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Preface

Statistical tools for analyzing data are developing rapidly so that the 1990
edition of this book is now out of date.

The original purpose of the book was to present a unified theoretical and
conceptual framework for statistical modelling in a way that was accessible
to undergraduate students and researchers in other fields. This new edition
has been expanded to include nominal (or multinomial) and ordinal logistic
regression, survival analysis and analysis of longitudinal and clustered data.
Although these topics do not fall strictly within the definition of generalized
linear models, the underlying principles and methods are very similar and
their inclusion is consistent with the original purpose of the book.

The new edition relies on numerical methods more than the previous edition
did. Some of the calculations can be performed with a spreadsheet while others
require statistical software. There is an emphasis on graphical methods for
exploratory data analysis, visualizing numerical optimization (for example,
of the likelihood function) and plotting residuals to check the adequacy of
models.

The data sets and outline solutions of the exercises are available on the
publisher’s website:
www.crcpress.com/us/ElectronicProducts/downandup.asp?mscssid=

I am grateful to colleagues and students at the Universities of Queensland
and Newcastle, Australia, for their helpful suggestions and comments about
the material.

Annette Dobson
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1

Introduction

1.1 Background

This book is designed to introduce the reader to generalized linear models;
these provide a unifying framework for many commonly used statistical tech-
niques. They also illustrate the ideas of statistical modelling.

The reader is assumed to have some familiarity with statistical principles
and methods. In particular, understanding the concepts of estimation, sam-
pling distributions and hypothesis testing is necessary. Experience in the use
of t-tests, analysis of variance, simple linear regression and chi-squared tests of
independence for two-dimensional contingency tables is assumed. In addition,
some knowledge of matrix algebra and calculus is required.

The reader will find it necessary to have access to statistical computing
facilities. Many statistical programs, languages or packages can now perform
the analyses discussed in this book. Often, however, they do so with a different
program or procedure for each type of analysis so that the unifying structure
is not apparent.

Some programs or languages which have procedures consistent with the
approach used in this book are: Stata, S-PLUS, Glim, Genstat and SY-
STAT. This list is not comprehensive as appropriate modules are continually
being added to other programs.

In addition, anyone working through this book may find it helpful to be able
to use mathematical software that can perform matrix algebra, differentiation
and iterative calculations.

1.2 Scope

The statistical methods considered in this book all involve the analysis of
relationships between measurements made on groups of subjects or objects.
For example, the measurements might be the heights or weights and the ages
of boys and girls, or the yield of plants under various growing conditions.
We use the terms response, outcome or dependent variable for measure-
ments that are free to vary in response to other variables called explanatory
variables or predictor variables or independent variables - although
this last term can sometimes be misleading. Responses are regarded as ran-
dom variables. Explanatory variables are usually treated as though they are
non-random measurements or observations; for example, they may be fixed
by the experimental design.

Responses and explanatory variables are measured on one of the following
scales.
1. Nominal classifications: e.g., red, green, blue; yes, no, do not know, not

applicable. In particular, for binary, dichotomous or binomial variables
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there are only two categories: male, female; dead, alive; smooth leaves,
serrated leaves. If there are more than two categories the variable is called
polychotomous, polytomous or multinomial.

2. Ordinal classifications in which there is some natural order or ranking be-
tween the categories: e.g., young, middle aged, old; diastolic blood pressures
grouped as ≤ 70, 71-90, 91-110, 111-130, ≥131mm Hg.

3. Continuous measurements where observations may, at least in theory, fall
anywhere on a continuum: e.g., weight, length or time. This scale includes
both interval scale and ratio scale measurements – the latter have a
well-defined zero. A particular example of a continuous measurement is
the time until a specific event occurs, such as the failure of an electronic
component; the length of time from a known starting point is called the
failure time.

Nominal and ordinal data are sometimes called categorical or discrete
variables and the numbers of observations, counts or frequencies in each
category are usually recorded. For continuous data the individual measure-
ments are recorded. The term quantitative is often used for a variable mea-
sured on a continuous scale and the term qualitative for nominal and some-
times for ordinal measurements. A qualitative, explanatory variable is called
a factor and its categories are called the levels for the factor. A quantitative
explanatory variable is sometimes called a covariate.

Methods of statistical analysis depend on the measurement scales of the
response and explanatory variables.

This book is mainly concerned with those statistical methods which are
relevant when there is just one response variable, although there will usually
be several explanatory variables. The responses measured on different subjects
are usually assumed to be statistically independent random variables although
this requirement is dropped in the final chapter which is about correlated
data. Table 1.1 shows the main methods of statistical analysis for various
combinations of response and explanatory variables and the chapters in which
these are described.

The present chapter summarizes some of the statistical theory used through-
out the book. Chapters 2 to 5 cover the theoretical framework that is common
to the subsequent chapters. Later chapters focus on methods for analyzing
particular kinds of data.

Chapter 2 develops the main ideas of statistical modelling. The modelling
process involves four steps:

1. Specifying models in two parts: equations linking the response and explana-
tory variables, and the probability distribution of the response variable.

2. Estimating parameters used in the models.

3. Checking how well the models fit the actual data.

4. Making inferences; for example, calculating confidence intervals and testing
hypotheses about the parameters.

© 2002 by Chapman & Hall/CRC
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Table 1.1 Major methods of statistical analysis for response and explanatory vari-
ables measured on various scales and chapter references for this book.

Response (chapter) Explanatory variables Methods

Continuous Binary t-test
(Chapter 6)

Nominal, >2 categories Analysis of variance

Ordinal Analysis of variance

Continuous Multiple regression

Nominal & some Analysis of
continuous covariance

Categorical & continuous Multiple regression

Binary Categorical Contingency tables
(Chapter 7) Logistic regression

Continuous Logistic, probit &
other dose-response
models

Categorical & continuous Logistic regression

Nominal with Nominal Contingency tables
>2 categories
(Chapter 8 & 9) Categorical & continuous Nominal logistic

regression

Ordinal Categorical & continuous Ordinal logistic
(Chapter 8) regression

Counts Categorical Log-linear models
(Chapter 9)

Categorical & continuous Poisson regression

Failure times Categorical & continuous Survival analysis
(Chapter 10) (parametric)

Correlated Categorical & continuous Generalized
responses estimating equations
(Chapter 11) Multilevel models

© 2002 by Chapman & Hall/CRC
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The next three chapters provide the theoretical background. Chapter 3 is
about the exponential family of distributions, which includes the Normal,
Poisson and binomial distributions. It also covers generalized linear models
(as defined by Nelder and Wedderburn, 1972). Linear regression and many
other models are special cases of generalized linear models. In Chapter 4
methods of estimation and model fitting are described.

Chapter 5 outlines methods of statistical inference for generalized linear
models. Most of these are based on how well a model describes the set of data.
For example, hypothesis testing is carried out by first specifying alternative
models (one corresponding to the null hypothesis and the other to a more
general hypothesis). Then test statistics are calculated which measure the
‘goodness of fit’ of each model and these are compared. Typically the model
corresponding to the null hypothesis is simpler, so if it fits the data about
as well as a more complex model it is usually preferred on the grounds of
parsimony (i.e., we retain the null hypothesis).

Chapter 6 is about multiple linear regression and analysis of vari-
ance (ANOVA). Regression is the standard method for relating a continuous
response variable to several continuous explanatory (or predictor) variables.
ANOVA is used for a continuous response variable and categorical or qualita-
tive explanatory variables (factors). Analysis of covariance (ANCOVA) is
used when at least one of the explanatory variables is continuous. Nowadays
it is common to use the same computational tools for all such situations. The
terms multiple regression or general linear model are used to cover the
range of methods for analyzing one continuous response variable and multiple
explanatory variables.

Chapter 7 is about methods for analyzing binary response data. The most
common one is logistic regression which is used to model relationships
between the response variable and several explanatory variables which may
be categorical or continuous. Methods for relating the response to a single
continuous variable, the dose, are also considered; these include probit anal-
ysis which was originally developed for analyzing dose-response data from
bioassays. Logistic regression has been generalized in recent years to include
responses with more than two nominal categories (nominal, multinomial,
polytomous or polychotomous logistic regression) or ordinal categories
(ordinal logistic regression). These new methods are discussed in Chapter
8.

Chapter 9 concerns count data. The counts may be frequencies displayed
in a contingency table or numbers of events, such as traffic accidents, which
need to be analyzed in relation to some ‘exposure’ variable such as the number
of motor vehicles registered or the distances travelled by the drivers. Mod-
elling methods are based on assuming that the distribution of counts can be
described by the Poisson distribution, at least approximately. These methods
include Poisson regression and log-linear models.

Survival analysis is the usual term for methods of analyzing failure time
data. The parametric methods described in Chapter 10 fit into the framework
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of generalized linear models although the probability distribution assumed for
the failure times may not belong to the exponential family.

Generalized linear models have been extended to situations where the re-
sponses are correlated rather than independent random variables. This may
occur, for instance, if they are repeated measurements on the same subject
or measurements on a group of related subjects obtained, for example, from
clustered sampling. The method of generalized estimating equations
(GEE’s) has been developed for analyzing such data using techniques analo-
gous to those for generalized linear models. This method is outlined in Chapter
11 together with a different approach to correlated data, namely multilevel
modelling.

Further examples of generalized linear models are discussed in the books
by McCullagh and Nelder (1989), Aitkin et al. (1989) and Healy (1988). Also
there are many books about specific generalized linear models such as Hos-
mer and Lemeshow (2000), Agresti (1990, 1996), Collett (1991, 1994), Diggle,
Liang and Zeger (1994), and Goldstein (1995).

1.3 Notation

Generally we follow the convention of denoting random variables by upper
case italic letters and observed values by the corresponding lower case letters.
For example, the observations y1, y2, ..., yn are regarded as realizations of the
random variables Y1, Y2, ..., Yn. Greek letters are used to denote parameters
and the corresponding lower case roman letters are used to denote estimators
and estimates; occasionally the symbol ̂ is used for estimators or estimates.
For example, the parameter β is estimated by β̂ or b. Sometimes these con-
ventions are not strictly adhered to, either to avoid excessive notation in cases
where the meaning should be apparent from the context, or when there is a
strong tradition of alternative notation (e.g., e or ε for random error terms).

Vectors and matrices, whether random or not, are denoted by bold face
lower and upper case letters, respectively. Thus, y represents a vector of ob-
servations

 y1
...
yn


or a vector of random variables  Y1

...
Yn

 ,
β denotes a vector of parameters and X is a matrix. The superscript T is
used for a matrix transpose or when a column vector is written as a row, e.g.,
y = [Y1, ..., Yn]

T .
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The probability density function of a continuous random variable Y (or the
probability mass function if Y is discrete) is referred to simply as a proba-
bility distribution and denoted by

f(y;θ)

where θ represents the parameters of the distribution.
We use dot (·) subscripts for summation and bars (−) for means, thus

y =
1
N

N∑
i=1

yi =
1
N
y · .

The expected value and variance of a random variable Y are denoted by
E(Y ) and var(Y ) respectively. Suppose random variables Y1, ..., YN are inde-
pendent with E(Yi) = µi and var(Yi) = σ2

i for i = 1, ..., n. Let the random
variable W be a linear combination of the Yi’s

W = a1Y1 + a2Y2 + ...+ anYn, (1.1)

where the ai’s are constants. Then the expected value of W is

E(W ) = a1µ1 + a2µ2 + ...+ anµn (1.2)

and its variance is

var(W ) = a2
1σ

2
1 + a2

2σ
2
2 + ...+ a2

nσ
2
n. (1.3)

1.4 Distributions related to the Normal distribution

The sampling distributions of many of the estimators and test statistics used
in this book depend on the Normal distribution. They do so either directly be-
cause they are derived from Normally distributed random variables, or asymp-
totically, via the Central Limit Theorem for large samples. In this section we
give definitions and notation for these distributions and summarize the re-
lationships between them. The exercises at the end of the chapter provide
practice in using these results which are employed extensively in subsequent
chapters.

1.4.1 Normal distributions

1. If the random variable Y has the Normal distribution with mean µ and
variance σ2, its probability density function is

f(y;µ, σ2) =
1√

2πσ2
exp

[
−1

2

(
y − µ
σ2

)2
]
.

We denote this by Y ∼ N(µ, σ2).
2. The Normal distribution with µ = 0 and σ2 = 1, Y ∼ N(0, 1), is called the

standard Normal distribution.
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3. Let Y1, ..., Yn denote Normally distributed random variables with Yi ∼
N(µi, σ2

i ) for i = 1, ..., n and let the covariance of Yi and Yj be denoted by

cov(Yi, Yj) = ρijσiσj ,

where ρij is the correlation coefficient for Yi and Yj . Then the joint distri-
bution of the Yi’s is the multivariate Normal distribution with mean
vector µ = [µ1, ..., µn]

T and variance-covariance matrix V with diagonal
elements σ2

i and non-diagonal elements ρijσiσj for i �= j. We write this as
y ∼ N(µ,V), where y = [Y1, ..., Yn]

T .
4. Suppose the random variables Y1, ..., Yn are independent and Normally dis-

tributed with the distributions Yi ∼ N(µi, σ2
i ) for i = 1, ..., n. If

W = a1Y1 + a2Y2 + ...+ anYn,

where the ai’s are constants. Then W is also Normally distributed, so that

W =
n∑
i=1

aiYi ∼ N
(
n∑
i=1

aiµi,

n∑
i=1

a2
iσ

2
i

)
by equations (1.2) and (1.3).

1.4.2 Chi-squared distribution

1. The central chi-squared distribution with n degrees of freedom is de-
fined as the sum of squares of n independent random variables Z1, ..., Zn
each with the standard Normal distribution. It is denoted by

X2 =
n∑
i=1

Z2
i ∼ χ2(n).

In matrix notation, if z = [Z1, ..., Zn]
T then zT z =

∑n
i=1 Z

2
i so that X2 =

zTz ∼ χ2(n).
2. If X2 has the distribution χ2(n), then its expected value is E(X2) = n and

its variance is var(X2) = 2n.
3. If Y1, ..., Yn are independent Normally distributed random variables each

with the distribution Yi ∼ N(µi, σ2
i ) then

X2 =
n∑
i=1

(
Yi − µi
σi

)2

∼ χ2(n) (1.4)

because each of the variables Zi = (Yi − µi) /σi has the standard Normal
distribution N(0, 1).

4. Let Z1, ..., Zn be independent random variables each with the distribution
N(0, 1) and let Yi = Zi + µi, where at least one of the µi’s is non-zero.
Then the distribution of∑

Y 2
i =

∑
(Zi + µi)

2 =
∑

Z2
i + 2

∑
Ziµi +

∑
µ2
i

© 2002 by Chapman & Hall/CRC

15



has larger mean n + λ and larger variance 2n + 4λ than χ2(n) where λ =∑
µ2
i . This is called the non-central chi-squared distribution with n

degrees of freedom and non-centrality parameter λ. It is denoted by
χ2(n, λ).

5. Suppose that the Yi’s are not necessarily independent and the vector y =
[Y1, . . . , Yn]

T has the multivariate normal distribution y ∼ N(µ,V) where
the variance-covariance matrix V is non-singular and its inverse is V−1.
Then

X2 = (y − µ)TV−1(y − µ) ∼ χ2(n). (1.5)

6. More generally if y ∼ N(µ,V) then the random variable yTV−1y has the
non-central chi-squared distribution χ2(n, λ) where λ = µTV−1µ.

7. If X2
1 , . . . , X

2
m are m independent random variables with the chi-squared

distributions X2
i ∼ χ2(ni, λi), which may or may not be central, then their

sum also has a chi-squared distribution with
∑
ni degrees of freedom and

non-centrality parameter
∑
λi, i.e.,

m∑
i=1

X2
i ∼ χ2

(
m∑
i=1

ni,

m∑
i=1

λi

)
.

This is called the reproductive property of the chi-squared distribution.
8. Let y ∼ N(µ,V), where y has n elements but the Yi’s are not independent

so that V is singular with rank k < n and the inverse of V is not uniquely
defined. Let V−denote a generalized inverse of V. Then the random vari-
able yTV−y has the non-central chi-squared distribution with k degrees of
freedom and non-centrality parameter λ = µTV−µ.

For further details about properties of the chi-squared distribution see Rao
(1973, Chapter 3).

1.4.3 t-distribution

The t-distribution with n degrees of freedom is defined as the ratio of two
independent random variables. The numerator has the standard Normal dis-
tribution and the denominator is the square root of a central chi-squared
random variable divided by its degrees of freedom; that is,

T =
Z

(X2/n)1/2
(1.6)

where Z ∼ N(0, 1), X2 ∼ χ2(n) and Z and X2 are independent. This is
denoted by T ∼ t(n).

1.4.4 F-distribution

1. The central F-distribution with n and m degrees of freedom is defined
as the ratio of two independent central chi-squared random variables each
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divided by its degrees of freedom,

F =
X2

1

n
/
X2

2

m
(1.7)

where X2
1 ∼ χ2(n), X2

2 ∼ χ2(m) and X2
1 and X2

2 are independent. This is
denoted by F ∼ F (n,m).

2. The relationship between the t-distribution and the F-distribution can be
derived by squaring the terms in equation (1.6) and using definition (1.7)
to obtain

T 2 =
Z2

1
/
X2

n
∼ F (1, n), (1.8)

that is, the square of a random variable with the t-distribution, t(n), has
the F-distribution, F (1, n).

3. The non-central F-distribution is defined as the ratio of two indepen-
dent random variables, each divided by its degrees of freedom, where the
numerator has a non-central chi-squared distribution and the denominator
has a central chi-squared distribution, i.e.,

F =
X2

1

n
/
X2

2

m

where X2
1 ∼ χ2(n, λ) with λ = µTV−1µ, X2

2 ∼ χ2(m) and X2
1 and X2

2 are
independent. The mean of a non-central F-distribution is larger than the
mean of central F-distribution with the same degrees of freedom.

1.5 Quadratic forms

1. A quadratic form is a polynomial expression in which each term has
degree 2. Thus y2

1 + y2
2 and 2y2

1 + y2
2 + 3y1y2 are quadratic forms in y1 and

y2 but y2
1 + y2

2 + 2y1 or y2
1 + 3y2

2 + 2 are not.
2. Let A be a symmetric matrix

a11 a12 · · · a1n

a21 a22 · · · a2n

...
. . .

...
an1 an2 · · · ann


where aij = aji, then the expression yTAy =

∑
i

∑
j aijyiyj is a quadratic

form in the yi’s. The expression (y − µ)TV−1(y − µ) is a quadratic form
in the terms (yi − µi) but not in the yi’s.

3. The quadratic form yTAy and the matrix A are said to be positive defi-
nite if yTAy > 0 whenever the elements of y are not all zero. A necessary
and sufficient condition for positive definiteness is that all the determinants

|A1| = a11, |A2| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ , |A3| =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , ..., and
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|An| = det A are all positive.

4. The rank of the matrix A is also called the degrees of freedom of the
quadratic form Q = yTAy.

5. Suppose Y1, ..., Yn are independent random variables each with the Normal
distribution N(0, σ2). Let Q =

∑n
i=1 Y

2
i and let Q1, ..., Qk be quadratic

forms in the Yi’s such that

Q = Q1 + ...+Qk

where Qi has mi degrees of freedom (i = 1, . . . , k). Then
Q1, ..., Qk are independent random variables and
Q1/σ

2 ∼ χ2(m1), Q2/σ
2 ∼ χ2(m2), · · · and Qk/σ2 ∼ χ2(mk),

if and only if,

m1 +m2 + ...+mk = n.

This is Cochran’s theorem; for a proof see, for example, Hogg and Craig
(1995). A similar result holds for non-central distributions; see Chapter 3
of Rao (1973).

6. A consequence of Cochran’s theorem is that the difference of two indepen-
dent random variables,X2

1 ∼ χ2(m) andX2
2 ∼ χ2(k), also has a chi-squared

distribution

X2 = X2
1 −X2

2 ∼ χ2(m− k)

provided that X2 ≥ 0 and m > k.

1.6 Estimation

1.6.1 Maximum likelihood estimation

Let y = [Y1, ..., Yn]
T denote a random vector and let the joint probability

density function of the Yi ’s be

f(y;θ)

which depends on the vector of parameters θ = [θ1, ..., θp]
T
.

The likelihood function L(θ;y) is algebraically the same as the joint
probability density function f(y;θ) but the change in notation reflects a shift
of emphasis from the random variables y, with θ fixed, to the parameters θ
with y fixed. Since L is defined in terms of the random vector y, it is itself a
random variable. Let Ω denote the set of all possible values of the parameter
vector θ; Ω is called the parameter space. The maximum likelihood
estimator of θ is the value θ̂ which maximizes the likelihood function, that
is

L(θ̂;y) ≥ L(θ;y) for all θ in Ω.

Equivalently, θ̂ is the value which maximizes the log-likelihood function
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l(θ;y) = logL(θ;y), since the logarithmic function is monotonic. Thus

l(θ̂;y) ≥ l(θ;y) for all θ in Ω.

Often it is easier to work with the log-likelihood function than with the like-
lihood function itself.

Usually the estimator θ̂ is obtained by differentiating the log-likelihood
function with respect to each element θj of θ and solving the simultaneous
equations

∂l(θ;y)
∂θj

= 0 for j = 1, ..., p. (1.9)

It is necessary to check that the solutions do correspond to maxima of
l(θ;y) by verifying that the matrix of second derivatives

∂2l(θ;y)
∂θj∂θk

evaluated at θ = θ̂ is negative definite. For example, if θ has only one element
θ this means it is necessary to check that[

∂2l(θ, y)
∂θ2

]
θ=θ̂

< 0.

It is also necessary to check if there are any values of θ at the edges of the
parameter space Ω that give local maxima of l(θ;y). When all local maxima
have been identified, the value of θ̂ corresponding to the largest one is the
maximum likelihood estimator. (For most of the models considered in this
book there is only one maximum and it corresponds to the solution of the
equations ∂l/∂θj = 0, j = 1, ..., p.)

An important property of maximum likelihood estimators is that if g(θ)
is any function of the parameters θ, then the maximum likelihood estimator
of g(θ) is g(θ̂). This follows from the definition of θ̂. It is sometimes called
the invariance property of maximum likelihood estimators. A consequence
is that we can work with a function of the parameters that is convenient
for maximum likelihood estimation and then use the invariance property to
obtain maximum likelihood estimates for the required parameters.

In principle, it is not necessary to be able to find the derivatives of the
likelihood or log-likelihood functions or to solve equation (1.9) if θ̂ can be
found numerically. In practice, numerical approximations are very important
for generalized linear models.

Other properties of maximum likelihood estimators include consistency, suf-
ficiency, asymptotic efficiency and asymptotic normality. These are discussed
in books such as Cox and Hinkley (1974) or Kalbfleisch (1985, Chapters 1 and
2).
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1.6.2 Example: Poisson distribution

Let Y1, ..., Yn be independent random variables each with the Poisson distri-
bution

f(yi; θ) =
θyie−θ

yi!
, yi = 0, 1, 2, ...

with the same parameter θ. Their joint distribution is

f(y1, . . . , yn; θ) =
n∏
i=1

f(yi; θ) =
θy1e−θ

y1!
× θy2e−θ

y2!
× · · · × θyne−θ

yn!

=
θΣ yi e−nθ

y1!y2!...yn!
.

This is also the likelihood function L(θ; y1, ..., yn). It is easier to use the log-
likelihood function

l(θ; y1, ..., yn) = logL(θ; y1, ..., yn) = (
∑

yi) log θ − nθ −
∑

(log yi!).

To find the maximum likelihood estimate θ̂, use

dl

dθ
=

1
θ

∑
yi − n.

Equate this to zero to obtain the solution

θ̂ =
∑

yi/n = y.

Since d2l/dθ2 = −
∑
yi/θ

2 < 0, l has its maximum value when θ = θ̂, con-
firming that y is the maximum likelihood estimate.

1.6.3 Least Squares Estimation

Let Y1, ..., Yn be independent random variables with expected values µ1, ..., µn
respectively. Suppose that the µi’s are functions of the parameter vector that
we want to estimate, β = [β1, ..., βp]

T
, p < n. Thus

E(Yi) = µi(β).

The simplest form of the method of least squares consists of finding the
estimator β̂ that minimizes the sum of squares of the differences between Yi’s
and their expected values

S =
∑

[Yi − µi (β)]2 .

Usually β̂ is obtained by differentiating S with respect to each element βj
of β and solving the simultaneous equations

∂S

∂βj
= 0, j = 1, ..., p.

Of course it is necessary to check that the solutions correspond to minima
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(i.e., the matrix of second derivatives is positive definite) and to identify the
global minimum from among these solutions and any local minima at the
boundary of the parameter space.

Now suppose that the Yi’s have variances σ2
i that are not all equal. Then it

may be desirable to minimize the weighted sum of squared differences

S =
∑

wi [Yi − µi (β)]2

where the weights are wi = (σ2
i )

−1. In this way, the observations which are
less reliable (that is, the Yi ’s with the larger variances) will have less influence
on the estimates.

More generally, let y = [Y1, ..., Yn]T denote a random vector with mean vec-
tor µ = [µ1, ..., µn]

T and variance-covariance matrix V. Then the weighted
least squares estimator is obtained by minimizing

S = (y − µ)TV−1(y − µ).

1.6.4 Comments on estimation.

1. An important distinction between the methods of maximum likelihood and
least squares is that the method of least squares can be used without mak-
ing assumptions about the distributions of the response variables Yi be-
yond specifying their expected values and possibly their variance-covariance
structure. In contrast, to obtain maximum likelihood estimators we need
to specify the joint probability distribution of the Yi’s.

2. For many situations maximum likelihood and least squares estimators are
identical.

3. Often numerical methods rather than calculus may be needed to obtain
parameter estimates that maximize the likelihood or log-likelihood function
or minimize the sum of squares. The following example illustrates this
approach.

1.6.5 Example: Tropical cyclones

Table 1.2 shows the number of tropical cyclones in Northeastern Australia
for the seasons 1956-7 (season 1) to 1968-9 (season 13), a period of fairly
consistent conditions for the definition and tracking of cyclones (Dobson and
Stewart, 1974).

Table 1.2 Numbers of tropical cyclones in 13 successive seasons.

Season: 1 2 3 4 5 6 7 8 9 10 11 12 13
No. of cyclones 6 5 4 6 6 3 12 7 4 2 6 7 4

Let Yi denote the number of cyclones in season i, where i = 1, . . . , 13. Sup-
pose the Yi’s are independent random variables with the Poisson distribution
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Figure 1.1 Graph showing the location of the maximum likelihood estimate for the
data in Table 1.2 on tropical cyclones.

with parameter θ. From Example 1.6.2 θ̂ = y = 72/13 = 5.538. An alterna-
tive approach would be to find numerically the value of θ that maximizes the
log-likelihood function. The component of the log-likelihood function due to
yi is

li = yi log θ − θ − log yi!.

The log-likelihood function is the sum of these terms

l =
13∑
i=1

li =
13∑
i=1

(yi log θ − θ − log yi!) .

Only the first two terms in the brackets involve θ and so are relevant to the
optimization calculation, because the term

∑13
1 log yi! is a constant. To plot

the log-likelihood function (without the constant term) against θ, for various
values of θ, calculate (yi log θ − θ) for each yi and add the results to obtain
l∗ =

∑
(yi log θ − θ). Figure 1.1 shows l∗ plotted against θ.

Clearly the maximum value is between θ = 5 and θ = 6. This can provide
a starting point for an iterative procedure for obtaining θ̂. The results of
a simple bisection calculation are shown in Table 1.3. The function l∗ is
first calculated for approximations θ(1) = 5 and θ(2) = 6. Then subsequent
approximations θ(k) for k = 3, 4, ... are the average values of the two previous
estimates of θ with the largest values of l∗(for example, θ(6) = 1

2 (θ(5) + θ(3))).
After 7 steps this process gives θ̂ 
 5.54 which is correct to 2 decimal places.

1.7 Exercises

1.1 Let Y1 and Y2 be independent random variables with

Y1 ∼ N(1, 3) and Y2 ∼ N(2, 5). If W1 = Y1 + 2Y2 and W2 = 4Y1 − Y2 what
is the joint distribution of W1 and W2?

1.2 Let Y1 and Y2 be independent random variables with

Y1 ∼ N(0, 1) and Y2 ∼ N(3, 4).
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Table 1.3 Successive approximations to the maximum likelihood estimate of the mean
number of cyclones per season.

k θ(k) l∗

1 5 50.878
2 6 51.007
3 5.5 51.242
4 5.75 51.192
5 5.625 51.235
6 5.5625 51.243
7 5.5313 51.24354
8 5.5469 51.24352
9 5.5391 51.24360
10 5.5352 51.24359

(a) What is the distribution of Y 2
1 ?

(b) If y =
[

Y1

(Y2 − 3)/2

]
, obtain an expression for yTy . What is its dis-

tribution?

(c) If y =
(
Y1

Y2

)
and its distribution is y ∼ N(µ,V), obtain an expression

for yTV−1y. What is its distribution?

1.3 Let the joint distribution of Y1 and Y2 be N(µ,V) with

µ =
(

2
3

)
and V =

(
4 1
1 9

)
.

(a) Obtain an expression for (y − µ)TV−1(y − µ).What is its distribution?
(b) Obtain an expression for yTV−1y. What is its distribution?

1.4 Let Y1, ..., Yn be independent random variables each with the distribution
N(µ, σ2). Let

Y =
1
n

n∑
i=1

Yi and S2 =
1

n− 1

n∑
i=1

(Yi − Y )2.

(a) What is the distribution of Y ?

(b) Show that S2 =
1

n− 1
[∑n
i=1(Yi − µ)2 − n(Y − µ)2

]
.

(c) From (b) it follows that
∑

(Yi−µ)2/σ2 = (n−1)S2/σ2+
[
(Y − µ)2n/σ2

]
.

How does this allow you to deduce that Y and S2 are independent?
(d) What is the distribution of (n− 1)S2/σ2?

(e) What is the distribution of
Y − µ
S/

√
n

?
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Table 1.4 Progeny of light brown apple moths.

Progeny Females Males
group

1 18 11
2 31 22
3 34 27
4 33 29
5 27 24
6 33 29
7 28 25
8 23 26
9 33 38
10 12 14
11 19 23
12 25 31
13 14 20
14 4 6
15 22 34
16 7 12

1.5 This exercise is a continuation of the example in Section 1.6.2 in which
Y1, ..., Yn are independent Poisson random variables with the parameter θ.

(a) Show that E(Yi) = θ for i = 1, ..., n.
(b) Suppose θ = eβ . Find the maximum likelihood estimator of β.

(c) Minimize S =
∑(

Yi − eβ
)2 to obtain a least squares estimator of β.

1.6 The data below are the numbers of females and males in the progeny of
16 female light brown apple moths in Muswellbrook, New South Wales,
Australia (from Lewis, 1987).

(a) Calculate the proportion of females in each of the 16 groups of progeny.
(b) Let Yi denote the number of females and ni the number of progeny in

each group (i = 1, ..., 16). Suppose the Yi’s are independent random
variables each with the binomial distribution

f(yi; θ) =
(
ni
yi

)
θyi(1 − θ)ni−yi .

Find the maximum likelihood estimator of θ using calculus and evaluate
it for these data.

(c) Use a numerical method to estimate θ̂ and compare the answer with the
one from (b).
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2

Model Fitting

2.1 Introduction

The model fitting process described in this book involves four steps:

1. Model specification – a model is specified in two parts: an equation linking
the response and explanatory variables and the probability distribution of
the response variable.

2. Estimation of the parameters of the model.

3. Checking the adequacy of the model – how well it fits or summarizes the
data.

4. Inference – calculating confidence intervals and testing hypotheses about
the parameters in the model and interpreting the results.

In this chapter these steps are first illustrated using two small examples.
Then some general principles are discussed. Finally there are sections about
notation and coding of explanatory variables which are needed in subsequent
chapters.

2.2 Examples

2.2.1 Chronic medical conditions

Data from the Australian Longitudinal Study on Women’s Health (Brown
et al., 1996) show that women who live in country areas tend to have fewer
consultations with general practitioners (family physicians) than women who
live near a wider range of health services. It is not clear whether this is because
they are healthier or because structural factors, such as shortage of doctors,
higher costs of visits and longer distances to travel, act as barriers to the use
of general practitioner (GP) services. Table 2.1 shows the numbers of chronic
medical conditions (for example, high blood pressure or arthritis) reported
by samples of women living in large country towns (town group) or in more
rural areas (country group) in New South Wales, Australia. All the women
were aged 70-75 years, had the same socio-economic status and had three or
fewer GP visits during 1996. The question of interest is: do women who have
similar levels of use of GP services in the two groups have the same need as
indicated by their number of chronic medical conditions?

The Poisson distribution provides a plausible way of modelling these data
as they are counts and within each group the sample mean and variance are
approximately equal. Let Yjk be a random variable representing the number of
conditions for the kth woman in the jth group, where j = 1 for the town group
and j = 2 for the country group and k = 1, . . . , Kj withK1 = 26 andK2 = 23.
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Table 2.1 Numbers of chronic medical conditions of 26 town women and 23 country
women with similar use of general practitioner services.

Town
0 1 1 0 2 3 0 1 1 1 1 2 0 1 3 0 1 2
1 3 3 4 1 3 2 0
n = 26, mean = 1.423, standard deviation = 1.172, variance = 1.374

Country
2 0 3 0 0 1 1 1 1 0 0 2 2 0 1 2 0 0
1 1 1 0 2
n = 23, mean = 0.913, standard deviation = 0.900, variance = 0.810

Suppose the Yjk’s are all independent and have the Poisson distribution with
parameter θj representing the expected number of conditions.

The question of interest can be formulated as a test of the null hypothesis
H0 : θ1 = θ2 = θ against the alternative hypothesis H1 : θ1 �= θ2. The model
fitting approach to testing H0 is to fit two models, one assuming H0 is true,
that is

E(Yjk) = θ; Yjk ∼ Poisson(θ) (2.1)

and the other assuming it is not, so that

E(Yjk) = θj ; Yjk ∼ Poisson(θj), (2.2)

where j = 1 or 2. Testing H0 against H1 involves comparing how well models
(2.1) and (2.2) fit the data. If they are about equally good then there is little
reason for rejecting H0. However if model (2.2) is clearly better, then H0 would
be rejected in favor of H1.

If H0 is true, then the log-likelihood function of the Yjk’s is

l0 = l(θ;y) =
J∑
j=1

Kj∑
k=1

(yjk log θ − θ − log yjk!), (2.3)

where J = 2 in this case. The maximum likelihood estimate, which can be
obtained as shown in the example in Section 1.6.2, is

θ̂ =
∑∑

yjk/N,

where N =
∑
j Kj . For these data the estimate is θ̂ = 1.184 and the maximum

value of the log-likelihood function, obtained by substituting this value of θ̂
and the data values yjk into (2.3), is l̂0 = −68.3868.
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If H1is true, then the log-likelihood function is

l1 = l(θ1, θ2;y) =
K1∑
k=1

(y1k log θ1 − θ1 − log y1k!)

+
K2∑
k=1

(y2k log θ2 − θ2 − log y2k!). (2.4)

(The subscripts on l0 and l1 in (2.3) and (2.4) are used to emphasize the
connections with the hypotheses H0 and H1, respectively). From (2.4) the
maximum likelihood estimates are θ̂j =

∑
k yjk/Kj for j = 1 or 2. In this case

θ̂1 = 1.423, θ̂2 = 0.913 and the maximum value of the log-likelihood function,
obtained by substituting these values and the data into (2.4), is l̂1 = −67.0230.

The maximum value of the log-likelihood function l1 will always be greater
than or equal to that of l0 because one more parameter has been fitted. To
decide whether the difference is statistically significant we need to know the
sampling distribution of the log-likelihood function. This is discussed in Chap-
ter 4.

If Y ∼ Poisson(θ) then E(Y ) = var(Y ) = θ. The estimate θ̂ of E(Y ) is
called the fitted value of Y . The difference Y − θ̂ is called a residual (other
definitions of residuals are also possible, see Section 2.3.4). Residuals form the
basis of many methods for examining the adequacy of a model. A residual
is usually standardized by dividing by its standard error. For the Poisson
distribution an approximate standardized residual is

r =
Y − θ̂√

θ̂
.

The standardized residuals for models (2.1) and (2.2) are shown in Table
2.2 and Figure 2.1. Examination of individual residuals is useful for assessing
certain features of a model such as the appropriateness of the probability
distribution used for the responses or the inclusion of specific explanatory
variables. For example, the residuals in Table 2.2 and Figure 2.1 exhibit some
skewness, as might be expected for the Poisson distribution.

The residuals can also be aggregated to produce summary statistics measur-
ing the overall adequacy of the model. For example, for Poisson data denoted
by independent random variables Yi, provided that the expected values θi are

not too small, the standardized residuals ri = (Yi − θ̂i)/
√
θ̂i approximately

have the standard Normal distribution N(0, 1), although they are not usually
independent. An intuitive argument is that, approximately, ri ∼ N(0, 1) so
r2i ∼ χ2(1) and hence ∑

r2i =
∑ (Yi − θ̂i)2

θ̂i
∼ χ2(m). (2.5)

In fact, it can be shown that for large samples, (2.5) is a good approximation
with m equal to the number of observations minus the number of parameters
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Table 2.2 Observed values and standardized residuals for the data on chronic medical
conditions (Table 2.1), with estimates obtained from models (2.1) and (2.2).

Value Frequency Standardized residuals Standardized residuals
of Y from (2.1); from (2.2);

θ̂ = 1.184 θ̂1 = 1.423 and θ̂2 = 0.913

Town

0 6 -1.088 -1.193
1 10 -0.169 -0.355
2 4 0.750 0.484
3 5 1.669 1.322
4 1 2.589 2.160

Country

0 9 -1.088 -0.956
1 8 -0.169 0.091
2 5 0.750 1.138
3 1 1.669 2.184

Residuals for 
model (2.1) 

Residuals for 
model (2.2) 

210-1
country

town

country

town

Figure 2.1 Plots of residuals for models (2.1) and (2.2) for the data in Table 2.2 on
chronic medical conditions.
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estimated in order to calculate to fitted values θ̂i (for example, see Agresti,
1990, page 479). Expression (2.5) is, in fact, the usual chi-squared goodness
of fit statistic for count data which is often written as

X2 =
∑ (oi − ei)2

ei
∼ χ2(m)

where oi denotes the observed frequency and ei denotes the corresponding
expected frequency. In this case oi = Yi , ei = θ̂i and

∑
r2i = X2.

For the data on chronic medical conditions, for model (2.1)∑
r2i = 6 × (−1.088)2 + 10 × (−0.169)2 + . . .+ 1 × 1.6692 = 46.759.

This value is consistent with
∑
r2i being an observation from the central chi-

squared distribution with m = 23 + 26 − 1 = 48 degrees of freedom. (Recall
from Section 1.4.2, that if X2 ∼ χ2(m) then E(X2) = m and notice that the
calculated value X2 =

∑
r2i = 46.759 is near the expected value of 48.)

Similarly, for model (2.2)∑
r2i = 6 × (−1.193)2 + . . .+ 1 × 2.1842 = 43.659

which is consistent with the central chi-squared distribution withm = 49−2 =
47 degrees of freedom. The difference between the values of

∑
r2i from models

(2.1) and (2.2) is small: 46.759−43.659 = 3.10. This suggests that model (2.2)
with two parameters, may not describe the data much better than the simpler
model (2.1). If this is so, then the data provide evidence supporting the null
hypothesis H0 : θ1 = θ2. More formal testing of the hypothesis is discussed in
Chapter 4.

The next example illustrates steps of the model fitting process with contin-
uous data.

2.2.2 Birthweight and gestational age

The data in Table 2.3 are the birthweights (in grams) and estimated gesta-
tional ages (in weeks) of 12 male and female babies born in a certain hospital.
The mean ages are almost the same for both sexes but the mean birthweight
for boys is higher than the mean birthweight for girls. The data are shown in
the scatter plot in Figure 2.2. There is a linear trend of birthweight increasing
with gestational age and the girls tend to weigh less than the boys of the
same gestational age. The question of interest is whether the rate of increase
of birthweight with gestational age is the same for boys and girls.

Let Yjk be a random variable representing the birthweight of the kth baby
in group j where j = 1 for boys and j = 2 for girls and k = 1, . . . , 12. Suppose
that the Yjk’s are all independent and are Normally distributed with means
µjk = E(Yjk), which may differ among babies, and variance σ2 which is the
same for all of them.

A fairly general model relating birthweight to gestational age is

E(Yjk) = µjk = αj + βjxjk
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Table 2.3 Birthweight and gestational age for boys and girls.

Boys Girls

Age Birthweight Age Birthweight

40 2968 40 3317
38 2795 36 2729
40 3163 40 2935
35 2925 38 2754
36 2625 42 3210
37 2847 39 2817
41 3292 40 3126
40 3473 37 2539
37 2628 36 2412
38 3176 38 2991
40 3421 39 2875
38 2975 40 3231

Means 38.33 3024.00 38.75 2911.33

4240383634

3500

3000

2500

Gestational age

Birth weight

Figure 2.2 Birthweight plotted against gestational age for boys (open circles) and
girls (solid circles); data in Table 2.3.
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where xjk is the gestational age of the kth baby in group j. The intercept
parameters α1 and α2 are likely to differ because, on average, the boys were
heavier than the girls. The slope parameters β1 and β2 represent the average
increases in birthweight for each additional week of gestational age. The ques-
tion of interest can be formulated in terms of testing the null hypothesis H0 :
β1 = β2 = β (that is, the growth rates are equal and so the lines are parallel),
against the alternative hypothesis H1 : β1 �= β2.

We can test H0 against H1 by fitting two models

E(Yjk) = µjk = αj + βxjk; Yjk ∼ N(µjk, σ2), (2.6)

E(Yjk) = µjk = αj + βjxjk; Yjk ∼ N(µjk, σ2). (2.7)

The probability density function for Yjk is

f(yjk;µjk) =
1√

2πσ2
exp[− 1

2σ2
(yjk − µjk)2].

We begin by fitting the more general model (2.7). The log-likelihood func-
tion is

l1(α1, α2, β1, β2;y) =
J∑
j=1

K∑
k=1

[−1
2

log(2πσ2) − 1
2σ2

(yjk − µjk)2]

= −1
2
JK log(2πσ2) − 1

2σ2

J∑
j=1

K∑
k=1

(yjk − αj − βjxjk)2

where J = 2 and K = 12 in this case. When obtaining maximum likelihood
estimates of α1, α2, β1 and β2 we treat the parameter σ2 as a known constant,
or nuisance parameter, and we do not estimate it.

The maximum likelihood estimates are the solutions of the simultaneous
equations

∂l1
∂αj

=
1
σ2

∑
k

(yjk − αj − βjxjk) = 0,

∂l1
∂βj

=
1
σ2

∑
k

xjk(yjk − αj − βjxjk) = 0, (2.8)

where j = 1 or 2.
An alternative to maximum likelihood estimation is least squares estima-

tion. For model (2.7), this involves minimizing the expression

S1 =
J∑
j=1

K∑
k=1

(yjk − µjk)2 =
J∑
j=1

K∑
k=1

(yjk − αj − βjxjk)2. (2.9)
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The least squares estimates are the solutions of the equations

∂S1

∂αj
= −2

K∑
k=1

(yjk − αj − βjxjk) = 0,

∂S1

∂βj
= −2

K∑
k=1

xjk(yjk − αj − βjxjk) = 0. (2.10)

The equations to be solved in (2.8) and (2.10) are the same and so maximizing
l1 is equivalent to minimizing S1. For the remainder of this example we will
use the least squares approach.

The estimating equations (2.10) can be simplified to

K∑
k=1

yjk −Kαj − βj
K∑
k=1

xjk = 0,

K∑
k=1

xjkyjk −Kαj
K∑
k=1

xjk − βj
K∑
k=1

x2
jk = 0

for j = 1 or 2. These are called the normal equations. The solution is

bj =
K
∑
k xjkyjk − (

∑
k xjk)(

∑
k yjk)

K
∑
k x

2
jk − (

∑
k xjk)2

,

aj = yj − bjxj ,
where aj is the estimate of αj and bj is the estimate of βj , for j = 1 or 2. By
considering the second derivatives of (2.9) it can be verified that the solution
of equations (2.10) does correspond to the minimum of S1. The numerical
value for the minimum value for S1 for a particular data set can be obtained
by substituting the estimates for αj and βj and the data values for yjk and
xjk into (2.9).

To test H0 : β1 = β2 = β against the more general alternative hypothesis
H1, the estimation procedure described above for model (2.7) is repeated
but with the expression in (2.6) used for µjk. In this case there are three
parameters, α1, α2 and β, instead of four to be estimated. The least squares
expression to be minimized is

S0 =
J∑
j=1

K∑
k=1

(yjk − αj − βxjk)2. (2.11)

From (2.11) the least squares estimates are given by the solution of the
simultaneous equations

∂S0

∂αj
= −2

K∑
k=1

(yjk − αj − βxjk) = 0,

∂S0

∂β
= −2

J∑
j=1

K∑
k=1

xjk(yjk − αj − βxjk) = 0, (2.12)
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Table 2.4 Summary of data on birthweight and gestational age in Table 2.3 (sum-
mation is over k=1,...,K where K=12).

Boys (j = 1) Girls (j = 2)∑
x 460 465∑
y 36288 34936∑
x2 17672 18055∑
y2 110623496 102575468∑
xy 1395370 1358497

for j = 1 and 2. The solution is

b =
K
∑
j

∑
k xjkyjk −

∑
j(
∑
k xjk

∑
k yjk)

K
∑
j

∑
k x

2
jk −

∑
j(
∑
k xjk)2

,

aj = yj − bxj .

These estimates and the minimum value for S0 can be calculated from the
data.

For the example on birthweight and gestational age, the data are summa-
rized in Table 2.4 and the least squares estimates and minimum values for S0

and S1 are given in Table 2.5. The fitted values ŷjk are shown in Table 2.6. For
model (2.6), ŷjk = aj + bxjk is calculated from the estimates in the top part
of Table 2.5. For model (2.7), ŷjk = aj+ bjxjk is calculated using estimates in
the bottom part of Table 2.5. The residual for each observation is yjk − ŷjk.
The standard deviation s of the residuals can be calculated and used to obtain
approximate standardized residuals (yjk− ŷjk)/s. Figures 2.3 and 2.4 show for
models (2.6) and (2.7), respectively: the standardized residuals plotted against
the fitted values; the standardized residuals plotted against gestational age;
and Normal probability plots. These types of plots are discussed in Section
2.3.4. The Figures show that:

1. Standardized residuals show no systematic patterns in relation to either
the fitted values or the explanatory variable, gestational age.

2. Standardized residuals are approximately Normally distributed (as the
points are near the solid lines in the bottom graphs).

3. Very little difference exists between the two models.

The apparent lack of difference between the models can be examined by
testing the null hypothesis H0 (corresponding to model (2.6)) against the
alternative hypothesis H1 (corresponding to model (2.7)). If H0 is correct, then
the minimum values Ŝ1 and Ŝ0 should be nearly equal. If the data support this
hypothesis, we would feel justified in using the simpler model (2.6) to describe
the data. On the other hand, if the more general hypothesis H1 is true then
Ŝ0 should be much larger than Ŝ1 and model (2.7) would be preferable.

To assess the relative magnitude of the values Ŝ1 and Ŝ0 we need to use the
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Table 2.5 Analysis of data on birthweight and gestational age in Table 2.3.

Model Slopes Intercepts Minimum sum of squares

(2.6) b = 120.894 a1 = −1610.283 Ŝ0 = 658770.8
a2 = −1773.322

(2.7) b1 = 111.983 a1 = −1268.672 Ŝ1 = 652424.5
b2 = 130.400 a2 = −2141.667

Table 2.6 Observed values and fitted values under model (2.6) and model (2.7) for
data in Table 2.3.

Sex Gestational Birthweight Fitted value Fitted value
age under (2.6) under (2.7)

Boys 40 2968 3225.5 3210.6
38 2795 2983.7 2986.7
40 3163 3225.5 3210.6
35 2925 2621.0 2650.7
36 2625 2741.9 2762.7
37 2847 2862.8 2874.7
41 3292 3346.4 3322.6
40 3473 3225.5 3210.6
37 2628 2862.8 2874.7
38 3176 2983.7 2986.7
40 3421 3225.5 3210.6
38 2975 2983.7 2986.7

Girls 40 3317 3062.5 3074.3
36 2729 2578.9 2552.7
40 2935 3062.5 3074.3
38 2754 2820.7 2813.5
42 3210 3304.2 3335.1
39 2817 2941.6 2943.9
40 3126 3062.5 3074.3
37 2539 2699.8 2683.1
36 2412 2578.9 2552.7
38 2991 2820.7 2813.5
39 2875 2941.6 2943.9
40 3231 3062.5 3074.3
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Figure 2.3 Plots of standardized residuals for Model (2.6) for the data on birthweight
and gestational age (Table 2.3); for the top and middle plots, open circles correspond
to data from boys and solid circles correspond to data from girls.
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Figure 2.4 Plots of standardized residuals for Model (2.7) for the data on birthweight
and gestational age (Table 2.3); for the top and middle plots, open circles correspond
to data from boys and solid circles correspond to data from girls.
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sampling distributions of the corresponding random variables

Ŝ1 =
J∑
j=1

K∑
k=1

(Yjk − aj − bjxjk)2

and

Ŝ0 =
J∑
j=1

K∑
k=1

(Yjk − aj − bxjk)2.

It can be shown (see Exercise 2.3) that

Ŝ1 =
J∑
j=1

K∑
k=1

[Yjk − (αj + βjxjk)]2 −K
J∑
j=1

(Y j − αj − βjxj)2

−
J∑
j=1

(bj − βj)2(
K∑
k=1

x2
jk −Kx2

j )

and that the random variables Yjk, Y j and bj are all independent and have
the following distributions:

Yjk ∼ N(αj + βjxjk, σ2),
Y j ∼ N(αj + βjxj , σ2/K),

bj ∼ N(βj , σ2/(
K∑
k=1

x2
jk −Kx2

j )).

Therefore Ŝ1/σ
2 is a linear combination of sums of squares of random vari-

ables with Normal distributions. In general, there are JK random variables
(Yjk − αj − βjxjk)2/σ2, J random variables (Y j − αj − βjxj)2K/σ2 and J
random variables (bj − βj)2(

∑
k x

2
jk − Kx2

j )/σ
2. They are all independent

and each has the χ2(1) distribution. From the properties of the chi-squared
distribution in Section 1.5, it follows that Ŝ1/σ

2 ∼ χ2(JK − 2J). Similarly,
if H0 is correct then Ŝ0/σ

2 ∼ χ2[JK − (J + 1)]. In this example J = 2 so
Ŝ1/σ

2 ∼ χ2(2K − 4) and Ŝ0/σ
2 ∼ χ2(2K − 3). In each case the value for

the degrees of freedom is the number of observations minus the number of
parameters estimated.

If β1 and β2 are not equal (corresponding to H1), then Ŝ0/σ
2 will have a

non-central chi-squared distribution with JK − (J + 1) degrees of freedom.
On the other hand, provided that model (2.7) describes the data well, Ŝ1/σ

2

will have a central chi-squared distribution with JK− 2J degrees of freedom.
The statistic Ŝ0 − Ŝ1 represents the improvement in fit of (2.7) compared

to (2.6). If H0 is correct, then

1
σ2

(Ŝ0 − Ŝ1) ∼ χ2(J − 1).

If H0 is not correct then (Ŝ0 − Ŝ1)/σ2 has a non-central chi-squared distribu-

© 2002 by Chapman & Hall/CRC

37



N on-cen tra l F
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Figure 2.5 Central and non-central F distributions.

tion. However, as σ2 is unknown, we cannot compare (Ŝ0 − Ŝ1)/σ2 directly
with the χ2(J − 1) distribution. Instead we eliminate σ2 by using the ratio
of (Ŝ0 − Ŝ1)/σ2 and the random variable Ŝ1/σ

2 with a central chi-squared
distribution, each divided by the relevant degrees of freedom,

F =
(Ŝ0 − Ŝ1)/σ2

(J − 1)
/

Ŝ1/σ
2

(JK − 2J)
=

(Ŝ0 − Ŝ1)/(J − 1)

Ŝ1/(JK − 2J)
.

If H0 is correct, from Section 1.4.4, F has the central distribution F (J −
1, JK − 2J). If H0 is not correct, F has a non-central F -distribution and
the calculated value of F will be larger than expected from the central F -
distribution (see Figure 2.5).

For the example on birthweight and gestational age, the value of F is

(658770.8 − 652424.5)/1
652424.5/20

= 0.19

This value is certainly not statistically significant when compared with the
F (1, 20) distribution. Thus the data do not provide evidence against the hy-
pothesis H0 : β0 = β1, and on the grounds of simplicity model (2.6), which
specifies the same slopes but different intercepts, is preferable.

These two examples illustrate the main ideas and methods of statistical
modelling which are now discussed more generally.

2.3 Some principles of statistical modelling

2.3.1 Exploratory data analysis

Any analysis of data should begin with a consideration of each variable sepa-
rately, both to check on data quality (for example, are the values plausible?)
and to help with model formulation.

1. What is the scale of measurement? Is it continuous or categorical? If it
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is categorical how many categories does it have and are they nominal or
ordinal?

2. What is the shape of the distribution? This can be examined using fre-
quency tables, dot plots, histograms and other graphical methods.

3. How is it associated with other variables? Cross tabulations for categorical
variables, scatter plots for continuous variables, side-by-side box plots for
continuous scale measurements grouped according to the factor levels of
a categorical variable, and other such summaries can help to identify pat-
terns of association. For example, do the points on a scatter plot suggest
linear or non-linear relationships? Do the group means increase or decrease
consistently with an ordinal variable defining the groups?

2.3.2 Model formulation

The models described in this book involve a single response variable Y and
usually several explanatory variables. Knowledge of the context in which the
data were obtained, including the substantive questions of interest, theoret-
ical relationships among the variables, the study design and results of the
exploratory data analysis can all be used to help formulate a model. The
model has two components:

1. Probability distribution of Y , for example, Y ∼ N(µ, σ2).

2. Equation linking the expected value of Y with a linear combination of
the explanatory variables, for example, E(Y ) = α + βx or ln[E(Y )] =
β0 + β1 sin(αx).

For generalized linear models the probability distributions all belong to
the exponential family of distributions, which includes the Normal, binomial,
Poisson and many other distributions. This family of distributions is discussed
in Chapter 3. The equation in the second part of the model has the general
form

g[E(Y )] = β0 + β1x1 + . . .+ βmxm

where the part β0 + β1x1 + . . . + βmxm is called the linear component.
Notation for the linear component is discussed in Section 2.4.

2.3.3 Parameter estimation

The most commonly used estimation methods are maximum likelihood and
least squares. These are described in Section 1.6. In this book numerical and
graphical methods are used, where appropriate, to complement calculus and
algebraic methods of optimization.
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2.3.4 Residuals and model checking

Firstly, consider residuals for a model involving the Normal distribution. Sup-
pose that the response variable Yi is modelled by

E(Yi) = µi; Yi ∼ N(µi, σ2).

The fitted values are the estimates µ̂i. Residuals can be defined as yi− µ̂i and
the approximate standardized residuals as

ri = (yi − µ̂i)/σ̂,

where σ̂ is an estimate of the unknown parameter σ. These standardized resid-
uals are slightly correlated because they all depend on the estimates µ̂i and
σ̂ that were calculated from the observations. Also they are not exactly Nor-
mally distributed because σ has been estimated by σ̂. Nevertheless, they are
approximately Normally distributed and the adequacy of the approximation
can be checked using appropriate graphical methods (see below).

The parameters µi are functions of the explanatory variables. If the model
is a good description of the relationship between the response and the ex-
planatory variables, this should be well ‘captured’ or ‘explained’ by the µ̂i’s.
Therefore there should be little remaining information in the residuals yi− µ̂i.
This too can be checked graphically (see below). Additionally, the sum of
squared residuals

∑
(yi − µ̂i)2 provides an overall statistic for assessing the

adequacy of the model; in fact, it is the component of the log-likelihood func-
tion or least squares expression which is optimized in the estimation process.

Secondly, consider residuals from a Poisson model. Recall the model for
chronic medical conditions

E(Yi) = θi; Yi ∼ Poisson(θi).

In this case approximate standardized residuals are of the form

ri =
yi − θ̂i√

θ̂i

.

These can be regarded as signed square roots of contributions to the Pearson
goodness-of-fit statistic ∑

i

(oi − ei)2
ei

,

where oi is the observed value yi and ei is the fitted value θ̂i ‘expected’ from
the model.

For other distributions a variety of definitions of standardized residuals
are used. Some of these are transformations of the terms (yi − µ̂i) designed
to improve their Normality or independence (for example, see Chapter 9 of
Neter et al., 1996). Others are based on signed square roots of contributions
to statistics, such as the log-likelihood function or the sum of squares, which
are used as overall measures of the adequacy of the model (for example, see
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Cox and Snell, 1968; Prigibon, 1981; and Pierce and Shafer, 1986). Many of
these residuals are discussed in more detail in McCullagh and Nelder (1989)
or Krzanowski (1998).

Residuals are important tools for checking the assumptions made in formu-
lating a model. This is because they should usually be independent and have a
distribution which is approximately Normal with a mean of zero and constant
variance. They should also be unrelated to the explanatory variables. There-
fore, the standardized residuals can be compared to the Normal distribution
to assess the adequacy of the distributional assumptions and to identify any
unusual values. This can be done by inspecting their frequency distribution
and looking for values beyond the likely range; for example, no more than 5%
should be less than −1.96 or greater than +1.96 and no more than 1% should
be beyond ±2.58.

A more sensitive method for assessing Normality, however, is to use a Nor-
mal probability plot. This involves plotting the residuals against their ex-
pected values, defined according to their rank order, if they were Normally
distributed. These values are called the Normal order statistics and they
depend on the number of observations. Normal probability plots are available
in all good statistical software (and analogous probability plots for other dis-
tributions are also commonly available). In the plot the points should lie on
or near a straight line representing Normality and systematic deviations or
outlying observations indicate a departure from this distribution.

The standardized residuals should also be plotted against each of the ex-
planatory variables that are included in the model. If the model adequately
describes the effect of the variable, there should be no apparent pattern in the
plot. If it is inadequate, the points may display curvature or some other sys-
tematic pattern which would suggest that additional or alternative terms may
need to be included in the model. The residuals should also be plotted against
other potential explanatory variables that are not in the model. If there is any
systematic pattern, this suggests that additional variables should be included.
Several different residual plots for detecting non-linearity in generalized linear
models have been compared by Cai and Tsai (1999).

In addition, the standardized residuals should be plotted against the fitted
values ŷi, especially to detect changes in variance. For example, an increase in
the spread of the residuals towards the end of the range of fitted values would
indicate a departure from the assumption of constant variance (sometimes
termed homoscedasticity).

Finally, a sequence plot of the residuals should be made using the order in
which the values yi were measured. This might be in time order, spatial order
or any other sequential effect that might cause lack of independence among
the observations. If the residuals are independent the points should fluctuate
randomly without any systematic pattern, such as alternating up and down
or steadily increasing or decreasing. If there is evidence of associations among
the residuals, this can be checked by calculating serial correlation coefficients
among them. If the residuals are correlated, special modelling methods are
needed – these are outlined in Chapter 11.
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2.3.5 Inference and interpretation

It is sometimes useful to think of scientific data as measurements composed of
a message, or signal, that is distorted by noise. For instance, in the example
about birthweight the ‘signal’ is the usual growth rate of babies and the ‘noise’
comes from all the genetic and environmental factors that lead to individual
variation. A goal of statistical modelling is to extract as much information
as possible about the signal. In practice, this has to be balanced against
other criteria such as simplicity. The Oxford Dictionary describes the law of
parsimony (otherwise known as Occam’s Razor) as the principle that no
more causes should be assumed than will account for the effect. Accordingly
a simpler or more parsimonious model that describes the data adequately
is preferable to a more complicated one which leaves little of the variability
‘unexplained’. To determine a parsimonious model consistent with the data,
we test hypotheses about the parameters.

Hypothesis testing is performed in the context of model fitting by defin-
ing a series of nested models corresponding to different hypotheses. Then the
question about whether the data support a particular hypothesis can be for-
mulated in terms of the adequacy of fit of the corresponding model relative
to other more complicated models. This logic is illustrated in the examples
earlier in this chapter. Chapter 5 provides a more detailed explanation of
the concepts and methods used, including the sampling distributions for the
statistics used to describe ‘goodness of fit’.

While hypothesis testing is useful for identifying a good model, it is much
less useful for interpreting it. Wherever possible, the parameters in a model
should have some natural interpretation; for example, the rate of growth of
babies, the relative risk of acquiring a disease or the mean difference in profit
from two marketing strategies. The estimated magnitude of the parameter and
the reliability of the estimate as indicated by its standard error or a confidence
interval are far more informative than significance levels or p-values. They
make it possible to answer questions such as: is the effect estimated with
sufficient precision to be useful, or is the effect large enough to be of practical,
social or biological significance?

2.3.6 Further reading

An excellent discussion of the principles of statistical modelling is in the intro-
ductory part of Cox and Snell (1981). The importance of adopting a systematic
approach is stressed by Kleinbaum et al. (1998). The various steps of model
choice, criticism and validation are outlined by Krzanowski (1998). The use of
residuals is described in Neter et al. (1996), Draper and Smith (1998), Belsley
et al. (1980) and Cook and Weisberg (1999).
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2.4 Notation and coding for explanatory variables

For the models in this book the equation linking each response variable Y and
a set of explanatory variables x1, x2, . . . xm has the form

g[E(Y )] = β0 + β1x1 + . . .+ βmxm.

For responses Y1, ..., YN , this can be written in matrix notation as

g[E(y)] = Xβ (2.13)

where

y =


Y1

.

.

.
YN

 is a vector of responses,

g[E(y)] =


g[E(Y1)]

.

.

.
g[E(YN )]


denotes a vector of functions of the terms E(Yi) (with the same g for every
element),

β =


β1

.

.

.
βp

 is a vector of parameters,

and X is a matrix whose elements are constants representing levels of cat-
egorical explanatory variables or measured values of continuous explanatory
variables.

For a continuous explanatory variable x (such as gestational age in the
example on birthweight) the model contains a term βx where the parameter
β represents the change in the response corresponding to a change of one unit
in x.

For categorical explanatory variables there are parameters for the different
levels of a factor. The corresponding elements of X are chosen to exclude
or include the appropriate parameters for each observation; they are called
dummy variables. If they are only zeros and ones, the term indictor vari-
able is used.

If there are p parameters in the model and N observations, then y is a
N × 1 random vector, β is a p × 1 vector of parameters and X is an N × p
matrix of known constants. X is often called the design matrix and Xβ is
the linear component of the model. Various ways of defining the elements
of X are illustrated in the following examples.
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2.4.1 Example: Means for two groups

For the data on chronic medical conditions the equation in the model

E(Yjk) = θj ; Yjk ∼ Poisson(θj), j = 1, 2

can be written in the form of (2.13) with g as the identity function, (i.e.,
g(θj) = θj),

y =



Y1,1

Y1,2

...
Y1,26

Y2,1

...
Y2,23


, β =

[
θ1
θ2

]
and X =



1 0
1 0
...

...
1 0
0 1
...

...
0 1


The top part of X picks out the terms θ1 corresponding to E(Y1k) and the

bottom part picks out θ2 for E(Y2k). With this model the group means θ1
and θ2 can be estimated and compared.

2.4.2 Example: Simple linear regression for two groups

The more general model for the data on birthweight and gestational age is

E(Yjk) = µjk = αj + βjxjk; Yjk ∼ N(µjk, σ2).

This can be written in the form of (2.13) if g is the identity function,

y =



Y11

Y12

...
Y1K

Y21

...
Y2K


, β =


α1

α2

β1

β2

 and X =



1 0 x11 0
1 0 x12 0
...

...
...

...
1 0 x1K 0
0 1 0 x21

...
...

...
...

0 1 0 x2K


2.4.3 Example: Alternative formulations for comparing the means of two

groups

There are several alternative ways of formulating the linear components for
comparing means of two groups: Y11, ..., Y1K1and Y21, ..., Y2K2 .

(a) E(Y1k) = β1, and E(Y2k) = β2.

This is the version used in Example 2.4.1 above. In this case β =
[
β1

β2

]
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and the rows of X are as follows

Group 1 :
[

1 0
]

Group 2 :
[

0 1
]
.

(b) E(Y1k) = µ+ α1, and E(Y2k) = µ+ α2.

In this version µ represents the overall mean and α1 and α2 are the group

differences from µ. In this case β =

 µ
α1

α2

 and the rows of X are

Group 1 :
[

1 1 0
]

Group 2 :
[

1 0 1
]
.

This formulation, however, has too many parameters as only two param-
eters can be estimated from the two sets of observations. Therefore some
modification or constraint is needed.

(c) E(Y1k) = µ and E(Y2k) = µ+ α.
Here Group 1 is treated as the reference group and α represents the ad-

ditional effect of Group 2. For this version β =
[
µ
α

]
and the rows of X

are

Group 1 :
[

1 0
]

Group 2 :
[

1 1
]
.

This is an example of corner point parameterization in which group
effects are defined as differences from a reference category called the ‘corner
point’.

(d) E(Y1k) = µ+ α, and E(Y2k) = µ− α.
This version treats the two groups symmetrically; µ is the overall average

effect and α represents the group differences. This is an example of a sum-
to-zero constraint because

[E(Y1k) − µ] + [E(Y2k) − µ] = α+ (−α) = 0.

In this case β =
[
µ
α

]
and the rows of X are

Group 1 :
[

1 1
]

Group 2 :
[

1 −1
]
.

2.4.4 Example: Ordinal explanatory variables

Let Yjk denote a continuous measurement of quality of life. Data are collected
for three groups of patients with mild, moderate or severe disease. The groups
can be described by levels of an ordinal variable. This can be specified by
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defining the model using

E(Y1k) = µ

E(Y2k) = µ+ α1

E(Y3k) = µ+ α1 + α2

and hence β =

 µ
α1

α2

 and the rows of X are

Group 1 :
[

1 0 0
]

Group 2 :
[

1 1 0
]

Group 3 :
[

1 1 1
]
.

Thus α1 represents the effect of Group 2 relative to Group 1 and α2 repre-
sents the effect of Group 3 relative to Group 2.

2.5 Exercises

2.1 Genetically similar seeds are randomly assigned to be raised in either a nu-
tritionally enriched environment (treatment group) or standard conditions
(control group) using a completely randomized experimental design. After
a predetermined time all plants are harvested, dried and weighed. The
results, expressed in grams, for 20 plants in each group are shown in Table
2.7.

Table 2.7 Dried weight of plants grown under two conditions.

Treatment group Control group

4.81 5.36 4.17 4.66
4.17 3.48 3.05 5.58
4.41 4.69 5.18 3.66
3.59 4.44 4.01 4.50
5.87 4.89 6.11 3.90
3.83 4.71 4.10 4.61
6.03 5.48 5.17 5.62
4.98 4.32 3.57 4.53
4.90 5.15 5.33 6.05
5.75 6.34 5.59 5.14

We want to test whether there is any difference in yield between the two
groups. Let Yjk denote the kth observation in the jth group where j = 1
for the treatment group, j = 2 for the control group and k = 1, ..., 20 for
both groups. Assume that the Yjk’s are independent random variables with
Yjk ∼ N(µj , σ2). The null hypothesis H0 : µ1 = µ2 = µ, that there is no
difference, is to be compared to the alternative hypothesis H1 : µ1 �= µ2.
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(a) Conduct an exploratory analysis of the data looking at the distributions
for each group (e.g., using dot plots, stem and leaf plots or Normal prob-
ability plots) and calculating summary statistics (e.g., means, medians,
standard derivations, maxima and minima). What can you infer from
these investigations?

(b) Perform an unpaired t-test on these data and calculate a 95% confidence
interval for the difference between the group means. Interpret these
results.

(c) The following models can be used to test the null hypothesis H0 against
the alternative hypothesis H1, where

H0 : E(Yjk) = µ; Yjk ∼ N(µ, σ2),
H1 : E(Yjk) = µj ; Yjk ∼ N(µj , σ2),

for j = 1, 2 and k = 1, ..., 20. Find the maximum likelihood and least
squares estimates of the parameters µ, µ1 and µ2, assuming σ2 is a known
constant.

(d) Show that the minimum values of the least squares criteria are:

for H0, Ŝ0 =
∑∑

(Yjk − Y )2 where Y =
K∑
k=1

K∑
k=1

Yjk/40,

for H1, Ŝ1 =
∑∑

(Yjk − Y j)2 where Y j =
K∑
k=1

Yjk/20

for j = 1, 2.
(e) Using the results of Exercise 1.4 show that

1
σ2
Ŝ1 =

1
σ2

20∑
k=1

20∑
k=1

(Yjk − µj)2 −
20
σ2

2∑
k=1

(Y j − µj)2

and deduce that if H1 is true
1
σ2
Ŝ1 ∼ χ2(38).

Similarly show that

1
σ2
Ŝ0 =

1
σ2

2∑
j=1

20∑
k=1

(Yjk − µ)2 −
40
σ2

2∑
j=1

(Y − µ)2

and if H0 is true then
1
σ2
Ŝ0 ∼ χ2(39).

(f) Use an argument similar to the one in Example 2.2.2 and the results
from (e) to deduce that the statistic

F =
Ŝ0 − Ŝ1

Ŝ1/38
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has the central F -distribution F (1, 38) if H0 is true and a non-central
distribution if H0 is not true.

(g) Calculate the F -statistic from (f) and use it to test H0 against H1. What
do you conclude?

(h) Compare the value of F -statistic from (g) with the t-statistic from
(b), recalling the relationship between the t-distribution and the F -
distribution (see Section 1.4.4) Also compare the conclusions from (b)
and (g).

(i) Calculate residuals from the model for H0 and use them to explore the
distributional assumptions.

2.2 The weights, in kilograms, of twenty men before and after participation in
a ‘waist loss’ program are shown in Table 2.8. (Egger et al., 1999) We
want to know if, on average, they retain a weight loss twelve months after
the program.

Table 2.8 Weights of twenty men before and after participation in a ‘waist loss’
program.

Man Before After Man Before After
1 100.8 97.0 11 105.0 105.0
2 102.0 107.5 12 85.0 82.4
3 105.9 97.0 13 107.2 98.2
4 108.0 108.0 14 80.0 83.6
5 92.0 84.0 15 115.1 115.0
6 116.7 111.5 16 103.5 103.0
7 110.2 102.5 17 82.0 80.0
8 135.0 127.5 18 101.5 101.5
9 123.5 118.5 19 103.5 102.6
10 95.0 94.2 20 93.0 93.0

Let Yjk denote the weight of the kth man at the jth time where j = 1
before the program and j = 2 twelve months later. Assume the Yjk’s
are independent random variables with Yjk ∼ N(µj , σ2) for j = 1, 2 and
k = 1, ..., 20.

(a) Use an unpaired t-test to test the hypothesis

H0 : µ1 = µ2 versus H1 : µ1 �= µ2.

(b) Let Dk = Y1k − Y2k, for k = 1, ..., 20. Formulate models for testing H0

against H1 using the Dk’s. Using analogous methods to Exercise 2.1
above, assuming σ2 is a known constant, test H0 against H1.

(c) The analysis in (b) is a paired t-test which uses the natural relationship
between weights of the same person before and after the program. Are
the conclusions the same from (a) and (b)?
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(d) List the assumptions made for (a) and (b). Which analysis is more
appropriate for these data?

2.3 For model (2.7) for the data on birthweight and gestational age, using
methods similar to those for Exercise 1.4, show

Ŝ1 =
J∑
j=1

K∑
k=1

(Yjk − aj − bjxjk)2

=
J∑
j=1

K∑
k=1

[(Yjk − (αj + βjxjk)]
2 −K

J∑
j=1

(Y j − αj − βjxj)2

−
J∑
j=1

(bj − βj)2(
K∑
k=1

x2
jk −Kx2

j )

and that the random variables Yjk, Y j and bj are all independent and have
the following distributions

Yjk ∼ N(αj + βjxjk, σ2),
Y j ∼ N(αj + βjxj , σ2/K),

bj ∼ N(βj , σ2/(
K∑
k=1

x2
jk −Kx2

j )).

2.4 Suppose you have the following data

x: 1.0 1.2 1.4 1.6 1.8 2.0
y: 3.15 4.85 6.50 7.20 8.25 16.50

and you want to fit a model with

E(Y ) = ln(β0 + β1x+ β2x
2).

Write this model in the form of (2.13) specifying the vectors y and β and
the matrix X.

2.5 The model for two-factor analysis of variance with two levels of one factor,
three levels of the other and no replication is

E(Yjk) = µjk = µ+ αj + βk; Yjk ∼ N(µjk, σ2)

where j = 1, 2; k = 1, 2, 3 and, using the sum-to-zero constraints, α1+α2 =
0, β1 + β2 + β3 = 0. Also the Yjk’s are assumed to be independent. Write
the equation for E(Yjk) in matrix notation. (Hint: let α2 = −α1, and
β3 = −β1 − β2).

© 2002 by Chapman & Hall/CRC

49



3

Exponential Family and Generalized
Linear Models

3.1 Introduction

Linear models of the form

E(Yi) = µi = xTi β; Yi ∼ N(µi, σ2) (3.1)

where the random variables Yi are independent are the basis of most
analyses of continuous data. The transposed vector xTi represents the ith row
of the design matrix X. The example about the relationship between birth-
weight and gestational age is of this form, see Section 2.2.2. So is the exercise
on plant growth where Yi is the dry weight of plants and X has elements to
identify the treatment and control groups (Exercise 2.1). Generalizations of
these examples to the relationship between a continuous response and several
explanatory variables (multiple regression) and comparisons of more than two
means (analysis of variance) are also of this form.

Advances in statistical theory and computer software allow us to use meth-
ods analogous to those developed for linear models in the following more
general situations:

1. Response variables have distributions other than the Normal distribution
– they may even be categorical rather than continuous.

2. Relationship between the response and explanatory variables need not be
of the simple linear form in (3.1).

One of these advances has been the recognition that many of the ‘nice’
properties of the Normal distribution are shared by a wider class of distribu-
tions called the exponential family of distributions. These distributions
and their properties are discussed in the next section.

A second advance is the extension of the numerical methods to estimate the
parameters β from the linear model described in (3.1) to the situation where
there is some non-linear function relating E(Yi) = µi to the linear component
xTi β, that is

g(µi) = xTi β

(see Section 2.4). The function g is called the link function. In the initial for-
mulation of generalized linear models by Nelder and Wedderburn (1972) and
in most of the examples considered in this book, g is a simple mathematical
function. These models have now been further generalized to situations where
functions may be estimated numerically; such models are called generalized
additive models (see Hastie and Tibshirani, 1990). In theory, the estimation
is straightforward. In practice, it may require a considerable amount of com-
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putation involving numerical optimization of non-linear functions. Procedures
to do these calculations are now included in many statistical programs.

This chapter introduces the exponential family of distributions and defines
generalized linear models. Methods for parameter estimation and hypothesis
testing are developed in Chapters 4 and 5, respectively.

3.2 Exponential family of distributions

Consider a single random variable Y whose probability distribution depends
on a single parameter θ. The distribution belongs to the exponential family if
it can be written in the form

f(y; θ) = s(y)t(θ)ea(y)b(θ) (3.2)

where a, b, s and t are known functions. Notice the symmetry between y and
θ. This is emphasized if equation (3.2) is rewritten as

f(y; θ) = exp[a(y)b(θ) + c(θ) + d(y)] (3.3)

where s(y) = exp d(y) and t(θ) = exp c(θ).
If a(y) = y, the distribution is said to be in canonical (that is, standard)

form and b(θ) is sometimes called the natural parameter of the distribu-
tion.

If there are other parameters, in addition to the parameter of interest θ,
they are regarded as nuisance parameters forming parts of the functions
a, b, c and d, and they are treated as though they are known.

Many well-known distributions belong to the exponential family. For exam-
ple, the Poisson, Normal and binomial distributions can all be written in the
canonical form – see Table 3.1.

3.2.1 Poisson distribution

The probability function for the discrete random variable Y is

f(y, θ) =
θye−θ

y!

Table 3.1 Poisson, Normal and binomial distributions as members of the exponential
family.

Distribution Natural parameter c d

Poisson log θ −θ − log y!

Normal
µ

σ2
− µ2

2σ2
− 1

2
log

(
2πσ2

)
− y2

2σ2

Binomial log
(

π

1 − π

)
n log (1 − π) log

(
n
y

)
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where y takes the values 0, 1, 2, . . . . This can be rewritten as

f(y, θ) = exp(y log θ − θ − log y!)

which is in the canonical form because a(y) = y. Also the natural parameter
is log θ.

The Poisson distribution, denoted by Y ∼ Poisson(θ), is used to model
count data. Typically these are the number of occurrences of some event in a
defined time period or space, when the probability of an event occurring in a
very small time (or space) is low and the events occur independently. Exam-
ples include: the number of medical conditions reported by a person (Example
2.2.1), the number of tropical cyclones during a season (Example 1.6.4), the
number of spelling mistakes on the page of a newspaper, or the number of
faulty components in a computer or in a batch of manufactured items. If a
random variable has the Poisson distribution, its expected value and variance
are equal. Real data that might be plausibly modelled by the Poisson distri-
bution often have a larger variance and are said to be overdispersed, and
the model may have to be adapted to reflect this feature. Chapter 9 describes
various models based on the Poisson distribution.

3.2.2 Normal distribution

The probability density function is

f(y;µ) =
1

(2πσ2)1/2
exp

[
− 1

2σ2
(y − µ)2

]
where µ is the parameter of interest and σ2 is regarded as a nuisance param-
eter. This can be rewritten as

f(y;µ) = exp
[
− y2

2σ2
+
yµ

σ2
− µ2

2σ2
− 1

2
log(2πσ2)

]
.

This is in the canonical form. The natural parameter is b(µ) = µ/σ2 and the
other terms in (3.3) are

c(µ) = − µ2

2σ2
− 1

2
log(2πσ2) and d(y) = − y2

2σ2

(alternatively, the term −1
2 log(2πσ2) could be included in d(y)).

The Normal distribution is used to model continuous data that have a
symmetric distribution. It is widely used for three main reasons. First, many
naturally occurring phenomena are well described by the Normal distribution;
for example, height or blood pressure of people. Second, even if data are not
Normally distributed (e.g., if their distribution is skewed) the average or total
of a random sample of values will be approximately Normally distributed; this
result is proved in the Central Limit Theorem. Third, there is a great deal of
statistical theory developed for the Normal distribution, including sampling
distributions derived from it and approximations to other distributions. For
these reasons, if continuous data y are not Normally distributed it is often
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worthwhile trying to identify a transformation, such as y′ = log y or y′ =
√
y,

which produces data y′ that are approximately Normal.

3.2.3 Binomial distribution

Consider a series of binary events, called ‘trials’, each with only two possible
outcomes: ‘success’ or ‘failure’. Let the random variable Y be the number of
‘successes’ in n independent trials in which the probability of success, π, is
the same in all trials. Then Y has the binomial distribution with probability
density function

f(y;π) =
(
n

y

)
πy (1 − π)n−y

where y takes the values 0, 1, 2, . . . , n. This is denoted by Y ∼ binomial(n, π).
Here π is the parameter of interest and n is assumed to be known. The prob-
ability function can be rewritten as

f(y;µ) = exp
[
y log π − y log(1 − π) + n log(1 − π) + log

(
n

y

)]
which is of the form (3.3) with b(π) = log π − log(1 − π) = log [π/(1 − π)] .

The binomial distribution is usually the model of first choice for observa-
tions of a process with binary outcomes. Examples include: the number of
candidates who pass a test (the possible outcomes for each candidate being
to pass or to fail), or the number of patients with some disease who are alive
at a specified time since diagnosis (the possible outcomes being survival or
death).

Other examples of distributions belonging to the exponential family are
given in the exercises at the end of the chapter; not all of them are of the
canonical form.

3.3 Properties of distributions in the exponential family

We need expressions for the expected value and variance of a(Y ). To find these
we use the following results that apply for any probability density function
provided that the order of integration and differentiation can be interchanged.
From the definition of a probability density function, the area under the curve
is unity so ∫

f (y; θ) dy = 1 (3.4)

where integration is over all possible values of y. (If the random variable Y
is discrete then integration is replaced by summation.)

If we differentiate both sides of (3.4) with respect to θ we obtain

d

dθ

∫
f(y; θ)dy =

d

dθ
.1 = 0 (3.5)

If the order of integration and differentiation in the first term is reversed
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then (3.5) becomes ∫
df(y; θ)
dθ

dy = 0 (3.6)

Similarly if (3.4) is differentiated twice with respect to θ and the order of
integration and differentiation is reversed we obtain∫

d2f(y; θ)
dθ2

dy = 0. (3.7)

These results can now be used for distributions in the exponential family.
From (3.3)

f(y; θ) = exp [a(y)b(θ) + c (θ) + d(y)]

so
df(y; θ)
dθ

= [a(y)b′(θ) + c′(θ)] f(y; θ).

By (3.6) ∫
[a(y)b′(θ) + c′(θ)] f(y; θ)dy = 0.

This can be simplified to

b′(θ)E[a(y)] + c′(θ) = 0 (3.8)

because
∫
a(y)f(y; θ)dy =E[a(y)] by the definition of the expected value and∫

c′(θ)f(y; θ)dy = c′(θ) by (3.4). Rearranging (3.8) gives

E[a(Y )] = −c′(θ)/b′(θ). (3.9)

A similar argument can be used to obtain var[a(Y )].

d2f(y; θ)
dθ2

= [a(y)b′′(θ) + c′′(θ)] f(y; θ) + [a(y)b′(θ) + c′(θ)]2 f(y; θ) (3.10)

The second term on the right hand side of (3.10) can be rewritten as

[b′(θ)]2{a(y) − E[a(Y )]}2f(y; θ)

using (3.9). Then by (3.7)∫
d2f(y; θ)
dθ2

dy = b′′(θ)E[a(Y )] + c′′(θ) + [b′(θ)]2var[a(Y )] = 0 (3.11)

because
∫
{a(y)−E[a(Y )]}2f(y; θ)dy = var[a(Y )] by definition.

Rearranging (3.11) and substituting (3.9) gives

var[a(Y )] =
b′′(θ)c′(θ) − c′′(θ)b′(θ)

[b′(θ)]3
(3.12)

Equations (3.9) and (3.12) can readily be verified for the Poisson, Normal
and binomial distributions (see Exercise 3.4) and used to obtain the expected
value and variance for other distributions in the exponential family.
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We also need expressions for the expected value and variance of the deriva-
tives of the log-likelihood function. From (3.3), the log-likelihood function for
a distribution in the exponential family is

l(θ; y) = a(y)b(θ) + c(θ) + d(y).

The derivative of l(θ; y) with respect to θ is

U(θ; y) =
dl(θ; y)
dθ

= a(y)b′(θ) + c′(θ).

The function U is called the score statistic and, as it depends on y, it can
be regarded as a random variable, that is

U = a(Y )b′(θ) + c′(θ). (3.13)

Its expected value is

E(U) = b′(θ)E[a(Y )] + c′(θ).

From (3.9)

E(U) = b′(θ)
[
−c

′(θ)
b′(θ)

]
+ c′(θ) = 0. (3.14)

The variance of U is called the information and will be denoted by I. Us-
ing the formula for the variance of a linear transformation of random variables
(see (1.3) and (3.13))

I = var(U) =
[
b′(θ)2

]
var[a(Y )].

Substituting (3.12) gives

var(U) =
b′′(θ)c′(θ)
b′(θ)

− c′′(θ). (3.15)

The score statistic U is used for inference about parameter values in gen-
eralized linear models (see Chapter 5).

Another property of U which will be used later is

var(U) = E(U2) = −E(U ′). (3.16)

The first equality follows from the general result

var(X) = E(X2) − [E(X)]2

for any random variable, and the fact that E(U) = 0 from (3.14). To obtain
the second equality, we differentiate U with respect to θ; from (3.13)

U ′ =
dU

dθ
= a(Y )b′′(θ) + c′′(θ).

Therefore the expected value of U ′ is

E(U ′) = b′′(θ)E[a(Y )] + c′′(θ)

= b′′(θ)
[
−c

′(θ)
b′(θ)

]
+ c′′(θ) (3.17)

= −var(U) = −I
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by substituting (3.9) and then using (3.15).

3.4 Generalized linear models

The unity of many statistical methods was demonstrated by Nelder and Wed-
derburn (1972) using the idea of a generalized linear model. This model is
defined in terms of a set of independent random variables Y1, . . . , YN each
with a distribution from the exponential family and the following properties:

1. The distribution of each Yi has the canonical form and depends on a single
parameter θi (the θi’s do not all have to be the same), thus

f(yi; θi) = exp [yibi(θi) + ci(θi) + di(yi)] .

2. The distributions of all the Yi’s are of the same form (e.g., all Normal or
all binomial) so that the subscripts on b, c and d are not needed.

Thus the joint probability density function of Y1, . . . , YN is

f(y1, . . . , yN ; θ1, . . . , θN ) =
N∏
i=1

exp [yib(θi) + c(θi) + d(yi)] (3.18)

= exp

[
N∑
i=1

yib(θi) +
N∑
i=1

c(θi) +
N∑
i=1

d(yi)

]
.

(3.19)

The parameters θi are typically not of direct interest (since there may be
one for each observation). For model specification we are usually interested
in a smaller set of parameters β1, . . . , βp (where p < N ). Suppose that
E(Yi) = µi where µi is some function of θi. For a generalized linear model
there is a transformation of µi such that

g(µi) = xTi β.

In this equation
g is a monotone, differentiable function called the link function; xi is a

p × 1 vector of explanatory variables (covariates and dummy variables for
levels of factors),

xi =

 xi1
...
xip

 so xTi =
[
xi1 · · · xip

]

and β is the p × 1 vector of parameters β =

 β1

...
βp

 . The vector xi is the

ith column of the design matrix X.
Thus a generalized linear model has three components:
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1. Response variables Y1, . . . , YN which are assumed to share the same dis-
tribution from the exponential family;

2. A set of parameters β and explanatory variables

X =

 xT1
...

xTN

 =

 x11 . . . x1p

...
...

xN1 xNp

 ;

3. A monotone link function g such that

g(µi) = xTi β

where

µi = E(Yi).

This chapter concludes with three examples of generalized linear models.

3.5 Examples

3.5.1 Normal Linear Model

The best known special case of a generalized linear model is the model

E(Yi) = µi = xTi β; Yi ∼ N(µi, σ2)

where Y1, ..., YN are independent. Here the link function is the identity func-
tion, g(µi) = µi. This model is usually written in the form

y = Xβ + e

where e =

 e1
...
eN

 and the ei’s are independent, identically distributed ran-

dom variables with ei ∼ N(0, σ2) for i = 1, ..., N .
In this form, the linear component µ = Xβ represents the ‘signal’ and e

represents the ‘noise’, random variation or ‘error’. Multiple regression, analysis
of variance and analysis of covariance are all of this form. These models are
considered in Chapter 6.

3.5.2 Historical Linguistics

Consider a language which is the descendent of another language; for example,
modern Greek is a descendent of ancient Greek, and the Romance languages
are descendents of Latin. A simple model for the change in vocabulary is that
if the languages are separated by time t then the probability that they have
cognate words for a particular meaning is e−θt where θ is a parameter (see
Figure 3.1). It is believed that θ is approximately the same for many commonly
used meanings. For a test list of N different commonly used meanings suppose
that a linguist judges, for each meaning, whether the corresponding words in

© 2002 by Chapman & Hall/CRC

57



Latin word 

Modern French 
word 

Modern Spanish 
word 

time 

Figure 3.1 Schematic diagram for the example on historical linguistics.

two languages are cognate or not cognate. We can develop a generalized linear
model to describe this situation.

Define random variables Y1, . . . , YN as follows:

Yi =
{

1 if the languages have cognate words for meaning i,
0 if the words are not cognate.

Then

P (Yi = 1) = e−θt

and

P (Yi = 0) = 1 − e−θt.
This is a special case of the distribution binomial(n, π) with n = 1 and E(Yi) =
π = e−θt. In this case the link function g is taken as logarithmic

g(π) = log π = −θt
so that g[E(Y )] is linear in the parameter θ. In the notation used above,
xi = [−t] (the same for all i) and β = [θ].

3.5.3 Mortality Rates

For a large population the probability of a randomly chosen individual dying
at a particular time is small. If we assume that deaths from a non-infectious
disease are independent events, then the number of deaths Y in a population
can be modelled by a Poisson distribution

f(y;µ) =
µye−µ

y!

where y can take the values 0, 1, 2, . . . and µ = E(Y ) is the expected number
of deaths in a specified time period, such as a year.

The parameter µ will depend on the population size, the period of observa-
tion and various characteristics of the population (e.g., age, sex and medical
history). It can be modelled, for example, by

E(Y ) = µ = nλ(xTβ)
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Table 3.2 Numbers of deaths from coronary heart disease and population sizes by
5-year age groups for men in the Hunter region of New South Wales, Australia in
1991.

Age group Number of Population Rate per 100,000 men
(years) deaths, yi size, ni per year, yi/ni × 10, 000

30 - 34 1 17,742 5.6
35 - 39 5 16,554 30.2
40 - 44 5 16,059 31.1
45 - 49 12 13,083 91.7
50 - 54 25 10,784 231.8
55 - 59 38 9,645 394.0
60 - 64 54 10,706 504.4
65 - 69 65 9,933 654.4

30-34 40-44 50-54 60-64
1.5

2.5

3.5

4.5

5.5

6.5

Age (years)

log(death rate)

Figure 3.2 Death rate per 100,000 men (on a logarithmic scale) plotted against age.

where n is the population size and λ(xTβ) is the rate per 100,000 people per
year (which depends on the population characteristics described by the linear
component xTβ).

Changes in mortality with age can be modelled by taking independent ran-
dom variables Y1, . . . , YN to be the numbers of deaths occurring in successive
age groups. For example, Table 3.2 shows age-specific data for deaths from
coronary heart disease.

Figure 3.2 shows how the mortality rate yi/ni×100, 000 increases with age.
Note that a logarithmic scale has been used on the vertical axis. On this
scale the scatter plot is approximately linear, suggesting that the relationship
between yi/ni and age group i is approximately exponential. Therefore a

© 2002 by Chapman & Hall/CRC

59



possible model is

E(Yi) = µi = nie
θi ; Yi ∼ Poisson(µi),

where i = 1 for the age group 30-34 years, i = 2 for 35-39, ..., i = 8 for 65-69
years.

This can be written as a generalized linear model using the logarithmic link
function

g(µi) = logµi = logni + θi

which has the linear component xTi β with xTi =
[

log ni i
]

and β =
[

1
θ

]
.

3.6 Exercises

3.1 The following relationships can be described by generalized linear models.
For each one, identify the response variable and the explanatory variables,
select a probability distribution for the response (justifying your choice)
and write down the linear component.

(a) The effect of age, sex, height, mean daily food intake and mean daily
energy expenditure on a person’s weight.

(b) The proportions of laboratory mice that became infected after exposure
to bacteria when five different exposure levels are used and 20 mice are
exposed at each level.

(c) The relationship between the number of trips per week to the super-
market for a household and the number of people in the household, the
household income and the distance to the supermarket.

3.2 If the random variable Y has the Gamma distribution with a scale pa-
rameter θ, which is the parameter of interest, and a known shape parameter
φ, then its probability density function is

f(y; θ) =
yφ−1θφe−yθ

Γ(φ)
.

Show that this distribution belongs to the exponential family and find the
natural parameter. Also using results in this chapter, find E(Y ) and var(Y ).

3.3 Show that the following probability density functions belong to the expo-
nential family:

(a) Pareto distribution f(y; θ) = θy−θ−1.

(b) Exponential distribution f(y; θ) = θe−yθ.

(c) Negative binomial distribution

f(y; θ) =
(
y + r − 1
r − 1

)
θr (1 − θ)y

where r is known.
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3.4 Use results (3.9) and (3.12) to verify the following results:

(a) For Y ∼ Poisson(θ), E(Y ) = var(Y ) = θ.
(b) For Y ∼ N(µ, σ2), E(Y ) = µ and var(Y ) = σ2.
(c) For Y ∼ binomial(n, π), E(Y ) = nπ and var(Y ) = nπ(1 − π).

3.5 Do you consider the model suggested in Example 3.5.3 to be adequate
for the data shown in Figure 3.2? Justify your answer. Use simple linear
regression (with suitable transformations of the variables) to obtain a model
for the change of death rates with age. How well does the model fit the
data? (Hint: compare observed and expected numbers of deaths in each
groups.)

3.6 Consider N independent binary random variables Y1, . . . , YN with

P (Yi = 1) = πi and P (Yi = 0) = 1 − πi .

The probability function of Yi can be written as

πyii (1 − πi)1−yi

where yi = 0 or 1.

(a) Show that this probability function belongs to the exponential family of
distributions.

(b) Show that the natural parameter is

log
(

πi
1 − πi

)
.

This function, the logarithm of the odds πi/(1− πi), is called the logit
function.

(c) Show that E(Yi) = πi.
(d) If the link function is

g(π) = log
(

π

1 − π

)
= xTβ

show that this is equivalent to modelling the probability π as

π =
ex

T β

1 + exT β
.

(e) In the particular case where xTβ = β1 + β2x, this gives

π =
eβ1+β2x

1 + eβ1+β2x

which is the logistic function.
(f) Sketch the graph of π against x in this case, taking β1 and β2 as con-

stants. How would you interpret this graph if x is the dose of an insec-
ticide and π is the probability of an insect dying?
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3.7 Is the extreme value (Gumbel) distribution, with probability density
function

f(y; θ) =
1
φ

exp
{

(y − θ)
φ

− exp
[
(y − θ)
φ

]}
(where φ > 0 regarded as a nuisance parameter) a member of the exponen-
tial family?

3.8 Suppose Y1, ..., YN are independent random variables each with the Pareto
distribution and

E(Yi) = (β0 + β1xi)2.

Is this a generalized linear model? Give reasons for your answer.
3.9 Let Y1, . . . , YN be independent random variables with

E(Yi) = µi = β0 + log (β1 + β2xi) ; Yi ∼ N(µ, σ2)

for all i = 1, ..., N . Is this a generalized linear model? Give reasons for your
answer.

3.10 For the Pareto distribution find the score statistics U and the information
I = var(U). Verify that E(U) = 0.
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4

Estimation

4.1 Introduction

This chapter is about obtaining point and interval estimates of parameters
for generalized linear models using methods based on maximum likelihood.
Although explicit mathematical expressions can be found for estimators in
some special cases, numerical methods are usually needed. Typically these
methods are iterative and are based on the Newton-Raphson algorithm. To
illustrate this principle, the chapter begins with a numerical example. Then
the theory of estimation for generalized linear models is developed. Finally
there is another numerical example to demonstrate the methods in detail.

4.2 Example: Failure times for pressure vessels

The data in Table 4.1 are the lifetimes (times to failure in hours) of Kevlar
epoxy strand pressure vessels at 70% stress level. They are given in Table 29.1
of the book of data sets by Andrews and Herzberg (1985).

Figure 4.1 shows the shape of their distribution.
A commonly used model for times to failure (or survival times) is the

Weibull distribution which has the probability density function

f(y;λ, θ) =
λyλ−1

θλ
exp

[
−
(y
θ

)λ]
(4.1)

where y > 0 is the time to failure, λ is a parameter that determines the
shape of the distribution and θ is a parameter that determines the scale.
Figure 4.2 is a probability plot of the data in Table 4.1 compared to the
Weibull distribution with λ = 2. Although there are discrepancies between
the distribution and the data for some of the shorter times, for most of the

Table 4.1 Lifetimes of pressure vessels.

1051 4921 7886 10861 13520
1337 5445 8108 11026 13670
1389 5620 8546 11214 14110
1921 5817 8666 11362 14496
1942 5905 8831 11604 15395
2322 5956 9106 11608 16179
3629 6068 9711 11745 17092
4006 6121 9806 11762 17568
4012 6473 10205 11895 17568
4063 7501 10396 12044
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Figure 4.1 Distribution of lifetimes of pressure vessels.
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Figure 4.2 Probability plot of the data on lifetimes of pressure vessels compared to
the Weibull distribution with shape parameter = 2.

observations the distribution appears to provide a good model for the data.
Therefore we will use a Weibull distribution with λ = 2 and estimate θ.

The distribution in (4.1) can be written as

f(y; θ) = exp
[
log λ+ (λ− 1) log y − λ log θ − (y/θ)λ

]
.

This belongs to the exponential family (3.2) with

a(y) = yλ, b(θ) = −θ−λ, c(θ) = log λ− λ log θ and d(y) = (λ− 1) log y (4.2)

where λ is a nuisance parameter. This is not in the canonical form (unless
λ = 1, corresponding to the exponential distribution) and so it cannot be
used directly in the specification of a generalized linear model. However it is
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t(x) 

Figure 4.3 Newton-Raphson method for finding the solution of the equation t(x)=0.

suitable for illustrating the estimation of parameters for distributions in the
exponential family.

Let Y1, ..., YN denote the data, with N = 49. If the data are from a ran-
dom sample of pressure vessels, we assume the Yi’s are independent random
variables. If they all have the Weibull distribution with the same parameters,
their joint probability distribution is

f(y1, ..., yN ; θ, λ) =
N∏
i=1

λyλ−1
i

θλ
exp

[
−
(yi
θ

)λ]
.

The log-likelihood function is

f(θ; y1, ..., yN , λ) =
N∑
i=1

[
[(λ− 1) log yi + log λ− λ log θ] −

(yi
θ

)λ]
. (4.3)

To maximize this function we require the derivative with respect to θ. This is
the score function

dl

dθ
= U =

N∑
i=1

[
−λ
θ

+
λyλi
θλ+1

]
(4.4)

The maximum likelihood estimator θ̂ is the solution of the equation U(θ) = 0.
In this case it is easy to find an explicit expression for θ̂ if λ is a known
constant, but for illustrative purposes, we will obtain a numerical solution
using the Newton-Raphson approximation.

Figure 4.3 shows the principle of the Newton-Raphson algorithm. We want
to find the value of x at which the function t crosses the x-axis, i.e., where
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t(x) = 0. The slope of t at a value x(m−1) is given by[
dt

dx

]
x=x(m−1)

= t′(x(m−1)) =
t(x(m)) − t(x(m−1))
x(m) − x(m−1)

(4.5)

where the distance x(m) − x(m−1) is small. If x(m) is the required solution so
that t (xm) = 0, then (4.5) can be re-arranged to give

x(m) = x(m−1) − t(x(m−1))
t′(x(m−1))

. (4.6)

This is the Newton-Raphson formula for solving t(x) = 0. Starting with an
initial guess x(1) successive approximations are obtained using (4.6) until the
iterative process converges.

For maximum likelihood estimation using the score function, the estimating
equation equivalent to (4.6) is

θ(m) = θ(m−1) − U (m−1)

U ′(m−1)
. (4.7)

From (4.4), for the Weibull distribution with λ = 2,

U = −2 ×N
θ

+
2 ×

∑
y2
i

θ3
(4.8)

which is evaluated at successive estimates θ(m). The derivative of U , obtained
by differentiating (4.4), is

dU

dθ
= U ′ =

N∑
i=1

[
λ

θ2
− λ(λ+ 1)yλi

θλ+2

]
=

2 ×N
θ2

− 2 × 3 ×
∑
y2
i

θ4
. (4.9)

For maximum likelihood estimation, it is common to approximate U ′ by
its expected value E(U ′). For distributions in the exponential family, this is
readily obtained using expression (3.17). The information I is

I = E(−U ′) = E

[
−
N∑
i=1

U ′
i

]
=
N∑
i=1

[E(−U ′
i)]

=
N∑
i=1

[
b′′(θ)c′(θ)
b′(θ)

− c′′(θ)
]

=
λ2N

θ2
(4.10)

where Ui is the score for Yi and expressions for b and c are given in (4.2).
Thus an alternative estimating equation is

θ(m) = θ(m−1) +
U (m−1)

I
(m−1)

(4.11)
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Table 4.2 Details of Newton-Raphson iterations to obtain a maximum likelihood es-
timate for the scale parameter for the Weibull distribution to model the data in Table
4.1.

Iteration 1 2 3 4

θ 8805.9 9633.9 9876.4 9892.1
U × 106 2915.10 552.80 31.78 0.21
U ′ × 106 -3.52 -2.28 -2.02 -2.00
E(U ′) × 106 -2.53 -2.11 -2.01 -2.00
U/U ′ -827.98 -242.46 -15.73 -0.105
U/E(U ′) -1152.21 -261.99 -15.81 -0.105

This is called the method of scoring.
Table 4.2 shows the results of using equation (4.7) iteratively taking the

mean of the data in Table 4.1, y = 8805.9, as the initial value θ(1); this and
subsequent approximations are shown in the top row of Table 4.2. Numbers in
the second row were obtained by evaluating (4.8) at θ(m) and the data values;
they approach zero rapidly. The third and fourth rows, U ′ and E(U ′) = −I,
have similar values illustrating that either could be used; this is further shown
by the similarity of the numbers in the fifth and sixth rows. The final estimate
is θ(5) = 9892.1−(−0.105) = 9892.2 – this is the maximum likelihood estimate
θ̂ for these data. At this value the log-likelihood function, calculated from
(4.3), is l = −480.850.

Figure 4.4 shows the log-likelihood function for these data and the Weibull
distribution with λ = 2. The maximum value is at θ̂ = 9892.2. The curvature
of the function in the vicinity of the maximum determines the reliability of
θ̂. The curvature of l is defined by the rate of change of U , that is, by U ′. If
U ′, or E(U ′), is small then l is flat so that U is approximately zero for a wide
interval of θ values. In this case θ̂ is not well-determined and its standard error
is large. In fact, it is shown in Chapter 5 that the variance of θ̂ is inversely
related to I =E(−U ′) and the standard error of θ̂ is approximately

s.e.(θ̂) =
√

1/I. (4.12)

For this example, at θ̂ = 9892.2, I = −E(U ′) = 2.00 × 10−6 so s.e.(θ̂) =
1
/√

0.000002 = 707. If the sampling distribution of θ̂ is approximately Nor-
mal, a 95% confidence interval for θ is given approximately by

9892 ± 1.96 × 707, or (8506, 11278).

The methods illustrated in this example are now developed for generalized
linear models.
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Figure 4.4 Log-likelihood function for the pressure vessel data in Table 4.1.

4.3 Maximum likelihood estimation

Consider independent random variables Y1, ..., YN satisfying the properties
of a generalized linear model. We wish to estimate parameters β which are
related to the Yi’s through E(Yi) = µi and g(µi) = xTi β.

For each Yi, the log-likelihood function is

li = yib(θi) + c(θi) + d(yi) (4.13)

where the functions b, c and d are defined in (3.3). Also

E(Yi) = µi = −c′(θi)/b′(θi) (4.14)

var(Yi) = [b′′(θi)c′(θi) − c′′(θi)b′(θi)] / [b′(θi)]
3 (4.15)

and g(µi) = xTi β = ηi (4.16)

where xi is a vector with elements xij , j = 1, ...p.
The log-likelihood function for all the Yi’s is

l =
N∑
i=1

li =
∑

yib(θi) +
∑

c(θi) +
∑

d(yi).

To obtain the maximum likelihood estimator for the parameter βj we need

∂l

∂βj
= Uj =

N∑
i=1

[
∂li
∂βj

]
=
N∑
i=1

[
∂li
∂θi

.
∂θi
∂µi

.
∂µi
∂βj

]
(4.17)

using the chain rule for differentiation. We will consider each term on the right
hand side of (4.17) separately. First

∂li
∂θi

= yib
′(θi) + c′(θi) = b′(θi)(yi − µi)
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by differentiating (4.13) and substituting (4.14). Next

∂θi
∂µi

= 1
/(

∂µi
∂θi

)
.

Differentiation of (4.14) gives

∂µi
∂θi

=
−c′′(θi)
b′(θi)

+
c′(θi)b′′(θi)

[b′(θi)]
2

= b′(θi)var(Yi)

from (4.15). Finally, from (4.16)

∂µi
∂βj

=
∂µi
∂ηi

.
∂ηi
∂βj

=
∂µi
∂ηi

xij.

Hence the score, given in (4.17), is

Uj =
N∑
i=1

[
(yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)]
. (4.18)

The variance-covariance matrix of the Uj ’s has terms

Ijk = E [UjUk]

which form the information matrix I. From (4.18)

Ijk = E

{
N∑
i=1

[
(Yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)] N∑
l=1

[
(Yl − µl)
var(Yl)

xlk

(
∂µl
∂ηl

)]}

=
N∑
i=1

E
[
(Yi − µi)2

]
xijxik

[var(Yi)]
2

(
∂µi
∂ηi

)2

(4.19)

because E[(Yi − µi)(Yl − µl)] = 0 for i �= l as the Yi’s are independent. Using
E
[
(Yi − µi)2

]
= var(Yi), (4.19) can be simplified to

Ijk =
N∑
i=1

xijxik
var(Yi)

(
∂µi
∂ηi

)2

. (4.20)

The estimating equation (4.11) for the method of scoring generalizes to

b(m) = b(m−1) +
[
I

(m−1)
]−1

U(m−1) (4.21)

where b(m) is the vector of estimates of the parameters β1, ..., βp at the mth

iteration. In equation (4.21),
[
I

(m−1)
]−1

is the inverse of the information

matrix with elements Ijk given by (4.20) and U(m−1) is the vector of elements
given by (4.18), all evaluated at b(m−1). If both sides of equation (4.21) are
multiplied by I

(m−1) we obtain

I
(m−1)b(m) = I

(m−1)b(m−1) + U(m−1). (4.22)
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From (4.20) I can be written as

I = XTWX

where W is the N ×N diagonal matrix with elements

wii =
1

var(Yi)

(
∂µi
∂ηi

)2

. (4.23)

The expression on the right-hand side of (4.22) is the vector with elements
p∑
k=1

N∑
i=1

xijxik
var(Yi)

(
∂µi
∂ηi

)2

b
(m−1)
k +

N∑
i=1

(yi − µi)xij
var(Yi)

(
∂µi
∂ηi

)
evaluated at b(m−1); this follows from equations (4.20) and (4.18). Thus the
right-hand side of equation (4.22) can be written as

XTWz

where z has elements

zi =
p∑
k=1

xikb
(m−1)
k + (yi − µi)

(
∂ηi
∂µi

)
(4.24)

with µi and ∂ηi/∂µi evaluated at b(m−1).
Hence the iterative equation (4.22), can be written as

XTWXb(m) = XTWz. (4.25)

This is the same form as the normal equations for a linear model obtained by
weighted least squares, except that it has to be solved iteratively because, in
general, z and W depend on b. Thus for generalized linear models, maximum
likelihood estimators are obtained by an iterative weighted least squares
procedure (Charnes et al., 1976).

Most statistical packages that include procedures for fitting generalized lin-
ear models have an efficient algorithm based on (4.25). They begin by using
some initial approximation b(0) to evaluate z and W, then (4.25) is solved
to give b(1) which in turn is used to obtain better approximations for z and
W, and so on until adequate convergence is achieved. When the difference
between successive approximations b(m−1) and b(m) is sufficiently small, b(m)

is taken as the maximum likelihood estimate.
The example below illustrates the use of this estimation procedure.

4.4 Poisson regression example

The artificial data in Table 4.3 are counts y observed at various values of a
covariate x. They are plotted in Figure 4.5.

Let us assume that the responses Yi are Poisson random variables. In prac-
tice, such an assumption would be made either on substantive grounds or from
noticing that in Figure 4.5 the variability increases with Y . This observation
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Table 4.3 Data for Poisson regression example.

yi 2 3 6 7 8 9 10 12 15
xi −1 −1 0 0 0 0 1 1 1

-1 0 1

5

10

15

x

y

Figure 4.5 Poisson regression example (data in Table 4.3).

supports the use of the Poisson distribution which has the property that the
expected value and variance of Yi are equal

E(Yi) = var(Yi). (4.26)

Let us model the relationship between Yi and xi by the straight line

E(Yi) = µi = β1 + β2xi

= xTi β

where

β =
[
β1

β2

]
and xi =

[
1
xi

]
for i = 1, ..., N . Thus we take the link function g(µi) to be the identity function

g(µi) = µi = xTi β = ηi.

Therefore ∂µi/∂ηi = 1 which simplifies equations (4.23) and (4.24). From
(4.23) and (4.26)

wii =
1

var(Yi)
=

1
β1 + β2xi

.
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Using the estimate b =
[
b1
b2

]
for β, equation (4.24) becomes

zi = b1 + b2xi + (yi − b1 − b2xi) = yi.

Also

I = XTWX =


∑N
i=1

1
b1 + b2xi

∑N
i=1

xi
b1 + b2xi

∑N
i=1

xi
b1 + b2xi

∑N
i=1

x2
i

b1 + b2xi


and

XTWz =


∑N
i=1

yi
b1 + b2xi∑N

i=1

xiyi
b1 + b2xi

 .
The maximum likelihood estimates are obtained iteratively from the equations

(XTWX)(m−1)b(m)= XTWz(m−1)

where the superscript (m−1) denotes evaluation at b(m−1).
For these data, N = 9

y = z =


2
3
...

15

 and X =


x1

x2

...
x9

 =


1 −1
1 −1
...

...
1 1

 .
From Figure 4.5 we can obtain initial estimates b(1)1 = 7 and b

(1)
2 = 5.

Therefore

(XTWX)(1) =
[

1.821429 −0.75
−0.75 1.25

]
, (XTWz)(1) =

[
9.869048
0.583333

]
so b(2) =

[
(XTWX)(1)

]−1

(XTWz)(1)

=
[

0.729167 0.4375
0.4375 1.0625

] [
9.869048
0.583333

]
=
[

7.4514
4.9375

]
.

This iterative process is continued until it converges. The results are shown
in Table 4.4.

The maximum likelihood estimates are β̂1 = 7.45163 and β̂2 = 4.93530. At
these values the inverse of the information matrix I = XTWX is

I
−1 =

[
0.7817 0.4166
0.4166 1.1863

]
(this is the variance-covariance matrix for β̂ – see Section 5.4). So, for example,
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Table 4.4 Successive approximations for regression coefficients in the Poisson re-
gression example.

m 1 2 3 4
b
(m)
1 7 7.45139 7.45163 7.45163
b
(m)
2 5 4.93750 4.93531 4.93530

Table 4.5 Numbers of cases of AIDS in Australia for successive quarter from 1984
to 1988.

Quarter
Year 1 2 3 4

1984 1 6 16 23
1985 27 39 31 30
1986 43 51 63 70
1987 88 97 91 104
1988 110 113 149 159

an approximate 95% confidence interval for the slope β2 is

4.9353 ± 1.96
√

1.1863 or (2.80, 7.07).

4.5 Exercises

4.1 The data in Table 4.5 show the numbers of cases of AIDS in Australia by
date of diagnosis for successive 3-months periods from 1984 to 1988. (Data
from National Centre for HIV Epidemiology and Clinical Research, 1994.)
In this early phase of the epidemic, the numbers of cases seemed to be
increasing exponentially.

(a) Plot the number of cases yi against time period i (i = 1, .., 20).
(b) A possible model is the Poisson distribution with parameter λi = iθ, or

equivalently

log λi = θ log i.

Plot log yi against log i to examine this model.
(c) Fit a generalized linear model to these data using the Poisson distribu-

tion, the log-link function and the equation

g(λi) = log λi = β1 + β2xi,

where xi = log i. Firstly, do this from first principles, working out expres-
sions for the weight matrix W and other terms needed for the iterative
equation

XTWXb(m) = XTWz
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Table 4.6 Survival time, yi, in weeks and log10(initial white blood cell count), xi,
for seventeen leukemia patients.

xi 65 156 100 134 16 108 121 4 39
yi 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73

xi 143 56 26 22 1 1 5 65
yi 3.85 3.97 4.51 4.54 5.00 5.00 4.72 5.00

and using software which can perform matrix operations to carry out
the calculations.

(d) Fit the model described in (c) using statistical software which can per-
form Poisson regression. Compare the results with those obtained in (c).

4.2 The data in Table 4.6 are times to death, yi, in weeks from diagnosis and
log10(initial white blood cell count), xi, for seventeen patients suffering
from leukemia. (This is Example U from Cox and Snell, 1981).

(a) Plot yi against xi. Do the data show any trend?
(b) A possible specification for E(Y ) is

E(Yi) = exp(β1 + β2xi)

which will ensure that E(Y ) is non-negative for all values of the param-
eters and all values of x. Which link function is appropriate in this
case?

(c) The exponential distribution is often used to describe survival times. The
probability distribution is f(y; θ) = θe−yθ. This is a special case of the
gamma distribution with shape parameter φ = 1. Show that E(Y ) = θ
and var(Y ) = θ2. Fit a model with the equation for E(Yi) given in (b)
and the exponential distribution using appropriate statistical software.

(d) For the model fitted in (c), compare the observed values yi and fitted
values ŷi = exp(β̂1 + β̂2xi) and use the standardized residuals ri =
(yi−ŷi) /ŷi to investigate the adequacy of the model. (Note: ŷi is used as
the denominator of ri because it is an estimate of the standard deviation
of Yi – see (c) above.)

4.3 Let Y1, ..., YN be a random sample from the Normal distribution Yi ∼
N(log β, σ2) where σ2 is known. Find the maximum likelihood estimator
of β from first principles. Also verify equations (4.18) and (4.25) in this
case.
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5

Inference

5.1 Introduction

The two main tools of statistical inference are confidence intervals and hypoth-
esis tests. Their derivation and use for generalized linear models are covered
in this chapter.

Confidence intervals, also known as interval estimates, are increas-
ingly regarded as more useful than hypothesis tests because the width of a
confidence interval provides a measure of the precision with which inferences
can be made. It does so in a way which is conceptually simpler than the power
of a statistical test (Altman et al., 2000).

Hypothesis tests in a statistical modelling framework are performed by
comparing how well two related models fit the data (see the examples in Chap-
ter 2). For generalized linear models, the two models should have the same
probability distribution and the same link function but the linear component
of one model has more parameters than the other. The simpler model, corre-
sponding to the null hypothesis H0, must be a special case of the other more
general model. If the simpler model fits the data as well as the more general
model does, then it is preferred on the grounds of parsimony and H0 is re-
tained. If the more general model fits significantly better, then H0 is rejected
in favor of an alternative hypothesis H1 which corresponds to the more gen-
eral model. To make these comparisons, we use summary statistics to describe
how well the models fit the data. These goodness of fit statistics may be
based on the maximum value of the likelihood function, the maximum value of
the log-likelihood function, the minimum value of the sum of squares criterion
or a composite statistic based on the residuals. The process and logic can be
summarized as follows:

1. Specify a model M0 corresponding to H0. Specify a more general model
M1 (with M0 as a special case of M1).

2. Fit M0 and calculate the goodness of fit statistic G0. Fit M1 and calculate
the goodness of fit statistic G1.

3. Calculate the improvement in fit, usually G1 − G0 but G1/G0 is another
possibility.

4. Use the sampling distribution of G1 − G0 (or some related statistic) to
test the null hypothesis that G1 = G0 against the alternative hypothesis
G1 �= G0.

5. If the hypothesis that G1 = G0 is not rejected, then H0 is not rejected and
M0 is the preferred model. If the hypothesis G1 = G0 is rejected then H0

is rejected and M1 is regarded as the better model.

For both forms of inference, sampling distributions are required. To calcu-
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late a confidence interval, the sampling distribution of the estimator is re-
quired. To test a hypothesis, the sampling distribution of the goodness of fit
statistic is required. This chapter is about the relevant sampling distributions
for generalized linear models.

If the response variables are Normally distributed, the sampling distribu-
tions used for inference can often be determined exactly. For other distribu-
tions we need to rely on large-sample asymptotic results based on the Central
Limit Theorem. The rigorous development of these results requires careful
attention to various regularity conditions. For independent observations from
distributions which belong to the exponential family, and in particular for
generalized linear models, the necessary conditions are indeed satisfied. In
this book we consider only the major steps and not the finer points involved
in deriving the sampling distributions. Details of the distribution theory for
generalized linear models are given by Fahrmeir and Kaufman (1985).

The basic idea is that under appropriate conditions, if S is a statistic of
interest, then approximately

S − E(S)√
var(S)

∼ N(0, 1)

or equivalently

[S − E(S)]2

var(S)
∼ χ2(1)

where E(S) and var(S) are the expectation and variance of S respectively.

If there is a vector of statistics of interest s =

 S1

...
Sp

 with asymptotic

expectation E(s) and asymptotic variance-covariance matrix V, then approx-
imately

[s − E(s)]T V−1 [s − E(s)] ∼ χ2(p) (5.1)

provided V is non-singular so a unique inverse matrix V−1exists.

5.2 Sampling distribution for score statistics

Suppose Y1, ..., YN are independent random variables in a generalized linear
model with parameters β where E(Yi) = µi and g(µi) = xTi β = ηi. From
equation (4.18) the score statistics are

Uj =
∂l

∂βj
=
N∑
i=1

[
(Yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)]
for j = 1, ..., p.

As E(Yi) = µi for all i,

E(Uj) = 0 for j = 1, ..., p (5.2)

© 2002 by Chapman & Hall/CRC

76



consistent with the general result (3.14). The variance-covariance matrix of
the score statistics is the information matrix I with elements

Ijk = E[UjUk]

given by equation (4.20).
If there is only one parameter β, the score statistic has the asymptotic

sampling distribution

U√
I
∼ N(0, 1), or equivalently

U2

I
∼ χ2(1)

because E(U) = 0 and var(U) = I.
If there is a vector of parameters

β =

 β1

...
βp

 then the score vector U =

 U1

...
Up


has the multivariate Normal distribution U ∼ N(0,I), at least asymptotically,
and so

UTI
−1U ∼ χ2(p) (5.3)

for large samples.

5.2.1 Example: Score statistic for the Normal distribution

Let Y1, ..., YN be independent, identically distributed random variables with
Yi ∼ N(µ, σ2) where σ2 is a known constant. The log-likelihood function is

l = − 1
2σ2

N∑
i=1

(yi − µ)2 −N log(σ
√

2π).

The score statistic is

U =
dl

dµ
=

1
σ2

∑
(Yi − µ) =

N

σ2
(Y − µ)

so the maximum likelihood estimator, obtained by solving the equation U = 0,
is µ̂ = Y . The expected value of the statistic U is

E(U) =
1
σ2

∑
[E(Yi) − µ]

from equation (1.2). As E(Yi) = µ , it follows that E(U) = 0 as expected. The
variance of U is

I = var(U) =
1
σ4

∑
var(Yi) =

N

σ2

from equation (1.3) and var(Yi) = σ2. Therefore

U√
I

=
(Y − µ)
σ/

√
N
.
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According to result (5.1) this has the asymptotic distribution N (0, 1). In fact,
the result is exact because Y ∼ N(µ, σ2/N) (see Exercise 1.4(a)). Similarly

UTI
−1U =

U2

I
=

(Y − µ)
σ2/N

2

∼ χ2(1)

is an exact result.
The sampling distribution of U can be used make inferences about µ. For

example, a 95% confidence interval for µ is y±1.96σ/
√
N , where σ is assumed

to be known.

5.2.2 Example: Score statistic for the binomial distribution

If Y ∼ binomial(n, π) the log-likelihood function is

l(π; y) = y log π + (n− y) log(1 − π) + log
(
n
y

)
so the score statistic is

U =
dl

dπ
=
Y

π
− n− Y

1 − π =
Y − nπ
π(1 − π)

.

But E(Y ) = nπ and so E(U) = 0 as expected. Also var(Y ) = nπ(1 − π) so

I = var(U) =
1

π2(1 − π)2
var(Y ) =

n

π(1 − π)

and hence
U√
I

=
Y − nπ√
nπ(1 − π)

∼ N(0, 1)

approximately. This is the Normal approximation to binomial distribution
(without any continuity correction). It is used to find confidence intervals for,
and test hypotheses about, π.

5.3 Taylor series approximations

To obtain the asymptotic sampling distributions for various other statistics it
is useful to use Taylor series approximations. The Taylor series approximation
for a function f(x) of a single variable x about a value t is

f(x) = f(t) + (x− t)
[
df

dx

]
x=t

+
1
2
(x− t)2

[
d2f

dx2

]
x=t

+ ...

provided that x is near t.
For a log-likelihood function of a single parameter β the first three terms

of the Taylor series approximation near an estimate b are

l(β) = l(b) + (β − b)U(b) +
1
2
(β − b)2U ′(b)

where U(b) = dl/dβ is the score function evaluated at β = b. If U ′ = d2l/dβ2 is
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approximated by its expected value E(U ′) = −I, the approximation becomes

l(β) = l(b) + (β − b)U(b) − 1
2
(β − b)2I(b)

where I(b) is the information evaluated at β = b. The corresponding approx-
imation for the log-likelihood function for a vector parameter β is

l(β) = l(b) + (β − b)TU(b) − 1
2
(β − b)TI(b)(β − b) (5.4)

where U is the vector of scores and I is the information matrix.
For the score function of a single parameter β the first two terms of the

Taylor series approximation near an estimate b give

U(β) = U(b) + (β − b)U ′(b).

If U ′ is approximated by E(U ′) = −I we obtain

U(β) = U(b) − (β − b)I(b).

The corresponding expression for a vector parameter β is

U(β) = U(b) − I(b)(β − b). (5.5)

5.4 Sampling distribution for maximum likelihood estimators

Equation (5.5) can be used to obtain the sampling distribution of the max-
imum likelihood estimator b = β̂. By definition, b is the estimator which
maximizes l(b) and so U(b) = 0. Therefore

U(β) = −I(b)(β − b)

or equivalently,

(b − β) =I
−1U

provided that I is non-singular. If I is regarded as constant then E(b − β) = 0
because E(U) = 0 by equation (5.2). Therefore E(b) = β, at least asymptot-
ically, so b is a consistent estimator of β. The variance-covariance matrix for
b is

E
[
(b − β) (b − β)T

]
= I

−1E(UUT )I = I
−1 (5.6)

because I =E(UUT ) and (I−1)T = I
−1 as I is symmetric.

The asymptotic sampling distribution for b, by (5.1), is

(b − β)TI(b)(b − β) ∼ χ2(p). (5.7)

This is the Wald statistic. For the one-parameter case, the more commonly
used form is

b ∼ N(β,I−1). (5.8)

If the response variables in the generalized linear model are Normally dis-
tributed then (5.7) and (5.8) are exact results (see Example 5.4.1 below).
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5.4.1 Example: Maximum likelihood estimators for the Normal linear model

Consider the model

E(Yi) = µi = xTi β ; Yi ∼ N(µi, σ2) (5.9)

where the Yi’s are N independent random variables and β is a vector of
p parameters (p < N). This is a generalized linear model with the identity
function as the link function. This model is discussed in more detail in Chapter
6.

As the link function is the identity, in equation (4.16) µi = ηi and so
∂µi/∂ηi = 0. The elements of the information matrix, given in equation
(4.20), have the simpler form

Ijk =
N∑
i=1

xijxik
σ2

because var(Yi) = σ2. Therefore the information matrix can be written as

I =
1
σ2

XTX. (5.10)

Similarly the expression in (4.24) has the simpler form

zi =
p∑
k=1

xikb
(m−1)
k + (yi − µi).

But µi evaluated at b(m−1) is xTi b
(m−1) =

∑p
k=1 xikb

(m−1)
k . Therefore zi = yi

in this case.
The estimating equation (4.25) is

1
σ2

XTXb =
1
σ2

XTy

and hence the maximum likelihood estimator is

b = (XTX)−1XTy. (5.11)

The model (5.9) can be written in vector notation as y ∼ N(Xβ, σ2I) where
I is the N × N unit matrix with ones on the diagonal and zeros elsewhere.
From (5.11)

E(b) = (XTX)−1 (XTXβ
)

= β

so b is an unbiased estimator of β.
To obtain the variance-covariance matrix for b we use

b − β = (XTX)−1XTy − β

= (XTX)−1XT (y − Xβ).
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Hence

E
[
(b − β)(b − β)T

]
= (XTX)−1XTE

[
(y − Xβ)(y − Xβ)T

]
X(XTX)−1

= (XTX)−1XT [var(y)]X(XTX)−1

= σ2(XTX)−1

But σ2(XTX)−1 = I
−1 from (5.10) so the variance-covariance matrix for b is

I
−1 as in (5.6).
The maximum likelihood estimator b is a linear combination of the elements

Yi of y, from (5.11). As the Yis are Normally distributed, from the results in
Section 1.4.1, the elements of b are also Normally distributed. Hence the exact
sampling distribution of b, in this case, is

b ∼ N(β,I−1)

or

(b − β)TI(b − β) ∼ χ2(p).

5.5 Log-likelihood ratio statistic

One way of assessing the adequacy of a model is to compare it with a more
general model with the maximum number of parameters that can be esti-
mated. This is called a saturated model. It is a generalized linear model
with the same distribution and same link function as the model of interest.

If there are N observations Yi, i = 1, . . . , N , all with potentially different
values for the linear component xTi β, then a saturated model can be specified
with N parameters. This is also called a maximal or full model.

If some of the observations have the same linear component or covariate
pattern, i.e., they correspond to the same combination of factor levels and
have the same values of any continuous explanatory variables, they are called
replicates. In this case, the maximum number of parameters that can be es-
timated for the saturated model is equal to the number of potentially different
linear components, which may be less than N .

In general, let m denote the maximum number of parameters that can be
estimated. Let βmax denote the parameter vector for the saturated model and
bmax denote the maximum likelihood estimator of βmax. The likelihood func-
tion for the saturated model evaluated at bmax, L(bmax;y), will be larger than
any other likelihood function for these observations, with the same assumed
distribution and link function, because it provides the most complete descrip-
tion of the data. Let L(b;y) denote the maximum value of the likelihood
function for the model of interest. Then the likelihood ratio

λ =
L(bmax;y)
L(b;y)

provides a way of assessing the goodness of fit for the model. In practice,
the logarithm of the likelihood ratio, which is the difference between the log-
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likelihood functions,

log λ = l(bmax;y) − l(b;y)

is used. Large values of log λ suggest that the model of interest is a poor
description of the data relative to the saturated model. To determine the
critical region for log λ we need its sampling distribution.

In the next section we see that 2 log λ has a chi-squared distribution. There-
fore 2 log λ rather than log λ is the more commonly used statistic. It was called
the deviance by Nelder and Wedderburn (1972).

5.6 Sampling distribution for the deviance

The deviance, also called the log likelihood (ratio) statistic, is

D = 2[l(bmax;y) − l(b;y)].

From equation (5.4), if b is the maximum likelihood estimator of the pa-
rameter β (so that U(b) = 0)

l(β) − l(b) = −1
2
(β − b)TI(b)(β − b)

approximately. Therefore the statistic

2[l(b;y) − l(β;y)] = (β − b)TI(b)(β − b),

which has the chi-squared distribution χ2(p) where p is the number of param-
eters, from (5.7).

From this result the sampling distribution for the deviance can be derived:

D = 2[l(bmax;y) − l(b;y)]
= 2[l(bmax;y) − l(βmax;y)]

−2[l(b;y) − l(β;y)] + 2[l(βmax;y) − l(β;y)]. (5.12)

The first term in square brackets in (5.12) has the distribution χ2(m) where
m is the number of parameters in the saturated model. The second term has
the distribution χ2(p) where p is the number of parameters in the model of
interest. The third term, υ = 2[l(βmax;y) − l(β;y)], is a positive constant
which will be near zero if the model of interest fits the data almost as well as
the saturated model fits. Therefore the sampling distribution of the deviance
is, approximately,

D ∼ χ2(m− p, υ)
where υ is the non-centrality parameter, by the results in Section 1.5. The
deviance forms the basis for most hypothesis testing for generalized linear
models. This is described in Section 5.7.

If the response variables Yi are Normally distributed then D has a chi-
squared distribution exactly. In this case, however, D depends on var(Yi) = σ2

which, in practice, is usually unknown. This means that D cannot be used
directly as a goodness of fit statistic (see Example 5.6.2).
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For Yi’s with other distributions, the sampling distribution of D may be
only approximately chi-squared. However for the binomial and Poisson distri-
butions, for example, D can be calculated and used directly as a goodness of
fit statistic (see Example 5.6.1 and 5.6.3).

5.6.1 Example: Deviance for a binomial model

If the response variables Y1, ..., YN are independent and Yi ∼ binomial(ni, πi),
then the log-likelihood function is

l(β;y) =
N∑
i=1

[
yi log πi − yi log(1 − πi) + ni log(1 − πi) + log

(
ni
yi

)]
.

For a saturated model, the πi’s are all different so β = [π1, ..., πN ]T . The
maximum likelihood estimates are π̂i = yi/ni so the maximum value of the
log-likelihood function is

l(bmax;y) =
∑[

yi log
(
yi
ni

)
− yi log(

ni − yi
ni

) + ni log(
ni − yi
ni

) + log
(
ni
yi

)]
.

For any other model with p < N parameters, let π̂i denote the maximum
likelihood estimates for the probabilities and let ŷi = niπ̂i denote the fitted
values. Then the log-likelihood function evaluated at these values is

l(b;y) =
∑[

yi log
(
ŷi
ni

)
− yi log(

ni − ŷi
ni

) + ni log(
ni − ŷi
ni

) + log
(
ni
yi

)]
.

Therefore the deviance is

D = 2 [l(bmax;y) − l(b;y)]

= 2
N∑
i=1

[
yi log

(
yi
ŷi

)
+ (ni − yi) log(

ni − yi
ni − ŷi

)
]
.

5.6.2 Example: Deviance for a Normal linear model

Consider the model

E(Yi) = µi = xTi β ; Yi ∼ N(µi, σ2), i = 1, ..., N

where the Yi’s are independent. The log-likelihood function is

l(β;y) = − 1
2σ2

N∑
i=1

(yi − µi)2 −
1
2
N log(2πσ2).

For a saturated model all the µi’s can be different so β has N elements
µ1, ..., µN . By differentiating the log-likelihood function with respect to each
µi and solving the estimating equations, we obtain µ̂i = yi. Therefore the
maximum value of the log-likelihood function for the saturated model is

l(bmax;y) = −1
2
N log(2πσ2).
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For any other model with p < N parameters, let

b = (XTX)−1XTy

be the maximum likelihood estimator (from equation 5.11). The corresponding
maximum value for the log-likelihood function is

l(b;y) = − 1
2σ2

∑(
yi − xTi b

)2 − 1
2
N log(2πσ2).

Therefore the deviance is

D = 2[l(bmax;y) − l(b;y)]

=
1
σ2

N∑
i=1

(yi − xTi b)2 (5.13)

=
1
σ2

N∑
i=1

(yi − µ̂i)2 (5.14)

where µ̂i denotes the fitted value xTi b.
In the particular case where there is only one parameter, for example when

E(Yi) = µ for all i, X is a vector of N ones and so b = µ̂ =
∑N
i=1 yi/N = y

and µ̂i = y for all i. Therefore

D =
1
σ2

N∑
i=1

(yi − y)2.

But this statistic is related to the sample variance S2

S2 =
1

N − 1

N∑
i=1

(yi − y)2 =
σ2D

N − 1
.

From Exercise 1.4(d) (N − 1)S2/σ2 ∼ χ2(N − 1) so D ∼ χ2(N − 1) exactly.
More generally, from (5.13)

D =
1
σ2

∑
(yi − xTi b)2

=
1
σ2

(y − Xb)T (y − Xb)

where the design matrix X has rows xi. The term (y−Xb) can be written as

y − Xb = y − X(XTX)−1XTy

= [I − X(XTX)−1XT ]y = [I − H]y

where H = X(XTX)−1XT , which is called the ‘hat’ matrix. Therefore the
quadratic form in D can be written as

(y − Xb)T (y − Xb) = {[I − H]y}T [I − H]y = yT [I − H]y

because H is idempotent (i.e., H = HT and HH = H). The rank of I is n
and the rank of H is p so the rank of I − H is n−p so, from Section 1.4.2, part
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8, D has a chi-squared distribution with n − p degrees of freedom and non-
centrality parameter λ = (Xβ)T (I − H)(Xβ)/σ2. But (I − H)X = 0 so D
has the central distribution χ2(N − p) exactly (for more details, see Graybill,
1976).

The term scaled deviance is sometimes used for

σ2D =
∑

(yi − µ̂i)2.
If the model fits the data well, then D ∼ χ2(N − p). The expected value for a
random variable with the distribution χ2(N − p) is N − p (from Section 1.4.2
part 2), so the expected value of D is N − p.

This provides an estimate of σ2 as

σ̃2 =
∑

(yi − µ̂i)2
N − p .

Some statistical programs, such as Glim, output the scaled deviance for a
Normal linear model and call σ̃2 the scale parameter.

The deviance is also related to the sum of squares of the standardized
residuals (see Section 2.3.4)

N∑
i=1

r2i =
1
σ̂2

N∑
i=1

(yi − µ̂i)2

where σ̂2 is an estimate of σ2. This provides a rough rule of thumb for the
overall magnitude of the standardized residuals. If the model fits well so that
D ∼ χ2(N − p), you could expect

∑
r2i = N − p, approximately.

5.6.3 Example: Deviance for a Poisson model

If the response variables Y1, ..., YN are independent and Yi ∼ Poisson(λi), the
log-likelihood function is

l(β;y) =
∑
yi log λi −

∑
λi −

∑
log yi!.

For the saturated model, the λi’s are all different so β = [λ1, ..., λN ]T . The
maximum likelihood estimates are λ̂i = yi and so the maximum value of the
log-likelihood function is

l(bmax;y) =
∑
yi log yi −

∑
yi −

∑
log yi!.

Suppose the model of interest has p < N parameters. The maximum likeli-
hood estimator b can be used to calculate estimates λ̂i and hence fitted values
ŷi = λ̂i; because E(Yi) = λi. The maximum value of the log-likelihood in this
case is

l(b;y) =
∑
yi log ŷi −

∑
ŷi −

∑
log yi!.

Therefore the deviance is

D = 2[l(bmax;y) − l(b;y)]
= 2 [

∑
yi log (yi/ŷi) −

∑
(yi − ŷi)] .
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For most models it can shown that
∑
yi =

∑
ŷi – see Exercise 9.1. Therefore

D can be written in the form

D = 2
∑
oi log(oi/ei)

if oi is used to denote the observed value yi and ei is used to denote the
estimated expected value ŷi.

The value of D can be calculated from the data in this case (unlike the case
for the Normal distribution where D depends on the unknown constant σ2).
This value can be compared with the distribution χ2(N − p). The following
example illustrates the idea.

The data in Table 5.1 relate to Example 4.4 where a straight line was fitted
to Poisson responses. The fitted values are

ŷi = b1 + b2xi

where b1 = 7.45163 and b2 = 4.93530 (from Table 4.4). The value of D is
D = 2 × (0.94735 − 0) = 1.8947 which is small relative to the degrees of
freedom, N − p = 9 − 2 = 7. In fact, D is below the lower 5% tail of the
distribution χ2(7) indicating that the model fits the data well – perhaps not
surprisingly for such a small set of artificial data!

Table 5.1 Results from the Poisson regression Example 4.4.

xi yi ŷi yi log(yi/ŷi)

-1 2 2.51633 -0.45931
-1 3 2.51633 0.52743
0 6 7.45163 -1.30004
0 7 7.45163 -0.43766
0 8 7.45163 0.56807
0 9 7.45163 1.69913
1 10 12.38693 -2.14057
1 12 12.38693 -0.38082
1 15 12.38693 2.87112

Total 72 72 0.94735

5.7 Hypothesis testing

Hypotheses about a parameter vector β of length p can be tested using the
sampling distribution of the Wald statistic (β̂ − β)TI(β̂ − β) ∼ χ2(p) (from
5.7). Occasionally the score statistic is used: UTI

−1U ∼ χ2(p) from (5.3).
An alternative approach, outlined in Section 5.1 and used in Chapter 2, is

to compare the goodness of fit of two models. The models need to be nested
or hierarchical, that is, they have the same probability distribution and the
same link function but the linear component of the simpler model M0 is a
special case of the linear component of the more general model M1.
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Consider the null hypothesis

H0 : β = β0 =

 β1

...
βq


corresponding to model M0 and a more general hypothesis

H1 : β = β1 =

 β1

...
βp


corresponding to M1, with q < p < N.

We can test H0 against H1 using the difference of the deviance statistics

�D = D0 −D1 = 2[l(bmax;y) − l(b0;y)] − 2[l(bmax;y) − l(b1;y)]
= 2[l(b1;y) − l(b0;y)].

If both models describe the data well then D0 ∼ χ2(N − q) and D1 ∼
χ2(N − p) so that �D ∼ χ2(p − q), provided that certain independence
conditions hold. If the value of �D is consistent with the χ2(p−q) distribution
we would generally choose the model M0 corresponding to H0 because it is
simpler.

If the value of �D is in the critical region (i.e., greater than the upper
tail 100×α% point of the χ2(p − q) distribution) then we would reject H0

in favor of H1 on the grounds that model M1 provides a significantly better
description of the data (even though it too may not fit the data particularly
well).

Provided that the deviance can be calculated from the data, �D provides a
good method for hypothesis testing. The sampling distribution of �D is usu-
ally better approximated by the chi-squared distribution than is the sampling
distribution of a single deviance.

For models based on the Normal distribution, or other distributions with
nuisance parameters that are not estimated, the deviance may not be fully
determined from the data. The following example shows how this problem
may be overcome.

5.7.1 Example: Hypothesis testing for a Normal linear model

For the Normal linear model

E(Yi) = µi = xTi β ; Yi ∼ N(µi, σ2)

for independent random variables Y1, ..., YN , the deviance is

D =
1
σ2

N∑
i=1

(yi − µ̂i)2,

from equation (5.14).
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Let µ̂i(0) and µ̂i(1) denote the fitted values for modelM0 (corresponding to
null hypothesisH0) and modelM1(corresponding to the alternative hypothesis
H1) respectively. Then

D0 =
1
σ2

N∑
i=1

[yi − µ̂i(0)]2

and

D1 =
1
σ2

N∑
i=1

[yi − µ̂i(1)]2 .

It is usual to assume that M1 fits the data well (and so H1 is correct), so
that D1 ∼ χ2(N − p). If M0 is also fits well, then D0 ∼ χ2(N − q) and so
�D = D0 −D1 ∼ χ2(p− q). If M0 does not fit well (i.e., H0 is not correct)
then �D will have a non-central χ2 distribution. To eliminate the term σ2

we use the ratio

F =
D0 −D1

p− q /
D1

N − p

=

{∑
[yi − µ̂i(0)]2 −

∑
[yi − µ̂i(1)]2

}
/(p− q)∑

[yi − µ̂i(1)]2 /(N − p)
.

Thus F can be calculated directly from the fitted values. If H0 is correct,
F will have the central F (p− q,N − p) distribution (at least approximately).
If H0 is not correct, the value of F will be larger than expected from the
distribution F (p− q,N − p).

A numerical illustration is provided by the example on birthweights and
gestational age in Section 2.2.2. The models are given in (2.6) and (2.7).
The minimum values of the sums of squares are related to the deviances by
Ŝ0 = σ2D0 and Ŝ1 = σ2D1. There are N = 24 observations. The simpler
model (2.6) has q = 3 parameters to be estimated and the more general
model (2.7) has p = 4 parameters to be estimated. From Table 2.5

D0 = 658770.8/σ2 with N − q = 21 degrees of freedom
and D1 = 652424.5/σ2 with N − p = 20 degrees of freedom.

Therefore

F =
(658770.8 − 652424.5)/1

652424.5/20
= 0.19

which is certainly not significant compared to the F (1, 20) distribution. So
the data are consistent with model (2.6) in which birthweight increases with
gestational age at the same rate for boys and girls.

5.8 Exercises

5.1 Consider the single response variable Y with Y ∼ binomial(n, π).
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(a) Find the Wald statistic (π̂ − π)TI(π̂ − π) where π̂ is the maximum
likelihood estimator of π and I is the information.

(b) Verify that the Wald statistic is the same as the score statistic UTI
−1U

in this case (see Example 5.2.2).
(c) Find the deviance

2[l(π̂; y) − l(π; y)].

(d) For large samples, both the Wald/score statistic and the deviance ap-
proximately have the χ2(1) distribution. For n = 10 and y = 3 use
both statistics to assess the adequacy of the models:
(i) π = 0.1; (ii) π = 0.3; (iii) π = 0.5.
Do the two statistics lead to the same conclusions?

5.2 Consider a random sample Y1, ..., YN with the exponential distribution

f(yi; θi) = θi exp(−yiθi).
Derive the deviance by comparing the maximal model with different values
of θi for each Yi and the model with θi = θ for all i.

5.3 Suppose Y1, ..., YN are independent identically distributed random variables
with the Pareto distribution with parameter θ.

(a) Find the maximum likelihood estimator θ̂ of θ.
(b) Find the Wald statistic for making inferences about θ (Hint: Use the

results from Exercise 3.10).
(c) Use the Wald statistic to obtain an expression for an approximate 95%

confidence interval for θ.
(d) Random variables Y with the Pareto distribution with the parameter

θ can be generated from random numbers U which are uniformly dis-
tributed between 0 and 1 using the relationship Y = (1/U)1/θ (Evans et
al., 2000). Use this relationship to generate a sample of 100 values of Y
with θ = 2. From these data calculate an estimate θ̂. Repeat this pro-
cess 20 times and also calculate 95% confidence intervals for θ. Compare
the average of the estimates θ̂ with θ = 2. How many of the confidence
intervals contain θ?

5.4 For the leukemia survival data in Exercise 4.2:

(a) Use the Wald statistic to obtain an approximate 95% confidence interval
for the parameter β1.

(b) By comparing the deviances for two appropriate models, test the null
hypothesis β2 = 0 against the alternative hypothesis, β2 �= 0. What
can you conclude about the use of the initial white blood cell count as
a predictor of survival time?
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6

Normal Linear Models

6.1 Introduction

This chapter is about models of the form

E(Yi) = µi = xTi β ; Yi ∼ N(µi, σ2) (6.1)

where Y1, ..., YN are independent random variables. The link function is the
identity function, i.e., g(µi) = µi. This model is usually written as

y = Xβ + e (6.2)

where

y =

 Y1

...
YN

 , X =

 xT1
...

xTN

 , β =

 β1

...
βp

 , e =

 e1
...
eN


and the ei’s are independently, identically distributed random variables with
ei ∼ N(0, σ2) for i = 1, ..., N . Multiple linear regression, analysis of variance
(ANOVA) and analysis of covariance (ANCOVA) are all of this form and
together are sometimes called general linear models.

The coverage in this book is not detailed, rather the emphasis is on those
aspects which are particularly relevant for the model fitting approach to sta-
tistical analysis. Many books provide much more detail; for example, see Neter
et al. (1996).

The chapter begins with a summary of basic results, mainly derived in
previous chapters. Then the main issues are illustrated through four numerical
examples.

6.2 Basic results

6.2.1 Maximum likelihood estimation

From Section 5.4.1, the maximum likelihood estimator of β is given by

b = (XTX)−1XTy. (6.3)

provided (XTX) is non-singular. As E(b) = β, the estimator is unbiased. It
has variance-covariance matrix σ2(XTX)−1 = I

−1.
In the context of generalized linear models, σ2 is treated as a nuisance

parameter. However it can be shown that

σ̂2 =
1

N − p (y − Xb)T (y − Xb) (6.4)

is an unbiased estimator of σ2 and this can be used to estimate I and hence
make inferences about b.
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6.2.2 Least squares estimation

If E(y) = Xb and E[(y − Xb)(y − Xb)T ] = V where V is known, we can
obtain the least squares estimator β̃ of β without making any further assump-
tions about the distribution of y. We minimize

Sw = (y − Xb)TV−1(y − Xb).

The solution of
∂Sw
∂β

= −2XTV−1(y − Xb) = 0

is

β̃ = (XTV−1X)−1XTV−1y,

provided the matrix inverses exist. In particular, for model (6.1), where the
elements of y are independent and have a common variance then

β̃ = (XTX)−1XTy.

So in this case, maximum likelihood estimators and least squares estimators
are the same.

6.2.3 Deviance

From Section 5.6.1

D =
1
σ2

(y − Xb)T (y − Xb)

=
1
σ2

(yTy − 2bTXTy + bTXTXb)

=
1
σ2

(yTy − bTXTy) (6.5)

because XTXb = XTy from equation (6.3).

6.2.4 Hypothesis testing

Consider a null hypothesis H0 and a more general hypothesis H1 specified as
follows

H0 : β = β0 =

 β1

...
βq

 and H1 : β = β1 =

 β1

...
βp


where q < p < N . Let X0 and X1 denote the corresponding design matrices,
b0 and b1 the maximum likelihood estimators, and D0 and D1 the deviances.
We test H0 against H1 using

�D = D0 −D1 =
1
σ2

[
(yTy − bT0 XT0 y) − (yTy − bT1 XT1 y)

]
=

1
σ2

(bT1 XT1 y − bT0 XT0 y)
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Table 6.1 Analysis of Variance table.

Source of Degrees of Sum of squares Mean square
variance freedom

Model with β0 q bT0 XT0 y
Improvement due
to model with β1

p− q bT1 XT1 y − bT0 XT0 y
bT1 XT1 y − bT0 XT0 y

p− q
Residual N − p yTy − bT1 XT1 y

yTy − bT1 XT1 y
N − p

Total N yTy

by (6.5). As the model corresponding to H1 is more general, it is more likely to
fit the data well so we assume that D1 has the central distribution χ2(N −p).
On the other hand, D0 may have a non-central distribution χ2(N − q, v) if
H0 is not correct – see Section 5.6. In this case, �D = D0 −D1 would have
the non-central distribution χ2(p− q, v) (provided appropriate conditions are
satisfied – see Section 1.5). Therefore the statistic

F =
D0 −D1

p− q /
D1

N − p =

(
bT0 XT0 y − bT1 XT1 y

)
p− q

/(
yTy − bT1 XT1 y

)
N − p

will have the central distribution F (p − q,N − p) if H0 is correct or F will
otherwise have a non-central distribution. Therefore values of F that are large
relative to the distribution F (p− q,N − p) provide evidence against H0 (see
Figure 2.5).

This hypothesis test is often summarized by the Analysis of Variance table
shown in Table 6.1.

6.2.5 Orthogonality

Usually inferences about a parameter for one explanatory variable depend on
which other explanatory variables are included in the model. An exception
is when the design matrix can be partitioned into components X1, ...,Xm
corresponding to submodels of interest,

X = [X1, ...,Xm] for m ≤ p,

where XTj Xk = O, a matrix of zeros, for each j �= k. In this case, X is said
to be orthogonal. Let β have corresponding components β1, ...,βm so that

E(y) = Xβ = X1β1 + X2β2 + ...+ Xmβm.

Typically, the components correspond to individual covariates or groups of
associated explanatory variables such as dummy variables denoting levels of
a factor. If X can be partitioned in this way then XTX is a block diagonal
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Table 6.2 Multiple hypothesis tests when the design matrix X is orthogonal.

Source of Degrees of Sum of
variance freedom squares

Model corresponding to H1 p1 bT1 XT1 y
...

...
...

Model corresponding to Hm pm bTmXTmy
Residual N −

∑m
j=1 pj yTy − bTXTy

Total N yTy

matrix

XTX =

 XT1 X1 O
. . .

O XTmXm

 . Also XTy =

 XT1 y
...

XTmy

 .
Therefore the estimates bj = (XTj Xj)

−1XTj y are unaltered by the inclusion
of other elements in the model and also

bTXTy = bT1 XT1 y + ...+ bTmXTmy.

Consequently, the hypotheses

H1 : β1 = 0, ..., Hm : βm = 0

can be tested independently as shown in Table 6.2.
In practice, except for some well-designed experiments, the design matrix

X is hardly ever orthogonal. Therefore inferences about any subset of param-
eters, βj say, depend on the order in which other terms are included in the
model. To overcome this ambiguity many statistical programs provide tests
based on all other terms being included before Xjβj is added. The resulting
sums of squares and hypothesis tests are sometimes called Type III tests (if
the tests depend on the sequential order of fitting terms they are called Type
I).

6.2.6 Residuals

Corresponding to the model formulation (6.2), the residuals are defined as

êi = yi − xTi b = yi − µ̂i

© 2002 by Chapman & Hall/CRC

93



where µ̂i is the fitted value. The variance-covariance matrix of the vector of
residuals ê is

E(êêT ) = E[( y − Xb) ( y − Xb)T ]

= E
(
yyT

)
− XE

(
bbT

)
XT

= σ2
[
I − X(XTX)−1XT

]
where I is the unit matrix. So the standardized residuals are

ri =
êi

σ̂(1 − hii)1/2

where hii is the ith element on the diagonal of the projection or hat matrix
H = X(XTX)−1XT and σ̂2 is an estimate of σ2.

These residuals should be used to check the adequacy of the fitted model
using the various plots and other methods discussed in Section 2.3.4. These
diagnostic tools include checking linearity of relationships between variables,
serial independence of observations, Normality of residuals, and associations
with other potential explanatory variables that are not included in the model.

6.2.7 Other diagnostics

In addition to residuals, there are numerous other methods to assess the ad-
equacy of a model and to identify unusual or influential observations.

An outlier is an observation which is not well fitted by the model. An in-
fluential observation is one which has a relatively large effect on inferences
based on the model. Influential observations may or may not be outliers and
vice versa.

The value hii, the ith element on the diagonal of the hat matrix, is called
the leverage of the ith observation. An observation with high leverage can
make a substantial difference to the fit of the model. As a rule of thumb, if
hii is greater than two or three times p/N it may be a concern (where p is
the number of parameters and N the number of observations).

Measures which combine standardized residuals and leverage include

DFITSi = ri

(
hii

1 − hii

)1/2

and Cook’s distance

Di =
1
p

(
hii

1 − hii

)
r2i .

Large values of these statistics indicate that the ith observation is influen-
tial. Details of hypothesis tests for these and related statistics are given, for
example, by Cook and Weisberg (1999).

Another approach to identifying influential observations is to fit a model
with and without each observation and see what difference this makes to the
estimates b and the overall goodness of fit statistics such as the deviance or
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the minimum value of the sum of squares criterion. For example, the statistic
delta-beta is defined by

�iβ̂j = bj − bj(i)
where bj(i) denotes the estimate of βj obtained when the ith observation
is omitted from the data. These statistics can be standardized by dividing
by their standard errors, and then they can be compared with the standard
Normal distribution to identify unusually large ones. They can be plotted
against the observation numbers i so that the ‘offending’ observations can be
easily identified.

The delta-betas can be combined over all parameters using

Di =
1
p

(
b − b(i)

)T
XTX(b − b(i))

where b(i) denotes the vector of estimates bj(i). This statistic is, in fact, equal
to the Cook’s distance (Neter et al., 1996).

Similarly the influence of the ith observation on the deviance, called delta-
deviance, can be calculated as the difference between the deviance for the
model fitted from all the data and the deviance for the same model with the
ith observation omitted.

For Normal linear models there are algebraic simplifications of these statis-
tics which mean that, in fact, the models do not have to be refitted omitting
one observation at a time. The statistics can be calculated easily and are pro-
vided routinely be most statistical software. An overview of these diagnostic
tools is given by the article by Chatterjee and Hadi (1986).

Once an influential observation or an outlier is detected, the first step is
to determine whether it might be a measurement error, transcription error or
some other mistake. It should it be removed from the data set only if there is a
good substantive reason for doing so. Otherwise a possible solution is to retain
it and report the results that are obtained with and without its inclusion in
the calculations.

6.3 Multiple linear regression

If the explanatory variables are all continuous, the design matrix has a column
of ones, corresponding to an intercept term in the linear component, and all
the other elements are observed values of the explanatory variables. Multiple
linear regression is the simplest Normal linear model for this situation. The
following example provides an illustration.

6.3.1 Carbohydrate diet

The data in Table 6.3 show responses, percentages of total calories obtained
from complex carbohydrates, for twenty male insulin-dependent diabetics who
had been on a high-carbohydrate diet for six months. Compliance with the
regime was thought to be related to age (in years), body weight (relative to
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Table 6.3 Carbohydrate, age, relative weight and protein for twenty male insulin-
dependent diabetics; for units, see text (data from K. Webb, personal communica-
tion).

Carbohydrate Age Weight Protein
y x1 x2 x3

33 33 100 14
40 47 92 15
37 49 135 18
27 35 144 12
30 46 140 15
43 52 101 15
34 62 95 14
48 23 101 17
30 32 98 15
38 42 105 14
50 31 108 17
51 61 85 19
30 63 130 19
36 40 127 20
41 50 109 15
42 64 107 16
46 56 117 18
24 61 100 13
35 48 118 18
37 28 102 14

‘ideal’ weight for height) and other components of the diet, such as the per-
centage of calories as protein. These other variables are treated as explanatory
variables.

We begin by fitting the model

E(Yi) = µi = β0 + β1xi1 + β2xi2 + β3xi3 ; Yi ∼ N(µi, σ2) (6.6)

in which carbohydrate Y is linearly related to age x1, relative weight x2 and
protein x3 (i = 1, ..., N = 20). In this case

y =

 Y1

...
YN

 , X =

 1 x11 x12 x13

...
...

...
...

1 xN1 xN2 xN3

 and β =

 β0

...
β3

 .
For these data

XTy =


752

34596
82270
12105


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and

XTX =


20 923 2214 318

923 45697 102003 14780
2214 102003 250346 35306
318 14780 35306 5150

 .
Therefore the solution of XTXb = XTy is

b =


36.9601
−0.1137
−0.2280

1.9577


and

(XTX)−1 =


4.8158 −0.0113 −0.0188 −0.1362

−0.0113 0.0003 0.0000 −0.0004
−0.0188 0.0000 0.0002 −0.0002
−0.1362 −0.0004 −0.0002 0.0114


correct to four decimal places. Also yTy = 29368, Ny2 = 28275.2 and
bTXTy = 28800.337. Using (6.4) to obtain an unbiased estimator of σ2 we
get σ̂2 = 35.479 and hence we obtain the standard errors for elements of b
which are shown in Table 6.4.

Table 6.4 Estimates for model (6.6).

Term Estimate bj Standard error∗

Constant 36.960 13.071
Coefficient for age -0.114 0.109
Coefficient for weight -0.228 0.083
Coefficient for protein 1.958 0.635

∗Values calculated using more significant figures for (XTX)−1 than shown above.

To illustrate the use of the deviance we test the hypothesis, H0, that the
response does not depend on age, i.e., β1 = 0. The corresponding model is

E(Yi) = β0 + β2xi2 + β3xi3. (6.7)

The matrix X for this model is obtained from the previous one by omitting
the second column so that

XTy =

 752
82270
12105

 , XTX =

 20 2214 318
2214 250346 35306
318 35306 5150


and hence

b =

 33.130
−0.222

1.824

 .
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For model (6.7), bTXTy = 28761.978. The significance test for H0 is sum-
marized in Table 6.5. The value F = 38.36/35.48 = 1.08 is not significant com-
pared with the F (1, 16) distribution so the data provide no evidence against
H0, i.e., the response appears to be unrelated to age.

Table 6.5 Analysis of Variance table comparing models (6.6) and (6.7).

Source Degrees of Sum of Mean
variation freedom squares square

Model (6.7) 3 28761.978
Improvement due 1 38.359 38.36
to model (6.6)
Residual 16 567.663 35.48

Total 20 29368.000

Notice that the parameter estimates for models (6.6) and (6.7) differ; for
example, the coefficient for protein is 1.958 for the model including a term
for age but 1.824 when the age term is omitted. This is an example of lack of
orthogonality. It is illustrated further in Exercise 6.3(c) as the ANOVA table
for testing the hypothesis that the coefficient for age is zero when both weight
and protein are in the model, Table 6.5, differs from the ANOVA table when
weight is not included.

6.3.2 Coefficient of determination, R2

A commonly used measure of goodness of fit for multiple linear regression
models is based on a comparison with the simplest or minimal model using
the least squares criterion (in contrast to the maximal model and the log
likelihood function which are used to define the deviance). For the model
specified in (6.2), the least squares criterion is

S =
N∑
i=1

e2i = eTe = (Y − Xβ)T (Y − Xβ)

and, from Section 6.2.2, the least squares estimate is b = (XTX)−1XTy so
the minimum value of S is

Ŝ = (y − Xb)T (y − Xb) = yTy − bTXTy.

The simplest model is E(Yi) = µ for all i. In this case, β has the single
element µ and X is a vector of N ones. So XTX =N and XTy =

∑
yi so that

b = µ̂ = y. In this case, the value of S is

Ŝ0 = yTy −Ny2 =
∑

(yi − y)2 .

So Ŝ0 is proportional to the variance of the observations and it is the largest
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or ‘worst possible’ value of S. The relative improvement in fit for any other
model is

R2 =
Ŝ0 − Ŝ
Ŝ0

=
bTXTy−Ny2

yTy−Ny2 .

R2 is called the coefficient of determination. It can be interpreted as
the proportion of the total variation in the data which is explained by the
model.

For example, for the carbohydrate data R2 = 0.48 for model (6.5), so 48%
of the variation is ‘explained’ by the model. If the term for age is dropped,
for model (6.6) R2 = 0.445, so 44.5% of variation is ‘explained’.

If the model does not fit the data much better than the minimal model then
Ŝ will be almost equal to Ŝ0 and R2 will be almost zero. On the other hand
if the maximal model is fitted, with one parameter µi for each observation
Yi, then β has N elements, X is the N × N unit matrix I and b = y (i.e.,
µ̂i = yi). So for the maximal model bTXTy = yTy and hence Ŝ = 0 and
R2 = 1, corresponding to a ‘perfect’ fit. In general, 0 < R2 < 1. The square
root of R2 is called the multiple correlation coefficient.

Despite its popularity and ease of interpretation R2 has limitations as a
measure of goodness of fit. Its sampling distribution is not readily deter-
mined. Also it always increases as more parameters are added to the model,
so modifications of R2 have to be used to adjust for the number of parameters.

6.3.3 Model selection

Many applications of multiple linear regression involve numerous explanatory
variables and it is important to identify a subset of these variables that pro-
vides a good, yet parsimonious, model for the response. The usual procedure
is to add or delete terms sequentially from the model; this is called step-
wise regression. Details of the methods are given in standard textbooks on
regression such as Draper and Smith (1998) or Neter et al. (1996).

If some of the explanatory variables are highly correlated with one another,
this is called collinearity or multicollinearity. This condition has several
undesirable consequences. Firstly, the columns of the design matrix X may be
nearly linearly dependent so that XTX is nearly singular and the estimating
equation

(
XTX

)
b = XTy is ill-conditioned. This means that the solution

b will be unstable in the sense that small changes in the data may cause
large charges in b (see Section 6.2.7). Also at least some of the elements of
σ2(XTX)−1 will be large giving large variances or covariances for elements of
b. Secondly, collinearity means that choosing the best subset of explanatory
variables may be difficult.

Collinearity can be detected by calculating the variance inflation factor
for each explanatory variable

VIFj =
1

1 −R2
(j)
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where R2
(j) is the coefficient of determination obtained from regressing the

jth explanatory variable against all the other explanatory variables. If it is
uncorrelated with all the others then VIF = 1. VIF increases as the correlation
increases. It is suggest, by Montgomery and Peck (1992) for example, that one
should be concerned if VIF > 5.

If several explanatory variables are highly correlated it may be impossible,
on statistical grounds alone, to determine which one should be included in the
model. In this case extra information from the substantive area from which
the data came, an alternative specification of the model or some other non-
computational approach may be needed.

6.4 Analysis of variance

Analysis of variance is the term used for statistical methods for comparing
means of groups of continuous observations where the groups are defined by
the levels of factors. In this case all the explanatory variables are categorical
and all the elements of the design matrix X are dummy variables. As illus-
trated in Example 2.4.3, the choice of dummy variables is, to some extent,
arbitrary. An important consideration is the optimal choice of specification
of X. The major issues are illustrated by two numerical examples with data
from two (fictitious) designed experiments.

6.4.1 One factor analysis of variance

The data in Table 6.6 are similar to the plant weight data in Exercise 2.1. An
experiment was conducted to compare yields Yi (measured by dried weight
of plants) under a control condition and two different treatment conditions.
Thus the response, dried weight, depends on one factor, growing condition,
with three levels. We are interested in whether the response means differ
among the groups.

More generally, if experimental units are randomly allocated to groups cor-
responding to J levels of a factor, this is called a completely randomized
experiment. The data can be set out as shown in Table 6.7.

The responses at level j, Yj1, ..., Yjnj , all have the same expected value and
so they are called replicates. In general there may be different numbers of
observations nj at each level.

To simplify the discussion suppose all the groups have the same sample size
so nj = K for j = 1, ..., J . The response y is the column vector of all N = JK
measurements

y = [Y11, Y12, ..., Y1K , Y21, ..., Y2K , ..., YJ1, ..., YJK ]T .

We consider three different specifications of a model to test the hypothesis
that the response means differ among the factor levels.

(a) The simplest specification is

E(Yjk) = µj for j = 1, ...,K. (6.8)
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Table 6.6 Dried weights yi of plants from three different growing conditions.

Control Treatment A Treatment B

4.17 4.81 6.31
5.58 4.17 5.12
5.18 4.41 5.54
6.11 3.59 5.50
4.50 5.87 5.37
4.61 3.83 5.29
5.17 6.03 4.92
4.53 4.89 6.15
5.33 4.32 5.80
5.14 4.69 5.26∑

yi 50.32 46.61 55.26∑
y2
i 256.27 222.92 307.13

Table 6.7 Data from a completely randomized experiment with J levels of a factor
A.

Factor level
A1 A2 · · · AJ

Y11 Y21 YJ1
Y12 Y22 YJ2
...

...
Y1n1 Y2n2 YJnJ

Total Y1. Y2. · · · YJ.

This can be written as

E(Yi) =
J∑
j=1

xijµj , i = 1, ..., N

where xij = 1 if response Yi corresponds to level Aj and xij = 0 otherwise.
Thus, E(y) = Xβ with

β =


µ1

µ2

...
µJ

 and X =



1 0 · · · 0

0 1
...

... . O
O . 0

0 1


where 0 and 1 are vectors of length K of zeros and ones respectively, and O
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indicates that the remaining terms of the matrix are all zeros. Then XTX
is the J × J diagonal matrix

XTX =



K
. . . O

K
. . .

O K

 and XTy =


Y1.

Y2.

...
YJ.

 .

So from equation (6.3)

b =
1
K


Y1.

Y2.

...
YJ.

 =


Y 1

Y 2

...
Y J


and

bTXTy =
1
K

J∑
j=1

Y 2
j. .

The fitted values are ŷ = [y1, y1, ..., y1, y2, ..., yJ ]
T . The disadvantage of

this simple formulation of the model is that it cannot be extended to more
than one factor. To generalize further, we need to specify the model so that
parameters for levels and combinations of levels of factors reflect differential
effects beyond some average or specified response.

(b) The second model is one such formulation:

E(Yjk) = µ+ αj , j = 1, ..., J

where µ is the average effect for all levels and αj is an additional effect due
to level Aj . For this parameterization there are J + 1 parameters.

β =


µ
α1

...
αJ

 , X =



1 1 0 · · · 0
1 0 1
... O
... O
1 1


where 0 and 1 are vectors of length K and O denotes a matrix of zeros.
Thus

XTy =


Y..
Y1.

...
YJ.

 and XTX =



N K . . . K
K K
... O
... O
K K

 .
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The first row (or column) of the (J+1)×(J+1) matrix XTX is the sum of
the remaining rows (or columns) so XTX is singular and there is no unique
solution of the normal equations XTXb = XTy. The general solution can
be written as

b =


µ̂
α̂1

...
α̂J

 =
1
K


0
Y1.

...
YJ.

− λ


−1
1
...
1


where λ is an arbitrary constant. It is traditional to impose the additional
sum-to-zero constraint

J∑
j=1

αj = 0

so that

1
K

J∑
j=1

Yj. − Jλ = 0

and hence

λ =
1
JK

J∑
j=1

Yj. =
Y..
N
.

This gives the solution

µ̂ =
Y..
N

and α̂j =
Yj.
K

− Y..
N

for j = 1, ..., J.

Hence

bTXTy =
Y 2
..

N
+
J∑
j=1

Yj.

(
Yj.
K

− Y..
N

)
=

1
K

J∑
j=1

Y 2
j.

which is the same as for the first version of the model and the fitted values
ŷ = [y1, y1, ..., yJ ]

T are also the same. Sum-to-zero constraints are used in
most standard statistical software.

(c) A third version of the model is E(Yjk) = µ + αj with the constraint that
α1 = 0. Thus µ represents the effect of the first level and αj measures the
difference between the first level and jth level of the factor. This is called a
corner-point parameterization. For this version there are J parameters

β =


µ
α2

...
αJ

 . Also X =



1 0 · · · 0
1 1
...

. . . O
... O
1 1


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so XTy =


Y..
Y2.

...
YJ.

 and XTX =



N K . . . K
K K
...

. . . O
... O
K K

 .
The J × J matrix XTX is non-singular so there is a unique solution

b =
1
K


Y1.

Y2. − Y1.

...
YJ. − Y1.


.

Also bTXTy = 1
K

[
Y..Y1. +

∑J
j=2 Yj.(Yj. − Y1.)

]
= 1
K

∑J
j=1 Y

2
j. and the

fitted values ŷ = [y1, y1, ..., yJ ]
T are the same as before.

Thus, although the three specifications of the model differ, the value of
bTXTy and hence

D1 =
1
σ2

(
yTy − bTXTy

)
=

1
σ2

 J∑
j=1

K∑
k=1

Y 2
jk −

1
K

J∑
j=1

Y 2
j.


is the same in each case.

These three versions of the model all correspond to the hypothesis H1 that
the response means for each level may differ. To compare this with the null
hypothesis H0 that the means are all equal, we consider the model E(Yjk) = µ
so that β = [µ] and X is a vector of N ones. Then XTX = N,XTy = Y.. and
hence b = µ̂ = Y../N so that bTXTy = Y 2

.. /N and

D0 =
1
σ2

 J∑
j=1

K∑
k=1

Y 2
jk −

Y 2
..

N

 .
To testH0 againstH1 we assume thatH1 is correct so thatD1 ∼ χ2(N−J).

If, in addition, H0 is correct then D0 ∼ χ2(N − 1), otherwise D0 has a non-
central chi-squared distribution. Thus if H0 is correct

D0 −D1 =
1
σ2

 1
K

J∑
j=1

Y 2
j. −

1
N
Y 2
..

 ∼ χ2(J − 1)

and so

F =
D0 −D1

J − 1

/
D1

N − J ∼ F (J − 1, N − J).

If H0 is not correct then F is likely to be larger than predicted from the
distribution F (J − 1, N −J). Conventionally this hypothesis test is set out in
an ANOVA table.
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For the plant weight data

Y 2
..

N
= 772.0599,

1
K

J∑
j=1

Y 2
j. = 775.8262

so

D0 −D1 = 3.7663/σ2

and
J∑
j=1

K∑
k=1

Y 2
jk = 786.3183

so D1 = 10.4921/σ2. Hence the hypothesis test is summarized in Table 6.8.

Table 6.8 ANOVA table for plant weight data in Table 6.6.

Source of Degrees of Sum of Mean
variation freedom squares square F

Mean 1 772.0599
Between treatment 2 3.7663 1.883 4.85
Residual 27 10.4921 0.389

Total 30 786.3183

Since F = 4.85 is significant at the 5% level when compared with the
F (2, 27) distribution, we conclude that the group means differ.

To investigate this result further it is convenient to use the first version of
the model (6.8), E(Yjk) = µj . The estimated means are

b =

 µ̂1

µ̂2

µ̂3

 =

 5.032
4.661
5.526

 .
If we use the estimator

σ̂2 =
1

N − J (y − Xb)T (y − Xb) =
1

N − J
(
yTy − bTXTy

)
(Equation 6.4), we obtain σ̂2 = 10.4921/27 = 0.389 (i.e., the residual mean
square in Table 6.8). The variance-covariance matrix of b is σ̂2 (XTX)−1

where

XTX =

 10 0 0
0 10 0
0 0 10

 ,
so the standard error of each element of b is

√
0.389/10 = 0.197. Now it

can be seen that the significant effect is due to the mean for treatment B,
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µ̂3 = 5.526, being significantly (more than two standard deviations) larger
than the other two means. Note that if several pairwise comparisons are made
among elements of b, the standard errors should be adjusted to take account
of multiple comparisons – see, for example, Neter et al. (1996).

6.4.2 Two factor analysis of variance

Consider the fictitious data in Table 6.9 in which factor A (with J = 3 levels)
and factor B (with K = 2 levels) are crossed so that there are JK subgroups
formed by all combinations of A and B levels. In each subgroup there are
L = 2 observations or replicates.

Table 6.9 Fictitious data for two-factor ANOVA with equal numbers of observations
in each subgroup.

Levels of factor B
Levels of
factor A B1 B2 Total

A1 6.8, 6.6 5.3, 6.1 24.8
A2 7.5, 7.4 7.2, 6.5 28.6
A3 7.8, 9.1 8.8, 9.1 34.8

Total 45.2 43.0 88.2

The main hypotheses are:
HI : there are no interaction effects, i.e., the effects of A and B are additive;
HA: there are no differences in response associated with different levels of

factor A;
HB : there are no differences in response associated with different levels of

factor B.
Thus we need to consider a saturated model and three reduced models

formed by omitting various terms from the saturated model.
1. The saturated model is

E(Yjkl) = µ+ αj + βk + (αβ)jk (6.9)

where the terms (αβ)jk correspond to interaction effects and αj and βk
to main effects of the factors;

2. The additive model is

E(Yjkl) = µ+ αj + βk. (6.10)

This compared to the saturated model to test hypothesis HI .
3. The model formed by omitting effects due to B is

E(Yjkl) = µ+ αj . (6.11)

This is compared to the additive model to test hypothesis HB .
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4. The model formed by omitting effects due to A is

E(Yjkl) = µ+ βk. (6.12)

This is compared to the additive model to test hypothesis HA.

The models (6.9) to (6.12) have too many parameters because replicates in
the same subgroup have the same expected value so there can be at most JK
independent expected values but the saturated model has 1 + J +K + JK =
(J + 1)(K + 1) parameters. To overcome this difficulty (which leads to the
singularity of XTX ), we can impose the extra constraints

α1 + α2 + α3 = 0, β1 + β2 = 0,

(αβ)11 + (αβ)12 = 0, (αβ)21 + (αβ)22 = 0, (αβ)31 + (αβ)32 = 0,

(αβ)11 + (αβ)21 + (αβ)31 = 0

(the remaining condition (αβ)12 + (αβ)22 + (αβ)32 = 0 follows from the last
four equations). These are the conventional sum-to-zero constraint equations
for ANOVA. Alternatively, we can take

α1 = β1 = (αβ)11 = (αβ)12 = (αβ)21 = (αβ)31 = 0

as the corner-point constraints. In either case the numbers of (linearly) inde-
pendent parameters are: 1 for µ, J − 1 for the αj ’s, K − 1 for the βk’s, and
(J − 1)(K − 1) for the (αβ)jk’s, giving a total of JK parameters.

We will fit all four models using, for simplicity, the corner point constraints.
The response vector is

y = [6.8, 6.6, 5.3, 6.1, 7.5, 7.4, 7.2, 6.5, 7.8, 9.1, 8.8, 9.1]T

and yTy = 664.1.
For the saturated model (6.9) with constraints

α1 = β1 = (αβ)11 = (αβ)12 = (αβ)21 = (αβ)31 = 0

β =


µ
α2

α3

β2

(αβ)22
(αβ)32

 , X =



100000
100000
100100
100100
110000
110000
110110
110110
101000
101000
101101
101101



, XTy =


Y...
Y2..

Y3..

Y12.

Y22.

Y32.

 =


88.2
28.6
34.8
43.0
13.7
17.9

 ,
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XTX =


12 4 4 6 2 2
4 4 0 2 2 0
4 0 4 2 0 2
6 2 2 6 2 2
2 2 0 2 2 0
2 0 2 2 0 2

 , b =


6.7

0.75
1.75
−1.0

0.4
1.5


and bTXTy = 662.62.

For the additive model (6.10) with the constraints α1 = β1 = 0 the design
matrix is obtained by omitting the last two columns of the design matrix for
the saturated model. Thus

β =


µ
α2

α3

β2

 , XTX =


12 4 4 6
4 4 0 2
4 0 4 2
6 2 2 6

 , XTy =


88.2
28.6
34.8
43.0


and hence

b =


6.383
0.950
2.500

−0.367


so that bTXTy = 661.4133.

For model (6.11) omitting the effects of levels of factor B and using the
constraint α1 = 0, the design matrix is obtained by omitting the last three
columns of the design matrix for the saturated model. Therefore

β =

 µ
α2

α3

 , XTX =

 12 4 4
4 4 0
4 0 4

 , XTy =

 88.2
28.6
34.8


and hence

b =

 6.20
0.95
2.50


so that bTXTy = 661.01.

The design matrix for model (6.12) with constraint β1 = 0 comprises the
first and fourth columns of the design matrix for the saturated model. There-
fore

β =
[
µ
β2

]
, XTX =

[
12 6
6 6

]
, XTy =

[
88.2
43.0

]
and hence

b =
[

7.533
−0.367

]
so that bTXTy = 648.6733.
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Finally for the model with only a mean effect E(Yjkl) = µ, the estimate is
b = [µ̂] = 7.35 and so bTXTy = 648.27.

The results of these calculations are summarized in Table 6.10. The sub-
scripts S, I,A,B and M refer to the saturated model, models corresponding
to HI , HA and HB and the model with only the overall mean, respectively.
The scaled deviances are the terms σ2D = yTy − bTXTy. The degrees of
freedom, d.f., are given by N minus the number of parameters in the model.

Table 6.10 Summary of calculations for data in Table 6.9.

Model d.f. bTXTy Scaled Deviance

µ+ αj + βk + (αβ)jk 6 662.6200 σ2DS = 1.4800
µ+ αj + βk 8 661.4133 σ2DI = 2.6867
µ+ αj 9 661.0100 σ2DB = 3.0900
µ+ βk 10 648.6733 σ2DA = 15.4267
µ 11 648.2700 σ2DM = 15.8300

To test HI we assume that the saturated model is correct so that DS ∼
χ2(6). If HI is also correct then DI ∼ χ2(8) so that DI −DS ∼ χ2(2) and

F =
DI −DS

2

/
DS
6

∼ F (2, 6).

The value of

F =
2.6867 − 1.48

2σ2

/
1.48
6σ2

= 2.45

is not statistically significant so the data do not provide evidence against HI .
Since HI is not rejected we proceed to test HA and HB . For HB we consider
the difference in fit between the models (6.10) and (6.11) i.e., DB −DI and
compare this with DS using

F =
DB −DI

1

/
DS
6

=
3.09 − 2.6867

σ2

/
1.48
6σ2

= 1.63

which is not significant compared to the F (1, 6) distribution, suggesting that
there are no differences due to levels of factor B. The corresponding test for
HA gives F = 25.82 which is significant compared with F (2, 6) distribution.
Thus we conclude that the response means are affected only by differences in
the levels of factor A. The most appropriate choice for the denominator for
the F ratio, DS or DI , is debatable. DS comes from a more complex model
and is more likely to correspond to a central chi-squared distribution, but it
has fewer degrees of freedom.

The ANOVA table for these data is shown in Table 6.11. The first number
in the sum of squares column is the value of bTXTy corresponding to the
simplest model E(Yjkl) = µ.

A feature of these data is that the hypothesis tests are independent in the
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Table 6.11 ANOVA table for data in Table 6.8.

Source of Degrees of Sum of Mean
variation freedom squares square F

Mean 1 648.2700
Levels of A 2 12.7400 6.3700 25.82
Levels of B 1 0.4033 0.4033 1.63
Interactions 2 1.2067 0.6033 2.45
Residual 6 1.4800 0.2467

Total 12 664.1000

sense that the results are not affected by which terms – other than those
relating to the hypothesis in question – are also in the model. For example,
the hypothesis of no differences due to factor B, HB : βk = 0 for all k,
could equally well be tested using either models E(Yjkl) = µ + αj + βk and
E(Yjkl) = µ+ αj and hence

σ2DB − σ2DI = 3.0900 − 2.6867 = 0.4033,

or models

E(Yjkl) = µ+ βk and E(Yjkl) = µ

and hence

σ2DM − σ2DA = 15.8300 − 15.4267 = 0.4033.

The reason is that the data are balanced, that is, there are equal numbers
of observations in each subgroup. For balanced data it is possible to specify
the design matrix in such a way that it is orthogonal (see Section 6.2.5 and
Exercise 6.7). An example in which the hypothesis tests are not independent
is given in Exercise 6.8.

The estimated sample means for each subgroup can be calculated from the
values of b. For example, for the saturated model (6.9) the estimated mean
of the subgroup with the treatment combination A3 and B2 is µ̂+ α̂3 + β̂2 +
(α̂β)32 = 6.7 + 1.75 − 1.0 + 1.5 = 8.95.

The estimate for the same mean from the additive model (6.10) is

µ̂+ α̂3 + β̂2 = 6.383 + 2.5 − 0.367 = 8.516.

This shows the importance of deciding which model to use to summarize the
data.

To assess the adequacy of an ANOVA model, residuals should be calculated
and examined for unusual patterns, Normality, independence, and so on, as
described in Section 6.2.6.
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6.5 Analysis of covariance

Analysis of covariance is the term used for models in which some of the ex-
planatory variables are dummy variables representing factor levels and others
are continuous measurements, called covariates. As with ANOVA, we are
interested in comparing means of subgroups defined by factor levels but, rec-
ognizing that the covariates may also affect the responses, we compare the
means after ‘adjustment’ for covariate effects.

A typical example is provided by the data in Table 6.12. The responses Yjk
are achievement scores measured at three levels of a factor representing three
different training methods, and the covariates xjk are aptitude scores mea-
sured before training commenced. We want to compare the training methods,
taking into account differences in initial aptitude between the three groups of
subjects.

The data are plotted in Figure 6.1. There is evidence that the achievement
scores y increase linearly with aptitude x and that the y values are generally
higher for training groups B and C than for A.

Table 6.12 Achievement scores (data from Winer, 1971, p. 776.)

Training method
A B C

y x y x y x

6 3 8 4 6 3
4 1 9 5 7 2
5 3 7 5 7 2
3 1 9 4 7 3
4 2 8 3 8 4
3 1 5 1 5 1
6 4 7 2 7 4

Total 31 15 53 24 47 19
Sums of
squares 147 41 413 96 321 59∑
xy 75 191 132

To test the hypothesis that there are no differences in mean achievement
scores among the three training methods, after adjustment for initial aptitude,
we compare the saturated model

E(Yjk) = µj + γxjk (6.13)

with the reduced model

E(Yjk) = µ+ γxjk (6.14)

where j = 1 for method A, j = 2 for method B and j = 3 for method C, and
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Achievement

Figure 6.1 Achievement and initial aptitude scores: circles denote training method
A, crosses denote method B and diamonds denote method C.

k = 1, ..., 7. Let

yj =

 Yj1
...
Yj7

 and xj =

 xj1
...
xj7


so that, in matrix notation, the saturated model (6.13) is E(y)=Xβ with

y =

 y1

y2

y3

 , β =


µ1

µ2

µ3

γ

 and X =

 1 0 0 x1

0 1 0 x2

0 0 1 x3


where 0 and 1 are vectors of length 7. Then

XTX =


7 0 0 15
0 7 0 24
0 0 7 19
15 24 19 196

 , XTy =


31
53
47
398


and so

b =


2.837
5.024
4.698
0.743

 .
Also yTy = 881 and bTXTy = 870.698 so for the saturated model (6.13)

σ2D1 = yTy − bTXTy = 10.302.
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For the reduced model (6.14)

β =
[
µ
γ

]
, X =

 1 x1

1 x2

1 x3

 so XTX =
[

21 58
58 196

]
and

XTy =
[

131
398

]
.

Hence

b =
[

3.447
1.011

]
, bTXTy = 853.766 and so σ2D0 = 27.234.

If we assume that the saturated model (6.13) is correct, then D1 ∼ χ2(17).
If the null hypothesis corresponding to model (6.14) is true then D0 ∼ χ2(19)
so

F =
D0 −D1

2σ2

/
D1

17σ2
∼ F (2, 17).

For these data

F =
16.932

2

/
10.302

17
= 13.97

indicating a significant difference in achievement scores for the training meth-
ods, after adjustment for initial differences in aptitude. The usual presentation
of this analysis is given in Table 6.13.

Table 6.13 ANCOVA table for data in Table 6.11.

Source of Degrees of Sum of Mean
variation freedom squares square F

Mean and covariate 2 853.766
Factor levels 2 16.932 8.466 13.97
Residuals 17 10.302 0.606

Total 21 881.000

6.6 General linear models

The term general linear model is used for Normal linear models with any
combination of categorical and continuous explanatory variables. The factors
may be crossed, as in Section 6.4.2., so that there are observations for each
combination of levels of the factors. Alternatively, they may be nested as
illustrated in the following example.

Table 6.14 shows a two-factor nested design which represents an experiment
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to compare two drugs (A1 and A2), one of which is tested in three hospitals
(B1,B2 and B3) and the other in two different hospitals (B4 and B5). We
want to compare the effects of the two drugs and possible differences among
hospitals using the same drug. In this case, the saturated model would be

E(Yjkl) = µ+ α1 + α2 + (αβ)11 + (αβ)12 + (αβ)13 + (αβ)24 + (αβ)25

subject to some constraints (the corner point constraints are α1 = 0, (αβ)11 =
0 and (αβ)24 = 0). Hospitals B1,B2 and B3 can only be compared within drug
A1 and hospitals B4 and B5 within A2.

Table 6.14 Nested two-factor experiment.

Drug A1 Drug A2

Hospitals B1 B2 B3 B4 B5

Responses Y111 Y121 Y131 Y241 Y251

...
...

...
...

...
Y11n1 Y12n2 Y13n3 Y24n4 Y25n5

Analysis for nested designs is not in principle, different from analysis for
studies with crossed factors. Key assumptions for general linear models are
that the response variable has the Normal distribution, the response and ex-
planatory variables are linearly related and the variance σ2 is the same for all
responses. For the models considered in this chapter, the responses are also
assumed to be independent (though this assumption is dropped in Chapter
11). All these assumptions can be examined through the use of residuals (Sec-
tion 6.2.6). If they are not justified, for example, because the residuals have
a skewed distribution, then it is usually worthwhile to consider transforming
the response variable so that the assumption of Normality is more plausible.
A useful tool, now available in many statistical programs, is the Box-Cox
transformation (Box and Cox, 1964). Let y be the original variable and y∗

the transformed one, then the function

y∗ =

 yλ − 1
λ

, λ �= 0

log y , λ = 0

provides a family of transformations. For example, except for a location shift,
λ = 1 leaves y unchanged; λ = 1

2 corresponds to taking the square root; λ =
−1 corresponds to the reciprocal; and λ = 0 corresponds to the logarithmic
transformation. The value of λ which produces the ‘most Normal’ distribution
can be estimated by the method of maximum likelihood.

Similarly, transformation of continuous explanatory variables may improve
the linearity of relationships with the response.
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6.7 Exercises

6.1 Table 6.15 shows the average apparent per capita consumption of sugar (in
kg per year) in Australia, as refined sugar and in manufactured foods (from
Australian Bureau of Statistics, 1998).

Table 6.15 Australian sugar consumption.

Period Refined Sugar in
sugar manufactured food

1936-39 32.0 16.3
1946-49 31.2 23.1
1956-59 27.0 23.6
1966-69 21.0 27.7
1976-79 14.9 34.6
1986-89 8.8 33.9

(a) Plot sugar consumption against time separately for refined sugar and
sugar in manufactured foods. Fit simple linear regression models to sum-
marize the pattern of consumption of each form of sugar. Calculate 95%
confidence intervals for the average annual change in consumption for
each form.

(b) Calculate the total average sugar consumption for each period and plot
these data against time. Using suitable models test the hypothesis that
total sugar consumption did not change over time.

6.2 Table 6.16 shows response of a grass and legume pasture system to various
quantities of phosphorus fertilizer (data from D. F. Sinclair; the results were
reported in Sinclair and Probert, 1986). The total yield, of grass and legume
together, and amount of phosphorus (K) are both given in kilograms per
hectare. Find a suitable model for describing the relationship between yield
and quantity of fertilizer.

(a) Plot yield against phosphorus to obtain an approximately linear rela-
tionship – you may need to try several transformations of either or both
variables in order to achieve approximate linearity.

(b) Use the results of (a) to specify a possible model. Fit the model.

(c) Calculate the standardized residuals for the model and use appropriate
plots to check for any systematic effects that might suggest alternative
models and to investigate the validity of any assumptions made.

6.3 Analyze the carbohydrate data in Table 6.3 using appropriate software (or,
preferably, repeat the analyses using several different regression programs
and compare the results).
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Table 6.16 Yield of grass and legume pasture and phosphorus levels (K).

K Yield K Yield K Yield

0 1753.9 15 3107.7 10 2400.0
40 4923.1 30 4415.4 5 2861.6
50 5246.2 50 4938.4 40 3723.0
5 3184.6 5 3046.2 30 4892.3

10 3538.5 0 2553.8 40 4784.6
30 4000.0 10 3323.1 20 3184.6
15 4184.6 40 4461.5 0 2723.1
40 4692.3 20 4215.4 50 4784.6
20 3600.0 40 4153.9 15 3169.3

(a) Plot the responses y against each of the explanatory variables x1, x2 and
x3 to see if y appears to be linearly related to them.

(b) Fit the model (6.6) and examine the residuals to assess the adequacy of
the model and the assumptions.

(c) Fit the models

E(Yi) = β0 + β1xi1 + β3xi3

and

E(Yi) = β0 + β3xi3,

(note the variable x2, relative weight, is omitted from both models) and
use these to test the hypothesis: β1 = 0. Compare your results with
Table 6.5.

6.4 It is well known that the concentration of cholesterol in blood serum in-
creases with age but it is less clear whether cholesterol level is also associ-
ated with body weight. Table 6.17 shows for thirty women serum cholesterol
(millimoles per liter), age (years) and body mass index (weight divided by
height squared, where weight was measured in kilograms and height in
meters). Use multiple regression to test whether serum cholesterol is asso-
ciated with body mass index when age is already included in the model.

6.5 Table 6.18 shows plasma inorganic phosphate levels (mg/dl) one hour af-
ter a standard glucose tolerance test for obese subjects, with or without
hyperinsulinemia, and controls (data from Jones, 1987).

(a) Perform a one-factor analysis of variance to test the hypothesis that there
are no mean differences among the three groups. What conclusions can
you draw?

(b) Obtain a 95% confidence interval for the difference in means between
the two obese groups.
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Table 6.17 Cholesterol (CHOL), age and body mass index (BMI) for thirty women.

CHOL Age BMI CHOL Age BMI

5.94 52 20.7 6.48 65 26.3
4.71 46 21.3 8.83 76 22.7
5.86 51 25.4 5.10 47 21.5
6.52 44 22.7 5.81 43 20.7
6.80 70 23.9 4.65 30 18.9
5.23 33 24.3 6.82 58 23.9
4.97 21 22.2 6.28 78 24.3
8.78 63 26.2 5.15 49 23.8
5.13 56 23.3 2.92 36 19.6
6.74 54 29.2 9.27 67 24.3
5.95 44 22.7 5.57 42 22.0
5.83 71 21.9 4.92 29 22.5
5.74 39 22.4 6.72 33 24.1
4.92 58 20.2 5.57 42 22.7
6.69 58 24.4 6.25 66 27.3

Table 6.18 Plasma phosphate levels in obese and control subjects.

Hyperinsulinemic Non-hyperinsulinemic Controls
obese obese

2.3 3.0 3.0
4.1 4.1 2.6
4.2 3.9 3.1
4.0 3.1 2.2
4.6 3.3 2.1
4.6 2.9 2.4
3.8 3.3 2.8
5.2 3.9 3.4
3.1 2.9
3.7 2.6
3.8 3.1

3.2

(c) Using an appropriate model examine the standardized residuals for all
the observations to look for any systematic effects and to check the
Normality assumption.

6.6 The weights (in grams) of machine components of a standard size made by
four different workers on two different days are shown in Table 6.19; five
components were chosen randomly from the output of each worker on each
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Table 6.19 Weights of machine components made by workers on different days.

Workers
1 2 3 4

Day 1 35.7 38.4 34.9 37.1
37.1 37.2 34.3 35.5
36.7 38.1 34.5 36.5
37.7 36.9 33.7 36.0
35.3 37.2 36.2 33.8

Day 2 34.7 36.9 32.0 35.8
35.2 38.5 35.2 32.9
34.6 36.4 33.5 35.7
36.4 37.8 32.9 38.0
35.2 36.1 33.3 36.1

day. Perform an analysis of variance to test for differences among workers,
among days, and possible interaction effects. What are your conclusions?

6.7 For the balanced data in Table 6.9, the analyses in Section 6.4.2 showed
that the hypothesis tests were independent. An alternative specification
of the design matrix for the saturated model (6.9) with the corner point
constraints α1 = β1 = (αβ)11 = (αβ)12 = (αβ)21 = (αβ)31 = 0 so that

β =


µ
α2

α3

β2

(αβ)22
(αβ)32

 is X =



1 −1 −1 −1 1 1
1 −1 −1 −1 1 1
1 −1 −1 1 −1 −1
1 −1 −1 1 −1 −1
1 1 0 −1 −1 0
1 1 0 −1 −1 0
1 1 0 1 1 0
1 1 0 1 1 0
1 0 1 −1 0 −1
1 0 1 −1 0 −1
1 0 1 1 0 1
1 0 1 1 0 1


where the columns of X corresponding to the terms (αβ)jk are the products
of columns corresponding to terms αj and βk.

(a) Show that XTX has the block diagonal form described in Section 6.2.5.
Fit the model (6.9) and also models (6.10) to (6.12) and verify that the
results in Table 6.9 are the same for this specification of X.

(b) Show that the estimates for the mean of the subgroup with treatments
A3 and B2 for two different models are the same as the values given at
the end of Section 6.4.2.
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6.8 Table 6.20 shows the data from a fictitious two-factor experiment.

(a) Test the hypothesis that there are no interaction effects.
(b) Test the hypothesis that there is no effect due to factor A

(i) by comparing the models

E(Yjkl) = µ+ αj + βk and E(Yjkl) = µ+ βk;

(ii) by comparing the models

E(Yjkl) = µ+ αj and E(Yjkl) = µ.

Explain the results.

Table 6.20 Two factor experiment with unbalanced data.

Factor B
Factor A B1 B2

A1 5 3, 4
A2 6, 4 4, 3
A3 7 6, 8
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7

Binary Variables and Logistic
Regression

7.1 Probability distributions

In this chapter we consider generalized linear models in which the outcome
variables are measured on a binary scale. For example, the responses may be
alive or dead, or present or absent. ‘Success’ and ‘failure’ are used as generic
terms of the two categories.

First, we define the binary random variable

Z =
{

1 if the outcome is a success
0 if the outcome is a failure

with probabilities Pr(Z = 1) = π and Pr(Z = 0) = 1− π. If there are n such
random variables Z1, ..., Zn which are independent with Pr(Zj = 1) = πj ,
then their joint probability is

n∏
j=1

π
zj
j (1 − πj)1−zj = exp

 n∑
j=1

zj log
(

πj
1 − πj

)
+
n∑
j=1

log(1 − πj)

 (7.1)

which is a member of the exponential family (see equation (3.3)).
Next, for the case where the πj ’s are all equal, we can define

Y =
n∑
j=1

Zj

so that Y is the number of successes in n ‘trials’. The random variable Y has
the distribution binomial(n, π):

Pr(Y = y) =
(
n
y

)
πy(1 − π)n−y , y = 0, 1, ..., n (7.2)

Finally, we consider the general case of N independent random variables
Y1, Y2, ..., YN corresponding to the numbers of successes in N different sub-
groups or strata (Table 7.1). If Yi ∼ binomial(ni, πi) the log-likelihood func-
tion is

l(π1, . . . , πN ; y1, . . . , yN )

=

[
N∑
i=1

yi log
(

πi
1 − πi

)
+ ni log(1 − πi) + log

(
ni
yi

)]
. (7.3)
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Table 7.1 Frequencies for N binomial distributions.

Subgroups
1 2 ... N

Successes Y1 Y2 ... YN
Failures n1 − Y1 n2 − Y2 ... nN − YN
Totals n1 n2 ... nN

7.2 Generalized linear models

We want to describe the proportion of successes, Pi = Yi/ni, in each subgroup
in terms of factor levels and other explanatory variables which characterize
the subgroup. As E(Yi) = niπi and so E(Pi) = πi, we model the probabilities
πi as

g(πi) = xTi β

where xi is a vector of explanatory variables (dummy variables for factor levels
and measured values for covariates), β is a vector of parameters and g is a
link function.

The simplest case is the linear model

π = xTβ.

This is used in some practical applications but it has the disadvantage that
although π is a probability, the fitted values xTb may be less than zero or
greater than one.

To ensure that π is restricted to the interval [0,1] it is often modelled using
a cumulative probability distribution

π =
∫ t
−∞

f(s)ds

where f(s) � 0 and
∫∞
−∞ f(s)ds = 1. The probability density function f(s)

is called the tolerance distribution. Some commonly used examples are
considered in Section 7.3.

7.3 Dose response models

Historically, one of the first uses of regression-like models for binomial data
was for bioassay results (Finney, 1973). Responses were the proportions or
percentages of ‘successes’; for example, the proportion of experimental animals
killed by various dose levels of a toxic substance. Such data are sometimes
called quantal responses. The aim is to describe the probability of ‘success’,
π, as a function of the dose, x; for example, g(π) = β1 + β2x.

If the tolerance distribution f(s) is the uniform distribution on the interval
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c1 c2 

1

c1 c2 

1 /( c 1 - c 2 )

Figure 7.1 Uniform distribution: f(s) and π.

[c1, c2]

f(s) =


1

c2 − c1
if c1 � s � c2

0 otherwise
,

then

π =
∫ x
c1

f(s)ds =
x− c1
c2 − c1

for c1 � x � c2

(see Figure 7.1). This equation has the form π = β1 + β2x where

β1 =
−c1
c2 − c1

andβ2 =
1

c2 − c1
.

This linear model is equivalent to using the identity function as the link
function g and imposing conditions on x, β1 and β2 corresponding to c1 ≤ x ≤
c2. These extra conditions mean that the standard methods for estimating β1

and β2 for generalized linear models cannot be directly applied. In practice,
this model is not widely used.

One of the original models used for bioassay data is called the probit
model. The Normal distribution is used as the tolerance distribution (see
Figure 7.2).

π =
1

σ
√

2π

∫ x
−∞

exp

[
−1

2

(
s− µ
σ

)2
]
ds

= Φ
(
x− µ
σ

)
where Φ denotes the cumulative probability function for the standard Normal
distribution N(0, 1). Thus

Φ−1(π) = β1 + β2x

where β1 = −µ/σ and β2 = 1/σ and the link function g is the inverse cumula-
tive Normal probability function Φ−1. Probit models are used in several areas
of biological and social sciences in which there are natural interpretations of
the model; for example, x = µ is called the median lethal dose LD(50)
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x x

Figure 7.2 Normal distribution: f(s) and π.

because it corresponds to the dose that can be expected to kill half of the
animals.

Another model that gives numerical results very much like those
from the probit model, but which computationally is somewhat easier, is the
logistic or logit model. The tolerance distribution is

f(s) =
β2 exp(β1 + β2s)

[1 + exp(β1 + β2s)]
2

so

π =
∫ x
−∞

f(s)ds =
exp(β1 + β2x)

1 + exp(β1 + β2x)
.

This gives the link function

log
(

π

1 − π

)
= β1 + β2x.

The term log[π/(1−π)] is sometimes called the logit function and it has a
natural interpretation as the logarithm of odds (see Exercise 7.2). The logistic
model is widely used for binomial data and is implemented in many statistical
programs. The shapes of the functions f(s) and π(x) are similar to those for
the probit model (Figure 7.2) except in the tails of the distributions (see Cox
and Snell, 1989).

Several other models are also used for dose response data. For example, if
the extreme value distribution

f(s) = β2 exp [(β1 + β2s) − exp (β1 + β2s)]

is used as the tolerance distribution then

π = 1 − exp [− exp (β1 + β2x)]

and so log[− log(1− π)] = β1 + β2x. This link, log[− log(1− π)], is called the
complementary log log function. The model is similar to the logistic and
probit models for values of π near 0.5 but differs from them for π near 0 or 1.
These models are illustrated in the following example.
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Figure 7.3 Beetle mortality data from Table 7.2: proportion killed, pi = yi/ni, plotted
against dose, xi (log10CS2mgl−1).

7.3.1 Example: Beetle mortality

Table 7.2 shows numbers of beetles dead after five hours exposure to gaseous
carbon disulphide at various concentrations (data from Bliss, 1935). Figure

Table 7.2 Beetle mortality data.

Dose, xi Number of Number
(log10CS2mgl−1) beetles, ni killed, yi

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

7.3 shows the proportions pi = yi/ni plotted against dose xi (actually xi is
the logarithm of the quantity of carbon disulphide). We begin by fitting the
logistic model

πi =
exp (β1 + β2xi)

1 + exp (β1 + β2xi)
so

log
(

πi
1 − πi

)
= β1 + β2xi
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and

log(1 − πi) = − log [1 + exp (β1 + β2xi)] .

Therefore from equation (7.3) the log-likelihood function is

l =
N∑
i=1

[
yi (β1 + β2xi) − ni log [1 + exp (β1 + β2xi)] + log

(
ni
yi

)]
and the scores with respect to β1 and β2 are

U1 =
∂l

∂β1
=
∑{

yi − ni
[

exp (β1 + β2xi)
1 + exp (β1 + β2xi)

]}
=
∑

(yi − niπi)

U2 =
∂l

∂β2
=
∑{

yixi − nixi
[

exp (β1 + β2xi)
1 + exp (β1 + β2xi)

]}
=

∑
xi(yi − niπi).

Similarly the information matrix is

I=

 ∑
niπi(1 − πi)

∑
nixiπi(1 − πi)∑

nixiπi(1 − πi)
∑
nix

2
iπi(1 − πi)

 .
Maximum likelihood estimates are obtained by solving the iterative equa-

tion

I
(m−1)bm = I

(m−1)b(m−1) + U(m−1)

(from (4.22)) where the superscript (m) indicates the mth approximation and
b is the vector of estimates. Starting with b(0)1 = 0 and b(0)2 = 0, successive
approximations are shown in Table 7.3. The estimates converge by the sixth
iteration. The table also shows the increase in values of the log-likelihood

function (7.3), omitting the constant term log
(
ni
yi

)
. The fitted values are

ŷi = niπ̂i calculated at each stage (initially π̂i = 1
2 for all i).

For the final approximation, the estimated variance-covariance matrix for
b,
[
I(b)−1

]
, is shown at the bottom of Table 7.3 together with the deviance

D = 2
N∑
i=1

[
yi log

(
yi
ŷi

)
+ (ni − yi) log

(
n− yi
n− ŷi

)]
(from Section 5.6.1).

The estimates and their standard errors are:

b1 = −60.72, standard error =
√

26.840 = 5.18
and b2 = 34.72, standard error =

√
8.481 = 2.91.

If the model is a good fit of the data the deviance should approximately
have the distribution χ2(6) because there are N = 8 covariate patterns (i.e.,
different values of xi) and p = 2 parameters. But the calculated value of D is
almost twice the ‘expected’ value of 6 and is almost as large as the upper 5%
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point of the χ2(6) distribution, which is 12.59. This suggests that the model
does not fit particularly well.

Table 7.3 Fitting a linear logistic model to the beetle mortality data.

Initial Approximation
estimate First Second Sixth

β1 0 -37.856 -53.853 -60.717
β2 0 21.337 30.384 34.270
log-likelihood -333.404 -200.010 -187.274 -186.235

Observations Fitted values
y1 6 29.5 8.505 4.543 3.458
y2 13 30.0 15.366 11.254 9.842
y3 18 31.0 24.808 23.058 22.451
y4 28 28.0 30.983 32.947 33.898
y5 52 31.5 43.362 48.197 50.096
y6 53 29.5 46.741 51.705 53.291
y7 61 31.0 53.595 58.061 59.222
y8 60 30.0 54.734 58.036 58.743

[I(b)]−1 =
[

26.840 −15.082
−15.082 8.481

]
, D = 11.23

Several alternative models were fitted to the data. The results are shown
in Table 7.4. Among these models the extreme value model appears to fit the
data best.

7.4 General logistic regression model

The simple linear logistic model log[πi/(1−πi)] = β1 +β2xi used in Example
7.3.1 is a special case of the general logistic regression model

logit πi = log
(

πi
1 − πi

)
= xTi β

where xi is a vector continuous measurements corresponding to covariates and
dummy variables corresponding to factor levels and β is the parameter vector.
This model is very widely used for analyzing data involving binary or binomial
responses and several explanatory variables. It provides a powerful technique
analogous to multiple regression and ANOVA for continuous responses.

Maximum likelihood estimates of the parameters β, and consequently of
the probabilities πi = g(xTi β), are obtained by maximizing the log-likelihood
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Table 7.4 Comparison of observed numbers killed with fitted values obtained from
various dose-response models for the beetle mortality data. Deviance statistics are
also given.

Observed Logistic Probit Extreme
value model model value
of Y model

6 3.46 3.36 5.59
13 9.84 10.72 11.28
18 22.45 23.48 20.95
28 33.90 33.82 30.37
52 50.10 49.62 47.78
53 53.29 53.32 54.14
61 59.22 59.66 61.11
60 58.74 59.23 59.95

D 11.23 10.12 3.45

function

l(π;y) =
N∑
i=1

[
yi log πi + (ni − yi) log(1 − πi) + log

(
ni
yi

)]
(7.4)

using the methods described in Chapter 4.
The estimation process is essentially the same whether the data are grouped

as frequencies for each covariate pattern (i.e., observations with the same
values of all the explanatory variables) or each observation is coded 0 or 1
and its covariate pattern is listed separately. If the data can be grouped,
the response Yi, the number of ‘successes’ for covariate pattern i, may be
modelled by the binomial distribution. If each observation has a different
covariate pattern, then ni = 1 and the response Yi is binary.

The deviance, derived in Section 5.6.1, is

D = 2
N∑
i=1

[
yi log

(
yi
ŷi

)
+ (ni − yi) log

(
ni − yi
ni − ŷi

)]
. (7.5)

This has the form

D = 2
∑

o log
o

e

where o denotes the observed frequencies yi and (ni − yi) from the cells of
Table 7.1 and e denotes the corresponding estimated expected frequencies or
fitted values ŷi = niπ̂i and (ni − ŷi) = (ni − niπ̂i). Summation is over all
2 ×N cells of the table.

Notice that D does not involve any nuisance parameters (like σ2 for Normal
response data), so goodness of fit can be assessed and hypotheses can be tested
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directly using the approximation

D ∼ χ2(N − p)
where p is the number of parameters estimated and N the number of covariate
patterns.

The estimation methods and sampling distributions used for inference de-
pend on asymptotic results. For small studies or situations where there are
few observations for each covariate pattern, the asymptotic results may be
poor approximations. However software, such as StatXact and Log Xact, has
been developed using ‘exact’ methods so that the methods described in this
chapter can be used even when sample sizes are small.

7.4.1 Example: Embryogenic anthers

The data in Table 7.5, cited by Wood (1978), are taken from Sangwan-Norrell
(1977). They are numbers yjk of embryogenic anthers of the plant species
Datura innoxia Mill. obtained when numbers njk of anthers were prepared
under several different conditions. There is one qualitative factor with two
levels, a treatment consisting of storage at 3◦C for 48 hours or a control
storage condition, and one continuous explanatory variable represented by
three values of centrifuging force. We will compare the treatment and control
effects on the proportions after adjustment (if necessary) for centrifuging force.

Table 7.5 Embryogenic anther data.

Centrifuging force (g)
Storage condition 40 150 350

Control y1k 55 52 57
n1k 102 99 108

Treatment y2k 55 50 50
n2k 76 81 90

The proportions pjk = yjk/njk in the control and treatment groups are
plotted against xk, the logarithm of the centrifuging force, in Figure 7.4. The
response proportions appear to be higher in the treatment group than in the
control group and, at least for the treated group, the response decreases with
centrifuging force.

We will compare three logistic models for πjk, the probability of the anthers
being embryogenic, where j = 1 for the control group and j = 2 for the
treatment group and x1 = log 40 = 3.689, x2 = log 150 = 5.011 and x3 =
log 350 = 5.858.

Model 1: logit πjk = αj + βjxk (i.e., different intercepts and slopes);
Model 2: logit πjk = αj+βxk (i.e., different intercepts but the same slope);
Model 3: logit πjk = α+ βxk (i.e., same intercept and slope).
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Figure 7.4 Anther data from Table 7.5: proportion that germinated pjk = yjk/njk

plotted against log (centrifuging force); dots represent the treatment condition and
diamonds represent the control condition.

These models were fitted by the method of maximum likelihood. The results
are summarized in Table 7.6.To test the null hypothesis that the slope is
the same for the treatment and control groups, we use D2 − D1 = 2.591.
From the tables for the χ2(1) distribution, the significance level is between
0.1 and 0.2 and so we could conclude that the data provide little evidence
against the null hypothesis of equal slopes. On the other hand, the power
of this test is very low and both Figure 7.4 and the estimates for Model
1 suggest that although the slope for the control group may be zero, the
slope for the treatment group is negative. Comparison of the deviances from
Models 2 and 3 gives a test for equality of the control and treatment effects
after a common adjustment for centrifuging force: D3 −D2 = 0.491, which is
consistent with the hypothesis that the storage effects are not different.The
observed proportions and the corresponding fitted values for Models 1 and 2
are shown in Table 7.7. Obviously, Model 1 fits the data very well but this is
hardly surprising since four parameters have been used to describe six data
points – such ‘over-fitting’ is not recommended!

7.5 Goodness of fit statistics

Instead of using maximum likelihood estimation we could estimate the pa-
rameters by minimizing the weighted sum of squares

Sw =
N∑
i=1

(yi − niπi)2
niπi(1 − πi)

since E(Yi) = niπi and var(Yi) = niπi(1 − πi).
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Table 7.6 Maximum likelihood estimates and deviances for logistic models for the
embryogenic anther data (standard errors of estimates in brackets).

Model 1 Model 2 Model 3

a1 = 0.234(0.628) a1 = 0.877(0.487) a = 1.021(0.481)
a2 − a1 = 1.977(0.998) a2 − a1 = 0.407(0.175) b = −0.148(0.096)
b1 = −0.023(0.127) b = −0.155(0.097)
b2 − b1 = −0.319(0.199)

D1 = 0.028 D2 = 2.619 D3 = 3.110

Table 7.7 Observed and expected frequencies for the embryogenic anther data for
various models.

Storage Covariate Observed Expected frequencies
condition value frequency Model 1 Model 2 Model 3

Control x1 55 54.82 58.75 62.91
x2 52 52.47 52.03 56.40
x3 57 56.72 53.22 58.18

Treatment x1 55 54.83 51.01 46.88
x2 50 50.43 50.59 46.14
x3 50 49.74 53.40 48.49

This is equivalent to minimizing the Pearson chi-squared statistic

X2 =
∑ (o− e)2

e

where o represents the observed frequencies in Table 7.1, e represents the
expected frequencies and summation is over all 2×N cells of the table. The
reason is that

X2 =
N∑
i=1

(yi − niπi)2
niπi

+
N∑
i=1

[(ni − yi) − ni(1 − πi)]2

ni(1 − πi)

=
N∑
i=1

(yi − niπi)2
niπi(1 − πi)

(1 − πi + πi) = Sw.

When X2 is evaluated at the estimated expected frequencies, the statistic
is

X2 =
N∑
i=1

(yi − niπ̂i)2
niπ̂i(1 − π̂i)

(7.6)
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which is asymptotically equivalent to the deviances in (7.5),

D = 2
N∑
i=1

[
yi log

(
yi
niπ̂i

)
+ (ni − yi) log

(
ni − yi
ni − niπ̂i

)]
.

The proof of the relationship between X2 and D uses the Taylor series
expansion of s log(s/t) about s = t, namely,

s log
s

t
= (s− t) +

1
2

(s− t)2
t

+ ... .

Thus

D = 2
N∑
i=1

{(yi − niπ̂i) +
1
2

(yi − niπ̂i)2
niπ̂i

+ [(ni − yi) − (ni − niπ̂i)]

+
1
2

[(ni − yi) − (ni − niπ̂i)]2
ni − niπ̂i

+ ...}

∼=
N∑
i=1

(yi − niπ̂i)2
niπ̂i(1 − π̂i)

= X2.

The asymptotic distribution of D, under the hypothesis that the model is
correct, is D ∼ χ2(N − p), therefore approximately X2 ∼ χ2(N − p). The
choice between D and X2 depends on the adequacy of the approximation to
the χ2(N − p) distribution. There is some evidence to suggest that X2 is
often better than D because D is unduly influenced by very small frequencies
(Cressie and Read, 1989). Both the approximations are likely to be poor,
however, if the expected frequencies are too small (e.g., less than 1).

In particular, if each observation has a different covariate pattern so yi is
zero or one, then neither D nor X2 provides a useful measure of fit. This can
happen if the explanatory variables are continuous, for example. The most
commonly used approach in this situation is due to Hosmer and Lemeshow
(1980). Their idea was to group observations into categories on the basis of
their predicted probabilities. Typically about 10 groups are used with approx-
imately equal numbers of observations in each group. The observed numbers
of successes and failures in each of the g groups are summarized as shown
in Table 7.1. Then the Pearson chi-squared statistic for a g × 2 contingency
table is calculated and used as a measure of fit. We denote this Hosmer-
Lemeshow statistic by X2

HL. The sampling distribution of X2
HL has been

found by simulation to be approximately χ2(g − 2). The use of this statistic
is illustrated in the example in Section 7.9.

Sometimes the log-likelihood function for the fitted model is compared with
the log-likelihood function for a minimal model, in which the values πi are all
equal (in contrast to the saturated model which is used to define the deviance).
Under the minimal model π̃ = (Σyi) / (Σni). Let π̂i denote the estimated
probability for Yi under the model of interest (so the fitted value is ŷi = niπ̂i).
The statistic is defined by

C = 2 [l (π̂;y) − l (π̃;y)]
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where l is the log-likelihood function given by (7.4).
Thus

C = 2
∑[

yi log
(
ŷi
nπ̃i

)
+ (ni − yi) log

(
ni − ŷi
ni − niπ̃i

)]
From the results in Section 5.5, the approximate sampling distribution for

C is χ2(p − 1) if all the p parameters except the intercept term β1 are zero
(see Exercise 7.4). Otherwise C will have a non-central distribution. Thus C
is a test statistic for the hypothesis that none of the explanatory variables is
needed for a parsimonious model. C is sometimes called the likelihood ratio
chi-squared statistic.

In the beetle mortality example (Section 7.3.1), C = 272.97 with one degree
of freedom, indicating that the slope parameter β1 is definitely needed!

By analogy with R2 for multiple linear regression (see Section 6.3.2) another
statistic sometimes used is

pseudo R2 =
l (π̃;y) − l (π̂;y)

l (π̃;y)

which represents the proportional improvement in the log-likelihood function
due to the terms in the model of interest, compared to the minimal model.
This is produced by some statistical programs as a goodness of fit statistic.

7.6 Residuals

For logistic regression there are two main forms of residuals corresponding
to the goodness of fit measures D and X2. If there are m different covariate
patterns then m residuals can be calculated. Let Yk denote the number of
successes, nk the number of trials and π̂k the estimated probability of success
for the kth covariate pattern.

The Pearson, or chi-squared, residual is

Xk =
(yk − nkπ̂k)√
nkπ̂k (1 − π̂k)

, k = 1, ...,m. (7.7)

From (7.6),
∑m
k=1X

2
k = X2, the Pearson chi-squared goodness of fit statis-

tic. The standardized Pearson residuals are

rPk =
Xk√
1 − hk

where hk is the leverage, which is obtained from the hat matrix (see Section
6.2.6).

Deviance residuals can be defined similarly,

dk = sign(yk − nkπ̂k)
{

2
[
yk log

(
yk
nkπ̂k

)
+ (nk − yk) log

(
nk − yk
nk − nkπ̂k

)]}1/2

(7.8)

where the term sign(yk − nkπ̂k) ensures that dk has the same sign as Xk.
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From equation (7.5),
∑m
k=1 d

2
k = D, the deviance. Also standardized deviance

residuals are defined by

rDk =
dk√

1 − hk
.

These residuals can be used for checking the adequacy of a model, as de-
scribed in Section 2.3.4. For example, they should be plotted against each
continuous explanatory variable in the model to check if the assumption of
linearity is appropriate and against other possible explanatory variables not
included in the model. They should be plotted in the order of the measure-
ments, if applicable, to check for serial correlation. Normal probability plots
can also be used because the standardized residuals should have, approxi-
mately, the standard Normal distribution N(0, 1), provided the numbers of
observations for each covariate pattern are not too small.

If the data are binary, or if ni is small for most covariate patterns, then
there are few distinct values of the residuals and the plots may be relatively
uninformative. In this case, it may be necessary to rely on the aggregated
goodness of fit statistics X2 and D and other diagnostics (see Section 7.7).

For more details about the use of residuals for binomial and binary data
see Chapter 5 of Collett (1991), for example.

7.7 Other diagnostics

By analogy with the statistics used to detect influential observations in mul-
tiple linear regression, the statistics delta-beta, delta-chi-squared and delta-
deviance are also available for logistic regression (see Section 6.2.7).

For binary or binomial data there are additional issues to consider. The first
is to check the choice of the link function. Brown (1982) developed a test for
the logit link which is implemented in some software. The approach suggested
by Aranda-Ordaz (1981) is to consider a more general family of link functions

g(π, α) = log

[
(1 − π)−α − 1

α

]
.

If α = 1 then g (π) = log [π/ (1 − π)], the logit link. As α → 0, then g(π) →
log [− log(1 − π)], the complementary log-log link. In principle, an optimal
value of α can be estimated from the data, but the process requires several
steps. In the absence of suitable software to identify the best link function it
is advisable to experiment with several alternative links.

The second issue in assessing the adequacy of models for binary or binomial
data is overdispersion. Observations Yi which might be expected to corre-
spond to the binomial distribution may have variance greater than niπi(1−πi).
There is an indicator of this problem if the deviance D is much greater than
the expected value of N − p. This could be due to inadequate specification
of the model (e.g., relevant explanatory variables have been omitted or the
link function is incorrect) or to a more complex structure. One approach is to
include an extra parameter φ in the model so that var(Yi) = niπi(1 − πi)φ.
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This is implemented in various ways in statistical software. Another possible
explanation for overdispersion is that the Yi’s are not independent. Meth-
ods for modelling correlated data are outlined in Chapter 11. For a detailed
discussion of overdispersion for binomial data, see Collett (1991), Chapter 6.

7.8 Example: Senility and WAIS

A sample of elderly people was given a psychiatric examination to determine
whether symptoms of senility were present. Other measurements taken at the
same time included the score on a subset of the Wechsler Adult Intelligent
Scale (WAIS). The data are shown in Table 7.8.

Table 7.8 Symptoms of senility (s=1 if symptoms are present and s=0 otherwise)
and WAIS scores (x) for N=54 people.

x s x s x s x s x s

9 1 7 1 7 0 17 0 13 0
13 1 5 1 16 0 14 0 13 0
6 1 14 1 9 0 19 0 9 0
8 1 13 0 9 0 9 0 15 0

10 1 16 0 11 0 11 0 10 0
4 1 10 0 13 0 14 0 11 0

14 1 12 0 15 0 10 0 12 0
8 1 11 0 13 0 16 0 4 0

11 1 14 0 10 0 10 0 14 0
7 1 15 0 11 0 16 0 20 0
9 1 18 0 6 0 14 0

The data in Table 7.8 are binary although some people have the same WAIS
scores and so there are m = 17 different covariate patterns (see Table 7.9).
Let Yi denote the number of people with symptoms among ni people with the
ith covariate pattern. The logistic regression model

log
(

πi
1 − πi

)
= β1 + β2xi; Yi ∼ binomial(ni, πi) i = 1, . . . ,m,

was fitted with the following results:

b1 = 2.404, standard error (b1) = 1.192,
b2 = −0.3235, standard error (b2) = 0.1140,
X2 =

∑
X2
i = 8.083 and D =

∑
d2i = 9.419.

As there are m = 17 covariate patterns and p = 2 parameters, X2 and D
can be compared with χ2(15) – by these criteria the model appears to fit well.

For the minimal model, without x, the maximum value of the log-likelihood
function is l(π̃,y) = −30.9032. For the model with x, the corresponding value
is l(π̂,y) = −25.5087. Therefore, from Section 7.5, C = 10.789 which is highly
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Figure 7.5 Relationship between presence of symptoms and WAIS score from data
in Tables 7.8 and 7.9; dots represent estimated probabilities and diamonds represent
observed proportions.

significant compared with χ2(1), showing that the slope parameter is non-zero.
Also pseudoR2 = 0.17 which suggests the model is not particularly good.

Figure 7.5 shows the observed relative frequencies yi/ni for each covariate
pattern and the fitted probabilities π̂i plotted against WAIS score, x (for
i = 1, ...,m). The model appears to fit better for higher values of x.

Table 7.9 shows the covariate patterns, estimates π̂i and the corresponding
chi-squared and deviance residuals calculated using equations (7.7) and (7.8)
respectively.

The residuals and associated residual plots (not shown) do not suggest that
there are any unusual observations but the small numbers of observations
for each covariate value make the residuals difficult to assess. The Hosmer
Lemeshow approach provides some simplification; Table 7.10 shows the data
in categories defined by grouping values of π̂i so that the total numbers of
observations per category are approximately equal. For this illustration, g =
3 categories were chosen. The expected frequencies are obtained from the
values in Table 7.9; there are Σniπ̂i with symptoms and Σni (1 − π̂i) without
symptoms for each category. The Hosmer Lemeshow statistic X2

HL is obtained
by calculating X2 = Σ

[
(o− e)2/e

]
where the observed frequencies, o, and

expected frequencies, e, are given in Table 7.10 and summation is over all 6
cells of the table; X2

HL = 1.15 which is not significant when compared with
the χ2(1) distribution.
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Table 7.9 Covariate patterns and responses, estimated probabilities (π̂), Pearson
residuals (X) and deviances (d) for senility and WAIS.

x y n π̂ X d

4 1 2 0.751 -0.826 -0.766
5 0 1 0.687 0.675 0.866
6 1 2 0.614 -0.330 -0.326
7 1 3 0.535 0.458 0.464
8 0 2 0.454 1.551 1.777
9 4 6 0.376 -0.214 -0.216

10 5 6 0.303 -0.728 -0.771
11 5 6 0.240 -0.419 -0.436
12 2 2 0.186 -0.675 -0.906
13 5 6 0.142 0.176 0.172
14 5 7 0.107 1.535 1.306
15 3 3 0.080 -0.509 -0.705
16 4 4 0.059 -0.500 -0.696
17 1 1 0.043 -0.213 -0.297
18 1 1 0.032 -0.181 -0.254
19 1 1 0.023 -0.154 -0.216
20 1 1 0.017 -0.131 -0.184

Sum 40 54
Sum of squares 8.084* 9.418*

* Sums of squares differ slightly from the goodness of fit statistics

X2 and D mentioned in the text due to rounding errors.

7.9 Exercises

7.1 The number of deaths from leukemia and other cancers among survivors
of the Hiroshima atom bomb are shown in Table 7.11, classified by the
radiation dose received. The data refer to deaths during the period 1950-
59 among survivors who were aged 25 to 64 years in 1950 (from data set
13 of Cox and Snell, 1981, attributed to Otake, 1979). Obtain a suitable
model to describe the dose-response relationship between radiation and the
proportional mortality rates for leukemia.

7.2 Odds ratios. Consider a 2×2 contingency table from a prospective study
in which people who were or were not exposed to some pollutant are fol-
lowed up and, after several years, categorized according to the presence or
absence of a disease. Table 7.12 shows the probabilities for each cell. The
odds of disease for either exposure group is Oi = πi/(1 − πi), for i = 1, 2,
and so the odds ratio

φ =
O1

O2
=
π1(1 − π2)
π2(1 − π1)
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Table 7.10 Hosmer-Lemeshow test for data in Table 7.9: observed frequencies (o)
and expected frequencies (e) for numbers of people with or without symptoms, grouped
by values of π̂.

Values of π̂ ≤ 0.107 0.108 − 0.303 > 0.303

Corresponding values of x 14 − 20 10 − 13 4 − 9

Number of people o 2 3 9
with symptoms e 1.335 4.479 8.186

Number of people o 16 17 7
without symptoms e 16.665 15.521 7.814

Total number of people 18 20 16

Table 7.11 Deaths from leukemia and other cancers classified by radiation dose re-
ceived from the Hiroshima atomic bomb.

Radiation dose (rads)
Deaths 0 1-9 10-49 50-99 100-199 200+

Leukemia 13 5 5 3 4 18
Other cancers 378 200 151 47 31 33

Total cancers 391 205 156 50 35 51

is a measure of the relative likelihood of disease for the exposed and not
exposed groups.

Table 7.12 2×2 table for a prospective study of exposure and disease outcome.

Diseased Not diseased

Exposed π1 1 − π1

Not exposed π2 1 − π2

(a) For the simple logistic model πi = eβi/(1 + eβi), show that if there is no
difference between the exposed and not exposed groups (i.e., β1 = β2)
then φ = 1.

(b) Consider J 2× 2 tables like Table 7.12, one for each level xj of a factor,
such as age group, with j = 1, ..., J. For the logistic model

πij =
exp(αi + βixj)

1 + exp(αi + βixj)
, i = 1, 2, j = 1, ..., J.

Show that log φ is constant over all tables if β1 = β2 (McKinlay, 1978).
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7.3 Tables 7.13 and 7.14 show the survival 50 years after graduation of men
and women who graduated each year from 1938 to 1947 from various Fac-
ulties of the University of Adelaide (data compiled by J.A. Keats). The
columns labelled S contain the number of graduates who survived and the
columns labelled T contain the total number of graduates. There were in-
sufficient women graduates from the Faculties of Medicine and Engineering
to warrant analysis.

Table 7.13 Fifty years survival for men after graduation from the University of Ade-
laide.

Year Faculty
of Medicine Arts Science Engineering

graduation S T S T S T S T

1938 18 22 16 30 9 14 10 16
1939 16 23 13 22 9 12 7 11
1940 7 17 11 25 12 19 12 15
1941 12 25 12 14 12 15 8 9
1942 24 50 8 12 20 28 5 7
1943 16 21 11 20 16 21 1 2
1944 22 32 4 10 25 31 16 22
1945 12 14 4 12 32 38 19 25
1946 22 34 4 5
1947 28 37 13 23 25 31 25 35
Total 177 275 92 168 164 214 100 139

Table 7.14 Fifty years survival for women after graduation from the University of
Adelaide.

Year Faculty
of Arts Science

graduation S T S T

1938 14 19 1 1
1939 11 16 4 4
1940 15 18 6 7
1941 15 21 3 3
1942 8 9 4 4
1943 13 13 8 9
1944 18 22 5 5
1945 18 22 16 17
1946 1 1 1 1
1947 13 16 10 10
Total 126 157 58 61
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(a) Are the proportions of graduates who survived for 50 years after gradu-
ation the same all years of graduation?

(b) Are the proportions of male graduates who survived for 50 years after
graduation the same for all Faculties?

(c) Are the proportions of female graduates who survived for 50 years after
graduation the same for Arts and Science?

(d) Is the difference between men and women in the proportion of gradu-
ates who survived for 50 years after graduation the same for Arts and
Science?

7.4 Let l(bmin) denote the maximum value of the log-likelihood function for
the minimal model with linear predictor xTβ = β1 and let l(b) be the
corresponding value for a more general model xTβ = β1 + β2x1 + ... +
βpxp−1.

(a) Show that the likelihood ratio chi-squared statistic is

C = 2 [l(b) − l(bmin)] = D0 −D1

where D0 is the deviance for the minimal model and D1 is the deviance
for the more general model.

(b) Deduce that if β2 = ... = βp = 0 then C has the central chi-squared
distribution with (p− 1) degrees of freedom.
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8

Nominal and Ordinal Logistic
Regression

8.1 Introduction

If the response variable is categorical, with more then two categories, then
there are two options for generalized linear models. One relies on generaliza-
tions of logistic regression from dichotomous responses, described in Chapter
7, to nominal or ordinal responses with more than two categories. This first
approach is the subject of this chapter. The other option is to model the fre-
quencies or counts for the covariate patterns as the response variables with
Poisson distributions. The second approach, called log-linear modelling, is
covered in Chapter 9.

For nominal or ordinal logistic regression one of the measured or observed
categorical variables is regarded as the response, and all other variables are ex-
planatory variables. For log-linear models, all the variables are treated alike.
The choice of which approach to use in a particular situation depends on
whether one variable is clearly a ‘response’ (for example, the outcome of a
prospective study) or several variables have the same status (as may be the
situation in a cross-sectional study). Additionally, the choice may depend
on how the results are to be presented and interpreted. Nominal and ordinal
logistic regression yield odds ratio estimates which are relatively easy to inter-
pret if there are no interactions (or only fairly simple interactions). Log-linear
models are good for testing hypotheses about complex interactions, but the
parameter estimates are less easily interpreted.

This chapter begins with the multinomial distribution which provides the
basis for modelling categorical data with more than two categories. Then the
various formulations for nominal and ordinal logistic regression models are
discussed, including the interpretation of parameter estimates and methods
for checking the adequacy of a model. A numerical example is used to illustrate
the methods.

8.2 Multinomial distribution

Consider a random variable Y with J categories. Let π1, π2, ..., πJ denote the
respective probabilities, with π1 +π2 + ...+πJ = 1. If there are n independent
observations of Y which result in y1 outcomes in category 1, y2 outcomes in
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category 2, and so on, then let

y =


y1
y2
...
yJ

 , with
J∑
j=1

yj = n.

The multinomial distribution is

f (y |n ) =
n!

y1!y2!...yJ !
πy11 π

y2
2 ...π

yJ
J . (8.1)

If J = 2, then π2 = 1 − π1, y2 = n − y1 and (8.1) is the binomial distribu-
tion; see (7.2). In general, (8.1) does not satisfy the requirements for being a
member of the exponential family of distributions (3.3). However the follow-
ing relationship with the Poisson distribution ensures that generalized linear
modelling is appropriate.

Let Y1, ..., YJ denote independent random variables with distributions Yj ∼
Poisson(λj). Their joint probability distribution is

f (y) =
J∏
j=1

λ
yj
j e

−λj

yj !
(8.2)

where

y =

 y1
...
yJ

 .
Let n = Y1 +Y2 + ...+YJ , then n is a random variable with the distribution

n ∼ Poisson(λ1 + λ2 + ... + λJ) (see, for example, Kalbfleisch, 1985, page
142). Therefore the distribution of y conditional on n is

f(y |n ) =

 J∏
j=1

λ
yj
j e

−λj

yj !

/ (λ1 + ...+ λJ)ne−(λ1+...+λJ )

n!

which can be simplified to

f(y |n ) =
(
λ1∑
λk

)y1
...

(
λJ∑
λk

)yJ n!
y1!...yJ !

. (8.3)

If πj = λj

(∑K
k=1 λk

)
, for j = 1, ..., J, then (8.3) is the same as (8.1) and∑J

j=1 πj = 1, as required. Therefore the multinomial distribution can be
regarded as the joint distribution of Poisson random variables, conditional
upon their sum n. This result provides a justification for the use of generalized
linear modelling.

For the multinomial distribution (8.1) it can be shown that E(Yj) = nπj ,
var(Yj) = nπj(1 − πj) and cov(Yj , Yk) = −nπjπk (see, for example, Agresti,
1990, page 44).
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In this chapter models based on the binomial distribution are considered,
because pairs of response categories are compared, rather than all J categories
simultaneously.

8.3 Nominal logistic regression

Nominal logistic regression models are used when there is no natural order
among the response categories. One category is arbitrarily chosen as the ref-
erence category. Suppose this is the first category. Then the logits for the
other categories are defined by

logit(πj) = log
(
πj
π1

)
= xTj βj , for j = 2, ..., J. (8.4)

The (J−1) logit equations are used simultaneously to estimate the parameters
βj . Once the parameter estimates bj have been obtained, the linear predictors
xTj bj can be calculated. From (8.4)

π̂j = π̂1 exp
(
xTj bj

)
for j = 2, ..., J.

But π̂1 + π̂2 + ...+ π̂J = 1 so

π̂1 =
1

1 +
∑J
j=2 exp

(
xTj bj

)
and

π̂j =
exp

(
xTj bj

)
1 +

∑J
j=2 exp

(
xTj bj

) , for j = 2, ..., J.

Fitted values, or ‘expected frequencies’, for each covariate pattern can be
calculated by multiplying the estimated probabilities π̂j by the total frequency
of the covariate pattern.

The Pearson chi-squared residuals are given by

ri =
oi − ei√
ei

(8.5)

where oi and ei are the observed and expected frequencies for i = 1, ..., N
where N is J times the number of distinct covariate patterns. The residuals
can be used to assess the adequacy of the model.

Summary statistics for goodness of fit are analogous to those for binomial
logistic regression:

(i) Chi-squared statistic

X2 =
N∑
i=1

r2i ; (8.6)

(ii) Deviance, defined in terms of the maximum values of the log-likelihood
function for the fitted model, l(b), and for the maximal model, l(bmax),

D = 2 [l(bmax) − l(b)] ; (8.7)
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(iii) Likelihood ratio chi-squared statistic, defined in terms of the maxi-
mum value of the log likelihood function for the minimal model, l(bmin),
and l(b),

C = 2 [l(b) − l(bmin)] ; (8.8)

(iv)

Pseudo R2 =
l(bmin) − l(b)
l(bmin)

. (8.9)

If the model fits well then both X2 and D have, asymptotically, the distri-
bution χ2(N − p) where p is the number of parameters estimated. C has the
asymptotic distribution χ2 [p− (J − 1)] because the minimal model will have
one parameter for each logit defined in (8.4).

Often it is easier to interpret the effects of explanatory factors in terms of
odds ratios than the parameters β. For simplicity, consider a response variable
with J categories and a binary explanatory variable x which denotes whether
an ‘exposure’ factor is present (x = 1) or absent (x = 0). The odds ratio for
exposure for response j (j = 2, ..., J) relative to the reference category j = 1
is

ORj =
πjp
πja

/
π1p

π1a

where πjp and πja denote the probabilities of response category j (j = 1, ..., J)
according to whether exposure is present or absent, respectively. For the model

log
(
πj
π1

)
= β0j + β1jx, j = 2, ..., J

the log odds are

log
(
πja
π1a

)
= β0j when x = 0, indicating the exposure is absent, and

log
(
πjp
π1p

)
= β0j + β1j when x = 1, indicating the exposure is present.

Therefore the logarithm of the odds ratio can be written as

logORj = log
(
πjp
π1p

)
− log

(
πja
π1a

)
= β1j

Hence ORj = exp(β1j) which is estimated by exp(b1j). If β1j = 0 then ORj =
1 which corresponds to the exposure factor having no effect. Also, for example,
95% confidence limits for ORj are given by exp[b1j ± 1.96 × s.e.(b1j)] where
s.e.(b1j) denotes the standard error of b1j . Confidence intervals which do not
include unity correspond to β values significantly different from zero.

For nominal logistic regression, the explanatory variables may be categorical
or continuous. The choice of the reference category for the response variable
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will affect the parameter estimates b but not the estimated probabilities π̂ or
the fitted values.

The following example illustrates the main characteristic of nominal logistic
regression.

8.3.1 Example: Car preferences

In a study of motor vehicle safety, men and women driving small, medium
sized and large cars were interviewed about vehicle safety and their preferences
for cars, and various measurements were made of how close they sat to the
steering wheel (McFadden et al., 2000). There were 50 subjects in each of the
six categories (two sexes and three car sizes). They were asked to rate how
important various features were to them when they were buying a car. Table
8.1 shows the ratings for air conditioning and power steering, according to
the sex and age of the subject (the categories ‘not important’ and ‘of little
importance’ have been combined).

Table 8.1 Importance of air conditioning and power steering in cars (row percentages
in brackets∗)

Response
No or little Important Very

Sex Age importance important Total

Women 18-23 26 (58%) 12 (27%) 7 (16%) 45
24-40 9 (20%) 21 (47%) 15 (33%) 45
> 40 5 (8%) 14 (23%) 41 (68%) 60

Men 18-30 40 (62%) 17 (26%) 8 (12%) 65
24-40 17 (39%) 15 (34%) 12 (27%) 44
> 40 8 (20%) 15 (37%) 18 (44%) 41

Total 105 94 101 300

* row percentages may not add to 100 due to rounding.

The proportions of responses in each category by age and sex are shown
in Figure 8.1. For these data the response, importance of air conditioning
and power steering, is rated on an ordinal scale but for the purpose of this
example the order is ignored and the 3-point scale is treated as nominal. The
category ‘no or little’ importance is chosen as the reference category. Age is
also ordinal, but initially we will regard it as nominal.

Table 8.2 shows the results of fitting the nominal logistic regression model
with reference categories of ‘Women’ and ‘18-23 years’, and

log
(
πj
π1

)
= β0j + β1jx1 + β2jx2 + β3jx3, j = 2, 3 (8.10)
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Men: preference for air conditioning and power steering
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Women: preference for air conditioning and power steering

Figure 8.1 Preferences for air conditioning and power steering: proportions of re-
sponses in each category by age and sex of respondents (solid lines denote ‘no/little
importance’, dashed lines denote ‘important’ and dotted lines denote ‘very impor-
tant’).
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where

x1 =
{

1 for men
0 for women , x2 =

{
1 for age 24-40 years
0 otherwise

and x3 =
{

1 for age > 40 years
0 otherwise .

Table 8.2 Results of fitting the nominal logistic regression model (8.10) to the data
in Table 8.1.

Parameter Estimate b Odds ratio, OR = eb

β (std. error) (95% confidence interval)

log (π2/π1): important vs. no/little importance
β02: constant -0.591 (0.284)
β12: men -0.388 (0.301) 0.68 (0.38, 1.22)
β22: 24-40 1.128 (0.342) 3.09 (1.58, 6.04)
β32: >40 1.588 (0.403) 4.89 (2.22, 10.78)

log (π3/π1): very important vs. no/little importance
β03: constant -1.039 (0.331)
β13: men -0.813 (0.321) 0.44 (0.24, 0.83)
β23: 24-40 1.478 (0.401) 4.38 (2.00, 9.62)
β33: > 40 2.917 (0.423) 18.48 (8.07, 42.34)

The maximum value of the log-likelihood function for the minimal model
(with only two parameters, β02 and β03) is −329.27 and for the fitted model
(8.10) is −290.35, giving the likelihood ratio chi-squared statistic C = 2×
(−290.35+329.27) = 77.84 and pseudo R2 = (−329.27+290.35)/(−329.27) =
0.118. The first statistic, which has 6 degrees of freedom (8 parameters in the
fitted model minus 2 for the minimal model), is very significant compared
with the χ2(6) distribution, showing the overall importance of the explana-
tory variables. However, the second statistic suggests that only 11.8% of the
‘variation’ is ‘explained’ by these factors. From the Wald statistics [b/s.e.(b)]
and the odds ratios and the confidence intervals, it is clear that the impor-
tance of air-conditioning and power steering increased significantly with age.
Also men considered these features less important than women did, although
the statistical significance of this finding is dubious (especially considering the
small frequencies in some cells).

To estimate the probabilities, first consider the preferences of women (x1 =
0) aged 18-23 (so x2 = 0 and x3 = 0). For this group

log
(
π̂2

π̂1

)
= −0.591 so

π̂2

π̂1
= e−0.591 = 0.5539,

log
(
π̂3

π̂1

)
= −1.039 so

π̂3

π̂1
= e−1.039 = 0.3538
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Table 8.3 Results from fitting the nominal logistic regression model (8.10) to the
data in Table 8.1.

Sex Age Importance Obs. Estimated Fitted Pearson
Rating∗ freq. probability value residual

Women 18-23 1 26 0.524 23.59 0.496
2 12 0.290 13.07 -0.295
3 7 0.186 8.35 -0.466

24-40 1 9 0.234 10.56 -0.479
2 21 0.402 18.07 0.690
3 15 0.364 16.37 -0.340

> 40 1 5 0.098 5.85 -0.353
2 14 0.264 15.87 -0.468
3 41 0.638 38.28 0.440

Men 18-23 1 40 0.652 42.41 -0.370
2 17 0.245 15.93 0.267
3 8 0.102 6.65 0.522

24-40 1 17 0.351 15.44 0.396
2 15 0.408 17.93 -0.692
3 12 0.241 10.63 0.422

> 40 1 8 0.174 7.15 0.320
2 15 0.320 13.13 0.515
3 18 0.505 20.72 -0.600

Total 300 300

Sum of squares 3.931
∗ 1 denotes ‘no/little’ importance, 2 denotes ‘important’, 3 denotes ‘very important’.

but π̂1+ π̂2+ π̂3 = 1 so π̂1(1+0.5539+0.3538) = 1, therefore π̂1 = 1/1.9077 =
0.524 and hence π̂2 = 0.290 and π̂3 = 0.186. Now consider men (x1 = 1) aged
over 40 (so x2 = 0, but x3 = 1) so that log (π̂2/π̂1) = −0.591−0.388+1.588 =
0.609, log (π̂3/π̂1) = 1.065 and hence π̂1 = 0.174, π̂2 = 0.320 and π̂3 = 0.505
(correct to 3 decimal places). These estimated probabilities can be multiplied
by the total frequency for each sex × age group to obtain the ‘expected’
frequencies or fitted values. These are shown in Table 8.3, together with the
Pearson residuals defined in (8.5). The sum of squares of the Pearson residuals,
the chi-squared goodness of fit statistic (8.6), is X2 = 3.93.

The maximal model that can be fitted to these data involves terms for age,
sex and age × sex interactions. It has 6 parameters (a constant and coefficients
for sex, two age categories and two age × sex interactions) for j = 2 and 6
parameters for j = 3, giving a total of 12 parameters. The maximum value of
the log-likelihood function for the maximal model is −288.38. Therefore the
deviance for the fitted model (8.10) is D = 2×(−288.38 + 290.35) = 3.94. The
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degrees of freedom associated with this deviance are 12 − 8 = 4 because the
maximal model has 12 parameters and the fitted model has 8 parameters. As
expected, the values of the goodness of fit statistics D = 3.94 and X2 = 3.93
are very similar; when compared to the distribution χ2(4) they suggest that
model (8.10) provides a good description of the data.

An alternative model can be fitted with age group as covariate, that is

log
(
πj
π1

)
= β0j + β1jx1 + β2jx2; j = 2, 3, (8.11)

where

x1 =
{

1 for men
0 for women and x2 =

 0 for age group 18-23
1 for age group 24-40
2 for age group > 40

This model fits the data almost as well as (8.10) but with two fewer param-
eters. The maximum value of the log likelihood function is −291.05 so the
difference in deviance from model (8.10) is

�D = 2 × (−290.35 + 291.05) = 1.4

which is not significant compared with the distribution χ2(2). So on the
grounds of parsimony model (8.11) is preferable.

8.4 Ordinal logistic regression

If there is an obvious natural order among the response categories then this
can be taken into account in the model specification. The example on car
preferences (Section 8.3.1) provides an illustration as the study participants
rated the importance of air conditioning and power steering in four categories
from ‘not important’ to ‘very important’. Ordinal responses like this are com-
mon in areas such as market research, opinion polls and fields like psychiatry
where ‘soft’ measures are common (Ashby et al., 1989).

In some situations there may, conceptually, be a continuous variable z which
is difficult to measure, such as severity of disease. It is assessed by some crude
method that amounts to identifying ‘cut points’, Cj , for the latent variable
so that, for example, patients with small values are classified as having ‘no
disease’, those with larger values of z are classified as having ‘mild disease’ or
‘moderate disease’ and those with high values are classified as having ‘severe
disease’ (see Figure 8.2). The cutpoints C1, ..., CJ−1 define J ordinal categories
with associated probabilities π1, ..., πJ (with

∑J
j=1 πj = 1).

Not all ordinal variables can be thought of in this way, because the under-
lying process may have many components, as in the car preference example.
Nevertheless, the idea is helpful for interpreting the results from statistical
models. For ordinal categories, there are several different commonly used mod-
els which are described in the next sections.
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C1 C2 C3 

π1
π 2 π 3 π 4 

Figure 8.2 Distribution of continuous latent variable and cutpoints that define an
ordinal response variable.

8.4.1 Cumulative logit model

The cumulative odds for the jth category is

P (z ≤ Cj)
P (z > Cj)

=
π1 + π2 + ...+ πj
πj+1 + ...+ πJ

;

see Figure 8.2. The cumulative logit model is

log
π1 + ...+ πj
πj+1 + ...+ πJ

= xTj βj . (8.12)

8.4.2 Proportional odds model

If the linear predictor xTj βj in (8.12) has an intercept term β0j which depends
on the category j, but the other explanatory variables do not depend on j,
then the model is

log
π1 + ...+ πj
πj+1 + ...+ πJ

= β0j + β1x1 + ...+ βp−1xp−1. (8.13)

This is called the proportional odds model. It is based on the assumption
that the effects of the covariates x1, ..., xp−1 are the same for all categories,
on the logarithmic scale. Figure 8.3 shows the model for J = 3 response
categories and one continuous explanatory variable x; on the log odds scale
the probabilities for categories are represented by parallel lines.

As for the nominal logistic regression model (8.4), the odds ratio associated

© 2002 by Chapman & Hall/CRC

149



 Log odds 

β01 

β02 

β03 

x 
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Figure 8.3 Proportional odds model, on log odds scale.

with an increase of one unit in an explanatory variable xk is exp(βk) where
k = 1, ..., p− 1.

If some of the categories are amalgamated, this does not change the param-
eter estimates β1, ..., βp−1 in (8.13) – although, of course, the terms β0j will
be affected (this is called the collapsibility property; see Ananth and Klein-
baum, 1997). This form of independence between the cutpoints Cj (in Figure
8.2) and the explanatory variables xk is desirable for many applications.

Another useful property of the proportional odds model is that it is not
affected if the labelling of the categories is reversed – only the signs of the
parameters will be changed.

The appropriateness of the proportional odds assumption can be tested by
comparing models (8.12) and (8.13), if there is only one explanatory variable
x. If there are several explanatory variables the assumption can be tested
separately for each variable by fitting (8.12) with the relevant parameter not
depending on j.

The proportional odds model is the usual (or default) form of ordinal logistic
regression provided by statistical software.

8.4.3 Adjacent categories logit model

One alternative to the cumulative odds model is to consider ratios of proba-
bilities for successive categories, for example

π1

π2
,
π2

π3
, ...,

πJ−1

πJ
.
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The adjacent category logit model is

log
(
πj
πj+1

)
= xTj βj . (8.14)

If this is simplified to

log
(
πj
πj+1

)
= β0j + β1x1 + ...+ βp−1xp−1

the effect of each explanatory variable is assumed to be the same for all ad-
jacent pairs of categories. The parameters βk are usually interpreted as odd
ratios using OR = exp(βk).

8.4.4 Continuation ratio logit model

Another alternative is to model the ratios of probabilities
π1

π2
,
π1 + π2

π3
, ...,

π1 + ...+ πJ−1

πJ
or

π1

π2 + ...+ πJ
,

π2

π3 + ...+ πJ
, ...,

πJ−1

πJ
.

The equation

log
(

πj
πj+1 + ...+ πJ

)
= xTj βj (8.15)

models the odds of the response being in category j, i.e., Cj−1 < z ≤ Cj con-
ditional upon z ≥ Cj−1. For example, for the car preferences data (Section
8.3.1), one could estimate the odds of respondents regarding air conditioning
and power steering as ‘unimportant’ vs. ‘important’ and the odds of these
features being ‘very important’ given that they are ‘important’ or ‘very im-
portant’, using

log
(

π1

π2 + π3

)
and log

(
π2

π3

)
.

This model may be easier to interpret than the proportional odds model
if the probabilities for individual categories πj are of interest (Agresti, 1996,
Section 8.3.4).

8.4.5 Comments

Hypothesis tests for ordinal logistic regression models can be performed by
comparing the fit of nested models or by using Wald statistics (or, less com-
monly, score statistics) based on the parameter estimates. Residuals and good-
ness of fit statistics are analogous to those for nominal logistic regression
(Section 8.3).

The choice of model for ordinal data depends mainly on the practical prob-
lem being investigated. Comparisons of the models described in this chapter
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and some other models have been published by Holtbrugger and Schumacher
(1991) and Ananth and Kleinbaum (1997), for example.

8.4.6 Example: Car preferences

The response variable for the car preference data is, of course, ordinal (Table
8.1). The following proportional odds model was fitted to these data:

log
(

π1

π2 + π3

)
= β01 + β1x1 + β2x2 + β3x3

log
(
π1 + π2

π3

)
= β02 + β1x1 + β2x2 + β3x3 (8.16)

where x1, x2 and x3 are as defined for model (8.10).
The results are shown in Table 8.4. For model (8.16), the maximum value

of the log-likelihood function is l(b) = −290.648. For the minimal model,
with only β01 and β02, the maximum value is l(bmin) = −329.272 so, from
(8.8), C = 2 × (−290.648 + 329.272) = 77.248 and, from (8.9), pseudo R2 =
(−329.272 + 290.648)/(−329.272) = 0.117.

The parameter estimates for the proportional odds model are all quite sim-
ilar to those from the nominal logistic regression model (see Table 8.2). The
estimated probabilities are also similar; for example, for females aged 18-23,

x1 = 0, x2 = 0 and x3 = 0 so, from (8.16), log
(

π3

π1 + π2

)
= −1.6550 and

log
(
π2 + π3

π1

)
= −0.0435. If these equations are solved with π1+π2+π3 = 1,

the estimates are π̂1 = 0.5109, π̂2 = 0.3287 and π̂3 = 0.1604. The probabil-
ities for other covariate patterns can be estimated similarly and hence ex-
pected frequencies can be calculated, together with residuals and goodness of
fit statistics. For the proportional odds model, X2 = 4.564 which is consistent
with distribution χ2(7), indicating that the model described the data well (in
this case N = 18, the maximal model has 12 parameters and model (8.13)
has 5 parameters so degrees of freedom = 7).

For this example, the proportional odds logistic model for ordinal data
and the nominal logistic model produce similar results. On the grounds of
parsimony, model (8.16) would be preferred because it is simpler and takes
into account the order of the response categories.

8.5 General comments

Although the models described in this chapter are developed from the logistic
regression model for binary data, other link functions such as the probit or
complementary log-log functions can also be used. If the response categories
are regarded as crude measures of some underlying latent variable, z (as in
Figure 8.2), then the optimal choice of the link function can depend on the
shape of the distribution of z (McCullagh, 1980). Logits and probits are ap-
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Table 8.4 Results of proportional odds ordinal regression model (8.16) for the data
in Table 8.1.

Parameter Estimate Standard Odds ratio OR
b error, s.e.(b) (95% confidence interval)

β01 -1.655 0.256
β02 -0.044 0.232
β1 : men -0.576 0.226 0.56 (0.36, 0.88)
β2 : 24 − 40 1.147 0.278 3.15 (1.83, 5.42)
β3 :> 40 2.232 0.291 9.32 (5.28, 16.47)

propriate if the distribution is symmetric but the complementary log-log link
may be better if the distribution is very skewed.

If there is doubt about the order of the categories then nominal logistic
regression will usually be a more appropriate model than any of the models
based on assumptions that the response categories are ordinal. Although the
resulting model will have more parameters and hence fewer degrees of freedom
and less statistical power, it may give results very similar to the ordinal models
(as in the car preference example).

The estimation methods and sampling distributions used for inference de-
pend on asymptotic results. For small studies, or numerous covariate patterns,
each with few observations, the asymptotic results may be poor approxima-
tions.

Multicategory logistic models have only been readily available in statistical
software from the 1990s. Their use has grown because the results are relatively
easy to interpret provided that one variable can clearly be regarded as a
response and the others as explanatory variables. If this distinction is unclear,
for example, if data from a cross-sectional study are cross-tabulated, then log-
linear models may be more appropriate. These are discussed in Chapter 9.

8.6 Exercises

8.1 If there are only J = 2 response categories, show that models (8.4), (8.12),
(8.14) and (8.15) all reduce to the logistic regression model for binary data.

8.2 The data in Table 8.5 are from an investigation into satisfaction with hous-
ing conditions in Copenhagen (derived from Example W in Cox and Snell,
1981, from original data from Madsen, 1971). Residents in selected areas
living in rented homes built between 1960 and 1968 were questioned about
their satisfaction and the degree of contact with other residents. The data
were tabulated by type of housing.

(a) Summarize the data using appropriate tables of percentages to show
the associations between levels of satisfaction and contact with other
residents, levels of satisfaction and type of housing, and contact and
type of housing.
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Table 8.5 Satisfaction with housing conditions.

Satisfaction
Low Medium High

Contact with
other residents Low High Low High Low High

Tower block 65 34 54 47 100 100
Apartment 130 141 76 116 111 191
House 67 130 48 105 62 104

(b) Use nominal logistic regression to model associations between level of
satisfaction and the other two variables. Obtain a parsimonious model
that summarizes the patterns in the data.

(c) Do you think an ordinal model would be appropriate for associations
between the levels of satisfaction and the other variables? Justify your
answer. If you consider such a model to be appropriate, fit a suitable
one and compare the results with those from (b).

(d) From the best model you obtained in (c), calculate the standardized
residuals and use them to find where the largest discrepancies are be-
tween the observed frequencies and expected frequencies estimated from
the model.

8.3 The data in Table 8.6 show tumor responses of male and female patients
receiving treatment for small-cell lung cancer. There were two treatment
regimes. For the sequential treatment, the same combination of chemother-
apeutic agents was administered at each treatment cycle. For the alternat-
ing treatment, different combinations were alternated from cycle to cycle
(data from Holtbrugger and Schumacher, 1991).

Table 8.6 Tumor responses to two different treatments: numbers of patients in each
category.

Treatment Sex Progressive No Partial Complete
disease change remission remission

Sequential Male 28 45 29 26
Female 4 12 5 2

Alternating Male 41 44 20 20
Female 12 7 3 1

(a) Fit a proportional odds model to estimate the probabilities for each
response category taking treatment and sex effects into account.

(b) Examine the adequacy of the model fitted in (a) using residuals and
goodness of fit statistics.
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(c) Use a Wald statistic to test the hypothesis that there is no difference in
responses for the two treatment regimes.

(d) Fit two proportional odds models to test the hypothesis of no treatment
difference. Compare the results with those for (c) above.

(e) Fit adjacent category models and continuation ratio models using logit,
probit and complementary log-log link functions. How do the different
models affect the interpretation of the results?

8.4 Consider ordinal response categories which can be interpreted in terms of
continuous latent variable as shown in Figure 8.2. Suppose the distribution
of this underlying variable is Normal. Show that the probit is the natural
link function in this situation (Hint: see Section 7.3).
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9

Count Data, Poisson Regression and
Log-Linear Models

9.1 Introduction

The number of times an event occurs is a common form of data. Examples
of count or frequency data include the number of tropical cyclones crossing
the North Queensland coast (Section 1.6.5) or the numbers of people in each
cell of a contingency table summarizing survey responses (e.g., satisfaction
ratings for housing conditions, Exercise 8.2).

The Poisson distribution is often used to model count data. If Y is the
number of occurrences, its probability distribution can be written as

f(y) =
µye−µ

y!
, y = 0, 1, 2, ...

where µ is the average number of occurrences. It can be shown that E(Y ) = µ
and var(Y ) = µ (see Exercise 3.4).

The parameter µ requires careful definition. Often it needs to be described
as a rate; for example, the average number of customers who buy a particular
product out of every 100 customers who enter the store. For motor vehicle
crashes the rate parameter may be defined in many different ways: crashes
per 1,000 population, crashes per 1,000 licensed drivers, crashes per 1,000
motor vehicles, or crashes per 100,000 kms travelled by motor vehicles. The
time scale should be included in the definition; for example, the motor vehicle
crash rate is usually specified as the rate per year (e.g., crashes per 100,000
kms per year), while the rate of tropical cyclones refers to the cyclone season
from November to April in Northeastern Australia. More generally, the rate
is specified in terms of units of ‘exposure’; for instance, customers entering
a store are ‘exposed’ to the opportunity to buy the product of interest. For
occupational injuries, each worker is exposed for the period he or she is at
work, so the rate may be defined in terms of person-years ‘at risk’.

The effect of explanatory variables on the response Y is modelled through
the parameter µ. This chapter describes models for two situations.

In the first situation, the events relate to varying amounts of ‘exposure’
which need to be taken into account when modelling the rate of events.
Poisson regression is used in this case. The other explanatory variables
(in addition to ‘exposure’) may be continuous or categorical.

In the second situation, ‘exposure’ is constant (and therefore not relevant to
the model) and the explanatory variables are usually categorical. If there are
only a few explanatory variables the data are summarized in a cross-classified
table. The response variable is the frequency or count in each cell of the
table. The variables used to define the table are all treated as explanatory
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variables. The study design may mean that there are some constraints on
the cell frequencies (for example, the totals for each row of the table may be
equal) and these need to be taken into account in the modelling. The term
log-linear model, which basically describes the role of the link function, is
used for the generalized linear models appropriate for this situation.

The next section describes Poisson regression. A numerical example is used
to illustrate the concepts and methods, including model checking and infer-
ence. Subsequent sections describe relationships between probability distribu-
tions for count data, constrained in various ways, and the log-linear models
that can be used to analyze the data.

9.2 Poisson regression

Let Y1, ..., YN be independent random variables with Yi denoting the num-
ber of events observed from exposure ni for the ith covariate pattern. The
expected value of Yi can be written as

E(Yi) = µi = niθi.

For example, suppose Yi is the number of insurance claims for a particular
make and model of car. This will depend on the number of cars of this type
that are insured, ni, and other variables that affect θi, such as the age of the
cars and the location where they are used. The subscript i is used to denote
the different combinations of make and model, age, location and so on.

The dependence of θi on the explanatory variables is usually modelled by

θi = ex
T
i β (9.1)

Therefore the generalized linear model is

E(Yi) = µi = nie
xT
i β; Yi ∼ Poisson (µi). (9.2)

The natural link function is the logarithmic function

logµi = log ni + xTi β. (9.3)

Equation (9.3) differs from the usual specification of the linear component
due to the inclusion of the term logni. This term is called the offset. It is a
known constant which is readily incorporated into the estimation procedure.
As usual, the terms xi and β describe the covariate pattern and parameters,
respectively.

For a binary explanatory variable denoted by an indictor variable, xj = 0
if the factor is absent and xj = 1 if it is present, the rate ratio, RR, for
presence vs. absence is

RR =
E(Yi | present)
E(Yi | absent)

= eβj

from (9.1), provided all the other explanatory variables remain the same.
Similarly, for a continuous explanatory variable xk, a one-unit increase will
result in a multiplicative effect of eβk on the rate µ. Therefore, parameter
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estimates are often interpreted on the exponential scale eβ in terms of ratios
of rates.

Hypotheses about the parameters βj can be tested using the Wald, score
or likelihood ratio statistics. Confidence intervals can be estimated similarly.
For example, for parameter βj

bj − βj
s.e.(bj)

∼ N(0, 1) (9.4)

approximately. Alternatively, hypothesis testing can be performed by com-
paring the goodness of fit of appropriately defined nested models (see Chapter
4).

The fitted values are given by

Ŷi = µ̂i = nie
xT
i b, i = 1, ..., N.

These are often denoted by ei because they are estimates of the expected val-
ues E(Yi) = µi. As var(Yi) = E(Yi) for the Poisson distribution, the standard
error of Yi is estimated by

√
ei so the Pearson residuals are

ri =
oi − ei√
ei

(9.5)

where oi denotes the observed value of Yi. As outlined in Section 6.2.6, these
residuals may be further refined to

rpi =
oi − ei√
ei
√

1 − hi
where the leverage, hi, is the ith element on the diagonal of the hat matrix.

For the Poisson distribution, the residuals given by (9.5) and the chi-squared
goodness of fit statistic are related by

X2 =
∑
r2i =

∑ (oi − ei)2

ei

which is the usual definition of the chi-squared statistic for contingency tables.
The deviance for a Poisson model is given in Section 5.6.3. It can be written

in the form

D = 2
∑

[oi log(oi/ei) − (oi − ei)] . (9.6)

However for most models
∑
oi =

∑
ei, see Exercise 9.1, so the deviance

simplifies to

D = 2
∑

[oi log(oi/ei)] . (9.7)

The deviance residuals are the components of D in (9.6),

di = sign(oi − ei)
√

2 [oi log(oi/ei) − (oi − ei)], i = 1, ..., N (9.8)

so that D =
∑
d2i .

The goodness of fit statisticsX2 andD are closely related. Using the Taylor
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series expansion given in Section 7.5,

o log(
o

e
) = (o− e) + 1

2

(o− e)2
e

+ ...

so that, approximately, from (9.6)

D = 2
∑[

(oi − ei) + 1
2

(oi − ei)2
ei

− (oi − ei)
]

=
∑ (oi − ei)2

ei
= X2.

The statistics D and X2 can be used directly as measures of goodness of fit,
as they can be calculated from the data and the fitted model (because they
do not involve any nuisance parameters like σ2 for the Normal distribution).
They can be compared with the central chi-squared distribution with N − p
degrees of freedom, where p is the number of parameters that are estimated.
The chi-squared distribution is likely to be a better approximation for the
sampling distribution of X2 than for the sampling distribution of D (see
Section 7.5).

Two other summary statistics provided by some software are the likelihood
ratio chi-squared statistic and pseudo-R2. These are based on comparisons
between the maximum value of the log-likelihood function for a minimal model
with no covariates, logµi = log ni + β1, and the maximum value of the log-
likelihood function for model (9.3) with p parameters. The likelihood ratio
chi-squared statistic C = 2 [l(b) − l(bmin)] provides an overall test of the
hypotheses that β2 = ... = βp = 0, by comparison with the central chi-
squared distribution with p − 1 degrees of freedom (see Exercise 7.4). Less
formally, pseudo R2 = [l(bmin) − l(b)] /l(bmin) provides an intuitive measure
of fit.

Other diagnostics, such as delta-betas and related statistics, are also avail-
able for Poisson models.

9.2.1 Example of Poisson regression: British doctors’ smoking and coronary
death

The data in Table 9.1 are from a famous study conducted by Sir Richard
Doll and colleagues. In 1951, all British doctors were sent a brief question-
naire about whether they smoked tobacco. Since then information about their
deaths has been collected. Table 9.1 shows the numbers of deaths from coro-
nary heart disease among male doctors 10 years after the survey. It also shows
the total number of person-years of observation at the time of the analysis
(Breslow and Day, 1987: Appendix 1A and page 112).

The questions of interest are:

1. Is the death rate higher for smokers than non-smokers?
2. If so, by how much?
3. Is the differential effect related to age?
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Table 9.1 Deaths from coronary heart disease after 10 years among British male
doctors categorized by age and smoking status in 1951.

Age Smokers Non-smokers
group Deaths Person-years Deaths Person-years

35 − 44 32 52407 2 18790
45 − 54 104 43248 12 10673
55 − 64 206 28612 28 5710
65 − 74 186 12663 28 2585
75 − 84 102 5317 31 1462

35-44 45-54 55-64 65-74 75-84
0

1000

2000

Age

Deaths per 100,000 person years

Figure 9.1 Death rates from coronary heart disease per 100,000 person-years for
smokers (diamonds) and non-smokers (dots).

Figure 9.1 shows the death rates per 100,000 person-years from coronary
heart disease for smokers and non-smokers. It is clear that the rates increase
with age but more steeply than in a straight line. Death rates appear to be
generally higher among smokers than non-smokers but they do not rise as
rapidly with age. Various models can be specified to describe these data well
(see Exercise 9.2). One model, in the form of (9.3) is

log (deathsi) = log (populationi) + β1 + β2smokei + β3agecati + β4agesqi

+β5smkagei (9.9)

where the subscript i denotes the ith subgroup defined by age group and
smoking status (i = 1, ..., 5 for ages 35 − 44, ..., 75 − 84 for smokers and i =
6, ..., 10 for the corresponding age groups for non-smokers). The term deathsi
denotes the expected number of deaths and populationi denotes the number
of doctors at risk in group i. For the other terms, smokei is equal to one
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for smokers and zero for non-smokers; agecati takes the values 1, ..., 5 for age
groups 35 − 44, ..., 75 − 84; agesqi is the square of agecati to take account
of the non-linearly of the rate of increase; and smkagei is equal to agecati
for smokers and zero for non-smokers, thus describing a differential rate of
increase with age.

Table 9.2 shows the parameter estimates in the form of rate ratios eβ̂j . The
Wald statistics (9.4) to test βj = 0 all have very small p-values and the 95%
confidence intervals for eβj do not contain unity showing that all the terms are
needed in the model. The estimates show that the risk of coronary deaths was,
on average, about 4 times higher for smokers than non-smokers (based on the
rate ratio for smoke), after the effect of age is taken into account. However,
the effect is attenuated as age increases (coefficient for smkage). Table 9.3
shows that the model fits the data very well; the expected number of deaths
estimated from (9.9) are quite similar to the observed numbers of deaths and
so the Pearson residuals calculated from (9.5) and deviance residuals from
(9.8) are very small.

For the minimal model, with only the parameter β1, the maximum value
for the log-likelihood function is l(bmin) = −495.067. The corresponding value
for model (9.9) is l(b) = −28.352. Therefore, an overall test of the model
(testing βj = 0 for j = 2, ..., 5) is C = 2 [l(b) − l(bmin)] = 933.43 which is
highly statistically significant compared to the chi-squared distribution with
4 degrees of freedom. The pseudo R2 value is 0.94, or 94%, which suggests a
good fit. More formal tests of the goodness of fit are provided by the statistics
X2 = 1.550 and D = 1.635 which are small compared to the chi-squared
distribution with N − p = 10 − 5 = 5 degree of freedom.

Table 9.2 Parameter estimates obtained by fitting model (9.9) to the data in Table
9.1.

Term agecat agesq smoke smkage

β̂ 2.376 -0.198 1.441 -0.308
s.e.(β̂) 0.208 0.027 0.372 0.097
Wald statistic 11.43 -7.22 3.87 -3.17
p-value <0.001 <0.001 <0.001 0.002
Rate ratio 10.77 0.82 4.22 0.74
95% confidence interval 7.2, 16.2 0.78, 0.87 2.04, 8.76 0.61, 0.89

9.3 Examples of contingency tables

Before specifying log-linear models for frequency data summarized in contin-
gency tables, it is important to consider how the design of the study may
determine constraints on the data. The study design also affects the choice
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Table 9.3 Observed and estimated expected numbers of deaths and residuals for the
model described in Table 9.2.

Age Smoking Observed Expected Pearson Deviance
category category deaths deaths residual residual

1 1 32 29.58 0.444 0.438
2 1 104 106.81 -0.272 -0.273
3 1 206 208.20 -0.152 -0.153
4 1 186 182.83 0.235 0.234
5 1 102 102.58 -0.057 -0.057
1 0 2 3.41 -0.766 -0.830
2 0 12 11.54 0.135 0.134
3 0 28 27.74 0.655 0.641
4 0 28 30.23 -0.405 -0.411
5 0 31 31.07 -0.013 -0.013

sum of squares∗ 1.550 1.635
∗ calculated from residuals correct to more significant figures than shown here.

of probability models to describe the data. These issues are illustrated in the
following three examples.

9.3.1 Example: Cross-sectional study of malignant melanoma

These data are from a cross-sectional study of patients with a form of skin
cancer called malignant melanoma. For a sample of n = 400 patients, the
site of the tumor and its histological type were recorded. The data, numbers
of patients with each combination of tumor type and site, are given in Table
9.4.

Table 9.4 Malignant melanoma: frequencies for tumor type and site (Roberts et al.,
1981).

Site
Head Trunk Extrem Total

Tumor type & neck -ities

Hutchinson’s melanotic freckle 22 2 10 34
Superficial spreading melanoma 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56

Total 68 106 226 400

The question of interest is whether there is any association between tumor
type and site. Table 9.5 shows the data displayed as percentages of row and
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column totals. It appears that Hutchinson’s melanotic freckle is more common
on the head and neck but there is little evidence of association between other
tumor types and sites.

Table 9.5 Malignant melanoma: row and column percentages for tumor type and
site.

Site
Head Trunk Extrem Total

Tumor type & neck -ities

Row percentages
Hutchinson’s melanotic freckle 64.7 5.9 29.4 100
Superficial spreading melanoma 8.6 29.2 62.2 100
Nodular 15.2 26.4 58.4 100
Indeterminate 19.6 30.4 50.0 100

All types 17.0 26.5 56.5 100

Column percentages
Hutchinson’s melanotic freckle 32.4 1.9 4.4 8.50
Superficial spreading melanoma 23.5 50.9 50.9 46.25
Nodular 27.9 31.1 32.3 31.25
Indeterminate 16.2 16.0 12.4 14.00

All types 100.0 99.9 100.0 100.0

Let Yjk denote the frequency for the (j, k)th cell with j = 1, ..., J and
k = 1, ...,K. In this example, there are J = 4 rows, K = 3 columns and
the constraint that

∑J
j=1

∑K
k=1 Yjk = n, where n = 400 is fixed by the de-

sign of the study. If the Yjk’s are independent random variables with Poisson
distributions with parameters E(Yjk) = µjk, then their sum has the Poisson
distribution with parameter E(n) = µ =

∑∑
µjk. Hence the joint probabil-

ity distribution of the Yjk’s, conditional on their sum n, is the multinomial
distribution

f(y |n ) = n!
J∏
j=1

K∏
k=1

θ
yjk
jk /yjk!

where θjk = µjk/µ. This result is derived in Section 8.2. The sum of the
terms θjk is unity because

∑∑
µjk = µ; also 0 < θk < 1. Thus θjk can be

interpreted as the probability of an observation in the (j, k)th cell of the table.
Also the expected value of Yjk is

E(Yjk) = µjk = nθjk.

The usual link function for a Poisson model gives

logµjk = log n+ log θjk
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which is like equation (9.3), except that the term logn is the same for all the
Yjk’s.

9.3.2 Example: Randomized controlled trial of influenza vaccine

In a prospective study of a new living attenuated recombinant vaccine for
influenza, patients were randomly allocated to two groups, one of which was
given the new vaccine and the other a saline placebo. The responses were
titre levels of hemagglutinin inhibiting antibody found in the blood six weeks
after vaccination; they were categorized as ‘small’, ‘medium’ or ‘large’. The
cell frequencies in the rows of Table 9.6 are constrained to add to the number
of subjects in each treatment group (35 and 38 respectively). We want to
know if the pattern of responses is the same for each treatment group.

Table 9.6 Flu vaccine trial.

Response
Small Moderate Large Total

Placebo 25 8 5 38
Vaccine 6 18 11 35

(Data from R.S. Gillett, personal communication)

In this example the row totals are fixed. Thus the joint probability distri-
bution for each row is multinomial

f(yj1, yj2, ..., yjK |yj. ) = yj.!
K∏
k=1

θ
yjk
jk yjk!,

where yj. =
∑K
k=1 yjk is the row total and

∑K
k=1 θjk = 1. So the joint proba-

bility distribution for all the cells in the table is the product multinomial
distribution

f(y |y1., y2., ..., yJ. ) =
J∏
j=1

yj.!
K∏
k=1

θ
yjk
jk yjk!

where
∑K
k=1 θjk = 1 for each row. In this case E(Yjk) = yj.θjk so that

logE(Yjk) = logµjk = log yj. + log θjk.

If the response pattern was the same for both groups then θjk = θ.k for
k = 1, ...,K.

9.3.3 Example: Case control study of gastric and duodenal ulcers and
aspirin use

In this retrospective case-control study a group of ulcer patients was compared
to a group of control patients not known to have peptic ulcer, but who were
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similar to the ulcer patients with respect to age, sex and socio-economic status.
The ulcer patients were classified according to the site of the ulcer: gastric or
duodenal. Aspirin use was ascertained for all subjects. The results are shown
in Table 9.7.

Table 9.7 Gastric and duodenal ulcers and aspirin use: frequencies (Duggan et al.,
1986).

Aspirin use
Non-user User Total

Gastric ulcer
Control 62 6 68
Cases 39 25 64
Duodenal ulcer
Control 53 8 61
Cases 49 8 57

This is a 2 × 2 × 2 contingency table. Some questions of interest are:

1. Is gastric ulcer associated with aspirin use?

2. Is duodenal ulcer associated with aspirin use?

3. Is any association with aspirin use the same for both ulcer sites?

When the data are presented as percentages of row totals (Table 9.8) it
appears that aspirin use is more common among ulcer patients than among
controls for gastric ulcer but not for duodenal ulcer.

In this example, the numbers of patients with each type of ulcer and the
numbers in each of the groups of controls; that is, the four row totals in Table
9.7 were all fixed.

Let j = 1 or 2 denote the controls or cases, respectively; k = 1 or 2 denote
gastric ulcers or duodenal ulcers, respectively; and l = 1 for patients who did

Table 9.8 Gastric and duodenal ulcers and aspirin use: row percentages for the data
in Table 9.7.

Aspirin use
Non-user User Total

Gastric ulcer
Control 91 9 100
Cases 61 39 100
Duodenal ulcer
Control 87 13 100
Cases 86 14 100
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not use aspirin and l = 2 for those who did. In general, let Yjkl denote the
frequency of observations in category (j, k, l) with j = 1, ..., J, k = 1, ...,K
and l = 1, ..., L. If the marginal totals yjk. are fixed, the joint probability
distribution for the Yjkl’s is

f(y |y11., ..., yJK. ) =
J∏
j=1

K∏
k=1

yjk.!
L∏
l=1

θ
yjkl

jkl yjkl!

where y is the vector of Yjkl’s and
∑
l θjkl = 1 for j = 1, ..., J and k = 1, ...,K.

This is another form of product multinomial distribution. In this case,
E(Yjkl) = µjkl = yjk.θjkl, so that

logµjkl = log yjk. + log θjkl.

9.4 Probability models for contingency tables

The examples in Section 9.3 illustrate the main probability models for con-
tingency table data. In general, let the vector y denote the frequencies Yi in
N cells of a cross-classified table.

9.4.1 Poisson model

If there were no constraints on the Yi’s they could be modelled as indepen-
dent random variables with the parameters E(Yi) = µi and joint probability
distribution

f(y;µ) =
N∏
i=1

µyii e
−µiyi!

where µ is a vector of µi’s.

9.4.2 Multinomial model

If the only constraint is that the sum of the Yi’s is n, then the following
multinomial distribution may be used

f(y;µ |n ) = n!
N∏
i=1

θyii yi!

where
∑N
i=1 θi = 1 and

∑N
i=1 yi = n. In this case, E(Yi) = nθi.

For a two dimensional contingency table (like Table 9.4 for the melanoma
data), if j and k denote the rows and columns then the most commonly
considered hypothesis is that the row and column variables are independent
so that

θjk = θj.θ.k

where θj. and θ.k denote the marginal probabilities with
∑
j θj. = 1 and
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∑
k θ.k = 1. This hypothesis can be tested by comparing the fit of two linear

models for the logarithm of µjk = E(Yjk); namely

logµjk = log n+ log θjk

and

logµjk = logn+ log θj. + log θ.k .

9.4.3 Product multinomial models

If there are more fixed marginal totals than just the overall total n, then
appropriate products of multinomial distributions can be used to model the
data.

For example, for a three dimensional table with J rows, K columns and L
layers, if the row totals are fixed in each layer the joint probability for the
Yjkl’s is

f(y|yj.l, j = 1, ..., J, l = 1, ..., L) =
J∏
j=1

L∏
l=1

yj.l!
K∏
k=1

θ
yjkl

jkl yjkl!

where
∑
k θjkl = 1 for each combination of j and l. In this case, E(Yjkl) =

yj.lθjkl.
If only the layer totals are fixed, then

f(y|y..l, l = 1, ..., L) =
L∏
l=1

y..l!
J∏
j=1

K∏
k=1

θ
yjkl

jkl yjkl!

with
∑
j

∑
k θjkl = 1 for l = 1, ..., L. Also E(Yjkl) = y..lθjkl.

9.5 Log-linear models

All the probability models given in Section 9.4 are based on the Poisson dis-
tribution and in all cases E(Yi) can be written as a product of parameters and
other terms. Thus, the natural link function for the Poisson distribution, the
logarithmic function, yields a linear component

log E(Yi) = constant + xTi β.

The term log-linear model is used to describe all these generalized linear
models.

For the melanoma Example 9.3.1, if there are no associations between site
and type of tumor so that these two variables are independent, their joint
probability θjk is the product of the marginal probabilities

θjk = θj.θ.k , j = 1, ..., J and k = 1, ...,K.

The hypothesis of independence can be tested by comparing the additive
model (on the logarithmic scale)

log E(Yjk) = log n+ log θj. + log θ.k (9.10)
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with the model

log E(Yjk) = log n+ log θjk. (9.11)

This is analogous to analysis of variance for a two factor experiment without
replication (see Section 6.4.2). Equation (9.11) can be written as the saturated
model

log E(Yjk) = µ+ αj + βk + (αβ)jk

and equation (9.10) can be written as the additive model

log E(Yjk) = µ+ αj + βk.

Since the term log n has to be in all models, the minimal model is

log E(Yjk) = µ.

For the flu vaccine trial, Example 9.3.2, E(Yjk) = yj.θjk if the distribution
of responses described by the θjk’s differs for the j groups, or E(Yjk) = yj.θ.k
if it is the same for all groups. So the hypothesis of homogeneity of the
response distributions can be tested by comparing the model

log E(Yjk) = µ+ αj + βk + (αβ)jk ,

corresponding to E(Yjk) = yj.θjk, and the model

log E(Yjk) = µ+ αj + βk

corresponding to E(Yjk) = yj.θ.k. The minimal model for these data is

log E(Yjk) = µ+ αj

because the row totals, corresponding to the subscript j, are fixed by the
design of the study.

More generally, the specification of the linear components for log-linear
models bears many resemblances to the specification for ANOVA models.
The models are hierarchical, meaning that if a higher-order (interaction)
term is included in the model then all the related lower-order terms are also
included. Thus, if the two-way (first-order) interaction (αβ)jk is included then
so are the main effects αj and βk and the constant µ. Similarly, if second-
order interactions (αβγ)jkl are included then so are the first-order interactions
(αβ)jk, (αγ)jl and (βγ)kl.

If log-linear models are specified analogously to ANOVA models, they in-
clude too many parameters so that sum-to-zero or corner-point constraints
are needed. Interpretation of the parameters is usually simpler if reference
or corner-point categories are identified so that parameter estimates describe
effects for other categories relative to the reference categories.

For contingency tables the main questions almost always relate to associa-
tions between variables. Therefore, in log-linear models, the terms of primary
interest are the interactions involving two or more variables.
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9.6 Inference for log-linear models

Although three types of probability distributions are used to describe contin-
gency table data (see Section 9.4), Birch (1963) showed that for any log-linear
model the maximum likelihood estimators are the same for all these distri-
butions provided that the parameters which correspond to the fixed marginal
totals are always included in the model. This means that for the purpose of
estimation, the Poisson distribution can always be assumed. As the Poisson
distribution belongs to the exponential family and the parameter constraints
can be incorporated into the linear component, all the standard methods for
generalized linear models can be used.

The adequacy of a model can be assessed using the goodness of fit statistics
X2 or D (and sometimes C and pseudo R2) summarized in Section 9.2 for
Poisson regression. More insight into model adequacy can often be obtained
by examining the Pearson or deviance residuals given by equations (9.5) and
(9.8) respectively. Hypothesis tests can be conducted by comparing the dif-
ference in goodness of fit statistics between a general model corresponding to
an alternative hypothesis and a nested, simpler model corresponding to a null
hypothesis.

These methods are illustrated in the following examples.

9.7 Numerical examples

9.7.1 Cross-sectional study of malignant melanoma

For the data in Table 9.4 the question of interest is whether there is an as-
sociation between tumor type and site. This can be examined by testing the
null hypothesis that the variables are independent.

The conventional chi-squared test of independence for a two dimensional
table is performed by calculating expected frequencies for each cell based
on the marginal totals, ejk = yj.y.k /n , calculating the chi-squared statistic
X2 =

∑
j

∑
k(yjk−ejk)2 /ejk and comparing this with the central chi-squared

distribution with (J − 1)(K − 1) degrees of freedom. The observed and ex-
pected frequencies are shown in Table 9.9. These give

X2 =
(22 − 5.78)2

5.78
+ ...+

(28 − 31.64)2

31.64
= 65.8.

The value X2 = 65.8 is very significant compared to the χ2(6) distribution.
Examination of the observed frequencies yjk and expected frequencies ejk
shows that Hutchinson’s melanotic freckle is more common on the head and
neck than would be expected if site and type were independent.

The corresponding analysis using log-linear models involves fitting the ad-
ditive model (9.10) corresponding to the hypothesis of independence. The
saturated model (9.11) and the minimal model with only a term for the mean
effect are also fitted for illustrative purposes. The results for all three models
are shown in Table 9.10. For the reference category of Hutchinson’s melanotic
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Table 9.9 Conventional chi-squared test of independence for melanoma data in Table
9.4; expected frequencies are shown in brackets.

Site
Head Trunk Extrem Total

Tumor type & Neck -ities

Hutchinson’s melanotic 22 (5.78) 2 (9.01) 10 (19.21) 34
freckle
Superficial spreading 16 (31.45) 54 (49.03) 115 (104.52) 185
melanoma
Nodular 19 (21.25) 33 (33.13) 73 (70.62) 125
Indeterminate 11 (9.52) 17 (14.84) 28 (31.64) 56

Total 68 106 226 400

freckle (HMF ) on the head or neck (HNK), the expected frequencies are as
follows:

minimal model: e3.507 = 33.35;
additive model: e1.754 = 5.78, as in Table 9.9;
saturated model: e3.091 = 22, equal to observed frequency.

For indeterminate tumors (IND) in the extremities (EXT ), the expected
frequencies are:

minimal model: e3.507 = 33.35;
additive model: e1.754+0.499+1.201 = 31.64, as in Table 9.9;
saturated model: e3.091−0.693−0.788+1.723 = 28, equal to observed frequency.

The saturated model with 12 parameters fits the 12 data points exactly. The
additive model corresponds to the conventional analysis. The deviance for
the additive model can be calculated from the sum of squares of the deviance
residuals given by (9.8), or from twice the difference between the maximum
values of the log-likelihood function for this model and the saturated model,
�D = 2[−29.556 − (−55.453)] = 51.79.

For this example, the conventional chi-squared test for independence and
log-linear modelling produce exactly the same results. The advantage of log-
linear modelling is that it provides a method for analyzing more complicated
cross-tabulated data as illustrated by the next example.

9.7.2 Case control study of gastric and duodenal ulcer and aspirin use

Preliminary analysis of the 2 × 2 tables for gastric ulcer and duodenal ulcer
separately suggests that aspirin use may be a risk factor for gastric ulcer
but not for duodenal ulcer. For analysis of the full data set, Table 9.7, the
main effects for case-control status (CC), ulcer site (GD) and the interaction
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Table 9.10 Log-linear models for the melanoma data in Table 9.4; coefficients, b,
with standard errors in brackets.

Term * Saturated Additive Minimal
model (9.10) model (9.9) model

Constant 3.091 (0.213) 1.754 (0.204) 3.507 (0.05)
SSM -0.318 (0.329) 1.694 (0.187)
NOD -0.147 (0.313) 1.302 (0.193)
IND -0.693 (0.369) 0.499 (0.217)
TNK -2.398 (0.739) 0.444 (0.155)
EXT -0.788 (0.381) 1.201 (0.138)
SSM ∗ TNK 3.614 (0.792)
SSM ∗ EXT 2.761 (0.465)
NOD ∗ TNK 2.950 (0.793)
NOD ∗ EXT 2.134 (0.460)
IND ∗ TNK 2.833 (0.834)
IND ∗ EXT 1.723 (0.522)

log-likelihood -29.556 -55.453 -177.16
X2 0.0 65.813
D 0.0 51.795
∗Reference categories are: Hutchinson’s melanotic freckle (HMF ) and head

and neck (HNK). Other categories are: for type, superficial spreading

melanoma (SSM ), nodular (NOD) and indeterminate (IND); for site,

trunk (TNK) and extremities (EXT ).

between these terms (CC ×GD) have to be included in all models (as these
correspond to the fixed marginal totals). Table 9.11 shows the results of fitting
this and several more complex models involving aspirin use (AP ).

The comparison of aspirin use between cases and controls can be summa-
rized by the deviance difference for the second and third rows of Table 9.11

�D = 2[−25.08 − (−30.70)] = 11.24.

This value is statistically significant compared with the χ2(1) distribution,
suggesting that aspirin is a risk factor for ulcers. Comparison between the
third and fourth rows of the table, �D = 2[−22.95 − (−25.08)] = 4.26, pro-
vides only weak evidence of a difference between ulcer sites, possibly due to
the lack of statistical power (p-value = 0.04 from the distribution χ2(1)).

The fit of the model with all three two-way interactions is shown in Table
9.12. The goodness of fit statistics for this table are X2 = 6.49 and D = 6.28
which suggest that the model is not particularly good (compared with the
χ2(1) distribution) even though p = 7 parameters have been used to describe
N = 8 data points.
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Table 9.11 Results of log-linear modelling of data in Table 9.7.

Terms in model d.f.∗ log-
likelihood∗∗

GD + CC +GD × CC 4 -83.16
GD + CC +GD × CC +AP 3 -30.70
GD + CC +GD × CC +AP +AP × CC 2 -25.08
GD + CC +GD × CC +AP +AP × CC

+AP ×GD 1 -22.95
∗d.f. denotes degrees of freedom = number of observations (8) minus

number of parameters;
∗∗maximum value of the log-likelihood function.

Table 9.12 Comparison of observed frequencies and expected frequencies obtained
from the log-linear model with all two-way interaction terms for the data in Table
9.7; expected frequencies in brackets.

Aspirin use
Non-user User Total

Gastric ulcer
Controls 62 (58.53) 6 (9.47) 68
Cases 39 (42.47) 25 (21.53) 64
Duodenal ulcer
Controls 53 (56.47) 8 (4.53) 61
Cases 49 (45.53) 8 (11.47) 57

9.8 Remarks

Two issues relevant to the analysis of a count data have not yet been discussed
in this chapter.

First, overdispersion occurs when var(Yi) is greater than E(Yi), although
var(Yi) = E(Yi) for the Poisson distribution. The negative binomial dis-
tribution provides an alternative model with var(Yi) = φ E(Yi), where φ > 1
is a parameter that can be estimated. Overdispersion can be due to lack of
independence between the observations, in which case the methods described
in Chapter 11 for correlated data can be used.

Second, contingency tables may include cells which cannot have any obser-
vations (e.g., male hysterectomy cases). This phenomenon, termed structural
zeros, may not be easily incorporated in Poisson regression unless the param-
eters can be specified to accommodate the situation. Alternative approaches
are discussed by Agresti (1990).
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9.9 Exercises

9.1 Let Y1, ..., YN be independent random variables with Yi ∼ Poisson (µi) and
logµi = β1 +

∑J
j=2 xijβj , i = 1, ..., N.

(a) Show that the score statistic for β1 is U1 =
∑N
i=1(Yi − µi).

(c) Hence show that for maximum likelihood estimates µ̂i,
∑
µ̂i =

∑
yi.

(d) Deduce that the expression for the deviance in (9.6) simplifies to (9.7) in
this case.

9.2 The data in Table 9.13 are numbers of insurance policies, n, and numbers of
claims, y, for cars in various insurance categories, CAR, tabulated by age of
policy holder, AGE, and district where the policy holder lived (DIST = 1,
for London and other major cities and DIST = 0, otherwise). The table is
derived from the CLAIMS data set in Aitkin et al. (1989) obtained from
a paper by Baxter, Coutts and Ross (1980).

(a) Calculate the rate of claims y/n for each category and plot the rates by
AGE,CAR and DIST to get an idea of the main effects of these factors.

(b) Use Poisson regression to estimate the main effects (each treated as cate-
gorical and modelled using indicator variables) and interaction terms.

(c) Based on the modelling in (b), Aitkin et al. (1989) determined that all the
interactions were unimportant and decided that AGE and CAR could be
treated as though they were continuous variables. Fit a model incorporating
these features and compare it with the best model obtained in (b). What
conclusions do you reach?

9.3(a) Using a conventional chi-squared test and an appropriate log-linear model,
test the hypothesis that the distribution of responses is the same for the
placebo and vaccine groups for the flu vaccine trial data in Table 9.6.

(b) For the model corresponding to the hypothesis of homogeneity of re-
sponse distributions, calculate the fitted values, the Pearson and de-
viance residuals and the goodness of fit statistics X2 and D. Which
of the cells of the table contribute most to X2 (or D)? Explain and
interpret these results.

(c) Re-analyze these data using ordinal logistic regression to estimate cut-
points for a latent continuous response variable and to estimate a loca-
tion shift between the two treatment groups. Sketch a rough diagram
to illustrate the model which forms the conceptual base for this analysis
(see Exercise 8.4).

9.4 For a 2×2 contingency table, the maximal log-linear model can be written
as

η11 = µ+ α+ β + (αβ), η12 = µ+ α− β − (αβ),
η21 = µ− α+ β − (αβ), η22 = µ− α− β + (αβ),

where ηjk = logE(Yjk) = log(nθjk) and n =
∑∑

Yjk.
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Table 9.13 Car insurance claims: based on the CLAIMS data set reported by Aitkin
et al. (1989).

DIST = 0 DIST = 1
CAR AGE y n y n

1 1 65 317 2 20
1 2 65 476 5 33
1 3 52 486 4 40
1 4 310 3259 36 316
2 1 98 486 7 31
2 2 159 1004 10 81
2 3 175 1355 22 122
2 4 877 7660 102 724
3 1 41 223 5 18
3 2 117 539 7 39
3 3 137 697 16 68
3 4 477 3442 63 344
4 1 11 40 0 3
4 2 35 148 6 16
4 3 39 214 8 25
4 4 167 1019 33 114

Show that the interaction term (αβ) is given by

(αβ) = 1
4 log φ

where φ is the odds ratio (θ11 θ22)/(θ12 θ21), and hence that φ = 1
corresponds to no interaction.

9.5 Use log-linear models to examine the housing satisfaction data in Table 8.5.
The numbers of people surveyed in each type of housing can be regarded
as fixed.

(a) First analyze the associations between level of satisfaction (treated as a
nominal categorical variable) and contact with other residents, separately
for each type of housing.

(b) Next conduct the analyses in (a) simultaneously for all types of housing.

(c) Compare the results from log-linear modelling with those obtained using
nominal or ordinal logistic regression (see Exercise 8.2).

9.6 Consider a 2×K contingency table (Table 9.14) in which the column totals
y.k are fixed for k = 1, ...,K.

(a) Show that the product multinomial distribution for this table reduces to

f(z1, ..., zK /n1, ..., nK ) =
K∑
k=1

(
nk
zk

)
πzkk (1 − πk)nk−zk
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Table 9.14 Contingency table with 2 rows and K columns.

1 ... k ... K

Success y11 y1k y1K
Failure y21 y2k y2K

Total y.1 y.k y.K

where nk = y.k, zk = y1k, nk − zk = y2k, πk = θ1k and 1 − πk = θ2k, for
k = 1, ...,K. This is the product binomial distribution and is the joint
distribution for Table 7.1 (with appropriate changes in notation).

(b) Show that the log-linear model with

η1k = log E (Zk) = xT1kβ

and

η2k = log E (nk − Zk) = xT2kβ

is equivalent to the logistic model

log
(

πk
1 − πk

)
= xTk β

where xk = x1k − x2k, k = 1, ...,K.
(c) Based on (b), analyze the case-control study data on aspirin use and ulcers

using logistic regression and compare the results with those obtained using
log-linear models.
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10

Survival Analysis

10.1 Introduction

An important type of data is the time from a well-defined starting point until
some event, called ‘failure’, occurs. In engineering, this may be the time from
initial use of a component until it fails to operate properly. In medicine, it
may be the time from when a patient is diagnosed with a disease until he
or she dies. Analysis of these data focuses on summarizing the main features
of the distribution, such as median or other percentiles of time to failure,
and on examining the effects of explanatory variables. Data on times until
failure, or more optimistically, duration of survival or survival times, have
two important features:

(a) the times are non-negative and typically have skewed distributions with
long tails;

(b) some of the subjects may survive beyond the study period so that their
actual failure times may not be known; in this case, and other cases where the
failure times are not known completely, the data are said to be censored.

Examples of various forms of censoring are shown in Figure 10.1. The hori-
zontal lines represent the survival times of subjects. TO and TC are the begin-
ning and end of the study period, respectively. D denotes ‘death’ or ‘failure’
and A denotes ‘alive at the end of the study’. L indicates that the subject was
known to be alive at the time shown but then became lost to the study and
so the subsequent life course is unknown.

For subjects 1 and 2, the entire survival period (e.g., from diagnosis until
death, or from installation of a machine until failure) occurred within the
study period. For subject 3, ‘death’ occurred after the end of the study so
that only the solid part of the line is recorded and the time is said to be
right censored at time TC. For subject 4, the observed survival time was
right censored due to loss of follow up at time TL. For subject 5, the survival
time commenced before the study began so the period before TO (i.e., the
dotted line) is not recorded and the recorded survival time is said to be left
censored at time TO.

The analysis of survival time data is the topic of numerous books and pa-
pers. Procedures to implement the calculations are available in most statistical
programs. In this book, only continuous scale survival time data are consid-
ered. Furthermore only parametric models are considered; that is, models
requiring the specification of a probability distribution for the survival times.
In particular, this means that one of the best known forms of survival anal-
ysis, the Cox proportional hazards model (Cox, 1972), is not considered
because it is a semi-parametric model in which dependence on the explana-
tory variables is modelled explicitly but no specific probability distribution is
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Figure 10.1 Diagram of types of censoring for survival times.

assumed for the survival times. An advantage of parametric models, compared
to the Cox proportional hazards model, is that inferences are usually more
precise and there is a wider range of models with which to describe the data,
including accelerated failure time models (Wei, 1992). Important topics
not considered here include time dependent explanatory variables (Kalbfleisch
and Prentice, 1980) and discrete survival time models (Fleming and Harring-
ton, 1991). Fairly recent books that describe the analysis of survival data in
detail include Collett (1994), Lee (1992), Cox and Oakes (1984) and Crowder
et al. (1991).

The next section explains various functions of the probability distribu-
tion of survival times which are useful for model specification. This is followed
by descriptions of the two distributions most commonly used for survival data
– the exponential and Weibull distributions.

Estimation and inference for survival data are complicated by the pres-
ence of censored survival times. The likelihood function contains two compo-
nents, one involving the uncensored survival times and the other making as
much use as possible of information about the survival times which are cen-
sored. For several of the more commonly used probability distributions the
requirements for generalized linear models are not fully met. Nevertheless,
estimation based on the Newton-Raphson method for maximizing the likeli-
hood function, described in Chapter 4, and the inference methods described
in Chapter 5 all apply quite well, at least for large sample sizes.

The methods discussed in this chapter are illustrated using a small data
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set so that the calculations are relatively easy, even though the asymptotic
properties of the methods apply only approximately.

10.2 Survivor functions and hazard functions

Let the random variable Y denote the survival time and let f(y) denote its
probability density function. Then the probability of failure before a specific
time y is given by the cumulative probability distribution

F (y) = Pr(Y < y) =

y∫
0

f(t)dt.

The survivor function is the probability of survival beyond time y. It is
given by

S(y) = Pr(Y ≥ y) = 1 − F (y). (10.1)

The hazard function is the probability of death in an infinitesimally small
time between y and (y + δy) , given survival up to time y,

h(y) = lim
δy→0

Pr (y � Y < y + δy | Y > y)
δy

= lim
δy→0

F (y + δy) − F (y)
δy

× 1
S(y)

.

But

lim
δy→0

F (y + δy) − F (y)
δy

= f(y)

by the definition of a derivative. Therefore,

h(y) =
f(y)
S(y)

(10.2)

which can also be written as

h(y) = − d

dy
{log[S(y)]}. (10.3)

Hence

S(y) = exp[−H(y)] where H(y) =

y∫
0

h(t)dt

or

H(y) = − log[S(y)]. (10.4)

H(y) is called the cumulative hazard function or integrated hazard
function.

The ‘average’ survival time is usually estimated by the median of the dis-
tribution. This is preferable to the expected value because of the skewness
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of the distribution. The median survival time, y(50), is given by the solu-
tion of the equation F (y) = 1

2 . Other percentiles can be obtained similarly;
for example, the pth percentile y(p) is the solution of F [y(p)] = p/100 or
S[y(p)] = 1 − (p/100). For some distributions these percentiles may be ob-
tained explicitly; for others, the percentiles may need to be calculated from
the estimated survivor function (see Section 10.6).

10.2.1 Exponential distribution

The simplest model for a survival time Y is the exponential distribution
with probability density function

f(y; θ) = θe−θy, y ≥ 0, θ > 0. (10.5)

This is a member of the exponential family of distributions (see Exercise
3.3(b)) and has E(Y )=1/θ and var(Y )=1/θ2 (see Exercise 4.2). The cumula-
tive distribution is

F (y; θ) =

y∫
0

θe−θtdt = 1 − e−θy.

So the survivor function is

S(y; θ) = e−θy, (10.6)

the hazard function is

h(y; θ) = θ

and the cumulative hazard function is

H(y; θ) = θy.

The hazard function does not depend on y so the probability of failure in
the time interval [y, y+ δy] is not related to how long the subject has already
survived. This ‘lack of memory’ property may be a limitation because, in
practice, the probability of failure often increases with time. In such situations
an accelerated failure time model, such as the Weibull distribution, may be
more appropriate. One way to examine whether data satisfy the constant haz-
ard property is to estimate the cumulative hazard function H(y) (see Section
10.3) and plot it against survival time y. If the plot is nearly linear then the
exponential distribution may provide a useful model for the data.

The median survival time is given by the solution of the equation

F (y; θ) =
1
2

which is y(50) =
1
θ

log 2.

This is a more appropriate description of the ‘average’ survival time than
E(Y ) = 1/θ because of the skewness of the exponential distribution.
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10.2.2 Proportional hazards models

For an exponential distribution, the dependence of Y on explanatory variables
could be modelled as E(Y ) = xTβ. In this case the identity link function would
be used. To ensure that θ > 0, however, it is more common to use

θ = ex
T β.

In this case the hazard function has the multiplicative form

h(y;β) = θ = ex
T β = exp(

p∑
i=1

xiβi).

For a binary explanatory variable with values xk = 0 if the exposure is
absent and xk = 1 if the exposure is present, the hazard ratio or relative
hazard for presence vs. absence of exposure is

h1(y;β)
h0(y;β)

= eβk (10.7)

provided that
∑
i�=k xiβi is constant. A one-unit change in a continuous ex-

planatory variable xk will also result in the hazard ratio given in (10.7).
More generally, models of the form

h1(y) = h0(y)ex
T β (10.8)

are called proportional hazards models and h0(y), which is the hazard
function corresponding to the reference levels for all the explanatory variables,
is called the baseline hazard.

For proportional hazards models, the cumulative hazard function is given
by

H1(y) =

y∫
0

h1(t)dt =

y∫
0

h0(t)ex
T βdt = H0(y)ex

T β

so

logH1(y) = logH0(y) +
p∑
i=1

xiβi.

Therefore, for two groups of subjects which differ only with respect to the
presence (denoted by P ) or absence (denoted by A) of some exposure, from
(10.7)

logHP (y) = logHA(y) + βk (10.9)

so the log cumulative hazard functions differ by a constant.
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10.2.3 Weibull distribution

Another commonly used model for survival times is the Weibull distribution
which has the probability density function

f(y;λ, θ) =
λyλ−1

θλ
exp

[
−(
y

θ
)λ
]
, y ≥ 0, λ > 0, θ > 0

(see Example 4.2). The parameters λ and θ determine the shape of the dis-
tribution and the scale, respectively. To simplify some of the notation, it is
convenient to reparameterize the distribution using θ−λ = φ. Then the prob-
ability density function is

f(y;λ, φ) = λφyλ−1 exp
(
−φyλ

)
. (10.10)

The exponential distribution is a special case of the Weibull distribution with
λ = 1.

The survivor function for the Weibull distribution is

S (y;λ, φ) =

∞∫
y

λφuλ−1 exp
(
−φuλ

)
du

= exp
(
−φyλ

)
, (10.11)

the hazard function is

h (y;λ, φ) = λφyλ−1 (10.12)

and the cumulative hazard function is

H (y;λ, φ) = φyλ.

The hazard function depends on y and with suitable values of λ it can
increase or decrease with increasing survival time. Thus, the Weibull distri-
bution yields accelerated failure time models. The appropriateness of this
feature for modelling a particular data set can be assessed using

logH(y) = log φ+ λ log y (10.13)
= log[− logS(y)].

The empirical survivor function Ŝ(y) can be used to plot log[− log Ŝ(y)] (or
Ŝ(y) can be plotted on the complementary log-log scale) against the logarithm
of the survival times. For the Weibull (or exponential) distribution the points
should lie approximately on a straight line. This technique is illustrated in
Section 10.3.

It can be shown that the expected value of the survival time Y is

E (Y ) =

∞∫
0

λφyλ exp
(
−φyλ

)
dy

= φ−1/λΓ (1 + 1/λ)
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where Γ(u) =
∞∫
0

su−1e−sds. Also the median, given by the solution of

S(y;λ, φ) =
1
2
,

is

y(50) = φ−1/λ (log 2)1/λ .

These statistics suggest that the relationship between Y and explanatory vari-
ables should be modelled in terms of φ and it should be multiplicative. In
particular, if

φ = αex
T β

then the hazard function (10.12) becomes

h (y;λ, φ) = λαyλ−1ex
T β. (10.14)

If h0(y) is the baseline hazard function corresponding to reference levels of all
the explanatory variables, then

h(y) = h0(y)ex
T β

which is a proportional hazards model.
In fact, the Weibull distribution is the only distribution for survival time

data that has the properties of accelerated failure times and proportional
hazards; see Exercises 10.3 and 10.4 and Cox and Oakes (1984).

10.3 Empirical survivor function

The cumulative hazard function H(y) is an important tool for examining
how well a particular distribution describes a set of survival time data. For
example, for the exponential distribution, H(y) = θy is a linear function of
time (see Section 10.2.1) and this can be assessed from the data.

The empirical survivor function, an estimate of the probability of survival
beyond time y, is given by

S̃(y) =
number of subjects with survival times � y

total number of subjects
.

The most common way to calculate this function is to use the Kaplan Meier
estimate, which is also called the product limit estimate. It is calculated
by first arranging the observed survival times in order of increasing magnitude
y(1) � y(2) � . . . � y(k). Let nj denote the number of subjects who are alive
just before time y(j) and let dj denote the number of deaths that occur at
time y(j) (or, strictly within a small time interval from y(j) − δ to y(j)). Then
the estimated probability of survival past y(j) is (nj − dj)/nj . Assuming that
the times y(j) are independent, the Kaplan Meier estimate of the survivor
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Table 10.1 Remission times of leukemia patients; data from Gehan (1965).

Controls
1 1 2 2 3 4 4 5 5 8 8
8 8 11 11 12 12 15 17 22 23
Treatment
6 6 6 6* 7 9* 10 10* 11* 13 16
17* 19* 20* 22 23 25* 32* 32* 34* 35*
* indicates censoring

Table 10.2 Calculation of Kaplan Meier estimate of the survivor function for the
treatment group for the data in Table 10.1.

Time No. nj alive just No. dj deaths Ŝ(y) =
yj before time yj at time yj

∏(
nj−dj
nj

)
0-<6 21 0 1
6-<7 21 3 0.857

7-<10 17 1 0.807
10-<13 15 1 0.753
13-<16 12 1 0.690
16-<22 11 1 0.627
22-<23 7 1 0.538

≥23 6 1 0.448

function at time y is

Ŝ(y) =
k∏
j=1

(
nj − dj
nj

)
for y between times y(j) and y(j+1).

10.3.1 Example: Remission times

The calculation of Ŝ(y) is illustrated using an old data set of times to re-
mission of leukemia patients (Gehan, 1965). There are two groups each of
n = 21 patients. In the control group who were treated with a placebo there
was no censoring, whereas in the active treatment group, who were given 6
mercaptopurine, more than half of the observations were censored. The data
for both groups are given in Table 10.1. Details of the calculation of Ŝ(y) for
the treatment group are shown in Table 10.2.

Figure 10.2 shows dot plots of the uncensored times (dots) and censored
times (squares) for each group. Due to the high level of censoring in the
treatment group, the distributions are not really comparable. Nevertheless,
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Figure 10.2 Dot plots of remission time data in Table 10.1: dots represent uncensored
times and squares represent censored times.
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Figure 10.3 Empirical survivor functions (Kaplan Meier estimates) for data in Table
10.1: the solid line represents the control group and the dotted line represents the
treatment group.

© 2002 by Chapman & Hall/CRC

184



0 1 2 3

-2

-1

0

1

log (y)

log H(y)

Figure 10.4 Log cumulative hazard function plotted against log of remission time
for data in Table 10.1; dots represent the control group and diamonds represent the
treatment group.

the plots show the skewed distributions and suggest that survival times were
longer in the treatment group. Figure 10.3 shows the Kaplan Meier estimates
of the survivor functions for the two groups. The solid line represents the
control group and the dotted line represents the treatment group. Survival
was obviously better in the treatment group. Figure 10.4 shows the logarithm
of the cumulative hazard function plotted against log y. The two lines are
fairly straight which suggests that the Weibull distribution is appropriate,
from (10.13). Furthermore, the lines are parallel which suggests that the pro-
portional hazards model is appropriate, from (10.9). The slopes of the lines
are near unity which suggests that the simpler exponential distribution may
provide as good a model as the Weibull distribution. The distance between the
lines is about 1.4 which indicates that the hazard ratio is about exp(1.4) 
 4,
from (10.9).

10.4 Estimation

For the jth subject, the data recorded are: yj the survival time; δj a censoring
indicator with δj = 1 if the survival time is uncensored and δj = 0 if it
is censored; and xj a vector of explanatory variables. Let y1, . . . , yr denote
the uncensored observations and yr+1, . . . , yn denote the censored ones. The
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contribution of the uncensored variables to the likelihood function is
r∏
j=1

f(yj).

For a censored variable we know the survival time Y is at least yj (r + 1 �
j � n) and the probability of this is Pr(Y � yj) = S(yj), so the contribution
of the censored variables to the likelihood function is

n∏
j=r+1

S(yj).

The full likelihood is

L =
n∏
j=1

f(yj)δjS(yj)1−δj (10.15)

so the log-likelihood function is

l =
n∑
j=1

[δj log f(yj) + (1 − δj) logS(yj)]

=
n∑
j=1

[δj log h(yj) + logS(yj)] (10.16)

from Equation (10.2). These functions depend on the parameters of the prob-
ability distributions and the parameters in the linear component xTβ.

The parameters can be estimated using the methods described in Chapter
4. Usually numerical maximization of the log-likelihood function, based on the
Newton-Raphson method, is employed. The inverse of the information matrix
which is used in the iterative procedure provides an asymptotic estimate of
the variance-covariance matrix of the parameter estimates.

The main difference between the parametric models for survival data de-
scribed in this book and the commonly used Cox proportional hazards regres-
sion model is in the function (10.15). For the Cox model, the functions f and
S are not fully specified; for more details, see Collett (1994), for example.

10.4.1 Example: simple exponential model

Suppose we have survival time data with censoring but no explanatory vari-
ables and that we believe that the exponential distribution is a suitable model.

Then the likelihood function is L(θ;y) =
n∏
j=1

(θe−θyj )δj (e−θyj )1−δj from equa-

tions (10.5), (10.6) and (10.15). The log-likelihood function is

l(θ;y) =
n∑
j=1

δj log θ +
n∑
j=1

[δj (−θyj) + (1 − δj) (−θyj)] . (10.17)
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As there are r uncensored observations (with δj = 1) and (n − r) censored
observations (with δj = 0), equation (10.17) can be simplified to

l(θ;y) = r log θ − θ
n∑
j=1

yj .

The solution of the equation

U =
dl(θ;y)
dθ

=
r

θ
−
∑

yj = 0

gives the maximum likelihood estimator

θ̂ =
r∑
Yj
.

If there were no censored observations then r = n and 1/θ̂ is just the mean of
the survival times, as might be expected because E(Y )=1/θ.

The variance of θ̂ can be obtained from the information

var(θ̂) =
1
I

=
−1

E(U ′)

where

U ′ =
d2l

dθ2
=

−r
θ2
.

So var(θ̂) = θ2/r which can be estimated by θ̂
2
/r. Therefore, for example, an

approximate 95% confidence interval for θ is θ̂ ± 1.96 θ̂/
√
r.

10.4.2 Example: Weibull proportional hazards model

If the data for subject j are {yj , δj and xj} and the Weibull distribution is
thought to provide a suitable model (for example, based on initial exploratory
analysis) then the log-likelihood function is

l =
n∑
j=1

[
δj log(λαyλ−1

j ex
T
j β) − (αyλj e

xT
j β)

]
from equations (10.14) and (10.16). This function can be maximized numeri-
cally to obtain estimates λ̂, α̂ and β̂.

10.5 Inference

The Newton-Raphson iteration procedure used to obtain maximum likelihood
estimates also produces the information matrix I which can be inverted to give
the approximate variance-covariance matrix for the estimators. Hence infer-
ences for any parameter θ can be based on the maximum likelihood estimator
θ̂ and the standard error, s.e.(θ̂), obtained by taking the square root of the
relevant element of the diagonal of I

−1. Then the Wald statistic (θ̂−θ)/s.e.(θ̂)
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can be used to test hypotheses about θ or to calculate approximate confidence
limits for θ assuming that the statistic has the standard Normal distribution
N(0, 1) (see Section 5.4).

For the Weibull and exponential distributions, the maximum value of the
log-likelihood function can be calculated by substituting the maximum likeli-
hood estimates of the parameters, denoted by the vector θ̂, into the expression
in (10.16) to obtain l(θ̂;y). For censored data, the statistic −2l(θ̂;y) may not
have a chi-squared distribution, even approximately. For nested models M1,
with p parameters and maximum value l̂1 of the log-likelihood function, and
M0, with q < p parameters and maximum value l̂0 of the log-likelihood func-
tion, the difference

D = 2(l̂1 − l̂0)
will approximately have a chi-squared distribution with p− q degrees of free-
dom if both models fit well. The statistic D, which is analogous to the de-
viance, provides another method for testing hypotheses (see Section 5.7).

10.6 Model checking

To assess the adequacy of a model it is necessary to check assumptions, such as
the proportional hazards and accelerated failure time properties, in addition
to looking for patterns in the residuals (see Section 2.3.4) and examining
influential observations using statistics analogous to those for multiple linear
regression (see Section 6.2.7).

The empirical survivor function Ŝ(y) described in Section 10.3 can be used
to examine the appropriateness of the probability model. For example, for
the exponential distribution, the plot of − log[Ŝ(y)] against y should be ap-
proximately linear from (10.6). More generally, for the Weibull distribution,
the plot of the log cumulative hazard function log[ − log Ŝ(y)] against log y
should be linear, from (10.13). If the plot shows curvature then some alter-
native model such as the log-logistic distribution may be better (see Exercise
10.2).

The general proportional hazards model given in (10.8) is

h(y) = h0(y)ex
T β

where h0 is the baseline hazard. Consider a binary explanatory variable xk
with values xk = 0 if a characteristic is absent and xk = 1 if it is present. The
log-cumulative hazard functions are related by

logHP = logHA + βk;

see (10.9). Therefore if the empirical hazard functions Ŝ(y) are calculated sep-
arately for subjects with and without the characteristic and the log-cumulative
hazard functions log[− log Ŝ(y)] are plotted against log y, the lines should have
the same slope but be separated by a distance βk.

More generally, parallel lines for the plots of the log cumulative hazard func-
tions provide support for the proportional hazards assumption. For a fairly
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small number of categorical explanatory variables, the proportional hazards
assumption can be examined in this way. If the lines are not parallel this may
suggest that there are interaction effects among the explanatory variables. If
the lines are curved but still parallel this supports the proportional hazards
assumption but suggests that the accelerated failure time model is inadequate.
For more complex situations it may be necessary to rely on general diagnos-
tics based on residuals, although these are not specific for investigating the
proportional hazards property.

The simplest residuals for survival time data are the Cox-Snell residuals.
If the survival time for subject j is uncensored then the Cox-Snell residual is

rCj = Ĥj(yj) = − log[Ŝj(yj)] (10.18)

where Ĥj and Ŝj are the estimated cumulative hazard and survivor functions
for subject j at time yj . For proportional hazards models, (10.18) can be
written as

rCj = exp(xTj β̂)Ĥ0(yj)

where Ĥ0(yj) is the baseline hazard function evaluated at yj .
It can be shown that if the model fits the data well then these residuals

have an exponential distribution with a parameter of one. In particular, their
mean and variance should be approximately equal to one.

For censored observations, rCj will be too small and various modifications
have been proposed of the form

r′Cj = Yi =
{

rCj for uncensored observations
rCj + ∆ for censored observations

where ∆ = 1 or ∆ = log 2 (Crowley and Hu, 1977). The distribution of the
r′Cj ’s can be compared with the exponential distribution with unit mean using
exponential probability plots (analogous Normal probability plots) which are
available in various statistical software. An exponential probability plot of the
residuals r′Cj may be used to identify outliers and systematic departures from
the assumed distribution.

Martingale residuals provide an alternative approach. For the jth subject
the martingale residual is

rMj = δj − rCj
where δj = 1 if the survival time is uncensored and δj = 0 if it is censored.
These residuals have an expected value of zero but a negatively skewed dis-
tribution.

Deviance residuals (which are somewhat misnamed because the sum of
their squares is not, in fact, equal to the deviance mentioned in Section 10.5)
are defined by

rDj = sign(rMj){−2[rMj + δj log(rCj)]}
1
2 .

The rDj ’s are approximately symmetrically distributed about zero and large
values may indicate outlying observations.
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Table 10.3 Results of fitting proportional hazards models based on the exponential
and Weibull distributions to the data in Table 10.1.

Exponential Weibull
model model

Group β1 1.53 (0.40) 1.27 (0.31)
Intercept β0 0.63 (0.55) 0.98 (0.43)
Shape λ 1.00* 1.37 (0.20)

* shape parameter is unity for the exponential distribution.

In principle, any of the residuals r′Cj , rMj or rDj are suitable for sequence
plots against the order in which the survival times were measured, or any other
relevant order (to detect lack of independence among the observations) and
for plots against explanatory variables that have been included in the model
(and those that have not) to detect any systematic patterns which would
indicate that the model is not correctly specified. However, the skewness of
the distributions of r′Cj and rMj makes them less useful than rDj , in practice.

Diagnostics to identify influential observations can be defined for survival
time data, by analogy with similar statistics for multiple linear regression and
other generalized linear models. For example, for any parameter βk delta-
betas ∆jβk, one for each subject j, show the effect on the estimate of βk
caused by the omitting the data for subject j from the calculations. Plotting
the ∆jβk’s against the order of the observations or against the survival times
yj may indicate systematic effects or particularly influential observations.

10.7 Example: remission times

Figure 10.4 suggests that a proportional hazards model with a Weibull, or even
an exponential, distribution should provide a good model for the remission
time data in Table 10.1. The models are

h(y) = exp(β0 + β1x), y ∼ Exponential; (10.19)
h(y) = λyλ−1 exp(β0 + β1x), y ∼ Weibull,

where x = 0 for the control group, x = 1 for the treatment group and λ is
the shape parameter. The results of fitting these models are shown in Ta-
ble 10.3. The hypothesis that λ = 1 can be tested either using the Wald
statistic from the Weibull model, i.e., z = (1.37 − 1.00)/0.20 = 1.85, or from
D = 2(l̂W − l̂E) = 3.89 where l̂W and l̂E are the maximum values of the
log-likelihood functions for the Weibull and exponential models respectively
(details not shown here). Comparing z with the standard Normal distribution
or D with the chi-squared distribution with one degree of freedom provides
only weak evidence against the hypothesis. Therefore, we can conclude that
the exponential distribution is about as good as the Weibull distribution for
modelling the data. Both models suggest that the parameter β1 is non-zero
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Figure 10.5 Boxplots of Cox Snell and deviance residuals from the exponential model
(10.19) for the data in Table 10.1.

and the exponential model provides the estimate exp(1.53) = 4.62 for the
relative hazard.

Figure 10.5 shows box plots of Cox-Snell and deviance residuals for the
exponential model. The skewness of the Cox-Snell residuals and the more
symmetric distribution of the deviance residuals is apparent. Additionally, the
difference in location between the distributions of the treatment and control
groups suggests the model has failed to describe fully the patterns of remission
times for the two groups of patients.
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Table 10.4 Leukemia survival times.

AG positive AG negative
Survival White blood Survival White blood

time cell count time cell count

65 2.30 56 4.40
156 0.75 65 3.00
100 4.30 17 4.00
134 2.60 7 1.50
16 6.00 16 9.00

108 10.50 22 5.30
121 10.00 3 10.00

4 17.00 4 19.00
39 5.40 2 27.00

143 7.00 3 28.00
56 9.40 8 31.00
26 32.00 4 26.00
22 35.00 3 21.00
1 100.00 30 79.00
1 100.00 4 100.00
5 52.00 43 100.00

65 100.00

10.8 Exercises

10.1 The data in Table 10.4 are survival times, in weeks, for leukemia patients.
There is no censoring. There are two covariates, white blood cell count
(WBC) and the results of a test (AG positive and AG negative). The data
set is from Feigl and Zelen (1965) and the data for the 17 patients with
AG positive test results are described in Exercise 4.2.

(a) Obtain the empirical survivor functions Ŝ(y) for each group (AG positive
and AG negative), ignoring WBC.

(b) Use suitable plots of the estimates Ŝ(y) to select an appropriate proba-
bility distribution to model the data.

(c) Use a parametric model to compare the survival times for the two groups,
after adjustment for the covariate WBC, which is best transformed to
log(WBC).

(d) Check the adequacy of the model using residuals and other diagnostic
tests.

(e) Based on this analysis, is AG a useful prognostic indicator?

10.2 The log-logistic distribution with the probability density function

f(y) =
eθλyλ−1

(1 + eθyλ)2
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is sometimes used for modelling survival times.
(a) Find the survivor function S(y), the hazard function h(y) and the cumu-

lative hazard function H(y).
(b) Show that the median survival time is exp(−θ/λ).
(c) Plot the hazard function for λ = 1 and λ = 5 with θ = −5, θ = −2 and

θ = 1
2 .

10.3 For accelerated failure time models the explanatory variables for sub-
ject i, ηi, act multiplicatively on the time variable so that the hazard func-
tion for subject i is

hi(y) = ηih0(ηiy)

where h0(y) is the baseline hazard function. Show that the Weibull and
log-logistic distributions both have this property but the exponential distri-
bution does not. (Hint: obtain the hazard function for the random variable
T = ηiY.)

10.4 For proportional hazards models the explanatory variables for subject
i, ηi, act multiplicatively on the hazard function. If ηi = ex

T
i β then the

hazard function for subject i is

hi(y) = ex
T
i βh0(y) (10.20)

where h0(y) is the baseline hazard function.

(a) For the exponential distribution if h0 = θ show that if θi = ex
T
i βθ for the

ith subject, then (10.20) is satisfied.

(b) For the Weibull distribution if h0 = λφyλ−1 show that if φi = ex
T
i βφ for

the ith subject, then (10.20) is satisfied.
(c) For the log-logistic distribution if h0 = eθλyλ−1/(1 + eθyλ) show that if

eθi = eθ+xT
i β for the ith subject, then (10.20) is not satisfied. Hence, or

otherwise, deduce that the log-logistic distribution does not have the pro-
portional hazards property.

10.5 As the survivor function S(y) is the probability of surviving beyond time
y, the odds of survival past time y is

O(y) =
S(y)

1 − S(y)
.

For proportional odds models the explanatory variables for subject i,
ηi, act multiplicatively on the odds of survival beyond time y

Oi = ηiO0

where O0 is the baseline odds.
(a) Find the odds of survival beyond time y for the exponential, Weibull and

log-logistic distributions.
(b) Show that only the log-logistic distribution has the proportional odds prop-

erty.
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Table 10.5 Survival times in months of patients with chronic active hepatitis in a
randomized controlled trial of prednisolone versus no treatment; data from Altman
and Bland (1998).

Prednisolone
2 6 12 54 56** 68 89 96

96 125* 128* 131* 140* 141* 143 145*
146 148* 162* 168 173* 181*

No treatment
2 3 4 7 10 22 28 29

32 37 40 41 54 61 63 71
127* 140* 146* 158* 167* 182*
* indicates censoring, ** indicates loss to follow-up.

(c) For the log-logistic distribution show that the log odds of survival beyond
time y is

logO(y) = log
[

S(y)
1 − S(y)

]
= −θ − λ log y.

Therefore if log Ôi (estimated from the empirical survivor function) plotted
against log y is approximately linear, then the log-logistic distribution may
provide a suitable model.

(d) From (b) and (c) deduce that for two groups of subjects with explanatory
variables η1 and η2 plots of log Ô1 and log Ô2 against log y should produce
approximately parallel straight lines.

10.6 The data in Table 10.5 are survival times, in months, of 44 patients with
chronic active hepatitis. They participated in a randomized controlled trial
of prednisolone compared with no treatment. There were 22 patients in
each group. One patient was lost to follow-up and several in each group
were still alive at the end of the trial. The data are from Altman and Bland
(1998).

(a) Calculate the empirical survivor functions for each group.
(b) Use suitable plots to investigate the properties of accelerated failure times,

proportional hazards and proportional odds, using the results from Exer-
cises 10.3, 10.4 and 10.5 respectively.

(c) Based on the results from (b) fit an appropriate model to the data in Table
10.5 to estimate the relative effect of prednisolone.
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11

Clustered and Longitudinal Data

11.1 Introduction

In all the models considered so far the outcomes Yi, i = 1, . . . , n are assumed
to be independent. There are two common situations where this assumption
is implausible. In one situation the outcomes are repeated measurements over
time on the same subjects; for example, the weights of the same people when
they are 30, 40, 50 and 60 years old. This is an example of longitudinal
data. Measurements on the same person at different times may be more alike
than measurements on different people, because they are affected by persistent
characteristics as well as potentially more variable factors; for instance, weight
is likely to be related to an adult’s genetic makeup and height as well as their
eating habits and level of physical activity. For this reason longitudinal data
for a group of subjects are likely to exhibit correlation between successive
measurements.

The other situation in which data are likely to be correlated is where they
are measurements on related subjects; for example, the weights of samples of
women aged 40 years selected from specific locations in different countries. In
this case the countries are the primary sampling units or clusters and
the women are sub-samples within each primary sampling unit. Women from
the same geographic area are likely to be more similar to one another, due to
shared socio-economic and environmental conditions, than they are to women
from other locations. Any comparison of women’s weights between areas that
failed to take this within-area correlation into account could produce mis-
leading results. For example, the standard deviation of the mean difference
in weights between two areas will be over-estimated if the observations which
are correlated are assumed to be independent.

The term repeated measures is used to describe both longitudinal and
clustered data. In both cases, models that include correlation are needed in or-
der to make valid statistical inferences. There are two approaches to modelling
such data.

One approach involves dropping the usual assumption of independence be-
tween the outcomes Yi and modelling the correlation structure explicitly. This
method goes under various names such as repeated measures (for exam-
ple, repeated measures analysis of variance) and the generalized es-
timating equation approach. The estimation and inference procedures for
these models are, in principle, analogous to those for generalized linear models
for independent outcomes; although in practice, software may not be readily
available to do the calculations.

The alternative approach for modelling repeated measures is based on con-
sidering the hierarchical structure of the study design. This is called mul-
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Figure 11.1 Multilevel study.

tilevel modelling. For example, suppose there are repeated, longitudinal
measurements, level 1, on different subjects, level 2, who were randomized
to experimental groups, level 3. This nested structure is illustrated in Figure
11.1 which shows three groups, each of four subjects, on whom measurements
are made at two times (for example, before and after some intervention). On
each branch, outcomes at the same level are assumed to be independent and
the correlation is a result of the multilevel structure (see Section 11.4).

In the next section an example is presented of an experiment with longi-
tudinal outcome measures. Descriptive data analyses are used to explore the
study hypothesis and the assumptions that are made in various models which
might be used to test the hypothesis.

Repeated measures models for Normal data are described in Section 11.3.
In Section 11.4, repeated measures models are described for non-Normal data
such as counts and proportions which might be analyzed using Poisson, bi-
nomial and other distributions (usually from the exponential family). These
sections include details of the relevant estimation and inferential procedures.
For repeated measures models, it is necessary to choose a correlation struc-
ture likely to reflect the relationships between the observations. Usually the
correlation parameters are not of particular interest (i.e., they are nuisance
parameters) but they need to be included in the model in order to obtain
consistent estimates of those parameters that are of interest and to correctly
calculate the standard errors of these estimates.

For multilevel models described in Section 11.5, the effects of levels may
be described either by fixed parameters (e.g., for group effects) or random
variables (e.g., for subjects randomly allocated to groups). If the linear pre-
dictor of the model has both fixed and random effects the term mixed model
is used. The correlation between observations is due to the random effects.
This may make the correlation easier to interpret in multilevel models than in
repeated measures models. Also the correlation parameters may be of direct
interest. For Normally distributed data, multilevel models are well-established
and estimation and model checking procedures are available in most general
purpose statistical software. For counts and proportions, although the model
specification is conceptually straightforward, there is less software available
to fit the models.

In Section 11.6, both repeated measures and multilevel models are fitted to
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data from the stroke example in Section 11.2. The results are used to illustrate
the connections between the various models.

Finally, in Section 11.7, a number of issues that arise in the modelling of
clustered and longitudinal data are mentioned. These include methods of ex-
ploratory analysis, consequences of using inappropriate models and problems
that arise from missing data.

11.2 Example: Recovery from stroke

The data in Table 11.1 are from an experiment to promote the recovery of
stroke patients. There were three experimental groups:

A was a new occupational therapy intervention;
B was the existing stroke rehabilitation program conducted in the same

hospital where A was conducted;
C was the usual care regime for stroke patients provided in a different

hospital.
There were eight patients in each experimental group. The response variable

was a measure of functional ability, the Bartel index; higher scores correspond
to better outcomes and the maximum score is 100. Each patient was assessed
weekly over the eight weeks of the study. The study was conducted by C.
Cropper, at the University of Queensland, and the data were obtained from
the OzDasl website developed by Gordon Smyth

(http://www.maths.uq.edu.au/˜gks/data/index.html).
The hypothesis was that the patients in group A would do better than those

in groups B or C. Figure 11.2 shows the time course of scores for every patient.
Figure 11.3 shows the time course of the average scores for each experimental
group. Clearly most patients improved. Also it appears that those in group A
recovered best and those in group C did worst (however, people in group C
may have started at a lower level).

The scatter plot matrix in Figure 11.4 shows data for all 24 patients at
different times. The corresponding Pearson correlation coefficients are given
in Table 11.2. These show high positive correlation between measurements
made one week apart and decreasing correlation between observations further
apart in time.

A naive analysis, sometimes called a pooled analysis, of these data is to
fit an analysis of covariance model in which all 192 observations (for 3 groups
× 8 subjects × 8 times) are assumed to be independent with

E(Yijk) = αi + βtk + eijk (11.1)

where Yijk is the score at time tk (k = 1, . . . , 8) for patient j(j = 1, . . . , 8) in
group i (where i = 1 for group A, i = 2 for group B and i = 3 for group C);
αi is the mean score for group i; β is a common slope parameter; tk denotes
time (tk = k for week k, k = 1, . . . , 8); and the random error terms eijk are
all assumed to be independent. The null hypothesis H0: α1 = α2 = α3 can
be compared with an alternative hypothesis such as H1: α1 > α2 > α3 by
fitting models with different group parameters αi. Figure 11.3 suggests that
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Table 11.1 Functional ability scores measuring recovery from stroke for patients in
three experimental groups over 8 weeks of the study.

Week
Subject Group 1 2 3 4 5 6 7 8

1 A 45 45 45 45 80 80 80 90
2 A 20 25 25 25 30 35 30 50
3 A 50 50 55 70 70 75 90 90
4 A 25 25 35 40 60 60 70 80
5 A 100 100 100 100 100 100 100 100
6 A 20 20 30 50 50 60 85 95
7 A 30 35 35 40 50 60 75 85
8 A 30 35 45 50 55 65 65 70
9 B 40 55 60 70 80 85 90 90
10 B 65 65 70 70 80 80 80 80
11 B 30 30 40 45 65 85 85 85
12 B 25 35 35 35 40 45 45 45
13 B 45 45 80 80 80 80 80 80
14 B 15 15 10 10 10 20 20 20
15 B 35 35 35 45 45 45 50 50
16 B 40 40 40 55 55 55 60 65
17 C 20 20 30 30 30 30 30 30
18 C 35 35 35 40 40 40 40 40
19 C 35 35 35 40 40 40 45 45
20 C 45 65 65 65 80 85 95 100
21 C 45 65 70 90 90 95 95 100
22 C 25 30 30 35 40 40 40 40
23 C 25 25 30 30 30 30 35 40
24 C 15 35 35 35 40 50 65 65

Table 11.2 Correlation coefficients for the stroke recovery scores in Table 11.1.

Week
1 2 3 4 5 6 7

Week 2 0.93
Week 3 0.88 0.92
Week 4 0.83 0.88 0.95
Week 5 0.79 0.85 0.91 0.92
Week 6 0.71 0.79 0.85 0.88 0.97
Week 7 0.62 0.70 0.77 0.83 0.92 0.96
Week 8 0.55 0.64 0.70 0.77 0.88 0.93 0.98
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Figure 11.2 Stroke recovery scores of individual patients.
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Figure 11.3 Average stroke recovery scores for groups of patients: long dashed line
corresponds to group A; solid line to group B; short dashed line to group C.
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Figure 11.4 Scatter plot matrix for stroke recovery scores in Table 11.2.

the slopes may differ between the three groups so the following model was
also fitted

E(Yijk) = αi + βitk + eijk

where the slope parameter βi denotes the rate of recovery for group i. Models
(11.1) and (11.2) can be compared to test the hypothesis H0: β1 = β2 = β3

against an alternative hypothesis that the β’s differ. Neither of these naive
models takes account of the fact that measurements of the same patient at
different times are likely to be more similar than measurements of different
patients. This is analogous to using an unpaired t-test for paired data (see
Exercise 2.2).

Table 11.3 shows the results of fitting these models, which will be compared
later with results from more appropriate analyses. Note, however, that for
model (11.2) the Wald statistics for α2 − α1 (3.348/8.166 = 0.41) and for
α3 − α1 (−0.022/8.166 = −0.003) are very small compared to the standard
Normal distribution which suggests that the intercepts are not different (i.e.,
on average the groups started with the same level of functional ability).

A preferable form of exploratory analysis, sometimes called data re-
duction or data summary, consists of summarizing the response profiles
for each subject by a small number of descriptive statistics based on assum-
ing that measurements on the same subject are independent. For the stroke
data, appropriate summary statistics are the intercept and slope of the in-
dividual regression lines. Other examples of summary statistics that may be
appropriate in particular situations include peak values, areas under curves,
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Table 11.3 Results of naive analyses of stroke recovery scores in Table 11.1, assuming
all the data are independent and using models (11.1) and (11.2).

Parameter Estimate Standard error

Model (11.1)
α1 36.842 3.971
α2 − α1 -5.625 3.715
α3 − α1 -12.109 3.715
β 4.764 0.662
Model (11.2)
α1 29.821 5.774
α2 − α1 3.348 8.166
α3 − α1 -0.022 8.166
β1 6.324 1.143
β2 − β1 -1.994 1.617
β3 − β1 -2.686 1.617

or coefficients of quadratic or exponential terms in non-linear growth curves.
These subject-specific statistics are used as the data for subsequent analyses.

The intercept and slope estimates and their standard errors for each of the
24 stroke patients are shown in Table 11.4. These results show considerable
variability between subjects which should, in principle, be taken into account
in any further analyses. Tables 11.5 and 11.6 show analyses comparing in-
tercepts and slopes between the experimental groups, assuming independence
between the subjects but ignoring the differences in precision (standard er-
rors) between the estimates. Notice that although the estimates are the same
as those for model (11.2) in Table 11.3, the standard errors are (correctly)
much larger and the data do not provide much evidence of differences in ei-
ther the intercepts or the slopes.

Although the analysis of subject specific summary statistics does not require
the implausible assumption of independence between observations within sub-
jects, it ignores the random error in the estimates. Ignoring this information
can lead to underestimation of effect sizes and underestimation of the overall
variation (Fuller, 1987). To avoid these biases, models are needed that better
describe the data structure that arises from the study design. Such models
are described in the next three sections.

11.3 Repeated measures models for Normal data

Suppose there are N study units or subjects with ni measurements for subject
i (e.g., ni longitudinal observations for person i or ni observations for cluster
i). Let yi denote the vector of responses for subject i and let y denote the
vector of responses for all subjects
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Table 11.4 Estimates of intercepts and slopes (and their standard errors) for each
subject in Table 11.1.

Subject Intercept (std. error) Slope (std. error)

1 30.000 (7.289) 7.500 (1.443)
2 15.536 (4.099) 3.214 (0.812)
3 39.821 (3.209) 6.429 (0.636)
4 11.607 (3.387) 8.393 (0.671)
5 100.000 (0.000) 0.000 (0.000)
6 0.893 (5.304) 11.190 (1.050)
7 15.357 (4.669) 7.976 (0.925)
8 25.357 (1.971) 5.893 (0.390)
9 38.571 (3.522) 7.262 (0.698)
10 61.964 (2.236) 2.619 (0.443)
11 14.464 (5.893) 9.702 (1.167)
12 26.071 (2.147) 2.679 (0.425)
13 48.750 (8.927) 5.000 (1.768)
14 10.179 (3.209) 1.071 (0.636)
15 31.250 (1.948) 2.500 (0.386)
16 34.107 (2.809) 3.810 (0.556)
17 21.071 (2.551) 1.429 (0.505)
18 34.107 (1.164) 0.893 (0.231)
19 32.143 (1.164) 1.607 (0.231)
20 42.321 (3.698) 7.262 (0.732)
21 48. 571 (6.140) 7.262 (1.216)
22 24.821 (1.885) 2.262 (0.373)
23 22.321 (1.709) 1.845 (0.339)
24 13.036 (4.492) 6.548 (0.890)

Table 11.5 Analysis of variance of intercept estimates in Table 11.4.

Source d.f. Mean square F p-value

Groups 2 30 0.07 0.94
Error 21 459

Parameter Estimate Std. error
α1 29.821 7.572

α2 − α1 3.348 10.709
α3 − α1 -0.018 10.709
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Table 11.6 Analysis of variance of slope estimates in Table 11.4.

Source d.f. Mean square F p-value

Groups 2 15.56 1.67 0.21
Error 21 9.34

Parameter Estimate Std. error
β1 6.324 1.080

β2 − β1 -1.994 1.528
β3 − β1 -2.686 1.528

y =

 y1

...
yN

 , so y has length
N∑
i=1

ni.

A Normal linear model for y is

E(y) = Xβ = µ; y ∼N(µ,V), (11.2)

where

X =


X1

X2

...
XN

 , β =

 β1

...
βp

 ,
Xi is the ni × p design matrix for subject i and β is a parameter vector of

length p. The variance-covariance matrix for measurements for subject i is

Vi =


σi11 σi12 · · · σi1ni

σi21
. . .

...
...

. . .
σin1 σinini


and the overall variance-covariance matrix has the block diagonal form

V =


V1 O O
O V2 O

. . .
O O VN


assuming that responses for different subjects are independent (where O de-
notes a matrix of zeros). Usually the matrices Vi are assumed to have the
same form for all subjects.

If the elements of V are known constants then β can be estimated from the
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likelihood function for model (11.3) or by the method of least squares. The
maximum likelihood estimator, obtained by solving the score equations

U(β) =
∂l

∂β
= XTV−1(y − Xβ) =

N∑
i=1

XTi V
−1
i (yi − Xiβ) = 0 (11.3)

where l is the log-likelihood function. The solution is

β̂ = (XTV−1X)−1XTV−1y = (
N∑
i=1

XTi V
−1
i Xi)−1(

N∑
i=1

XTi V
−1
i yi) (11.4)

with

var(β̂) = (XTV−1X)−1 = (
N∑
i=1

XTi V
−1
i Xi)−1 (11.5)

and β̂ is asymptotically Normal (see Chapter 6).
In practice, V is usually not known and has to be estimated from the data

by an iterative process. This involves starting with an initial V (for instance
the identity matrix), calculating an estimate β̂ and hence the linear predictors
µ̂= Xβ̂ and the residuals r = y − µ̂. The variances and covariances of the
residuals are used to calculate V̂ which in turn is used in (11.5) to obtain a
new estimate β̂. The process alternates between estimating β̂ and estimating
V̂ until convergence is achieved.

If the estimate V̂ is substituted for V in equation (11.6), the variance of β̂
is likely to be underestimated. Therefore a preferable alternative is

Vs(β̂) = I
−1CI

−1

where

I = XT V̂−1X =
N∑
i=1

XTi V̂
−1
i Xi

and

C =
N∑
i=1

XTi V̂
−1
i (yi − Xiβ̂)(yi − Xiβ̂)T V̂−1

i Xi

where V̂i denotes the ith sub-matrix of V̂. Vs(β) is called the information
sandwich estimator, because I is the information matrix (see Chapter 5).
It is also sometimes called the Huber estimator. It is a consistent estimator
of var(β̂) when V is not known and it is robust to mis-specification of V.

There are several commonly used forms for the matrix Vi.
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1. All the off-diagonal elements are equal so that

Vi = σ2


1 ρ · · · ρ
ρ 1 ρ
...

. . .
...

ρ ρ · · · 1

 . (11.6)

This is appropriate for clustered data where it is plausible that all mea-
surements are equally correlated, for example, for elements within the same
primary sampling unit such as people living in the same area. The term ρ
is called the intra-class correlation coefficient. The equicorrelation
matrix in (11.7) is called exchangeable or spherical. If the off-diagonal
term ρ can be written in the form σ2

a/(σ
2
a + σ2

b ), the matrix is said to have
compound symmetry.

2. The off-diagonal terms decrease with ‘distance’ between observations; for
example, if all the vectors yi have the same length n and

Vi = σ2


1 ρ12 · · · ρ1n
ρ21 1 ρ2n
...

. . .
...

ρn1 ρn2 · · · 1

 (11.7)

where ρjk depends on the ‘distance’ between observations j and k. Ex-
amples include ρjk = |tj − tk| for measurements at times tj and tk, or
ρjk = exp(− |j − k|). One commonly used form is the first order autore-
gressive model with ρ|j−k| where |ρ| < 1 so that

Vi = σ2



1 ρ ρ2 · · · ρn−1

ρ 1 ρ ρn−2

ρ2 ρ 1
...

...
. . .

ρn−1 · · · ρ 1

 . (11.8)

3. All the correlation terms may be different

Vi = σ2


1 ρ12 · · · ρ1n
ρ21 1 ρ2n
...

. . .
...

ρn1 ρn2 · · · 1

 .
This unstructured correlation matrix involves no assumptions about
correlations between measurements but all the vectors yi must be the same
length n. It is only practical to use this form when the matrix Vi is not
large relative to the number of subjects because the number, n(n − 1)/2,
of nuisance parameters ρjk may be excessive and may lead to convergence
problems in the iterative estimation process.

The term repeated measures analysis of variance is often used when
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the data are assumed to be Normally distributed. The calculations can be per-
formed using most general purpose statistical software although, sometimes,
the correlation structure is assumed to be either spherical or unstructured
and correlations which are functions of the times between measurements can-
not be modelled. Some programs treat repeated measures as a special case
of multivariate data – for example, by not distinguishing between heights of
children in the same class (i.e., clustered data), heights of children when they
are measured at different ages (i.e., longitudinal data), and heights, weights
and girths of children (multivariate data). This is especially inappropriate for
longitudinal data in which the time order of the observations matters. The
multivariate approach to analyzing Normally distributed repeated mea-
sures data is explained in detail by Hand and Crowder (1996), while the in-
appropriateness of these methods for longitudinal data is illustrated by Senn
et al. (2000).

11.4 Repeated measures models for non-Normal data

The score equations for Normal models (11.4) can be generalized to other
distributions using ideas from Chapter 4. For the generalized linear model

E(Yi) = µi, g(µi) = xTi β = ηi

for independent random variables Y1, Y2, . . . , YN with a distribution from the
exponential family, the scores given by equation (4.18) are

Uj =
N∑
i=1

(yi − µi)
var(Yi)

xij

(
∂µi
∂ηi

)
for parameters βj , j = 1, . . . , p. The last two terms come from

∂µi
∂βj

=
∂µi
∂ηi

.
∂ηi
∂βj

=
∂µi
∂ηi

xij .

Therefore the score equations for the generalized model (with independent
responses Yi, i = 1, . . . , N) can be written as

Uj =
N∑
i=1

(yi − µi)
var(Yi)

∂µi
∂βj

= 0, j = 1, . . . , p. (11.9)

For repeated measures, let yi denote the vector of responses for subject i with
E(yi) = µi, g(µi) = XTi β and let Di be the matrix of derivatives ∂µi/∂βj .
To simplify the notation, assume that all the subjects have the same number
of measurements n.

The generalized estimating equations (GEE’s) analogous to equations
(11.10) are

U =
N∑
i=1

DTi V
−1
i (yi − µi) = 0 (11.10)
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These are also called the quasi-score equations. The matrix Vi can be
written as

Vi = A
1
2
i RiA

1
2
i φ

where Ai is the diagonal matrix with elements var(yik), Ri is the correlation
matrix for yi and φ is a constant to allow for overdispersion.

Liang and Zeger (1986) showed that if the correlation matrices Ri are cor-
rectly specified, the estimator β̂ is consistent and asymptotically Normal.
Furthermore, β̂ is fairly robust against mis-specification of Ri. They used the
term working correlation matrix for Ri and suggested that knowledge of
the study design and results from exploratory analyses should be used to se-
lect a plausible form. Preferably, Ri should depend on only a small number
of parameters, using assumptions such as equicorrelation or autoregressive
correlation (see Section 11.3 above).

The GEE’s given by equation (11.11) are used iteratively. Starting with
Ri as the identity matrix and φ = 1, the parameters β are estimated by
solving equations (11.11). The estimates are used to calculate fitted values
µ̂i = g−1(XTi β) and hence the residuals yi−µ̂i. These are used to estimate the
parameters of Ai, Ri and φ. Then (11.11) is solved again to obtain improved
estimates β̂, and so on, until convergence is achieved.

Software for solving GEE’s is now available in several commercially avail-
able software and free-ware programs. While the concepts underlying GEE’s
are relatively simple there are a number of complications that occur in prac-
tice. For example, for binary data, correlation is not a natural measure of
association and alternative measures using odds ratios have been proposed
(Lipsitz, Laird and Harrington, 1991).

For GEE’s it is even more important to use a sandwich estimator for var(β̂)
than for the Normal case (see Section 11.3). This is given by

Vs(β̂) = I
−1CI

−1

where

I =
N∑
i=1

DTi V̂
−1
i Di

is the information matrix and

C =
N∑
i=1

DTi V̂
−1
i (yi − µ̂i)(yi − µ̂i)

T V̂−1
i Di.

Then asymptotically, β̂ has the distribution N
(
β,Vs(β̂)

)
and inferences can

be made using Wald statistics.

11.5 Multilevel models

An alternative approach for analyzing repeated measures data is to use hi-
erarchical models based on the study design. Consider a survey conducted
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using cluster randomized sampling. Let Yjk denote the response of the kth
subject in the jth cluster. For example, suppose Yjk is the income of the kth
randomly selected household in council area j, where council areas, the pri-
mary sampling units, are chosen randomly from all councils within a country
or state. If the goal is to estimate the average household income µ, then a
suitable model might be

Yjk = µ+ aj + ejk (11.11)

where aj is the effect of area j and ejk is the random error term. As ar-
eas were randomly selected and the area effects are not of primary interest,
the terms aj can be defined as independent, identically distributed random
variables with aj ∼N(0, σ2

a). Similarly, the terms ejk are independently, iden-
tically distributed random variables ejk ∼N(0, σ2

e) and the aj ’s and ejk’s are
independent. In this case

E(Yjk) = µ,

var(Yjk) = E
[
(Yjk − µ)2

]
= E

[
(aj + ejk)

2
]

= σ2
a + σ2

e ,

cov(Yjk, Yjm) = E [(aj + ejk) (aj + ejm)] = σ2
a

for households in the same area, and

cov(Yjk, Ylm) = E [(aj + ejk) (al + elm)] = 0

for households in different areas. If yj is the vector of responses for households
in area j then the variance-covariance matrix for yj is

Vj =


σ2
a + σ2

e σ2
a σ2

a · · · σ2
a

σ2
a σ2

a + σ2
e σ2

a σ2
a

σ2
a σ2

a σ2
a + σ2

e
...

. . .
σ2
a σ2

a σ2
a + σ2

e



= σ2
a + σ2

e


1 ρ ρ · · · ρ
ρ 1 ρ ρ
ρ ρ 1
...

. . .
ρ ρ 1


where ρ = σ2

a/(σ
2
a+σ2

e) is the intra-class correlation coefficient. In this case, ρ
is the intra-cluster coefficient and it describes the proportion of the total vari-
ance due to within-cluster variance. If the responses within a cluster are much
more alike than responses from different clusters, then σ2

e is much smaller than
σ2
a so ρ will be near unity; thus ρ is a relative measure of the within-cluster

similarity. The matrix Vj is the same as (11.7), the equicorrelation matrix.
In model (11.12), the parameter µ is a fixed effect and the term aj is a
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random effect.This is an example of a mixed model with both fixed and
random effects. The parameters of interest are µ, σ2

a and σ2
e (and hence ρ).

As another example, consider longitudinal data in which Yjk is the measure-
ment at time tk on subject j who was selected at random from the population
of interest. A linear model for this situation is

Yjk = β0 + aj + (β1 + bj)tk + ejk (11.12)

where β0 and β1 are the intercept and slope parameters for the population,
aj and bj are the differences from these parameters specific to subject j,
tk denotes the time of the kth measurement and ejk is the random error
term. The terms aj , bj and ejk may be considered as random variables with
aj ∼N(0, σ2

a), bj ∼N(0, σ2
b ), ejk ∼N(0, σ2

e) and they are all assumed to be
independent. For this model

E(Yjk) = β0 + β1tk,

var(Yjk) = var(aj) + t2kvar(bj) + var(ejk) = σ2
a + t2kσ

2
b + σ2

e ,

cov(Yjk, Yjm) = σ2
a + tktmσ2

b

for measurements on the same subject, and

cov(Yjk, Ylm) = 0

for measurements on different subjects. Therefore the variance-covariance ma-
trix for subject j is of the form shown in (11.8) with terms dependent on tk
and tm. In model (11.13), β0 and β1 are fixed effects, aj and bj are random
effects and we want to estimate β0, β1, σ

2
a, σ

2
b and σ2

e .
In general, mixed models for Normal responses can be written in the form

y = Xβ + Zu + e (11.13)

where β are the fixed effects, and u and e are random effects. The matrices
X and Z are design matrices. Both u and e are assumed to be Normally
distributed. E(y) = Xβ summarizes the non-random component of the model.
Zu describes the between-subjects random effects and e the within-subjects
random effects. If G and R denote the variance-covariance matrices for u and
e respectively, then the variance-covariance matrix for y is

V(y) = ZGTZ + R. (11.14)

The parameters of interest are the elements of β and the variance and co-
variance elements in G and R. For Normal models these can be estimated
using the methods of maximum likelihood or residual maximum likelihood
(REML). Computational procedures are available in many general purpose
statistical programs and more specialized software such as MLn (Rabash et
al., 1998; Bryk and Raudenbush, 1992). Good descriptions of the use of linear
mixed models (especially using the software SAS) are given by Verbeke and
Molenberghs (1997) and Littell et al. (2000). The books by Longford (1993)
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and Goldstein (1995) provide detailed descriptions of multilevel, mixed or
random coefficient models, predominantly for Normal data.

Mixed models for non-Normal data are less readily implemented although
they were first described by Zeger, Liang and Albert (1988) and have been
the subject of much research; see, for example, Lee and Nelder (1996). The
models are specified as follows

E(y|u) = µ, var(y|u) = φV(µ), g(µ) = Xβ + Zu

where the random coefficients u have some distribution f(u) and the condi-
tional distribution of y given u, written as y|u, follows the usual properties
for a generalized linear model with link function g. The unconditional mean
and variance-covariance for y can, in principle, be obtained by integrating
over the distribution of u. To make the calculations more tractable, it is com-
mon to use conjugate distributions; for example, Normal for y|u and Normal
for u; Poisson for y|u and gamma for u; binomial for y|u and beta for u;
or binomial for y|u and Normal for u. Some software, for example, MLn and
Stata can be used to fit mixed or multilevel generalized linear models.

11.6 Stroke example continued

The results of the exploratory analyses and fitting GEE’s and mixed models
with different intercepts and slopes to the stroke recovery data are shown in
Table 11.7. The models were fitted using Stata. Sandwich estimates of the
standard errors were calculated for all the GEE models.

Fitting a GEE, assuming independence between observations for the same
subject, is the same as the naive or pooled analysis in Table 11.3. The estimate
of σe is 20.96 (this is the square root of the deviance divided by the degrees
of freedom 192 − 6 = 186). These results suggest that neither intercepts nor
slopes differ between groups as the estimates of differences from α̂1 and β̂1

are small relative to their standard errors.
The data reduction approach which uses the estimated intercepts and slopes

for every subject as the data for comparisons of group effects produces the
same point estimates but different standard errors. From Tables 11.5 and 11.6,
the standard deviations are 21.42 for the intercepts and 3.056 for the slopes
and the data do not support hypotheses of differences between the groups.

The GEE analysis, assuming equal correlation among the observations in
different weeks, produced the same estimates for the intercept and slope pa-
rameters but different standard errors (larger for the intercepts and smaller
for the slopes). The estimate of the common correlation coefficient, ρ̂ = 0.812,
is about the average of the values in Table 11.2 but the assumption of equal
correlation is not very plausible. The estimate of σe is 20.96, the same as for
the models based on independence.

In view of the pattern of correlation coefficients in Table 11.2 an autoregres-
sive model of order 1, AR(1), shown in equation (11.9) seems plausible. In this
case, the estimates for ρ and σe are 0.964 and 21.08 respectively. The estimates
of intercepts and slopes, and their standard errors, differ from the previous
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Table 11.7 Comparison of analyses of the stroke recovery data using various different
models.

Intercept estimates
α̂1 (s.e.) α̂2 − α̂1 (s.e.) α̂3 − α̂1 (s.e.)

Pooled 29.821 (5.774) 3.348 (8.166) -0.022 (8.166)
Data reduction 29.821 (5.772) 3.348 (10.709) -0.018 (10.709)
GEE, independent 29.821 (5.774) 3.348 (8.166) -0.022 (8.166)
GEE, equicorrelated 29.821 (7.131) 3.348 (10.085) -0.022 (10.085)
GEE, AR(1) 33.538 (7.719) -0.342 (10.916) -6.474 (10.916)
GEE, unstructured 30.588 (7.462) 2.319 (10.552) -1.195 (10.552)
Random effects 29.821 (7.047) 3.348 (9.966) -0.022 (9.966)

Slope estimates
β̂1 (s.e.) β̂2 − β̂1 (s.e.) β̂3 − β̂1 (s.e.)

Pooled 6.324 (1.143) -1.994 (1.617) -2.686 (1.617)
Data reduction 6.324 (1.080) -1.994 (1.528) -2.686 (1.528)
GEE, independent 6.324 (1.143) -1.994 (1.617) -2.686 (1.617)
GEE, equicorrelated 6.324 (0.496) -1.994 (0.701) -2.686 (0.701)
GEE, AR(1) 6.073 (0.714) -2.142 (1.009) -2.686 (1.009)
GEE, unstructured 6.926 (0.941) -3.214 (1.331) -2.686 (1.331)
Random effects 6.324 (0.463) -1.994 (0.655) -2.686 (0.655)

models. Wald statistics for the differences in slope support the hypothesis
that the patients in group A improved significantly faster than patients in the
other two groups.

The GEE model with an unstructured correlation matrix involved fitting
28 (8×7/2) correlation parameters. The estimate of σe was 21.21. While the
point estimates differ from those for the other GEE models with correlation,
the conclusion that the slopes differ significantly is the same.

The final model fitted was the mixed model (11.13) estimated by the method
of maximum likelihood. The point estimates and standard errors for the fixed
parameters were similar to those from the GEE model with the equicorre-
lated matrix. This is not surprising as the estimated intra-class correlation
coefficient is ρ̂ = 0.831.

This example illustrates both the importance of taking into account the cor-
relation between repeated measures and the robustness of the results regard-
less of how the correlation is modelled. Without considering the correlation
it was not possible to detect the statistically significantly better outcomes for
patients in group A.

11.7 Comments

Exploratory analyses for repeated measures data should follow the main
steps outlined in Section 11.2. For longitudinal data these include plotting
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the time course for individual subjects or groups of subjects, and using an
appropriate form of data reduction to produce summary statistics that can
be examined to identify patterns for the population overall or for sub-samples.
For clustered data it is worthwhile to calculate summary statistics at each level
of a multilevel model to examine both the main effects and the variability.

Missing data can present problems. With suitable software it may be
possible to perform calculations on unbalanced data (e.g., different numbers of
observations per subject) but this is dangerous without careful consideration
of why data are missing. Occasionally they may be missing completely
at random, unrelated to observed responses or any covariates (Little and
Rubin, 1987). In this case, the results should be unbiased. More commonly,
there are reasons why the data are missing. For example, in a longitudinal
study of treatment some subjects may have become too ill to continue in
the study, or in a clustered survey, outlying areas may have been omitted
due to lack of resources. In these cases results based on the available data
will be biased. Diggle, Liang and Zeger (1994), Diggle and Kenward (1994)
and Trozel, Harrington and Lipsitz (1998) discuss the problem in more detail
and provide some suggestions about how adjustments may be made in some
situations.

Unbalanced data and longitudinal data in which the observations are not
equally spaced or do not all occur at the planned times can be accommodated
in mixed models and generalized estimating equations; for example, see Cnaan
et al. (1997), Burton et al. (1998) and Carlin et al.(1999).

Inference for models fitted by GEE’s is best undertaken using Wald statis-
tics with a robust sandwich estimator for the variance. The optimal choice
of the correlation matrix is not critical because the estimator is robust with
respect to the choice of working correlation matrix, but a poor choice can
reduce the efficiency of the estimator. In practice, the choice may be affected
by the number of correlation parameters to be estimated; for example, use
of a large unstructured correlation matrix may produce unstable estimates or
the calculations may not converge. Selection of the correlation matrix can be
done by fitting models with alternative covariance structures and comparing
the Akaike information criterion, which is a function of the log-likelihood
function adjusted for the number of covariance parameters (Cnaan et al.,
1997). Model checking can be carried out with the usual range of residual
plots.

For multilevel data, nested models can be compared using likelihood ratio
statistics. Residuals used for checking the model assumptions need to be stan-
dardized or ‘shrunk’, to apportion the variance appropriately at each level of
the model (Goldstein, 1995). If the primary interest is in the random effects
then Bayesian methods for analyzing the data, for example, using BUGS, may
be more appropriate than the frequentist approach adopted here (Best and
Speigelhalter, 1996).
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Table 11.8 Measurements of left ventricular volume and parallel conductance volume
on five dogs under eight different load conditions: data from Boltwood et al. (1989).

Conditions
Dog 1 2 3 4 5 6 7 8

1 y 81.7 84.3 72.8 71.7 76.7 75.8 77.3 86.3
x 54.3 62.0 62.3 47.3 53.6 38.0 54.2 54.0

2 y 105.0 113.6 108.7 83.9 89.0 86.1 88.7 117.6
x 81.5 80.8 74.5 71.9 79.5 73.0 74.7 88.6

3 y 95.5 95.7 84.0 85.8 98.8 106.2 106.4 115.0
x 65.0 68.3 67.9 61.0 66.0 81.8 71.4 96.0

4 y 113.1 116.5 100.8 101.5 120.8 95.0 91.9 94.0
x 87.5 93.6 70.4 66.1 101.4 57.0 82.5 80.9

5 y 99.5 99.2 106.1 85.2 106.3 84.6 92.1 101.2
x 79.4 82.5 87.9 66.4 68.4 59.5 58.5 69.2

11.8 Exercises

11.1 The measurement of left ventricular volume of the heart is important for
studies of cardiac physiology and clinical management of patients with
heart disease. An indirect way of measuring the volume, y, involves a
measurement called parallel conductance volume, x. Boltwood et al. (1989)
found an approximately linear association between y and x in a study of
dogs under various ‘load’ conditions. The results, reported by Glantz and
Slinker (1990), are shown in Table 11.8.

(a) Conduct an exploratory analysis of these data.

(b) Let (Yjk, xjk) denote the kth measurement on dog j, (j = 1, . . . , 5; k =
1, . . . , 8). Fit the linear model

E(Yjk) = µ = α+ βxjk, Y ∼ N(µ, σ2),

assuming the random variables Yjk are independent (i.e., ignoring the re-
peated measures on the same dogs). Compare the estimates of the intercept
α and slope β and their standard errors from this pooled analysis with the
results you obtain using a data reduction approach.

(c) Fit a suitable random effects model.

(d) Fit a longitudinal model using a GEE.

(e) Compare the results you obtain from each approach. Which method(s) do
you think are most appropriate? Why?

11.2 Suppose that (Yjk, xjk) are observations on the kth subject in cluster k
(with j = 1, . . . , J ; k = 1, . . . ,K) and we want to fit a ‘regression through
the origin’ model

E(Yjk) = βxjk
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where the variance-covariance matrix for Y ’s in the same cluster is

Vj = σ2


1 ρ · · · ρ
ρ 1 ρ
...

. . .
...

ρ ρ · · · 1


and Y ’s in different clusters are independent.

(a) From Section 11.3, if the Y ’s are Normally distributed then

β̂ = (
J∑
j=1

xTj V
−1
j xj)−1(

J∑
j=1

xTj V
−1
j yj) with var(β̂) = (

J∑
j=1

xTj V
−1
j xj)−1

where xTj = [xj1, . . . , xjK ]. Deduce that the estimate b of β is unbiased.

(b) As

V−1
j = c


1 φ · · · φ
φ 1 φ
...

. . .
...

φ φ · · · 1


where c =

1
σ2[1 + (K − 1)φρ]

and φ =
−ρ

1 + (K − 2)ρ

show that

var(b) =
σ2[1 + (K − 1)φρ]∑

j{
∑
k x

2
jk + φ[(

∑
k xjk)2 −

∑
k x

2
jk]}

.

(c) If the clustering is ignored, show that the estimate b∗ of β has var(b∗) =
σ2/

∑
j

∑
k x

2
jk.

(d) If ρ = 0, show that var(b) = var(b∗) as expected if there is no correlation
within clusters.

(e) If ρ = 1, Vj/σ2 is a matrix of one’s so the inverse doesn’t exist. But the
case of maximum correlation is equivalent to having just one element per
cluster. If K = 1, show that var(b) = var(b∗), in this situation.

(f) If the study is designed so that
∑
k xjk = 0 and

∑
k x

2
jk is the same for all

clusters, let W =
∑
j

∑
k x

2
jk and show that

var(b) =
σ2[1 + (K − 1)φρ]

W (1 − φ) .

(g) With this notation var(b∗) = σ2/W , hence show that

var(b)
var(b∗)

=
[1 + (K − 1)φρ]

1 − φ = 1 − ρ.

Deduce the effect on the estimated standard error of the slope estimate for
this model if the clustering is ignored.
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Table 11.9 Numbers of ears clear of acute otitis media at 14 days, tabulated by
antibiotic treatment and age of the child: data from Rosner(1989).

CEF AMO
Number clear Number clear

Age 0 1 2 Total 0 1 2 Total

< 2 8 2 8 18 11 2 2 15
2 − 5 6 6 10 22 3 1 5 9
≥ 6 0 1 3 4 1 0 6 7
Total 14 9 21 44 15 3 13 31

11.3 Data on the ears or eyes of subjects are a classical example of clustering
– the ears or eyes of the same subject are unlikely to be independent.
The data in Table 11.9 are the responses to two treatments coded CEF
and AMO of children who had acute otitis media in both ears (data from
Rosner, 1989).

(a) Conduct an exploratory analysis to compare the effects of treatment and
age of the child on the success of the treatments, ignoring the clustering
within each child.

(b) Let Yijkl denote the response of the lth ear of the kth child in the treatment
group j and age group i. The Y ′

ijkl’s are binary variables with possible values
of 1 denoting ‘cured’ and 0 denoting ‘not cured’. A possible model is

log it
(

πijkl
1 − πijkl

)
= β0 + β1age + β2treatment + bk

where bk denotes the random effect for the kth child and β0, β1 and β2

are fixed parameters. Fit this model (and possibly other related models)
to compare the two treatments. How well do the models fit? What do you
conclude about the treatments?

(c) An alternative approach, similar to the one proposed by Rosner, is to use
nominal logistic regression with response categories 0, 1 or 2 cured ears for
each child. Fit a model of this type and compare the results with those
obtained in (b). Which approach is preferable considering the assumptions
made, ease of computation and ease of interpretation?
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Software

Genstat
Numerical Algorithms Group, NAG Ltd, Wilkinson House, Jordan Hill Road,

Oxford, OX2 8DR, United Kingdom
http://www.nag.co.uk/
Glim
Numerical Algorithms Group, NAG Ltd, Wilkinson House, Jordan Hill Road,

Oxford, OX2 8DR, United Kingdom
http://www.nag.co.uk/
Minitab
Minitab Inc., 3081 Enterprise Drive, State College, PA 16801-3008, U.S.A.
http://www.minitab.com
MLwiN
Multilevel Models Project, Institute of Education, 20 Bedford Way, London,

WC1H OAL, United Kingdom
http://multilevel.ioe.ac.uk/index.html
Stata
Stata Corporation, 4905 Lakeway Drive, College Station, Texas 77845, U.S.A.
http://www.stata.com
SAS
SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414, U.S.A.
http://www.sas.com
SYSTAT
SPSS Science, 233 S. Wacker Drive, 11th Floor, Chicago, IL 60606-6307,

U.S.A.
http://www.spssscience.com/SYSTAT/
S-PLUS
Insightful Corporation, 1700 Westlake Avenue North, Suite 500, Seattle, WA

98109-3044, U.S.A.
http://www.insightful.com/products/splus/splus2000/splusstdintro.html
StatXact and LogXact
Cytel Software Corporation, 675 Massachusetts Avenue, Cambridge, MA

02139, U.S.A.
http://www.cytel.com/index.html
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