12 months, K1 D 25, K2 D 220, initial value of the asset, volatility � D 0:23,
r D 0:034 and ST1 D 230, calculate the value of compound option at time T1.

(a) The purchaser of a compound option has the right to buy a new call option at
T1 for the price K1, and the new call has maturity T2 and strike price K2. So
whether the purchaser buys the call would depend on whether the value of the
call is higher than K1 at T1. At time T1, we have the value of the compound
option:

C Compound D maxf0; CBS.ST1 ; T2 � T1; K2/ � K1g; (9.1)

where CBS.ST1 ; T2 � T1; K2/ is the Black Scholes call option price.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 9, © Springer-Verlag Berlin Heidelberg 2013
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(b) CBS .ST1 ; T2 � T1; K2/ D 25:1614, and C Compound D maxf0; CBS.ST1 ; T2 �
T1; K2/ � K1g D 0:1614

Exercise 9.2 (Chooser Option). A chooser option (preference option) is a path
dependent option for which the purchaser pays an up-front premium and has the
choice of exercising a vanilla put or call on a given underlying at maturity. The
purchaser has a fixed period of time to make the choice. At time 0 < T0 < T ,
the purchaser chooses the option with the higher value.

(a) Give the payoff of the chooser option.
(b) In a non-arbitrage framework with S0

t D .1 C r/t .t D 0; � � � ; T; r > �1/,
show that the price of the call and the put option is equivalent to the price of a
chooser option:

C Chooser D C Call C C Put (9.2)

where C Call denotes the call option with underlying price St , strike price K

and maturity T . C Put defines the put option with strike price K.1 C r/T0�T and
maturity T0. (Hint: f.1 C r/�t Stg is a martingale.)

(a) Let .St /0�t�T be the stock price process.
The payoff of a chooser option is therefore:

Payoff

D maxf.ST � K/; 0g1.C Call
T0

� C Put
T0

/ C maxf.K � ST /; 0g1.C Call
T0

< C Put
T0

/

D maxf.ST � K/; 0g1.C Call
T0

� C Put
T0

/ C maxf.ST � K/; 0g1.C Call
T0

< C Put
T0

/

C maxf.K � ST /; 0g1.C Call
T0

< C Put
T0

/ � maxf.ST � K/; 0g1.C Call
T0

< C Put
T0

/

D maxf.ST � K/; 0g C .K � ST /1.C Call
T0

< C Put
T0

/

(b) Following the law of iterated expectations and the martingale property, the value
of the chooser option is the discounted expected payoff:

C Chooser

D EQŒmaxf.ST � K/; 0g=S0
T � C EQŒf.K � ST /=S0

T 1.C Call
T0

< C Put
T0

/�

D EQŒmaxf.ST � K/; 0g=S0
T � C EQŒEQŒfK � ST g=S0

T jFT0�1.C Call
T0

< C Put
T0

/�

D EQŒmaxf.ST � K/; 0g=S0
T � C EQŒfK � ST0.1 C r/T �T0g=S0

T 1.C Call
T0

< C Put
T0

/�

D EQŒmaxf.ST � K/; 0g=S0
T � C EQŒfK.1 C r/T0�T � ST0g=S0

T0

� 1.C Call
T0

< C Put
T0

/� (9.3)

Using the Call-Put Parity:

C Call
T0

� C Put
T0

D ST0 � K.1 C r/T0�T
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One can show that:

1.C Call
T0

< C Put
T0

/ D 1fST0 < K.1 C r/T0�T g

The Eq. (9.3) can be rewritten as follows:

EQŒmaxf.ST � K/; 0g=S0
T � C EQŒfK.1 C r/T0�T � ST0 g

�1.ST0 < K.1 C r/T0�T /=S0
T0

�

D EQŒmaxf.ST � K/; 0g=S0
T � C EQŒmaxfK.1 C r/T0�T � ST0 ; 0g=S0

T0
�

The first expectation is the call price with strike price K and maturity T , and the
second expectation is the price of the put option with strike price K.1 C r/T0�T

and time to maturity T0. Therefore, it holds:

C Chooser D C Put C C Call

Exercise 9.3 (Cliquet Option). In a cliquet option, the strike price periodically
resets before the expiration date is reached. If the expiration date is reached, and the
underlying price is below the strike price, the option will expire worthless, and the
strike will be reset to the lowest value of the underlying price. If the expiration date
is reached and the underlying value is higher than the strike price, the purchaser
of the option will earn the difference and the strike price will reset to the higher
underlying price. Consider a cliquet call with maturity T D 3 years and strike price
K1 D 100 in the first year. Suppose that the underlying in the 3 years are S1 D 90,
S2 D 120, S3 D 130. What is the payoff of the cliquet option?

The payoff of the cliquet call at maturity T :

max f.St1; St2 ; : : : ; StnDT / � St1g

In the first year, the underlying was S1 D 90, the cliquet option would expire
worthless. The new strike price for the second year will be set to K2 D 90. In the
second year S2 D 120, then the contract holder will receive a payoff 30 and the
strike price would reset to the new level of K3 D 120. At maturity, the payoff would
be S3 � K3 D 10. The total payoff would be 30 C 10 D 40.

Also we could use:

max f.St1; St2 ; St3/ � St1; 0g D 130 � 90 D 40

In sum, the payoff is 40 in this example.

Exercise 9.4 (Barrier Option). A barrier option changes its value in leaps as
soon as the stock price reaches a given barrier, which can also be time dependent.
A European down-and-in call is a barrier option which starts to be active only when
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Fig. 9.1 Two possible paths of the asset price. When the price hits the barrier (lower path), the

option expires worthless. SFSrndbarrier

the underlying St � B at any any time 0 � t � T , and a European down-and-out
call is a barrier option which expires worthless as long as the underlying St � B

at any time 0 � t � T . The two options share the same maturity time T and strike
price K . Explain why the down-and-in and the down-and-out call together have the
same effect as a normal European call (In-Out-Parity).

We know that at a time 0 � t � T , either St � B or St � B happens. It follows that
one and only one of the two options would be valid at maturity T . Thus the down-
and-in and the down-and-out call have the same payoff with a normal call at T .
By the no-arbitrage principle, we know that the down-and-in and the down-and-out
call have the same price with the normal call at t . See Fig. 9.1 for an example of
knock-out option.

Exercise 9.5 (Forward Start Option). Forward start options are options whose
strike is unknown at the beginning, but will be determined at an intermediate time t .
So a forward start option is similar to a vanilla option except for not knowing the
strike price at the moment of purchase. The strike is usually determined by the
underlying price at time t . Let St denote a random path in a binomial tree. Let
a > 0 and b < 0 denote the upward rate and downward rate. r is the risk free
interest rate.

Let 0 < t < T . Calculate the price and a Delta hedge for the forward start
option, whose payoff is given by

maxf.ST =St � K/; 0g

where K is the strike price and ST is the stock price at maturity T .

The discounted payoff of the forward start option is

.1 C r/�T maxf.ST =St � K/; 0g;

and can also be written as

.1 C r/�T maxŒf.1 C a/s.1 C b/T �t�s � Kg; 0�;
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Fig. 9.2 Binomial tree for
stock price movement at time
T D 3

where a > 0 and b < 0 are the rates of going up and down. Also we assume that
1 C a D 1=.1 C b/ for the recombining property.

As shown in Fig. 9.2, St can be expressed as the initial price adjusted by 0 � k � t

upward movements rate and t � k downward movements rate. ST can be expressed
as the initial price adjusted by 0 � k Cs � T upward movements rate and T �k �s

downward movements rate.

St D S0.1 C a/k.1 C b/t�k

ST D S0.1 C a/kCs.1 C b/T �k�s

Under the risk neutral probability measure, the price of the forward start option
(C F ) equals to the expected discounted payoff:

C F D .1 C r/�T EQ Œmaxf.ST =St � K/ ; 0g�

D .1 C r/�T

T �t
X

sD0

maxŒf.1 C a/s.1 C b/T �t�s � Kg; 0�

 

T � t

s

!

qs.1 � q/T �t�s

where q D .r � b/=.a � b/ is the risk neutral probability of upward movements.
For a hedging strategy, suppose we know the stock price up to time l (l > t),

then the option value at time l can still be calculated:

�l.S0; : : : ; Sl / D .1 C r/l�T

T �l
X

sD0

max

��

Sl

St

.1 C a/s.1 C b/T �l�s � K

�

; 0

�

�
 

T � l

s

!

qs.1 � q/T �l�s
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Then we can approximate Delta at l by

�l D
�

�tfS0; : : : ; Sl�1; Sl�1.1 C a/g � �tfS0; : : : ; Sl�1; Sl�1.1 C b/g
Sl�1.a � b/

�

.1 C r/l

D
 

T � t

s

!

qs.1 � q/T �t�s

�
T �l
X

sD0

max

��

Sl�1.1 C a/

St

.1 C a/s.1 C b/T �l�s � K

�

; 0

�

�
�

max

�

Sl�1.1 C b/

St

.1 C b/s.1 C a/T �l�s � K

�

; 0

�

� 1

.a � b/Sl�1

Thus we can buy ��l stocks at time l to hedge.
When l � t , �l D 0.

Exercise 9.6 (Forward Start Option). Consider a call option with forward start
t D 4 months from today (t D 0). The option starts at K D 1:1St , time to maturity
is T D 1 year from today, the initial stock price S0 is 60, the risk free interest rate
is r D 9 %, the continuous dividend yield is d D 3 %, and the expected volatility of
the stock is � D 20 %. What is the price of this forward start option?

The value of a forward start option C F is given by:

C F D S0 expf.b � r/tgfexpf.b � r/.T � t/g˚.d1/

�K=St expf�r.T � t/g˚.d2/g
(9.4)

where

d1 D log.St =K/ C .b C �2=2/.T � t/

�
p

.T � t/

d2 D d1 � �
p

.T � t/

and b D r � d as the cost of carry.
First, we calculate accordingly:

d1 D �0:2571

d2 D �0:4204

and then:

˚.d1/ D 0:3985

˚.d1/ D 0:3371
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Plug in (9.4), the forward option price is:

C F D 2:4589

Exercise 9.7 (Product Call Option). Find a formula for a European-style “prod-
uct call” with payoff max.S1

t S2
t � K; 0/, where S1

t and S2
t are the prices of

assets with correlated random increments. Apply the Black-Scholes assumptions,
i.e. suppose that St follows a geometric Brownian motion.

If W 1
t and W 2

t are two independent Brownian motions, then

B1
t D W 1

t

B2
t D �W 1

t C
p

1 � �2W 2
t

define two correlated Brownian motions with correlation � 2 Œ�1; 1�.
The stock price processes can be written as:

S1
t D S1

0 exp

��

�1 � �2
1

2

�

t C �1B1
t

�

S2
t D S2

0 exp

��

�2 � �2
2

2

�

t C �2B2
t

�

leading to

S1
t D S1

0 exp

��

�1 � �2
1

2

�

t C �1W 1
t

�

S2
t D S2

0 exp

��

�2 � �2
2

2

�

t C �2

�

�W 1
t C

p

1 � �2W 2
t

	
�

Now the Girsanov transformation �T (Theorem 22.4 in Franke et al. (2011))
for the two processes of discounted stock prices QS1

t D exp.�rt/S1
t and QS2

t D
exp.�rt/S2

t has to be found. Some thoughts about the binomial formula suggest:

dQ

dP
D �T D exp

�

	1W
1

T C 	2W
2

T � 1

2
	2

1 T � 1

2
	2

2 T

�

(9.5)

with 	1 and 	2 the unknown market price of risk (MPR). Recall that �t has to fulfill
the property of QS1

t D exp.�rt/S1
t and QS2

t D exp.�rt/S2
t being Q-martingales. In

terms of (9.5) this means that the equations:

EQŒ QSj
t jFs� D QSj

s ; j D 1; 2

have to hold for all s � t , where

EQŒ QSt jFs� D E
�

dQ

dP
QSt jFs

�

D EŒ�t
QSt jFs�:
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Using (9.5) and the interest rate r we obtain for the parameters 	1 and 	2:

	1 D r � �1

�1

(9.6)

	2 D 1
p

1 � �2

�

r � �2

�2

� �
r � �1

�1

�

(9.7)

Thus the Q-Brownian motions are:

W �1
t D W 1

t � 	1t D W 1
t � r � �1

�1

t

W �2
t D W 2

t � 	2t D W 2
t � 1

p

1 � �2

�

r � �2

�2

� �
r � �1

�1

�

t

Note that W �1
t and W �2

t are independent. The price of the product call option is
the discounted expected value (under Q) of the future payoff:

C.S1
t S2

t ; 
/ D exp.�r
/EQ



.S1
T S2

T � K/CjFt

�

As

.S1
T S2

T � K/C D
�

S1
T S2

T � K if S1
T S2

T � K > 0

0 if S1
T S2

T � K � 0

the inequality S1
T S2

T > K has to be considered from a stochastic (Q) point of view.
The product S1

t S2
t is calculated:

S1
t S2

t D S1
0 S2

0 exp

��

�1 � �2
1

2

�

t C �1W 1
t C

�

�2 � �2
2

2

�

t

C �2.�W 1
t C

p

1 � �2W 2
t /

�

D S1
0 S2

0 exp

��

�1 C �2 � �2
1 C �2

2

2

�

t C �1

�

W 1�
t C 	1t




C �2

n

�.W 1�
t C 	1t/ C

p

1 � �2
�

W 2�
t C 	2t



o
�

D S1
0 S2

0 exp

��

2r � �2
1 C �2

2

2

�

t C .�1 C �2�/ W 1�
t C �2

p

1 � �2W 2�
t

�

D S1
0 S2

0 exp

��

2r � �2
1 C �2

2

2

�

t C QWt

�

where QWt D .�1 C �2�/ W 1�
t C �2

p

1 � �2W 2�
t � N.0; Q�2t/, and Q�2 D �2

1 C
2��1�2 C �2

2 .
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It follows

S1
T S2

T D S1
t S2

t exp

��

2r � �2
1 C �2

2

2

�


 C QWT � QWt

�

(9.8)

and therefore

S1
T S2

T > K

being equivalent to

Z >
log

�

K

S1
t S2

t

	

�
�

2r � �2
1

2
� �2

2

2

	



p


 Q�
defD �d1 (9.9)

for Z � N.0; 1/ under Q.
Finally with (9.8) and (9.9):

C.S1
t S2

t ; 
/ D exp.�r
/EQ
h

.S1
T S2

T � K/CjFt

i

D exp.�r
/EQ

2

4

 

S1
t S2

t exp

( 

2r � �2
1 C �2

2

2

!


 C QWT � QWt

)

� K

!C ˇ

ˇ

ˇ

ˇ
Ft

3

5

D exp.�r
/EQ

2

4

 

S1
t S2

t exp

( 

2r � �2
1 C �2

2

2

!


 C Q�p

 Z

)

� K

!C ˇ

ˇ

ˇ

ˇ
Ft

3

5

D exp.�r
/

Z 1

�1

 

S1
t S2

t exp

( 

2r � �2
1 C �2

2

2

!


 C Q�p

 x

)

� K

!C
'.x/ dx

D exp.�r
/

Z 1

�d1

 

S1
t S2

t exp

( 

2r � �2
1 C �2

2

2

!


 C Q�p

 x

)

� K

!

' .x/ dx

D exp.�r
/
1p
2�

"
Z 1

�d1

S1
t S2

t exp

( 

2r � �2
1 C �2

2

2

!


 C Q�p

 x � x2

2

)

dx

�
Z 1

�d1

K exp

 

�x2

2

!

dx

#

D exp.�r
/
1p
2�

"

S1
t S2

t

Z 1

�d1

exp

( 

2r � �2
1 C �2

2

2

!


 C Q�p

 x � x2

2

)

dx

�K

Z d1

�1
exp

 

�x2

2

!

dx

#

D exp.r
/
1p
2�

S1
t S2

t

Z 1

�d1

exp

( 

��2
1 C �2

2

2

!


 C Q�p

 x � x2

2

)

dx

� exp.�r
/K˚ .d1/ (9.10)
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Let y D x � Q�p

 .

Z 1

�d1

exp

��

��2
1 C �2

2

2

�


 C Q�p

 x � x2

2

�

dx

D
Z 1

�d1�Q�p



exp

(
�

��2
1 C �2

2

2

�


 C Q�p


�

y C Q�p



 �

�

y C Q�p



2

2

)

dy

D
Z 1

�d2

exp

� Q�2 � �2
1 � �2

2

2

 � y2

2

�

dy

D exp

� Q�2 � �2
1 � �2

2

2



�Z 1

�d2

exp

�

�y2

2

�

dy

D exp .�1�2�
/

Z d2

�1
exp

�

�y2

2

�

dy

Thus (9.10) reads:

exp.r
/S1
t S2

t exp.�1�2�
/
1p
2�

Z d2

�1
exp

�

�y2

2

�

dy � exp.�r
/K˚ .d1/

D expf.r C �1�2�/
gS1
t S2

t ˚ .d2/ � exp.�r
/K˚ .d1/

The price of the European Product Call is found finally as:

C.S1
t S2

t ; 
/ D expf.r C �1�2�/
g S1
t S2

t ˚ .d2/ � exp.�r
/K˚ .d1/ (9.11)

d1 D
log

�

S1
t S2

t

K

	

C
�

2r � �2
1 C�2

2

2

	



p


 Q�
d2 D d1 C Q�p




Exercise 9.8 (Product Call Option). Consider two stock prices, one for Allianz
S1

t D 60 and one for Munich Re S2
t D 100 with volatilities �1 D 42:49 and �2 D 31:4

and we assume that both stocks are correlated with coefficient � D 0:3. Calculate the
price of the product call option if the interest rate is 1 %, strike price K D 6;000 and
time to maturity is 1 year.

According to the formulas given in Exercise 9.7:

Q�2 D 0:42492 C 2 � 0:3 � 0:4249 � 0:314 C 0:3142

D 0:3592

d1 D
log

�

60�100
6000


C
�

2 � 0:01 � 0:42492C0:3142

2

	

� 1
p

1
p

0:3582
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D �0:1995

d2 D �0:1995 C p
0:3582

p
1

D 0:3998

Thus the price of the European Product Call is:

C.60 � 100; 1/ D expf.0:01 C 0:4249 � 0:314 � 0:3/ � 1g 60 � 100 � ˚ .0:3998/

� exp.�0:01 � 1/ � 6000 � ˚ .�0:1995/

D 1633:364

SFSproductcall

Exercise 9.9 (Option pricing on an arithmetic Brownian motion). Derive the
pricing formula for a call option on St , where St follows an arithmetic Brownian
motion. It is assumed that the riskless interest rate r D 0, the stock pays no dividends
and the option is at-the-money. Calculate the distribution of St , the pricing formula
on St and give the call option price.

An arithmetic Brownian motion St with drift � and volatility � is described as:

dSt D �dt C �dWt ,

where Wt is a standard Brownian motion.
Consider an American call option given by

C D maxfSt � K; 0g

Under the risk-neutral measure Q the price of the call option is:

C.S; 
/ D EQ fexp.�r
/ max.S
 � K; 0/g

with interest rate r . Now, we introduce

QWt D r � � C Wt :

Concerning the distribution of St with � D r D 0, we now have:

dSt D r dt C � d QWt D � d QWt

Integrating yields:

St D S0 C � QWt

Hence,

St � N.S0; �2t/:
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Calculating the call option price reads

C.S; 
/ D EQŒmaxfS
 � K; 0g�
D EQŒ.S
 � K/1.S
 > K/�

D
Z 1

K

.S
 � K/
1p

2��2

exp

�

� .S
 � S0/
2

2�2


�

dS


D
Z 1

K

S


1p
2��2


exp

�

� .S
 � S0/
2

2�2


�

dS


�
Z 1

K

K
1p

2��2

exp

�

� .S
 � S0/
2

2�2


�

dS


For the first term

D
Z 1

K

S


1p
2��2


exp

�

� .S
 � S0/
2

2�2


�

dS


we define y D S
 � S0p
�2


to obtain:

Z 1
K�S0p

�2


.S0 C
p

�2
y/

r

�2


2��2

exp

�

�y2

2

�

dy

D
r

�2


2�

Z 1
K�S0p

�2


y exp

�

�y2

2

�

dy C S0

Z 1
K�S0p

�2


1p
2�

exp

�

�y2

2

�

dy

D �
p


p
2�

�

� exp

�

�y2

2

��1

K�S0p

�2


C S0˚

�

S0 � K

�
p




�

D �
p



1p
2�

exp

�

� .K � S0/
2

2�2


�

C S0˚

�

S0 � K

�
p




�

D�
p


'

�

K � S0

�
p




�

C S0˚

�

S0 � K

�
p




�

The second term involves the distribution of S
 . Hence, we have

K Q.S
 > K/ D K Q

�

S
 � S0

�
p



>

K � S0

�
p




�

D K

�

1 � Q

�

S
 � S0

�
p



� K � S0

�
p




��
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D K

�

1 � ˚

�

K � S0

�
p




��

D K ˚

�

S0 � K

�
p




�

Finally, the call option price reads

C.S; 
/ D �
p


'

�

K � S0

�
p




�

C S0˚

�

S0 � K

�
p




�

� K˚

�

S0 � K

�
p




�

D �
p


'

�

K � S0

�
p




�

C .S0 � K/˚

�

S0 � K

�
p




�

Exercise 9.10 (Power Call Option). Let us consider a Power call option with
payoff structure .S˛

T � K/C D maxfS˛
T � K; 0g. This is an example of a nonlinear

payoff function, of which closed-form solutions are available. A higher payoff is
possible compared to plain vanilla options, but also a higher premium compared
to plain vanilla options is to be expected. Calculate the fair price for such a Power
call option. Apply the Black-Scholes assumptions, i.e. suppose that St follows a
geometric Brownian motion.

The SDE of the underlying asset is:

dSt D �St dt C �St dWt (9.12)

The solution is

ST D St exp

��

� � 1

2
�2

�


 C �.WT � Wt /

�

or

ST D St exp

��

� � 1

2
�2

�


 C �
p


Z

�

, Z � N.0; 1/

Under the risk-neutral pricing measure measure Q, the underlying asset evolves
according to

dSt D rSt dt C �St d QWt where QWt is a Q–Brownian Motion.

The existence of the Q–Brownian Motion QWt is ensured by the Girsanov
Theorem 22.4 in Franke et al. (2011).

The solution of (9.12) under Q is

ST D St exp

��

r � 1

2
�2

�


 C �. QWT � QWt /

�
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or

ST D St exp

��

r � 1

2
�2

�


 C �
p


Z

�

Pricing formula for a contingent claim C with 
 D T � t :

C.St ; 
/ D exp.�r
/EQŒC.ST ; 0/jFt �

where C.ST ; 0/ is the payoff function of the contingent claim at maturity of the
claim. Thus we need to evaluate

C.St ; 
/ D exp.�r
/EQŒ.S˛
T � K/CjFt �

The conditional expectation EQŒ.S˛
T � K/CjFt � can be rewritten as

EQŒ.S˛
T � K/CjFt � D EQŒS˛

T 1.S˛
T > K/jFt � � KEQŒ1.S˛

T > K/jFt � D T1 � T2

For the dynamics of S˛
t , we apply ItOo’s formula with S˛

t D f .St ; t/ and (9.5):

@f .St ; t/

@t
D 0

@f .St ; t/

@s
D ˛S˛�1

t

@2f .St ; t/

@s2
D .˛ � 1/˛S˛�2

t

Thus

dS˛
t D 1

2
.˛ � 1/˛S˛�2

t �2S2
t dt C ˛S˛�1

t dSt

D 1

2
.˛ � 1/˛S˛

t �2dt C ˛S˛�1
t .�St dt C �St dWt/

D
�

˛� C 1

2
�2˛.˛ � 1/

�

„ ƒ‚ …

Q�

S˛
t dt C ˛�

„ƒ‚…

Q�
S˛

t dWt

The solution is:

S˛
T D S˛

t exp

��

Q� � 1

2
Q�2

�


 C Q�.WT � Wt /

�

D S˛
t exp

��

˛� C 1

2
�2˛.˛ � 1/ � 1

2
˛2�2

�


 C ˛�.WT � Wt /

�

D S˛
t exp

�

˛

�

� � 1

2
�2

�


 C ˛�.WT � Wt/

�
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Under Q, the term in T1 equals:

S˛
T D S˛

t exp

�

˛

�

r � 1

2
�2

�


 C ˛�. QWT � QWt /

�

or

S˛
T D S˛

t exp

�

˛

�

r � 1

2
�2

�


 C ˛�
p


Z

�

For the evaluation of the second term T2 we find an expression for:

EQŒ1.S˛
T > K/jFt �

Note that S˛
T > K when log.S˛

T / > log.K/ or:

log.S˛
t / C ˛

�

r � 1

2
�2

�


 C ˛�
p


Z > log.K/

log.St / C
�

r � 1

2
�2

�


 C �
p


Z >
1

˛
log.K/

1
˛

log.K/ � log.St / � �

r � 1
2
�2






�
p



< Z

log.K
1
˛ =St/ � �

r � 1
2
�2






�
p




defD �z� < Z

Hence

EQŒ1fS˛
T >KgjFt � D Q

�

Z > �z�
 D P.Z > �z�/ D
Z 1

�z�

'.z/d z

D
Z z�

�1
'.z/d z D ˚.z�/

where '.z/ and ˚.z/ are the density and distribution function of the standard normal
variable Z, respectively.

Thus:

EQŒ1.S˛
T > K/jFt � D ˚.z�/

For T1 we obtain:

EQ



S˛
T 1.S˛

T > K/jFt

� D 1p
2�

Z 1

�z�

S˛
T

‚ …„ ƒ

S˛
t exp

�

˛

�

r � 1

2
�2

�


 C ˛�
p


z

�

� exp

�

�1

2
z2

�

d z
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D 1p
2�

Z 1

�z�

S˛
t exp

�

˛

�

r � 1

2
�2

�


 C ˛�
p


z � 1

2
z2

�

d z

D 1p
2�

S˛
t exp

�

˛

�

r � 1

2
�2

�




�

„ ƒ‚ …

WDXt

Z 1

�z�

exp

�

˛�
p


z � 1

2
z2

�

d z
(9.13)

Manipulation of the integrand yields:

� .z � ˛�
p


/2

2
D � z2 � 2˛�

p

z C ˛2�2


2

D �1

2
z2 C ˛�

p

z � 1

2
˛2�2


Thus:

� .z � ˛�
p


/2

2
C 1

2
˛2�2
 D �1

2
z2 C ˛�

p

z

Insert this into (9.13):

T1 D 1p
2�

Xt

Z 1

�z�

exp

�

�1

2
z2 C ˛�

p

z

�

d z

D 1p
2�

Xt

Z 1

�z�

exp

�

� .z � ˛�
p


/2

2
C 1

2
˛2�2


�

d z

D 1p
2�

Xt exp

�

1

2
˛2�2


�Z 1

�z�

exp

�

�1

2
.z � ˛�

p

/2

�

d z (9.14)

Now, define y D z�˛�
p


 and observe dy D d z and the lower bound of integral
changes from �z� to .�z� � ˛�

p

/

Thus (9.14) reads:

T1 D Xt exp

�

1

2
˛2�2


�Z 1

�z��˛�
p




1p
2�

exp

�

�1

2
y2

�

dy

D Xt exp

�

1

2
˛2�2


�Z 1

�z��˛�
p




'.y/dy

D Xt exp

�

1

2
˛2�2


�Z z�C˛�
p




�1
'.y/dy (symmetry)

D Xt exp

�

1

2
˛2�2


�

˚
�

z� C ˛�
p
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Recall now Xt D S˛
t expf˛ �r � 1

2
�2




g, thus:

Xt � exp

�

1

2
˛2�2


�

˚
�

z� C ˛�
p






D S˛
t exp

�

˛

�

r � 1

2
�2

�


 C 1

2
˛2�2


�

˚
�

z� C ˛�
p






Thus:

EQŒS˛
T 1.S˛

T > K/jFt � D S˛
t exp

�

˛

�

r � 1

2
�2

�


 C 1

2
˛2�2


�

� ˚
�

z� C ˛�
p






Discounting the summands Risk–neutral pricing equation:

Ct D exp .�r
/ EQŒS˛
T � KjFt �

D exp .�r
/ T1 � K exp .�r
/ T2

Discounting the first summand over the remaining lifetime of the option yields:

S˛
t exp

�

�r
 C ˛

�

r � 1

2
�2

�


 C 1

2
˛2�2


�

˚.�/

D S˛
t exp

�

.˛ � 1/

�

r C 1

2
˛�2

�




�

˚.z� C ˛�
p


 /

Discounting the second summand yields: exp .�r
/ ˚.z�/.
Putting pieces together yields the pricing equation for a European Power Call

option:

Ct D S˛
t exp

�

.˛ � 1/

�

r C 1

2
˛�2

�




�

˚
�

z� C ˛�
p




 � K exp .�r
/ ˚.z�/

(9.15)

with z� C ˛�
p


 D log.St=K
1
˛ / C ˚

r C .˛ � 1
2
/�2

�




�
p




z� D log.St=K
1
˛ / C �

r � 1
2
�2






�
p
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Table 9.1 Comparison of BS plain vanilla call and BS power call.

SFScompBS

St D 10 (ATM vanilla) St D 15 (ITM vanilla)

Vanilla call 1.21 5.37
Power call 101.10 239.61

Exercise 9.11 (Plain Vanilla Call Option and BS Power Call Option). Let us
compare (9.15) with a plain vanilla BS price. Choose K D 10; r D 0:02; � D
0:22; 
 D 1:5; and ˛ D 2. Calculate the price for a BS plain vanilla call option
and a BS power call option under St D 10 and St D 15.

Plugging the given parameters into the above stated definition of z� yields

z� D log.St=10
1
2 / C �

0:02 � 0:5 � 0:222



1:5

0:22
p

1:5

Hence, one obtains z�.St D 10/ D 4:25726 and z�.St D 15/ D 5:762082. Thus,
the price of the BS power call option under St D 10 is

Ct D 102 � exp
˚

.2 � 1/
�

0:02 C 0:5 � 2 � 0:222

 � 1:5

� � ˚.4:25726 C 2 � 0:22
p

1:5/

� 10 � exp.�0:02 � 1:5/˚.4:25726/

D 101:1004

Applying the same procedure for St D 15 yields Ct D 239:6064.
The BS formula for a plain vanilla European call option reads:

C.St ; 
/ D St ˚.d1/ � K exp.r
/˚.d2/;

where we use the abbreviations

d1 D y C �
p


;

d2 D y

y D log St=K C �

r � �2=2






�
p



:

Plugging in the given parameters yields Ct D 1:210116 for St D 10 and 5:367782

for St D 15 (Table 9.1).



Chapter 10
Models for the Interest Rate and Interest Rate
Derivatives

Human fortunes are as unpredictable as the weather.

Pricing interest rate derivatives fundamentally depends on the underlying term
structure. The often made assumptions of constant risk free interest rate and its
independence of equity prices will not be reasonable when considering interest
rate derivatives. Just as the dynamics of a stock price are modeled via a stochastic
process, the term structure of interest rates is modeled stochastically. As interest
rate derivatives have become increasingly popular, especially among institutional
investors, the standard models for the term structure have become a core part of
financial engineering. It is therefore important to practice the basic tools of pricing
interest rate derivatives. For interest rate dynamics, there are one-factor and two-
factor short rate models, the Heath Jarrow Morton framework and the LIBOR
Market Model.

Exercise 10.1 (Forward Rate Agreements and Receiver Interest Rate Swap).
Consider the setup in Table 10.1 with the face value of the considered bonds as 1
EUR.

(a) Calculate the value of the forward rate agreements.
(b) Calculate the value of a receiver interest rate swap.
(c) Determine the swap rate.

(a) A forward rate agreement FRARK ;S fr.t/; t; T g is an agreement at time t that a
certain interest rate RK will apply to a principal amount for a certain period of
time �.T; S/, in exchange for an interest rate payment at the future interest rates
R.T; S/, with t < T < S .

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 10, © Springer-Verlag Berlin Heidelberg 2013

119



120 10 Models for the Interest Rate and Interest Rate Derivatives

Table 10.1 Dataset Maturity(years) 0:5 1 1:5 2

Bond value 0:97 0:94 0:91 0:87

Strike rate (%) 7:50 7:50 7:50 7:50

The value of a forward rate agreement is determined by:

FRARK ;S fr.t/; t; T g D �.T; S/fRK � R.T; S/g
1 C R.t; S/�.t; S/

D V.t; S/�.T; S/RK C V.t; S/ � V.t; T / (10.1)

where t is the current time, the time when FRAs come into place is T , and the
maturity of the FRAs is S . Here RK stands for the strike interest rate.

The term structure of interest rates is therefore not needed. �.T; S/ D 0:5 for all
FRAs. Plug in (10.1), we now calculate:

FRA0:075;0:5fr.t/; 0; 0:0g D 0:97 � 0:5 � 0:075 C 0:97 � 1:00 D 0:0064

FRA0:075;1:0fr.t/; 0; 0:5g D 0:94 � 0:5 � 0:075 C 0:94 � 0:97 D 0:0053

FRA0:075;1:5fr.t/; 0; 0:5g D 0:91 � 0:5 � 0:075 C 0:91 � 0:94 D 0:0041

FRA0:075;2:0fr.t/; 0; 0:5g D 0:87 � 0:5 � 0:075 C 0:87 � 0:91 D �0:0074

These results are given in Table 10.2.

(b) An Interest Rate Swap IRSRK ;T fr.t/; tg is an agreement to exchange payments
of a fixed rate RK against a variable rate R.t; ti / over a period �.t; T / at certain
time points ti , with t � ti � T . When we consider a receiver interest rate swap,
we receive the fixed interest rate in exchange for paying the floating rate.

For the valuation of the receiver interest rate swap, we can apply two different
methods. First, we can value the fixed leg and floating leg of the swap separately.
This would correspond to thinking of an IRS as an agreement to exchange a coupon-
bearing bond for a floating rate note. For the fixed leg we set the coupon payments
equal to:

ci D �i RK;

where �i is the time to maturity of bond i . This gives us:

FixedLegRK
fr.t/; tg D

n�1
X

iD0

f1 C R.t; tiC1/�i g�1ci C V.t; T /

D
n�1
X

iD0

V .t; tiC1/RK�i C V.t; T /
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Table 10.2 Forward rate agreements

Maturity (years) 0:5 1 1:5 2

FRA 0:0064 0:0053 0:0041 �0:0074

D 0:97 � 0:075 � 0:5 C 0:94 � 0:075 � 0:5 C 0:91 � 0:075 � 0:5

C0:87 � 0:075 � 0:5 C 0:87

D 1:008375

The value of the floating leg will, by definition, always equal to 1 EUR. Thus the
value of the receiver interest rate swap equals to:

RIRS0:075;2fr.t/; 0g D FixedLegfr.t/; 0g � FloatingLegfr.t/; 0g
D 1:008375 � 1

D 0:008375

Alternatively, we can value the swap by adding the values of the seperate FRAs
from Table 10.2:

RIRS0:075;2fr.t/; 0g D
n�1
X

iD0

FRA0:075;tiC1
fr.t/; 0; ti g

D 0:0064 C 0:0053 C 0:0041 � 0:0074

D 0:0084

(c) The swap rate is:

RS.0; 2/ D f1 � V.0; 2/g=
(

n�1
X

iD0

V .0; tiC1/�i

)

D .1 � 0:87/=.0:97 � 0:5 C 0:94 � 0:5 C 0:91 � 0:5 C 0:87 � 0:5/

D 0:07

We can also calculate the swap rate by setting the value of the receiver interest
rate swap equal to zero:

RIRSRS ;2fr.t/; 0g D 0

0:97 � RS � 0:5 C 0:94 � RS � 0:5

C0:91 � RS � 0:5 C 0:87 � RS � 0:5 C 0:87 � 1 D 0

1:845 � RS � 0:13 D 0

RS D 0:07
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Exercise 10.2 (Heath Jarrow Morton Framework). Consider the one factor
Heath Jarrow Morton framework:

df .t; T / D ˛.t; T /dt C ˇ.t; T /dW t (10.2)

where

˛.t; T / D �.t; T /

�

@�.t; T /

@T

�

and

ˇ.t; T / D
�

@�.t; T /

@T

�

:

(a) Show that if volatility is constant, this model is reduced to the Ho-Lee model for
the short rate dynamic process.

(b) Show that if volatility �.t; T / D � expf�a.T �t/g, where a and � are constants,
this model is reduced to the Hull-White model for the short rate dynamic
process.

(a) The Ho-Lee model is:
dr.t/ D ı.t/dt C �dW t :

If d�.t; T /=dT D � , then:

�.t; T / D � � .T � t/:

Thus, the process for the instantaneous forward rate becomes:

f .t; T / D f .0; T / C �2

t
Z

0

.T � u/ du C �Wt

D f .0; T / C �2.tT � t2

2
/ C �Wt :

Since r.t/ D f .t; t/:

r.t/ D f .0; t/ C �2t2

2
C �Wt

which gives the SDE:

dr.t/ D ff .0; t/ C �2tgdt C �dW t :

So this model is the Ho-Lee model with ı.t/ D f .0; t/ C �2t as a fixed function of
time.
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(b) The Hull-White model is:

dr.t/ D fı.t/ � ar.t/gdt C �dW t : (10.3)

Here, we consider:

d�.t; T /

dT
D � expf�a.T � t/g: (10.4)

Therefore �.t; T / is equal to:

�.t; T / D a�1�Œ1 � expf�a.T � t/g�: (10.5)

Substituting (10.4) and (10.5) into (10.2):

df .t; T / D �2

a
Œ1 � expf�a.T � t/g� expf�a.T � t/gdt C � expf�a.T � t/gdW t :

We get the instantaneous forward rate:

f .t; T / D f .0; T / C 1

2
�2fA.0; T /2 � A.t; T /2g

C expf�a.T � t/g�
t
Z

0

expf�a.t � s/g dWs

where
A.t; T / D a�1Œ1 � expf�a.T � t/g�:

Again, let r.t/ D f .t; t/, then the short rate is given by:

r.t/ D f .0; t/ C �2

2a2
f1 � exp.�at/g2 C �

t
Z

0

expf�a.t � s/g dWs:

The dynamic process for r.t/ is:

dr.t/ D
�

@f

@T
.0; t/ C af .0; t/ C �2

2a
f1 � exp.�2at/g � ar.t/

�

C �dW t :

This is equal to the Hull-White model in (10.3), with:

ı.t/ D @f

@T
.0; t/ C af .0; t/ C �2

2a
f1 � exp.�2at/g

as a fixed function of time.
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Exercise 10.3 (Hull-White Model). Consider the Hull-White model

dr.t/ D �rdt C �dW t (10.6)

�r D ı.t/ � ar

Derive the price of zero-coupon bond at time t with a nominal face value of 1 EUR
under risk-neutral measures.

Assume the bond value V.r; t/ D expfA.t/ � rB.t/g and apply Itô’s Lemma:

dV.r; t/ D @V.r; t/

@t
dt C 1

2
�2 @2V .r; t/

@r2
dt C @V.r; t/

@r
dr.t/:

Plugging in the dynamic r.t/ to V.r; t/,

dV.r; t/ D
n@V.r; t/

@t
C 1

2
�2 @2V .r; t/

@r2
C �r

@V.r; t/

@r

o

dt

C�
@V.r; t/

@r
dW t : (10.7)

Under risk-neutral measure, the market price of risk equals to zero, so the dynamic
of the bond can be written as:

dV.r; t/ D r.t/V .r; t/dt C �BV.r; t/dW t ; (10.8)

We have from (10.7) and (10.8)

r.t/V .r; t/ D @V.r; t/

@t
C 1

2
�2 @2V .r; t/

@r2
C �r

@V.r; t/

@r
(10.9)

To solve this equation, according to

@V.r; t/

@t
D fA0.t/ � rB 0.t/gV.t/

@V .r; t/

@r
D �B.t/V .t/

@2V .r; t/

@r2
D B2.t/V .t/

(10.9) becomes:

ŒA0.t/ C faB.t/ � B 0.t/ � 1gr.t/ � fı.t/ � �2B.t/=2gB.t/�V .t/ D 0
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then we get the solution:

B 0.t/ D aB.t/ � 1

A0.t/ D fı.t/ � 1

2
�2B.t/gB.t/

With the boundary condition A.T / D B.T / D 0 (since V.r; T / D 1), we can calcu-
late A(t) and B(t) as:

Z T

t
A0.t/ D

Z T

t
fı.t/ � 1

2
�2B.t/gB.t/

A.t/ D
Z T

t
Œf�ı.s/ C �2B.s/=2gB.s/� ds

B 0.t/ � aB.t/ D �1

exp.�
Z s

0
a du/B 0.t/ � a exp.�

Z s

0
a du/B.t/ D � exp.�

Z s

0
a du/

dfexp.�
Z s

0
a du/B.t/g= ds D � exp.�

Z s

0
a du/

Z T

t
dfexp.�

Z s

0
a du/B.t/g= ds D

Z T

t
exp.�

Z s

0
a du/ ds

B.t/ D
Z T

t
exp.�

Z s

t
a du/ ds

Moreover, there is an explicit solution

V.t/ D expfA.t/ � rB.t/g

with

A.t/ D
Z T

t

Œf�ı.s/ C �2B.s/=2gB.s/� ds

B.t/ D
Z T

t

exp.�
Z s

t

adu/ ds

Exercise 10.4 (Pure-discount Bond in Vasicek Model). Consider the Vasicek
model

dr.t/ D a.b � r/dt C �dW t

where a, b, � are known, Wt is a Wiener process. Derive the price of the pure-
discount bond under real-world measure.
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Assume the bond value V.r; t/ D expfA.t/ � rB.t/g. Similar to Exercise 10.3 we
get:

dV.r; t/ D
n@V.r; t/

@t
C 1

2
�2 @2V .r; t/

@r2
C �r

@V.r; t/

@r

o

dt C �
@V.r; t/

@r
dW t

with �r D a.b � r/.
Under the real-world measure, the bond dynamic is

dV.r; t/ D �BV.r; t/dt C �BV.r; t/dW t

�BV.r; t/ D @V.r; t/

@t
C 1

2
�2 @2V .r; t/

@r2
C �r

@V.r; t/

@r
(10.10)

�BV.r; t/ D �
@V.r; t/

@r

with �B¤r.t/. We use the market price of risk �.r; t/ to represent �B . Different

from Exercise 10.3, we define w
defD � here, then we have:

�.r; t/ D �B � r.t/

�B

�B D r.t/ C �t w
@V.r; t/

@r

Under the real-world measure, (10.10) becomes:

@V.r; t/

@t
C 1

2
w2 @2V .r; t/

@r2
C .�r � �t w/

@V .r; t/

@r
� r.t/V .r; t/ D 0:

0 D fA0.t/ � B 0.t/r.t/gV.t/ C 1

2
w2V .t/B2.t/

�fa.b � r/ � �twgB.t/V .t/ � r.t/V .t/

A0.t/ D .ab � �t w/B.t/ � w2B2.t/=2

B 0.t/ D aB.t/ � 1

Assume �t D � and the boundary condition A.T / D B.T / D 0, there is an explicit
solution:

V.r; t/ D expfA.t/ � rB.t/g



10 Models for the Interest Rate and Interest Rate Derivatives 127

with

A.t/ D .b � �w=a � w2=a2/fB.t/ � T C tg � w2B2.t/=4a

B.t/ D Œ1 � expf�a.T � t/g�=a

Exercise 10.5 (Vasicek Model). Use the Vasicek model in Exercise 10.4,

(a) Calculate EŒrt jFs� and VarŒrt jFs� where s < t and Fs denotes the past
information set.

(b) The yield to maturity is defined as:

YT .t/ D �logPT .t/=�

where � D T � t , PT .t/ D V.r; t/. Calculate the Ylim D lim
�!1 Y.�/ and what

does it imply?

(a)

dr.t/ D ab dt � ar dt C � dWt

dr.t/ C ar dt D ab dt C � dW t

d exp.at/r.t/ D exp.at/.ab dt C � dW t /
Z

s

t

d exp.av/r.v/ dv D ab

Z

s

t

exp.av/ dv C �

Z

s

t

exp.av/ dWv

exp .at/r.t/ � exp.as/r.s/ D b exp.at/ � b exp as C �

Z

s

t

exp.av/dWv

r.t/ D expf�a.t�s/gr.s/CbŒ1�expf�a.t�s/g�C� exp.�at/

Z

s

t

exp.av/dWv

Since EŒdW t � D 0, we have:

EŒrt jFs� D bŒ1 � expf�a.t � s/g� C r.s/ expf�a.t � s/g

According to Itô isometry: EfR t

0
f .s/dWsg2 D R t

0
E f 2.s/ds

VarŒrt jFs� D EŒ� exp.�at/

Z

s

t

exp.av/dWv�
2

D �2 exp.�2at/

Z

s

t

exp.2av/dv

D �2

2a
Œ1 � expf�2a.t � s/g�
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(b)

YT .t/ D �logPT .t/=� D �logV.r; t/=�

D �log expfA.t/ � rB.t/g=�

Ylim D lim
�!1 �logV.r; t/=� D lim

�!1 �fA.t/ � rB.t/g=�

D b � w�=a � w2=a2

When � ! 1, the yield to maturity converges to a constant Ylim. The bond
value function can be rewritten as:

V.r; t/ D expfA.t/ � rB.t/g

with

A.t/ D YlimfB.t/ � �g � w2B2.t/=4a

B.t/ D Œ1 � expf�a.T � t/g�=a



Part II
Statistical Model of Financial Time Series



Chapter 11
Financial Time Series Models

More haste, less speed.

This chapter deals with financial time series analysis. The statistical properties of
asset and return time series are influenced by the media (daily news on the radio,
television and newspapers) that inform us about the latest changes in stock prices,
interest rates and exchange rates. This information is also available to traders who
deal with immanent risk in security prices. It is therefore interesting to understand
the behaviour of asset prices. Economic models on the pricing of securities are
mostly based on theoretical concepts which involve the formation of expectations,
utility functions and risk preferences. Here we concentrate on the empirical facts.
Firstly, given a data set we aim to specify an appropriate model reflecting the
main characteristics of the empirically observable stock price process and we wish
to know whether the assumptions underlying the model are fulfilled in reality or
whether the model has to be modified. A new model on the stock price process
could possibly effect the function of the markets. To this end we apply statistical
tools to empirical data and start with considering the concepts of univariate analysis
before moving on to multivariate time series.

Exercise 11.1 (Stationarity and Autocorrelation). Let X be a random variable
with E.X2/ < 1 and define a stochastic process

Xt
defD .�1/tX; t D 1; 2; : : : (11.1)

(a) What do the paths of this process look like?
(b) Find a necessary and sufficient condition for X such that the process fXt g is

strictly stationary.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 11, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 11.1 Sample path for the case X.!/ D 0:5836: SFSsamplepath

(c) Find a necessary and sufficient condition for X such that fXt g is covariance
(weakly) stationary.

(d) Let X be such that fXtg is covariance (weakly) stationary. Calculate the
autocorrelation �� .

(a) If for example X.!/ D 0:5836, then the corresponding sample path is given in
the Fig. 11.1.

(b) According to the definition, the stochastic process Xt is strictly stationary if for
any t1; : : : ; tn and for all n; s 2 Z it holds that

P.Xt1 � x1; Xt2 � x2; : : : ;Xtn � xn/ D
P.Xt1Cs � x1; Xt2Cs � x2; : : : ; XtnCs � xn/:

In our special case of the process fXt g defined by (11.1), the definition of
strict stationarity reduces to

P.X1 � a; X2 � b/ D P.X2 � a; X3 � b/:

We check that this condition is fulfilled if, and only if, the distribution of X is
symmetric, i.e. P.X � x/ D P.�X � x/ for all x.

If the distribution of X is symmetric, it holds:

P.X1 � a; X2 � b/ D P.�X � a; X � b/

D P.�b � �X � a/

D P.�X � a/ � P.�X < �b/:
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Because of the symmetry of the distribution of X , we obtain:

P.�X � a/ � P.�X < �b/ D P.X � a/ � P.X < �b/

D P.�b � X � a/

D P.X � a; �X � b/

D P.X2 � a; X3 � b/

and thus, the process fXt g is strictly stationary. On the other hand, if we assume,
that the process is strictly stationary, it holds:

P.X1 � a; X2 � b/ D P.X2 � a; X3 � b/:

Rewriting the last equation for our special case:

P.�X � a; X � b/ D P.X � a; �X � b/;

the symmetry of the distribution of X is obvious.
(c) The process fXt g is stationary if, and only if, E.X/ D 0.

If fXtg is stationary, it must hold:

E.�X/ D E.X1/ D E.X2/ D E.X/:

From E.�X/ D E.X/ follows directly E.X/ D 0. If E.X/ D 0 then we obtain:

E.Xt/ D E
˚

.�1/t X
� D .�1/t E.X/ D 0

Cov fXt ; XtC�g D E
˚

.�1/t X.�1/tC�X
� D .�1/2tC� E.X2/ D .�1/� Var.X/

(d) If fXtg is stationary then it follows from (c):

�� D ��

�0

D .�1/� Var.X/

Var.X/
D .�1/� :

Exercise 11.2 (Empirical Analysis). Perform an empirical analysis using the data
on DAX and Dow Jones index from the period Jan. 1, 1997 to Dec. 30, 2004.

(a) Display a time plot of the given indices data, its returns and log returns.
(b) Calculate mean, skewness, kurtosis, autocorrelation of the first order, auto-

correlation of squared returns, and autocorrelation of absolute returns for the
given data.

(a) The time series plot for the DAX and Dow Jones indices are represented by
Fig. 11.2. One can observe from the figure that stock markets have fallen since
September 11, 2001. However, shortly after the catastrophe, the indices values
experienced a moderate increase until they climbed up to their original values.
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Fig. 11.2 Time series plot for DAX index (upper panel) and Dow Jones index (lower panel) from

the period Jan. 1, 1997 to Dec. 30, 2004. SFStimeseries

The returns and the log returns are represented by Figs. 11.3 and 11.4 respec-
tively.

(b) Denote � mean, S skewness, Kurt kurtosis, �1.rt / autocorrelation of the first
order, �1.r2

t / autocorrelation of squared returns, �1.krt k/ autocorrelation of
absolute returns. Table 11.1 summarises the results.

Exercise 11.3 (Distribution of Returns and Test of Normality). Consider the
data on the DAX and Dow Jones index from the Exercise 11.2. Which empirical
distribution do the returns follow? Are they normally distributed? Perform an
appropriate test of normality.

From Table 11.1 one can observe that the kurtosis is larger than 3, i.e. the distribution
is leptokurtic. In addition, the skewness is smaller than zero, i.e. right side tilted.
Figure 11.5 represents density functions of DAX and Dow Jones in comparison to
normal density, estimated nonparametrically with Gaussian kernel.

We use the Bera-Jarque test for normality. We test the H0 hypothesis of normality
against an alternative H1 to establish that the data is not normal distributed. The test
statistics of the Bera-Jarque test (see Franke et al. (2011)) is given by:

BJ D n

(

cS2

6
C .1Kurt � 3/2

24

)

L�! �2
2 under H0;
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Fig. 11.3 Returns of DAX (upper panel) and Dow Jones (lower panel) from the period Jan. 1,

1997 to Dec. 30, 2004. SFStimeseries

which means that under the H0 hypothesis the data is normal distributed. Calculat-
ing the Bera-Jarque test statistics for DAX and Dow Jones leads us to 357:682 and
999:89 respectively. Comparing the values of the test statistics with a 5 % – critical
value of the �2

2 distribution, which is 5:99, we reject the hypothesis of normality
for DAX and Dow Jones returns. One can obtain the same results comparing the
P – value, which is 0:00 for both DAX and Dow Jones, at level ˛ D 0:05.

Exercise 11.4 (Proof of Stylized Facts). According to the stylized facts, the auto-
correlation of first order is close to zero for all stock returns; the autocorrelation
of squared and absolute returns are positive and different from zero. In addition,
small (positive or negative) returns are followed by small (positive or negative)
returns and large returns are followed by large returns. Can you prove these facts
by applying them to your data? Plot the autocorrelation function (ACF) for returns,
absolute returns and for squared log returns from the DAX and Dow Jones data
from Exercise 11.1.

The sample autocorrelation function (ACF) for returns, absolute returns and
squared log returns together with the 95 % confidence band are represented by
Figs. 11.6–11.8 respectively. In fact, we can see from the plots that the
autocorrelation of first order is close to zero and that small returns are followed
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Fig. 11.4 Log-returns of DAX (upper panel) and Dow Jones (lower panel) from the period Jan.

1, 1997 to Dec. 30, 2004. SFStimeseries

Table 11.1 Descriptive statistics for the DAX index (upper line) and the Dow Jones index
(lower line)

� S Kurt �1.rt / �1.r
2
t / �1.krt k/

0.000196 �0.19558 5.02 �0.0094 0.1875 0.185
0.000255 �0.20065 6.42 �0.0123 0.1351 0.116

by small returns, large returns are followed by large returns. In addition, one can
observe that the autocorrelation of squared returns is positive and different from
zero.

Exercise 11.5 (Augmented Dickey-Fuller Test). Use the data of DAX and Dow
Jones indices from Exercise 11.1. Apply the Augmented Dickey-Fuller test (ADF) of
stationarity to the

(a) Raw data, i.e. I.0/

(b) Log returns, i.e. I.1/.

First, consider a regression model without linear time trend and then with linear
time trend. Can we reject the hypothesis of trend stationarity in both cases?

We consider the autoregressive process of first order:

AR.1/ W Xt D c C ˛Xt�1 C "t :
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Fig. 11.5 Density functions of DAX (upper panel) and Dow Jones (lower panel) and
the normal density (dashed line), estimated nonparametrically with Gaussian kernel.

SFSdaxdowkernel

We know that if j˛j < 1, then the process Xt is stationary and for j˛j D 1, the
process Xt is a random walk, i.e. non stationary, see Franke et al. (2011). We apply
the Augmented Dickey-Fuller test (ADF) to test ˛ D 1. First, we test a regression
model without linear time trend:

�Xt D c C .˛ � 1/Xt�1 C
p
X

iD1

˛i �Xt�i C "t

and then a regression model with a linear time trend:

�Xt D c C �t C .˛ � 1/Xt�1 C
p
X

iD1

˛i �:

We test the hypothesis H0 of non stationarity (i.e. ˛ D 1) against the alternative
H1 hypothesis (˛ ¤ 1). The test statistics of the Augmented Dickey-Fuller test is
given by

btn D 1 � b̨p
b�

2Pn
tD2 X2

t�1

L�! W 2.1/ � 1

2
n
R 1

0 W 2.u/du
o1=2

:
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Fig. 11.6 Autocorrelation function for the DAX returns (upper panel) and Dow Jones returns

(lower panel). SFStimeseries

The hypothesis H0 will be rejected ifbtn is smaller than the critical value.

(a) We apply the ADF to the DAX and Dow Jones raw data, i.e. I.0/. In the
regression model without linear time trend, the values of the test statistics
correspond to �1:7094 for the DAX and �2:6058 for the Dow Jones and thus,
are smaller than a 5 % critical value, which corresponds to �2:86. Analogically,
we calculate the values of the ADF test statistics for the regression model with a
linear time trend. It leads us to the values of �2:1117 for the DAX and �2:5719

for the Dow Jones, which are below the 5 % critical value corresponding to
�3:41. Hence, we can not reject H0 in both cases and thus, the process is not
trend stationary.

(b) We now apply the test to the DAX and Dow Jones log returns, i.e. I.1/. In
the regression model without linear time trend, the values of the test statistics
correspond to �20:555 for the DAX and �21:068 for the Dow Jones and thus,
exceed the 5 % critical value. The same situation occurs for the regression
model with a linear time trend, where the values of the test statistics correspond
to �20:597 for the DAX and �21:08 for the Dow Jones. In both cases, one
rejects H0, i.e. the process is trend stationary.
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Fig. 11.7 Autocorrelation function for the DAX absolute returns (upper panel) and Dow Jones

absolute returns (lower panel). SFStimeseries

Exercise 11.6 (KPSS Test of Stationarity). Use the data on DAX and Dow Jones
indices from Exercise 11.2. Apply the KPSS test of stationarity to the

(a) Raw data, i.e. I.0/

(b) Log returns, i.e. I.1/

First, consider a regression model with constant � and then with linear time trend.
Can we reject the hypothesis of trend stationarity in both cases?

Firstly, we consider a regression model with a constant �:

Xt D c C k

t
X

iD1

	i C 
t

and then with linear time trend:

Xt D c C �t C k

t
X

iD1

	i C 
t :
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Fig. 11.8 Autocorrelation function for the DAX squared log-returns (upper panel) and Dow Jones

squared log-returns (lower panel). SFStimeseries

We test the hypothesis H0 of trend stationary (i.e. k D 0) against the alternative:
k ¤ 0, i.e. non stationarity. The test statistics, see Franke et al. (2011), is given by

KPSST D
Pn

tD1 S2
t

n2
b!2

T

:

We reject H0 if KPSST is larger than the critical value.

(a) We apply the KPSS test to the DAX and Dow Jones raw data, i.e. I.0/. In the
regression model with a constant �, the values of the test statistics correspond
to 51:414 for the DAX and 47:441 for the Dow Jones and thus exceed the 5 %
critical value, corresponding to 0:463. Analogically, we calculate the values of
the KPSS test statistics for the regression model with linear time trend. It leads
us to the values of 34:138 for the DAX and 29:163 for the Dow Jones, which
exceed the 5 % critical value corresponding to �3:41. Hence, we reject H0, i.e.
the process is not trend stationary.

(b) We now apply the test to the DAX and Dow Jones log returns, i.e. I.1/. In the
regression model with a constant �, the values of the test statistics correspond
to 0:29653 for the DAX and 0:13115 for the Dow Jones which are smaller than
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the 5 % critical value. We observe the same situation for the regression model
with linear time trend, where the values of the test statistics correspond to 0:131

for the DAX and 0:064037 for the Dow Jones. In both cases, one can not reject
H0, i.e. the process is trend stationary.

Exercise 11.7 (ADF and KPSS Test). What is the difference between ADF and
KPSS test?

The ADF tests in favour of nonstationarity, i.e. against trend stationarity
(H0 W ˛D1). We reject H0 if the value of the ADF test statistics is smaller than the
critical value. The KPSS tests in favour of stationarity, i.e. against nonstationarity
(H0 W ˛ < 1). We reject H0 if the value of the KPSS test statistics is larger than the
critical value.



Chapter 12
ARIMA Time Series Models

Time does not wait for anyone.

The autoregressive moving average (ARMA) model defined as

Xt D � C ˛1Xt�1 C : : : C ˛pXt�p C ˇ1"t�1 C : : : C ˇq"t�q C "t ;

deals with linear time series. The time series should be a covariance stationary
process. It consists of two parts, an autoregressive (AR) part of order p and a moving
average (MA) part of order q. When an ARMA model is not stationary, the methods
of analyzing stationary time series cannot be used directly. In order to handle
those processes within the framework of the classical time series analysis, we must
first form the differences to get a stationary process. The autoregressive integrated
moving average (ARIMA) models are an extension of ARMA processes by the
integrated (I) part. Sometimes ARIMA models are referred to as ARIMA(p; d; q)
whereas p and q denote the order of an autoregressive (AR) respective a moving
average (MA) part and d describes the integrated (I) part.

Exercise 12.1 (ARIMA Model). Which condition do time series have to fulfill in
order to be fitted by the ARIMA model? And what does the letter “I” in the word
“ARIMA” mean?

To be fitted by the ARIMA model, the underlying time series should be covariance
stationary processes. “I” in ARIMA stands for “Integrated”. We say that the process
Xt is integrated of order d , I.d/, when .1 � L/d�1Xt is non-stationary and

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 12, © Springer-Verlag Berlin Heidelberg 2013
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.1 � L/d Xt is stationary, see Franke et al. (2011). The integrated part of the
model determines whether the observed values are modelled directly, or whether
the differences between the observations are modelled instead. If the order of the
integrated part d D 0, the observed values are modelled directly. If d D 1 or
d D 2 (the first and the second order respectively) then the differences between the
observed values are modelled.

Exercise 12.2 (Autocorrelation Function). Suppose that the stationary process
Xt has an autocovariance function given by �� . Find the autocorrelation function
(in terms of �� ) of the (stationary) process Yt defined as Yt D Xt � Xt�1.

If the process Yt is stationary, the autocorrelation function is given by

�� .Yt / D �� .Yt /

�0.Yt /

where �� .Yt / and �0.Yt / denote the autocovariance function and the variance of Yt

respectively. The autocovariance function of Yt is given by:

��.Yt / D Cov.Yt ; Yt�� / D Cov.Xt � Xt�1; Xt�� � Xt���1/

D Cov.Xt ; Xt�� / � Cov.Xt ; Xt���1/ � Cov.Xt�1; Xt�� / C Cov.Xt�1; Xt���1/

D �� � ��C1 � ���1 C ��

D 2�� � ���1 � ��C1

and �0.Yt / D Var.Yt / D 2�0 � 2�1.
For the autocorrelation of Yt we therefore obtain:

�� .Yt / D 2�� � ���1 � ��C1

2�0 � 2�1

:

Exercise 12.3 (Autocorrelation Function of MA(1) Process). Calculate the auto-
correlation function (ACF) of the MA(1) process Xt D �0:5"t�1 C "t .

For the MA(q) process with ˇ0 D 1 and E.Xt/ D 0, i.e.,

Xt D "t C ˇ1"t�1 C : : : C ˇq"t�q

the covariance structure is given by

�� D Cov.Xt ; XtC� / D
q��
X

iD0

ˇi ˇiC��2; j� j � q:
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For the autocorrelation function we therefore obtain

�0 D
P1�0

iD0 ˇi ˇiC0
P1

iD0 ˇ2
i

D
P1

iD0 ˇ2
i

P1
iD0 ˇ2

i

D 1

�1 D
P1�1

iD0 ˇi ˇiC1
P1

iD0 ˇ2
i

D
P0

iD0 ˇi ˇiC1
P1

iD0 ˇ2
i

D ˇ0ˇ1

ˇ2
0 C ˇ2

1

D �0:5

1 C .�0:5/2
D �0:4

and �� D 0 for � > 1.

Exercise 12.4 (Autocorrelation Function of MA(2) Process). Find the autocor-
relation function of the second order moving average process MA(2) defined as

Xt D "t C 0:5"t�1 � 0:2"t�2

where "t denotes white noise.

The covariance function for the MA(q) process with ˇ0 D 1 and E.Xt / D 0 is
given by

�� D Cov.Xt ; XtC� / D
q��
X

iD0

ˇi ˇiC��2; j� j � q:

Therefore it holds:

�0 D Cov.Xt ; Xt / D �2.ˇ0ˇ0 C ˇ1ˇ1 C ˇ2ˇ2/

D �2.1 C 0:25 C 0:04/ D 1:29�2

�1 D Cov.Xt ; XtC1/ D �2.ˇ0ˇ1 C ˇ1ˇ2/

D �2f1 � 0:5 C 0:5 � .�0:2/g D 0:4�2

�2 D Cov.Xt ; XtC2/ D �2.ˇ0ˇ2/

D �2f1 � .�0:2/g D �0:2�2:

For the autocorrelation function we have:

�0 D 1

�1 D �1

�0

D 0:4�2

1:29�2
D 0:31008

�2 D �2

�0

D �0:2�2

1:29�2
D �0:15504

�k D 0 for k � 3:
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Exercise 12.5 (Autocorrelation Function of MA(m) Process). Let

Xt D
m
X

kD0

1

m C 1
"t�k

be the m-th order moving average process MA(m). Show that the autocorrelation
function ACF of this process is given by

�� D

8

ˆ
<

ˆ
:

.m C 1 � k/=.m C 1/ if k D 0; 1; : : : ; m

0 if k > m

9

>
=

>
;

:

For the MA(m) process

Xt D
m
X

kD0

1

m C 1
"t�k

we have:

�0 D Cov.Xt ; Xt / D
m
X

iD0

ˇi ˇi �
2

D
m
X

iD0

1

.m C 1/2
�2 D .m C 1/

1

.m C 1/2
�2 D �2

m C 1

�1 D Cov.Xt ; Xt�1/ D
m�1
X

iD0

ˇi ˇiC1�
2

D
m�1
X

iD0

1

.m C 1/2
�2 D m

1

.m C 1/2
�2

�2 D Cov.Xt ; Xt�2/ D
m�2
X

iD0

ˇi ˇiC2�
2

D
m�2
X

iD0

1

.m C 1/2
�2 D .m � 1/

1

.m C 1/2
�2

�k D Cov.Xt ; Xt�k/ D
m�k
X

iD0

ˇi ˇiC1�
2

D
m�k
X

iD0

1

.m C 1/k
�2 D .m C 1 � k/

1

.m C 1/2
�2
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The autocorrelation function of this process is therefore given by

�0 D 1

�1 D �1

�0

D m

.m C 1/2
�2 � m C 1

�2
D m

m C 1

�2 D �2

�0

D m � 1

.m C 1/2
�2 � m C 1

�2
D m � 1

m C 1

�k D �k

�0

D m C 1 � k

.m C 1/2
�2 � m C 1

�2
D m C 1 � k

m C 1
:

For k > m we have �k D 0 and thus, �k D 0.

Exercise 12.6 (Stationarity, Invertibility and the Shift Operator L).

(a) What is meant by saying that a linear process is stationary? How can we
evaluate whether a process is stationary?

(b) What is meant by saying that a linear process is invertible? How can we
evaluate whether a process is invertible?

(c) For each of the following models express the model in terms of the shift operator
L acting on "t and determine whether the model is stationary or/and invertible
or not.

(i) Xt D 0:2Xt�1 C "t

(ii) Xt D "t � 1:5"t C 0:3"t�2

(iii) Xt D 0:4Xt�1 C "t � 1:5"t�1 C 0:3"t�2

(a) A linear process is stationary if it can be written in a moving average form
Xt D ˇ.L/"t with ˇ.L/ D 1 C ˇ1L C : : : C ˇqLq .

The AR(p) process Xt D � C ˛1Xt�1 C : : : C ˛pXt�p is stationary if all
roots zi of the characteristic equation ˛.z/ D 1 � ˛1z � : : : � ˛qzq lie outside of
the complex unit circle.

(b) A linear process is invertible if it can be written in an autoregressive form
˛.L/Xt D � C "t with ˛.L/ D 1 � ˛1L � : : : � ˛qLq .

The MA(q) process is invertible if all roots zi of the characteristic equation
ˇ.z/ D 1 C ˇ1z C : : : C ˇqzq lie outside of the complex unit circle. In this case
holds: ˇ.L/ˇ�1.L/ D 1.

(i) The process
Xt D 0:2Xt�1 C "t

can be written as:
.1 � 0:2L/Xt D "t :

The model is stationary if for the root of the equation

1 � 0:2z D 0

holds: jzj > 1. Since z D 1=0:2 D 5 > 1, the process is stationary.
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The process is invertible, since it has an autoregressive representation.
(ii) The process

Xt D "t � 1:5"t C 0:3"t�2

can be written as:
Xt D .1 � 1:5L C 0:3L2/"t :

The model is invertible if for the roots jzi j of the equation

1 � 1:5z C 0:3z2 D 0

holds: jzi j > 1. Since z1 D 4:2 > 1 and z2 D 0:8 < 1, the process is not
invertible.

The process is stationary since it has a moving average representation.
(iii) The process

Xt D 0:4Xt�1 C "t � 1:5"t�1 C 0:3"t�2

can be written as

.1 � 0:4L/Xt D .1 � 1:5L C 0:3L2/"t :

The model is stationary since for the root jzj of the equation

1 � 0:4z D 0

holds: z D 2:5 > 1, the process is stationary. The process is invertible if for
the roots jzi j of the equation

1 � 1:5z C 0:3z2 D 0

holds: jzi j > 1. From (ii) follows that the process is not invertible.

Exercise 12.7 (Partial Autocorrelation). Calculate the partial autocorrelations
of first and second order of the AR(1) process Xt D 0:5Xt�1 C "t by using Yule-
Walker equations.

From Yule-Walker equations we know:

˛1 C �1˛2 D �1, hence �1 D 0:5

�1˛1 C ˛2 D �2, hence �2 D 0:25

We therefore obtain, see Franke et al. (2011):

�11 D jP �
1 j

jP1j D �1

1
D �1 D 0:5;
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�22 D

ˇ

ˇ

ˇ

ˇ

1 �1

�1 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 �1

�1 1

ˇ

ˇ

ˇ

ˇ

D 0:25 � 0:52

1 � 0:52
D 0:

Exercise 12.8 (Estimating ARIMA Model Parameters). Which methods could
we use to estimate the parameters in an ARIMA model? What are the advantage
and drawback of each of them?

Estimator Advantage Drawback

Yule-Walker Simple to estimate Asymptotically inefficient
Least squares Asymptotically efficient Solution only with iterative

numerical algorithms
And asymptotic normal

distributed
Only under some technical

assumptions

Exercise 12.9 (Adequacy of fitted ARIMA Model). Could you give some statis-
tical tests to assess the adequacy of a fitted ARIMA model?

First check whether the coefficients of the ACF and PACF are equal to zero; then
check whether the Portmanteau statistics take small values.

Exercise 12.10 (Characteristics of MA(1) process). What characteristics would
one expect of a realization of the MA(1) process Yt D 1 C "t C 0:8"t�1‹ How
would these characteristics differ from the those of a realization of the process?
Y 0

t D 1 C "0
t � 0:8"0

t�1

(i) The correlation does not extend more than one period out, so that the
realization appears very “noisy”.

(ii) Yt tends to be positively correlated with adjacent values; e.g., a positive value is
more likely to be preceded and followed by a positive value than by a negative
value.

(iii) A realization of the process Y 0
t D 1 C "0

t � 0:8"0
t�1 would show negative

correlations between adjacent values, so that a positive value of Y 0
t would be

more likely to be followed by a negative value.

Exercise 12.11 (Covariance and Autocorrelation for MA(3) Process). Calculate
the covariances �k for MA(3), the moving average of order 3. Determine the
autocorrelation function for this process. Plot the autocorrelation function for the
MA(3) process:

Yt D 1 C "t C 0:8"t�1 � 0:5"t�2 C 0:3"t�3:
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The variance and covariances are given by:

�0 D �2
" .1 C �2

1 C �3
2 C �2

3 /

�1 D �2
" .��1 C �2�1 C �3�2/

�2 D �2
" .��2 C �3�1/

�3 D ��3�
2
"

�k D 0; k > 3

where �1 D 0:8, �2 D �0:5, �3 D 0:3. The autocorrelation plot is represented by
the Fig. 12.1.

Exercise 12.12 (Autocorrelation Function for ARMA (2,1) Process). Derive the
autocorrelation function for the ARMA(2,1) process:

Yt D �1Yt�1 C �2Yt�2 C "t � �1"t�1

that is, determine �1, �2, etc., in term of �1, �2, and �1.

According to the Yule-Walker Equations, the autocorrelations are:

�1 D �1

1 � �2

� �1.1 � �2
1�2 � �2

1 � �2/

.1 � �2/2.1 � 2�1�1 C �2
2 / � 2�1�2�1.1 � �2/

�2 D �2 C �1�1

�3 D �1�2 C �2�1:

Exercise 12.13 (Forecasting). Derive expressions for the one-, two-, three-period
forecast, OYt .1/, OYt .2/, and OYt.3/, for the second-order autoregressive process AR(2).
What are the variances of the errors for these forecasts?

The one-, two-, three-period forecasts for the AR(2) process are the following:

OYt.1/ D �1Yt C �2Yt�1 C ı

OYt.2/ D �1
OYt .1/ C �2Yt C ı D .�2

1 C �2/Yt C �1�2Yt�1 C .1 C �1/ı

OYt.3/ D .�3
1 C 2�1�2/Yt C .�2

1�2 C �2
2 /Yt�1 C .1 C �1 C �2

1 C �2/ı

These forecasts have error variances:

EŒ"2
t .1/	 D �2

"

EŒ"2
t .2/	 D .1 C �2

1/�2
"

EŒ"2
t .3/	 D f1 C �4

1 C �2
1.1 C 2�2/ C �2

2g�2
"
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Fig. 12.1 The autocorrelation function for the MA(3) process: Yt D 1C"t C0:8"t�1 �0:5"t�2 C
0:3"t�3 SFSacfMA3

Exercise 12.14 (Diagnostic Test). Suppose an ARMA(0,2) model has been esti-
mated from a time series generated by an ARMA(1,2) process. How would the
diagnostic test indicate that the model has been misspecified?

This misspecification will result in residuals that are autocorrelated. The diagnostic
Portmanteau Q is likely to be e.g. above 90 % on the 
2 distribution.

Exercise 12.15 (Covariance Stationarity). Which of the following processes are
covariance stationary? Explain your answer for every process.

(a) Xt D "t � "t�1 C 2"t�2

(b) Xt D 2 C 1
2
Xt�1 C "t

(c) Xt D 4 � 1:3Xt�1 C 0:8Xt�2 C "t

(d) Xt D 4 � 1:3Xt�1 � 0:8Xt�2 C "t

(a) This process is stationary because all moving average processes are stationary
as a linear combination of a stationary white noise processes.

(b) The stationarity of this process follows from a general statement:
An AR(1) process Xt D ˛0 C ˛1Xt�1 C "t is stationary if j˛1j < 1 or if

the root z of the characteristic equation ˛.z/ D 1 � 1=2z D 0 lie outside of the
complex unit circle. For this process holds: j˛1j D 1=2 < 1 or jzj D 2 > 1, and
thus the process is stationary.

(c) This process is not stationary since the coefficients do not lie in the “triangle of
stationarity”: ˛1 C ˛2 < 1 and ˛2 � ˛1 < 1 or the roots jzi j of the characteristic
equation ˛.z/ D 1 C 1:3z � 0:8z2 D 0 do not lie outside of the complex unit
circle (jz1j D 2:1946 > 1 but jz2j D 0:56958 < 1).
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(d) This process is stationary because the coefficients lie in the “triangle of
stationarity”: ˛1 C ˛2 D �2:1 < 1 and ˛2 � ˛1 D 0:5 < 1.

Exercise 12.16 (Autocorrelation Function). Find the autocorrelation function for
the following processes:

(a) A white noise process with E.Xt / D 0, Var.Xt/ D �2 8t

(b) Xt D "t � "t�1

(c) For the MA(1) process defined as Xt D "t � �1"t�1. Show that you cannot
identify an MA(1) process uniquely from the autocorrelation by comparing the
results using �1 with those if you replace �1 by ��1

1 .

(a) The autocovariance function of a white noise process is defined by

�� D

8

ˆ
<

ˆ
:

�2 if � D 0

0 if � ¤ 0

Since white noise is stationary, the autocorrelation function is given by

�� D ��

�0

D

8

ˆ
<

ˆ
:

1 if � D 0

0 if � ¤ 0

(b) For the process Xt D "t � "t�1 we have

E.Xt/ D 0

�.t; �/ D E f."t � "t�1/."tC� � "tC��1/g
D E."t"tC� / � E."t"tC��1/ � E."t�1"tC� / C E."t�1"tC��1/

D

8

ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
:

2�2 if � D 0

��2 if � D ˙1

0 otherwise

Since the process Xt D "t � "t�1 is a linear combination of a stationary
white noise processes and thus, stationary, the autocorrelation function of Xt

is given by

�� D

8

ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
:

1 if � D 0

�1=2 if � D ˙1

0 otherwise
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(c) For the MA(1) process Xt D "t � �1"t�1 we have:

E.Xt / D 0

�.t; �/ D E f."t � �1"t�1/."tC� � �1"tC��1/g
D E."t "tC� / � �1 E."t "tC��1/ � �1 E."t�1"tC� / C �2

1 E."t�1"tC��1/

D

8

ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
:

�2 C �2
1 �2 D �2.1 C �2

1 / if � D 0

��1�
2 if � D ˙1

0 otherwise

Since Xt is a stationary process, the autocorrelation function is given by

�� D ��

�0

D

8

ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
:

1 if � D 0

� �1

1C�2
1

if � D ˙1

0 otherwise

If we replace �1 by ��1
1 , the model becomes

Xt D "t � ��1
1 "t�1

with

�.t; �/ D

8

ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
:

�2.1 C 1

�2
1

/ if � D 0

� 1
�1

�2 if � D ˙1

0 otherwise

Thus, the autocorrelation function is given by

�� D ��

�0

D

8

ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
:

1 if � D 0

� �1

1C�2
1

if � D ˙1

0 otherwise

i.e., remained unchanged. Hence, we cannot identify the MA(1) process
uniquely from the autocorrelation.
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Exercise 12.17 (Moments of AR(1) Process). Consider a first order AR(1) pro-
cess without drift:

Xt D ˛Xt�1 C "t ; j˛j < 1

(a) Find the mean and the variance
(b) Show that for the variance to be finite, j˛j must be less than 1.
(c) Find the autocorrelation function assuming that the process is stationary.

Xt D ˛Xt�1 C "t

D ˛.˛Xt�2 C "t�1/ C "t

D ˛2Xt�2 C ˛"t�1 C "t

D ˛3Xt�3 C ˛2"t�2 C ˛"t�1 C "t

D : : :

D
n�1
X

kD0

˛k"t�k C ˛nXt�n

Since we have assumed stationarity, i.e., j˛j < 1, we have: ˛n �! 0 for n �! 1.
Hence, we can write

Xt D
1
X

kD0

˛k"t�k:

(a) It follows that:

E.Xt / D 0

Var.Xt / D Var

 1
X

kD0

˛k"t�k

!

D
1
X

kD0

Var
�

˛k"t�k

� D �2

1
X

kD0

˛2k

(b) For the variance to be finite, j˛j must be less than 1. In this case we have:

Var.Xt/ D �2

1 � ˛2
:

(c) The autocorrelation function is given by

�.t; �/ D �.t; �/

�.t; 0/
:



12 ARIMA Time Series Models 155

�.t; �/ D Cov.Xt ; Xt�� /

D E.Xt Xt�� / � E.Xt/ E.Xt�� /

D E.Xt Xt�� /; since E.Xt/ D 0

D E f.˛Xt�1 C "t /Xt��g
D ˛ E.Xt�1Xt�� / C E."tXt�� /:

Since for � > 0, Xt�� is a linear combination "t�� ; "t���1; : : : and therefore
uncorrelated with "t , we have:

E."t Xt�� / D 0

and thus, it holds:

�� D ˛���1 D ˛2���2 D : : : D ˛� �0:

It follows that
� D ��

�0

D ˛� :

Exercise 12.18 (ARMA(p;q) Representation). Let Xt be a stationary AR(p)
process with mean 0, i.e.

Xt D
p
X

iD1

˛i Xt�i C "t

Show that the process Yt defined as

Yt D
q
X

j D0

ˇj Xt�j

where ˇ0 D 1 can be written as an ARMA(p; q) process.

The process Yt can be written as

Yt D
q
X

j D0

ˇj Xt�j

D
q
X

j D0

ˇj

 

p
X

iD1

˛i Xt�j �i C "t�j

!
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D
p
X

iD1

˛i

0

@

q
X

j D0

ˇj Xt�j �i

1

AC
q
X

j D0

ˇj "t�j

D
p
X

iD1

˛i Yt�i C
q
X

j D0

ˇj "t�j

which is exactly an ARMA(p; q) representation.

Exercise 12.19 (Discrete Time and Stationarity).

(a) Let X.t/ be a stochastic process in R
3 defined by the vectorial Ornstein-

Uhlenbeck equation dX.t/ D AX.t/dt C ek�.t/dW.t/ with ek being the
k-th vector in R

3 with k D 1; 2; 3. Furthermore, �.t/ is a real valued square
integrable function and A is the 3 � 3 matrix.

A D
0

@

0 1 0

0 0 1

�˛3 �˛2 �˛1

1

A

We suppose that ˛k; k D 1; 2; 3 are constant. Show that by iterating the finite
difference approximations of the time dynamics of the CAR.3/ process, we can
get the time discrete version for t D 0; 1; 2: i.e. X1.t C 3/ � .3 � ˛1/X1.t C
2/ C .2˛1 � ˛2 � 3/X1.t C 1/ C .1 C ˛2 � ˛3 � ˛1/X1.t/

(b) The stationarity condition for a CAR.3/ model says that the eigenvalues of the
matrix A need to have negative real parts. Supposing that ˇ1 D 0:41; ˇ2 D
�0:2; ˇ3 D 0:07 and using the results from the previous question, verify that
the stationarity condition holds.

(a) From the vectorial Ornstein-Uhlenbeck process we define:

X1.t C 1/ � X1.t/ D X2.t/dt (12.1)

X2.t C 1/ � X2.t/ D X3.t/dt (12.2)

X3.t C 1/ � X3.t/ D �˛3X1.t/dt � ˛2X2.t/dt (12.3)

�˛1X3.t/dt

X1.t C 2/ � X1.t C 1/ D X1.t C 1/dt (12.4)

X2.t C 2/ � X2.t C 1/ D X3.t C 1/dt (12.5)

X3.t C 2/ � X3.t C 1/ D �˛3X1.t C 1/dt � ˛2X2.t C 1/dt (12.6)

�˛1X3.t C 1/dt

X1.t C 3/ � X1.t C 2/ D X1.t C 2/dt (12.7)

X2.t C 3/ � X2.t C 2/ D X3.t C 2/dt (12.8)
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X3.t C 3/ � X3.t C 2/ D �˛3X1.t C 2/dt � ˛2X2.t C 2/dt (12.9)

�˛1X3.t C 2/dt

From (12.7) we know that X1.t C 3/ D X1.t C 2/dt C X1.t C 2/. Substituting
(12.4) in (12.5) and setting dt D 1, we obtain:

X2.t C 2/ D X2.t C 1/ C X3.t C 1/

D X2.t C 1/ C .�˛3X1.t/ C ˛2X2.t/

�˛1X3.t/ C X3.t// (12.10)

and from

X3.t/ D X2.t C 1/ � X2.t/ (12.11)

X2.t/ D X1.t C 1/ � X1.t/ (12.12)

X2.t C 1/ D X1.t C 2/ � X1.t C 1/ (12.13)

Substituting Eqs. (12.11)–(12.13) into (12.10) we have

X3.t/ D X1.t C 2/ C 2X1.t C 1/ C X1.t/

D X2.t C 2/ � X1.t C 2/.2 � ˛1/ C X1.t C 1/.�3 � ˛2 C 2˛1/

�X1.t/.�˛3 C ˛2 � ˛1 C 1/

X1.t C 3/ � X1.t C 2/.3 � ˛1/ C X1.t C 1/.�3 � ˛2 � 2˛1/ C X1.t/

.�˛3 C ˛2 � ˛1 C 1/

(b) From the fitted matrix
0

@

0 1 0

0 0 1

�˛3 �˛2 �˛1

1

A

We need to solve the system of equations

ˇ1 D 3 � ˛1 ) ˛1 D 3 � ˇ1

ˇ2 D 2˛1 � ˛2 � 3 ) ˛2 D 2˛1 � 3 � ˇ2

ˇ3 D ˛2 � dj C d1 C 1 ) ˛3 D ˛2 � ˇ3 � ˛1 C 1
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Fig. 12.2 Time plot of the Coca-Cola price series from January 2002 to November 2004

SFScola1

Substituting the values of the ˛’s we obtain ˛1 D 2:09, ˛2 D 1:38, ˛3 D 0:22.
The eigenvalues of the fitted matrix therefore are X1 D �0:217, X2;3 D �0:9291 �
0:2934. Thus, the condition for stationarity is fulfilled.

Exercise 12.20 (Applied Time Series Analysis and GARCH). Consider the data,
COCACOLA:txt containing daily prices .pt / of the Coca-Cola company from
January 2002 to November 2004.

(a) Display the graph of the time series.
(b) Plot the autocorrelation function of the daily price series up to 100 lags and

describe the nature of the decay.
(c) Test for stationarity of .pt / by any suitable procedure.
(d) Plot the rate of returns rt using, rt D .pt �pt�1/

pt�1
and rt D log pt � log pt�1.

Comment on the return pattern.
(e) Model the return rate rt as a GARCH(1,1) process.

(a) The plot indicates a non-stationary process, or a random walk, characterized by
changing stochastic trend and increasing variance (Fig. 12.2).

(b) Time plot of the Coca-Cola series as follows (Fig. 12.3):
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Fig. 12.3 Time plot of Coca-Cola series from January 2002 to November 2004 SFScola2

Table 12.1 Augmented DF test (ADF) for unit root. Critical values are 1 %.�3:458/,
5 %.�2:871/,10 %.�2:594/, see MacKinnon (1991)

Series Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6

ADF test �2.216 �2.163 �2.304 �2.214 �2.161 �3.458

(c) Testing for unit root is the first step in examining the stationarity of a time series
(i.e. testing whether the series are integrated of order 0 I.0/ or of order 1 I.1/).
This is a matter of concern for .ARIMA/ modeling and for standard inference
procedures for regression models. For example the ADF result in Table 12.1
suggest that .pt / is non stationary.

(d) Both plots are very similar to each other and show certain common general
patterns. There are significant clusters of high variability separated by quieter
periods. This changing behavior of the variance is typical for GARCH

processes (Fig. 12.4).
(e) The GARCH.p; q/ model describes a process where the conditional error

variance, �2
t of all information available at time is assumed to obey an

ARMA.p; q/ model:

�2
t D ˛0 C ˛1�

2
t�1 C � � � C ˛p�2

t�p C ˇ1"2
t�1 C � � � C ˇq"2

t�q

where "t is the error process.

The GARCH.1; 1/ estimation for rt is given by

�2
t D 0:04�2

t�1 C 0:95"2
t�1 C �t :
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Fig. 12.4 Time plot of Coca-Cola returns from January 2002 to November 2004 SFScola3

Exercise 12.21 (GARCH Model). Given a first order autoregressive model for a
series Xt with a GARCH.1; 1/ process of the error term,

xt D �0 C �1xt�1 C "t ; (12.14)

�2
t D ˛0 C ˛1"2

t�1 C ˇ1�
2
t�1 (12.15)

where �2
t is the conditional variance.

(a) Explain how the GARCH model is a generalization of the ARCH model.
(b) Discuss what the model in Eq. (12.15) implies for the process of the squared

errors, "2
t .

(c) Explain what happens to the model if ˛1 C ˇ1 D 1 and discuss the implication.

(a) The GARCH.1; 1/ model is a generalization of the ARCH.1/ model by
allowing the conditional variance to depend on the lagged conditional variance.
Replacing �2

t D "2
t � �t in Eq. (12.15) we obtain:

�2
t D ˛0 C ˛1"2

t�1 C ˇ1�
2
t�1 (12.16)

"2
t � �t D ˛0 C ˛1"2

t�1 C ˇ1."
2
t�1 � �t�1/ (12.17)
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"2
t D ˛0 C .˛1 C ˇ1/"

2
t�1 C �t � ˇ1�t�1; (12.18)

This is an ARMA.1; 1/. Note that the MA.1/ part of the squared error
process correspond to an infinite autoregressive process, AR.1/: Hence the
GARCH.1; 1/ is a parsimonious way to model an ARCH process with
significant lags, i.e. an ARCH.p/ for large p.

(b) The squared error terms, Eq. (12.18),

"2
t D ˛0 C .˛1 C ˇ1/"

2
t�1 C �t � ˇ1�t�1

follow an ARMA.1; 1/ where the autoregressive polynomial is given as

�.L/ D 1 � .˛1 C ˇ1/L: (12.19)

(c) Following from Eq. (12.19), the persistence of the process depends on the sum
˛1 Cˇ1. If ˛1 Cˇ1 < 1, shocks to "2

t have a decaying impact on future volatility.
For ˛1 C ˇ1 D 1, the process has unit roots. Shocks to "2

t will have permanent
effect. This model is referred to as, integrated GARCH .IGARCH/.



Chapter 13
Time Series with Stochastic Volatility

Try to steal a chicken, but end up with losing the rice

We have already discussed that volatility plays an important role in modeling finan-
cial systems and time series. Unlike the term structure, volatility is unobservable
and thus must be estimated from market data.

Reliable estimations and forecasts of volatility are important for large credit
institutes where volatility is directly used to measure risk. The risk premium, for
example, is often specified as a function of volatility. It is interesting to find an
appropriate model for volatility. The capability of macroeconomic factors to forecast
volatility has already been examined in the literature. Although macroeconomic
factors have some forecasting capabilities, the most important factor seems to be
the lagged endogenous return. As a result recent studies are mainly concentrated on
time series models.

Stock, exchange rates, interest rates and other financial time series have stylized
facts that are different from other time series. A good candidate for modeling
financial time series should represent the properties of stochastic processes. Neither
the classic linear AR or ARMA processes nor the nonlinear generalizations can fulfil
this task. In this chapter we will describe the most popular volatility class of models:
the ARCH (autoregressive conditional heteroscedasticity) model that can replicate
these stylized facts appropriately.

Exercise 13.1 (Correlation Function). For the time series of daily DAX and FTSE
100 returns from 1 January 1998 to 31 December 2007, graphically illustrate the
following correlation functions:

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 13, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 13.1 The autocorrelation function and the partial autocorrelation function plots for
DAX plain, squared and absolute returns, from 1 January 1998 to 31 December 2007.

SFSautoparcorr

1. Autocorrelation function for plain returns,
2. Partial autocorrelation function for plain returns,
3. Autocorrelation function for squared returns, and
4. Autocorrelation function for absolute returns.

In addition, compute the Ljung-Box
�

Q�
m

�

test statistics, for plain returns,
squared returns and absolute returns, as well as the ARCH test statistics for plain
returns. Select the number of lags m close to log .n/, where n denotes the sample
size, see Tsay (2002).

Are the DAX and FTSE 100 return processes in the period under review:

(a) Stationary,
(b) Serially uncorrelated,
(c) Independent?

Select an appropriate linear time series model for the return processes. Are
ARCH and GARCH models appropriate for modeling the volatility processes of the
analyzed returns?

The graphical illustration of the empirical autocorrelation functions and the
partial correlation functions for analysed time series are given in Figs. 13.1 and 13.2
for the DAX index and the FTSE 100 index, respectively. In the period under review,
there are n D 2; 807 observed returns. By selecting m D 8, the computed values
for the Ljung-Box Portmanteau statistics and the ARCH test statistics are given in
Table 13.1.
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100 plain, squared and absolute returns, from 1 January 1998 to 31 December 2007.
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Table 13.1 Ljung-Box (Q�

8 ) test statistics (Null hypothesis: �1 D : : : D
�8 D 0) for plain, squared and absolute DAX and FTSE 100 returns, as well
as the ARCH test statistics (Null hypothesis: no presence of ARCH effects)
for plain DAX and FTSE 100 returns, from 1 January 1998 to 31 December
2007. The critical value to reject the null hypothesis is 15.5 at a significance
level of 5 % for both tests

Ljung-Box ARCH

r r2 jr j r

DAX 15.1 1445.0 1728.8 559.6
FTSE 100 41.9 1426.3 1393.7 516.0

The DAX returns are (a) stationary, (b) serially uncorrelated and (c) not
independent processes, whereas the FTSE 100 returns are not stationary, but they
are serially correlated and dependent processes. An appropriate linear time series
model for the DAX returns would be white noise, and for the FTSE 100 returns, for
example, an AR(3) model. There is empirical support that the volatility processes
are serially correlated. Therefore, it is justified to model the volatility processes of
both returns with ARCH or GARCH models.

Exercise 13.2 (Appropriate order q of ARCH(q)). For modelling of the volatility
processes for the DAX and FTSE 100 returns from 1 January 1998 to 31 December
2007, use an ARCH(q) model, q D 1; : : : ; 15. The return processes should follow
the linear time series models discussed in Exercise 13.1. Based on the value
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Fig. 13.3 The values of the Log-likelihood function based on the ARCH(q) model for the
volatility processes of DAX and FTSE 100 returns, from 1 January 1998 to 31 December 2007.
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of the optimized log-likelihood objective function select an appropriate order
q for modelling and provide the return and volatility equations with estimated
parameters.

Furthermore, create a time series of estimated volatility processes in the period
under review. Create forecasts of the volatility processes from 1 January 2008 until
31 December 2008 using the unconditional and the conditional volatility approach.

The values of the log-likelihood function based on the ARCH(q) model and
computed for different values of q are plotted in Fig. 13.3. Among all fitted
ARCH(q) models one observes that an ARCH(6) model is appropriate for modeling
both volatility processes in the period under review. Selecting models with higher
order does not increase substantially the values of the log-likelihood function.

Return and volatility equations with estimated parameters for the DAX index are:

rt D 7:3 � 10�4 C �t "t (13.1)

�2
t D 4:9 � 10�5 C 0:045"2

t�1 C 0:154"2
t�2 C 0:161"2

t�3 C 0:126"2
t�4

C0:172"2
t�5 C 0:166"2

t�6: (13.2)

Return and volatility equations with estimated parameters for the FTSE 100
index are:

rt D 4:2 � 10�4 � 0:025rt�1 � 0:039rt�2 � 0:040rt�3 C �t "t (13.3)

�2
t D 2:5 � 10�5 C 0:091"2

t�1 C 0:130"2
t�2 C 0:173"2

t�3 C 0:153"2
t�4

C0:126"2
t�5 C 0:175"2

t�6: (13.4)

The conditional volatility forecast converges asymptotically to the unconditional
volatility forecast. As an empirical support of this fact, consider Fig. 13.4.
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Fig. 13.4 Estimated and forecasted volatility processes of DAX and FTSE 100 returns based on

an ARCH(6) model. The solid line denotes the unconditional volatility. SFSarch

Exercise 13.3 (Specification of the ARCH Model). Why is a GARCH model
sometimes not appropriate to model financial time series? Mention and describe
briefly at least one more appropriate specification of the ARCH model.

There is evidence in the financial markets that a negative shock tends to increase
volatility more than a positive shock. Therefore, not only the size of the return but
also the sign is important in describing the characteristics of the variance of asset
returns.

For example the EGARCH is capable of modeling the described behavior. The
volatility of the EGARCH model, which is measured by the conditional variance, is
an explicit multiplicative function of lagged innovations. On the contrary, volatility
of the standard GARCH model is an additive function of the lagged error terms.
Another possible model would be the Threshold ARCH.

Exercise 13.4 (ARCH(1) Process). Analyze an appropriately parameterized
ARCH(1) process. Show that as a model for a financial time series, this process
reasonably captures the following stylized facts:

(a) Heavy tails,
(b) White noise structure,
(c) Volatility clustering.

(a) Let the returns be given by a real-valued stochastic process ."t / such that
EŒ"t jFt�1� D 0 and

Var."t jFt�1/ D �2
t D ! C ˛"2

t�1:

We impose the conditions ! > 0 and 1 > ˛ > 0 to ensure that volatility is
strictly positive and the return process is stationary.

We show that the returns "t have heavy tails. By basic calculation using
properties of the conditional expectation, we obtain the moments

EŒ"2
t � D !

1 � ˛
and EŒ"4

t � D 3!2

.1 � ˛/2

1 � ˛2

1 � 3˛2
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Hence, "t has kurtosis

� D EŒ"4
t �

EŒ"2
t �

2
D 3

1 � ˛2

1 � 3˛2
:

A curve discussion shows that for � to be positive, ˛ must lie in the interval
.0; 1=3�. Since 1 � ˛2 > 1 � 3˛2 > 0 for ˛ 2 .0; 1=3�, we have � > 3. Hence,
the distribution of "t is strictly leptokurtic.

(b) The white noise property follows from

EŒ"t � D EŒEŒ"t jFt�1�� D 0

and

EŒ"t "t�s� D EŒEŒ"t "t�sjFt�1�� D EŒEŒ"t jFt�1�"t�s� D 0; s � 1:

It is important to note, however, that the returns "t are not independent, as the
squared returns "2

t are not uncorrelated. Indeed,

"2
t D �2

t C "2
t � �2

t

D ! C ˛"2
t�1 C "2

t � �2
t ;

so that "2
t is an AR(1) process with noise "2

t � �2
t . We can see this from

EŒ"2
t � �2

t � D EŒEŒ"2
t � �2

t jFt�1��

D EŒ�2
t � �2

t �

D 0

and

EŒ."2
t � �2

t /."2
t�s � �2

t�s/� D EŒEŒ."2
t � �2

t /."2
t�s � �2

t�s/jFt�1��

D EŒEŒ."2
t � �2

t /jFt�1�."
2
t�s � �2

t�s/�

D EŒ.�2
t � �2

t /."2
t�s � �2

t�s/�

D 0:

As it was shown in Exercise 12.17, the autocovariance function of "2
t is given

by �.s/ D ˛s , s � 1. It is nonzero by our assumption ˛ ¤ 0.
(c) The property of volatility clustering can be gleaned from the recursive relation

Var."t jFt�1/ D �2
t D ! C ˛"2

t�1:
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If the conditional variance �2
t�1 of "t�1 has an atypically large realization, then

the realization of the conditional variance �2
t of "t is also likely to be large. The

effect continues ad infinitum.

Exercise 13.5 (ARCH(1) Process). For an ARCH(1) process, show that

EŒ�2
tCs jFt�1� D 1 � ˛s

1 � ˛
! C ˛s�2

t ; s � 1:

Interpret this result.

We prove the formula by induction on s. For s D 1 we have

EŒ�2
tC1jFt�1� D EŒ! C ˛"2

t jFt�1�

D ! C ˛�2
t :

Now assume that the formula is true for s. Then

EŒ�2
tCsC1jFt�1� D EŒ! C ˛"2

tCsjFt�1�

D ! C ˛ EŒEŒ"2
tCsjFtCs�1�jFt�1�

D ! C ˛ EŒ�2
tCsjFt�1�

D ! C ˛

�

1 � ˛s

1 � ˛
! C ˛s�2

t

�

D
�

1 � ˛

1 � ˛
C ˛ � ˛sC1

1 � ˛

�

! C ˛sC1�2
t

D 1 � ˛sC1

1 � ˛
! C ˛sC1�2

t :

This proves the formula.
Recall the interpretation of the conditional expectation EŒ�2

tCs jFt�1� as the best
forecast of the future conditional volatility �2

tCs given the information at time t � 1.
The above result shows that volatility shocks persist in forecasts of future volatility
at the geometric rate ˛. This persistence is consistent with the model’s phenomenon
of volatility clustering.

Exercise 13.6 (Representation of a Strong GARCH(p,q) Process). Assume that
p D q. Otherwise, we can successively add coefficients ˛qC1 D 0 or ˇpC1 D 0

until the condition is fulfilled. Let 0 <
Pp

iD1.˛i C ˇi / < 1: Show that

�2
t D !

1
X

kD0

p
X

i1;:::;ikD1

.˛i1Z
2
t�i1

C ˇi1/ � � � .˛i1 Z
2
t�i1�:::�ik

C ˇik /; (13.5)
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where Zt denotes the innovation "t =�t . In particular, show that the sum on the right-
hand side converges (i.e. is finite) almost surely.

Since p D q, we have

�2
t D ! C

p
X

iD1

˛i "
2
t�i C

p
X

iD1

ˇi �
2
t�i

D ! C
p
X

iD1

.˛i Z
2
t�i C ˇi /�

2
t�i : (13.6)

First, we motivate the formula (13.5). By recursion, we obtain

�2
t D ! C

p
X

iD1

.˛i Z
2
t�i C ˇi /

8

<

:

! C
p
X

j D1

.˛i Z
2
t�i�j C ˇj /�2

t�i�j

9

=

;

D !

(

1 C
p
X

iD1

.˛i Z
2
t�i C ˇi /

)

C
p
X

i;j D1

.˛i Z
2
t�i C ˇi /.˛i Z

2
t�i�j C ˇj /�2

t�i�j :

This suggests that �2
t is given by (13.5). In order to work with the infinite

(random) sum, we need to check that it converges almost surely. Note that all
summands are positive and apply the monotone convergence theorem to obtain

E

8

<

:

!

1
X

kD0

p
X

i1;:::;ikD1

.˛i1Z
2
t�i1

C ˇi1/ � � � .˛i1 Z
2
t�i1�:::�ik

C ˇik /

9

=

;

D !

1
X

kD0

p
X

i1;:::;ikD1

E
˚

.˛i1 Z
2
t�i1

C ˇi1 / � � � .˛i1 Z
2
t�i1�:::�ik

C ˇik /
�

D !

1
X

kD0

p
X

i1;:::;ikD1

.˛i1 C ˇi1/ � � � .˛i1 C ˇik / .i.i.d. assumption/

D !

1
X

kD0

(

p
X

iD1

.˛i C ˇi /

„ ƒ‚ …

0<�<1

) k

< 1:

Since the sum is integrable, it must converge almost surely.
By induction on p, we show that (13.5) fulfills the GARCH recursion (13.6). The

statement is true for p D 0. Now let it be true for p � 1. With the abbreviations

Œ � � � � defD .˛i1Z
2
t�i1

C ˇi1/ � � � .˛i1 Z
2
t�i1�:::�ik

C ˇik /
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and
Œ � � � �i defD .˛i1 Z

2
t�i�i1

C ˇi1 / � � � .˛i1 Z
2
t�i�i1�:::�ik

C ˇik /;

we have

!

1
X

kD0

p
X

i1;:::;ikD1
p 62fi1;:::;ikg

Œ � � � � D ! C
p�1
X

iD1

.˛i Z
2
i C ˇi / !

1
X

kD0

p
X

i1;:::;ikD1
p 62fi1;:::;ikg

Œ � � � �i : (13.7)

Adding to both sides of (13.7) all terms of the form

!.˛i1 Zt�i1 C ˇi1 / � � � .˛i1Zt�ik�:::�ik C ˇik /

such that p 2 fi1; : : : ; ikg, we obtain (13.6).

Exercise 13.7 (Model Identifiability). A discussion of a model’s identifiability
precedes any sound implementation or statistical inference involving the model.

(a) Using the representation (13.5), specify a GARCH process that does not admit
a unique parametrization.

(b) Show that the GARCH(1,1) process

�2
t D 1 C 1

4
"2

t�1 C 1

2
�2

t�1

and the GARCH(2,2) process

�2
t D 5

4
C 1

4
"2

t�1 C 1

16
"2

t�2 C 1

4
�2

t�1 C 1

8
�2

t�2

are equivalent, i.e. the given relationships are satisfied by the same process
.�2

t /t2Z. What is noteworthy about the polynomials p.x/ D ˛1x C ˛2x2 and
q.x/ D 1 � ˇ1x � ˇ2x

2 for the second process? Recast your observation as a
hypothesis concerning the identifiability of a general GARCH(p; q) process.

(a) Consider a GARCH(p; q) process .�2
t /t2Z with ˛1 D � � � D ˛p D 0 and q > 0.

By the preceding exercise, �2
t has the closed form

�2
t D !

1
X

kD0

q
X

i1;:::;ikD1

ˇi1 � � � ˇik

D !

1
X

kD0

 

q
X

iD1

ˇi

!k

D !

1 �Pq
iD1 ˇi
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and, in particular, is constant. However, �2
t can be parameterized in any of an

infinite number of ways; the model is unidentifiable.
(b) By recursion, we obtain

�2
t D 1 C 1

4
"2

t�1 C
�

1

4
C 1

4

�

�2
t�1

D 1 C 1

4
"2

t�1 C 1

4
�2

t�1 C 1

4

�

1 C 1

4
"2

t�2 C 1

2
�2

t�2

�

D 5

4
C 1

4
"2

t�1 C 1

16
"2

t�2 C 1

4
�2

t�1 C 1

8
�2

t�2:

Hence, the GARCH(1,1) process satisfies the relation of the GARCH(2,2)
process. Since .�2

t / is uniquely determined by the parameters !, ˛1; : : : ; ˛q ,
ˇ1; : : : ; ˇp , it follows that both processes are equivalent. Generally, a recursion
on the terms �2

t�j of any GARCH process will produce an equivalent GARCH
process of higher order.

We notice that the polynomials p.x/ D ˛1x C ˛2x2 D 1
4
x C 1

16
x2 and q.x/ D

1 � ˇ1x � ˇ2x
2 D 1 � 1

4
x � 1

8
x2 share the common root x D �4. This suggests that

recursion to a higher order produces coefficients !; ˛1; : : : ; ˛q; ˇ1; : : : ; ˇp such that
the polynomials p.x/ D Pq

iD1 ˛i x
i and q.x/ D 1 � Pq

j D1 ˇj xj always share a
common root. Therefore, we conjecture that a GARCH process is identifiable if and
only if the polynomials p and q have no common roots. This turns out to be true.
The key to proving the following result is to study the power series expansion of the
rational function p.x/=q.x/.

Let ."t / be a GARCH process with parameters ! > 0 and ˛1; : : : ; ˛q , ˇ1; : : : ; ˇp

� 0, such that
Pq

iD1 ˛i C Pp
j D1 ˇj < 1. If the random variables Z2

t D "2

�2
t

are

nondegenerate, if ˛q ¤ 0 or ˇp ¤ 0, if ai > 0 for at least one i � 1, and if the
polynomials p.x/ D Pq

iD1 ˛i x
i and q.x/ D 1 � Pq

j D1 ˇj xj have no common
roots, then ."t / is uniquely parametrized.

Exercise 13.8 (Yule-Walker estimator). GARCH models are typically estimated
by a numerical implementation of maximum likelihood methods. This procedure
has the disadvantage that it does not yield a closed form estimate and can produce
different results depending on the algorithm and its starting value. As an alternative,
derive the closed form Yule-Walker moment estimator of the strong GARCH(1,1)
process

�2
t D ! C ˛"2

t�1 C ˇ�2
t�1:

(a) Express the process as an ARMA(1,1) process in "2
t . Compute the autocorrela-

tions �"2.1/ and �"2.2/. Express ˛ C ˇ in terms of �"2 .1/ and �"2 .2/.
(b) Rewrite �"2.1/ and �"2 .2/ as a quadratic equation ˇ2 � cˇ � 1 D 0 in ˇ for an

appropriate constant c depending on ˛ C ˇ.
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In practice the autocovariances �"2 .s/ can be estimated by

O�"2.s/ D
PT

tDhC1

� O"2
t � O�2

� �O"2
t�h � O�2

�

PT
tD1

� O"2
t � O�2

� ;

where the estimated squared residuals O"2
t and estimated unconditional variance O�2

are supplied by a preliminary ARMA(1,1) estimation. By plug-in and by the above
calculations, we obtain an estimate for ˛ C ˇ and therefore for c, ˇ, and ˛.

(a) Let vt D "2
t � �2

t . Then

"2
t D �2

t C vt

D ! C ˛"2
t�1 C ˇ�2

t�1 C vt

D ! C ˛"2
t�1 C ˇ."2

t�1 � vt�1/ C vt

D ! C .˛ C ˇ/"2
t�1 C vt � ˇ.vt�1/:

vt is a white noise process since

EŒvt � D EŒEŒvt jFt�1�� D 0

and

EŒvt vt�s� D EŒEŒvt vt�sjFt�1�� D EŒEŒvt jFt�1�vt�s� D 0; s � 1:

Hence, "2
t is an ARMA(1,1) process with noise vt . By the theory of ARMA

processes,

�"2 .1/ D .1 � ˇ2 � ˛ˇ/˛

1 � ˇ2 � 2˛ˇ

and
�"2.2/ D .˛ C ˇ/�"2 .t; 1/:

In particular,

˛ C ˇ D �"2 .2/

�"2.t; 1/
:

(b) Rearranging the expressions for �"2 .1/ and �"2 .2/, we get

c D .˛ C ˇ/2 C 1 � 2�"2.1/.˛ C ˇ/

.˛ C ˇ/ � �"2.1/
:

Exercise 13.9 (Best One-step Forecast). Consider a GARCH(p; q) process. Com-
pute the best one-step forecastb"tC1 of "tC1 based on Ft . What is the conditional
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variance of the forecast error? Provide a nonconditional confidence interval for
"tC1 with coverage rate 1 � ˛. Interpret the width of this interval.

The best forecast of "tC1 given the current information Ft is the conditional

expectationb"tC1
defD EŒ"tC1jFt � D 0. The conditional variance of the forecast error

is Var."t �b"t jFt / D Var."t jFt / D �2
t .

For simplicity, let the innovations be Gaussian, and let z˛=2 denote the ˛=2-
quantile of the standard normal distribution. Then

I
defD Œ�z˛=2�t ; z˛=2�t �

is a .1 � ˛/ confidence interval for the forecastb"tC1 D 0. To see this, note that

PŒ"tC1 2 I˛� D EŒ1f"tC12I˛g�

D EŒEŒ1f"tC12I˛gjFt ��

D EŒPŒ"tC1 2 I˛jFt ��

D EŒ1 � ˛�

D 1 � ˛

by definition of the conditional probability of an event with respect to a �-algebra.
The width of the confidence interval is proportional to �t , the conditional standard
deviation of the forecast error. The width depends on the most current information
and plausibly reflects the volatility clustering exhibited by the model.
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Chapter 14
Value at Risk and Backtesting

Valor en riesgo y testeo retroactivo
El que busca la verdad corre el riesgo de encontrarla
Anyone who seeks the truth, risks to find it.

Manuel Vicent

Value-at-Risk (VaR) is probably the most commonly known measure for quantifying
and controlling the risk of a portfolio. Establishing VaR is of central importance to
a credit institute. The description of risk is attained with the help of an “internal
model”, whose job is to reflect the market risk of portfolios and similar uncertain
investments over time. The objective parameter in the model is the probability
forecast of portfolio changes over a given period. Whether the model and its
technical application correctly identify the essential aspects of the risk, remains
to be seen and verified. The backtesting procedure serves to evaluate the quality
of the forecast of a risk model by comparing the actual results to those generated
with the VaR model. For this the daily VaR estimates are compared to the results
from hypothetical trading that are held from the end-of-day position to the end of
the next day, the so-called “clean backtesting”. The concept of clean backtesting is
differentiated from that of “mark-to-market” profit and loss (“dirty P &L”) analyses
in which intra-day changes are also observed. In judging the quality of the forecast
of a risk model it is advisable to concentrate on the clean backtesting.

Exercise 14.1 (Methodologies for Calculating VaR). Discuss the standard
methodologies for calculating VaR and explain how they work. Are there advantages
and disadvantages of the presented methods?

The standard methods are:

Parametric: closed form, or variance/covariance: This methodology estimates
VaR using an equation that specifies parameters such as volatility, correlation, delta,
and gamma. It is a fast and simple calculation, and extensive historical data are not
required; only volatility and a correlation matrix are needed.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 14, © Springer-Verlag Berlin Heidelberg 2013
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The methodology is accurate for linear instruments but less accurate for nonlinear
portfolios or for skewed distributions. An example of this approach is given by the
Delta-normal model of RiskMetrics (1996).

Monte Carlo: The Monte Carlo methodology estimates VaR by simulating random
scenarios and revaluing positions in the portfolio. Extensive historical data are not
needed. The method is accurate (if used with a complete pricing algorithm) for all
instruments and provides a full distribution of potential portfolio values, not just a
specific percentile.

Monte Carlo simulation permits the use of various distributional assumptions
(normal, t-distribution, normal mixture, etc.). Thus, it can address the issue of fat
tails, or leptokurtosis, but only if market scenarios are generated using appropriate
distribution assumptions. A disadvantage of this approach is that it is computation-
ally intensive and time consuming, entailing revaluation of the portfolio under each
scenario.

Historical: In the historical methodology, VaR is estimated by taking actual
historical rates and revaluing positions for each change in the market. Assuming
a complete pricing algorithm is used, the method is accurate for all instruments.
The methodology provides a full distribution of potential portfolio values rather than
just a specific percentile. The user does not need to make distributional assumptions,
although parameter fitting may be performed on the resulting distribution.

Tail risk is incorporated but only if the historical data set includes the tail events.
Historical analysis is faster than Monte Carlo simulation because fewer scenarios are
used, although it is still somewhat computationally intensive and time consuming.
A disadvantage is that a significant daily rate history is required, and sampling
far back can create problems if the data are irrelevant to current conditions (for
example, if currencies have been devalued). Similarly, scaling far into the future can
be difficult. An additional disadvantage is that the results are harder to verify at high
confidence levels (99 % and beyond).

Exercise 14.2 (Implementation of VaR). Name and discuss a few important
problems in the implementation of VaR.

The first problem is the estimation of the parameters of asset return distributions.
In real-world applications of VaR, it is necessary to estimate means, variances, and
correlations of returns. More generally one needs to specify the joint dependence of
the asset returns by parametrizing the joint cdf.

The second problem is the actual calculation of position sizes. A large financial
institution may have thousands of loans outstanding. The data base of these loans
may not classify them by their riskiness, nor even by their time to maturity, or, a
bank may have offsetting positions in foreign currencies at different branches in
different locations. A long position in SFR in New York may be offset by a short
position in SFR in Geneva; the bank’s risk – which we intend to measure by VaR –
is based on the net position.
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Exercise 14.3 (Expected Shortfall). Let Z be a N.0; 1/ rv, prove that # D
EŒZjZ > u� D '.u/=f1 � ˚.u/g.

Given a threshold u, the exceedances above u are calculated conditional on
fZ > ug and by using Bayes’ rule: f .zjz > u/ D f .z/=f1 � F.u/g, we then obtain:

# D EŒZjZ > u� D
Z 1

u
x'.x/ f1 � ˚.u/g�1 dx

D f1 � ˚.u/g�1

Z 1

u
x'.x/dx

D f1 � ˚.u/g�1

Z 1

u
x.2�/�1=2 exp.�x2=2/dx

D f1 � ˚.u/g�1 .2�/�1=2

Z 1

u
x exp.�x2=2/dx

D f1 � ˚.u/g�1 .2�/�1=2f� exp.�x2=2/gj1u
D f1 � ˚.u/g�1 .2�/�1=2Œ0 � ˚� exp.�u2=2/

�

�

D f1 � ˚.u/g�1 .2�/�1=2 exp.�u2=2/ D '.u/ f1 � ˚.u/g�1

Exercise 14.4 (Expected Shortfall). Recall the definitions of Z and # for given
exceedance level u from Exercise 14.3. Prove that &2 D VarŒZjZ > u� D 1Cu#-#2.

VarŒZjZ > u� D EŒZ2jZ > u� � E2ŒZjZ > u�

D f1 � ˚.u/g�1

Z 1

u
x2.2�/�1=2 exp.�x2=2/dx � #2

D f1 � ˚.u/g�1 .2�/�1=2

Z 1

u
x2 exp.�x2=2/dx � #2

D f1 � ˚.u/g�1 .2�/�1=2

Z 1

u
x d f� exp.�x2=2/g � #2

According to integration by parts, we have:

D f1 � ˚.u/g�1 .2�/�1=2

�

˚�x exp.�x2=2/
� j1u �

Z 1

u
� exp.�x2=2/dx

�

�#2

D f1 � ˚.u/g�1 .2�/�1=2

�

u exp.�u2=2/ C
Z 1

u
exp.�x2=2/dx

�

� #2

D f1 � ˚.u/g�1 .2�/�1=2
˚

u exp.�u2=2/
�C f1 � ˚.u/g�1 f1 � ˚.u/g

�#2
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D u'.u/ f1 � ˚.u/g�1 C f1 � ˚.u/g�1 f1 � ˚.u/g � #2

D 1 C u# � #2

Exercise 14.5 (Delta-Normal Model). Consider a portfolio with 2 stocks. The
portfolio has 2,000 EUR invested in S1 and 4,000 EUR in S2. Given the following
variance-covariance matrix of the returns R1 and R2:

˙ D
�

0:12 0

0 0:062

�

calculate the VaR (at 95 %) for each stock and VaR of the portfolio using the Delta-
Normal Model.

Having

w D
�

2000

4000

�

we can compute the product:

�2 D 	

2000 4000



�

0:12 0

0 0:062

��

2000

4000

�

D 97; 600

The standard deviation is � D p
97; 600 D 312:41. Since the 95 % quantile of the

standard normal distribution is 1.65, the VaR of the portfolio is calculated as

VaR D 1:65 � 312:41 D 515:48

The VaR for each stock is:

VaR1 D 1:65 � 0:1 � 2000 D 330

VaR2 D 1:65 � 0:06 � 4000 D 396

We note that the sum is 726 which is greater than the VaR of the portfolio.
This is related to the subadditivity issue discussed in Franke et al. (2011).

Exercise 14.6 (Incremental, Marginal and Component VaR). The partition of
the portfolio VaR that indicates how much the portfolio VaR would change approx-
imately if the given component was deleted is called component VaR, or CVaR. It
can be calculated with C VaRi D wi �VaRi where �VaRi is the incremental VaR
of the position i , i.e. how much the VaR of the portfolio increases if we increase the
position i by 1. This value can be calculated directly by revaluating the portfolio or
be approximated using the marginal VaR. Calculate both incremental and marginal
VaR in the case of Exercise 14.5 (change by 1 for each position) and compare them.
Calculate the approximated C VaRi . What do you discover?



14 Value at Risk and Backtesting 181

Incremental VaR for S1:

� 02 D 	

2; 001 4; 000



�

0:12 0

0 0:062

��

2; 001

4; 000

�

D 97; 640

� 0 D
p

97; 640 D 312:474

and hence
VaR0 D 1:65 � 312:474 D 515:5821

the increment is 515:5821 � 515:48 D 0:1021:

For S2:

� 002 D 	

2000 4001



�

0:12 0

0 0:062

��

2000

4001

�

D 97; 629

� 00 D
p

97; 629 D 312:4561

and hence
VaR00 D 1:65 � 312:4561 D 515:5525

the increment is 515:5525 � 515:48 D 0:0725:

The marginal VaR is defined as:

@VaR

@wi

D ˛
@�

@wi

With N uncorrelated stocks we obtain:

@�2

@wi

D 2wi �
2
i C 2

N
X

j D1;j ¤i

wj �ij D 2wi�
2
i :

Using @�2

@wi
D 2� @�

@wi
we get:

@VaR

@wt;i

D ˛
@�

@wi

D ˛
wi �

2
i

�

@VaR

@w1

D 1:65 � 2000 � 0:12

312:41
D 0:1056

@VaR

@w2

D 1:65 � 4000 � 0:062

312:41
D 0:0761

The values are very close to the incremental values, the approximation is good
because the change in the position is very small.

C VaR1 D w1 � @VaR

@w1

D 211:2608
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C VaR2 D w2 � @VaR

@w2

D 304:2156

We discover that C VaR1 C C VaR2 D 515:48 D VaR.

Exercise 14.7 (Portfolio Management). Suppose a portfolio manager manages a
portfolio which consists of a single asset. The natural logarithm of the portfolio
value is normally distributed with an annual mean of 10 % and annual standard
deviation of 30 %. The value of the portfolio today is 100 million EUR. Taking VaR
as a quantile, answer the following:

(a) What is the probability of a loss of more than 20 million EUR by year end (i.e.,
what is the probability that the end-of-year value is less than 80 million EUR)?

(b) With 1 % probability, what is the maximum loss at the end of the year? This is
the VaR at 1 %.

(c) Calculate the daily, weekly and monthly VaRs at 1 %.

(a) Denoting the value of the portfolio by # it follows that the logarithm of the
portfolio value at time T , #T , is normally distributed:

log.#T /
L! N

�

log.#/ C .� � �2

2
/T; �2T

�

The term �2T=2 appears due to Itô’s Lemma. In our case, # D 100, � D 10 %,
� D 30 %. Thus the end-of-year log of the portfolio value is distributed as

log.#T /
L! N.4:66017; 0:32/

This means that the probability that the end-of-year value of the portfolio is less
than 80 is given by the cdf of this distribution. To make the calculation simpler
we first transform the above distribution .N.4:66017; 0:32// into the standard
normal distribution .N.0; 1// and obtain the probability of a loss of more than
20 million euro by year end as

˚.
�

log.80/ � flog.100/ C 0:1 � 0:32=2g�=0:3/ D 0:17692:

(b) Since the 1 % quantile of the standard normal distribution is �2:32635

(i.e., ˚.�2:32635/ D 0:01), we first find the critical portfolio value at the 1 %
threshold. Thus,

log.V / � 4:66017

0:3
D �2:32635

which results in V D 52:5763 million EUR as the critical portfolio value at
1 %. Therefore, the maximum loss at the end of the year (annual VaR) at 1 % is
100 � 52:5763 D 47:4237 million EUR.

(c) The daily, weekly and monthly values for T are 1/250, 5/250 and 21/250,
respectively. The corresponding distributions for the daily, weekly and
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monthly log portfolio values are N.4:60539; 0:00036/, N.4:60627; 0:0018/

and N.4:60979; 0:00756/, respectively. Thus, following the same procedure as
in (b), we obtain the following VaR values at 1 %:

DailyVaR D 0:2568 million EUR

WeeklyVaR D 1:2776 million EUR

MonthlyVaR D 5:2572 million EUR

Exercise 14.8 (Daily VaR in Delta Normal Framework). Calculate the daily VaR
in a delta normal framework for the following portfolio with the given correlation
coefficients. Do the same calculation for the cases of complete diversification and
perfect correlation.

Assets Estimated daily VaR(EUR) �S;FX �B;FX �S;B

Stocks(S) 400 000.00 �0.10 0.25 0.80
Bonds(B) 300 000.00
Foreign exchange(FX) 200 000.00

In the delta normal framework, VaR D z˛ � � . The daily VaR of the portfolio, in
this case with three assets, S, B, and FX, can be therefore calculated by:

VaR2 D VaR2
S C VaR2

B C VaR2
FX

C2�S;FX VaRS VaRFX C 2�B;FX VaRBVaRFX C 2�S;BVaRS VaRB

If �S;FX D �0:10; �B;FX D 0:25 and �S;B D 0:80, then VaR D 704; 273 EUR.
If complete diversification (i.e., �S;FX D �B;FX D �S;B D 0), then VaR D

538; 516 EUR.
If perfect correlation (i.e., �S;FX D �B;FX D �S;B D 1), then VaR D VaRS C

VaRB C VaRFX D 900; 000 EUR.

Exercise 14.9 (Daily VaR). A derivatives portfolio has a current market value of
250 million EUR. Marking this derivatives position, to obtain the market value that
would have been obtained on the previous 201 trading days, yields the following
worst cases for the daily fall in its value (in million EUR):

�152 �132 �109 �88 �85 �76 �61 �55 �45 �39
� 37 � 32 � 30 �26 �22 �21 �18 �15 �14 �12

Using the above data, what is the daily VaR on this portfolio at the 1 % threshold?
At the 5 % threshold? Comment on the relative accuracy of these two calculations.

Computing the daily VaR on a historical basis is straightforward. 201 trading
days, so 200 observations on the fall in value. So the 1 % threshold is the 2nd
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worst outcome, i.e. �132, the 5 % threshold is the 10th worst outcome, i.e. �39.
The 5 % calculation is more accurate than the 1 % calculation. This is because
outcomes around the 5 % region are relatively close (�45, �39, �37). The empirical
distribution yields enough observations to give a fairly accurate estimate. Around
1 % outcomes are far apart (�152, �132, �109), so in this case the empirical
distribution does not yield an accurate estimate.

Exercise 14.10 (Subadditivity of VaR based on Delta-Normal Model). A risk
measure � is subadditive when the risk of the total position is less than, or equal
to, the sum of the risk of individual portfolios. Intuitively, subadditivity requires
that risk measures should consider risk reduction by portfolio diversification effects.
Subadditivity can be defined as follows: Let X and Y be random variables denoting
the losses of two individual positions. A risk measure � is subadditive if the following
equation is satisfied.

�.X C Y / � �.X/ C �.Y /

Using the above definition, show that the VaR based on the Delta-Normal Model
is subadditive.

We know that VaR D z˛� in the Delta-Normal Model. Thus we need to show
that z˛�XCY � z˛.�X C�Y /. If two random variables have finite standard deviations,
the standard deviations are shown to be subadditive as follows. Let �X and �Y be
standard deviations of random variables X and Y , and let �XY be the covariance of
X and Y . Since �XY � �X �Y , the standard deviation �XCY of the random variable
X C Y satisfies subadditivity as follows.

�XCY D
q

�2
X C �2

Y C �XY �
q

�2
X C �2

Y C 2�X �Y D �X C �Y

�XY � �X �Y can be proved as follows. Let Z D .Y � �Y / � t.X � �X / for a real
value t , where �X and �Y are expectations of X and Y , respectively. Then,

EŒZ2� D t2 EŒ.X � �X /2� � 2t EŒ.X � �X /.Y � �Y /� C EŒ.Y � �Y /2�

D �2
X t2 � 2�XY t C �2

Y

Here, let t D �XY =�2
X , then,

EŒZ2� D .�2
X �2

Y � �2
XY /=�2

X

Since EŒZ2� � 0, �XY � �X �Y follows.

Exercise 14.11 (Digital Option). The digital option (also called the binary option)
is the right to earn a fixed amount of payment conditional on whether the underlying
asset price goes above (digital call option) or below (digital put option) the strike
price. Consider the following two digital options on a stock, with the same exercise
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date T . The first option denoted by A (initial premium u) pays 1,000 if the value
of the stock at time T is more than a given U, and nothing otherwise. The second
option denoted by B (initial premium l) pays 1,000 if the value of the stock at time T

is less than L (with L < U ), and nothing otherwise. Suppose L and U are chosen
such that P.ST < L/ D P.ST > U / D 0:008, where ST is the stock price at time
T . Consider two traders, trader A and trader B, writing one unit of option A and
option B, respectively.

(a) Calculate the VaR at the 99 % confidence level for each trader.
(b) Calculate the VaR at the 99 % confidence level for the combined position on

options A and B.
(c) Is the VaR for this exercise subadditive?

(a) VaR at the 99 % confidence level of trader A is �u, because the probability that
ST is more than U is 0.008, which is beyond the confidence level. Similarly,
VaR at the 99 % confidence level of trader B is �l . This is a clear example of
the tail risk. VaR disregards the loss of options A and B, because the probability
of the loss is less than one minus the confidence level.

(b) VaR at the 99 % confidence level of this combined position (option A plus
option B) is 1; 000 � u � l , because the probability that ST is more than U

or less than L is 0.016, which is more than one minus the confidence level
(0.01).

(c) Since the sum of VaR of individual positions (option A and B) is �u � l , it is
clear that VaR is not subadditive for this exercise.

Exercise 14.12 (Backtesting for correct VaR Model). In the traffic light approach
the backtesting surcharge factor increases with the number of exceptions evaluated
on 250 historical returns. Consider a correct 1 % VaR model and assume the
independence of the returns. It would mean that the appearance exceptions on
250 days follow a binomial distribution with parameter n D 250 and p D 0:01.
Calculate the probability that there are more than 4 exceptions.

Let k be a number of exceptions k 2 f0; 1; : : : ; 250g.

P.k > 4/ D 1 � P.k � 4/ D 1 �
4
X

kD0

�

n

k

�

pk.1 � p/n�k � 0:1019 (14.1)

This example shows that the correct model will yield the backtesting surcharge
with a probability of 0:1019.

Exercise 14.13 (Backtesting for incorrect VaR Model). Similarly to Exer-
cise 14.12 consider an incorrect 1 % VaR model which has the true probability of
exception p D 0:025. Calculate the probability that there are less than 5 exceptions.

Let k be a number of exceptions k 2 f0; 1; : : : ; 250g.



186 14 Value at Risk and Backtesting

P.k < 5/ D
4
X

kD0

�

n

k

�

pk.1 � p/n�k � 0:25 (14.2)

The incorrect model will stay in the green zone with a probability of 0.25.

Exercise 14.14 (Portfolio Management).

(a) Consider a portfolio which consists of 20 stocks of type A. The price of the stock
today is 10 EUR. What is the 95 % 1 year Value-at-Risk (VaR) of this portfolio if
the 1 year return arithmetic of the stock RA is normally distributed N.0; 0:04/?

(b) Consider again a portfolio of 10 stocks of type A and 20 stocks of type B.
The prices of the stocks today are 10 EUR and 5 EUR respectively. The joint
distribution of the yearly arithmetic returns follows a 2-dimensional normal
distribution N.�; ˙/, where � D .0; 0/T and the covariance matrix of the
returns RA and RB is given by:

˙ D
�

0:04 0:02

0:02 0:08

�

What is the yearly 95 % VaR of the portfolio in this case?

(a) Let RA � N.0; 0:04/. The value of the portfolio V in 1 year is equal to

V D 20 � 10 � RA

We can compute the expected return and variance of the portfolio:

E.V / D E.20 � 10 � RA/ D 200 E.RA/ D 200 � 0 D 0

Var.V / D Var.20 � 10 � RA/ D 2002 Var.RA/ D 2002 � 0:04 D 1; 600

Since V � N.0; 1; 600/ and the 95 % quantile of the standard normal
distribution is ˚�1.0:95/ D 1:65, the VaR of the portfolio is calculated as:

VaR D 1:65 �
p

1; 600 D 66

(b) Let R D .RA; RB/> � N.�; ˙/. The value of the portfolio V in 1 year is

V D 10 � 10RA C 20 � 5RB D 100.RA C RB/

The expected return and variance of the portfolio are:

E.V / D E f100.RA C RB/g D 100 E.RA C RB/ D 100 � 0 D 0

Var.V / D Var f100.RA C RB/g D 1002.0:04 C 0:08 C 2 � 0:02/ D 1; 600

As V � N.0; 1; 660/ and ˚�1.0:95/ D 1:65, the VaR of the portfolio is equal:
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VaR D 1:65 �
p

1; 600 D 66

Exercise 14.15 (Expectation Derivation). Let X �N.�; �2/ be a random vari-
able, c is a constant, please calculate EŒmax.X � c; 0/�.

Let Z � N.0; 1/ be a standard normal random variable, then with ' 0.z/ D
�z'.z/:

EŒmax.X � c; 0/� D
Z 1

�1
max.z� C � � c; 0/'.z/d z D

Z 1
.c��/

�

.� � c C �z/'.z/d z

D .� � c/

Z 1
.c��/

�

'.z/d z C �

Z 1
.c��/

�

z'.z/d z

D .� � c/

Z 1
.c��/

�

'.z/d z � �

Z 1
.c��/

�

' 0.z/d z

D .� � c/
h

1 � ˚

�

.c � �/

�

�
i

� �

Z 1
.c��/

�

' 0.z/d z

Moreover, by ˚.z/ C ˚.�z/ D 1 and
R1

.c��/
�

' 0.z/d z D �'
n

.c��/

�

o

, we have:

.� � c/
h

˚

�

.� � c/

�

�
i

C �'

�

� .� � c/

�

�

D �

�

.� � c/

�

�

˚

�

.� � c/

�

�

C �'

�

� .� � c/

�

�

(14.3)

Now put Y D .��c/

�
, thus (14.3) transforms into

D �Y ˚.Y / C �'.�Y /

D � fY ˚.Y / C '.�Y /g
D � fY ˚.Y / C '.Y /g

With �.Y / D Y ˚.Y / C '.Y /, we finally obtain:

EŒmax.X � c; 0/� D ��

�

.� � c/

�

�

Exercise 14.16 (Expected Shortfall). Calculate the expected shortfall for
X � N.�; �2/.

The expected shortfall ES˛ W EŒX jX > VaR�, is the expectation of losses given
that they exceed the quantile VaR. In terms of the VaR it is given by the conditional
expectation
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EŒX jX > VaR� D
Z 1

VaR

xf .xjx > VaR/dx

D
Z 1

VaR

x
f .x/

P.X > VaR/
dx

D
Z 1

VaR

xf .x/

1 � ˛
dx

D
Z

VaRD�C�z˛

x 1
�

'
	

x��

�




dx

1 � ˛
(14.4)

The probability for a loss L lower than the VaR is equal to ˛, i.e.
P.L < VaR/ D ˛. Therefore,

P

�

L � �

�
<

VaR � �

�

�

D ˛

˚

�

VaR � �

�

�

D ˛

VaR � �

�
D ˚�1.˛/ D z˛

VaR D z˛� C �

and using the fact that X is normally distributed the pdf can be written as f .x/ D
1
�

'
	

x��

�




. Now set t D x��

�
and rearrange it such that x D �t C �. After further

setting dt D dx
�

we substitute into Eq. (14.4) to obtain

D
Z 1

z˛

.� t C �/'.t/dt

1 � ˛
(14.5)

D �

1 � ˛

Z 1

z˛

t'.t/dt C �

1 � ˛

Z 1

z˛

'.t/dt (14.6)

D �

1 � ˛
.�'.t/j1z˛

/ C � (14.7)

D �

1 � ˛
'.z˛/ C � (14.8)

since
R

x exp.�x2=2/dx D � exp.�x2=2/ and
R1

z˛
exp.t/dt D 1 � ˛.

Therefore, if X � N.0; 1/ then the expected shortfall

EŒX jX > VaR� D '.z˛/

1 � ˚.z˛/
(14.9)



Chapter 15
Copulae and Value at Risk

Kopuły i Wartość Narażona na Ryzyko
Chciwy dwa razy traci.
The greedy pay twice.

In order to investigate the risk of a portfolio, the assets subjected to risk (risk factors)
should be identified and the changes in the portfolio value caused by the risk factors
evaluated. Especially relevant for risk management purposes are negative changes –
the portfolio losses. The Value-at-Risk (VaR) is a measure that quantifies the
riskiness of a portfolio. This measure and its accuracy are of crucial importance
in determining the capital requirement for financial institutions. That is one of the
reasons why increasing attention has been paid to VaR computing methods.

The losses and the probabilities associated with them (the distribution of losses)
are necessary to describe the degree of portfolio riskiness. The distribution of
losses depends on the joint distribution of risk factors. Copulae are very useful
for modelling and estimating multivariate distributions. The flexibilty of copulae
basically follows from Sklar’s Theorem, which says that each joint distribution can
be “decomposed” into its marginal distributions and a copula C “responsible” for
the dependence structure:

F.x1 : : : ; xd / D C fF1.x1/; : : : ; Fd .xd /g:

Exercise 15.1 (Valid Copula Functions). Are the following functions for a; b 2
Œ0; 1� valid copula functions?

(a) C1.a; b/ D a2=2 C b2=2 � .a � b/2=2

(b) C2.a; b/ D .jaj C jbj � ja � bj/=2

(a) It is easy to see that C1.a; b/ D a2=2 C b2=2 � .a � b/2=2 D a2=2 C b2=2 �
.a2 C b2 � 2ab/=2 D ab so one obtains the product copula.

(b) For a > b one has C2.a; b/ D .a C b � a C b/=2 D b and for a < b,
C2.a; b/ D a which yields the minimum copula, see Franke et al. (2011).

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 15, © Springer-Verlag Berlin Heidelberg 2013
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Exercise 15.2 (Calculate Joint Distribution). Let X1; X2 be identically dis-
tributed (but not independent) random variables with cdf F . Define the random
variables Ui D 1 � F.Xi/ for i D 1; 2 and the joint distribution of .U1; U2/

>
be given with copula function C . Calculate the joint distribution of .X1; X2/

> i.e.
P.X1 � s; X2 � t/.

From the definition:

P.X1 � s; X2 � t/ D P fU1 � 1 � F.s/; U2 � 1 � F.t/g :

Now using the properties:

P fU1 � 1 � F.s/; U2 � 1 � F.t/g C P fU1 � 1 � F.s/; U2 < 1 � F.t/g C
P fU1 < 1 � F.s/g D 1

P fU1 � 1 � F.s/; U2 < 1 � F.t/g C P fU1 < 1 � F.s/; U2 < 1 � F.t/g C
P fU2 � 1 � F.t/g D 1;

one obtains:

P.X1 � s; X2 � t/ D 1 � PfU1 � 1 � F.s/; U2 < 1 � F.t/g � PfU1 < 1 � F.s/g
D 1 � Œ1 � P fU1 < 1 � F.s/; U2 < 1 � F.t/g

�PfU2 � 1 � F.t/g� � P.U1 < 1 � F.s//

D C f1 � F.s/; 1 � F.t/g � P fF.t/ � F.X2/g
�P fF.s/ < F.X1/g

D C f1 � F.s/; 1 � F.t/g C F.s/ � F.t/ � 1

Exercise 15.3 (Conditional Distribution Method). One method of generating
random numbers from any copula is the conditional distribution method. Consider
a pair of the uniform random variables .U; V / with copula C . Show that

P.V � vjU D u/ D @

@u
C.u; v/:

Using the fact that a distribution function is right-continuous we write

P.V � vjU D u/ D lim
�u!0

P.V � vju < U � u C �u/

D lim
�u!0

P.u < U � u C �u; V � v/

P.u < U � u C �u/
:
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Since U is a random variable uniformly distributed on the interval Œ0; 1� we have
P.u < U � u C �u/ D �u and we calculate

P.V � vjU D u/ D lim
�u!0

P.u < U � u C �u; V � v/

�u

D lim
�u!0

C.u C �u; v/ � C.u; v/

�u

D @

@u
C.u; v/:

Exercise 15.4 (Inverse of Conditional Distribution). Let U and V be two uni-
form random variables whose joint distribution function is a Clayton copula C .
Calculate the inverse of the conditional distribution V jU .

The Clayton copula is given by the formula

C.u; v/ D .u�� C v�� � 1/�1=�

for � > 0. Using the copula property from Exercise 15.3 we write

P.V � vjU D u/ D @

@u
C.u; v/ D @

@u
.u�� C v�� � 1/�1=�

D ��u���1.�1=�/.u�� C v�� � 1/�1=��1

D u���1.u�� C v�� � 1/�.1C�/=�

D .u� /�.1C�/=� .u�� C v�� � 1/�.1C�/=�

D fu� .u�� C v�� � 1/g�.1C�/=� :

Solving the equation q D @
@u C.u; v/ for v yields

q D fu� .u�� C v�� � 1/g�.1C�/=�

q��=.1C�/ D u� .u�� C v�� � 1/

u�� C v�� � 1 D q��=.1C�/u��

v�� D q��=.1C�/u�� � u�� C 1

v D f.q��=.1C�/ � 1/u�� C 1g�1=� :

The inverse of the conditional distribution of .V jU / is f.q��=.1C�/ �1/u�� C1g�1=� .

Exercise 15.5 (Upper and Lower Tail Dependence). Calculate coefficients of
upper and lower tail dependence for the Gumbel copula (Fig. 15.1).
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Contour Plot of the Gumbel Copula Density, θ=2
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Fig. 15.1 Contour plot of the Gumbel copula density, � D 2. SFScontourgumbel

The upper and lower tail dependence coefficient is defined as

�U D lim
u%1

1 � 2u C C.u; u/

1 � u
(15.1)

�L D lim
u&0

C.u; u/

u
(15.2)

The Gumbel copula is given by the formula

C.u; v/ D exp
h

� ˚

.� log u/� C .� log v/�
�1=�

i

:

Then

C.u; u/ D exp
h

� ˚

2.� log u/�
�1=�

i

D exp
�

21=� log u
�

D exp
�

log u21=�
�

D u21=�

:

We now calculate the limits that correspond to the upper and lower tail dependence
coefficients for the Gumbel copula. The upper tail dependence coefficient is
calculated according to (15.1):
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�U D lim
u%1

1 � 2u C C.u; u/

1 � u

D lim
u%1

1 � 2u C u21=�

1 � u

D lim
u%1

2 � 2u � 1 C u21=�

1 � u

D 2 C lim
u%1

u21=� � 1

1 � u

D 2 � lim
u%1

21=�u21=��1

D 2 � 21=� ;

For the lower tail dependence we employ (15.2):

�L D lim
u&0

C.u; u/

u

D lim
u&0

u21=�

u

D lim
u&0

u21=� �1

D 0:

Exercise 15.6 (Copula Application to Finance). Consider the same situation as
in Exercise 14.5, but the asset returns are assumed to be correlated with correlation
matrix

R D
�

1 0:25

0:25 1

�

:

(a) Determine the VaR.95 %/ of the portfolio using the Delta-Normal Model and
compare the results to the solution of Exercise 14.5.

(b) Propose a strategy to estimate the VaR using an elliptical copula with arbitrary
margins Fj , j D 1; 2.

(c) Assume the margins follow a student-t distribution with eight degrees of
freedom. The simulation based VaRs are given in Table 15.1. Interpret the
results. In which situation should a student-t copula be preferred?

(a) As the amount I D6,000 EUR is invested with weights w D .1=3; 2=3/>, the
scaled portfolio variance is given by
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Table 15.1 Table presents the estimated VaR for different significance levels and computational
methods

Delta-Normal Model Gaussian copula Student-t copula

VaR.95 %/ 573.58 655.69 674.39
VaR.99 %/ 811.23 922.41 1,031.52

1=I 2�2 D w>
�

0:12 �
0:25 � 0:1 � 0:06 0:062

�

w

D 0:003378:

Then, the VaR of the portfolio can be computed as

VaR D 1:65I
p

0:003378

D 575:38;

which is higher than in the uncorrelated case of Exercise 14.5. This result is
reasoned by incorporating the positive dependence between the assets.

(b) The strategy for the copula based methods can be sketched as follows:

(i) Sample n random vectors of the two dimensional copula with correlation
matrix R and let

˚

uij

�n

iD1
, j D 1; 2, be the generated sample.

(ii) Use the additive structure of the portfolio and compute the loss variables

Li D w1F �1
1 .ui;1/�11 C w2F

�1
2 .ui;2/�22;

where Fj , j D 1; 2, are the predetermined or estimated marginal distribu-
tions.

(iii) Estimate VaR.95 %/ D bF �1
L .0:95/, where bF L denotes the edf of the loss-

variables Li .

(c) The student-t distributed margins have more probability mass in the tails than
the normal distribution, for which reason the Delta-Normal approach must fail
to describe the VaR appropriately. The Gaussian copula does not share this
shortcoming and permits the margins to follow an arbitrary distribution. The
results of Table 15.1 support this property and show, that the copula based
VaR.95 %/s are close. In contrast to the student-t copula and irrespective of the
correlation r 2 .�1; 1/, the Gaussian copula cannot describe tail dependency.
As a consequence, the student-t copula leads to a more conservative VaR.99 %/

than the Gaussian copula, i.e. the student-t copula should be preferred, if the
marginal distributions indicate dependence of the tails.

Note, that the results of Table 15.1 rely on generated random vectors and hence, the
previous interpretation maybe not hold for a different seed. Table 15.1 and Fig. 15.2

can be reproduced by Quantlet SFScopapplfin .
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Fig. 15.2 The upper panel shows the edfs and the lower panel the kernel density estimates of
the loss variables for the Gaussian copula (black solid lines) and the student-t copula based loss
variable (blue dashed line). The red vertical solid line provides the VaR for the Delta-Normal

Model. SFScopapplfin



Chapter 16
Statistics of Extreme Risks

Štatistika extrémnych rizik
Tak dlho sa chodi s džbánom po vodu, kým sa nerozbije
One is going for water with a jug so long until it breaks

When we model returns using a GARCH process with normally distributed inno-
vations, we have already taken into account the second stylised fact. The random
returns automatically have a leptokurtic distribution and larger losses occur more
frequently than under the assumption that the returns are normally distributed. If one
is interested in the 95 %-VaR of liquid assets, this approach produces the most useful
results. For extreme risk quantiles such as the 99 %-VaR and for riskier types of
investments, the risk is often underestimated when the innovations are assumed to be
normally distributed, since a higher probability of extreme losses can be produced.

Procedures have therefore been developed which assume that the tails of
the innovation’s distribution are heavier. Extreme value theory (EVT) plays an
important methodological role within the above. The problem we want to solve
is how to make statistical inferences about the extreme values in a random process.
We want to estimate tails in their far regions and also high quantiles. The key to
treating statistics of rare events is the generalised extreme value distribution which
also leads to the generalised Pareto distribution. The probability of extreme values
will largely depend on how slowly the probability density function fZ.x/ of the
innovations goes to 0 as jxj ! 1. However, since extreme observations are rare in
data, this produces a difficult estimation problem. Therefore, one has to be supported
by extremal event techniques. In this chapter a short overview of the distribution of
the extremes and excesses, the return period of some rare events, the frequency of
extremal events, the mean excess over a given threshold and several of the latest
applications are given.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 16, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 16.1 Simulation of 500 1:5-stable and normal variables. SFSheavytail

Exercise 16.1 (Tail Behaviour). The tail behaviour of distributions determines the
size and the frequencies of extremal values. Heavy tailed distributions, like stable
(including Cauchy and Levy) tend to have more extremal values than distributions
like the normal with light exponentially decreasing tails.

Provide evidence for this statement by simulating stable and normal variates.
More precisely, simulate 500 1:5-stable and normal variables and comment on the
size and frequency of the outliers with same scale. For definition and properties of
˛-stable distributions see Cizek et al. (2011, Chap. 1).

Figure 16.1 displays the simulation result of 500 random normal (left) and 1:5-
stable (right) variables. The black lines represent 25 and 75 % quantiles while red
lines represent 2.5 and 97.5 % quantiles of the distributions. As we see, the red lines
for 1:5-stable random variables are much wider than the ones for normal random
variables, which indicates that there are many more extreme values in this case.

Exercise 16.2 (Convergence to Infinity depending on Tail Behaviour). The max-
imum of n independent unbounded random variables tends in probability to infinity.
The convergence to infinity may be slow or fast depending on the tail behavior of the
distributions. Consider a sequence of random variables Mn D max.X1; : : : ; Xn/;

n D m; 2m; 3m; : : :. Plot n vs. Mn for different kinds of distributions. It is suggested
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Fig. 16.2 Convergence rate of maximum for n random variables with a standard normal cdf.

SFSmsr1

that one does this exercise for a standard normal and a stable distribution (see
Exercise 16.1) .

Let X1; : : : ; Xn are iid random variables with a cdf F.x/. Then the block maxima
Mn D max.X1; : : : ; Xn/ may become arbitrary large. One can easily compute the
cdf of maxima:

P.Mn � x/ D P.X1 � x; : : : ; Xn � x/ D F n.x/

For unbounded random variables, i.e. F.x/ < 1; 8x < 1,

F n.x/ �! 0 and hence Mn

P�! 1

First we demonstrate this property for the standard normal distribution, see
Fig. 16.2. For the stable distribution the convergence of maximum can be observed
on Fig. 16.3.

The rate of convergence to infinity for the (1,1)-stable distributed random
variables is higher than for standard normal variables. For n D 500, m D 10

the difference between two distributions is obvious: the maximum for a standard
normal is about 6, and for the stable distributed variables it exceeds 4,500. For the
proper analysis of asymptotics one needs the limit law of the maximum domain of
attraction (MDA).
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Fig. 16.3 Convergence rate of maximum for n random variables with a 1:1-stable cdf.
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Exercise 16.3 (Asymptotic Distribution). The empirical quantile is defined on the
basis of order statistics X.1/; X.2/; : : : ; X.n/ asbxq D bF �1

n .q/. Derive the asymptotic
distribution ofbxq � xq . A good reference is Serfling (2002)

In Chap. 2 in Serfling (2002) it is shown that
p

n.bxq � xq/
L�! Nf0; q.1 �

q/=f 2.xq/g.
It is not hard to get:

fX.k/
.x/ D nŠ=f.k � 1/Š.n � k/ŠgF.x/k�1f1 � F.x/gn�kf .x/:

Let k � 1=n � 1�q � k=n , cZq D Z.k/. When Z � U Œ0; 1�, Z.k/ � B.k; nC1�k/

(Beta distribution), by the asymptotic property of Beta distribution and CLT:

p
n.cZq � q/

L�! Nf0; q.1 � q/g:

As X � F , F.X/ � U Œ0; 1� and F �1.Z/ D X , by Delta method (Klein, 1977), we
have: p

n.bxq � xq/
L�! Nf0; q.1 � q/=f 2.xq/g:



16 Statistics of Extreme Risks 201

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
PP Plot of Daily Return of Portfolio

Fig. 16.4 Normal PP plot of daily log-returns of portfolio (Bayer, BMW, Siemens) from 1992-01-

01 to 2006-12-29. SFSportfolio

Exercise 16.4 (PP-Plot). The PP-Plot is a diagnostic tool for graphical inspection
of the goodness of fit of hypothetical distribution F .

(a) How is the PP-Plot constructed? Construct the normal PP-Plot of daily log-
returns of the portfolio (Bayer, BMW, Siemens) from 1992-01-01 to 2006-12-29
to check the fit of the normal distribution. Is the normal distribution an
acceptable approximation of the data?

(b) For the given dataset of the 100 tail values of daily log-returns, estimate
the parameter � using block maxima method. Validate the fit of the GEV
distribution with the estimated parameter � using PP-plot.

(c) Repeat (b) for the Peaks over Threshold (POT) method by estimating � for the
Generalized Pareto Distribution. Use PP-Plot to check the fit of the distribution.
Is the approximation better?

(a) The probability-probability plot (PP-plot) is used to checked whether a given
data follows some specified distribution. For the normal PP-plot the cumulative
probabilities of the data are plotted against the standard normal cdf. It should
be approximately linear if the specified distribution is the correct model. For a
given dataset of three stocks (Bayer, BMW, Siemens) the corresponding normal
PP-Plot is given in Fig. 16.4.

(b) The block maxima method produces a global estimate of � D 0:0498. The
corresponding PP-plot is depicted in Fig. 16.5.
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Fig. 16.5 PP plot of 100 tail values of daily log-returns of portfolio (Bayer, BMW, Siemens) from
1992-01-01 to 2006-09-01 against Generalized Extreme Value Distribution with a global parameter

� D 0:0498 estimated with the block maxima method. SFStailGEV

(c) The POT method gives us a global estimation � D �0:0768. Using the PP-Plot
in Fig. 16.6 it can be seen that this distribution provides the best approximation
of the data.

Exercise 16.5 (QQ-Plot). The QQ-Plot is a diagnostic tool for graphical
inspection of the goodness of fit of hypothetical distribution F .

(a) What is the advantage of QQ-Plot in comparison with the PP-Plot? Construct
the normal QQ-Plot of daily log-returns of the portfolio (Bayer, BMW, Siemens)
from 1992-01-01 to 2006-12-29 to check the fit of the normal distribution. Is the
normal distribution an acceptable approximation of the data?

(b) For the given dataset of the 100 tail values of daily log-returns globally estimate
the parameter � using block maxima method. Validate the fit of the GEV
distribution with the estimated parameter � using QQ-plot.

(c) Repeat (b) for the Peaks over Threshold (POT) method by estimating a global
� for the Generalized Pareto Distribution. Use QQ-Plot to check the fit of the
distribution. Is the approximation better?

(a) QQ-plot is better than the PP plot for assessing the goodness of fit in the tails of
the distributions. In order to check how well the normal distribution describes
the data, we plot the ordered data x.i/ against equally spaced quantiles from a
standard normal distribution. For a given dataset of three stocks (Bayer, BMW,
Siemens) the results are in Fig. 16.7.
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Fig. 16.6 PP plot of 100 tail values of daily log-returns of portfolio (Bayer, BMW, Siemens) from
1992-01-01 to 2006-09-01 against Generalized Pareto Distribution with parameter � D �0:0768

globally estimated with POT method. SFStailGPareto
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Fig. 16.7 Normal QQ-plot of daily log-returns of portfolio (Bayer, BMW, Siemens) from 1992-

01-01 to 2006-12-29. SFSportfolio
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Fig. 16.8 QQ plot of 100 tail values of daily log-returns of portfolio (Bayer, BMW, Siemens) from
1992-01-01 to 2006-09-01 against Generalized Extreme Value Distribution with a global parameter

� D 0:0498 estimated with the block maxima method. SFStailGEV

The closer the line representing the sample distribution is to theoretical
distribution, the better is the approximation. As can be seen, the log-returns
have much more heavier tails and can not be approximated with the normal
distribution.

(b) The block maxima method produces an estimate of a global � D 0:0498. The
corresponding QQ-plot is depicted in Fig. 16.8:

(c) The POT method gives us a global � D �0:0768. Using the QQ-Plot in Fig. 16.9
it can be seen that this distribution provides the best approximation of the data.

Exercise 16.6 (Mean Excess Function). The mean excess function

e.u/ D E.X � u j X > u/ 0 < u < 1

determines not only the tail behavior of the distribution but also uniquely deter-
mines F . Prove the formula

F .x/ D e.0/

e.x/
exp

�

�
Z x

0

1

e.u/
du

�

; x > 0

Simulate from Fréchet distribution with ˛ D 2, do the PP � plot and calculate
the mean excess function. Estimate ˛ from the mean excess function and plot the
empirical mean excess function.
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Fig. 16.9 QQ plot of 100 tail values of daily log-returns of portfolio (Bayer, BMW, Siemens)
from 1992-01-01 to 2006-09-01 against Generalized Pareto Distribution with a global parameter

� D �0:0768 estimated with POT method. SFStailGPareto

Suppose that X be a positive, unbounded rv with an absolute continuous cdf F . By
definition of e.u/, changing the support and using integration by part, we get that

e.u/ D E.X � ujX > u/

D
R1

u x dF.x/

F .u/
� u

D xF.x/j1u � R1
u F.x/dx � uf1 � F.x/g

F .u/

D
R1

u 1dx � R1
u F.x/dx

F .u/

D
R1

u f1 � F.x/gdx

F .u/

with F .x/ D P.X > x/ D 1 � F.x/.
We will obtain now an ordinary differential equation, and solve it using the

separation of variable method. Steps are shown as follows:

F .u/e.u/ D
Z 1

u
F .x/dx

d fF .u/e.u/g
du

D d
R1

u F .x/dx

du
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F
0
.u/e.u/ C F .u/e0.u/ D �F .u/

F
0
.u/e.u/ D �F .u/fe0.u/ C 1g
F

0
.u/

F .u/
D �e0.u/ C 1

e.u/

flog F .u/g0 D �e0.u/ C 1

e.u/

log F .u/ D
Z u

0

�e0.x/ C 1

e.x/
dx C c

D �
Z u

0

1

e.x/
dx C c �

Z u

0

e0.x/

e.x/
dx

D �
Z u

0

1

e.x/
dx C c � log e.x/

ˇ

ˇ

ˇ

ˇ

u

0

D �
Z u

0

1

e.x/
dx C c C log e.0/ � log e.u/

The general solution is:

F .u/ D exp

�

�
Z u

0

1

e.x/
dx C c C log e.0/ � log e.u/

�

D e.0/

e.u/
exp

�

�
Z u

0

1

e.x/
dx

�

� c

Plugging in the boundary condition, we have:

F .0/ D e.0/

e.0/
exp

�

�
Z 0

0

1

e.x/
dx

�

� c

D 1

and hence
C D 1

So we get finally:

F .u/ D e.0/

e.u/
exp

�

�
Z u

0

1

e.x/
dx

�

Therefore a continuous cdf is uniquely determined by its mean excess function.
The probability-probability plot (PP-plot) is used to check whether a given data
follows some specified distribution. For the normal PP-plot the cumulative proba-
bilities of the data are plotted against the standard normal cdf. Figure 16.10 displays
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Fig. 16.10 Normal PP plot of the pseudo random variables with Frechét distribution with ˛ D 2.

SFSevt2

the Normal PP Plot of the pseudo random variables with Frechét distribution with
˛ D 2. The mean excess function of a Fréchet distribution is equal to e.u/ D
uf1 C O.1/g=.˛ � 1/ and for u ! 1, we observe that e.u/ is approximately linear.
Figure 16.11 depicts the empirical mean excess function ben, which is estimated
based on a representative sample x1; � � � ; xn: ben D P

xi >x xi =#fi W xi > xg. In
financial risk management, switching from the right tail to the left tail, e.x/ is
referred to as the expected shortfall. From the empirical mean excess function,
(˛ D 2). Observe that Fréchet random variables are away from normal ones (45ı
line), indicating the presence of heavy tails.

Exercise 16.7 (Pareto Distribution Approximation). Suppose the Pareto distri-
bution NF .x/ D P.X > x/ � kx�˛ where ˛ > 0. It is well known that an
approximation of the parameter ˛ can be obtained since log NF .x/ � log k�˛ log x.
Estimate this logarithm approximation for the empirical distribution of the portfolio
(Bayer, BMW, Siemens) from 1992-01-01 to 2006-12-29.

In order to get an approximation log NF .x/ of the empirical distribution of the
portfolio, we first need to estimate the probability NF .x/ for x D X.j / by the
relative frequency #ft I Xt.j /g=n D j=n. Then, we replace NF .X.j // in log NF .x/ �
log k � ˛ log x with the estimator j=n. We have then log j=n � log k � ˛ log X.j /,
where b̨ is the slope of the linear regression obtained e.g. by least squares. The linear
approximation of log NF .x/ will only be good in the tails. Thus we estimate log j

n

using only the m biggest order statistics as we observe in Fig. 16.12.
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Fig. 16.11 Theoretical (line) and empirical (points) Mean excess function e.u/ of the Frechét
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Table 16.1 Values of shape Parameter estimated
with different methods for the 100 tail observations
of the portfolio (Bayer, BMW, Siemens) negative log-
returns from 1992-01-01 to 2006-09-01

Method b�

Block Max 0.0498
POT �0.0768
Regression 0.0125
Hill 0.3058

0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.01

0.02

0.03

0.04
Mean Excess Functions

Fig. 16.13 Empirical mean excess plot (straight line), mean excess plot of generalized Pareto
distribution (dotted line) and mean excess plot of Pareto distribution with parameter estimated
with Hill estimator (dashed line) for portfolio (Bayer, BMW, Siemens) negative log-returns from

1992-01-01 to 2006-09-01. SFSmeanExcessFun

Exercise 16.8 (Estimation with Block Max, POT, Hill and Regression). Esti-
mate the � parameter locally with Block Maxima, POT, Hill and Regression Model
of the portfolio (Bayer, BMW, Siemens) from 1992-01-01 to 2006-12-29. Assuming
different types of distributions, plot the mean excess function e.u/ for this portfolio.
What do you observe?

The corresponding local shape parameter estimates obtained from the Block
Maxima, POT, Hill and Regression Model of the portfolio (Bayer, BMW, Siemens)
with 100 observations are given in Table 16.1. The Hill model overstimates ˛, while
the POT underestimates.

We plot in Fig. 16.13, the mean excess plot for the empirical distribution, for
the Generalized Pareto distribution, for the Pareto distribution with parameter
estimated with Hill estimator for portfolio negative log-returns from 1992-01-01
to 2006-09-01.
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Exercise 16.9 (Estimate VaR with Block Max and POT). Estimate the Value-
at-Risk with the Block Maxima Model and with the POT Model of the portfolio
(Bayer, BMW, Siemens) from 1992-01-01 to 2006-12-29. Plot the shape and scale
parameters estimates over time.

For a sample of negative returns fXtgT
tD1, we decompose the time period 1992-

01-01 to 2006-12-29 into k non-overlapping time periods of length 16. We select
maximal returns fZj gk

j D1 where Zj D minfX.j �1/nC1; : : : ; Xj ng and estimate
the parameters of generalized extreme value distribution for the maximal returns
fZj gk

j D1. The VaR of the position with given ˛ (˛ D 0:95) in the Block Maxima
Model is denoted as:

VaR D � C �

�
Œf.1 � ˛n/g� � 1�

with ˛n D 1 � F.VaR/ D exp

�

�
�

1 C �
�

VaR��

�

��1=�
��

.

We use static windows of size w D 250 scrolling in time t for VaR estimation
fXtgs

tDs�wC1 for s D w; : : : ; T . The VaR estimation procedure generates a time

series f bVaRt
1�˛gT

tDw and f O�t gT
tDw, fb�t gT

tDw, f O�tgT
tDw of parameters estimates. Using

Backtesting, one compares the estimated VaR values with true realizations fltg of
the Profit and Loss function to get the ratio of the number of exceedances to the
number of observations gives the exceedances ratio:

Ǫ D 1

T � h

T
X

tDhC1

1flt < bVaRt
1�˛g

Figures 16.14 and 16.15 display the Value-at-Risk estimation under the Block
Maxima and the POT Model with 0:05 level for the portfolio formed by Bayer,
BMW, Siemens shares during from 1992-01-01 to 2006-09-01. The ˛-Bactesting
result from the Block Maxima model is equal to Ǫ D 0:0514, while for the POT
Ǫ D 0:0571. The shape and scale parameter estimates for the Block Maxima model
are shown in Fig. 16.16 and for the POT model in Fig. 16.17. In both plots, the
threshold of the portfolio is also displayed.

Exercise 16.10 (Calculate VaR). Let Y1 be a “short position” in a stock with log-
normal distribution

Y1 D � � S

with S D exp.Z/ where Z is normally distributed with N.m; �2/.

(a) Calculate VaR˛.Y1/ for ˛ 2 .0; 1/.
(b) Let Y1; Y2; . . . independent and identically distributed. Show for ˛ 2 .0; 1/:

VaR˛

 

n�1

n
X

iD1

Yi

!

! � EŒY1�

(c) Which parameter values ˛ violate the convexity property given a large n?
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Fig. 16.14 Value-at-Risk estimation at 0:05 level for portfolio: Bayer, BMW, Siemens. Time
period: from 1992-01-01 to 2006-09-01. Size of moving window 250, size of block 16. Backtesting

result Ǫ D 0:0514. SFSvar block max backtesting
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Fig. 16.15 Value-at-Risk estimation at 0:05 level for portfolio: Bayer, BMW, Siemens. Time
period: from 1992-01-01 to 2006-09-01. Size of moving window 250. Backtesting result Ǫ D
0:0571. SFSvar pot backtesting
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Fig. 16.16 Parameters estimated in Block Maxima Model for portfolio: Bayer, BMW, Siemens.

Time period: from 1992-01-01 to 2006-09-01. SFSvar block max params
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Fig. 16.17 Parameters estimated in POT Model for portfolio: Bayer, BMW, Siemens. Time

period: from 1992-01-01 to 2006-09-01. SFSvar pot params
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(a) VaR˛.Y1/ D inf fajP.Y1 C a < 0/ � ˛g

PŒY1 C a < 0� D PŒ� � exp.Z/ C a < 0�

D PŒZ > log.� C a/�

D P Œ.Z � m/=� > flog.� C a/ � mg =��

Let X D .Z � m/=�

inf fajPŒX > a� � ˛g D inf fajPŒX � a� � 1 � ˛g
D inf faj˚.a/ � 1 � ˛g
D ˚�1.1 � ˛/ D q1�˛

Therefore it holds:

VaR˛.Y1/ D inf faj.log.� C a/ � m/=� D q1�˛g D exp.�q1�˛ C m/ � �

(b) Yi i.i.d. with EŒY1� < 1 and EŒY 2
1 � < 1:

Then according to the strong law of large numbers:

n�1

n
X

iD1

Yi

a:s:! EŒY1�; n ! 1
Hence

P.n�1
Pn

iD1 Yi < �a/ !
(

0 EŒY1� > �a

1 EŒY1� < �a

VaR˛.n�1
P1

iD1 Yi / D inf
˚

ajP.n�1
Pn

iD1 Yi < �a/ � ˛
�

inf faj � a < EŒY1�g D � EŒY1�

(c) The convexity property is violated if

VaR˛.n�1

n
X

iD1

Yi / > n�1

n
X

iD1

VaR˛.Yi/ D VaR.Y1/

EŒY1� D � � exp.m C �2=2/

Therefore, convexity is not given for big n if

� EŒY1� D �� C exp.m C �2=2/ > exp.�q1�˛ C m/ � �
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or equivalently:

�=2 > q1�˛ D ˚�1.1 � ˛/

˚.�=2/ > 1 � ˛

˛ > 1 � ˚.�=2/ > 0

Exercise 16.11 (Normed Risk Measure). Let � be a normed risk measure.
Show that

(a) �.x/ � ��.�x/ for all x.
(b) �.�x/ � ��.x/ for all � 2 .�1; 0/ and all x.
(c) For x � 0 we have �.x/ � 0.
(d) Let � be a normed monetary risk measure. Show that two of the following

properties always imply the third property

(˛/ Convexity
(ˇ/ Positive homogeneity
(�/ Subadditivity

Let � be a normed and convex risk measure.

(a) We need to show that: �.x/ � ��.�x/ 8 x

Using the convexity of the risk measure � we conclude:

�.x/=2 C �.�x/=2 � �f.1=2/x C .1=2/.�x/g
D �.0/ D 0

So we have:

�.x/ � ��.�x/

(b) For � 2 Œ�1; 0� we have:

�.�x/ � ��.��x/ D �� Œ��x C f1 � .��/g0�

� �Œf���.x/ C f1 � .��/g�.0/� D ��.x/ (16.1)

For � 2 Œ�1; �1�; 1=� 2 Œ�1; 0/; we have:

�.1=� � �x/ � �.�x/=�

�.x/ � �.�x/=�

�.�x/ � ��.x/

(c) By monoticity of �, we have:

�.x/ � �.0/ D 0; 8 x � 0
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(d) (i) Let � be subadditive and positive homogeneous. This implies convexity.
Subadditivity gives:

�f�x C .1 � �/yg � �.�x/ C �f.1 � �/yg

Positive homogeneity yields:

�.�x/ C �f.1 � �/yg D ��.x/ C .1 � �/�.y/

Hence � is convex 8 � 2 Œ0; 1� as follows:

�f�x C .1 � �/yg � ��.x/ C .1 � �/�.y/

(ii) Let � be convex and positive homogeneous. This implies subadditivity.

.1=2/�.x/ C .1=2/�.y/ � �f.1=2/x C .1=2/yg
D �.x C y/=2

Hence � is subadditive.

(iii) Let � be subadditive and convex. This implies positive homogeneity.
� D d�e C Q� with d�e the largest integer not larger than �

Q� D � � d�e; Q� 2 Œ0; 1�

From subadditivity it follows �.nx/ � n�.x/ 8 n 2 N

So

�.�x/ D �.d�ex C Q�x/ � �.d�ex/ C �. Q�x/

According to (16.1)

��. Q�/x � �Q��.x/

Q��.x/ � �. Q�x/

So we have:

�.�x/ D �.d�ex C Q�x/ � Q��.x/ C d�e�.x/ D ��.x/; Q� 2 .0; 1/

�.�x/ � ��.x/ (16.2)
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On the other hand:

8 � � 1 W �.x/ D �f.1=�/ � �xg � �.�x/=� (16.3)

Hence ��.x/ � �.�x/ 8 � � 1

So ��.x/ D �.�x/ by combining (16.2) and (16.3) and
for � 2 .0; 1/: �.x/ D �f.1=�/ � �xg D �.�x/1=�

Therefore, homogeneity holds for all � � 0.

Exercise 16.12 (Extreme Losses and EVT). Suppose that an insurance portfolio
has claims Xi which are exponentially distributed exp.�/. Suppose that from earlier
analysis one has fixed � D 10.

(a) Suppose now that there are n D 100 such claims in this portfolio and one
observes values larger than 50 and 100. How likely are such extreme losses?

(b) How could you proceed with extreme value theory (EVT)? How could you find
the norming constant � and log.n/? Does it converge to limit?

(a) Let fXi gn
iD1 � exp.�/; n D 100; � D 10. The cdf is

F.x/ D P.X � x/ D 1 � exp.�x=10/; x � 0

Define Mn D max.X1; : : : ; Xn/. The probability of extreme events for n D 100

is calculated as:

P.M100 > x/ D 1 � fF.x/g100

D 1 � f1 � exp.�x=10/g100

If we plug in x D 50 and 100 respectively, we obtain 0.4914 and 0.453 �10�2

respectively.
(b) Using EVT with an MDA of the Gumbel distribution we find using the correct

scaling variables:

P fMn=10 � log.n/ � xg D PŒMn � 10 fx C log.n/g�
D F nŒ10 fx C log.n/g�
D f1 � exp.�x/=ngn

This leads asymptotically to

	.x/ D exp f� exp.�x/g
the Gumbel distribution. Using the asymptotic approximation one obtains

P.Mn � x/ � 	Œfx C log.n/g 10�

and therefore P.M100 > 50/ � 0:4902, P.M100 > 100/ � 0:453 � 10�2.
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Exercise 16.13 (Slowly Varying Function). Show that the function L.x/ D
log.1 C x/ is a slowly varying function.

Hint: a positive measurable function L in .0; 1/ that satisfies limx!1 L.tx/

L.x/
D 1

for all t > 0 is called a slowly varying function.

Apply Taylor expansion directly to log.1 C tx/ at t D 1. We have:

log.1 C tx/ D log.1 C x/ C .t � 1/=.1 C x/ C Of1=.1 C x/2g
log.1 C tx/

log.1 C x/
D 1 C Oflog.1 C x/=.1 C x/g

which is 1 when x ! 1.

Exercise 16.14 (Pareto Distribution). Let X1; : : : ; Xn are i.i.d. random variables
with a Pareto distribution with the cdf

W.1;˛/.x/ D 1 � 1

x˛
; x � 1; ˛ > 0

(a) Calculate E
˚

W.1;˛/.X/
�

.
(b) What is the cdf of min.X1; : : : ; Xn/?

(a) Let X1; : : : ; Xn have some distribution function F . By definition we know that
F.X/ � U.0; 1/. Thus, W.1;˛/.X/ follows a uniform distribution .0; 1/. The
expected value therefore is E

	

W.1;˛/.X/

 D 1

2
.

(b)

P fmin.X1; : : : ; Xn/ < tg D 1 � P fmin.X1; : : : ; Xn/ > tg
D 1 � P.X1 > t; X2 > t; : : : ; Xn > t/

D 1 � P.X1 > t/P.X2 > t/ : : : P.Xn > t/

D 1 � fP.X1 > t/gn D 1 � f1 � F.t/gn

D 1 �
�

1

X˛

�n

Exercise 16.15 (Quantile and Expectile Function).

(a) Compare the quantile with the expectile function.
(b) Plot quantile and expectile curves for the normal and uniform distribution.
(c) Construct confidence bands for the expectile functions.

(a) Both quantile and expectile are used to capture the tail behaviours of a
distribution, therefore they both are widely applied in financial studies, such
as to calculate VaR. Quantile is defined in L1 norm, while expectile is defined
in L2 norm. Define the contrast function

�
 .u/ D juj˛j
 � I.u < 0/j; 0 < 
 < 1: (16.4)



218 16 Statistics of Extreme Risks

0.0 0.4 0.8
−2

0

1

2

0.0 0.4 0.8
0.0

0.4

0.8

Fig. 16.18 Quantile curve (blue) and expectile curve (green) for N.0; 1/ (left) and U.0; 1/ (right).

SFSconfexpectile0.95

with ˛ D 1; 2. Minimizing the expectation of the contrast functions, we obtain
the 
-th quantile and expectile respectively.

l
 D arg min
�

EŒ�
 .Y � �/�; (16.5)

for ˛ D 1, l
 gives us the quantile, and l
 represents the expectile when ˛ D 2.
(b) See Fig. 16.18.
(c) We generate bivariate random variables f.Xi ; Yi /gn

iD1 with sample size n D
500. The covariate X is uniformly distributed on Œ0; 2�

Y D 1:5X C 2 sin.�X/ C " (16.6)

where " � N.0; 1/.

Obviously, the theoretical expectiles (fixed 
) are determined by

v.x/ D 1:5x C 2 sin.�x/ C vN .
/ (16.7)

where vN .
/ is the 
-th expectile of the standard Normal distribution (Figs. 16.19
and 16.20).

Exercise 16.16 (Confidence Band). Quantile regression is a straightforward way
to search for the relation implied in one asset return to other variables. Since the
VaR is just the one-step ahead quantile estimation (or prediction) for the distribution
of the asset we care, this motivates the use of the quantile regression. However, the
functional form is usually unknown, and this increases the difficulty in using the
quantile regression. In this exercise, you are asked to construct the confidence band
for a nonparametric quantile regression curve, by using the weekly returns of the
Bank of America (BOA) and Citigroup (C) from January 31, 2005 to January 31,
2010, with the following steps:

(a) Plot the returns.
(b) Sorting the BOA weekly returns according to the order of the C weekly returns.
(c) Apply locally linear quantile regression on BOA and C: First regressing BOA

on the ranks fi=ng546
iD1, and then divide it with the square root of the empirical

pdf of C.



16 Statistics of Extreme Risks 219
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Fig. 16.19 Uniform Confidence Bands for 
 D 0:1 Expectile Curve. Theoretical
Expectile Curve, Estimated Expectile Curve and 95 % Uniform Confidence Bands.
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Fig. 16.20 Uniform Confidence Bands for 
 D 0:9 Expectile Curve. Theoretical
Expectile Curve, Estimated Expectile Curve and 95 % Uniform Confidence Bands.

SFSconfexpectile0.95

(d) Construct the confidence band for the quantile curve you get in the last problem
with the theorem:

Let h D n�ı , 1
5

< ı < 1
3
, �.K/ D R A

�A K2.u/du, where K.�/ is supported
on Œ�A; A�. J D Œ0; 1�. Define c1.K/ D fK2.A/CK2.�A/g=2�.K/, c2.K/ D
R A

�A
fK 0.u/g2du=2�.K/ and

dn D

8

ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
:

.2ı log n/1=2 C .2ı log n/�1=2Œ
logfc1.K/

�1=2 g
C 1

2
flog ı C log log ng
 ; if c1.K/ > 0I

.2ı log n/1=2 C .2ı log n/�1=2 logfc2.K/

2�
g;

otherwise.
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Fig. 16.21 The 
 D 5 % quantile curve (solid line) and its 95 % confidence band (dashed line).

SFSbootband

Then

P

�

.2ı log n/1=2

�

sup
x2J

r.x/
jln.x/ � l.x/j

�.K/1=2
� dn

�

< z

�

! expf�2 exp.�z/g;

as n ! 1, with

r.x/ D .nh/1=2f fl.x/jxgffX.x/=
.1 � 
/g1=2;

where fX .�/ is the marginal pdf for X and f .�jx/ is the conditional pdf of Y on
X D x.

With the steps described, bandwidth h D 0:2155 specified can easily be obtained
employing the R command “lprq” in the package “quantreg”, so we can produce
the quantile curve. Applying the given theorem, we construct the 95 % confidence
band. The outcome can be seen in Fig. 16.21. In the figure, the slopes are different
on both tails. While on the right the slope is almost zero, it is quite positive on the
left.

Exercise 16.17 (Bootstrap). The confidence band we discussed in the last exercise
can also be constructed via bootstrap, with the following steps:

(a) We have two asset returns sequence fZi gn
iD1 and fYign

iD1. fXign
iD1: n equally

divided grid on Œ0; 1�. n D 546. Assume that Z is ordered by size and Y has
been sorted by the order of Z.

(b) Bivariate data: f.Xi ; Yi /gn
iD1 Compute lh.x/ of Y1; : : : ; Yn and residuals O"i D

Yi � lh.Xi /; i D 1; : : : ; n: 
 D 5 %. The bandwidth is 0.2155(BOA-C)
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Fig. 16.22 The 
 D 5 % quantile curve (solid line), 95 % confidence band (dashed line) and the

bootstrapping 95 % confidence band (dashed-dot line). SFSbootband

(c) Compute the conditional edf:

OF .t jx/ D
Pn

iD1 Kh.x � Xi/1fO"i 6 tg
Pn

iD1 Kh.x � Xi /

with the quartic kernel

K.u/ D 15

16
.1 � u2/2; .juj 6 1/:

(d) Generate rv "�
i;b � OF .t jx/, b D 1; : : : ; B and construct the bootstrap sample

Y �
i;b; i D 1; : : : ; n; b D 1; : : : ; B , B D 500, as follows:

Y �
i;b D lg.Xi/ C "�

i;b;

with g=0.3774 (BOA-C).
(e) For each bootstrap sample f.Xi ; Y �

i;b/gn
iD1, compute l�

h and the random variable

db
defD sup

x2J �

h Of fl�
h .x/jxg

q

OfX .x/jl�
h .x/ � lg.x/j

i

: (16.8)

(f) Calculate the .1 � ˛/ quantile d �̨ of d1; : : : ; dB .
(g) Construct the bootstrap uniform confidence band centered around l.z/ D

lh.x/=

q

OfZ.z/, i.e.

l.z/ ˙
h Of flh.x/jxg

q

OfX .x/ OfZ.z/
i�1

d �̨
.

The outcome of the bootstrapping 95 % confidence band can be seen in Fig. 16.22.
The bootstrapping confidence band is wider than the asymptotic confidence band.



Chapter 17
Volatility Risk of Option Portfolios

Put all your eggs in one basket – and watch that basket.
Mark Twain, The Tragedy of Pudd’nhead Wilson.

There is a close connection between the value of an option and the volatility process
of the financial underlying. Assuming that the price process follows a geometric
Brownian motion, we have derived the Black-Scholes formula (BS) for pricing
European options. With this formula and when the following values are given, the
option price is, at a given time point, a function of the volatility parameters: � (time
to maturity in years), K (strike price), r (risk free, long-run interest rate) and S (the
spot price of the underlying).

Although the volatility parameter is a constant in the BS setting, we can estimate
an implied volatility (IV) function from observed option market prices by inverting
the BS formula. In doing so we find volatility changes over time and moneyness,
usually presented in a dynamic volatility smile surface.

By observing the volatility surface over time, distinct changes in the location
and structure become obvious. Identifying the intertemporal dynamics is of central
importance for a number of applications, such as the risk management of option
portfolios.

Exercise 17.1 (Interpolation Methods). On July 1st, 2005 the closing price of
DAX was 4;617:07. One observes the following call options with strike K D 4;600

and maturities in year �1 D 0:2109, �2 D 0:4602, �3 D 0:7095. The prices of these
options are C1 D 119:4, C2 D 194:3, C3 D 256:9, respectively. Assume that C2 is
not observed. In order to approximate this price one may use linear interpolation of
options C1 and C3. The interpolation can be performed in prices C and in implied
volatilitiesb� .

Compare the two interpolation methods and check which gives the closest
approximation to the true price. Interpolate also the variance and compare the
results. (The interest rate is 2:1 %.)

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 17, © Springer-Verlag Berlin Heidelberg 2013
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Using linear interpolation of C1 and C3, we have:

.C3 � C1/

.�3 � �1/
D .C2 � C1/

.�2 � �1/

C2 D .�2 � �1/.C3 � C1/

.�3 � �1/
C C1: (17.1)

Hence

b

C
.1/
2 D 188:15

jbC .1/
2 � C2j D j194:3 � 188:15j

D 6:15:

For the second approach we calculate the IV from options by inverting the BS
formula:

C.S; �/ D expf.b � r/�gS˚.y C �
p

�/ � exp.�r�/K˚.y/:

The IVs at �1 and �3 are estimated asb�1 D 0:1182 andb�3 D 0:1377.
As in (17.1) we interpolate the implied volatilities to get b�2 and plug the result

into the BS formula:

b�2 D .�2 � �1/.�3 � �1/

.�3 � �1/
C �1

b�2 D 0:128

b

C
.2/
2 D 191:35

jbC .2/
2 � C2j D j194:3 � 191:35j

D 2:95:

We see that 6:15 > 2:95 and conclude that the volatility interpolation approach
leads to a more accurate approximation.

For the variance, we have as in (17.1):

b�2
2 D .�2 � �1/.�

2
3 � �2

1 /

.�3 � �1/
C �2

1

b�2
2 D 0:0165

b

C
.3/
2 D 191:8
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jbC .3/
2 � C2j D j194:3 � 191:8j

D 2:5

Using the interpolated variance gives a more accurate estimator in this case.

SFSinterpolMaturity

Exercise 17.2 (Interpolation Methods and Approximation). On July 1st, 2005
the closing price of DAX was 4;617:07. One observes the following call options with
strikes K1 D 4;000, K2 D 4;200, K3 D 4;500 and maturity in years � D 0:2109.
The prices of these options are C1 D 640:6, C2 D 448:7 C3 D 188:5 respectively.
Assume that C2 is not observed. In order to approximate this price one may use
linear interpolation of options C1 and C3. The interpolation can be performed in
prices C or in implied volatilitiesb� .

Compare these interpolation methods and check which gives the closest approx-
imation to the true price. Use interest rate r D 2:1 %.

Using the linear interpolation (17.1) of the prices C1 and C3 gives an approxima-
tion of C2 equal to 459:76. The difference to the true price is 11:06.

Calculating implied volatilities from options with strike prices K1 and K3 yields
b�1 D 0:1840 andb�3 D 0:1276. Interpolating the volatilities and plugging the result
back into the Black-Scholes formula give an approximation of C2 equal to 449:33.
The difference to the true price is 0:63.

The interpolation of variances yields b�2
2 D 0:0268 and the approximation for C2

equals to 450.11. The difference to the true price is 1.41. Hence the interpolated
volatility gives the best approximation in this case.

SFSinterpolStrike

Exercise 17.3 (Stickiness). Let the current underlying price be S0 D 100, maturity
� D 0:25 years and interest rate r D 2 %. Assume that implied volatility is given as
function of strike price f .K/ D 0:000167K2 � 0:03645K C 2:08.

Plot call option prices as a function of strikes for K 2 .85; 115/. Assume that
the underlying price moves to S1 D 105. The implied volatility function may be
fixed to the strike prices (sticky strike) or moneyness K=S1 (sticky moneyness). Plot
call option prices with two different stickiness assumptions. Compare the relative
difference of both approaches.

For the calculation of the call prices the Black-Scholes formula needs to be
applied with the given inputs. In case the underlying price shifts to S1 D 105

and the sticky strike assumption, only the spot price has to be updated. For the
sticky moneyness assumption the function of implied volatility must be scaled by
S0=S1 i.e.

ef .K/ D f .KS0=S1/:

The call prices are shown in Fig. 17.1. The relative difference between two
stickiness assumption is displayed in Fig. 17.2. Note that it is negligible for the
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Fig. 17.1 Call prices as a function of strikes for r D 2 %, � D 0:25. The implied volatility
functions curves are given as f .K/ D 0:000167K2�0:03645KC2:08 (blue and green curves) and
ef .K/ D f .KS0=S1/ (red curve). The level of underlying price is S0 D 100 (blue) and S1 D 105

(green, red) SFSstickycall

in-the-money options and is significant for the out-of-the-money options. Addition-
ally, Fig. 17.3 presents the implied volatility smile as a function of strike prices and
the smile is obtained for the sticky moneyness assumption. The function shifts to
the right when the underlying jumps up.

Exercise 17.4 (Risk Reversal). A risk reversal strategy is defined as a long
position in an out-of-the-money put and a short position in an out-of-the-money
call (or vice versa). Consider the risk reversal strategy of long put with strike 85

and short call with strike 115 for maturity � D 0:25 years. Let the current underlying
price be S0 D 100, and interest rate r D 2 %. Compare the prices of the risk reversal
for the following implied volatility curves given as a function of strike price:

f1.K/ D 0:000167K2 � 0:03645K C 2:080,
f2.K/ D 0:000167K2 � 0:03645K C 2:090,
f3.K/ D 0:000167K2 � 0:03517K C 1:952.

In order to calculate the price of the risk reversal, the spot price, strike, interest
rate, maturity and volatility need to be plugged into the BS formula. For the
calculation of the volatilities, the given functions have to be evaluated at K D 85

and K D 115. Hence, by using the BS formula the prices of the risk reversal strategy
for the functions f1, f2 and f3 are 0:1260, 0:1603 and 0:0481, respectively.
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Fig. 17.2 Relative differences of the call prices for two different stickiness assumptions

SFSstickycall

The considered functions are displayed in Fig. 17.4. The panels compare the
implied volatility functions f2 and f3 to the function f1. It can be recognized that
f2 represents a parallel shift of f1, while f3 tilts f1. Vega, defined as @C

@�
, i.e. price

change with respect to volatility, for plain vanilla options is positive. Therefore both
the value of the long put and of the short call increase. The aggregate change is not
zero due to the difference in the vega of the two options. The tilting of the volatility
curve implies different direction of volatility changes for the considered options.
As K < S0, f3 < f1 and as K > S0, f3 > f1, hence the values of long put and
short call both decrease. Therefore, one would expect skew changes to have a bigger
impact on the risk reversals than a parallel shift.

Exercise 17.5 (Calendar Spread). A calendar spread strategy is defined as a
position in two options with same strike but different maturity. Consider a calendar
spread for an at-the-money short call with maturity �1 D 0:25 and an at-the-money
long call with maturity �2 D 1 year. Let the current underlying price be S0 D 100,
and interest rate r D 2 %. Compare the prices of the calendar spread for the
following implied volatility curves given as functions of maturity:

f1.�/ D 0:15� C 0:05,
f2.�/ D 0:15� C 0:06,
f3.�/ D 0:1� C 0:075.
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Fig. 17.3 Implied volatility functions f .K/ D 0:000167K2 � 0:03645K C 2:08 and ef .K/ D
f .KS0=S1/ SFSstickycall

Fig. 17.4 The implied volatility functions f1, f2 and f3. Left panel: comparison of f1 (solid
line) and f2 (dashed line). Right panel: comparison of f1 (solid line) and f3 (dashed line)

SFSriskreversal

In order to calculate the price of the calendar spread the spot price, strike,
interest rate, maturity and volatility need to be plugged into the BS formula. For the
calculation of the volatilities the given functions have to be evaluated in � D 0:25

and � D 1. Hence the prices of risk reversal for functions f1, f2 and f3 are 6:9144,
7:1077 and 5:6897, respectively.
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Fig. 17.5 The implied volatility functions f1, f2 and f3. Left panel: comparison of f1 and f2.

Right panel: comparison of f1 and f3 SFScalendarspread

Table 17.1 Observed strikes,
implied volatilities and call
prices

Observation K � Ct

1 4,000 0.1840 640.6
2 4,100 0.1714 543.8
3 4,200 0.1595 448.7
4 4,500 0.1275 188.5

The considered functions are displayed in Fig. 17.5. The panels compare the
functions f2 and f3 to the function f1. It can be recognized that f2 represents the
parallel shift of f1, while f3 tilts f1. The upward shift of the volatility curve triggers
an opposite change in the price of the calendar spread. The value of the short call
decreases the value, while the change in value of the long call increases the price of
the calendar spread. Due to the increasing vega and call price in time maturity the
overall upward shift results in increase of the calendar spread value. The tilting of
the volatility term structure implies the common movement in the calendar spread’s
components. The values of the short call and of the long call decrease when the
curve flattens.

Exercise 17.6 (Implied Volatility). In order to price options for strikes outside
the observed range an extrapolation has to be used. Consider the IV data given in
Table 17.1

Let the observation 1 be a validation observation. Apply constant extrapolation
of the IV on observation 2, linear extrapolation of the IV on observations 2 and
3, and quadratic extrapolation of the IV on observations 2; 3 and 4 to obtain an
estimate of the call price for observation 1. Compare the results with the actual
price. How would the results differ if instead of extrapolating in IVs the true price
would be used? For your calculation use spot S0 D 4;617:07, interest rate r D
2:1 % and maturity � D 0:2109.
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Constant extrapolation of IV would assume the given volatility value i.e. 0:1714,
the linear extrapolation would lead to 0:1833 and quadratic extrapolation to 0:1839.
The call prices obtained from these volatility estimates are 638:68, 640:48 and
640:58, respectively. Using the extrapolation methods based on the observed call
prices leads to the following approximations: 543:80, 638:90, 643:08. Note that
extrapolation performed in volatilities leads to smaller errors than the extrapolation
performed directly on the prices.

SFSextrapolationIV



Chapter 18
Portfolio Credit Risk

Winning is earning, losing is learning.

Financial institutions are interested in loss protection and loan insurance. Thus
determining the loss reserves needed to cover the risk stemming from credit
portfolios is a major issue in banking. By charging risk premiums a bank can
create a loss reserve account which it can exploit to be shielded against losses from
defaulted debt. However, it is imperative that these premiums are appropriate to the
issued loans and to the credit portfolio risk inherent to the bank. To determine the
current risk exposure it is necessary that financial institutions can model the default
probabilities for their portfolios of credit instruments appropriately. To begin with,
these probabilities can be viewed as independent but it is apparent that it is plausible
to drop this assumption and to model possible defaults as correlated events.

In this chapter we give examples of the different methods to calculate the risk
exposure of possible defaults in credit portfolios. Starting with basic exercises to
determine the loss given default and the default probabilities in portfolios with
independent defaults, we move on to possibilities to model correlated defaults by
means of the Bernoulli and Poisson mixture models.

Exercise 18.1 (Expected Loss). Assume a zero coupon bond repaying full par
value 100 with probability 95 % and paying 40 with probability 5 % in 1 year.
Calculate the expected loss.

Probability of default in this exercise is PD D 5 %, exposure at default (EAD) is
EAD D 100 and loss given default .LGD/ is LGD D 60 %. Hence, the expected
loss is:

E.eL/ D EAD � LGD � PD D 100 � 0:6 � 0:05 D 3

Exercise 18.2 (Expected Loss). Consider a bond with the following amortization
schedule: the bond pays 50 after half a year (T1) and 50 after a full year (T2). In
case of default before T1 the bond pays 40 and in case of default in ŒT1; T2� pays 20.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5 18, © Springer-Verlag Berlin Heidelberg 2013
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Calculate the expected loss when the probabilities of default in Œ0; T1/ and ŒT1; T2�

are

(a) 1 and 4 %
(b) 2.5 and 2.5 %
(c) 4 and 1 %

respectively.

Following the expected loss logic (Exercise 18.1) one obtains

.a/ E.eL/ D 60 � 0:010 C 30 � 0:040 D 0:6 C 1:20 D 1:80

.b/ E.eL/ D 60 � 0:025 C 30 � 0:025 D 1:5 C 0:75 D 2:25

.c/ E.eL/ D 60 � 0:040 C 30 � 0:010 D 2:4 C 0:30 D 2:70:

Note that the time of default has an impact on the expected loss. Front loaded
default curves generate a larger expected loss than back loaded curves.

Exercise 18.3 (Joint Default). Consider a simplified portfolio of two zero coupon
bonds with the same probability of default (PD), par value 1 and 0 recovery. The
loss events are correlated with correlation �.

(a) Calculate the loss distribution of the portfolio,
(b) Plot the loss distribution for PD = 20 % and � D 0I 0:2I 0:5I 1.

(a) Let L1 and L2 be the loss of the first and second bond respectively. Then

Corr.L1; L2/ D Cov.L1; L2/
p

Var.L1/ Var.L2/

D E.L1L2/ � E.L1/ E.L2/

Var L1

D P.L1 D 1; L2 D 1/ � PD2

.1 � PD/PD

and
P.L1 D 1; L2 D 1/ D �.1 � PD/PD C PD2:

Note that for � D 0, i.e. the losses are uncorrelated, the joint probability is
equal to PD2. For � D 1 they are linearly dependent and the joint probability
is equal to PD.

P.L1 D 1; L2 D 0/ C P.L1 D 1; L2 D 1/ D P.L1 D 1/ D PD

and hence

P.L1 D 1; L2 D 0/ D PD � �.1 � PD/PD � PD2 D PD.1 � PD/.1 � �/:
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Fig. 18.1 The loss distribution of the two identical losses with probability of default 20 % and

different levels of correlation i.e. � D 0; 0:2; 0:5; 1 SFSLossDiscrete

In case of independent losses, the probability that only one bond defaults is
equal to PD.1 � PD/ and for fully dependent bonds it reduces to zero as they
jointly behave as one asset.

P.L1 D 0; L2 D 0/ C P.L1 D 1; L2 D 0/ D P.L2 D 0/ D 1 � PD

and

P.L1 D 0; L2 D 0/ D .1 � PD/ � PD.1 � PD/.1 � �/

For � D 0 the formula reduces to .1 � PD/2 and for � D 1 it is as expected
equal to .1 � PD/.

From these calculations the resulting loss distribution of L D L1 C L2 is
given by:

P.L D 2/ D �.1 � PD/PD C PD2

P.L D 1/ D 2PD.1 � PD/.1 � �/

P.L D 0/ D .1 � PD/ � PD.1 � PD/.1 � �/:
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Fig. 18.2 Loss distribution in the simplified Bernoulli model. Presentation for cases (i)–(iii). Note
that for visual convenience a solid line is displayed although the true distribution is a discrete

distribution SFSLossBern

(b) See Fig. 18.1. While the correlation increases from 0 to 1, the probability of
having only one loss tends to zero and the probabilities of no loss and two
losses increases. This logic is also presented for the continuous case.

Exercise 18.4 (Bernoulli Model). Consider a simplified Bernoulli model of
m D 100 homogeneous risks with the same loss probabilities Pi ; P coming from
the beta distribution. The density of the beta distribution is

f .x/ D � .˛ C ˇ/

� .˛/� .ˇ/
x˛�1.1 � x/ˇ�11fx 2 .0; 1/g:

Plot the loss distribution of L D Pm
iD1 Li for the following set of parameters

.i/ ˛ D 5; ˇ D 25

.ii/ ˛ D 10; ˇ D 25

.iii/ ˛ D 15; ˇ D 25

.iv/ ˛ D 5; ˇ D 45
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.v/ ˛ D 10; ˇ D 90

.vi/ ˛ D 20; ˇ D 180

Given P, the Li are independent and P.L D kjP D p/ D
�

m

k

�

pk.1 � p/.m�k/.

To obtain the unconditional distribution one simply needs to integrate with respect
to the mixing distribution

P.L D k/ D
Z 1

0

�

m

k

�

pk.1 � p/.m�k/f .p/dp

Note that changing ˛ allows for adjusting the expected loss, cases (i)–(iii) (See
Fig. 18.2) Figure 18.3 presents the situation when the expected loss stays constant
and the distributions have different variances, cases (iv)–(vi).

Exercise 18.5 (Poisson Model). Consider a simplified Poisson model of m D 100

homogeneous risks with same intensities �i D � coming from the gamma
distribution. The density of the gamma distribution is

f .x/ D f� .˛/ˇ˛g�1x˛�1 exp.�x=ˇ/:

Plot the loss distribution of L D Pm
iD1 Li for the following set of parameters

.i/ ˛ D 2; ˇ D 5

.ii/ ˛ D 4; ˇ D 5

.iii/ ˛ D 6; ˇ D 5

.iv/ ˛ D 3; ˇ D 3:33

.v/ ˛ D 2; ˇ D 5

.vi/ ˛ D 10; ˇ D 1

Given �, Li are independent and

P.L D kj� D �/ D exp.�m�/.m�/k

kŠ
:

The unconditional distribution is obtained by

P.L D kj� D �/ D
Z C1

0

exp.�m�/.m�/k

kŠ
f .�/d�:
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Fig. 18.3 Loss distribution in the simplified Bernoulli model. Presentation for cases (iv)–(vi).
Note that for the visual convenience a solid line is displayed although the true distribution is a

discrete distribution SFSLossBern

It is easy to observe that ˛ allows for adjusting the expected loss, cases (i)–(iii),
as displayed in Fig. 18.4. Figure 18.5 presents the situation when the expected loss
stays constant and the distributions have different variances, cases (iv)–(vi).

Exercise 18.6 (Bernoulli vs. Poisson Model). Consider the Bernoulli model with
the same loss probabilities Pi D P and the Poisson model with intensities �i D �.
Assume that P and � have the same mean and variance.

(a) Show that the variance of the individual loss in the Poisson model exceeds the
variance of the individual loss in the Bernoulli model.

(b) Show that the correlation of two losses in the Poisson model is smaller than in
the Bernoulli model.

(a) In the Bernoulli model

Var.Li / D E.Pi /f1 � E.Pi /g
D E.�i /f1 � E.�i /g:

In the Poisson model Var.Li / D E.�i / C Var.�i /, which is clearly greater.
(b) This fact is implied by (a) since in the Poisson model the denominator in the

correlation formula is greater.
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Fig. 18.4 Loss distribution in the simplified Poisson model. Presentation for cases (i)–(iii). Note
that for visual convenience a solid line is displayed although the true distribution is a discrete

distribution SFSLossPois

Exercise 18.7 (Moments, Correlation and Tail Behaviour of Bernoulli and
Poisson Model). Consider the Bernoulli model from Exercise 18.4 with ˛B D 1,
ˇB D 9 and the Poisson model from Exercise 18.5 with ˛P D 1:25, ˇP D 0:08.

(a) Show that the cumulative loss distributions have same first two moments.
(b) Calculate Corr.Li; Lj/ for these two models.
(c) Plot both densities in one figure and discuss their tail behavior.

(a) Bernoulli distribution

E.L/ D
m
X

iD1

E.Li / D m E.P / D m
˛B

˛B C ˇB
D 0:1 � m

Var.L/ D VarfE.LjP /g C EfVar.LjP /g
D Var.mP / C EfmP.1 � P /g
D m2 Var.P / C m E.P / � m E.P 2/

D .m2 � m/ Var.P / C m E.P / � m E.P /2

D .1002 � 100/ � 9

10 � 10 � 11
C 100 � 0:1 � 100 � 0:12

D 81 C 10 � 1 D 90
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Fig. 18.5 Loss distribution in the simplified Poisson model. Presentation for cases (iv)–(vi). Note
that for the visual convenience the solid line is displayed although the true distribution is a discrete

distribution SFSLossPois

Poisson distribution

E.L/ D
m
X

iD1

E.Li / D m E.�/ D m˛P ˇP D 0:1 � m

Var.L/ D VarfE.Lj�/g C EfVar.Lj�/g
D Var.m�/ C Efm�g
D m2 Var.�/ C m E.�/

D 1002 � 1:25 � 0:082 C 100 � 0:1

D 80 C 10 D 90

(b) Bernoulli distribution

Corr.Li; Lj/ D Var.P /

E.P /f1 � E.P /g D 0:0082

0:1 � 0:9
D 0:0909

Poisson distribution

Corr.Li; Lj/ D Var.�/

Var.�/ C E.�/
D 1:25 � 0:082

1:25 � 0:082 C 0:1
D 0:0741
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Fig. 18.6 Loss distributions in the simplified Bernoulli model (straight line) and simplified

Poisson model (dotted line) SFSLossBernPois

(c) From Exercise 18.6 we know that there is a systematic difference between the
Bernoulli and Poisson model. Even if the first and second moments of the two
distributions match, the variance in the Poisson model will always be greater
than the variance of the Bernoulli model. This effect evidently leads to lower
default correlations in the Poisson model. Lower default correlations in the loss
distribution will result in thinner tails and vice versa. This is shown in Figs. 18.6
and 18.7.

Exercise 18.8 (Calibration of representative Portfolio). Assume a portfolio of
N obligors. Each asset has a notional value EADi , probability of default pi ,
correlation between default indicators Corr.Li ; Lj / D �i;j for i; j D 1; : : : ; N .
For simplicity assume no recovery. Analysis of the loss distribution of this portfolio
can be simplified by assuming a homogeneous portfolio of D uncorrelated risks
with same notional AEAD and probability of defaultep. Calibrate the representative
portfolio such that total exposure, expected loss and variance match the original
portfolio.

In order to match the exposure one obtains the following:

N
X

iD1

EADi D D eEAD:
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Fig. 18.7 The higher default correlations result in fatter tails of the simplified Bernoulli
model (straight line) in comparison to the simplified Poisson model (dotted line)

SFSLossBernPois

Matching expected loss gives:

EeL D
N
X

iD1

EADipi D D eEADep;

which leads to

ep D
PN

iD1 EADipi
PN

iD1 EADi

:

ep is weighted by the notional probability of all obligors. The same variance
requirement gives:

Var.eL/ D D eEAD2
ep.1 �ep/ D

N
X

iD1

N
X

j D1

EADi EADj Cov.Li ; Lj /

D
N
X

iD1

N
X

j D1

EADi EADj

q

pi .1 � pi/pj .1 � pj /�i;j :
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Hence

AEAD D
PN

iD1

PN
j D1 EADi EADj

p

pi .1 � pi /pj .1 � pj /�i;j

PN
iD1 EADiep.1 �ep /

D
PN

iD1 EADi

PN
iD1

PN
j D1 EADi EADj

p

pi .1 � pi /pj .1 � pj /�i;j
PN

iD1 EADipi .
PN

iD1 EADi �PN
iD1 EADipi /

;

and

D D
PN

iD1 EADi pi .
PN

iD1 EADi �PN
iD1 EADi pi /

PN
iD1

PN
j D1 EADi EADj

p

pi .1 � pi/pj .1 � pj /�i;j

: (18.1)

Exercise 18.9 (Homogeneous Portfolio). Follow the assumption from Exer-
cise 18.8 for the homogeneous portfolio i.e. EADi D EAD, pi D p, �i; i D 1

for each i D 1; : : : ; N and �i;j D � for i ¤ j . Calculate the value of D for N=100,
and � D 0; 2; 5; 10 %.

Plugging EAD, p and � into the formula (18.1) one obtains:

D D N

.N � 1/� C 1
:

For the given correlation levels � D 0; 2; 5; 10 % the values of D are
100; 33:5; 16:8; 9:2. Since the loss distribution is approximated by the binomial
distribution the values of D are rounded to the nearest integer number. Note that
the increase in the correlation results in a decrease of the number of assets in the
approximated uncorrelated portfolio.
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Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). Nonparametric and semiparametric

models. Berlin: Springer.
Harville, D. A. (2001). Matrix algebra: Exercises and solutions. New York: Springer.
Klein, L. R. (1974). A textbook of econometrics (2nd ed., 488 p.). Englewood Cliffs: Prentice Hall.
MacKinnon, J. G. (1991). Critical values for cointegration tests. In R. F. Engle & C. W. J. Granger

(Eds.), Long-run economic relationships readings in cointegration (pp. 266–277). New York:
Oxford University Press.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Duluth/London: Academic.
RiskMetrics. (1996). J.P. Morgan/Reuters (4th ed.). RiskMetricsTM.
Serfling, R. J. (2002). Approximation theorems of mathematical statistics. New York: Wiley.
Tsay, R. S. (2002). Analysis of financial time series. New York: Wiley.

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5, © Springer-Verlag Berlin Heidelberg 2013

243



Index

American call option, 15, 93
American option, 91
American put option, 94, 95
ARCH(1), 169
ARIMA time series models, 143
ARMA(1,1), 161
ARMA(p,q) representation, 156
Arrow-Debreu, 85–87
Augmented Dickey-Fuller test, 136
Autocorrelation, 144, 154
Autocorrelation function (ACF), 144,

149
Autocovariance, 144

Backtesting, 177
Barle-Cakici (BC), 88
Barrier option, 103
Bera-Jarque test, 134
Bernoulli model, 234, 237
Bernoulli vs. Poisson model, 236
Binary option, 184
Binomial Model, 79
Binomial process, 40
Black-Scholes, 59, 70, 72, 76, 77
Block Maxima model, 210
Bottom straddle, 4
Brownian bridge, 45
Brownian motion, 35, 46
Bull call spread, 4
Bull spread, 4
Butterfly strategy, 3, 5, 7

Call-on-a-Call option, 101
Chi-squared distribution, 25
Chooser option, 102

Clayton Copula, 191
Clean backtesting, 177
Cliquet option, 103
Collar portfolio, 67
Compound option, 101
Conditional expectation, 31
Conditional moments, 29
Copula function, 189, 190
Copulae, 189
Correlation, 27
Cox-Ross-Rubinstein, 85
CRR binomial tree, 86

Delta neutral position, 63
Delta of portfolio, 66
Delta ratio, 63
Delta-neutral position, 71
Delta-Normal Model, 178
Derman-Kani algorithm, 85
Differential equations, 43
Digital option, 184

EGARCH, 167
European call, 15, 60, 65, 98
Exchange rates, 28
Exotic options, 101
Expected loss, 231

Financial Time Series Models, 131
Forward start option, 104, 106

Gamma and Delta, 64
Gamma function, 26

S. Borak et al., Statistics of Financial Markets, Universitext,
DOI 10.1007/978-3-642-33929-5, © Springer-Verlag Berlin Heidelberg 2013

245



246 Index

Gamma-neutral, 69
GARCH(p,q) process, 167, 169
Geometric binomial process, 40
Geometric Brownian motion, 35
Geometric trinomial process, 81
Girsanov transformation, 77
Greeks, 73

Heath Jarrow Morton, 119, 122
Heavy tails, 167
Ho-Lee Model, 122
Hull-White model, 122, 123

Implied binomial tree (IBT), 85, 89
Implied volatility, 71
Incremental VaR, 181
Integration by parts, 53
Interest rate, 119
Interest rate derivatives, 119
Invertible, 147
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