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1 Introduction

This book aims to show that methodology is important and useful for
experimental economists, but also that philosophers of science can learn
from experimental economics. It is neither a handbook nor a textbook of
experimental economics.

Part one: inferences within the experiment

2 Inside the Laboratory

Experimental economists often complain that replication is not valued
enough in their discipline, but they fail to notice a crucial distinction
between mere repetition and replication. In this chapter, I introduce ex-
perimental economics to the novice by describing the replication of an
experimental phenomenon known as the “decay of overcontribution” in
public goods games. Particularly important is the role of pilots and the
extensive checking for errors performed before, during, and after the
experiment.

3 Hypothesis Testing

The Hypothetico-Deductive (HD) model is a very popular, very sim-
ple, and very general model of scientific method. It can be used to
highlight some basic logical problems of testing, such as the Duhem-
Quine problem: no hypothesis can be logically falsified by the empirical
evidence. As a consequence, scientific reasoning must include a logic of
inductive inference. In this chapter, I also show what kind of hypotheses

ix
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are routinely tested by scientists, and introduce an important distinction
between “data” and “phenomena”.

4 Causation and Experimental Control

The key to experimental control is the controlled variation of one
variable keeping the other (background) conditions fixed. The ratio-
nale of variation can be explained using a second important model
of scientific method, the perfectly controlled experimental design.
This model is particularly important in experiments aimed at testing
causal hypotheses. Causes can be used to control or manipulate their
effects. Causal relations can be deterministic or probabilistic, and the
perfectly controlled experiment exemplifies a situation in which the
statistical association between variables reflects the underlying causal
relations.

5 Prediction

Laboratory experimentation helps to tackle the Duhem-Quine problem
constructively, or to draw tight inductive inferences from the evidence to
a given hypothesis. Much philosophical literature, however, has focused
on the wrong aspects of this inductive step, by stressing the importance
of predictive success. In fact, the crucial advantage of the experimental
method is that it allows the control of the background assumptions upon
which strong inductive inferences rest. This thesis is illustrated using the
example of preference reversal experiments.

6 Elimination

Bayesian confirmation theory stresses the importance of the background,
but for the wrong reasons. Scientists’ prior beliefs should not be given
too much weight in confirmation theory. What matters is whether the
background factors have been controlled by means of an effective ex-
perimental design. The experimental method is best characterized as
a procedure of eliminative induction, in which factors that may poten-
tially disturb the inference from the evidence to a hypothesis are checked
one by one, until all sources of error have been controlled for. Experi-
ments on preference reversals provide several examples of this strategy at
work.
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Part two: inferences from the experiment

7 External Validity

There is a trade-off between the internal validity of an experimental re-
sult (whether a given laboratory phenomenon or mechanism has been
correctly identified) and its external validity (whether the results can be
generalized from the laboratory to the outside world). External validity is
a genuine problem and cannot be solved by metaphysical speculation or
methodological stipulation. It is an issue that must be tackled and solved
empirically.

8 Economic Engineering

The best example of successful external validity inference is provided
by cases of economic engineering, in which a piece of the real world
is shaped so as to mirror the conditions of a laboratory experiment. I
illustrate this procedure using the early auctions of the Federal Com-
munication Commission as an example. The key external validity step is
taken by comparing field evidence with experimental evidence and using a
so-called no-miracle argument.

9 From the Laboratory to the Outside World

“Radical localists” argue that experimental results only apply to labora-
tory circumstances, or to real-world circumstances that have been engi-
neered so as to resemble the lab. In reality, when experimenters cannot
shape the real world so as to fit the laboratory, they can try to shape the
laboratory so as to mimic the target system in the real world. Winner’s
curse experiments illustrate this principle at work. The inference from
experiment to the real world is a special kind of analogical argument, in
which the inference is strengthened by making sure that the two systems
are similar in all relevant (causal) respects.

10 Experiments as Mediators

Models and experiments share several important characteristics. Both
are systems that are created to aid scientists in their investigations of a
target system. They are “mediating tools,” an intermediary step in the
process connecting our theoretical speculations with the real world. Like
models, experiments can be closer to abstract theory or to application. The
purpose of an experiment is often to test the robustness of a phenomenon
rather than its applicability to a particular real-world situation.



xii Analytical Table of Contents

11 On Monetary Incentives

The debate on monetary incentives is used as an example to illustrate
how philosophical reasoning can help clarify concrete problems arising
from scientific practice. I criticize the view that monetary incentives are
a necessary requirement for an adequate economic experiment, because
different experiments require different designs. There are no universal
recipes in science.
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ONE

Introduction

On October 9, 2002, the news began to circulate that Daniel Kahneman
and Vernon Smith had been awarded the Bank of Sweden Prize in Eco-
nomic Sciences in Memory of Alfred Nobel. The prize was not entirely
unexpected. For a few years, the names of prominent experimental
economists had been in the list of plausible Nobel candidates, and every-
body agreed that it was just a matter of time. Yet, for the community of
experimenters, the event was epoch making: laboratory work was recog-
nized officially as one of the most important advancements in the last half
century of social science.

This wasn’t the first time that the Nobel Prize had been assigned to
the proponents of doctrines or approaches that do not enjoy universal
acceptance within the profession. And economists like Maurice Allais,
Herbert Simon, and Rheinhard Selten, who had contributed in many ways
to the birth and development of experimental economics, already figured
among the laureates. But Simon, Allais, and Selten had been prized for
their work in other areas of economic theory, and the 2002 award con-
stituted an innovation in at least two major respects. First, it recognized
the work of a scholar who according to the conventions of contemporary
academia should not be labeled as an “economist.” Daniel Kahnemann
was prized “for having integrated insights from psychological research
into economic science, especially concerning human judgment and deci-
sion making under uncertainty” (Nobel Press Release 2002). This was a
contribution “from without,” by a prominent psychologist who challenged
many key ideas in the mainstream economic tradition.

But secondly, and more importantly perhaps, the other half of the prize
was devoted to recognizing a methodological innovation, rather than a
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contribution to the body of economic theory. Vernon Smith was prized
“for having established laboratory experiments as a tool in empirical eco-
nomic analysis, especially in the study of alternative market mechanisms”
(ibid.). Of course methodological innovations carry important novel the-
oretical insights with them: if you look at the world with different instru-
ments, you are likely to notice different things. And in fact the work of
Vernon Smith includes important theoretical contributions as well. But
the Nobel committee was keen to stress that

Economics has been widely considered a non-experimental science, relying on
observation of real-world economies rather than controlled laboratory experi-
ments. Nowadays, however, a growing body of research is devoted to modify-
ing and testing basic economic assumptions; moreover, economic research relies
increasingly on data collected in the lab rather than in the field. (ibid.)

It was this change in the nature of economic science that was primarily
recognized by means of the 2002 award.

Why experiment in economics?

Until fairly recently, most economists believed that controlled experi-
mentation had little to offer economic science. These beliefs are voiced in
some of the most influential methodological writings of the last couple of
centuries; despite their different views about what constituted “good”
methodological practice, everybody seemed to agree that economic
research was bound to take place mostly outside the laboratory. In 1836,
John Stuart Mill claimed that “there is a property common to almost
all the moral sciences, and by which they are distinguished from many
of the physical; that is, that it is seldom in our power to make experi-
ments in them.” About a century later, Lionel Robbins wrote that “our
belief [in economic generalizations] does not rest on the results of con-
trolled experiments.” And Milton Friedman in his influential essay on
the methodology of positive economics also states that “we can seldom
test particular predictions in the social sciences by experiments explicitly
designed to eliminate what are judged to be the most important disturb-
ing influences.” Such statements — partly because of the prestige of their
authors, partly because they reflected the views of the average economist —
migrated in the most popular economics textbooks, upon which gen-
erations of economists have been trained. “Economics must be a non-
laboratory science,” wrote Richard Lipsey, given that “it is rarely, if
ever, possible to conduct controlled experiments with the economy.”
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Samuelson and Nordhaus similarly claim that “economists [. . .] cannot
perform the controlled experiments of chemists or biologists because
they cannot easily control other important factors,” and even in the
Encyclopaedia Britannica one reads that “there is no laboratory in which
economists can test their hypotheses.”!

Nowadays these claims have become obsolete. Economists perform
hundreds of laboratory experiments every year, and routinely test their
theories in the laboratory. But why do they do such things? Why is exper-
imentation highly considered today, but was not half a century ago?
An obvious answer is that the success of experimental economics was
made possible by several profound changes in the discipline of eco-
nomics as a whole. In order to write a proper history of experimental
economics (something that still has to be done), one would certainly have
to look back at the birth of expected utility and game theory in the for-
ties and fifties, examine the rise and fall of general equilibrium analysis
in the sixties and seventies, discuss the high expectations and frustra-
tions that accompanied the development of econometrics, and probably
much else.”

However, this is not supposed to be a book of history, and I shall leave it
to someone else to do a proper historical job. When I ask, Why experiment
in economics? [ am not concerned with the reasons why experimental eco-
nomics is more popular today than, say, one hundred years ago. That is an
interesting question indeed, but it is not the question of this book. This
book asks, Why experiment in economics? in general, or as a matter of
principle. I take the latter to be an ahistorical question, in the sense that it
asks what sort of knowledge social scientists can collect in the laboratory,
regardless of time, place, and context. It is, in other words, an epistemolog-
ical question about the capacity of laboratory experimentation to produce
knowledge about economic matters. As such, it does not investigate the

1 Cf. Mill (1836, p. 124) and Robbins (1932, p. 74). The Friedman and Lipsey quotes are
taken from Starmer (1999, p. 1), Samuelson and Nordhaus’ from Friedman and Sunder
(1994, p. 1), the Encyclopaedia Britannica from Davis and Holt (1993, p. 4, n. 2).

2 Brief reconstructions of the early history of experimental economics can be found in Smith
(1991a; 1992), Davis and Holt (1993), Friedman and Sunder (1994), Roth (1995), and Har-
greaves Heap and Varoufakis (1995). Leonard (1994) is the only contribution by a pro-
fessional historian, but focuses on bargaining experiments only. Mirowski (2002) vividly
reconstructs the milieu of mid-twentieth-century economics, in which the conditions for
the birth of experimental economics were created, and devotes a short section to Vernon
Smith’s research program (pp. 545-51). Two Ph.D. dissertations at Notre Dame are begin-
ning to explore the history of experimental economics in more depth (Lee unpublished,
Nik-Kah unpublished).
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contingent factors that as a matter of fact have prompted economists to
turn to the laboratory. It investigates the reasons why economists should
(or should not) endorse the experimental approach, by articulating what
experiments can (and cannot) do for them.

Why experiment?

The experimental method is as old as science itself, and became the
hallmark of the most successful science — physics — during the scientific
revolution of the Renaissance. One may think, therefore, that the basic
elements of the experimental method must be well understood by now.
Surprisingly, this is not the case. Of course the literature on experiments is
large. All great scientists since Galileo have put forward their own views
about the proper use of experiments, and professional philosophers have
added more thoughts on this topic. Philosophers’ views, however, were
for a long time detached from experimental science as it is practiced in
real-world laboratories. They typically followed from fairly abstract spec-
ulations about the nature and sources of knowledge in general, as if lab-
oratory experimentation had no peculiar features of its own that justified
a separate analysis. And curiously, scientists tended to follow philoso-
phers on this track, by privileging philosophical speculation instead of
reflecting on their real practice. (Perhaps this is partly because many
great scientists of the seventeenth and eighteenth centuries were also
great philosophers, with very precise views on abstract epistemological
matters.)

A fundamental assumption of this book is that in contrast, philoso-
phy of science must look closely at the messy business of science in the
making. There has been a movement in the past two decades toward a
philosophy of science that is more sensitive to the details of scientific
practice. This body of work has provided an impressive amount of data
about the methods actually followed by scientists in their everyday work,
and has been an important source of inspiration for what is to follow.?
There are two good reasons, however, not to start from an account of “the
experimental method” as it emerges from these studies. First of all, there
is no such account. The picture emerging from such studies is patchy, and
to try to distill a unified story out of this material would be an unlikely
task. Secondly, and related to this, this material is diverse because scientific

3 For a survey of the so-called new experimentalist movement in the philosophy of science,
cf. Ackerman (1989), Franklin (1998), or Morrison (1998a).
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practice probably is diverse. Experimental physics or biochemistry (which
have been studied extensively) may follow in part different procedures
from experimental economics. We should not expect these disciplines to
be entirely different, of course, but neither should we presuppose that
they are identical. An account of experimental science based on physics
or biology may not fit the bill of the experimental economist.

Why economics?

Experimental economics seems a pretty odd topic for a philosopher
of science. Most philosophers interested in normative questions about
science (How should genuine scientific knowledge be generated? How
do scientists avoid falling into error? What exactly is scientific knowledge
knowledge of? and so on) tend to look at the natural sciences, because
these are supposed to be the most advanced disciplines with respect to
both their results and their methodology. However, as I said, we should
not assume that what works for physics or biochemistry should work for
economics too. After all, the methods of discovery and validation that
scientists use must be right for the particular domain or sort of thing they
are studying.

So one reason to look at economics is that it might teach philoso-
phers of science something new. Indeed, in the second part of this book,
I shall argue that natural science-based methodology tends to neglect an
important problem of scientific inference: the problem of external valid-
ity, or how to generalize experimental results to nonlaboratory settings. I
shall suggest that in this case, natural scientists have something to learn
from social scientists, rather than the other way around. Another rea-
son to focus on economics is that laboratory experimentation is a fairly
new methodology there, and the field has not crystallized yet on a set of
rules of “good” scientific practice. As opposed to physics or chemistry, in
which methodological discussion has arguably had little effect in chang-
ing scientists’ habits, the social sciences seem to be more permeable to
philosophical arguments. Within experimental economics, in particular,
methodological discussion is alive and well, and also potentially influen-
tial in the way in which the discipline is taking shape.

Many philosophers of science suffer from a sense of guilt of being
useless, and every now and then make an attempt to write something
aimed at helping scientists in their everyday work. Unfortunately, their
way of engaging scientists is to start with a painfully analytical discussion
of abstract issues that are only very indirectly of practical relevance. In
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this book, I have tried to avoid that approach and to stick close to the
real concerns of experimental scientists. I have tried to keep the detours
in abstract philosophical arguments under control, and put philosophy
at use in understanding the rationale of down-to-earth methodological
principles.

What is in this book?

So this is a book of methodology, devoted to a relatively small but grow-
ing field of the social sciences called experimental economics. It discusses
the techniques used by experimenters in order to investigate economic
phenomena, evaluates them, and occasionally puts forward some advice
about how to revise our thinking about laboratory experimentation (its
goals, its role, and its tools). It is divided in two parts. In the first part
(Inferences within the Experiment), I discuss how the experimental
method allows the drawing of tight inferences from data to phenomena,
and from phenomena to their causes within a given experimental set-
ting. In the second part (Inferences from the Experiment), I show how,
and under which circumstances, it is sometimes possible to generalize an
experimental result from laboratory circumstances to some real-world
situation.
Eight themes recur in the chapters that follow:

1. Experimental and theoretical knowledge often grow independently
from each other.

2. The growth of experimental knowledge is slow and piecemeal:
experimental scientists learn little by little rather than attempting
great leaps forward.

3. “Local” knowledge of the experimental systems and the back-
ground conditions in which hypotheses are tested is crucial for the
reliability of scientific inference.

4. Experimental inference is based on “eliminative induction,” a pro-
cess aimed at eliminating alternative interpretations of empirical
evidence.

5. Social practices and conventions play a key role in determining
when a given phenomenon or hypothesis is accepted as established
by experimental means.

6. Experiments act as “mediators” between the real world and
the theories, models, and hypotheses we devise to explain its
functioning.
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7. Real-world applicability is nonetheless the ultimate aim of science,
which conveys knowledge of causal relations for intervention and
policy making.

8. It is difficult to extend experimental results to real-world circum-
stances unless we are able to shape the experiment and the real
world so as to resemble each other.

Some of these ideas are not new and have been defended before by
philosophers working on experimental methodology. Others are philo-
sophically less conventional and spring from the observation of the con-
crete problems economic experimenters face in their day-to-day work.
They should sound familiar to experimenters, however, because they try
to capture the concerns that drive their research. The accent on appli-
cability and policy making, for instance, is a common feature of many
recent overviews and discussions of experimental economics.* However,
experimenters often make use of a rhetoric of scientific method that is
far removed from the reality of their work. Partly this has to do with the
fact that methodological norms sometimes serve the purpose of mark-
ing political alliances and contrapositions (e.g., “economics vs. psycho-
logy”) independently of the similarity or dissimilarity of the methods that
are effectively used. And partly, it is an effect of the fact that scientific
method (like science itself) often evolves by imitation, and paradigmatic
experiments often are much more effective in shaping the practices of
a discipline than are explicit methodological pronouncements.” So, like
Vernon Smith, I believe that by and large “if you look at what experimen-
tal economists do, not what they say, you get the right picture of science
learning” (1994, p. 129). Ideally, one would like to capture all the “good”
methodological practice implicit in the work of experimental economists,
purged from the “bad” rhetoric that obfuscates experimenters’ achieve-
ments and, sometimes, diverts them onto dangerous or dead-end trails.
By doing this, one can do a service to philosophers and practitioners
alike.

It may be useful also to clarify right from the start what this book is
not about. This is not a handbook of experimental economics. There are
already some excellent surveys of the main results in the field (Kagel and

4 Cf. e.g., Plott (1987), Roth (1991, 2002), Ross Miller (2002), Smith (2002).

5 Areader indicated Cox, Robertson, and Smith (1982); Isaac, McCue, and Plott (1985); and
Grether and Plott (1979) as examples of seminal experiments on (respectively) auctions,
public goods, and decision making that were also extremely influential in setting the
methodological standards of the discipline. I will return to the issue of the economics—
psychology divide again in Chapter 11.



8 The Methodology of Experimental Economics

Roth, eds., 1995; Plott and Smith, eds., in press) and it is not my purpose to
add to these resources. In some chapters, I shall of course illustrate some
experiments, but my aim is neither to be exhaustive nor to present the
state of the art in the discipline. I also have no intention to add anything
new to the experimental literature — I am interested in philosophy and
methodology, and the experiments described in the book are always used
as examples of methodological principles, never as novel contributions to
experimental research.

This is not a textbook of experimental methodology either, nor a book
that will teach you how to design experiments. If you are interested in
that, you should consult Davis and Holt (1993), Friedman and Sunder
(1994), Bergstrom and Miller (1997), or Friedman and Cassar (2004).
This book falls somewhere between the concrete instructions of a text-
book and the abstract analysis of classic philosophy monographs. The
main reason to pitch the discussion at such a level is that concrete tech-
niques of experimental design must fulfill the sort of higher-level require-
ments that are customarily discussed in the philosophy of science liter-
ature. However, unfortunately, it is difficult to reach any firm conclu-
sion about higher-level methodological principles or requirements unless
one keeps in mind the subject-specific problems experimental scientists
have to deal with in their daily work. One purpose of this book is to
try to fill the gap between abstract philosophy and concrete scientific
practice.

Despite my efforts to simplify as much as possible, the level of detail
may be at times a bit demanding for the noneconomist. However, I am
afraid it is difficult to say anything meaningful about the method of sci-
ence by sticking to totally unrealistic examples of scientific reasoning like
“there are black swans in Australia, therefore it is not true that all swans
are white.”® To help the novice, I have provided a lengthy description of a
“normal” economic experiment (Chapter 2) and, for the nonphilosophers,
an introduction to basic notions of testing and confirmation in Chapters 3
and 4. Hopefully, both economists and philosophers of science will find
something useful in this book.

As far as I'm concerned, I have certainly learned a lot by study-
ing experimental economics. I have been surprised by the ingenious

6 For the nonphilosophers: “all swans are white” is an alleged example of law-of-nature or
scientific theory that is widely abused in the philosophical literature. The first to use
the example was, as far as I know, John Stuart Mill (a great philosopher-economist,
incidentally).
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techniques invented by experimenters, I have been amazed by the robust-
ness of certain results, and not the least, I have realized how addictive
experimental work can be. It would be nice if I could transmit only part
of this fascination to my nonscientist readers. And at the same time I
hope the economists will be convinced that interesting and useful things
are taught in (some) philosophy classes.
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INFERENCES WITHIN THE EXPERIMENT






TWO

Inside the Laboratory

Before we get into the heart of the matter, it is worth putting on the
table an example of experimental research in economics. I shall focus on
an experiment that I know very well, because I was personally involved
in it. Because the experiment as a whole is too complicated to be fully
described here, I'll just focus on part of it. The part I shall look atis a typical
example of a replication. Replicating someone else’s results is not the sort
of thing that will win you a Nobel Prize in economics. Fame and prestige
derive from revolutionary results that affect the direction of research in
the discipline. However, replications are not without importance and in
fact constitute a large part of everyday work in experimental science.

Replications

A common reaction, when people first hear about experimental eco-
nomics, is to say that of course people are not the sort of thing you can
experiment with. Behind this reaction lies the thought that human beings
are quite different from, say, atoms or molecules: they possess that elusive
capacity that philosophers call “free will.” So, the argument goes, their
behavior does not obey laws, as does the behavior of physical entities.
What’s the point of experimenting then?

This argument takes several sophisticated forms in the social science
literature, and even a cursory discussion would take away more space than
required for my purposes. But the above worries can be easily dismissed:
as any experimenter knows, human behavior is highly predictable. Two
caveats are in order: first, it is true that the behavior of an individual
x may be hard to predict exactly. But the behavior of aggregates (even

13
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relatively small groups) seems to follow very systematic patterns, in some
circumstances. Here’s the second caveat: the circumstances matter, and
predictability often depends on the creation of rather precise choice-
situations.

None of these qualifications, however, constitutes a fundamental differ-
ence with respect to experimentation in the natural sciences. The average
behavior of an aggregate (of, say, particles) is always easier to predict
than the behavior of each constituent. And outside well-specified initial
and boundary conditions, the movement of physical particles may be as
unpredictable as the choices of human beings.

The best proof of the predictability of human behavior is the fact
that several behavioral patterns can be (and are) replicated at will by
experimenters in their economic laboratories. However, experimental
economists often complain that replications are not valued enough in
their discipline (e.g., Smith 1994, p. 128; Rubinstein 2001, pp. 625-6).
Given that the replication of a previously observed result normally will
not be published in economic journals, it is argued that researchers lack
the incentive to check the results reported by others.

It is necessary to distinguish, however, between the replication and the
mere repetition of an experiment.! Repetition is the business of doing an
experiment again, trying to keep exactly the same design as in the original.
Repetitions are rarely performed, and only for the purpose of checking
that the data provided by another experimenter are reliable and trust-
worthy — that data of that kind really follow from that particular experi-
mental design. It is true that repetitions do not receive much recognition,
unless, that is, one discovers some major flaw or fraud in an already pub-
lished result. And in fact, experiments are repeated only when there is
some serious doubt about other people’s data (when the data appear “too
strange to be true”).

Genuine replications are different, in that they usually involve some
(minor or major) modification of the original design. Another way
to put it is that scientists usually aim at reproducing experimental
phenomena rather than the experiments themselves. The difference will
become clearer when I introduce the distinction between “data” and
“phenomena” in Chapter 3. But roughly, a phenomenon (or “effect,”

! The distinction introduced here is well known in the philosophical literature on experi-
ments, although other authors sometimes use another terminology (e.g., “replication” vs.
“reproduction”). Cf. e.g., Cartwright (1991) and Radder (1996). Backhouse (1997, Ch. 11)
applies it to econometrics.
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as scientists sometimes call it) is a robust regularity lying “below” a set
of data. The data typically have different characteristics, depending on
the experimental setting or design used, but different data sets with dif-
ferent characteristics can be used to infer the existence of the same phe-
nomenon. In this book, I discuss several well-known, widely replicated
phenomena in experimental economics, including the decay of overcon-
tribution in public goods experiments (this chapter), the preference rever-
sal phenomenon (Chapters 5 and 6), and the winner’s curse phenomenon
(Chapter 9).

Scientists’ everyday talk does not distinguish properly between repli-
cation and repetition. Indeed physicists have the tendency to use the term
replication rather liberally (cf. Mulkay and Gilbert 1986), a habit that has
probably misled scientists in younger and less-established disciplines to
believe that physicists repeat experiments much more often than they
actually do. However, once the distinction is made clear, it turns out that
economists also do a lot of replications. Replications (the reproduction of
a result by means of a slightly or radically different design) are an impor-
tant part of everyday experimental work. But why? What is the purpose
of a replication?

It is difficult to answer such a question at this stage, before I have
introduced some basic methodological tools and concepts. However, a
preliminary answer goes as follows: successful replications help in prov-
ing that an experimental phenomenon is robust to small or big changes
in the experimental setup. In several respects, experimenters speak of
robustness in the same way as theoretical scientists do — a theoretical
result being “robust” when it does not depend on some detail of the sit-
uation or on the assumptions used to derive it. A good scientific result is
always robust to some kind of variation or change, either in the concrete
experimental setup or in the abstract initial conditions of a theoretical
model.

Normal science

Of course, replications are not all equally interesting. Like many other
replications, the example I discuss in this chapter does not have much
interest per se, but played a role in a wider research project. I choose to
discuss this replication mainly because of its simplicity but also because
I am looking for an example that is representative of a large portion
of research done every single day in economics laboratories around the
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world, which is neither path breaking nor epoch making. It is “normal
science.”

The notion of normal science was introduced by the historian Thomas
Kuhn in his highly influential monograph, The Structure of Scientific
Revolutions (1962), and has since become part of the vocabulary of the
academia at large. Kuhn noticed that for long periods of time, scientific
research within a discipline follows a rather continuous path, charac-
terized by the accumulation of results that contribute to the growth of
knowledge without challenging the basic tenets of the received view. Such
periods of normal science (or “paradigmatic” science, in the sense that
research is carried out within a dominant scientific paradigm) are sep-
arated by more or less abrupt scientific revolutions. The major presup-
positions informing normal science research are questioned and rejected
during a revolution. Typical examples are the Copernican revolution that
turned astronomy upside down in the Renaissance, or the Quantum rev-
olution of the early twentieth century. In economics, plausible candidates
are the marginalist revolution of the late nineteenth century and the Key-
nesian revolution half a century later.?

If you want to understand the methodological principles that govern
research in a given discipline, you are better off focusing on a piece
of normal science than on path-breaking results. Great scientific work
is usually subversive of the status quo, at least to some extent, and
therefore is not representative of what goes on within the paradigm.
(Otherwise, it would not be surprising and impressive — anyone could
have done it!) In the next chapters, to be sure, I discuss some results that
are (or have been) regarded by the majority of practitioners as surprising
or anomalous. But for the time being, we’d better look at something less
controversial — which does not mean that we are dealing with work of no
importance. As I argue later in the book, the bulk of scientific progress is
constituted by the slow accumulation of “small” results rather than great
revolutions.

One warning to the reader before I begin. If you are an expert experi-
mental economist, most of what you will find here will be fairly familiar
to you. In contrast, if you have never seen an economic experiment, it is
worth reading this chapter quite carefully. It will tell you what the whole
book is about, and probably will also help you get rid of a few myths and
prejudices about scientific research.

2 On revolutions in economics, cf. the essays in Latsis (ed. 1976).
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Public goods experiments

If you want to become an experimental economist, where do you start?
The obvious answer is that most novel research stems from previous scien-
tificresearch. The myth of scientific genius, the legend of Newton watching
a falling apple and suddenly conceiving of the theory of universal gravi-
tation is precisely that: just a myth. In reality, science is characterized by
continuity. Each discovery follows from some previous empirical result,
a previous theory, or a puzzle (an inconsistency, an anomaly) highlighted
by previous research. As a consequence, you cannot do science unless you
know at least the recent history of your discipline. Training at graduate
level is supposed to give you just that: knowledge of the background, of
the theories and models that are generally accepted by the scientific com-
munity, of the problems that remain to be solved, of the most challenging
empirical results that call for more research efforts. Even in a fairly young
discipline like experimental economics, this background knowledge can
be vast. There are hundreds of people working in the area, and constantly
producing new results. Moreover, one must also keep an eye on the rele-
vant economic theory, which also progresses (more or less independently)
as empirical knowledge accumulates.

Public goods experiments are among the most widely replicated in
economics and experimental psychology, sociology, and political science
(where they are also known as “social dilemma” experiments). Hundreds,
if not thousands, of experiments of this sort have been performed in
the last three decades, and a complete review of the literature would be
almost impossible.? (In this sense, a public goods experiment is genuine
“normal science.”) Public goods experiments have a reputation for being
particularly delicate. John Ledyard uses the analogy of a physics experi-
ment on free fall down a plane using a table-tennis ball instead of a steel
ball. In theory, that is, if the experiment is designed appropriately, there
should be no difference between the two objects. However, in practice,
minor imperfections in the design (e.g., a small breeze or some friction
on the plane) will provoke nonnegligible differences. “Public goods and
dilemma experiments are like using table-tennis balls; sensitive enough
to be really informative but only with adequate control” (Ledyard 1995,
p. 115). Given this sensitivity to minor details of the design, they constitute
a good challenge for the novice.

3 The best point of entry is Ledyard’s (1995) review article in the Handbook of Experimental
Economics.
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Table 2.1. A Prisoner’s Dilemma Game

Other
Defect Cooperate
Defect (5.,5) (10,1)
You
Cooperate  (1,10) (8,8)

A so-called public good has two essential characteristics: it is (a) nonri-
valled and (b) nonexcludable. This means that once it has been produced,
(a) many people can consume it at the same time and (b) you cannot
make individuals pay for what they consume. There are several examples
of public goods, the most commonly cited being clean air, public parks,
public health service, national security, public scientific research, and so
on. There are also “public bads,” such as crime, pollution, and global
warming. Public goods suffer from a fundamental problem: although they
are beneficial to everybody, it is in the interest of each individual to free
ride and not contribute to their production. If everybody else travels by
bicycle, it is in my interest to travel by car: my using the car will affect
the quality of the air only slightly, and therefore, I shall have the best
of both worlds — fairly clean air and quick transportation. However, if
everybody reasons this way, we shall all use our cars, pollute the air, and
create massive traffic jams.

We can start by representing the situation in terms of a so-called pris-
oner’s dilemma game: suppose there are just two players, you and another
person. Suppose also there are just two possible actions: either cooperate
(taking the bike, in the example above) or defect (taking the car). The
structure of the game is represented in Table 2.1.

In theory, the specific numbers in the table are not important, as long as
your payoffs satisfy the following structure: defect/cooperate (you defect,
the other cooperates) > cooperate/cooperate > defect/defect > cooper-
ate/defect. Notice that given the other player’s move, “defect” always gen-
erates a higher payoff than “cooperate.” If the other defects, it is better
to defect too; if the other cooperates, it is still better to defect. In game-
theoretic jargon, “defect” is a dominant strategy. But then if all players
play the dominant strategy, the outcome (5, 5) will be inferior to what
could have been achieved by both cooperating (8, 8). The moral is that
individually rational action seems to lead to a disappointing social result
(a “Pareto-inferior” outcome, in technical terms).
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Let us now complicate the game by increasing the number of play-
ers, and by allowing more strategies than just “cooperate” and “defect.”
Here’s a classic public goods experimental environment: imagine there
are four players, each with an endowment of twenty points or tokens. The
tokens can be either spent for one’s own private leisure, or invested in the
production of the public good (say, clean air). In the example above, this
corresponds qualitatively to the decisions to travel by car or by bike,
respectively. The difference is that in the public goods environment, one
can split her own endowment in many different ways between private and
public investment (zero and twenty, one and nineteen, two and eighteen,
and so on), and must take into account the decisions of three other players.
All players play simultaneously and anonymously — at the moment of tak-
ing her decision, each subject ignores the identity of the other subjects
in her group, and how much they are contributing. Now, imagine the
total sum invested in the production of the public good by all players is
multiplied by a factor of two and then divided equally among the players,
independently of the amount of their individual contribution (remember:
the good is nonexcludable). For groups of four players, the payoff function
of each player is:

4
pi=20—-g+05) g
=1

where 20 is the total number of tokens to be shared between a “private”
(20 — g) and a “public” account (g). The parameter 0.5 is called the “pro-
duction factor” and specifies how much of the public good is enjoyed
by each individual, for each unit invested by the group as a whole. This
particular environment is characterized by a linear relationship between
total payoff and contribution to the public project, and complete symme-
try among players (the payoff function is identical for everybody). The
linear environment has been widely used because of its simple structure,
which makes it very intuitive and easily understandable. There are many
possible variations on this baseline situation, which I shall not explore
here for reasons of space (but see Ledyard 1995).

So what happens in the linear environment? According to standard
economic theory, the public good should not be produced, that is, there
should be no contributions to the public project. This conclusion is reached
by assuming that each player is selfish, only cares about money, and is
perfectly rational in the sense of Nash rationality. A Nash equilibrium
is such that the strategy implemented by each player is the best move
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given the strategies of the other players: in equilibrium, no player has
an incentive to change her own strategy, in other words. In our case, it
is clear that the best move — regardless of what the others do — is not to
contribute anything. If the others do not contribute anything, why should
one give her own tokens, given that she would get back only half of each
token contributed to the project? If the others do contribute one token,
it is still best not to contribute anything, and enjoy the fruits of the others’
contribution plus one’s own full endowment. And so on: this reasoning
can be iterated for all levels of contribution, and the moral will always be
the same.

The linear environment is easy to understand also because the social
optimum (everybody contributes all their tokens) and the Nash equilib-
rium (no one contributes anything) are at the extreme boundaries of the
contribution range (zero to twenty). By manipulating the payoff func-
tion, it is possible to create situations in which the Nash equilibrium
lies in the middle of the range, but for the time being, we can ignore
such subtleties.* Notice that the prediction of standard economic theory
has some important policy implications. It suggests, for instance, that the
production of public goods cannot be delegated to individuals or to the
market. Clean air, for instance, must be preserved by a system of con-
trols and punishments (fines for those who pollute, prohibitions from
traveling by car) or by means of incentives that change the payoff struc-
ture of the situation and effectively transform it into a different game
altogether. Similarly, projects like cancer research should be heavily sub-
sidized by the government, rather than relying on individual donations.
But the problem is, are we really sure that economic theory’s prediction is
correct?

People, after all, do contribute voluntarily to cancer research and other
public goods; in many circumstances, they seem to abstain voluntarily
from polluting the environment, and so on. These are “stylized facts,”
which can be further corroborated by means of quantitative data col-
lected in the field. To know how many people contribute to charities and
by how much, however, may not satisfy our scientific curiosity. In gen-
eral, we would also like to know why they do so. Such knowledge, in
turn, could be used to inform new policies in order to create, for exam-
ple, better conditions for the production of public goods. Surveys are
one possible approach to the study of motives and individual attitudes:
we could, for example, interview a sample of people who donate to the

4 See Keser (1996) and Isaac and Walker (1998).
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Red Cross and a sample of people who do not, and see whether we can
identify the different attitudes behind their behavior. However, this may
still be insufficient. Surveys do not allow the observation of how people
actually behave in various different situations. In principle, one could ask,
What would you do if the situation were so and so? — for example, How
much would you contribute to this public good if the government stopped
subsidizing it? — but economists have been traditionally suspicious of this
sort of questionnaire. How do we know that respondents will tell the
truth? They may be deluding themselves, or reasoning on the basis of
unrealistic assumptions about the relevant circumstances (about other
people’s behavior or motivations, for instance). It is much better, if pos-
sible, to observe what people do, instead of asking what they would do.

Here experiments can be of great help. The general idea behind experi-
ments is that we can put real people in circumstances that have been accu-
rately prepared by the experimenters, and then observe their behavior. In
the case of public goods, the earliest experiments go back to the seventies,
and right from the beginning, generated results that are in stark contrast
with the predictions of economic theory.

Overcontribution and decay

In a standard one-shot linear public goods experiment it is common to
observe an average level of contribution of about fifty percent of the
individual endowment, instead of nothing as predicted by theory. A sub-
stantial portion of subjects are willing to contribute something to the
public project. If you let them play the game more than once, however,
giving them constant feedback about the payoffs and the average con-
tribution levels in previous rounds, subjects’ behavior seems to change.
The relatively high initial levels of contribution tend to diminish over
time, converging toward the Nash equilibrium. These two phenomena
are sometimes referred to in the literature as “overcontribution” and
“decay.” Even long series of repetitions, however, are insufficient to
eliminate contributions completely. Figure 2.1 reproduces the pattern

5 Notice that according to standard game theory, finitely repeated public goods games
should be distinguished sharply from infinitely repeated ones. An infinitely or indefinitely
repeated public goods game has an infinite number of equilibria, including cooperative
ones; using a backward induction argument, it is possible to show that in contrast, free
riding is the only rational strategy in a finitely repeated environment (i.e., one-shot and
finitely repeated games are identical in this respect). In this chapter, I confine my discus-
sion to the finitely repeated environment only.
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Figure 2.1. The overcontribution and decay effect (from Isaac, Walker, and
Thomas 1984).

observed by Isaac, Walker, and Thomas (1984) in a seminal and widely
cited experiment. Isaac et al. experimented with various production
factors; the data represented here were generated using a factor of .3,
leading to a drop of about 25 percent in the contribution level over a
period of ten rounds. However, it has been established that after fifty
rounds or more, there are still individuals who are willing to put some-
thing into the public project.

Overcontribution and decay call for an explanation, and various
hypotheses have been proposed so far. One is that people are not entirely
selfish. Their behavior may be dictated at least in part by altruistic motives,
because, for example, they care about other people’s payoffs.® An alter-
native explanation is cognitive in character. When you try to explain
the logic of Nash rationality to nonexperts, especially with respect to
prisoner’s dilemma-like situations, the claim that it is rational to free ride
usually generates some puzzlement. People seem to compare the Pareto-
optimal solution with the Nash equilibrium and reason along these lines:

6 Altruism may be of various kinds: for example, one may enjoy the act of giving in itself, or
instead derive pleasure from the benefit procured to other individuals. James Andreoni
(1995) has investigated experimentally these different forms of altruism.
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in Pareto, we all make X points; in Nash we make Y points; X is greater
than Y, therefore it is rational to play the Pareto strategy. If you have
ever taught an introductory game theory course, you know that it is quite
difficult to make students appreciate the strategic aspects of the situa-
tion. So, perhaps subjects at the beginning of the experiment do not fully
appreciate what is in their best interest. After a few rounds, however,
they might begin to “learn” about the game and form more adequate
preferences and beliefs about the situation (which includes the behav-
ior of other players, of course). Slowly, the outcome of the experiment
converges toward the equilibrium.

There have been various attempts to model these two factors (altruism
and learning) in theoretical terms. One idea is to add to the standard
model of economic behavior an “altruism” parameter and an “error”
component. Palfrey and Prisbey (1996, 1997), for example, assume that
individuals follow a decision rule of the following kind:

e Contributeifr/V < 1+4+a+¢;
¢ Do not contribute otherwise.

Here r is the value of a privately consumed token, V is the value to
the individual of a token contributed to the public good, a is an altruism
parameter, and ¢ is an error term. The altruism and the error coefficients
can be estimated empirically on the basis of experimental data.” In the
standard linear environment, if an individual is perfectly rational and
selfish (that is, if her @ and ¢ are equal to zero), the r/ V ratio will always
be greater than one. The prediction then is “no contribution” as in the
standard game-theoretic analysis. An individual contributes, according to
this model, only when the a and e factors are strong enough to turn the
balance.

A characteristic feature of models like this one, however, is that they
assume individuals to be substantially uninterested in the choices of other
people. This seems to be unrealistic. We know from everyday experience
that many people value, for instance, fairness and equality, and are ready
to cooperate as long as the other members of their group do the same.
We shall call such people “reciprocators” or “conditional cooperators.”
Reciprocators are important because their existence suggests a natural
explanation of the decay phenomenon. Imagine a population composed
entirely of two types of players: free riders and altruists. Free riders con-
tribute nothing in a public goods game, and altruists always contribute

7 See also Anderson, Goeree, and Holt (1998) for a similar attempt.
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something. No decay should be observed, unless some player realizes
that she is not really an altruist or a free rider, or that the game was
not as it initially appeared to be. Now imagine there is a third kind of
player, the conditional cooperator. Such a player contributes only if the
others do the same. Perhaps she will initially give something to the public
project, but soon her efforts will be frustrated by the free riders in her
group. Therefore, she will lower her contribution to put it in line with
the group average, with the effect of further depressing the average itself.
The decay phenomenon has now been triggered and perpetuates itself,
making contributions spiral down quickly toward zero. (Perhaps a few
“pure” altruists will remain who guarantee a low level of contributions
above the Nash equilibrium.)

Reciprocating behavior is difficult to model, and despite some attempts
in this direction, the results so far have not been entirely satisfactory.®
The existence of conditional cooperators, however, can be established
also by nontheoretical means, that is, by means of a purely experimen-
tal approach. The most relevant attempts in the literature are those by
Offerman, Sonnemans, and Schram (1996), and by Fischbacher, Gichter,
and Fehr (2001). Offerman and his collaborators use a psychological test
known as the Strategy Method in order to identify players of different
types, and then test the classification they have obtained against the behav-
ior of the same subjects in a standard public goods game. Fischbacher et
al., in contrast, classify using a method called the Decomposed Game
technique, and again check for consistency using a one-shot public goods
game.

These approaches are similar in that the subjects always play the public
goods game in “heterogeneous” groups, that is, in “mixed” groups made
up of cooperators, reciprocators, and free riders. An interesting question
is what would happen if subjects of each type could play the game in
“homogeneous” groups, that is, in groups made up of players of the same
kind. The obvious hypothesis to test is whether different (homogenous)
groups would display patterns of cooperation that depart significantly
from the standard decay phenomenon. Jointly with Roberto Burlando,
an experimenter from the University of Turin, I set out in the spring of
2002 to test this hypothesis experimentally. The results strongly confirm
the “heterogeneous agents” hypothesis (cf. Burlando and Guala, in press),
but to describe this experiment in full detail goes well beyond the purposes

8 Cf. e.g., Sugden (1984), Rabin (1993), Falk and Fischbacher (2000); see also Fehr and
Fischbacher (2002) for a general discussion.
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of this chapter.? I instead focus on what all experiments on repeated public
goods games have in common, namely the replication of the decay effect.
If you want to demonstrate that a given effect is the result of one or more
causal factors, you need to show that variations in that factor or condition
result in deviations from the benchmark phenomenon. In experimental
jargon, the benchmark phenomenon acts as a control (a contrast-case)
for the effect elicited by means of the new design. As a consequence,
the benchmark effect has to be replicated. In the next sections, I briefly
describe how.

Preparing the experiment

What do you need in order to run an economic experiment? Two things
are indispensable: some money and an economic laboratory. Money is
necessary to pay the subjects who participate in the experiment. The
habit of compensating subjects distinguishes experimental economics
from other neighboring disciplines, such as experimental psychology.'?
Because economists often use university students in their experiments,
the sums involved are not huge (a student’s time is supposed to cost less
than the time of, say, a doctor or a lawyer); in this case, Roberto and I
could rely on a budget of about 2,000 euros. The second indispensable
facility is the laboratory. Unlike physicists, economists do not need par-
ticularly complicated machines or instruments of observation. Most eco-
nomic experiments can even be performed by paper and pencil, in which
case all youneed is aroom big enough to seat the subjects for each session.
However, nowadays many (perhaps most) experiments are run on com-
puter networks. This has several advantages. First of all, the environment
is standardized: all subjects receive the same information on the screen,
and uniformity of circumstances is easily achieved. Secondly, the interac-
tion among subjects is much quicker. In a paper-and-pencil public goods
game, each player writes his or her own contribution on a sheet of paper;
the sheet is collected by the experimenter, who then compares the con-
tributions of all players in each group, calculates the payoffs, writes them
on the same sheets together with other information of interest (group

9 Other papers have since appeared that report similar results on agents’ heterogeneity:
cf. e.g., Burlando and Webley (1999) and Gachter and Thoni (2004). In experiments like
these, subjects are “exogenously” selected and matched by the experimenters. Experi-
ments with “endogenous” group formation include Ehrhart and Keser (1999) and Page,
Putterman, and Unel (2002).

10 In Chapter 11, I discuss the issue of monetary incentives in more depth.
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average, etc.), and gives them back to the subjects. If you consider that
an experiment must involve fifty subjects at least and a repeated public
goods game can go on for sixty rounds, you can imagine how time con-
suming such a procedure is — not to mention the mistakes one is prone
to make with such a method: it is fairly easy to miscalculate, to return
the wrong sheet to the wrong player, and so on. A computerized network
solves all these problems for you: the calculations are made instantly,
feedback is quick, and computers do not get tired or make mistakes (well,
mostly . . .).

Computers also have another advantage. The data are stored immedi-
ately and are available for data analysis almost straight away. You don’t
have to spend hours typing data into SPSS or some other statistical soft-
ware. Of course all these advantages come at a cost. First of all, you need
a computer room that you can use for your experiment, with a network
of terminals linked to a central server. Many universities have these facil-
ities nowadays, so this is not a huge obstacle. A bigger problem is that
you need special software for each experiment you run, and obviously
someone must create it. There are, to be sure, some standard packages
available on the Internet, and others that experimenters are happy to
circulate for free, if requested. But in 99 percent of the cases, your exper-
imental design will be slightly different from that of your colleagues, and
you will need at least to modify their software. This requires programming
skills, which not all economists possess. In our case, we were lucky to rely
on the expertise and apparatus of an established lab, the Computable and
Experimental Economics Laboratory (CEEL) at the University of Trento,
in the north of Italy. Many experiments are run at CEEL every single year.
Not only were the logistic problems easily solved there (computer rooms,
recruitment of subjects, etc.), but the software was tailor-made for us by
the staff of the laboratory.

The experimental design: the instructions

There are three major aspects in the design of an economic experiment:
the instructions, the software, and the physical environment. The instruc-
tions must contain all the information, and only the information, that
the subjects need in order to perform the experimental task. Usually the
instructions are printed on paper and distributed at the beginning of the
experiment. Writing up the instructions is not a trivial matter, and in run-
ning a replication, one is advised to follow carefully the instructions of
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the benchmark experiment (instruction sets are circulated freely among
experimenters).

Instructions must also be clear, sharp, and of the right length. The first
two requirements do not need any justification: unless your explicit goal
is to create confusion in the subjects, you had better seek simplicity. Some
concepts require careful formulation: it may make some difference, for
instance, to use the expression “private account” instead of “individual
account”; in general, it is a good idea to avoid morally charged terms like
“altruism,” “egoism,” and so on, which might induce subjects to believe
that you expect them to behave in the “right” way. It is also a good idea
not to use economists’ jargon: first of all, most people do not know the
meaning of economics’ technical terms, and secondly, some of these terms
are normatively laden. You usually do not want to tell subjects what is in
their “rational” interest to do, or what the “equilibrium” of the game is,
and so forth. You might not even want to let them know that there exists a
“rational” solution to the game. On the other hand, you should not make
the opposite mistake of being simplistic. The instructions must not be too
short, and it is important that the subjects understand all the subtleties of
the situation they will face in the experiment.

Every replication departs in some respects from the design or designs
that have been used by other researchers. Typically, some deviations are
not grounded in theory. For example: how many rounds should a finitely
repeated public goods game go on for? Standard theory does not say,
for any number of rounds should provide the same result (a contribu-
tion of zero throughout the game). Although the theory does not seem
to capture what happens in experiments, common experimental wisdom
suggests that indeed the number of rounds does not matter — the decay
of contribution has similar characteristics regardless of the number of
rounds played. Secondly, what kind of production coefficient should we
use? Does it make a difference whether it is set at .5 rather than .4, for
example? We chose .5 because we thought it would have been easier
for our subjects to understand the mechanism of production if we used
this coefficient (in order to calculate it, you just need to multiply by two
and divide by four the total amount of tokens in the public account,
something even the most mathematically illiterate subjects should be
able to do). According to standard theory, once again, changes in the
production function should not matter at all (as long as it is linear).
However, there is evidence from past experiments that increments in
the production function can affect behavior: as the value of the tokens
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invested in the public project increases, people seem to be willing to invest
more in it.!!

Another decision concerned the level of incentives. Practical consid-
erations play an important role in this case. On the one hand, there is
an obvious trade-off between the level of payoffs and the number of
experimental subjects, given a fixed budget allocated to the experiment.
Secondly, the administration of our university did not allow us to pay each
student more than a certain amount of money for reasons that have to do
with Italian tax legislation.'? For these reasons, we chose payoffs aiming at
an average individual earning of 11 euros, for a task of less than one hour.
This is in line with the incentives used in the majority of economic exper-
iments. (In theory, lower incentives may produce more “noise,” that is,
marginally more subjects who provide confused or unreliable responses.
Notice, however, that the sums involved are more than what an average
Italian student can hope to earn in a part-time job.)

The software

The software for the experiment was written by Marco Tecilla at CEEL,
starting from an early draft of our instructions. I will not go into the details
of the process of writing the software, which is obviously heavily depen-
dent on the sort of programming tools that you use. It is, however, worth
spending a few words on the basic structure of the final product. Before
launching the software, the experimenter must specify the fundamental
parameters of the experiment, such as the number of players, the number
of groups, the endowment, the payoffs, and so on. Then, the application
must be started on each computer terminal. The software automatically
assigns a number to each player/terminal and randomly matches the ter-
minals to form the experimental groups: for example, terminal 1 with
terminals 4, 7, and 8; terminal 2 with 3, 5, and 6; and so on. (We played
with groups of four.) The first window to appear on the screen when
the players have read the instructions includes a request to write one’s
name and university ID. The game starts when all “OK” buttons have
been clicked. The first window asks how much each player is willing to
contribute to the public account. Once all players have specified their

1 Cf. Isaac, Walker, and Thomas (1984), Kim and Walker (1984).
12 In principle, we could have paid them above the threshold, but this would have created
such a bureaucratic mess that we decided not to do it.



Inside the Laboratory 29

contributions, a new window appears with the average contribution level
of the group in the last round, the individual payoff in the last round,
and the accumulated earnings. The new window also asks the player to
specify the contribution for the second round, and so on. Three rounds
are played for training, with no “real” payoffs. At the end of the training
period, subjects are informed that the rounds played for real are about
to start. After twenty rounds, the total payoff will appear on the screen
of each subject. These payoffs are still expressed in experimental tokens,
and will be converted in real money (euros, in this case) according to a
prespecified exchange rate.

The physical environment

The physical environment is where the experiment takes place. A uni-
versity computer room, as I said, is the standard environment for
experimental economics. Before you actually run an experiment, it is a
good idea to have a look at the place and see whether it fits your require-
ments. There are trivial issues to be addressed (e.g., Is it big enough? Can
we seat all the people we need?), but also slightly more sophisticated
ones: Are the subjects too close to each other? Can we isolate them from
one another if we want to? Are the terminals reliable, are they too slow,
do they freeze or break down too often? If the experiment requires that
subjects receive some public feedback (e.g., if it is an auction or a market
experiment), you might also need a projector or a blackboard to post
prices and record transactions. (Obviously, the screen or board must be
visible from all terminals.) It is a good idea to take extra sets of instruc-
tions, some paper, and extra pens for the subjects if they are allowed to
take notes during the experiment. In our case, we also had to use some
cardboard partitions in order to isolate subjects from one another. (This is
necessary to implement anonymity: the players must not know who they
are playing with or what the other group members are doing.) If you want
to play “transparent” lotteries, you might also need a set of dice, some
numbered balls in a bowl, or whatever else can be used for a random
draw. Finally, you need sheets to record the earnings of each subject at
the end of the experiment; these should be signed by the experimenter
and countersigned by the subject as a receipt. (I shall bracket here the
amazing bureaucratic complications that certain universities and funding
bodies manage to impose on such a relatively simple procedure. Paying
subjects can be as annoying as the administration wants it to be!)
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Pilots, bugs, and checking

I have now described the main ingredients and the apparatus needed for
a typical economic experiment. When all this is ready, you might want
to run the experiment itself — and this would be a mistake. Experimental
science is, in many respects, similar to engineering.!> As any engineer
will tell you, no new technology works the first time it is used. It may
work approximately, or mostly, but in general several tests must be per-
formed before a machine can be used safely and efficiently. The same
happens in experimental science. Like a complicated machine, an exper-
iment requires lots of checking and testing before it is run for real.
One major concern of course is money: you don’t want to blow your
whole budget at once. You want to be sure that the experiment will
run smoothly, that it will generate data, and that the data will give you
exactly what you need in order to answer the questions that motivated the
experiment.

This may seem a minor detail, but it is not. In fact, several hours are
routinely spent pretesting an experiment, just to check that everything
is fine. The crucial tool in this phase is the so-called pilot experiment.
A pilot is basically the experiment itself, but run on a smaller scale and
under careful monitoring. Sometimes the experimenters themselves play
the role of experimental subjects in the pilot, with help from friends,
research students, and colleagues. The payoffs are not paid at the end of
the pilot, and the data are not used to test the hypotheses at stake; but in
all other respects, the pilot should closely resemble the real experiment.
All pilot subjects are usually provided with a notebook in order to record
the problems they encounter. The rules of the game may be applied less
rigidly than in the real experiment — communication between players
may be allowed, for instance. Sometimes the pilot will be interrupted
in order to clarify some aspect of the experiment, or to correct some
mistake. Just to give you an idea of how important pilots are, here’s a
list of some errors, bugs, and imperfections we found in our experimental
design and apparatus. The pilot was run in the same computer room where
the real experiment would take place. We acted as “dummy” subjects,
together with some research assistants at CEEL (one of them played on
two terminals simultaneously, in order to be able to form two groups of
four players).

13 This thesis is central to much recent philosophy and sociology of experimentation. See
in particular Collins (1985).
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We found a number of errors in the instructions, small typos, incon-
sistent terminology (e.g., sometimes we used the word token, some-
times points, sometimes money), unclear paragraphs, and so on. It
wasn’t clear, for example, what was the maximum sum that one
could invest at each round.

Similarly, the software was affected by small typos (e.g., one window
said 20 rather than 200 tokens). But it also had slightly bigger
problems: sometimes the introduction to the game was too abrupt,
sometimes players were left to wait for a considerable time without
any explanation (wondering, for instance, whether the whole game
had stalled, or was finished, or whatever else). In light of the pilot
experience, we decided to add some windows with messages like
“wait until all players have completed the game,” or “now a new
window will appear with the first round of the game,” and so on.
When we tried to transfer all data from the server in the computer
room to the server of the experimental economics laboratory, we
could not do it. After a few checks and further attempts, we decided
that there must have been some problem with the university server.
Of course, this would have created problems had it occurred during
the real experiment. One day later, we tried again and this time it
worked fine.

Back in the lab, we had a look at pilot data. The pilot provides,
among other things, a chance to check the level of payoffs. Before
the experiment, we had told everyone to try to play “seriously,”
so as to obtain some meaningful information from the results. We
found that the total payoffs were quite high compared with what
we expected on the basis of previous experience and of the existing
data from the literature. Our pilot subjects were more cooperative
than one would expect. Of course, the sample was too small to make
a reliable inference and, besides, cooperation may also have been
the result of the fact that we all knew each other well and were not
playing for real money. However, Roberto had had an experience
of unusually high levels of contribution in public goods experiments
with [talian students, and therefore, we decided to lower the payoffs
to be sure of remaining within our budget limits.

The pilot also allows you to get a rough idea of the time length of
an experiment. In our case, the pilot lasted too long. One research
assistant was very careful in reading the instructions and effectively
delayed the experiment by at least fifteen minutes. One may be
tempted to take this event as a peculiarity of the pilot that would
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hardly occur in the real experiment, but it is important to realize
that the duration of each experimental session is equal to the time
taken by the slowest subject in that session. With about one hundred
subjects participating, it is quite likely that someone will be as slow
or even slower than the research assistant in the pilot. In fact, we
revised the time schedule for the experiment and increased the
interval between each session as a safety measure.

After the pilot, we had a chat with the research assistants, none
of whom had ever seen the instructions or the software before or
had discussed the experiment with us. This enabled the collection
of some interesting suggestions on how to improve the experiment,
how to clarify the instructions, how to eliminate some useless word-
ing, and so on. It turned out that one assistant had not understood
the public goods mechanism, which induced us to add a crucial
clarifying sentence in the instructions.

The pilot is also invaluable for data analysis. Using pilot data, we
produced a few graphs and some statistics. This allowed us to check
that the software we used to elaborate the raw data were reliable
and could give us the information we were looking for. In technical
terms, this is a procedure of “calibration”: a scientific instrument
(e.g., a microscope or a statistical package) is tried on some object
whose properties are well known, in order to make sure that the
instrument is able to give a correct representation of the object
itself. In this case, the object was our behavior — a behavior that, of
course, we knew very well. I knew, for example, that I had followed
a certain strategy in the game and afterward, checked that this
strategy emerged from the data analysis performed by the statistical
tools we used.

This is just a partial list including some of the most significant findings.

In reality, everything must be subjected to repeated checking: instruc-
tions, payment procedures, data collection, data analysis, and so on. Some
checking must take the form of concrete pilot experiments, others can be
performed by merely “simulating” the relevant procedures in the abstract
(as in a thought experiment). But it is important that checks be exten-
sive and repeated. It is quite amazing how until the day before the real
experiment takes place, you keep finding small imperfections that have
slipped through the net. In many cases, these probably would not cause
the whole experiment to fail, but still one can never be entirely sure that
it will work.
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It’s worth mentioning that although the phase of checking and the
actual experiment have been presented as if they were sharply separated,
they need not be so. Many experimenters like to run one or two sessions
of the experiment for real, and then pause for a few weeks during which
they make sure that the data and the design were “right.” If some problem
emerges from the early sessions, there is still time to remedy it. The data
from the early experiments may have to be discarded, but there should
remain enough time and resources to organize other sessions and com-
plete the research anyway. Other experimenters prefer to run the experi-
ment all at once, after extensive checking. They usually feel that adjusting
one’s experiment in light of the data is a form of cheating: the evidence
from early sessions may prompt you to change the hypotheses under test,
or to modify the design if the data do not seem to provide the result that
you expected. Such procedures seem to violate some standards of sci-
entific integrity, according to which scientists should put forward precise
predictions and then test them severely. If you run the experiment all at
once, the result is what it is, and no adjustments or tricks are possible.
In Chapter 5, I discuss arguments concerning the importance of making
“risky” predictions in more depth.

Improvising

When the checking is over, the experiment can begin. (Or perhaps, more
realistically, when the experiment Aas to begin, the checking is over.) The
end of the checking phase, however, does not imply that 100 percent
reliability has been achieved. Something can still go wrong, and in fact,
almost certainly will go wrong. For this reason, it is crucial to have some
safety nets ready, and also enough creativity to solve problems as they
come up during the experiment.

The first thing you have to do is make sure that you recruit enough
subjects for the experiment. Recruiting can take many different forms,
depending on the sort of population you are interested in. Most exper-
iments are run with university students, for the simple reason that they
are most readily available. The choice of such a population of course is
not unproblematic, and you must be aware of the possible biases it may
generate. Students are not acquainted with certain real-life problems or
situations, and thus may provide you with data that are unrepresenta-
tive of the behavior you are interested in. Suppose you are studying tax
evasion, for instance. A university student probably has never filled in a
tax report in his or her life. For certain tasks, you might want a different
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population, such as a population of experienced businessmen who rou-
tinely make decisions of the sort you are investigating. On the other hand,
university students may also be more trained than other people in solving
certain tasks, such as highly abstract logical puzzles. You must also pay
attention to what kind of students they are. It has been reported, to take
a famous and controversial case, that students from business schools and
economics departments tend to conform to standard economic theory
more closely than students from other programs — which, of course, may
be relevant in experiments on public goods.!* The gender of your sample
might also make a difference, and so on. The list of factors that may mat-
ter with respect to the subject population is usually large and varies from
experiment to experiment.

In our case, we recruited by means of an ad placed outside the experi-
mental lab. This obviously gave us a self-selected sample made up entirely
of university students. For the sake of postexperimental analysis, we just
asked our subjects to fill in a short questionnaire asking which depart-
ment they belonged to, their birth date, and their gender. It is a good idea
always to recruit more subjects than you need. When we had reached the
numbers we were aiming for, we continued to sign on people as “replace-
ments.” If someone did not show up on the day of the experiment, we
would take one of the extra students on board. This is quite important in
an experiment with groups, because one student who does not show up
may cause the loss of a whole group.

We planned five sessions, for a total of ninety-four subjects. The early
sessions were somewhat slower. On one occasion in particular, we had to
launch the software twice because for some unknown reason, it refused
to start the experiment. Sometimes the server would freeze for a few
seconds (up to three minutes, in one specific case), again for unknown
reasons. Subjects also cause problems. Problematic subjects come in two
categories: those who are embarrassed by the task and those who are
not embarrassed enough. We had a couple of subjects of the first kind,
who slowed the pace of the experiment considerably. One kept everybody
else stuck in the room for fifteen extra minutes because he couldn’t decide
how much to contribute, to the utter annoyance of everybody else. When
cases like these happen, you must have a plan. We had decided in advance
not to intervene if possible, in order to give every subject enough time to
reflect on the task at his or her own pace. In the unlikely event that we

14 Cf. Marwell and Ames (1981) and Frank, Gilovich, and Regan (1993).
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approached the end of the session (we had a fixed booking time for the
computer rooms), we would start to put pressure on the slowest subjects
by announcing they had only five minutes left to finish the task (and
announcing then four, three, etc.). I once witnessed an experiment with a
subject who was so recalcitrant she almost ruined the whole experiment.
She kept saying that she could not understand the task and could not
begin until she had understood it properly. Eventually, an experimenter
had to sit beside her and guide her through the whole task. Of course,
the experimenter wrote down the terminal code and made sure that the
data from that subject and group were erased from the data set before
any statistical analysis was carried out.

Subjects who are not embarrassed enough create problems of an
entirely different sort. First of all, you have the super-quick ones who
finish before everybody else and tend to get bored fairly soon. If they
have IT skills, you are in trouble: they may try to read their e-mail while
waiting for the next round, they may try to launch one of your applications
in order to “have a look at the next task,” and so on. In some cases, these
people manage to mess up the whole experiment. We had a couple of cases
like these, especially “helpful” people who began to launch applications
and insert codes (the wrong ones, of course) to give us a hand. The best
way to deal with such subjects is to state clearly at the beginning (and then
repeat a couple of times, just to make sure) that it is absolutely forbidden
to play with the terminals; it may be useful to announce at crucial times
“now do not touch the keyboard until we say so,” “now you can use your
keyboard again,” and so on.

Results

When all sessions have been completed (it took us a couple of days),
the phase of data generation is over. This is not the end of the research,
however. On the contrary, a most important phase of inquiry is about to
begin: the extraction of results from experimental data. The information
you are looking for will usually not be manifest, and part of the job of the
scientist is to interrogate the data in order to obtain as much information
as possible. First of all, it may be necessary to eliminate some data that you
have some reason to believe may be unreliable. (A typical example is data
from “problematic” subjects who have not carried out the task properly.)
The remaining data are then analyzed statistically. The techniques used
for this job (significance tests, correlation, regression analysis, etc.) are
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not the subject of this book, so I shall not get into the technical details
of data analysis — which can differ considerably depending on the type of
experiment.

A very common experience is that the data turn out to be richer than
one would expect. An experiment is usually designed with one principal
research question in mind, and the data should provide an answer to
it (a clear-cut answer, hopefully). But often the evidence will contain
more information — for example, in the form of new phenomena that
had not been anticipated by the experimenters. In a few lucky cases, the
unexpected results will be clear enough to be reported, but most often
they will require a new design in order to be observed properly. The end
of an experiment then becomes the beginning of a new one, which will
shed further light on a related issue.

As Isaid, most experiments include the replication of an old result. The
reason is that in order to prove that a certain factor or condition matters
for a given effect, it is necessary to check the extent of the deviation
from the benchmark phenomenon when that factor is added or subtracted
from the standard design. In other words, experimenters typically learn by
comparing what happens when you vary one or more conditions in a given
situation or experimental design. In our case, we replicated the standard
decay of overcontribution with “heterogeneous” groups before compar-
ing it with the contribution patterns obtained in “homogenous” groups
(cf. Overcontribution and Decay above). The replicated phenomenon,
the decay of overcontribution, is represented in Figure 2.2 (I shall not
illustrate the evidence obtained with homogeneous groups for it would
divert us from our present concerns. Those interested can have a look at
Burlando and Guala, in press).

If you compare the evidence obtained in our experiment with bench-
mark patterns like those reported in other articles or textbooks (cf. the
results of Isaac et al. (1984), for example, summarized in Figure 2.1),
you will notice that they are slightly different. Yet, Roberto Burlando
and I felt that the decay phenomenon had been successfully replicated.
One interesting question then is how different a phenomenon should be in
order for the replication to fail. When the result to be replicated is defined
in precise quantitative terms, this question can be answered using stan-
dard statistical tests. However, this is rarely the case in the social sciences,
in which phenomena can often only be defined qualitatively. The defini-
tion of the decay phenomenon, for instance, leaves quite a wide room
for maneuver. However, certain patterns are clearly incompatible with it:
we surely would have been surprised had we observed, for instance, an
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Figure 2.2. Overcontribution and decay (from Burlando and Guala, in press).

increasinglevel of contributions. The fact that we started with high average
levels of contributions that declined smoothly throughout the experiment
encouraged us to claim that the decay phenomenon had been successfully
replicated.

Successful replications are relatively unproblematic, from a method-
ological viewpoint. The decay phenomenon is fairly easy to obtain, and
has been reported so many times in the literature that no one really doubts
that it can (and should) be produced in certain conditions. Failed attempts
at replication raise more tricky questions: suppose we did not observe
the decay phenomenon — what should have we concluded from that? The
decay phenomenon is so entrenched in the literature that we surely would
have questioned our capacity as experimenters in the first place; we would
have probably revised some aspects of our design, and tried again until
we had managed to obtain the desired effect. Some experimenters (e.g.,
Rubinstein 2001) argue that such a practice is strongly biased in favor
of confirming other people’s results, and in fact, makes the discovery of
errors unlikely; but surely an initial failure would have taught us some-
thing useful and perhaps even potentially interesting from a theoretical
viewpoint. Had we not observed the decay effect at the first shot, by wig-
gling with our design, we could have learned something about an impor-
tant factor that prevented the decay from occurring; perhaps this would
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have been an interesting result worth reporting in a scientific journal. The
incentives for reporting interesting failures are not negligible, in other
words.

A more challenging point has been made by the sociologist Harry
Collins (1985). Collins focuses on cases in which the existence of the phe-
nomenon to be detected is itself in question (one of his favorite examples
is physicists’ early attempts to detect gravity waves). If we fail to obtain
the result, should we conclude that the phenomenon does not exist, or
that the experiment has not been performed correctly? Collins uses this
problem (which he calls the “experimenter’s regress”) to argue that exper-
imental knowledge — the decision to accept a result as “established,” for
example — depends to a crucial extent on extrarational factors, such as
the reputation of the experimenter, the tenacity with which a community
pursues the replication task, the funds invested in such projects, and so on.
Other scientists and philosophers disagree and argue that experimental
methodology, and the practice of replicating results in particular, follows
rational rules of inference (see in particular the debate between Allan
Franklin [1994] and Collins [1994]).

To tackle this philosophical controversy at this stage would be rather
futile, because clearly the whole issue revolves around the problem of
what counts as a rational scientific inference, and I have said absolutely
nothing about it yet. The rest of this book is devoted to illustrating and
discussing how experimenters infer from data to phenomena within an
experiment, and how they generalize from such results to what happens
outside the laboratory walls. Part of the job is to figure out whether these
practices can be justified epistemically or, in other words, whether they can
be expected to generate proper (rationally justified) scientific knowledge.
I alsolook comparatively at the methods used in other (nonexperimental)
branches of economics, and at what is done in other disciplines, such as
physics and medicine, in order to spell out exactly the peculiarities of the
methodology of experimental economics.



THREE

Hypothesis Testing

Like scientists, philosophers of science make use of models. Models of
scientific method aim at capturing the processes of scientific reasoning,
and work in many respects like scientific models: they are idealizations to
begin with, and as such, they usually do not represent the real reasoning
processes followed by scientists in all their details. Rather, they try to
capture some “essential” aspects, and sometimes deliberately simplify
in order to represent a problem or issue in a particularly forceful way.
Moreover, like economic models, models of scientific method often have
a hybrid descriptive-normative status, for they also aim at giving advice
on the way in which scientists ought to reason, and help identify by way
of a contrast our most common cognitive mistakes.

In this chapter, I introduce a well-known model of scientific method:
the so-called Hypothetico-Deductive model of testing (or HD model,
for simplicity). The HD model is an extremely useful tool to highlight
some of the most fundamental problems of scientific methodology. As a
representation of actual scientific reasoning, it is admittedly abstract and
simplistic. Yet, it is flexible enough and can be easily amended to make
room for some obvious exceptions and counterexamples. The HD model
falls squarely in the empiricist tradition, according to which empirical evi-
dence is the primary source of validation for our theories of the natural
or social world. Most experimental economists would agree with this fun-
damental philosophical principle. Indeed, experimental economics aimed
right from the start at providing better empirical tools for the discovery
and testing of economic hypotheses. If scientific ideas are to be tested
against the facts, the first important job is to define exactly what these
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“facts” are; then, I move on to describe how they can be used for testing
purposes.

A taxonomy of experiments

What is a fact in experimental science? Facts are notoriously tricky philo-
sophical entities, and I won’t try to provide a precise definition here; at
the risk of annoying some philosophers, I will speak interchangeably of
“facts” and “events,” pretty much as we do in everyday conversation. It is
important, however, to distinguish facts from another key element of sci-
entific method, the concept of evidence. A fact is a fact “in its own right,”
so to speak, whereas evidence is relational: x is or counts as evidence
only in relation to one or more hypotheses. A fact, then, can be used as
“evidence for (or against)” a scientific hypothesis. Because scientists test
different hypotheses in different experiments, or at different stages of the
same experiment, different kinds of facts count as evidence at different
stages of research. What we need, then, is a classification of economic
experiments, according to their purposes and motivations.

Among the taxonomies that have been proposed in the literature,’
the most popular, and my personal favorite, is Alvin Roth’s — sufficiently
articulated to capture the diversity of experimental practice, but simple
enough to unify many experiments under a few encompassing categories.
Roth (1986, 1988, 1995) proposes a threefold classification of economic
experiments based on their primary goals: Speaking to theorists, Searching
for facts, and Whispering in the ears of princes. The first category captures
all experiments aimed at testing hypotheses derived from formal theoret-
ical models. The second, “Searching for facts,” includes all experiments
devoted to investigating phenomena that cannot be explained by exist-
ing theories. The third class, finally (“Whispering in the ears of princes”),
includes experiments devoted to illuminating or supporting policy mak-
ing. We have already seen examples of type 1 and type 2 experiments in
Chapter 2: experiments on public goods began with the aim of testing the
received theory, but experimenters quickly turned to investigating and
trying to understand the decay of overcontribution quite independently
from the existence of an alternative theoretical framework (albeit with
the aim of developing one). For experiments of the third type, we shall
have to wait until the second part of this book (especially Chapter 8).

! Cf. e.g., Smith (1982, 1994), Friedman and Sunder (1994), Sugden (in press).
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Data and phenomena

So what sorts of facts are used as evidence in type 1 and type 2
experiments? Jim Bogen and Jim Woodward have proposed a useful dis-
tinction between data and phenomena:

Data, which play the role of evidence for the existence of phenomena, for the
most part can be straightforwardly observed. However, data typically cannot be
predicted or systematically explained by theory. By contrast, well-developed sci-
entific theories do predict and explain facts about phenomena. Phenomena are
detected through the use of data, but in most cases are not observable in any
interesting sense of the term. (1988, pp. 305-6)>

Bogen and Woodward have in mind paradigmatic physical phenomena
like weak neutral currents or the rate of neutrino emission from the sun,
but this distinction applies to the social sciences, too. Consider our exper-
iments on repeated public goods games. The work done by Roberto Bur-
lando and myself belongs to a more general research program aimed at
finding an adequate explanation of overcontribution and decay. In the
experimental laboratory, we collected some evidence that we thought
would help us in such a long-term project. Here are some data from our
experiment:

EXPERIMENT_DATE:5/23/02
Session: 23/05/2002 9:50
EXPERIMENT: PG

GAME STARTED

NewRound
0:1:10:10:34:::1:2:20:0:38:::2:3:20:0:40:::3:4:3:
17:41:::4:1:20:0:24:::5:2:20:0:38:::6:3:20:
0:40:::7:4:3:17:41:::8:1:20:0:24:::9:2:15:5:43:::
10:3:20:0:40:::11:4:20:0:24:::12:1:0:20:44:::13:2:
20:0:38:::14:3:20:0:40:::15:4:20:0:24:::

NewRound
0:1:8:12:36:::1:2:20:0:40:::2:3:20:0:40:::3:4:20:
0:16:::4:1:20:0:24:::5:2:20:0:40:::6:3:20:0:40::
7:4:1:19:35:::8:1:20:0:24:::9:2:19:1:41:::

2 See also Woodward (1989) and Brown (1994, Ch. 7).
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10:3:20:0:40:::11:4:0:20:36:::12:1:1:19:43:::13:2:
20:0:40:::14:3:20:0:40:::15:4:10:10:26:::

NewRound
0:1:0:20:40:::1:2:0:20:50:::2:3:20:0:40:::3:4:20:
0:30:::4:1:20:0:20:::5:2:20:0:30:::6:3:20:0:40:::
7:4:20:0:30:::8:1:20:0:20:::9:2:19:1:31:::
10:3:20:0:40:::11:4:0:20:50:::12:1:1:19:39:::13:2:
20:0:30:::14:3:20:0:40:::15:4:20:0:30:::

I have included in the box data from the first three rounds of a single
experimental session. Each string contains the observations of one round.
Three consecutive colons separate the data of different players. For each
player, we collected five parameters: the player’s identification number,
the group she belongs to, her contribution to the public project, her con-
tribution to the private account, and her payoff in that round. Thus, for
instance, the sequence:::0:1:10:10:34:::means that player number
0 belonging to group 1 contributed ten tokens to the public account, kept
the remaining ten tokens in her private account, and earned thirty-four
tokens in that round. (Because sixteen players participated in that session,
each string consists of 16 x 5 = 80 figures.)

The crucial parameter for our purposes is the contribution level (the
third figure in each sequence of five). Notice that no theory we can rea-
sonably expect to come up with is likely to be able to imply deductively
that in the first round of that session we observed exactly the following
sixteen contributions: 10, 20, 20, 3, 20, 20, 20, 3, 20, 15, 20, 20, 0, 20, 20,
20. But even if we could find such a theory, its scope would be fairly lim-
ited. As Bogen and Woodward put it, data are “idiosyncratic to particular
experimental contexts, and typically cannot occur outside of these con-
texts” (1988, p. 317). If we were to repeat the experiment, even with the
same subjects, we would almost certainly not obtain these sixteen figures
in the first round. A theory explaining at such a level of detail, therefore,
would be pretty useless for predictive purposes.®> Moreover, remember
that sometimes not all the data are relevant to the test of a theory. Some-
times some “weird” data are excluded because it is known that something
went wrong in the experiment (one subject, say, was unable to conclude
the task). Thus, not only should we not require that the theory predict
exactly the data that we shall observe, we shouldn’t even require it to
deductively predict al/l of them.

3 For a general discussion of the problem with “overfitting,” cf. Forster and Sober (1994).
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In fact, scientists are much less ambitious than that. Roberto and I, like
all economists involved in this research program, were not concerned with
explaining each single observation. We wanted to understand and explain
the decay of contribution phenomenon. One may wonder whether we are
just playing with words here. Phenomenon comes from the Greek phain-
omenai, “to appear,” “to be manifest,” “to show up.” But the scientific
usage of this term is not entirely consistent with its etymology: a scien-
tific phenomenon is rarely directly observable.* Phenomena are rather
“distilled” from observation; they are a “purified” account of what can
be observed. If we were to represent visually the actual observations or
data obtained in an experiment, we would have to create a massive graph
with one data point for each contribution of each subject in each round of
the public goods game. Of course, such a representation is not even feasi-
ble, but we could imagine a big “cloud” of tiny dots distributed unevenly
across the graph.

The data are messy, suggestive, and idiosyncratic. They are messy
because we cannot explain exactly why a given player made a given choice
at a given round. To be sure, we could try to do that by disaggregating
the data at the group level, or even at the individual level. But in order to
account for each single data point, we would probably need to cite numer-
ous heterogeneous factors. Some player perhaps was getting bored during
round 18 and changed his strategy just because he was looking for a bit of
fun. Another subject did not understand the game properly. Yet another
one pressed the wrong key, and so on. On the whole, the data, neverthe-
less, are highly suggestive. Once organized in a graph, they indicate that
some distinct pattern lies below the superficial mess. The pattern is more
clearly revealed if we focus on the average contribution at each round (as
we did, e.g., in Figure 2.2). The decay phenomenon now emerges from
the data quite clearly.

Butitisimportant to stress that the decay of contribution is not directly
observable in the lab. What is observable are the single choices, repre-
sented as data points. The decay phenomenon has to be worked out post
hoc from the observations —it is a derived entity. The decay phenomenon,
to be sure, is idiosyncratic too, from some respects. If we were to repeat
the experiment with a different population of subjects (e.g., with British
students), we would probably obtain a slightly different rate of contribu-
tion and decay. Because “we expect phenomena to have stable, repeatable

4 For a discussion of the usage of the term phenomenon in scientific jargon, see also Hacking
(1983, Ch. 13).
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characteristics which will be detectable by means of different procedures”
(Bogen and Woodward 1988, p. 306), what we see in Figure 2.2 cannot
be the decay phenomenon. It is rather an instance of that phenomenon,
which can take different forms in different contexts. If we had to define
the decay phenomenon, we would probably go for something like this: an
initially fairly high rate of average contribution (roughly between forty
and sixty percent of the total endowment), which slowly and smoothly
converges toward (but never reduces to) equilibrium. Notice the vague-
ness of this description: how high should the contribution be at the start?
And how low at the end? How smooth should the decay be? There is no
precise answer to such questions. Certainly a decay with an abrupt trough
or a peak in the middle would be considered peculiar and call for a sep-
arate explanation. But no one can specify precisely the characteristics of
the “ideal-typical” decay phenomenon.

There are various reasons for this. One is that this particular phe-
nomenon has not been satisfactorily explained yet (although every scholar
has his or her own favorite story). We do not know exactly which factor
or set of factors is responsible for the phenomenon, and therefore, we
are unable to isolate its “essential” characteristics. The phenomenon is
defined inductively, by grouping together a set of features that a class of
similar experiments have in common. Here comes the second reason why
the phenomenon is defined in such rough terms. As noticed in Chapter 2,
the result of a public goods experiment is particularly sensitive to small
variations in the experimental setting. Such sensitivity makes the precise
definition of the decay phenomenon difficult, because we cannot specify
exactly how differences in design reflect into differences in the level of
contribution, the rate of decay, and so on (although, again, we have some
rough stories about it).’

Description and explanation

In physics, “phenomenological” laws are distinguished from “fundamen-
tal” laws not on the basis of their observability, but on the basis of
their explanatory power.® Similar distinctions have also been drawn by

5«

5 Phenomena in the sense specified here are similar to economists’ “stylized facts,” at least
in the way in which this expression was originally used in growth theory. Since then,
however, stylized facts have become a much broader notion and are often used to refer
also to occasional observations or insights, qualitative generalizations, etc. In contrast,
phenomena are often generated in tight experimental conditions, are highly replicable,
and are more or less precisely measurable.

6 Cf. Cartwright (1983, Ch. 6) for a philosophical discussion.
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Figure 3.1. Data, phenomena, and theories.

philosophers from time to time. John Stuart Mill (1843), for example,
used to distinguish between “empirical” and “causal” laws in his method-
ological writings. And Ernst Nagel (1961, Ch. 5), a distinguished logical
positivist, uses the term experimental laws to denote pretty much what
Bogen and Woodward call phenomena. Whatever terminology one is
using, the key point is that phenomenological laws describe rather than
explain. Phenomena organize data; data in turn do not call for a direct
theoretical explanation, whereas phenomena do. Phenomena can in prin-
ciple (and eventually, ideally, should) be explained by theory, whereas
data result from the combination of the main causal factors modeled by
theory with a number of other specific features of the data-generating
process (the experimental apparatus, the instruments of observation, the
materials used in the laboratory, the experimental procedures, etc.). The
data—phenomena distinction can be fruitfully used to identify two sepa-
rate stages in scientific research (see Figure 3.1).

The first stage (“phase 17) is aimed at organizing the observations, that
is, identifying the phenomena underlying “noisy” data. This is no trivial
task. Certain phenomena are so elusive and controversial that scientists do
not even agree on their existence. Think of issues such as global warming,
or the abnormal increase in the prices of some goods that allegedly took
place in some European countries after converting their currencies into
euros. Is the earth’s temperature really increasing? Did prices in Italy
go up by only 2.9 percent on average, or was the increase much more
substantial, as some researchers claim? Such questions are difficult to
answer because the data are often unreliable, and the very concepts that
we use to interpret them are subject to debate. When an agreement is
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reached (if at all), it is sometimes after many years of investigation and
the application of extremely sophisticated techniques of data analysis.

Phase 2 begins once a phenomenon has been identified. The job now is
not only to describe (to ask what is happening) but also to understand or
explain (why is it happening?). Scientists at this stage look for the causes
of phenomena, and possibly try to organize them into theories — they seek
a systematic explanation, in other words. The labels phase 1 and phase 2
do not necessarily imply chronological order. Although scientists usually
try to explain a phenomenon after they have established its existence,
sometimes theories are used to derive a prediction, as in the HD model -
that is, to forecast that in certain conditions, a certain phenomenon will
take place. After the experiment, then, the data are analyzed to check
whether the phenomenon is really there. Then, if the answer is positive,
the phenomenon is automatically explained by the theory from which it
was derived.’

The role of theory

A phenomenon, however, can be “freestanding” for a long time, detached
from any theory or even informal explanation of its occurrence. A suc-
cessful phenomenon (i.e., a phenomenon that attracts a lot of inter-
est and becomes the focus of research in a given discipline) is usually
surprising, either because it goes against our commonsensical expecta-
tions, or because it contradicts a generally accepted theory. A famous
example of a surprising phenomenon is the “doughnut-shaped” shadow
produced by the physicist Francois Arago by projecting light on a circular
disk without a hole in the middle. The phenomenon not only contradicted
everyday experience but was also used to refute the corpuscular theory
of light dominant in the early nineteenth century. Arago’s disk experi-
ment was explained using Fresnel’s wave theory of light, but explanations
like this are not always possible. Sometimes phenomena become some-
how uninteresting to the scientific community and “die” unexplained:
researchers simply stop searching for an explanation. A freestanding phe-
nomenon (a phenomenon that cannot be presently explained), however, is
always “attached” to its design: a description of the kind of circumstances
in which itis likely to be produced and observed. In a recent paper, Robert
Sugden (in press) introduces the term exhibit to denote the phenomenon—
design pair. Borrowing an expression from Daniel Kahneman, he says

7 But notice that as yet unexplained phenomena can also be used to predict; this aspect of
scientific research will be more prominent in the examples discussed in later chapters.
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that an exhibit is a “bottled phenomenon” — a particularly appropri-
ate metaphor, for it reminds us that phenomena always come with their
“bottle”: a more or less precise description of the experimental circum-
stances in which it is observed.

The description of the design — the “material realization,” as it is some-
times called by philosophers of experiment — is usually theory indepen-
dent in the sense that it does not include or presuppose a specific expla-
nation of the occurrence of the phenomenon. Of course, the description
can and often does make use of theoretical terms (voltage, potential, etc.,
in physics; risk-aversion, reduced lotteries, etc., in economics), but such
terms are not used to explain that particular phenomenon.® The descrip-
tion defines roughly the scope of the phenomenon, and hence its gener-
alizability — but does so without making a precise commitment regarding
the circumstances in which it will or will not occur (Radder 1996, 2002).
Its function, rather, is to provide some aid to other researchers who intend
to replicate the result in more or less similar circumstances.

The distinction between two phases in scientific research reminds us
that in many cases, explanatory theories (i.e., the theories that can be
used to explain a given phenomenon) do not play any significant role in
phase 1. Of course, other “theories” (or hypotheses, as I prefer to call
them) about the functioning of instruments, the occurrence of experi-
mental interferences, and so on may well play a role in tests aimed at
establishing phenomena. However, they often do not imply a specific
explanation of the phenomenon itself. Moreover, the data—phenomena
distinction can be used to highlight an important way in which scien-
tific knowledge is cumulative. High-level, explanatory theories are often
more controversial than phenomenological descriptions. Theories tend to
change in time, whereas phenomena constitute a relatively more stable
empirical basis to which even scientists subscribing to different theoretical
paradigms can subscribe.’

This is particularly evident if one looks at scientific disciplines that are
weak on theory but nevertheless make extensive use of the experimental
method. One striking example is psychology. Psychology lacks a strong
theoretical paradigm like those of physics and economics. (I am talking of

8 This point is usually obscured in so-called theory-ladenness arguments in philosophy of
science. For an influential discussion of the theory independence of much experimental
science, cf. Hacking (1983).

9 Since the early eighties, students of experiment have challenged the obsession with theo-
retical and linguistic matters that is characteristic of much recent philosophy and sociology
of science. The origins of this antitheory movement can be found in Hacking (1983), but see
also Cartwright (1983), Collins (1985), Galison (1987, 1997), Gooding (1990), Pickering
(1995), Mayo (1996), and the papers by Bogen and Woodward cited earlier.
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“theories” in a very specific sense, as structured axiomatic systems, often
expressed in formal language, that unify phenomena under a coherent
“umbrella” of general principles —i.e., the sort of stuff that gets published
in the Journal of Economic Theory.) Psychologists tend to use informal
hypotheses, or local models that are not unified under a common theo-
retical paradigm. Yet, psychology is clearly an experimental science, even
more experimentally grounded than economics. Contrary to what some
experimenters seem to suggest, then, the formulation of a theory is not a
prerequisite for experimental science.'’

Experimental work on public goods, to go back to my main example,
was initially inspired by the desire to test the prediction of standard theory.
Thus, initially, public goods experiments were aimed at theory testing.
However, the majority of the work that followed does not fall in the same
category. Most of the subsequent experiments were (and are) aimed at
checking the relevance of small variations in the experimental conditions.
Such variations range from changes in incentives and transformation func-
tions, to changes in the subjects’ sample (male and female, economics and
noneconomics students, British and Italian), in the size of groups, in the
quality of information, and so on.!! Some of these conditions, to be sure,
are highlighted by theory as potentially relevant to the outcome of the
experiment. However, others are not: the theory is just silent about them,
or in some cases, states explicitly that they are not supposed to make any
difference. Yet, experimenters spend a lot of time and effort in manipulat-
ing them, just to check “what happens if...,” and their curiosity is often
rewarded. (Recall Ledyard’s analogy with table-tennis ball experiments:
small differences often turn out to matter in public goods games.)

Of course, the absence of a theory to be tested does not mean that
experimenters proceed randomly or blindly. Their investigations are
almost invariably guided by some Ahypotheses about the behavior of their
subjects. But such hypotheses often take the form of rough insights, infor-
mal guesses that are not grounded in any well-structured and rigorously
formulated theoretical system and are not in the corpus of economic
theory.?

10 For two methodological accounts that link economic experiments tightly to theory,
cf. Plott (1991) and Rubinstein (2001).

1 Ledyard (1995) surveys these experiments.

12 Hacking (1992) calls them “topical hypotheses,” “to connote both the usual senses of
‘current affairs’ or ‘local,” and also to recall the medical sense of a topical ointment as
one applied to the surface of the skin, i.e., not deep” (p. 145). See also Hacking (1983,
Ch. 12), in which the distinction was first introduced.



Hypothesis Testing 49

Hypothetico-deductivism

Hypothesis testing, then, is a major element of experimental research.
It is fundamental both in “Searching for facts” experiments (aimed at
establishing the existence of robust phenomena) and “Speaking to theo-
rists” experiments (aimed at testing some theoretical explanation of the
phenomena). The centrality of hypothesis testing is recognized in what is
probably the most famous model of scientific method: the Hypothetico-
Deductive (HD) model of testing. In economics, hypothetico-deductivism
is usually associated with the methodological ideas of Milton Friedman
and Karl Popper. Popper was a marvelous writer, and his books (espe-
cially Popper 1934 and 1963) are widely read by scientists and the general
public. Friedman was partly influenced by Popper, and his popular essay
“The Methodology of Positive Economics” (1953) is deeply hypothetico-
deductivist in character. The HD model is rooted in a very specific empiri-
cist tradition, which dates back to the beginning of the twentieth century.!?
According to such a tradition, science stands on two pillars: empirical
evidence and logic. Evidence is the primary source of validation for our
knowledge of the external world; because knowledge is expressed in lin-
guistic statements, logic is necessary to draw inferences from one state-
ment or set of statements to another. As we shall see, there are different
views within hypothetico-deductivism about the kind of logic that is nec-
essary and sufficient for science, from the austere attitude of those who
think that standard deductive logic is enough, to the more demanding
views of those who argue that we also need a logic of induction.

Let us start with the basic HD model. Its essential features can be
summarized by means of the following two schemes:

Scheme A (refutation):  Scheme B (confirmation):

(1)H—e (1IYH—e
(2) ~e (2)e
(3)~H (3') probably (or more probably) H

In the notation I use throughout the book, the arrow “— " stands for
the relation of material implication (“if . . . then . ..”), and “~” for the

13 For some recent historiography of neopositivism cf. e.g., Uebel (ed. 1991) and Michael
Friedman (1999). Hypothetico-deductivism was not a feature of the early versions of
neopositivist philosophy, but emerged from the work of heterodox positivists like Pop-
per (1934) and was consolidated in the revised versions of neopositivism of the 1950s
(sometimes called “logical empiricism” or “logical positivism”); see in particular Hempel
(1952).
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negation (“not”). The horizontal line is used to separate the premises of
an argument from its conclusions. In the two schemes above, H stands
for a scientific hypothesis and e for the empirical evidence. For instance,
to use one of the silly examples that philosophers like so much, H may
be the hypothesis that all swans are white, and e the prediction that the
two swans swimming in the lake of the local park will give birth to a little
white swan — that is, that the next swan that we shall observe in our town
will be white. In order to test the hypothesis, we must observe the color of
the newborn swan: if it is not white (scheme A, on the left), we conclude
that the “white swans” hypothesis is not true — in other words, H is refuted
or falsified by e. If the newborn swan turns out to be white, in contrast,
our confidence in the truth of H will be somehow enhanced (scheme B,
on the right).

Refutation and confirmation

Notice that there is a crucial asymmetry between the two cases: in scheme
A, the conclusion (3) follows logically from assumptions (1) and (2).
This form of argument is known as modus tollens, and is a valid deduc-
tive inference. In scheme B, in contrast, we cannot by deductive logic
alone conclude that H is true on the basis of (1) and (2’). Such an infer-
ence would constitute a fallacy known as “affirming the consequent.” In
scheme B, in fact, I have concluded only that H is probably (or more
probably) true, given (1") and (2'). The idea, that I shall not try to make
more precise for the time being, is that the observation of e makes
the hypothesis H (from which e was derived) highly likely, or at least more
likely than H used to be before e was observed, or even more vaguely that
e indicates qualitatively the truth of H.'* Another way of putting it is that
e confirms, or supports, or indicates H.

It is important to notice that not all fans of the HD model endorse
scheme B. Accepting B is equivalent to recognizing that the method of
science does not rely on observation and deductive logic alone. To be
able to say that a theory is confirmed by a body of evidence, you need to
make use of a logic of induction. Such logic would be ampliative, because
it would spell out the way in which the truth of a set of sentences H is

14 These formulations point in rather different directions and are indeed captured by dif-
ferent formal theories of confirmation (see e.g., Giere 1977 and Achinstein 2001 for a
discussion).
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indicated (or made more probable) by the truth of a set of sentences e
implied by H. Or, in other words, it would specify in which way we can
reach a conclusion that goes beyond the premises it is based upon.

The project of constructing a logic of inductive inference has kept busy
some of the best philosophers of science of the last century. Originally,
these philosophers were hoping to do for induction something similar
to what had been successfully done for deductive logic at the beginning
of the twentieth century: to articulate a priori the rigorous formal rules
that govern this type of inference. The task is difficult, and the specialists
still disagree on issues of inductive inference. Some philosophers have
even cast doubt on the inductivist project as a whole. Karl Popper is
probably the most famous hypothetico-deductivist rejecting scheme B
altogether. According to Popper (1934, 1963), any attempt to defend an
inductive logic of confirmation is doomed to fail. But this is no big deal:
the logic of science for him is entirely deductive, and there is no need
for confirmation or induction; modus tollens and refutation constitute the
essence of scientific reasoning.

Popper sees the progress of science as a gigantic task of selection, in
which false theories are eliminated by means of modus tollens and new
ones are devised in order to be tested on their own. The failure to refute a
theory, however, does not indicate that the theory is probable or somehow
close to the truth. It just says that the theory has as yet not been proven
false, according to Popper. This view has come under attack from various
positions. The main problem, in a nutshell, is that scientists do not seem to
propose hypotheses and theories simply in order to reject them. They also
want to use them, to make predictions about future events or to intervene
and bring about some phenomenon or state of affairs (in economics, for
example, theories are used for policy purposes). As several philosophers
have pointed out, in order to justify such activities, it is not sufficient to
claim that a theory has not been refuted yet; at any moment in time, after
all, there is, logically speaking, an infinite number of theories that have
not been falsified. We would also like to think that the theory we are using
is somehow better than its (infinitely many) potential rivals.'

Popperian attempts to dodge such an objection have reached such
a level of sophistication that it would be impossible to discuss them

15 Cf. e.g., Lakatos (1974) and Salmon (1988), for such a critique. Caldwell (1991) and
Hausman (1992a, Ch. 10) discuss and criticize Popper’s falsificationism in the context of
economics in particular.
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appropriately here.'® Neither shall I discuss in depth the philosophical
reasons why Popper and his followers try to defend such a stance; I shall
just point out that the purely deductivist position is fairly isolated nowa-
days. The majority of philosophers of science believe that inductive infer-
ences are indispensable. And the mainstream position is also closer to
common sense: it seems unreasonable to hold that the fact that a theory
has survived many attempts of refutation teaches nothing at all about its
validity or future performance. However, using the past record of a the-
ory (the fact that it was not refuted in the past) to support its use in the
future (as, e.g., a predictive or policy instrument) involves an inductive or
ampliative step of some sort. It is difficult to construct a good argument
that turns this commonsensical intuition upside down.

The standard view of theories

Some presentations of the HD model speak of “theories” instead of
“hypotheses,” and of “observations” instead of “evidence.” To account
for Roth’s distinction between theory-testing and fact-searching exper-
iments, I prefer to avoid such terminology: the evidence may or may
not be constituted by directly observable events (remember the data—
phenomena distinction), and scientific hypotheses are not necessarily the-
oretical in character. Itis true, however, that in many cases, the hypotheses
belong to or are derived from theory. When this is the case, making pre-
dictions is indeed a matter of deducing testable implications from theo-
ries. Fortunately, nowadays many scientific theories are highly formalized
and organized in axiomatic systems from which theorems can be derived
rigorously.

Thave been using the term theory somewhat liberally so far — but what is
a theory exactly? The term is used in everyday language in many different
ways. Sometimes it just means a set of abstract ideas or speculations hav-
ing little to do with the concrete business of everyday life — “theories” as
opposed to “hard facts.” Sometimes it means something close to “hypoth-
esis” — for example, when we say “it’s just a theory” to imply that a certain
claim should be taken with a pinch of salt. Such variety of meanings is
also quite common in scientific language. The early proponents of the HD
model, however, took the term theory in a very precise way. Their work

16 Watkins (1984) includes a sophisticated defense of pure deductivism; Worrall (1989)
provides an entertaining summary of the main arguments and a critique of the Popperian
position. For a recent response to Worrall, see David Miller (2002).
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on the logic of theory testing was part of a more general research pro-
gram aimed at clarifying and possibly sharpening some concepts that are
sometimes used liberally by scientists.!” Once articulated more precisely,
then, the concept of theory takes the form of:

(1) aset of statements postulating the fundamental entities and processes of the
domain in question, and the laws that describe their behaviour;

(2) a set of “bridge principles” connecting the entities and laws to a set of phe-
nomena to be explained and predicted.'

Such a “theory of scientific theories” is also known as the standard
view or the received view of theories because during the 1960s, it became
dominant within philosophy of science. The standard view of theories is
a close relative of the HD model. The two views, to be sure, are logically
independent, and it is possible to endorse one without taking the other
on board. But clearly they belong to the same philosophical family and in
conjunction form a fairly harmonic and coherent view of science and its
method. (For this reason, by analogy, I sometimes refer to the HD model
as the “standard view of testing.”)

To appreciate the similarity between the HD model and the standard
view of theories, consider the way in which theories explain. According
to the standard view, theories are axiomatic systems and must include
general laws. Such laws “cover” individual events, in the sense that they
are more general than the events themselves. Thus a theory about the
color of cats (if it existed) would include laws such as “The color gene
is associated with the Y (male) chromosome,” “The white color gene is
dominant,” and so on. To explain why my cat is white, for instance, I could
deduce this fact from the two laws above, and the fact that my cat had a
white male parent. I will say, then, that “Missy is white because she is the
offspring of a white male, and the white color gene is dominant.”

An explanation, in other words, would take the form of a deductive
argument featuring a theory among the premises and an event or fact
or phenomenon as a conclusion.!” Given that a theory crucially includes
one or more laws, and that the explanation is deductive, such a view is
known as the deductive-nomological model of explanation (or DN model

17 This sort of work is sometimes called “philosophical explication.” See the classic illustra-
tion of this approach in Carnap (1950, pp. 5-6).

18 Suppe (ed. 1977) provides a more detailed and historically sophisticated account.

19 1 am consciously simplifying here by ignoring so-called initial conditions; but see “The
Duhem-Quine” problem later.
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for short).”’ However, notice that the DN model has exactly the same
form as the HD model. The only difference is that (i) in the HD model,
the collection of the evidence is usually supposed to take place after the
prediction has been formulated, whereas in an explanation, the evidence
has usually already been observed;?! (ii) the theoretical hypothesis is
taken as a mere conjecture in the HD model (that’s why we are testing it,
after all), whereas in the DN model, it is taken as true or at least highly
confirmed (otherwise, we could not use it to explain a phenomenon or
event). The two models play different roles in the method of science —
one is an account of testing, the other of explanation — but clearly go hand
in hand and share a characteristic family resemblance.

The Duhem-Quine problem

Notice that so far I have hardly talked about experiments at all. This is
no accident, however: the standard view (of theories, explanation, and
testing) is supposed to apply to key concepts and methods of science in
general. It assumes, in other words, that it does not matter whether one is
dealing with biology or astronomy, experimental physics or archaeology:
the method of testing, the nature and function of theories, and so on
are supposed to be the same in all branches of science. The HD model,
in particular, is aimed at characterizing the method of testing both in
experimental and in nonexperimental science.

Such generality should be seen as a virtue, of course: were the HD
model able to accomplish its goal, it would have done us a great ser-
vice by providing a simple and unified account of scientific methodology.
However, because we do draw a distinction between the experimental and
the nonexperimental branches of science, we must somehow be able to
account for this distinction in terms of the HD model. Suppose we want
to test a hypothesis, H: what difference does laboratory testing make?
The HD model does not say where the evidence e comes from. It could
be collected “in the field,” as well as in a laboratory experiment: the log-
ical relations (deductive or inductive) that relate evidence to hypothesis
are supposed to be the same regardless of the kind of data one is using.

20 From the Greek nomos, ‘law.” The classic work on the deductive-nomological model is
Hempel (1965); for a recent discussion of the DN model in economics, see Mongin (2002).

2l There is some disagreement, as we shall see, on whether a (post hoc) explanation of e by
H can also count as a confirmation of H; but I shall keep this issue for discussion in later
chapters.
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The difference must lie elsewhere, then, but in order to see where, it is
necessary to complicate the HD model a bit.

Scheme A and scheme B overlook a very important element of hypoth-
esis testing. The derivation of an empirical prediction usually involves a
set of assumptions, rather than a single hypothesis. This emerges clearly
even from the simplistic examples that we have used so far. From the
laws “The gene determining color in cats is associated with the Y chro-
mosome” and “The white color gene is dominant,” it is impossible to
deduce that my cat is white. You also have to add to the premises the
assertion “My cat has a white male parent.” Statements of this sort are
descriptions of empirical events or facts, and in technical jargon are called
initial conditions. Scientific theories, therefore, can be seen as “machines”
that generate empirical statements about singular events or phenomena
(predictions/explanations) out of previously known empirical statements
(initial conditions). Consider an astronomer trying to predict the position
of a planet at a certain time ¢ (say, tomorrow at 5 p.m.). To do that, she
will have to measure the position of the planet at time t-n (say, today at
5 P.M.), and then use a set of equations or laws about the orbit of planets
(Kepler’s laws, or some more precise and up-to-date theory) to calculate
its future position at ¢. The initial conditions to be measured will typi-
cally be numerous — they will include, for example, the position of other
planets in the solar system, the influence of some comet, and so on. The
HD model, then, should be more realistically characterized as follows:

Scheme A* Scheme B*

@D H&I)— e @)YH&D) — e
(5) ~e (5)e

(6) ~H (6') probably H

In schemes A* and B*, the symbol [ stands for a set of statements
about the initial conditions that together with H are jointly sufficient
for the derivation of e (a conjunction of the form I} & I, . .., & I,).
However, this is not the whole story yet. The application of a scientific
theory requires that further assumptions be made concerning the system
under study. Some theories, for instance, have “free parameters” that must
be specified before they are used for predictive purposes. Economics is
full of examples of this sort. Take a simple theoretical model that has been
frequently used to account for overcontribution in public goods games; as
in standard economic theory, agents are supposed to maximize the value
of the available options, but instead of assuming narrow, selfish behavior,
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the value of a strategy for agent i is defined as
Vi = f(m, 7).

Here, 7; is the monetary payoff of player i, and 7; is the payoff of some
other player (j #i). The equation in this general form just says that agents
care not only about their monetary payoffs, but also about what others
achieve. In order to put it to work, it is necessary first of all to specify
the form of the function relating the various factors — for example, in the
following way:

Vi=m +a Zﬂ/-
J#i

Of course, this equation is not specific enough yet to be empirically
useful, for we also have to specify the parameter a;, sometimes called the
“altruism’ factor.” The parameter intuitively determines how important
the payoffs of the other players are for us, by weighing their impact on V;
relative to 7t;. (The “altruism” label is a bit misleading, actually, because
assigning a negative value to a; would mean that the gains of other players
cause a loss of utility for i —a “spiteful” utility function, effectively.) Spec-
ifying the free parameters is a different task from measuring the initial
conditions (7; and 7). Yet, the prediction of i’s choice is dependent on
the correct specification of a;.

Another set of assumptions concerns the nonoccurrence of any phe-
nomenon that could “disturb” the system under study and cause the pre-
diction to fail. For instance, a macroeconomist might be able to measure
the value of a parameter correctly, but the economy might be affected by
some exogenous shock that causes the parameters to shift abruptly during
the lag between the measurement and the event she wants to predict. Or
she may neglect the influence of a factor that suddenly and unexpectedly
changes the outcome. Such a problem is particularly relevant in the social
sciences, in which the factors that can possibly influence a phenomenon or
event are very numerous and difficult to predict. Economists tend to use
simple models for reasons of tractability, and assume that no other factor
except those included in the model will enter the scene. (Some factors
may even be impossible to model because they fall outside the domain
of economic theory — think of strokes for individual decision making, or
political events like revolutions, wars, etc. in macroeconomics.)

It is customary to assume that the factors not modeled in the theory
will either not be at work, or their influence will be small and random. A
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stochastic variable is normally used to capture the impact of these erratic
factors; the equation above then becomes

Vi=m + o ZTCH-S,
J#i

where «; is the specified parameter and ¢ is the random (“error”) variable.
This procedure solves many problems but at the cost of adding more
assumptions about the structure of the error term. If these assumptions
are wrong, the prediction will fail.

Thereis yet another type of assumption that plays a crucial role in scien-
tific testing. Experiments in the natural sciences (especially in physics and
chemistry) involve the use of very complicated apparatus. Some instru-
ments are necessary to observe entities that are too small or too remote
to be detected by the naked eye. Other instruments are used to create
special conditions for the experiment (e.g., bubble chambers and parti-
cle accelerators), still others to intervene on the material at hand (lasers,
chemical reactors, etc.). Now, the apparatus adds complexity to the infer-
ence from the observed phenomenon to the theory. Are we sure that
what we are observing is not an “artifact” of the instrument? Are we sure
that the apparatus is working well? To infer that a specific hypothesis
has to be blamed (or praised) for the observation of ~e (e, respectively),
we need to assume that the instruments are reliable and that they have
been used correctly. This may seem a problem of minor importance in
economics, in which the apparatus that we use is minimal compared with,
say, that of small particle physics. However, as we shall see in experi-
mental economics, the role of the apparatus is nonnegligible, and many
controversies revolve around the correct use and interpretation of the
measurement instruments.

In order to simplify the discussion, let us call all these assumptions
(about the nonoccurrence of disturbing events, the correct specification of
free parameters, the structure of the error term, the correct functioning of
the instruments) auxiliary and background assumptions. The conjunction
of auxiliary assumptions (K; & K3 ... & K,,) required to derive a prediction
is represented by means of the letter K. The HD model then takes the
form:

Scheme A** Scheme B**
7N (H&I&K)—> e 7YH&I&K)—> ¢
(8) ~e (8)e

9 ~H (9') probably e
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The introduction of schemes A** and B** adds realisticness to the
HD model, but comes at a price. Consider A**: at a quick glance, it may
look very similar to scheme A, but in fact, it differs in a crucial respect.
The argument in A** is not deductive. Standard deductive logic does not
entitle one to conclude that H is false from assumptions (7) and (8). The
correct deductive conclusion must be

(9%) ~(H & I & K),
or, which is equivalent,
9y ~H v ~Iv ~K.

The symbol Vv stands for the logical operator or, and (9**) says that
at least one element from the set {H, I, K} must be false. This is as far
as we can go by means of deductive logic alone. We cannot say, as I
have done in A**, that the evidence ~e implies the rejection of H. The
“arrow of refutation” hits the whole set of premises and cannot identify
which one is responsible for the predictive failure. Was it just a mistake
in the measurement of the initial conditions? Did we specify the error
term correctly? Did some factor that was not included in the model mess
up our prediction? Or was the main hypothesis wrong after all? These
questions are important, and whatever decision we take, it had better be
supported by good reasons.

The crucial role played by auxiliary assumptions in theory testing was
first highlighted by the French physicist Pierre Duhem. In the fifties, the
philosopher Willard Orman Quine revived Duhem’s thesis in a slightly
different form, and the common core of their ideas has since been labeled
in the literature as the “Duhem-Quine problem.”?? The problem is not
alien to experimental economists, who are in contrast well aware of its
implications. Here’s Vernon Smith, for example:

All tests of a theory require various auxiliary hypotheses that are necessary in
order to interpret the observations as a test of the theory. These auxiliary hypothe-
ses go under various names: initial conditions, ceteris paribus clauses, background
information, and so on. Consequently, all tests of a theory are actually joint tests —
that is, a test of the theory conditional on the auxiliary hypotheses. (Smith 1994,
p. 127)

22 Cf. Duhem (1906, Ch. 6), Quine (1953), and, on the differences between Duhem’s and
Quine’s positions, Gillies (1993, Ch. 5). Harding (ed. 1976) includes some classical analy-
ses of the problem. On the Duhem-Quine problem in economics in particular, see Cross
(1982), Mongin (1988), and Sawyer, Beed, and Sankey (1997).
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Before we start to look for a solution, it is important to specify exactly
the scope of this problem, its relevance, and implications. Whose problem
is the Duhem-Quine problem to begin with? Who is affected by it? As
anticipated, there are two parties within the hypothetico-deductivist camp
who disagree on the role played by inductive logic in science. Popper,
as I said, is a supporter of the ultra-deductivist position, according to
which science can do without a logic of confirmation. The Duhem-Quine
problem is a problem especially for philosophers like Popper, because it
suggests that deductive logic alone is too weak a basis to accomplish one
of the principal tasks of science — theory testing.

Hypothetico-deductivists accepting both schemes A and B - those
belonging to the inductivist party, that is — are less embarrassed by the
Duhem-Quine problem. The presence of many assumptions regarding the
premises of the HD argument presents a challenge (rather than a problem)
for them. Such philosophers are already aware that deduction is insuffi-
cient for science, because positive inferences to a theoretical hypothesis
are always underdetermined by the evidence.” For this reason, they are
busy elaborating an inductive logic of testing, and it is natural for them to
suppose that induction will give us a hand in solving the Duhem-Quine
problem as well. We just need some rules to direct the arrow of refutation
toward the right target among the premises of the deductive argument.
Similarly, in scheme B**, we need to figure out whether e can be legiti-
mately taken to be a success for H, or is a mere coincidence caused by
the simultaneous failure of H and of other auxiliary assumptions — two
errors that compensate for each other.

The Duhem-Quine problem is often presented as “the killer of the
standard view,” as if it were an obstacle that cannot be overcome.?* In fact,
such a conclusion is highly exaggerated; it is an insurmountable problem
for a very specific version of the HD model, the ultra-deductivist one.
It is true that philosophers of science still argue about the validity of
specific solutions to the Duhem-Quine problem, because inductive logic
is a tricky subject. The discussion of various inductive methods, in fact,
occupies most of the first part of this book.

23 The so-called problem of underdetermination stems from the (logical) fact that universal
hypotheses have an infinite domain and therefore can never be deduced from the (always
necessarily finite) empirical evidence. Because underdetermination is the flip (inductivist)
side of the coin of the Duhem-Quine problem, I shall often implicitly subsume it under
the latter.

24 Cf. e.g., Hands (2001).
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The role of experiment

There is a general agreement among scientists that experimentation is
somehow superior to nonexperimental methods of inquiry. A crucial
task for the methodologist is to turn this intuition into a more precise
claim. According to the hypothetico-deductivist perspective, the differ-
ence between experimental and nonexperimental tests lies in the accuracy
and reliability with which we can specify the initial and auxiliary condi-
tions (the conjunction / & K). The laboratory allows the measurement
of the initial conditions in ideal circumstances, with accurately calibrated
instruments. The initial conditions, moreover, can to a large extent be set
at will: if you want to observe the behavior of a certain entity or system
in extreme conditions (say, in a very cold or hot environment), you can
create such an environment and make sure that it is preserved throughout
the experiment. You do not need to wait until nature creates these circum-
stances for you (which may take centuries or never happen). Similarly,
for the other auxiliary assumptions: in the lab it is possible to isolate the
experimental system so that no “disturbing” effects mess up your predic-
tion, and to monitor carefully the experiment so as to spot any undesired
interference. When our confidence in the initial conditions and the aux-
iliary assumptions is high, we say that we have achieved a high degree of
“experimental control.”

Such a tight inference from data can rarely be made in nonexperimen-
tal science. This problem is well known to macroeconomists and econo-
metricians, who must deal constantly with lack of control. The critics of
an econometric result often challenge the sampling procedures, blame
omitted factors and hidden variables, structural changes in the economy
or exogenous shocks, misspecified error terms, and so on. For this reason,
controversies tend to go on for decades in macroeconomics and often
fizzle out unresolved. John Hey, a prominent experimental economist,
clearly alludes to this fact while discussing the problem of drawing econo-
metric inferences from “field” data to theory:

if “the theory” survives the test, it could be because both the original economic
theory and the assumptions about the stochastic variables are correct, or because
both the original economic theory and the assumptions are incorrect. There is
no way of telling which. Similarly, if “the theory” does not survive the test, there
is no way of telling whether this is because the economic theory is correct and
the stochastic assumptions incorrect, or because the economic theory is incorrect
and the stochastic assumptions correct, or because both are incorrect. Hence, a
conventional econometric test of some economic theory is not really a test of that
theory at all. (Hey 1991, p. 8)
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Notice that from a strictly logical point of view, the same problem
affects experimental tests too. Auxiliary assumptions also must be used
in laboratory experimentation, which raises the issues highlighted by
Duhem and Quine. However, Hey is right in suggesting that in labo-
ratory contexts, the Duhem-Quine problem appears to be more manage-
able, because problems of control and theory choice can be tackled more
effectively.

In later chapters, I try to illustrate how such an intuition can be for-
mulated more precisely. For the time being, I would like to conclude this
chapter with two general considerations. First, notice that the difference
between experimental and nonexperimental science seems to be a matter
of degree. In some happy circumstances, field data may allow you to draw
tight conclusions, and in some cases, experimenters may face insurmount-
able problems of inference from data to theory. But overall, laboratory
experimentation is supposed to provide more efficacious tools to tackle
the Duhem-Quine problem. Secondly, one should not think that lack of
control is a problem of economics or the social sciences only. There are
branches of natural science in which the problem is equally daunting.
Think of meteorology, for instance, or astronomy. In general, the nonex-
perimental branches of all sciences seem to provide less reliable results
compared with the experimental ones. The problem with the social sci-
ences lies in the variety and sheer number of factors that are at work in
any single instance, and in the fact that bad theories are likely to have a
very big impact upon our lives. Very few people are directly and imme-
diately affected by a mistake in predicting the existence of a star in a
very distant galaxy, whereas millions of people may suffer from miscal-
culating the effect of a change in the interest rate or taxation. That’s why
the failures of economics often appear magnified, and why it is so impor-
tant to devise reliable methods for the discovery and testing of economic
hypotheses.
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Causation and Experimental Control

In this chapter, I introduce a second important model of scientific method:
the perfectly controlled experimental design. By doing so, I get at a deeper
level in the analysis of experimental methodology than that which is
allowed by the HD model of testing. The gain in detail will be paid
for by a loss in generality, however: not all experiments are based on
the perfectly controlled design. But the move is worth making for at
least two reasons. First, a great number of experiments (perhaps the
majority) are indirectly related to the perfectly controlled design. As we
shall see, this model identifies in an abstract fashion the best possible
conditions for the testing of causal hypotheses, and many experiments
are indeed devoted to investigating causal relations. Second, the perfectly
controlled design will turn out to be extremely useful later on (especially in
Chapters 5 and 6), when I tackle issues of inductive inference and return
to the Duhem-Quine problem. By looking at the sort of evidence that is
provided by the perfectly controlled design, it is fairly easy to articulate
more generally the requirements that a piece of evidence should satisfy
in order to count as truly confirmatory for a given hypothesis. On top
of that, the perfectly controlled experiment will help me introduce some
basic features of causal reasoning that will turn out to be useful later in
the book.

Basic principles of experimental design

Many ideas of experimental design that are routinely applied in the social
sciences, psychology, and medicine derive historically from the application
of statistics to agricultural trials. Following the tradition, I start with a

62
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simple agricultural example. Imagine you are a farmer and you want to
test the efficacy of a new fertilizer. You could proceed as follows: take
a large field and divide it into several small plots of land of equal size.
Then divide the plots randomly into two groups; the plots in the first
group are treated with the fertilizer, whereas the plots in the second group
are not. After a few months, check whether the plots that were treated
with the fertilizer are on average more productive than the plots that
weren’t treated. If they are, the fertilizer was efficacious; if in contrast,
approximately the same amount of crop was produced in both groups, the
fertilizer is probably not worth buying again.

This is a description of a simple randomized experiment. Despite its
apparent simplicity, the example is already quite complex. To begin, let us
isolate two important elements: (1) the idea that experimentation involves
the comparison of two situations that differ in one respect (the applica-
tion of the fertilizer), which we shall call the treatment; and (2) the use
of randomization as a means to achieve uniformity before the treatment
in the two situations that are to be compared. The concepts of treatment
and randomization are at the core of many important scientific tests, for
example, those that are routinely performed on new drugs. The method-
ological discussion in disciplines like medicine for various reasons tends
to focus primarily on randomization. Randomization, however, seems to
play a less prominent role in the methodological debates in experimental
economics (fortunately, in my view). For this reason, I start by discussing
point (1) and then move on to randomized trials toward the end of the
chapter.

The agricultural trial sketched above is an instance of posttest-only
control group design, a “model experimental design” represented on the
left-hand side of Table 4.1. Model experimental designs feature promi-
nently in research methods textbooks in psychology or in the social sci-
ences. I have reproduced only three of the most common ones for discus-
sion here, but the reader is welcome to refer to such textbooks for more
examples.!

Some terminology is required to interpret these models. A model
design consists of rows of Xs and Os. Each row represents an experi-
mental group, marked by a set of operations that are performed on it.
The Os stand for measurements or observations of some key property or
variable (say, the productivity of a crop, or the level of cooperation in a

I Cf. e.g., Dooley (2001), Christensen (2001), or Frankfort-Nachmias and Nachmias (1996).
The ancestor of most textbooks of this kind is Campbell and Stanley (1963).
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Table 4.1. Three Model Experimental Designs

Posttest-Only Control Pretest Posttest Control Solomon Four-Group

Group Design Group Design Design
0, X0,
X 01 01 X 02 03 04
R R R
02 03 04 X05

Os

public goods experiment), and the X marks the fact that a group (which is
called the “experimental group”) has been given a treatment. A treatment
is an intervention or artificial variation imposed by the experimenter, like
the fertilizer in the previous example. (In medicine, the intervention typ-
ically takes the form of a drug given to some patients; in experimental
economics, it may consist, for instance, in a higher level of incentives, or
in a different amount of information given to subjects.) Finally, the letter
R stands for “randomized” and describes the way in which subjects are
assigned either to the “experimental” or the “control” groups.

In the posttest-only control group design, the variable of interest is
measured in both the experimental and control groups, only after the
treatment. By comparing the two measurements of the variable of interest
(or by taking the difference, O; — O;), the experimenter can figure out
whether the treatment induced some change in the experimental group.
For example, if the variable of interest is the recovery rate from a disease
and the treatmentis a drug, by comparing recovery rates in the two groups,
one can check whether taking the drug made a difference (a positive
difference, one would hope) for the patients in the experimental group.

A crucial assumption behind this procedure, of course, is that the two
groups were identical or at least similar enough before the experiment
took place. If the control group includes patients who are more seriously
ill, for instance, a posttest difference in recovery rates could mislead-
ingly suggest that the treatment is responsible for an improvement in
health conditions that is in fact to the result of totally different causes.
The posttest-only model then works only under the assumptions that all
the other factors or conditions that may have an influence on the variable
of interest are kept “fixed” or at least are equally distributed across the
two groups at the beginning of the experiment.

When this assumption is questionable or plainly not satisfied, it will
be necessary to use a different design. The pretest posttest control group
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design corrects the posttest-only model by introducing a measurement
before the treatment is administered. This has the obvious advantage of
checking the level of the variable at stake. In case a difference between
the two groups is detected, it is still possible to test the efficacy of the treat-
ment by comparing the difference between the control and experimental
groups before the intervention, with the difference after the intervention:
(0O1—0;) — (O3—0y). Such a solution comes at a cost because a mea-
surement is itself an intervention, and may therefore affect the result of
the experiment. In order to check for the impact of pretest observations,
then, one can compare the result of the experiment in a pretest posttest
design with the result of a posttest-only design. The combination of these
two models is known as the Solomon four-group design.

It would be possible to go on illustrating other, more sophisticated
designs, but I prefer to stop here and reflect on the nature of these mod-
els. Each design presents in a schematic fashion a procedure aimed at
solving a fairly specific experimental problem in “ideal” circumstances.
Because the circumstances in which experimenters operate are seldom
ideal, however, each model can be modified in order to “fix” a problem
that the experimenter suspects might arise in a particular situation. A vari-
ation on the basic theme, however, often implies a trade-off in which one
problem is solved at the cost of opening some other potential problems.
Whether the new worry is worth taking seriously can usually be decided
only on the basis of context-specific information about the experiment
one is trying to make.

The perfectly controlled experiment

What is the general logic of these designs? To begin with, notice that all
the models introduced above share an important feature: they are based
on the logic of comparison and controlled variation. The evidence used
by experimenters is usually comparative — it is evidence that a group
of people (or crops, animals, entities in general) in certain experimental
conditions behave differently from (or identically to) a group of people
situated in other experimental circumstances. The variation in the cir-
cumstances must be carefully planned and controlled: the groups ideally
should be situated in conditions that vary with respect to just one parame-
ter (the treatment). This is highlighted in particular by the simplest model,
the posttest-only design. The other models are proposed as second-best
when the uniformity of initial conditions across the two groups is in doubt.
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Table 4.2. The Perfectly Controlled Experimental Design

Treatment
(Putative Cause)  Putative Effect Other Factors (K)

Experimental X Y, Constant
group
Control group - Y, Constant

How can this uniformity be achieved, then? The most obvious way
is by means of direct control or matching. Matching is the procedure of
assigning to each group subjects that are identical with respect to some
key characteristics, with the explicit aim of achieving groups that are as
similar as possible. There are various ways in which this can be done, and
again, I don’t want to get into the details of the specific procedures here.
As far as social science experiments are concerned, however, it is worth
noticing that matching should not only take place with respect to the char-
acteristics of the experimental subjects, but also to the conditions in which
they are placed. This point is often overshadowed in standard textbook
discussions because of the relative simplicity with which environmental
uniformity can be achieved (by using the same laboratory and apparatus,
for instance), as opposed to the difficulty of making sure that the subjects
are distributed appropriately.

Whenever matching is less than perfect (and in the real world, it is
always less than perfect), the differences between groups are neutralized
by means of randomization. By assigning the subjects randomly to either
the control or the experimental group, it is highly likely that matching
mistakes or variations with respect to some unidentified factor will be
distributed uniformly across the two groups (provided the sample is large
enough). By using the appropriate statistical techniques, then, it is pos-
sible to check whether the differences observed post test are compatible
with a pure chance effect or should be considered systematic. Randomiza-
tion, in other words, belongs to the category of the “fixers,” the aspects of
a design that are introduced to correct for lack of direct control. Ideally, if
one were able to implement the matching procedure perfectly, random-
ization would not be required. It is worth then specifying the ideal of
the controlled experimental design in its “purest” form by amending the
posttest-only design, as in Table 4.2.

Table 4.2 reproduces the essential characteristics of the posttest control
group design, with some important differences: first of all, the letter R
(for randomization) has disappeared. Secondly, a new column for the
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background factors (K;) to be kept uniform has appeared on the right-
hand side of the table. I have also slightly changed the notation and used
Ys instead of Os to represent measurements. This has the advantage of
bringing the notation in line with the one that is commonly used to denote
independent (X') and dependent (Y') variables in mathematical and causal
modeling. Table 4.2 assumes that X and Y are either present or absent,
that is, that they are variables with just two possible values. But of course,
it is possible to generalize and consider many-valued (even continuous)
variables. The key is that we should be able to observe the difference that
variations in X make with respect to Y.

Notice incidentally that the model of the perfectly controlled design
does not refer to theories at all. The hypothesis “X causes Y ” may well be
derived from a formal theory or model, but not necessarily so. Sometimes
it will be an extratheoretical or informal hypothesis about the influence of
an experimental factor that is not explicitly modeled in economic theory.
From this respect, the perfectly controlled experiment is totally compat-
ible with the HD model. It simply captures the essential features of an
important class of experiments, at a slightly more detailed level of descrip-
tion than that which can be provided by the HD framework. And it helps
“unpacking” some concepts (like those of “evidence” and “hypothesis™)
that are left vague or generic in the HD account.

The reasoning behind the perfectly controlled design should be quite
familiar: intuitively, you don’t learn much by observing a static system.
Imagine the electricity at home suddenly breaks down. You fear that a
short circuit may be responsible for this, but where is it located? If you
leave things as they are, you will not learn much. You may be lucky and
spot a burnt wire, but that rarely happens. Passive observation is generally
not very informative. In fact, you had better take a more active approach:
switching all kitchen appliances off, for example. Now you flip the circuit
breaker on, and the lights go on again; finally you turn the appliances
on, one at a time. If the circuit breaker goes off when you turn, say, the
toaster on, you have probably discovered the cause of the short circuit.
These are homely procedures, but they form the core of experimental
reasoning too.

Controlled variation is aimed at the discovery of the factors that mat-
ter for a certain experimental result or phenomenon: the factors that
contribute to its instantiation, those that disrupt or break down a certain
law of association, or those that make it deviate from known patterns.
In order to discover or test the influence of such factors, it is neces-
sary to compare a situation in which they are present and active with a
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situation in which they are not. Most often, the comparison involves a
small departure from the design of a previous experiment. For example:
social dilemma games are usually played under conditions of anonymity
and no communication between players. If one wants to test the effect of
knowing the identity of one’s opponent, it will be necessary to compare the
results of the game under the new circumstances, with the results obtained
in the standard setting. In order to do so, one has to replicate the patterns
of behavior that have already been established in the literature (with
anonymity). Replications — already discussed in Chapter 2 — are impor-
tant precisely because the method of controlled variation and the perfectly
controlled experimental design require the extensive replication of known
results.

These considerations highlight a very important aspect of the perfectly
controlled experimental design. The last column on the right-hand side
reminds us that the other causal factors should be taken care of by keeping
them constant across the two groups. We want to attribute the differences
in Y to variations in X only. Of course this uniformity of circumstances
may be difficult to achieve in practice. It is important to stress that the
perfectly controlled experiment is an ideal setting. Ideal means that it is
the best we can attain, not that it exists only in a platonic realm of ideas. In
many cases, we shall be unable to realize the ideal exactly, and we shall be
content with something less than perfect. When this is the case, of course,
we must be aware that the inferences drawn from the experiment may be
weaker than those elicited by means of the perfectly controlled design, and
further checks will have to be made before reaching a definite conclusion.
However, we have to live with our limitations and imperfections, in science
as much as in life in general (the important thing is that we are aware and
honest about them). Other books systematically examine several possible

2 One may ask why it is necessary to replicate a phenomenon that is already well known.
Can we not simply compare the result in the new setting with the results reported in the
experimental literature? This latter procedure has the advantage of reducing the number
of experimental trials and is in fact followed some of the time. But the replication of known
results has an important rationale. As noticed in Chapter 2, experimental phenomena are
often defined only qualitatively. Because the level of, say, cooperation in social dilemma
games may vary depending on the subject population and other details of the experiment,
it is important to make sure that we are comparing like with like, and this can be done
only by replicating the known result. Secondly, if we discover that the new design (with
the treatment) gives rise to significantly different patterns than those reported by other
experimenters, we must be sure that the difference is due to the treatment only and not
to some unintended difference that we have unwittingly introduced in the new design. By
replicating the old result, we can check that we have not unintentionally introduced other
changes in the experimental design.



Causation and Experimental Control 69

less-than-ideal designs that can be used in science.> Here I shall limit my
discussion to some of the most significant ones, like the aforementioned
randomized experiment. Before I come to that, however, it is necessary
to draw a link between the model of the perfectly controlled experiment
and the notion of causation.

Explanation and causation

In experimental science you need variation, but not too much variation.
You need variation of a special kind: factors or conditions must vary one
at a time. The reason is simple: this special kind of variation is required
in order to make sure that any correlation between dependent and inde-
pendent variables (or treatments) reflects a causal relation between them.
The perfectly controlled experiment is the ideal design to find out about the
causes of phenomena.

This claim requires some clarification, for causation is a notion with
a controversial reputation. Nevertheless, it is a concept that we use all
the time, in everyday life as well as in scientific reasoning. We constantly
say things like “kicking the ball caused the window panel to break,” or
“a rise in the interest rate caused a reduction in investments.” These are
instances of what philosophers call token causation: a particular event or
set of events is identified as the cause of another event or set of events.
Explanations of this kind seem to assume implicitly the existence of causal
relations connecting types of circumstances (say, levels of the interest rate)
to types of other circumstances (levels of investment). These relations
are often described by means of generalizations, like “high interest rates
discourage investments.”

Notice that a typical characteristic of token-causal explanations is that
they are usually satisfactory even though they don’t provide a full account
of the conditions that led to the effect. For this reason, we must be careful
when we turn token-causal explanations into causal generalizations. It is
not true that “kicking the ball (in such and such a way) causes the window
panel to break” in general, or that raising the interest rate is always an
effective way of discouraging investments.

3 Campbell and Stanley (1966) and Cook and Campbell (1979) are two classic sources
on less-than-ideal experimental designs in social science. For experimental economics in
particular, see Friedman and Sunder (1994, Ch. 3); there is a continuum between less-than-
ideal designs in the laboratory and so-called field experiments (or “natural” experiments,
“social” experiments, etc. — see Harrison and List, in press).
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The reason, of course, is that kicking the ball in such and such a way
caused the window panel to break only because the conditions were favor-
able for that event to “trigger” the effect. We tend to think that a full
explanation of the window breaking could in principle be constructed,
provided enough information about the background conditions and the
relevant laws of nature were available. The information required for a full
explanation of the window breaking, for example, would include physi-
cal laws relating to the thickness of the glass, the mass of the ball, the
position and trajectory of the ball, the velocity at the moment it impacts
the glass, etc. From a statement of the relevant laws and the initial and
background conditions, we should in principle be able to deduce exactly
the explanandum (the event or events to be explained) as in the deductive
nomological (DN) model introduced in Chapter 3. In practice, however,
even using the most advanced scientific knowledge, we are rarely able to
reach such a level of explanatory detail. Most scientific explanations are
“sketchy” from some respects, and therefore look like the “kicking-the-
ball” explanation above.

To illustrate, consider supply and demand models. The generaliza-
tion “if prices increase, then demand diminishes” is either false or highly
incomplete from a strict DN viewpoint. The truth of the generalization
depends on the presence and stability of some other conditions included
in standard supply and demand models, like the level of supply. But it
also depends on a number of factors that are “in the background” of the
model, such as tastes, technology, and endowments; the institutions that
regulate the market; and social norms in general. The most plausible inter-
pretation of the “law” of demand is, in other words, as a ceteris paribus
law that holds only in the appropriate circumstances (other things being
equal).*

But which conditions should count as “appropriate”? Intuitively,
ceteris paribus clauses should include background causal conditions or
factors that, together with the main cause, can contribute to bring the
effect about or to prevent it from happening. Both scientific models and
everyday explanations tend to select among the many relevant factors
those that are somehow pragmatically more relevant for the case at hand.
Thus, for instance, the causal relations studied by social scientists hold on a
“background” of more fundamental physical and biological principles. If
the biochemistry of the human brain were to change radically tomorrow,

4 For amore detailed discussion of the supply and demand model from a causal perspective,
see Hausman (1990).
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the principles of supply and demand would probably cease to be valid.
Yet, we do not cite biochemical conditions in economic models or expla-
nations because we simply take for granted that they will continue to hold
in the foreseeable future. Following J. L. Mackie (1974), it has become
customary to call this set of “taken-for-granted” or “background” factors
that make the relation between two factors (X and Y) possible the causal
field?

To sum up: ceteris paribus generalizations (e.g., that under the “right”
conditions, an increase in demand will cause prices to go up) usually
aim at capturing causal relations; the ceteris are other causal factors and
preventatives of the effect, because causal generalizations hold relative
to a certain set of background conditions.® The experimental method is
the best tool we have to test causal generalizations, by making sure that
the background conditions are appropriate for the causal relation to be
reflected in the association between putative cause and effect.

Deterministic causation, screening conditions, and intervention

Causal reasoning is natural and ubiquitous. Some psychologists have even
argued that humans and some other animals have strong causal intuitions
built into their perceptions.” However, for a long time, causal notions have
been treated with suspicion by philosophers and scientists alike. Causal
deniers usually argue that every causal claim can in principle be replaced
without loss by some other claim that makes use of less controversial
notions, like functional dependence or statistical correlation.® After many
years of philosophical discussion, there are good reasons to doubt that
such “eliminativist” program can be successful. The main obstacles to
a reduction of causation to functional or statistical dependence are that
(a) functional and statistical dependence are symmetric relations, whereas

5> Sometimes we interpret claims like “kicking the ball against the window causes the panel
to break” as true generalizations because we believe (correctly or not) that the “right”
conditions are probably instantiated. The message in such cases is that we had better not
kick the ball against the window, because it is very likely to break it. However, in general,
a cause brings its effect about only when the background conditions are “right.” Hausman
(unpublished) puts forward a plea to keep metaphysical issues of causation and pragmatic
issues of causal generalizations distinct.

6 See Hausman (1989, 1990).

7 Michotte (1946) and Minguzzi (1961) are two “classics.”

Economists are probably familiar with the notion of “Granger causation,” which is exactly

the attempt to replace (or redefine) the commonsense notion of causation with a concept

of statistical dependence or predictability. See Granger (1980), as well as Cartwright (1989,

Ch. 2), and Hoover (2001, Ch. 7) for some philosophical discussion.

%
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causation is typically asymmetric (if X causes Y, Y usually does not
cause X); and (b) many variables that are statistically associated or func-
tionally dependent are not causally related (problem of “spurious” cor-
relations).” Although the consensus today is that cause and effect do not
seem to be entirely reducible to other notions (like, say, the idea of cor-
related variables), it should be possible to articulate them (to show their
relation to other, similar notions) so as to provide a more informative
account of what it means for X to cause Y. This is what I try to do briefly
in the rest of this chapter.

The model of the perfectly controlled experiment has a prestigious
philosophical pedigree: it is an instantiation of the so-called method of
difference, one of the four “canons of induction” proposed by John Stuart
Millin his System of Logic (1843). According to the method of difference,

Whatever antecedent cannot be excluded without preventing the phenomenon,
is the cause, or a condition, of that phenomenon: Whatever consequent can be
excluded, with no other difference in the antecedents than the absence of a
particular one, is the effect of that one. (1843, Chapter VIII, section 2)

Once again, we find in this formulation the idea that we can discover the
causes of a certain event or phenomenon by comparing two situations that
are identical except in one particular respect. If such a difference in the
initial conditions is not reflected in a difference at the level of the effect,
then that factor or condition is not a relevant cause of the phenomenon
at stake.

Mill says clearly that the method of difference “is more particularly a
method of artificial experiment,” and that it is “by the Method of Differ-
ence alone that we can ever, in the way of direct experience, arrive with
certainty at causes” (1843, Ch. VII, section 3). The other three canons
of induction (“by agreement,” “by residues,” and “by concomitant varia-
tions™) are imperfect methods to be used when controlled experimenta-
tion is, for some reason, impossible or impractical. Nowadays, the proce-
dure described by Mill is still used for causal discovery, and I use it as a
starting point to reach a more precise characterization of causation. What
notion of cause is presupposed by the method of difference or the model
of the perfectly controlled experiment?

Let us go back to the kitchen example that I introduced earlier in the
chapter, and suppose that the circuit breaker went off simply because
of overcharging — the system could not supply enough current for three

9 Tshall not get into this debate here, but the interested reader can find excellent overviews
in Hausman (1998a) and Hoover (2001).
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Table 4.3. Controlled Experiment: Deterministic Example

[Ki]
Y X
Short circuit Oven Washing machine Dishwasher
(a) + + + +
(b) - - + +
© - - E -
@ - - - -

appliances to work at the same time (say, the washing machine, the dish-
washer, and the oven). If I claim that the oven caused the circuit breaker
to go off, I certainly do not mean to say that it can do it alone. Rather,
I intend to say that given the circumstances (the fact that the washing
machine and the dishwasher are already on), turning the oven on over-
charges the circuit. Now the link with the perfectly controlled experiment
should be obvious: if we compare the situations (a) and (b) depicted in
Table 4.3, we can see that the factor “oven” constitutes the only differ-
ence between them, and hence is identified (correctly) as a cause of the
phenomenon to be explained (the circuit breaker going off).

But is the oven a cause of the circuit breaker going off in general?
No, not, for example, if all the other appliances are inactive (cases (c)
and (d)). And conversely, we cannot in general work backwards from the
circuit breaker going off (the effect) to the oven (the cause), because the
same effect can easily be brought about by other means (e.g., by turning
on simultaneously a hair dryer, a freezer, and a toaster). J. L. Mackie
(1974) has summarized these features of causation nicely by means of his
famous INUS account: a cause is an Insufficient, Nonredundant element
in one or more sets of Unnecessary but jointly Sufficient conditions for a
given effect to take place. An important virtue of this account is that it
highlights the context dependency of causal relations (or the importance
of the causal field).

The INUS framework, however, falls short of a satisfactory account
of causation in one important respect: it fails to distinguish genuine from
“spurious” causal associations. Consider the “Manchester hooters” coun-
terexample originally due to Mackie himself (1974, p. 84), and represented
schematically in Figure 4.1. Each day, the hooters of Manchester’s facto-
ries sound (A) and roughly at the same time, many miles away, Londoners
stop working (B). Nobody would say that A causes B, for the two events
seem to be separate effects of a common cause (e.g., it being 5 p.m.); yet,
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VAVAN

Figure 4.1. The Manchester hooters.

it can be easily demonstrated that A is an INUS condition for B.!° This
problem is typical of theories that try to reduce causation to associations
between events, of which the INUS account is a sophisticated instance. A
statistical analogue is the well-known paradox once proposed by David
Hendry (1980): if we identify causation with statistical correlation, we
end up saying absurd things like “the cumulative amount of rainfall in
Scotland causes the level of prices in the UK.” The mere fact that two
variables happen to be highly correlated (or even deterministically asso-
ciated) shouldn’t induce us to claim that they are causally related.

A popular solution to such problems is to introduce a “screening-oft”
condition: X is a cause of Y'if and only if the constant association between
X and Y holds whenever the other causal factors in the background of Y
are kept fixed. The best way to appreciate the importance of the screening-
off condition is by means of a thought experiment. In the Manchester
hooters example, a background factor (C = it being five o’clock) covaries
with the sounding of the hooters: whenever it’s not five o’clock, the hoot-
ers do not sound; whenever it’s five o’clock, they do. So imagine we could
achieve control of the Manchester hooters and keep them silent at five
o’clock. Would the Londoners continue to work if this were the only change
introduced in the system? Intuitively, the answer is no. C “screens off” the
correlation between A and B: if we keep C “fixed” (at five o’clock) and
then compare situations in which A is present with those in which A is
not present (by artificially varying A), we realize that the tight association
between A and B breaks down.

Notice that the screening-off condition presupposes a primitive under-
standing of causation, because the factors to be kept fixed in the back-
ground are defined as putative causes of Y. Yet, it is an informative con-
dition, because it illustrates what sort of situations must occur in order to

10 To see why, consider the set of all the conditions (D) other than it being five o’clock (C)
that can make the Manchester hooters (A) sound; and the set of all the conditions (E)
other than C that can make Londoners go home (B). Because A<>Cv D, then C<>A&~D:
A is, in other words, an INUS condition for C. This together with B<>CVE leads to
B<~D&AVE: A is an INUS condition for B, QED, contrary to our intuition.



Causation and Experimental Control 75
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Figure 4.2. Causation and intervention.
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derive reliable causal inferences from deterministic or statistical associa-
tions. Or, to put it slightly differently, it shows what we should be looking
forin order to prove (or disprove) that two factors are causally connected.
If we do not believe that, for example, smoking causes cancer, we should
be looking for some factor in the background that explains the associa-
tion between these two types of events. And once we have found such
possible common cause, we should check whether keeping it fixed “in the
background” is sufficient to disrupt the association between smoking and
lung cancer.

Simple examples like these illustrate another important point: it is
extremely difficult to disentangle our intuitions about causation and
experimentation. I have already highlighted the intuitive link between
causation and policy making, but clearly experimentation also has an
active element in it, for the experimenter interferes with the “natural”
course of events by creating the right conditions for the relation between
cause and effect to become manifest in the empirical evidence. Some
philosophers and statisticians have recently proposed to use a formally
defined notion of intervention to draw the link between causation and
experiments. An intervention in this technical sense is a “surgical” manip-
ulation of a variable within a system, which leaves the rest of the system
unaffected. It is possible then to define a causal relation between two
factors or variables X and Y in terms of an intervention in X: X is a cause
of Yif and only if it is possible to change Y by intervening in X (cf. Pearl
2000; Woodward 2002, 2003). Figure 4.2 illustrates the effect of a surgical
intervention: if X is a cause of Y, the intervention (or treatment) will be
reflected in variations in Y (case on the left-hand side). If, in contrast,
(case on the right) two variables W and Y are spuriously correlated (e.g.,
because they are common effects of the same cause X'), the intervention
in W will not be reflected in Y, which will continue to vary depending
on X. The intervention, if appropriately performed, should break the
association between W and Y by interrupting the causal link between
X and W.



76 The Methodology of Experimental Economics

The difference between proper experiments and other techniques of
causal inference lies in the “surgical” character of the intervention. It’s
important to stress that the difference between “pure” experiments and
other forms of scientific investigation is usually a matter of degree. There
are several nonlaboratory circumstances in which we lack the capacity
to control the relevant variables directly, and yet feel confident that a
causal inference can be reliably drawn, by virtue of our “background”
knowledge of the system we are studying. Consider, for example, the
“natural experiment” described by Meyer, Viscusi, and Durbin (1985). In
1980 and 1982, Kentucky and Michigan, respectively, substantially raised
the level of compensation for some categories of injured workers (high-
earning workers). The introduction of this policy allowed a comparison
not only between the recovery rates of groups of injured workers before
and after the raise in benefits, but also a postintervention comparison
between high-earning workers (who enjoyed the raise) and low-earning
workers (who did not). Inferences from this natural experiment — time out
of work increased for the workers who enjoyed higher benefits —is justified
under the assumption that the policy really had a surgical effect (it didn’t
introduce other changes into the system), and that other independent
variations in the workers’ conditions (before and after the policy, say) did
not occur for independent reasons.

In a “surrogate” or quasi-experimental inference, in contrast, we can-
not rely even on a natural intervention such as the Michigan—Kentucky
policy. As a substitute, we select the treatment and the control group
instead of administering the treatment. Suppose you want to test the effect
of studying economics on, say, cooperation in social dilemma games. Ide-
ally, you should take a sample of people, allocate them randomly to two
separate groups, and force one of the groups to study economics. How-
ever, in practice you can’t do that for obvious ethical reasons. What you
can do is separate economics students from the others and check (pas-
sively) whether they display significantly different levels of cooperation.
If you observe an association between their education and level of cooper-
ation, however, you cannot rule out that both (non)cooperative behavior
and education are joint effects of a common cause (upbringing, individual
attitude, genetic factors), because you have not broken the link between
such factors by means of an appropriate intervention.!!

' The example is not entirely fictional: see Marwell and Ames (1981) for the seminal
observation that economics students free ride more, and Frey and Meier (2003) for an
ingenious quasi-experimental attempt to identify the true causal structure behind this
phenomenon.
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We are now in a position to combine the ideas presented so far and
propose a comprehensive articulation of the notion of causation. The key
elementin the “manipulationist” approach is clearly the surgical character
of the intervention. An intervention in the technical sense makes the
putative cause vary without changing any other relevant element in the
system. But what does “relevant” mean, more precisely? It means “that
it can influence the putative effect.” Another way to put it is that two
factors or conditions are causally related whenever they covary on a stable
background of other causal factors:

Causation (deterministic case): X causes Y if and only if they are constantly asso-
ciated in causally homogeneous background conditions.

Consistently with the model of the perfectly controlled experiment,
this principle states that the association between a putative cause and its
effect is a symptom of a genuinely causal relation only in some special
circumstances, in which the other causal and preventative factors are not
changed. According to many philosophers, this is as close as we can get to
a definition of the concept of causation. To repeat: “articulations” of this
sort are, of course, partly circular in character, because the notion of cause
appears both on the left-hand side (“.X causes Y ”) and on the right-hand
side of the statement (the homogeneous background is defined in terms
of the causes and preventatives of Y; similarly, the notion of intervention
is itself clearly causal in character). However, this is to be expected: the
concept of causation is primitive, and cannot be reduced to some more
fundamental notion like constant association.

At any rate, I am not concerned with conceptual or ontological issues
here (“what is the nature of causation?”), but with epistemic ones (“how
do we know about causal relations?,” “how do we infer from observable
data to underlying causal relations?”). Thus, I have formulated the prin-
ciple so that it can work as an inferential procedure from associations
to causal relations (“if we observe such and such associations, then they
reflect such and such causal relations”). Inferences of this sort require
some previous knowledge about the potential factors that may distort the
association between X and Y. As Nancy Cartwright (1989, Ch. 2) puts
it, “no causes in, no causes out.” Because our knowledge of the back-
ground factors may be incomplete and our methods of control imperfect,
causal inferences from experimental data will be fallible. That’s why sev-
eral experiments are often required in order to reach a reliable conclusion
—new experiments to improve the design of previous ones, to control for
new factors, to answer new questions about some detail that had been
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overlooked in the past. However, epistemically there is no vicious
circularity: what you need to know to find out that X causes Y does not
have to do with the Xs and Ys, but with the background conditions K;.
Causal discovery is cumulative: we find out about new causal relations by
relying on the ones we already know. And most importantly, the evidence
collected in the laboratory supports more reliable inferences than the evi-
dence collected in the field, because our capacity to control background
factors is greater therein.

Randomization

As we have seen, experimental methodology is crucially dependent on
the possibility of keeping background factors under control. When this
is not possible and the “other factors” are free to vary, as in nonlabora-
tory circumstances, we may end up with misleading associations between
putative causes and effects, that is, the evidence may not reveal the under-
lying causal mechanisms. But the problem is: who is going to tell us which
factors we must control for and which not? How can we be sure that
everything relevant has been kept constant during the experiment?

One answer immediately comes to mind: theory is an invaluable source
of information about the factors that may be relevant in a given situation.
If, for example, economic theory suggests that the quality of information
and the preferences of individuals are both causally effective for a cer-
tain result — say, an exchange at equilibrium price — then we should try
to control both information and preferences in the experiment. But the-
ory, as we have already noticed, may be (and generally is) incomplete:
it might omit some conditions that actually matter. As a consequence,
theoretical knowledge must be supplemented by other sources. One is
the informal knowledge that is part of the toolbox of every good social
scientist. Even though it is not explicitly mentioned in standard economic
theory, for example, experimental economists know that rational choice
models may fail to predict the choices of subjects facing complicated gam-
bles, although they accurately predict their behavior when itis regimented
by an appropriate market institution. Although we do not have a precise
theoretical explanation of why this is so (or what exactly distinguishes an
“appropriate” economic institution), there are several informal stories
that are used routinely to inform the design of experiments.

Common sense is another important source of insight about possible
causal factors, and past experience in running laboratory experiments is
also extremely valuable; it alerts one, for example, to those situations in
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which raising the level of incentives will matter or in which male subjects
are likely to behave differently from female ones, and so on. Finally, care-
ful observation helps in finding out what cannot be expected on a purely
a priori basis. As we have seen in Chapter 2, pilot experiments are run
precisely to correct the minor imperfections of design that might mess
up the experiment. Such errors often will take the form of small details
and factors that we had not anticipated, but which in fact turn out to
matter with regard to the experimental effect. Sometimes the checking
procedure goes on up until the stage of data analysis, when unexpected
features of the data suggest that some factors might actually have influ-
enced the result, contrary to what we had previously assumed. (Normally,
another experiment with a different design has to be planned to test this
hypothesis.)

I have assumed so far that tight control on each background factor
is practically feasible. This assumption, however, is unrealistic. In many
cases, one does not have the resources to control for all background vari-
ations, because the required design would be too complicated, too costly,
incompatible with the other controls, or perhaps ethically unacceptable,
or simply because one does not know the full list of the relevant back-
ground factors. In such cases (i.e., in most cases), experimenters rely on
randomization. To recap, randomization works as follows. Suppose that
an unknown gene influences the level of cooperation in public goods
experiments. Not only we do not know of such gene, but we don’t have
the means to detect it by, say, mapping the genome of our subjects. We
can, however, try to control for the influence of the gene by randomly
assigning subjects to either the experimental or the control groups. If
the sample is large enough, each group is very likely to include approxi-
mately an equal number of subjects with the gene and an equal number
of subjects without the gene. Hence, the difference in the average level
of cooperation between the two groups can be imputed to the treatment
(the main putative cause) and not to this particular background factor.
The nice thing is that we shall randomize not only with respect to the gene,
but also with respect to other unknown factors. This is a great advantage,
because as the father of randomization, R. A. Fisher, pointed out, each
experimental trial differs from the others in ways that cannot even be
conceived of:

it would be impossible to present an exhaustive list of such possible differences
appropriate to any one kind of experiment, because the uncontrolled causes which
may influence the result are always strictly innumerable. (Fisher 1956, p. 55)
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Asweshall see in Chapter 6, the method of randomization is not exactly
equivalent to the method of matching or direct control. It is weaker, and
fails in some instances where direct control succeeds. For the time being,
however, let us appreciate the effects of randomization in a simple case, by
looking at Table 4.3 again. Imagine that we cannot control for K directly,
that is, by keeping all the background factors constant. Randomizing will
have the effect of spreading cases of + and —K equally across the exper-
imental group (+X) and the control group (-X). The randomized design
will have the effect of making X (or —X) only statistically (instead of
deterministically) relevant for the occurrence of Y (=Y, respectively). The
occurrence of Y will be twice as likely if X occurs than if it does not.

Most real cases of experimentation are characterized by a mixture
of direct control over background factors and randomization. The latter
is used to control for all the “other causes” that could not be directly
controlled for. For this reason, the observed regularities between the main
putative cause and the effect will be almost invariably probabilistic in
character.

Probabilistic causation

So far, I have considered only cases in which the cause—effect relationship
is extremely tight, that is, where the (non)occurrence of the cause deter-
mines the (non)occurrence of the effect, given the right circumstances. No
exceptions are allowed. Under this assumption, observed exceptions or
irregularities may be a symptom of two possible cases: (1) the relationship
between the two factors is not causal in character; or (2) it is causal and
deterministic, but the background circumstances are not the same. How-
ever, if we relax that assumption, of course, there is another possibility,
namely that (3) the background conditions are the same, but the causal
relation is indeterministic. Indeterminism is usually interpreted in terms
of X causing not the value of Y, but a probabilistic distribution over a
range of values of Y. In other words, it is as if the cause triggered a lottery,
which can give different values of Y as outcomes.

Probabilistic causation has become central in the contemporary debate
on causation. The reason is twofold: first, deterministic relations can be
treated as a degenerate case of indeterministic relations, the special case
in which the probability of Y given X is equal to one. Second, determinism
doesnotseem to be very common in the real world. Surely the associations
between events we observe in everyday life are mostly irregular: given that
the bus leaves every day from the station at eight o’clock, it is impossible
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to predict exactly when it will stop in front of the university building. One
can only indicate a probable time of arrival, obtained by calculating an
average and the spread of observations around the mean. Of course, we
can speculate that if we knew each and every factor affecting the journey
of the bus (the driver’s style of driving, his being tired today, the fact
that Mr. Jones is driving to the superstore and will slow down the traffic
on Church Street, etc.) we would be able to determine exactly the time
of arrival at the campus. Such knowledge would be available only to a
godlike creature, of course, but this is not the point. The point is: how do
we know that a set of deterministic causal relations relating to each one
of these factors and the time it takes for the bus to travel from station to
campus really exists?

According to some philosophers, to assume the existence of underly-
ing deterministic relations below the surface of probabilistic phenomena
is just a metaphysical prejudice.!? Such metaphysics has been supported
for centuries by the repeated successes of classical physics, which assumes
deterministic relations between its variables. However, since at least the
Quantum revolution, determinism does not even fit the most successful
microphysics. Neoclassical economic theory, having borrowed most of
its mathematical formalism from classical (prequantum) mechanics and
thermodynamics, is mostly deterministic in character.'® The stochastic
variables of econometric models are therefore officially aimed at captur-
ing the cumulative effect of unknown factors not modeled in the theory,
and of errors in the measurement of the variables. But in principle, we
could take the stochastic terms to model an essentially indeterministic
component of economic relationships. And in fact, there have been sev-
eral attempts recently to introduce probabilistic elements in economic
models, for example, by representing individual preferences as intrinsi-
cally stochastic.'

At any rate, I am not interested in the metaphysics of causation, but
in the relation between statistical evidence and causal mechanisms —
an epistemological rather than an ontological issue. The deterministic

12 Cf. e.g., Anscombe (1971) and Suppes (1984). Albert Einstein famously endorsed the
deterministic prejudice when he claimed that “God does not play dice.”

13 See Ingrao and Israel (1987) and Mirowski (1989) for a historical discussion of the rela-
tionship between mathematical physics and contemporary economic theory.

14 See e.g., Becker, DeGroot, and Marschak (1963) and Loomes and Sugden (1995). To
be precise, there are technical differences between the “error” interpretation and the
intrinsically indeterministic interpretation of stochastic terms, but I shall ignore them
here. See Cartwright (1989, pp. 104-15) and Hoover (2001, Ch. 2).
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analysis of the previous sections can be generalized quite naturally by
means of the following principle:

Causation (probabilistic case): X causes Y if and only if P(Y |X) > P(Y | — X)in
some causally homogeneous background situations.

Roughly, a causally homogeneous situation is one in which all the
causes or preventatives of Y, other than X itself, stay fixed. Consider
the stock example of the correlation between lung cancer, coffee drink-
ing, and smoking: in the (nonhomogeneous) population of adult Britons,
the correlation is there; but in a homogeneous population of smokers
(or nonsmokers), it disappears. Smoking screens off the correlation
between coffee drinking and cancer, but the same does not happen with
the correlation between smoking and cancer, which is still there once
we consider a homogeneous population of coffee drinkers (or noncoffee
drinkers). The reason, intuitively, is that smoking causes cancer, whereas
coffee drinking is correlated with smoking and hence is (spuriously) cor-
related with cancer in the nonhomogeneous population. The relevance
of the distinction is obvious if we consider that in order to decrease our
chance of getting cancer, we should give up smoking rather than coffee
drinking.

The precise definition of the factors to be kept fixed in the background
is far from trivial, but I shall ignore such problems here. The general idea
is that the influence of a causal factor is reflected in the probability of
its effect only in some special conditions or populations, that is, when
the other background factors that may influence Y are kept constant.
An important issue is whether we should impose the requirement that
causes raise the probability of their effects in al/l causally homogeneous
backgrounds,'® or only in some of them (as in the formulation above). In
order to preserve continuity with the INUS analysis and with common
sense, the latter solution is preferable (striking a match does not always
cause it to light —e.g., if it is damp). So, under the “right” causally homoge-
nous background conditions, a cause raises the probability that its effect
will occur and conversely, a “preventative” lowers such a probability. The
link between this principle, the perfectly controlled experiment, and the
method of randomization should now be obvious.

15 This principle originates in Nancy Cartwright’s (1983) work. See also Cartwright (1989)
for some amendments, and Hausman (1998a, Ch. 9) for a general discussion.

16° Asin Cartwright’s (1983) original formulation; see also Humphreys (1989). This stronger
requirement is known as “contextual unanimity” and has been forcefully criticized by
Dupré (1993) and others.
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Conclusion

The model of the perfectly controlled design is less general than the HD
model, because not all experiments are aimed at testing causal claims.
Some theories are best interpreted noncausally, as providing a description
of regularities or associations (standard preference theory is an example).
But the diversion into causal reasoning is worth taking for a number
of reasons: (1) many economic theories are to be interpreted causally;
(2) several experiments are aimed at discovering the causes of as yet
unexplained phenomena, or at testing their robustness to changes in the
experimental conditions; (3) even the testing of noncausal theories like
the standard theory of choice may involve causal reasoning, for instance,
when the experiment is aimed at testing the working of instruments of
observation. Finally, as we shall see, (4) the perfectly controlled design
provides a paradigmatic model of inductive inference — an example of
maximally confirmatory evidence that can be generalized to articulate a
more general theory of inductive inference — a theory that is applicable
to the testing of both causal and noncausal hypotheses.

Armed with these essential tools, in the next couple of chapters, I
return to inductive inference and Duhem-Quine problems with the intent
of tackling them constructively. I try to impose some requirements on the
relation between a body of evidence and the hypothesis it is supposed to
test, and show that these requirements capture the logic of testing actually
followed by experimental economists in their everyday work. The rest of
Part I is entirely devoted to these tasks.
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Prediction

A key thesis of this book is that experimental inferences can be classi-
fied in two broad categories: (1) inductions within the experiment and
(2) inductions from the experiment. In Chapter 3, I introduced a fur-
ther distinction borrowed from Bogen and Woodward (1988). Induc-
tions within the experiment typically proceed in two phases: in the first
phase, scientists use empirical data to identify underlying patterns or
phenomena;in the second, they try to explain these phenomena by means
of “deeper” theories or causal hypotheses. Both steps are nontrivial, in the
sense that the data do not univocally indicate the underlying phenomena
and the latter do not univocally indicate their causes. As a consequence,
scientific inferences require a certain amount of ingenuity. Following an
established terminology, we can say that experimental claims or hypothe-
ses are typically underdetermined by the evidence. This chapter is devoted
to discussing the attempt to solve this problem by means of the criterion of
predictive success. I argue that such an attempt and other related projects
fail because they ignore a key aspect of scientific inference: the back-
ground factors that determine whether the evidence confirms, refutes, or
neither confirms nor refutes a hypothesis.

Like many other philosophers, I believe that the solution to under-
determination problems must lie in the area of inductive logic. Theories
of inductive inference are numerous and at times highly sophisticated.
Presently there is no agreement on a general theory, a fact that prima
facie may seem to play in favor of the skeptics. However, we should not
make too much of this, because fortunately theorists agree on several
fundamental requirements that an adequate theory of induction should
satisfy. And at any rate, my aim in this chapter is a rather modest one.

84
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Instead of proposing a general theory of inductive inference (a daunting
task, admittedly), I outline an approach to inferential problems that fol-
lows quite naturally from the practice of experimental science. The notion
of the perfectly controlled experiment, in particular, plays a pivotal role
in my project. Whether the proposed account is applicable outside the
experimental branches of science — to econometrics or astronomy, for
example — is not discussed here. For illustration, and in order to test my
proposal, I use a series of examples taken from a well-known controversy
within experimental economics: the case of preference reversals. To make
sure the philosophical discussion accounts for the real practice of exper-
imenters, it is necessary to dig into the details of the preference reversal
experiments.

Prediction for its own sake

An unfortunate feature of human psychology is that our intuitions about
inductive matters seem to be systematically disturbed by deductive biases.
It is very important therefore that we resist the temptation to impose on
inductive inferences requirements that are appropriate for deductive ones
only. A typical example is the idea that for e to confirm H, it is necessary
and sufficient that e is logically implied by H, or, in other words, that
confirmation is just deduction written backward.! If that were the case,
testing would be a totally ineffective way of discriminating among alter-
native hypotheses, because any piece of evidence can always be deduced
from an infinite number of hypotheses, as highlighted by Duhem and
(especially) Quine. The victims of deductivist intuitions tend to give up
at this stage. However, the right moral to be drawn is much less dramatic:
the Duhem-Quine and the related problem of underdetermination sim-
ply suggest that confirmation cannot be deduction written backward.?
We need to impose, in other words, more stringent requirements on the
relation of inductive support (the relation between e and H ). But what
requirements?

Many philosophers and scientists hold that e must not only be implied,
but also predicted by the hypothesis. They impose, in other words, a

1 Another way to put it is to say that scientific inferences consist of the whole body of
deductive logic plus the fallacy of “affirming the consequent,” but rehabilitated. “Affirming
the consequent” arguments have the following form: P— Q; Q; therefore P.

2 Quine’s (1953) essay is reprinted in a collection called From a Logical Point of View. Many
commentators seem to forget the title and miss the exact implications of the Duhem-Quine
problem.
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temporal requirement upon the relation of inductive support: a given
piece of evidence cannot indicate or confirm a hypothesis unless its obser-
vation has been forecasted (derived from H in advance of its observation).
Take Popper, for instance: a newly proposed theory

should be independently testable. That is to say, apart from explaining all the expli-
canda which the theory was designed to explain, it must have new and testable
consequences (preferably consequences of a new kind); it must lead to the pre-
diction of phenomena which have not so far been observed. (1963, p. 241)?

This requirement is also implicit in the presentation of the HD model
in Chapter 3, in which I highlight the symmetry between explanation and
prediction: to explain is to derive from a theory/hypothesis some evidence
that has already been observed; to predict is to derive some evidence that
will be observed. The temporal requirement says that only evidence
that has been successfully predicted can provide inductive support to a
hypothesis.

The requirement of predictive success should sound familiar to
economists, for it is strongly advocated by Milton Friedman in his famous
essay on “The Methodology of Positive Economics” (1953). His argu-
ments for the requirement, however, are not entirely convincing. Fried-
man holds that scientific theories are just tools to anticipate future events.
Theories do not, and should not attempt to, describe the underlying struc-
ture of reality.

The ultimate goal of a positive science is the development of a “theory” or
“hypothesis” that yields valid and meaningful (i.e., not truistic) predictions about
phenomena not yet observed. (Friedman 1953, p. 7)

Viewed as a body of substantive hypotheses, theory is to be judged by its predictive
power for the class of phenomena which it is intended to “explain.” [ . . .] The
only relevant test of the validity of a hypothesis is comparison of its predictions
with experience. (ibid., p. 8)

The view expressed in the first quotation is often called instru-
mentalism: the goal of science is to predict what happens in the natural
and social world; there is no attempt to explain the “deep” mechanisms
of reality.* That’s why “explain” is between scare quotes in the second
citation: because there is nothing to explain, strictly speaking. All you

3 Cf. also Popper (1957).

4 The second quote goes far beyond instrumentalism by imposing a domain restriction on
the phenomena that a theory intends to account for. Many philosophical instrumentalists
are concerned with any false implications of a theory and would therefore reject this
restriction. I must thank Dan Hausman for pointing this out.
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can do is to show that a certain theory provides good predictions, that a
theory accounts for the data in this weak sense. The opposite of instru-
mentalism is realism: realists believe that science is about discovering the
true structure of the (natural and social) world. Atoms, says the scientific
realist, exist; or at least it is possible in principle to obtain evidence that
indicates their existence. Instrumentalists, in contrast, believe they are
just useful theoretical tools for prediction or whatever other goal we have
in mind. They may or may not exist, but who cares? The same applies
to the entities postulated by economic theory, from rational economic
agents to maximizing firms, competitive markets, and so on.’

One problem is that the instrumentalist a la Friedman is at a loss when-
ever her favorite theory fails to predict well. Obviously, she will have to
modify the theory in order to improve its performance, but how? Consider
the simple theory: “if the barometer indicates ‘rain,” then it will rain.” If
the barometer is well functioning, then such a theory is quite reliable
for predictive purposes. However, if we begin to mess with the internal
mechanisms of the barometer, or if we just leave the barometer without
the appropriate service for a long time, the relation between the barome-
ter’s clock and the weather will probably break down (the barometer will
cease to be a good instrument for prediction). However, to know how to
keep a barometer in good condition (or even to know what it means for
a barometer to be in good condition), we need to understand its internal
mechanisms. We need to know, in other words, how the weather and the
barometer’s clock are related, what the “deeper” principles are that relate
these two phenomena (cf. Hausman 1992b). The analogy to economic the-
ories/models is obvious: we cannot make them function properly, let alone
modify them effectively, unless we take a realistic attitude toward (some
of) their components.

The second problem with a purely instrumentalist attitude is that scien-
tists do not just seek predictive power generically, but predictive power
of a very special kind. They look for theories and hypotheses that are
robust to a particular kind of change and that can be used to derive reli-
able policy prescriptions. Scientists are not just interested in forecasting —
in many cases, they also want to intervene. Doctors do not just want to
tell you that you are going to develop certain symptoms, they are also
supposed to tell you how to cure the disease that gives rise to such symp-
toms. Economists are not content with merely predicting an economic

5 The best recent introduction and discussion of scientific realism in general is Psillos’s
(1999). According to some authors, the issue of realism takes a different form in economics
than in the natural sciences. See e.g., Miki (1996) and Hausman (1998b).
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crisis, they also want to tell you how to prevent it. Following our barom-
eter example, it is as if we were looking for an instrument giving advice
about how to prevent storms, rather than just anticipating them. But a
purely predictive tool may not be able to do that. A necessary condition
to provide reliable policy advice is to know the deeper causal mechanisms
that govern phenomena,® but then a realist attitude is more likely to fit
the bill for a policy-oriented science like economics.

Prediction and confirmation

These critiques in principle do not affect the predictive success require-
ment for inductive inference, however, because the requirement can be
justified also in noninstrumentalist ways. Among the realists who strongly
support the predictive success requirement, we find, for example, Popper
and his followers (e.g., Lakatos 1970, and in economics, Blaug 1980).
According to Popper’s methodology, it is absolutely crucial that scientists
formulate risky predictions about future events. In part, this requirement
is grounded on the observation of a crucial difference between “proper”
science — by which Popper basically meant physics —and other “pseudosci-
entific” disciplines. Popper was particularly impressed by the astronomical
observations by means of which the physicist Arthur Eddington refuted
Newton’s celestial mechanics. In 1919, Eddington organized an expedi-
tion to the island of Principe in West Africa, where a major eclipse was
expected to take place in late May. During the eclipse, he tried to measure
the deflection of light in proximity of the sun, using some distant star as
a point of reference. Newtonian mechanics and Einstein’s theory of rela-
tivity put forward two different predictions about the angle of deflection.
Eddington’s measurements seemed to support Einstein’s theory and to
contradict Newton’s. Popper compared the “boldness” of physicists like
Einstein and Eddington with the conservative attitude of pseudoscien-
tists like Marxian theorists and Freudian psychoanalysts, who seldom put
forward precise predictions about future events (and when they did, they
often turned out to be wrong). Most of the evidence used to corroborate
such pseudoscientific theories, Popper argued, is past evidence, already
known events that are easily accommodated into the flexible frame-
work of their theories. But such post hoc accommodations, according to

6 Cf. Cartwright (1983) for the link between causal knowledge and intervention in general;
for a critique of Friedman’s instrumentalism along these lines see Hausman (2001).
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Popper, are too easy. A hypothesis is truly confirmed by the evidence
only if it takes some risk, if it faces the chance of being refuted by the
evidence. Theories must “stick their neck out” and offer it to the “axe”
of refutation, to use one of Popper’s truculent metaphors. When a the-
ory sticks its neck out, it is tested “severely.” According to Popper, an
empirical test is not severe if the theory implies something that is already
known at the time the theory is tested. Evidence implied by the theory
but not already known is said to be independent. Only as yet unobserved
events can count as independent evidence in Popper’s terms, hence the
importance of successful predictions for the test of scientific theories.’
These ideas are popular among both experimental and nonexperimen-
tal scientists, including economists. They often take the form of a skeptical
attitude toward hypotheses that have been formed post hoc, after the rel-
evant data were collected. Here is, for example, Ariel Rubinstein, in a
methodological paper devoted to theory and experiments in economics:

Another problematic practice I would like to mention in passing is the sifting of
results ex post, namely after the results are gathered. Obviously, if some pattern of
behavior, from among an endless number of possibilities, is discovered in the data
ex post, the results are much less informative. In the absence of rules of maintain-
ing a research protocol one cannot check whether the results were conjectured
before or after the results were obtained. (Rubinstein 2001, p. 626)

Economists who condemn post hoc theory formation usually present
it as a sort of “cheating,” but rarely spell out in detail what is wrong with
this practice. Popper’s reason to be skeptical of the theories that remain
constantly “behind the facts” is that it seems too easy to do so: post hoc, a
theory can be adjusted and made consistent with the evidence even if it is
false (“no matter what,” to use Quine’s expression). If you state the theory
and derive predictions from it in advance, in contrast, you are taking some
risk. Popper, however, does not draw any connection between this sort
of risk taking and inductive support. Remember that Popper was an anti-
inductivist, and therefore such an omission is consistent with his overall
philosophical position: you can only learn that a theory is false, not that it
is (likely to be) true. But if, like most normal human beings, you believe
that empirical evidence can also teach us something positive, then you

7 The story of how Popper came to appreciate the importance of predictions is told in his
essay “Science: Conjectures and Refutations” (Popper 1963) and in his autobiography
(Popper 1976). In the text, I have followed Popper’s very simplified account of the eclipse
experiments, but much more realistic and interesting reconstructions can be found in
Earman and Glymour (1980) and Collins and Pinch (1993, Ch. 2).
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need to say something more precise about confirmation. It is necessary
to link successful predictions with the (probable) truth of our hypotheses
if you want to give the criterion full normative force.

There is an argument, going back to Duhem, that may be used for this
purpose. In his book The Aim and Structure of Physical Theory (1906),
Duhem compares the predictions made by a theory with the drawers of a
filing cabinet. Each drawer has a different shape, and so do the phenomena
(or “empirical laws,” as Duhem calls them) that must be stored in the
cabinet. A good theory should be able to state in advance which specific
drawer will host each particular phenomenon. Suppose the cabinet/theory
were manufactured without any specific plan in mind, that is, without the
slightest idea of the causes behind phenomena. That new phenomena
should fit in the drawers of such a cabinet/theory perfectly would strike
us as a really amazing coincidence.

That, in the space left free among the drawers adjusted for other laws, the hith-
erto unknown law should find a drawer already made into which it may be fitted
exactly would be a marvellous feat of chance. It would be folly for us to risk a
bet on this sort of expectation. If, on the contrary, we recognise in the theory a
natural classification, if we feel that its principles express profound and real rela-
tions among things, we shall not be surprised to see its consequences anticipating
experience and stimulating the discovery of new laws; we shall bet fearlessly in
its favour. (Duhem 1906, p. 28)

Duhem is a well-known antirealist, and the exact role played by this
argument in his overall philosophy is controversial. However, given that
this book is not devoted to exegetical matters, I'm quite happy to leave
this problem to the historians. The important point is that the coincidence
argument seems to draw a strong link between predictive success and the
truth of scientific hypotheses. Contemporary philosophers have proposed
new, more refined versions of the argument, but the fundamental intuition
is still the same as in Duhem’s formulation: successful prediction seems to
reveal a theory’s truth because the alternative hypothesis (that the theory
is not even approximately true) would make the theory’s predictive record
a big miracle.’

The requirement of predictive success sounds plausible in several
respects and, in fact, enjoys wide popularity among scientists and philoso-
phers alike. It also seems to make sense of many episodes in the history
of science and of the behavior of contemporary scientists. Sometimes it is

8 One version of this argument is in fact known as the “no-miracles argument” for scientific
realism; see Putnam (1975, p. 73), and Psillos (1999, Ch. 4) for a thorough analysis.
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used as a stick to bash those “scientific” disciplines that do not display a
particularly brilliant predictive record (see e.g., Rosenberg 1992, for a cri-
tique of economics heavily based on the predictive success requirement).
For our purposes, it would be nice if it could be shown that the crite-
rion accounts for the practice of experimental economists. To do this, we
need to examine a representative example; I have chosen the case of pref-
erence reversals, an anomalous phenomenon that has been investigated
extensively by economists and psychologists alike. To see the criterion
of predictive success at work, it is necessary to engage the details of this
interesting controversy.

Preference reversals

Neoclassical economic theory describes the properties of preference
scales. Despite their key role right at the core of the theory, the ontologi-
cal status of preferences remains quite problematic. Economists generally
subscribe to the theory of revealed preferences, originally formulated by
Paul Samuelson (1938). Revealed preference theory, however, can be
interpreted in at least two different ways: as a theory of how our psy-
chological dispositions (preferences) are made observable or revealed by
behavior (choices), or alternatively, as an attempt to redefine or reduce
preferences to observable choices. Although the latter interpretation has
been prominent for some time because of the influence of behaviorism
in the social sciences, it faces difficult conceptual and methodological
problems.” Moreover, as we shall see shortly, some key debates in exper-
imental economics appear pretty incomprehensible unless preferences
are interpreted as, strictly speaking, directly unobservable. From now on,
therefore, I shall use the term preference to denote the psychological dis-
positions behind individual choice.'”

Several techniques for the indirect observation of preferences have
been developed by experimenters, mostly based on the notion of willing-
ness to pay. According to standard economic theory, the results of these
procedures should all be consistent, the behavior of economic agents
in all these measurement contexts being determined by their prefer-
ences. In the late sixties, some psychologists began to question the very

9 Cf.e.g.,Sen (1973,1993) and more recently Hausman (2000); for a historico-philosophical
perspective, see Mongin (2000).
10 One’s own preferences, to be sure, may be directly observable by introspection. However,
this does not necessarily help when we deal, as we do in most cases, with the preferences
of others.
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Table 5.1. Preference Reversal Bets (from
Lichtenstein and Slovic 1971, p. 48)

P-Bet $-Bet

.99 Win $4.00 .33 Win $16.00
.01 Lose $1.00 .67 Lose $2.00
.95 Win $2.50 .40 Win $8.50
.05 Lose $.75 .60 Lose $1.50
.95 Win $3.00 .50 Win $6.50
.05 Lose $2.00 .50 Lose $1.00
.90 Win $2.00 .50 Win $5.25
.10 Lose $2.00 .50 Lose $1.50
.80 Win $2.00 .20 Win $9.00
.20 Lose $1.00 .80 Lose $0.50
.80 Win $4.00 .10 Win $40.00
.20 Lose $.50 .90 Lose $1.00

existence of preference scales. They conjectured that far from constituting
the stable substratum from which all economic behavior arises, prefer-
ences display an unstable structure and depend heavily on the situation:
they are “constructed” and vary from context to context (Slovic 1995).

Sarah Lichtenstein and Paul Slovic, two psychologists at the Oregon
Research Institute, designed a two-stage test, later to become famous as
the “preference reversal” experiment (PR from now on; see Table 5.1).1!
Subjects were asked in separate tasks to choose among two bets and to
price them. The pairs had a common feature: they consisted of a bet with
a high probability of winning a moderate amount of money but a low
probability of losing a small amount (called the “P-bet”), and a bet with a
low probability of winning a larger sum but a high probability of losing a
smaller sum (the “$-bet”). Lichtenstein and Slovic’s conjecture was that
“bidding and choice involve two quite different processes that involve
more than just underlying utilities of the gambles” (1971, p. 47).

In previous studies, Lichtenstein and Slovic (1968) had observed a
high correlation between, on the one hand, prices and payoffs, and on the
other, choices and probabilities. Their first PR experiment was conceived
explicitly to produce patterns of choices such that the subjects chose the
P-bet but bid more for the $-bet. As a matter of fact, such patterns were
observed. The typical rate of reversals observed by Lichtenstein and

1 Lichtenstein and Slovic (1971, 1973). For a nontechnical presentation of the early research
on the PR phenomenon, cf. also Thaler and Tversky (1990).
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Slovic, and then in later experiments, was between seventy and eighty
percent. Not all reversals were of the kind expected by Lichtenstein and
Slovic, though: in a standard PR experiment, 15 to 25 percent of reversals
are of the nonpredicted, or “asymmetric,” type (subjects choose the $-bet
but are willing to pay more for the P-bet).

Psychologists tend to derive radical implications from these findings,
and to deny the existence of a stable structure of preferences underly-
ing individual behavior. In contrast, most economists would like to retain
the idea of a preference scale; but taking PR seriously would make it
inevitable to reconsider the properties of such a structure. The experi-
mental evidence, in fact, challenges some crucial assumptions of rational
choice theory. Denoting the strict preference relation by > and the alter-
natives by xi, x», . . ., a preference relation is acyclical if it cannot be
the case that x; > x» > ... > x, > x; whatever the subset of alternatives
X1,...,X,. The preferences are asymmetric if it cannot be the case that x;
> x; and x; > x; whatever the pair of alternatives. Asymmetry is a partic-
ular case of acyclicity, which is in turn is implied by the classic transitivity
axiom of preference theory. To give up any of these basic assumptions
would be very costly for standard economic theory. The principle that
economic agents are rational would have to be abandoned, with obvious
and disturbing normative and political consequences. However, giving up
the rationality principle would also make the application of optimization
techniques extremely problematic, if not impossible, and the whole body
of neoclassical economics would have to be revised at its foundations.

Artifacts

The PR phenomenon is an example of a “phenomenon” in the sense spec-
ified in Chapter 3. To begin with, PRs are not directly observable. We can
only observe patterns of behavior that, once they have been interpreted,
appear prima facie incompatible with the claim that “there exists a tran-
sitive scale of preferences underlying subjects’ choices.” The observable
data obtained in a typical PR experiment take the form of reports such as
“subject i has chosen the P-bet when the $-bet was available and priced
the $-bet higher than the P-bet.” Such data are best defined as price-choice
reversals. To obtain the PR phenomenon, one has to assume, to begin with,
that pricing and choosing convey genuine information about preferences.
At this stage, psychologists and economists part company. Economists
presuppose that the same preference structure underlies both pricing and
choosing, whereas psychologists — as already mentioned — doubt that the
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idea of a stable preference scale is useful at all. For reasons of simplicity, in
this chapter, I mainly focus on the “economic” interpretations of the PR
phenomenon and disregard the question whether preference structures
exist at all. I therefore often identify the PR phenomenon with intransi-
tive preferences rather than with the nonexistence of a preference scale
(which is clearly a more general statement).!? Following the “economic”
approach, one is led to infer the existence of a genuinely intransitive pref-
erence structure. The phenomenon can then be represented as follows:

(PR) P>.$>, P,and >.=>,.

The inequality >, stands for “preference as emerging from choice,”
and similarly, >, for “preference emerging from pricing.” Some theo-
rizing has taken place on the way from the data to the phenomenon in
the form above. The first inference from data to P >. $ >, P involves at
least an assumption about the correct functioning of our “instruments of
observation.” The equality >. = >, involves a commitment to the prin-
ciple of procedure invariance — the idea that all economically relevant
behavior is determined by the same preference scale and thus that all
such behavior can be used as evidence for inferring the structure of pref-
erences. Assumptions of this kind sanction the step from reports such as
“subject i has chosen so and so” whereas “subject j has priced so and so”
to claims about preferences, or from observed price-choice reversals to
genuine preference reversals.

Notice that the term preference is used by both economists and psy-
chologists when debating the results of PR experiments. Ironically, the
preference reversal label was invented by psychologists, despite the fact
that they do not believe in preferences in the economists’ sense. Psychol-
ogists use the term in its “commonsense” meaning and originally did not
distinguish between price-choice and preference reversals. Nevertheless,
they did not oppose economists’ shift to a more technical connotation. To
economists, PRs are data seen through the filter of what we may call the
“beginning” of an explanation — the low-level assumption that it makes
sense to speak of stable preferences in the first place. This presupposition
is still far removed from a full theoretical explanation, an explanation
that in the PR case, would involve some precise claim about the causes of
choices and pricing behavior.

12 For some attempts to discriminate in the laboratory between the “economic” and the
“psychological” interpretations, see Loomes, Starmer, and Sugden (1989) and Tversky,
Slovic, and Kahneman (1990).
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PR entered the economics literature thanks to David Grether and
Charles Plott, who tried to investigate the phenomenon at the California
Institute of Technology in the late seventies. Their research was driven
by the suspicion that price-choice reversals may have been the product
of some undetected experimental effect. In a seminal paper, Grether and
Plott (1979) list thirteen possible sources of “disturbance,” or thirteen
possible ways of accounting for (or “explaining away”) PR data. These
included, among others:

1. Misspecified incentives: subjects in some of the Lichtenstein and
Slovic experiments did not play for money or when they did, were
not told about the value of the “points” they earned until after the
experiment.

2. Income effects: if one’s income increases during the experiment,
one’s attitude toward risk may change accordingly (e.g., a subject
may go for riskier bets). Some of Lichtenstein and Slovic’s experi-
ments did not control for such an effect.

3. Indifference: if a subject is indifferent between two bets, she may
choose one on one occasion and subsequently the other, and yet be
perfectly rational in doing so.

4. Strategic responses: a subject may react to the expressions selling
price or buying price as if she were really to sell or buy the bet —
that is, as if she were to engage in trade and bargain with a real
person. Hence, one may have the tendency to overprice a sold bet
and underprice a bought bet.

5. Costs of information processing: the cost of making a reasoned
choice may dominate the monetary incentives if these are not big
enough. Subjects may then choose according to some “cheaper”
heuristics that lead to the intransitivities.

6. Confusion and misunderstanding: the subjects may be initially puz-
zled by the new experimental situation, and their “irrationality”
may be the result of lack of experience.

7. Experimenter’s effects: psychologists are known for deceiving sub-
jects, who therefore may engage in speculation about the “real
purpose” of the experiment and try to outwit the experimenter.

Grether and Plott designed their experiment to control for these (and
other) possible disturbances. The phrasing of the instructions, for exam-
ple, was revised in order to avoid possible strategic responses (all words
evocative of market-type behavior were eliminated), the payoffs were
carefully explained in order to induce appropriate incentives, subjects
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were allowed to manifest indifference by checking “don’t care” in the
choice task, and so on. Despite great care in designing the experiment,
however, Grether and Plott observed the same results produced by Licht-
enstein and Slovic a few years earlier.

In many ways, the Grether and Plott experiments are representative
of several other experiments carried out in the 1980s. Experiments in
this early period aimed at demonstrating that PRs are an artifact of the
experimental procedures. The concept of artifact is a widely used and yet
rather vague scientific notion. The adjective artificial stands in opposition
to natural, a word with clear normative flavor, and for this reason tends
to have a negative connotation. An artificial object may be an imitation
of an original and as such, not genuine, not “true.” The artificial can be
“deceitful,” “insincere.”!? In science, the term is used in a number of ways,
but here I am concerned with its use in relation to the data—phenomena
distinction only. An interpretation of observable data is an artifact when
it is not true, a mere illusion of the instruments of observation. Artifacts
in this sense are a case of a potentially misleading connection between
data and phenomena.

Microscopy textbooks, for example, report a long list of artifacts that
the student is likely to encounter in laboratory work. Such artifacts can be
divided in two categories: those that appear to be, but are not really there,
and those that are real, but not originally there. Fringes caused by optical
aberrations around the edges of a cell belong to the first category of arti-
facts. It is the microscope that generates the illusion of fringes, which, in
fact, are not really there. We shall see that economists talked about the
“artificiality” of the PR phenomenon in a similar way, at least in the first
stage of the controversy. Bubbles on a slide, stains, scratches, and folds
produced during the preparation of the assay, in contrast, belong to the
second category of artifacts. They are really there but are produced by
the experimental procedure. For instance, if the membranal border of an
organelle seems to be interrupted somewhere, this may be a result of the
chemicals used to preserve the tissue. The “natural” membrane was orig-
inally continuous, but the chemical substances used by the experimenter
caused its deterioration;'* not being aware of this fact, the experimenter
might infer that it was a characteristic of the cell before any laboratory
manipulation. In the second phase of the PR controversy, which we exam-
ine later in the book (in Chapter 10), the term artifact takes on this second
meaning.

13 See Hacking (1988) for an analysis of the term artifact along these lines.
14 Cf. Lynch (1985, Ch. 4) for a number of examples from neurobiology.



Prediction 97

The BDM and RLS mechanisms

The first preference reversal paper (Lichtenstein and Slovic 1971) reports
three experiments. To control for possible disturbances due to lack of
incentives, Lichtenstein and Slovic used in two of their designs an elic-
itation procedure known since the mid-sixties, the Becker-DeGroot-
Marschak (BDM) mechanism. The BDM procedure can be used to elicit
the selling price of any kind of commodity, and as such has been often
used to observe subjects’ preferences over lotteries. Preferences over lot-
teries are measured using the so-called certainty equivalent, the sum one
would be willing to pay in order to play that bet. The certainty equivalent
is an indirect measure, and therefore does not necessarily reflect subjects’
real preferences. That’s why a particular payoff mechanism, the BDM, is
customarily used in economic experiments.

In a BDM elicitation, a subject is asked to state her reservation price,
s, for a lottery (say, [x, p; ¥, (1 — p)]). The lottery is then auctioned,
and if a buyer willing to bid a sum b > s is found, the subject receives
b; otherwise, the lottery is played and the subject receives a sum x or y
according to the outcome. In practice, the auction is often simulated by the
experimenters, who draw the bidding sum b from a uniform distribution
over some relevant set. It is easy to show that a rational utility maximizer
must state her real selling price — or that doing otherwise is a dominated
strategy.!?

The BDM mechanism is one of experimental economists’ favorite
instruments of observation. Compared with physicists, experimental
economists make use of a minimal apparatus, but its function is the same.
The apparatus allows the overcoming of difficult problems — for example,
the collection of data about unobservable entities — but at the cost of com-
plicating the experiment. To complicate things further, the BDM is often
used in conjunction with the so-called Random Lottery Selection (RLS)
procedure. In general, experimental subjects are asked to perform a num-
ber of tasks; instead of receiving an aggregate payment, each subject is
rewarded according to the results of only one task selected at random.
This procedure controls for income effects (when a subject is required to

15 Let us denote with e the cash equivalent of a lottery X, such that EU(e) = EU(X). If the
selling price is overstated (s > e), then either (1) b <e,or (2) b >s,0r 3)e <b <s. If
(1) or (2) is the case, overstating the selling price (s) has no adverse consequences for
the experimental subject. But if (3) is the case, she will have to play the lottery, whose
expected value is e. Had she stated s = e, then she would have received a sum b> e instead.
Thus, overstating the selling price may lead to either equivalent or dominated payoffs
for the experimental subject. The same reasoning can be applied to the symmetric case,
where s is understated (s < e) (cf. Becker et al., 1964).
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perform several tasks in a sequence, her preferences may vary because of
changes in her wealth) and reduces experimental costs at the same time.
If the selected task is a choice one, it is simply played out; if it is a pricing
task, the BDM mechanism is used.

When Grether and Plott replicated Lichtenstein and Slovic’s findings,
they also used the BDM and RLS procedures. In the early eighties some
economists began to argue that the PR phenomenon could have been
an artifact of the BDM and RLS procedures. Charles Holt on the one
hand and Edi Karni and Zvi Safra on the other independently and almost
simultaneously began to investigate theoretically the robustness of these
experimental procedures to violations of the axioms of expected utility
theory. They pointed out that the controls used by Grether and Plott and
other experimenters (e.g., Pommerehne, Schneider, and Zweifel 1982;
Reilly 1982) “are appropriate if the axioms of von Neumann-Morgenstern
utility theory are satisfied” (Holt 1986, p. 509). The dependence of elici-
tation procedures on expected utility theory was hardly a new discovery:
the inventors of the BDM mechanism were aware and wrote explicitly
that “the procedure is based upon the [. . .] well-known ‘expected util-
ity hypothesis’” (Becker, DeGroot, and Marschak 1964, p. 226). Karni
and Safra’s and Holt’s innovative contribution consisted rather in show-
ing how certain violations of expected utility which do not concern the
transitivity axiom may nevertheless produce the illusion of preference
reversals.

In order to understand this point, it is necessary to introduce briefly
the basic elements of expected utility theory (EUT). The theory — a key
building block of neoclassical economics — is a refinement of the com-
monsensical view that individual choices are dictated by preferences and
beliefs. EUT imposes some restrictions on the structure of preferences
and beliefs, in the form of consistency requirements. As above, we denote
options or outcomes by means of the letters x, y, z, . . . ; probabilities by
means of p, g, . . . ; and binary lotteries by [px + (1 — p) y]; and so on. The
inequality > stands for the strict preference relation. The axioms imposed
on the preference relation are the following:'®

16 1 present here a contemporary version of the axioms originally introduced by von
Neumann and Morgenstern (1944), and later refined by Marschak (1950), Herstein and
Milnor (1953), Luce and Raiffa (1957), and others. Alternative but equivalent axioma-
tizations can be given in terms of the weak preference relation (“is at least as preferred
as”). The classic systematization of subjective expected utility theory (in which the proba-
bilities are interpreted as subjective degrees of beliefs rather than frequencies) is Savage’s
(1954). For a philosophical discussion of the axioms, cf. Anand (1993).
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(A1) > is a weak-order relation:

(x > y) >~ (y = x) [asymmetry]

(x = y&y > z) = (x > z) [transitivity]

(A2) There exist some p and g strictly between 0 and 1 such that
(x>y>z) < [px+ (1 -p)z>y>qx+(1-q)]
[continuity]

(A3) ForallpsuchthatO <p <1,
(x > y) < [px+ (1 — p)z] = [py + (1 — p)z] [independence].

Itis possible to prove that an individual whose preferences satisfy these
principles behaves so as to maximize her own expected utility,

EU = Zpi U(xi).

Such a proof, the “representation theorem” of expected utility, states
that if an ordering relation > satisfies (A1), (A2), and (A3), there exists
a real utility function U (defined on outcomes) such that for every two
lotteries x and y,

x>y« EU(x) > EU(y),

where EU is defined as above. Furthermore, the class of functions that
satisfy the representation condition is exactly the class of positive affine
transformations of U.

The beliefs of individual agents are supposed to satisfy the consis-
tency requirements of the standard probability calculus (the Kolmogorov
axioms). According to the latter, a lottery in multiple stages can be
formally reduced to a single-stage one, and expected utility theory
requires that people’s preferences in the multistage lottery are consis-
tent with those in the reduced one. More precisely, the reduction prin-
ciple states that subjects are indifferent between a compound lottery
A= (X1, q;...; Xm qn), giving a chance g; to participate in a lottery
X; = (xi, ply..5xl,, piy), and the reduced lottery

R(A) = (xX{, q1P1: i X010 QUDp G - X @D o3 Xy G Dlpe)-

As we have seen, in a PR experiment, the subjects are asked to per-
form a number of tasks; from these, one is selected at random (RLS
procedure). If the selected task is a choice one, it is simply played out and
the subject is paid accordingly; if it is a pricing task, the BDM mechanism
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is used to determine the earnings. Holt (1986) conjectures that experi-
mental subjects see the PR experiment as a two-stage lottery. In the first
stage, the task to be played out is randomly selected; in the event of pric-
ing, there is a second stage, that is, the task is played out via the BDM
mechanism. Then, Holt shows that if they apply reduction but not the
independence principle, some subjects who prefer the $-bet to the P-bet
may reverse their choices during the experiment. Choices observed via
the RLS mechanism, then, may not reveal their true preferences.

Loosely, the principle of independence (A3) says that only the out-
comes that distinguish two lotteries are relevant for the decision to be
made. More precisely, it says that if x is preferred to y, then the compound
lottery (x, p; z, 1—p) is preferred to (y, p; z, 1—p). The independence prin-
ciple is considered less central than transitivity for the theory of rational
choice. From a historical viewpoint, the introduction of the independence
principle marked the shift from the theory of consumer choice under cer-
tainty to expected utility theory. Questioning independence, therefore —
as opposed to other axioms of expected utility theory — does not have any
damaging implications outside the theory of decision under risk. In fact,
the independence principle was the first one to be empirically challenged
in the early fifties (by the Nobel-winning economist Maurice Allais), and
later research confirmed that individuals tend to violate the axiom regu-
larly in certain experimental circumstances.!” Moreover, the mathemati-
cal structure of rational choice theory dictates an implicit hierarchy among
its axioms: the principle of independence becomes somehow redundant
(or “inefficiently precise”) when imposed on a non-well-ordered relation.
In this sense, one may say that independence “implies” or presupposes
transitivity (Mongin 1988). Finally, the independence principle is norma-
tively weaker than transitivity, which can be justified by means of more
direct arguments (cf. Guala 2000b).

More or less at the time when the Holt and the Karni and Safra
arguments were being developed, other economists were busy construct-
ing alternative models that could account for the known violations of
expected utility theory. Mark Machina’s Generalized Expected Ultility
Analysis (GEUA), for example, relaxed independence and allowed

17 In the classic experiment known as the “Allais paradox,” subjects are asked to choose
first between (A) one million for sure and the lottery and (B) five million with probability
0.10, one million with probability 0.89, or 0 with probability 0.01; then they are asked to
choose between (C) five million with probability 0.10 or 0 with probability 0.90 and (D)
one million with probability 0.11 or 0 with probability 0.89. Many subjects choose A and
C, thus violating the independence principle of expected utility theory. Cf. Allais (1953);
the main violations of independence are reviewed in Camerer (1995).
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utility functions to be merely differentiable rather than strictly linear in
the probabilities. Other approaches, such as Chew and MacCrimmon’s
Alpha Utility theory and Quiggin’s and Yaari’s Expected Ultility theory
with Rank-Dependent Probabilities (EURDP), were being developed
that similarly made do without independence or related principles.'® It
was therefore somehow natural (consistent with the “spirit of the time,”
so to speak) to argue that the illusion of PR resulted from violations of
the Allais kind. According to Karni and Safra (1987), the BDM mecha-
nism may be perceived by subjects as a two-stage lottery giving, among
its outcomes, the possibility of playing out the priced gamble. Karni and
Safra argue that if the independence principle is not obeyed, then it is not
true that always setting the selling price equal to the certainty equivalent
of the lottery maximizes its value (for the interested reader, I provide a
more detailed description of the argument in Appendix A).

A number of generalized theories without independence (Karni and
Safra call them “Q-theories”;  have mentioned some of them earlier) can
in principle be used to explain reversals. Karni and Safra constructed an
example of how preference reversals are implied by a version of Quiggin’s
and Yaari’s generalized EURDP, given a particular set of lotteries and
initial conditions. The very pattern of choices observed by Lichtenstein
and Slovic, Grether and Plott, and others can be accounted for by apply-
ing EURDP to the BDM elicitation. If agents were EURDP maximizers,
the data produced by means of the BDM mechanism would not be incon-
sistent with the transitivity of the underlying preferences, and the PRs
turn out to be “illusory.”!’

One can find other, similar arguments in the theoretical literature of
the same period. By focusing on the reduction principle, Uzi Segal (1988),
for example, argues that violations of independence may not be the only
causes of the PR “illusion.” His argument, again, moves from the assump-
tion that the experimental subjects perceive their task as a two-stage
lottery, and proceeds to show that if their beliefs do not satisfy the reduc-
tion principle, when they deal with particular pairs of bets, again, they
may price items in a way that would not reveal their true preferences.

Back to Duhem

The critiques of Holt, Karni and Safra, and Segal raise a typical Duhemian
problem. According to Duhem, a scientific prediction can be made only

18 See Chew and MacCrimmon (1979), Machina (1982), Quiggin (1982), Yaari (1987).
19 Karni and Safra show also that a large class of BDM-like devices would be useless for
eliciting nonlinear preference relations.
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by putting to work a “whole theoretical scaffolding” (1906, p. 185). It
is customary nowadays to interpret Duhem’s thesis broadly and include
among the premises a number of different background factors: assump-
tions about the functioning of the instruments, the noninterference of
disturbing factors (or fulfilment of the ceteris paribus clause), the cor-
rect specification of the initial conditions, and so on. When we seem to
have produced a phenomenon contradicting our predictions, we cannot
by deductive logic alone, argue for the falsification of any particular one
of the assumptions involved (although we know that at least one must
be false).

In our case, a number of inferences lead from the data collected in
the laboratory to the PR phenomenon. Some of these inferences rely
on the correct functioning of the instruments used in the experiment.
If the latter are challenged, the inferential device breaks down. What
are we allowed to infer from the data? Is not the very existence of the
PR phenomenon questioned? The challenge in this case is made pow-
erful by at least two factors: first, Duhem’s problem is not stated in
the abstract but concretely by specifying the way in which the infer-
ence from the data to the phenomenon may be mistaken. Second, the
critiques point to a problem of circularity. The “instruments of obser-
vation” (elicitation) used in the experiments on individual choice rely
upon those theories of behavior in whose investigation they are involved.
Mechanisms such as the BDM procedure work by constructing further
problems of choice under risk of the same kind as those under test. The
phenomenon at stake is inconsistent with EUT, but the instruments used
to observe the phenomenon are constructed on the hypothesis that EUT is
correct.

Predictive success and preference reversals

Does the predictive success criterion fit the case of PR? Given its popu-
larity, in a way it would be extraordinary if the criterion could not capture
at least some important aspects of real scientific practice. Thus, before we
examine its shortcomings, let’s have a look at those parts of the PR case
in which the criterion seems to work well. The situation, in a nutshell, is
the following: in the early eighties, PRs constituted the main challenge to
the transitivity axiom of choice theory, but an alternative account of the
phenomenon was devised that questioned the instruments of observation
(the BDM and RLS procedures) customarily used to elicit preferences
in the lab. Such an account, however, according to the predictive success
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criterion, can receive confirmation only from as yet unobserved facts. In
fact, Karni and Safra’s paper did not just indicate that price-choice rever-
sals do not logically imply the violation of transitivity. It also included
an alternative theoretical model to account for PR data. The model is a
specific version of EURDP. According to the predictive success criterion,
economists should now derive new predictions from the model in order
to test its validity as an alternative account of the PR data.

It is not clear whether Karni and Safra subscribe to the predictive
success criterion, for here and there they seem to argue that their proposed
model already receives confirmation by “old” PR evidence. Although the
general tone of the paper suggests that their model is mostly illustrative,
in certain passages they seem to take it very seriously, as if they had
provided reasons to believe that subjects do violate independence and
the PR phenomenon is indeed an artifact of the BDM mechanism. They
write, for example: “what Grether and Plott tried and — as our discussion
indicates, failed to do —is to observe, by means of [the BDM method], the
certainty equivalents of given lotteries” (1987, p. 676, my emphasis). In a
footnote, Karni and Safra also compare their contribution to Holt’s: the
latter pointed independently to violations of intransitivity, but “however,
did not present an alternative theory explicating the ‘PR’ phenomenon”
(p. 676, n. 4, my emphasis).

Perhaps Karni and Safra were influenced by the general consensus
achieved by Quiggin and Yaari’s EURDP among decision theorists. What
they actually thought, at any rate, is not so important after all. What really
matters is whether in principle their post hoc explanation of the data could
receive support from the old PR data. According to the predictive success
criterion, it should not, and itis easy to see why. Generalized expected util-
ity theories do not claim that individuals always violate independence —
they just say that they might. Such theories display in their general form
several free parameters that have to be fixed in order to derive precise
implications about subjects’ behavior. For some values of these parame-
ters, the consequences of EURDP are identical to those of expected utility
theory. In other words, EURDP may well be true and yet the subjects do
not violate independence when choosing among the lotteries used in PR
experiments. Some specific models must be employed to account for PR —
models such as the one devised by Karni and Safra.

The models are obtained by ad hoc specification: the Karni and Safra
reinterpretation of the BDM procedure holds only for some particu-
lar pairs of lotteries and some values of the free parameters of the
basic EURDP theory. According to EURDP, the value V of a lottery
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(X1, P15 + - 3 Xu, pn) 1s given by

n n n
V(X1 pri-. i X pa) = Y u(x;) [f (ZP;) - f ( > P/)} :
i=1 j=i j=i+l1
The parameter u is the traditional monotonic increasing real-valued

function defined on some interval in the real line (i.e., on a range of
monetary prizes). Compared with expected utility theory, EURDP has
got one extra free parameter, namely the “probability transformation
function” f. Karni and Safra (1987) show that ifthe following specifications
are chosen for fand u,

1.1564p, 0<p<0.1833
fp) = | 090047, 01833 < p <07
P)=105p+0327 0.7<p<098

P 098 <p<=1,
30x + 30, x < -1
u(x) = { 10x + 10, -1 <x <12,

6.75x + 49, 12 <x,

then for lotteries like those used by Grether and Plott — that is, (—1, 1/36;
4,35/36) and (—1.5, 25/36; 16, 11/36) — the choice-price reversals can be
accounted for. (Remember: the choice-price reversals, or “announced
price reversals” as Karni and Safra call them, are the data to be explained
as opposed to the allegedly artifactual PR phenomenon.) Notice that the
particular parameters and initial conditions are doing a lot of work here.
EURDP cannot by itself even account for the particular asymmetries of
observed reversals: only the model with its specific parameters can. But
given that the parameters are specified in the light of PR data, it is hardly
surprising that the specified model can be used to account for the latter.
Because Karni and Safra’s model (EURDP plus specification of the free
parameters plus initial conditions) was devised explicitly to account for
the evidence to be explained, in other words, the latter cannot provide
much support to the violation of independence hypothesis.

So the Karni-Safra argument discredits the Lichtenstein-Slovic inter-
pretation of PR experiments only indirectly, by proposing a possible alter-
native interpretation of the evidence. In a way, we already knew that some
such interpretation could be constructed, at least in principle. Once the
alternative takes a concrete, specific form, as in Karni and Safra’s paper,
we need to use the empirical evidence to test it against the standard inter-
pretation. And the old PR data do not seem to be able to do that.
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Where have the auxiliaries gone?

Thus some aspects of the PR case can be described using the predictive
success requirement. But one thing is to describe what happens, another
is to capture the deep motivation behind a piece of scientific reasoning. To
put it slightly differently: is the Karni-Safra model’s lack of support to be
explained by the fact that it simply accommodated old evidence, or was
this just a by-product of some deeper problem? In order to answer this
question, we have to examine the predictive success requirement from
a normative viewpoint (rather than a purely descriptive one, as I have
done so far), and ask whether it is a necessary and sufficient condition
for inductive support. I will discuss three problems with this requirement,
two of which are particularly related to experimental testing and one to
inductive support in general. I shall start from the latter, an argument
originally due to Deborah Mayo.?

Mayo (1996, Ch. 8) examines some counterexamples of the predictive
success criterion — some instances, that is, in which a hypothesis seems
intuitively to be confirmed by the evidence despite the fact that the latter
was clearly used in the process of hypothesis construction. First, she asks
us to consider detective investigations. In most cases, the fundamental
hypothesis — that the culprit is or is not x — is constructed using (indeed
is tailored upon) the available evidence. Yet, this is not usually taken by
the jury as an argument against the hypothesis itself — quite the contrary.
(A detective who first formulates the hypothesis that Ann killed Bob and
then looks at the evidence would surely be accused of being prejudiced
against Ann.) This argument can be extended by looking at those scientific
disciplines that willy-nilly have to rely almost entirely on “past” evidence.
Take archaeology or paleontology: the fact that a theory or hypothesis is
modeled on the available fossils is taken to be a virtue not a defect in these
fields. Here’s another simple counterexample proposed by Mayo (1996,
pp. 271-3): consider the hypothesis that “the average SAT score in my

20 Mayo’s (1996) arguments are strictly speaking directed against a modified version of the
predictive success criterion — the “independent evidence” or “construct-independence”
criterion, as it is sometimes called — proposed by Elie Zahar (1976, 1983), John Worrall
(1978,1985), and Ronald Giere (1983) as a response to some other, more basic objections
to predictive success. Since the arguments refute both the general (predictive success)
and the special version (construct-independence) of the requirement, I shall ignore such
details here. There has been some discussion on the construct-independence criterion
in the economic methodology literature (cf. e.g., Hands 1985), which however focuses
primarily on descriptive matters and in my view misses some of the crucial normative
issues (see also Salanti 1994).
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Table 5.2. The Perfectly Controlled Experimental Design

Treatment Other Factors (K;)
Experimental group X Y, Constant
Control group Y, Constant

class = x.”?! In order to construct such a hypothesis (i.e., to specify x), no
procedure is more reliable than taking the SAT score of each and every
student in my class and then calculating the mean. Of course, the data
(the individual SAT scores) would be collected before the hypothesis has
been formulated, and indeed used to construct the hypothesis itself. Yet,
this is certainly no good reason to deny the inductive support provided
by the evidence in favor of the hypothesis. So, predictive success does not
seem to be a necessary criterion for confirmation.

The second reason to question the predictive success criterion has to
do more directly with the logic of experimental testing. As we saw in
Chapter 4, at the core of the experimental approach lies the model of the
perfectly controlled experiment. Now, in the perfectly controlled experi-
ment, there is no mention of prediction, independent evidence, or similar
notions. The basic model, to recall, is reproduced in Table 5.2.

Here the observations provide measures of Y at the posttest stage of
the experiment only. The hypothesis under test is that factor X (the treat-
ment) is a cause of Y. Of course in most experiments, the circumstances
are deliberately set up so as to constitute a good test of the hypothe-
sis, which is therefore formulated before the evidence becomes available.
That’s why most experiments satisfy the predictive success requirement.
But this is not essential for inductive support, and in certain situations
in fact, the predictive success criterion is violated. Take the (rare) case
of natural experiments, in which scientists are lucky enough to witness a
phenomenon that takes place in circumstances that approximate the per-
fectly controlled design, except that nature has set the initial conditions
for us. When such cases occur, of course, it would be foolish to deny that
the evidence strongly supports the hypothesis that, say, X causes Y, just
because the hypothesis has been constructed post hoc, on the basis of X’s
and Y’s covariation in (naturally) controlled circumstances.

Notice that the ideal experimental design accounts nicely for the
Duhemian intuition concerning risk: a good experiment makes it unlikely

21 For non-American readers: the Standard Aptitude Test (SAT) is widely used in U.S.
higher education to assess students’ capacities.
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that a causal hypothesis is false given the evidence, because the K; have
been prepared so as to make the inference from evidence to hypothesis
maximally strong. The idea is that it would be really unlikely to observe e
(that particular correlation between X and Y) if H were wrong (if X were
not a cause of Y). But it would be unlikely because the K; are such that
e wouldn’t be produced unless H were true, not because some scientist
took a risk a la Popper in making the prediction.

Remember that some sort of reasoning about risk is also involved in
Popper’s arguments about predictive success. But as noticed by Mayo
this is not the “right” kind of risk: Popper argues that hypotheses con-
structed post hoc to fit known evidence have no chance of being refuted
by that evidence, whereas what really matters for inductive support — as
highlighted by the model of the perfectly controlled experiment — is that
some hypotheses constructed in such a way would fit the evidence even
if they were false. In other words, the problem arises only if that kind of
evidence is highly likely to be produced regardless of whether H is true
or false.

This is exactly the case with the evidence from classic PR experiments.
That evidence does not severely test the Karni and Safra hypothesis
because the experiment was not designed to minimize the probability
of observing that evidence were the intransitivity hypothesis true. Or,
equivalently, it is not at all unlikely that the Karni-Safra hypothesis is
false, and yet that kind of evidence is observed. In fact, we know per-
fectly well that the same evidence is also implied by the intransitivity of
preferences hypothesis. In contrast, cases like the SAT counterexample
show that it is possible to use the existing evidence to support a “tailored”
hypothesis independently of the temporal relation between data collec-
tion and hypothesis formation. The important point is that alternative
interpretations must be controlled for. This is arguably what Rubinstein
has in mind when he says that “if some pattern of behavior, from among
an endless number of possibilities, is discovered in the data ex post, the
results are much less informative” (2001, p. 26, emphasis added). Predic-
tive success is just an epiphenomenon of this more fundamental principle
of inductive support.

Intuitively (an intuition that I shall not try to make more precise
until the next chapter), a key requirement to impose on the relation
between H and e is that the probability of observing a certain kind of
evidence, assuming some alternative hypothesis is true, is low. Concretely,
we need some experiment especially devised to investigate the possibil-
ity that violations of independence are to be blamed for the price-choice
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reversals, something that the original PR experiments were not designed
to do. In the next chapter, we shall see how this can be (and has been)
done.

Conclusion: The background to the forefront

We can now begin to see what is wrong with predictive success. This
criterion focuses on the relation between H and e only — the temporal
relation between them.?2 However, it fails to mention a crucial element:
the background factors K;. It is by virtue of these factors that the evidence
collected in the perfectly controlled experiment strongly supports the
hypothesis at stake. This is the third reason to doubt that the predictive
success criterion captured the essence of the experimental method — it
ignores the auxiliary, or “background,” conditions. Some experimental
scientists highlight the crucial role played by the background conditions
in making reliable scientific inferences. Here’s a quote from Davis and
Holt’s experimental economics textbook, for example:

Tests of market propositions with natural data are joint tests of a rather compli-
cated set of primary and auxiliary hypotheses. Unless auxiliary hypotheses are
valid, tests of primary hypotheses provide little indisputable information. On the
one hand, negative results do not allow rejection of a theory. [. . .] On the other
hand, even very supportive results may be misleading because a test may generate
the “right” results, but for the wrong reason [. . .]. Laboratory methods allow a
dramatic reduction in the number of auxiliary hypotheses involved in examining a
primary hypothesis. (1993, p. 16, emphasis added)

In the next chapter, I defend a view very similar to the one expressed
in Davis and Holt’s last sentence: the advantage of controlled experimen-
tation is that it allows the elimination and control of the background fac-
tors that may confound the inference from evidence to hypothesis. Intu-
itively, the advantage of laboratory over nonlaboratory science seems to
lie in the fact that the evidence in the former case is collected in “ideal”
circumstances, in which we are confident that the background conditions
are “right.” However, the predictive success requirement does not make
any principled distinction between the two cases. We should be suspi-
cious of this: if experimental tests are universally considered a privileged
source of scientific knowledge, there must be a reason for that, and our
criterion of inductive support must be able to capture such a reason.

22 The same can be said of the construct-independence criterion (see n. 20).
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The idea that inductive support is a three-place relation among H, e,
and K; rather than a two-place relation between H and e has some dras-
tic philosophical implications, which partly explains why philosophers of
science have been so reluctant to endorse it. The inductivist program, as
I mentioned, aimed at doing for inductive inferences what logicians had
done for deductive ones. It would be nice if one could provide a set of
rules such that by inspecting the purely formal features of H and e, it were
possible to establish whether e supports H, and to what extent. Once the
K, enter the picture, however, the issue of inductive support becomes
contextualized: one cannot answer it by merely looking at the features
of e and H. An empirical investigation is necessary in order to establish
whether the context is “right” for e to be truly confirming evidence for H
or not. No more can be said on this issue before I illustrate in more detail
what role the background conditions play in scientific testing. Here I can
just highlight that the role of the philosopher/methodologist and that of
the scientist tend to blur under this approach. Philosophy cannot provide
a set of rules of inference valid a priori if inductive relations are empirical
in character. Scientists’ knowledge of the context and circumstances of
research is required in order to assess the validity of scientific inferences.
Such a conclusion is rather more digestible now than it was half a century
ago, because philosophers today generally endorse the view that episte-
mology should be “naturalized,” or partly based on the results of science
itself. There are various views about how this can be done, but this is
too big an issue to be discussed properly here (cf. Rosenberg 1996 for an
overview). My main topic is experimental inference, and the next chapter
discusses an approach based on the old-fashioned method of eliminative
induction.
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Elimination

The attempt to ground inductive support on the predictive success
requirement faces some serious objections. Such a project seems to miss a
crucial element in confirmation, namely the background conditions (K;)
that allow us to forge a tight link between the evidence (e) and the hypo-
thesis under test (). Unless we model the K; in the relation of inductive
support, our theory of induction will be unable to explain the advantages
of controlled experimentation over nonexperimental methods of investi-
gation. In experimental science, the K; can be systematically checked and
thus possible sources of error eliminated. In this chapter, I further elab-
orate this idea and illustrate its virtues using the example of preference
reversals.

Subjective Bayesianism

I'have said repeatedly that a satisfactory philosophy of experiment should
account for the privileged status of controlled experimentation among the
various methodologies that scientists use. It might be instructive then to
start with an approach that recognizes the importance of background
assumptions for induction, but fails to draw a sharp distinction between
experimental and nonexperimental evidence. It is the subjective (or
“personalist”) Bayesian approach, which during the eighties was on the
verge of becoming the standard view of inductive inference in philosophy
of science.! Economists should be familiar with its main characteristics,

! For a thorough defense of the Bayesian approach to inductive inference, see Howson and
Urbach (1989). The original Bayesian solution to Duhem’s problem is due to Dorling
(1979), whereas Soberg (in press) applies Bayesian analysis to experimental economics.
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because agents’ beliefs and preferences in standard economic models are
represented in subjective Bayesian terms. But whatever its virtues for
modeling economic agents, this approach is not adequate for a theory of
scientific inference.

The key thesis of Bayesianism is that the degree of support provided
by a piece of evidence (e) to a given hypothesis (H;) is measured by a
probability value. The posterior probability of a hypothesis given a piece
of evidence, then, can be calculated using Bayes’s theorem, a theorem of
the standard probability calculus:

P(e |Hy)P(H\)
P(e)

It is easy to see that when the same evidence can be explained by
two competing hypotheses (H; and H,), the posterior probability (and
hence the degree of confirmation) of each hypothesis depends entirely
on two factors: the likelihoods (the probability of the evidence given
a hypothesis) and the prior probability of each hypothesis before the
evidence is collected. The posterior probability of H>, in fact, is given by

P(e|Hy) P(H;)
P(e)

Because the two formulas have identical denominators, any difference
in the posteriors must be the result of a difference in P(e | Hy)P(Hy)
versus P(e | Hy)P(H,). Consider a doctor assessing the positive outcome
of a medical test, e; H; is the hypothesis that the patient has a certain
condition, H; that she hasn’t got it. If P(e | Hy) is high and P(e | H,) is
low — that is, if the test has few false negatives and few false positives — the
evidence will have a greater positive impact on the “condition” hypothesis
(H;) than on the “no condition” hypothesis. However, the impact of the
likelihoods must be tempered by the prior probabilities P(H;) and P(H>):
if the condition is very rare in the relevant population, for example, then
the posterior probability P(H; | ) may still turn out to be lower than the
alternative P(H, | e).?

When the priors represent frequencies, the application of Bayes’s the-
orem may seem to be fairly unproblematic.’> The problem is that usually

P(H|e) =

P(H;|e) =

2 For instance: if P(e | Hy) = .8, P(e | Hy) = .2, P(H}) = .01, P(H;) = .99, P(e) = .206, then
P(Hi|e) = .03 whereas P(H|e) = .96.

3 1 say “it may seem” because it is not clear whether the frequency of a condition in a
population of different individuals is the right prior to be considered in a case like this. It
can be argued that the relevant prior (the probability of that particular individual having
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in science, our hypotheses do not afford such an interpretation. (What
would the frequency of the theory of Quantum Mechanics be? What
would it mean to say that such a theory has a frequency in the first place?)
Most Bayesians, then, try to save their program by endorsing a subjective
interpretation of probability claims, as propositions expressing degrees of
beliefs in a hypothesis. In a way, this is equivalent to recognizing that
necessarily we face every decision-situation loaded with prejudice. So-
called subjective Bayesians bite the bullet and illustrate how prejudice
influences decision making and the updating of our beliefs.

Take a simplified Duhemian case with just two elements, H and K. If
we could assign a degree of prior probability (to be interpreted as degree
of belief before the collection of the evidence) to each element, then by
applying the rules of probability theory, the decision whether to endorse
(or blame) H or K in the light of e would follow automatically. Suppose for
instance that we believe that H is much more likely than K. In such a case,
it would be consistent to blame K for the predictive failure and to keep
H, at least for the time being. In the case of preference reversals (PR for
short — see the previous chapter), we would have the following scenario:
H is the principle of transitivity; K is the assumption that the BDM and
RLS mechanisms do not lead us into error in observing reversals. The
decision whether to take transitivity as falsified would depend on our
prior confidence in transitivity as well as on the prior degree of reliability
assigned to the elicitation procedures.

It is a consequence of Bayes’s theorem that

P(H&Kile)  Ple|H&K)) P(H&K;)
P(~H&Ky|e) Ple|~H&Ky) P(~H& K>)'

Now consider that by using suitable auxiliary and background assump-
tions, it is always possible to make sure that the likelihoods P(e | H & K1)
and P(e | ~H & K;) are both equal or very close to one. If the main hypoth-
esis entails the evidence, if we postulate certain values for the free param-
eters as Karni and Safra did and we assign an appropriate degree of belief
in the working of the apparatus, for instance, then the likelihood of the evi-
dence given H & K may be set so as to be very high (Salmon 1990 calls this

that condition) is the propensity associated with the genetic, environmental, etc. factors
of that particular individual. The relevant chance setup, in other words, is not the one
generating the frequency of the condition in the overall population (because there is
no such unique setup), but the conditions in which that specific individual happens to
be. Of course, we very rarely have access to such information, which according to some
philosopher is why we need a method of inductive inference that does not rely on priors.
See also the discussion between Howson (1997a, 1997b) and Mayo (1997a, 1997b).
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procedure “the invention of plausible scenarios”). The same, of course,
can be done for ~H & K,. However, if P(e | H & K;) = P(e | ~H & K;) -
if the observation of reversals, for example, is entailed by the assumption
that transitivity is true and the elicitation procedures false, as well as
by its opposite — then the impact of the evidence on each alternative
(“H & K;” vs. “~H & K;”) depends entirely on the prior probabilities
assigned to the alternatives themselves (i.e., the ratio P(H & K;)/P(~H
& K3)). If, for example, P(H & K;) > P(~H & K3), then P(H & K | €) >
P(~H & K; | e).

The probability calculus, in other words, can be used to demonstrate
that if you believe so and so then you must believe so and so, or that
certain posterior beliefs must follow rationally from certain prior beliefs
and the evidence. However, this is slightly disturbing: are we ready to
accept any degree of prior belief, no matter how crazy or unsupported?
As empiricists, we want objective empirical reasons to be embodied in
scientific methodology. Bayesians reply that their approach is empiricist
in character, indeed that it captures all the rationality empiricism can
afford. Evidence, they argue, does always have an impact on our beliefs,
albeit in an indirect way. Consider the “losing” alternative in the example
above, ~H & K;. Although the impact of the evidence is greater onits rival
(H & K1), ~H & K, will also be supported to a certain (perhaps minimal)
degree. As more evidence of this kind is collected, the probability of
~H & K, will grow, and will eventually become very high.* The priors,
as Bayesians like to point out, are “washed out” by the evidence and
eventually, in the long run, do not count. But in the meantime, they affect
the way in which different scientists interpret the same evidence.

Superficially, this seems to be consistent with the history of many
scientific debates, including the one on PR: few economists abandoned
right away the standard theory of choice in the light of Lichtenstein and
Slovic’s results, and those who did were probably those who already ques-
tioned the theory anyway. Most neoclassical economists, in contrast, were
skeptical of the PR result and stuck to their favorite models of ratio-
nal behavior. According to subjective Bayesianism, this move was (sub-
jectively) rational — and so was the attitude of those, like Lichtenstein
and Slovic, who took the PR result as refuting standard choice theory.
Eventually, after enough experimentation, both types of prejudice should
wash out, but in the meantime, there is no way to tell who’s right or
wrong.

4 See, e.g., Redhead (1980) for a demonstration of how the probability of a hypothesis can
be raised by testing it repeatedly in conjunction with different background assumptions.
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However, there is an important sense in which the dogmatic economist
who assigns a prior probability of 0.00001 to the hypothesis that the tran-
sitivity axiom is false, and dismisses the PR phenomenon for this reason
only, is irrational, for she has no good empirical reason to do so.> We
need a methodology that is able to recognize and blame prior beliefs
of this sort as irrational prejudices, instead of merely describing them.
In fact, if we look more carefully at the PR controversy, we realize that
the Bayesian story is not entirely convincing. True, scientists have prior
beliefs (although whether they are expressed in probability measures is
doubtful); and true, they don’t give them up easily: they tend to stick to
their guns until more evidence is brought to bear on the issue at stake.
We may also grant that their prejudice is a cause of their conservatism.
However, it seems bizarre to say that it is rational not to believe in the
implications of a certain experimental result just because one has a cer-
tain prejudice. Whether an individual scientist or group of scientists is
strongly prejudiced for or against a given hypothesis is a useful piece of
information in order to understand why they try to prove or disprove that
hypothesis, but should not determine whether a piece of evidence does or
does not disprove it, as a matter of fact. And, in fact, no scientist will ever
say: I don’t believe in PR because I don’t want to give up the principle
of transitivity. What they do say is: I don’t believe in PR because I have
good reasons to suspect that the PR experiment may be flawed. Only in
the latter case do they feel rationally entitled to disbelieve an experimen-
tal result, because they distinguish correctly between subjective beliefs
and objective matters of fact.

Take an example from physics. In 1919, Eddington argued that his
measurements of the deflection of light near the sun refuted Newton’s
theory and confirmed Einstein’s predictions. The problem was that not all
observations collected by Eddington were consistent with Einstein’s pre-
dictions, an inconsistency that Eddington resolved by blaming one of his
instruments of observation (a mirror used to observe the eclipse). How-
ever, many other conservative scientists questioned Eddington’s expla-
nation in an attempt to save Newton’s theory of gravitation. Eventually
Eddington’s pro-Einstein party won, after a good deal of argument over
the analysis of data.® As a prominent critic of Bayesianism puts it,

5 An even more difficult case for the personalist is one in which a scientist assigns a zero
prior probability to a hypothesis: in this case, no evidence will ever be able to raise its
posterior probability.

6 For two different accounts of this controversy, see Earman and Glymour (1980) and Collins
and Pinch (1993, Ch. 2).
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Eddington believed in the correctness of Einstein’s account, but nobody cared how
strongly Eddington believed in Einstein. Quite the contrary — it only made those
who favoured a Newtonian explanation that much more suspicious of Eddington’s
suggestion that the faulty mirror, not Einstein’s account, was to blame. (Mayo
1996, p. 110)

Similarly, in the PR case, we need an objectively good reason to
design new experiments to test the alternative explanations of price-
choice reversals; it is not enough to say that the refusal to accept this
result was due to economists’ prejudice.” (We should leave such explana-
tions to historians, who are usually much better than philosophers at that.)
Finally, notice that subjective Bayesianism fails once again to distinguish
appropriately between experimental and nonexperimental evidence. And
the reason it fails is strictly related to the issue of prior beliefs. Although
Bayesians are able to incorporate background assumptions in their cal-
culus, they do not provide any grounds to treat differently background
assumptions in experimental and in nonexperimental science. What mat-
ters for them is not scientists’ actual degree of control over background
factors, but their prior degrees of belief, which may be set in a totally
arbitrary fashion.

Objective inductive support

The impact of a given piece of evidence on a scientific hypothesis should
not depend merely on what individual scientists think of it. Following
Peter Achinstein (2001), it is useful to distinguish between two separate
issues here: whether a scientist does (or ought to) believe that e supports
H, given her overall system of beliefs; and whether e does support H
independently of what that scientist thinks, knows, or believes. We may
say that a theory aiming at resolving the former issue is a subjective theory
of induction, whereas a theory focusing on the latter is concerned with
the objective relation between H and e.®

7 For more detailed critiques of the subjective Bayesian approach to Duhem’s problem,
see Earman (1992), Worrall (1993), and Mayo (1996, especially Ch. 4). On economists’
dogmatic attitude toward preference reversals, see in particular Hausman (1992a, Ch. 13)
and Hausman and Mongin (1998). Tammi (1999) reconstructs the debate on PR as a series
of “escape moves” aimed at limiting the impact of the anomaly on the received theory.

8 Achinstein (2001) draws a more complex taxonomy of confirmation theories by distin-
guishing among four concepts of evidence: “subjective,” “epistemic,” “potential,” and
“veridical.” Roughly, the first two correspond to my “subjective” approach, the latter two
to my “objective” approach. My simpler (and rougher) classification is good enough for
the purposes of this book. For a similar distinction (“actual” vs. “assessed” support), see
Lipton (1991, p. 151).

”
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Desubjectivizing induction, however, is not easy. In light of what was
said in the previous section, it may seem promising to start by just taking
away the problematic elements from Bayes’s theorem — the priors. What
we are left with are the likelihoods, statements that enjoy a slightly more
respectable status, from an objectivist point of view. It may seem natural,
then, to propose the following criterion: a piece of evidence e supports or
confirms a hypothesis H; more strongly than a rival H; if and only if P(e |
Hy) > P(e | Hy). This “law of likelihood,” as it has been called, provides
at least a comparative principle of inductive support.” Moreover, it is a
weak principle that is not inconsistent with the logic of Bayes’s theorem:
by itself, the law of likelihood is agnostic on what the exact posterior
probabilities of the two competing hypotheses will be; the law is merely
concerned with the relative impact of the evidence on each hypothesis.
Bayesians are then free to “temper” the impact of the likelihoods using
whatever prior probabilities they think can be legitimately used.

Likelihoodism, however, must face some powerful objections. The first
problem comes from “concocted” hypotheses, that is, hypotheses espe-
cially created so as to make likelihoods maximally high. We already have
seen an example in the previous section, and again the PR debate pro-
vides a concrete instantiation of this problem: by adding specially crafted
background and auxiliary assumptions Kj, it is always possible to make
sure that the evidence is logically implied by the “cluster” of hypotheses
and auxiliaries, as first highlighted by Duhem and Quine. However, these
concocted hypotheses as a consequence will always receive maximum
support from the evidence, contrary to our intuition.

There are, to be sure, some technical problems in defining the likeli-
hood values of composite hypotheses like the ones just mentioned.!” To
avoid technicalities, however, consider the simple hypothesis H; = “an
evil demon made the patient test positive for the condition.” No matter
what the alternative is, this hypothesis will receive at least as much support
from the evidence as its rivals — which is, of course, rather disturbing. One
possible strategy is again an appeal to modesty; Elliot Sober, a prominent
likelihoodist, puts it as follows:

Likelihoodists can and should admit that the demon hypothesis is implausible or
absurd, notwithstanding the fact that it has a likelihood of unity [. . .]. It’s just
that likelihoodists decline to represent this epistemic judgment by assigning the
hypothesis a probability. Likelihoodist epistemology is modest in its ambitions;
support gets represented formally, but plausibility does not. (Sober 2002, p. 24)

9 Hacking (1965) provides a classic statement of the law of likelihood. For a more recent
discussion of “likelihoodism,” see Forster and Sober (in press).
10 Cf. e.g., Sober (2002) for a brief illustration.
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Reasonable as this suggestion might sound, it leaves open the question
of how to justify in a nonsubjective fashion the implausibility of the demon
hypothesis. And even if we could do that, this would leave us with the
rather unpleasant fact that the evidence does support H3 better than the
alternatives, although Hj is ruled out on independent (albeit unspecified)
grounds of plausibility. However, this is not very sensible: surely what we
want to say is that H3 does not receive any support from the evidence,
because it is not the kind of hypothesis that can be checked by means of
a medical test.

To articulate this intuition, a little “gestalt shift” isrequired. Remember
that according to Bayesianism confirmation is to be represented by means
of a probability measure. Ronald Giere (1977) has proposed to label the
theories that assign such a role to probability as information models of
inductive inference.!! The contrast class is provided by so-called testing
models of inductive inference — theories that use probabilities to measure
the properties of testing procedures (e.g., the power or the severity of a
test) instead of the degree of confirmation of scientific hypotheses. Well-
known examples include orthodox (Neyman-Pearson) statistics, Popper’s
falsificationism, and, more recently, Deborah Mayo’s error-probabilistic
account.

We shall see later how to apply a very general version of the testing
approach to experimental reasoning, but for the time being, let me high-
light a couple of key differences with respect to the likelihoodist and
Bayesian approaches. What we want is to impose a condition that links
support or confirmation not only to the high probability of observing
the evidence if the hypothesis is true (as in likelihoodism), but also to
the absence or the low probability of alternative explanations of the evi-
dence. It is precisely because this latter condition is satisfied that the
patient should be worried by the positive result of a test with low false
positives — because the probability of observing that result, if the con-
dition is absent, is very low. (Readers familiar with orthodox statistical
methods should find these notions familiar: standard Neyman-Pearson
statistical tests can, in fact, be seen as an attempt to implement them in a
more precise and rigorous way.)

Giere (1983) and Mayo (1996) propose that a hypothesis H should
be considered indicated (qualitatively) by the evidence e only if the test
that produced e is such that there is a high probability of observing e if
the hypothesis is true, and a low probability of observing e if it is false.

11 Deborah Mayo’s (1996) evidential relationship category tries to capture essentially the
same class of theories of inductive inference, albeit by means of a different terminology.
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This is generally the line that I shall follow in the rest of the chapter,
although — this not being a book on induction — I shall try to keep the
discussion at a rather general level and will not make any commitment
on a number of specific issues of inductive inference. My main effort
will be devoted to illustrate how such a requirement is translated at the
level of experimental design, that is, how experimental scientists create
their experiments exactly with this requirement in mind: they aim, in
other words, at designing test situations such that the evidence points
unequivocally in the direction of the hypothesis under test.

By introducing the model of the ideal controlled experiment, in a way
I have already identified a situation in which the requirement is objec-
tively and perfectly satisfied. The perfectly controlled experiment, in fact,
describes a situation in which a given piece of evidence can be used to
make the strongest possible inference to a causal hypothesis. If the evi-
dence is collected in a controlled experiment, the relation between e and
H will be strong — in the objective sense — regardless of what scientists
may think about it. It will be objectively strong even if no one knows that
the evidence has been collected under controlled experimental circum-
stances. That’s why a given piece of evidence may confirm a hypothesis in
the objective sense but, at the same time, be seen as not confirming that
hypothesis (perhaps even as falsifying it) in the subjective sense.

Another way to putitis this: whether e supports H objectively speaking
depends on the Kj, that is, on whether the background circumstances are
“right” for that inference to be made. In contrast, whether e supports H
in the subjective sense depends on what people think of the K;. A flawed
(badly designed) experiment cannot provide evidence for or against a
given hypothesis in the objective sense, but may do so in the subjective
sense. Now, one may argue that an objective theory of inductive support
is of little practical use: after all, in real life, we are never sure that we
have got adequate knowledge of the circumstances under which we act.
Duhemian problems in real life have a subjective component in them.
This is certainly true, and in fact, later in this chapter, I relax the objec-
tivist approach by injecting a social component in the notion of inductive
support. However, we should not dismiss the objectivist approach too
quickly. To specify a set of circumstances in which the objective support is
maximally strong is useful in order to identify what sort of situation must
occur for us to have the “right” sort of beliefs. It tells us what we should
look for to correctly infer from e to H.

The model of the perfectly controlled experiment also indicates what
constitutes alegitimate challenge against an experimental result, and what
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scientists should do to rebut such challenge, or to make sure that a given
experiment has been performed correctly. As just pointed out, a flawed
experiment is one in which some background factor “interferes” to create
the illusion of a phenomenon that is not really there (an artifact); such
an experiment clearly does not provide good evidence in the objective
sense. Therefore, experimenters should make sure that no mistakes have
been made in designing or performing the experimental test, or that all
the K; have been controlled adequately. And in fact, most experimental
science is simply devoted to checking that no errors have been made
in other, previous experiments — they are aimed at eliminating artifacts
by checking the robustness of phenomena and the correctness of their
explanations.

Experimental error and checking

A key advantage of controlled experimentation is that it allows the sys-
tematic search and elimination of errors. Experimental induction, in this
sense, is eliminative induction. This is not a particularly illuminating claim
in itself, for as John Earman (1992) rightly points out, all inductive strate-
gies must in one way or another be eliminative in character.!> Remem-
ber the underdetermination problem: logically speaking, a given piece of
evidence can be entailed by an infinite number of alternative hypotheses.
Hence, inductive inferences must somehow select from the infinite num-
ber of possibilities those that are truly supported by the evidence from
those that are not. The interesting issue is how this selection takes place.
Pace Earman, there are reasons to believe that the elimination does not
always or typically take place at the level of “grand” theories. Such rea-
sons come, on the one hand, from the observation of actual experimental
practice and, on the other, from the analysis of the perfectly controlled
experimental design.

The hypotheses at stake in many experiments are low-level claims
about the occurrence of certain phenomena, the functioning of a measure-
ment instrument, or the influence of some background factor. Another
way to describe such activities is to say that these experiments are aimed
aterror detection and elimination. The “experimental artifacts” discussed

12 Eliminative induction, traditionally associated with Francis Bacon’s Novum Organum
(1620), has suffered from a lot of bad press in contemporary philosophy of science,
but has recently begun to be rehabilitated. Influential defenses of eliminative induction
include Mackie (1974, especially the Appendix), Earman (1992, Ch. 7), and Kitcher
(1993, Ch. 7).
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in previous chapters are exactly this: errors in drawing inferences from
data to phenomena, from phenomena to theories, or from what happens
in an experimental setting to what is going on in nonlaboratory conditions.
Scientists sometimes test the claim that a phenomenon is real, sometimes
check the accuracy and reliability of instruments, and anyway try to make
sure that the data they collect constitute good evidence for whatever pur-
pose they are supposed to be used. All this may or may not be related to
the testing of some high-level explanatory theory, eventually. However,
what is eliminated in each instance usually is not a high-level alternative
explanation of the evidence, but rather a possible source of experimental
error that may confound the inference from the evidence to the hypothesis
of interest.

Thus, for example, most experiments on PRs tested the hypothesis that
PRs are a real phenomenon rather than an artifact of the instruments of
preference elicitation. The elimination took place at the level of auxiliary
assumptions such as “the BDM procedure is flawed,” or “the incentives
are not adequate.” Theory testing on a grand scale is an activity that can
at best be carried out within a whole research program, that is, in a long
series of related experiments. Within a research program, each single
experiment is typically devoted to low-level hypothesis testing. This is
not a new thesis, for several historians and philosophers of science who
have carefully studied experimental practice have made a similar point
before. The physicist Allan Franklin (1986, 1990, 1998), the historian Peter
Galison (1987), and the philosophers Giora Hon (1989) and Deborah
Mayo (1996) are among those who have defended this view with most
vigor recently.

The second argument in favor of eliminative induction “in the back-
ground” comes from the perfectly controlled experimental design. This
model experimental design highlights that, contrary to what some overen-
thusiasts of underdetermination suggest, (1) inferences from the evidence
can in principle be local, that is, can be directed toward a well-specified
hypothesis in the “cluster” of all explanations that are logically compat-
ible with the evidence (typically, that a certain factor X does or does
not causally influence another factor Y). And furthermore, that (2) the
reliability of such local inferences depends largely on the control of back-
ground factors. Such background factors are the aspects of the design that
can mess up the experimental inference or create artifacts. An objectively
good experiment, then, is such that the known possible sources of error
have been eliminated ex ante by means of accurate experimental design.

Notice that the Duhem-Quine problem, as seen from this perspective,
takes a distinctively constructive flavor. Many philosophers tend to see
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Duhem’s problem as a powerful weapon in the hands of the skeptics or
the conservatives: it is always possible, according to this interpretation,
to question the validity of a result (or to resist an apparent refutation)
by blaming some background assumption. For example, here’s a typical
quote from Imre Lakatos:

No experimental result can ever kill a theory: any theory can be saved from coun-
terinstances either by some auxiliary hypotheses or by a suitable reinterpretation
of its terms. (1970, p. 32)

Quine suggests as much in his famous (1953) essay. And Vernon Smith
also follows Lakatos and Quine in a recent paper:

The interpretation of observations in relation to a theoretical hypothesis is inher-
ently and inescapably ambiguous, contrary to our [i.e., economists’] accustomed
thinking and rhetoric. (2002, p. 98)

The truth, of course, is that the interpretation of data appears
“ambiguous” only if we take purely deductive logic as our standard of
clarity. However, that is a dubious assumption: we can surely imagine
situations (such as the perfectly controlled experiment) in which the
evidence makes one hypothesis unambiguously likely, given the back-
ground assumptions. Moreover, in many cases, Duhemian arguments are
more accurately characterized as instances of constructive criticism than
as skeptical challenges. To indicate a potential flaw in an experiment is
functional to devising a new control on that particular source of error.
Of course, this is not to deny that scientists are, in many cases, moti-
vated by a priori skepticism or conservatism. (As we have seen, the PR
case may be exactly an instance of this sort.) Rather, it means that we
should distinguish between scientists’ psychological motivations and the
objective process of scientific research. Whatever the motivations behind
economists’ critique of the PR experiments, the repeated and ingenious
checks prompted by their challenging arguments have strengthened the
PR phenomenon, instead of weakening it. Once all the main critiques to
the PR design have been met, experimenters simply “do not see how to
make the phenomenon go away,” to use a physicist’s eloquent expression
(Galison 1987, p. 235), and accept it as real.

Checking the preference reversals experiment

We left the PR debate right after the formulation of Holt’s, Karni and
Safra’s, and Segal’s critiques. These authors, to recap briefly, suggested
in a series of independent papers that the PR “phenomenon” may be an
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artifact of the instruments of observation (preference elicitation) used
by Lichtenstein and Slovic, and Grether and Plott. This case provides a
severe test for the view that inferences within the experiment are elim-
inativist in character, because of the highly theoretical character of the
arguments proposed to discredit the PR experiments. It is tempting to
interpret the controversy as a contest among alternative theories, which
is eventually settled by drawing predictions from each theory and testing
them in the laboratory. However, as I said, the PR debate is best seen as a
series of attempts to discover and check potential artifacts in the original
experiment devised by Lichtenstein and Slovic. This appears obvious if
one looks at experiments such as Grether and Plott’s (1979), but the same
can be said of later empirical work in this area.

I have argued in Chapter 5 that the alternative explanation of the PR
data (the “price-choice reversals”) proposed by Karni and Safra could not
receive inductive support from the original PR experiments because the
latter had not been conceived with the aim of controlling for violations of
independence. Still, the Karni-Safra critique indicated a potential flaw in
the PR experiment, an error that could affect the inference from the data
to the PR phenomenon (to the intransitivity of the preference relation, in
particular). Some new experiment had to be specially designed to check
this potential source of error. In fact, we find in the experimental literature
of the late eighties and mid-nineties a number of tests devised for this
purpose. Here I briefly illustrate just a few representative examples.

The first test I want to examine looks for signals of the experimental
flaw. “Disturbing” factors and other sources of error (e.g., malfunctioning
apparatus) typically leave traces that can be detected under the appro-
priate conditions. A checking experiment simply creates such conditions.
In our case, the experiment tests the joint effect of reduction and viola-
tions of independence. Starmer and Sugden (1991) have tried to create
experimental circumstances under which the reduction hypothesis, upon
which critiques to the BDM procedures are built, is incompatible with a
very frequent effect, a violation of independence first discovered by Mau-
rice Allais (1953) and known as “common consequence.” The experiment
involves a double choice, first between a lottery R’ = (£10, 0.2; £7, 0.75;
0,0.5) and a lottery S’ = (£7, 1); then between R” = (0, 0.8; £10, 0.2) and
S” = (£7, 0.25; 0, 0.75). The common consequence effect is a tendency
to choose S’ = R’ and R” > S”: subjects seem to weigh the probabilities
differently depending on whether they provide certainty (as in S’) or not
(as in §”). By reduction, it is easy to show that the following equivalence
holds between compound lotteries: (R’, 0.5; 8”7, 0.5) = (8, 0.5; R”,0.5) =
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(£10, 0.1; £7, 0.5; 0, 0.4). If there is reduction, then, one should expect
a random pattern of choice between (R’, 0.5; §”, 0.5) and (5, 0.5; R,
0.5), whereas common consequence implies (§', 0.5; R”, 0.5) = (R/, 0.5;
S”,0.5). If there is reduction, in other words, there cannot be common
consequence effects, and vice versa. Starmer and Sugden performed the
above Allais-type experiment with and without the RLS mechanism, and
observed the same ratio of common consequence violations in all cases.
This provided evidence that the reduction hypothesis cannot be right,
contrary to what some critics of PR experiments had suggested.
Similarly, Safra, Segal, and Spivak (1990a, 1990b) derived from Karni
and Safra’s model an implication that could be tested in the laboratory.
Their “Proposition 2” states that although the optimal selling price () of
a lottery and its certainty equivalent (CE) may end up being nonidentical
in a BDM elicitation (hence the “error” in observing preferences), they
should nevertheless lie on the same side of the lottery’s expected value
(EV). More precisely, the two following testable predictions (for risk-
loving and risk-averse subjects, respectively) can be derived from Karni

and Safra’s interpretation:!3

(i) CE(X)> EV(X) - n(X) = EV(X)
(i) CE(X) < EV(X) — n(X) < EV(X)"

An experiment testing such predictions would act as a sort of “detec-
tor” for the error indicated by Karni and Safra.! Keller, Segal, and Wang
(1993) ran such an experiment, and found Proposition 2 to be inconsistent
with about thirty percent of the data.

Consider that some experimental checks can be conducted after the
collection of the evidence, in apparent violation of the predictive success
criterion. Violations of Proposition 2, for instance, could be interpreted
as evidence of occasional random mistakes. Subjects, according to such
an interpretation, would have a tendency to act in accordance with the
Karni-Safra model but, at the same time, deviate stochastically from the

13 For the technical details of such a derivation, cf. Safra, Segal, and Spivak (1990b, pp. 187—
8).

14° According to Segal’s (1988) interpretation of the BDM device, on the other hand, (i) and
(ii) do not necessarily hold. A test of such hypotheses may therefore be seen as a sort of
“crucial experiment” discriminating between the Karni-Safra and Segal arguments.

15 To be more precise: the absence of the two effects above would be a sign of the incor-
rectness of the Karni-Safra account, whereas the observation of (i) and (ii) would not
necessarily count in its favor. The two effects (i) and (ii) can, in fact, be derived also from
EUT, because according to the latter, CE(X) = 7 (X).
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central tendency. However, a quick look at the evidence will reveal that
this cannot be the case. The data display a definite asymmetry: the 7t(X) >
EV(X) > CE(X) pattern is displayed for 22 percent of the subjects,
whereas the CE(X) > EV(X) > n(X) pattern is shown for only 9 percent
(Camerer 1995, p. 659). The “random mistake” interpretation can there-
fore be dismissed with a high degree of confidence.

At this stage, one may be tempted to conclude that these experiments
fit perfectly well a theory-testing account: a theory (EUT) is proposed,
predictions are derived from it, the evidence (PR) refutes it, another
theory is proposed (Karni and Safra’s), a prediction is derived from it,
evidence refutes it, and so on and on. However, this would be too quick
a conclusion. Recall that the sticky issues in the experiments on PR did
not primarily have to do with any highly explanatory theory. They can
rather be summarized in the question, How can we know that the obser-
vations of preference relations made via elicitation mechanisms were
reliable? Unfortunately, many philosophers and scientists tend to con-
flate these two issues: (1) Have we got a correct theory of the instru-
ments of observation? and (2) Do the instruments observe accurately?
This confusion tends to generate unnecessary problems and exaggerated
worries. In fact, it is not the case that if one does not have a theory of
the instruments, one is not entitled to believe in what the instruments
show.

Karni and Safra, in their paper devoted to challenging the BDM elici-
tation mechanism, pose the following two questions: (a) “How rich is the
class of preferences that permits the elicitation of certainty equivalents
of given lotteries using [the BDM] method?” and (b) “Are there exper-
iments that enable the elicitation of the certainty equivalents of every
lottery for every reasonable preference relation?” The first question is
the one that motivates their enterprise; the second one is obviously more
ambitious, asking as it does for an elicitation procedure that is absolutely
general in its scope of application. Of course, they are both legitimate
questions, and indeed interesting ones from a scientific (and particularly
theoretical) point of view, but their relevance to the issue at stake (i.e.,
the artifactual nature of PR) is far from clear. Karni and Safra answer,
respectively, that

(a) the elicitation of certainty equivalents of all lotteries, using the experimental
methods of Becker, DeGroot, and Marschak, is possible if and only if the prefer-
ence relation is representable by an expected utility functional; (b) every experi-
mentin alarger class of experiments [which Karni and Safra call “Q-experiments”]
would fail to elicit the certainty equivalent of some lotteries for some reasonable
preference relations. (Karni and Safra 1987, p. 676).
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In other words: if subjects’ choices violate independence, then the
BDM procedure and similar mechanisms are not adequate instruments
to determine certainty equivalents in a precise way and in all cases. From
this, Karni and Safra conclude that “Grether and Plott and others [. . .], as
our discussion indicates failed to [. . .] observe by means of an experimen-
tal method developed by Becker, DeGroot, and Marschak (1964), the
certainty equivalents of given lotteries” (ibid.). Apart from the fact that —
given what we have seen so far, and as later research on PRs has shown —
this is quite clearly an overstatement, the point is that such an argument
is not in itself sufficient to challenge the existence of PRs. To begin with,
the first premise (that agents do actually violate independence in these
particular cases) had not been established. Secondly, even if it had been
established, it does not follow logically that PRs cannot be observed by
means of “Q-experiments.” The BDM mechanism and similar methods,
in fact, may not be absolutely or generally precise, but still precise enough
to observe PRs. One natural way to see whether this is the case or not
is to try to observe reversals with and without the BDM procedure, and
check whether it makes any difference.

Remember the target of Holt’s, Karni and Safra’s, and Segal’s
arguments: originally, they intended to show that it was not intransitive
preferences that experimentalists had observed in their experiments with
the BDM procedure. In order to reject their interpretation, therefore, one
need not necessarily show that their alternative accounts are mistaken. It
should be sufficient to show that it was a genuine feature of preferences
that was observed in the experiments in question. Ian Hacking (1983,
Ch. 11) argues that our confidence in what we see through electron micro-
scopes is enhanced by the fact that the same entities or phenomena are
observed through light microscopes. This procedure is analogous to what
social scientists call triangulation: if you are not sure about any measure-
ment technique, use several different procedures. The intuition behind
this inference is captured by a so-called no-miracles argument:

Two physical processes — electron transmission and fluorescent re-emission — are
used to detect the bodies. These processes have virtually nothing in common
between them. They are essentially unrelated chunks of physics. It would be a
preposterous coincidence if, time and again, two completely different physical
processes produced identical visual configurations which were, however, artifacts
of the physical processes rather than real structures in the cell. (Hacking 1983,
p. 201)

According to such an argument, evidence obtained via independently
working instruments provides strong support for the existence of a
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phenomenon. Our belief in the reality of a phenomenon can be inde-
pendent of the explanations of how we were able to observe it. We may
not know the causes of the phenomenon or have an established theory of
the instrument, and yet we may believe in the phenomenon and in what
we detect using that instrument.

Consider a famous example from physics, Jean Perrin’s determination
of Avogadro’s number. Avogadro’s number is the number of molecules in
a mole of any substance. Perrin was able to measure it observing the ran-
dom movement of tiny particles suspended in a fluid (a phenomenon
known as Brownian motion). In order to be sure that he had found
the true quantity he was after, however, Perrin checked his result by
comparing it with alternative measures. In his 1913 book, Les atomes,
Perrin reports thirteen different independent methods to ascertain
Avogadro’s number. The “miraculous” convergence of all measures
is taken to be extremely strong proof that the result obtained was
not an artifact of the procedures he had used.!® As Franklin (1986,
pp. 131-5) points out, exactly for the same reason, the Review of Par-
ticle Properties provides detailed information about the different devices
used for measurement purposes (automatic spark chambers, counters,
electronic combinations, emulsions, hydrogen bubble chambers, missing-
mass spectrometer, xenon bubble chambers, cloud chambers, propane
bubble chambers, spark chambers, wire chambers, bubble chamber plus
electronics, freon bubble chambers, etc.). The reliability of a measurement
is a function of the number of different techniques delivering consistent
results.

In the case of PRs, we find several attempts to apply the logic of tri-
angulation. Interestingly, the PR phenomenon had been observed right
from the beginning with and without elicitation mechanisms. Among
Lichtenstein and Slovic’s early tests (1971), only two involved the BDM
procedure, but reversals were produced in all of them. This fact should
have already been a puzzle to the Holt, Segal, Karni and Safra explana-
tions but for some reason, was overlooked by the economists investigating
the BDM and RLS mechanisms.!” Years later, Jim Cox and Seth Epstein,
two economists at the Arizona Experimental Lab and De Paul University,

16 Even a conventionalist like Poincaré was struck by such a result; see Nye (1972) for the
full story. Cartwright (1983), Salmon (1984), Mayo (1996), and Achinstein (2001) provide
slightly different philosophical reconstructions of Perrin’s experiments.

17" A possible explanation is that economists generally dismiss experiments without mone-
tary incentives as unreliable and therefore ignored part of the original data presented by
Lichtenstein and Slovic. In Chapter 11, I discuss the issue of incentives in more depth.
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looked for a way to reproduce preference reversals using incentive mech-
anisms but avoiding possible problems with the BDM procedure:

[...]it was necessary that we not use the BDM price elicitation procedure. Further-
more, we concluded that Karni and Safra’s Theorem 2 makes it highly unlikely that
anyone will be able to design a price elicitation mechanism for choices in a lottery
space that does not require the independence axiom. Therefore, we concluded
that it would be impossible for us to elicit true selling prices in an experiment that
is designed in such a way that behavioral inconsistencies with the independence
axiom are not confounded with more fundamental inconsistencies with decision
theory. But preference reversals are inherently properties of inconsistent order-
ings. The absolute magnitude of prices is basically irrelevant; it is the fact that the
less preferred lottery is given a higher price that represents an inconsistency with
decision theory. (Cox and Epstein 1989, p. 412)

Cox and Epstein tried to design an incentive procedure able to elicit
orderings without creating compound lotteries. First, they asked subjects
to state their lowest selling price for both lotteries in each pair; the lottery
with the lower price was then paid a fixed sum, whereas the other was
played out for money. The prices were then compared with subjects’ pair-
wise choices on lotteries obtained by reducing the payoffs of the original
lotteries by the announced selling price (so that the probability distribu-
tion of returns was kept constant). The procedure is problematic because —
as Cox and Epstein (1989, p. 422) admit — the subjects might interpret the
pricing task as a choice task. Some critics (e.g., Hausman 1992a, p. 139),
indeed, suggest that Cox and Epstein’s might not even be classifiable as
a genuine PR experiment. For our purposes, however, the general strat-
egy is what matters: Cox and Epstein’s procedure does not prevent the
subjects from stating a higher selling price than their true reservation for
the preferred lottery, but is supposed to ensure that the latter is assigned
the highest price anyway. Because of the structure of the experiment, it
was not possible to control for wealth effects and for portfolio effects at
the same time; Cox and Epstein decided to control for the latter and then
cope with wealth effects by means of data analysis. PRs were observed;
the pattern of reversals, however, was quite different from that of classic
PR experiments. Many unpredicted reversals and fewer predicted asym-
metries occurred, thus warranting the suspicion of (at least some element
of) random choice behavior.

Cox and Epstein’s approach, however, seemed promising. Tversky,
Slovic, and Kahneman (1990) later devised an incentive mechanism with
the aim of improving on Cox and Epstein’s procedure. The basic idea,
again, was that ordering rather than the elicitation of true selling prices
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is what matters for the observation of the PR phenomenon. Rather than
doing things concurrently, subjects were first asked to price the lotteries
in each pair separately, and then were faced with the choice task. Subjects
were told that only one lottery among the highest priced and the chosen
one would have been randomly selected and played. One can attempt to
explain away the observed reversals by means of a generalized expected
utility model assuming that subjects implement a mixed strategy, that is,
by supposing that agents prefer a 50 percent chance to play either the
highest or the lowest valued lottery to the option of playing one of them
for sure. Such an explanation, however, cannot account for systematic
patterns such as those observed in classic PR experiments and replicated
by Tversky, Slovic, and Kahneman.

The importance of the background

These experiments constitute just a fraction of the work done on the PR
phenomenon during the last two decades. For reasons of space, I cannot
discuss others that are equally interesting and important. Collectively,
at any rate, these experiments have convinced experimental economists
that PRs are likely to be a genuine experimental phenomenon. In his
survey in the Handbook of Experimental Economics, Colin Camerer
(1995, p. 659) concludes that in the light of the evidence accumulated
thus far, the PR phenomenon can hardly be considered an artifact of
the instruments of observation. He claims that the doubts concerning
the BDM and RLS mechanisms that had been raised in the eighties are
not vindicated by the experimental evidence, and that anyway the PR
phenomenon is observable with and without these elicitation procedures.
Experimental economists may not know exactly how the elicitation mech-
anisms work (although they surely have a better understanding now than
twenty years ago), but they are confident that they may be used to observe
PRs.

The increased confidence of experimental economists derives from
the numerous, repeated checking procedures implemented to control for
possible mistakes in the original PR experiment. An experimental infer-
ence, in other words, is just as strong as our capacity to control for the
factors that may disrupt the inference itself. Identifying such potential
mistakes — as Holt, Segal, and Karni and Safra did - is functional to the
progress of experimental knowledge; it is indeed the first step toward a
new experiment aimed at checking for these errors. That’s why experimen-
tal knowledge grows progressively and slowly, via a series of laboratory
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tests carried out in the course of many years or even decades. Testing for a
particular kind of artifact will typically require a special experimental
design, different from the ones implemented until then — hence the sys-
tematic variation that is characteristic of experimental science. Notice
that each experiment does not necessarily control for just one potential
artifact at a time. Several potential sources of error can be identified in
advance and taken care of in a single experiment. Indeed, a good exper-
iment is one that has been designed so as to eliminate the possibility of
several mistakes at once. In contrast, “bad” experiments that do not con-
trol even for the most obvious potential sources of error usually do not
make it to the stage of publication. A bad paper is usually rejected by ref-
erees if the experiment it describes (with that particular design, with those
background conditions) is such that it does not allow a strong inference
from the collected evidence to the hypothesis at stake.

This point can be generalized as follows: the significance of a given
piece of evidence, e, for a given hypothesis, H, depends not just on H
and e, but also on the background circumstances under which e has been
collected. As anticipated at the end of the last chapter, this marks a cru-
cial difference between inductive and deductive inferences. Whether a
certain proposition can be deductively inferred from another proposi-
tion or set of propositions depends on these propositions only. It does
not matter whether certain other conditions (or propositions) hold “in
the background.” To check that a deductive inference is valid, therefore,
we just have to look at the truth-conditions of the premises and of the
conclusion. (We do not even have to look at the actual truth of these
propositions, for the validity of an inference is a matter that can be set-
tled a priori.) In contrast, the strength of an inductive inference cannot be
established independently of the relevant background circumstances: in
order to know whether e supports H or not, scientists have to collect a lot
of empirical evidence about the context in which e has been generated or
observed. As many philosophers have pointed out, the evidential relation
is a posteriori (cf. e.g., Sober 1988, Ch. 2; Achinstein 2001; Norton 2003).
That’s why, incidentally, a lot of experience and detailed knowledge of the
subject matter is required to construct a good experiment. And this fact
also explains why textbooks of experimental science usually include not
only general methodological principles, but also a good deal of concrete
information about the specific entities one intends to experiment upon
(cf. for instance, Davis and Holt 1993 or Friedman and Sunder 1994).
You cannot learn how to become a good experimental economist from a
philosophy of science book.
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Notice that if inductive relations are empirical in character, they may
well be mistaken. Unknown to us, the K; may not be such as to support
a strong objective inference from e to H. This is, of course, just another
way of saying that the experimental method is fallible — it is the strongest
method we have, but it does not provide absolute certainty. The method
is only as strong as our capacity to control the background factors and
to design conditions under which we can answer the specific questions
we are interested in. Critics of empiricism like to point out at this stage
that our knowledge “lacks foundations,” or that any scientific claim sits
on a swamp of assumptions rather than on a firm bedrock of established
facts. In some sense, this is obviously true, but it is important to appreciate
exactly what the implications are for empiricism.

The “other factors” problem

The most challenging objection to the project of grounding scientific
knowledge on eliminative induction has to do with the open-endedness
of eliminative procedures. One of the things that you learn when you are
trained as an experimenter is the list of likely artifacts or flaws that are
worth checking in a given experimental context. This list is part of what
Thomas Kuhn (1962) called the “paradigm”: a set of rules to do good
normal science. The list is partly determined by purely social factors:
experimental economists, for instance, are taught to worry about slightly
different problems than those of economic psychologists (incentives and
deception, for instance, are a well-known point of contention). Likely
sources of error include the instruments of observation, the initial and
boundary conditions, but also the presence or absence of many interfer-
ing or disturbing factors. Some of these will be known, but others may
not be. Scientists (and economists in particular) usually say that a certain
conclusion follows from a given set of assumptions or a model only if a
ceteris paribus condition holds, that is, if the “other factors” in the back-
ground are “equal” or (more appropriately) “absent.” There is, then, a
sort of indeterminacy in experimental science. At a given moment in time,
experimenters may not be able to control for all possible flaws, because
some of them may not even be known or conceivable given the present
state of scientific knowledge.

At this stage, it is worth recalling the distinction between objective
and subjective inductive support. Scientists’ knowledge is obviously lim-
ited, and one can never know for sure whether a result is objectively
warranted or not. However, the decision to take a result as confirmed (or
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disconfirmed) by the available evidence is not up to an individual scien-
tist’s subjective judgement. Subjective Bayesianism makes the mistake of
saying just that, whereas a realistic eliminative approach should recognize
that the list of errors and possible flaws is socially determined. What sci-
entist x thinks about the flaws of a certain design matters relatively little —
it is the scientific knowledge of her time (or the community of scientists)
that provides a preliminary list of factors that are likely to matter in a
given experimental context. An individual scientist, therefore, is to a great
extent constrained by the particular historical conditions she happens to
live in. She cannot, for example, be blamed for not checking potential
mistakes that are not recognized by the science of her time. Whether e is
interpreted as supporting H at time ¢ depends on the accepted scientific
knowledge at time ¢ — and the identification of such a body of knowledge
is largely a social rather than an individual matter.8

Another Bayesian mistake lies in the requirement that quantitative
values be assigned to the priors, which in turn decisively affect the pos-
terior probabilities obtained by means of Bayes’s theorem. The elimina-
tivist account does not require quantitative assignments of this kind, not
even socially determined ones. All that is needed is the identification of
alternative hypotheses and possible sources of error, and the creation of
experimental conditions in which they can be appropriately controlled
for. To impose on the scientific community the burden of performing
Bayesian calculations of posterior probabilities seems as unrealistic as to
impose them on individual scientists."

However, despite the reliance of the eliminativist approach on social
knowledge, one should not overestimate the importance of paradigms.
Strictly speaking, you do not need the full list of possible errors before
you start experimenting, because you typically discover many of them as
you proceed. (As J. L. Mackie 1974, p. 320, reminds us, part of the purpose
of causal analysis is to find out about causes.) Experimental scientists are
well aware of the fact that some experimental flaws and disturbances may
escape their imagination. Thus, a large part of the preparation of an exper-
iment is devoted to meticulous and systematic scrutiny of the design. I
describe this activity in Chapter 2, in the sections devoted to the prepa-
ration of pilot experiments. Experimenters know that a number of flaws

18 Peter Galison’s dictum — “experimental results are accepted when scientists don’t know
how to make them go away” — should always be formulated in the plural, to stress that
the relevant unit of analysis is the group or community of scientists, not the individual.

19 From this respect, my account differs from the “socially oriented” Bayesian approaches
of Gillies (1991) and Earman (1992).
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are usually discovered during this phase, and that there is no valid substi-
tute to a careful, systematic search. Although we cannot fully imagine the
sort of errors we have made in designing the experiment, we can often
spot them when we come across them. This activity of careful checking is
an invaluable source of confidence that no major flaw is involved in the
design and performance of the experiment.?’ Far from being “trapped”
in their own presuppositions, scientists are often able to transcend the
limits of their own paradigm and thus engage in an effective hunt and
elimination of error.

Secondly, scientists working in different disciplines do not live in sep-
arate worlds. Many controversies take place across different disciplines,
and profitably so. (The PR controversy, of course, is an exemplary case.)
The term scientific community must be interpreted broadly, to include
neighbor disciplines like experimental, social, and cognitive psychology
in the case of experimental economics. Interdisciplinarity and the pro-
liferation of alternative paradigms are important because they provide
extra challenges to the scientist working in a given tradition. Often sci-
entists in other disciplines have been trained to care for aspects of the
experimental design that you are unable to notice or appreciate.”!

‘Other factors’ and randomization

However, even interdisciplinary research cannot exhaust the list of pos-
sible flaws in an experiment, for the list is potentially infinite. For all we
know, it is logically possible that there exists an as yet unobserved factor
interfering with some “established” experimental phenomena. If that will
turn out to be the case, many experimental results will have to be revised in
the light of such a discovery. But how can we know whether thisis really the
case? One tempting, quick answer is that we do not have to worry about
the “other factors” problem because we have experimental techniques to
take care of it. Recall that perfect control is not always possible and that
in real science, we normally operate in less than ideal circumstances. One
technique that is customarily used to cope with imperfect control is ran-
domization. Randomization spreads unknown disturbing factors evenly
across the treatment and control groups. Thus, for instance, if gender has

20" Another, similar strategy to deal with the “other factors” problem is to increase the size
of the sample of observations, hoping that an unknown disturbing factor will become
manifest spontaneously. See Kitcher (1993, pp. 242-7) for examples and discussion.

2l The point about the importance of interdisciplinarity has been made a long time ago
(albeit in slightly different terms) by Paul K. Feyerabend (1975).
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Table 6.1. Additivity

No Low High

Student 8.0 7.0 4.0
Housewife 6.0 5.0 2.0
Total average 7.0 6.0 3.0

an impact on the phenomenon we are investigating (for reasons that we
cannot foresee at this stage of research), we can make sure by randomiz-
ing that an approximately equal proportion of male and female subjects
are present in each group.

However, this strategy, unfortunately, does not work in all instances.
First of all, consider that randomization is usually applied only to cer-
tain types of background conditions. Typically, experimenters randomize
across subjects and (sometimes) across certain aspects of the design, but
not others. They do not, for instance, randomize across the computer ter-
minals’ make or the room’s temperature. The presumption, of course,
is that these factors are not relevant to the result of a typical economic
experiment, but clearly this answer just begs the “other factors” question.
There surely are many factors that may in principle be relevant but that
we do not randomize upon.

Moreover, randomization can lead to error in some circumstances.
Imagine we are trying to measure the level of contribution in a public
goods game in three different conditions (say, high incentives, low incen-
tives, no incentives) in a population, which for simplicity we take to be
composed only of students and housewives. Tables 6.1 and 6.2 represent
two hypothetical cases, with rather different characteristics.

The numbers in each table represent the mean contribution for each
condition, per type of subject. In Table 6.1, the factor “type of subject”
combines additively with the factor “incentives” to determine the con-
tribution levels. Comparing the results of different subpopulations (e.g.,
students vs. housewives) will provide us with an accurate estimate of how
much of the contribution is due to which factor, but testing the effect of

Table 6.2. Interaction

No Low High

Student 8.0 7.0 4.0
Housewife 2.0 3.0 6.0
Total average 5.0 5.0 5.0
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the incentives by keeping the type of subject constant (i.e., testing the
hypothesis that incentives matter in just one population of subjects, say,
students) would not affect the validity of the main result — at least quali-
tatively. Randomizing across the “background” factors will not affect the
main result either, as the aggregate means reflect the rankings as well as
the differences in each population.

Consider now Table 6.2: the “type of subject” factor here interacts
with the experimental treatment. Keeping that factor constant will pro-
vide information that is valid only for one particular type of subject. Any
projection of that result outside that particular context will be unwar-
ranted. Randomization will result in even more confusion. It is quite
possible, as in my example, that the aggregate means do not reflect (nei-
ther quantitatively nor qualitatively) any of the specific populations’ char-
acteristics. In fact, experimenters usually perform some routine checks
post hoc, just to make sure that certain variables (e.g., gender, age,
education) do not affect the results significantly. However, this obviously
begs the question posed by the “other factors” problem. The problem
arises precisely because we may not have a good enough list of all the
relevant factors, and post hoc checking is effective only if such a list is
available.??

So, if randomization does not automatically or necessarily solve the
“other factors” problem, do we have to surrender empiricism? Do we
have to conclude that we can never know whether e supports H? Fortu-
nately for us — and for science in general — we do not have to give up so
easily. To see why, remember what I said repeatedly in previous chapters:
empirical science cannot rely on deduction only. It must make use of a
logic of inductive inference. Now, is the mere possibility of the existence of
unknown factors or conditions that would invalidate the inference from
e to H a good reason not to believe in the evidential claim? Clearly not.
If it were a good reason, we would be endorsing a deductivist standard.
We would be implicitly imposing the requirement, in other words, that the
only good inference is a deductive inference — an inference such that if the

22 Tt’s important to stress, however, that the result of a randomized experiment is always of
some interest (regardless of possible interactive effects) for it tells us, minimally, what hap-
pens on average in a certain population, defined by means of whatever criteria or causal
concepts we happen to be using at present. This kind of information may be extremely
valuable for practical purposes (e.g., when we have to decide whether to administer a
drug to patients of a certain kind), even though we lack a deeper understanding of the
causal mechanisms at work. I should thank John Dupré for pointing this out; see also
Dupré (1984; 1993, Ch. 9). Hausman (unpublished) includes a useful discussion of the
related problem of justifying practical causal generalizations.
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premises are true, then the conclusion cannot possibly be false. In science,
the mere possibility of a mistake is not a good enough reason to question
an inference or claim. We make use of inductive, ampliative inferences,
and such inferences always leave open the possibility of error. We need
more than possibility and less than certainty: we need probability. And to
assess the probability that a given experiment or inference from e to H is
flawed, we need at the very least to state what sort of flaw or disturbing
factor we are worried about. But once we have done that, we can try to
control that factor, or correct the potential flaw experimentally by means
of a new, improved design.

Another way to put it is in terms of the empirical support that an alter-
native hypothesis has to receive before it can be taken as a serious rival.
The hypothesis “there is an unknown flaw in this experiment” cannot pos-
sibly receive any empirical support, according to the criterion of inductive
inference defended in this chapter. In fact, such a hypothesis is compatible
with any amount of evidence that can possibly be collected, regardless of
whether the hypothesis is true or false. (Whatever evidence we collect,
the probability of obtaining such evidence, given that the “unknown flaw”
hypothesis is false, is always very high.?®) Because an empiricist wants to
make decisions based on good empirical evidence, the “unknown flaw”
hypothesis can never constitute a good reason not to accept an experi-
mental result.

The “other factors” problem, to sum up, is an insurmountable problem
only for the deductivist — the philosopher or scientist who believes that
deduction is the only legitimate method of scientific inference. Genuine
deductivists are extremely rare, because the deductivist position is prag-
matically impossible and does not stand up to rigorous scrutiny. Scientists
make use of nondeductive inferences all the time, as we also do in everyday
life. Still, we tend to make the mistake of modeling the logic of inductive
inference on that of deduction, and we are easily trapped by arguments
like the “other factors” objection.”* Once we have discovered the “deduc-
tivist trick” that is being played on us, however, it is easy to realize that
arguments of this sort should be resisted. Science is fallible: it is logically
possible that we are mistaken. Our job is to make sure that it becomes
unlikely.

23 T must thank Deborah Mayo for suggesting this way of framing the argument.

24 Attacks to inductive methods based on implicit deductivist intuitions or requirements
are quite common. Harry Collins’s (1985) “experimenter’s regress” is a well-known case.
See especially his “mature” position in Collins (1994, pp. 501-2).
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Summary and conclusions

In the previous chapter, I outlined the problem of testing, or how to
draw reliable inferences from empirical evidence. Because the evidence
by itself usually does not indicate the hypothesis we are interested in, we
must impose further conditions on inductive inferences from e to H. I
first discuss the requirement of predictive success, a popular idea among
scientists and philosophers alike, and then introduce the debate on the PR
phenomenon as a test case. I show that predictive success does not seem
to be adequate as a requirement on inductive inference, and in light of
what I say in this chapter, we can now see why. Remember the Duhemian
argument from coincidence: the inference from predictive success to the
truth of a hypothesis is supported by the consideration that consistent
predictive success is highly unlikely, if the hypothesis were false. We can
generalize this type of inference to all inductive inferences as follows: an
inference from e to H is strong if and only if it comes from a test situation
or setup such that the observation of e would be probable if H were true,
but unlikely if it were false. This requirement is present, in one form or
another, in most theories of confirmation. Given that this is not a book
on induction, I try to be as noncommittal as possible on the precise way
in which the requirement should be specified, and about its role in the
context of a general theory of inductive inference. What I say, however,
should be enough to account for the fact that experimenters are usually
busy unpacking ~H, that is, trying to specify the different possible ways in
which we may make a mistake in inferring from e to H. Each alternative
account of the experimental evidence leads to a new experimental design
aimed at controlling the background factor or factors that may lead us
astray.

By analyzing the structure of the argument from predictive success,
then, we can appreciate the key role played by background assumptions.
It is such assumptions that raise the problem highlighted by Duhem and
Quine, and a solution must recognize their function, as experimental sci-
entists do. In this chapter, I discuss a prominent approach that does take
the background seriously: subjective Bayesianism. Subjective Bayesians,
however, leave too much freedom for scientists to choose their favorite
prior beliefs about the background conditions. As a consequence, it is
always possible for a dogmatic scientist to stick “rationally” to a cer-
tain belief in spite of the evidence (or it is possible for some time, to
be more precise). I argue then, following some recent proposals in the
philosophy of confirmation and testing, that we should start from an
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“objective” approach to the evidential relation. Whether a piece of evi-
dence supports a given hypothesis or not is an objective matter, which
depends on whether the experiment has been performed correctly rather
than on what scientists think about the correctness of the experiment.

Of course, not all subjective elements are eliminated by such a move:
in each given experiment we can never know for sure whether all the
relevant sources of error have been controlled for. The model of the ideal
controlled experiment, in which the inference from evidence to hypothesis
is maximally strong, can, however, guide us as a normative ideal that we
should try to approximate. Instead of simply following our arbitrary priors,
the model prescribes to systematically check the potential sources of error
recognized by the scientific knowledge of our time, hoping that other
as yet unrecognized mistakes are detected during pilots. To illustrate, I
discuss some experiments run in the last two decades in order to check
some possible experimental errors in the “classic” PR experiments. The
last two sections include some general reflections on the nature of the
evidential relation and a reply to some common challenges.






PART TWO

INFERENCES FROM THE EXPERIMENT






SEVEN

External Validity

The first part of this book is devoted to inferences within the experiment.
Among such inferences, I single out causal ones as especially important.
The experimental method is the most powerful tool for finding out about
causal relations. Experiments, in principle, allow the variation of a puta-
tive causal factor while keeping all the other relevant circumstances fixed,
so as to observe the effect of that factor acting alone on the system under
study. By iterating this procedure, the influence of all the putative causes
can, in principle, be studied and various hypotheses tested. In the labo-
ratory, such an investigation can be carried out in privileged conditions,
under which background circumstances can be kept constant, disturbing
factors shielded, and putative causes triggered at will.

Experimental scientists thus look for causal relations in very special
settings, which are rarely if ever instantiated in the “real world” outside
the lab. However, often they are not interested in what happens under
these circumstances per se. Rather, they want to extrapolate from the spe-
cific experimental setup to learn something of more general applicability.
When medical researchers investigate the effects of a drug on laboratory
rats, they are usually looking for a result that can be generalized from
mice to men, to cure fellow human beings suffering from some condition.
Similarly, most economists are not particularly interested in what hap-
pens when a group of undergraduate students play lottery games. They
would like to learn something about the functioning of markets, about
economic behavior in the real world. However, how do they infer from
the special circumstances created in the laboratory to the phenomena that
take place “in the wild”? This question — the problem of external validity —
is at the center of the second part of the book. In this chapter, I outline the
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problem in very general terms and discuss some arguments that can be
found in the experimental literature. The status of these arguments is not
always clear. Sometimes they downplay the relevance of external validity
by suggesting that the application of simple methodological rules pre-
vents the problem from arising in the first place. Other arguments tackle
the problem more constructively, by specifying a series of conditions that
make an experimental result valid outside the laboratory. Although none
of these arguments is decisive, jointly they offer a number of extremely
useful insights and can be used to construct an account of how experi-
mental results can be generalized outside narrow laboratory conditions.

The natural and the artificial

To write on external validity is challenging. Philosophers of science, sur-
prisingly, have very little to say about it. Experimental economists also
tend to ignore or downplay the relevance of external validity; they typ-
ically say that it is not a particularly useful concept and, moreover, that
worrying too much about it may turn attention away from more important
issues of experimental design (cf. e.g., Plott 1987, 1999). Because there is
nothing worse than inventing a pseudoproblem and then wasting time to
solve it, I must first of all defend the relevance of external validity. And
in order to do that, it is necessary to clarify the meaning of this concept.

The concept of external validity, as used in psychology and social sci-
ence in general, is best defined by way of a contrast. Internal validity is
achieved when some particular aspect of a laboratory system (a cause—
effectrelation, the way in which certain factorsinteract, or the phenomena
they bring about) has been properly understood by the experimenter. For
example: the result of an experiment E is internally valid if the experi-
menter attributes the production of an effect Y to a factor (or set of fac-
tors) X, and X really is a cause of Yin E. Furthermore, it is externally valid
if X causes Y not only in E, but also in a set of other circumstances of inter-
est F, G, H, .. .! Problems of internal validity are usually chronologically

! The internal-external validity distinction is discussed primarily in social science books on
research methods and goes back at least to Campbell and Stanley (1966); see also Cook
and Campbell (1979). A finer set of categories is sometimes used to distinguish different
dimensions of external validity (see e.g., Christensen 2001, Ch. 14): population validity
(generalizing to a different population of subjects), ecological validity (generalizing to
the behavior of the same subjects in different circumstances — the terminology is due
to Brunsvik 1955) and temporal validity (generalizing to the same population, in the
same circumstances, but at a different time). On external validity in psychology, see also
Kruglanski (1975), Henshel (1980), Berkovitz and Donnerstein (1982). The same problem
arises in different guises in other sciences; on biochemistry (in which it is known as the in
vitro-in vivo problem), see for instance, Strand, Fjelland, and Flatmark (1996).
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and epistemically antecedent to problems of external validity: it does not
make much sense to ask whether a result is valid outside the experimental
circumstances unless we are confident that it does therein.

To appreciate the relation between internal and external validity, con-
sider that typically a laboratory experiment solves problems of scale and
variation. Many spontaneous phenomena are just too big or too small to
be investigated in their natural settings. An epidemic, for instance, may
be too large and last too long to be studied effectively in the field, but in
the laboratory, we can reproduce its key features in a population of ani-
mals (guinea pigs, mice, flies) that are relatively inexpensive, whose life
cycles are shorter, and which can be stacked (and killed) in great numbers
inside laboratory cages.”? Experimental studies of evolution follow a sim-
ilar strategy: fruit flies reproduce so rapidly that hundreds of generations
can be examined in just a few months’ time, whereas a similar study of,
say, human inheritability would take thousands of years. What is smaller
often s also simpler: scientists working on the genome project mapped the
DNA of the bacteria Escherichia coli first because it is much shorter than
the human genome. At the other end of the spectrum (where real-world
phenomena are too small), there are things like electrons and viruses, too
small and elusive to be detected in uncontrolled circumstances but more
easily tamed in laboratory conditions with the aid of powerful instruments
of observation.

The second problem, variation, has to do more directly with causation.
Asnoticed in Chapter 4, itis difficult to make causal inferences when there
is either too much or too little variation. To find out what causes what,
you need just the right amount of variation: only one factor has to vary
while the others remain fixed at some specific level. Outside laboratory
conditions, this happens quite rarely — in fact, it happens in so-called
natural experiments only. Of course, we often draw causal inferences
from nonlaboratory evidence by pretending that certain factors did not
change, or by subtracting the effect of one confounding variation from
the data and then trying to figure out “what would have happened if” only
a putative cause had varied. But such procedures are usually more risky
and provide less reliable results than genuine controlled experiments.

To clarify the relation between external validity and the problem of
causal discovery, recall the principle of probabilistic causation intro-
duced in Chapter 4: a necessary condition for X to be a cause of Y is
that X raises the probability of Y at least in some causally homogenous

2 On the “laboratory revolution” in medicine, see the studies in Cunningham and Williams
(1992).
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background conditions. To say that X causes Y in FE, then, is to say that X
raises the probability of Y in that particular context — when the other fac-
tors are kept not only constant but fixed at that particular level. (Ingesting
an aspirin raises the probability of reducing headache only if the rel-
evant circumstances are “right.”) Because causal relations are context
specific, the result of an experiment should always be expressed as a
ceteris paribus claim: A causes B, other things being “right.” For method-
ological and epistemic reasons, a full list of the “right” conditions can
rarely be specified: experimenters try to simplify the experiment by omit-
ting certain factors and conditions that may be at work in the real world
and by “shielding” the experimental system from random disturbances.
Moreover, many unknown, potentially disturbing factors are dealt with by
randomizing across the control and experimental groups. What happens
when things are not “right,” however — and exactly what “right” means in
the first place — is usually left open and has to be investigated separately.

For these reasons, there exists a trade-off between the two dimen-
sions of experimental validity. The stronger an experimental design is
with respect to one validity issue, the weaker it is likely to be with respect
to the other. The more artificial the environment, the better for inter-
nal validity; the less artificial, the better for external purposes. Notice
that the problem is not just that, say, mice are different from men or
students in economics may be different from the managers of a big multi-
national firm. There are at least two other important disanalogies between
experimental and real-world conditions. First of all, laboratory mice are
very different from ordinary mice. Medical researchers work on “animal
models” that have been constructed especially for laboratory purposes.
The so-called standard fruit fly (Drosophila melanogaster), to name a
well-known example, is not the insect flying around the bananas in your
kitchen. Itis a carefully selected organism that does not exist in nature and
is artificially stabilized in spite of its tendency to evolve into something
else (see Kohler 1994). Similar remarks apply to chemistry, in which the
“preparation of materials” is a key ingredient of experimental practice.
In experimental social science, the “preparation” of subjects is limited
by obvious ethical constraints. However, it does take place, sometimes
by selecting those individuals who display certain characteristics (e.g., a
particular attitude toward risk — cf. Roth and Malouf 1979) or by elimi-
nating those who display ambiguous traits or “confused” behavior. Some-
times subjects are “prepared” in the sense that they receive very precise
instructions or cues about how they should behave in the experimental
conditions.
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Secondly, laboratory entities act and live (and often die) in tightly
controlled conditions, which are very different from those found in nature
and in our society. In the social sciences, this difference is particularly
evident if one looks at the abstract tasks that subjects are customarily
asked to perform in the laboratory.® These various dimensions of the
laboratory-versus-real-world gap are worth keeping in mind. Both critics
and apologists of experimentation in the social sciences often focus on
the statistical representativeness of the experimental population as if it
were the most relevant problem to be solved. It is, in fact, just one aspect
of the external validity issue — which is in reality much more complicated
than that.

Metaphysics

External validity is surprisingly absent from philosophical discussions of
experiment. This is partly because philosophers, with few exceptions, take
physics as the paradigmatic experimental science, and physicists tend
not to recognize external validity as a separate inferential problem on
its own. There are historical, sociological, and metaphysical reasons for
this. I won’t say much on the historical and sociological ones, except that
physics has gone through at least two “laboratory revolutions”: from an
Aristotelian science concerned with the explanation of spontaneously
occurring phenomena by means of unaided observation, to a Galilean
science investigating natural phenomena in the “ideal” conditions of
the laboratory, to a science, finally, whose main questions and answers
stem from laboratory work. Most research in contemporary experimen-
tal physics begins in the lab, is carried on in the lab, and ends in the lab.
Every now and then, of course, some stunning application is developed
that “exports” an experimental result to other domains. However, these
are occasional (albeit extremely important) side effects of what is other-
wise “pure” laboratory science (cf. Hacking 1992, p. 33).

The generalizability of pure laboratory science is sometimes sim-
ply assumed by means of metaphysical speculation. Isaac Newton, for
instance, is often quoted for his view that “the qualities [. . .] which are
found to belong to all bodies within the reach of our experiments, are to be

3 The environment itself is a complex entity, whose characteristics can be grouped in various
ways. Glenn Harrison and John List (in press), for example, classify possible discrepancies
between the laboratory and the field along six dimensions: subject pool, information,
commodity exchanged in the experiment, nature of the task, nature of the stakes, and
nature of the environment.
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esteemed the universal qualities of all bodies whatsoever” (1687, p. 398).
And the great physiologist Claude Bernard was probably influenced by
Newton when he wrote that “all animals may be used for physiologi-
cal investigations, because with the same properties and lesions in life
and disease, the same result everywhere recurs” (1865, p. 115). To make
sense of these claims, we can imagine Newton and Bernard appealing to a
very basic metaphysical principle: should exactly the same circumstances
repeat twice, the same effects will follow from them (same cause, same

effect).

This principle of the uniformity of nature, however, does not dissolve
even the most common external validity worries. The psychologist Baruch
Fischhoff uses a graphic example to represent the real terms of the prob-
lem of external validity; in the lab, choices look like this:

Choice A In this task, you will be asked to choose between a certain loss and a
gamble that exposes you to some chance of loss. Specifically, you must choose
either: Situation A. One chance in 4 to lose $200 (and 3 chances in 4 to lose
nothing). OR Situation B. A certain loss of $50. Of course, you’d probably prefer
not to be in either of these situations, but, if forced to either play the gamble (A)
or accept the certain loss (B), which would you prefer to do? (Fischhoff 1996,
p. 232)

But in the real world, choices look like this:

Choice B My cousins . . . ordinarily, I'm like really close with my cousins and
everything. My cousin was having this big graduation party, but my friend — she
used to live here and we went to . . . like started preschool together, you know.
And then in 7th grade her stepdad got a job in Ohio, so she had to move there.
So she was in Ohio and she invited me up for a weekend. And I've always had
so much fun when I'd go up there for a weekend. But, it was like my cousin’s
graduation party was then, too — like on the same weekend. And I was just like
I wanted to go to like both things so bad, you know. I think I wanted to go more
to like up Ohio, you know, to have this great time and everything, but I knew my
cousin — I mean, it would be kind of rude to say, “Well, my friend invited me up,
you know for the weekend.” And my cousins from out of town were coming in
and everything. So I didn’t know what to do. And I wanted mom to say, “Well,
you have to stay home,” so then I wouldn’t have to make the decision. But she
said “I’m not going to tell you, you have to stay home. You decide what to do.”
And I hate when she does that because it’s just so much easier if she just tells you
what you have to do. So I decided to stay home basically because I would feel
really stupid and rude telling my cousin, well, I'm not going to be there. And I
did have a really good time at her graduation party, but I was kind of thinking I
could be in Ohio right now. (ibid., p. 232)
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What do choices in environments like the former tell us about behavior
in situations like the latter? One possible answer is that experiments like
Choice A test subjects’ “pure” decision-making capacities. However, this
is still unsatisfactory: the decision processes may be completely different
in the two circumstances, and “purity” is a poor consolation if it is unlike
anything that we are ultimately interested in explaining and understand-
ing. A more appealing answer is that in situations like Choice B, there is
just too much going on, and simplified settings like Choice A are inter-
mediary steps on the way toward the understanding of complicated real-
world decision making. However, then the problem takes a completely
different form, one that defies simple metaphysical postulation. Charles
Plott formulates the issue appropriately as follows:

What use are experimental results to someone who is interested in something
vastly larger and more complicated, perhaps fundamentally different than anything
that can be studied in a laboratory setting? (1987, p. 193, my emphasis)

“Same cause, same effect” won’t do because the conditions are rarely,
if ever, the same.

Eliminating false theories

We’ll come back to the uniformity of nature principle later on. In the
meantime, it is necessary to review a set of arguments that tackle external
validity from a different (methodological, rather than metaphysical) angle.
Consider, for instance, the following claims by Graham Loomes and Louis
Wilde, respectively:

If one or more of the fundamental axioms of expected utility theory fail under such
[i.e., experimental] apparently favourable conditions, there are surely grounds for
questioning the power of the model as a general theory of individual decision-
making under risk and uncertainty. If the basic axioms are substantially and sys-
tematically violated in these simple cases, how confident can we be about their
validity in more complex cases? (Loomes 1989, p. 173)

If an experiment includes all parameters relevant to a particular theory, and if
the theory fails to predict well in the simplified setting of the laboratory, then
it cannot be expected to predict well in more complex environments. [. . .] The
experiment does not need to be “realistic” and no presumptions need be made
about its connection to more complex (“real-world”) environments [in order to
use laboratory experiments to reject some theories as nonsense]. (Wilde 1981,
p. 143)

John Hey seems to follow a similar line of reasoning when he repre-
sents laboratory experimentation as a way of performing a preliminary
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selection of theories ultimately intended to explain real-world phenom-
ena. According to Hey, experimental economics allows the separate treat-
ment of two crucial but distinct issues, namely

1. that the theory is correct given the appropriate specification (that is, under the
given conditions); 2. that the theory survives the transition from the world of the
theory to the real world. (Hey 1991, p. 10)

A theory failing at stage one, according to Hey, should not be allowed
to enter stage two of testing. Such “falsificationist” arguments convey an
important idea: that external validity worries are not (and should not)
be raised for every economic experiment. Real-world applicability can be
the goal of a whole research program, and it is perfectly reasonable to
focus on the investigation of relatively simplified or abstract settings in
the early stages of the program itself. Plott also endorses this approach to
experimentation:

The logic is as follows. General theories must apply to simple special cases. The
laboratory technology can be used to create simple (but real) economies. These
simple economies can then be used to test and evaluate the predictive capability
of the general theories when they are applied to the special cases. In this way, a
joining of the general theories with data is accomplished. (Plott 1991, p. 902)

A staggeringly large number of theories exist. One purpose of the laboratory is
to reduce the number by determining which do not work in the simple cases. The
purpose is also to improve the models by exploring how a model might be changed
to make it work better in the simple cases. General models, such as those applied
to the very complicated economies found in the wild, must apply to simple special
cases. Models that do not apply to the simple special cases are not general and
thus cannot be viewed as such. (ibid., p. 905)

These pronouncements seem to presuppose a fairly radical form of
falsificationism. Let us grant, for the sake of argument, that laboratory
testing may work as a screening device to reject the theories that fail to
describe what goes on in simple laboratory circumstances. A strict fal-
sificationist attitude unfortunately does not help whenever we want to
infer from a positive experimental finding (that a certain theory, model,
or hypothesis works in the laboratory) to nonexperimental circumstances.
If real-world applicability is the ultimate goal in (laboratory and nonlab-
oratory) science, then this is no minor flaw.

It is, of course, just a specific instance of a flaw already highlighted
in Chapter 3: falsificationism is too thin a methodology for science. Pace
Popper, scientists are not merely concerned with the refutation of theories,
they also want to learn something positive about the applicability of their



External Validity 149

theories and the truth of their hypotheses. Scientific method must include
an inductive element as well as a deductive one, but then what does the
success of a theory or hypothesis in the laboratory teach us about its
success in other nonexperimental circumstances? The arguments above
tell us that we should get things right in the lab first and that this is
a necessary condition for getting things right in the outside world, but
certainly they cannot (and in fact do not) claim that getting things right
in the lab is a sufficient condition for the generalization of results to other
circumstances.

Notice, however, that even a negative response during the early stages
of aresearch program does not by itself indicate that a theory is completely
on the wrong track. It is perfectly conceivable, in fact, that a model that
has been “refuted” under laboratory conditions may nevertheless work
under other (real-world) circumstances. The experiment could lack some
factor or condition that is crucial for the model’s applicability, a factor
that is instead present under other (nonlaboratory) circumstances. If this
seems a bit speculative, consider the case of preference reversals again: in
the 1980s and 1990s, several experimenters conjectured that mechanisms
like repetition or arbitrage, which were absent from the first generation of
experiments, could eliminate or reduce the rate of reversals and make the
theory of expected utility applicable “in the wild” despite its laboratory
failures (e.g., Berg, Dickhaut, and O’Brien 1985; Chu and Chu 1990).
Such attempts were clearly aimed at saving expected utility theory from
refutation, in apparent contradiction to the falsificationism of Loomes,
Wilde, Hey, and Plott’s remarks.

These arguments, therefore, must rely on an implicit but fundamental
assumption: a theory that lacks a complete specification of the conditions
or factors that make it applicable is somehow unsatisfactory and should
be replaced. This is probably what Loomes, Wilde, and Plott have in mind
when they stress that scientific theories should be general or universal in
scope of application.*

4 This terminology might be a little confusing for philosophers of science, who tend to distin-
guish sharply (albeit perhaps pedantically) between universality and generality require-
ments. Universality is commonly understood as a purely syntactic feature (“For all objects
of type X, ....”), whereas generality is a matter of scope of application and depends espe-
cially on the sort of entities and properties cited in a given theory or scientific law (a theory
of mammals clearly has wider scope than a theory of horses, a theory of electromagnetism
has wider scope than a theory of electricity, and so on). Although in this chapter I focus
exclusively on what philosophers call “universality,” it is worth keeping the distinction in
mind because lack of universality and lack of generality are limitations of entirely different
kinds.
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The idea that the search for universal scientific theories (or laws) drives
scientific research is sophisticated and requires an articulate discussion.
It is also dangerous material for economic experimenters, for it cuts both
ways and might in the end turn against experimental economics itself.
The same concepts used to defend experimental economics (the goal
of universality and the method of falsification) are, in fact, also invoked
occasionally to deny the fruitfulness of the experimental approach. In May
1999, for example, an aggressive critique of the very idea of laboratory
experimentation was published in The Economist. The article concluded
as follows:

Whether experiments improve the scientific credentials of the discipline must be
very much in doubt. In the end, the main problem is not that designing good
experiments is hard. It is simply that, unlike physics, economics yields no natural
laws or universal constants. That is what makes decisive falsification in economics
so difficult. And that is why, with or without experiments, economics is not and
never can be a proper science. (Economics Focus 1999, p. 96)

But why should a scientific statement (a law, a theory, a causal claim)
be universal in character?

Universality, sufficiency, completeness

Universality is a purely syntactic feature of scientific laws or theories, but
with very interesting methodological implications. Its main virtue is that a
universal conditional statement carries its domain of application written in
its antecedent. Consider the simple example “For all x, if xis a swan and is of
European breed, then x is white.” Such a claim can be appropriately tested
only in the domain of European swans. The observation of an Australian
black swan would not falsify it, in other words, for it would fall outside its
domain of application. To impose the requirement that scientific theories
should be universal, therefore, is equivalent to imposing the requirement
that the antecedent of their laws should specify a set of conditions that
are jointly sufficient for the instantiation of the effect. Another way to put
it is that good theories should be complete, or should carry their domain
of application written in their assumptions.

From such a standpoint, it follows quite naturally that an experiment
reproducing all the initial conditions or relevant assumptions of an eco-
nomic model must be a “good” experiment by default. If the model does
not apply in those experimental conditions, we want to know why. Vernon
Smith puts it as follows:
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If [an experiment’s] purpose is to test a theory, then it is legitimate to ask whether
the elements of alleged “unrealism” in the experiment are parameters in the
theory. If they are not parameters of the theory, then the criticism of “unrealism”
applies equally to the theory and the experiment. If there are field data to support
the criticism, then of course it is important to [modify] the theory to include the
phenomena in question, and this will affect the design of the relevant experiments.
(Smith 1982, p. 268)

According to Plott, experimental economics’ revolutionary achieve-
ment consisted of shifting the focus from whether a certain experiment
reproduces a real-world system accurately to whether it accurately tests a
theory or model. Experimental economists have thus removed two “con-
straints” that stood in the way of laboratory research:

The first was a belief that the only relevant economies to study are those in the
wild. The belief suggested that the only effective way to create an experiment
would be to mirror in every detail, to simulate, so to speak, some ongoing natural
process. [. . .] As a result the experiments tended to be dismissed either because
as simulations the experiments were incomplete or because as experiments they
were so complicated that tests of models were unconvincing. [. . .] Once models,
as opposed to economies, became the focus of research the simplicity of an exper-
iment and perhaps even the absence of features of more complicated economies
became an asset. The experiment should be judged by the lessons it teaches about
the theory and not by its similarity with what nature might have happened to have
created. (Plott 1991, p. 906)

This argument has the undeniable rhetorical advantage of sending the
ball back into the theorist’s camp, so to speak. However, we must be care-
ful not to misinterpret what Smith and Plott are saying. In this book, the
term theory is used to refer only to the precisely stated, coherently orga-
nized, possibly formalized parts of economic knowledge, which is also how
economists use the term when they want to be precise; as already men-
tioned, you don’t get an informal speculation published in the Journal
of Economic Theory. An informal hypothesis, a rough conjecture, or a
guess is not a theory (although it can perhaps be turned into a theory and
can often be tested just like a prediction derived from a formal model).
However, under this interpretation of theory, the requirement that theo-
ries be modified in order to incorporate every factor that may affect their
applicability is highly unrealistic.

Let us take a simple example. We know that in certain experimental
conditions — such as the familiar case of preference reversals — the transi-
tivity principle of utility theory seems to break down. Taking the univer-
sality requirement seriously implies that the principle should be amended
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so as to make sure that the conditions in its antecedent (“for all human
beings, if X then Y”) are truly sufficient for the consequent to be instan-
tiated. In fact some economists suggest that factors such as learning (by
repetition of the experimental task) and arbitrage can restore the transi-
tivity of preferences (e.g. Berg et al. 1985, Chu and Chu 1990). But there is
asyetno generally accepted theory of how to model the effect of repetition
and arbitrage on the transitivity of preferences. According to an extreme
reading of Smith and Plott’s remarks, theorists should invest more energy
in the task of formally incorporating such mechanisms into economic
theory, for the domain of a theory must be written in the antecedent
of its laws. Until such mechanisms have been formally modeled,
experimenters are entitled to consider the theory tested and refuted.

However, this interpretation is clearly misguided. To begin with, it is
not difficult to think of ways of modelling the effects of repetition and
learning; yet, economists do not seem to give it much importance, which
suggests that the incompleteness of economic theory is relatively unprob-
lematic for them.®> Second, we must remember that theory testing is only
one possible function of experiments. Many experiments are devoted to
investigating the robustness of economic phenomena, and this activity is
only partly guided by theory. Economists are aware of the limitations of
theoretical modeling and make sure that such limitations do not become
obstacles to empirical research. The fact that utility theory is not expanded
toinclude the effect of arbitrage and repetition, for example, should not be
an embarrassment to economists. Take a physical law like F = G(mm, /
?). The law does not state that “if two bodies have masses m; and m,, and
lie at a distance r, then the force of attraction between them is directly
proportional to the product of their masses and inversely proportional to
the square of the distance.” It states that “if two bodies have masses m;
and my, lie at a distance r, and no other force than gravitation intervenes,
then ... (etc.).”

The standard way of dealing with such exceptions is to include a ceteris
paribus (¢p) clause in the antecedent of laws: (P&cp)— Q — “if P then Q,
other things being equal.”® However, notice that to a certain extent, the

3 1 owe this point to Bob Sugden (in correspondence).

© The best discussion of ceteris paribus clauses in economics to date can be found in
Hausman (1992a, Ch. 8); for more recent surveys, see Miki and Piimies (1998) and
Boumans and Morgan (2000). The need for a ceteris paribus interpretation of even the
most general physical theories has been forcefully argued by Nancy Cartwright (1983). It
is also worth mentioning that theoretical simplifications are not the only simplifications
involved in laboratory science: experimenters often simplify theories in order to derive
testable predictions, and in this sense, experiments are twice removed from the reality
that economists try to model. I must thank Joep Sonnemans for pointing this out.
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domain of the theory is left vaguely specified. The ceteris paribus clause
is a “catchall” proviso; although certain factors in its domain may be
known (electromagnetic effects for the attraction between bodies, arbi-
trage and repetition for the transitivity principle, etc.), others are willingly
left unspecified.

A staunch supporter of the universality requirement, of course, does
not have to give up so easily. The classic rejoinder is that “laws” such as
“ceteris paribus, for all bodies F = G(mim, /r*)” are unsatisfactory, or
that the ceteris paribus clause merely points to a problem that ought
to be solved by means of a better theory. One should “unpack” the
clause, in other words, and include explicitly all the relevant factors in
the assumptions of the theory; that is, one must move from (P&cp)— Q
to (P1&Pr,&P3& ... P,)— 0.

However, the requirement of modeling all relevant causal factors in the
antecedent of theories/laws does not seem to be very promising for sci-
ences like economics. Economic concepts refer to entities and phenomena
that are evidently nonfundamental — that supervene on other entities and
phenomena that are customarily studied by other disciplines. The condi-
tions for the law of demand to hold, for instance, include the existence
of human beings with certain preferences/beliefs but also with certain
cerebral functions, which in turn depend on certain chemical laws, which
depend on certain physical laws. It seems unlikely that we can model
all this stuff in an economic theory because (1) we have only a vague
idea of how the different levels (physical, chemical, biological, psycho-
logical) are related to one another; (2) in order to model all the relevant
conditions for the applicability of the law of demand, we should go far
beyond the linguistic resources of standard economic theory; (3) if we
knew how to do that, the resulting theory would probably turn out to be
terribly complicated; and finally, (4) the theory would not be of much use,
because eventually we want variables that we can control for policy pur-
poses, and these usually lie at the level of analysis of standard economic
theory.

In an often-quoted passage, Jerry Fodor takes such features to be the
distinguishing characteristics of the “special sciences” (as opposed to fun-
damental sciences like, say, the physics of small particles):

Exceptions to the generalisations of a special science are typically inexplicable
from the point of view of (that is, in the vocabulary of) that science. That’s one of
the things that makes it a special science. (Fodor 1987, p. 6)

Special science laws are unstrict not just de facto, but in principle. Specifically,
they are characteristically “heteronomic”: you can’t convert them into strict laws
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by elaborating their antecedents. One reason why this is so is that special science
laws typically fail in limiting conditions, or in conditions where the idealisations
presupposed by the science aren’t approximated; and, generally speaking, you
have to go outside the vocabulary of the science to say what these conditions are.
(Fodor 1989, p. 78)7

To pursue a complete enumeration of the conditions covered by a
ceteris paribus clause would force scientists to move beyond their favorite
realm of phenomena and level of analysis. The neoclassical economist, for
example, would have to abandon her models of rational economic agents
and engage in a much deeper analysis of human psychology. The laws
of psychology being incomplete in character, one would have to move
one step further down the ladder of microfoundations, to, for example,
neurophysiology. Eventually, according to the ideal reductionistic picture,
all the laws of the special science would find their justification in the
generalizations of physics.®

Of course, the feasibility of a reduction of economics to psychology
and of the latter to physics cannot be ruled out in principle, but some
empirical evidence must be presented before we accept reductionism as
a fundamental ingredient of our methodology. (We cannot gamble the
whole scientific method on a mere possibility.) Special sciences such as
economics exist precisely because it would not be practical to try to explain
right from the start economic phenomena in terms of more fundamental
laws, such as those of psychology or even physics (if these laws exist at
all, of course). However, if the criterion for scientificity is sufficiency or
completion, then “the only real science is basic physics” (Fodor 1987,

p.5).?

7 Cf. also Fodor (1974).

8 See also Kincaid (1996, Ch. 3) for a reductio ad absurdum of this sort, with particular
reference to the social sciences.

9 If such arguments do not sound immediately convincing, it partly has to do with the fact
that we are so used to thinking in reductionistic terms that we tend to ignore or underes-
timate the practical difficulties with which even the most basic reductions are achieved.
Contrary to common scientific propaganda, for example, even allegedly unproblematic
reductions, such as those from chemistry to physics or from biochemistry to chemistry,
are incredibly messy and often just not feasible. Consider, moreover, that science in its
historical development does not display a progressive reduction in the number and variety
of established theories. On the contrary, new disciplines and subdisciplines are constantly
created, and phenomena are explained by means of an increasing number of theories
and models at different levels of specification. Science becomes increasingly varied and
specialized, instead unified under more and more fundamental theories. For the argument
on the increasing variety and “disunity” of science, cf. Suppes (1984). On the limitations
of “horizontal” reductionism, see also Dupré (1993) and Cartwright (1999). Miki (2001b)
offers a useful discussion of the unificationist project in economics.
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Of course, some important steps in the progress of science have been
achieved by enlarging the domain of a theory and digging “deeper” into
the microstructure of reality. Classic examples are the unified explana-
tion of light and magnetism by means of electromagnetic theory and the
explanation of heat and pressure by means of statistical mechanics. As
far as experimental economics is concerned, some promise seems to lie in
the partnership with evolutionary theory and neurobiology. However, it
is important to realize exactly what these examples can and cannot prove.
As a critique of the critique of the sufficiency or universality require-
ment, these examples are misplaced: no one means to rule out or criticize
a priori programs such as evolutionary economics and neuroeconomics.
These programs may or may not be successful, and we are presently in no
position to make serious predictions about this.!” The point is that their
success should not be made a precondition for doing “proper” economic
science. Experimental economists are doing proper economics right now,
and can keep doing economics without incorporating all the conditions
that specify a theory’s application within the theory itself. In fact, most
science goes on like that, the integration with “lower-level” or neighbor
theories being typically only partial and rough.

Universality requirements are motivated by a basic misconception of
the role of theories and models in science. Although a more precise char-
acterization will have to wait until Chapter 9, a few brief remarks will
suffice for the present discussion. Theories are tools that help us over-
come our limited cognitive capacities. Ronald Giere (2002) has recently
proposed an illuminating analogy: theoretical models are like cognitive
scaffoldings supporting our representations and inferences. As such, they
cannot be too complicated: a model is usually a simplified and artificially
isolated system constructed for analytical purposes. A ceteris paribus
clause must be attached to any claim derived from analyzing a model
because the model abstracts from the influence of several real-world fac-
tors by simply ignoring them (which is to be expected: if a model included
all the complex features of a real-world system, there would be little point
in studying the model in the first place). However, model-based knowl-
edge must be applied intelligently, making all the adjustments that are
required from case to case. The possession of the informal and practical
knowledge required to put a theory to work is exactly what distinguishes
a good scientist from the layman who just happens to read a scientific

10 Fora survey of the main results achieved in neuroeconomics so far, cf. Camerer, Loewen-
stein, and Prelec (in press), and Smith (in press).
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textbook. The layman thinks that he or she can infer the domain of appli-
cability from the theory itself but, in fact, has only a very vague clue of how
to use it in concrete cases. A lot of training and experience are required
in order to apply scientific theories.!!

How are models applied, then, if they donot have the internal resources
to specify their own domain of application? A popular view is that models
must be put in correspondence with the real world by means of a theoret-
ical hypothesis stating what kind of relation holds between a given model
(or set of models) and a given real-world system (or set of systems).'? Dif-
ferent philosophers have different views about the nature of this relation
(similarity, approximate similarity, isomorphism, etc.), and I have nothing
new or deep to say about it here. I'm even tempted to claim that perhaps
different models are applied differently (they relate to their target systems
in different ways), and hence there may be no general story to be told.

However that may be, the important point here is that the theoretical
hypothesisis not part of the theory’s axiomatics — the intended domain of a
theory is defined by a separate component. Thus, for example, by learning
game theory models, you cannot figure out exactly what their intended
applications are. What you are given is a handful of standard textbook
applications as examples of the sort of things the models are likely to
be applicable to. The exact domain of application is not defined in the
textbook because it is part of the informal theoretical hypotheses that are
tested in applied science all the time. In “normal science,” students learn
some modeling techniques and are told that certain models can be applied
to certain paradigmatic cases.'> However, it is implicitly understood that
the intended domain may vary, even though the models remain the same.
This leaves the issue of the domain of scientific theories partly open —
which is just as it should be, in my view.

Empiricism

We need another reading of Smith and Plott’s position, then. Although
the “strong” version of the universality requirement imposes unrealistic

11 For an excellent example of the vast amount of non—theoretical knowledge required to
apply scientific theories, see for instance the excellent recent books on auction theory
by Paul Klemperer (2004) and Paul Milgrom (2004). Auctions will figure prominently
among the examples of the next two chapters.

12 See, for instance, Giere (1979, 1988).

13 This way of interpreting the role of textbook science owes a lot to Kuhn’s (1962) seminal
work. See also the already cited paper by Cubitt (in press) for an excellent discussion of
the problem of identifying a theory’s domain of application and the related issue of the
interpretation of laboratory tests of economic theories.
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demands on scientific theories, there is a more reasonable, “weaker” read-
ing of it that seems promising for our purposes. The idea, in a nutshell,
is that even though we may be unable to model all the factors that limit
the applicability of a theory, such factors must nevertheless be defined in
a precise enough way to make them amenable to empirical testing. The
rationale for this weaker requirement is well illustrated by Chris Starmer:

While potentially valid criticisms of a given experimental design, [the] objections
[. . .] which point to a specific limitation of the experimental setting do not seem
to tell against experimentation per se since the experimenter can mount a ready
response to each such objection. For example, if the hypothesis is that “the free
rider theory failed [in a given public goods experiment] because the incentives
were too small,” then run a new experiment with bigger incentives. If it is suspected
that communication between subjects enabled them to “beat” the free rider prob-
lem, design a new experiment that makes communication more difficult. So long
as the theory defender identifies some specific aspect of the design that renders it
unsatisfactory as a test of the target hypothesis, it seems reasonable to think that
a new experiment could be run that could “correct” the limitation of the earlier
test. Hence, criticisms that point to specific reasons as to why an experiment is
not a satisfactory test of a hypothesis do not tend to undermine experimenting;
they suggest new problems that can be investigated experimentally; they enrich
the experimental agenda. (Starmer 1999, p. 9)

Consider the analogy between this proposal and the way in which inter-
nal validity worries should be tackled. In Chapter 6, I argued that generic
skepticism about the internal validity of a result is not to be taken serio-
suly. One must point out why the result may not be valid and by doing
so, implicitly provide a new hypothesis that is amenable to empirical test-
ing. Similarly, the mere possibility that a result may lack external validity
is irrelevant: we need probability in science. And one cannot even start
to figure out what the relevant probabilities are unless some reason for
the lack of validity is indicated. The hypothesis that a result might lack
external validity because the experiment lacks a crucial (but unknown)
feature of the real world cannot even be tested severely. Such a hypoth-
esis can fit any amount of evidence that can ever be collected, even if it’s
false. Hence, it fails to respect the requirement that we have imposed on
inductive inference, namely that the probability of observing confirming
evidence be low, if the hypothesis is false.

The moral, then, is that it is necessary to investigate empirically which
factors among those that may be causally relevant for the result are likely
to be instantiated in the real world but are absent from the experiment (or
vice versa). That an experimental and a real-world system should differ
in some respects is just inevitable and rather uninteresting by itself; the
interesting question is whether the differences are causally relevant.
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The distinction between (1) requesting the formulation of an empiri-
cally testable explanation of the alleged lack of validity of a given eco-
nomic result and (2) the stronger requirement that such explanation be
incorporated in economic theory can also be used to cast the shadow of
instrumentalism away. That a model is applicable here but not there is
puzzling and needs to be accounted for in some way; one does not face a
dilemma between a complacent instrumentalist attitude toward the truth
of economic theories (a la Friedman 1953) and the unreasonable request
that such explanation be formally modeled in the theory itself (see also
Starmer 1999, p. 18, on this point).

This approach to the external validity problem helps to shed some light
on one of the most obscure and controversial methodological statements
in the experimental economics literature. Vernon Smith (1982) defines
a key “methodological precept” of experimental economics'* in a way
that reminds one of the metaphysical principle (same cause, same effect)
discussed earlier:

Parallelism: Propositions about the behavior of individuals and the performance
of institutions that have been tested in laboratory microeconomies apply also
to nonlaboratory microeconomies where similar ceteris paribus conditions hold.
(Smith 1982, p. 936)

Parallelism is the precept of external validity, and strikes one as a
fairly strange proposition. The precept defines some minimal conditions of
validity that, admittedly, are usually not satisfied by experimental results:
the real-world economies we are ultimately interested in are invariably
different (much more complicated) than anything we can implement in
the laboratory. However, the precept, following Friedman and Sunder
(1994, p. 16), should be read as setting the guidelines for a constructive
methodological approach to external validity problems. If we all agree
on the minimalist metaphysical principle, the experimenter says, than
any specific external validity challenge must indicate how and where the
experiment differs substantially from the real-world system we are inter-
ested in investigating. When this has been done, the actual relevance of
these differences can be checked by empirical means.

Eventually, in Smith’s words, “Which kinds of behavior exhibit paral-
lelism and which do not can only be determined empirically by comparison
studies” (1982, p. 936, emphasis in the original). External validity is a con-
jecture that has to be established empirically in each case. The challenge,

14 The other precepts (their contents and status) are discussed in Chapter 11.
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then, is to define more precisely the sort of methods that can be used in
order to draw reliable external validity inferences. Here is a statement of
the program:

When the theory performs well [in the lab] you [. . .] think, “Are there parallel
results in naturally occurring field data?” You look for coherence across differ-
ent data sets because theories are not specific to particular data sources. Such
extensions are important because theories often make specific assumptions about
information and institutions which can be controlled in the laboratory, but which
may not accurately represent field data generating situations. Testing theories on
the domain of their assumptions is sterile unless it is part of a research program
concerned with extending the domain of application of theory to field environ-
ments. (Smith 1989, p. 152)

External validity arguments work by combining experimental and field
data. But how exactly does this partnership work? What makes a good
“mix” between experimental and nonexperimental evidence? Answer-
ing these questions is the task of the next three chapters. In an old article,
Rice and Smith (1964) try to use the Bayesian approach that we find so
inadequate in the first half of the book. Because this approach has not
gained many followers, [ relegate a summary and critique of the Bayesian
“solution” to external validity in Appendix B. However, this leaves us
with practically nothing to build upon for a general account of external
validity inferences. The project will have to move inductively, from con-
crete examples of inferences from the experiment, to a general account
that rationalizes their essential features.

Concluding remarks

As ayoung discipline, experimental economics struggled to survive within
a generally skeptical and dismissive scientific community. Downplaying
difficult methodological problems, therefore, may have been a simple
survival strategy. But the time is now ripe to be bolder and discuss openly
the challenges facing the experimental approach. External validity is one
such challenge.

Most economists aim toward understanding the functioning of
markets — and markets are, with few exceptions, naturally evolved as
opposed to artificially created entities. In order to study such entities,
they use a number of different techniques, from theoretical modeling
to econometrics, surveys, simulations, and last but not least, experiments.
The use of experiments to study nonlaboratory entities raises the problem
of external validity. External validity is not a peculiar problem of social
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science experiments — quite the contrary — but other scientists rarely
remind us of how artificial their experimental settings are. We are con-
stantly bombarded by newspaper announcements that some stunning
discovery has proved a link between, say, the gene of a mouse and a dan-
gerous disease. However, we are rarely told how far away we are from a
valid explanation of that disease in human beings. Every single month, a
new substance promising to cure cancer is announced in scientific jour-
nals. However, as we know all too well, sadly most of these “cures” do
not survive further scrutiny and never materialize in our hospitals.

Sometimes external validity takes the form of “the in vitro—in vivo
problem” (biochemistry), sometimes itis called “ecological validity” (psy-
chology), and sometimes it is called “parallelism” (economics), but the
issue is always the same. How are experimental phenomena “exported”
from the laboratory to the outside world? Are we entitled to infer from
such peculiar circumstances to what happens in other circumstances of
interest? In this chapter, I argue that the problemis genuine and important
and I review some attempts to solve it, or simply make it go away. Follow-
ing Chris Starmer, Vernon Smith, and generally the empiricist approach of
this book, I argue that the external validity problem is empirical in charac-
ter and must be solved by appropriately combining field and laboratory
evidence. In the next two chapters, I outline a more detailed account,
modeled on economists’ concrete attempts to draw convincing external
validity inferences.



EIGHT

Economic Engineering

How should external validity problems be tackled? Because the philo-
sophical and economic literature provides little help, I look for inspi-
ration somewhere else: in the actual techniques used by experimental
economists when they engage in applied science. What do economists do
when they have to make sure that their laboratory results will work in the
field?

This chapter is primarily descriptive in character. I focus on a cele-
brated application of game theory and experimental economics to solve
a real-world problem: the construction in 1993-94 of a new market insti-
tution, by means of which the Federal Communications Commission (an
agency of the U.S. government, FCC from now on) allocated a peculiar
kind of good (telecommunication licenses). One of the key themes of
this book — that experimental science is much more than theory testing —
emerges forcefully again; but more importantly, this chapter provides
the first concrete example of the procedures scientists use to bridge the
gap between experimental and nonexperimental circumstances. In the
chapters that follow, then, I try to draw some lessons from this case and
generalize them to build a methodology of external validity inferences.

The market for telecommunication systems

A “decentralizing wave” hit the American economy in the eighties and
nineties. A new political imperative prescribed the replacement, when-
ever feasible, of centralized, bureaucratic systems of allocation with mar-
ket processes. Before this wave reached the telecommunications industry,
licenses for wireless Personal Communication Systems (PCS) — providing

161
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the right to use a portion of the spectrum for radio communication, tele-
phones, portable faxing machines, and so on — were assigned via an admin-
istrative hearing process. Each potential user had to apply to the FCC and
convince them of their case; a commission would then decide to whom
the license would go. Such a method (the “beauty contest” method, as it
is sometimes called) had a number of drawbacks: above all, it was slow,
cumbersome, nontransparent, and gave licenses away for free instead of
selling them for their market value. In 1982, Congress decided to reform
the system and make it faster by using lotteries: each license was randomly
assigned to one of the companies that had applied for it.

The lottery system was quicker but had other defects: in particular,
companies could participate even if they lacked a genuine interest in the
licenses, just to resell them for huge profits later on. A secondary mar-
ket was thus created in which licenses were resold by lucky winners to
those who would really use them. The lottery system generated an unjust
and unjustified distribution of income from the controller of the airwaves
(the U.S. government) to private individuals who had done nothing to
deserve it.! In July 1993, Congress decided that the lottery system had to
be replaced by a market institution, and the FCC was faced with the prob-
lem of identifying and implementing within ten months the best auction
system for selling their licenses.

The problem of devising a suitable kind of auction was far from trivial,
and previous experiences in New Zealand and Australia had shown that
it was also a delicate one: a badly conceived reform could lead to disas-
trous results.” As some journalists put it, “When government auctioneers
need worldly advice, where can they turn? To mathematical economists
of course,” and “as for the firms that want to get their hands on a sliver
of the airwaves, their best bet is to go out first and hire themselves a
good game theorist.”® In September 1993, the FCC issued a “Notice of
Proposed Rule Making” setting the goals to be achieved by the auctions,
tentatively proposing a design, and asking for comments and suggestions
from potential bidders.

Soon a number of economists got involved as companies’ advisors.
The aims to be pursued in auctioning PCS acted as constraints on the

1 According to the U.S. Department of Commerce, more than forty-five billion dollars were
gained by opportunistic lottery winners in the eighties (cfr. McMillan 1994, p. 147, n. 3).
For a comparison of the auction method of allocation with other methods, such as lotteries
and administrative hearings, as well as for a discussion of the pros and cons of auctioning
licenses, see McMillan (1995).

2 McMillan (1994, p. 147) and Milgrom (2004, Ch. 1) tell the stories of these earlier design
failures. Later failures are reviewed in Klemperer (2002).

3 The Economist, July 23, 1994, p. 70; quoted in McAfee and McMillan (1996, p. 159).
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work of the consultants. The auction was intended to achieve an effi-
cient allocation of the spectrum, to prevent monopolies, and to pro-
mote small businesses, rural telephone companies, and minority-owned
and women-owned firms (as prescribed by the government and the FCC
policy). Moreover, it was understood that the volume of revenue raised
by the auctioneer (the FCC) was an important factor to be taken into
account. A fairly precise target was thus set right at the beginning of the
enterprise. It took the form of an economic phenomenon to be created
from scratch, with certain specific characteristics that made it valuable in
the FCC’s eyes. The following story is a tour de force from this prelim-
inary identification of the target to the final product (the FCC auction
as it was eventually implemented in July 1994), through a series of theo-
retical models, experimental systems, simulations, and public and private
demonstrations of the properties of different market designs.

Mechanism design

The FCC enterprise is a typical case of a mechanism design problem.
The term mechanism is widely used in the social sciences, in various and
often inconsistent ways. In this chapter, I stick to the meaning that is
common in the technical economics literature: mechanisms are systerms
of rules regulating the behavior of agents (individuals, but also institu-
tions such as firms, political parties, etc.) with the aim of achieving certain
goals or outcomes. The characteristics of the agents (their preferences,
beliefs, capabilities, etc.) are usually listed among the properties of the
environment — the circumstances that are beyond the reach of the legisla-
tor and therefore must be taken as given during the process of mechanism
design.* Mechanism design reverses the form of reasoning that is most

4 There is some ambiguity on whether mechanisms are social entities or representations.
Mas-Colell, Whinston, and Green (1995), for instance, on the very same page, define a
mechanism as “the formal representation of [. . .] an institution” (more precisely: a collec-
tion of strategy sets and an outcome function from the Cartesian product of the strategy
sets to the set of alternatives), to claim shortly after that “a mechanism can be seen as
an institution with rules governing the procedure for making collective choice” (p. 866,
my italics). The concept of mechanisms is also enjoying some popularity in philosophy
of science, in which it is usually defined in close connection with the notion of a system
of causal relations or processes; see e.g., Wesley Salmon (1984); Machamer, Darden, and
Craver (2000); and Glennan (2002). In an earlier account of the FCC auctions’ construc-
tion, I tried to unify the economics and the philosophy of science terminology (Guala
2001). Other attempts to apply the philosophy of science idea of mechanism to economics
include Pierre Salmon (1998) and his commentators, as well as Dupré (2001). A Ph.D.
dissertation by Edward Nik-Kah (unpublished) is the first attempt to write a history of
mechanism design theory.
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common in science: according to a widely shared view of scientific knowl-
edge, the main task of the theorist is to explain spontaneously occurring
and experimental processes by designing an appropriate model for each
kind of causal process and the phenomena it generates. The FCC case
belongs to an altogether different kind of scientific activity, proceeding in
the opposite direction from abstract theoretical models to the concrete
systems of rules that govern behavior.

Designs are motivated by a mechanism (a mathematical model, a body of theory)
that is perhaps completely devoid of operational detail. The task is to find a system
of institutions — the rules for individual expression, information transmittal, and
social choice —a “process” that mirrors the behavioral features of the mechanism.
The theory suggests the existence of processes that perform in certain (desirable)
ways, and the task is to find them. This is a pure form of institutional engineering
(Plott 1981, p. 134).

Theory can be used to produce new technology by shaping the social
world so as to mirror a model in all its essential aspects. The “idealized”

character of the model may thus be a virtue rather than a defect, as the
explicitrole of theory is to point to a possibility in this case. Theory projects
rather than describes what is already there.

The mechanisms I am concerned with are market institutions. Mecha-
nism design is often motivated by the will to replace centralized, expen-
sive, or inefficient systems of regulation with “better” (i.e., decentralized,
cheaper, or more efficient) ones. An everyday analogy may help here:
consider the problem of deciding whether to direct traffic using police
officers rather than traffic lights or roundabouts. Each system has advan-
tages and drawbacks in terms of cost, ambiguity of the rules, propensity to
generate confusion and mistakes, costs of enforcement, and so on. The
theory of mechanism design, then, involves both the study of the func-
tioning of different institutions and their evaluation. It is an enterprise
between theoretical and applied economics, which requires first stating
clearly the goals to be achieved by the mechanism, and then finding the
best means to achieve them given the circumstances. Mechanism design
clearly is an activity in which normative and positive economics intersect.
Despite the philosophical interest of the normative aspects of mechanism
design, in this book, I am concerned with the positive ones only.

Economic theory is obviously an extremely valuable tool in mechanism
design. Once the environment (agents’ characteristics) is defined, it is pos-
sible to think of institutional rules as defining a game, which the agents
are facing and trying to solve rationally. Ideally, it should be possible
to predict exactly what outcome will be achieved by a given mechanism
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in a given environment by means of equilibrium analysis. Auction the-
ory, the branch of game theory that is prevalent in mechanism design, is
considered “closer to applications than is most frontier mathematical eco-
nomics” (McAfee and McMillan 1987, p. 700). As it turns out, however,
“being close to applications” is not quite the same as “being straightfor-
wardly applicable.”

The role of theory

When the FCC started auctioning in 1994, the results were immediately
hailed as a major success, if only for the huge sums of money gained by
the federal government ($23 billion between 1994 and 1997). Most of the
glory went to the theorists who helped design the auction mechanism. The
FCC auction was claimed “the most dramatic example of game theory’s
new power,” “a triumph not only for the FCC and the taxpayers, but also
for game theory (and game theorists).” It would be a mistake, however,
to think of the FCC auction’s design as entirely theory driven. Auctions
like those for PCS are, in fact, a typical example of what game theory is
not very good at modeling.

Game theoretic accounts of auction mechanisms date back to the six-
ties, thanks mainly to the pioneering work of William Vickrey (1961).
Vickrey solved an auction game known as the “independent private values
model,” in which each bidder is supposed to be aware of the exact value
of the auctioned item but not supposed to know its value to other bid-
ders. Such an assumption seems to be satisfied in auctions of, for example,
antiques, which will be privately enjoyed by buyers who do not intend to
resell them. Wilson (1977) and then Milgrom and Weber (1982) extended
Vickrey’s private value model to other important situations and notably
to the “common value” case, in which the exact value of each item is
the same for every bidder but unknown to all (auctions for oil leases, for
instance, seem to be of this kind). Auctions are modeled as noncooper-
ative games played by expected-utility maximizing bidders. The players
are assumed to adopt equilibrium strategies — in the standard sense of a
Nash equilibrium in which, given everyone else’s moves, no player can do
better than she is presently doing by changing her strategy.®

5 From Fortune, February 6, 1995, p. 36, cited by McAfee and McMillan (1996, p. 159), who
also report on other, similar reactions. Other references can be found in Milgrom (1995,
2004).

® For an introduction to auction theory, cf. Milgrom (1989); more comprehensive surveys
can be found in McAfee and McMillan (1987), Klemperer (2004), and Milgrom (2004).
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After more than two decades of theoretical development, the theory
of auctions still relies on a number of restrictive assumptions and by
no means can be applied to all circumstances. The most important and
disturbing feature of the commodities to be auctioned by the FCC (the
PCS licenses) is their being, to say it in economists’ jargon, sometimes
“complementary” (e.g., licenses to provide the same service to different
contiguous regions) and sometimes “perfect substitutes” (licenses for dif-
ferent spectrum bands that can provide the same service) for one another.
The value of an individual license thus may be strictly dependent on the
buyer’s owning one or more of the other items: the value of a “pack-
age” could differ from the sum of the values of the individual items that
are in it. This is the result of a number of characteristics of the airwaves
industry, from fixed-cost technology to customer-base development, from
problems of interference to the use of different standards by different
companies (McMillan 1994, p. 150). For all these reasons, a license for
transmitting in a certain region is generally more or less valuable depend-
ing on whether one owns the license for a neighboring area or not.

The bulk of auction theory deals with the sale of a single good, and
in 1993, the theoretical study of multiunit auctions was still in its infancy.
Insights from other parts of economic theory, however, suggested that
complementarities could raise great problems, because models of compet-
itive markets with goods of this kind tend not to have a unique equilibrium
and tend to be unstable.” The theory, at any rate, was highly incomplete:
it could not provide a general analysis or a prediction for auctions with
interdependent goods. The first issue to be tackled by the consultants
when they started work in 1993 was whether to use a traditional bidding
mechanism or to create something new, an institution designed “ad hoc”
for the specific problem at hand. Although conservative considerations
of reliability pulled in the first direction, the peculiar features of the air-
waves industry seemed to require the second approach. In the Notice
of Proposed Rule Making of September 1993, the FCC suggested the
implementation of an auction system in two stages, in which goods are
initially auctioned in packages (with a sealed bid mechanism) and, later
on, on an individual basis. This procedure seemed to solve the problem
of aggregation in a straightforward way: the items are assigned to the
winners of either the first or the second auction, depending on which one

7 The literature on multiunit auctions is now growing fast, and recent theoretical develop-
ments have mostly confirmed these worries about complementarities (see e.g., Milgrom
2004, Chs. 7 and 8).
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is guaranteeing more revenue to the seller. If bidders really value a pack-
age more than the individual items in isolation (as the complementarity
hypothesis suggests), then the procedure should provide an incentive for
aggregation.

“Package bidding” (or a combinatorial auction design) was also advo-
cated by the National Telecommunications and Information Administra-
tion (NTIA), a public institution advising the government and the FCC
on matters of telecommunications policy. Their proposal was based on the
work of John Ledyard, a pioneer in the area of combinatorial auctions.
Several companies, however, were opposed to selling the licenses in pack-
ages, in order to prevent competitors from acquiring a nationwide cover-
age of the spectrum. Pacific Bell hired two leading auction theorists, Paul
Milgrom and Robert Wilson, to advocate an alternative mechanism called
the “simultaneous ascending-bid auction”; another economist (Preston
McAfee, consulting for AirTouch Communications) also came up with
a proposal that differed from the Milgrom-Wilson design only slightly.®
In a simultaneous auction, several markets are open at the same time
and bidders can operate in all of them at once. In an ascending auction,
bidders continue to make their offers until the market is closed — which
usually means until no new offers are put forward. Simultaneity and the
ascending form allow each bidder to collect valuable information about
the behavior of other firms as well as about his or her own chances to
construct the aggregation of items he or she most prefers. Bidders can
thus switch during the auction to less-preferred combinations as soon as
they realize that they will not be able to achieve their primary objective.
Moreover, an ascending bid (as opposed to a sealed bid) system is sup-
posed to reduce the risk of “overbidding” (offering more than the value
of the item) because by keeping an eye on each other’s bids, buyers can
make a better conjecture about what the evaluations of the other bidders
(and thus the real value of the licenses) are. The proposed mechanism,
however, had some worrisome features: in particular, it looked at first
sight rather complicated and had never been used before.

On behalf of Pacific Bell, Milgrom and Wilson sent a document to
the FCC arguing that a combinatorial process in two stages, like the one

8 The FCC case provides an interesting example of the delicate interaction between scien-
tific and economic interests (the consultants were at times unashamedly lobbying for
their companies) in the solution of a techno-scientific problem. Nik-Kah (unpublished)
and Mirowski and Nik-Kah (2004) provide an account of the FCC case focusing on
political and economic factors, and criticize some aspects of my reconstruction in Guala
(2001). On the political context of the auctions, see also Kwerel and Rosston (2000).
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Table 8.1. Payoffs in a Simplified Auction Setting

Bidder A B AB
One 4 - -
Two - 4 -
Three 1+¢ 1+e¢ 24+ ¢

proposed in the September 1993 notice, was to be discarded. Their argu-
ments are representative of the kind of reasoning used by theorists in
order to identify the “right” design for the FCC case. It is worth spending
some time reviewing at least one of them, because it sheds light on the
role played by game theory in the design process.

Milgrom and Wilson argued, among other things, that a combinatorial
institution may give rise to free-riding situations of the following kind
(cf. Milgrom 1998, 2000). Suppose there are three bidders (One, Two, and
Three). Bidder One’s willingness to pay for item A is 4, whereas she is
not eligible to buy item B or the package consisting of A and B together.
Bidder Two’s willingness to pay is symmetrical: 4 for B and not eligible
for A and AB. Bidder Three, in contrast, is willing to pay 1 + ¢ for A, 1 +
¢ for B, and 2 + ¢ for AB (with € small and positive). The payoffs are
represented in Table 8.1.

The only efficient allocation in this case is the one assigning A to One
and B to Two. In an ascending simultaneous auction, Bidder Three bids
1 for each item and Bidders One and Two bid just enough for Three to
give up, then they acquire A and B, respectively: the efficient outcome is a
subgame perfect equilibrium of the simultaneous ascending mechanism.

Milgrom and Wilson then turn to the two-stage combinatorial design.
Under this institutional arrangement, Bidder Three does not have an
incentive to bid on A and B individually; she just participates in the auction
for package AB,in which she bids 2 + ¢. Bidder One can win the individual
auction for A by bidding 1, and similarly Two can win the auction for B.
However, then the package would go to Bidder Three. One and Two
therefore have an interest to raise the total value of A and B by bidding
more on at least one of them, but would like the other to do so in order
to minimize his or her own costs. Milgrom and Wilson show that such a
free-rider situation has a mixed-strategy equilibrium that is inefficient.
Bidders One and Two each face a subgame that can be represented by
means of the payoff matrix in Table 8.2.

By backward induction, it can be proven that this subgame has an
equilibrium in which each bidder plays “raise the bid” with probability 2/3
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Table 8.2. Free Riding in a Simplified
Combinatorial Auction

Raise Bid Don’t Raise Bid

Raise bid 22 2,3
Don’t raise bid 3,2 0,0

and “don’t raise” with probability 1/3. However, there is a 1/9 probability
of Three getting both A and B by paying just 1/4 of what Bidders One
and Two would jointly pay for them (Milgrom 1998, p. 15).

Such an argument clearly makes use of game theory but does not follow
from a general game theoretic model of combinatorial auctions. Lacking
a comprehensive theory of these processes, the economists engaged in
the FCC enterprise relied on a number of piecemeal theoretical insights
and local analyses of how players are supposed to behave when solving
certain tasks in isolation. “The spectrum sale is more complicated than
anything in auction theory,” as two of the protagonists admitted (McAfee
and McMillan 1996, p. 171). The relation between theoretical reasoning
and the final implementation of the auction is well summarized by the
following remarks:

The FCC auctions provide a case study in the use of economic theory in public pol-
icy. They have been billed as the biggest-ever practical application of game theory.
Is this valid? A purist view says it is not. There is no theorem that proves the simul-
taneous ascending auction to be optimal. The setting for the FCC auctions is far
more complicated than any model yet, or ever likely to be, written down. Theory
does not validate the auction form the FCC chose to implement. The purist view,
however, imposes too high a standard. The auction form was designed by theorists.
The distinction between common-value and independent-value auction settings
helped clarify thinking. The intuition developed by modelling best responses in
innumerable simple games was crucial in helping the auction designers antici-
pate how bidders might try to outfox the mechanism. (McMillan, Rotschild, and
Wilson, 1997, p. 429)

Theory played a crucial role in the design, but only if we interpret
the term theory in a loose sense.” “The auction designers based their
thinking on a range of models, each of which captures a part of the issue”
(McAfee and McMillan 1996, p. 171). It is true that “game theory played

9 McAfee and McMillan, for instance, claim that “there is a direct link between game
theory’s laureates and the spectrum auction. The ideas with which Nash, Harsanyi, and
Selten are associated — Nash, Bayesian and Perfect Equilibrium — are the basic tools of
the theory used in designing the auction” (1996, p. 171, n. 15).
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a central role in the analysis of rules” and “ideas of Nash equilibrium,
rationalisability, backward induction, and incomplete information [. . .]
were the real basis of daily decisions about the details of the auction
design” (Milgrom 1995, pp. 19-20), but

[...]the real value of the theory is in developing intuition. The role of theory, in any
policy application, is to show how people behave in various circumstances, and to
identify the tradeoffs involved in altering those circumstances. What the theorists
found to be the most useful in designing the auction and advising the bidders was
not complicated models that try to capture a lot of reality [. . .]. Instead, a focused
model that isolates a particular effect and assumes few or no special functional
forms is more helpful in building understanding. (McAfee and McMillan 1996,
p. 172)

The other side of the coin is that by reasoning from game theory, it
is impossible to define the exact form of the rules to be used in the auc-
tion, and theory never gives you the whole picture of the complicated
process at any time. For this reason, it is true that “the auctions would not
have taken the shape they did were it not for the economic knowledge
brought to the design process” (McMillan et al. 1997, p. 429) — but only if
we extend the meaning of economic knowledge well beyond the theoret-
ical realm. Indeed, today “much of what we know about multi-unit auc-
tions with interdependencies comes from experiments” (McMillan 1994,
p. 151, n. 6).

Testbed experiments

A group of experimental economists from Caltech were involved in the
design project right from the start. John Ledyard, as already mentioned,
was behind the combinatorial design proposed by the NTIA and had a
long track record in experiments with multiunit auctions. Another promi-
nent Caltech experimenter, Charles Plott, was hired by Pacific Bell in 1993
torun aseries of experiments that would test some key theoretical insights
and to help choose the best auction design. Later, Plott would also play
a prominent role in the careful checking of the rules and software to be
used in the first real FCC auction.

Initially, the role of experiments was to discriminate among different
institutions (the “hybrid” design proposed by the FCC, the Ledyard com-
binatorial auction, and the Milgrom-Wilson-McAfee “continuous ascend-
ing” auction), for which neither a comprehensive theoretical analysis nor
empirical data existed. The economists involved in the design process
quickly focused on efficiency as the main objective to be achieved by the
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auctions, and efficiency of the spectrum was interpreted (somehow twist-
ing the original FCC ruling) in strictly economic terms as “assigning the
licenses to the bidders who value them most.”'? By theoretical means,
it is impossible to prove that the allocation generated by the continuous
ascending auction is efficient. By observing a “real world” auction, very
few hints about whether the outcome is efficient or not can be gained
because of the unobservable nature of bidders’ valuations. Experiments,
in contrast, allow the “induction” of known values on subjects and thus
enable one to check whether a given institution really allocates the goods
to those who value them most. The Caltech team made use of what they
call “testbed” experiments:

An experimental “testbed” is a simple working prototype of a process that is going
to be employed in a complex environment. The creation of the prototype and the
study of its operation provides a joining of theory, observation, and the practical
aspects of implementation, in order to create something that works. (Plott 1996,

p-1)

In early 1994, the Caltech group ran a series of comparative efficiency
tests of the simultaneous ascending auction versus a combinatorial sealed
bid and the hybrid FCC design. The latter emerged as the least-performing
format, whereas the combinatorial design came out on top in experiments
with strong complementarities. Ledyard, however, recognized that the
implementation of a combinatorial auction raised too many complicated
issues to be tackled in the tight time frame provided by the government
(Kwerel 2004, p. xx), and therefore the simultaneous ascending design
emerged as the winner due to a combination of empirical and practical
reasons.

In this first stage, experimenters were particularly interested in
observing the functioning of the two bidding institutions in their “bare-
bones” versions, in order to become familiar with their fundamental prop-
erties and problems. Comparative testing of institutions in their simplest
versions, however, was also instrumental in letting the first operational
details and problems emerge. The mechanisms were for the first time
transported from the abstract world of ideas to the laboratory. Some
“flesh” was added to transform the fundamental insights into working

10 The history of the other objectives initially pursued by the FCC has been thorny: a 1995
Supreme Court ruling induced the FCC to eliminate positive discrimination on the basis
of race and gender (McAfee and McMillan 1996, p. 167). Other forms of discrimination
(in favor of small businesses and rural telephone companies) remain, but their success
remains controversial.
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processes, flesh that might have modified, impeded, or hidden some of
the systems’ structural dispositions. These experiments could therefore be
seen as tests of the various designs —but “tests” of a peculiar kind, because
specific versions of the auction systems themselves, rather than some the-
oretical model of the auctions, were subject to examination. The issue was
not whether some theory about an institution was to be discarded, but
whether one rather than another institution should have been chosen for
its properties, despite the fact that no thorough theoretical understand-
ing of its functioning was available. Given the effect to be achieved, in
other words, a mechanism had to be discovered or constructed that could
deliver it reliably.

At the first step of “concretization,” unsurprisingly, experimentalists
spotted problems that the theorists could not have anticipated. Plott and
his collaborators implemented the FCC proposal by running so-called
Japanese auctions combined with a sealed bid preauction. In the first
round, a sealed bid offer is made for a package of items, which are then
auctioned individually in the second round: in a Japanese auction, the
auctioneer announces higher and higher prices and the bidders “drop
out” one after another; the last one to remain in the auction wins the item
and pays the second highest bid. If the aggregate value of the individually
sold items exceeds that of the package, the results of the sealed bid auction
are disregarded; otherwise, the items are sold as a package.

One problem with this procedure is that some bidders have an interest
in staying in the Japanese auction well above their reservation price, in
order toraise the prices and overcome a sealed bid preoffer. This may push
the price “too high” and cause a bubble effect. The risk of staying in the
auction above your reservation price, however, increases as the number
of bidders who are participating diminishes. For this reason, information
is crucial: players must not know how many others are still competing.
Not to communicate explicitly how many bidders are still in the game,
however, does not constitute a sufficient form of shielding: one has to be
careful that any possible information flow be stopped. The click of a key,
a “blink” on the computer screen coinciding with bidders’ dropping out,
or even a door slamming when they leave the room is enough to give
valuable hints to the other participants. These problems were actually
discovered by Plott and his team thanks only to laboratory work, and the
Japanese auction design was abandoned also because of these practical
difficulties.

The problem above is one of “robustness.” The FCC proposal, in other
words, is not only outperformed by the continuous ascending auction in
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terms of efficiency, but is also difficult to implement correctly. It is a deli-
cate process, and small imperfections (e.g., in shielding the flow of infor-
mation) may cause it to break down altogether. One can distinguish cases
of “environmental” robustness like the one above from cases of “person-
ality” robustness (Schotter 1998): although economists’ assumptions in
modeling economic agents for the most part may be accurate, in more
or less marginal instances, real behavior may diverge from the model’s
predictions. Environmental robustness, in other words, is a function of an
institution’s capacity to work properly in a number of different environ-
ments. Personality robustness, in contrast, depends on its capacity to work
with a range of real agents, who may behave slightly differently from the
ideal rational maximizing agents postulated by game theoretic models.

Confusion and misunderstanding of the rules are also sources of con-
cern in the implementation of mechanisms, not the least because they
may result in litigation. Testbed experiments allowed the identification of
those critical moments when subjects may need help from the auction-
eer in order to understand some detail of the auction. The problem is
not just whether a certain abstract model fits reality (or whether reality
can be made to fit the model), but also how it fits. The question is how
fragile such a fit is and how sensitive it is to little imperfections, mistakes,
and so on.

Another important role of laboratory experiments consisted of help-
ing to develop the appropriate software. Game theory, of course, does
not specify whether an auction should be run with mere pencil and paper
support or with computers. Electronic auctions are generally privileged
because they facilitate the analysis of data and the enforcement of the
rules: one can, for instance, design software that does not accept bidding
below the highest standing bid of the previous round, thus automatically
controlling for errors and saving precious time. However, no specific soft-
ware for the continuous ascending auction was available at the time, and
anew program had to be created ad hoc. The data of testbed experiments,
elaborated by means of an independently designed program, were used as
inputs in the final software to be used in the real FCC auctions. By means
of such “parallel checking” (Plott 1997, pp. 627-31), the consultants made
sure that the FCC software worked properly and delivered correct data
in a reliable fashion. Trained students were employed to investigate the
properties of the software. They used diaries and notebooks to keep track
of all the problems that could arise and then were asked to answer a ques-
tionnaire surveying the most likely sources of “bugs.” The questionnaire
included questions like,
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What happens if you stay logged on after the initial withdrawal; What happens
if you log in from multiple locations at the same time; what happens if you enter
0000 rather than 0; what happens if you are theoretically inactive but then you log
on after various events; what happens if you log in at the last second of a session
or have a power failure; what happens if you follow local software installation
exactly to the “letter” of the instructions; etc. (Plott 1997, p. 631, n. 4)

The process must be “idiot-proof”: robust to the people who use it,
who may create a number of bizarre problems (up to crashing the whole
network) or make unpredictable moves in playing their game.

The enterprise of building a “properly working” institution in the

laboratory thus shows that small variations can make a big difference
indeed. “The exact behaviour of the auctions can be sensitive to very sub-
tle details of how the auction process operates” (Plott 1997, p. 620; see
also Klemperer 2004). To understand why a mechanism may be chosen
for reasons that differ from its theoretical properties, one has to remem-
ber that those properties are defined at a certain (usually high) level of
abstraction. Aninstitution producing desirable allocations when correctly
built may nevertheless be very difficult to build correctly. In the context
of the natural sciences, Nancy Cartwright calls it the problem of material
abstraction:
A physicist may preach the principles by which a laser should operate; but only
the engineers know how to extend, correct, modify, or sidestep those principles
to suit the different materials they may weld together to produce an operating
laser. (Cartwright 1989, p. 211)

Compared with other applied disciplines, economic engineering is
peculiar in at least two respects: first, once the basic causal structure has
been chosen (e.g., the combinatorial auction design), the economic engi-
neer has very little room for maneuvering in terms of the corrections,
modifications, and interventions that are allowed. The materials are, for
the most part, given because agents should not, for instance, be forced
to change their preferences — although some kinds of preferences (e.g.,
collusive or altruistic ones) can be neutralized by design. The principal
way in which the economist can intervene on the problem-situation is by
defining the rules of the institution. Second, as we have seen in the FCC
case, the designers were short of theory guiding the implementation. It
was not just a matter of “adding matter” to an abstract causal structure,
but rather of adding matter while understanding and shaping the causal
structure itself.
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Testing the rules

The Caltech experiments were used differently in different phases of the
project (Plott 1997, p. 608). First, as we have seen, they were instrumental
in choosing between the Milgrom-Wilson-McAfee design and the ini-
tial FCC proposal. Second, testbeds were used to transform the abstract
design into a real process that could perform the required task reliably
in the environment in which the auction was to be implemented. Finally,
experimental data were most valuable in interpreting and checking the
results of the first real auctions run by the FCC. Before coming to that,
however, it is worth looking at some of the experiments run by Plott and
his team in order to check the joint effect of the rules that would have
regulated the FCC auctions.

Mechanism designers see the rules as a device for defining the strate-
gic situation that bidders face and to which they are supposed to react
rationally. Unfortunately, in the case of spectrum licenses, theorists were
unable to solve the game as a whole and therefore had to rely on the anal-
ysis of single subgames in a piecemeal manner. How the pieces would
have interacted once put together remained an open issue, about which
theorists had relatively little to say. Experiments can be used to move
gradually from the world of paper and ideas to the real world, without
losing the desired structural properties of a mechanism along the way.
The enterprise is similar to that of designing a space probe: it would be
too costly to proceed on a trial-and-error basis and perform a series of
full-scale tests.

The structure of the continuous ascending auction so far has been
sketched at a most abstract level. The details of the design are, in fact,
much more complicated. Preston McAfee, Robert Wilson, and Paul
Milgrom were mainly responsible for writing the detailed rules that
were to regulate bidding in all its various aspects and that eventually
were put together in an official document. The most important — and
debated — rules concerned increments, withdrawals, eligibility, waivers,
and activity.

The simultaneous ascending auction proceeds in rounds. At every
round, the players offer their bids — which are scrutinized by the auc-
tioneer — and then are presented with the results. The feedback includes
the bids presented at that round, the value of the “standing high bid,” and
the minimum bid allowed for the next round. The minimum allowed bid
is calculated by adding to the standing high bid a fixed proportion (five
percent or ten percent, usually) called the bid increment. A bid is said to
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be eligible if it is higher than the minimum bid allowed in that round and it
is presented by an eligible bidder. Each bidder, in fact, must at the begin-
ning of the auction make a deposit proportional to the number of licenses
she wants to compete for (each item is auctioned on a different market).
Such a deposit establishes her “initial eligibility,” that is, the number of
markets she can enter.

The idea of eligibility was introduced not only to prevent problems
such as those that occurred in the New Zealand auctions (in which bidders
who were not really interested in the licenses participated and then resold
the licenses to others), but also to regulate the duration of the auction.
Eligibility constrains a bidder’s activity in an ingenious manner. A bidder
is said to be active if she either has the standing high bid from the previous
round or is submitting an eligible bid. The activity cannot exceed a bidder’s
initial eligibility, but bidders also have an incentive not to remain below
a certain level of activity. In the first round, in fact, a buyer must bid
at least a certain fraction of her initial eligibility; if she does not, her
eligibility is reduced in the next round. Such a procedure is supposed to
increase the transparency of the auction (by forcing companies to commit
early on), and to speed it up by preventing “wait and see” strategies. The
possibility of mistakes is taken into account by providing bidders with
five waivers of the activity rules. Bidders could also withdraw a bid, but
with the prospect of paying the difference between the final selling price
as elicited in a further round and the withdrawn bid, in case the latter
exceeded the former.

The rules regulating activity were motivated by the worry that bidders
could have a strategic interest in slowing down the pace of the auction, and
that the auction could even never end at all.!! The duration of an auction
depends on two factors: the number of rounds played and the interval
between rounds. According to the Milgrom-Wilson-McAfee design, each
auction is supposed to stop after a certain period and start again the next
day, until no new eligible bids are received. The idea of having subsequent
“rounds” was motivated by the thought that companies may need time
to revise their strategies, reflect on their budgets, and thus avoid expen-
sive mistakes. As Paul Milgrom put it, “There are billions of dollars at

T Milgrom (1998) provides an example and a game theoretic argument in support of such
a hypothesis. The worry about never-ending bidding was motivated by the choice of the
Milgrom end rule, i.e., that an auction should be considered closed only when no bidding
is taking place in any of the simultaneous markets. McAfee had originally proposed to
close bidding independently in each market, but this would have made the creation of
valuable packages more difficult.
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stake here, and there is no reason to rush it when we are talking about
permanently affecting the structure of a new industry.”!?

The FCC, however, was concerned about time, not least for practical
reasons (booking a big hotel to run an auction, for instance, costs money).
Whereas theory does not tell you how long a continuous ascending auc-
tion may go on, experiments allowed the testing of different rules, with
rounds taking place at different intervals. One possible solution was to
impose big increments above the highest standing bid so as to identify
the winners quickly. In experiments, however, it was observed that big
increments sometimes eliminated bidders too quickly, causing their eligi-
bility to drop and therefore creating a “demand killing” effect (Plott 1997,
p- 633). Such an interaction between the increment rule and the eligibility
rule could have hardly been predicted without experiments. Without a
general theory of simultaneous ascending auctions, theorists could rely
only on a number of independent insights about the effects of different
rules but could not exactly figure out what would happen were all the
rules implemented at the same time.

The concepts of withdrawals, eligibility, increments, and announcement of stage
changes, all involve reasonable sounding concepts when considered alone, but
there remain questions about how they might interact together, with other policies,
or with the realities of software performance. Can one waiver and bid at the same
time? What happens if you withdraw at the end of the auction — can the auction
remain open so the withdrawal can be cleared? How shall a withdrawal be priced?
(Plott 1997, p. 629)

The answers to these questions were sought partly in the laboratory.
“The complex ways the rules interact, and the presence of ambiguities,
do not become evident until one tries to actually implement the rules
in an operational environment” (Plott 1997, p. 628). More time between
rounds might allow bidders to put forward sensible bids, but more fre-
quent rounds might also shorten the process considerably. And would
either of these solutions affect efficiency? Plott and his collaborators even-
tually found that total time was principally a function of the number of
rounds, and auctions going on for more than one hundred rounds were
observed in the laboratory. The Caltech team thus tried to vary the inter-
val between rounds and concluded that having more frequent rounds
did not affect efficiency in their laboratory experiments (Plott 1997,
pp. 632-3).

12 “Access to Airwaves: Going, Going, Gone,” Stanford Business School Magazine, June
1994.
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The Milgrom-Wilson-McAfee rules also involved the possibility of
withdrawals, in case a winner decided a posteriori that the price was
not worth the item bought or that she could not achieve the preferred
aggregation: the item would be “sold back to the market” and the with-
drawing bidder would pay the difference between her bid and the final
price to the FCC. Withdrawals and losses may, however, cause “cycles”: an
item may be bought and resold, bought and resold, and so on until some-
one is satisfied with the price. Experiments were used to create cycles in
the laboratory (see Figure 8.1) in order to see whether they could arise in
practice, to study the conditions (the parameters) under which they are
generated, and how they behave (e.g., for how long they go on before
disappearing).

To sum up, theoretical and empirical insights initially provided just a
few rough “stories” about the functioning of certain bits of the institu-
tion. Thanks to previous experiments, it was known that more transpar-
ent mechanisms (like the English system) tend to prevent winner’s curse
effects better than less transparent ones (e.g., sealed bid auctions). It was
also known that imposing no entry fee would have encouraged oppor-
tunistic bidders to participate. It was conjectured that under some cir-
cumstances, some bidders might have an interest (opposite to the FCC’s)
to delay the auction —and so on. These insights do not jointly pin down the
structure of the best possible institution in all its aspects. They just con-
vey information about what certain components do in certain cases, when
acting in isolation. Instead of laying down the structure of the auction
on paper, it was displayed at work in the laboratory. The job of check-
ing that the different components had been put together in the “right”
way (that they could be put together in the right way, to begin with)
and that they worked smoothly was done by running demonstrations in
the lab.

Checking external validity

When you build a new technology, you do not just pretest it accurately —
you also check that it’s doing its job properly after it has been imple-
mented. The FCC consultants, in fact, monitored a real auction (which
took place in Washington, DC, in October 1994)'3 to check whether the

13 For a detailed analysis and discussion of the early FCC auctions, cf. Cramton (1995, 1997,
1998), Ayres and Cramton (1996), and Milgrom (2004). The data from all the auctions
run by the FCC are available at http://wireless.fcc.gov/auctions/.
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transposition of the simultaneous ascending auction mechanism from the
artificial world of the laboratory to the real world had been successful.
The expertise achieved in the lab was extremely valuable for this purpose.
Experiments had taught that, especially in the first rounds, “regardless of
the amount of preparation and testing, things happen,” and “decisions
must be made on the spot from experience and judgement” (Plott 1997,
p. 631). A committee of consultants was thus formed to supervise the FCC
auction and intervene at any time to assist the participants. Any inconve-
nience that arose in testbeds was likely to be spotted by the trained eye
of the experimenters.

Laboratory pilots with parameters similar to those expected in the real
auction were run beforehand so that the results could be compared after
the event. The experimental auctions had been constructed so as to have
the same number of players, the same number of items auctioned, com-
plementarities such as those presumably existing in the “real” market, a
similar number of rounds,'* similar (although fictional) bids, and so on.
Then, a large amount of data collected both in the lab and in the real
auction were systematically analyzed and compared. This data included
bidding patterns, pricing trajectories, the rise of “bubbles,” the formation
of sensible license aggregations, the fact that similar items sold for simi-
lar prices, evidence of postauction resale, and several other phenomena
of interest (see also Cramton 1995, 1997, 1998). To convey the taste of
this procedure, the “equilibrating” trajectory of an experimental testbed
auction is represented in Figure 8.1.

The dots on the curve stand for the revenues obtained in the laboratory
auction, whereas the horizontal line represents the revenues predicted by
the competitive equilibrium model, computed on the basis of experimen-
tally induced demand and supply curves. The adjustment process toward
equilibrium is one of the most replicated effects in experimental markets:
it takes time and repetition to “find” equilibrium prices. In Figure 8.2, the
revenue of the real FCC auction of October 1994 is represented.

The path is remarkably similar to that of the experimental auction.
(The downward sloping curve represents so-called excess bids and can
be ignored for our purposes.) The price trajectories in the two auctions
evolved in a similar way, and because experimenters knew that the labora-
tory auctions delivered approximately efficient outcomes in the long run,

14 The FCC, though, interrupted the final testbed experiments before their completion. One
last round of bidding was unexpectedly called, and this probably accounts for the sudden
rise in prices observable in Figure 8.1 (see Plott 1997, p. 636, n. 6).
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Figure 8.1. Price trajectory in a laboratory auction. Reproduced by permission
from Plott 1997, p. 634. © Blackwell Publishing.

they felt confident in arguing that an efficient allocation was achieved in
the Washington auction as well. The reasoning behind such a conclusion
is straightforward:

If indeed the same principles were operating in the FCC environment then the
FCC auction converged to near the competitive equilibrium and exhibited high
efficiency. (Plott 1997, p. 637)

The external validity argument takes the form of an inference from
observed data and a set of background assumptions to the underlying
generating process that produced the data. The structure of such an infer-
ence can be reconstructed as follows:

1. If all the directly observable features of the target and the experi-
mental system are similar in structure;

2. [If all the indirectly observable features have been adequately con-
trolled in the laboratory;

3. If there is no reason to believe that they differ in the target system;

And if the outcome of the two systems at work (the data) is similar;

5. Then, the experimental and target systems are likely to be struc-
turally similar mechanisms (or data-generating processes).

&

The strength of this argument lies in the work the FCC and its con-
sultants had done to ensure that the processes that took place in reality
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Figure 8.2. Bidding trajectory in the FCC auctions. Reproduced by permission
from Plott 1997, p. 636. © Blackwell Publishing.

were the same as those they had observed in their laboratory. The same
causes are supposed to operate because experimenters built the two sys-
tems so as to be structurally similar to each other. The transportation of
the mechanism outside the laboratory was as smooth, gradual, and care-
fully monitored as possible. The bootstrapping inference was based on a
ground of theoretical, practical, and experimental knowledge."

Some lessons from economic engineering

The FCC auctions were in many obvious ways a success for the FCC and its
advisors. They were successful politically, to begin with,'® by raising unex-
pected revenues for the government. Game theorists established them-
selves as scientific consultants, and the simultaneous ascending design
has since inspired other projects as a benchmark example of economic
engineering.!” This does not mean that the implemented institution was

15 Notice that I'm focusing here only on the arguments for efficiency that make use of
experimental data. For more evidence and analysis of the first auctions, see McAfee and
McMillan (1996), Cramton (1995, 1997, 1998), and Ayres and Cramton (1996). A vocal
opponent of the orthodox interpretation of the auctions’ “success” is Murray (2002); see
also Mirowski and Nik-Kah (2004). Undoubtedly, because of the difficulty of proving
beyond doubt the efficiency of the auctions, many apologists end up identifying revenue
as the main criterion of appraisal (contrary to the original spirit of the FCC enterprise).
U.S. Vice President Al Gore claimed that “now we are using the auctions to put the
licenses in the hands of those who value them the most” (quoted in Milgrom 1995, p. 1).
See, for example, the auctions for the third generation of mobile telephony run in several
European countries in the past few years (Klemperer 2002, 2004; on the UK auctions in
particular, see Binmore and Klemperer 2002). Nothing has been said in this paper about
the business aspects of mechanism design, but there is certainly an interesting story to be
told about game theory turning into a profitable enterprise (Nik-Kah unpublished and
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flawless: some work has been and is still being done on various aspects
of the design. Collusive behavior, for example, has been a major con-
cern for some years, and much effort has also been invested in the study
of combinatorial package bidding.!® However, these developments go
beyond the scope of this book. I am interested here in the methods imple-
mented by FCC consultants and in the role of experiments in real-world
intervention.

The FCC auctions belong to a small but growing number of attempts to
create new market institutions to perform prespecified tasks. Other exam-
ples include the matching mechanism designed by Alvin Roth (Roth and
Peranson 1999) to regulate the job market of graduates in medicine, and
the electric power market designed by Robert Wilson (2002) in California.
Experimental knowledge of individual decision making is also applied to
help improve the decisions of professionals — doctors, for example — who
face difficult (and potentially costly) decisions in their everyday work.
The “debiasing” program, as it is usually called, makes extensive use of
the results of experiments devoted to testing rational decision theory and
of the “robust” biases that have been discovered therein (cf. Fischhoff
1982; Gigerenzer, Todd and the ABC Research Group 1999).

These projects have opened new, unexpected possibilities. Economists
have been traditionally concerned with the analysis of existing, “naturally
evolved” entities. Working in such conditions made them look more like
meteorologists than physicists. The market design revolution in the 1990s
teaches an important lesson: it is difficult to understand a system (physical
or social) unless you can intervene and experiment with it. And it is even
more difficult to predict its future behavior, unless the system has been
shaped and disciplined so as to work “appropriately.” Natural scientists
learned this lesson a long time ago. Philosophers of science have been
slower to appreciate its implications, possibly because they have been
working within a framework that does not draw the appropriate distinc-
tions between laboratory and nonlaboratory science — but exactly what
methodological implications should be drawn from the study of applied
science?

Mirowski and Nik-Kah 2004 strongly advocate this reading of the FCC story). Several
economists involved in the FCC project later created consultancy firms, and it has become
customary nowadays to patent new auction systems.

Some companies, for example, devised sophisticated signaling systems using the last
few digits of their bids in order to communicate to other competitors their willingness
to collude (Weber 1997, Cramton and Schwartz 2000). On combinatorial auctions, see
Ledyard, Porter, and Rangel (1997); Bykowsky, Cull, and Ledyard (2000); Milgrom (2004,
Ch. 8), and the FCC website at http://wireless.fcc.gov/auctions/conferences/.
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So far we have examined one particular example, and it would be pre-
mature to derive strong implications from this case only. Some features
of the FCC case, however, are worth emphasizing: first, the various roles
played by experiments at different stages during the project. Whereas
experiments in the early stages investigated the functioning of mecha-
nisms at a rather abstract level of specification, a strong inference about
the behavior of the real FCC auctions was based on the evidence col-
lected in experiments that replicated real-world conditions rather closely
(albeit necessarily always imperfectly). Similarity between the laboratory
and the real world is therefore not necessary for experiments in general,
but is nevertheless important when one is aiming at making strong exter-
nal validity inferences about a specific environment.

Second, we have seen how the external validity step was based on a
comparison between laboratory and real-world evidence, and stood on
a stock of “background knowledge” aimed at making the inference as
strong as possible. This is in line with what has been said in the first part
of the book, but of course is still a rough account of inferences from
the experiment and has to be substantiated by means of more concrete
examples and methodological analysis. What sort of conditions must be
in place in order for the inference to be strong? Is such an inferential
procedure restricted to the lucky case in which we can shape the real world
so as to mirror laboratory conditions, or can we generalize to other, less
fortunate circumstances? The next two chapters are devoted to answering
these questions.
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From the Laboratory to the Outside World

Mechanism design is applied science carried out under the most favor-
able conditions — in conditions that maximize the chance of successfully
exporting experimental results outside laboratory walls. In this chapter, I
try to generalize from this particular case to provide an account of external
validity inferences in less than ideal circumstances. Scientists, as a matter
of fact, do draw inferences from experiments, even when the outside world
cannot be shaped to resemble laboratory conditions. I introduce a new
example from auction theory in which the procedure is exactly symmetri-
cal to the one followed by the FCC consultants: the laboratory conditions
were shaped so as to resemble those of a real-world economy, instead
of the other way around. I also draw some analogies from experimental
medicine and elaborate on the role of laboratory and field evidence in
external validity inferences. Before doing that, however, I have to dis-
pose of a disturbing and extreme stance on the external validity problem,
which I label “radical localism.”

Radical localism

The cathodic rays that make our TV sets function are generated by a
carefully engineered causal structure that has been repeatedly tested in
laboratory conditions, then in the factory, and finally stabilized, “shielded”
within a plastic box, and sold to customers all over the world. With few
exceptions (e.g., Cartwright 1999), philosophers of science have neglected
this pervasive feature of applied science (or “techno-science,” as it is
sometimes called): success is usually achieved as much by construction
as by accurate representation. We can control and predict what happens

184
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under circumstances X not only when our models (theories, hypotheses)
fit X, but also by shaping X to fit our models. In the late 1970s and 1980s,
a new breed of historians and sociologists of science began to highlight
the connection between scientific knowledge and technology building in
their studies of experimental practice.! Bruno Latour and Steve Woolgar’s
Laboratory Life (1979) is one of the pioneering works in this literature.
It focuses on the research on thyrotropin-releasing hormone (TRH) that
led to the award of the Nobel Prize for medicine to Roger Guillemin in
19717.

TRH is a product of the mammalian hypothalamus that contributes
to the production of a hormone called thyrotropin. The hypothalamus
secretes only a tiny amount of TRH, which is therefore very hard to
obtain. Guillemin (and, independently, Andrew Schally) bypassed the
scarcity problem by synthesising a tripeptide whose behavior very closely
resembles that of TRH. Latour and Woolgar describe in detail the process
of identification of the synthesized protein with the real TRH in mam-
mals’ hypothalamus. The remarkable aspect of this case, as noticed by
Hacking (1988), is that the artificial peptide became quickly — and with-
out much scrutiny — the benchmark for deciding what should count as
TRH and what should not. Its structure became the structure of TRH.
The success of Guillemin’s and Schally’s work was probably the result of
their ability to provide an off-the-shelf substance of vast potential appli-
cability (independently of its being the original TRH or not). However,
in several passages of their book, Latour and Woolgar go further than
that: they suggest that one cannot rationally establish that an artificial
result in the laboratory is actually a faithful representative of a real-world
phenomenon or entity. Scientific knowledge never really trespasses lab-
oratory walls, despite scientists’ rhetorical claims.

This thesis is endorsed more explicitly in Latour’s later work. In The
Pasteurisation of France (1984), Latour reconstructs Luis Pasteur’s strug-
gle to enroll the scientific community in his research program of exper-
imental microbiology and extensive vaccination. Latour tries to explain
Pasteur’s success, a success that —he believes — went well beyond what was
justified by common or reasonable scientific standards. Latour takes sides
with the dissenters, such as Koch and Peter, who criticized Pasteur’s “hasty
generalization” from a bunch of vaccinated sheep to “a general method,
applicable to all infectious diseases” (Latour 1984, p. 29). The skeptics

1 Cf. e.g., Latour and Woolgar (1979), Collins (1985), Latour (1987), Galison (1987),
Gooding (1990), and Pickering (1995).
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questioned the stock of empirical facts upon which Pasteur based his
inferences. According to Latour, “no one can deny that in 1881 this stock
was extremely limited” (1984, p. 30). What Pasteur had done, in other
words, did not support the generalized theories of infection and cure that
he in fact formulated. The upshot is that Pasteur’s “generalizations” were
just rhetoric. In reality, Pasteur simply “exported” his findings by shaping
reality on the model of his laboratory on the Rue d’Ulm. Where this was
not done properly, the “generalizations” failed.

It often seemed for instance, that the antianthrax vaccine refused to pass the
Franco-Italian border. However much it tried to be “universal,” it remained local.
Pasteur had to insist that the practices of his laboratory be repeated exactly if the
vaccine were to travel. (Latour 1984, p. 93)

Pasteur used to perform dramatic public displays of his scientific
achievements. In May 1881, for example, he demonstrated the effective-
ness of his vaccine on a small farm in the village of Pouilly-le-Fort.? Latour
takes the experiment at Pouilly-le-Fort as a paradigmatic case of exter-
nal validity inference: its successful outcome was achieved by turning the
farm into a laboratory. Where reality has not been carefully engineered,
according to Latour, laboratory results do not apply. Experimental results
travel from lab to lab, but never really come to grips with the outside
world. Here are a couple of quotes, in typical Latourian aphoristic style:

When people say that knowledge is “universally true,” we must understand that
it is like railroads, which are found everywhere in the world but only to a limited
extent. To shift to claiming that locomotives can move beyond their narrow and
expensive rails is another matter. Yet magicians try to dazzle us with “universal
laws” which they claim to be valid even in the gaps between the networks. (1984,
p- 226)

Whatever is local always stays that way. (1984, p. 219)

I will call radical localism the view that experimental results do not
apply to the world outside the laboratory.® Radical localism is disturbing:
it would be disappointing to find out that biomedical researchers exper-
iment with drugs on animals but will never be able to tell whether these
drugs can cure us (humans).* And similarly, we would be disappointed

2 The original report of the experiments can be found in Pasteur (1881).

3 Cf. also Latour (1987, pp. 247-54). David Gooding (1990, Ch. 6) and Andy Pickering
(1995) at times seem to defend similar views.

4 Not to mention the fact that animal experimentation surely would be morally outrageous
if it were not able to help in the cure of human beings. See LaFollette and Shanks (1995)
for a critique of animal experimentation along these lines.
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to find out that economists’ experiments can teach us nothing about the
working of real-world economic systems. Radical localism must face a
normative challenge: as worldly decision makers, we require experimen-
tal knowledge to extend outside the laboratory.

In order to challenge its disturbing aspects, one can question the
descriptive adequacy of radical localism. Some science, to be sure, travels
from lab to lab without ever being faced with unconstrained reality. But
not all science works that way, and indeed scientific knowledge would be
a poor thing if it were limited to that. Many cases of scientific application
undoubtedly fit the radical localist account: the FCC auctions, as we have
seen, were designed and accurately tested in the economic laboratory at
CalTech before being exported to the real world. They did not exist as a
“naturally evolved” entity before the experiments took place. However,
exporting the laboratory is just one route toward external validity — the
safest one perhaps, but not the only one. Its viability depends on how much
we are allowed to intervene and shape reality to fit our experimental pro-
totypes. In many cases, we are not allowed to do that for ethical, political,
or merely practical reasons. In such cases, scientists have to follow some
alternative strategy — but what kind of strategy?

Laboratory and field evidence

The core intuition behind localism is that controlled experimentation and
cautious inference from the evidence are the key recipes for success in
applied science. Contrary to the standard view, broad generalizations and
universal theories are often the enemies of scientific progress. It is easy
to find examples of that. In 1917, the discoverer of vitamins A and B,
Elmer McCollum, reported that experimental rats did not seem to suffer
from scurvy when put on the same diet that produces scurvy in guinea
pigs (McCollum and Pitz 1917). McCollum subscribed to the view that the
nutritional process of all single-stomached mammals must be the same.
He was testing the law, “For all single-stomached mammals, if X then Y”
(where X is a dietary regime, and Y is scurvy). But in rats, X and not
Y, which logically falsifies the general law (by modus tollens). McCollum
rejected the hypothesis that scurvy results from a nutritional deficiency,
an idea defended only a few years earlier by Axel Holst and Theodor
Frolich (1907) on the basis of their experiments on guinea pigs.

In order to explain Horst and Frolich’s results away, McCollum exam-
ined several dead guinea pigs and noticed an accumulation of “putrefying”
feces in a tract of the intestine. He therefore concluded that scurvy must
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be caused by constipation and the transmission of bacteria from the intes-
tine. Some attempts to cure animals with laxatives gave mixed results until
about a year later, when research teams in London and New York noticed
that all guinea pigs (regardless of whether they died of scurvy or not) accu-
mulated putrefying feces in the intestine. They also, surprisingly, noticed
a strong positive correlation between consumption of raw milk and con-
stipation, and a strong negative correlation between consumption of milk
and scurvy (Carpenter 1986, pp. 182-3). Animals fed big quantities of raw
milk, in other words, were most likely to be constipated, but were also
less likely to develop scurvy. This ruled out McCollum’s “intoxication”
hypothesis in the laboratory, but the same negative correlation between
milk and scurvy was also observed in a sample of young children. This
finding paved the way for further research on the properties of milk and
other scurvy-preventing food, which eventually led to the discovery of
vitamin C.

We find here some typical features of successful experimental science.
First, a result is proven in a specific, somehow idiosyncratic experimen-
tal system (laboratory animals); then it is generalized using data from
the experiment and from the field (human patients, in this case). Latour
agrees that successful science requires such a combination of laboratory
and field evidence. In The Pasteurisation of France, he uses the metaphor
of a “translation”: from real-world phenomena to laboratory phenom-
ena, and then back from the laboratory to the field. The first stage is one
of fact gathering: it is necessary to “learn from people on the ground —
farmers, distillers, veterinary surgeons, physicians, administrators — both
the problems to be solved and the symptoms, the rhythm, the progress,
the scope of the diseases to be studied” (Latour 1984, p. 76). Gathering
facts is functional not only to a proper understanding of the disease, but
also to achieving the final effect of external validity, in the third stage.
Pasteur’s predecessors, the “Hygienists,” had been unable to explain one
important feature of infectious disease — its variation, the strange, uneven
patterns that it could take: why a disease came up in one place but not in
another, why now but not then, why a certain group of people was affected
but not another, why certain animals but not all animals of that kind
(cf. Latour 1984, p. 22 and pp. 63—4). In order to convince the scientific
community and government officials, Pasteur had to explain the varia-
tion in contagiousness, and he did so by reproducing it in the laboratory:
Pasteur “in effect simulated an epidemic” (1984, p. 63). He did it in his
laboratory, where the disease could be controlled, manipulated, and mea-
sured at will.
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This is the second, crucial stage of the translation. Pasteur created
an “‘experimental illness,” a hybrid that had two parents and was in its
very nature made up of the knowledge of the hygienists and the knowl-
edge of the Pasteurians” (1984, p. 63). The laboratory disease then is a
“mediating” entity, an independent object whose relevance to the prob-
lem at hand cannot be taken for granted but has to be demonstrated
empirically. Pasteur himself recognized that a further step has to be taken:

These are still laboratory experiments. We must find out what happens in the
countryside itself, with all the changes in humidity and culture. (Pasteur 1922, VI,
p- 259; quoted in Latour 1984, p. 76)

In the third stage, then, Pasteur moves back to the field, taking his
laboratory knowledge and apparatus with him. Latour here stresses two
points: Pasteur must retain all the power of the laboratory (the efficacy of
his scientific tools) but also compromise with the environment. The field
is transformed so as to achieve the first desideratum, but the laboratory
setting must be accommodated too, to make the tools applicable to a
larger-scale problem. The moral seems to be the following: if you cannot
export some laboratory conditions into the real world, you had better
make sure that the relevant aspects of the real world are imported into the
lab. It is now time to see the strategy at work in an economic experiment.

Mimicking the real world

In 1971, the Atlantic Richfield Company claimed that the low profits from
the exploitation of oil leases in the Outer Continental Shelf (OCS) were
the result of a so-called winner’s curse phenomenon (Capen, Clapp, and
Campbell 1971). Auctions of this kind are “common value auctions” —
auctions in which the value of the auctioned item is the same for all
participants but initially unknown to all. A crucial part of the bidding
game, then, consists of trying to estimate the true value of a lease. When
the participants fail in this estimation, the winning bid is likely to turn out
to be overoptimistic and the exploitation of the lease unprofitable (the
winner is “cursed”).’

The claims of the Atlantic Richfield Company were suspect: the com-
pany clearly had an interest in convincing other competitors to be more
cautious in their valuations, and their claim could be read as a disguised

5 For an introductory survey of the literature on the winner’s curse phenomenon, see Thaler
(1988).
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invitation to act as a cartel by bidding less on the licenses. On the other
hand, a winner’s curse phenomenon may have really been hidden below
the data. How can we decide? The problem is that field data cannot settle
the dispute because they do not provide information concerning crucial
variables such as agents’ private valuations or the real profitability of an oil
lease in the long run. John Kagel and Dan Levin (1986) tried to tackle the
problem by reproducing the winner’s curse phenomenon experimentally.
In the laboratory, they provided their bidders with information about the
possible value of an auctioned item by privately communicating to each
subject a value x; drawn from a uniform distribution [xo— ¢, xo + ¢], where
xo is the real value of the item (i.e., the sum experimenters will pay the win-
ner) randomly drawn from a uniform distribution on an interval [x*, x**].
The experimenters communicated to the bidders the range of € and com-
puted for them the upper and lower bound for the value of x¢ (min{x; +
e, x**} and max{x;—e, x*}, respectively).

The idea of modeling bidders’ uncertainty as a random draw from a
uniform distribution comes from auction theory, more precisely from the
“common value model” first devised by Wilson (1977) and later refined
by Milgrom and Weber (1982). The model is based on four fundamental
assumptions: (1) that values are common and unknown to all, (2) that
bidders are symmetric, (3) that the payoff is a function of bids alone,
and (4) that bidders are risk neutral. The first three assumptions seem
to be empirically justified in the OCS case, whereas risk neutrality is
needed for analytical reasons (assuming risk aversion, for example, leads
to ambiguous results in a number of cases) (cf. Milgrom 1989; McAfee
and McMillan 1987). The solution to the common value model is known
as “noncooperative equilibrium with risk-neutral bidders” (or RNNE for
short) and predicts that the agent with the highest private signal (denoted
by x;) will generally win the auction. However, if bidders are rational
maximizers as the RNNE models assumes, the one with the highest signal
is supposed to revise her valuation of the item in light of the fact that her
private information signal is likely to be too high. In technical terms, this
revision is required to avoid an “adverse selection problem.” Denoting
the expected value conditional on having the highest information signal
as E[xo | X; = x1], the winner is cursed every time the actual estimate of
value exceeds the latter, that is, whenever

(WO)E[xo | X;] > El[x0| X; = xi].

In this case, in fact, the winner fails to take into account the adverse
selection problem and therefore will experience, on average, negative
profits. (Notice that the inequality (WC) above is best characterized as a
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hypothesis rather than as a proper theory: unlike the RNNE solution, it
does not follow from a formal model nor does it provide a full explanation
of the bidding process. It is defined as a contrast case, from the hypothesis
that real bidders are not fully rational and fail to revise their expected
values correctly.) If the RNNE model is right and bidders really are ratio-
nal maximizers, the winner’s curse should not occur, and the evidence
presented by the Atlantic Richfield Company should be explained in a
different way.

The goal of the experiments devised by Kagel and Levin was to show
how certain features of the OCS data can be reproduced in the laboratory.
The winner’s curse hypothesis was tested by controlling for the number
of subjects and the nature of the information (public vs. private).

Number of subjects. Kagel and Levin ran experiments with a “large”
number of bidders and experiments with a “small” number. When the
number of competitors grows, a rational agent is supposed to take into
account two opposite considerations: one should bid more aggressively
because the signal values are more congested, but less aggressively
because the adverse selection problem becomes more severe. In fact,
an RNNE bid function taking into account these considerations requires
the bids to remain constant or to decrease as the number of competitors
grows.® If the winner’s curse explanation is right, in contrast, higher bids
should be observed as the number of competitors increases. Varying the
number of bidders thus provides a means for discriminating between the
two rival hypotheses.

Information. Some experiments involved only private information sig-
nals, whereas others involved public information: bidders were asked to
provide a first evaluation under knowledge of x; only, and then a second
one after having been given some additional public information signal x,,
(the lowest of the private signals formerly distributed, x;,, turns out to be
particularly convenient for analytical purposes). The public information
control provides useful insights into the bidding mechanism. In RNNE,
in fact, public information is supposed to raise the bids of all the subjects
who have not received the highest private signal; this should put pressure
on the x; bidder (the winner, according to RNNE) and hence reduce her
profits by almost one half.’

6 See Kagel and Levin (1986) for the quantitative analysis behind such a prediction.

7 From E[I1| W] = 2¢/(N 4 1)=Y (where N is the number of bidders in the auction and Y
is a negative exponential that becomes rapidly negligible as the value of x; departs from
extremely low values) to E[IT| W, X1 | = e/(N + 1). The details of such a prediction can be
found in Kagel and Levin (1986), but some amendments are due in light of Cox, Dinkin,
and Smith (1999) and Campbell, Kagel, and Levin (1999).
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Kagel and Levin (1986) observed two results. (1) In “small group”
experiments, the winners bought the items at a profitable price, but the
profits were considerably lower than those predicted by the RNNE model
(65.1 percent of the latter). In “large group” experiments, the winners
experienced losses on average. (2) In auctions with a small number of
bidders, the injection of public information raised prices; when the num-
ber of bidders was large, in contrast, prices fell, contrary to the RNNE
prediction. Both results are consistent with a winner’s curse explanation.
Winners, ex hypothesis, overestimate values; public information tends to
reduce uncertainty about the true value of the item, so that bidders with
the highest private information can revise their valuations.

Tightening the bridge

In their 1986 paper, Kagel and Levin claim they have produced the win-
ner’s curse phenomenon in the laboratory. Initially, two alternative expla-
nations of the data were available and the experiment was designed to
test them. However, the experimental result is still confined to laboratory
conditions. The winner’s curse can be produced experimentally, but does
itexistin the wild? In order to answer this question, Kagel and Levin focus
on some similarities between a laboratory and a real-world phenomenon
first observed by Mead, Moseidjord, and Sorensen (1983). Mead and his
colleagues had collected data about the different levels of profits achieved
by oil companies in so-called wildcat and in “drainage” leases. Wildcat
leases are more risky because no evidence about the past productivity
of these isolated tracts is available. In contrast, drainage leases are on
tracts lying adjacent to some hydrocarbon reservoir. The developers of
the adjacent tract (the “neighbors”) have higher private information on
the profitability of the drainage tract, but all bidders (“non-neighbors”)
know that something is likely to be found.

Mead et al. (1983) noticed that in the Gulf of Mexico from 1954 to
1969, both neighbors and nonneighbors had on average higher rates of
returns in drainage than in wildcat leases, a fact that is incompatible with
the RNNE explanation. Why? In RNNE, depending on whether the in-
formation available is (a) purely public, (b) purely private, or (c) both
private and public, we should expect rates of return (a) lower for all or
(b) and (c) higher for neighbors than nonneighbors, with the latter earn-
ing less than they would in absence of insider information. Intuitively,
with perfect rationality, public information should allow a more accurate
estimate of the real value of the tract, thus making competition stronger
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and depressing the winner’s profits. If a winner’s curse effect is present, in
contrast, the observed phenomenon can be easily explained: an increase
ininsiders’ information reduces the winner’s overestimation of a tract and
thus raises the returns of both neighbors and nonneighbors. These field
data match Kagel and Levin’s experimental results remarkably well. In
fact, Kagel and Levin managed to replicate these data in the laboratory,
where one can control for public information at will.

More generally, Kagel and Levin’s procedure can be analyzed as fol-
lows. Let us call the evidence in need of explanation, that is, the fact that
oil companies in the Gulf of Mexico experience on average low returns
from their leases, e. The goal of the experiment is to discriminate between
two alternative theoretical hypotheses H; and H;, —the RNNE model and
the winner’s curse hypothesis, respectively. The construction of an exper-
imental common value auction allows one to test new predictions from
H, and H,. Kagel and Levin, by varying initial conditions such as pub-
lic/private information and the number of bidders, construct a test that is
moreover a quasi-crucial experiment with respect to H; and Hy, that is,
such that H, & K; — e’ but H; & K; —~e¢’. The new evidence ¢’ collected
in the laboratory confirms that a winner’s curse phenomenon is likely to
be hidden behind experimental bidding. The experimenters, however, are
aware that such evidence (e’) cannot settle the dispute about the target
system. Therefore, they show that in the real world, there are cases of
variation of public/private information analogous to those reproduced
in the laboratory. In the OCS case, the field evidence was provided by
the study of Mead and his colleagues. The argument for external validity
consists of showing that there are analogies between experimental and
real-world phenomena.®

The first moral is that experimental evidence can help only at an
intermediate stage of confirmation. It cannot completely bridge the gap

8 Notice incidentally that the correspondence between experimental and field evidence is,
strictly speaking, of the “phenomena to phenomena” kind, to use Bogen and Woodward’s
(1988) terminology (see also Chapter 4). The calculation of profitsis rather straightforward
in the experiment: it is the difference between the value of the auctioned item (xo) and
the price paid for it (b1) (this is one reason one does experiments in the first place!). In
the field, things are more complicated; Mead et al. (1983) use the so-called internal rate of
return (IRR) measure: the rate of discount that makes the present value of the stream of
net revenue (i.e., gross revenue minus costs minus taxes) equal to zero. The IRR can only
be estimated because there do not exist direct data for a number of costs (e.g., exploration
costs, postsale exploration, drilling, development, production, interests, and abandonment
costs) that must be derived from other indicators, and the taxes attributable to each lease
can only be calculated on the basis of estimated costs and revenues.
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between the real-world phenomenon and the hypothesis under test.
Experiments can increase the plausibility of an explanation, but only up
to a certain point. The reason is not only that a pattern of data can be
explained by different theories, but that it may also result from a different
causal process. A Duhem-Quine problem can be tackled in the labora-
tory by controlled testing, but establishing that a certain explanation is
the right one in the (artificial) domain X does not prove that the same
process lies at the origins of a similar pattern of data in the target domain
Y. In order to be convinced that this is the case, one needs some fur-
ther independent evidence from the target domain of application — the
real-world phenomenon one is interested in understanding in the first
place.

Analogical reasoning

What kind of lesson do the FCC and OCS cases teach us? Is it possi-
ble to sketch a general account of external validity inferences? Such an
account will have to be at least compatible with the theory of internal
validity outlined in the first part of the book; but, in fact, we can be more
ambitious: it will turn out that both inferences are instances of the elim-
inative inductive method. Recall the basic idea defended in Chapter 7:
experimenters proceed by eliminating potential flaws in the experiment
(or artifacts), particularly by making sure that no uncontrolled factor
confounds the inference from the evidence to the main hypothesis under
test.

Now, what sort of thing can lead one into error while extending a
laboratory result to the field? In making external validity inferences, one
can make a number of different mistakes. One may observe phenomenon
Y in the lab and incorrectly infer that the same phenomenon also takes
place (or can take place) in a given field setting. Or one may establish that
X causes Y in experiment E but erroneously infer that X also causes Y
under nonlaboratory circumstances F, G, and so on. First of all, consider
that in order to identify a flaw in an external validity inference, one must
specify a real-world target. If you worry that Y may not occur out of the
lab generically, there is little you can do to figure it out. Instead, scientists
usually worry about the extension of an experimental result to a specific
target: to a population of patients who suffer from a certain disease, for
example, or to a market with specific characteristics. The obvious thing to
do, then, is to go out and have a look: if you observe the right sequence
of Xs and Ys in the target, for instance, you will be encouraged to believe
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that because X causes Y in the lab, it does the same in the target. The
temptation to frame this approach in terms of “analogical inference” is
strong. In fact, the idea that external validity inferences are analogical
in character has been recently defended by Hugh LaFollette and Niall
Shanks (1995), Paul Thagard (1999), and myself (Guala 1998).

Analogy originates from the Greek word analogia, ‘according to a
ratio.” In the Pythagorean tradition, more precisely, an analogy was an
identity of ratios. This meaning survived in the mathematical sense of
analogy as proportion: a : b = ¢ : d. Whereas according to the everyday
meaning of the term, an analogy involves two entities; in the original sense,
an analogy always involves at least four terms taken in couples: “As A is
to B,so Cisto D,” according to Aristotle (7opics, i, 17). Analogies have
a well-known heuristic value: by postulating an analogy between two sets
of properties, we can infer the existence of a hidden property in one
set from the observation of some properties in the other set. Analogical
models sometimes work precisely this way: by observing the properties
of a model we are induced to think that similar properties are to be
found in the real entity modeled. (Famous examples in the history of
science include Watson and Crick’s “staircase” or double-helix model of
DNA, and the model of the atom as a small solar system; cf. Giere 1979,
Ch.2.)

Experimental systems sometimes play a similar heuristic role. In the
early fifties, experiments on cynomolgus monkeys helped enormously in
the discovery of the mechanism of propagation of poliomyelitis. In the
laboratory, experimenters knew exactly when a monkey had been fed
(i.e., when it had contracted the poliovirus) and could determine precisely
when the virus appearedinits blood. By means of analogical inference, the
scientists conjectured that the period of incubation must be approximately
the same in human beings and, in fact, found the virus in the blood of
patients who were in approximately the same stage of illness (cf. Paul
1971, Ch. 36). To say it once again with Aristotle, “A is in B like C is in
D.” More rigorously, in mathematics, the knowledge of three terms of
a postulated proportion such as 1:3 = x : 6 leads to knowledge of the
value of x = 2.

However, in mathematical examples, the analogical relation has been
postulated. In empirical contexts like those we are interested in, the rela-
tion is an empirical hypothesis. The empirical hypothesis is used to make
inferences, including external validity inferences. In biomedical research,
for example, the inference may take this form (adapted from Thagard
1999, p. 140):
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(1) Humans have symptoms (disease) Y.

(2) Laboratory animals have symptoms (disease) Y.

(3) Inlaboratory animals, the symptoms (disease) are caused by factor
(virus, bacteria, toxin, deficiency) X.

(4) The human disease is therefore also caused by X.

Analogical reasoning is fallible and, in fact, sometimes leads to error.’

However, it would be wrong to criticize analogical reasoning simply
because it may lead to a mistake. All inductive inferences are fallible
(otherwise, they would be deductive rather than inductive in the first
place), and external validity inferences surely involve an inductive step of
some sort. The interesting point is, rather, How do we distinguish reliable
from unreliable inferences? Drawing analogies is a mapping procedure,
in which elements of a set of properties of an object are put in corre-
spondence with elements or properties from another set or object. How-
ever, every object is similar to every other object in an infinite number of
respects. There are potentially an infinite number of maps to be drawn,
many of which will be uninteresting or even misleading from a scientific
viewpoint.

Strengthening the analogy

To put it another way, consider the role played by statistical regularities in
internal validity inferences. Under the right circumstances — for example,
in the context of a well-designed experiment — statistical associations may
constitute evidence for causation. However, the very same correlations
observed in uncontrolled circumstances do not bear equal weight. One
thing is to observe that factors X and Y are regularly associated in the
field, where many (uncontrolled) factors could have been responsible
for their instantiation. Quite another is to “trigger” X and observe Y
in the context of an accurately designed experiment, in which the “other

9 Take the case of poliomyelitis once again. In order to investigate its mechanism of prop-
agation, Simon Flexner and Paul Lewis (1910) studied the process of infection in rhesus
monkeys. Apparently, monkeys are easily infected via the nose, from which the polio virus
travels to the olfactory nerves and finally to the spinal cord. Nasal sprays based on alum,
zinc sulfate, and picric acid seemed to be able to kill the virus and were therefore tested
in experiments on humans. However, the human nervous system is less susceptible to
poliomyelitis than that of lower primates; in contrast, our intestinal tract is weaker and
is attacked easily by the poliovirus, whereas monkeys are more resistant to this kind of
infection. Two different causal mechanisms in this case led to the same effects, and the
analogy proved to be misleading. (Cf. LaFollette and Shanks 1995, pp. 126-8; for a more
detailed account of this episode, see Paul 1971, Chs. 12-23.)
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factors” have been appropriately shielded or controlled for. A correlation
between X and Y provides evidence for the hypothesis that X causes Y
only if we have made sure (by means of appropriate experimental design
and data analysis) that the correlation could only emerge from that data-
generating process. The circumstances matter: the same data can bear
different weight depending on whether the background circumstances
are “right” or not. The same moral applies to external validity inferences:
analogical correspondences are not enough. We need “strong” analogies —
but what makes an analogy strong in the first place?

The goal, which should be familiar by now, is to create (or select) cir-
cumstances under which it is unlikely to observe evidence of a certain kind
unless the external validity hypothesis is true. In this case, the evidence is
the correspondence between observed features of the target and observed
features of the experimental system; the external validity hypothesis is
that the relata belong to similar causal mechanisms. The probability of
observing such a correspondence (were the hypothesis false) is low if we
have eliminated alternative reasons why such a correspondence might
occur, other than the causal similarity between the two systems. If you
want to generalize from A to B, you should make sure that A and B are
as similar as possible.

Remember that external validity inferences are inferences to circum-
stances that we know to be different in some respects from the experi-
mental situation. In order to make such inferences reliably, we must ask
(and check) whether the differences between the experimental and the
target system can confound the external validity inference or not. You
cannot extend to human beings the results of experiments on mice, for
example, unless you have good (experimental) grounds to believe that
certain differences between the anatomies of mice and human beings do
not matter (i.e., they are not error-generating differences).

This is, in fact, the logic underlying the best-known external validity
control —representative sampling. If you want to generalize to population
B, you should make sure that you have in the lab good representatives
of the individuals in B (you need students if you want to generalize to
students, housewives for housewives, mammals for mammals, etc.). Un-
fortunately, in most cases, this is just the beginning of the story: experi-
mental conditions include not only a pool of subjects, but also a range of
environmental factors, treatments, and boundary conditions in general.
In many cases, it is the environment and the treatment that worry us the
most. (Think of the stylized, abstract tasks of experimental cognitive psy-
chology and decision theory, for example.) For this reason, experimenters
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try to make sure that as many differences as possible between experiment
and target are checked in the laboratory by incorporating them one by one
in the experimental design. The logic of inductive inference is eliminative,
both within and from the experiment.'”

The FCC case displays such a strategy in full-fledged form because the
experimenters made sure that the real auctions (the target) were mod-
eled on the experimental prototypes. However, in other cases, one can
work backward from target to experiment to achieve the same result.
The standard sequence of trials to test drugs in experimental medicine is
a good example of a compromise: experimenters start with animals,!!
move on to human beings in “ideal” experimental settings, and con-
clude with so-called efficacy trials with patients in more realistic con-
ditions (which does not mean that real-world conditions themselves
cannot sometimes be modified to make the drug more efficacious or to
avoid unpleasant side effects — that’s what hospitals are for, among other
things).

Whereas the FCC project started with an ideal mechanism of alloca-
tion to be created from scratch, in the winner’s curse case, experimenters
tried to mimic an already existent market. They worked, in other words,
with a real-world target in mind. The essential steps in the procedure are
represented in Figure 9.1. The first step is one of modeling the funda-
mental features of the OCS auctions, something that had already been
achieved by the game theoretic literature of the seventies and early eight-
ies. Some of the assumptions of these models are controversial, however.
In particular, the controversy in this case revolves around the perfect
rationality imputed to bidders and their capacity to solve the adverse
selection problem. Two different hypotheses can be derived from the
auction models depending on whether we use, respectively, the perfect
rationality assumption (RNNE hypothesis) or the imperfect rationality
assumption (winner’s curse hypothesis).

The uncontroversial assumptions can be used to construct an experi-
mental system that is not biased against any one rival hypothesis. (I call
them “neutral” assumptions in Figure 9.1.) These include, for instance,

10 This does not mean, of course, that the elimination of all possible sources of error can
be always carried out in full. Practical or ethical problems may, in fact, prevent the
experimenter from testing certain hypotheses, and in some cases, it could be argued that
the experiment presents some noneliminable differences from its target that prevent it
in principle from being a useful replica of the real world (Bardsley, in press, examines
such a possibility).

I am simplifying drastically here: to find out which animals are “right” for which kind
of investigation is not a trivial matter. On animal models in biomedical science, see e.g.,
Kohler (1994), LaFollette and Shanks (1995), and Ankeny (2001).

1
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Figure 9.1. Inferences in and from the experiment: the OCS case.

that the value of the items to be auctioned is the same for all bidders but
unknown to them, that the auction is run with a sealed bid system, that
bidders are symmetric, and so on. It is crucial that these assumptions also
mirror accurately the features of the real-world target (the OCS auctions).
The experiment, in fact, generates two kinds of evidence. Evidence of
type 1 is used to discriminate between the two rival hypotheses; evidence
of type 2 is used to bridge the gap between the laboratory and the real
world by drawing an analogy with already existing field evidence. How-
ever, the analogy cannot be strong unless experimental and field evidence
have been generated by systems that are similar in all relevant respects
or, in other words, unless all sources of external validity error have been
taken care of by means of accurate design. Strong external validity infer-
ences begin and end in the field.

Notice the role played by theoretical models. Contrary to the theory-
testing view, they are neither the beginning nor the end of the story. The
aim of the experiment is not to test the models, which instead work as
intermediate devices in the design of a good experiment — an experiment
that says something useful about the real world rather than about the the-
ory. When the model makes plausible assumptions, they are incorporated
into the experimental design. When the assumptions are dubious (e.g.,
the assumptions about bidders’ cognitive capacities), the experiment can
test them empirically. Models and experiments complement each other
and constitute intermediate steps on the route toward the understanding
of a real-world economic system.'?

12 Notice that the combined use of field and laboratory evidence allows one to avoid an
apparent “regress”: if experimental results require field evidence in order to solve exter-
nal validity problems, why should we do experiments in the first place (Siakantaris 2000)?



200 The Methodology of Experimental Economics

Models of scientific growth

Reflecting on his own position concerning the scope of laboratory results,
Bruno Latour highlights the lack of originality of his “radical localism™:

A scientific fact never survives beyond the network of practices and circumstances
that define its validity. This s [. . .] a very traditional philosophy of science: beyond
the conditions of experience, we can’t say anything credible. (Latour 1988, p. 68)

“Classical” empiricists like Bacon and Newton stressed that science
grows by slowly accumulating empirical observations, which are only
very cautiously turned into theories. The requirement that speculation be
severely constrained by the available empirical evidence was a powerful
rhetorical weapon against Aristotelian defenses based on metaphysical
speculation or mere appeal to authority. The classical empiricists por-
trayed scientists as a group of boring collectors of evidence who refuse to
generalize until enough data have been accumulated. So perhaps Latour
was defending good old classical empiricism all along.

The classical empiricist view has been criticized and sometimes
ridiculed as “naive inductivism” (or worse). Hypothetico-deductivists
have dropped the requirement that theories should stick as close to the
facts as possible. Popper challenged common sense even further by claim-
ing that bolder theories that stretch considerably beyond the evidence are
more desirable and “scientific” than those that do not. Other hypothetico-
deductivists preferred to remain silent on the looseness that is allowed
between evidence and hypothesis, presumably because they believed that
such issue could be resolved only after an appropriate theory of inductive
inference had been produced. How much beyond the evidence should a
good theory or hypothesis be allowed to stretch? The examples discussed
so far suggest that modesty is a virtue in experimental and applied science.
Experiments, to begin with, are usually aimed at testing local hypothe-
ses rather than grand theories. General theories and models are often
used to suggest or derive such hypotheses but receive little reward back
from experimental investigation. Experimental evidence tends to con-
firm or refute only local hypotheses, or small portions of general theories.
Eddington’s eclipse observations, to take a famous example, only proved
that light bends in proximity to objects with a big mass. They did not, and

The answer is that the two types of evidence complement each other: what you need to
know to use field evidence effectively in external validity inferences (after the experiment)
is not what you needed to know to use it effectively before the experiment was run. A
good external validity inference always builds upon existing experimental knowledge to
learn something new (see also Guala 2002b).
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could not, provide a confirmation of Einstein’s General Relativity as a
whole because several other nonrelativistic gravitational theories imply
approximately the same angle of deflection as Einstein’s.'”> Moreover,
as highlighted in Chapter 7, experiments usually generate knowledge of
peculiar portions of reality — of artificial systems that have been especially
created by experimenters in order to answer specific questions. Given the
trade-off between internal and external validity, experimental results are
more reliable when the artificiality is greater — hence the difficulty in
extending such results to other circumstances outside the laboratory.

Of course we infer all the time from what happens under one set of
experimental circumstances (under which a hypothesis has been tested)
to what is likely to happen in other, similar circumstances. What counts as
“similar” in such cases is usually determined by theoretical insight of some
kind. We obviously do that because we cannot test a given hypothesis in
all possible circumstances. However, it is one thing to use theory to project
beyond the conditions of experience and to formulate testable predictions
during the heuristic stages of a research program,; it is quite another to
act on the basis of untested conjectures. When it comes to application,
scientists want to carefully test every aspect of a design or a technology.
The experiments on the FCC auctions are a good example in this respect.
However, other cases of science with high stakes can be easily found, such
as the launch of a space shuttle or the commercialization of a new drug.
The instructions for most medicines in your cabinet, for example, say that
they should not be taken by pregnant women except under a doctor’s
supervision or in exceptional cases. This usually happens not because it is
known that the drug is harmful to pregnant women, but because we lack
experimental data on women in that particular condition. When science
matters, there is no substitute for careful empirical checking.

The examples discussed in the last two chapters suggest that when sci-
entists try to extend the scope of their experimental results, they move
cautiously, by gradually modifying the target system, the experimental
system, or both, so they resemble each other, and by checking that the
remaining dissimilarities do not matter. The growth of scientific knowl-
edge, then, seems to proceed by careful induction from the particular to
the particular, rather than by means of bold theoretical generalizations.
Theories do play a role in the design of experiments and at various stages

13 Of course, a long series of experiments could, in principle, test a “grand” theory bit by bit,
although the historical record suggests that the controversies surrounding grand theories
are rarely resolved this way. See Mayo (1996, Ch. 8) for further discussion.
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in the process of inductive inference, but at both the starting and the end
points of the inference, we find knowledge of rather specific systems. This
vindicates, in part, the classical empiricists, with their “boring” picture
of scientists slowly accumulating empirical facts. Perhaps some parts of
science are driven by abstract theoretical speculation, with little or no
empirical input (it is easy to find such cases, from Superstring theory in
physics to General Equilibrium analysis in economics). However, when
science is applied and when it is important that the applications work reli-
ably, we invariably find that bold science is abandoned in favor of boring
empirical checking.



TEN

Experiments as Mediators

Two theses are prominent in the second part of this book. The first one
is that we have no reason to believe a priori that an experimental result
applies (or does not apply) to nonexperimental circumstances. The second
thesis then follows quite naturally: successful external validity arguments
are empirical and can be constructed only by appropriately combining
experimental and field evidence. I have also tried to specify what counts
as “appropriate” in this context, or what sort of requirements a strong
external validity inference should satisfy.

In a way, at this stage I consider the important job to be done, but
not because everything has been said on how experimental and field data
can be used to draw external validity inferences. On the contrary, the
analysis in Chapters 8 and 9, being so tightly linked to concrete example,
is almost certainly incomplete. However, having discussed two paradig-
matic examples and having sketched a broad theory of inference based
on eliminative induction, I consider the definition of more sophisticated
strategies an exciting research agenda for the future. In what remains of
this book, then, I would like to elaborate on the image of experimental
economics that emerges from the discussion so far.

It is important, for example, to realize that by endorsing the above two
theses, one subscribes to a very specific view of experiments and their role
in scientific discovery. This chapter is devoted to articulating such a point
of view and to comparing it with alternative accounts of the role of exper-
imental science. I argue that experiments are “intermediate” steps in the
long path leading from the formulation of ideas or hypotheses about the
real world to their final application. As such, they share some charac-
teristics that are usually attributed to theoretical models and simulations.
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asks
Theory < World

answers

Figure 10.1. The naive view.

Obviously, however, they also differ from models and simulations in some
crucial ways. The task, then, is to figure out exactly where the analogy ends
and the disanalogies begin. I also argue that experiments come in differ-
ent degrees of concreteness, from applied experiments devoted to testing
external validity claims to “middle-range” experiments devoted to testing
the robustness of economic phenomena or results, to abstract experiments
devoted to testing highly simplified theoretical models. As we shall see,
the distinction is far from trivial and is often overlooked in experimen-
tal economics debates. By recognizing the difference between types of
experiments, we can dispel a good deal of unnecessary confusion about
the way in which experimental results are (and should be) generalized to
other circumstances of interest.

A naive account

Let me start from an admittedly oversimplified account of empirical
testing. According to this view, science is a game with two players
(Figure 10.1). On the one hand, we have theory, on the other, empiri-
cal reality. Theory is used to ask questions, the external world answers
these questions, and the theory is successively modified in light of the
answers. By iterating such a procedure, scientists devise better and better
representations of their subject matter.

This account, however, fails to capture the complex process leading
from abstract theorizing to application. In trying to articulate such a pro-
cess, I am concerned in particular with the place of experiments. Where
are they located? At what stage do they play a role in scientific discovery
and testing? In the naive account, experiments seem to be quite natu-
rally located on the right-hand side of the picture. Indeed, traditional
empiricist philosophies tend to draw a sharp distinction between descrip-
tive or representational devices and what is described or represented.
Theories, models, and simulations are customarily placed among the rep-
resentational tools, whereas experiments are seen as parts of the natural
or social world that have been carefully designed in order to test the rep-
resentations. I argue that, in contrast, it is useful to think of models and
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laboratory experiments in economics as tools of the same kind, some-
how located between our statements about the “real world” (call them
scientific laws, principles, theories, axioms, hypotheses) and the world
itself. Borrowing from Margaret Morrison and Mary Morgan (1999), I say
that such entities “mediate” between theory and reality. The rest of this
chapter is devoted to clarifying this vague proposition and illustrating it
by means of examples.

Theoretical models

First of all, it is necessary to sort out my terminology. Having distin-
guished between theoretical and other (experimental, low-level) hypothe-
ses in Chapter 3, I have nevertheless spoken very loosely and freely
of “theories” and “models,” as if they were the same kind of thing. In
fact, it is worth distinguishing between them: the basic unit of theoriz-
ing in economics is the model, and economic theories are sets of models.
Modeling has become such an essential element of their practice that
economists tend to forget how recent an acquisition it is. Before the 1950s,
economists made occasional use of models and used to theorize in a vari-
ety of ways, but with the postwar mathematization of economic theory,
modeling has become so central that nowadays you cannot really claim to
be an economist unless you know how to build a model. The term theory
has not disappeared but has become a loose term to define broad cate-
gories of theoretical models inspired by some common general principle
or domain of application (as in the expression game theory, theory of the
firm, or rational expectations theory). A theory is a set of models with
some family resemblance, to use a Wittgensteinian expression.

What is a model then? As usual, it is best to answer with a concrete
example in mind. I follow a recent analysis by Robert Sugden (2000) and
focus on Thomas Schelling’s famous checkerboard model in Micromotives
and Macrobehavior (1978). Schelling’s goal is to give an account of racial
segregation in American cities, but the goal is achieved by describing an
imaginary checkerboard with a particular tessellation, upon which coins of
two kinds (dimes and pennies) move according to precise rules. Schelling
shows that when some specific conditions hold, particularly when certain
“preferences” about the occupants of each coin’s neighbor squares hold,
then certain arrangements of the coins on the checkerboard will follow.
Informally (but rigorous rules of the game can be provided), each coin
moves in an attempt to escape from areas where an overwhelming major-
ity of coins of the other type prevails (say, two thirds or more). Every
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time a coin is surrounded by a majority of another type, it is moved. Via
successive reshuffling, it is shown that a complete separation of dimes and
pennies is produced on the checkerboard.

Schelling’s paper is an exercise in analyzing the dynamics of an abstract
toy-model, but the story about the model-world is intended to support a
hypothetical explanation of the evolution of racial segregation in the real
world.! Sugden argues that “moving from the model to the hypothesis
requires a step in the argument which most readers would be willing to
make, but for which no formal justification was available.” According to
Sugden, such a step is an inductive one.

What Schelling has done is to construct a set of imaginary cities, whose working
we can easily understand. In these cities, racial segregation evolves only if people
have preferences about the racial mix of their neighbours, but strong segregation
evolves even if those preferences are quite mild. In these imaginary cities, we
also find that the spatial boundaries between the races tend to move over time,
while segregation is preserved. We are invited to make the inductive inference
that similar causal processes apply in real multi-ethnic cities. We now look at such
cities. Here too we find strong spatial segregation between ethnic groups, and here
too we find that the boundaries between groups move over time. Since the same
effects are found in both real and imaginary cities, it is at least credible to suppose
that the same causes are responsible. Thus, we have been given some reason
to think that segregation in real cities is caused by preferences for segregation,
and that the extent of segregation is invariant to changes in the strength of such
preferences. (Sugden 2000, p. 24)

Thus, the activity of modeling in economics has to do with the construc-
tion, and the theoretical description, of “model-worlds.” Such systems
are usually abstract entities, existing only in the minds of those who hap-
pen to read, for instance, Schelling’s book. However, in principle, a real,
material checkerboard could be manufactured with its dimes and pennies
and a “segregation game” played for real (Schelling actually invites his
readers to do so). Schelling’s game theoretic account of segregation is true
of the checkerboard described in his book — and trivially so, because the
checkerboard system is designed to perfectly satisfy Schelling’s game the-
oretic rules. Schelling’s theory of segregation is a nice example because
the model here (the checkerboard, the dimes and pennies, and the rules

! The “dictionary” translating the model into a real-world representation is as follows:
coins = people, dimes and pennies = two races, areas = neighborhoods, separation =
racial segregation, rules = people’s preferences, etc. As Dan Hausman has pointed out (in
conversation), Schelling’s contribution can also be read as the exploration of an interesting
and counterintuitive possibility rather than as an explanation of real-world behavior.
Sugden (2000) discusses and dismisses this interpretation.
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of the game) can be easily identified and separated from the theoreti-
cal description. However, the same applies to all theories: provided their
axioms and principles are consistent, an abstract model can be identified
of which the formalism is true — or which is “picked up” by the formalism,
so to speak.

The model-formalism distinction should be easy to grasp for those
trained in neoclassical economics. Take, for example, the Walrasian auc-
tioneer that is central in general equilibrium theory. It is a typical model
in the sense above: it is an abstract entity because no real market uses
tatonnement to determine prices (although a few market institutions are
similar to the Walrasian auctioneer). And it is an entity of which the the-
ory’s equations are true: if such an institution existed, then Walrasian
equilibrium theory would fit it perfectly. Indeed, Walras in the fourth edi-
tion of the Elements of Pure Economics seems to suggest that the term
tatonnement refers to the technique of solving a system of simultaneous
equations by iteration.? This ambiguity (tdtonnement as what the auction-
eer does, or as what the theorist does?) just highlights the above point
about the nature of models: they are entities (abstract or concrete) whose
precise properties are defined by the theoretical formalism.

A theory’s formalism, then (i.e., the set of “axioms,” “principles,” or
“laws” of the theory), is not applied directly to reality but is first and fore-
most asserted to be true of an ideal model, then is suggested to be some-
how relevant for the understanding of some real-world phenomena. The
path from theoretical speculation to the real world is broken down into
at least two steps. Indeed, some philosophers of science have proposed
to take the models of which theoretical principles are true as the pri-
mary unit that defines what a scientific theory is. Such an idea — defended,
among others, by Bas van Fraassen (1980), Ronald Giere (1988), and
Frederick Suppe (1989) — is usually referred to as the “semantic view” of
theories.

The semantic view is more a family of doctrines than a single, unified
philosophical theory, but all its versions share a distaste for the older
approach (the so-called standard view of theories that I briefly discuss in
Chapter 3), according to which theories are basically sets of statements
(laws and bridge principles). In the semantic approach, the fundamental
component of a theory, the model, is in contrast a structure — an entity or
set of entities (a system) with specific properties and relations among them
and/or their parts — that satisfies the linguistic elements of the theory. The

2 On the Walrasian auctioneer and its various possible interpretations, see de Vroey (1998).
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latter are secondary in the sense that they can be formulated in various
equivalent ways, as long as they are satisfied by the models that make up
the theory. The precise form of the axioms, laws, and so on, may change
depending on the language and axiomatic system that scientists choose,
but the models will remain the same.

Besides preserving the identity of the theory in the face of changes
in linguistic formulation or axiomatization, the semantic view has other
advantages. First, by being neutral on the “materiality” of models, it can
be stretched to cover models of very different kinds — concrete physical
objects and mathematical structures, as well as the abstract or mental
models that are the subject of so-called thought experiments.> Moreover,
the semantic view avoids some puzzles concerning the applicability of
models to the real world. Most scientific theories do not describe anything
that exists, or can even possibly exist, in reality. Newtonian mechanics is
true of dimensionless mass points, general equilibrium theory is true of
frictionless economies populated by perfectly rational and omniscient
decision makers, and the list of examples could continue to include the
most interesting and empirically successful scientific theories. However, it
is more reasonable to say that the statements (laws, axioms, principles) of
a theory are not even supposed to be true of anything real. They describe
idealized or fictional entities, which are then used to understand what
goes on in the real world.

As with most philosophical explications of scientific concepts, one can
ask whether the semantic view is an accurate description of the way in
which scientists speak of models and theories. There is no doubt that the
semantic view captures the spirit of many remarks made by economists.
However, sometimes economists also speak of models as if they were
linguistic entities (e.g., when they refer to the axioms of expected utility
theory as constituting — rather than defining or describing — the model
of a perfectly rational agent).* For this reason, I do not want to make
any claim of greater descriptive accuracy in subscribing to the semantic

w

By taking this position, I'm implicitly denying the methodological specificity of thought
experiments, which are assimilated to experiments (or “manipulations”) of abstract mod-
els. There is no general agreement on this point, however, and the debate on thought
experiments is nowadays quite lively in philosophy of science; see e.g., Brown (1991),
Sorensen (1992), and Norton (1996).

Thus Hausman (1992a, Ch. 5), e.g., following Giere’s (1979) early work, argues that eco-
nomic models are best interpreted as definitions of predicates (e.g., the axioms of expected
utility theory define the predicate “is a rational economic agent”). Given that Giere has
since changed his mind, Hausman seems to be the only supporter of the “predicate view”
of theories.

4
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view in the above form. To conceive of models as entities rather than
statements makes a difference primarily in terms of conceptual clarity
and ease of presentation. For my purposes, it also helps to highlight the
analogies (and disanalogies) between models and experiments. The proof
of the pudding is in the eating, and I leave it to the reader to decide at
the end of the chapter whether the move was worth making in the first
place.

Experiments as mediators

The route from what we say about the world and the world itself has
already been broken into two substeps, with the models playing the roles
of “mediators” in between. The idea of mediation has been used by Mor-
rison and Morgan (1999) to capture a number of cognitive, practical, and
pedagogical functions fulfilled by models. Here I would like to extend their
account to suggest that models and experiments have a similar “mediat-
ing” role. Like models, experiments in the nonlaboratory sciences mediate
between what we say about the real world and the real world itself. The
notion of “nonlaboratory science” is derived from Ian Hacking:

Laboratory sciences are those whose claims to truth answer primarily to work
done in the laboratory. They study phenomena that seldom or ever occur in a
pure state before people have brought them under surveillance. Exaggerating a
little, I say that the phenomena under study are created in the laboratory. (1992,

p-33)

The nonlaboratory sciences, then, are those whose claims to truth do
notanswer primarily to work done in the lab and that are aimed at studying
phenomena that normally occur spontaneously outside laboratory walls.
The laboratory in these disciplines is a tool, an instrument that scientists
use in order to investigate nonlaboratory entities and phenomena.

In order to understand how experiments and models mediate, it is nec-
essary to explicate the relationship among models, experiments, and the
real world. Following the terminology already introduced informally, I
call the real-world system (or set of systems) whose behavior we ulti-
mately intend to investigate and understand, the farget system, or simply
the target. In sciences like economics, a target is typically a nonlaboratory
entity, a naturally evolved economy that is too big and complicated to be
fully controllable by economists. The study of the target, however, can
sometimes proceed via the laboratory. Here’s a typical route from the-
ory to the real world: a model is used to give structure to a speculation
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Figure 10.2. The route from theoretical speculation to the real world.

(a theoretical idea) about the economy. (To show, for example, that a cer-
tain phenomenon can occur in certain circumstances, what is the mecha-
nism that can bring it about, etc.) Then, a specific hypothesis is generated
from analyzing the model, for example by showing what would happen
if . . . certain changes were made to a key variable. The hypothesis, how-
ever, is not tested directly on the target. The behavior of the target is likely
to be too unruly to permit a valid test of the hypothesis.> Hence, a labo-
ratory system is built (an experiment) that can provide an answer to the
research question. Then, the experimental result is extended to the target
by means of the external validity techniques discussed in Chapters 9
and 10. Figure 10.2 attempts to represent this process schematically.

This scheme is useful in order to highlight the mediating role of exper-
iments, but should not be generalized too readily. I have stressed repeat-
edly that experiments do not always or commonly answer theoretical
questions. Sometimes they replace models altogether, and sometimes they
complement models, if the latter are too abstract or incomplete in some
crucial respect. Figure 10.3 is an attempt to represent these two other very
common cases.

In all cases, experiments require an external validity hypothesis stating
that the laboratory system stands in some particular relationship to the
target. (This is the main point, in fact, of using the “mediating” metaphor.)
Experiments are used to “demonstrate” like models and simulations and
somehow stand for a real-world target system, rather than being the target

5 Tuse the term hypothesis here in a way that differs slightly from the standard terminology
of the semantic view. A “theoretical hypothesis,” according to semantic theorists, states
that a model stands in a certain relation (of similarity, isomorphism, analogy, etc., depend-
ing on which version of the semantic view one subscribes to) with a set of real-world
entities or systems. The nature of theoretical hypotheses in this sense is highly debated in
philosophy of science (on the “stories” used by economists to connect models to their tar-
get systems, see also Morgan 2001). In taking the semantic view as my point of departure
here, I primarily endorse the conception of models as systems and the idea that models
are manipulated in order to see “what happens if” certain changes or interventions are
made in highly controlled (indeed, in totally controlled) circumstances. The notion of
representation is too grand a topic to be adequately discussed here.
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Figure 10.3. Two alternative routes.

system themselves.® They are just an intermediate step in the route from
the realm of speculation to the real world. They are “mediators,” in the
sense that they help bridge the gap between our ideas and their intended
domain of application. The naive view encourages one to think of models
(theories) and experiments as radically different things, whereas in real-
ity they are not. Both models and experiments should be thought of as
systems. Experimental systems are obviously more concrete than models
and closer to their intended domain of application because they include
features that are held in common with the target systems that we are even-
tually interested in understanding (the real-world economies). However,
they are not the target system, and to move from experiment to target
requires an inference. As I argued in Chapter 9, the experiment-to-target
inference is — just like the model-to-experiment inference — inductive or
ampliative (what we know about X does not enable one to derive deduc-
tively the properties of Y') and hence fallible.

Following the terminology introduced earlier, we may say that in the
“laboratory sciences,” experimenters “play” with the target system itself.
In the “nonlaboratory sciences,” it is sometimes possible to manipulate
the target system in a nonlaboratory environment, but this is more often
difficult, costly, dangerous, immoral, or even impossible, and the infer-
ences drawn from uncontrolled experiments are hardly reliable anyway.
Thus, laboratory experiments in the nonlaboratory sciences demonstrate
with experimental systems that “stand for” the target systems of interest.
This is my main claim concerning the nature and function of experiments
in sciences such as economics.

% Onmodels as “representatives,” see Hughes (1999), and in the context of economics, Miki
(2001a).
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Manipulating models and experiments

Of course, the claim has to be justified by showing that the mediators
metaphor is fruitful in some interesting respects. The first important anal-
ogy between models and experiments is that both are manipulated in
order to figure out “what happens if . . .” certain parts of the system are
changed or varied systematically. This strategy, as we have seen, is abso-
lutely central in laboratory experimentation, especially when scientists
are testing causal hypotheses or claims; that it can be extended to model-
based reasoning is perhaps more controversial. However, scientists are
certainly not afraid to speak of the manipulation of models. Take, for
instance, Robert Lucas:

One of the functions of theoretical economics is to provide fully articulated, arti-
ficial economic systems that can serve as laboratories in which policies that would
be prohibitively expensive to experiment with in actual economies can be tested
out at much lower cost. (Lucas 1982, p. 271)

The key expressions in this quotation are artificial economic systems
and fo experiment with. First is the idea that models are things or sys-
tems, not statements. This may sound puzzling, given that you normally
don’t touch or see an economic model, whereas you have direct access
to the axioms, principles, and assumptions of a theory. In fact, there are
advantages to saying that the assumptions, principles, and so on describe
the model, without being the model itself. As Lucas says, to propose
a set of assumptions, postulates, and so on is a way of “providing” a
model.

Then comes the most important idea, an idea that constitutes the core
of the mediators approach (Morrison 1998b, Morrison and Morgan 1999):
the model is an entity that can be “manipulated,” or experimented upon,
to put it in Lucas’s terms. You do things with models, you don’t just
contemplate them or put them in correspondence with reality. I use the
scare quotes because the manipulation of an abstract or fictional model
is quite different from that of a concrete entity, of course. It is usually
performed by making changes in the assumptions that describe some
of the model’s features and by demonstrating (perhaps mathematically)
that certain interesting consequences follow from these changes. R. I. G.
Hughes (1997) proposes the term demonstration to refer to model manip-
ulation, regardless of whether the modelis a concrete or an abstract entity.
With models, whether abstract or material, we demonstrate: we trigger a
mechanism and observe what it brings about. The mechanism may very
well be purely logical (a set of rules of inference) and the consequence
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a theorem. In this sense, theorists do on paper something analogous to
what experimenters do in the lab. When studying the physics of waves,
for example,

[t]he same result appears whether we use the mathematical or the material model.
The internal dynamic of the mathematical model is supplied by a mixture of geom-
etry and algebra, that of the material model by the natural processes involved in
the propagation of water waves. The internal dynamic of a computer simulation
of the phenomenon would be something else again. But all these modes of repre-
sentation share this common feature; they contain resources which enable us to
demonstrate the results we are interested in. I choose the term “demonstration”
in order to play upon its diachronic ambiguity. Whereas in the 17th century geo-
metrical theorems were said to be “demonstrated,” nowadays we demonstrate
physical phenomena in the laboratory. Mathematical models enable us to demon-
strate results in the first sense, material models in the second. (Hughes 1997,
p. S332)

It is easy to realize that the notion of “demonstration” in this generic
sense cuts across not only the distinction between concrete and abstract
models, but also the one between models and experiments. In fact, I explic-
itly claim that models work in many ways like experiments. However, no
matter how similar, models are not experiments.” In order to capture the
crucial difference, it is necessary to introduce the notion of “simulation.”

Models, simulations, and experiments

Nowadays, we are used to thinking of simulations as computation-
ally intensive processes performed with the aid of powerful calcula-
tors. However, a simulation does not require a computer, in principle:
a demonstration from a material model, for example, has all the essen-
tial characteristics of (and therefore can properly be called) a simulation.®
What are these essential characteristics? Herbert Simon (1969, pp. 15-18)
famously puts it as follows: simulations rely on a process of abstraction
from the fundamental principles governing the behavior of the simulating
and the target systems. If similar “organizational properties” arise at a
certain nonfundamental level from different substrata, it is possible to
abstract from the substrata and simulate the behavior of a system A by
observing the behavior of another system B that happens to (or that is
purposely built so as to) display those nonfundamental properties.

7 On this specific point I disagree with the position outlined in Miki (in press).
8 The most famous example of a concrete simulating model in economics is the “Phillips
machine.” See Morgan and Boumans (2004) for a discussion and historical account.
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Consider the ripple tank model again: at a general level of analysis,
any kind of wave can be modeled as a perturbation in a medium deter-
mined by two forces: the external force producing the perturbation and
the reacting force working to restore the medium at rest. General rela-
tionships such as Hooke’s law or d’Alembert’s equation hold for all kind
of waves. More fundamental relationships, such as Maxwell’s equations,
describe the properties of the electric and magnetic fields only. The values
given by Maxwell’s equations can be used in d’ Alembert’s wave equation
in order to obtain, for instance, the velocity of propagation of an elec-
tromagnetic wave because electricity behaves like a wave, although the
fundamental principles are different from those at work, for example, in
the case of water waves. The terms appearing in the equation describing
the light wave and the water wave are to be interpreted differently in the
two cases: the forces are different in nature and so are the two media
in which waves travel. The similarity between the theoretical model of
light waves and the ripple tank model holds at a very abstract level only.
The two systems are made of different “stuff.” Because of the formal
similarity, though, the behavior of light waves can be simulated in a rip-
ple tank. Both light waves and water waves obey the same nonstructural
law, despite their being made of different stuff. This is because of differ-
ent reasons in each case: different underlying processes produce similar
behavior at an abstract level of analysis.” Similarly, human behavior can,
to a certain extent, be simulated by means of computerized models but
arises from “machines” made of flesh, blood, neurons, rather than silicon
chips.

Working on this idea, we can devise a criterion to demarcate genuine
experiments from “mere” simulations. The difference lies in the kind of
relationship existing between, on the one hand, an experiment and its
target system, and on the other, a simulation and its target. In the former
case, the correspondence holds at a “deep,” “material” level, whereas
in the latter, the similarity is admittedly only abstract and formal. In a
simulating device, the simulated properties, relations, or processes are
generated by different (kinds of) causes altogether. In a genuine experi-
ment, the same material causes as those in the target system are at work; in

9 Of course, if one believes in the reductionist story according to which everything physical
is made of the same fundamental subatomic particles, then both light and water waves are
“made of the same stuff.” However, the reductionist story is controversial (photons seem
to have properties different from other particles), and at any rate, the fact that everything
is made of the same stuff would not play any relevant role in explaining why both systems
display certain nonfundamental relations.
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a simulation, they are not, and the correspondence relation (of similarity
or analogy) is purely formal in character.!?

Considerations of this kind have sometimes been offered by economic
experimenters to defend their methodology. Vernon Smith, for example,
argues that “the laboratory becomes a place where real people earn real
money for making real decisions about abstract claims that are just as ‘real’
as a share of General Motors.” For this reason, “Laboratory experience
suggests that all the characteristics of ‘real world’ behavior that we con-
sider to be of primitive importance [. . .] arise naturally, indeed inevitably,
in experimental settings” (1976, p. 274). This reasoning is used to support
experimenters’ confidence in their results. “Laboratory microeconomies
are real live economic systems, which are certainly richer, behaviorally,
than the systems parametrized in our theories” (1982, pp. 923-5). Experi-
mental economies are supposed to work according to the same principles
as the target systems in the intended domain of economic theory because
the relevant components of the laboratory system are made of the same
stuff.

Notice that these remarks should not be interpreted as a surrogate
proof of the external validity of economic experiments. Such a proof, as
we have seen and as Smith clearly recognizes, must eventually be empir-
ical in character and can only be carried out by focusing on the overall
causal isomorphism between an experiment and its target. [tis not enough
to show that properties X and Y are both present in the experimental
and real-world systems and that they are connected in the “right” way.
One also has to show that the other boundary or background conditions
are arranged analogously in the two systems. Similarly, simulations also
require some external validity inference before they can be applied to
their targets. But the way in which this inference works is not quite the
same as in the case of experiments, precisely because experiments and
simulations are made of different stuff.

The most obvious situation in which experiments turn out to be useful
is one in which some properties of the target system are, for some reason,
obscure or contestable. If a model makes some disputable assumption
about an aspect of the target system, it is sometimes possible to create
an experiment reproducing that particular aspect in conditions that make

10'See also Ernst Nagel’s (1961, p. 110) distinction between “substantial” and “formal,”
or Mary Hesse’s (1963) “material” and “formal” analogies (p. 63f). In Guala (2002a), I
argue that some mediating entities share characteristics of both experiments and sim-
ulations. For the sake of simplicity, I ignore such “hybrids” here (but see also Morgan
2002).
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its investigation easier. Of course, not all aspects of the target can (or
should) be reproduced identically, for otherwise the main purpose of
experimentation would be lost. The challenge is to reproduce enough
of the target and in such a way that the substantial similarity between
experiment and target is preserved. To simplify, suppose we are interested
in the relation between two variables, X7 and Y. It is important that we
make sure that X; and Y are reproduced adequately in the experiment,
but also that the experimental arrangement of the boundary variables
X2, . . ., X, is such that it does not affect the X;-Y relationship in a
relevant manner.

However, notice that not everything that is imperfectly understood
needs to be under test. For instance, one can test the efficacy of a drug
without a detailed understanding of the epidemiological characteristics of
a disease. The efficacy of the drug, rather than the process of infection, is
the target of such research. The point is that we must either know that the
effect of the drug does not bear on the process of infection or make sure
that the infection is replicated in the experiment in a way that mirrors the
real-world process as closely as possible.!! Similarly, you can do experi-
ments on market behavior even without a thorough understanding of the
mechanisms of individual choice and belief formation. Market institu-
tions, instead of individual behavior, are under test in these experiments.
Subjects may trade at a certain equilibrium price because they are acting
in a fully rational way, or perhaps because they are following some rule
of thumb, or even by sheer imitation. Whatever the real causal process,
we can use laboratory tests to study selected aspects of specific real-world
economies as long as we are confident that the same (unknown) basic
principles of behavior apply in both cases.

Although both experiments and simulations are knowledge-producing
devices, the knowledge needed to run a good simulation is not quite the
same as the one needed to run a good experiment. A simulation relies on
the assumption that the structure of the target is known, and known to
be analogous to that of the simulating device. As in an experiment, then,
one can learn something new by simulating the effect of certain changes
in the initial conditions, which for some reason, cannot be performed

I In Chapter 9, I mentioned a famous error inferred from artificially reproducing the
infection of the poliovirus in laboratory monkeys. Experiments on monkeys induced
researchers to believe that the virus attacks the nervous system via the olfactory nerves,
and therefore the disease should be fought by means of nasal sprays. As a matter of fact,
humans are infected via the mouth, and the sprays proved to be useless (cf. Paul 1971,
Chs. 12 and 23).
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analytically. The obstacle in an experiment, in contrast, is not analytical
in character: what is unknown is precisely those structural characteristics
of a system that are taken for granted in a simulation. The advantage of
experimental research is that one does not have to specify in advance the
full causal principles governing the target system. The trick is to make
sure that the target and the experimental system are similar in most rel-
evant respects so as to be able to generalize the observed results from
the laboratory to the outside world. Experimenters make sure that this
is the case by using materials that resemble as closely as possible those
of which the parts of the target are made. They also make sure that the
components of the experimental system are put together just like those
of the target, and that nothing else is interfering. Of course, quite a lot
of knowledge is required in order to do so, but no fundamental theory of
how the target system works is needed. Parts of the laboratory system
can be put between brackets and used as “black boxes.” The same pro-
cesses, the same causal principles are supposed to be at work in both cases.
Experimental systems are reliable if they are made of the same stuff as
real-world economies. No process of abstraction from the material forces
at work is needed in order to draw the analogy from the laboratory to the
outside world. One may abstract from “negligible” causal factors but not
from the basic processes at work. The similarity is not merely formal but
holds at the material level as well.

Models, experiments, and hypothesis testing

The mediators view has some nontrivial implications. One of them con-
cerns the way in which theory testing has to be conceived. Another one
regards the sort of work that has to be done in order to make the experi-
mental results applicable to real-world problems. In this section, I tackle
the first issue and leave the second one for the last part of the chapter.
There is a very common misconception (common among philosophers
and scientists alike) concerning theory testing that is most easily illus-
trated by means of an example. Consider a standard one-shot prisoner’s
dilemma (PD) game like the one in Table 10.1. Many experiments have
been performed on the PD game (both one-shot and repeated), and
the results are normally interpreted as providing a “refutation” of the
standard theory (cf. e.g., Dawes and Thaler 1988; I discussed the results
briefly in Chapter 2). This reading is behind much contemporary research
aimed at finding alternatives to the standard model of rational choice or at
exploring the factors that may be responsible for the anomalous behavior.
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Table 10.1. A Prisoner’s Dilemma Game

Left Right
Up 55 0,10
Down 10,0 2,2

Yet, I have put “refutation” between quotation marks for two reasons:
one is that it is not clear whether one can really refute a model like the
PD game. The other reason is that it can be argued that the experiments
testing the PD game are not tests of this model at all.

Let us discuss the second argument first. It is often claimed that an
experiment genuinely testing the PD game must make sure that the ini-
tial conditions stated in the PD game are adequately instantiated in the
laboratory setting. The numbers in the standard PD matrix are to be inter-
preted as utilities, that is, as representations of the preference structures
of the agents in the game. When the game is played in the laboratory,
experimenters usually translate the utilities straight into monetary pay-
offs — for example: 2 “utils” = 2 (or 20, or 200) euros, 5 utils = 5 euros, and
so on. This is based on the hypotheses (ubiquitous in applied economics)
that subjects (1) prefer more money to less and (2) do not care about
anything else but their own monetary gains. Then, the argument goes,
if the experimental subjects do not seem to play the dominant strategy
(Down, Right) this is because assumptions (1) and (2) are false in this
particular experimental context, not because the PD model is false. Sub-
jects are maximizing their own utilities, except that their utilities are not
as experimenters assumed them to be. They are not playing the PD game,
and therefore the experiment certainly cannot provide a refutation of it.

The usual way to rebut such arguments is to ask, What would constitute
a test of the PD model then? The PD, like any good model, is a consistent
description of an abstract situation. By logical analysis, we already know
that if all the assumptions of the model are true, then the consequence
must also be true. If we make sure that all the assumptions of the model are
instantiated in the laboratory (that subjects are rational utility maximizers,
that they have perfect knowledge of the situation, that they do not make
mistakes, etc.), we are running a theorem not an experiment. The point
of an experiment is to learn something we did not already know.

One could reply that there is still something to be learned by running
experiments in which the postulated preferences have been instantiated:
one can test the hypothesis that the subjects are rational or that their
actions follow from their preferences and beliefs. This interpretation of
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game theory experiments has been defended recently by Jorgen Weibull
(2002) and seems to make sense of some experiments aimed at test-
ing complicated models, in which the rationality assumption is a tricky
hypothesis indeed.!> However, it does not seem to capture experimenters’
motivations when they test relatively simple models like the PD game.
Once the preferences are defined, the game is utterly trivial (especially
in its one-shot version), and testing the rationality assumption does not
seem a particularly interesting endeavor. A more charitable reading is
that the main goal of such experiments is to test the assumptions made
on the contents of individual preferences: that human beings are selfish
maximizers of their own utility and that utility varies with money only. To
claim that the goal is to test the rationality assumption seems to beg the
real motivations behind this research program.

In the past, Ken Binmore has taken a more radical stance than Weibull:

[those who are anxious to deny that people seek only their own narrowly conceived
selfish ends] argue that the players may care about the welfare of their opponents,
or that they may actively want to keep their promises out of feelings of group
solidarity or because they would otherwise suffer the pangs of a bad conscience.
Such players will not be playing the Prisoners’ Dilemma. They will be playing
some other game with different payoffs. [. ..] The critic may respond that the game
theorist’s victory in the debate is at best Pyrrhic, since it is bought at the cost of
reducing the propositions of game theory to the status of “mere” tautologies. But
such an accusation disturbs the game theorist not in the least. There is nothing
a game theorist would like better than for his propositions to be entitled to the
status of tautologies, just like proper mathematical theorems. (Binmore 1992,
pp- 313-4)

One way of interpreting this claim is that you cannot “test a model”
any more than you can test Alice in Wonderland. In fact, it is not surprising
that people find it difficult to state exactly what a test of the PD game is
supposed to look like. What you can do, though, is to test an application
of a model, a hypothesis stating that certain elements of a model are
approximately accurate or good enough representations of what goes on
in a given empirical situation. This point is important and worth spelling
out in more detail.

Remember that in the semantic view, models come with some hypoth-
esis attached, stating their applicability to certain real-world systems. The
models by themselves do not tell you where they can or should be applied:

12 1 should thank both Dan Hausman and Chris Starmer, who helped me to clarify this
interpretation of game theory tests (see Starmer, in press, and Hausman, in press).
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although economic models are often made of “firms,” “consumers,” “mar-
kets,” and so on, these are not the firms and consumers and markets of our
everyday world and thus are not necessarily applicable to it.'"> According
to the semantic view, the hypothesis says where, how, and to what extent
the models may be used to understand or predict empirical phenomena.
However, notice that the empirical hypotheses are much more ephemeral
entities than models. The models are fairly stable and identifiable — they
are the things we find in textbooks and scientific journals. The hypotheses,
in contrast, are often only vaguely specified and tend to change in time
as more information is gathered about the applicability of certain models
to certain domains. Scientists are pragmatic people, and although some
paradigmatic applications are considered more important than others, a
model is always useful to a degree, as long as it is applicable to some sit-
uation (or, more precisely, as long as it is more helpful in understanding
a certain situation than are other rival models). The fact that a model
turns out not to work under certain circumstances does not count as a
refutation of the model but only as a (failed) test of its applicability in a
given domain.

Let us go back to the PD game now. The model is usually presented as
providing a possible explanation for a vast array of real-world situations,
from oligopolistic collusion to blood donation, pollution, the formation
of social contracts, and so on. However, in each of these applications,
the game has to be interpreted, and part of the interpretative problem
consists of stating empirical assumptions like the ones we have seen above:
that the players are selfish, that they maximize monetary gains (or their
health, or whatever), and so on. These assumptions allow the testing of
the hypothesis that the model is relevant to understanding that particular
situation. Experimental PD games as they are normally designed seem
to capture some of the features of those many economic situations for
which the PD game is prima facie an explanatory candidate. That’s one
reason why the laboratory games arouse some interest in the first place —
because they seem to be the sort of situation in which the PD game could
(or should) work.

What do we learn, then, when the plot in the laboratory does not
unravel as in the model? We learn, first and foremost, that the model
cannot be used that way, that the hypothesis that players are rational
maximizers, that they care only about their own money, that they have
perfect knowledge of the situation, and so on cannot al/ simultaneously

13 On this point, see also Cubitt (in press).
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be true under those particular circumstances. The model is not “falsified”
by the experiment (what would it mean to “falsify” an abstract entity
in the first place?), its application to a particular case is. Of course, two
questions then arise naturally: (1) If it does not work in this situation,
does it work under other real-world circumstances that seem prima facie
to be very similar to it? and (2) Why is it that the model cannot be applied
this way, in this particular setting?

Question (1) should be very familiar by now. As I have argued, it cannot
be solved except by checking empirically what substantial differences, if
any, there are between the target systems in the real world and the exper-
imental setting. Notice that in doing this, in a way we are treating the
experiment as a rival to the standard model: we are asking which one
is more similar to other situations that we are interested in understand-
ing. We are asking whether the experiment is a better “model” for these
situations than the standard model itself.

Question (2) is partly related to this issue, and partly independent. It
is independent in the sense that the focus here is the laboratory system
itself, rather than the external validity of the result. However, it is also
related because by understanding exactly what is going on in the exper-
iment, we facilitate the application and extension of the result to other
conditions.'* The problem here is that unlike a simple and relatively well-
understood theoretical model like the PD game, a laboratory system is
not a completely transparent entity. Whereas in the model we know what
follows from which assumptions, in the PD experiment one has to figure
out why, for example, a substantial portion of subjects plays the coopera-
tive strategy. For this reason, a lot of experimentation is devoted to testing
very specific hypotheses about particular aspects of the design: whether
anonymity, the level of payoffs, the assignment of social roles, repetition,
and many other factors significantly influence the phenomenon produced
in the laboratory.

Thus, to sum up, the idea that certain key assumptions must be instan-
tiated in the laboratory in order for it to count as a “proper” test of a
model is misguided. A model is an entity made of many components,
each of which may or may not be a good counterpart to what goes on
in a real situation. In addition, other extratheoretical assumptions must

14 The need to answer question (2) also marks the difference between a realist and an
instrumentalist attitude. The realist is not satisfied by merely saying that a model applies
in situation X but not in Y. This asymmetry raises a cognitive dissonance and has to be
explained properly. See also the discussion in Chapter 7 of the methodological role of
universality as a requirement of scientific laws.
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be made in each case in order to make the model applicable to a spe-
cific real-world system. What you test, then, is a specific application of a
model to a specific situation or class of situations. A negative result should
not provoke panic or a retreat toward a purely formalistic interpretation
of economic theory. We learn little by little, and negative results provide
important clues about the limitations of the tools we devise —theoretically
and experimentally.

New (and robust) phenomena'®

Let us now turn to the second major implication of the mediators view.
If economic research does not end in the lab, it follows quite naturally
that economists should invest more time and effort in showing that their
experimental results can be generalized to real-world contexts. It is not
enough to make sure that the initial conditions of some theoretical model
are instantiated in the experiment. External validity problems should
be solved by combining laboratory and field evidence in the appro-
priate way. Economists, however, rarely practice this sort of empirical
research, and the cases I have discussed in this book are representative
of just a handful of attempts in this direction. Experimental economists
tend, for the most part, to behave as if they were “pure” laboratory
scientists.

However, we should be careful not to condemn this attitude too hastily.
If experiments are in many respects similar to models and models are of
different types — theoretical and applied, for example — it seems reason-
able to expect that experiments also vary according to their degree of
proximity to the real world. Thus, on the one hand, economists should be
encouraged to invest in the underdeveloped art of applying experimental
results, because that is what scientists are ultimately expected to deliver.
External validity inferences require the specification of a target, the col-
lection of data about the target, and the skillful combination of exper-
imental and field data. On the other hand, an experimental result that
has not been exported to the real world (yet) is not necessarily a useless
experiment. The experimenter has the possibility of learning something
of wider applicability than a purely laboratory game, even though she is
presently unable to specify exactly the domain of application of her result.
But what exactly can she learn?

15 Some of the ideas presented in the last part of this chapter were developed jointly with
Luigi Mittone (see Guala and Mittone 2002).
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A most valuable feature of laboratory experimentation, one that
makes it almost unique in the field of social science, is that it sometimes
leads to the discovery of new, unexpected phenomena. Moreover, unlike
field observation, laboratory work usually allows the demonstration that
(1) the phenomenon in question is real and not just a spurious regularity
or an artifact of statistical analysis and that (2) it is robust to changes in
background factors. A number of phenomena discovered in the lab have
passed tests (1) and (2) and are now firmly established in the economics
literature: violations of individual rationality like the Allais paradox or
preference reversals, but also aggregate effects like the convergence of
double oral auctions toward equilibrium, the decay of contribution in
public goods experiments, and so on.

Sometimes phenomena are anticipated by a formal theory or a thought
experiment — for example, when we try to imagine the reaction of exper-
imental subjects placed in certain counterfactual conditions. However,
phenomena are also frequently discovered by chance or noticed post
hoc while analyzing data collected for different purposes (the preference
reversals phenomenon is a case in point). This fact, somehow paradoxi-
cally, improves rather than affects for the worse its robustness credentials.
The reasoning goes as follows: an experiment is usually aimed at testing
the effect of a series of factors or independent variables (X1, X5, ..., X},)
on a dependent variable (Y'). Usually, the experimenter tries to design an
experiment such that no other factor besides X7, ..., X}, islikely to have an
influence on Y. (This is why abstract designs facilitate experimentation.)
Then, one factor (say, X ) is varied while the others are kept constant, and
the procedure is iterated for the other X5, . .., X,. The list of potentially
relevant X; may come from theory, from previous experimental results,
from practical insight, or just from common sense. In most laboratory
experiments, we know that many variables have been constructed “arti-
ficially,” and we are aware of the limitations of the design with respect to
the real thing. The unexpected effect, in contrast, may strike us as a really
genuine occurrence. The idea is that if X1, . .., X, are really the only
variables that were artificially constructed by the experimenter, then the
unexpected residual effect is likely to be the consequence of some other,
non—purely experimental factor.

A physical analogy may help here: cosmic microwave radiation was first
observed in 1964 by Arno Penzias and Robert Wilson, two scientists at

16 Sugden (in press) calls them experimental “exhibits”; I use here the standard termino-
logy (effects, phenomena) for simplicity. See also the discussion of Sugden’s exhibits in
Chapter 3.
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Bell Labs, while working on a problem of telecommunication technology.
The isotropic radio background is a leftover from the big bang and fills the
space everywhere in the universe (except where it has been “shielded”
or neutralized). Regardless of where you are, it is there, although its
properties may in some circumstances be difficult to detect because of
disturbing factors and other local circumstances. Phenomena of this sort
often emerge as residuals that cannot be imputed to the experimental
procedures or other known factors, and prove to be extremely robust to
measurement and experimental manipulation.

The analogy with unexpected experimental phenomena in economics
goes as follows: first you observe something that you don’t think has
been created by the experimental procedures; then, by checking the
robustness of the phenomenon to changes in background conditions,
you become more confident that the phenomenon is indeed a general
feature of human decision making. The checking is important because
the whole inference rests on a crucial assumption: that no other “arti-
ficial” factor besides Xj, . . . , X, has been inadvertently built into the
experiment. This assumption is credible if the experiment has been
designed with enough care and depends in part on the experience of
the experimenter and her detailed knowledge of her system. However,
no matter how experienced the experimenter is, some checking is nec-
essary, and the scientific community will not be convinced until the
attempts to “make the effect go away” have failed (Galison 1987; see also
Chapter 6).

Notice, however, that the generalizability of a robust result to spe-
cific instances remains an empirical conjecture, which has to be further
validated via case-by-case empirical investigation. By establishing robust-
ness, the experimental economist merely points to the existence of a phe-
nomenon that is likely to be relevant to the policy maker. Although she
cannot guarantee that the phenomenon actually will be relevant in a spe-
cific case, because the effect may be neutralized by some context-specific
factor, she signals a possibility. The actual applicability in each case will
depend on a number of features of the specific economic system at stake
(the target system).

Robustness versus external validity

Consider again the analogy with scientific modeling. A good applied
model must be constructed with a clear and realistic picture of the tar-
get economy in mind. Before constructing such a model, it is usually
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necessary to collect quite a lot of information about the relevant char-
acteristics of the economy one is studying (e.g., think of applied models
in industrial organization). A lot of modeling, however, does not pro-
ceed that way. Instead of focusing on one specific real-world economy,
the modeler may examine a set of factors or features that are likely to
be relevant generically to a nonempty but not necessarily well-specified
set of economies. One can question whether the term applied modeling
is appropriate for such exercises. True, by adding details to the most basic
theoretical models, one in a way proceeds toward a level of analysis that
is more “concrete” and closer to application. But such “middle-range”
models can rarely be applied directly to the functioning of a specific eco-
nomic system (i.e., unless they are further modified to take into account
more context-specific factors).

One way of characterizing such modeling practice is that it provides a
test of the robustness of a result to changes in some properties of a model
or set of models. In the case of experiments, there is an analogous activity
of robustness testing, which falls somehow between the most abstract
experiments reproducing the assumptions of theoretical models and the
applied experiments used to draw external validity inferences. Indeed,
robustness testing should be kept well separated from external validity.
The main difference has to do with the absence/presence of a concrete,
specific target system: whereas external validity requires the identification
of such a target, robustness arguments do not.

When this difference is not adequately appreciated, experimental
debates tend to generate some confusion. A typical case is the debate
on preference reversals, a phenomenon I have already discussed exten-
sively in Chapters 5 and 6. The research on preference reversals (PRs),
has, broadly speaking, gone through two stages. A few years after Licht-
enstein and Slovic’s initial findings, economists started to devise experi-
ments in order to test the reality of reversals within the laboratory. They
tried, in other words, to check whether the anomalous evidence (the
observed price-choice reversals) was merely an artifact of the experi-
mental techniques used to elicit agents’ preferences. We have also seen
that economists nowadays generally agree that PRs are a real laboratory
phenomenon rather than a mere illusion of the instruments of observa-
tion. The second phase of research began when experimenters turned
their attention to the robustness of reversals outside the laboratory. They
started to investigate whether PRs should be classified as “artifacts” in
a different sense: whether they have been created by the experimen-
tal procedure (just like, say, superconductivity is a real physical but
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scientist-made phenomenon; see also the distinction between different
kinds of artifacts outlined in Chapter 5).

The issue had been raised right from the start of the PR debate, to be
sure. In their influential paper, Grether and Plott argued that

The key question is, of course, whether [PRs] should be of interest to economists.
Specifically it seems necessary to answer the following:

(1) Does the phenomenon exist in situations where economic theory is generally
applied?

(2) Can the phenomenon be explained by applying standard economic theory or
some immediate variant thereof? (Grether and Plott 1979, p. 624)

The first point inspired the work of Berg, Dickhaut, and O’Brien
(1985), who tried to test the robustness of the PR phenomenon to
allegedly more “realistic” conditions. The fundamental idea guiding their
work is a familiar one: economic relations should not be taken as entirely
general and exceptionless. On the contrary, they are relationships that
hold only where the “right” conditions are instantiated. Thus, if we have
a vague idea of what such circumstances may be, we can try to create
an environment in which they should hold and see whether these back-
ground conditions make any difference to the anomalous phenomenon
in question.

It remains an open question whether any mechanism, particularly one which
would exist in situations where economic theory is generally applied, can sub-
stantially reduce or alter [PR] inconsistencies. The mechanism considered in our
work is an arbitrage procedure. In general, the possibility of arbitrage in a market
setting leads to the conclusion that there cannot be market inconsistencies such
as two prices for the same commodity. (Berg et al. 1985, p. 33)

The background mechanism responsible for the principles of consumer
theory to hold is illustrated as follows:

If preference reversals exist in an exchange setting, they create an arbitrage oppor-
tunity. A subject having been arbitraged is expected to realize that inconsistencies
will be exploited and therefore to reduce both the rate and size of reversals. (ibid.,

p-34)

Notice that the background mechanism is not formally modeled or
incorporated into the theory of consumer’s behavior. Economic relation-
ships are supposed to hold across a certain range of situations, which
vaguely define the domain of their application. The reasons why they
hold, however, are rarely fully specified. Economists rely on various
informal accounts (typically, evolutionary or arbitrage stories) of why



Experiments as Mediators 227

one should be confident that some relationship holds in a certain domain.
To define these stories as “theoretical arguments” is somehow exagger-
ated, because they seldom take the form of rigorous theories, let alone
an axiomatic form.!” Still, they provide arguments for the robustness of
a relationship inside a certain domain by pointing at some background
circumstances that would allow the relationship to hold. And they pro-
vide hypotheses that can be tested experimentally — no formal theory is
required for that. Experimentalists are just interested in checking whether
when the arbitrage mechanism is at work, reversals tend to disappear. The
standard models could then be applied the way they are, provided we keep
in mind their limited domain of application. Experimenters are not look-
ing for a theoretical explanation of the mechanism, which is therefore
confined in the “background” of the theory.

The design of the Berg-Dickhaut-O’Brien experiment is far from
trivial. One problem with these experiments is how to combine the
exchange task needed to money-pump inconsistent subjects with the
already rather complex machinery of a standard PR experiment.
The BDM procedure, for example, can be used to determine the real
reservation price in the exchange mechanism only if subjects are assumed
to be constantly and absolutely risk averse; otherwise, their buying and
selling prices will be different (cf. Berg et al. 1985, pp. 34-35). Another
incentive procedure specially invented by O’Brien to solve this problem
was therefore used in the experiment. After the announced prices were
elicited, the subjects were required to trade with the experimenter on the
basis of their announced prices and choices.

The design also controlled for another variable, that is, repetition of
the experiment. The central idea is that a period of learning may be nec-
essary to acquire the decision skills posited by the standard models of
rational choice. By controlling for arbitrage and repetition, Berg and
his colleagues discovered that PRs do not disappear under these con-
ditions. The frequency of reversals was even slightly higher when sub-
jects experienced arbitrage than when they did not. Their dollar magni-
tude was, however, substantially decreased (from a mean value of 4.10 to
2.52 dollars). Repetition definitely diminished both the frequency and
the dollar magnitude of reversals — the number of reversals per sub-
ject dropping from 36 percent in the first trial to 27 percent in the sec-
ond, and the value from a mean dollar magnitude of 4.02 to 2.58. Not

17 Some economists argue that more effort should be put into the attempt to formalize the
evolutionary stories. See e.g., Nelson and Winter (1982).
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surprisingly, the two effects combine so that the most significant reduc-
tions can be observed in groups subject to both repetition and arbitrage.
Berg and his colleagues eventually recognized that the phenomenon “did
not go away” but was significantly eroded.

The results of this experiment encouraged further research. Chu and
Chu (1990) a few years later devised a variant of this experiment that
controlled for the effects of complexity and of repeated arbitrage. They
simplified the standard PR design and exposed their subjects to a series
of money-pumps. Whereas simplification alone did not seem to have
great impact on the phenomenon, repeated arbitrage did (most sub-
jects required only two or three rounds of money-pumping in order to
revise their preferences). Moreover, the effects of learning were rel-
atively persistent: once exposed to repeated money-pumping, subjects
acted more consistently with standard economic theory in immediately
subsequent tasks.'®

These experiments, then, showed that preference reversals could be
reduced in certain situations. But are these preventatives active in real-
world markets? Itis fair to say that the economists engaged in PR research
did not go very far in investigating external validity. Chu and Chu sum-
marize their results by saying that the PR phenomenon appears to be
vulnerable to a “marketlike” environment (1990, p. 910), but such a claim
is at least ambiguous. The argument seems to go as follows: “real markets”
involve repeated choice, under specific institutional rules, and are pop-
ulated by arbitrageurs. Therefore, by making the classic PR experiment
more similar to “real markets,” we test the external validity of the PR
phenomenon. I have put “real markets” between scare quotes because
not all real markets are of this kind. The real estate market, for exam-
ple, is populated by many traders who will not engage in that sort of
transaction more than once or twice in their whole life. The price is often
determined by a first-price sealed bid mechanism, and most traders do
not have a chance to learn that their preferences are inconsistent by being
repeatedly money-pumped (fortunately, one might say!). Thus, the exter-
nal validity of the experiments used to test the robustness of PRs will
not stretch to these circumstances. Their results will be applicable only

18 Knez and Smith (1987) and Cox and Grether (1996) describe similar attempts to test the
robustness of reversals in marketlike environments. Because the interpretation of these
experiments is rather complex and from some respects controversial, I shall not comment
upon them here.
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to real-world economies with repetition, arbitrage, and the English auc-
tion mechanism. The “target” in this case is defined implicitly (and only
roughly) by the features of the experiments.

This is quite typical of robustness tests: instead of mimicking a specific
real-world system, such experiments define the domain of their results
implicitly and somehow generically. But external validity inferences do
not have much bite unless one systematically investigates the degree of
similarity and dissimilarity between laboratory and target systems. In the
PR experiments, the experimenters had an abstract rather than concrete
target in mind: an “ideal” competitive market with repetition and arbi-
trage. Of course, their results are not useless — they are indeed extremely
useful to test the robustness of the PR phenomenon. (They do so in a
negative way — by indicating where the phenomenon may break down,
rather than by showing us that it occurs in a certain set of real-world situa-
tions.) The distinction between robustness and external validity is crucial
to highlight the confusion here.

The library of phenomena

Unlike some of its neighbor disciplines, such as experimental psychology,
experimental economics grew within (and had to defend itself from) a
scientific paradigm that attributes enormous importance to theory. This
is probably why it was sometimes easier and more effective from a rhetor-
ical viewpoint to present experimental economics as primarily devoted
to theory testing. This view is mistaken, because the proper role of exper-
imental economics is to mediate between abstract theory and concrete
problem solving in the real world. In many respects, experiments resem-
ble models, for they are systems that are artificially isolated from the
noise of the real world — but with the added bonus of a higher degree of
concreteness.

Like models, experimental results must eventually teach us something
about the real world. However, many experimental results in economics
are never applied to real-world situations. In some happy cases, the exper-
imenter can go all the way from the model on the far left to the target sys-
tem on the right of Figure 10.2, but these cases are quite rare. Most cases
of experimentation involve inferences to generic circumstances rather
than to specific targets. This may be either because the target is will-
ingly left unspecified or because it cannot be studied properly for lack
of data. Experimental economists nevertheless help the applied scientist
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by compiling a library of phenomena: a list of mechanisms, effects, and
biases that may be relevant in concrete applications. In order to apply this
knowledge to some real-world situation, it is necessary to examine the
specific characteristics of the target domain and based on this local infor-
mation, evaluate the relevance of the phenomena found in the “library”
case by case.

This way of framing the problem has the advantage of recovering
a basic distinction, between pure and applied science, while defending
experimental economists from the charge of pursuing futile research.
Although a research program should eventually produce applicable
results (that’s what scientists are paid for, after all), it needs not do so
for each single experiment. A single experiment may just highlight a phe-
nomenon or mechanism, to be later exploited by applied scientists when
they deal with specific cases. To export a phenomenon in the real world
requires detailed knowledge of the domain of application. Because the
required knowledge is context specific and probably generalizable only
up to a point, it is reasonable to have a division of labor between applied
scientist and experimenter (which of course does not mean that in some
cases, the same person cannot play both roles at the same time).



ELEVEN

On Monetary Incentives

Some experimenters may find it surprising to see the issue of incentives
relegated to the last chapter of a methodology book. Monetary incentives
are at the center of most methodological controversies in experimental
economics and have sparked some heated exchanges among practitioners,
so one would perhaps expect them to have a more central place in a book
like this.! The main reason to delay the discussion until now is not that I
find the incentives problem uninteresting or unimportant, but that it is a
complicated one. It can be tackled properly only once the right conceptual
tools are available; given that I provided the tools in the previous chapters,
I can now put them to work.

The idea of using monetary rewards sometimes generates hilarity
among noneconomists (“These guys pay their subjects to behave like
economists would like them to behave!”), whereas the absence of incen-
tives is dismissed by economists equally bluntly (“What can you learn
from ‘cheap talk’? Put your money where your mouth is!”). But more
importantly, the presence of “adequate” monetary incentives (we shall
see what adequate means shortly) has become de facto a prerequisite for
publication in economics journals — and, conversely, the lack of incentives
is considered a sufficient condition for the rejection of an experimental
study. In contrast, social, cognitive, and economic psychologists tend to
apply a less rigid policy. Many experiments in these areas are performed
with incentive structures that would be considered inadequate in eco-
nomics and often lack monetary incentives altogether.

I Cf. e.g., Harrison (1989) and the subsequent debate in the American Economic Review

(1992). Cf. also Harrison (1994) and Hertwig and Ortmann (2001), which will be discussed
in more detail later.

231



232 The Methodology of Experimental Economics

As with many other issues discussed in this book, there is probably
an interesting sociological story to be told here. The pioneers of exper-
imental economics faced the problem of distinguishing their work from
the research carried out in neighbor disciplines. At the same time, it was
also useful to differentiate experiments from other economic methods
of observation, such as surveys and contingent evaluations. Incentives
(together with, e.g., the semitheoretical framework adopted in Vernon
Smith’s early methodological papers) probably served this differentiat-
ing function, at least in part. The legacy of this function is still evident
from the fact that the issue of incentives is often couched in terms of “the
economics-psychology methodological divide.” I do not intend to review
this more general debate here;> however, following the predominantly
normative approach of the book, I will try to clarify the narrower and
yet highly complex issue of incentives — an issue that, once analyzed in
depth, turns out to involve a number of methodological problems that are
often inappropriately conflated. The main conclusion will be that once the
motivations and the arguments that underlie monetary incentive norms
have been unpacked, one can appreciate how the question, Do incen-
tives matter? can be answered only in a context-specific manner. Do they
matter . . . for what?

The ‘precepts’

Early economic experiments (even “paradigmatic” ones, like Smith 1962
or Allais 1953) lacked what contemporary experimental economists con-
sider an “adequate incentives structure.” The norms regulating financial
incentives were codified later, in a series of papers written in the late
seventies and early eighties by Vernon Smith (1976, 1982) and Luis Wilde
(1980).% Incentives are discussed in four of the five so-called precepts of
experimental economics:

1. Nonsatiation: choose a medium of reward such that of two other-
wise equivalent alternatives, subjects will always choose the one
yielding more of the reward medium.

2. Saliency: the reward must be increasing in the good and decreasing
in the bad outcomes of the experiment.

2 Butsee Cox and Isaac (1986), Hogarth and Reder (eds. 1986), Smith (1991b), Loewenstein
(1999), and Rabin (1998, 2002).

3 The idea of using monetary rewards was borrowed, somehow ironically, from the work of
two psychologists (Fouraker and Siegel 1963).
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3. Dominance: the rewards dominate any subjective costs associated
with participation in the experiment.

4. Privacy: each subject in an experiment receives information only
about her own payoffs.

The fifth precept (parallelism or external validity, as I call it throughout
this book) is also partly associated with the issue of incentives, but I shall
bracket it for now and come back to it later on. The precepts form the
core of “Induced Value Theory” (Smith 1976) and are to be interpreted
as “a proposed set of sufficient conditions for a valid controlled microeco-
nomic experiment” (Smith 1982, p. 930, my emphasis). Notice two things:
first, the conditions identified by the precepts were not intended to be
necessary ones; that is, according to the original formulation, a perfectly
valid experiment may in principle be built that nevertheless violates some
or all of the precepts. Second, the precepts should be read as hypotheti-
cal conditionals (“if you want to achieve control, you should do this and
that”), and should emphatically not be taken as axioms to be taken for
granted. “The truth of these precepts can only be established empiri-
cally” (Smith 1982, p. 930, n. 10). Consider also that the precepts provide
broad guidelines concerning the control of individual preferences, which
may be implemented in various ways and may require ad hoc adjust-
ments depending on the context and the particular experimental design
one is using. In fact, money or financial incentives are never mentioned
in the precepts. The principles state only in abstract terms what kind of
properties an appropriate reward medium should have but do not say
what the medium should be. Money may be one way of implementing
the precepts, but is not necessarily the only one. In light of the fairly
rigid interpretation that has become prevalent in experimental economics,
the Smith-Wilde precepts appear distinctively liberal in their original
formulation.

So what are the precepts for? A major problem with field research is
that some key variables of economic theory, such as agents’ preferences,
are not directly observable. If you are interested in explaining, say, price
variations in a market, you have to derive the demand and supply sched-
ules (two crucial explanatory factors) from other observable variables,
based on auxiliary assumptions that are usually as difficult to test as the
main research hypothesis (that markets equilibrate at efficient prices, say).
Subjects’ preferences and beliefs are directly unobservable in laboratory
experiments too, of course, but can be more easily detected and con-
trolled therein. The precepts are a set of guidelines intended to achieve
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control of this sort. They were originally supposed to apply to one par-
ticular type of economic experiment: the market experiments at the core
of Vernon Smith’s early research.* In fact, in his 1976 paper on Induced
Value Theory, Smith states explicitly that the principles apply “to exper-
iments designed to test price theory propositions conditional on known
valuations. Separate experiments can be designed to test propositions in
preference theory” (Smith 1976, p. 275).

Most of Smith’s early experiments were aimed at investigating a crucial
aspect of market phenomena that was left remarkably obscure by existing
theory. The experiments focused, in particular, on the role played by the
institutions that coordinate individual behavior in competitive markets. In
Smith’s own terminology — borrowed largely from the mechanism design
theory of the sixties and seventies — a “microeconomic system” is analyz-
able into three major components: the environment, the institution, and
the outcome (the behavior of the agents in the market). The outcome is
modeled as a function of the environment and the institution. The institu-
tion is basically (I'm simplifying here) a set of rules governing behavior by
setting incentives, punishments, and their enforcement. The environment
is a complex set of factors including the commodities to be exchanged, the
agents in the market, their individual endowments, their utility functions,
and the technology (costs).

In order to learn about the effects of these factors on the outcome
behavior (e.g., the sort of prices that are generated in a market defined
by a certain environment and a certain kind of institution), the ability
to control preferences is quite crucial. By controlling preferences, first,
one can try to systematically vary the supply/demand schedules in a given
institution and observe the results of such variations. Second, one can
keep the preferences fixed (“in the background,” using the terminology
introduced in the first part of the book) and observe the effect of using
different institutions in a given environment (cf. Smith 1982, p. 927). The
precepts provide some guidance on how to achieve effective control of
subjects’ preferences. A typical application works as follows. Suppose you
want to induce in your experiment simple supply and demand schedules
like those in Figure 11.1. The customary way of achieving this goal is to
assign your subjects some definite roles in the experiment, by dividing
them in two groups of buyers and sellers with well-defined reservation
prices. The reservation price of a seller can be interpreted as the cost of
production for each unit of the exchange good. The reservation price of a

4 Cf. e.g., Smith’s seminal (1962) article as well as the papers collected in Smith (1991a).
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Table 11.1. Simple Incentive Structure

No. of Subjects Reservation Price
10 sellers 30 tokens
20 sellers 10 tokens
10 buyers 35 tokens
20 buyers 15 tokens

buyer can instead be seen as the price the experimenter is willing to pay
each buyer for a unit of the good once the experimental market is closed.

The supply/demand schedules in Figure 11.1 can be induced by setting
reservation prices as in Table 11.1 (assuming that each buyer can exchange
at most one unit of the good during the experiment). Notice that the
prices are expressed in experimental tokens. The key move, according to
the precepts of Induced Value Theory, is to make sure that the tokens will
be exchanged (privately) at the end of the experiment with some other
reward medium, at a rate that satisfies the criteria set out in the precepts
themselves — hence the habit of using real money in quantities that are
likely to dominate all other costs of participating in the experiment.

The precepts, as noticed by various commentators (e.g., Starmer 1999),
add a set of auxiliary assumptions to the hypotheses usually tested in mar-
ket experiments. The interpretation of the results of an experiment (e.g.,
that institution X'is more efficient than institution Y') relies crucially on the
background assumption that preferences have actually been controlled —
a hypothesis that may in principle be questioned and tested empirically
on its own. This is just the familiar Duhem-Quine problem discussed
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Figure 11.1. Simple supply and demand schedules.
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extensively in the first part of this book. The point I would like to stress
here is that these experiments are not the only or the typical experiments
performed by economists. Following Cubitt, Starmer, and Sugden (2001),
we may identify two broad categories of experiment: experiments aimed
at testing the effect of individual preferences, beliefs, endowments, insti-
tutions, and so on on market outcomes (which test “P — Q” type of
inferences: “if agents have qualities F, then in given circumstances they
will do Q) vs. experiments aimed at testing the standard assumptions
imposed on individual preferences, beliefs, and so on (which test claims
of the form “P”: “agents have qualities P”).° In the first kind of exper-
iment, it is necessary to try to implement the standard assumptions of
economic theory by inducing preferences, beliefs, and so on that are con-
sistent with the assumptions of rational choice theory. Otherwise, one
would not be testing the P — Q proposition at all. The aim of these
experiments typically is to find out whether certain market institutions
are able to aggregate individual preferences with certain characteristics
in a “desirable” (e.g., efficient) way. But in order to find that out, one
has to make sure that subjects’ preferences have the characteristics pos-
tulated by standard microeconomic theory. In contrast, in experiments of
the second type, the assumptions of individual decision theory are them-
selves under test: the aim is to figure out whether individual preferences
(and/or beliefs) have the structure postulated by the standard models.
The precepts of experimental economics lose much of their appeal in
contexts like these, because clearly there is little point in trying to induce
the behavior one is supposed to be testing in the first place.

Nevertheless, the norms regulating the use of monetary incentives in
experimental economics are enforced in all cases, regardless of the kind
of experiment one is performing. Is such an attitude reasonable? Are we
losing something by rigidly enforcing such rules? Or do the disciplines that
underplay the role of incentives (like psychology) produce less reliable
results as a consequence of their more liberal attitude?

The debate: Internal validity issues

In arecent paper published in the interdisciplinary journal Behavioral and
Brain Sciences, Ralph Hertwig and Andreas Ortmann (2001) argue that

5 Strictly speaking, hypotheses on the nature and structure of preferences, beliefs, etc. should
also be represented as inferences of the P— QO kind. When you are testing, e.g., the tran-
sitivity axiom of choice theory, you are testing the proposition that [(x > y) & (y > 2)] =
(x > z). Istick to the above formulation mainly for presentational ease.
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psychologists would be better off by adopting some of the methodological
standards of experimental economics.® Their paper acted as “target arti-
cle” for several commentaries by distinguished economists, psychologists,
and social scientists. Because the use of monetary incentives is among the
“good” norms to be exported into psychology, the BBS discussion offers
a useful overview of the arguments for and against incentives. Moreover,
Hertwig and Ortmann’s proposal applies exclusively to the areas of exper-
imental economics and psychology dealing with individual judgment and
decision making, behavioral game theory, and cognitive psychology — pre-
cisely the experiments to which the Smith-Wilde precepts were originally
not supposed to apply. It therefore provides a good test of the claim that
economic incentives are always required in experimental research.

Hertwig and Ortmann (2001, p. 390) put forward four arguments in
favor of monetary incentives:

1. Monetary incentives are easier to implement than other (nonmon-
etary) incentives.

2. Money is particularly appropriate to fulfil the nonsatiation require-
ment.

3. Economic theory is straightforwardly translated into experiments
with monetary incentives.

4. Monetary incentives reduce the variation in subjects’ performance.

It is useful to divide the arguments in two categories. On the one
hand, there are purely pragmatic considerations, appealing to the fact
that money rewards seem to be particularly handy for the fulfillment of
the precepts. Arguments 1 and 2 fall in this category: in principle, whether
we use real money, fictional money, candies, badges, or some other kind
of reward might not matter. The reason real money is so widely used is
that we feel confident that most people care about it, and that we all want
more. (Most people, for example, tend to feel satiated after they have
eaten lots of candies and don’t want any more.) Money, moreover, seems
to be almost universally attractive in our culture. If you are dealing with
a group of computer geeks, you may be able to control their preferences
by means of free copies of the magazine PC World, but that may not
work with other people. Finally, money is something we can (and often
do) consume on our own. If you use tennis rackets as a reward, you may

6 Hertwig and Ortmann are advocating a process that in many ways is already taking place.
It is much more common nowadays to see psychological experiments that fit “economic”
requirements, sometimes because the author is genuinely convinced of their usefulness,
sometimes just for the sake of appealing to a wider audience.
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find out that some subjects are very keen to make sure that at least one
of their friends also wins a racket (it’s boring to play tennis on your own),
thus displaying other-regarding preferences.

The other two arguments are more interesting because they involve
more substantial philosophical presuppositions. Let me start with num-
ber three: economic theory is straightforwardly translated into exper-
iments with monetary incentives. It is true that economic models can
easily be applied to situations in which monetary payoffs are at stake.
Nonexperimental economists exploit this routinely by simply assuming
in their models that agents’ utility functions have income as their only
argument, and by adding some other ad hoc assumptions on diminishing
marginal returns, risk aversion, and so on. However, they are (supposed
to be) aware that these are hypotheses that may turn out to be false. The
problem is that it is difficult to test them severely by means of field data.
Experimental economics allows the testing of such conjectures in con-
trolled conditions; but then why should we impose the requirement that
money is the only relevant reward, that subjects do not care about other
participants’ rewards, and so on?

Recall the distinction introduced in the previous section between the
two broad categories of experiments. If you are testing some hypoth-
esis other than those normally imposed on preferences (say, the effi-
ciency of some market institution), it is legitimate to try to make sure
that the conditions included in (most) economic models (selfishness,
consistency, etc.) are implemented. You may fail to do so (it is an empir-
ical matter, let us keep it in mind), but you can try to do it neverthe-
less. In many experiments, however, we are not supposed to do that.
Indeed, in the cases discussed by Hertwig and Ortmann, the goal is
almost invariably that of festing the assumptions that economists rou-
tinely (and sometimes, alas, uncritically) introduce into their models. In
such cases, is it legitimate to induce the assumptions of economic models
experimentally?

The answer in a nutshell is yes, sometimes, some of them. Remember
that the experimental method works by eliminating possible sources of
error or, in other words, by controlling systematically the background
factors that may induce us to draw a mistaken inference from the evidence
to the main hypothesis under test. A good design is one that effectively
controls for (many) possible sources of error (see Chapters 6 and 7). In
an experiment on individual decision making, we may be interested in
testing a number of different hypotheses. For example:



On Monetary Incentives 239

(a) Are experimental subjects selfish?

(b) Are experimental subjects only interested in money?

(c) Are the preferences of experimental subjects consistent?
(d) Are experimental subjects’ beliefs correct?

Each of these hypotheses can be tested severely on its own, provided
that we already know the answer to the other questions. Remember that a
crucial advantage of controlled experimentation is the possibility of vary-
ing some experimental conditions or variables while keeping the others
fixed. So if you want to test the hypothesis that preferences are consistent
(¢), you should make sure that you can control the objects of preference
(b), the independence of individual utility functions (a), and individual
beliefs (d). Toillustrate, we can use a famous example due to Amartya Sen
(1993, p. 501): from the mere fact that a person chooses “nothing” from the
set of options S; = {apple, nothing} but picks up an apple from the set .S, =
{apple, apple, nothing}, we cannot infer reliably that that person’s prefer-
ences are inconsistent. Perhaps in the former case she was at a dinner party
with friends, and she was being polite by not taking the last apple left on
the table. It is perfectly legitimate then, if we are trying to test a hypothesis
on the structure of preferences, to try to control or induce their contents, at
least in part — for example, by trying to eliminate other-regarding motives
or the influence of social norms by design. However, it would be fool-
ish to try to induce all the principles of consumers’ theory, because a
genuine experiment requires that some degree of freedom be allowed
in the system one is studying. This is indeed what distinguishes exper-
iments from simulations or theoretical demonstrations (Chapter 10).
If you make sure that all the assumptions of a theoretical model are
implemented, you are not doing an experiment: you are proving a
theorem.”

Finally, remember that not all experiments test theoretical models.
Many experiments are aimed at testing the robustness of phenomena
that have been established experimentally, or at exploring aspects of eco-
nomic systems that cannot be adequately modeled theoretically. In all
experiments that are not aimed at theory testing, it is obviously legit-
imate to explore “what happens if . . .” some extra- or nontheoretical

7 Another way to put it is that experimentation involves an element of surprise, whereby one
learns something that has not been “constructed” in the experimental system itself. On
the difference between “surprising” results in experiments and simulations, see Morgan
(2002).
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conditions are instantiated. Again, in such cases it may make a lot of
sense not to implement some of the precepts. Several experiments on
social dilemmas, for instance, violate the requirement of privacy because
information about other subjects’ behavior and rewards is likely to be an
important explanatory variable in itself. In fact, whether social dilemma
games are played with face-to-face interaction, with the possibility of
striking (nonenforceable) agreements, and so on does have an influence
on the levels of cooperation and defection (cf. Orbell, Dawes, and van de
Kragt 1990 for a survey of results).

The last argument (4) in Hertwig and Ortmann’s list is that financial
rewards reduce variation in subjects’ performances — or, in other words,
help them to find the “right” answer to the experimental task. This argu-
ment cannot be used to make a general case because several experiments
are not aimed at testing subjects’ cognitive capacities. In many situations,
there simply is no right answer, so the normative theory cannot work as
a benchmark against which to measure the rates of error.® In other cases,
we are not even sure whether the theoretical prediction is really ratio-
nal after all. Backward induction arguments in finitely repeated games
are a case in point, for many economists and philosophers still find them
unconvincing. Even if we see behavior converging to the predicted out-
come in such games when the stakes are high, what are we supposed to
conclude?

Let us restrict our attention, for the sake of the argument, to the exper-
iments that are aimed at testing normative models of behavior. The rate
of error, or the “noise” in the experimental data is in many such cases
reduced by the introduction of incentives, as if subjects were effectively
paying more attention to what they were doing and therefore follow-
ing the normative theory more closely. (Cf. e.g., Smith and Walker 1993
and Camerer and Hogarth 1999 for some empirical data that support
this claim.) However, notice that, first, the deviations from the norma-
tive model are usually reduced without disappearing entirely; second,
the reduction does not take place in all cases: in the majority of exper-
iments, incentives do not make a difference in terms of average perfor-
mance (even though they reduce variation), and in a substantial minority
of cases (29 percent of experiments on judgment and decision making,
according to Hertwig and Ortmann 2001), they cause a worsening of
performance.

8 Cf. Hertwig and Ortmann (2001, p. 391) as well as Baron’s (2001) and Betsch and
Haberstroh’s (2001) commentaries.
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How is this possible? One of the surprising aspects of the debate on
monetary incentives is that economists seem pretty happy to adopt a very
important (and expensive) methodological convention without investi-
gating the mechanisms linking incentives to experimental behavior. There
is little discussion, in other words, of why incentives might matter (if and
when they do). Following a recent paper by Daniel Read (in press), one
can sketch at least three different stories about the effect of monetary
incentives:

(I) The cognitive push story: the incentive induces the agent to think
longer or harder;
(IT) The motivational rerouting story: the incentive alters what the agent
perceives as his or her goals;
(IIT) The Pavlovian trigger story: the response can only be given in the
presence of incentives. (Read, in press)

Attempts to control preferences in market experiments clearly try to
exploit mechanism (II): we try to make sure that the subjects care only
about what we want them to care about, so that we are able to observe
the effects of induced changes in the experimental environment. The
third mechanism (III) sounds congenial to many economists trained in
the behaviorist tradition (also known as revealed preference theory) and
starts from the presumption that human beings suffer from substantial
amounts of false consciousness. We all like to think of ourselves as nice,
caring, altruistic beings, but then when put in the appropriate circum-
stances (when money is at stake), we just cannot help but act as the cyni-
cal agents postulated by economic models. If this is the case, then, asking
hypothetical questions (What would youdoif .. .?) or trying to incentivize
by using alternative mediums cannot possibly give useful insights into real
economic behavior. The first story (I), finally, is the one discussed above.

Now, one point of articulating these different mechanisms is that they
do not always necessarily “push” in the same direction. The motivational
rerouting mechanism (II), for instance, is often used by psychologists to
argue that the introduction of monetary incentives may, in some cases,
put off the subjects who were up to that point just trying to do well in
the experiment. If the incentives really reduce or eliminate this “intrinsic
motivation,” the apparently inconsistent effects reported by Camerer and
Hogarth and others are easily explained (cf. Read, in press). But if this
is true, in turn, the case for the generalized usage of monetary incentives
is undermined not overdetermined by the numerous arguments provided
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for its support. Perhaps the correct conclusion is that we need more exper-
iments to test the impact of incentives on behavior. However, when the
incentives are under test, clearly, raising the stakes does not solve all the
problems of experimental design — indeed, in some cases, it creates new
ones that need to be dealt with separately. Suppose, for instance, that
we do observe more free riding in a social dilemma game with monetary
incentives than in a game played with candies. What does it mean? That
the players are more rational? Or that they are more selfish? Perhaps
money makes people play for themselves, whereas candies signal some
kind of altruistic attitude. (I’'m using silly examples here on purpose, but
see van Vugt’s 2001 commentary for a more serious example.) Once again,
a certain design is good or bad depending on what your goal is — what
hypothesis you are trying to test.

The convention of not running or simply disregarding experiments
without monetary rewards appears particularly puzzling when the incen-
tive structure is the main object of study. Consider the experiments on
preference reversals discussed in Chapters 6 and 7. It is not rare to
hear economists saying that preference reversals were first discovered by
Grether and Plott (1979) or, more sophisticatedly, that Grether and Plott
performed the first “proper” (i.e., adequately controlled) experiments
on reversals. This view stems precisely from the mistaken assumption
that only those experiments that implement the precepts are “adequate”
or provide valid results. As a matter of fact, one can learn very inter-
esting things by intelligently violating the precepts. The obsession with
incentives, for instance, led economists to disregard, among Lichtenstein
and Slovic’s early experiments (1971), those performed without the BDM
mechanism. Thus, when the BDM came under attack in the mid-eighties,
economists did not consider the very evidence demonstrating that the
BDM was not significantly distorting the observed choices. It took many
years for experimenters to notice this fact and replicate reversals with and
without the BDM once again (Cox and Epstein 1989; Tversky, Slovic, and
Kahneman 1990). Had they paid more attention, they would have avoided
a great deal of unnecessary trouble.

External validity issues

All the arguments reviewed in the previous section revolve around issues
of internal validity. External validity, however, figures prominently in the
debate on incentives, in ways that are usually not clearly spelled out by
the debaters themselves. In this section, I want to consider two arguments
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that are often presented by the supporters of monetary incentives. One is
that monetary incentives help also in the observation of non—financially
motivated behavior. The other one is that behavior falling in the intended
domain of economic theory is financially motivated. Both arguments then
conclude that monetary incentives somehow contribute to the generaliz-
ability of experimental results.

Let me start with the first one. Suppose that under some circumstances,
some people’s preferences turn out not to be controllable by “normal”
monetary incentives. Standard one-shot social dilemma games may be
one such example: many people prefer to invest money in the collective
project instead of free riding, despite the fact that free riding dominates
(financially) cooperation. Let us also imagine, for the sake of argument,
that any level of monetary reward will be insufficient to induce selfish
preferences in some subjects (despite the cynical dictum that “every man
has a price”). The idea, endorsed by Hertwig and Ortmann and others
(e.g., Roth 2001), is that if we observe cooperative behavior despite the
presence of strong monetary incentives, then the evidence in favor of
the anomalous phenomenon is just as strong or even stronger than the
evidence we would have collected had we observed the same phenomenon
without monetary incentives.

For example, if in prisoner’s dilemma games (or public good, trust ultimatum, or
dictator games) the behavior of participants does not correspond to the game-
theoretic predictions, that is, if they show more altruism (trust, reciprocity, or
fairness) than the theory predicts, then these findings also tell us something about
the other nonmonetary motivators. (Hertwig and Ortmann 2001, p. 390)

In other words, a violation of the standard theory is strengthened by
the fact that it was observed in conditions in which the theory has, so
to speak, the best shot. If it fails there, how can it work in other, less
favorable conditions? This argument, unsurprisingly, falls short of proving
the universal validity of monetary incentives. Hertwig and Ortmann ask
us to focus on the case in which the theory fails with high incentives but
to consider the opposite question: what do we learn if the theory does not
fail to predict under such “ideal” circumstances? What if, when provided
with (some “appropriate” level of) incentives, most people do free ride
in prisoner’s dilemma-like games?

The answer should be quite obvious: by conducting experiments with
incentives at level x, we learn that the theory works when incentives
are set at level x. It is true that we are tempted to draw inferences to
wider conditions: if people are not selfish with “high” incentives, we feel
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somehow inclined to believe that they won’t be selfish when the monetary
rewards are lower (ceteris paribus). If people are selfish with “low” incen-
tives, similarly, we feel encouraged to infer that they will also be selfish
when the rewards are higher. Such inferences are based on some simple
but plausible psychological assumptions, which can be tested indepen-
dently. It is important to stress the testability and indeed the importance
of actually testing such hypotheses, because even “plausible” hypotheses
often turn out to be contradicted by the evidence. Our judgment is heavily
loaded with theoretical presuppositions, and in fact, scientists working in
different theoretical paradigms often have different intuitions regarding
the generalizability of the same results. A well-known case concerning
the effects of monetary incentives is the controversy on blood donation,
which in the 1970s saw sociologists, psychologists, and economists fighting
on various fronts. Several distinguished economists could not even con-
ceive of the possibility that monetary incentives could reduce donations —
afact thatis easily explained by alternative sociological theories (Fontaine
2002 provides a comprehensive and fascinating historical reconstruction).
However, even in experimental economics, incentives sometimes turn out
to interact in surprising ways with other factors. In preference reversal
experiments, for instance, higher incentives seem to increase the frequency
of reversals (Grether and Plott 1979). And as noticed by Read (in press),
reported “reductions” in the frequency of certain anomalies of decision
making often result from comparing experiments with high hypotheti-
cal monetary payoffs versus experiments with low real monetary payoffs.
However, anomalies like the Allais paradox exploit distortions in the per-
ception of risk that are stronger when the payoffs are large. To generalize
from a reduction in the low-incentives case to a further reduction in the
high-incentives case seems unwarranted here.’

The general point is that whether an experimental result can be gen-
eralized or not depends on at least two sets of conditions: the mechanism

9 In the classic Allais paradox experiment (Allais 1953), subjects are asked to choose first
between (A): one million for sure and the lottery (B): five million with probability 0.10, one
million with probability 0.89, or 0 with probability 0.01; then, they are asked to choose
between (C): five million with probability 0.10 or 0 with probability 0.90 and (D): one
million with probability 0.11 or 0 with probability 0.89. Many people choose A and C,
thus violating the independence principle of expected utility theory. The .01 chance of
“losing” one million in option D appears psychologically very relevant in the first choice
task but is considered irrelevant in the second, in which there is a big chance of winning
nothing anyway. Clearly, the higher the stakes, the more relevant the .01 chance appears
to be, which explains why Allais-type violations are eroded when the stakes are small (as
in, e.g., Conlisk 1983).
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by which the main causal factor produces the effect in the experiment
and in the field, and the presence of other factors or circumstances that
may interact with the main factor in the field to generate similar/different
effects. Once again, the moral is that much more ought to be known
about the mechanism(s) triggered by monetary incentives and about the
real-world circumstances to which the experimental result is to be gen-
eralized. Notice that lacking this sort of knowledge does not make an
experimental result useless. If we set the payoffs in the region of, say, a
thousand euros (or dollars) and find out that people behave in a selfish
way (as the theory predicts), we have a perfectly valid result (internally
speaking: we know how people behave in those circumstances), which,
however, cannot be automatically generalized to predict and explain peo-
ple’s responses when payoffs are in the region of, say, a hundred euros
(dollars).

It is hard to establish that monetary incentives are good in general, or
no matter what. In reality, a good design is one that allows the severe
test of a specific hypothesis. In science, it is very difficult to devise an
experiment that is able to test several hypotheses at once. In the first part
of the book, I try to explain why this is the case, by pointing out that a good
experiment requires some variation in the experimental conditions — but
not too much variation, and of the right kind. If you want to test several
hypotheses at once, you typically have to vary many things at once, and
the concomitant variations will confound your results. Thus in order to
decide whether an incentive structure is adequate for a given experiment,
we need to ask, What are we trying to find out in this experiment? What is
the hypothesis under test? The discussion on incentives is often confused
by the fact that it is not clear what kind of experiment we are trying to do
in the first place. A design is not good or bad in general. It can only be
good or bad given what you are trying to achieve.

The last argument I’d like to discuss points in a similar direction. The
premise of the argument is that in the intended or “proper” domain of
economic theory, the financial incentives are high. Hence, it is appropri-
ate to test economic theory under circumstances that mirror those of its
intended domain of application. This argument comes up very often both
in official and informal methodological discussion, but a bold formulation
of it can be found in a recent article by Ken Binmore (1999). Binmore
makes a more articulate claim, to be precise, and highlights “adequate
incentives” as one among several criteria that an experiment should meet
in order to be valid. Other criteria are that the tasks faced by the sub-
jects be relatively simple (and transparent) and that subjects be given
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enough time for trial-and-error learning. I shall not discuss these other
requirements (see also Plott 1995), but most of what I say here about
incentives can be easily extended to them. The gist of the argument is
presented by means of a chemical analogy:

Iwill happily undertake to refute chemistry if you give me leave to mix my reagents
in dirty test tubes. Equally, if you undertake to prove in the laboratory that young
stockbrokers cannot learn their trade by denying my subjects access to the con-
ventional wisdom that the stockbroking profession has built up over many years
of interactive trial-and-error learning. Just as we need to use clean test tubes in
chemistry experiments, so we need to get the laboratory conditions right when
testing economic theory. (Binmore 1999, p. F17)

According to the dirty-tube analogy, experimenters must be careful
to create the “right” conditions for a certain hypothesis to be tested.
Suppose we are testing the hypothesis that two elements (say, aluminium
and oxygen) combine in an oxidation reaction: 4Al + 30, = 2Al,0s.
Now, in order for this hypothesis to be tested properly, we obviously
need to make sure that the initial conditions stated on the left-hand side
of the formula are instantiated in the “test tube.” Otherwise, we would
be testing another hypothesis: to observe that the experiment does not
generate the compound 2Al, 03 would not count as a refutation of this part
of chemical theory. However, the analogy to chemistry is shaky insofar
as standard economic theory does not provide a decent account of the
background factors (e.g., the “conventional wisdom of the stockbroking
profession”) that supposedly make it applicable in a certain range of
circumstances.

Notice also that in the chemistry example, the problem is one of elin-
inating or neutralizing disturbing factors (“keeping the test tube clean”).
In economics, the problem is more complicated because we have to add
to the experiment the factors that make the theory applicable. Hence, it is
not even clear how the analogy should work in the social sciences. What is
the equivalent of a vacuum or a clean test tube? As George Loewenstein
(1999) points out, every situation is a social situation. Even the most
abstract decision problem must be and is interpreted by the experimen-
tal subjects (e.g., as a game situation, an experiment situation, an exam
situation, or some kind of real-life situation). “No context” is a context
in itself, in social science experimentation. The real issue then is, Does
the experimental context afford generalizing to other nonexperimen-
tal circumstances? This is the old problem of external validity, and as
I have argued in previous chapters, it can be solved only by appropriately
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combining laboratory and field evidence — which raises a related problem.
Suppose we were able to build into the experiment the factors that make
the theory work. Even in such a case, the generalizability problem would
still hold, for the experiment would not teach us anything about what hap-
pens when those circumstances do not hold. We are not all stockbrokers,
and by restricting the domain of application of the standard theory to the
circumstances under which agents have the chance to acquire stockbro-
kers’ conventional wisdom is to impose a big restriction on the domain of
economic theory.

By radically redefining the “intended” domain of economic theory,
Binmore tries to kill two birds with one stone. Common sense suggests that
internal and external validity are related by an inverse relationship (see
Chapter 7, as well as Loewenstein 1999, and Harrison and List, in press).
Given that the world is generally complicated and messy, an experiment
that is strong with respect to internal validity is likely to be weak from
an external validity viewpoint. By identifying the “proper” domain of
economic theory with behavior motivated by high monetary stakes, one
can pretend that incentives can contribute to achieve a higher degree of
internal and external validity at once. However, it is obviously an illusion.
One cannot make the results more generalizable by merely increasing the
incentive structure. One could claim that only those real-world situations
mirroring the incentive structure of the experiment are worth studying
in economics departments. Here, I'm afraid, most economists will part
company with Binmore’s approach. Binmore is ready to bite the bullet,
in contrast:

I know that denying the predictive power of economics in the laboratory except
under such conditions implies that we must also deny the predictive power of
economics in the field when such conditions are not satisfied. But have we not
got ourselves into enough trouble already by claiming vastly more than we can
deliver? I am certainly tired at having fun poked at me by marketing experts for
supposedly believing that economic consumer theory is relevant to the behavior
of customers buying low-cost items under supermarket conditions. How could
customers find the time to research the value of the products on sale? Even
if they could, the supermarkets would simply speed up the rate at which they
differentiate their products and packaging. (Binmore 1999, p. F17)

There is some bold honesty in these paragraphs, especially in the
acknowledgment that the domain of applicability of standard economic
theory seems in the light of experimental results to be more limited than
expected. However, if the standard theory really does not apply to a vast
portion of what has traditionally been considered the intended domain of
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economic theory, then economists have a huge problem to solve. Surely,
the way to tackle the problem is by investigating the mechanisms that
make the theory fail under certain experimental circumstances and work
in others, which is exactly what those who first discovered the experimen-
tal anomalies of the standard theory were trying to do. The we all know
that it won’t work in such conditions attitude obscures an important point:
the scope of economic theory is constantly redefined and worked out
after a lot of empirical effort. The work of those who have devoted their
careers to observing violations of the theory under a range of different
“background” conditions has been and still is extremely useful and rele-
vant. This research (Kahneman and Tversky’s work is the explicit target
of Binmore’s dismissing remarks) highlights what the limitations and the
domain of application of the theory are. Of course the anomalies do not
falsify the theory — as some enemies of standard economic theory would
like — for the simple reason that falsificationism is not the methodology
of science (of any science, let alone experimental economics).

However, there is more than that. Binmore and others use the argu-
ment about the “proper” domain of economic theory to argue that the
experiments that do not reproduce the conditions that make the stan-
dard models applicable (such as high incentives, repetition, etc.) somehow
lack validity or interest. Should this position become widely accepted in
the profession, experimentalists would be encouraged to take uncritically
what in fact should be the very subject of their critical investigations — the
mechanisms that make the theory work here but not there.

Conclusion: The context of experimentation

The controversy over economic incentives is a good playing field for
someone interested in methodology. A commonly held assumption in the
debate is that the adoption of a set of precepts or design recipes has mul-
tiple, perhaps universal, beneficial consequences. One of the themes of
this book is that different experiments have different goals, and there are
few (if any) universal recipes in experimental science. Whether a design is
good or bad depends on what the research question is, or what hypothesis
is under test. Similarly, external validity problems must be solved case by
case; one cannot prove that a result is generalizable unless one specifies
what the target system is. Quite obviously, economists are interested in
several different phenomena, and therefore it is unlikely that a single
experiment (or theory, for that matter) is a good tool for understanding
the functioning of all of them at once.
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We should keep in mind that the experimental method itself can some-
times be ill-suited to answer certain scientific questions. There is a
“continuum” of methods going from “pure” laboratory experimentation
to “social experiments” and “natural experiments” (Harrison and List,
in press) in which the power to control variables (and hence to make reli-
able causal inferences) is usually traded against the ability to generalize
from the specific system under study. One lesson of more mature sci-
ences is that maximum strength and efficacy are achieved when different
approaches are used to answer different questions, and all the various
methods are intelligently combined in the course of a research program
(think of the variety of approaches, from theoretical modeling to statistical
simulation, biochemical experimentation, etc., that are used in biology).

Attempts to impose universal methodological standards, then, are
likely to have a negative effect on the discipline. I do not mean to imply
that methodologically speaking, experimental psychology, with its rela-
tively more flexible standards, is in a healthier state than experimental
economics or that psychologists have nothing to learn from economic
practice. It is only natural that some exchange should take place between
two neighbor disciplines, and the use of incentives in some contexts is
one of the good practices economists have implemented successfully. Of
course, incentives are a powerful tool — the important point is that they
are not an all-purpose tool and must be used properly.

A more general point to be made at the end of this chapter (and of this
book) is that it is dangerous to crystallize experimental practice into a set
of rigid rules. Outsiders are often puzzled by the inflexible way in which
economists implement incentive requirements while being extremely tol-
erant (if not slack) regarding other design issues — such as subject sam-
pling, to name just one (Loewenstein 1999). Rules such as those embodied
in the precepts are context specific and are justified only to the extent that
they constitute low-level, concrete applications of more general method-
ological principles, such as those outlined in earlier chapters of this book.
Because the problems faced by experimenters are diverse, it is unreason-
able to impose a priori limitations at such a low methodological level —
the rules are context specific, the context of experiments is varied and
changes as new areas of economics are investigated experimentally. Even-
tually, what really matters is the experimenters’ capacity to invent innova-
tive designs to tackle important internal and external validity issues. We
should not stipulate right from the start what the tools or the domain of
experimental economics should be, because by so doing, we may hinder
the most interesting research of the future.
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The Karni-Safra Argument

According to Karni and Safra (1987), the BDM mechanism may be per-
ceived by subjects as a two-stage lottery giving, among its outcomes, the
possibility of playing out the priced gamble.! Suppose the gamble is X =
(4, 35/36; —1, 1/36) — one of the P-bets used by Grether and Plott, typi-
cally subject to preference reversals. If, by assumption, both 7 (X) — the
real selling price — and b — the bidding price — are restricted to the 1000
different values 0, 1/100, ..., k/100,...,9.99 (0 < k < 1000), the following
two-stage lottery results from the BDM procedure:

35 1\ 7(X) 1
A= 4, —; -1, — ’571 , ;871 .01
(( ) 369 ) 36) ) 10 ) (X) 1000 (X)+0.01

L. 1
1000° %" 1000

where the §; stands for degenerate lotteries with probability 1 of getting
i, and 7(X)/10 is the probability of participating in X according to the
BDM mechanism. Lottery A is equivalent to the tree in Figure A.1.

By definition of a certainty equivalent (CE), we know that X ~ 8¢ g(x).
Thus, by applying independence, there follows that

35,1\ 7% 1
A~ A= (CE(4. 2212 ). 2 s o 5. oo,

L 1
1000”7 1000 )

! Ifollow here the presentation given by Keller, Segal, and Wang (1993).
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"8 nx)+0.01
1/1000

69.99

Figure A.1. Lottery A.

CE(4, 35/36; -1, 1/36)

1/1000
dnx)

.. Sme+001

8999

Figure A.2. Lottery A’.

Sn(x)

Sn(x)+0.01

89.99

Figure A.3. Lottery R(A).

The indifference above implies that subjects see tree A.1 as equivalent
to the tree in Figure A.2.

The task faced by a subject participating in a BDM experiment, then,
can be represented as a maximization problem: what is the value of 7 (X)
that maximizes the value of lottery A’? An expected utility maximizer,
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as Becker, DeGroot, and Marschak have shown, will set 7(X) = CE(X).
Now, by reduction, we can obtain

357 (X) 7(X) 1
ANRA = 4 _1 ‘(Sjt ’—;87r .01,
(4 (( "T360 0 360 )0 Topp (001

L 1
1000”2 1000

with R(A) corresponding to the tree in Figure A.3.

Karni and Safra argue that if the independence principle is not obeyed,
then it is not true that always setting 7 (X) = CE(X) maximizes the value
of R(A).



APPENDIX B

Subjective Bayesianism Again

Although in his recent papers, Vernon Smith does not say very much about
external validity inferences, in an old article coauthored with Donald
Rice, he supports a subjective Bayesian approach to this problem. Having
rejected subjective Bayesianism as a solution to internal validity problems,
unsurprisingly I do not find it palatable for external validity either. But
let us see why in more detail.

Rice and Smith (1964) use the following concepts: H is a hypothesis
under test.! N is a set of events or data from the “natural” or “real”
world that confirm H, and E is a set of events or data collected in the
laboratory that also confirm H. We assume, then, that both experimen-
tal and real-world evidence is available, and the problem is how to use
them in combination in order to evaluate H. Unsurprisingly, subjective
Bayesianism offers a solution to this problem, provided the appropriate
prior probabilities are specified. What we are looking for is the posterior
probability of H given E and N: P(H | E & N). According to Bayes’s
theorem,

P(E&N|H)P(H)
P(E&N)

In order to solve the equation, we need to specify the priors P(H), P(E
& N | H), and P(E & N). Using the principle of total probability, P(E &
N) can be derived from P(E & N | H) x P(H) and P(E & N | ~H) x
P(~H). Therefore, all we need is a consistent probability assignment to

P(H|E&N) =

I According to Rice and Smith (1964), H is normally derived from a theoretical model;
as I say repeatedly in the first part of the book, I do not think this is generally true of
experimental hypotheses, but it does not matter for the present discussion.
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P(H), P(~H), P(E & N | H), and P(E & N | ~H). If we could then also
extend the assignment to P(~E & N | H), P(E & ~N | H), P(~E & ~N |
H),P(~E&N|~H),P(E& ~N|~H),and P(~E & ~N | ~H), we would
be able to calculate the posteriors P(H | ~E & N), P(H | E & ~N), and
P(H | ~E & ~N). Every possible combination of (positive or negative)
field and (positive or negative) laboratory evidence could be taken into
account. As Rice and Smith point out,

[the conditional priors] express the scientist’s a priori degree of belief in the
reliability of the observations in the laboratory and in the natural world; they
also express his degree of belief in the relevance of each kind of evidence to the
hypothesis under study. (Rice and Smith 1964, p. 60)

The main problem with this “solution” to the external validity chal-
lenge is the usual one with subjective Bayesianism. It seems wrong to
let individual scientists’ prejudice affect the evidential relation decisively,
without imposing any normative requirements on the formation of priors.
A scientist who is dogmatically opposed to the use of laboratory evidence
for the assessment of economic hypotheses, for example, can always set
his priors so as to make the impact of E on H equal to nothing. Rice and
Smith simply note that the above-mentioned scientist will be careful to
set his prior beliefs so that P(E & N | H) = P(~E & N | H) and P(E &
~N | H)= P(~E & ~N | H). However, the interesting question is, Would
such an assignment be reasonable? Surely Rice and Smith would not be
happy if the whole of the economic profession assigned zero weight to
all empirical evidence collected in the laboratory — but then what is the
difference between “convincing” and “unconvincing” evidence? What is
it that makes one’s priors (assuming we have any such prior beliefs at all,
that is) reasonable?

Until one is able to answer these questions, the problem of external
validity has not been properly solved. Subjective Bayesianism provides
only a way of framing the problem in a formally elegant way but provides
no genuine solution to the interesting methodological questions. One of
my teachers at graduate school, Elie Zahar, used to say that “subjec-
tive Bayesianism accommodates everything and explains nothing.” In my
view, he was quite right. We need to go beyond the Bayesian account in
order to achieve a genuine understanding of the external validity problem.



Bibliography

Achinstein, P. (2001) The Book of Evidence. Oxford: Oxford University Press.

Ackermann, R. (1989) “The New Experimentalism,” British Journal for the Phi-
losophy of Science 40: 185-90.

Allais, M. (1953) “The Foundations of a Positive Theory of Choice Involving
Risk and a Criticism of the Postulate and Axioms of the American School,” in
M. Allais and O. Hagen (eds. 1979) Expected Utility Hypothesis and the Allais
Paradox. Dordrecht: Reidel, pp. 257-332.

American Economic Review (1992) Symposium on “Theory and Misbehavior of
First-price Auctions.” Vol. 82, no. 5, pp. 1374-443.

Anand, P. (1993) Foundations of Rational Choice under Risk. Oxford: Oxford
University Press.

Anderson, S. P, J. K. Goeree, and C. A. Holt (1998) “A Theoretical Analysis
of Altruism and Decision Error in Public Goods Games,” Journal of Public
Economics 70: 297-323.

Andreoni, J. (1995) “Warm Glow vs. Cold Prickle: The Effects of Positive and
Negative Framing on Cooperation in Experiments,” Quarterly Journal of
Economics 110: 1-21.

Ankeny, R. (2001) “Model Organisms as Models: Understanding the ‘Lingua
Franca’ of the Human Genome Project,” Philosophy of Science 68: S251-61.
Anscombe, E. (1971) Causality and Determinism. Cambridge: Cambridge

University Press.

Aristotle. Topics Books I and VII, with Excerpts from Related Texts. Oxford:
Clarendon, 1997.

Ayres, 1. and P. Cramton (1996) “Deficit Reduction through Diversity: A Case
Study of How Affirmative Action at the FCC Increased Auction Competition,”
Stanford Law Review 48: 761-815.

Backhouse, R. E. (1994) “The Lakatosian Legacy in Economic Methodology,”
in R. E. Backhouse (ed.) New Directions in Economic Methodology. London:
Routledge, pp. 173-91.

255



256 Bibliography

Backhouse, R. E. (1997) Truth and Progress in Economic Knowledge.
Cheltenham: Edward Elgar.

Bacon, F. (1620) Novum Organum. Chicago: Open Court, 1994.

Bardsley, N. (in press) “Experimental Economics and the ‘Artificiality of Alter-
ation,”” Journal of Economic Methodology.

Baron, J. (2001) “Purposes and Method,” Behavioral and Brain Sciences 24: 403.

Becker, G. M., M. H. DeGroot, and J. Marschak (1963) “Stochastic Models of
Choice Behaviour,” Behavioral Science 8: 41-55.

Becker, G. M., M. H. DeGroot, and J. Marschak (1964) “Measuring Ultility by a
Single-Response Sequential Method,” Behavioral Science 9: 226-32.

Berg, J. E., J. W. Dickhaut, and J. R. O’Brien (1985) “Preference Reversal and
Arbitrage,” Research in Experimental Economics 3: 31-71.

Bergstrom, T. C. and J. H. Miller (1997) Experiments with Economic Principles:
Microeconomics. New York: McGraw-Hill.

Berkovitz, L. and E. Donnerstein (1982) “External Validity Is More than Skin
Deep,” American Psychologist 37: 245-57.

Bernard, C. (1865) Introduction a Uétude de la Medicine Experimentale. Paris:
Flammarion; Engl. transl. Introduction to the Study of Experimental Medicine.
New York: Henri Schumann, 1957.

Betsch, T. and S. Haberstroh (2001) “Financial Incentives Do Not Pave the Road
to Good Experimentation,” Behavioral and Brain Sciences 24: 404.

Binmore, K. (1992) Fun and Games: A Text on Game Theory. Lexington, Mass.:
D. C. Heath & Co.

Binmore, K. (1999) “Why Experiment in Economics?,” Economic Journal 109:
F16-24.

Binmore, K. and P. Klemperer (2002) “The Biggest Auction Ever: The Sale of the
British 3G Telecom Licences,” Economic Journal 112: C74-96.

Blaug, M. (1980) The Methodology of Economics. Cambridge: Cambridge Uni-
versity Press.

Bogen,J. andJ. Woodward (1988) “Saving the Phenomena,” Philosophical Review
97: 303-52.

Boumans, M. and M. S. Morgan (2000) “Ceteris Paribus Conditions: Materiality
and the Application of Economic Theory,” Journal of Economic Methodology
8: 11-26.

Brown, J. R. (1991) Laboratory of the Mind: Thought Experiments in the Natural
Sciences. London: Routledge.

Brown, J. R. (1994) Smoke and Mirrors: How Science Reflects Reality. London:
Routledge.

Brunsvik, E. (1955) “Representative Design and Probabilistic Theory in a Func-
tional Psychology,” Psychological Review 62: 193-217.

Buchwald, J. Z. (1994) The Creation of Scientific Effects. Chicago: University of
Chicago Press.

Burlando, R. M. and F. Guala (in press) “Heterogeneous Agents in Public Goods
Experiments,” Experimental Economics.

Burlando, R. M. and P. Webley (1999) “Individual Differences and Long-run Equi-
libria in a Public Good Experiment,” in Inquiries into the Nature and Causes



Bibliography 257

of Behavior. Proceedings of the 24th IAREP Annual Colloquium, Belgirate,
Italy.

Bykowsky, M. M., R. J. Cull, and J. O. Ledyard (2000) “Mutually Destructive
Bidding: The FCC Auction Design Problem,” Journal of Regulatory Economics
17:205-28.

Caldwell, B. J. (1991) “Clarifying Popper,” Journal of Economic Literature 29:
1-33.

Camerer, C. F. (1995) “Individual Decision Making,” in J. H. Kagel and A. E.
Roth (eds.) The Handbook of Experimental Economics. Princeton: Princeton
University Press, pp. 587-703.

Camerer, C. F. and R. M. Hogarth (1999) “The Effects of Financial Incentives in
Experiments: A Review and Capital-Labor-Production Framework,” Journal
of Risk and Uncertainty 19: 7-42.

Camerer, C. F, G. Loewenstein, and E. D. Prelec (in press) “Neuroecono-
mics: How Neuroscience Can Inform Economics,” Journal of Economic
Perspectives.

Campbell, C. M., J. H. Kagel, and D. Levin (1999) “The Winner’s Curse and Public
Information in Common Value Auctions: Reply,” American Economic Review
89: 325-34.

Campbell, D. and J. Stanley (1963) Experimental and Quasi—Experimental Designs
for Research. Chicago: Rand McNally.

Capen, E. C., R. V. Clapp, and W. M. Campbell (1971) “Competitive Bidding in
High-Risk Situations,” Journal of Petroleum Technology 23: 641-53.

Carnap, R. (1950) Logical Foundations of Probability. Chicago: University of
Chicago Press.

Carpenter, K. J. (1986) The History of Scurvy and Vitamin C. Cambridge:
Cambridge University Press.

Cartwright, N. (1983) How the Laws of Physics Lie. Oxford: Clarendon Press.

Cartwright, N. (1989) Nature’s Capacities and Their Measurement. Oxford: Oxford
University Press.

Cartwright, N. (1991) “Replicability, Reproducibility, and Robustness: Comments
on Harry Collins,” History of Political Economy 23: 143-55.

Cartwright, N. (1999) The Dappled World: A Study of the Boundaries of Science.
Cambridge: Cambridge University Press.

Chew, S. H. and K. MacCrimmon (1979) “Alpha-Nu Choice Theory: A Generaliza-
tion of Expected Utility Theory,” Working Paper no. 686. Faculty of Commerce
and Business Administration, University of British Columbia.

Christensen, L. B. (2001) Experimental Methodology, 8th ed. Needham Heights,
Mass.: Allyn & Bacon.

Chu, Y. P. and R. L. Chu (1990) “The Subsidence of Preference Reversals in Sim-
plified and Marketlike Experimental Settings: A Note,” American Economic
Review 80: 902-11.

Collins, H. M. (1985) Changing Order: Replication and Induction in Scientific
Practice. London: Sage.

Collins, H. M. (1994) “A Strong Confirmation of the Experimenter’s Regress,”
Studies in the History and Philosophy of Science 25: 493-503.



258 Bibliography

Collins, H. M. and T. Pinch (1993) The Golem: What You Should Know about
Science. Cambridge: Cambridge University Press.

Conlisk, J. (1983) “Three Variants on the Allais Example,” American Economic
Review 79: 392-407.

Cook, T. and D. Campbell (1979) Quasi-experimentation: Design and Analysis
Issues for Field Settings. Chicago: Rand McNally.

Cox, J. C, S. H. Dinkin, and V. L. Smith (1999) “The Winner’s Curse and Pub-
lic Information in Common Value Auctions: Comment,” American Economic
Review 89: 319-24.

Cox, J. C. and S. Epstein (1989) “Preference Reversals without the Independence
Axiom,” American Economic Review 79: 408-26.

Cox, J. C. and D. M. Grether (1996) “The Preference Reversal Phenomenon:
Response Mode, Markets and Incentives,” Economic Theory 7: 381-405.

Cox, J. C. and R. M. Isaac (1986) “Experimental Economics and Experimen-
tal Psychology: Ever the Twain Shall Meet?,” in A. J. MacFadyen and H. W.
MacFadyen (eds.) Economic Psychology: Interactions in Theory and Applica-
tion. New York: North Holland, pp. 647-69.

Cox, J. C., B. Robertson, and V. L. Smith (1982) “Theory and Behavior of Single
Object Auctions,” in V. L. Smith (ed.) Research in Experimental Economics.
Greenwich, Conn.: JAI Press, pp. 1-43.

Cramton, P. C. (1995) “Money Out of Thin Air: The Nationwide Narrowband
PCS Auction,” Journal of Economics and Management Strategy 4: 267-343.
Cramton, P. C. (1997) “The FCC Spectrum Auctions: An Early Assessment,”

Journal of Economics and Management Strategy 6: 431-95.

Cramton, P. C. (1998) “The Efficiency of the FCC Spectrum Auctions,” Journal
of Law and Economics 41: 727-36.

Cramton, P. C. and J. Schwartz (2000) “Collusive Bidding: Lessons from the FCC
Spectrum Auction,” Journal of Regulatory Economics 17: 229-52.

Cross, R. (1982) “The Duhem-Quine Thesis, Lakatos and the Appraisal of
Theories in Macroeconomics,” Economic Journal 92: 320-40.

Cubitt, R. P. (in press) “Experiments and the Domain of Economic Theory,”
Journal of Economic Methodology.

Cubitt, R. P, C. Starmer, and R. Sugden (2001) “Discovered Preferences and the
Experimental Evidence of Violations of Expected Utility Theory,” Journal of
Economic Methodology 8: 385-414.

Cunningham, A. and P. Williams (eds. 1992) The Laboratory Revolution in
Medicine. Cambridge: Cambridge University Press.

Davis, D. D. and C. H. Holt (1993) Experimental Economics. Princeton: Princeton
University Press.

Dawes, R. M. and Thaler, R. H. (1988) “Anomalies: Cooperation,” Journal of
Economic Perspectives 2: 187-97.

de Vroey, M. (1998) “Is the Tatonnement Hypothesis a Good Caricature of Mar-
ket Forces?,” Journal of Economic Methodology 5: 201-22.

Dooley, D. (2001) Social Research Methods, 3rd ed. London: Prentice Hall.

Dorling, J. (1979) “Bayesian Personalism, the Methodology of Research Pro-
grammes, and Duhem’s Problem,” Studies in History and Philosophy of Science
10: 177-87.



Bibliography 259

Duhem, P. (1906) La théorie physique. Son objet et sa structure. Paris: Chevalier
et Riviere; Engl. transl. The Aim and Structure of Physical Theory. Princeton:
Princeton University Press, 1954.

Dupré, J. (1984) “Probabilistic Causality Emancipated,” Midwest Studies in Phi-
losophy 9: 169-75.

Dupré, J. (1993) The Disorder of Things. Cambridge, Mass.: Harvard University
Press.

Dupré, J. (2001) “Economics without Mechanism,” in U. Méki (ed.) The Economic
World View. Cambridge: Cambridge University Press, pp. 308-32.

Earman, J. (1992) Bayes or Bust? A Critical Examination of Bayesian Confirmation
Theory. Cambridge, Mass.: MIT Press.

Earman, J. and C. Glymour (1980) “Relativity and the Eclipses: The British
Eclipse Expedition and Their Predecessors,” Historical Studies in the Physi-
cal Sciences 11: 49-85.

Economics Focus (1999) “News from the Lab,” The Economist, May 8, p. 96.

Ehrhart, K. M. and C. Keser (1999) “Mobility and Cooperation: On the Run,”
Working Paper 99s-24, CIRANO, University of Montreal.

Falk, A. and U. Fischbacher (2000) “A Theory of Reciprocity,” Working Paper
6/2000. Institute for Empirical Research in Economics, University of Zurich.
Fehr, E. and U. Fishbacher (2002) “Why Social Preferences Matter — The Impact of
Non-selfish Motives on Competition, Cooperation and Incentives,” Economic

Journal 112: C1-33.

Feyerabend, P. K. (1975) Against Method. London: Verso, 2nd ed. 1993.

Fischbacher, U., S. Gichter, and E. Fehr (2001) “Are People Conditionally
Cooperative? Evidence from a Public Goods Experiment,” Economics Letters
71: 397-404.

Fisher, R. A. (1956) Statistical Methods and Scientific Inference. Edinburgh: Oliver
and Boyd.

Fischhoff, B. (1982) “Debiasing,” in D. Kahneman, P. Slovic, and A. Tversky
(eds.) Judgment under Uncertainty. Cambridge: Cambridge University Press,
pp- 422-44.

Fischhoff, B. (1996) “The Real World: What Good Is It?,” Organizational Behav-
ior and Human Decision Processes 65: 232-48.

Flexner, S. and P. Lewis (1910) “Experimental Poliomyelitis in Monkeys; Active
Immunization and Passive Serum Protection,” Journal of the American Medical
Association 54: 1780.

Fodor, J. A. (1974) “Special Sciences (or: The Disunity of Science as a Working
Hypothesis),” Synthese 28: 97-115.

Fodor, J. A. (1987) Psychosemantics. Cambridge, Mass.: MIT Press.

Fodor, J. A. (1989) “Making Mind Matter More,” Philosophical Topics 17: 59-79.

Fontaine, P. (2002) “Blood, Politics, and Social Science,” Isis 94: 401-34.

Forster, M. and E. Sober (1994) “How to Tell When Simpler, More Unified, or Less
Ad Hoc Theories Will Provide More Accurate Predictions,” British Journal for
the Philosophy of Science 45: 1-35.

Forster, M. and E. Sober (in press) “Why Likelihood?,” in M. Taper and S.
Lee (eds.) The Nature of Scientific Evidence. Chicago: University of Chicago
Press.



260 Bibliography

Fouraker, L. E. and S. Siegel (1963) Bargaining Behavior. New York: McGraw-
Hill.

Frank, R., T. Gilovich, and D. Regan (1993) “Does Studying Economics Inhibit
Cooperation?,” Journal of Economic Perspectives 7: 159-71.

Frankfort-Nachmias, C. and D. Nachmias (1996) Research Methods in the Social
Sciences. London: Arnold.

Franklin, A. (1986) The Neglect of Experiment. Cambridge: Cambridge University
Press.

Franklin, A. (1990) Experiment, Right or Wrong. Cambridge: Cambridge Univer-
sity Press.

Franklin, A. (1994) “How to Avoid the Experimenter’s Regress,” Studies in
History and Philosophy of Science 15: 51-62.

Franklin, A. (1998) “Experiment in Physics,” in E. N. Zalta (ed.) The Stan-
ford Encyclopaedia of Philosophy, http://plato.stanford.edu/entries/physics-
experiment.

Frey, B. and S. Meier (2003) “Are Political Economists Selfish and Indoctrinated?
Evidence from a Natural Experiment,” Economic Inquiry 41: 448-62.

Friedman, D. and A. Cassar (2004) Economics Lab: An Intensive Course in Exper-
imental Economics. London: Routledge.

Friedman, D. and S. Sunder (1994) Experimental Methods: A Primer for
Economists. Cambridge: Cambridge University Press.

Friedman, M. (1953) “The Methodology of Positive Economics,” in Essays in
Positive Economics. Chicago: University of Chicago Press, pp. 3—43.

Friedman, M. (1999) Reconsidering Logical Positivism. Cambridge: Cambridge
University Press.

Gachter, S. and C. Thoni (2004) “Social Learning and Voluntary Cooperation
among Like-Minded People,” unpublished paper, University of St. Gallen.

Galison, P. (1987) How Experiments End. Chicago: University of Chicago Press.

Galison, P. (1997) Image and Logic. Chicago: University of Chicago Press.

Giere, R. N. (1977) “Testing vs. Information Models of Scientific Inference,” in
R. G. Colodny (ed.) Logic, Laws, and Life: Some Philosophical Complications.
University of Pittsburgh Series in the Philosophy of Science, Vol. 6. Pittsburgh:
University of Pittsburgh Press, pp. 19-70.

Giere, R. N. (1979) Understanding Scientific Reasoning. New York: Harcourt
Brace, 4th ed. 1997.

Giere, R. N. (1983) “Testing Theoretical Hypotheses,” in J. Earman (ed.) Testing
Scientific Theories. Minnesota Studies in the Philosophy of Science, Vol. 10.
Minneapolis: University of Minnesota Press, pp. 269-98.

Giere, R. N. (1988) Explaining Science. Chicago: University of Chicago Press.

Giere, R. N. (2002) “Models as Parts of Distributed Cognitive Systems,” in L.
Magnani and N. J. Nersessian (eds.) Model-Based Reasoning: Science,
Technology, Values. New York: Kluwer, pp. 227-41.

Gigerenzer, G., P. Todd, and the ABC Research Group (1999) Simple Heuristics
that Make Us Smart. Oxford: Oxford University Press.

Gillies, D. (1991) “Intersubjective Probability and Confirmation Theory,” British
Journal for the Philosophy of Science 42: 513-33.



Bibliography 261

Gillies, D. (1993) Philosophy of Science in the Twentieth Century. Oxford:
Blackwell.

Glennan, S. (2002) “Rethinking Mechanistic Explanation,” Philosophy of Science
69: S342-53.

Gooding, D. (1990) Experiment and the Making of Meaning. Dordrecht: Kluwer.

Granger, C. W. J. (1980) “Testing for Causality: A Personal Viewpoint,” Journal
of Economic Dynamics and Control 2: 329-52.

Grether, D. and C. Plott (1979) “Economic Theory of Choice and the Preference
Reversal Phenomenon,” American Economic Review 69: 623-38.

Guala, F. (1998) “Experiments as Mediators in the Non-Laboratory Sciences,”
Philosophica 62: 901-18.

Guala, F. (1999) “The Problem of External Validity (or ‘Parallelism’) in Experi-
mental Economics,” Social Science Information 38: 555-73.

Guala, F. (2000a) “Artefacts in Experimental Economics: Preference Reversals
and the Becker-DeGroot-Marschak Mechanism,” Economics and Philosophy
16: 47-75.

Guala, F. (2000b) “The Logic of Normative Falsification: Rationality and Exper-
iments in Decision Theory,” Journal of Economic Methodology 7: 59-93.

Guala, F. (2001) “Building Economic Machines: The FCC Auctions,” Studies in
History and Philosophy of Science 32: 453-77.

Guala, F. (2002a) “Models, Simulations, and Experiments,” in L. Magnani and
N. J. Nersessian (eds.) Model-Based Reasoning: Science, Technology, Values.
New York: Kluwer, pp. 59-74.

Guala, F. (2002b) “On the Scope of Experiments in Economics: Comments on
Siakantaris,” Cambridge Journal of Economics 26: 261-7.

Guala, F. (2003) “Experimental Localism and External Validity,” Philosophy of
Science 70: 1195-205.

Guala, F. and L. Mittone (2002) “Experiments in Economics: Testing Theories
vs. the Robustness of Phenomena,” CEEL Working Paper 09-02, University of
Trento.

Hacking, I. (1965) Logic of Statistical Inference. Cambridge: Cambridge Univer-
sity Press.

Hacking, I. (1983) Representing and Intervening. Cambridge: Cambridge Univer-
sity Press.

Hacking, I. (1988) “The Participant Irrealist at Large in the Laboratory,” British
Journal for the Philosophy of Science 39: 277-94.

Hacking, 1. (1989) “Extragalactic Reality: The Case of Gravitational Lensing,”
Philosophy of Science 56: 555-81.

Hacking, 1. (1992) “The Self-Vindication of the Laboratory Sciences,” in
A. Pickering (ed.) Science as Practice and Culture. Chicago: University of
Chicago Press, pp. 29-64.

Hands, D. W. (1985) “Second Thoughts on Lakatos,” History of Political Economy
17: 1-16.

Hands, D. W. (2001) Reflection without Rules: Economic Methodology and Con-
temporary Science Theory. Cambridge: Cambridge University Press.

Harding, S. (ed. 1976) Can Theories Be Refuted? Dordrecht: Reidel.



262 Bibliography

Hargreaves Heap, S. and Y. Varoufakis (1995) “Experimenting with Neoclassical
Economics: A Critical Review of Experimental Economics,” in I. H. Rima (ed.)
Measurement, Quantification and Economic Analysis. London: Routledge.

Harrison, G. W. (1989) “Theory and Misbehavior of First-Price Auctions,”
American Economic Review 79: 749-62.

Harrison, G. W. (1994) “Expected Utility Theory and the Experimentalists,”
Empirical Economics 19: 223-54.

Harrison, G. W. and J. A. List (2004) “Field Experiments,” Journal of Economic
Literature 42(4), 1013-59.

Hausman, D. M. (1989) “Ceteris Paribus Clauses and Causality in Economics,”
PSA 1988, Vol. 2. East Lansing: Philosophy of Science Association.

Hausman, D. M. (1990) “Supply and Demand Explanations and Their Ceteris
Paribus Clauses,” Review of Political Economy 2: 168-87; reprinted in Essays
on Philosophy and Economic Methodology. Cambridge: Cambridge University
Press, 1992.

Hausman, D. M. (1992a) The Inexact and Separate Science of Economics.
Cambridge: Cambridge University Press.

Hausman, D. M. (1992b) “Why Look under the Hood?,” in Essays in Philos-
ophy and Economic Methodology. Cambridge: Cambridge University Press,
pp. 70-3.

Hausman, D. M. (1998a) Causal Asymmetries. Cambridge: Cambridge University
Press.

Hausman, D. M. (1998b) “Problems with Realism in Economics,” Economics and
Philosophy 14: 185-213.

Hausman, D. M. (2000) “Revealed Preference, Belief, and Game Theory,” Eco-
nomics and Philosophy 16: 99-115.

Hausman, D. M. (2001) “Explanation and Diagnosis in Economics,” Revue inter-
nationale de philosophie 217: 311-26.

Hausman, D. M. (in press) “Constructing Experimental Games,” Journal of
Economic Methodology.

Hausman, D. M. (unpublished) “Probabilistic Causality and Practical Causal
Generalizations,” University of Wisconsin-Madison.

Hausman, D. M. and P. Mongin (1998) “Economists’ Responses to Anomalies:
Full-Cost Pricing versus Preference Reversals,” in J. Davis (ed.) New Economics
and Its History. History of Political Economy Supplement, Vol. 29. Durham:
Duke University Press, pp. 255-72.

Hempel, C. G. (1952) Fundamentals of Concept-Formation in Empirical Science.
Chicago: University of Chicago Press.

Hempel, C. G. (1965) Aspects of Scientific Explanation. New York: Free Press.

Hendry, R. (1980) “Econometrics — Alchemy or Science?,” Economica 47: 387—
406.

Henshel, R. L. (1980) “The Purposes of Laboratory Experimentation and the
Virtues of Deliberate Artificiality,” Journal of Experimental Social Psychology
16: 466-78.

Herstein, I. and J. Milnor (1953) “An Axiomatic Approach to Measurable Utility,”
Econometrica 47: 291-7.



Bibliography 263

Hertwig, R. and A. Ortmann (2001) “Experimental Practices in Economics: A
Methodological Challenge for Psychologists?,” Behavioral and Brain Sciences
24: 383-451.

Hesse, M. B. (1963) Models and Analogies in Science. London: Sheed & Ward.

Hey, J. D. (1991) Experiments in Economics. Oxford: Blackwell.

Hogarth, R. M. and M. W. Reder (eds. 1986) Rational Choice: The Contrast
between Economics and Psychology. Chicago: University of Chicago
Press.

Holst, A. and T. Frolich (1907) “Experimental Studies Relating to Ship-Beri-Beri
and Scurvy. IL., On the Etiology of Scurvy,” Journal of Hygiene 7: 634-71.

Holt, C. A. (1986) “Preference Reversals and the Independence Axiom,”
American Economic Review 76: 508-15.

Hon, G. (1989) “Towards a Typology of Experimental Error: An Epistemological
View,” Studies in History and Philosophy of Science 20: 469-504.

Hoover, K. D. (2001) Causality in Macroeconomics. Cambridge: Cambridge Uni-
versity Press.

Howson, C. (1997a) “A Logic of Induction,” Philosophy of Science 64: 268-90.

Howson, C. (1997b) “Error Probabilities in Error,” Philosophy of Science 64:
S185-94.

Howson, C. and P. Urbach (1989) Scientific Reasoning: The Bayesian Approach.
Chicago: Open Court.

Hughes, R. I. G. (1997) “Models and Representation,” Philosophy of Science 64:
$325-36.

Hughes, R. I. G. (1999) “The Ising Model, Computer Simulation, and Universal
Physics,” in M. S. Morgan and M. C. Morrison (eds.) Models as Mediators.
Cambridge: Cambridge University Press, pp. 97-145.

Hume, D. (1740) A Treatise of Human Nature. Oxford: Clarendon Press, 1978.

Humphreys, P. (1989) The Chances of Explanation. Princeton: Princeton Univer-
sity Press.

Ingrao, B. and G. Israel (1987) La mano invisibile. Bari: Laterza; Engl. transl. The
Invisible Hand. Cambridge, Mass.: MIT Press, 1990.

Isaac, R. M., K. FE. McCue, and C. R. Plott (1985) “Public Goods Provision in an
Experimental Environment,” Journal of Public Economics 26: 51-74.

Isaac, R. M. and J. M. Walker (1998) “Nash as an Organizing Principle in the Vol-
untary Provision of Public Goods: An Experimental Analysis,” Experimental
Economics 1: 191-206.

Isaac, R. M., J. M. Walker, and S. Thomas (1984) “Divergent Evidence on
Free-Riding: An Experimental Examination of Possible Explanations,” Public
Choice 43: 113-49.

Kagel, J. H. and D. Levin (1986) “The Winner’s Curse Phenomenon and Public
Information in Common Value Auctions,” American Economic Review 76: 894—
920.

Kagel,J. H.and A. E. Roth (eds. 1995) The Handbook of Experimental Economics.
Princeton: Princeton University Press.

Karni, E. and Z. Safra (1987) “‘Preference Reversal’ and the Observability of
Preferences by Experimental Methods,” Econometrica 55: 675-85.



264 Bibliography

Keller, L. R., U. Segal, and T. Wang (1993) “The Becker-DeGroot-Marschak
Mechanism and Generalized Utility Theories: Theoretical Predictions and
Empirical Observations,” Theory and Decision 34: 83-97.

Keser, C. (1996) “Voluntary Contributions to a Public Good When Partial
Contribution Is a Dominant Strategy,” Economics Letters 50: 359-66.

Kim, O. and J. M. Walker (1984) “The Free Rider Problem: Experimental
Evidence,” Public Choice 43: 3-24.

Kincaid, H. (1996) Philosophical Foundations of the Social Sciences. Cambridge:
Cambridge University Press.

Kitcher, P. (1981) “Explanatory Unification,” Philosophy of Science 48: 507-31.

Kitcher, P. (1993) The Advancement of Science. Oxford: Oxford University Press.

Klemperer, P. (2002) “How (Not) to Run Auctions: The European 3G Telecom
Auctions,” European Economic Review 46: 829-45.

Klemperer, P. (2004) Auctions: Theory and Practice. Princeton: Princeton Uni-
versity Press.

Knez, M. and V. L. Smith (1987) “Hypothetical Valuations and Preference Rever-
sals in the Context of Asset Trading,” in A. E. Roth (ed.) Laboratory Experi-
mentation in Economics: Six Points of View. Cambridge: Cambridge University
Press, pp. 131-54.

Kohler, R. E. (1994) Lords of the Fly. Chicago: University of Chicago Press.

Kruglanski, A. W. (1975) “The Human Subject in the Psychology Experiment:
Fact and Artifact,” in L. Berkovitz (ed.) Advances in Experimental Social Psy-
chology, Vol. 8. New York: Academic Press, pp. 101-47.

Kuhn, T. S. (1962) The Structure of Scientific Revolutions. Chicago: University of
Chicago Press, 2nd ed. 1970.

Kwerel, E. R. (2004) “Foreword,” in P. Milgrom, Putting Auction Theory to Work.
Cambridge: Cambridge University Press, pp. xv—xxii.

Kwerel, E. R. and G. L. Rosston (2000) “An Insider’s View of FCC Spectrum
Auctions,” Journal of Regulatory Economics 17: 253-89.

LaFollette, H. and N. Shanks (1995) “Two Models of Models in Biomedical
Research,” Philosophical Quarterly 45: 141-60.

Lakatos, I. (1970) “Falsificationism and the Methodology of Scientific Research
Programmes,” in The Methodology of Scientific Research Programmes. Philo-
sophical Papers, Vol. 1. Cambridge: Cambridge University Press, 1978,
pp- 8-101.

Lakatos, I. (1974) “Popper on Demarcation and Induction,” in The Methodology
of Scientific Research Programmes. Philosophical Papers, Vol. 1. Cambridge:
Cambridge University Press, 1978, pp. 139-67.

Latour, B. (1984) Les microbes: guerre et paix. Paris: Métailié; Engl. transl. The
Pasteurisation of France. Cambridge, Mass.: Harvard University Press, 1988.
Latour, B. (1987) Science in Action. Cambridge, Mass.: Harvard University Press.
Latour, B. (1988) “Comments on “The Sociology of Knowledge of Child Abuse’,”

Nous 22: 67-9.

Latour, B. and S. Woolgar (1979) Laboratory Life: The Construction of Scientific
Facts. Princeton: Princeton University Press, 2nd ed. 1986.

Latsis, S. (ed. 1976) Method and Appraisal in Economics. Cambridge: Cambridge
University Press.



Bibliography 265

Lawson, T. (1997) Economics and Reality. London: Routledge.

Ledyard, J. O. (1995) “Public Goods: A Survey of Experimental Research,” in
J. H. Kagel and A. E. Roth (eds.) The Handbook of Experimental Economics.
Princeton: Princeton University Press, pp. 111-94.

Ledyard, J. O., D. Porter, and A. Rangel (1997) “Experiments Testing Multiobject
Allocation Mechanisms,” Journal of Economics and Management Strategy 6:
639-75.

Lee, K. S. (unpublished) “Rationality, Minds, and Machines in the Laboratory: A
Thematic History of Vernon Smith’s Experimental Economics,” Ph.D. disser-
tation, University of Notre Dame.

Leonard, R. (1994) “Laboratory Strife: Higgling as Experimental Science in Eco-
nomics and Social Psychology,” in N. B. De Marchi and M. S. Morgan (eds.)
Higgling. History of Political Economy Supplement, Vol. 26. Durham: Duke
University Press.

Lichtenstein, S. and P. Slovic (1968) “Relative Importance of Probabilities and
Payoffs in Risk-Taking,” Journal of Experimental Psychology Supplement,
Part 2: 1-18.

Lichtenstein, S. and P. Slovic (1971) “Reversals of Preference Between Bids
and Choices in Gambling Decisions,” Journal of Experimental Psychology 89:
46-55.

Lichtenstein, S. and P. Slovic (1973) “Response-Induced Reversals of Preference
in Gambling: An Extended Replication in Las Vegas,” Journal of Experimental
Psychology 101: 16-20.

Lipton, P. (1991) Inference to the Best Explanation. London: Routledge.

Loewenstein, G. (1999) “Experimental Economics from the Vantage-Point of
Behavioral Economics,” Economic Journal 109: F25-34.

Loomes, G. (1989) “Experimental Economics,” in J. D. Hey (ed.) Current Issues
in Microeconomics. New York: St. Martin’s Press, pp. 152-78.

Loomes, G., C. Starmer, and R. Sugden (1989) “Preference Reversal: Information-
Processing Effect or Rational Non-Transitive Choice?,” Economic Journal 99:
140-51.

Loomes, G. and R. Sugden (1995) “Incorporating a Stochastic Element into Deci-
sion Theories,” European Economic Review 39: 641-8.

Lucas, R. E. (1982) Studies in Business Cycle Theory. Cambridge, Mass.: MIT
Press.

Luce, R. D. and H. Raiffa (1957) Games and Decisions. New York: Wiley.

Lynch, M. (1985) Art and Artifact in Laboratory Science. London: Routledge.

Machamer, P, L. Darden, and C. F. Craver (2000) “Thinking about Mechanisms,”
Philosophy of Science 67: 1-25.

Machina, M. J. (1982) “‘Expected Utility’ Analysis without the Independence
Axiom,” Econometrica 50: 277-323.

Mackie, J. L. (1974) The Cement of the Universe. Oxford: Clarendon Press.

Miki, U. (1996) “Scientific Realism and Some Peculiarities of Economics,” Boston
Studies in the Philosophy of Science 69: 424-65.

Miki, U. (2001a) “Models,” in N. J. Smelser and P. B. Baltes (eds.) The Inter-
national Encyclopaedia of Social and Behavioral Sciences, Vol. 15. London:
Elsevier, pp. 9931-7.



266 Bibliography

Miki, U. (2001b) “Explanatory Unification: Double and Doubtful,” Philosophy
of the Social Sciences 31: 488-506.

Miki, U. (in press) “Models Are Experiments, Experiments Are Models,” Journal
of Economic Methodology.

Maiki, U. and J. P. Piimies (1998) “Ceteris Paribus,” in J. B. Davis, D. W. Hands,
and U. Miki (eds.) The Handbook of Economic Methodology. Cheltenham:
Elgar, pp. 55-9.

Marschak, J. (1950) “Rational Behaviour, Uncertain Prospects, and Measurable
Utility,” Econometrica 18: 111-41.

Marwell, G. and R. E. Ames (1981) “Economists Free Ride, Does Anyone Else?,”
Journal of Public Economics 15: 295-310.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995) Microeconomic Theory.
Oxford: Oxford University Press.

Mayo, D. (1996) Error and the Growth of Experimental Knowledge. Chicago:
University of Chicago Press.

Mayo, D. (1997a) “Response to Howson and Laudan,” Philosophy of Science 64:
323-33.

Mayo, D. (1997b) “Error Statistics and Learning from Error: Making a Virtue of
Necessity,” Philosophy of Science 64: S195-212.

McAfee, R. P. and J. McMillan (1987) “Auctions and Bidding,” Journal of Eco-
nomic Literature 25: 699-738.

McAfee, R. P. and J. McMillan (1996) “Analyzing the Airwaves Auction,” Journal
of Economic Perspectives 10: 159-75.

McCollum, E. V. and W. Pitz (1917) “The ‘Vitamine’ Hypothesis and Deficiency
Diseases. A Study of Experimental Scurvy,” Journal of Biological Chemistry
31: 229-53.

McMillan, J. (1994) “Selling Spectrum Rights,” Journal of Economic Perspectives
8: 145-62.

McMillan, J. (1995) “Why Auction the Spectrum?,” Telecommunications Policy
19: 191-9.

McMillan, J., M. Rotschild, and R. Wilson (1997) “Introduction,” Journal of Eco-
nomics and Management Strategy 6: 425-30.

Mead, W.J., A. Moseidjord, and P. E. Sorensen (1983) “The Rate of Return Earned
by Leases Under Cash Bonus Bidding in the OCS Oil and Gas Leases,” Energy
Journal 4: 37-52.

Meyer, B.D., W.K. Viscusi, and D. L. Durbin (1985) “Workers’ Compensation and
Injury Duration: Evidence from a Natural Experiment,” American Economic
Review 85: 322-40.

Michotte, A. (1946) La perception de la causalité. Louvain: Institut Supérieur de
Philosophie; Engl. transl. The Perception of Causality. London: Methuen, 1963.

Milgrom, P. (1989) “Auctions and Bidding: A Primer,” Journal of Economic
Perspectives 3: 3-22.

Milgrom, P. (1995) “Auctioning the Radio Spectrum,” preliminary draft of
Milgrom (2004, Ch. 1). http://www.market-design.com/library.html.

Milgrom, P. (1998) “Game Theory and the Spectrum Auctions,” European
Economic Review 42: 771-8.



Bibliography 267

Milgrom, P. (2000) “Putting Auction Theory to Work: The Simultaneous Ascend-
ing Auction,” Journal of Political Economy 108: 245-72.

Milgrom, P. (2004) Putting Auction Theory to Work. Cambridge: Cambridge
University Press.

Milgrom, P. R. and R. J. Weber (1982) “A Theory of Auctions and Competitive
Bidding,” Econometrica 50: 1089-122.

Mill, J. S. (1836) “On the Definition of Political Economy and the Method of
Investigation Proper to It,” in Collected Works of John Stuart Mill, Vol. 4.
Toronto: University of Toronto Press, 1967, pp. 120-64.

Mill, J. S. (1843) A System of Logic. London: Parker.

Miller, D. (2002) “Induction: A Problem Solved,” in J. M. Bohm, H. Holweg, and
C. Hoock (eds.) Karl Poppers kritischer Rationalismus heute. Tiibingen: Mohr
Siebeck, pp. 81-106.

Miller, R. M. (2002) Paving Wall Street: Experimental Economics and the Quest
for the Perfect Market. New York: John Wiley & Sons.

Minguzzi, G. F. (1961) “Caratteri espressi e intenzionali dei movimenti: la
percezione dell’attesa,” Rivista di psicologia 55: 157-79.

Mirowski, P. (1989) More Heat than Light. Cambridge: Cambridge University
Press.

Mirowski, P. (2002) Machine Dreams. Cambridge: Cambridge University Press.

Mirowski, P. and E. Nik-Kah (2004) “Markets Made Flesh: Callon, Performativty,
and a Crisis in Science Studies, Augmented with Considerations of the FCC
Auctions,” unpublished paper, University of Notre Dame.

Mongin, P. (1988) “Problemes de Duhem en théorie de l'utilité espérée,” Funda-
menta Scientiae 9: 299-327.

Mongin, P. (2000) “Les préférences révélées et la formation de la théorie de la
demande,” Revue économique 51: 1125-52.

Mongin, P. (2002) “La conception déductive de l’explication scientifique et
I’économie,” Social Science Information 41:139-65.

Morgan, M. S. (2001) “Models, Stories, and the Economic World,” Journal of
Economic Methodology 8: 361-84.

Morgan, M. S. (2002) “Model Experiments and Models in Experiments,” in
L. Magnani and N. J. Nersessian (eds.) Model-Based Reasoning: Science, Tech-
nology, Values. New York: Kluwer, pp. 41-58.

Morgan, M. S. and M. Boumans (2004) “The Secrets Hidden by Two-
Dimensionality: Modelling the Economy as a Hydraulic System,” in S. de
Chadarevian and N. Hopwood (eds.) Models: The Third Dimension of Science.
Stanford: Stanford University Press, pp. 369-401.

Morrison, M. C. (1998a) “Experiment,” in E. Craig (ed.) The Routledge Ency-
clopaedia of Philosophy. London: Routledge, pp. 514-8.

Morrison, M. C. (1998b) “Mediating Models: Between Physics and the Physical
World,” Philosophia Naturalis 35: 65-85.

Morrison, M. C. and M. S. Morgan (1999) “Models as Mediating Instruments,”
in M. S. Morgan and M. C. Morrison (eds.) Models as Mediators. Cambridge:
Cambridge University Press, pp. 10-37.

Mulkay, M. and G. N. Gilbert (1986) “Replication and Mere Replication,” Phi-
losophy of the Social Sciences 16: 21-37.



268 Bibliography

Murray, J. (2002) Wireless Nation. Cambridge, Mass.: Perseus.

Nagel, E. (1961) The Structure of Science. New York: Harcourt, Brace & Wold.

Nelson, R. and S. Winter (1982) An Evolutionary Theory of Economic Change.
Cambridge, Mass.: Harvard University Press.

Newton, 1. (1687) Philosophiae Naturalis Principia Mathematica. London: Royal
Society.

Nik-Kah, E. (unpublished) “Designs on the Mechanism,” Ph.D. dissertation, Uni-
versity of Notre Dame.

Nobel Press Release (2002) “The Bank of Sweden Prize in Economic Sciences in
Memory of Alfred Nobel” http://www.nobel.se/economics/laureates/2002/.

Norton, J. D. (1996) “Are Thought Experiments Just What You Thought?,” Cana-
dian Journal of Philosophy 26: 333-66.

Norton, J. D. (2003) “A Material Theory of Induction,” Philosophy of Science 70:
647-70.

Nye, M. 1. (1972) Molecular Reality. London: Macdonald.

Offerman, T., J. Sonnemans, and A. Schram (1996) “Value Orientations, Expec-
tations, and Voluntary Contributions in Public Goods,” Economic Journal 106:
817-45.

Orbell, J., R. Dawes, and A. van de Kragt (1990) “The Limits of Multilateral
Promising,” Ethics 100: 616-27.

Page, T., L. Putterman, and B. Unel (2002) “Voluntary Association in Public
Goods Experiments: Reciprocity, Mimicry, and Efficiency,” working paper,
Brown University.

Palfrey, T. R. and J. E. Prisbey (1996) “Altruism, Reputation and Noise in Linear
Public Goods Experiments,” Journal of Public Economics 61: 409-27.

Palfrey, T. R. and J. E. Prisbey (1997) “Anomalous Behavior in Public Goods
Experiments: How Much and Why?,” American Economic Review 87: 829-46.

Pasteur, L. (1881) “Compte rendu sommaire des expériences rates 4 Pouilly-
le-Fort, prés Melun, sur la vaccination charbonneuse,” Comptes Rendus de
I’Academie des Science 92: 1378-83; Engl. tr. “Summary Report of the Experi-
ments Conducted at Pouilly-le-Fort, Near Melun, on the Anthrax Vaccination,”
Yale Journal of Biology and Medicine 75 (2002): 59-62.

Pasteur, L. (1922) Oeuvres Complétes. Paris: Masson.

Paul, J. R. (1971) A History of Poliomyelitis. New Haven: Yale University Press.

Pearl, J. (2000) Causality: Models, Reasoning, and Inference. Cambridge: Cam-
bridge University Press.

Perrin, J. (1913) Les atomes. Paris: Alcan.

Pickering, A. (1995) The Mangle of Practice: Time, Agency, and Science. Chicago:
University of Chicago Press.

Plott, C. R. (1981) “Experimental Methods in Political Economy: A Tool for
Regulatory Research,” in A. R. Ferguson (ed.) Attacking Regulatory Problems.
Cambridge, Mass.: Ballinger, pp. 117-43.

Plott, C. R. (1987) “Dimensions of Parallelism: Some Policy Applications of
Experimental Methods,” in A. E. Roth (ed.) Laboratory Experimentation
in Economics: Six Points of View. Cambridge: Cambridge University Press,
pp- 193-219.



Bibliography 269

Plott, C.R. (1991) “Will Economics Become an Experimental Science?,” Southern
Economic Journal 57: 901-19.

Plott, C. R. (1995) “Rational Individual Behaviour in Markets and Social
Choice Processes: The Discovered Preference Hypothesis,” in K. J. Arrow,
E. Colombatto, M. Perlman, and C. Schmidt (eds.) The Rational Foundations
of Economic Behaviour. London: Macmillan, pp. 225-50.

Plott, C. R. (1996) “Laboratory Experimental Testbeds: Application to the
PCS Auction,” Social Science Working Paper 957. California Institute of
Technology.

Plott, C. R. (1997) “Laboratory Experimental Testbeds: Application to the PCS
Auction,” Journal of Economics and Management Strategy 6: 605-38.

Plott, C. R. (1999) “Policy and the Use of Laboratory Experimental Methodology
in Economics,” in L. Luini (ed.) Uncertain Decisions: Bridging Theory and
Experiments. Boston: Kluwer, pp. 293-315.

Plott, C. R. and V. L. Smith, eds. (in press) The Handbook of Experimental Eco-
nomics Results. London: Elsevier.

Pommerehne, W. W., F. Schneider, and P. Zweifel (1982) “Economic Theory
of Choice and the Preference Reversal Phenomenon: A Reexamination,”
American Economic Review 72: 569-74.

Popper, K. R. (1934) Logik der Forschung. Vienna: Springer; Engl. transl. Logic
of Scientific Discovery. London: Hutchinson, 1959.

Popper, K. R. (1957) “The Aim of Science,” Ratio 1: 24-35; reprinted in Objective
Knowledge. Oxford: Clarendon Press, 1972.

Popper, K. R. (1963) Conjectures and Refutations. London: Routledge.

Popper, K. R. (1976) Unended Quest: An Intellectual Autobiography. London:
Routledge.

Psillos, S. (1999) Scientific Realism: How Science Tracks the Truth. London:
Routledge.

Putnam, H. (1975) Philosophical Papers, Vol. 1: Mathematics, Matter and Method,
Cambridge: Cambridge University Press.

Quiggin, J. (1982) “A Theory of Anticipated Utility,” Journal of Economic Behav-
ior and Organization 3: 323-43.

Quine, W. O. (1953) “Two Dogmas of Empiricism,” in From A Logical Point of
View. Cambridge, Mass.: Harvard University Press, pp. 20—46.

Rabin, M. (1993) “Incorporating Fairness into Game Theory and Economics,”
American Economic Review 83: 1281-302.

Rabin, M. (1998) “Psychology and Economics,” Journal of Economic Literature
35: 11-46.

Rabin, M. (2002) “A Perspective on Psychology and Economics,” European Eco-
nomic Review 46: 657-85.

Radder, H. (1996) In and About the World: Philosophical Studies of Science and
Technology. Albany: SUNY Press.

Radder, H. (2002) “How Concepts Both Structure the World and Abstract from
It,” Review of Metaphysics 55: 581-613.

Read, D. (in press) “Monetary Incentives, What Are They Good for?,” Journal
of Economic Methodology.



270 Bibliography

Redhead, M. L. G. (1980) “A Bayesian Reconstruction of the Methodology of
Scientific Research Programmes,” Studies in History and Philosophy of Science
11: 341-7.

Reilly, R. J. (1982) “Preference Reversal: Further Evidence and Some Suggested
Modifications in Experimental Design,” American Economic Review 72: 576—
84.

Rice, D. B. and V. L. Smith (1964) “Nature, the Experimental Laboratory, and the
Credibility of Hypotheses,” Behavioral Science; reprinted in V. Smith, Papers
in Experimental Economics. Cambridge: Cambridge University Press, 1991.

Robbins, L. (1932) An Essay on the Nature and Significance of Economic Science.
London: Macmillan.

Rosenberg, A. (1992) Economics: Mathematical Politics or Science of Diminishing
Returns? Chicago: University of Chicago Press.

Rosenberg, A. (1996) “A Field Guide to Recent Species of Naturalism,” British
Journal for the Philosophy of Science 47: 1-29.

Roth, A. E. (1986) “Laboratory Experimentation in Economics,” Economics and
Philosophy 2: 245-73.

Roth, A. E. (1988) “Laboratory Experimentation in Economics: A Methodolog-
ical Overview,” Economic Journal 98: 974-1031.

Roth, A. E. (1991) “Game Theory as a Part of Empirical Economics,” Economic
Journal 101: 107-14.

Roth, A. E. (1995) “Introduction to Experimental Economics,” in J. H. Kagel
and A. E. Roth (eds.) The Handbook of Experimental Economics. Princeton:
Princeton University Press, pp. 3-109.

Roth, A. E. (2001) “Form and Function in Experimental Design,” Behavioral and
Brain Sciences 24: 427-8.

Roth, A. E. (2002) “The Economist as Engineer: Game Theory, Experimentation,
and Computation as Tools for Design Economics,” Econometrica 70: 1341-78.

Roth, A. E. and M. W. K. Malouf (1979) “Game-Theoretic Models and the Role
of Information in Bargaining,” Psychological Review 86: 574-94.

Roth, A. E. and E. Peranson (1999) “The Redesign of the Matching Market
for American Physicians: Some Engineering Aspects of Economic Design,”
American Economic Review 89: 748-80.

Rubinstein, A. (2001) “A Theorist’s View of Experiments,” European Economic
Review 45: 615-28.

Safra, Z., U. Segal, and A. Spivak (1990a) “Preference Reversals and Non-
expected Utility,” American Economic Review 80: 922-30.

Safra, Z., U. Segal, and A. Spivak (1990b) “The Becker-DeGroot-Marschak
Mechanism and Non-expected Utility: A Testable Approach,” Journal of Risk
and Uncertainty 3: 177-90.

Salanti, A. (1994) “On the Lakatosian Apple of Discord in the History and
Methodology of Economics,” Finnish Economic Papers 7: 30—41.

Salmon, P. (1998) “Free Riding as a Mechanism,” in R. E. Backhouse, D. M.
Hausman, U. M#ki, and A. Salanti (eds.) Economics and Methodology: Crossing
Boundaries. London: MacMillan, pp. 62-87.

Salmon, W. C. (1984) Scientific Explanation and the Causal Structure of the World.
Princeton: Princeton University Press.



Bibliography 271

Salmon, W. C. (1988) “Rational Prediction,” in A. Griinbaum and W. C. Salmon
(eds.) The Limitations of Deductivism. Berkeley and Los Angeles: University
of California Press, pp. 47-60.

Salmon, W. C. (1990) “Rationality and Objectivity in Science, or Tom Kuhn Meets
Tom Bayes,” in C. W. Savage (ed.) Scientific Theories. Minnesota Studies in the
Philosophy of Science, Vol. 14. Minneapolis: University of Minnesota Press,
pp- 175-204.

Samuelson, P. (1938) “A Note on the Pure Theory of Consumer’s Behavior,”
Economica 5: 61-71.

Savage, L. J. (1954) The Foundations of Statistics. New York: Dover Publications,
2nd ed. 1972.

Sawyer, K. R., C. Beed, and H. Sankey (1997) “Underdetermination in Eco-
nomics. The Duhem-Quine Thesis,” Economics and Philosophy 13: 1-23.

Schelling, T. C. (1978) Micromotives and Macrobehavior. New York: Norton.

Schotter, A. (1998) “A Practical Person’s Guide to Mechanism Selection: Some
Lessons from Experimental Economics,” in M. Majumdar (ed.) Organization
with Incomplete Information. Cambridge: Cambridge University Press.

Segal, U. (1988) “Does the Preference Reversals Phenomenon Necessarily Con-
tradict the Independence Axiom?,” American Economic Review 28: 175-202.

Sen, A. (1973) “Behaviour and the Concept of Preference,” Economica 40: 241—
59.

Sen, A. (1993) “Internal Consistency of Choice,” Econometrica 61: 495-521.

Siakantaris, N. (2000) “Experimental Economics Under the Microscope,” Cam-
bridge Journal of Economics 24: 267-81.

Simon, H. A. (1969) The Sciences of the Artificial. Boston: MIT Press.

Slovic, P. (1995) “The Construction of Preferences,” American Psychologist 50:
364-71.

Smith, V. L. (1962) “An Experimental Study of Competitive Market Behavior,”
Journal of Political Economy 70: 111-37.

Smith, V. L. (1976) “Experimental Economics: Induced Value Theory,” American
Economic Review 66: 274-7.

Smith, V. L. (1982) “Microeconomic Systems as an Experimental Science,” Amer-
ican Economic Review 72: 923-55.

Smith, V. L. (1989) “Theory, Experiment and Economics,” Journal of Economic
Perspectives 3: 151-69.

Smith, V. L. (1991a) Papers in Experimental Economics. Cambridge: Cambridge
University Press.

Smith, V. L. (1991b) “Rational Choice: The Contrast Between Economics and
Psychology,” Journal of Political Economy 99: 877-97.

Smith, V. L. (1992) “Game Theory and Experimental Economics: Beginnings and
Early Influences,” in E. R. Weintraub (ed.) Towards A History of Game Theory.
History of Political Economy Supplement, Vol. 24. Durham: Duke University
Press, pp. 241-82 .

Smith, V. L. (1994) “Economics in the Laboratory,” Journal of Economic Perspec-
tives 8: 113-31.

Smith, V. L. (2002) “Method in Experiment: Rhetoric and Reality,” Experimental
Economics 5: 91-110.



272 Bibliography

Smith, V. L. (in press) “Experimental Methods in (Neuro)Economics,” in Ency-
clopedia of Cognitive Science.

Smith, V. L. and J. M. Walker (1993) “Monetary Rewards and Decision Costs in
Experimental Economics,” Economic Inquiry 31: 245-61.

Sober, E. (1988) Reconstructing the Past: Parsimony, Evolution, and Inference.
Cambridge, Mass.: MIT Press.

Sober, E. (2002) “Bayesianism — Its Scope and Limits,” in R. Swinburne (ed.)
Bayes’ Theorem. Proceedings of the British Academy Press, Vol. 113: 21-38.
Soberg, M. (in press) “The Duhem-Quine Thesis and Experimental Economics:

A Reinterpretation,” Journal of Economic Methodology.

Sorensen, R. (1992) Thought Experiments. Oxford: Oxford University Press.

Starmer, C. (1999) “Experiments in Economics . . . (Should We Trust the Dismal
Scientists in White Coats?),” Journal of Economic Methodology 6: 1-30.

Starmer, C. (in press) “On Testing Game Theory,” Journal of Economic Method-
ology.

Starmer, C. and R. Sugden (1991) “Does the Random-Lottery Incentive System
Elicit True Preferences? An Experimental Investigation,” American Economic
Review 81: 971-8.

Strand, R., R. Fjelland, and T. Flatmark (1996) “In Vivo Interpretation of In Vitro
Effect Studies,” Acta Biotheoretica 44: 1-21.

Sugden, R. (1984) “Reciprocity: The Supply of Public Goods through Voluntary
Contributions,” Economic Journal 94: 772-87.

Sugden, R. (2000) “Credible Worlds: The Status of Theoretical Models in Eco-
nomics,” Journal of Economic Methodology 7: 1-31.

Sugden, R. (in press) “Experiments as Exhibits and Experiments as Tests,” Journal
of Economic Methodology.

Suppe, F., ed. (1977) The Structure of Scientific Theories. Urbana: University of
Illinois Press.

Suppe, F. (1989) The Semantic Conception of Theories and Scientific Realism.
Urbana: University of Illinois Press.

Suppes, P. (1984) Probabilistic Metaphysics. London: Blackwell.

Tammi, T. (1999) “Incentives and Preference Reversals: Escape Moves and Com-
munity Decisions,” Journal of Economic Methodology 6: 351-80.

Thagard, P. (1999) How Scientists Explain Disease. Princeton: Princeton Univer-
sity Press.

Thaler, R. H. (1988) “Anomalies: The Winner’s Curse,” Journal of Economic
Perspectives 2: 191-202.

Thaler, R. H. and A. Tversky (1990) “Anomalies: Preference Reversals,” Journal
of Economic Perspectives 4: 201-11.

Titmuss, R. M. (1970) The Gift Relationship: From Human Blood to Social Policy.
London: Allen & Unwin.

Tversky, A., P. Slovic, and D. Kahneman (1990) “The Causes of Preference Rever-
sals,” American Economic Review 80: 204-17.

Uebel, T., ed. (1991) Rediscovering the Forgotten Vienna Circle. Dordrecht:
Kluwer.

van Fraassen, B. (1980) The Scientific Image. Oxford: Oxford University Press.



Bibliography 273

van Vugt, M. (2001) “Self-Interest as Self-Fulfilling Prophecy,” Behavioral and
Brain Sciences 24: 429-30.

Vickrey, W. (1961) “Counterspeculation, Auctions, and Competitive Sealed
Tenders,” Journal of Finance 16: 8-37.

von Neumann, J. and O. Morgenstern (1944) The Theory of Games and Economic
Behavior. Princeton: Princeton University Press.

Watkins, J. (1984) Science and Scepticism. Princeton: Princeton University Press.

Weber, R. J. (1997) “Making More from Less: Strategic Demand Reduction in
the FCC Spectrum Auctions,” Journal of Economics and Management Strategy
6: 529-48.

Weibull, J. W. (2002) “Testing Game Theory,” SSE Discussion Paper 382, Stock-
holm School of Economics.

Wilde, L. L. (1981) “On the Use of Laboratory Experiments in Economics,” in
J. C. Pitt (ed.) Philosophy in Economics. Dordrecht: Reidel, pp. 137-48.

Wilson, R. B. (1977) “A Bidding Model of Perfect Competition,” Review of Eco-
nomic Studies 44: 511-8.

Wilson, R. B. (2002) “Architecture of Power Markets,” Econometrica 70: 1299-
340.

Woodward, J. (1989) “Data and Phenomena,” Synthése 79: 393-472.

Woodward, J. (2002) “Experimentation, Causal Inference, and Instrumental
Realism,” in H. Radder (ed.) The Philosophy of Scientific Experimentation.
Pittsburgh: Pittsburgh University Press, pp. 87-118.

Woodward, J. (2003) Making Things Happen: A Theory of Causal Explanation.
Oxford: Oxford University Press.

Worrall, J. (1978) “The Ways in which the Methodology of Scientific Research
Programmes Improves on Popper’s Methodology,” in G. Andersson and A.
Radnitzky (eds.) Progress and Rationality of Science. Dordrecht: Reidel,
pp. 45-70.

Worrall, J. (1985) “Scientific Discovery and Theory-Confirmation,” in J. Pitt (ed.)
Change and Progress in Modern Science. Dordrecht: Reidel, pp. 301-31.

Worrall, J. (1989) “Why Both Popper and Watkins Fail to Solve the Problem of
Induction,” in F. D’Agostino and 1. C. Jarvie (eds.) Freedom and Rationality:
Essays in Honour of John Watkins. Dordrecht: Kluwer, pp. 257-96.

Worrall, J. (1993) “Falsification, Rationality, and the Duhem Problem,” in
J. Earman, A. Janis, G. Massey, and N. Rescher (eds.) Philosophical Prob-
lems of the Internal and External Worlds: Essays on the Philosophy of Adolf
Griinbaum. Pittsburgh: University of Pittsburgh Press, pp. 329-70.

Yaari, M. E. (1987) “The Dual Theory of Choice Under Risk,” Econometrica 55:
95-115.

Zahar, E. (1976) “Why Did Einstein’s Programme Supersede Lorentz’s,” in C.
Howson (ed.) Method and Appraisal in the Physical Sciences. Cambridge:
Cambridge University Press, pp. 211-75.

Zahar, E. (1983) “Logic of Discovery or Psychology of Invention?,” British
Journal for the Philosophy of Science 34: 243-61.



Achinstein, Peter, 115

acyclical preference relation, 93
affirming the consequent, 50
agricultural trials, 62-63

Index

auction

The Aim and Structure of Physical Theory

(Duhem), 90
Alembert’s equation, 214
Allais, Maurice, 1, 122
Allais paradox, 100, 244
Alpha Utility theory, 101
altruism, 22-25, 56

kinds of, 22
ampliative inference, 50
analogical reasoning
fallibility of, 196
inference in, 195
laboratory with, 194-196
model, 195
Andreoni, James, 22
anti-theory movement, 47
apparatus’ role, 57
applied science, 187,230
mechanism design as, 184
Arago, Francois, 46
arbitrage, 152, 228
Aristotle, 195
artifacts
data with, 96
and experimental error, 119
experiments with, 95-96
preference reversals with, 93-96, 121
testing for, 129
Atlantic Richfield Company, 189

ascending, 167

bid increment in, 175

bubble effect with, 179

combinatorial, 167, 170

continuous ascending, 170

efficiency of, 181

eligibility, 166-177

FCC, 165, 169

game theory with, 165

Japanese, 172

package bidding in, 167

simultaneous ascending-bid, 167

standing high bid in, 175

telecommunication systems market,
162

theoretical model of, 172, 184

withdrawal, 177

auxiliary assumptions, 57

and prediction, 105-108

Avogadro’s number, 126

background assumptions, external validity

with, 57, 180

background factors, 130, 133, 136

274

Bayesianism, 112

elimination with, 110
experimental error with, 119, 120
external validity with, 141
monetary incentives with, 238, 246
prediction, 108

probabilistic causation, 82
randomization, 134



Index

background mechanism, 226
consumer behaviour with, 226
backward induction, 168, 170
Bayes’ theorem, 111, 253
definition of, 112
problematic elements of, 116
Bayesianism, 110-115, 131
background factors with, 112
elimination with, 110-115, 117
external validity with, 159, 254
frequencies in, 111
internal validity with, 253
preference reversals, 113-114
subjective, 253-254
BDM. See Becker-DeGroot-Marschak
mechanism
beauty contest method, 162
Becker-DeGroot-Marschak mechanism
(BDM), 97-101, 102, 103, 124, 125,
126,227,242, 250-252
background conditions, 128
independence principle in, 100
prediction with, 97-101
preference reversals phenomenon with,
103,119
reservation price in, 97
behavior
predictability of, 13
Berg-Dickhaut-O’Brien experiment, 227
Bergstrom, T. C., 8
Bernard, Claude, 146
bid increment, auction with, 175
bidding patterns, external validity checking
for, 179
Binmore, Ken, 219, 245, 247
Bogen, Jim, 41, 42, 45, 84
bubble effect
external validity checking for, 179
testbed experiments with, 172
bugs, 33
Burlando, Roberto, 24, 25, 31, 36, 41

calibration, 32
Camerer, Colin, 128
canons of induction, 72
Cartwright, Nancy, 77, 82, 174, 184
Cassar, A., 8
causal laws, empirical laws v., 45
causation, 7, 62-83
common sense with, 78
deterministic, 71-78

275

epistemic issues with, 77
experimental design principles with,
62-65
explanation and, 69
external validity with, 141
Granger, 71
intervention with, 71-78
INUS account, 73
manipulationist approach to, 77
perfectly controlled experiment with,
65-69
policy making and, 75
probabilistic, 80-82
randomisation in, 78-80
reduction of, 72
screening conditions with, 71-78
theory with, 78
token, 69
CE. See certainty equivalent
CEEL. See Computational and
Experimental Economics
Laboratory
certainty equivalent (CE), 97, 123, 125, 250
ceteris paribus law, 70-71, 130, 144, 152
checking, 33, 109
checkerboard model, 205-206
Chew, S. H., 101
choice-price reversals, 104
cognitive push story, 241
Collins, Harry, 38
collusive behaviour, 182
combinatorial auction
economic engineering design with, 167,
182
efficiency tests for, 171
testbed experiments for, 170
common consequence effect, 122
common value model
auctions, 189, 190-193
comparison studies, 158
competitive markets model, 166
completeness requirement external validity
with, 150-156
Computational and Experimental
Economics Laboratory (CEEL), 26,
28, 30
concocted hypothesis, 116
conditional cooperators, 23-25
confirmation
hypothesis testing and, 50-52
prediction and, 88-91



276

confusion, preference reversals with, 95
consistency requirements, EUT and, 98, 99
consumer choice theory, 226
independence principle v., 100
continuous ascending auction, 175
comparative efficiency tests for, 171
Japanese auction vs., 172
testbed experiments for, 170
withdrawal in, 178
controlled variation, 67
experiment with, 187
logic of, 65
cooperation, 17-22
cosmic microwave radiation, 223
Cox, James, 126

data
analysis of, 32, 36
artefacts in, 96
experimental error in, 120
field, 60
hypothesis testing, 4144
idiosyncratic, 43
interpretation of, 121
messy, 43
noisy, 45
phenomena vs., 41-44
Davis, D. D., 8, 108
decay phenomenon, 21-25, 27, 36, 43
Decomposed Game, 24
deductive biases, 85
deductive inference, 102, 129, 135
scientific method and, 149

deductive-nomological model (DN model),

53
deductivism, 52
defection, 18
degrees of belief, 112
demand killing effect, 177
demonstration, model manipulation as, 212
deterministic causation, 71-78, 81
dirty-tube analogy, 246
DN model. See deductive-nomological
model
dominance, monetary incentives with, 233
Duhem, Pierre, 58, 61, 85, 90, 106, 112, 116,
118,121,136
prediction with, 101-102
Duhem-Quine problem, 61, 62, 83, 85, 120,
194
hypothesis testing with, 54-59

Index

Earman, John, 119
ecological validity, 142, 160
econometric inference, 60
economic(s)
artificial system of, 212
failures of, 61
Keynesian revolution in, 16
marginalist revolution in, 16
policy implications of, 20
preference reversals with, 93, 94
prejudice of, 115
realist attitude of, 88
reductionism with, 154
theories of, 87
economic behavior
real-world, 141
telecommunication systems market with,
161-163
economic engineering, 161-183
collusive behaviour in, 182
combinatorial auction in, 182
external validity checking in, 178-181,
183
FCC with, 161-183
game theory for, 161
individual decision making in, 182
lessons from, 181-183
market design revolution from, 182
mechanism design in, 163
rule testing in, 175-178
simultaneous ascending-bid auction in,
181
testbed experiments for, 170-174
theory’s role in, 165-170
economic experiments
benchmark, 27
budget for, 30
bugs in, 33
checking in, 33, 109
classification of, 40
computer networks in, 25-26
instructions and, 32
instructions for, 31
methodology of, 25-26
paper and pencil in, 25-26
parameters of, 28
pilots and, 33
results of, 35-38
time-length of, 31
economic laboratory, radical localism and,
187



Index 277

economic models, 39
economic theory
mechanism design in, 164
neoclassical, 81
economics-psychology methodological
divide, 232
Eddington, Arthur, 88, 114,200
Einstein, Albert, 88, 114, 201
Elements of Pure Economics (Walras), 207
eligibility
auction, 177
bidder, 176
initial, 176
elimination, 110-137
background with, 110, 128-130
Bayesianism with, 110-115
BDM procedure with, 120
conclusion to, 136-137
error checking in, 119-121
experimental error, 119-121
induction with, 6, 110, 120, 130
inductive inference as, 198
objective inductive support with,
115-119
other factors problem with, 130-132
preference reversals experiments with,
121-128
randomization with, 132-135
summary of, 136-137
empirical evidence, 49
external validity with, 156-159, 160
empirical laws, causal laws v., 45
empirical testing, 157
empiricist tradition, 39
Encyclopaedia Britannica, 3
engineering, experimental economics and,
30
environment, mechanism design, 163
Epstein, Seth, 126
error checking, 33, 109, 123, 128
elimination in, 119-121
error component, 23
error-probabilistic account, 117
EURDP. See Expected Utility theory with
Rank-Dependent Probabilities
EUT. See expected utility theory
events, 40
evidence, 40
HD model on, 52
scientific method with, 40
independent, 105n

evolutionary theory, experimental
economics with, 155
excess bids, 179
exhibit, 46, 223n
expected utility, 99
expected utility theory (EUT), 83, 99, 102,
124,147,149
consistency requirements in, 98, 99
independence principle and, 100
prediction with, 98-99, 103
Expected Utility theory with
Rank-Dependent Probabilities
(EURDP), 101, 103-104
experiment(s)
Allais paradox, 244
artifacts in, 95-96
background factors, 133
Berg-Dickhaut-O’Brien, 227
checks on, 123
complexity in, 228
controlled variation in, 187
external validity in, 203, 222
flawed, 118, 122, 129, 132, 135
hypotheses testing for, 217-222
induction, 103, 119
inference, 84, 109, 128, 211
knowledge producing device as, 216
library of phenomena with, 229-230
manipulating, 212-213
mediating role of, 209
as mediators, 203-230
model, simulations with, 213-217
natural, 76
perfectly controlled, 65-69
pilot, 33
post-test stage of, 106
preference reversals, 92, 107, 120,
121-128, 137,228
public goods, 17-21
randomized, 63
real world vs., 7, 157
reasons for, 3-6
repeated arbitrage in, 228
robust phenomena with, 222-224
robustness/external validity with,
224-229
role of, 60-61
scope of, 201
shielding of, 144
superior quality of, 60
target system vs., 214



278 Index

experiment(s) (cont.)
theoretical model with, 205-209
theory testing with, 152
unexpected phenomena with, 224
experimental control, 62, 118-119
background factor in, 79-80
causal factors in, 68
conditions with, 69
deterministic causation with, 71-78
explanation with, 69
intervention with, 71-78
model, 72, 77, 83, 107, 137
phenomena with, 69
probabilistic causation in, 80-82
randomization in, 78-80
replications in, 68
screening conditions with, 71-78
variation in, 67
experimental design, 26-29, 242
basic principles of, 62-65
comparison in, 65
controlled variation in, 65
external validity with, 142, 144
instructions and, 26-28, 31, 32
matching in, 66
model, 63
perfectly controlled, 62
physical environment and, 26, 29
prediction with, 106
randomization in, 66
software and, 26, 28-29, 31
testbed experiments with, 170
experimental economics
apparatus’ role in, 57
history of, 3
experimental error
artifacts in, 119
background factors with, 119, 120
data with, 120
elimination of, 119-121
phenomena with, 120
theories with, 120
experimental laws, 45
experimental methodology, 62, 108, 141,
238,249
experimental taxonomy, 40
experimenter’s effects, preference reversals
with, 95-96
explanandum, 70
explanatory theories, 47
external validity, 141-160

artificiality, 142-145
background assumptions with, 180
background factors with, 141
Bayesian solution to, 159, 254
behavior with, 147
checking of, 178-181
circumstances for, 197
completeness with, 150-156
economic engineering lessons, 183
empiricism with, 156-159, 160
experimental design with, 142, 144
false theory elimination with, 147-150
inference, 186, 194, 197, 215
internal validity vs., 142
metaphysics with, 145-147
monetary incentives with, 233, 242-248
philosophical discussions of, 145
preference reversals with, 151
preparation of subject and, 144
probabilistic causation and, 143
probability in, 157
psychology with, 142
radical localism and, 184
robustness vs., 224-229
simultaneous ascending-bid auction
with, 179
social sciences and, 142, 159
sufficient condition with, 150-156
theory in, 151
uniformity of nature principle with, 146
universality with, 150-156

fact, 40
falsificationism, 117, 148
Federal Communication Commission
(FCC), 198
auction, 165, 169, 201
economic engineering for, 161-183
experiments for, 183
lessons (economic) for, 181-183
mechanism design for, 163
“Notice of Proposed Rule Making,”162
rule testing in, 175-178
telecommunication systems market of,
161-163
Fehr, E., 24
field data, 60
laboratory, 187-189, 199
Fischbacher, U., 24
Fischhoff, Baruch, 146
Fisher, R. A., 79



Index 279

fixed-cost technology, 166
flawed experiment, 118, 129
Fodor, Jerry, 153
Franklin, Allan, 38, 120
free parameters, 55
free riders, 23-24
freestanding phenomena, 46
free will, 13
frequencies

Bayesianism, 111
Fresnel’s wave theory, 46
Friedman, Milton, 2, 8, 49, 86
fundamental laws, phenomenological laws

vs., 44

Gachter, S., 24
Galileo, 4
Galison, Peter, 120
game theory, 23
backward induction in, 170
economic engineering and, 161
incomplete information in, 170
Nash equilibrium in, 170
PD game, 219
rationalizability in, 170
spectrum auction and, 169
General Equilibrium analysis, 202
Generalized Expected Utility Analysis
(GEUA), 100
GEUA. See Generalized Expected Utility
Analysis
Giere, Ronald, 105, 117, 155
Granger causation, 71
Grether, David, 95, 98, 103, 122, 125, 226,
242
Guillemin, Rodger, 185

Hacking, Ian, 125, 209

Handbook of Experimental Economics
(Camerer), 128

Harrison, Glenn, 145n

Husman, D, 87, 127, 208

HD model. See Hypothetico-Deductive
model

Hertwig, Ralph, 236, 238, 240, 243

heterogeneous agents hypothesis, 24

heterogeneous groups, 36

heteronomic laws, 153

Hey, John, 147, 149, 160

Holt, Charles H., 8, 98, 100, 101, 103, 108,
121

homogenous groups, 36
Hon, Giora, 120
Hook’s law, 214
Hughes, R. 1. G., 212
hypotheses, 48
Bayesianism with, 111
cluster of, 116
concocted, 116
construction of, 106
definition of, 210
degrees of beliefs in, 112
empirical, 195
external validity, 210
HD model on, 52
Karni-Safra, 107
prediction with, 85
semantic theorists on, 210
tailored, 107
testing, 217-222
theories vs., 191
underdetermination problem with, 119
hypothesis testing, 39-61
confirmation with, 50-52
data in, 41-44
description/explanation in, 44-46
Duhem-Quine problem with, 54-59
experiment’s role in, 60-61
hypothetico-deductivism with, 49
phenomena in, 41-44
refutation with, 50-52
scientific method in, 39
standard view of theories with, 52-54
theory’s role in, 46-48
Hypothetico-Deductive model (HD
model), 39, 52, 54, 62, 67
perfectly controlled designed model vs.,
83
prediction in, 46, 86
hypothetico-deductivism, 59, 60, 200

improvising, 33-35

incentives. See monetary incentives

income effects, preference reversals with,
95

incomplete information, game theory with,
170

increments, auction with, 177

independence principle, 100

violations of, 122
indifference, preference reversals with, 95
Induced Value Theory, 232-236



280

induction
backward, 21, 168
canons of, 72
eliminative, 110, 130, 198
inference, 52, 62, 83, 88, 110, 117, 129,
136, 200
prediction success and, 84, 107
scientific method with, 149
subjective theory of, 115
support, 109, 115-119
inference, 60, 68
analogical, 195
deductive, 129
econometric, 60
external validity, 194, 197, 215
inductive, 88, 110, 129, 136, 200
internal validity, 196
model-to-experiment, 211
quasi-experimental, 76
information costs, preference reversals
with, 95
information models of, inductive inference,
117
initial conditions, 55
instructions, 26-28, 31, 32
instrumentalism, prediction with, 86-87
intended domain. See proper domain
internal rate of return (IRR), 193
internal validity, 157
Bayesianism solution to, 253
external validity vs., 142
monetary incentives with, 236-242
intervention
experimental control and, 71-78
natural, 76
INUS analysis
definition of, 73
probabilistic causation and, 82
IRR. See internal rate of return
Isaac, R. M., 22

Japanese auction, 172
continuous ascending auction vs., 172
Journal of Economic Theory, 151

Kagel, John, 189, 190-193
Kahneman, Daniel, 1-2, 46
Karni, Edi, 98, 100, 101, 104, 112, 121,
123-125, 250-252
hypothesis of, 107
model of, 105

Index

Karni-Safra argument, 250-252
Keynesian revolution, 16
knowledge, 6

experimental, 38

growth of, 6, 200-202

local, 6, 184-187
Kuhn, Thomas, 16, 130

laboratory, 13-15
analogical reasoning for, 194-196
assumptions, 221
checking with, 30-33
experiment preparation in, 25-26
experimental design in, 26-29
field data with, 187-189, 199
improvising in, 33-35
instructions for, 26-28, 31, 32
normal science in, 15-16
outside world v., 184-202
physical environment, 29
pilots with, 30-33
real world mimicking, 189-192
replications in, 13-15
results in, 35-38
scientific growth model in, 200-202
software with, 28-29
target system vs., 209
Laboratory Life (Latour and Woolgar), 185
laboratory science, metaphysics of, 145
definition of, 209
LaFollette, Hugh, 195
Lakatos, Imre, 121
Latour, Bruno, 185-186, 200
law of likelihood, 116
laws
causal, 45
empirical, 45
experimental, 45
fundamental, 44
phenomenological, 44
Ledyard combinatorial auction. See
combinatorial auction
Ledyard, John, 17, 170
Les atomes (Perrin), 126
Levin, Dan, 189, 190-193
library of phenomena, 229-230
Lichtenstein, Sarah, 92, 95, 97, 98, 104, 113,
122, 126-127, 225, 242
likelihood, 112, 116
Lipsey, Richard, 2
localism, See Radical localism



Index 281

Loomes, Graham, 147, 149
Lowenstein, George, 246-247
Lucas, Robert, 212

assumptions in, 173

checkerboard, 205-206

common value, 190

competitive markets, 166

experiment, simulations with,
213-217

experiment design, 63

experimental control, 72, 77, 83, 107,
118-119, 137

falsified, 221

formalism in, 205, 207

hypotheses from, 210

hypotheses testing for, 217-222

inference with, 211

Karni-Safra, 105, 123

manipulating, 212-213

materiality of, 208

mediating role of, 209

PD game, 220, 221

Machina, Mark, 100

Mackie, J. L., 73

macroeconomic theory, 236
manipulationist approach, to causation, 77
marginalist revolution, 16

market design revolution, 182
matching, experimental design with, 66
material abstraction problem, 174
material realization, 47

Maxwell’s equation, 214

Mayo, Deborah, 105, 107, 117, 120
McAfee, Preston, 175

McCollum, Elmer, 187

mechanism, definition of, 163
mechanism design

applied science as, 184
economic theory in, 164
environment, 163

FCC market, 163
outcomes in, 163
system of rules for, 163
theory in, 164

traffic analogy for, 164

predicate view of, 208
private value, 165
refutation of, 220

ripple tank, 214
robustness in, 225
scientific, 39, 200-202, 224
testing, 117,219
theoretical, 204, 205-209

mediators, 6, 209-211
messy data, 43
metaphysics
external validity with, 145-147
method of difference, 72
methodology. See also experimental
methodology
innovation in, 1
monetary incentives in, 248, 249
“The Methodology of Positive Economics,”
49, 86
Michigan-Kentucky policy, 76
Micromotives and Macrobehavior
(Schelling), 205
Milgrom, Paul, 167-168, 175, 176
Milgrom-Wilson-McAfee continuous
ascending auction. See continuous precepts of, 232-236
ascending auction preference reversals experiments and,
Mill, John Stuart, 2, 45, 72 244
Miller, J. H., 8 privacy with, 233
Mittone, Luigi, 222n proper domain for, 245, 247, 248
model(s), 39, 205-209 saliency with, 232
analogical reasoning, 195 Mongin, P, 100
application of, 219 motivational rerouting story, 241

universality requirements with, 155
modus tollens, 50, 51
monetary incentives, 25, 231-249
background factors with, 238, 246
cognitive push story in, 241
differentiating function of, 232
dirty-tube analogy for, 246
dominance, 233
experimental methodology with, 238
external validity issues, 233,
242-248
Induced Value Theory, 233
motivational rerouting story in, 241
nonsatiation with, 232
parallelism with, 233
Pavlovian trigger story in, 241



282

Nagel, Ernst, 45

Nash equilibrium, 19-20, 21, 165,
170

Nash rationality, 22-25

National Telecommunications and
Information Administration
(NTIA), 167

natural experiment, 76

neoclassical economic theory, 81, 91,
154

neurobiology, experimental economics
with, 155

Newton, Isaac, 88, 114, 145, 200

Neyman-Pearson statistics, 117

Nobel Prize

for economics, 1-2

noisy data, 45

no-miracles argument, 125

non-cooperative equilibrium with
risk-neutral bidders (RNNE), 190,
192

nonlaboratory science, definition of, 209,
211

nonsatiation, monetary incentives with, 232

Nordhaus, William, 3

normal science, 16, 156

Notice of Proposed Rule Making, FCC,
162, 166

NTIA. See National Telecommunications
and Information Administration

objective inductive support, 115-119
observations, HD model on, 52
Offerman, T., 24
one-shot social dilemma games, 243
organizing observations, 45
orthodox statistics, 117
Ortmann, Andreas, 236, 238, 240, 243
other factors problem

eliminative induction with, 130-132

randomization with, 132-135
outcomes, mechanism design, 163
overcontribution, 21-25

decay of, 15, 36

public goods, 55-56

package bidding, auction with, 167

Palfrey, T. R., 23

paradigm, 130, 131, 132

paradigmatic model of inductive inference,
83

Index

parallelism, 158, 160
monetary incentives with, 233
Pasteur, Luis, 185, 188
The Pasteurisation of France (Latour), 185,
188
Pavlovian trigger story, 241
PD. See prisoner’s dilemma game
Perrin, Jean, 126
Personal Communication Systems (PCS),
telecommunication systems market
with, 161
phenomena, 6, 44
belief in, 126
benchmark, 25, 36
bottled, 47
causes of, 46
data vs., 41
decay of overcontribution, 15
definition of, 14
exhibit and, 46
experimental control with, 69
experimental error in, 120
experimental laws as, 45
explanation and, 46
free standing, 46
hypothesis testing, 41-44
library of, 229-230
new, 36
preference reversals, 15, 93, 102, 103, 136
probabilistic, 81
replications of, 68
robustness of, 15, 152, 222-224
theories with, 90
unexpected, 223
variation in, 36
winner’s curse, 15
phenomenological laws, 45
fundamental laws vs., 44
philosophical explication, 53
physical environment, 26, 29
pilot experiments, 33
Plott, Charles, 95, 98, 103, 122, 125, 148,
149, 151-152, 156, 170-174, 175, 226,
242
policy-making, causation and, 75
poliomyelitis propagation, 195, 216n
political science, public goods experiments
and, 17
Popper, Karl, 49, 51, 86, 88-89, 107, 117, 200
population validity, 142
post-hoc theories, 89



Index 283

Post-test only control group design, 63, cooperation in, 18
64 defection in, 18

predicate view of theories, 208n game theory on, 219

prediction, 46, 84 in laboratory, 218

auxiliaries, 105-108

background factors and, 108

BDM and, 97-101

confirmation and, 88-91

deductive biases in, 85

Duhem and, 101-102

EUT in, 98-99

experimental design with, 106

HD model with, 86

induction with, 84, 107, 109

instrumentalism and, 86-87

preference reversals with, 84, 91-93,
102-104

RLS and, 97-101

success criterion of, 105-107, 108, 110,
136

success of, 83, 102-104

preference reversals, 15, 91-94, 225

acyclical relation in, 93

artifacts in, 93-96, 121

Bayesianism with, 113-114

experiment with, 92, 99, 107, 120,
121-128, 137,228

experimenter’s effects in, 95-96

external validity of, 151

illusion of, 98

income effects in, 95

indifference in, 95

indirect observation of, 91

information costs in, 95

misunderstanding in, 95

monetary incentives with, 244

phenomena in, 93, 102, 103, 136

prediction success with, 102-104

prediction with, 91-93

price-choice reversals in, 93, 94

procedure invariance with, 94

psychology on, 93, 94

rationality principle and, 93

robustness of, 226, 229

strategic responses in, 95

model of, 220, 221
testing of, 218
privacy, monetary incentives with,
233
private value model, 165
probabilistic causation, 80-82
background factors with, 82
experimental control with, 80-82
external validity with, 143
indeterminism and, 80
INUS analysis with, 82
probabilistic phenomena, 81
probability calculus, 99, 112, 113
procedure invariance, preference reversals
with, 94
proper domain, monetary incentives and,
245,247,248
psychology
economics reduced to, 154
experimental, 25
external validity in, 142
incentires in, 232
preference reversals in, 93, 94
public goods experiments and, 17
theoretical paradigm of, 47
public goods, 18
experiments on, 41, 48, 133
overcontribution in, 55-56
public bads and, 18
public goods experiments, 17-21
finitely repeated, 21, 27
infinitely repeated, 21
linear, 21

Q-experiments, 125

quasi-experimental inference, 76

Quiggin, J., 101, 103

Quine, Willard Orman, 58, 61, 85, 116, 121,
136

radical localism, 200
definition of, 186

Pre-test post-test control group design,
64 economic laboratory with, 187

price-choice reversals, 93, 94 external validity with, 184, 186

Prisbey, J. E., 23 TRH example of, 185

prisoner’s dilemma (PD) game, 18-19, Random Lottery Selection (RLS), 126
22-25,217-218 prediction with, 97-101



284

randomization, 63, 64, 78-79
background factors in, 134
experimental control with, 78-80
experimental design with, 66
external validity with, 144
other factors problem with, 132-135

rational belief, 114

rational choice theory, 236
independence principle and, 100

rationality principle, preference reversals

with, 93

realism, 87, 90
experimental economics and, 158, 221n

real-world system. See target system

reciprocators, 23-25

recruiting, 33-34

reduction principle, 101

reductionism, 154
causation and, 72
economics and, 154

refutation
hypothesis testing with, 50-52, 58, 59
model, 220

repetitions, 14, 152, 228

replications, 13-15, 68
failed, 37-38
phenomena, 68
purpose of, 15
repetitions vs., 14
value of, 14

representative sampling, 197

research program, 120, 148

reservation price, BDM with, 97

restrictive assumptions, 166

results, 35-38
qualitative, 36
quantitative, 36

Rice, Donald, 253-254

ripple tank model, 214

RLS. See Random Lottery Selection

RNNE. See non-cooperative equilibrium

with risk-neutral bidders

Robbins, Lionel, 2

robustness, 174
external validity vs., 224-229
model with, 225
of phenomena, 222-224
of preference reversals phenomenon,

226,229
testbed experiments and, 172
Roth, A. E., 40, 52, 182

Index

Rubinstein, Ariel, 89, 107
rule testing, economic engineering, 175-178

Safra, Zvi, 98, 100, 101, 103-104, 112, 121,
123-125,250-252
hypothesis of, 107
model of, 105
saliency, monetary incentives with, 232
Samuelson, Paul, 3, 91
Saunders, S., 8
Schelling, Thomas, 205-206
Schram, A., 24
science
applied, 184, 187
community, 132
continuity of, 17
fact in, 40
hypotheses, 52
natural, 5-6
normal, 16, 156
philosophy of, 4-6, 53
revolutions in, 16
scientific genius, myth of, 17
scientific growth model, 200-202
scientific method, 4-5, 6, 49, 149
evidence in, 40
hypothesis testing with, 39
models of, 39
rhetoric of, 7
scientific reasoning, 39
scientific theories, theory of, 53
screening conditions, 71-78
screening device, 148
Searching for facts, 40
Segal, Uzi, 101, 121, 123
Selten, Rheinhard, 1
semantic theorists, 210
Sen, Amartya, 239
Shanks, Niall, 195
Simon, Herbert, 1, 213
simulations
definition of, 213
external validity inference for, 215
knowledge producing device as, 216
model, experiment with, 213-217
simultaneous ascending-bid auction, 167,
176
economic engineering design of, 181
external validity checking for, 179
Slovic, Paul, 92, 95, 97, 98, 104, 113, 122,
126-127, 225, 242



Smith, Vernon, 1-2, 7, 58, 121, 150, 151,
156, 158-159, 215, 232, 253-254
Sober, Elliot, 116
social practices, 6
social sciences, 62
external validity and, 142, 159
preparation of subject in, 144
software, 26, 28-29, 31
parallel checking with, 173
Solomon four-group design, 65
Sonnemans, J., 24
Speaking to theorists, 40
spectrum auction, game theory with, 169
standard view
of explanation, 54
of testing, 54
of theories, 52-54
Starmer, Chris, 157
strategic responses, preference reversals
with, 95
Strategy Method, 24
structure
definition of, 207
of preferences, 239
Structure of Scientific Revolutions, The
(Kuhn), 16
stylized facts, 20, 44
subgame perfect equilibrium, 168
subject preparation, 144
subjective Bayesianism, 253-254
subjective interpretation, 112
induction with, 115
subjects
problems with, 34
recruiting of, 33-34
sufficient condition, 149
external validity and, 150-156
Sugden, Robert, 46, 122, 205
Superstring theory, 202
supply/demand schedules, monetary
incentives in, 235
surveys, 20-21
System of Logic (Mill), 72

target system

experiment vs., 214

laboratory vs., 209
tatonnement, 207
taxonomy of experiments, 40
Tecilla, Marco, 28
telecommunication systems market

Index 285

auction for, 162
beauty contest method for, 162
decentralizing wave of, 161
FCC and, 161-163
lottery system for, 162
PCSin, 161
secondary market for, 162
temporal validity, 142
testbed experiments
definition of, 171
economic engineering, 170-174
experimental design of, 170
hybrid FCC design in, 170
robustness in, 172
testing models, 117
Thagard, Paul, 195
theoretical hypothesis, 156
theories
Alpha Utility, 101
auction, 184
axiomatics of, 156
causation with, 78
consumer choice, 100
definition of, 52
economic, 87
economic engineering role of, 165-170
EURDP, 101
expected utility, 99, 100
experimental testing of, 152
explanatory, 47
external validity of, 151
HD model on, 52
hypotheses vs., 191
independent, 89
macroeconomic, 236
mechanism design, 164
model, 205-209
neoclassical economic, 91
phenomena with, 90
post hoc, 89
rational choice, 100, 236
role in hypothesis testing of, 46-48
scientific, 53
semantic view of, 207
simplification of, 152
standard view of, 52-54
statements making up, 207
Superstring, 202
testing, 199
unexpected phenomena with, 223, 224
universality requirements with, 155



286

Thomas, S., 22

Thyrotropin Releasing Hormone (TRH),
185

token-causation, 69

traffic analogy, mechanism design, 164

transitivity axiom, 98

treatment, 63, 64

TRH. See Thyrotropin Releasing Hormone

triangulation, 125, 126

two-stage lottery experiment, preference
reversals in, 99

ultra-deductivist position, 59
underdetermined hypotheses, 84, 85, 119
uniformity of nature principle, external
validity with, 146, 147
universality condition
definition of, 150
external validity with, 150-156
theories with, 155
University of Trento, 26
University of Turin, 24
utility theory, 99, 152

Index

variation, external validity with, 65-68, 143
Vickrey, William, 165

Walker, J. M., 22
Walrasian equilibrium theory, 207
wave theory of light, 46
Weibull, Jorgen, 219
weird data, 42
Whispering in the ears of princes, 40
Wilde, Louis, 147, 149
Wilson, Robert, 167-168, 175
winner’s curse, 15, 189, 190-193
withdrawal

auction, 177

continuous ascending auction with,

178

Woodward, Jim, 41, 42, 45, 84
Woolgar, Steve, 185
Worrall, J., 105n

Yaari, M. E., 101, 103

Zahar, Elie, 105n, 254



