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ABSTRACT

We study a model of economic growth and development with a threshold externality. The model

has one steady state with a low and stagnant level of income per capita and another steady state

with a high and growing level ofincome per capita. Both of these steady states are locally stable

under the perfect foresight assumption. We introduce learning into this environment. Learning

acts as an equilibrium selection criterion and provides an interesting transition dynamic between

steady states. We find that for sufficiently low initial values of human capital-values that would

tend to characterize preindustrial economies-the system under learning spends a long period of

time (an epoch) in the neighborhood of the low income steady state before finally transitioning to

a neighborhood of the high income steady state. We urge that this type of transition dynamic

provides a good characterization of the economic growth and development patterns that have been

observed across countries.
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1 Introduction

1.1 Development facts

A well-known fact in the history of economic development is that prior to industrialization,

all of today’s highly developed economies experienced very long periods, epochs,.of relatively

low and stagnant growth in per capita income. Maddison (1982, Table 1.2) reports average

annual compound growth rates in per capita GDP for sixteen of today’s highly developed

countries.1 These growth rates were 0.0 percent for the years 500-1500, 0.1 percent for the

years 1500-1700, and 0.2 percent for the years 1700-1820. It was only after industrialization,

during the period 1820-1980, that these countries achieved a significantly higher average

annual compound growth rate of 1.6 percent. While these data are highly aggregated and

necessarily involve some guesswork, few economists would question the picture they paint.

Considering the more recentdata, the dominant fact is that there is a largeand persistent

disparity in levels of per capita income across nations. Parente and Prescott (1993) use the

Summers and Heston (1991) data set and report that for a sample of 102 countries over

the years 1960-1985, per capita income in the richest 5 percent of the countries was about

29 times per capita income in the poorest 5 percent of countries. The poor countries grew,

on average, about as fast as the rich countries, so that this disparity has remained roughly

constant over the 1960-85 period.

In an effort to explain sustained differences in growth rates across economies across time,

and also to explain the vast differences in levels of per capita income across nations that we

observe today, a number of authors have recently expanded upon the endogenous growth

literature pioneered by Romer (1986) and Lucas (1988) by building models that possess

multiplesteady states for the growth rate of per capita output.2 In these models, low growth

steady states, sometimes referred to as poverty traps, are used to characterize preindustrial

or less developed economies. These low growth steady states coexist with high growth

steady states that are used to characterize industrialized or highly developed countries.

While these models have certain advantages over the one-sector neoclassical growth model

‘The sample consists of Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy,
Japan, the Netherlands, Norway, Sweden, Switzerland, the U.K. and the U.S.

2See for example Murphy, Shleifer, and Vishny (1989), Becker, Murphy and Tamura (1990), Azariadis
and Drazeri (1990), Matsuyama (1991), and Laitner (1995) among others.
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in the sense that they allow for sustained differences in growth rates across economies, this

improvement comes at some expense: these models cannot explain how countries initially

in poverty traps are ever able to make the transition to a high development steady state.

Indeed, poverty traps are modeled as absorbing states from which no economy can escape.

Furthermore, it is some exogenous factor, typically history or expectations, that determines

whether a country will be at the low or high development steady state for all time. Yet, as

Maddison’s (1982) data clearly reveals, sixteen of today’s most highly developed economies

were in a poverty trap for many hundreds of years! These countries were nevertheless

eventually able to industrialize and achieve a higher state of development.

In this paper we study a model that gives rise to sustained differences in growth rates

across countries for long periods of time but that also allows countries that are initially

near or at low growth steady states to eventually make the transition to high growth steady

states. The model can also account for the phenomenon that countries with similar initial

conditions may experience quite different development paths, so that an observer of the

world situation at a point in time might see countries with vastly different levels of per

capita income.

1.2 Summary of the model

We study a version of a growth model emphasizing a threshold externality due to Azariadis

and Drazen (1990). Physical capital is accumulated in a standard way, but human capital

accumulation is subject to increasing returns. Agents make two decisions when young: how

much to save by renting physical capital to firms, and how much to invest in training. The

returns to training depend positively on the economy-wide average level of human capital.

The model admits two steady states. The first is associated with low and stagnant levels

for physical capital, human capital and output per capita, and is characterized by agents

who choose not to invest in training when young. We call this the low income steady state.

The second steady state has higher and growing levels for these per capita variables, and

is characterized by agents who choose to devote a positive fraction of their available time

endowment to training when young. We call this the high income steady state. Each of these

steady states is locally stable under a perfect foresight assumption so that, in particular,
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the low income outcome is an absorbing state.3

We introduce learning into this environment. Agents no longer have perfect foresight

and instead must learn which decision rules return the highest utility in the environment

they face. We model learning using Holland’s (1975) genetic algorithm, a stochastic, di-

rected search algorithm based on principles of population genetics.4 We interpret genetic

algorithm learning as a useful representation of trial-and-error learning which has important

advantages over many other models in the literature—chief among these for our purposes is

that the genetic algorithm offers a natural model for experimentation by agents. We con-

duct computational experiments in order to characterize how a population of heterogenous

agents might eventually find their way to the high development steady state.

1.3 Main findings

Our main finding is that for initially low levels of human capital per capita—levels that

would tend to characterize preindustrial economies—our population of artificial agents

spends many generations (an epoch) in a neighborhood of the low income steady state

before finally making the transition to the high income steady state. We argue that this

provides an account of the development fact documented by Maddison (1982) that today’s

richest countries were once stagnant for hundreds of years. We further demonstrate that ini-

tially identical economies might have very different development experiences in this model,

in the sense that industrialization might occur at radically different times. The timing is im-

portant since different dates of industrialization imply very different post-industrialization

levels of per capita income across economies in this model. We argue that this result helps

explain another development fact, the present wide and persistent disparity in levels of per

capita income documented by Parente and Prescott (1993~and others.

1.4 Recent related literature

Our approach of using an evolutionary learning dynamic to achieve a Pareto superior steady

state in a model with multiple steady states is similar to that of Kandori, Mailath and Rob

(1993), who introduce evolutionary learning processes into a class of static 2 x 2 stage

3We could have allowed for more than two steady states, but we elected to study a stylized two-steady-
state case in this paper in order to discuss the main ideas in the clearest possible way.

4For an introduction to genetic algorithms, see Goldberg (1989) or Michalewicz (1994).
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games. But we introduce an evolutionary algorithm into a dynamic general equilibrium

model, where there is feedback from beliefs to outcomes and vice versa. The games Kandori,

Mailath and Rob (1993) study lack this kind of feedback. In addition, in our model learning

interacts with a threshold externality, a mechanism that is not part of the Kandori, Mailath

and Rob (1993) model.

The recent literature on growth and development is large and cannot be effectively

summarized here. But the idea of multiple stationary equilibria has been a popular theme,

and important contributions include Murphy, Shliefer and Vishny (1989) formalizing a big

push argument; Becker, Murphy and Tamura (1990) on how fertility and human capital

accumulation might interact to influence development; and Azariadis and Drazen (1990)

formalizing a threshold argument. We work in this paper within the latter framework, but

our approach could in principle be applied to describe transitions in these other frameworks

which emphasize alternative mechanisms. Coodfriend and McDermott (1995) build an

endogenous growth model that involves transitions from premarket to market and from

preindustrialized to highly developed economy. These authors also have multiple stationary

equilibria, but this fact plays an important role only in their explanation of the transition

from premarket to market economies; their explanation of industrialization relies on asingle,

evolving steady state. Our approach might be useful in helping explain the former transition.

This paper is also related to the macroeconomics learning literature, which has recently

been surveyed by Sargent (1993). One aim of this literature has been to use learning

processes to select equilibria in models with multiple rational expectations equilibria. Our

analysis is relatively novel in this literature in that our model involves capital accumulation.

In addition, agents here are learning, simultaneously, about two decision rules—how much

to save and how much to invest in training—in contrast to previous learning analyses, where

agents are typically concerned with learning about a single decision rule.

Finally, we note that genetic algorithms and other computational techniques involving

artificial intelligence are increasingly being employed by economists as a way of modelling

the behavior of economic agents. A partial list of recent references includes Andreoni and

Miller (1995), Arifovic (1994, 1995ab), Arthur (1994), Binmore and Samuelson (1992),

Bullard and Duffy (1994, 1995), Durlauf (1995), Holland and Miller (1991), Marimon,

McGrattan and Sargent (1990), Miller (1989), Routledge (1994), Sargent (1993), Tesfatsion
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(1995) and Wright (1995).

The rest of the paper is organized as follows. In section two we outline the model that we

employ in the rest of the paper. We close the model under perfect foresight and characterize

the set of stationary equilibria. In section three, we introduce our genetic-algorithm-based

learning algorithm. Section four explains the design and results of our sets of coinputational

experiments, and section five concludes.

2 A model of growth and development

2.1 Preferences and technology

We use a version of a model of economic growth and development due to Azariadis and

Drazen (1990). Time t is discrete and takes on integer values on the real line. There is a

single, perishable good that is both consumed and used as an input into production. Agents

in this economy live for two periods which we label “young” and “old.” At every date t

there is a total population of 2N agents, where N is a positive integer, with the population

equally divided between young and old. There is no population growth. We use the notation

that subscripts denote birthdates and parentheses denote real time, while individual agents

within a generation are indexed by a superscript i E (1,2, ..., N). Aggregate variables have

no subscript or superscript.

Agents are endowed with one unit of time at every date t. During the first period of life,

young agents may choose to spend some fraction, r~(t) [0, 1), of their time endowment in

training. There is a common training technology, denoted h (r~(t),x(t)), which all agents

can access, where the variable x(t) is the average quality of labor of both the young and

the old at time t:

x(t) = 1N1N

This variable is measured as efficiency units per unit time worked. An individual agent can

devote time to training when young in order to receive more efficiency units in the second

period of life via

x~(t+1)= h(r(t),x(t))x(t).

The key feature of the model is that the individual agent’s return to training depends

positively on the economy-wide average level of efficiency units. We follow Azariadis and
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Drazen (1990) and specify h(.) as

h(r(t),x(t)) = 1+~(x(t))r(t).

However, we depart from Azariadis and Drazen (1990) in that we use a specific parametric

form for ~y(.),the private yield on human capital. In particular, we use the sigmoid function

A A

‘y (x(t)) = 1 + e~(t) — 2
which is strictly increasing in x(t) and implies the bounds given by ‘y(O) = 0 and

lim ~ (x(t)) =

x(t)-~.oo 2

Eachyoung agent inherits the average level of efficiency units in the economy in the previous

time period. Young agents combine this endowment with a training decisionr~(t)inorder to

receive x~(t+ 1). Because we allow within generation heterogeneity in the decision variable

r~(t),the accumulation equation for x(t) is given by

x(t + 1) = x(t) [1 + ‘y (x(t)) f(t)]

where f = ~ ~i 4(t).

Output per unit of effective labor is produced according to a neoclassical production

function which we specify as

f (k(t)) =

where ~ E (0, 1) and k(t) is the capital to effective labor ratio.5 Effective aggregate labor

is given by
N N

L(t) = [N - ~4(t)] x(t) +

so that

k(t) = K(t)
[N — ~1~i 4(t)] x(t) + ~

5We could include exogenous labor-augmenting technological change and population growth, but these
factors would exogenously increase the output growth rate in both steady states and only serve to complicate
the analysis. For this reason we follow Azariadis and Drazen (1990) and abstract from these factors by
assuming a constant population and a static technology.
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where K(t) denotes the aggregate physical capital stock. The rental rate on physical capital

and the wage are given by, respectively:

r(t) = ak(t)~’

w(t) = (1 — a)k(t)~.

There is also a consumption loan market with gross rate of interest denoted R(t). Arbitrage

equates the rate of return ~o renting physical capital with the rate of return on consumption

loans via R(t) = r(t + 1) + 1 — 6, where 6 is the net depreciation rate on physical capital.

In this paper we assume S = 1.~

All agents in this economy have the same preferences, U = inc~(t) + inc~(t + 1). Fur-

thermore, all agents face the same lifetime budget constraint:

c~(t)+ ~ ~ (i — r~(t))x(t)w(t) + [1 + ‘y (x(t)) r~~(t)}x(t)w(t + 1)

2.2 Equilibria under perfect foresight

In this subsection, we assume that agents have perfect foresight. Combining the first order

conditions with the budget constraint, and making use of the definitions for w(t) and R(t),

the individual young agent’s optimal savings decision can be written as:

s~(t)= (1 — 4(t))x(t)(1 — a) k(t)a — [1 + y (x(t)) 4(t)] x(t)(1 — a) k(t + 1).

Young agents are equally endowed with x(t), and under perfect foresight they all make the

same choices for 4(t), which we call r(t). Thus, aggregate saving is given by 8(t) = Ns~(t).

The market clearing condition is that K(t +1) = S(t). Some manipulation yields
k(t + 1) — g(t + 1) (1 — r(t)) a(1 — a) k(t)~ 1

- [1+ ~ (x(t)) r(t)] [g(t + 1)2a (2- T(t + 1)) + (1- a)g(t)]

where g(t + 1) [1 + ~y(x(t + 1)) r(t + 1)] x(t + 1). We now consider steady states of this

system.

First, suppose that r(t) = = 0 Vt. In this case, x(t) must be constant for all t. It

follows from (1) that in this case

~ [a(1—a)1T~
~ 1+3a j

6The assumption that capital depreciates fully each period is not necessary to our results, it merely
simplifies our analysis.
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The pair (r, k) is the low income steady state of our system.

Next, suppose that r(t) = ~ 0. In this case, x(t) is growing so that for t large enough

~y(t) —~ ~, and furthermore arbitrage requires that R = = ak’~’.Then

and it follows from (1) that r~must solve

— [ (1—r)a(1—a) ]T±~

- Ui + ~r] [3a - 2ar +1]

This is a quadratic in -r, but only one of the two roots is feasible (i.e. there is only one value

for ‘r [0, 1)), and this is the root we choose for r1~.The pair (r~,k~)constitutes the high

income steady state in this system.

it is straightforward to show that the low income steady state is locally stable in the

perfect foresight dynamics, and that the high income steady state is saddlepath stable.

Azariadis and Drazen (1990) argued that initial conditions would determine which steady

state a nation might ultimately achieve, and that given a sufficiently diverse set of initial

conditions, an observer might see nations in persistently low as well as persistently high

growth equilibria. They argued that this prediction matches elements of the current world

situation.

3 Learning

3.1 Heterogeneous agents

We alter this model by assuming that individuals no longer have perfect foresight and

instead must learn about whidh decision rules work best in this environment. The agents

are now initially heterogeneous with respect to, first, the fraction of time that they spend

in training, 4(t) [0, 1), and second, the fraction of their time t wealth that they save.

If we denote this savings fraction by ç~(t) [0, 1), we can write a typical agent’s youthful

savings as

s’~(t)= ~(t)w(t) (i — 4(t)) x(t).

We model learning using a genetic algorithm, which we view as a useful model of trial-

and-error learning. The genetic algorithm acts on a population of chromosomes, or strings,
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which are typically binary representations ofimportant variables in the system to be studied.

In our application, each binary string completely characterizes the decision rules of an

individual agent. Strings are evaluated according to a fitness criterion, which in economic

models is naturally taken to be a utility function. An iteration of the algorithm involves the

application of genetic operators. The first operator is reproduction: strings are evaluated

for fitness, and the better strings are propagated, while the poorer strings are eliminated.

A second operator is crossover: new strings are created by splicing parts of existing strings

together. A third operator is mutation, with which very small portions of strings are altered

with small probability. Over time, the algorithm is expected to evolve strings that have, on

average, higher fitness than previous generations of strings.

3.2 Representation

As a preparatory step to implementation of the genetic algorithm, we encode the population

of N agents’ decision rules using binary strings. The two decision variables, 4(t) and ~(t),

for each agent are encoded in a single bit string of length £ > 0, where £ is an even integer.

The first £/2 bits represent the agent’s r~(t)decision and the next £/2 bits represent the

agent’s 44(t) decision. Let us suppose that initially, these bits are chosen randomly, with

each bit position in the string set equal to a zero or a one with probability .5. For example,

if we have £ = 30, an individual agent’s decision string might look like this:

000101010011011010001101110101

The first and last 30/2 = 15 bits are decoded to obtain two base ten integer values:

~0010101001101l~p10001101110101,

2715 9077

These integers are then divided by the maximum integer value possible, a string with 15

bits all equal to 1, plus one, which is 2’~= 32768:~

= .0828552 = 4(t), ~ = .277008 = 44(t).
7We add one so that neither fraction can be equal to unity. If either r~(t)or ~(t) is equal to one, the

consumption c~(t)for that agent is zero, implying utility of —no. This causes a slight computational problem
which we avoid by using 32768 instead of 32767.
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Once we have 4> and T values for each of the N young agents, we can calculate each of these

agent’s savings decisions, s~(t), and we can find aggregate savings:

N
8(t) = ~s~(t).

From the market clearing condition, we then find the capital to effective labor ratio, and we

use that in turn to determine the interest rate and the wage. We can use this information to

evaluate which decision rules are performing better and subsequently update the population

of strings using the genetic algorithm.

3.3 Fitness

In the artificial intelligence literature, fitness measures how well a string performs relative

to other strings. Our criterion is lifetime utility U~= inc~(t)+ lnc~(t+ 1). We wish to be

able to measure the fitness of any string in the system at time t. In order to do this, we

ask the following question of each string: how well would this string have performed if it

had been in use one period ago?8 We view the individual agent as atomistic, and therefore

incapable of significantly altering the level of endogenous aggregate variables in the system.

Accordingly, we use past data from the system on the interest rate, the level of human

capital, and the wages that the string would have faced if it had been in use in the previous

period. From this we can determine how much consumption and therefore how much utility

a particular string would have garnered had it been in use in the previous period. This

utility level constitutes the fitness of a string.

3.4 Genetic operators

3.4.1 Reproduction

At the end of period t, we begin to choose the next generation of N young agents who will be

born at time t +1 by applying a reproduction, or selection, operator. Reproduction involves

N binary tournaments. We begin by choosing two strings at random with replacement from

the entire population of strings—those belonging to both young and old agents—in use at

time t. We then compare fitness values; the winner of the tournament is the string with
8Some strings were in use one period in the past, of course, so that this question might seem a little

redundant. We phrase the question this way only to emphasize that we ask the same question of every
string in the system at time t in order to evaluate all strings on an equal basis.
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the higher fitness value. This string is copied into the newborn generation. The binary

tournament process is repeated N — 1 more times, yielding a population of decision rules

that are, on average, more fit than the decision rules in use at time t.

3.4.2 Mutation

Following reproduction based on relative fitness, we subject all N of the candidate strings

that were winners of the N binary tournaments to some mutation. Mutation is performed

on a bit~by—bitbasis with some fixed probability, ptm > 0. If mutation is to be performed

on a bit, the bit value is changed from b to 1 — b.

3.4.3 Crossover

The final genetic operator is crossover. The crossover operator works on the population of

strings that result from selection and mutation. First, each of these N strings is randomly

paired with another string. For example we might have a pairing between the following two

strings:

010101000101110101110010111101

000101100101101001101100101111

With some fixed probability, pC > 0, two random integers are drawn, drawl, draw2

(1,£12). Using these numbers, the two strings are then cut at two points-one point within

the first £/2 bits and one point within the last £/2 bits. For example, if drawl = 3, and

draw2 = 9, the two strings in our example would be cut as follows:

0101101000101110 1011100101111101

000llOllOOlOllOl 001101100] 101111

The string portions to the right of each cut would then be swapped (the substrings repre-

senting each decision are kept separate), and the two strings are then recombined:

01010110010110l1011 10010101111

000lOl000lOlll000llOl 100111101
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The result is two new strings, possibly representing decision rules that have never appeared

in the system before.9

The N strings resulting from selection, mutation and crossover become the new young

generation alive at time t +1. The young agents alive at time t become the old agents alive

at time t + 1, and the old agents alive at time t cease to exist (their strings are deleted).

The process is repeated in order to generate a time series for the artificial economy.

3.5 Interpreting genetic operators

The reproduction, mutation, and crossover operators have a simple economic interpreta-

tion. Being ‘born’ in this economy means leaving one’s formative years and entering the

productive portion of one’s life. These newborn agents just leaving their formative years

initially have no plans for the future-they are ‘blank slates.’ They acquire the decision

rules they will need by communicating with a few other members of society, those either

one or two generations ahead of them. This communication is modeled via the reproduction

operator. in our implementation, each newborn agent communicates with two randomly

selected members of the society. The newborns evaluate the decision rules that belong to

these two older agents by calculating how much utility the rules would have delivered had

they been in use one period in the past. Each newborn then copies the decision rule of the

two that would have delivered the most utility. This completes the first step in attaching a

decision rule to each of the incoming members of the society. But the newborns communi-

cate further when they talk with each other and contemplate alternative decision rules that

might not be in use in the society at that time-that is, the newborns conduct a mental

experiment with other possible decision rules. This additional communication is modeled

via the crossover and mutation operators. In our implementation, the newborns are paired

and each pair creates two new decision rules by combining parts of their existing rules and

also by randomly changing small parts of the recombined decision rules. Thus the incoming

generation learns from the experience of the agents older than themselves and can also be

innovative in introducing new decision rules into society.
9The addition of crossover serves to speed convergence somewhat, but it is the constant mutation rate,

pm > 0, rather than the crossover operation that is responsible for our main results. We note that while

crossover may serve to speed convergence, it has little effect when the economy is in the neighborhood of an
equilibrium; in this case, strings are already nearly identical and so crossover plays almost no role in altering
strings.
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3.6 Some advantages of genetic algorithm learning

We interpret the genetic algorithm as a useful model of trial-and-error learning. This ap-

proach to learning has some important advantages relative to other models in the literature.

First, there is considerable heterogeneity across agents, a feature not often modeled in the

learning literature to date.’0 Second, the information requirements on agents are minimal,

as they need to know very l~ittleto functionwell in the economy. Third, the genetic algorithm

offers a natural model for experimentation by agents with alternative decision rules, an im-

portant characteristic of learning also rarely modeled in competitive general equilibrium

environments in the literature to date. Fourth, the heterogeneity of beliefs allows parallel

processing to be an important feature of the economy. That is, some agents are trying one

decision rule while other agents are trying other decision rules, with the better decision rules

propagating and the poorer ones dying out. We think this is closely akin to what goes on in

actual economies, where communication among agents encourages successful strategies to

be quickly copied and unsuccessful ones to be discarded. Fifth, genetic algorithm learning

has been shown in other research (e.g. Arifovic (1994, 1995ab)) to successfully mimic the

behavior of human subjects in controlled laboratory settings. And finally, the initial het-

erogeneity of the population allows us to initialize the system randomly, so that we are able

to obtain some sense of the “global” properties of our system under learning as opposed to

the local analysis that is often employed in the learning literature.” These features suggest

that genetic-algorithm-based models of learning have interesting economic content.

4 Design of computational experiments and results

4.1 Calibration

In order to examine the behavior of our genetic-algorithm-based learning system, we con-

ducted a large number of computational experiments. These experiments required us to

choose parameterizations and initial conditions for our model which we now describe.

‘°Foran alternative approach to systems with heterogeneous learning rules, see Evans, Honkapohja, and
Marimon (1994).

“In this paper, we use the term “global” to describe our analysis because it is based on a random
initialization scheme. We recognize that our analysis is not trulyglobal, even computationally speaking, since
we did not complete multiple experiments based on every possible initialization for a given parameterization.
Such an approach is beyond the scope of this paper.
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There is a single parameter in the preferences and technology portion of the model that

must be set: physical capital’s share of output, a. We set a = .36, a value that can be

derived from postwar U.S. national income and product accounts, where consumer durables

are counted as capital. By using this value, the high income steady state of the model is

consistent with postwar experience on physical capital’s share in the U.S. economy.

A single parameter, A, controls the returns to investing in human capital. These returns

are partly endogenous since they depend on x(t), but for large x(t), ‘5’ = ~. We set A = 50,

implying ‘5’ = 25. This choice implies an endogenously determined high income steady state

value for the fraction of time devoted to training of approximately r~= .22. If we interpret

the time period in the model as being on the order of 25 years, the compound annual rate

of return in the high income steady state is about 13.7 percent, and the amount of time

devoted to training is about 5~years. We could reduce the high income steady state rate of

return, which is higher than most estimates of the postwar U.S. average, by choosing a lower

value for A, but this would mean a lower value for the amount of time devoted to training.

If one views, say, high school education as part of the time devoted to training in modern

economies, then 5~years may already be too low. Our value of A strikes a compromise on

these competing aims.

We look to the artificial intelligence literature to set the parameters of the genetic

algorithm. The minimal number of strings for effective search is usually taken to be 30, but

we used a somewhat higher value of 50 for our application. This means that there are 50

agents per generation in our model, and the total population is 100. We set chromosome

length £ = 30, with £/2 = 15 bits devoted to each of the decisions the agents face when

young. String length is unimportant except as it determines the grid over which the agents

can search for an optimal value. By setting the substring length to 15 bits, we effectively

created a two-dimensional grid with (32,767)2 locations over a unit square and required

the agents to choose optimal values on the grid. We set the probability of crossover, pC,

equal to .95, and we set the probability of mutation, ptm, equal to .0022. These values are

close to those recommended by Grefenstette (1986). We now turn to the design of our

computational experiments.
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4.2 Experiment set A: the effects of initial conditions

4.2.1 Design of experiment set A

We first consider the effects of different initial conditions on the behavior of the system under

learning. Our model has initial conditions for the per capita stock of human capital, x, the

capital to effective labor ratio, k, the average initial fraction of time devoted to training, r,

and the average initial sayings fraction, 4>. We chose five feasible initial values for each of

these four variables and simulated the system once for each possible combination of these

five initial conditions. This yields 625 computational experiments, each with a different set

of initial conditions. We conducted each experiment for 250 iterations and calculated the

average of the last ten values of r, denoted by f, and the average of the last ten values of

the capital to effective labor ratio k, denoted k. Let us denote by k* and y* the equilibrium

levels of the capital-to-effective labor ratio and the training fraction at the two steady states.

We examined the data to see if Ik* — J~<.002 and ]r* — ~j< .02 at date t. If this criterion

was met, we say that the system was in a neighborhood of that particular equilibrium at

date t.

We chose the set of initial conditions as follows. Interesting initial x values are at or

below z(0) = .1, the value of x(0) which puts ‘y(x) at 5 percent of ‘5’. We chose one initial

x(0) value higher than this and three lower; accordingly, we used five values of x(0) (.0001,

.001, .01, .1, 1). We set initial capital to effective labor ratios k(0) relative to steady state

values according to k(0) (.5k~,k~,.5kg + .5kf~,k~,1.5kg). Average initial T and average

initial savings fractions 4> can range between zero and one. We chose 5 different values for

each of these initial fractions in order to cover the whole range of possibilities: r, 4> (.1,

.3, .5, .7, .9). However, actual initial values for r and 4> are only approximately equal to our

targeted values, due to the way in which we initialized strings.’2

We call this set of 625 computational experiments “experiment set A.”

‘2Our initialization procedure worked as follows. If we wanted to initialize r and 4 so they were, say, both
equal to .1, we would choose each bit value in each string by first choosing a random number from .01 to
1.00; if the random number was less than or equal to .1, we would place a bit value of 1 in that spot in the
string, otherwise, we would place a bit value of 0. Since we only have 50 agents in each young generation,
our initial values for r and 4’ are only approximately equal to our targeted initial values of .1,.3,.5,.7,.9.
This approximation is not material to our results.
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4.2.2 Results from experiment set A

One of the main results from experiment set A is that, depending on the settings of the

initial conditions, neighborhoods of either of the two steady states can obtain at a point in

time, which we set to 250 iterations. Persistent mutation is the only source of variability

in these neighborhoods. A typical time series from this set of 625 experiments reveals that

the system initially fluctuates but then settles down to a neighborhood of either the low

income or the high income steady state. These systems then remain in these neighborhoods

for the remaining iterations. Figure 1 provides a sample time series from one experiment

where the system achieved a neighborhood of the low income steady state and remained

there through iteration 250.

A second key result from experiment set A is that, among the initial conditions, the

initial level of human capital per capita, x(0), is the dominant determinant of the behavior of

the system at iteration 250. For low values of x(0), we find the systems are in aneighborhood

of the low income steady state at iteration 250, while for high values of x(0), we find the

systems are in a neighborhood of the high income steady state at iteration 250. Other

initial conditions only influence this outcome for borderline values of x(0). This result is

interesting since preindustrial economies tend to be characterized by especially low levels of

human capital per capita. Our model therefore predicts that these preindustrial economies

will spend a long period of time, an epoch, in a neighborhood of the low income steady

state.

Figures 2abc illustrate the importance of the initial level of x(0). In each of these three

figures, k(0) = .001989, but the results are the same for other values of k(0). What varies

in these three figures are the initial levels of x(0). In Figure 2a, x(0) = .001, in Figure

2b, x(0) = .01 and in Figure 2c, x(0) = .1. In all three figures, the initial average fraction

of wealth saved is plotted on the horizontal axis, and the initial average time devoted to

training is plotted on the vertical axis. The actual initial average values for -r and 4> are

indicated by the placement of the labels Low or High in each of these figures. These labels,

Low and High, indicate whether our system had achieved neighborhoods around either the

low or high income steady states of the model after 250 periods of model time. In Figure

2a, where x(0) = .001, the system is in a neighborhood of the low income steady state after
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250 iterations for all initial values for average r and 4>. For x(0) = .01, as illustrated in

Figure 2b, the system has achieved the high income steady state after 250 iterations in only

3 out of the 25 different combinations for initial average r and 4>. Notably, the 3 instances

in which the system had achieved the high income steady state were all cases for which the

initial level of average r was quite high to begin with (approximately .9), so that at least

early on in the development process, there was a significant accumulation of human capital.

This greater initial accumulation of human capital together with a higher initial stock of

human capital x(0) = .01, perhaps along with some helpful mutations, enabled the system

to achieve the high income steady state. But Figure 2c demonstrates that this is simply a

borderline situation. In Figure 2c x(0) .1, and the system achieves a neighborhood of the

high income steady state after 250 iterations for all 25 combinations of initial average r and

4>. The only important difference between Figures 2a and 2c is the initial level of human

capital per capita, x(0). Thus, we see that the initial level of the stock of human capital

plays a dominant role relative to other initial conditions. If x(0) is relatively low, then we

observe that the system is in a neighborhood of the low income steady state at model time

250 regardless of other initial conditions, while if x(0) is relatively high, we observe that

system is in a neighborhood of the high income steady state at model time 250, regardless of

other initial conditions. This result holds across other values of k(0), which is held constant

in Figures 2abc. Further confirmation was obtained for the two other values for x(0) that

we considered, x(0) = .0001 and x(0) = 1. The case where x(0) = .0001 is qualitatively

similar to the case where x(0) = .001, meaning that these 125 experiments were without

exception in a neighborhood of the low income steady state at iteration 250. Similarly, the

case where x(0) = 1 is qualitatively similar to the case where x(0) = .1, because these 125

experiments were without exception in a neighborhood of the high income steady state at

iteration 250. Table 1 reports the results for experiment set A as a function of x(0).

4.3 Experiment set B: long-run behavior

4.3.1 Eventual attraction to the high income steady state

While initial attraction to a neighborhood of the low income steady state is likely for

preindustrial economies—economies with low initial values for x(0)—both intuition and the

results for experiment set B (given below) can be used to establish that these systems will
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Table 1
Results for experiment set A as a function

of the initial level of human capital per capita.

Value of
x(0)

Number of
experiments

High steady
state outcome

at t = 250

Low steady
state outcome

at t = 250
.0001
.001
.01
.1
1

125
125
125
125
125

0
0
18

125
125

125
125
107
0
0

Table 1: Experiment set A consists of 625 experiments, one for each combination of initial
conditions. The table lists results as a function of x(0) only. For low values of x(0), the low
income steady state is observed at model time 250 regardless of other initial conditions.

eventually be attracted to a neighborhood of the high income steady state with probability

1. The intuition is as follows. Suppose all agents have initially coordinated on the low

income steady state. The constant probability of mutation ptm > 0 implies that agents

will sometimes be experimenting with non—zero investments in training; that is, there will

sometimes be one or more agents who choose 4(t) > 0. How often this occurs depends on

the mutation rate. This experimentation implies that effective labor units per unit of time

worked (the average human capital that all agents inherit) will be rising over time. While

the economy remains in the neighborhood of the low income steady state, selection pressure

will work against agents who invest in humancapital. The time they spend in training lowers

the time they spend working, and the return from working more and investing more savings

in physical capital dominates the return from investing in human capital at the low income

steady state. Decision rules that call for positive investments in training do not propagate

and instead are systematically killed off. This keeps the system in a neighborhood of the

low income steady state. Since agents are experimenting with positive amounts of training,

however, the stock of human capital per capita x(t) grows slowly and unevenly until it

eventually becomes large enough so that the rate of return to investing in human capital

is equated with the rate of return to investing in physical capital. At this point, selection

pressure switches because decision rules that call for investing positive amounts of time in

training obtain higher fitness than those strings that continue to instruct their owners to
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invest no time in training. Thus strings that call for investing in training propagate, and

the no-training strings are systematically killed off. Eventually, all agents devote a fraction

of their time when young to training in a neighborhood of the rate consistent with the high

income steady state. The economy stays in a neighborhood of the high income steady state

forever.

A corollary to this intuition is that initially identical economies that spend an epoch

in the neighborhood of the low income steady state may have radically different dates of

development takeoff. This occurs because the exact sequence of mutations that an economy

experiences will determine which country reaches the threshold level of human capital first.

4.3.2 Design of experiment set B

In experiment set B, we verified this intuition by studying the long-run behavior of these

artificial economies computationally. We want to show that these economies always eventu-

ally attain the high income steady state. We also want to study the timing of development

takeoffs. To pursue these aims in the starkest possible way, we began each of 15 computa-

tional experiments with exactly the same initial conditions and all parameters set identically,

including the rate of mutation. The fraction of time devoted to training was zero for all

agents, and the savings fraction was the one that is consistent with the low income steady

state for all agents. The value of k(0) was the one that is consistent with the low income

steady state, and x(0) was set to .01. The only difference between these computational

experiments is that we used a different random number seed for each experiment. We

terminated these experiments when our convergence criterion was met for the high income

steady state. For these experiments, our convergence criterion was to require Ik* — kj <.001

and ji~~— ?] <.001, where k and’? are calculated over the last 30 observations.13

4.3.3 Results from experiment set B

Our results from experiment set B verify the intuition given above, as all of the economies in

this set of experiments initially remain in the neighborhood of the low income steady state

for hundreds of generations, but eventually transit to a neighborhood of the high income

‘3We limited the number of experiments in this set to 15 mainly to conserve on computation time. The
qualitative results were unchanged in a number ofother computational experiments which we did not organize
into a reportable format.
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steady state. The results from experiment sets A and B constitute our claim that this

model can address the fundamental fact of development and economic growth documented

by Maddison (1982), namely, that sixteen of today’s most highly developed economies were

once stagnant for centuries.

A time series of what occurs in a typical result from experiment set B is illustrated in

Figure 3, which depicts a development takeoff. The average fraction of young agents’ time

devoted to training is measured on the left axis, while the capital-to-effective labor ratio is

measured on the right axis. The low income steady state values for k and r are indicated

by horizontal lines in the left portion of Figure 3. Agents have initially coordinated on a

neighborhood of the low income steady state (where r = 0) and remained there for the

first 1499 periods, which are not pictured. The economy remains in a neighborhood of the

low income steady state through model time 1625 before it has, through experimentation,

accumulated a sufficiently high stock of human capital. At this point, the rate of return

to investments in human capital reaches that of the rate of return to investments in physi-

cal capital. A development takeoff occurs, and the population of artificial adaptive agents

begins the process of adjusting their decisions for ‘r and 4> accordingly. The economy tran-

sitions to a neighborhood of the high income steady state, indicated by the two horizontal

lines in the right half of Figure 3, where r is now greater than zero. By about model time

1675, the economy can be said to have coordinated on a neighborhood of the high income

steady state.

The remaining experiments in this set produced results qualitatively similar to those

depicted in Figure 3. We checked at every iteration to determine whether our system

had met our convergence criterion for the high income steady state. The mean number of

iterations at which our convergence criterion was met was 1,797 iterations, with a standard

deviation of 70. The maximum number of iterations for convergence to the high income

steady state was 1,916 and the minimum number of iterations for convergence was 1,657.

Even though all 15 of these economies were initially identical and initially coordinated on a

neighborhood of the low income steady state, each nevertheless industrialized at a different

time. If we interpret each generation as a period of roughly 25 years, the standard deviation

of 70 iterations implies that a typical difference in the date at which the high income steady

state is achieved across societies according to these experiments is about 1,750 years. This
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figure is too large to apply directly to the international experience as we know it, but it

does suggest that in this model there is the possibility of a very wide disparity in the time it

takes for countries to industrialize, even when countries all begin the process with exactly the

same initial conditions. We want to emphasize this feature as an interesting property of the

model, and caution against taking any particular calculation too seriously. The disparity

in dates of industrialization could be reduced or increased, for instance, by either reducing

or increasing the constant’ rate of mutation used, or by reducing or increasing the value of

x(0) 14

Figure 4 illustrates the different timing of the development takeoff for 6 of the 15 artifi-

cial economies in experiment set B. We only show six economies in order to reduce clutter.

This figure plots the average r value in each of these 6 economies from iteration 1400

through iteration 1916, when the last of the 15 artificial economies met our convergence

criterion for the high income steady state. All economies in experiment set B were in a

neighborhood of the low income steady state for the first 1399 iterations. The develop-

ment takeoff is illustrated as the movement of average r from a neighborhood of the low

income steady state value, r = 0, to a neighborhood of the high income steady state value,

r ~ .22. Beginning at the low income steady state, human capital per capita rises slowly

and haphazardly across economies, since there is little private incentive to accumulate it.

Because experimentation is a stochastic process, some economies reach the threshold level

of human capital per capita before others; these countries industrialize rapidly and enjoy

high growth subsequently. Other countries reach the threshold level of human capital per

capita in due course, but perhaps considerably later than the first group of countries. These

countries then industrialize and eventually enjoy high growth, but their level of per capita

income will be significantly lower than that of the countries that industrialized earlier, and

will remain lower even though the countries that industrialized later have achieved the high

income rate of growth. We can interpret the different timing of the development takeoffs

that is illustrated in Figure 4 as being due to the different beliefs that agents have over

time in the different economies about how much to invest in human and physical capital.

‘4Perhaps more importantly, we are following Azariadis and Drazen (1990) in abstracting from the pos-
sibility that labor or ideas or both can move across economies. We expect that a model including some
degree of human capital mobility would mitigate the sharp disparities in dates of industrialization that we
find. From this point of view, the results we obtain are perhaps reasonable for a world of completely isolated
societies.

21



The larger the amount of experimentation with nonzero investments in human capital, the

faster a nation is able to reach the threshold level of human capital that is necessary for a

development takeoff.

Differences in dates of industrialization can potentially go a long way toward explaining

the differences in levels of per capita income across countries that we observe today. Con-

sider a stylized calculation patterned after the model of this paper. There are two steady

states, one with no growth in per capita income and one with a growth rate of 1.6 percent

per year. There are two countries, A and B, both initially in the low growth equilibrium.

Countries switch between steady states abruptly and without any transition time. Country

A achieves the high growth steady state in the year 1750, while country B achieves the

high growth steady state in 1960. If this is the situation, the ratio of per capita income in

country A relative to country B in 1960 would be about 28.5. Both countries would grow

at the same rate from 1960 through 1985, and so this ratio would remain constant. This

is roughly consistent with the findings of Parente and Prescott (1993). This calculation is

only meant to be illustrative, but we think it is suggestive that a two steady state model

with learning providing a transition between the steady states can help address some of the

main facts in economic development.

5 Remarks

Our modified version of an endogenous growth model is consistent with several broad de-

velopment and growth facts. The modification we study is to introduce learning, which

serves to select among equilibria and also provides a transition dynamic between station-

ary equilibria. We find that for low initial levels of human capital per capita—levels that

tend to characterize preindustrial economies—and regardless of other initial conditions, the

economies we study are initially attracted to the low income steady state of the model and

can remain there for long periods of time. Eventually, however, these economies achieve a

high development state. These results are consistent with a fundamental development fact

documented by Maddison (1982): today’s leading industrialized nations were all growing

at zero or near zero rates for centuries prior to the industrial revolution in Europe. Fur-

thermore, in this model a development takeoff can occur at a radically different times for
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two economies with identical initial conditions. These economies both eventually grow at

the same mean rate, according to this model, but the level of per capita income will be sig-

nificantly different in the two countries and will remain so indefinitely. This helps account

for another fundamental development fact documented by Parente and Prescott (1993) and

others: the level of per capita income is higher in the richest five percent of the countries

relative to the poorest five percent by a factor of 29, and furthermore, this factor has been

constant from 1960 through 1985.

There are a number of possible extensions that could be made to the basic model that

we have developed in this paper. One extension would be to consider neighborhood effects

(see, e.g. Durlauf (1995)), that is, one could allow different, neighboring countries (different

populations of artificial agents) to exchange ideas (decision rules) about how much to save

and how much to invest in human capital. If one nation had, for example, a greater

propensity to experiment with human capital investments than another, the exchange of

ideas might have the effect of increasing the stock of human capital in the country with

the lower propensity to experiment, and thus speed up the development process in that

country. Such neighborhood effects might explain, for example, why most of western Europe

developed within the half century following the industrial revolution in Great Britain. A

second extension might be to include more than one threshold level for human capital

accumulation. The purpose of this exercise would be to ascertain whether the country that

was first to achieve the first threshold level for human capital (say, for example, Great

Britain), would necessarily be the same country that was the first to achieve the second

threshold level for human capital. We leave these extensions to future research.
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A Appendix: program outline

Begin program.

Set model parameters.

Set simulation parameters.

Set genetic algorithm parameters.

Find equilibria numerically: (r, k) and (r~,k~).

Initialize tensors and accumulation variables.

Initialize k, x.

For replications=1 to maximum replications,

Initialize strings;

Find implied values of ‘y, w, r for t = —2;

Find implied initial old aggregate savings;

Find implied values of k, ‘y, w, r, z for t = —1;

Find implied initial young aggregate savings;

Find implied values of k, ‘y, w, r, x for t = 0;

For time=1 to maximum time,

Find fitness of the old generation;

Find fitness of the young generation;

Create newborn generation: for member=1 to generation size,

Apply reproduction operator via tournament selection;

Apply crossover and mutation operators;

End creation loop;

Find aggregate savings of newborn generation;

Find values of k, ‘y, w, r, x for time t;

Delete old strings, let old=young, let young=newborn;

End time loop;

End replication loop.

End program.
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Figure 1
An epoch in a neighborhood of the low income steady state.
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Figure 2
Behavior of economies at iteration 250 as a function of initial conditions.
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Figure 3
A development takeoff.
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