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Preface 

Analyzing time-oriented data and forecasting future values of a time series are among 

the most important problems that analysts face in many fields, ranging from finance 

and economics, to managing production operations, to the analysis of political and 
social policy sessions, to investigating the impact of humans and the policy decisions 

that they make on the environment. Consequently, there is a large group of people in 

a variety of fields including finance, economics, science, engineering, statistics, and 
public policy who need to understand some basic concepts of time series analysis and 

forecasting. Unfortunately, most basic statistics and operations management books 

give little if any attention to time-oriented data, and little guidance on forecasting. 
There are some very good high level books on time series analysis. These books 

are mostly written for technical specialists who are taking a doctoral-level course or 

doing research in the field. They tend to be very theoretical and often focus on a few 
specific topics or techniques. We have written this book to fill the gap between these 

two extremes. 
This book is intended for practitioners who make real-world forecasts. Our focus 

is on short- to medium-term forecasting where statistical methods are useful. Since 
many organizations can improve their effectiveness and business results by making 

better short- to medium-term forecasts, this book should be useful to a wide variety of 
professionals. The book can also be used as a textbook for an applied forecasting and 
time series analysis course at the advanced undergraduate or first-year graduate level. 

Students in this course could come from engineering, business, statistics, operations 

research, mathematics, computer science, and any area of application where making 
forecasts is important. Readers need a background in basic statistics (previous ex­

posure to linear regression would be helpful but not essential), and some knowledge 

of matrix algebra, although matrices appear mostly in the chapter on regression, and 

if one is interested mainly in the results, the details involving matrix manipulation 

can be skipped. Integrals and derivatives appear in a few places in the book, but no 

detailed working knowledge of calculus is required. 
Successful time series analysis and forecasting requires that the analyst interact 

with computer software. The techniques and algorithms are just not suitable to manual 
calculations. We have chosen to demonstrate the techniques presented using three 

ix 
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packages, Minitab, JMP, and SAS. We have selected these packages because they are 
widely used in practice and because they have generally good capability for analyzing 
time series data and generating forecasts. However. the basic principles that underlie 
most of our presentation are not specific to any particular software package. Readers 
can use any software that they like or have available that has basic ~tatistical forecasting 
capability. While the text examples do utilize Minitab, JMP. and SAS. and illustrate 
the features and capability of those packages. these features or similar ones are found 
in many other software packages. 

There are three basic approaches to generating forecasts: regression-based meth­
ods, heuristic smoothing methods. and general time series models. Because all three 
of these basic approaches are useful. we give an introduction to all of them. Chapter 
1 introduces the basic forecasting problem. defines terminology. and illustrates many 
of the common features of time series data. Chapter 2 contain~ many of the basic 
statistical tools used in analyzing time series data. Topics include plots. numerical 
summaries of time series data including the autocovariance and autocorrelation func­
tions, transformations, differencing, and decomposing a time series into trend and 
seasonal components. We also introduce metrics for evaluating forecast errors. and 
methods for evaluating and tracking forecasting performance over time. Chapter 3 
discusses regression analysis and its use in forecasting. We discu-.s both cross-section 
and time series regression data, least squares and maximum likelihood model fitting. 
model adequacy checking, prediction intervals. and weighted and generalized least 
squares. The first part of this chapter covers many of the topics typically seen in an in­
troductory treatment of regression, either in a stand-alone course or as part of another 
applied statistics course. It should be a reasonable review for many readers. Chapter 
4 presents exponential smoothing techniques, both for time series with polynomial 
components and for seasonal data. We discuss and illustrate methods for selecting the 
smoothing constant(s), forecasting. and constructing prediction intervals. The explicit 
time series modeling approach to forecasting that we have chosen to emphasize is the 
autoregressive integrated moving average (ARIMA) model approach. Chapter 5 in­
troduces ARIMA models and illustrates how to identify and fit these models for both 
nonseasonal and seasonal time series. Forecasting and prediction interval construc­
tion are also discussed and illustrated. Chapter 6 extends this discussion into transfer 
function models and intervention modeling and analysis. Chapter 7 surveys several 
other useful topics from time series analysis and forecasting. including multivariate 
time series problems, ARCH and GARCH models. and combinations of forecasts. 
We also give some practical advice for using statistical approaches to forecasting and 
provide some information about realistic expectations. The last two chapters of the 
book are somewhat higher in level than the first five. 

Each chapter has a set of exercises. Some of these exercise' involve analyzing 
the data sets given in Appendix B. These data sets represent an interesting cross 
section of real time series data, typical of those encountered in practical forecasting 
problems. Most of these data sets are used in exercises in two or more chapters. 
an indication that there are usually several approaches to analyzing. modeling. and 
forecasting a time series. There are other good sources of data for practicing the 
techniques given in this book. Some of the ones that we have found very interesting 
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and useful include the U.S. Department of Labor-Bureau of Labor Statistics 
(http: 1 /vvww. bls. gov 1 data/home. htm), the U.S. Department of Agriculture­
National Agricultural Statistics Service, Quick Stats Agricultural Statistics Data 
(http://vvww.nass.usda.gov/Data_and_Statistics/Quick_Stats/index 

.asp), the U.S. Census Bureau (http://vvww.census.gov), and the U.S. 
Department of the Treasury (http: I /vvww. treas .gov/offices/domestic­

finance/debt-management/interest-rate/). The time series data lib­
rary created by Rob Hyndman at Monash University (http: 1 /vvww-personal. 

buseco.monash.edu.au/~hyndman/TSDL/index.htm) and the time series 
data library at the Mathematics Department of the University of York (http: I 1 

vvww. york. ac. uk/ depts /maths/ data/ ts) also contain many excellent data sets. 
Some of these sources provide links to other data. Data sets and other materials re­
lated to this book can be found at ftp: I I ftp. wiley. com/public I sci techmed/ 

timeseries. 

We have placed a premium in the book on bridging the gap between theory and 
practice. We have not emphasized proofs or technical details and have tried to give 
intuitive explanations of the material whenever possible. The result is a book that can 
be used with a wide variety of audiences, with different interests and technical back­
grounds, whose common interests are understanding how to analyze time-oriented 
data and constructing good short-term statistically based forecasts. 

We express our appreciation to the individuals and organizations who have given 
their permission to use copyrighted material. These materials are noted in the text. 
Portions of the output contained in this book are printed with permission of Minitab 

Inc. All material remains the exclusive property and copyright of Minitab Inc. All 
rights reserved. 

DOUGLAS C. MONTGOMERY 

CHERYL L. JENNINGS 

MURAT KULAHCI 





CHAPTER 

Introduction to Forecasting 

It is difficult to make predictions, especially about the future. 

NEILS BOHR, Danish physicist 

1.1 THE NATURE AND USES OF FORECASTS 

A forecast is a prediction of some future event or events. As suggested by Neils Bohr, 
making good predictions is not always easy. Famously "bad" forecasts include the 
following from the book Bad Predictions: 

• "The population is constant in size and will remain so right up to the end of 
mankind." L'Encyclopedie, 1756. 

• "1930 will be a splendid employment year." U.S. Department of Labor, New 

Year's Forecast in 1929, just before the market crash on October 29. 

• "Computers are multiplying at a rapid rate. By the turn of the century there will 
be 220,000 in the U.S." Wall Street Journal, 1966. 

Forecasting is an important problem that spans many fields including business 
and industry, government, economics, environmental sciences, medicine, social sci­
ence, politics, and finance. Forecasting problems are often classified as short-term, 
medium-term, and long-term. Short-term forecasting problems involve predicting 
events only a few time periods (days, weeks, months) into the future. Medium-term 
forecasts extend from one to two years into the future, and long-term forecasting 
problems can extend beyond that by many years. Short- and medium-term forecasts 
are required for activities that range from operations management to budgeting and 
selecting new research and development projects. Long-term forecasts impact issues 
such as strategic planning. Short- and medium-term forecasting is typically based 
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FIGURE I. I Time series plot of the market yield on C.S. Trea,uf! Securitie' at I 0-)ear constant maturit). 
(Source: U.S. Treasury.) 

on identifying, modeling, and extrapolating the patterns found in historical data. Be­
cause these historical data usually exhibit inertia and do not change dramatically very 
quickly, statistical methods are very useful for short- and medium-term forecasting. 
This book is about the use of these statistical methods. 

Most forecasting problems involve the use of time series data. A time series is 
a time-oriented or chronological sequence of observations on a variable of interest. 
For example, Figure 1.1 shows the market yield on U.S. Treasury Securities at 10-
year constant maturity from April 1953 through December 2006 (data in Appendix 
B, Table B.l ). This graph is called a time series plot. The rate variable is collected 
at equally spaced time periods, as is typical in most time series and forecasting 
applications. Many business applications of forecasting utilize daily, weekly, monthly, 
quarterly, or annual data, but any reporting interval may be useu. Furthermore, the 
data may be instantaneous, such as the viscosity of a chemical product at the point in 
time where it is measured; it may be cumulative. such as the total sales of a product 
during the month; or it may be a statistic that in some way reflects the activity of the 
variable during the time period, such as the daily closing price of a specific stock on 
the New York Stock Exchange. 

The reason that forecasting is so important is that prediction of future events is 
a critical input into many types of planning and decision making processes. with 
application to areas such as the following: 

1. Operations Management. Business organizations routinely use forecasts of 
product sales or demand for services in order to schedule production. con­
trol inventories, manage the supply chain, determine staffing requirements. and 
plan capacity. Forecasts may also be used to determine the mix of products or 
services to be offered and the locations at which products are to be produced. 
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2. Marketinf?. Forecasting is important in many marketing decisions. Forecasts of 
sales response to advertising expenditures, new promotions, or changes in pric­
ing polices enable businesses to evaluate their effectiveness, determine whether 
goals are being met, and make adjustments. 

3. Finance and Risk Management. Investors in financial assets are interested in 
forecasting the returns from their investments. These assets include but are not 
limited to stocks, bonds, and commodities; other investment decisions can be 
made relative to forecasts of interest rates, options, and currency exchange rates. 
Financial risk management requires forecasts of the volatility of asset returns 
so that the risks associated with investment portfolios can be evaluated and 
insured, and so that financial derivatives can be properly priced. 

4. Economics. Governments, financial institutions, and policy organizations re­
quire forecasts of major economic variables, such as gross domestic product, 
population growth, unemployment, interest rates, inflation, job growth, pro­
duction, and consumption. These forecasts are an integral part of the guidance 
behind monetary and fiscal policy and budgeting plans and decisions made by 
governments. They are also instrumental in the strategic planning decisions 
made by business organizations and financial institutions. 

5. Industrial Process Control. Forecasts of the future values of critical quality 
characteristics of a production process can help determine when important con­
trollable variables in the process should be changed, or if the process should 
be shut down and overhauled. Feedback and feedforward control ~chemes are 
widely used in monitoring and adjustment of industrial processes, and predic­
tions of the process output are an integral part of these schemes. 

6. Demography. Forecasts of population by country and regions are made rou­
tinely, often stratified by variables such as gender, age, and race. Demographers 
also forecast births, deaths, and migration patterns of populations. Govern­
ments use these forecasts for planning policy and social service actions, such as 
spending on health care, retirement programs, and antipoverty programs. Many 
businesses use forecasts of populations by age groups to make strategic plans 
regarding developing new product lines or the types of services that will be 
offered. 

These are only a few of the many different situations where forecasts are required 
in order to make good decisions. Despite the wide range of problem situations that re­
quire forecasts, there are only two broad types of forecasting techniques-qualitative 
methods and quantitative methods. 

Qualitative forecasting techniques are often subjective in nature and require judg­
ment on the part of experts. Qualitative forecasts are often used in situations where 
there is little or no historical data on which to base the forecast. An example would 
be the introduction of a new product, for which there is no relevant history. In this 
situation the company might use the expert opinion of sales and marketing personnel 
to subjectively estimate product sales during the new product introduction phase of 
its life cycle. Sometimes qualitative forecasting methods make use of marketing tests, 
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surveys of potential customers. and experience with the sales performance of other 
products (both their own and those of competitors). However. although some data 
analysis may be performed, the basis of the forecast is subjective judgment. 

Perhaps the most formal and widely known qualitative forecasting technique is 
the Delphi Method. This technique was developed by the RAND Corporation (see 
Dalkey [ 1967]). It employs a panel of experts who are assumed to be knowledgeable 
about the problem. The panel members are physically separated to avoid their delib­
erations being impacted either by social pressures or by a single dominant individual. 
Each panel member responds to a questionnaire containing a series of questions and 
returns the information to a coordinator. Following the first questionnaire, subsequent 
questions are submitted to the panelists along with information about the opinions 
of the panel as a group. This allows panelists to review their predictions relative to 
the opinions of the entire group. After several rounds. it is hoped that the opinions 
of the panelists converge to a consensus, although achieving a consensus is not re­
quired and justified differences of opinion can be included in the outcome. Qualitative 
forecasting methods are not emphasized in this book. 

Quantitative forecasting techniques make formal use of historical data and a fore­
casting model. The model formally summarizes patterns in the data and expresses a 
statistical relationship between previous and current values of the variable. Then the 
model is used to project the patterns in the data into the future. In other words. the 
forecasting model is use to extrapolate past and current behavior into the future. There 
are several types of forecasting models in general use. The three most widely used are 
regression models, smoothing models. and general time series models. Regression 
models make use of relationships between the variable of interest and one or more re­
lated predictor variables. Sometimes regression models are called causal forecasting 
models, because the predictor variables are assumed to describe the forces that cause 
or drive the observed values of the variable of interest. An example would be using 
data on house purchases as a predictor variable to forecast furniture sales. The method 
of least squares is the formal basis of most regression models. Smoothing models 
typically employ a simple function of previous observations to provide a forecast of 
the variable of interest. These methods may have a formal statistical basis. but they 
are often used and justified heuristically on the basis that they are easy to use and 
produce satisfactory results. General time series models employ the statistical prop­
erties of the historical data to specify a formal model and then estimate the unknown 
parameters of this model (usually) by least squares. In subsequent chapters. we will 
discuss all three types of quantitative forecasting models. 

The form of the forecast can be important. We typically think of a forecast as a single 
number that represents our best estimate of the future value of the variable of interest. 
Statisticians would call this a point estimate or point forecast. Now these forecasts 
are almost always wrong; that is, we experience forecast error. Consequently. it 
is usually good practice to accompany a forecast with an estimate of how large a 
forecast error might be experienced. One way to do this is to provide a prediction 
interval (PI) to accompany the point forecast. The PI is a range of values for the 
future observation, and it is likely to prove far more useful in decision making than a 
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single number. We will show how to obtain Pis for most of the forecasting methods 
discussed in the book. 

Other important features of the forecasting problem are the forecast horizon and 
the forecast interval. The forecast horizon is the number of future periods for which 
forecasts must be produced. The horizon is often dictated by the nature of the prob­
lem. For example, in production planning, forecasts of product demand may be made 
on a monthly basis. Because of the time required to change or modify a production 
schedule, ensure that sufficient raw material and component parts are available from 
the supply chain, and plan the delivery of completed goods to customers or inventory 
facilities, it would be necessary to forecast up to three months ahead. The forecast 
horizon is also often called the forecast lead time. The forecast interval is the fre­
quency with which new forecasts are prepared. For example, in production planning, 
we might forecast demand on a monthly basis, for up to three months in the future 
(the lead time or horizon), and prepare a new forecast each month. Thus the forecast 
interval is one month, the same as the basic period of time for which each forecast 
is made. If the forecast lead time is always the same length, say, T periods, and the 
forecast is revised each time period, then we are employing a rolling or moving 
horizon forecasting approach. This system updates or revises the forecasts for T -I 

of the periods in the horizon and computes a forecast for the newest period T. This 
rolling horizon approach to forecasting is widely used when the lead time is several 
periods long. 

1.2 SOME EXAMPLES OF TIME SERIES 

Time series plots can reveal patterns such as random, trends, level shifts, periods 
or cycles, unusual observations, or a combination of patterns. Patterns commonly 
found in time series data are discussed next with examples of situations that drive the 
patterns. 

The sales of a mature pharmaceutical product may remain relatively flat in the ab­
sence of unchanged marketing or manufacturing strategies. Weekly sales of a generic 
pharmaceutical product shown in Figure 1.2 appear to be constant over time, at about 
10,400 x 103 units, in a random sequence with no obvious patterns (data in Ap­
pendix B, Table B.2). 

To assure conformance with customer requirements and product specifications, the 
production of chemicals is monitored by many characteristics. These may be input 
variables such as temperature and flow rate and output properties such as viscosity 
and purity. 

Due to the continuous nature of chemical manufacturing processes, output prop­
erties often are positively autocorrelated; that is, a value above the long-run average 
tends to be followed by other values above the average, while a value below the 
average tends to be followed by other values below the average. 

The viscosity readings plotted in Figure 1.3 exhibit autocorrelated behavior, tend­
ing to a long-run average of about 85 centipoises (cP). but with a structured, not 
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FIGURE 1.2 Pharmaceutical product sales. 

completely random, appearance (data in Appendix B. Table B.3) Some methods for 
describing and analyzing autocorrelated data are described in Chapter 2. 

The USDA National Agricultural Statistics Service publishes agricultural statistics 
for many commodities. including the annual production of dairy products such as 
butter, cheese, ice cream. milk, yogurt, and whey. These statistics are used for market 
analysis and intelligence. economic indicators, and identification of emerging issues. 
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FIGURE 1.4 The U.S. annual production of blue and gorgonzola cheeses. (Source: USDA-NASS.) 

Blue and gorgonzola cheese is one of 32 categories of cheese for which data are 
published. The annual U.S. production of blue and gorgonzola cheeses (in 103 lb) is 
shown in Figure 1.4 (data in Appendix B, Table B.4). Production quadrupled from 
1950 to 1997, and the linear trend has a constant positive slope with random, year­
to-year variation. 

The U.S. Census Bureau publishes historic statistics on manufacturers' shipments, 
inventories, and orders. The statistics are based on North American Industry Clas­
sification System (NAICS) code and are utilized for purposes such as measuring 
productivity and analyzing relationships between employment and manufacturing 
output. 

The manufacture of beverage and tobacco products is reported as part of the non­
durable subsector. The plot of monthly beverage product shipments (Figure 1.5) 
reveals an overall increasing trend, with a distinct cyclic pattern that is repeated 
within each year. January shipments appear to be the lowest, with highs in May and 
June (data in Appendix B, Table B.5). This monthly, or seasonal, variation may be at­
tributable to some cause such as the impact of weather on the demand for beverages. 
Techniques for making seasonal adjustments to data in order to better understand 
general trends are discussed in Chapter 2. 

To determine whether the Earth is warming or cooling, scientists look at annual 
mean temperatures. At a single station, the warmest and the coolest temperatures in a 
day are averaged. Averages are then calculated at stations all over the Earth, over an 
entire year. The change in global annual mean surface air temperature is calculated 
from a base established from 1951 to 1980, and the result is reported as an "anomaly." 

The plot of the annual mean anomaly in global surface air temperature (Figure 1.6) 
shows an increasing trend since 1880; however, the slope, or rate of change, varies 
with time periods (data in Appendix B, Table B.6). While the slope in earlier time 



8 INTRODUCTION TO FORECASTING 

Ill ... 
..!!! 
0 7000 c -0 
Ill 
1: 

6000 ~ 
:i 
rti c: 5000 
Gl 
E 
Q. 

:c 
~ 4000 
Cl 
IU ... 
Gl 
> 
Gl 3000 m 

FIGURE 1.5 The U.S. beverage manufacturer monthly product shipments. unadjusted. (Source: C.S. 
Census Bureau.) 

periods appears to be constant, slightly increasing, or slightly decreasing, the slope 
from about 1975 to the present appears much steeper than the rest of the plot. 

Business data such as stock prices and interest rates often exhibit nonstationary 
behavior; that is, the time series has no natural mean. The daily closing price adjusted 
for stock splits of Whole Foods Market (WFMI) stock in 200 I (Figure I. 7) exhibits a 
combination of patterns for both mean level and slope (data in Appendix B, Table 8.7). 
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FIGURE 1.6 Global mean surface air temperature annual anomaly. (Source: NASA-GISS.) 
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FIGURE 1.7 Whole Foods Market stock price, daily closing adjusted for splits. 

While the price is constant in some short time periods, there is no consistent mean 

level over time. In other time periods, the price changes at different rates, including 
occasional abrupt shifts in level. This is an example of nonstationary behavior, which 

is discussed in Chapter 2. 
The Current Population Survey (CPS) or "household survey" prepared by the 

U.S. Department of Labor, Bureau of Labor Statistics, contains national data on 

employment, unemployment, earnings, and other labor market topics by demographic 

characteristics. The data are used to report on the employment situation, for projections 
with impact on hiring and training, and for a multitude of other business planning 

activities. The data are reported unadjusted and with seasonal adjustment to remove 

the effect of regular patterns that occur each year. 
The plot of monthly unadjusted unemployment rates (Figure 1.8) exhibits a mixture 

of patterns, similar to Figure 1.5 (data in Appendix B, Table B.8). There is a distinct 
cyclic pattern within a year; January, February, and March generally have the highest 

unemployment rates. The overall level is also changing, from a gradual decrease, to 
a steep increase, followed by a gradual decrease. The use of seasonal adjustments as 

described in Chapter 2 makes it easier to observe the nonseasonal movements in time 

series data. 
Solar activity has long been recognized as a significant source of noise impacting 

consumer and military communications, including satellites, cell phone towers, and 
electric power grids. The ability to accurately forecast solar activity is critical to 

a variety of fields. The International Sunspot Number R1 is the oldest solar activity 
index. The number incorporates both the number of observed sunspots and the number 
of observed sunspot groups. In Figure 1.9, the plot of annual sunspot numbers reveals 

cyclic patterns of varying magnitudes (data in Appendix B, Table B.9). 
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In addition to assisting in the identification of steady-state patterns, time series 
plots may also draw attention to the occurrence of atypical events. Weekly sales of 
a generic pharmaceutical product dropped due to limited availability resulting from 
a fire at one of four production facilities. The five-week reduction is apparent in the 
time series plot of weekly sales shown in Figure 1.1 0. 
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FIGURE 1.9 The International Sunspot Number. I Source: SIDC.) 
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Another type of unusual event may be the failure of the data measurement or 
collection system. After recording a vastly different viscosity reading at time period 
70 (Figure I. I I). the measurement system was checked with a standard and deter­
mined to be out of calibration. The cause was determined to be a malfunctioning 
sensor. 
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FIGURE 1.11 Chemical process viscosity readings. with sensor malfunction. 
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FIGURE 1.12 The forecasting proce,s. 

1.3 THE FORECASTING PROCESS 

A process is a series of connected activities that transform one or more inputs into 
one or more outputs. All work activities are performed in processes, and forecasting 
is no exception. The activities in the forecasting process are: 

1. Problem definition 

2. Data collection 

3. Data analysis 

4. Model selection and fitting 

5. Model validation 

6. Forecasting model deployment 

7. Monitoring forecasting model performance 

These activities are shown in Figure 1.12. 
Problem definition involves developing understanding of how the forecast will 

be used along with the expectations of the "customer" (the user of the forecast). 
Questions that must be addressed during this phase include the desired form of the 
forecast (e.g., are monthly forecasts required). the forecast horizon or lead time. 
how often the forecasts need to be revised (the forecast interval). and what level of 
forecast accuracy is required in order to make good business decisions. This is also 
an opportunity to introduce the decision makers to the use of prediction intervals as a 
measure of the risk associated with forecasts. if they are unfamiliar with this approach. 
Often it is necessary to go deeply into many aspects of the business system that requires 
the forecast to properly define the forecasting component of the entire problem. For 
example, in designing a forecasting system for inventory control. information may 
be required on issues such as product shelf life or other aging considerations. the 
time required to manufacture or otherwise obtain the products (production lead time). 
and the economic consequences of having too many or too few units of product 
available to meet customer demand. When multiple products are involved. the level 
of aggregation of the forecast (e.g., do we forecast individual products or families 
consisting of several similar products) can be an important con~ideration. Much of 
the ultimate success of the forecasting model in meeting the customer expectations 
is determined in the problem definition phase. 

Data collection consists of obtaining the relevant history for the variable( s) that 
are to be forecast, including historical information on potential predictor variables. 
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The key here is "relevant"; often information collection and storage methods and 
systems change over time and not all historical data is useful for the current problem. 
Often it is necessary to deal with missing values of some variables, potential outliers, 
or other data-related problems that have occurred in the past. During this phase it is 
also useful to begin planning how the data collection and storage issues in the future 
will be handled so that the reliability and integrity of the data will be preserved. 

Data analysis is an important preliminary step to selection of the forecasting model 
to be used. Time series plots of the data should be constructed and visually inspected 
for recognizable patterns, such as trends and seasonal or other cyclical components. 
A trend is evolutionary movement, either upward or downward, in the value of the 
variable. Trends may be long term or more dynamic and of relatively short duration. 
Seasonality is the component of time series behavior that repeats on a regular basis, 
such as each year. Sometimes we will smooth the data to make identification of the 
patterns more obvious (data smoothing will be discussed in Chapter 2). Numerical 
summaries of the data, such as the sample mean, standard deviation, percentiles, and 
autocorrelations, should also be computed and evaluated. Chapter 2 will provide the 
necessary background to do this. If potential predictor variables are available, scatter 
plots of each pair of variables should be examined. Unusual data points or potential 
outliers should be identified and flagged for possible further study. The purpose of 
this preliminary data analysis is to obtain some "feel" for the data, and a sense of how 
strong the underlying patterns such as trend and seasonality are. This information 
will usually suggest the initial types of quantitative forecasting methods and models 
to explore. 

Model selection and fitting consists of choosing one or more forecasting models 
and fitting the model to the data. By fitting, we mean estimating the unknown model 
parameters, usually by the method of least squares. In subsequent chapters, we will 
present several types of time series models and discuss the procedures of model 
fitting. We will also discuss methods for evaluating the quality of the model fit, and 
determining if any of the underlying assumptions have been violated. This will be 
useful in discriminating between different candidate models. 

Model validation consists of an evaluation of the forecasting model to determine 
how it is likely to perform in the intended application. This must go beyond just eval­
uating the "fit" of the model to the historical data and must examine what magnitude 
of forecast errors will be experienced when the model is used to forecast "fresh" or 
new data. The fitting errors will always be smaller than the forecast errors, and this is 
an important concept that we will emphasize in this book. A widely used method for 
validating a forecasting model before it is turned over to the customer is to employ 
some form of data splitting, where the data is divided into two segments-a fitting 
segment and a forecasting segment. The model is fit to only the fitting data segment, 
and then forecasts from that model are simulated for the observations in the forecast­
ing segment. This can provide useful guidance on how the forecasting model will 
perform when exposed to new data and can be a valuable approach for discriminating 
between competing forecasting models. 

Forecasting model deployment involves getting the model and the resulting fore­
casts in use by the customer. It is important to ensure that the customer understands 
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how to use the model and that generating timely forecasts from the model becomes 
as routine as possible. Model maintainance, including making sure that data sources 
and other required information will continue to be available to the customer is also 
an important issue that impacts the timeliness and ultimate usefulness of forecasts. 

Monitoring forecasting model performance should be an ongoing activity after 
the model has been deployed to ensure that it is still performing ~atisfactorily. It is the 
nature of forecasting that conditions change over time, and a model that performed 
well in the past may deteriorate in performance. Usually performance deterioration 
will result in larger or more systematic forecast errors. Therefore monitoring of fore­
cast errors is an essential part of good forecasting system design. Control charts of 
forecast errors are a simple but effective way to routinely monitor the performance 
of a forecasting model. We will illustrate approaches to monitoring forecast errors in 
subsequent chapters. 

1.4 RESOURCES FOR FORECASTING 

There are a variety of good resources that can be helpful to technical professionals 
involved in developing forecasting models and preparing forecasts. There are three 
professional journals devoted to forecasting: 

• Journal of Forecasting 

• International Journal of Forecasting 

• Journal of Business Forecasting Methods and Svstems 

These journals publish a mixture of new methodology, studies devoted to the evalua­
tion of current methods for forecasting, and case studies and applications. In addition 
to these specialized forecasting journals, there are several other mainstream statistics 
and operations research/management science journals that publish papers on fore­
casting, including: 

• Journal of Business and Economic Statistics 

• Management Science 

• Naval Research Logistics 

• Operations Research 

• International Journal of Production Research 

• Journal of Applied Statistics 

This is by no means a comprehensive list. Research on forecasting tends to be pub­
lished in a variety of outlets. 

There are several books that are good complements to this one. We recom­
mend Box, Jenkins, and Reinsel [ 1994]; Chatfield [ 1996]: Fuller [ 1995]: Abraham 
and Ledolter [1983]; Montgomery, Johnson, and Gardiner [1990]; Wei [2006); and 
Brockwell and Davis [1991, 2002]. Some of these books are more specialized than 
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this one, in that they focus on a specific type of forecasting model such as the au­
toregressive integrated moving average [ARIMA] model, and some also require more 
background in statistics and mathematics. 

Many statistics software packages have very good capability for fitting a variety of 
forecasting models. Mini tab® Statistical Software, JMP®, and the Statistical Analy­
sis System (SAS) are the packages that we utilize and illustrate in this book. Matlab 
and S-Plus are also two packages that have excellent capability for solving forecasting 
problems. 

EXERCISES 

1.1 Why is forecasting an essential part of the operation of any organization or 
business? 

1.2 What is a time series? Explain the meaning of trend effects, seasonal variations, 
and random error. 

1.3 Explain the difference between a point forecast and an interval forecast. 

1.4 What do we mean by a causal forecasting technique? 

1.5 Everyone makes forecasts in their daily lives. Identify and discuss a situation 
where you employ forecasts. 

a. What decisions are impacted by your forecasts? 

b. How do you evaluate the quality of your forecasts? 

c. What is the value to you of a good forecast? 

d. What is the harm or penalty associated with a bad forecast? 

1.6 What is meant by a rolling horizon forecast? 

1.7 Explain the difference between forecast horizon and forecast interval. 

1.8 Suppose that you are in charge of capacity planning for a large electric utility. 
A major part of your job is ensuring that the utility has sufficient generating 
capacity to meet current and future customer needs. If you do not have enough 
capacity, you run the risks of brownouts and service interruption. If you have 
too much capacity, it may cost more to generate electricity. 

a. What forecasts do you need to do your job effectively? 

b. Are these short-range or long-range forecasts? 

c. What data do you need to be able to generate these forecasts? 

1.9 Your company designs and manufactures apparel for the North American mar­
ket. Clothing and apparel is a style good, with a relatively limited life. Items 
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not sold at the end of the season are usually sold through off-season outlet and 
discount retailers. Items not sold through discounting and off-season merchants 
are often given to charity or sold abroad. 

a. What forecasts do you need in this business to be successful? 

b. Are these short-range or long-range forecasts? 

c. What data do you need to be able to generate these forecasts? 

d. What are the implications of forecast errors? 

1.10 Suppose that you are in charge of production scheduling at a semiconductor 
manufacturing plant. The plant manufactures about 20 different types of de­
vices, all on 8-inch silicon wafers. Demand for these products varies randomly. 
When a lot or batch of wafers is started into production, it can take from four to 
six weeks before the batch is finished, depending on the type of product. The 
routing of each batch of wafers through the production tools can be different 
depending on the type of product. 

a. What forecasts do you need in this business to be successful? 

b. Are these short-range or long-range forecasts? 

c. What data do you need to be able to generate these forecasts? 

d. Discuss the impact that forecast errors can potentially have on the efficiency 
with which your factory operates, including work-in-process inventory, 
meeting customer delivery schedules. and the cycle time to manufacture 
product. 

1.11 You are the administrator of a large metropolitan hospital that operates the only 
24-hour emergency room in the area. You must schedule attending physicians. 
resident physicians, nurses, laboratory, and support personnel to operate this 
facility effectively. 

a. What measures of effectiveness do you think patients use to evaluate the 
services that you provide? 

b. How are forecasts useful to you in planning services that will maximize 
these measures of effectiveness? 

c. What planning horizon do you need to use? Does this lead to short-range 
or long-range forecasts? 

1.12 Consider an airline that operates a network of flights that serves 200 cities in 
the continental United States. What long-range forecasts do the operators of the 
airline need to be successful? What forecasting problems does this business 
face on a daily basis? What are the consequences of forecast errors for the 
airline? 

1.13 Discuss the potential difficulties of forecasting the daily closing price of a 
specific stock on the New York Stock Exchange. Would the problem be different 
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(harder, easier) if you were asked to forecast the closing price of a group of 
stocks all in the same industry (say, the pharmaceutical industry)? 

1.14 Explain how large forecast errors can lead to high inventory levels at a retailer. 
At a manufacturing plant. 

1.15 Your company manufactures and distributes soft drink beverages, sold in bot­
tles and cans at retail outlets such as grocery stores, restaurants and other 
eating/drinking establishments, and vending machines in offices, schools, 
stores, and other outlets. Your product line includes about 25 different products, 
and many of these are produced in different package sizes. 

a. What forecasts do you need in this business to be successful? 

b. Is the demand for your product likely to be seasonal? Explain why or why 
not? 

c. Does the shelf life of your product impact the forecasting problem? 

d. What data do you think that you would need to be able to produce successful 
forecasts? 



CHAPTER 2 

Statistics Background for Forecasting 

The future ain't what it used to be. 

YOGI BERRA. 1\'e\\· Yod Yankees catcher 

2.1 INTRODUCTION 

This chapter presents some basic statistical methods essential to modeling, analyzing, 
and forecasting time series data. Both graphical displays and numerical summaries 
of the properties of time series data are presented. We also discuss the use of data 
transformations and adjustments in forecasting and some widely used methods for 
characterizing and monitoring the performance of a forecasting model. Some as­
pects of how these performance measures can be used to select between competing 
forecasting techniques are also presented. 

Forecasts are based on data or observations on the variable of interest. This data 
is usually in the form of a time series. Suppose that there are T periods of data 
available, with period T being the most recent. We will let the observation on this 
variable at time period t be denoted by y1 , t = I. 2 .... , T. This variable can represent 
a cumulative quantity, such as the total demand for a product during period t. or an 
instantaneous quantity, such as the daily closing price of a specific stock on the New 
York Stock Exchange. 

Generally, we will need to distinguish between a forecast or predicted value of 
Yt that was made at some previous time period. say. t - r, and a fitted value of y1 

that has resulted from estimating the parameters in a time series model to historical 
data. Note that r is the forecast lead time. The forecast made at time period t - r is 
denoted by y1(t - r ). There is a lot of interest in the lead - 1 forecast, which is the 
forecast of the observation in period t, Yr. made one period prior . . \·1 (t - I). We will 
denote the fitted value of Yr by S·r· 

Introduction to Time Series Analysis and Forecasting 
By Douglas C. Montgomery. Cheryl L. Jennings. and Murat Kulahci 
Copyright© 2008 John Wiley & Sons. Inc. 
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We will also be interested in analyzing forecast errors. The forecast error that 
results from a forecast of y1 that was made at time period t - r is the lead - T 

forecast error 

(2.1) 

For example, the lead - I forecast eiTm· is 

The difference between the observation y1 and the value obtained by fitting a time 
series model to the data, or a fitted value .Yr defined above, is called a residual, and 
is denoted by 

(2.2) 

The reason for this careful distinction between forecast errors and residuals is that 
models usually fit historical data better than they forecast. That is, the residuals from 
a model-fitting process will almost always be smaller than the forecast errors that are 
experienced when that model is used to forecast future observations. 

2.2 GRAPHICAL DISPLAYS 

2.2.1 Time Series Plots 

Developing a forecasting model should always begin with graphical display and 
analysis of the available data. Many of the broad general features of a time series can 
be seen visually. This is not to say that analytical tools are not useful, because they are, 
but the human eye can be a very sophisticated data analysis tool. To paraphrase the 
great New York Yankees catcher Yogi Berra, "You can observe a lot just by watching." 

The basic graphical display for time series data is the time series plot, illustrated 
in Chapter I. This is just a graph of y1 versus the time period, t, for t = I, 2, ... , T. 
Features such as trend and seasonality are usually easy to see from the time series 
plot. It is interesting to observe that some of the classical tools of descriptive statistics, 
such as the histogram and the stem-and-leaf display, are not particularly useful for 
time series data because they do not take time order into account. 

Example 2.1 

Figures 2.1 and 2.2 show time series plots for viscosity readings and beverage pro­
duction shipments (originally shown in Figures 1.3 and 1.5, respectively). At the 
right-hand side of each time series plot is a histogram of the data. Note that while the 
two time series display very different characteristics, the histograms are remarkably 
similar. Essentially, the histogram summarizes the data across the time dimension, 
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FIGURE2.1 Time serie~ plot and histogram of chemical process viscosity readings. 
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FIGURE 2.3 Scatter plot of temperature anomaly versus C02 concentrations. (Sources: NASA-Ci!SS 
(anomaly), DOE-DIAC (C02).) 

and in so doing, the key time-dependent features of the data are lost. Stem-and-leaf 
plots and boxplots would have the same issues, losing time-dependent features. 

When there are two or more variables of interest, scatter plots can be useful in dis­
playing the relationship between the variables. For example, Figure 2.3 is a scatter plot 
of the annual global mean surface air temperature anomaly first shown in Figure 1.6 
versus atmospheric C02 concentrations. The scatter plot clearly reveals a relationship 
between the two variables: low concentrations of C02 are usually accompanied by 
negative anomalies, and higher concentrations of C02 tend to be accompanied by 
positive anomalies. Note that this does not imply that higher concentrations of C02 

actually cause higher temperatures. The scatter plot cannot establish a causal relation­
ship between two variables (neither can naive statistical modeling techniques, such 
as regression), but it is useful in displaying how the variables have varied together in 
the historical data set. • 

There are many variations of the time series plot and other graphical displays that 
can be constructed to show specific features of a time series. For example, Figure 2.4 
displays daily price information for Whole Foods Market stock during the first quarter 
of 200 I (the trading days from 2 January 200 I through 30 March 200 I). This chart, 
created in Excel®, shows the opening, closing, highest, and lowest prices experienced 
within a trading day for the first quarter. If the opening price was higher than the 
closing price, the box is filled, while if the closing price was higher than the opening 
price, the box is open. This type of plot is potentially more useful than a time series 
plot of just the closing (or opening) prices, because it shows the volatility of the stock 
within a trading day. The volatility of an asset is often of interest to investors because 
it is a measure of the inherent risk associated with the asset. 
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2.2.2 Plotting Smoothed Data 

Sometimes it is useful to overlay a smoothed version of the original data on the 
original time series plot to help reveal patterns in the original data. There are several 
types of data smoothers that can be employed. One of the simplest and most widely 
used is the ordinary or simple moving average. A simple moving average of span N 
assigns weights liN to the most recent N observations Yr. Yr- 1 •... , YT-N+I· and 
weight zero to all other observations. If we let Mr be the moving average, then the 
N -span moving average at time period T is 

M 
_VT + YT-1 + 0 0 0 + YT-N+I 

r= 
N 

.v 

""v N L .I 
t=T-.V-1 

(2.3) 

Clearly, as each new observation becomes available it is added into the sum from which 
the moving average is computed and the oldest observation is discarded. The moving 
average has less variability than the original observations: in fact. if the variance of 
an individual observation Yr is a 2, then the variance of the moving average is 

(
I N ) 1 N o 

Var(Mr) = Var N L Yr = N 2 L Var(yr) =: 
t=T-N+I t=T-N+I 

Sometimes a "centered" version of the moving average is used. ·mch as in 

I 5 

Mr=-- L Yr-i 
S +I i=-5. 

where the span of the centered moving average is N = 25 + I. 

(2.4) 



GRAPHICAL DISPLAYS 23 

0.75 

~ 0.50 
> 
iii 
E 
0 0.25 1:: 
<( 

iii 
::I 
1:: 0.00 1:: 
<( 
Q) 
Cl 
ttl -0.25 ... 
Q) 
> 
<( 

-0.50 

1885 1900 1915 1930 1945 1960 1975 1990 2004 

FIGURE 2.5 Time series plot of global mean surface air temperature anomaly, with five-period moving 

average. (Source: NASA-GISS.) 

Example 2.2 

Figure 2.5 plots the annual global mean surface air temperature anomaly data along 
with a five-period (a period is one year) moving average of the same data. Note that 
the moving average exhibits less variability than found in the original series. It also 
makes some features of the data easier to see; for example, it is now more obvious 
that the global air temperature decreased from about 1940 until about 1975. 

Plots of moving averages are also used by analysts to evaluate stock price trends; 
common MA periods are 5, 10, 20, 50, 100, and 200 days. A time series plot of Whole 
Foods Market stock price with a 50-day moving average is shown in Figure 2.6. The 
moving average plot smoothes the day-to-day noise and shows a generally increasing 
~~. . 

The simple moving average is a linear data smoother, or a linear filter, because 
it replaces each observation y, with a linear combination of the other data points 
that are near to it in time. The weights in the linear combination are equal, so the 
linear combination here is an average. Of course, unequal weights could be used. For 
example, the Hanning filter is a weighted, centered moving average 

M,H = 0.25v,+' + 0.5v, + 0.25v/-t 

Julius von Hann, a 19th century Austrian meteorologist, used this filter to smooth 
weather data. 

An obvious disadvantage of a linear filter such as a moving average is that an 
unusual or erroneous data point or an outlier will dominate the averages that contain 
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that observation, contaminating the moving averages for a length of time equal to the 
span of the filter. For example, consider the sequence of observations 

15. 18, 13, 12. 16. 14. 16, 17. 18. 15. 18.200. 19. 14. 21. 24. 19.25 

which increases reasonably steadily from 15 to 25, except for the unusual value 200. 
Any reasonable smoothed version of the data should also increase steadily from 15 
to 25 and not emphasize the value 200. Now even if the value 200 is a legitimate 
observation, and not the result of a data recording or reporting error (perhaps it 
should be 20!), it is so unusual that it deserves special attention and should likely not 
be analyzed along with the rest of the data. 

Odd-span moving medians (also called running medians) are an alternative to 
moving averages that are effective data smoothers when the time series may be 
contaminated with unusual values or outliers. The moving median of span N is 
defined as 

(2.5) 

where N = 2u + I. The median is the middle observation in rank order (or order of 
value). The moving median of span 3 is a very popular and effective data smoother. 
where 

m~31 = med(Yr-l· y,. Yr+I) 
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This smoother would process the data three values at a time, and replace the three 
original observations by their median. If we apply this smoother to the data above we 
obtain 

-' 15, 13, 13. 14, 16, 17, 17, 18, 18, 19, 19, 19, 21. 21, 24.-

This smoothed data is a reasonable representation of the original data, but it conve­
niently ignores the value 200. The end values are lost when using the moving median, 
and they are represented by "_". 

In general, a moving median will pass monotone sequences of data unchanged. It 
will follow a step function in the data, but it will eliminate a spike or more persistent 
upset in the data that has duration of at most u consecutive observations. Moving 
medians can be applied more than once if desired to obtain an even smoother series 
of observations. For example, applying the moving median of span 3 to the smoothed 
data above results in 

--· --· 13. 13. 14, 16, 17, 17, 18, 18, 19, 19, 19, 21, 21, --· --

This data is now as smooth as it can get; that is, repeated application of the moving 
median will not change the data, apart from the end values. 

If there are a lot of observations, the information loss from the missing end values 
is not serious. However, if it is necessary or desirable to keep the lengths of the original 
and smoothed data sets the same, a simple way to do this is to "copy on" or add back 
the end values from the original data. This would result in the smoothed data: 

15, 18, 13, 13, 14, 16, 17, 17, 18, 18. 19, 19, 19, 21, 21. 19,25 

There are also methods for smoothing the end values. Tukey [ 1979] is a basic reference 
on this subject and contains many other clever and useful techniques for data analysis. 

Example 2.3 

The chemical process viscosity readings shown in Figure 1.11 are an example of 
a time series that benefits from smoothing to evaluate patterns. The selection of a 
moving median over a moving average, as shown in Figure 2.7, minimizes the impact 
of the invalid measurements, such as the one at time period 70. • 

2.3 NUMERICAL DESCRIPTION OF TIME SERIES DATA 

2.3.1 Stationary Time Series 

A very important type of time series is a stationary time series. A time series 
is said to be strictly stationary if its properties are not affected by a change in 
the time origin. That is, if the joint probability distribution of the observations 

Yr, Yr+ 1 ••••• Yr+n is exactly the same as the joint probability distribution of the 



26 STATISTICS BACKGROCI"D FOR FORECASTING 

90 

85 

80 

Q. 

" ;!- 75 
u; 
0 

" 70 rn 
> 

65 

60 

55 

10 20 30 40 50 60 70 80 90 100 

Time Period 

(a) 

90 

85 

80 

Q. 

" ;!- 75 
u; 
0 

" 70 rn 
> 

65 

60 Variable 

---+--- ObservatiOn 

55 - +- Median_span3 

10 20 30 40 50 60 70 80 90 100 

Time Period 

(b) 

FIGURE2.7 Viscosity readings with (a) moYing average and (b) moYing median. 

observations Yt+k• Yr+k+l· ...• Yr+k+n then the time series is strictly stationary. When 
n = 0 the stationarity assumption means that the probability distribution of Yr is the 
same for all time periods and can be written as f ( Y ). The pharmaceutical product 
sales and chemical viscosity readings time series data originally 'hown in Figures 1.2 
and 1.3, respectively, are examples of stationary time series. The time series plots are 
repeated in Figures 2.8 and 2.9 for convenience. Note that both time series seem to 
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vary around a fixed level. Based on the earlier definition, this is a characteristic of 
stationary time series. 

Stationary implies a type of statistical equilibrium or stability in the data. Con­
sequently, the time series has a constant mean defined in the usual way as 

/Ly = E(y) = i: yf(y)dy (2.6) 
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FIGURE 2.9 Chemical process viscosity readings. 
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and constant variance defined as 

1 , !
X 

a,~= Var(y) = --x. (y- f.J., t j(v)dy (2.7) 

The sample mean and sample variance are used to estimate these parameters. If the 

observations in the time series are y 1• Y2· .... Yr then the sample mean is 

I T 

s· = [1, = r L v, 
1=1 

(2.8) 

and the sample variance is 

I T 
s 2 =a 2 =- "'(y- \·)2 

·' T L.., . I . 

1=1 

(2.9) 

Note that the divisor in Eq. (2.9) is T rather than the more familiar T - I. This is the 
common convention in many time series applications, and because T is usually not 
small, there will be little difference between using T instead of T - I. 

2.3.2 Autocovariance and Autocorrelation Functions 

If a time series is stationary this means that the joint probability distribution of any two 
observations, say, y, and Yr+k. is the same for any two time periods t and t + k that 
are separated by the same interval k. Useful information about this joint distribution. 

and hence about the nature of the time series, can be obtained by plotting a scatter 
diagram of all of the data pairs y,. Yr+k that are separated by the same interval k. The 
interval k is called the lag. 

Example 2.4 

Figure 2.10 is a scatter diagram for the pharmaceutical product sales for lag k = I and 
Figure 2.11 is a scatter diagram for the chemical viscosity readings for lag k = I. Both 
scatter diagrams were constructed by plotting Yr+ 1 versus y,. Figure 2.10 exhibits little 
structure: the plotted pairs of adjacent observations_,.,. Yr+ 1 seem to be uncorrelated. 
That is, the value of y in the current period does not provide any useful information 
about the value of y that will be observed in the next period. A different story is 
revealed in Figure 2.11, where we observe that the pairs of adjacent observations 

Yr+l, y, are positively correlated. That is. a small value of v tends to be followed in 
the next time period by another small value of y. and a large value of y tends to be 
followed immediately by another large value of r. Note from inspection of Figures 
2.10 and 2.11 that the behavior inferred from inspection of the scatter diagrams is 
reflected in the observed time series. • 
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FIGURE 2.10 Scatter diagram of pharmaceutical product sales at lag k = I. 

The covariance between y1 and its value at another time period, say, Yr+k is called 
the autocovariance at lag k, defined by 

(2.1 0) 

The collection of the values of Yk, k = 0, I, 2, ... is called the autocovariance func­
tion. Note that the autocovariance at lag k = 0 is just the variance of the time series; 
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FIGURE 2.11 Scatter diagram of chemical viscosity readings at lag k = I. 
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that is, y0 = a,2. The autocorrelation coefficient at lag k is 

E[(y,- J.1HYr;-k- J.1)] 
Pk = -r=======7==========c 

)E[(y,- J.1)2]£[(y,;-k -td] 

Cov(_,·,. -'"r~k) 

Yar(Y,) 
(2.11) 

Yo 

The collection of the values of Pk. k = 0. I. 2 .... is called the autocorrelation 
function (ACF). Note that by definition p0 = I. Also. the ACF is independent of the 
scale of measurement of the time series, so it is a dimensionless quantity. Furthermore. 
Pk = P-k; that is, the autocorrelation function is symmetric around zero. so it is only 
necessary to compute the positive (or negative) half. 

If a time series has a finite mean and autocovariance function it is said to be second­
order stationary (or weakly stationary of order 2). If. in addition. the joint probability 
distribution of the observations at all times is multivariate normal. then that would be 
sufficient to result in a time series that is strictly stationary. 

It is necessary to estimate the autocovariance and autocorrelation functions 
from a time series of finite length. say. -'"I. y2 . ...• -'"7- The u'ual estimate of the 
autocovariance function is 

I T-k 

Ck = h =- L(Yr- \·)(Yr+k- \·). k = 0. I. 2 ..... K 
T t=I . . . . 

(2.12) 

and the autocorrelation function is estimated by the sample autocorrelation function 
(or sample ACF) 

A Ck 
rk = Pk = -. k = 0. I ..... K 

co 
(2.13) 

A good general rule of thumb is that at least 50 observations are required to give a 
reliable estimate of the ACF, and the individual sample autocorrelations should be 
calculated up to lag K. where K is about T 14. 

Often we will need to determine if the autocorrelation coefficient at a particular 
lag is zero. This can be done by comparing the sample autocorrelation coefficient at 
lag k. rb to its standard error. If we make the assumption that the true value of the 
autocorrelation coefficient at lag k is zero (pk = 0). then the variance of the sample 
autocorrelation coefficient is 

and the standard error is 

~I 
Yar(rk) =­

T 
( 2.1-t) 

(2.15) 
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TABLE2.1 Chemical Process Viscosity Readings 

Time Time Time Time 
Period Reading Period Reading Period Reading Period Reading 

I 86.7418 26 87.2397 51 85.5722 76 84.7052 

2 85.3195 27 87.5219 52 83.7935 77 83.8168 

3 84.7355 28 86.4992 53 84.3706 n 82.4171 

4 85.1113 29 85.6050 54 83.3762 79 83.0420 

5 85.1487 30 86.8293 55 84.9975 80 83.6993 

6 84.4775 31 84.5004 56 84.3495 81 82.2033 

7 84.6827 32 84.1844 57 85.3395 82 82.1413 

8 84.6757 33 85.4563 58 86.0503 83 81.7961 

9 86.3169 34 86.1511 59 84.8839 84 82.3241 

10 88.0006 35 86.4142 60 85.4176 85 81.5316 

II 86.2597 36 86.0498 61 84.2309 86 81.7280 

12 85.8286 37 86.6642 62 83.5761 87 82.5375 

13 83.7500 38 84.7289 63 84.1343 88 82.3877 

14 84.4628 39 85.9523 64 82.6974 89 82.4159 

15 84.6476 40 86.8473 65 83.5454 90 82.2102 

16 84.5751 41 88.4250 66 86.4714 91 82.7673 

17 82.2473 42 89.6481 67 86.2143 92 83.1234 

18 83.3774 43 87.8566 68 87.0215 93 83.2203 

19 83.5385 44 88.4997 69 86.6504 94 84.4510 

20 85.1620 45 87.0622 70 85.7082 95 84.9145 

21 83.7881 46 85.1973 71 86.1504 96 85.7609 

22 84.0421 47 85.0767 72 85.8032 97 85.2302 

23 84.1023 48 84.4362 73 85.6197 98 86.7312 

24 84.8495 49 84.2112 74 84.2339 99 87.0048 

25 87.6416 50 85.9952 75 83.5737 100 85.0572 

Example 2.5 

Consider the chemical process viscosity readings plotted in Figure 2.9; the values are 

listed in Table 2.1. 
The sample ACF at lag k = I is calculated as 

I 100-o 

co= IOO L (Yt- )·)(Yt+O- .\'l 
1=1 

= .... 1-[(86.7418- 84.9153)(86.7418- 84.9153) + ... 
100 

+ (85.0572- 84.9153)(85.0572- 84.9153)] 

= 280.9332 
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I IOO-I 

c, = too L (y,- s·><Yr+l - s·> 
t=l 

I 
= 100[(86.7418- 84.9153)(85.3195- 84.9153) + ... 

+ (87.0048- 84.9153)(85.0572- 84.9153)) 

= 220.3137 

= ~ = 220.3137 = 0.7842 r, c0 280.9332 

A plot and listing of the sample ACFs generated by Minitab for the first 25 lags 
are displayed in Figures 2.12 and 2.13, respectively. • 

Note the rate of decrease or decay in ACF values in Figure 2.12 from 0. 78 to 0, 
followed by a sinusoidal pattern about 0. This ACF pattern is typical of stationary 
time series. The importance of ACF estimates exceeding the 59'r significance limits 
will be discussed in Chapter 5. In contrast, the plot of sample ACFs for a time series of 
random values with constant mean has a much different appearance. The sample ACFs 
for pharmaceutical product sales plotted in Figure 2.14 appear randomly positive or 
negative, with values near zero. 

While the autocorrelation function is defined only for a stationary time series. the 
sample ACF can be computed for any time series, so a logical question is: What does 
the sample ACF of a nonstationary time series look like? Consider the daily closing 
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FIGURE 2.12 Sample autocorrelation function for chemical viscosity readin~s. with 5'7c- significance 

limits. 
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Autocorrelation Function: Reading 

Lag ACF T LBQ 
1 0.784221 7.84 63.36 
2 0.628050 4.21 104.42 
3 0.491587 2.83 129.83 
4 0.362880 1.94 143.82 
5 0.304554 1.57 153.78 
6 0.208979 1.05 158.52 
7 0.164320 0.82 161.48 
8 0.144789 0.72 163.80 
9 0.103625 0.51 165.01 

10 0.066559 0.33 165.51 
11 0.003949 0.02 165.51 
12 -0.077226 -0.38 166.20 
13 -0.051953 -0.25 166.52 
14 0.020525 0.10 166.57 
15 0.072784 0.36 167.21 
16 0.070753 0.35 167.81 
17 0.001334 0.01 167.81 
18 -0.057435 -0.28 168.22 
19 -0.123122 -0.60 170.13 
20 -0.180546 -0.88 174.29 
21 -0.162466 -0.78 177.70 
22 -0.145979 -0.70 180.48 
23 -0.087420 -0.42 181.50 
24 -0.011579 -0.06 181.51 
25 0.063170 0.30 182.06 

FIGURE 2.13 Listing of sample autocorrelation functions for first 25lags of chemical viscosity readings, 

Minitab session window output (the definitions ofT and LBQ will be given later). 

price for Whole Foods Market stock in Figure 1.7. The sample ACF of this time series 
is shown in Figure 2.15. Note that this sample ACF plot behaves quite differently than 
the ACF plots in Figures 2.12 and 2.14. Instead of cutting off or tailing off near zero 
after a few lags, this sample ACF is very persistent; that is, it decays very slowly 
and exhibits sample autocorrelations that are still rather large even at long lags. This 
behavior is characteristic of a nonstationary time series. 
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2.4 USE OF DATA TRANSFORMATIONS AND ADJUSTMENTS 

2.4.1 Transformations 

Data transformations are useful in many aspects of statistical work. often for stabiliz­
ing the variance of the data. Nonconstant variance is quite common in time series data. 
For example, the International Sunspot Numbers plotted in Figure 2.16a show cyclic 
patterns of varying magnitudes. The variability from about 1800 to 1830 is smaller 
than that from about 1830 to 1880; other small periods of constant. but different. 
variances can also be identified. 

A very popular type of data transformation to deal with nonconstant variance is 
the power family of transformations, given by 

y' -I 

,.t-'-1 = I ><·-' 
A#O 

(2.16) 

_)·In-"· A=O 

where)· = exp[( 1/ T) 'L.{= 1 In y1 ] is the geometric mean of the observations. If I. = I. 
there is no transformation. Typical values of A used with time series data are A = 0.5 
(a square root transformation). A = 0 (the log transformation). A = -0.5 (reciprocal 
square root transformation), and A = -I (inverse transformation). The divisor _\_;_-I is 
simply a scale factor that ensures that when different models are fit to investigate 
the utility of different transformations (values of i.). the residual sum of squares for 
these models can be meaningfully compared. The reason that i. = 0 implies a log 
transformation is that ( y; - I)/ A approaches the log of y as A approaches zero. Often 
an appropriate value of A is chosen empirically by fitting a model to v1

;
1 for various 
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FIGURE 2.16 Yearly International Sunspot Number. (a) untransformed and (b) natural logarithm trans­
formation. (Source: SIDC.) 

values of A. and then selecting the transformation that produces the minimum residual 
sum of squares. 

The log transformation is used frequently in situations where the variability in the 
original time series increases with the average level of the series. When the standard 
deviation of the original series increases linearly with the mean, the log transformation 
is in fact an optimal variance-stabilizing transformation. The log transformation also 
has a very nice physical interpretation as percentage change. To illustrate this, let the 
time series be y 1 , y2 • ...• YT and suppose that we are interested in the percentage 
change in y1 , say, 

IOO(vr- Yr-d 

Yr-1 

The approximate percentage change in y1 can be calculated from the differences of 
the log-transformed time series x 1 ~ l00[ln(y1 ) -ln(y1_ 1)j because 

IOO[ln(yr)-ln(.yr-I)J=lOOin -·-1 =IOO!n .r-l : 1 .I-I ( v) (v +(v -v )) 
Y1-1 Y1-1 

= IOOln I+- = x1 ( 
Xr ) ~ 

100 

since In( I + z) ~ z when z is small. 
The application of a natural logarithm transformation to the International Sunspot 

Number, as shown in Figure 2.16b, tends to stabilize the variance and leaves just a 
few unusual values. 
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2.4.2 Trend and Seasonal Adjustments 

In addition to transformations, there are also several types of adjustments that are 
useful in time series modeling and forecasting. Two of the most widely used are trend 
adjustments and seasonal adjustments. Sometimes these procedures are called trend 
and seasonal decomposition. 

A time series that exhibits a trend is a nonstationary time series. Modeling and 
forecasting of such a time series is greatly simplified if we can eliminate the trend. 
One way to do this is to fit a regression model describing the trend component to the 
data and then subtracting it out of the original observations, leaving a set of residuals 
that are free oftrend. The trend models that are usually considered are the linear trend, 
in which the mean of y1 is expected to change linearly with time as in 

(2.17) 

or as a quadratic function of time 

(2.18) 

or even possibly as an exponential function of time such as 

(2.19) 

The models in Eqs. (2.17)-(2.19) are usually fit to the data by using ordinary least 
squares. 

Example 2.6 

We will show how least squares can be used to fit regression models in Chapter 3. 
However, it would be useful at this point to illustrate how trend adjustment works. 
Mini tab can be used to perform trend adjustment. Consider the annual U.S. production 
of blue and gorgonzola cheeses shown in Figure 1.4. There is clearly a positive. nearly 
linear trend. The trend analysis plot in Figure 2.17 shows the original time series with 
the fitted line. 

Plots of the residuals from this model indicate that. in addition to an underlying 
trend, there is additional structure. The normal probability plot (Figure 2.18a) and his­
togram (Figure 2.18c) indicate the residuals are approximately normally distributed. 
However, the plots of residuals versus fitted values (Figure 2.18b) and versus obser­
vation order (Figure 2.18d) indicate nonconstant variance in the last half of the time 
series. Analysis of model residuals is discussed more fully in Chapter 3. • 

Another approach to removing trend is by differencing the data; that is, applying 
the difference operator to the original time series to obtain a new time series. say. 

X I = Yt - Yt- I = Vyl (2.20) 

where V is the (backward) difference operator. Another way to write the differencing 
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FIGURE 2.17 Blue and gorgonzola cheese production. with fitted regression line. (Source: USDA­
NASS.) 

operation is in terms of a backshift operator B, defined as By1 = y1_ 1, so 

Xt =(I - B)yl = 'Vyl = Yt- Yt-1 (2.21) 

with 'V = (I - B). Differencing can be performed successively if necessary until the 
trend is removed; for example, the second difference is 
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FIGURE 2.18 Residual plots for simple linear regression model of blue and gorgonzola cheese production. 
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In general, powers of the backshift operator and the backward difference operator are 
defined as 

Bdv, = Yr-d 

Vd =(I- BJ" 

Differencing has two advantages relative to fitting a trend model to the data. First. 
it does not require estimation of any parameters. so it is a more parsimonious (i.e .. 
simpler) approach; and second, model fitting assumes that the trend is fixed through­
out the time series history and will remain so in the (at least immediate) future. In 
other words, the trend component, once estimated. is assumed to be deterministic. 
Differencing can allow the trend component to change through time. The first dif­
ference accounts for a trend that impacts the change in the mean of the time series. 
the second difference accounts for changes in the slope of the time series. and so 
forth. Usually, one or two differences are all that is required in practice to remove an 
underlying trend in the data. 

Example 2.7 

Reconsider the blue and gorgonzola cheese production data. A difference of one 
applied to this time series removes the increasing trend (Figure 2.ll)) and also improves 
the appearance of the residuals plotted versus fitted value and observation order 
(Figure 2.20). This illustrates that differencing may be a very good alternative to 
detrending a time series by using a regression modeL • 
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FIGURE 2.20 Residual plots for one difference of blue and gorgonzola cheese production. 
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Seasonal, or both trend and seasonal, components are present in many time se­
ries. Differencing can also be used to eliminate seasonality. Define a lag-d seasonal 
difference operator as 

(2.24) 

For example, if we had monthly data with an annual season (a very common sit­
uation), we would likely use d = 12, so the seasonally differenced data would 
be 

When both trend and seasonal components are simultaneously present, we can se­
quentially difference to eliminate these effects. That is, first seasonally difference 
to remove the seasonal component and then difference one or more times using the 
regular difference operator to remove the trend. 

Example 2.8 

The beverage shipment data shown in Figure 2.2 appears to have a strong monthly 
pattern-January consistently has the lowest shipments in a year while the peak 
shipments are in May and June. There is also an overall increasing trend from year 
to year that appears to be the same regardless of month. 
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FIGURE 2.21 Time series plots of seasonal- and trend-differenced heverage data. 

A seasonal difference of twelve followed by a trend difference of one was applied 
to the beverage shipments, and the results are shown in Figure 2.21. The seasonal 
differencing removes the monthly pattern (Figure 2.21 a), and the second difference 
of one removes the overall increasing trend (Figure 2.21 b). The fitted linear trend 
line in Figure 2.21 b has a slope of virtually zero. Examination of the residual plots in 
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FIGURE 2.22 Residual plots for linear trend model of differenced beverage shipments. 

Figure 2.22 does not reveal any problems with the linear trend model fit to the differ­
enced data. • 

Regression models can also be used to eliminate seasonal (or trend and seasonal 
components) from time series data. A simple but useful model is 

2n 2n 
E(yt) = f3o + f3I sin -t + fJ2 cos-t 

d d 
(2.25) 

where dis the period (or length) of the season and 2nld is expressed in radians. For 
example, if we had monthly data and an annual season, then d = 12. This model 
describes a simple, symmetric seasonal pattern that repeats every twelve periods. The 
model is actually a sine wave. To see this, recall that a sine wave with amplitude {3, 
phase angle or origin e, and period or cycle length w can be written as 

E(y1 ) = f3 sin w(t +e) (2.26) 

Equation (2.25) was obtained by writing Eq. (2.26) as a sine-cosine pair using the 
trigonometric identity sin(u + v) =cos u sin v +sin u cos v and adding an intercept 
term f3o: 

= f3 cos we sin wt + f3 sin we cos wt 

= {3 1 sin wt + fJ2 cos wt 
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where {31 = f3 cos we and {32 = f3 sin we. Setting w = 2;r I 12 and adding the intercept 
term {3 0 produces Eq. (2.25). This model is very flexible: for example. if we set 
w = 2rr /52 we can model a yearly seasonal pattern that is observed weekly. if we 
set w = 2rr /4 we can model a yearly seasonal pattern observed quarterly. and if 
we set w = 2rr j 13 we can model an annual seasonal pattern observed in thirteen 
four-week periods instead of the usual months. 

Equation (2.25) incorporates a single sine wave at the fundamental frequency 
w = 2rr j 12. In general. we could add harmonics of the fundamental frequency to the 
model in order to model more complex seasonal patterns. For example, a very general 
model for monthly data and an annual season that uses the fundamental frequency 
and the first three harmonics is 

~ ( . 2rr j 2rr j ) £(v1 ) = {30 + L.. {31 sm -t + {34 _ 1 cos-t 
J=l 12 12 

(2.27) 

If the data are observed in thirteen four-week periods. the model would be 

~ ( . 2rr j 2rr j ) E(yt) = f3o + L.. {31 sm -t + {34 _ 1 cos-t 
J=l 13 13 

(2.28) 

There is also a '"classical"' approach to decomposition of a time series into trends and 
seasonal components (actually, there are a lot of different decomposition algorithms: 
here we explain a very simple but useful approach). The general mathematical model 
for this decomposition is 

where 51 is the seasonal component, T1 is the trend effect (sometimes called the trend­
cycle effect), and c1is the random error component. There are usually two forms for 
the function f; an additive model 

and a multiplicative model 

The additive model is appropriate if the magnitude (amplitude) of the seasonal varia­
tion does not vary with the level of the series, while the multiplicative version is more 
appropriate if the amplitude of the seasonal fluctuations increases or decreases with 
the average level of the time series. 

Decomposition is useful for breaking a time series down into these component 
parts. For the additive model. it is relatively easy. First, we would model and remove 
the trend. A simple linear model could be used to do this. say. T1 = {30 + {3 1 t. Other 
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methods could also be used. Moving averages can be used to isolate a trend and 

remove it from the original data, as could more sophisticated regression methods. 

These techniques might be appropriate when the trend is not a straight line over the 

history of the time series. Differencing could also be used, although it is not typically 
in the classical decomposition approach. 

Once the trend or trend-cycle component is estimated, the series is detrended: 

Yr - Tr = Sr + Er 

Now a seasonal factor can be calculated for each period in the season. For exam­
ple, if the data is monthly and an annual season is anticipated, we would calculate 

a season effect for each month in the data set. Then the seasonal indices are com­

puted by taking the average of all of the seasonal factors for each period in the 

season. In this example, all of the January seasonal factors are averaged to produce 

a January season index; all of the February seasonal factors are averaged to produce 

a February season index; and so on. Sometimes medians are used instead of aver­

ages. In multiplicative decomposition, ratios are used, so that the data is detrended 

by 

The seasonal indices are estimated by taking the averages over all of the detrended 

values for each period in the season. 

Example 2.9 

The decomposition approach can be applied to the beverage shipment data. Examining 

the time series plot in Figure 2.2, there is both a strong positive trend as well as 

month-to-month variation, so the model should include both a trend and a seasonal 

component. It also appears that the magnitude of the seasonal variation does not vary 
with the level of the series, so an additive model is appropriate. 

Results of a Mini tab time series decomposition analysis of the beverage shipments 

are in Figure 2.23, showing the original data (labeled "Actual") along with the fitted 
trend line ('Trend") and the predicted values ("Fits") from the additive model with 

both the trend and seasonal components. 
Details of the seasonal analysis are shown in Figure 2.24. Estimates of the monthly 

variation from the trend line for each season (seasonal indices) are in Figure 2.24a 

with boxplots of the actual differences in Figure 2.24b. The percent of variation by 

seasonal period is in Figure 2.24c, and model residuals by seasonal period are in 

Figure 2.24d. 
Additional details of the component analysis are shown in Figure 2.25. Figure 

2.25a is the original time series, Figure 2.25b is a plot of the time series with the trend 

removed, Figure 2.25c is a plot of the time series with the seasonality removed, and 

Figure 2.25d is essentially a residual plot of the detrended and seasonally adjusted data. 
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FIGURE 2.23 Time series plot of decomposition model for beverage shipment,. 

The wave-like pattern in Figure 2.25d suggests a potential issue with the assumption 
of constant variance over time. 

Looking at the normal probability plot and histogram of residuals (Figure 2.26a,c ). 
there does not appear to be an issue with the normality assumption. Figure 2.26d is the 
same plot as Figure 2.25d. However, variance does seem to increase as the predicted 
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FIGURE 2.27 Time series plot of decomposition model for transformed beverage data. 

value increases; there is a funnel shape to the residuals plotted in Figure 2.26b. A 
natural logarithm transformation of the data may stabilize the variance and allow a 
useful decomposition model to be fit. 

Results from the decomposition analysis of the natural log-transformed beverage 
shipment data are plotted in Figure 2.27, with the transformed data, fitted trend line. 
and predicted values. Figure 2.28a shows the transformed data, Figure 2.28b the 
transformed data with the trend removed, Figure 2.28c the transformed data with sea­
sonality removed, and Figure 2.28d the residual plot of the detrended and seasonally 
adjusted transformed data. The residual plots in Figure 2.29 indicate that the variance 
over the range of the predicted values is now stable (Figure 2.29b ), and there are 
no issues with the normality assumption (Figures 2.29a,c). However. there is still a 
wave-like pattern in the plot of residuals versus time, both Figures 2.28d and 2.29d, 
indicating that some other structure in the transformed data over time is not captured 
by the decomposition model. This was not an issue with the model based on seasonal 
and trend differencing (Figures 2.21 and 2.22). which may be a more appropriate 
model for monthly beverage shipments. • 

2.5 GENERAL APPROACH TO TIME SERIES MODELING 
AND FORECASTING 

The techniques that we have been describing form the basis of a general approach 
to modeling and forecasting time series data. We now give a broad overview of 
the approach. This should give readers a general understanding of the connections 
between the ideas we have presented in this chapter and guidance in understanding 



GENERAL APPROACH TO TIME SERIES MODELING AND FORECASTING 47 

8.8 

J!! 8.6 

8 
8.4 

8.2 

8.8 ., 
o; 
0 8.6 

~ 
ui 8.4 ., 
Cll en 

8.2 

99.9 
99 

90 
E 
Cll 

50 I:! 
Cll 
a. 

10 

0.1 

24 

> 18 
" c:: 
Cll 

" 12 <T 
~ 

LL 
6 

0 

-010 

0.2 r----------------, 

0.1 ., 
o; 
0 0.0 
Qi 
0 

-0.1 

' ' 
• 

~ 
0.10 r--------------, 

0 
0.05 

~ 
-g 0.00 ., 
:& 
<( -0.05 
ui ., 
~ -0.10 .___ ____________ _.J 

Rl'), Rll>< ,os ,os 
,~"' <:Jfl 

(c) (d) 

FIGURE 2.28 Component analysis of transformed beverage data. 

0.10 • 
0.05 •• Oi 

" '0 0.00 ·;;; 
Cll .. 
a: 

-0.05 

-0.10 • • 
-0.05 0.00 0.05 0.10 8.2 8.4 8.6 8.8 

Residual Fitted Value 

(a) (b) 

0.10 

0.05 
Oi 
" '0 0.00 ·;;; 
Cll a: 

-0.05 

-0.10 
-0.09 --0.06 -0.03 0.00 0.03 0.06 0.09 1 20 40 60 80 100 120 140 160180 

Residual Observation Order 

(c) (d) 

FIGURE 2.29 Residual plots from decomposition model for transformed beverage data. 



48 STATISTICS BACKGROUJ\D FOR FORECASTING 

how the topics in subsequent chapters form a collection of u-;eful techniques for 
modeling and forecasting time series. 

The basic steps in modeling and forecasting a time series are as follows: 

1. Plot the time series and determine its basic features. such as whether trends 
or seasonal behavior or both are present. Look for pos~ible outliers or any 
indication that the time series has changed with respect to its basic features 
(such as trends or seasonality) over the time period histol). 

2. Eliminate any trend or seasonal components, either by differencing or by fitting 
an appropriate model to the data. Also consider using data transformations. 
particularly if the variability in the time series seems to be proportional to the 
average level of the series. The objective of these operations is to produce a set 
of stationary residuals. 

3. Develop a forecasting model for the residuals. It is not unusual to find that there 
are several plausible models and additional analysis will have to be performed to 
determine the best one to deploy. Sometimes potential models can be eliminated 
on the basis of their fit to the historical data. It is unlikely that a model that fits 
poorly will produce good forecasts. 

4. Validate the performance of the model (or models) from the previous step. This 
will probably involve some type of split-sample or cross-validation procedure. 
The objective of this step is to select a model to use in forecasting. We will 
discuss this more in the next section and illustrate these techniques throughout 
the book. 

5. Also of interest are the differences between the original time series y, and the 
values that would be forecast by the model on the original scale. To forecast 
values on the scale of the original time series Yr. reverse the transformations 
and any differencing adjustments made to remove trends or seasonal effects. 

6. For forecasts of future values in period T + r on the original scale. if a trans­
formation was used, say, x1 = In y,, then the forecast made at the end of period 
T for T + r would be obtained by reversing the transformation. For the natural 
log this would be 

7. If prediction intervals are desired for the forecast (and we recommend doing 
this), construct prediction intervals for the residuals and then reverse the trans­
formations made to produce the residuals as described earlier. We will discuss 
methods for finding prediction intervals for most of the forecasting methods 
presented in this book. 

8. Develop and implement a procedure for monitoring the forecast to ensure that 
deterioration in performance will be detected reasonably quickly. Forecast mon­
itoring is usually done by evaluating the stream of forecast errors that are 
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experienced. We will present methods for monitoring forecast errors with the 
objective of detecting changes in performance of the forecasting model. 

2.6 EVALUATING AND MONITORING FORECASTING 
MODEL PERFORMANCE 

2.6.1 Forecasting Model Evaluation 

We now consider how to evaluate the performance of a forecasting technique for a 
particular time series or application. It is important to carefully define the meaning 
of performance. It is tempting to evaluate performance on the basis of the fit of the 
forecasting or time series model to historical data. There are many statistical measures 
that describe how well a model fits a given sample of data, and several of these will 
be described in subsequent chapters. This goodness-of-fit approach often uses the 
residuals and does not really reflect the capability of the forecasting technique to 
successfully predict future observations. The user of the forecasts is very concerned 
about the accuracy of future forecasts, not model goodness of fit, so it is important 
to evaluate this aspect of any recommended technique. Sometimes forecast accuracy 
is called "out-of-sample" forecast error, to distinguish it from the residuals that arise 
from a model-fitting process. 

Measure of forecast accuracy should always be evaluated as part of a model val­
idation effort (see step 4 in the general approach to forecasting in the previous sec­
tion). When more than one forecasting technique seems reasonable for a particular 
application, these forecast accuracy measures can also be used to discriminate be­

tween competing models. We will discuss this more in Section 2.6.2. 
It is customary to evaluate forecasting model performance using the one-step-ahead 

forecast errors 

(2.29) 

where Yr (t - 1) is the forecast of y1 that was made one period prior. Forecast errors 
at other lags, or at several different lags, could be used if interest focused on those 
particular forecasts. Suppose that there are n observations for which forecasts have 
been made and n one-step-ahead forecast errors, e1(1). t =I, 2, ... , n. Standard 
measures of forecast accuracy are the average error or mean error 

(2.30) 

the mean absolute deviation (or mean absolute error) 

(2.31) 
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and the mean squared error 

I n 

MSE=- L(e1 (1Jf 
n r=l 

(2.32) 

The mean forecast error in Eq. (2.30) is an estimate of the expected value of forecast 
error, which we would hope to be zero; that is. the forecasting technique produces 
unbiased forecasts. If the mean forecast error differs appreciably from zero, bias in 
the forecast is indicated. If the mean forecast error drifts away from zero when the 
forecasting technique is in use, this can be an indication that the underlying time series 
has changed in some fashion, the forecasting technique has not tracked this change. 
and now biased forecasts are being generated. 

Both the mean absolute deviation (MAD) in Eq. (2.31) and the mean squared error 
(MSE) in Eq. (2.32) measure the variability in forecast errors. Obviously. we want 
the variability in forecast errors to be smalL The MSE is a direct estimator of the 
variance of the one-step-ahead forecast errors: 

(2.33) 

If the forecast errors are normally distributed (this is usually not a bad assumption. 
and one that is easily checked), the MAD is related to the standard deviation of 
forecast errors by 

6e(t> =~MAD::::::: 1.25MAD (2.34) 

The one-step-ahead forecast error and its summary measures. the ME. MAD. and 
MSE, are all scale-dependent measures of forecast accuracy: that is. their values are 
expressed in terms of the original units of measurement (or in the case of MSE. the 
square of the original units). So, for example, if we were forecasting demand for 
electricity in Phoenix during the summer, the units would be megawatts (MW). If 
the MAD for the forecast error during summer months was 5 MW. we might not 
know whether this was a large forecast error or a relatively small one. Furthermore. 
accuracy measures that are scale dependent do not facilitate comparisons of a single 
forecasting technique across different time series. or comparisons across different 
time periods. To accomplish this, we need a measure of relative forecast error. 

Define the relative forecast error (in percent) as 

(2.35) 
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This is customarily called the percent forecast error. The mean percent forecast 
error (MPE) is 

1 ll 

MPE =- L rer(l) 
n r=l 

(2.36) 

and the mean absolute percent forecast error (MAPE) is 

J n 

MAPE =- L irer(l)i 
n r=l 

(2.37) 

Knowing that the relative or percent forecast error or the MAPE is 3% (say) can be 
much more meaningful than knowing that the MAD is 5 MW. Note that the relative 
or percent forecast error only makes sense if the time series y, does not contain zero 
values. 

Example 2.10 

Table 2.2 illustrates the calculation of the one-step-ahead forecast error, the absolute 
errors, the squared errors, the relative (percent) error, and the absolute percent error 
from a forecasting model for 20 time periods. The last row of columns (3) through 
(7) display the sums required to calculate the ME, MAD, MSE, MPE, and MAPE. 

From Eq. (2.30), the mean (or average) forecast error is 

I " I 
ME=- L e,(!) = -(-11.6) = -0.58 

n l=l 20 

the MAD is computed from Eq. (2.31) as 

I " I 
MAD= - l)e,(l )I = -(86.6) = 4.33 

n l=l 20 

and the MSE is computed from Eq. (2.32): 

I 11 1 
MSE =- L [el(l)f = -(471.8) = 23.59 

n r=l 20 

Because the MSE estimates the variance of the one-step-ahead forecast errors, we 
have 

ae~ll = MSE = 23.59 
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TABLE 2.2 Calculation of Forecast Accuracy Measures 

(I) (2) (3) (4) (5) (61 (6) 
Observed Forecast Forecast Absolute Squared Relativ.: (ck) Absolute ( '7r J 

Time Value SAt- I> Error Error Error Error Error 
Period \' . I er(l) ler( 1)1 fer(! JJ" (e1(1)j\.) 100 I (er(l )/_\'r) 1001 

I 47 51.1 -4.1 4.1 16.81 -8.72.14 8.723404 
2 46 52.9 -6.9 6.9 47.61 -15 15 
3 51 48.8 2.2 2.2 4.84 4.313725 -+.313725 
4 44 48.1 -4.1 4.1 16.81 -9.31SI8 9.318IS2 
5 54 49.7 4.3 4.3 18.49 7.962963 7.962963 
6 47 47.5 -0.5 0.5 0.25 -1.06383 1.06383 
7 52 51.2 0.8 0.8 0.64 1.53S462 I .538462 
8 45 53.1 -8.1 8.1 65.61 -18 18 
9 50 54.4 -4.4 4.4 19.36 -8.8 8.8 
0 51 51.2 -0.2 0.2 0.04 -0.39216 0.392157 

II 49 53.3 -4.3 4.3 18.49 -8.77551 8.77551 
12 41 46.5 -5.5 5.5 30.25 -13.4146 13.41463 
13 48 53.1 -5.1 5.1 26.01 -10.625 10.625 
14 50 52.1 -2.1 2. I 4.41 -4.2 4.2 
15 51 46.8 4.2 4.2 17.64 8.235294 8.235294 
16 55 47.7 7.3 7.3 53.29 13.27273 13.27273 
17 52 45.4 6.6 6.6 43.56 12.69231 12.69231 
18 53 47.1 5.9 5.9 34.81 I 1.13208 11.13208 
19 48 51.8 -3.8 3.8 14.44 -7.91667 7.916667 
20 52 45.8 6.2 6.2 38.44 11.92308 11.92308 

Totals -11.6 86.6 471.8 -35.15?18 177.3 

and an estimate of the standard deviation of forecast errors is the square root of this 
quantity, or BeoJ = .JMSE = 4.86. We can also obtain an estimate of the standard 
deviation of forecasts errors from the MAD using Eq. (2.34 ): 

Be( I)~ 1.25MAD = 1.25(4.33) = 5.41 

These two estimates are reasonably similar. The mean percent forecast error. MPE. 
is computed from Eq. (2.36) as 

I II I 
MPE=- L:re1 (1) = -(-35.1588) = -1.769c 

n t=l 20 

and the mean absolute percent error is computed from Eq. (2.37) as 

I II I 
MAP£=- L lre1(1)1 = -(177.3) = 8.87Ik 

n t=l 20 • 
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There is much empirical evidence (and even some theoretical justification) that 
the distribution of forecast errors can be well approximated by a normal distribution. 
This can easily be checked by constructing a normal probability plot of the forecast 
errors in Table 2.2, as shown in Figure 230. The forecast errors deviate somewhat 
from the straight line, indicating that the normal distribution is not a perfect model for 
the distribution of forecast errors, but it is not unreasonable. Mini tab calculates the 
Anderson-Darling statistic, a widely used test statistic for normality. The P-value is 
0.088, so the hypothesis of normality of the forecast errors would not be rejected at 
the 0.05 level. This test assumes that the observations (in this case the forecast errors) 
are uncorrelated. Mini tab also reports the standard deviation of the forecast errors to 
be 4.947, a slightly larger value than we computed from the MSE, because Minitab 
uses the standard method for calculating sample standard deviations. 

Note that Eq. (2.29) could have been written as 

Error = Observation - Forecast 

Hopefully, the forecasts do a good job of describing the structure in the observations. 
In an ideal situation, the forecasts would adequately model all of the structure in the 
data, and the sequence of forecast errors would be structureless. If they are, the sample 
ACF of the forecast error should look like the ACF of random data; that is, there 
should not be any large "spikes" on the sample ACF at low lag. Any systematic or 
nonrandom pattern in the forecast errors will tend to show up as significant spikes on 
the sample ACF. If the sample ACF suggests that the forecast errors are not random. 
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TABLE2.3 One-Step-Ahead Forecast Errors 

Period, t e,( I) Period. t e,(l) Period. t e,( I) Period. t e,( I) Period. t e,( I) 

I -0.62 II -0.49 21 2.90 31 -u:8 -II -3.98 

2 -2.99 12 4.13 22 0.86 32 --1.-16 -12 --1.28 

3 0.65 13 -3.39 23 5.80 33 -l.lJ3 -13 1.06 

4 0.81 14 2.81 24 -1.66 3-1 -2.X6 -1-1 0.18 

5 -2.25 15 -1.59 25 3.99 35 0.::3 45 3.56 

6 -2.63 16 -2.69 26 -1.76 36 -I.X2 46 -0.24 

7 3.57 17 3.41 27 2.31 37 O.M 47 -2.98 

8 0.11 18 4.35 28 -2.24 38 -1.:"5 48 2.47 

9 0.59 19 -4.37 29 2.95 39 0.78 49 0.66 

10 -0.63 20 2.79 30 6.30 40 2.X4 50 0.32 

then this is evidence that the forecasts can be improved by refining the forecasting 

modeL Essentially, this would consist of taking the structure out of the forecast errors 

and putting it into the forecasts, resulting in forecasts that are better prediction of 

the data. 

Example 2.11 

Table 2.3 presents a set of 50 one-step-ahead errors from a forecasting modeL and 

Table 2.4 shows the sample ACF of these forecast errors. The sample ACF is plotted 

in Figure 2.31. This sample ACF was obtained from Minitab. Note that sample auto­

correlations for the first 13 lags are computed. This is consistent with our guideline 

indicating that for T observations only the first T 14 autocorrelations should be com­

puted. The sample ACF does not provide any strong evidence to support a claim that 

there is a pattern in the forecast errors. • 

If a time series consists of uncorrelated observations and has constant variance. 

we say that it is white noise. If, in addition, the observations in this time series 

are normally distributed, the time series is Gaussian white noise. Ideally. forecast 

errors are Gaussian white noise. The normal probability plot of the one-step-ahead 

forecast errors from Table 2.3 are shown in Figure 2.32. This plot does not indicate 

any serious problem, with the normality assumption. so the forecast errors in Table 

2.3 are Gaussian white noise. 
If a time series is white noise, the distribution of the sample autocorrelation coef­

ficient at lag k in large samples is approximately normal with mean zero and variance 

liT; that is, 
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TABLE 2.4 Sample ACF of the One-Step-Ahead Forecast Errors in Table 2.3 

Lag Sample ACF, rk Z-Statistic Ljung-Box Statistic, QLB 

I 0.004656 0.03292 0.0012 
2 -0.102647 -0.72581 0.5719 
3 0.136810 0.95734 1.6073 
4 -0.033988 -0.23359 1.6726 
5 0.118876 0.81611 2.4891 
6 0.181508 1.22982 4.4358 
7 -0.039223 -0.25807 4.5288 
8 -0.118989 -0.78185 5.4053 
9 0.003400 0.02207 5.4061 

10 0.034631 0.22482 5.4840 
II -0.151935 -0.98533 7.0230 
12 -0.207710 -1.32163 9.9749 
13 0.089387 0.54987 10.5363 

Therefore we could test the hypothesis Ho : Pk = 0 using the test statistic 

(2.38) 

Mini tab calculates this Z-statistic (calling it at -statistic), and it is reported in Table 2.4 
for the one-step-ahead forecast errors of Table 2.3 (this is the t-statistic reported 
in Figure 2.13 for the ACF of the chemical viscosity readings). Large values of 
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FIGURE 2.31 Sample ACF of forecast errors from Table 2.4. 
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this statistic (say, IZol > Za;2. where Za/2 is the upper a/2 percentage point of the 
standard normal distribution) would indicate that the corresponding autocorrelation 
coefficient does not equal zero. Alternatively, we could calculate a P-value for this 
test statistic. Since none of the absolute values of the Z -statistics in Table 2.4 exceeds 
Za;2 = Z0.025 = 1.96, we cannot conclude at significance level a = 0.05 that any 
individual autocorrelation coefficient differs from zero. 

This procedure is a one-at-a-time test; that is, the significance level applies to the 
autocorrelations considered individually. We are often interested in evaluating a set 
of autocorrelations jointly to determine if they indicate that the time series is white 
noise. Box and Pierce [ 1970] have suggested such a procedure. Consider the square 
of the test statistic Z0 in Eq. (2.38). The distribution of Z6 = rz T is approximately 
chi-square with one degree of freedom. The Box-Pierce statistic 

K 

Qsp = TL>1 (2.39) 
k=l 

is distributed approximately as chi-square with K degrees of freedom under the null 
hypothesis that the time series is white noise. Therefore, if Q8 p > x'/;.K we would 
reject the null hypothesis and conclude that the time series is not white noise because 
some of the autocorrelations are not zero. A P-value approach could also be used. 
When this test statistic is applied to a set of residual autocorrelations the statistic 
Q8 p ~ x'/;.K -p' where pis the number of parameters in the model, so the number of 
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degrees of freedom in the chi-square distribution becomes K - p. Box and Pierce call 
this procedure a "Portmanteau" or general goodness-of-fit statistic (it is testing the 
goodness of fit of the autocorrelation function to the autocorrelation function of white 
noise). A modification ofthis test that works better for small samples was devised by 
Ljung and Box [1978]. The Ljung-Box goodness-of-fit statistic is 

QLB = T(T + 2) t (-1
-) rf 

k=l T- k 
(2.40) 

Note that the Ljung-Box goodness-of-fit statistic is very similar to the original Box­
Pierce statistic, the difference being that the squared sample autocorrelation at lag k 
is weighted by (T + 2)/(T- k). For large values ofT, these weights will be approx­
imately unity, and so the QLs and Q8p statistics will be very similar. 

Minitab calculates the Ljung-Box goodness-of-fit statistic QLs, and the values for 
the first 13 sample autocorrelations of the one-step-ahead forecast errors of Table 2.3 
are shown in the last column of Table 2.4. At lag 13, the value QLs = I 0.5363, and 
since x6_05 . 13 = 22.36, there is no strong evidence to indicate that the first 13 auto­
correlations of the forecast errors considered jointly differ from zero. If we calculate 
the ?-value for this test statistic, we find that P = 0.65. This is a good indication 
that the forecast errors are white noise. Note that Figure 2.13 also gave values for the 
Ljung-Box statistic. 

2.6.2 Choosing Between Competing Models 

There are often several competing models that can be used for forecasting a partic­
ular time series. For example, there are several ways to model and forecast trends. 
Consequently, selecting an appropriate forecasting model is of considerable practical 
importance. In this section we discuss some general principles of model selection. 
In subsequent chapters, we will illustrate how these principles are applied in specific 
situations. 

Selecting the model that provides the best fit to historical data generally does not 
result in a forecasting method that produces the best forecasts of new data. Concen­
trating too much on the model that produces the best historical fit often results in 
overfitting, or including too many parameters or terms in the model just because 
these additional terms improve the model fit. In general, the best approach is to select 
the model that results in the smallest standard deviation (or mean squared error) of 
the one-step-ahead forecast errors when the model is applied to data that was not 
used in the fitting process. Some authors refer to this as an out-of-sample forecast 
error standard deviation (or mean squared error). A standard way to measure this 
out-of-sample performance is by utilizing some form of data splitting; that is, di­
vide the time series data into two segments-one for model fitting and the other 
for performance testing. Sometimes data splitting is called cross-validation. It is 
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somewhat arbitrary as to how the data splitting is accomplished. However. a good 
rule of thumb is to have at least 20 or 25 observations in the performance testing data 
set. 

When evaluating the fit of the model to historical data, there are several criteria 
that may be of value. The mean squared error of the residuals is 

T 

:Ler 
1 1=1 s-=--

T-p 
(2.41) 

where T periods of data have been used to fit a model with p parameters and e1 is 
the residual from the model-fitting process in period t. The mean squared error s2 is 
just the sample variance of the residuals and it is an estimator of the variance of the 
model errors. 

Another criterion is the R-squared statistic 

R2 =I _ __ r_=_t __ 
T 

(2.42) 

L (Yr - s·f 
t=l 

The denominator of Eq. (2.42) is just the total sum of squares of the observations, 
which is constant (not model dependent), and the numerator is just the residual sum of 
squares. Therefore, selecting the model that maximizes R2 is equivalent to selecting 
the model that minimizes the sum ofthe squared residuals. Large values of R2 suggest 
a good fit to the historical data. Because the residual sum of squares always decreases 
when parameters are added to a model, relying on R2 to select a forecasting model 
encourages overfitting or putting in more parameters than are really necessary to 
obtain good forecasts. A large value of R 2 does not ensure that the out-of-sample 
one-step-ahead forecast errors will be small. 

A better criterion is the "adjusted" R2 statistic, defined as 

T 

L e1 /(T- p) 
2 t=l RAdj =I- T = ]- _T ______ _ 

L (Yr- )')2/(T- 1) L (Yr- .\')2/(T- 1) 

(2.43) 

t-1 t-l 

The adjustment is a "size" adjustment-that is, adjust for the number of parameters 
in the model. Note that a model that maximizes the adjusted R2 statistic is also the 
model that minimizes the residual mean square. 
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Two other important criteria are the Akaike Information Criterion (AIC) (see 
Akaike [ 1974]) and the Schwarz Information Criterion (SIC) (see Schwarz [1978]): 

( 

T ) 
l..:er 

AIC= In t=~ + 
2
; (2.44) 

and 

(2.45) 

These two criteria penalize the sum of squared residuals for including additional pa­
rameters in the model. Models that have small values ofthe AIC or SIC are considered 
good models. 

One way to evaluate model selection criteria is in terms of consistency. A model 
selection criterion is consistent if it selects the true model when the true model is 
among those considered with probability approaching unity as the sample size be­
comes large, and if the true model is not among those considered, it selects the best 
approximation with probability approaching unity as the sample size becomes large. 
It turns out that s 2 , the adjusted R 2 , and the AIC are all inconsistent, because they do 
not penalize for adding parameters heavily enough. Relying on these criteria tends 
to result in overfitting. The SIC, which caries a heavier "size adjustment" penalty, is 
consistent. 

Consistency, however, does not tell the complete story. It may turn out that the true 
model and any reasonable approximation to it are very complex. An asymptotically 
efficient model selection criterion chooses a sequence of models as T(the amount 
of data available) gets large for which the one-step-ahead forecast error variances 
approach the one-step-ahead forecast error variance for the true model at least as fast 
as any other criterion. The AIC is asymptotically efficient but the SIC is not. 

There are a number of variations and extensions of these criteria. The AIC is a 
biased estimator of the discrepancy between all candidate models and the true model. 
This has led to developing a "corrected" version of AIC: 

( 

T ) 
L er 2T l 

AICC = ln t=l + (p + ) 
T T-p-2 

(2.46) 
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Sometimes we see the first term in the AIC, AICC, or SIC written as -21n L((3. a 2 ). 

where L({3, a 2
) is the likelihood function for the fitted model evaluated at the maxi­

mum likelihood estimates of the unknown parameters (3 and a 2 . In this context. AI C. 
AICC, and SIC are called penalized likelihood criteria. 

Many software packages evaluate and print model selection criteria, such as those 
discussed here. When both AIC and SIC are available. we prefer u~ing SIC. It generally 
results in smaller, and hence simpler. models, and so its use is consistent with the 
time-honored model-building principle of parsimony (all other things being equal. 
simple models are preferred to complex ones). We will discuss and illustrate model 
selection criteria again in subsequent chapters. However, remember that the best 
way to evaluate a candidate model's potential predictive performance is to use data 
splitting. This will provide a direct estimate of the one-step-ahead forecast error 
variance, and this method should always be used, if possible, along with the other 
criteria that we have discussed here. 

2.6.3 Monitoring a Forecasting Model 

Developing and implementing procedures to monitor the performance of the forecast­
ing model is an essential component of good forecasting system design. No matter 
how much effort has been expended in developing the forecasting model, and regard­
less of how well the model works initially, over time it is likely that its performance 
will deteriorate. The underlying pattern of the time series may change. either be­
cause the internal inertial forces that drive the process may evolve through time, or 
because of external events such as new customers entering the market. For example, 
a level change or a slope change could occur in the variable that is being forecasted. 
It is also possible for the inherent variability in the data to increase. Consequently. 
performance monitoring is important. 

The one-step-ahead forecast errors e,( I) are typically used for forecast monitoring. 
The reason for this is that changes in the underlying time series will also typically 
be reflected in the forecast errors. For example, if a level change occurs in the time 
series, the sequence of forecast errors will no longer fluctuate around zero; that is. a 
positive or negative bias will be introduced. 

There are several ways to monitor forecasting model performance. The simplest 
way is to apply Shewhart control charts to the forecast errors. A Shewhart control 
chart is a plot of the forecast errors versus time containing a center line that represents 
the average (or the target value) of the forecast errors and a set of control limits that 
are designed to provide an indication that the forecasting model performance has 
changed. The center line is usually taken as either zero (which is the anticipated 
forecast error for an unbiased forecast) or the average forecast error (ME from Eq. 
(2.30)), and the control limits are typically placed at three standard deviations of the 
forecast errors above and below the center line. If the forecast errors plot within the 
control limits, we assume that the forecasting model performance is satisfactory (or 
in control), but if one or more forecast errors exceed the control limits, that is a signal 
that something has happened and the forecast errors are no longer fluctuating around 
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zero. In control chart terminology, we would say that the forecasting process is out 
of control and some analysis is required to determine what has happened. 

The most familiar Shewhart control charts are those applied to data that have 
been collected in subgroups or samples. The one-step-ahead forecast errors e1(1) are 
individual observations. Therefore the Shewhart control chart for individuals would 
be used for forecast monitoring. On this control chart it is fairly standard practice 
to estimate the standard deviation of the individual observations using a moving 
range method. The moving range is defined as the absolute value of the difference 
between any two successive one-step-ahead forecast errors, say, le1 (I) - e1_ 1 ( l )I, and 
the moving range based on n observations is 

n 

MR = L letO)- Ct-!(1)1 (2.47) 
1=2 

The estimate of the standard deviation of the one-step-ahead forecast errors is 
based on the average of the moving ranges 

0.8865MR 
CTe(l) = ---­

n-1 

n 

0.8865 L let(l)- et-IO)i 

---
1
-=-

2
------ = 0.8865MR 
n-1 

(2.48) 

This estimate of the standard deviation would be used to construct the control limits on 
the control chart for forecast errors. For more details on constructing and interpreting 
control charts, see Montgomery [2005]. 

Example 2.12 

Mini tab can be used to construct Shewhart control charts for individuals. Figure 2.33 
shows the Minitab control charts for the one-step-ahead forecast errors in Table 2.3. 
Note that both an individuals control chart of the one-step-ahead forecast errors and 
a control chart of the moving ranges of these forecast errors are provided. On the 
individuals control chart the center line is taken to be the average of the forecast 
errors ME defined in Eq. (2.30) (denoted X in Figure 2.33) and the upper and lower 
three-sigma control limits are abbreviated as UCL and LCL, respectively. The center 
line on the moving range control chart is at the average of the moving ranges MR = 
MR/(n- 1), the three-sigma upper control limit UCL is at 3.267MR/(n- 1), and the 
lower control limit is at zero (for details on how the control limits are derived, see 
Montgomery [2005 ]). All of the one-step-ahead forecast errors plot within the control 
limits (and the moving range also plot within their control limits). Thus there is no 
reason to suspect that the forecasting model is performing inadequately, at least from 
the statistical stability viewpoint. Forecast errors that plot outside the control limits 
would indicate model inadequacy, or possibly the presence of unusual observations 
such as outliers in the data. An investigation would be required to determine why 
these forecast errors exceed the control limits. • 
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FIGURE 2.33 Individuals and moving range control charh of the one-step-ahead forecast errors in 
Table 2.3. 

Because the control charts in Figure 2.33 exhibit statistical control. we would 
conclude that there is no strong evidence of statistical inadequacy in the forecasting 
model. Therefore, these control limits would be retained and used to judge the perfor­
mance of future forecasts (in other words, we do not recalculate the control limits with 
each new forecast). However, the stable control chart does not imply that the forecast­
ing performance is satisfactory in the sense that the model results in small forecast 
errors. In the quality control literature. these two aspects of process performance are 
referred to as control and capability. respectively. It is possible for the forecasting 
process to be stable or in statistical control but not capable-that is. produce forecast 
errors that are unacceptably large. 

Two other types of control charts. the cumulative sum (or CUSUM) control chart 
and the exponentially weighted moving average (or EWMA) control chart. can also 
be useful for monitoring the performance of a forecasting model. These charts are 
more effective at detecting smaller changes or disturbances in the forecasting model 
performance than the individuals control chart. The CUSUM is very effective in 
detecting level changes in the monitored variable. It works by accumulating deviations 
of the forecast errors that are above the desired target value T(usually either zero or 
the average forecast error) with one statistic c+ and deviations that are below the 
target with another statistic c-. The statistics c~ and c- are called the upper and 
lower CUSUMs, respectively. They are computed as follows: 

C
1
+ = max[O. e1(1)- (T + K) + C

1
'.:_ 1 ] 

cl- = min[O. Cr(l)- (T- K) + c/-_,1 
(2.49) 

where the constant K. usually called the reference value. is usually chosen as 
K = O.Sae< 1 l and ae< 1 l is the standard deviation of the one-step-ahead forecast errors. 
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FIGURE 2.34 CUSUM control chart of the one-step-ahead forecast errors in Table 2.3. 

The logic is that if the forecast errors begin to systematically fall on one side of the 
target value (or zero), one of the CUSUMs in Eq. (2.49) will increase in magnitude. 
When this increase becomes large enough, an out-of-control signal is generated. The 
decision rule is to signal if the statistic c+ exceeds a decision interval H = Sue< 1 l or 
if c- exceeds -H. The signal indicates that the forecasting model is not performing 
satisfactorily (Montgomery [2005] discusses the choice of H and K in detail). 

Example 2.13 

The CUSUM control chart for the forecast errors shown in Table 2.3 is shown in 
Figure 2.34. This CUSUM chart was constructed using Minitab with a target value of 
T = 0 and ud 1lwas estimated using the moving range method described previously, 
resultinginH = 58e(ll = 5(0.8865)MR/(T- I)= 5(0.8865)3.24 = 14.36.Minitab 
labels H and- H as UCL and LCL, respectively. The CUSUM control chart reveals 
no obvious forecasting model inadequacies. • 

A control chart based on the exponentially weighted moving average (EWMA) is 
also useful for monitoring forecast errors. The EWMA applied to the one-step-ahead 
forecast errors is 

(2.50) 

where A > 0 is a constant (usually called the smoothing constant) and the starting 
value of the EWMA (required at the first observation) is either e0( I) = 0 or the average 
of the forecast errors. Typical values of the smoothing constant for an EWMA control 
chart are 0.05 < A < 0.2. 
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The EWMA is a weighted average of all current and previous forecast errors, and 
the weights decrease geometrically with the "age" of the forecast error. To see this, 
simply substitute recursively for e,_ 1 (I), then e,_2(1 ). then e,_ 1 (I) 1 for j = 3. 4 .... , 
until we obtain 

n-1 

en(!)= A L (1- A)1eT-j(l) +(I- Ateo(l) 
}=0 

and note that the weights sum to unity because 

n-1 

A L (I - A)1 = I - (I - At 
}=0 

The standard deviation of the EWMA is 

So an EWMA control chart for the one-step-ahead forecast errors with a center line 
ofT (the target for the forecast errors) is defined as follows: 

~ A 2r UCL = T + 3creoJ --[I -(I -A) ] 
2-A 

Center line = T (2.51) 

~ A • 2r LCL = T- 3ueill --[I -(I- A) ] 
2-A 

Example 2.14 

Minitab can be used to construct EWMA control charts. Figure 2.35 is the EWMA 
control chart of the forecast errors in Table 2.3. This chart uses the mean forecast 
error as the center line, creo J was estimated using the moving range method, and we 
chose A = 0.1. None of the forecast errors exceeds the control limits so there is no 
indication of a problem with the forecasting model. 

Note from Eq. (2.51) and Figure 2.35 that the control limits on the EWMA control 
chart increase in width for the first few observations and then stabilize at a constant 
value because the term [I - (1 - A)2'] approaches unity as t increases. Therefore 
steady-state limits for the EWMA control chart are 

UCL = T + 3crdllj A 
2-A 

Center line = T 

LCL = T- 3creillj A . 
2-A 

(2.52) 

• 
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FIGURE 2.35 EWMA control chart of the one-step-ahead forecast errors in Table 2.3. 

In addition to control charts, other statistics have been suggested for monitoring 
the performance of a forecasting model. The most common of these are tracking 
signals. The cumulative error tracking signal is based on the cumulative sum of all 
current and previous forecast errors, say, 

n 

Y(n) = I>1(1) = Y(n- I)+ e11 (1) 
t=l 

If the forecasts are unbiased we would expect Y (n) to fluctuate around zero. If it 
differs from zero by very much, it could be an indication that the forecasts are biased. 
The standard deviation of Y(n), say, O'yc 11 J, will provide a measure of how far Y(n) 
can deviate from zero due entirely to random variation. Therefore we would conclude 
that the forecast is biased if IY(n)l exceeds some multiple of its standard deviation. 
To operationalize this, suppose that we have an estimate Brcnl of O'Y(n) and form the 
cumulative error tracking signal 

CETS = I ~(n) I 
O'Y(n) 

(2.53) 

If the CETS exceeds a constant, say, K 1, we would conclude that the forecasts are 
biased and that the forecasting model may be inadequate. 

It is also possible to devise a smoothed error tracking signal based on the 
smoothed one-step-ahead forecast errors in Eq. (2.50). This would lead to a ratio 

SETS= I :
11

(1) I 
O'e,(I l 

(2.54) 
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If the SETS exceeds a constant, say, K 2 , this is an indication that the forecasts are 
biased and that there are potentially problems with the forecasting model. 

Note that the cumulative error tracking signal is very similar to the CUSUM 
control chart and that the smoothed error tracking signal is essentially equivalent to the 
EWMA control chart. Furthermore, the CUSUM and EWMA are available in standard 
statistics software (such as Minitab) and the tracking signal procedures are not. So, 
while tracking signals have been discussed extensively and recommended by some 
authors, we are not going to encourage their use. Plotting and periodically visually 
examining a control chart of forecast errors is also very informative. something that 
is not typically done with tracking signals. 

EXERCISES 

2.1 Consider the U.S. Treasury Securities rate data in Table 8.1 (Appendix 8). Find 
the sample autocorrelation function for these data. Is the time series stationary 
or nonstationary? 

2.2 Consider the data on U.S. production of blue and gorgonzola cheeses in 
Table 8.4. 

a. Find the sample autocorrelation function for these data. Is the time series 
stationary or nonstationary'J 

b. Take the first difference of the time series and find the sample autocorrelation 
function. What conclusions can you draw about the structure and behavior 
of the time series? 

2.3 Table 8.5 contains the U.S. beverage product shipments data. Find the sample 
autocorrelation function for these data. Is the time series stationary or non sta­
tionary? 

2.4 Table 8.6 contains two time series: the global mean surface air tempera­
ture anomaly and the global C02 concentration. Find the sample autocor­
relation function for both of these time series. Is either one of the time series 
stationary? 

2.5 Reconsider the global mean surface air temperature anomaly and the global 
C02 concentration time series from Exercise 2.4. Take the first difference of 
both time series. Find the sample autocorrelation function of these new time 
series. Is either one of these differenced time series stationary? 

2.6 Table 8.7 contains the Whole Foods Market closing stock prices. Find 
the sample autocorrelation function for this time series. Is the time series 
stationary? 
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2.7 Reconsider the Whole Foods Market stock price data from Exercise 2.6. Take 
the first difference of the data. Find the sample autocorrelation function of this 
new time series. Is this differenced time series stationary? 

2.8 Consider the unemployment rate data in Table 8.8. Find the sample autocorre­
lation function for this time series. Is the time series stationary or nonstationary'? 
What conclusions can you draw about the structure and behavior of the time 
series? 

2.9 Table 8.9 contains the annual International Sunspot Numbers. Find the sample 
autocorrelation function for this time series. Is the time series stationary or 
non stationary? 

2.10 Table 8.10 contains data on the number of airline miles flown in the United 
Kingdom. This is strongly seasonal data. Find the sample autocorrelation func­
tion for this time series. 

a. Is the seasonality apparent in the sample autocorrelation function? 

b. Is the time series stationary or nonstationary? 

2.11 Reconsider the data on the number of airline miles flown in the United Kingdom 

from Exercise 2.1 0. Take the natural logarithm of the data and plot this new 
time series. 

a. What impact has the log transformation had on the time series? 

b. Find the autocorrelation function for this time series. 

c. Interpret the sample autocorrelation function. 

2.12 Reconsider the data on the number of airline miles flown in the United Kingdom 
from Exercises 2.10 and 2.11. Take the first difference of the natural logarithm 
of the data and plot this new time series. 

a. What impact has the log transformation had on the time series? 

b. Find the autocorrelation function for this time series. 

c. Interpret the sample autocorrelation function. 

2.13 The data on the number of airline miles flown in the United Kingdom in 
Table B. I 0 is seasonal. Difference the data at a season lag of 12 months and 
also apply a first difference to the data. Plot the differenced series. What etlect 
has the differencing had on the time series? Find the sample autocorrelation 
function. What does the sample autocorrelation function tell you about the 
behavior of the differenced series? 

2.14 Table 8.11 contains data on the monthly champagne sales in France. This is 
strongly seasonal data. Find the sample autocorrelation function for this time 
series. 
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a. Is the seasonality apparent in the sample autocorrelation function? 

b. Is the time series stationary or nonstationary? 

2.15 Reconsider the champagne sales data from Exercise 2.14. Take the natural 
logarithm of the data and plot this new time series. 

a. What impact has the log transformation had on the time series? 

b. Find the autocorrelation function for this time series. 

c. Interpret the sample autocorrelation function. 

2.16 Table B.l3 contains data on ice cream and frozen yogurt production. Plot the 
data and calculate the sample autocorrelation function. Is there an indication 
of nonstationary behavior in the time series? Now plot the first difference of 
the time series and compute the sample autocorrelation function of the first 
differences. What impact has differencing had on the time series? 

2.17 Table B.l4 presents data on C02 readings from the Mauna Loa Observatory. 
Plot the data and calculate the sample autocorrelation function. Is there an 
indication of nonstationary behavior in the time series? Now plot the first 
difference of the time series and compute the sample autocorrelation function 
of the first differences. What impact has differencing had on the time series? 

2.18 Data on violent crime rates is given in Table B.l5. Plot the data and calculate 
the sample autocorrelation function. Is there an indication of nonstationary 
behavior in the time series? Now plot the first difference of the time series 
and compute the sample autocorrelation function of the first differences. What 
impact has differencing had on the time series? 

2.19 Table B.l6 presents data on the U.S. Gross Domestic Product (GOP). Plot 
the GDP data and calculate the sample autocorrelation function. Is there an 
indication of nonstationary behavior in the time series? Now plot the first 
difference of the GDP time series and compute the sample autocorrelation 
function of the first differences. What impact has differencing had on the time 
series? 

2.20 Table B.l7 contains information on total annual energy consumption. Plot the 
energy consumption data and calculate the sample autocorrelation function. 
Is there an indication of nonstationary behavior in the time series? Now plot 
the first difference of the time series and compute the sample autocorrelation 
function of the first differences. What impact has differencing had on the time 

. ? senes. 

2.21 Data on U.S. coal production is given in Table B.l8. Plot the coal production 
data and calculate the sample autocorrelation function. Is there an indication 
of nonstationary behavior in the time series? Now plot the first difference of 
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the time series and compute the sample autocorrelation function of the first 
differences. What impact has differencing had on the time series? 

2.22 Consider the C02 readings from Mauna Loa in Table B.l4. Use a six-period 
moving average to smooth the data. Plot both the smoothed data and the original 
C02 readings on the same axes. What has the moving average done? Repeat the 
procedure with a three-period moving average. What is the effect of changing 
the span of the moving average? 

2.23 Consider the violent crime rate data in Table B. IS. Use a ten-period moving 
average to smooth the data. Plot both the smoothed data and the original C02 

readings on the same axes. What has the moving average done? Repeat the 
procedure with a four-period moving average. What is the effect of changing 
the span of the moving average? 

2.24 Consider the N -span moving average applied to data that is uncorrelated with 
mean f1 and variance o- 2 . 

a. Show that the variance of the moving average is Var(M1 ) = o- 2 
/ N. 

b. Show that Cov(M1 , M1+k) = o- 2 L_~;:1k (lj N)2, fork< N. 

c. Show that the autocorrelation function is 

[ 

lkl 
!--

Pk = N' 
0, 

k = I, 2, ... , N- I 

k?:. N 

2.25 Consider an N -span moving average where each observation is weighted 
by a constant, say, ai ?:_ 0. Therefore the weighted moving average at the 
end of period T is 

T 

M!f = L aT+I-tYt 
t=T-N+I 

a. Why would you consider using a weighted moving average? 

b. Show that the variance of the weighted moving average is Var(M¥') = 
CJ2 L~=i a]. 

c. Show that Cov(M¥', M!f+k) = o- 2 L_~;:1k ajai+k. lkl < N. 

d. Show that the autocorrelation function is 

-I (Ntk ajaj+k)/(t a]). 
Pk - J=I 1=! 

0, 

k = I, 2, ... , N - I 

2.26 Consider the Hanning filter. This is a weighted moving average. 
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a. Find the variance of the weighted moving average for the Hanning filter. Is 
this variance smaller than the variance of a simple span-3 moving average 
with equal weights? 

b. Find the autocorrelation function for the Hanning filter. Compare this with 
the autocorrelation function for a simple span-3 moving average with equal 
weights. 

2.27 Suppose that a simple moving average of span N is used to forecast a time series 
that varies randomly around a constant, that is. Y1 = J1 + E.·. where the variance 
of the error term is a 2• The forecast error at lead one is er -1 (I) = Yr + 1 - Mr. 
What is the variance of this lead-one forecast error') 

2.28 Suppose that a simple moving average of span N is used to forecast a time 
series that varies randomly around a constant. that is. Yr = J1 + E1 • where the 
variance of the error term is a 2. You are interested in forecasting the cumulative 
value of y over a lead time of L periods. say. -'"T+J + -'"T+c + · · · + YT.,.-1.· 

a. The forecast of this cumulative demand is LM r. Why'' 

b. What is the variance of the cumulative forecast error') 

2.29 Suppose that a simple moving average of span N is used to forecast a time 
series that varies randomly around a constant mean, that is. Y 1 = J1 + E 1 • At 
the start of period t1 the process shifts to a new mean level. say. J1 + 8. Show 
that the expected value of the moving average is 

2.30 Suppose that a simple moving average of span N is used to forecast a time 
series that varies randomly around a constant mean. that is. Yr = 11 + E1 • At 
the start of period t1 the process experiences a transient; that is. it shifts to a 
new mean level. say, J1 + 8, but it reverts to its original level J1 at the start of 
period t1 + I. Show that the expected value of the moving average is 

2.31 If a simple N -span moving average is applied to a time series that has a 
linear trend, say, Yr = f3o + f31t + E1, the moving average will lag behind the 
observations. Assume that the observations are uncorrelated and have constant 
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TABLE E2.1 One-Step-Ahead Forecast Errors for Exercise 2.34 

Period, t e,( I) Period, t e,(l) Period, t e,(l) Period, t e,(l) 

1.83 II -2.30 21 3.30 31 -0.07 
2 -1.80 12 0.65 22 1.036 32 0.57 
3 0.09 13 -0.01 23 2.042 33 2.92 
4 -1.53 14 -1.11 24 1.04 34 1.99 
5 -0.58 15 0.13 25 -0.87 35 1.74 
6 0.21 16 -1.07 26 -0.39 36 -0.76 
7 1.25 17 0.80 27 -0.29 37 2.35 
8 -1.22 18 -1.98 28 2.08 38 -1.91 
9 1.32 19 0.02 29 3.36 39 2.22 

10 3.63 20 0.25 30 -0.53 40 2.57 

variance. Show that at time T the expected value of the moving average is 

2.32 Use a 3-period moving average to smooth the champagne sales data in Table 
B.ll. Plot the moving average on the same axes as the original data. What 
impact has this smoothing procedure had on the data? 

2.33 Use a 12-period moving average to smooth the champagne sales data in Table 
B .I I. Plot the moving average on the same axes as the original data. What 
impact has this smoothing procedure had on the data? 

2.34 Table E2.1 contains 40 one-step-ahead forecast errors from a forecasting model. 

a. Find the sample ACF of the forecast errors. Interpret the results. 

b. Construct a normal probability plot of the forecast errors. Is there evidence 
to support a claim that the forecast errors are normally distributed? 

c. Calculate s2 , R2 , and the adjusted R 2. 

d. Find the mean error, the mean squared error, and the mean absolute 
deviation. Is it likely that the forecasting technique produces unbiased 
forecasts? 

2.35 Table E2.2 contains 40 one-step-ahead forecast errors from a forecasting model. 

a. Find the sample ACF of the forecast errors. Interpret the results. 

b. Construct a normal probability plot of the forecast errors. Is there evidence 
to support a claim that the forecast errors are normally distributed? 

c. Calculate s2
, R2

, and the adjusted R2
. 

d. Find the mean error, the mean squared error, and the mean absolute devia­
tion. [s it likely that the forecasting method produces unbiased forecasts'~ 
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TABLEE2.2 One-Step-Ahead Forecast Errors for Exercise 2.35 

Period, t e,(l) Period, t e,(l) Period, t e,(l) Period, t e,(l) 

-4.26 II 3.62 21 -6.24 31 -6.42 
2 -3.12 12 -5.08 22 -0.25 32 -8.94 
3 -1.87 13 -1.35 23 -3.64 33 -1.76 
4 0.98 14 3.46 24 5.49 34 -0.57 
5 -5.17 15 -0.19 25 -2.01 35 -10.32 
6 0.13 16 -7.48 26 -4.24 36 -5.64 
7 1.85 17 -3.61 27 -4.61 37 -1.45 
8 -2.83 18 -4.21 28 3.24 38 -5.67 
9 0.95 19 -6.49 29 -8.66 39 -4.45 

10 7.56 20 4.03 30 -1.32 40 -10.23 

2.36 Exercises 2.34 and 2.35 present information on forecast errors. Suppose that 
these two sets of forecast errors come from two different forecasting methods 
applied to the same time series. Which of these two forecasting methods would 
you recommend for use? Why? 

2.37 Consider the forecast errors in Exercise 2.34. Construct individuals and moving 
range control charts for these forecast errors. Does the forecasting system 
exhibit stability over this time period? 

2.38 Consider the forecast errors in Exercise 2.34. Construct a cumulative sum 
control chart for these forecast errors. Does the forecasting system exhibit 
stability over this time period? 

2.39 Consider the forecast errors in Exercise 2.35. Construct individuals and moving 
range control charts for these forecast errors. Does the forecasting system 
exhibit stability over this time period? 

2.40 Consider the forecast errors in Exercise 2.35. Construct a cumulative sum 
control chart for these forecast errors. Does the forecasting system exhibit 
stability over this time period? 

2.41 Ten additional forecast errors for the forecasting model in Exercise 2.34 are 
as follows: 5.5358,-2.6183, 0.0130, 1.3543, 12.6980, 2.9007, 0.8985, 2.9240, 
2.6663, and -1.6710. Plot these additional ten forecast errors on the individuals 
and moving range control charts constructed in Exercise 2.37. Is the forecasting 
system still working satisfactorily? 

2.42 Plot the additional ten forecast errors from Exercise 2. on the cumulative sum 
control chart constructed in Exercise 2.38. Is the forecasting system still work­
ing satisfactorily? 



CHAPTER 3 

Regression Analysis and Forecasting 

Weather forecast for tonight: dark. 
GEORGE CARLIN, American comedian 

3.1 INTRODUCTION 

Regression analysis is a statistical technique for modeling and investigating the re­
lationships between an outcome or response variable and one or more predictor or 
regressor variables. The end result of a regression analysis study is often to generate 

a model that can be used to forecast or predict future values of the response variable 

given specified values of the predictor variables. 
The simple linear regression model involves a single predictor variable and is 

written as 

(3.1) 

where y is the response, x is the predictor variable, fJo and f3 1 are unknown parameters, 
and E is an error term. The model parameters or regression coefficients f30 and f3 1 

have a physical interpretation as the intercept and slope of a straight line, respectively. 

The slope f3 1 measures the change in the mean of the response variable y for a unit 
change in the predictor variable x. These parameters are typically unknown and must 

be estimated from a sample of data. The error term E accounts for deviations of 

the actual data from the straight line specified by the model equation. We usually 

think of E as a statistical error, so we define it as a random variable and will make 
some assumptions about its distribution. For example, we typically assume that E 

is normally distributed with mean zero and variance cr 2
, abbreviated N(O, cr 2

). Note 

that the variance is assumed constant; that is, it does not depend on the value of the 
predictor variable (or any other variable). 

Introduction to Time Series Analysis and Forecasting 
By Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci 
Copyright© 2008 John Wiley & Sons. Inc. 
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Regression models often include more than one predictor or regressor variable. If 
there are k predictors, the multiple linear regression model is 

(3.2) 

The parameters {30 , {3 1 ••••• f3k in this model are often called partial regression coef­
ficients because they convey information about the effect on y of the predictor that 
they multiply given that all of the other predictors in the model do not change. 

The regression models in Eqs. (3.1) and (3.2) are linear regression models because 
they are linear in the unknown parameters (the /)'s), and not because they necessarily 
describe linear relationships between the response and the regressors. For example. 
the model 

is a linear regression model because it is linear in the unknown parameters {3 0 • {3 1• 

and {3 2 , although it describes a quadratic relationship between ·'· and x. As another 
example, consider the regression model 

(3.3) 

which describes the relationship between a response variable y that varies cyclically 
with time (hence the subscript t) and the nature of this cyclic variation can be described 
as a simple sine wave. Regression models such as Eq. (3.3) can be used to remove 
seasonal effects from time series data (refer to Section 2.4.4 where models like this 
were introduced). If the period d of the cycle is specified (such as d = 12 for monthly 
data with an annual cycle). then sin (2rr/d)t and cos (2rr/d)t are just numbers for 
each observation on the response variable and Eq. (3.3) is a standard linear regression 
model. 

We will discuss the use of regression models for forecasting or making predictions 
in two different situations. The first of these is the situation where all of the data 
are collected on y and the regressors in a single time period (or put another way. 
the data are not time oriented). For example. suppose that we wanted to develop a 
regression model to predict the proportion of consumers who will redeem a coupon for 
purchase of a particular brand of milk (y) as a function of the amount of the discount 
or face value of the coupon (x ). These data are collected over some specified study 
period (such as a month) and the data do not explicitly vary with time. This type of 
regression data is called cross-section data. The regression model for cross-section 
data is written as 

where the subscript i is used to denote each individual observation lor case) in the data 
set and n represents the number of observations. In the other situation the response 
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and the regressors are time series, so the regression model involves time series data. 
For example, the response variable might be hourly C02 emissions from a chemical 
plant and the regressor variables might be the hourly production rate, hourly changes 
in the concentration of an input raw material, and ambient temperature measured each 
hour. All of these are time-oriented or time series data. 

The regression model for time series data is written as 

In comparing Eq. (3.5) to Eq. (3.4), note that we have changed the observation or case 
subscript from i to t to emphasize that the response and the predictor variables are 
time series. Also, we have used T instead of n to denote the number of observations 
in keeping with our convention that, when a time series is used to build a forecasting 
model, T represents the most recent or last available observation. Equation (3.3) is a 
specific example of a time series regression model. 

The unknown parameters fJ0, fJ 1, ... , fJk in a linear regression model are typically 
estimated using the method ofleast squares. We illustrated least squares model fitting 
in Chapter 2 for removing trend and seasonal effects from time series data. This is 
an important application of regression models in forecasting, but not the only one. 
The next section gives a formal description of the least squares estimation procedure. 
Subsequent sections deal with statistical inference about the model and its parameters. 
and with model adequacy checking. We will also describe and illustrate several ways 
in which regression models are used in forecasting. 

3.2 LEAST SQUARES ESTIMATION IN LINEAR 
REGRESSION MODELS 

We begin with the situation where the regression model is used with cross-section 
data. The model is given in Eq. (3.4). There are n > k observations on the response 
variable available, say, y 1, y2, ... , }'11 • Along with each observed response y;, we will 
have an observation on each regressor or predictor variable and x;i denotes the ith 
observation or level of variable xi. The data will appear as in Table 3.1. We assume that 
the error term E in the model has expected value E (E) = 0 and variance Var (E) = a 2, 
and that the errors E;, i = I, 2, ... , n are uncorrelated random variables. 

TABLE3.1 Cross-Section Data for Multiple Linear Regression 

Observation Response, y x, X:: .r, 
Y1 x,, .:rl~ Xik 

2 Y2 X21 X2:.: _:r2~ 

ll )'n Xni Xn2 XnJ... 
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The method ofleast squares chooses the model parameters (the f3 's) in Eq. (3.4) so 
that the sum of the squares of the errors, e;, is minimized. The least squares function 
is 

n n 

L = L c:J = L (y; - f3o- fJ,x;, - fJ2x;2- · · ·- f3kx'k )2 

i=l i=l 

(3.6) 

This function is to be minimized with respect to f3o. {3 1, .••• f3k. Therefore the least 
squares estimators, say, fJo. fJ 1 , ... , fJ b must satisfy 

=0 (3.7) 

and 

(3.8) 
Simplifying Eqs. (3.7) and (3.8) we obtain 

II II fl fl 

nfJo + fJ, L x;, +fJ2 L x;2+ · · · + fJk L X;k = LY; (3.9) 
i=l i=l i=l 1=1 

n n n n n 

fJo I:xil+fJ, l:::x?,+fJ2 LX;2x;,+ · · · + fJk LX;kXil = LY;X;I 
i=l i=l i=l i=l 1=1 

(3.10) 

n n n 11 n 

fJo LX;k+fJ, Lx;,x;k + fJ2 Lx;2x;k+ · · · + fJk l:::x;", = LY;XIk 
i=l i=l i=l 1=1 i=l 

These equations are called the least squares normal equations. Note that there are 
p = k + I normal equations, one for each of the unknown regression coefficients. 
The solutions to the normal equations will be the least squares estimators ofthe model 
regression coefficients. 

It is simpler to solve the normal equations if they are expressed in matrix notation. 
We now give a matrix development of the normal equations that parallels the devel­
opment of Eq. (3.1 0). The multiple linear regression model may be written in matrix 
notation as 

y = Xj3 + £ (3.11) 
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where 

[y, l h[ XJI X12 · · · XJk 

Y2 X21 X22 · · • Xzk 

y= . ' 

Yn Xnl Xn2 · · · Xnk 

In general, y is an (11 x I) vector of the observations, X is an (11 x p) matrix of the 
levels of the regressor variables, 13 is a ( p x I) vector of the regression coefficients, 

and £ is an (11 x I) vector of random errors. X is usually called the model matrix, 

because it is the original data table for the problem expanded to the form of the 
regression model that you desire to fit. 

The vector of least squares estimators minimizes 

n 

L = z::>; = t:' t: = (y- X(3)'(y- X(3) 
i=l 

We can expand the right-hand side of Land obtain 

L = y'y- (3'X'y- y'X(3 + (3'X'X(3 = y'y- 2(3'X'y + (3'X'X(3 

because (3'X'y is a (I xI) matrix, or a scalar, and its transpose ((3'X'y)' = y'X(3 is the 
same scalar. The least squares estimators must satisfy 

- = -2X'y + 2(X'X)(3 = 0 aLI ~ 
a(3 ~ 

which simplifies to 

(X'X)~ = X'y (3.12) 

In Eq. (3.12) X' X is a (p x p) symmetric matrix and X'y is a (p x I) column vector. 

Equation (3.12) is just the matrix form of the least squares normal equations. It is 
identical to Eq. (3.10). To solve the normal equations, multiply both sides of Eq. 
(3.12) by the inverse of X'X (we assume that this inverse exists). Thus the least 

squares estimator of ~ is 

(3.13) 
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The fitted values of the response variable from the regression model are computed 
from 

(3.14) 

or in scalar notation, 

(3.15) 

The difference between the actual observation y; and the corre~ponding fitted value 
is the residual e; = y; - _\·;, i = I. 2 ..... 11. The 11 residuals can be written as an 
(11 x 1) vector denoted by 

e = y- y = y- X~ (3.16) 

In addition to estimating the regression coefficients {30 • {3 1 •.•.• f3J.., it is also neces­
sary to estimate the variance of the model errors. a". The estimator of this parameter 
involves the sum of squares of the residuals 

We can show that £(SSE) = (11 - p)a 2, so the estimator of a" is the residual or mean 
square error 

'1 SSE 
a-=-- (3.17) 

11-p 

The method of least squares is not the only way to estimate the parameters in a 
linear regression model, but it is widely used, and it results in estimates of the model 
parameters that have nice properties. If the model is correct (it has the right form and 
includes all of the relevant predictors), the least squares estimator ~ is an unbiased 
estimator of the model parameters f3; that is. 

£(~) = 13 

The variances and covariances of the estimators ~ are contained in a ( p x p) covari­
ance matrix 

(3.18) 

The variances of the regression coefficients are on the main diagonal of this matrix 
and the covariances are on the off-diagonals. 
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Example 3.1 

A hospital is implementing a program to improve quality and productivity. As part of 
this program, the hospital is attempting to measure and evaluate patient satisfaction. 
Table 3.2 contains some of the data that has been collected for a random sample of 
25 recently discharged patients. The "severity" variable is an index that measures the 
severity of the patient's illness, measured on an increasing scale (i.e., more severe ill­
nesses have higher values of the index), and the response satisfaction is also measured 
on an increasing scale, with larger values indicating greater satisfaction. 

We will fit a multiple linear regression model to the patient satisfaction data. The 
model is 

where y = patient satisfaction, x 1 = patient age, and x 2 = illness severity. To solve 
the least squares normal equations, we will need to set up the X'X matrix and the X'y 

TABLE3.2 Patient Satisfaction Survey Data 

Observation Age (xJ) Severity (x2 ) Satisfaction (y) 

55 50 68 
2 46 24 77 
3 30 46 96 
4 35 48 80 
5 59 58 43 
6 61 60 44 
7 74 65 26 
8 38 42 88 
9 27 42 75 

10 51 50 57 
II 53 38 56 
12 41 30 88 
13 37 31 88 
14 24 34 102 
15 42 30 88 
16 50 48 70 
17 58 61 52 
18 60 71 43 
19 62 62 46 
20 68 38 56 
21 70 41 59 
22 79 66 26 
23 63 31 52 
24 39 42 83 
25 49 40 75 
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vector. The model matrix X and observation vector y are 

55 50 68 
46 24 77 
30 46 96 
35 48 80 
59 58 43 
61 60 44 
74 65 26 
38 42 88 
27 42 75 
51 50 57 
53 38 56 
41 30 88 

X= 37 31 Y= 88 
24 34 102 
42 30 88 
50 48 70 
58 61 52 
60 71 43 
62 62 46 
68 38 56 
70 41 59 
79 66 26 
63 31 52 
39 42 83 
49 40 75 

The X'X matrix and the X'y vector are 

x'x~ Us 1 
46 

50 24 

and 

. . . 1 l [' ... :;; ] : 

1 
46 
24 

55 50] 46 24 25 1271 

' ~ [ 1271 69881 
. 1148 60814 

49 40 

l ] l ~~] [ 1638 ] 49 . = 76487 
40 : 70426 

75 

1148] 
60814 
56790 
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Using Eq. (3.13), we can find the least squares estimates of the parameters in the 
regression model as 

~ = (X'X)- 1X'y 

[~;71 !~~~I !b:~ 4] -I [ ~:!:7] 
1148 60814 56790 70426 

[ 

0.699946097 -0.006128086 -0.007586982] [ 1638 ] 
-0.006128086 0.00026383 -0.000158646 76487 

-0.007586982 -0.000158646 0.000340866 70426 

[ 

143.4720118] 
-1.031053414 

-0.55603781 

Therefore the regression model is 

y = 143.472- l.03lxl - 0.556x2 

where x 1 =patient age and x2 = severity of illness, and we have reported the regres­
sion coefficients to three decimal places. • 

Table 3.3 shows the output from the Minitab regression routine for the patient 
satisfaction data. Note that, in addition to the fitted regression model, Mini tab provides 
a list of the residuals computed from Eq. (3.16) along with other output that will 
provide information about the quality of the regression model. This output will be 
explained in subsequent sections, and we will frequently refer back to Table 3.3. 

Example 3.2 Trend Adjustment 

One way to forecast time series data that contains a linear trend is with a trend 
adjustment procedure. This involves fitting a model with a linear trend term in time, 
subtracting the fitted values from the original observations to obtain a set of residuals 
that are trend-free, then forecast the residuals, and compute the forecast by adding the 
forecast of the residual value(s) to the estimate of trend. We described and illustrated 
trend adjustment in Section 2.4.2, and the basic trend adjustment model introduced 
there was 

Yr=f3o+f3tt+c:, t=l,2, ... ,T 
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TABLE 3.3 Minitab Regression Output for the Patient Satisfaction Data in Table 3.2 

Regression Analysis: Satisfaction Versus Age, Severity 

The regression equation is 
Satisfaction= 143 - 1.03 Age - 0.556 Severity 

Predictor Coef SE Coef T p 

Constant 143.472 5.955 24.09 0.000 
Age -1.0311 0.1156 -8.92 0.000 
Severity -0.5560 0.1314 -4.23 0.000 

s 7.11767 R-Sq 89.7% R-Sq(adj) 88.7% 

Analysis of Variance 

Source DF ss MS F p 

Regression 2 9663.7 4831.8 95.38 0.000 
Residual Error 22 1114. 5 50.7 
Total 24 10778.2 

Source DF Seq SS 
Age 1 8756.7 
Severity 1 907.0 

Obs Age Satisfaction Fit SE Fit Residual St Resid 
1 55.0 68.00 58.96 1. 51 9.04 1. 30 
2 46.0 77.00 82.70 2.99 -5.70 -0.88 
3 30.0 96.00 86.96 2.80 9.04 1. 38 
4 35.0 80.00 80.70 2.45 -0.70 -0.10 
5 59.0 43.00 50.39 1. 96 -7.39 -1.08 
6 61.0 44.00 47.22 2.13 -3.22 -0.47 
7 74.0 26.00 31.03 2.89 -5.03 -0.77 
8 38.0 88.00 80.94 1. 92 7.06 1. 03 
9 27.0 75.00 92.28 2.90 -17.28 -2.66R 

10 51.0 57.00 63.09 1. 52 -6.09 -0.88 
11 53.0 56.00 67.70 1. 86 -11.70 -1.70 
12 41.0 88.00 84.52 2.28 3.48 0.52 
13 37.0 88.00 88.09 2.26 -0.09 -0.01 
14 24.0 102.00 99.82 2.99 2.18 0.34 
15 42.0 88.00 83.49 2.28 4.51 0.67 
16 50.0 70.00 65.23 1. 46 4.77 0.68 
17 58.0 52.00 49.75 2.21 2.25 0.33 
18 60.0 43.00 42.13 3.21 0.87 0.14 
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TABLE3.3 Minitab Regression Output for the Patient Satisfaction Data in Table 3.2 
(Continued) 

19 62.0 46.00 45.07 2.30 0.93 0.14 
20 68.0 56.00 52.23 3.04 3.77 0.59 
21 70.0 59.00 48.50 2.98 10.50 1. 62 
22 79.0 26.00 25.32 3.24 0.68 0.11 
23 63.0 52.00 61.28 3.28 -9.28 -1.47 
24 39.0 83.00 79.91 1. 85 3.09 0.45 
25 49.0 75.00 70.71 1. 58 4.29 0.62 

R denotes an observation with a large standardized residual. 

The least squares normal equations for this model are 

A A T(T+l) ~ 
Tf3o + fJ1 

2 
= LYr 

t=l 

A T(T + 1) A T(T + 1)(2T + 1) ~ 
f3o 2 + fJI 6 = L ty, 

1=1 

Because there are only two parameters, it is easy to solve the normal equations directly, 
resulting in the least squares estimators 

A 2(2T+l) T 6 T 

f3o = T(T- I) LYr- T(T -1) LlYr 
1=1 1=1 

A 12 T 6 T 

fJI = T(T2- I) ~tyl- T(T- I) ~y~ 

Minitab computes these parameter estimates in its trend adjustment procedure, 
which we illustrated in Example 2.6. The least squares estimates obtained from this 
trend adjustment model depend on the point in time at which they were computed, 
that is, T. Sometimes it may be convenient to keep track of the period of computation 
and denote the estimates as functions of time, say, /3 0 (T) and /3 1 (T). The model can 
be used to predict the next observation by predicting the point on the trend line in 
period T + 1, which is ~0(T) + ~ 1 (T)(T + 1), and adding to the trend a forecast 
of the next residual, say, e7 + 1 (I). If the residuals are structureless and have average 
value zero, the forecast of the next residual would be zero. Then the forecast of the 
next observation would be 

YT+I(T) = ~o(T) + ~ 1 (T)(T + 1) 
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When a new observation becomes available, the parameter estimates ~0 ( T) and ~ 1 ( T) 

could be updated to reflect the new information. This could be done by solving the 
normal equations again. In some situations it is possible to devise simple updating 
equations so that new estimates ~0 ( T + I) and ~ 1 ( T + I) can be computed directly 
from the previous ones ~0 ( T) and~ 1 (T) without having to directly solve the normal 
equations. We will show how to do this later. • 

3.3 STATISTICAL INFERENCE IN LINEAR REGRESSION 

In linear regression problems, certain tests of hypotheses about the model parameters 
and confidence interval estimates ofthese parameters are helpful in measuring the use­
fulness of the model. In this section, we describe several important hypothesis-testing 
procedures and a confidence interval estimation procedure. These procedures require 
that the errors c; in the model are normally and independently distributed with mean 
zero and variance a 2, abbreviated NID(O, a 2). As a result of this assumption, the ob­
servations y; are normally and independently distributed with mean f3o + L~=l f3;x;1 
and variance a 2• 

3.3.1 Test for Significance of Regression 

The test for significance of regression is a test to determine whether there is a linear 
relationship between the response variable y and a subset of the predictor or regressor 
variables x 1, x2 , •.. , Xk. The appropriate hypotheses are 

Ho : fJ1 = fJ2 = · · · = f3k = 0 
H1 : at least one /3; :f. 0 

(3.19) 

Rejection of the null hypothesis H0 in Eq. (3.19) implies that at least one of the 
predictor variables x 1, x2 , ... , Xk contributes significantly to the model. The test 
procedure involves an analysis of variance partitioning of the total sum of squares 

n 

SST= L (y;- .\')
2 

i=l 

(3.20) 

into a sum of squares due to the model (or to regression) and a sum of squares due 
to residual (or error), say, 

(3.21) 

Now if the null hypothesis in Eq. (3.19) is true and the model errors are normally 
and independently distributed with constant variance as assumed. then the test statistic 
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TAHLE J.4 Analysis of Variance for Testing Significance of Regression 

Source ot 
Variation Sum of Squares 

Regression SSR 

Residual (error) SSE 

Total ss, 

for significance of regression is 

Degrees of 
Freedom Mean Square 

k 

n-p 

n-1 

SSR/k 
Fo=----­

SSE/(n- p) 

SSR 
k 

SSE 
n-p 

Test Statistic, Fo 

SSR/k 
Fo= 

SSE/(n- p) 

(3.22) 

and one rejects H0 if the test statistic F0 exceeds the upper tail point of the F distribu­
tion with k numerator degrees of freedom and n - p denominator degrees of freedom, 
Fa.k.n-p· Table A.4 in Appendix A contains these upper tail percentage points of the 
F distribution. 

Alternatively, we could use the P-value approach to hypothesis testing and thus 
reject the null hypothesis if the P-value for the statistic F0 is less than a. The quantities 
in the numerator and denominator of the test statistic F0 are called mean squares. 
Recall that the mean square for error or residual estimates 0'

2 . 

The test for significance of regression is usually summarized in an analysis of 
variance CANOVA) table such as Table 3.4. Computational formulas for the sums of 
squares in the ANOVA are 

11 

SSy = L (Yi - .02 = y' Y - n i 
i=l 
~' 

SSR = 13 X'y- ny2 
A/ 

SSE = y'y - 13 X'y 

(3.23) 

Regression model AN OVA computations are almost always performed using a com­
puter software package. The Minitab output in Table 3.3 shows the ANOVA test for 
significance of regression for the regression model for the patient satisfaction data. 
The hypotheses in this problem are 

Ho : {31 = fJ2 = 0 
H 1 : at least one f3i -1 0 

The reported value of the F -statistic from Eq. (3.22) is 

- 9663.7/2 - 4851.8 - 95 38 Fo- - - . 
1114.5/22 50.7 
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and the ?-value is reported as 0.000 (Minitab reports ?-values that are less than 0.00 I 
as 0.000). The actual ? -value is approximately 1.44 x 10- 11 , a very small value, so 
there is strong evidence to reject the null hypothesis and we conclude that either 
patient age or severity are useful predictors for patient satisfaction. 

Table 3.3 also reports the coefficient of multiple determination R 2 , first introduced 
in Section 2.6.2 in the context of choosing between competing forecasting models. 
Recall that 

(3.24) 

For the regression model for the patient satisfaction data, we have 

2 SSR 9663.7 
R = SST = 107738.2 = 0.897 

and Minitab multiplies this by I 00% to report that R2 = 89.7%. 
The statistic R2 is a measure of the amount of reduction in the variability of y 

obtained by using the predictor variables x 1, x2 , •.• , xk in the model. It is a measure 
of how well the regression model fits the data sample. However, as noted in Section 
2.6.2, a large value of R2 does not necessarily imply that the regression model is a 
good one. Adding a variable to the model will never cause a decrease in R2 , even in 
situations where the additional variable is not statistically significant. In almost all 
cases, when a variable is added to the regression model R2 increases. As a result, over 
reliance on R2 as a measure of model adequacy often results in overfitting: that is, 
putting too many predictors in the model. In Section 2.6.2 we introduced the adjusted 
R2 statistic 

R2 _ I _ SSEf(n - p) 
Adj- SST/(n-1) 

(3.25) 

In general, the adjusted R2 statistic will not always increase as variables are added to 
the model. In fact, if unnecessary regressors are added, the value of the adjusted R2 

statistic will often decrease. Consequently, models with a large value of the adjusted 
R2 statistic are usually considered good regression models. Furthermore, the regres­
sion model that maximizes the adjusted R2 statistic is also the model that minimizes 
the residual mean square. 

Mini tab reports both R2 and Rldj in Table3.4. The value of R2 = 0.897 (or89.7%), 

and the adjusted R2 statistic is 

2 SSEf(n- p) 
RAdj = I - SST/(n- I) 

= 1- 1114.5/(25-3) 
10778.2/(25 - I) 

= 0.887 



STATISTICAL INFERENCE IN LINEAR REGRESSION 87 

Both R2 and R~d are very similar, usually a good sign that the regression model does 
J 

not contain unnecessary predictor variables. It seems reasonable to conclude that the 
regression model involving patient age and severity accounts for between about 88% 
and 90% of the variability in the patient satisfaction data. 

3.3.2 Tests on Individual Regression Coefficients and Groups of Coefficients 

Tests on Individual Regression Coefficients 
We are frequently interested in testing hypotheses on the individual regression coef­
ficients. These tests would be useful in determining the value or contribution of each 
predictor variable in the regression model. For example, the model might be more 
effective with the inclusion of additional variables or perhaps with the deletion of one 
or more of the variables already in the model. 

Adding a variable to the regression model always causes the sum of squares for 
regression to increase and the error sum of squares to decrease. We must decide 
whether the increase in the regression sum of squares is sufficient to warrant using 
the additional variable in the model. Furthermore, adding an unimportant variable 
to the model can actually increase the mean squared error, thereby decreasing the 
usefulness of the model. 

The hypotheses for testing the significance of any individual regression coefficient, 
say, f3 J, are 

Ho : {31 = 0 

HI : f3J # 0 
(3.26) 

If the null hypothesis Ho : f3 J = 0 is not rejected, then this indicates that the predictor 
variable x 1 can be deleted from the model. 

The test statistic for this hypothesis is 

s 
to = -.,;--====' =-c' (3.27) 

where Cu is the diagonal element of the (X'X)- 1matrix corresponding to the re­
gression coefficient S.i (in numbering the elements of the matrix C = (X'X)- 1 it is 
necessary to number the first row and column as zero so that the first diagonal element 
C00 will correspond to the subscript number on the intercept). The null hypothesis 
H0 : f3J = 0 is rejected if the absolute value of the test statistic ltol > ta12_n-p' where 
ta; 2.n-p is the upper a/2 percentage point of the t distribution with n - p degrees of 
freedom. Table A.3 in Appendix A contains these upper tail points of the t distribu­
tion. A P-value approach could also be used. This t-test is really a partial or marginal 
test because the regression coefficient /3 J depends on all the other regressor variables 
xi (i # j) that are in the model. 
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The denominator of Eq. (3.27), Ja 2C11 , is usually called the standard error of 
the regression coefficient . That is, 

Therefore an equivalent way to write the t-test statistic in Eq. (3.27) is 

to= s~ 
se(f3 J) 

(3.28) 

(3.29) 

Most regression computer programs provide the t-test for each model parameter. For 

example, consider Table 3.3, which contains the Minitab output for Example 3.1. 

The upper portion of this table gives the least squares estimate of each parameter, the 

standard error, the t statistic, and the corresponding P-value. To illustrate how these 
quantities are computed, suppose that we wish to test the hypothesis that x1 =patient 
age contributes significantly to the model, given that x 2 = severity is included in the 

regression equation. Stated formally, the hypotheses are 

Ho: f31 = 0 

H1 : {31 #- 0 

The regression coefficient for x 1 = patient age is S 1 = -1.0311. The standard error 
of this estimated regression coefficient is 

se(Sd = )a 2C 11 = )(50.7)(0.00026383) = 0.1157 

which agrees very closely with the Minitab output. (Often manual calculations will 
differ slightly from those reported by the computer, because the computer carries more 

decimal places. For instance, in this example if the mean squared error is computed to 
four decimal places as MSE = SSE/(n- p) = 1114.5/(25- 3) = 50.6591 instead 
of the two places reported in the Minitab output, and this value of the MSE is used 

as the estimate 6 2 in calculating the standard error, then the standard error of S 1 will 
match the Minitab output.) The test statistic is computed from Eq. (3.29) as 

s~ -1.0311 
to= --A-= = -8.9118 

se(f3 il 0.1157 

This is also slightly different from the results reported by Minitab. which is to = 

-8.92. Because the P-value reported is small, we would conclude that patient age is 

statistically significant; that is, it is an important predictor variable given that severity 

is also in the model. If we use se(S!) = 0.1156, then the value of the test statistic 
would agree with Minitab. Similarly, because the t-test statistic for x 2 = severity is 
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large, we would conclude that severity is a significant predictor given that patient age 
is in the model. 

Tests on Groups of Coefficients 
We may also directly examine the contribution to the regression sum of squares for 
a particular predictor, say, x j, or a group of predictors, given that other predictors 
x; (i i= j) are included in the model. The procedure for doing this is the general 
regression significance test or, as it is more often called, the extra sum of squares 
method. This procedure can also be used to investigate the contribution of a subset 
involving several regressor or predictor variables to the model. Consider the regression 
model with k regressor variables 

y = Xl3 + t: (3.30) 

where y is (n x I), X is (n x p ), 13 is ( p x I), r is (n x I), and p = k + I. We would like 
to determine if a subset of the predictor variables x 1, x 2 , .•. , Xr (r < k) contributes 
significantly to the regression model. Let the vector of regression coefficients be 
partitioned as follows: 

where 13 1 is (r x 1) and 132 is [ (p - r) x 1]. We wish to test the hypotheses 

The model may be written as 

Ho : 13 1 = 0 

H1: 13 1 oj=O 
(3.31) 

(3.32) 

where X 1 represents the columns of X (or the predictor variables) associated with 13 1 

and X2 represents the columns of X (predictors) associated with l3 2 . 

For the full model (including both 13 1 and 13 2), we know that~= (X'X)- 1X'y. 
Also, the regression sum of squares for all predictor variables including the intercept 
IS 

(p degrees of freedom) (3.33) 

and the estimate of u 2 based on this full model is 

A/ 

A2 y'y- 13 X'y 
(J = ----- (3.34) 

n-p 



90 REGRESSION ANALYSIS AND FORECASTING 

SSR(I3) is called the regression sum of squares due to 13. To find the contribution of 

the terms in 13 1 to the regression, we fit the model assuming that the null hypothesis 
Ho: 13I = 0 is true. The reduced model is found from Eq. (3.32) with 13 1 = 0: 

Y = Xcl3c + £ (3.35) 

The least squares estimator of 13 2 is~:!= (X'cX2)- 1X'cY and the regression sum of 
squares for the reduced model is 

(3.36) 

The regression sum of squares due to 13 1 given that 13 2 is already in the model is 

(3.37) 

This sum of squares has r degrees of freedom. It is the "extra sum of squares·· due 

to 131· Note that SSR(I3Ji 132) is the increase in the regression sum of squares due 

to including the predictor variables x 1, x 2, .... x r in the model. Now SSR ( 13 1 I 13 2 ) is 
independent of the estimate of a 2 based on the full model from Eq. (3.34). so the null 
hypothesis H0 : 13 1 = 0 may be tested by the statistic 

(3.38) 

where a2 is computed from Eq. (3.34). If F0 > Fa.r.n-p we reject H0 , concluding 
that at least one of the parameters in 13 1 is not zero, and, consequently, at least one of 

the predictor variables x 1, x 2 , ...• Xr in X 1 contributes significantly to the regression 

model. A P -value approach could also be used in testing this hypothesis. Some authors 

call the test in Eq. (3.38) a partial F test. 
The partial F test is very useful. We can use it to evaluate the contribution of an 

individual predictor or regressor x J as if it were the last variable added to the model 
by computing 

This is the increase in the regression sum of squares due to adding x J to a model that 

already includes x 1, ••• • xJ-I· Xj+l····· xk. The partial F test on a single variable 
x1 is equivalent to the t-test in Equation (3.27). The computed value of F0 will be 

exactly equal to the square of the t-test statistic t0 . However, the partial F test is a 

more general procedure in that we can evaluate simultaneously the contribution of 

more than one predictor variable to the model. 
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Example 3.3 

To illustrate this procedure, consider again the patient satisfaction data from Table 
3.2. Suppose that we wish to consider fitting a more elaborate model to this data; 
specifically, consider the second-order polynomial 

where x 1 =patient age and x 2 =severity. To fit the model, the model matrix would 
need to be expanded to include columns for the second-order terms XJX2, xr and xi. 
The results of fitting this model using Mini tab are shown in Table 3.5. 

Suppose that we want to test the significance of the additional second-order terms. 
That is, the hypotheses are 

Ho: fJ12 = fJ11 = f3n = 0 
H 1 : at least one of the parameters f3 12, fJ11, or fJ22 -1- 0 

In the notation used in this section, these second-order terms are the parameters in the 
vector 13 1• Since the quadratic model is the full model, we can find SSR ( 13) directly 

TABLE 3.5 Minitab Regression Output for the Second-Order Model for the 
Patient Satisfaction Data 

The regression equation is 
Satisfaction= 128 - 0.995 Age + 0.144 Severity+ 0.0065 
AgexSev - 0.00283 AgeA2 - 0.0114 SeverityA2 

Predictor Coef 
Constant 127.53 
Age -0.9952 
Severity 0.1441 
AgexSev 0.00646 
AgeA2 -0.002830 
SeverityA2 -0.01137 

s 7.50264 R-Sq 

Analysis of Variance 

Source DF 
Regression 5 
Residual Error 19 

SE Coef T p 

27.91 4.57 0.000 
0.7021 -1.42 0.173 
0.9227 0.16 0.878 

0.01655 0.39 0.701 
0.008588 -0.33 0.745 

0.01353 -0.84 0. 411 

90.1% R-Sq(adj) 87.5% 

ss 
9708.7 
1069.5 

MS 
1941.7 

56.3 

F 

34.50 

p 

0.000 

Total 24 10778.2 
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from the Minitab output in Table 3.5 as 

SSR(I3) = 9708.7 

with 5 degrees of freedom (because there are five predictors in this model). The 
reduced model is the model with all of the predictors in the vector 13 1 equal to zero. 
This reduced model is the original regression model that we fit to the data in Table 
3.3. From Table 3.3, we can find the regression sum of squares for the reduced model 
as 

and this sum of squares has 2 degrees of freedom (the model has two predictors). 
Therefore the extra sum of squares for testing the significance of the quadratic 

terms is just the difference between the regression sums of squares for the full and 
reduced models, or 

SSR(I3I 1132) = SSR(I3)- SSR(I32) 

= 9708.7- 9663.7 

= 45.0 

with 5 - 2 = 3 degrees of freedom. These three degrees of freedom correspond to the 
three additional terms in the second-order model. The test statistic from Eq. (3.38) is 

SSR ( 131 I 13 2) I r 
Fo = ,, 

a-

45.0/3 
50.7 

= 0.296 

This F -statistic is very small, so there is no evidence against the null hypothesis. 
Furthermore, from Table 3.5, we observe that the individual t-statistics for the 

second-order terms are very small and have large ?-values, so there is no reason to 
believe that the model would be improved by adding any of the second-order terms. 

It is also interesting to compare the R 2 and Rictj statistics for the two models. From 

Table 3.3, we find that R2 = 0.897 and Rictj = 0.887 for the original two-variable 

model, and from Table 3.5, we find that R 2 = 0.90 I and RLJ = 0.875 forthe quadratic 

model. Adding the quadratic terms caused the ordinary R 2 to increase slightly (it 
will never decrease when additional predictors are inserted into the model). but the 
adjusted R 2 statistic decreased. This decrease in the adjusted R 2 is an indication that 
the additional variables did not contribute to the explanatory power of the model. • 
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3.3.3 Confidence Intervals on Individual Regression Coefficients 

It is often necessary to construct confidence interval (CI) estimates for the parameters 
in a linear regression and for other quantities of interest from the regression model. 
The procedure for obtaining these confidence intervals requires that we assume that 
the model errors are normally and independently distributed with mean zero and 
variance a 2

, the same assumption made in the two previous sections on hypothesis 
testing. 

Because the least squares estimator ~ is a linear combination of the observations, 
it follows that ~ is normally distributed with mean vector f3 and covariance matrix 
Var (~) = a 2(X'X)- 1• Then each of the statistics 

fJ - f3 .I .I 

~' v u -~ jj 
j = 0, I, ... ,k (3.39) 

is distributed as t with n - p degrees offreedom, where Cj1 is the (jj)th element of the 
(X'X)- 1 matrix, and a2 is the estimate of the error variance, obtained from Eq. (3.34). 
Therefore a 1 00( 1 - a) percent confidence interval for an individual regression co­
efficient {Ji, j = 0, I, ... , k, is 

(3.40) 

This CI could also be written as 

because se(/Jj) = Ja 2Cii· 

Example 3.4 

We will find a 95% CIon the regression for patient age in the patient satisfaction data 
regression model. From the Minitab output in Table 3.3, we find that fJ 1 = -1.0331 
and se(fJ 1) = 0.1156. Therefore the 95% CI is 

fJj- ta/2n-pse(/Jj) :S f3j :S fJj + ta/2.n-pse(/Jj) 

-1.0311 - (2.074)(0.1156) :::: fJI :::: -1.0311 + (2.074)(0.1156) 

-1.2709 :::: fJI :::: -0.7913 

This confidence interval does not include zero; this is equivalent to rejecting (at 
the 0.05 level of significance) the null hypothesis that the regression coefficient 
f31 = 0. • 
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3.3.4 Confidence Intervals on the Mean Response 

We may also obtain a confidence interval on the mean response at a particular combi­
nation of the predictor or regressor variables. say. x01 • x 02 •...• x0,. We first define a 
vector that represents this point expanded to model form. Since the standard multiple 
linear regression model contains the k predictors and an intercept term. this vector is 

- [X;ll] Xo- . 

xok 

The mean response at this point is 

The estimator of the mean response at this point is found by substituting ~ for 13 

(3.41) 

This estimator is n~rmally distributed because ~ is normally di~tributed and it is also 
unbiased because 13 is an unbiased estimator of 13. The variance of .\·(xo) is 

(3.42) 

Therefore, a I 00( I - a) percent CI on the mean response at the point x0 1• xo2 • ...• 

Xok is 

(3.43) 

where 8 2 is the estimate of the error variance. obtained from Eq. (3.34 ). Note that the 
length of this confidence interval will depend on the location of the point x0 through 
the term x(J(X'X)- 1 x0 in the confidence interval formula. Generally. the length of the 
CI will increase as the point x0 moves further from the center of the predictor variable 
data. 

The quantity 

used in the confidence interval calculations in Eq. (3.43) is ~ometimes called the 
standard error of the fitted response. Minitab displays these standard errors for each 
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individual observation in the sample used to fit the model. These standard errors can 
be used to compute the CI in Eq. (3.43). 

Example 3.5 

Suppose that we want to find a confidence interval on mean patient satisfaction for the 
point where x 1 =patient age= 55 and x 2 = severity= 50. This is the first observation 
in the sample, so refer to Table 3.3, the Minitab output for the patient satisfaction 
regression model. For this observation, Minitab reports that the "SE Fit" is 1.51, or 

in our notation, J¢a;=[.~ = 1.51. Therefore if we want to find a 95% CI on the 
mean patient satisfaction for the case where x 1 =patient age= 55 and x 2 =severity= 
50, we would proceed as follows: 

58.96- 2.074(1.51) :'S /-lvixo :'S 58.96 + 2.074(1.51) 

55.83 :'S /-1rjx11 :'S 62.09 

From inspection of Table 3.3, note that the standard errors for each observation 
are different. This reflects the fact that the length of the CI on the mean response 
depends on the location of the observation. Generally, the standard error increases as 
the distance of the point from the center of the predictor variable data increases. 

In the case where the point of interest x0 is not one of the observations in the 

sample, it is necessary to calculate the standard error for that point Jv~] = 

/a 2x0(X'X)- 1x0 , which involves finding x0(X'X)- 1x0 for the observation x0 . This 
is not too difficult (you can do it in Excel), but it is not necessary, because Minitab 
will provide the CI at any point that you specify. For example, if you want to find a 
95% CIon the mean patient satisfaction for the point where x 1 = patient age = 60 
and x 2 = severity = 60 (this is not a sample observation), then Minitab reports the 
desired CI as follows: 

Obs 
1 

Predicted Values for New Observations 

Fit 
48.25 

SE Fit 
2.12 

New 
95% CI 

(43.85, 52.65) 
95% PI 

(32.84, 63.65) 

Values of Predictors for New Observations 

Obs 
1 

New 
Age 

60.0 
Severity 

60.0 
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Minitab calculates the estimate of the mean patient satisfaction at the point x 1 = 
patient age = 60 and x2 = severity = 60 as _\·(Xo) = 48.25, and the standard error 

of the fitted response as Jv~ = Ja 2x0(X'X)- 1x0 = 2.12. Consequently. the 
95% CI on the mean patient satisfaction at that point is 

43.85:::: J.l,i"<l :::: 52.65 

Minitab also calculates a prediction interval at this point of interest, shown as the 
"PI'' in the computer output above. In the next section we show how that interval is 
computed. • 

3.4 PREDICTION OF NEW OBSERVATIONS 

A regression model can be used to predict future observations on the response y 
corresponding to a particular set of values of the predictor or regressor variables, 
say, x 01 , x 02 , ... , xok. Let Xo represent this point, expanded to model form. That is, 
if the regression model is the standard multiple regression model, then Xo contains 
the coordinates of the point of interest and unity to account for the intercept term, 
so x0 = [I, x 01 , x 02 , ... , x 0d. A point estimate of the future observation y(Xo) at the 
point xo1, xo2, ... , Xok is computed from 

(3.44) 

The prediction error in using _\·(Xo) to estimate y(Xo) is y(x0)- _\·(x0 ). Because 
.Y<Xo) and y(Xo) are independent, the variance of this prediction error is 

If we use a2 from Eq. (3.34) to estimate the error variance a 2, then the ratio 

Y(Xo) - .\'(Xo) 

has a t distribution with n - p degrees of freedom. Consequently, we can write the 
following probability statement: 
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This probability statement can be rearranged as follows: 

P(y(xo)- ta;2,n-pJa 2 [I+ x(J(X'X)- 1xo] :S y(x0 ) 

:S y(xo) + ta;2.n-pJa 2 [1 + xb(X'X)- 1xo]) =I- a 

Therefore the probability is I -a that the future observation falls in the interval 

)l(xo) - ta;2,n-pJ a 2 [ 1 + x(J(X'X)- 1 x0 ] :S y(x0 ) 

:S y(xo) + ta/2.n-pJa 2 [I+ x(J(X'X)- 1xo] (3.46) 

This statement is called a 100(1 - a) percent prediction interval (PI) for the future 
observation y(x0 ) at the point x01 , x02 , ... , xok. 

The PI formula in Eq. (3.46) looks very similar to the formula for the CI on the 
mean, Eq. (3.43). The difference is the "I" in the variance of the prediction error under 
the square root. This will make a PI longer than the corresponding CI at the same 
point. It is reasonable that the PI should be longer, as the CI is an interval estimate 
on the mean of the response distribution at a specific point, while the PI is an interval 

estimate on a single future observation from the response distribution at that point. 
There should be more variability associated with an individual observation than with 
an estimate of the mean, and this is reflected in the additional length of the PI. 

Example 3.6 

Minitab will compute the prediction interval in Eq. (3.46). To illustrate, suppose that 
we want a 95% PI on a future observation of patient satisfaction for a patient whose 
age is 75 and with severity of illness 60. Mini tab gives the following result: 

Predicted Values for New Observations 

Obs Fit 
1 32.78 

SE Fit 
2.79 

New 
95% CI 

(26.99, 38.57) 
95% PI 

(16.93, 48.64) 

Values of Predictors for New Observations 

New 
Obs Age Severity 

1 75.0 60.0 
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The predicted value of satisfaction at this new observation is _\·(x0 ) = 32.78. and the 
prediction interval is 

16.93 S Y(Xo) S 48.64 • 
This example provides us with an opportunity to compare prediction and con­

fidence intervals. First. note that the PI is longer that the corresponding CI. Now 
compare the length of the CI and the PI for this point with the length of the CI and the 
PI for the point x 1 =patient age= 60 and x 2 =severity= 60 from Example 3.4. The 
intervals are longer for the point in this example because this point with x 1 = patient 
age = 75 and x2 = severity = 60 is further from the center of the predictor variable 
data than the point in Example 3.4. where .r 1 =patient age= 60 and x 2 =severity= 
60. 

3.5 MODEL ADEQUACY CHECKING 

3.5.1 Residual Plots 

An important part of any data analysis and model-building procedure is checking 
the adequacy of the model. We know that all models are wrong, but a model that 
is a reasonable fit to the data used to build it and that does not seriously ignore 
or violate any of the underlying model-building assumptions can be quite useful. 
Model adequacy checking is particularly important in building regression models 
for purposes of forecasting, because forecasting will almost always involve some 
extrapolation or projection of the model into the future, and unless the model is 
reasonable the forecasting process is almost certainly doomed to failure. 

Regression model residuals, originally defined in Eq. (2.2). are very useful in 
model adequacy checking and to get some sense of how well the regression model 
assumptions of normally and independently distributed model errors with constant 
variance are satisfied. Recall that if y; is the observed value of the response variable 
and if the corresponding fitted value from the model is _\·;. then the residuals are 

e; = y; - _\·;. i = I. 2 ..... n 

Residual plots are the primary approach to model adequacy checking. The sim­
plest way to check the adequacy of the normality assumption on the model errors is 
to construct a normal probability plot of the residuals. In Section 2.6.1 we introduced 
and used the normal probability plot of forecast errors to check for the normality of 
forecast errors. The use of the normal probability plot for regression residuals follows 
the same approach. To check the assumption of constant variance. plot the residuals 
versus the fitted values from the model. If the constant variance assumption is satis­
fied, this plot should exhibit a random scatter of residuals around ;ero. Problems with 
the equal variance assumption usually show up as a pattern on this plot. The most 
common pattern is an outward-opening funnel or megaphone pattern. indicating that 
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the variance of the observations is increasing as the mean increases. Data transforma­
tions (see Section 2.4.1) are useful in stabilizing the variance. The log transformation 
is frequently useful in forecasting applications. It can also be helpful to plot the resid­
uals against each of the predictor or regressor variables in the model. Any deviation 
from random scatter on these plots can indicate how well the model fits a particular 
predictor. 

When the data are a time series, it is also important to plot the residuals versus time 
order. As usual, the anticipated pattern on this plot is random scatter. Trends, cycles, 
or other patterns in the plot of residuals versus time indicate model inadequacies. 
possibly due to missing terms or some other model specification issue. A funnel­
shaped pattern that increases in width with time is an indication that the variance of 
the time series is increasing with time. This happens frequently in economic time 
series data, and in data that span a long period of time. Log transformations are often 
useful in stabilizing the variance of these types of time series. 

Example 3.7 

Table 3.3 presents the residuals for the regression model for the patient satisfaction 
data from Example 3.1. Figure 3.1 plots these residuals in a format that Mini tab refers 
to as the "four-in-one" plot. The plot in the upper left-hand portion of the display is 
a normal probability plot of the residuals. The residuals lie generally along a straight 
line, so there is no obvious reason to be concerned with the normality assumption. 
There is a very mild indication that one of the residuals (in the lower tail) may be 
slightly larger than expected, so this could be an indication of an outlier (a very 
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mild one). The lower left plot is a histogram of the residuals. Histograms are more 
useful for large samples of data than small ones, so since there are only 25 residuals, 
this display is probably not as reliable as the normal probability plot. However, the 
histogram does not give any serious indication of nonnormality. The upper right is a 
plot of residuals versus the fitted values. This plot indicates essentially random scatter 
in the residuals, the ideal pattern. If this plot had exhibited a funnel shape, it could 
indicate problems with the equality of variance assumption. The lower right is a plot 
of the observations in the order ofthe data. If this was the order in which the data were 
collected, or if the data were a time series, this plot could reveal information about 
how the data may be changing over time. For example, a funnel shape on this plot 
might indicate that the variability of the observations was changing with time. • 

In addition to residual plots, other model diagnostics are frequently useful in 
regression. The following sections introduce and briefly illustrate some of these pro­
cedures. For more complete presentations, see Montgomery, Peck, and Vining [2006] 
and Myers [1990]. 

3.5.2 Scaled Residuals and PRESS 

Standardized Residuals 
Many regression model builders prefer to work with scaled residuals in contrast to the 
ordinary least squares residuals. These scaled residuals frequently convey more infor­
mation than do the ordinary residuals. One type of scaled residual is the standardized 
residual, 

e; 
d;=-;;­

(J 

(3.47) 

where we generally use a = ../MSi. in the computation. The standardized residuals 
have mean zero and approximately unit variance; consequently. they are useful in 
looking for outliers. Most of the standardized residuals should lie in the interval 
-3::::; d; ::::; +3, and any observation with a standardized residual outside this interval 
is potentially unusual with respect to its observed response. These outliers should 
be carefully examined because they may represent something as simple as a data­
recording error or something of more serious concern, such as a region of the predictor 
or regressor variable space where the fitted model is a poor approximation to the true 
response. 

Studentized Residuals 
The standardizing process in Eq. (3.47) scales the residuals by dividing them by 
their approximate average standard deviation. In some data sets. residuals may have 
standard deviations that differ greatly. We now present a scaling that takes this into 
account. The vector of fitted values _\-; that corresponds to the observed values Y; is 

A -1 
y = Xl3 = X(X'X) X'y = Hy (3.48) 
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The n x n matrix H = X(X'X) -l X' is usually called the "hat" matrix because it 
maps the vector of observed values into a vector of fitted values. The hat matrix and 
its properties play a central role in regression analysis. 

The residuals from the fitted model may be conveniently written in matrix notation 
as 

e = y - y = y - Hy = (I - H)y (3.49) 

and the covariance matrix of the residuals is 

Cov(e) = V [(I- H)y] = a 2(1- H) 

The matrix I - H is in general not diagonal, so the residuals from a linear regression 
model have different variances and are correlated. The variance of the ith residual is 

V(e;) = a\1- h;;) (3.50) 

where hii is the ith diagonal element of the hat matrix H. Because 0 _:::: h;; _:::: I 
using the mean squared error MSE to estimate the variance of the residuals actually 
overestimates the true variance. Furthermore, it turns out that h 11 is a measure of 
the location of the ith point in the predictor variable or x-space; the variance of the 
residual e1 depends on where the point x1 lies. As hii increases, the observation x1 lies 
further from the center of the region containing the data. Therefore residuals near the 
center of the x-space have larger variance than do residuals at more remote locations. 
Violations of model assumptions are more likely at remote points, so these violations 
may be hard to detect from inspection of the ordinary residuals e1 (or the standardized 
residuals d;) because their residuals will usually be smaller. 

We recommend taking this inequality of variance into account when scaling the 
residuals. We suggest plotting the studentized residuals: 

(3.51) 

with a2 = MSE instead of the ordinary residuals or the standardized residuals. The 
studentized residuals have unit variance (i.e., V(r1) = 1) regardless of the location 
of the observation x1 when the form of the regression model is correct. In many 
situations the variance of the residuals stabilizes, particularly for large data sets. In 
these cases, there may be little difference between the standardized and studentized 
residuals. Thus standardized and studentized residuals often convey equivalent infor­
mation. However, because any point with a large residual and a large hat diagonal h 11 

is potentially highly influential on the least squares fit, examination of the studentized 
residuals is generally recommended. 

Table 3.6 displays the residuals, the studentized residuals, hat diagonals h11 , and 
several other diagnostics for the regression model for the patient satisfaction data 
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TABLE 3.6 Residuals and Other Diagnostics for the Regression Model for the Patient 
Satisfaction Data in Example 3.1 

Studentized Cook's 
Observation Residuals Residuals R-Student h, Distance 

9.0378 1.29925 1.32107 0.044855 0.02M2-I 
2 -5.6986 -0.88216 -0.87754 0.176299 0.055521 
3 9.0373 1.38135 1.41222 0.15511-1 0.116772 
4 -0.6953 -0.10403 -0.10166 0.118125 0.000483 
5 -7.3897 -1.08009 -1.08440 0.076032 0.031999 
6 -3.2I55 -0.47342 -0.4(H91 0.089-120 ().()07337 
7 -5.0316 -0.77380 -0.76651 0.165396 0.039553 
8 7.0616 1.03032 1.03183 0.07276-l 0.027768 
9 -17.2800 -2.65767 -3.15124 0.165533 0.467041 

10 -6.086-l -0.87524 -0.87041 0.04547-1 0.012165 
II -Il.6967 -1.70227 -1.78483 0.068040 0.070519 
I2 3.4823 O.SI635 0.50757 0.102232 O.OIOI20 
I3 -0.0859 -0.01272 -0.01243 0.100896 0.000006 
I4 2.1786 0.33738 0.33048 0.176979 0.008159 
IS 4.SI34 0.66928 0.66066 0.102355 0.017026 
I6 4.7705 0.68484 0.6763-1 0.!422I5 0.006891 
17 2.2474 0.33223 0.3254I 0.096782 0.003942 
I8 0.8699 O.I3695 O.I3386 0.20365 I 0.001599 
I9 0.9276 0.13769 0.13458 0.104056 0.00073-1 
20 3.769I 0.58556 0.57661 O.I82I92 0.025462 
2I I0.4993 I.62405 1.69I33 0.1750IS 0.186SII 
22 0.6797 0.10725 O.I048I 0.207239 0. 00 HXl 2 
23 -9.2785 -I.-16893 -1.5 III8 o.::: I2456 O.I94033 
24 3.0927 0.44996 0.44I65 0.067497 0.()04885 
25 4.2911 0.6I834 0.60945 0.049383 0.00662I 

in Example 3.1. These quantities were computer generated using Minitab. Note that 
Minitab refers to studentized residuals as standardized residuals. To illustrate the 
calculations, consider the first observation. The studentized residual is calculated as 
follows: 

aJ(I- htd 

9.0378 

7.11767JI- 0.044855 

= 1.2992 

which agrees approximately with the value reported by Minitab in Table 3.6. Large 
values of the studentized residuals are usually an indication of potential unusual 
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values or outliers in the data. Absolute values of the studentized residuals that are 
larger than three or four indicate potentially problematic observations. Note that none 
of the studentized residuals in Table 3.6 is this large. The largest studentized residual, 
-2.65767, is associated with observation 9. Minitab flags this observation as a large 
studentized residual (refer to Table 3.3), and it does show up on the normal probability 
plot of residuals in Figure 3.1 as a very mild outlier, but there is no indication of a 
significant problem with this observation. 

PRESS 
Another very useful residual scaling can be based on the prediction error sum of 
squares or PRESS. To calculate PRESS, we select an observation-for example, i. 
We fit the regression model to the remaining n - I observations and use this equation 

to predict the withheld observation y;. Denoting this predicted value by )'Cil· we may 
now find the prediction error for the ith observation as 

(3.52) 

The prediction error is often called the ith PRESS residual. Note that the prediction 
error for the ith observation differs from the ith residual because observation i was not 

used in calculating the ith prediction value Y(il· This procedure is repeated for each 
observation i = I, 2, ... , n, producing a set of n PRESS residuals e( 1 lo e(2), ... , e(n 1• 

Then the PRESS statistic is defined as the sum of squares of the n PRESS residuals 
or 

11 fl 

PRESS = L ef; 1 = L [y; - 5'u 11
2 (3.53) 

i=l i=l 

Thus PRESS is a form of data splitting (discussed in Chapter 2), since it uses each 
possible subset of n - I observations as an estimation data set, and every observation 
in turn is used to form a prediction data set. Generally, small values of PRESS imply 
that the regression model will be useful in predicting new observations. To get an idea 
about how well the model will predict new data, we can calculate an R2-like statistic 
called the R 2 for prediction 

7 PRESS 
RPrediction = ] -~ (3.54) 

Now PRESS will always be larger than the residual sum of squares and, because the 
ordinary R 2 = I - (SSE/ SST), if the value of the R~rectiction is not much smaller than the 
ordinary R 2, this is a good indication about potential model predictive performance. 

It would initially seem that calculating PRESS requires fitting n different regres­
sions. However, it is possible to calculate PRESS from the results of a single least 
squares fit to all n observations. It turns out that the ith PRESS residual is 

e; 
C(i) = --­

) -h;; 
(3.55) 
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where e; is the ordinary least squares residual. The hat matrix diagonals are directly 
calculated as a routine part of solving the least squares normal equations. Therefore 
PRESS is easily calculated as 

n ' 

PRESS= L _!l__ 
i=I I- h;; 

(3.56) 

Minitab will calculate the PRESS statistic for a regression model and the R2 for 
prediction based on PRESS fromEq. (3.54). The value of PRESS is PRESS= 1484.93 
and the R2 for prediction is 

2 PRESS 
RPrediction = I - ----ss;--

=I-
1484.93 

10778.2 

= 0.8622 

That is, this model would be expected to account for about 86.229c of the variability 
in new data. 

R-Student 
The studentized residual r; discussed earlier is often considered an outlier diagnostic. 
It is customary to use the mean squared error MSE as an estimate of a 2 in computing 
r;. This is referred to as internal scaling of the residual because MSE is an internally 
generated estimate of a 2 obtained from fitting the model to all n observations. Another 
approach would be to use an estimate of a 2 based on a data set with the ith observation 
removed. We denote the estimate of a 2 so obtained by Sr~)· We can show that 

52 
_ (n- p)MSE- e1/0- h;,) 

(i)- n- p-I (3.57) 

The estimate of a 2 in Eq. (3.57) is used instead of MSE to produce an externally 
studentized residual, usually called R-student, given by 

e; 
t;=----r==== j s(~)o - h;; > 

(3.58) 

In many situations, t; will differ little from the studentized residual r;. However, if 
the ith observation is influential, then S<~) can differ significantly from MSE, and conse­
quently the R -student residual will be more sensitive to this observation. Furthermore, 
under the standard assumptions, the R-student residual t; has a t-distribution with 
n - p- 1 degrees of freedom. Thus R-student offers a more formal procedure for 
investigating potential outliers by comparing the absolute magnitude of the residual 
t; to an appropriate percentage point of tn _p-I. 
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Minitab will compute the R-student residuals (Minitab calls these the deleted 
t residuals). They are shown in Table 3.6 for the regression model for the patient 
satisfaction data. The largest value of R -student is for observation 9, t9 = -3.15124. 

This is another indication that observation 9 is a very mild outlier. 

3.5.3 Measures of Leverage and Influence 

In building regression models, we occasionally find that a small subset of the data 
exerts a disproportionate influence on the fitted model. That is, estimates of the model 
parameters or predictions may depend more on the influential subset than on the 

majority of the data. We would like to locate these influential points and assess their 
impact on the model. If these influential points really are "bad" values, they should 
be eliminated. On the other hand, there may be nothing wrong with these points, but 

if they control key model properties, we would like to know it because it could affect 
the use of the model. In this section we describe and illustrate some useful measures 
of influence. 

The disposition of points in the predictor variable space is important in determining 

many properties of the regression model. In particular, remote observations potentia]] y 
have disproportionate leverage on the parameter estimates, predicted values, and the 

usual summary statistics. 
The hat matrix H = X(X'X)- 1X' is very useful in identifying influential observa­

tions. As noted earlier, H determines the variances and covariances of the predicted 
response and the residuals because 

The elements hiJ of the hat matrix H may be interpreted as the amount of leverage 
exerted by the observation y jon the predicted value y;. Thus inspection of the elements 
of H can reveal points that are potentially influential by virtue of their location in 

x-space. 
Attention is usually focused on the diagonal elements of the hat matrix h;;. It 

can be shown that I:7= 1 h;; = rank(H) = rank(X) = p, so the average size of the 

diagonal elements of the H matrix is pin. A widely used rough guideline is to compare 

the diagonal elements h;;to twice their average value 2p/n, and if any hat diagonal 

exceeds this value to consider that observation as a high-leverage point. 
Mini tab will calculate and save the values of the hat diagonals. Table 3.6 displays 

the hat diagonals for the regression model for the patient satisfaction data in Exam­
ple 3.1. Since there are p = 3 parameters in the model and n = 25 observations, 

twice the average size of a hat diagonal for this problem is 

2pjn = 2(3)/25 = 0.24 

The largest hat diagonal, 0.212456, is associated with observation 23. This does 

not exceed twice the average size of a hat diagonal, so there are no high-leverage 

observations in these data. 
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The hat diagonals will identify points that are potentially influential due to their 
location in x-space. It is desirable to consider both the location of the point and the 
response variable in measuring influence. Cook [ 1977. 1979] has suggested using a 
measure of the squared distance between the least squares estimate based on all 11 

points ~ and the estimate obtained by deleting the ith point. say. ~ 1 ; ,. This distance 
measure can be expressed as 

D; = (~- ~u/X'X(~- ~u1l. 
pMSE 

i = J. 2 ..... II (3.59) 

A reasonable cutoff for D; is unity. That is, we usually consider observations for 
which D; > I to be influential. Cook's distance statistic D; is actually calculated 
from 

r2 Var [ )·(x;)] 
D - -'- ----'·-­
,- p Var(e;) 

, 
r;- h;, 
----
pI -h;; 

(3.60) 

Note that, apart from the constant p, D; is the product of the square of the ith 
studentized residual and the ratio h;; /(I - h;; ). This ratio can be shown to be the 
distance from the vector x; to the centroid of the remaining data. Thus D, is made up 
of a component that reflects how well the regression model fits the ith observation y, 
and a component that measures how far that point is from the rest of the data. Either 
component (or both) may contribute to a large value of D;. 

Mini tab will calculate and save the values of Cook's distance statistic D;. Table 
3.6 displays the values of Cook's distance statistic for the regression model for the 
patient satisfaction data in Example 3.1. The largest value, 0.467041. is associated 
with observation 9. This value was calculated from Eq. (3.60) as follows: 

r; h;t 
D; = -'---­

pI -h;; 

( -2.65767)2 0.165533 

3 I - 0.165533 

= 0.467041 

This does not exceed twice the cutoff of unity. so there are no influential observations 
in these data. 

3.6 VARIABLE SELECTION METHODS IN REGRESSION 

In our treatment of regression we have concentrated on fitting the full regression 
model. Actually, in most applications of regression the analyst will have a very good 
idea about the general form of the model he/she wishes to fit. but there may be 
uncertainty about the exact structure of the model. For example. we may not know 
if all of the predictor variables are really necessary. These applications of regression 
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frequently involve a moderately large or large set of candidate predictors, and the 
objective of the analyst here is to fit a regression model to the "best subset" of these 

candidates. This can be a complex problem, as these data sets frequently have outliers, 
strong correlations between subsets of the variables, and other complicating features. 

There are several techniques that have been developed for selecting the best subset 
regression model. Generally, these methods are either stepwise-type variable selec­

tion methods or all possible regressions. Stepwise-type methods build a regression 

model by either adding or removing a predictor variable to the basic model at each 
step. The forward selection version of the procedure begins with a model containing 

none of the candidate predictor variables and sequentially inserts variables into the 

model one-at-a-time until a final equation is produced. The criterion for entering a 
variable into the equation is that the t-statistic for that variable must be significant. 

The process is continued until there are no remaining candidate predictors that qualify 

for entry into the equation. In backward elimination, the procedure begins with all of 

the candidate predictor variables in the equation, and then variables are removed one­
at-a-time to produce a final equation. The criterion for removing a variable is usually 

based on the t-statistic, with the variable having the smallest t-statistic considered for 
removal first. Variables are removed until all of the predictors remaining in the model 
have significant !-statistics. Stepwise regression usually consists of a combination of 

forward and backward stepping. There are many variations of the basic procedures. 
In all possible regressions with K candidate predictor variables, the analyst exam­

ines all 2 K possible regression equations to identify the ones with potential to be a 

useful model. Obviously, as K becomes even moderately large, the number of pos­

sible regression models quickly becomes formidably large. Efficient algorithms have 
been developed that implicitly rather than explicitly examine all of these equations. 

Typically, only the equations that are found to be "best" according to some criterion 
(such as minimum MSE) at each subset size are displayed. For more discussion of 

variable selection methods, see textbooks on regression such as Montgomery, Peck, 
and Vining l2006] or Myers [ 1990]. 

Example 3.8 

Table 3.7 contains an expanded set of data for the hospital patient satisfaction data 

introduced in Example 3.1. In addition to the patient age and illness severity data, 
there are two additional regressors, an indicator of whether the patent is a surgical 

patient (I) or a medical patient (0), and an index indicating the patient's anxiety level. 

We will use this data to illustrate how variable selection methods in regression can 
be used to help the analyst build a regression model. 

We will illustrate the forward selection procedure first. The Minitab output that 
results from applying forward selection to this data is shown in Table 3.8. We used 

the Minitab default significance level of 0.25 for entering variables. The forward 
selection algorithm inserted the predictor patient age first, then severity, and finally a 
third predictor variable, anxiety, was inserted into the equation. 

Table 3.9 presents the results of applying the Minitab backward elimination pro­
cedure to the patient satisfaction data, using the default level of 0.10 for remov­

ing variables. The procedure begins with all four predictors in the model. then the 



TABLE3.7 Expanded Patient Satisfaction Data 

Observation Age Severity Surgical-Medical Anxiety Satisfaction 

I 55 50 0 2.1 68 
2 46 24 2.8 77 
3 30 46 3.3 96 
4 35 48 4.5 80 
5 59 58 0 2.0 43 
6 61 60 0 5.1 44 
7 74 65 5.5 26 
8 38 42 I 3.2 88 
9 27 42 0 3.1 75 

10 51 50 2.4 57 
II 53 38 I 2.2 56 
12 41 30 0 2.1 88 
13 37 31 0 1.9 88 
14 24 34 0 3.1 102 
15 42 30 0 3.0 88 
16 50 48 4.2 70 
17 58 61 4.6 52 
18 60 71 I 5.3 43 
19 62 62 0 7.2 46 
20 68 38 0 7.8 56 
21 70 41 7.0 59 
22 79 66 6.2 26 
23 63 31 4.1 52 
24 39 42 0 3.5 83 
25 49 40 I 2.1 75 

TABLE 3.8 Minitab Forward Selection for the Patient Satisfaction Data in Table 3.6 

Stepwise Regression: Satisfaction Versus Age, Severity, ... 

Forward selection. Alpha-to-Enter: 0.25 

Response is Satisfaction on 4 predictors, with N 25 

Step 1 2 3 
Constant 131.1 143.5 143.9 

Age -1.29 -1.03 -1.11 
T-Value -9.98 -8.92 -8.40 
P-Value 0.000 0.000 0.000 

Severity -0.56 -0.58 
T-Value -4.23 -4.43 
P-Value 0.000 0.000 

Anxiety 1.3 
T-Value 1. 23 
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TABLE 3.9 Minitab Backward Elimination for the Patient Satisfaction Data 

Stepwise Regression: Satisfaction Versus Age, Severity, ... 

Backward elimination. Alpha-to-Remove: 0.1 

Response is Satisfaction on 4 predictors, with N 25 

Step 1 2 3 
Constant 143.9 143.9 143.5 

Age -1.12 -1.11 -1.03 
T-Va1ue -8.08 -8.40 -8.92 
P-Value 0.000 0.000 0.000 

Severity -0.59 -0.58 -0.56 
T-Value -4.32 -4.43 -4.23 
P-Value 0.000 0.000 0.000 

Surg-Med 0.4 
T-Value 0.14 
P-Value 0.892 

Anxiety 1.3 1.3 
T-Value 1. 21 1. 23 
P-Value 0.242 0.233 

s 7.21 7.04 7.12 
R-Sq 90.36 90.35 89.66 
R-Sq(adj) 88.43 88.97 88.72 

surgical-medical indicator variable was removed, followed by the anxiety predictor. 
The algorithm concluded with both patient age and severity in the model. Note that 
in this example, the forward selection procedure produced a different model than the 
backward elimination procedure. This happens fairly often, so it is usually a good 
idea to investigate different model-building techniques for a problem. 

Table 3 .I 0 is the Mini tab stepwise regression algorithm applied to the patient 
satisfaction data. The default significance levels of 0.15 to enter or remove variables 
from the model were used. At the first step, patient age is entered in the model. 
Then severity is entered as the second variable. At that point, none of the remaining 
predictors met the 0.15 significance level criterion to enter the model, so stepwise 
regression terminated with age and severity as the model predictors. This is the same 
model found by backwards elimination. 

Table 3.11 shows the results of applying Minitab's all possible regressions algo­
rithm to the patient satisfaction data. Since there are k = 4 predictors, there are 16 
possible regression equations. Mini tab shows only the best two of each subset size, 
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TABLE 3.10 Minitab Stepwise Regression Applied to the Patient Satisfaction Data 

Stepwise Regression: Satisfaction Versus Age, Severity, ... 

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15 

Response is Satisfaction on 4 predictors, with K 25 

Step 1 2 
Constant 131.1 143.5 

Age -1.29 -1.03 
T-Value -9.98 -8.92 
P-Value 0.000 0.000 

Severity -0.56 
T-Value -4.23 
P-Value 0.000 

s 9.38 7.12 
R-Sq 81.24 89.66 
R-Sq(adj) 80.43 88.72 

TABLE 3.11 Minitab All Possible Regressions Algorithm Applied to the Patient 
Satisfaction Data 

Best Subsets Regression: Satisfaction Versus Age, Severity, ... 

Response is Satisfaction 

s s 
e u A 
v r n 
e g X 

r - i 
A i M e 

Mallows g t e t 
Vars R-Sq R-Sq(adj) C-p s e Y d y 

1 81.2 80.4 17.9 9.3752 X 

1 52.3 50.2 78.0 14.955 X 

2 89.7 88.7 2.5 7.1177 X X 

2 81.3 79.6 19.7 9.5626 X X 

3 90.4 89.0 3.0 7.0371 X X X 

3 89.7 88.2 4.5 7.2846 X X X 

4 90.4 88.4 5.0 7.2074 X X X X 
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along with the full (four-variable) model. For each model, Minitab presents the value 
of R 2 , the adjusted R 2, the square root of the mean squared error (S), and the Mallows 
C" statistic, which is a measure of the amount of bias and variance in the model. If a 
model is specified incorrectly and important predictors are left out, then the predicted 
values are biased and the value of the CP statistic will exceed p, the number of model 
parameters. However, a correctly specified regression model will have no bias and the 
value of Cp should equal p. Generally, models with small values of the Cp statistic 
are desirable. 

The model with the smallest value of C" is the two-variable model with age and 
severity (the value of C Pis 2.5, actually less than p = 3). The model with the smallest 
value of the mean squared error (or its square root, S) is the three-variable model with 
age, severity, and anxiety. Both of these models were found using the stepwise­
type algorithms. Either one of these models is likely to be a good regression model 
describing the effects of the predictor variables on patient satisfaction. • 

3.7 GENERALIZED AND WEIGHTED LEAST SQUARES 

In Section 3.5 we discussed methods for checking the adequacy of a linear regression 
model. Analysis of the model residuals is the basic methodology. A common defect 
that shows up in fitting regression models is nonconstant variance. That is, the variance 
of the observations is not constant but changes in some systematic way with each 
observation. This problem is often identified from a plot of residuals versus the fitted 
values. Transformation of the response variable is a widely used method for handling 
the inequality of variance problem. 

Another technique for dealing with nonconstant error variance is to fit the model 
using the method of weighted least squares. In this method of estimation the deviation 
between the observed and expected values of y; is multiplied by a weight w; that is 
inversely proportional to the variance of y; . For the case of simple linear regression, 
the weighted least squares function is 

n 

L = L w;(y;- f3o- f31x;) 2 

i=l 

(3.61) 

where w; = I fa? and a? is the variance of the ith observation y;. The resulting least 
squares normal equations are 

n n n 

!Jo L w; + fJ1 L w;x; = L w;y; 
i=l i=l i=l (3.62) 

n n n 

!Jo L w;x;+/31 L w;x[ = L w;x;y; 
i=l i=l i=l 

Solving Eq. (3.62) will produce weighted least squares estimates of the model pa­
rameters {30 and {3 1• 
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In this section we give a development of weighted least squares for the multiple re­
gression model. We begin by considering a slightly more general situation concerning 
the structure of the model errors. 

3.7.1 Generalized Least Squares 

The assumptions that we have made concerning the linear regression model y = 
Xj3 + t: are that E(t:) = 0 and Var(t:) = a 21; that is, the errors have expected value 
zero and constant variance, and they are uncorrelated. For testing hypotheses and 
constructing confidence and prediction intervals we also assume that the errors are 
normally distributed, in which case they are also independent. As we have observed. 
there are situations where these assumptions are unreasonable. We will now consider 
the modifications that are necessary to the ordinary least squares procedure when 
E(t:) = 0 and Var(t:) = a 2V, where Vis a known n x n matrix. This situation has a 
simple interpretation; if V is diagonal but with unequal diagonal elements, then the 
observations y are uncorrelated but have unequal variances, while if some of the 
off-diagonal elements of V are nonzero, then the observations are correlated. 

When the model is 

y = Xj3 + t: 
E(t:) = 0 and Var(t:) = a 2V 

(3.63) 

the ordinary least squares orOLS estimator~ = (X'X)- 1X'y is no longer appropriate. 
The OLS estimator is unbiased because 

but the covariance matrix of ~ is not a 2(X'X) -I. Instead, the covariance matrix is 

Var(~) = Var[(X'X)- 1X'y] 

= (X'X)- 1X'Var(y)X(X'X)- 1 

= a 2(X'X)- 1X'VX(X'X)- 1 

Practically, this implies that the variances of the regression coefficients are larger than 
we expect them to be. 

This problem can be avoided if we estimate the model parameters with a technique 
that takes the correct variance structure in the errors into account. We will develop 
this technique by transforming the model to a new set of observations that satisfy the 
standard least squares assumptions. Then we will use ordinary least squares on the 
transformed observations. 

Because a 2V is the covariance matrix of the errors, V must be nonsingular and 
positive definite, so there exists an n x n nonsingular symmetric matrix K defined 
such that 

K'K = KK = V 
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The matrix K is often called the square root ofV. Typically, the error variance a 2 is 
unknown, in which case V represents the known (or assumed) structure of the vari­
ances and covariances among the random errors apart from the constant a 2• 

Define the new variables 

(3.64) 

so that the regression model y = Xj3 +~becomes, upon multiplication by K- 1, 

or 

z = Bj3 + o (3.65) 

The errors in the transformed model Eq. (3.65) have zero expectation because £(0) = 
E(K-1 ~) = K-1 E(~) = 0. Furthermore, the covariance matrix of 0 is 

Var(o) = V(K-1 ~) 

= K-1 var(~)K- 1 

= a 2K-1VK-1 

= a 2K-1KKK- 1 

= a2J 

Thus the elements of the vector of errors o have mean zero and constant vari­
ance and are uncorrelated. Since the errors 0 in the model in Eq. (3.65) satisfy the 
usual assumptions, we may use OLS to estimate the parameters. The least squares 
function is 

L = o'o 
= (K-1~)'K-1~ 

= ~'K-1K-1~ 

= ~~v-1~ 

= (y- Xj3)'V-1(y- Xj3) 

The corresponding normal equations are 

(3.66) 
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In Equation (3 .66) ~GLS is the generalized least squares (G LS) estimator of the 
model parameters j3. The solution to the GLS normal equatiom is 

(3.67) 

The GLS estimator is an unbiased estimator for the model parameters j3. and the 
covariance matrix of ~GLS is 

(3.68) 

The GLS estimator is a best linear unbiased estimator of the model parameters j3, 
where "best" means minimum variance. 

3.7.2 Weighted Least Squares 

Weighted least squares or WLS is a special case of generalized least squares where 
the n response observations Yi do not have the same variances but are uncorrelated. 
Therefore the matrix V is 

["j 
0 

ai 
V= 

0 0 

0 

where a? is the variance of the ith observation Yi, i =I, 2, ... , n. Because the weight 
for each observation should be the reciprocal of the variance of that observation, it is 
convenient to define a diagonal matrix of weights W = v- 1. Clearly, the weights are 
the main diagonals of the matrix W. Therefore the weighted least squares criterion is 

L = (y- Xj3)'W(y- Xj3) (3.69) 

and the WLS normal equations are 

(X'WX)~wLs = X'Wy (3.70) 

The weighted least squares estimator is 

(3.71) 

The WLS estimator is an unbiased estimator for the model parameters j3. and the 
covariance matrix of ~WLS is 

(3.72) 
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To use weighted least squares, the weights wi must be known. Sometimes prior 
knowledge or experience or information from an underlying theoretical model can be 
used to determine the weights. For example, suppose that a significant source of error 
is measurement error and different observations are measured by different instruments 
of unequal but known or well-estimated accuracy. Then the weights could be chosen 
inversely proportional to the variances of measurement error. 

In most practical situations, however, the analyst learns about the inequality of 
variance problem from the residual analysis for the original model that was fit using 
OLS. For example, the plot of the OLS residuals e; versus the fitted values .Vi may 
exhibit an outward-opening funnel shape, suggesting that the variance of the observa­
tions is increasing with the mean of the response variable y. Plots of the OLS residuals 
versus the predictor variables may indicate that the variance of the observations is a 
function of one of the predictors. In these situations we can often use estimates of the 
weights. There are several approaches that could be used to estimate the weights. We 
describe two of the most widely used methods. 

Estimation of a Variance Equation 
In the first method, suppose that analysis of the OLS residuals indicates that the 
variance of the ith observation is a function of one or more predictors or the mean of 
y. The squared OLS residual e; is an estimator of the variance of the ith observation 
a? if the form of the regression model is correct. Furthermore, the absolute value of 

the residual lei I is an estimator of the standard deviation ai (because a; = lf;;j-1). 
Consequently, we can find a variance equation or a regression model relating a? to 
appropriate predictor variables by the following process: 

1. Fit the model relating y to the predictor variables using OLS and find the OLS 
residuals. 

2. Use residual analysis to determine potential relationships between al and either 
the mean of y or some of the predictor variables. 

3. Regress the squared OLS residuals on the appropriate predictors to obtain an 
equation for predicting the variance of each observation, say, s? = f(x) or s? = 
f(y). 

4. Use the fitted values from the estimated variance function to obtain estimates 
oftheweights,w; = 1/s?,i = 1,2, ... ,n. 

5. Use the estimated weights as the diagonal elements of the matrix Win the WLS 
procedure. 

As an alternative to estimating a variance equation in step 3 above, we could use 

the absolute value of the OLS residual and fit an equation that relates the standard 
deviation of each observation to the appropriate regressors. This is the preferred 
approach if there are potential outliers in the data, because the absolute value of the 
residuals is less affected by outliers than the squared residuals. 

When using the five-step procedure outlined above, it is a good idea to compare 
the estimates of the model parameters obtained from the WLS fit to those obtained 
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from the original OLS fit. Because both methods produce unbiased estimators. we 
would expect to find that the point estimates of the parameters from both analyses are 
very similar. If the WLS estimates differ significantly from their OLS counterparts. 
it is usually a good idea to use the new WLS residuals and reestimate the variance 
equation to produce a new set of weights and a revised set ofWLS estimates using these 
new weights. This procedure is called iteratively reweighted least squares (IRLS). 
Usually one or two iterations are all that is required to produce stable estimates of the 
model parameters. 

Using Replicates or Nearest Neighbors 
The second approach to estimating the weights makes use of replicate observations 
or nearest neighbors. Exact replicates are sample observations that have exactly the 
same values of the predictor variables. Suppose that there are replicate observations 
at each of the combination of levels of the predictor variables. The weights w, can 
be estimated directly as the reciprocal of the sample variances at each combination 
of these levels. Each observation in a replicate group would receive the same weight. 
This method works best when there are a moderately large number of observations in 
each replicate group, because small samples don't produce reliable estimates of the 
variance. 

Unfortunately, it is fairly unusual to find groups of replicate observations in most 
regression-modeling situations. It is especially unusual to find them in time series 
data. An alternative is to look for observations with similar x-levels, which can be 
thought of as a nearest-neighbor group of observations. The observations in a nearest­
neighbor group can be considered as pseudoreplicates and the sample variance for all 
of the observations in each nearest-neighbor group can be computed. The reciprocal 
of a sample variance would be used as the weight for all observations in the nearest­
neighbor group. 

Sometimes these nearest-neighbor groups can be identified visually by inspecting 
the scatter plots of y versus the predictor variables or from plots of the predictor 
variables versus each other. Analytical methods can also be used to find these nearest­
neighbor groups. One nearest-neighbor algorithm is described in Montgomery. Peck. 
and Vining [2006]. These authors also present a complete example showing how the 
nearest-neighbor approach can be used to estimate the weights for aWLS analysis. 

Statistical Inference in WLS 
In WLS the variances a/ are almost always unknown and must be estimated. Since 
statistical inference on the model parameters as well as confidence intervals and pre­
diction intervals on the response are usually necessary. we should consider the effect 
of using estimated weights on these procedures. Recall that the covariance matrix of 
the model parameters in WLS was given in Eq. (3.72). This covariance matrix plays 
a central role in statistical inference. Obviously, when estimates of the weights are 
substituted into Eq. (3.72) an estimated covariance matrix is obtained. Generally. the 
impact of using estimated weights is modest, provided that the sample size is not 
very small. In these situations, statistical tests, confidence intervals, and prediction 
intervals should be considered as approximate rather than exact. 
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Example 3.9 

Table 3.12 contains 28 observations on the strength of a connector and the age in 
weeks of the glue used to bond the components of the connector together. A scatter 
plot of the strength versus age, shown in Figure 3.2, suggests that there may be a 
linear relationship between strength and age, but there may also be a problem with 
nonconstant variance in the data. The regression model that was fit to these data is 

y = 25.936 + 0.3759x 

where x = weeks. 
The residuals from this model are shown in Table 3.12. Figure 3.3 is a plot of 

the residuals versus weeks. The pronounced outward-opening funnel shape on this 
plot confirms the inequality of variance problem. Figure 3.4 is a plot of the absolute 

TABLE3.12 Connector Strength Data 

Observation Weeks Strength Residual Absolute Residual Weights 

20 34 0.5454 0.5454 73.9274 
2 21 35 1.1695 1.1695 5.8114 
3 23 33 -1.5824 1.5824 0.9767 
4 24 36 1.0417 1.0417 0.5824 
5 25 35 -0.3342 0.3342 0.3863 
6 28 34 -2.4620 2.4620 0.1594 
7 29 37 0.1621 0.1621 0.1273 
8 30 34 -3.2139 3.2139 0.1040 
9 32 42 4.0343 4.0343 0.0731 

10 33 35 -3.3416 3.3416 0.0626 
II 35 33 -6.0935 6.0935 0.0474 
12 37 46 6.1546 6.1546 0.0371 
13 38 43 2.7787 2.7787 0.0332 
14 40 32 -8.9731 8.9731 0.0270 
15 41 37 -4.3491 4.3491 0.0245 
16 43 50 7.8991 7.8991 0.0205 
17 44 34 -8.4769 8.4769 0.0189 
18 45 54 11.1472 11.1472 0.0174 
19 46 49 5.7713 5.7713 0.0161 
20 48 55 11.0194 11.0194 0.0139 
21 50 40 -4.7324 4.7324 0.0122 
22 51 33 -12.1084 12.1084 0.0114 
23 52 56 10.5157 10.5157 0.0 l 07 
24 55 58 11.3879 11.3879 0.0090 
25 56 45 -1.9880 1.9880 0.0085 
26 57 33 -14.3639 14.3639 0.0080 
27 59 60 11.8842 11.8842 0.0072 
28 60 35 -13.4917 13.4917 0.0069 
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FIGURE 3.2 Scatter diagram of connector strength Yersus age from Table 3.12. 

value of the residuals from this model versus week. There is an indication that a 
linear relationship may exist between the absolute value of the residuals and weeks. 
although there is evidence of one outlier in the data. Therefore it seems reasonable 
to fit a model relating the absolute value of the residuals to weeks. Since the absolute 
value of a residual is the residual standard deviation. the predicted values from this 
equation could be used to determine weights for the regression model relating strength 
to weeks. This regression model is 
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FIGURE 3.4 Scatter plot of absolute residuals versus weeks. 

The weights would be equal to the inverse of the square of the fitted value for each 
observation. These weights are shown in Table 3.12. Using these weights to fit a new 
regression model to strength using weighted least squares results in 

y = 27.545 + 0.32383x 

Note that the weighted least squares model does not differ very much from the ordinary 
least squares model. Because the parameter estimates didn't change very much, this 
is an indication that it is not necessary to iteratively reestimate the standard deviation 
model and obtain new weights. • 

3.7.3 Discounted Least Squares 

Weighted least squares is typically used in situations where the variance of the ob­
servations is not constant. We now consider a different situation where a WLS-type 
procedure is also appropriate. Suppose that the predictor variables in the regression 
model are only functions of time. As an illustration, consider the linear regression 
model with a linear trend in time: 

Yr=f3o+f3tt+s, t=1,2, ... ,T (3.73) 

This model was introduced to illustrate trend adjustment in a time series in Section 
2.4.2 and Example 3.2. As another example, the regression model 

2n 2n 
Yr = fJo + f3t sin -t + f3z cos-t+ s 

d d 
(3.74) 
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describes the relationship between a response variable y that varies cyclically or 
periodically with time where the cyclic variation is modeled as a simple sine wave. 
A very general model for these types of situations could be written as 

(3.75) 

where the predictors x 1 (t ). x 2(t ) ..... xk(t) are mathematical functions of time. t. In 
these types of models it is often logical to believe that older observations are of less 
value in predicting the future observations at periods T + 1. T + 2 ..... than are 
the observations that are close to the current time period. T. In other words, if you 
want to predict the value of y at time T + 1 given that you are at the end of time 
period T (or .YT+ 1(T)), it is logical to assume that the more recent observations such 
as YT, YT _ 1, and YT -2 carry much more useful information than do older observa­
tions such as YT-20· Therefore it seems reasonable to weight the observations in the 
regression model so that recent observations are weighted more heavily than older 
observations. A very useful variation of weighted least squares, called discounted 
least squares, can be used to do this. Discounted least squares also leads to a rel­
atively simple way to update the estimates of the model parameters after each new 
observation in the time series. 

Suppose that the model for observation y1 is given by Eq. (3.75): 

= x'(t)l3, t = 1. 2 ..... T 

where x'(t) = [x 1 (t ). x 2(t ) •... , x p(t )] and 13' = [/)1• /)2 •..•• /Jrl· This model could 
have an intercept term, in which case x 1(t) = I. In matrix form. Eq. (3.75) is 

y = X(T)I3 + E (3.76) 

where y is a T x I vector of the observations, 13 is a p x vector of the model 
parameters, E is a T x I vector of the errors, and X(T) is the T x p matrix 

Xt(l) X2(1) 

Xt (2) X2(2) 

X(T) = 

Note that the tth row of X(T) contains the values of the predictor variables that 
correspond to the tth observation of the response, Yr. 

We will estimate the parameters in Eq. (3.76) using weighted least squares. How­
ever, we are going to choose the weights so that they decrease in magnitude with 
time. Specifically, let the weight for observation Yr _ j be (}J. where 0 < (} < I. We 
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are also going to shift the origin of time with each new observation so that T is the 
current time period. Therefore the WLS criterion is 

T-l 

L = L [YT-j- /3J(T)XJ(- j) + ... + f3r(T)xk(- J)] 2 

J=O 

T-l 

= L[Y7-J -x'(-j)j3(T)]2 
j=O 

(3.77) 

where j3(T) indicates that the vector of regression coefficients is estimated at the end 
of time period T, and x(- j) indicates that the predictor variables, which are just 
mathematical functions of time, are evaluated at - j. This is just WLS with a T x T 
diagonal weight matrix 

eT-l 0 0 0 

0 eT-2 0 0 

W= 

0 e 0 

0 0 0 

By analogy with Eq. (3.70), the WLS normal equations are 

or 

where 

X(T)'WX(T)~(T) = X(T)'Wy 

G(T)~(T) = g(T) 

G(T) = X(T)'WX(T) 

g(T) = X(T)'Wy 

The solution to the WLS normal equations is 

~(T) is called the discounted least squares estimator of j3. 

(3.78) 

(3.79) 

(3.80) 

In many important applications, the discounted least squares estimator can be 
simplified considerably. Assume that the predictor variables x;(t) in the model are 
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functions of time that have been chosen so that their values at time period t + I are 
linear combinations of their values at the previous time period. That is. 

(3.81) 

In matrix form, 

x(t +I)= Lx(t) (3.82) 

where Lis the p x p matrix of the constants LiJ in Eq. (3.81 ). The transition property 
in Eq. (3.81) holds for polynomial, trigonometric, and certain exponential functions 
of time. This transition relationship implies that 

x(t) = Vx(O) 

Consider the matrix G(T) in the normal equations (3.78). We can write 

T-1 

G(T) = L eix(- j)x(- j)' 
)=0 

= G( T - 1) + e T -I x(- j )x(- j )' 

(3.83) 

If the predictor variables x; (t) in the model are polynomial, trigonometric, or certain 
exponential functions of time, the matrix G(T) approaches a steady-state limiting 
value G,where 

X 

G= 'L_eix(-j)x(-j)' 
)=0 

(3.84) 

Consequently, the inverse of G would only need to be computed once. The right-hand 
side of the normal equations can also be simplified. We can write 

T-1 

g(T) = 'L_eJYT-jX(-j) 
)=0 

T-1 

= YrX(0)+ 'L_e 1 vr-jX(-j) 
J=l 

T-1 
=JTX(0)+e'L_eJ-IYT-JL- 1x(-j+ I) 

J=l 
T -2 

= YrX(O) +eL-I L ekYT-1-kx( -k) 
k=O 

= YrX(O) + 8L - 1g(T- I) 
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So the discounted least squares estimator can be written as 

This can also be simplified. Note that 

BCT) = G- 1g(T) 

or 

where 

and 

= G- 1lyrx(O) + 8L - 1g(T- 1)] 

= G- 1fyrx(0)+8L- 1Gj3(T- I)] 

= .vrG- 1x(O) + eG- 1L - 1Gf3(T- I) 

BCT) = hyr + ZB(T- I) 

The right-hand side of Eq. (3.85) can still be simplified because 

and letting k = j +I, 

()() 

= L eJL -IX(- j)x(- j)'(L')-1L' 
j=O 

cc 

= L.:ei[L- 1x(-j)][L- 1x(-j)']L' 
j=O 

cc 

= Lei x(- j - 1 )x(- j - I )'L' 
j=O 

oc 

L -tG =e-lL ekx( -k)x( -k)'L' 
k=l 

= e- 1 [G - x(O)x(O)']L' 

123 

(3.85) 

(3.86) 

(3.87) 
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Substituting for L -I G on the right-hand side of Eq. (3.87) results in 

Z = eG-Ie- 1[G- x(O)x(O)'JL' 

=[I- G- 1x(O)x(O)']L' 

= L' - hx(O)L' 

= L' - h[Lx(O)]' 

= L'- hx(l)' 

Now the vector of discounted least squares parameter estimates at the end of time 
period T in Eq. (3.85) is 

~(T) = hyT + Z~(T- I) 

= hyT + [L' - hx(l )]~(T - I) 

= L'~(T- I)+ h[.YT- x(l)'~(T- I)] 

But x(l )' ~(T - I) = 5-T(T - I) is the forecast of YT computed at the end of the 
previous time period, T - I, so the discounted least squares vector of parameter 
estimates computed at the end of time period t is 

~(T) = L'~(T- I)+ h(.YT- _\·T(T- I)] 

= L'~(T- I)+ he1 (1) 
(3.88) 

The last line in Eq. (3.88) is an extremely important result: it states that in dis­
counted least squares the vector of parameter estimates computed at the end of time 
period T can be computed as a simple linear combination of the estimates made at the 
end of the previous time period T - I and the one-step-ahead forecast error for the 
observation in period T. Note that there are really two things going on in estimating 
j3 by discounted least squares: the origin of time is being shifted to the end of the 
current period, and the estimates are being modified to reflect the forecast error in the 
current time period. The first and second terms on the right-hand side of Eq. (3.88) 
accomplish these objectives, respectively. 

When discounted least squares estimation is started up, an initial estimate of the 
parameters is required at time period zero, say, ~(0). This could be found by a standard 
least squares (or WLS) analysis of historical data. 

Because the origin of time is shifted to the end of the current time period, forecasting 
is easy with discounted least squares. The forecast of the observation at a future time 

period T + r, made at the end of time period T. is 

S·T+r(T) = ~(T)'x(r) 
I' 

= L ,B j ( T)x j ( r) 
j=l 

(3.89) 
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Example 3.10 Discounted Least Squares and the Linear Trend Model 

To illustrate the discounted least squares procedure, let's consider the linear trend 
model: 

To write the parameter estimation equations in Eq. (3.88), we need the transition 
matrix L. For the linear trend model, this matrix is 

L= [~ ~] 
Therefore the parameter estimation equations are 

or 

~(T) = L'~(T- 1) + heT(l) 

[ ~o(T)] = [1 
f31(T) 0 

l][~o(T-l)]+[hl]e 1 
l f31(T-l) h2 T() 

~o(T) = ~o(T- 1) + ~~(T- I)+ h,eT(l) 

~ 1 (T) = ~ 1 (T- 1) + h2eT(l) 

The elements of the vector hare found from Eq. (3.86): 

h = G- 1x(O) 

The steady-state matrix G is found as follows: 

T-1 

G(T) = L e.ix(- j)x(- j)' 
j=O 

T-1 [ 1 ] = 'L_eJ _. [ 1 
j=O .J 

-j] 

T-1 [ 1 
= 'L_eJ _· 

j=O .J 

-j] 
+/ 

(3.90) 
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j=O j=O 

T-1 T-1 

- Liej L:/ej 
J=O j=O 

[ 

) - gT 

1-e 
_eo-eTJ 

1-e 

eo-eT) ] 
1-e 

8(1 +8)(1-AT) 

(I - 8)' 

The steady-state value ofG(T) is found by taking the limit as T -4 x, which results 
In 

The inverse of G is 

Therefore, the vector h is 

G = lim G(T) 
T-----+x 

r
-1 ~/ 
I-e 

(j ] 1-A 
eo + Hl 
(I - fJ).1 

-I_ [ 1-e~ <I-eJ:] 
G - (I- A)-

( I-A)~--­
(1 
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Substituting the elements of the vector h into Eq. (3.90) we obtain the parameter 
estimating equations for the linear trend model as 

~o(T) = /3o(T- l) + ~~(T- 1) + (l- 8 2)er(l) 

~ 1 (T) = ~ 1 (T- l) + (l- e?er0) 

Inspection of these equations illustrates the twin aspects of discounted least squares; 
shifting the origin of time, and updating the parameter estimates. In the first equation, 
the updated intercept at time T consists of the old intercept plus the old slope (this 
shifts the origin of time to the end of the current period T), plus a fraction of the 
current forecast error (this revises or updates the estimate of the intercept). The 
second equation revises the slope estimate by adding a fraction of the current period 
forecast error to the previous estimate of the slope. 

To illustrate the computations, suppose that we are forecasting a time series with 
a linear trend and we have initial estimates of the slope and intercept at time t = 0 as 

~0 (0) = 50 and /3 1 (0) = 1.5 

These estimates could have been obtained by regression analysis of historical data. 
Assume that 8 = 0.9, so that 1 - 8 = I - (0.9? = 0.19 and (I - 8)2 = (I -

0.9)2 = 0.01. The forecast for time period t = l, made at the end of time period 
t = 0, is computed from Eq. (3.89): 

Y1 (0) = B(O)'x( I) 

= /3o(0) + ~ 1 (0) 

=50+ 1.5 

= 51.5 

Suppose that the actual observation in time period I is y 1 = 52. The forecast error in 
time period 1 is 

e1(1) = Yl- YJ(O) 

=52- 51.5 

= 0.5 

The updated estimates of the model parameter computed at the end of time period I 
are now 

/3o(l) = ~o(O) + ~ 1 (0) + 0.19e 1(0) 

= 50+ 1.5 + 0.19(0.5) 

= 51.60 
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~~(I)= ~~(0) + O.Oie 1(0) 

= 1.5 + 0.01(0.5) 

= 1.55 

The origin of time is now T = I. Therefore the forecast for time period 2 made at the 
end of period I is 

S·2(1) = ~o(l) + ~~(!) 
= 51.6 + 1.55 

= 53.15 

If the observation in period 2 is Y2 = 55, we would update the parameter estimates 
exactly as we did at the end of time period I. First, calculate the forecast error: 

e2 ( I ) = Y2 - S·2 ( I ) 
=55- 53.15 

= 1.85 

Second, revise the estimates of the model parameters: 

and 

~o(2) = ~o(l) + ~ 1 (I) + 0.!9e2(!) 

= 51.6 + 1.55 + 0.19(1.85) 

= 53.50 

~~(2) = ~~(!) + O.Oie2(1) 

= 1.55+0.01(1.85) 

= 1.57 

The forecast for period 3, made at the end of period 2, is 

S'J(2) = ~o(2) + ~ 1 (2) 

= 53.50 + 1.57 

= 55.07 

Suppose that a forecast at a longer lead time than one period is required. If a forecast 
for time period 5 is required at the end of time period 2. then because the forecast 
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lead time is r = 5 - 2 = 3, the desired forecast is 

.Ys(2) = ~o(2) + ~ 1 (2)3 

= 53.50 + 1.57(3) 

= 58.21 
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In general, the forecast for any lead time r, computed at the current origin of time 
(the end of time period 2), is 

.Ys(2) = ~o(2) + ~ 1 (2)r 

= 53.50 + 1.57r • 
When the discounted least squares procedure is applied to a linear trend model as 

in Example 3. 9, the resulting forecasts are equivalent to the forecasts produced by a 
method called double exponential smoothing. Exponential smoothing is a popular 
and very useful forecasting technique and will be discussed in detail in Chapter 4. 

Discounted least squares can be applied to more complex models. For example, 
suppose that the model is a polynomial of degree k. The transition matrix for this 
model is a square (k + I) x (k + I) matrix in which the diagonal elements are unity, 
the elements immediately to the left of the diagonal are also unity, and all other 
elements are zero. In this polynomial, the term of degree r is written as 

f3r ( t ) = f3r __ t_! __ 
r (t- r)!r! 

In the next example we illustrate discounted least squares for a simple seasonal 
model. 

Example 3.11 A Simple Seasonal Model 

Suppose that a time series can be modeled as a linear trend with a superimposed sine 
wave to represent a seasonal pattern that is observed monthly. The model is a variation 
of the one shown in Eq. (3.3): 

(3.91) 

Since this model represents monthly data, d = 12, Eq. (3.91) becomes 

2n 2n 
v, = f3o + f31t + f32 sin -t + /33 cos-t+ E 

0 12 12 
(3.92) 
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The transition matrix L for this model, which contains a mixture of polynomial and 
trigonometric terms, is 

0 0 0 

0 0 

L= 2rr 2rr 
0 0 cos- Sin-

12 12 
2rr 2rr 

0 0 -Sin- cos-
12 12 

Note that L has a block diagonal structure, with the first block containing the 
elements for the polynomial portion of the model and the second block containing 
the elements for the trigonometric terms, and the remaining elements of the matrix 
are zero. The parameter estimation equations for this model are 

~(T) = L'~(T- I)+ herO) 

0 0 0 

0 0 
f3l(T) 2rr . 2rr /JI(T-1) h2 

[ ~o(T)] 
/J2(T) - 0 0 cos-

12 

[ ~"( T - I] [ h, l 
Sin- ~ 2(T-l) + h1 er(l) 

12 

/33(T) 

or 

2rr 2rr f33(T- I) h~ 
0 0 -sin- cos-

12 12 

/Jo(T) = /Jo(T- I)+ /3 1(T- I)+ h1er(l) 

/J1(T) = /J1(T- I)+ h2er(l) 
, 2n , 2n , 
f32(T) =cos 12f32(T- l)- sin l2f33(T- I)+ h,er(l) 

, 2n , 2n , 
f33(T) = sin l2 {3 2(T - I)+ cos l2 {3 3( T - I)+ h~er( I) 

and since 2rr / 12 = 30c, these equations become 

/>o(T) = /Jo(T- I)+ />1(T- I)+ h1er(l) 

/J1(T) = /J1(T- I)+ h2er(l) 

/J2(T) = 0.866/32(T- I)- O.S/33(T- I)+ h.1er( I) 

/33(T) = O.S/32(T- I)+ 0.866/33(T- I)+ h_.er( I) 
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The steady-state G matrix for this model is 

G= 

00 

- I: ek sin wk 
k=O 
oc 

L kek sin wk 
k=O 
00 z= ek sin wk sin wk 

k=O 

00 

I: e" coswk 
k=O 

00 

-L k()k cos wk 
k=O 
00 -z= ri sin wk cos (J)k 

k=O 
oc z= rl cos wk cos wk 

k=O 
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where we have let w = 2rr / I2. Because G is symmetric, we only need to show the 

upper half of the matrix. It turns out that there are closed-form expressions for all 

of the entries in G. We will evaluate these expressions for() = 0.9. This gives the 

following: 

oc I I 

L tl = 1- e = I- o.9 = 10 
k=O 

L
eo k e 0.9 

k() = = = 90 
k=O (1-())2 (J-0.9)2 

~ "k ()(1+8) 0.9(1+0.9) 0 
~k~e = = = 171 
k=O (I - ())3 (1 - 0.9)3 

for the polynomial terms and 

:-x__, 

L 8k sin wk 
k=O 

X) 

L 8" cos wk 
k=O 

8 sinw 

I - 28 cos w + 82 

1-8 cosw 

I - 28 cos w + 82 

(0.9)0.5 
----,--:--:--,--------::c = I . 79 
I - 2(0.9)0.866 + (0.9)2 

I - (0.9)0.866 = 
0

_
8824 

I - 2(0.9)0.866 + (0.9)2 

x B(l-82)sinw 0.9[1-(0.9)2 ]0.5 
'"'kBk sinwk = = =I 368 f-:o o - 28 cos w + 82 ) 2 r 1 - 2(0.9)0.866 + (0.9)2

J
2 · 

~ k 28 2 
- 8( I + 82

) cos w 2(0.W - 0.9[1 + (0.9)"]0.866 
L..k8 coswk = = 0 o = 3.3486 
k=O (l-28cosw+82) 2 [1-2(0.9)0.866+(0.9)~]-

~ " . . I [ I - () cos(2w) I - e cos(O) J 
L.. () Sill wk Sill wk = -- - -------:: 
k=O 2 I - 2() cos(2w) + ()2 I - 2() cos(O) + ()2 

I [ I - 0.9(0.5) 1 - 0.9(1) ] 

2 1 - 2(0.9)0.5 + (0.9)2 I - 2(0.9)(1) + (0.9)2 

= 4.7528 
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~ ek . k k I [ e sin(2w) () sin(O) ] 
~ Sin W COS W = - , -
k=O 2 1 - 2() cos(2w) + e- 1 - 2() cos(O) + ()2 

1 [ 0.9(0.866) 0.9(0) ] 
= 2 I - 2(0.9)0.5 + (0.9)2 + I - 2(0.9)1 + (0.9)2 

= 0.4284 

~ k I [ I - e cos(2w) I - e cos(O) ] 
~()~~~~=- + , 
k=O 2 1 - 2() cos(2w) + 8 2 1 - 2e cos(O) + e-

1 [ 1 - 0.9(0.5) I - 0.9(1) ] 
= 2 I - 2(0.9)0.5 + (0.9)2 + I - 2(0.9)(1) + (0.9)2 

= 5.3022 

for the trignometric terms. Therefore the G matrix is 

and G- 1 is 

G_ 1 = 0.01987 l 
0.214401 

0.075545 
-0.02264 

-90 -1.79 
1. 740 1.368 

4.7528 

0.8824] 
-3.3486 
-0.4284 

5.3022 

0.01987 0.075545 
0.()() 1138 0.003737 
0.003737 0.238595 
-0.00081 0.009066 

-0.02264] 
-0.00081 
0.009066 
0.192591 

where we have shown the entire matrix. The h vector is 

h = G- 1x(O) 

l 
0.214401 

0.01987 
= 0.075545 

-0.02264 

l0.191762] 
O.Ql0179 

- 0.084611 
0.169953 

0.01987 0.075545 
0.001138 0.003737 
0.003737 0.238595 
-0.00081 0.009066 

-0.02264] ll ] -0.00081 0 
0. 009066 0 
0.192591 I 
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Therefore the discounted least squares parameter estimation equations are 

fJo(T) = tJo(T -1)+ {J 1(T- 1)+0.191762er(l) 

{JI(T) = {JI(T- 1) + 0.010179er(l) 

A 2n A 2n A 

fh(T) =cos Ufh(T- 1)- sin Ufh(T- 1) + 0.0846ller(l) 
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A 2n A 2n A 

fh(T) =sin Ufh(T- 1) +cos Tifh(T- 1) + 0.169953er0) • 

3.8 REGRESSION MODELS FOR GENERAL TIME SERIES DATA 

Many applications of regression in forecasting involve both predictor and response 
variables that are time series. Regression models using time series data occur relatively 
often in economics, business, and many fields of engineering. The assumption of 
uncorrelated or independent errors that is typically made for cross-section regression 
data is often not appropriate for time series data. Usually the errors in time series data 
exhibit some type of autocorrelated structure. You might find it useful at this point to 
review the discussion of autocorrelation in time series data from Chapter 2. 

There are several sources of autocorrelation in time series regression data. In many 
cases, the cause of autocorrelation is the failure of the analyst to include one or more 
important predictor variables in the model. For example, suppose that we wish to 
regress the annual sales of a product in a particular region of the country against the 
annual advertising expenditures for that product. Now the growth in the population 
in that region over the period of time used in the study will also influence the product 
sales. If population size is not included in the model, this may cause the errors in the 
model to be positively autocorrelated, because if the per-capita demand for the product 
is either constant or increasing with time, population size is positively correlated with 
product sales. 

The presence of autocorrelation in the errors has several effects on the ordinary 
least squares regression procedure. These are summarized as follows: 

1. The ordinary least squares (OLS) regression coefficients are still unbiased, but 
they are no longer minimum-variance estimates. We know this from our study 
of generalized least squares in Section 3.7. 

2. When the errors are positively autocorrelated, the residual mean square may 
seriously underestimate the error variance a 2

. Consequently, the standard errors 
of the regression coefficients may be too small. As a result, confidence and 
prediction intervals are shorter than they really should be, and tests of hypotheses 
on individual regression coefficients may be misleading in that they may indicate 
that one or more predictor variables contribute significantly to the model when 
they really do not. Generally, underestimating the error variance a 2 gives the 
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analyst a false impression of precision of estimation and potential forecast 
accuracy. 

3. The confidence intervals, prediction intervals, and tests of hypotheses based on 
the t and Fdistributions are, strictly speaking. no longer exact procedures. 

There are three approaches to dealing with the problem of autocorrelation. If auto­
correlation is present because of one or more omitted predictors and if those predictor 
variable(s) can be identified and included in the model, the observed autocorrelation 
should disappear. Alternatively, the weighted least squares or generalized least squares 
methods discussed in Section 3.7 could be used if there were sufficient knowledge of 
the autocorrelation structure. Finally, if these approaches cannot be used. the analyst 
must tum to a model that specifically incorporates the autocorrelation structure. These 
models usually require special parameter estimation techniques. We will provide an 
introduction to these procedures in Section 3.8.2. 

3.8.1 Detecting Autocorrelation: The Durbin-Watson Test 

Residual plots can be useful for the detection of autocorrelation. The most useful 
display is the plot of residuals versus time. If there is positive autocorrelation. residuals 
of identical sign occur in clusters: that is, there are not enough changes of sign in 
the pattern of residuals. On the other hand, if there is negative autocorrelation. the 
residuals will alternate signs too rapidly. 

Various statistical tests can be used to detect the presence of autocorrelation. 
The test developed by Durbin and Watson [ 1950, 1951, 1971] is a very widely used 
procedure. This test is based on the assumption that the errors in the regression model 
are generated by a first-order autoregressive process observed at equally spaced 
time periods; that is, 

E1 = ¢Er-l + Gr (3.93) 

where E1 is the error term in the model at time period t, a1 is an NID(O. a}) random 
variable, and¢ is a parameter that defines the relationship between successive values 
of the model errors E1 and E1_ 1. We will require that 1¢1 < L so that the model error 
term in time period t is equal to a fraction of the error experienced in the immediately 
preceding period plus a normally and independently distributed random shock or 
disturbance that is unique to the current period. In time series regression models ¢ 
is sometimes called the autocorrelation parameter. Thus a simple linear regression 
model with first-order autoregressive errors would be 

Yr =flo+ fltXr + Er. Er = ¢Er-l + Gr (3.94) 

where Yr and x1 are the observations on the response and predictor variables at time 
period t. 
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When the regression model errors are generated by the first-order autoregressive 
process in Eq. (3.93), there are several interesting properties of these errors. By 
successively substituting for £ 1 , £ 1_ 1, .•• on the right-hand side of Eq. (3.93) we 
obtain 

00 

Sr = L4>iat-j 
}=0 

In other words, the error term in the regression model for period t is just a linear 
combination of all of the current and previous realizations of the NID(O, o- 2) random 
variables a1 • Furthermore, we can show that 

c ~ tj>2 ) 

tj>ia; (~) 

(3.95) 

That is, the errors have zero mean and constant variance but have a nonzero covariance 
structure unless 4> 0. 

The autocorrelation between two errors that are one period apart, or the lag one 
autocorrelation, is 

ja; ( ~~¢2 )va,; ( ~~¢2) 
=4> 

The autocorrelation between two errors that are k periods apart is 

Pk = q/. i = 1, 2, ... 

This is called the autocorrelation function (refer to Section 2.3.2). Recall that we 
have required that 14>1 < I. When 4> is positive, all error terms are positively correlated, 
but the magnitude of the correlation decreases as the errors grow further apart. Only 
if¢ = 0 are the model errors uncorrelated. 

Most time series regression problems involve data with positive autocorrelation. 
The Durbin-Watson test is a statistical test for the presence of positive autocorrelation 
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in regression model errors. Specifically, the hypotheses considered in the Durbin­
Watson test are 

The Durbin-Watson test statistic is 

T 

L (e,- e,_l)2 

d = _r=_2_-=T __ _ 

L:e~ 
t=l 

Ho: ¢> = 0 
HI : ¢> > 0 

(3.96) 

(3.97) 

where thee,, t = I. 2, ... , Tare the residuals from an OLS regression of y, on x,. In 
Eq. (3.97) r1 is the lag one autocorrelation between the residuals, so for uncorrelated 
errors the value of the Durbin-Watson statistic should be approximately 2. Statistical 
testing is necessary to determine just how far away from 2 the statistic must fall 
in order for us to conclude that the assumption of uncorrelated errors is violated. 
Unfortunately, the distribution of the Durbin-Watson test statistic d depends on the X 
matrix, and this makes critical values for a statistical test difficult to obtain. However. 
Durbin and Watson [ 1951] show that d lies between lower and upper bounds, say, dL 
and du , such that if d is outside these limits, a conclusion regarding the hypotheses 
in Eq. (3.96) can be reached. The decision procedure is as follows: 

If d < dL reject H0 : p = 0 

If d > du do not reject H0 : p = 0 

If dL :::=: d :::=: du the test is inconclusive 

Table A.5 in Appendix A gives the bounds dL and du for a range of sample sizes, 
various numbers of predictors, and three type I error rates (a = 0.05, a = 0.025, and 
a = 0.0 I). It is clear that small values of the test statistic d imply that H0 : ¢> = 0 
should be rejected because positive autocorrelation indicates that successive error 
terms are of similar magnitude, and the differences in the residuals e1 - e,_ 1 will 
be small. Durbin and Watson suggest several procedures for resolving inconclusive 
results. A reasonable approach in many of these inconclusive situations is to analyze 
the data as if there were positive autocorrelation present to see if any major changes 
in the results occur. 

Situations where negative autocorrelation occurs are not often encountered. How­
ever, if a test for negative autocorrelation is desired, one can use the statistic 4 -d, 
where d is defined in Eq. (3.97). Then the decision rules for testing the hypothe­
ses H0 : ¢> = 0 versus H1 : ¢> < 0 are the same as those used in testing for pos­
itive autocorrelation. It is also possible to test a two-sided alternative hypothesis 
( Ho : ¢> = 0 versus H 1 : ¢> i= 0 ) by using both of the one-sided tests simultaneously. 
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If this is done, the two-sided procedure has type I error 2a, where a is the type I error 
used for each individual one-sided test. 

Example 3.12 

Montgomery, Peck, and Vining [2006] present an example of a regression model 
used to relate annual regional advertising expenses to annual regional concentrate 

sales for a soft drink company. Table 3.13 presents the twenty years of these data used 
by Montgomery, Peck, and Vining [2006]. The authors assumed that a straight-line 

relationship was appropriate and fit a simple linear regression model by ordinary least 

squares. The Minitab output for this model is shown in Table 3.14 and the residuals 
are shown in the last column of Table 3.13. Because these are time series data, there 

is a possibility that autocorrelation may be present. The plot of residuals versus time, 

shown in Figure 3.5, has a pattern indicative of potential autocorrelation; there is a 
definite upward trend in the plot, followed by a downward trend. 

We will use the Durbin-Watson test for 

Ho:¢=0 
H1 : ¢ > 0 

TI\.BLE3.13 Soft Drink Concentrate Sales Data 

Expenditures 
Year Sales (Units) (103 dollars) Residuals 

3083 75 -32.3298 

2 3149 78 -26.6027 
3 3218 80 2.2154 
4 3239 82 -16.9665 

5 3295 84 -1.1484 

6 3374 88 -2.5123 
7 3475 93 -1.9671 

8 3569 97 11.6691 
9 3597 99 -0.5128 

10 3725 104 27.0324 
II 3794 109 -4.4224 

12 3959 115 40.0318 

13 4043 120 23.5770 
14 4194 127 33.9403 
15 4318 135 -2.7874 

16 4493 144 -8.6060 

17 4683 153 0.5753 

18 4850 161 6.8476 
19 5005 170 -18.9710 

20 5236 182 -29.0625 



138 REGRESSION ANALYSIS AND FORECASTING 

TABLE 3.14 Minitab Output for the Soft Drink Concentrate Sales Data 

Regression Analysis: Sales Versus Expenditures 

The regression equation is 
Sales = 1609 + 20.1 Expenditures 

Predictor coef SE Coef T p 

Constant 1608.51 17.02 94.49 0.000 
Expenditures 20.0910 0.1428 140.71 0.000 

s 20.5316 R-Sq 99.9% R-Sq(adj) 99.9% 

Analysis of Variance 

Source DF ss MS F p 

Regression 1 8346283 8346283 19799.11 0.000 
Residual Error 18 7588 422 
Total 19 8353871 

Unusual Observations 

Obs Expenditures Sales Fit SE Fit Residual St Resid 
12 115 3959.00 3918.97 4.59 40.03 2.00R 

R denotes an observation with a large standardized residual. 

Durbin-Watson statistic 1.08005 

The test statistic is calculated as follows: 

20 

L (el- e1-1l
2 

d = :....1=-=2---::-::----
20 

I:e7 
1=1 

[ -26.6027- ( -32.3298)]" + [2.2154- ( -26.6027)] 2 + ... + [ -29 0625- ( -18.9710Jf 
(-32.3298)2 + (-26.6027)2 + ... + (-29.062512 

= 1.08 

Minitab will also calculate and display the Durbin-Watson statistic. Refer to the 
Minitab output in Table 3.14. If we use a significance level of 0.05. Table A.5 in 
Appendix A gives the critical values corresponding to one predictor variable and 20 
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FIGURE 3.5 Plot of residuals versus time for the soft drink concentrate sales model. 

observations as dL = 1.20 and du = 1.41. Since the calculated value of the Durbin­
Watson statistic d = 1.08 is less than dL = 1.20, we reject the null hypothesis and 
conclude that the errors in the regression model are positively autocorrelated. • 

3.8.2 Estimating the Parameters in Time Series Regression Models 

A significant value of the Durbin-Watson statistic or a suspicious residual plot indi­
cates a potential problem with autocorrelated model errors. This could be the result 
of an actual time dependence in the errors or an "artificial" time dependence caused 
by the omission of one or more important predictor variables. If the apparent au­
tocorrelation results from missing predictors and if these missing predictors can be 
identified and incorporated into the model, the apparent autocorrelation problem may 
be eliminated. This is illustrated in the following example. 

Example 3.13 

Table 3.15 presents an expanded set of data for the soft drink concentrate sales problem 
introduced in Example 3. 12. Because it is reasonably likely that regional population 
affects soft drink sales, Montgomery, Peck, and Vining [2006] provided data on 
regional population for each of the study years. Table 3.16 is the Mini tab output for 
a regression model that includes predictor variables, advertising expenditures, and 
population. Both of these predictor variables are highly significant. The last column 
of Table 3.15 shows the residuals from this model. Minitab calculates the Durbin­
Watson statistic for this model as d = 3.05932, and the 5% critical values are dL = 1.10 
and du = 1.54, and since dis greater than du, we conclude that there is no evidence to 
reject the null hypothesis. That is, there is no indication of autocorrelation in the errors. 
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TABLE3.15 Expanded Soft Drink Concentrate Sales Data for Example 3.13 

Expenditures 
Year Sales (Units) ( 103 dollars) Populati0n Residuals 

I 3083 75 825000 -4.8290 
2 3I49 78 830445 -3.2721 
3 32I8 80 838750 14.9179 
4 3239 82 842940 -7.9842 
5 3295 84 846315 5.4817 
6 3374 88 852240 0.7986 
7 3475 93 860760 -4.6749 
8 3569 97 865925 6.9178 
9 3597 99 87I640 -I 1.5443 

10 3725 I04 877745 14.0362 
II 3794 109 886520 -23.8654 
I2 3959 II5 894500 17.1334 
13 4043 120 900400 -0.9420 
14 4194 127 904005 14.9669 
15 4318 135 908525 -16.0945 
I6 4493 144 912160 -13.1044 
17 4683 153 917630 1.8053 
18 4850 161 922220 13.6264 
19 5005 170 925910 -3.4759 
20 5236 182 929610 0.1025 

Figure 3.6 is a plot of the residuals from this regression model in time order. This 
plot shows considerable improvement when compared to the plot of residuals from the 
model using only advertising expenditures as the predictor. Therefore, we conclude 
that adding the new predictor population size to the original model has eliminated an 
apparent problem with autocorrelation in the errors. • 

The Cochrane-Orcutt Method 
When the observed autocorrelation in the model errors cannot be removed by adding 
one or more new predictor variables to the model, it is necessary to take explicit 
account of the autocorrelative structure in the model and use an appropriate parameter 
estimation method. A very good and widely used approach is the procedure devised 
by Cochrane and Orcutt [1949]. 

We will describe the Cochrane-Orcutt method for the simple linear regression 
model with first-order autocorrelated errors given in Eq. (3.94). The procedure is 
based on transforming the response variable so that y; = Yr - ci>Yr -I. Substituting for 
Yr and Yr-1. the model becomes 

Y; = Yr - c/>Yr-1 
= f3o + f31Xr + Er- c/>(f3o + f31Xr-l + Er-d 
= f3o0- ¢) + f31(Xr- c/>Xr-d + Er- c/>Er-1 
= f3b + fJ1x; + ar 

(3.98) 
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TABLE 3.16 Minitab Output for the Soft Drink Concentrate Data in Example 3.13 

Regression Analysis: Sales Versus Expenditures, Population 

The regression equation is 
Sales = 320 + 18.4 Expenditures + 0.00168 Population 

Predictor Coef SE Coef T p 

Constant 320.3 217.3 1. 47 0.159 
Expenditures 18.4342 0.2915 63.23 0.000 
Population 0.0016787 0.0002829 5.93 0.000 

s 12.0557 R-Sq 100.0% 

Analysis of Variance 

Source DF 
Regression 2 
Residual Error 17 
Total 19 

Source DF 
Expenditures 1 
Population 1 

ss 
8351400 

2471 
8353871 

Seq SS 
8346283 

5117 

Unusual Observations 

Obs Expenditures Sales 
11 109 3794.00 

R-Sq(adj) 100.0% 

MS 
4175700 

145 

F 

28730.40 

p 

0.000 

Fit SE Fit Residual 
3817.87 4.27 -23.87 

St Resid 
-2.12R 

R denotes an observation with a large standardized residual. 

Durbin-Watson statistic 3.05932 

where f3(1 = {30(1 - ¢) and x; = x, - ¢x,_ 1• Note that the error terms a, in the trans­
formed or reparameterized model are independent random variables. Unfortunately, 
this new reparameterized model contains an unknown parameter ¢ and it is also no 
longer linear in the unknown parameters because it involves products of¢, fJo, and /]1• 

However, the first-order autoregressive process £1 = ¢£1_ 1 +a, can be viewed as a 
simple linear regression through the origin and the parameter ¢ can be estimated by 
obtaining the residuals of an OLS regression of y, on x, and then regressing e1 on 
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FIGURE 3.6 Plot of residuals versus time for the soft drink concentrate sale' model in Example 3.13. 

e1_ 1. The OLS regression of e1 on e1_ 1 results in 

T 

'L:e1e1-1 
¢ = 1_=_2 __ _ 

T 

L e? 
r=l 

(3.99) 

Using¢ as an estimate of¢, we can calculate the transformed response and predictor 
variables as 

Y; = Y1- ¢.'>'1-1 

x; = X1- ¢xl-l 

Now apply ordinary least squares to the transformed data. This will result in 
estimates of the transformed slope f3b, the intercept ~ 1• and a new set of residuals. The 
Durbin-Watson test can be applied to these new residuals from the reparameterized 
model. If this test indicates that the new residuals are uncorrelated, then no additional 
analysis is required. However, if positive autocorrelation is still indicated, then another 
iteration is necessary. In the second iteration¢ is estimated with new residuals that are 
obtained by using the regression coefficients from the reparameterized model with the 
original regressor and response variables. This iterative procedure may be continued 
as necessary until the residuals indicate that the error terms in the reparameterized 
model are uncorrelated. Usually only one or two iterations are sufficient to produce 
uncorrelated errors. 
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Example 3.14 

Montgomery, Peck, and Vining [2006] give data on the market share of a particular 
brand of toothpaste for 30 time periods and the corresponding selling price per pound. 

These data are shown in Table 3.17. A simple linear regression model is fit to these 

data, and the resulting Minitab output is in Table 3.18. The residuals are shown in 
Table 3.17. The Durbin-Watson statistic for the residuals from this model is d = 
1.13582 (see the Minitab output), and the 5% critical values are dL = 1.20 and du = 
1.41, so there is evidence to support the conclusion that the residuals are positively 
autocorrelated. 

We will use the Cochrane-Orcutt method to estimate the model parameters. The 

autocorrelation coefficient can be estimated using the residuals in Table 3.17 and Eq. 
(3.99) as follows: 

T 

l:.:etet-1 

¢= 1=2 
T 

L e; 
v=l 

1.3547 
---

3.3083 

= 0.409 

TABLE 3.17 Toothpaste Market Share Data 

Time Market Share Price Residuals y; x' r Residuals 

3.63 0.97 0.281193 
2 4.20 0.95 0.365398 2.715 0.533 -0.189435 
3 3.33 0.99 0.466989 1.612 0.601 0.392201 
4 4.54 0.91 -0.266193 3.178 0.505 -0.420108 
5 2.89 0.98 -0.215909 1.033 0.608 -0.013381 
6 4.87 0.90 -0.179091 3.688 0.499 -0.058753 
7 4.90 0.89 -0.391989 2.908 0.522 -0.268949 
8 5.29 0.86 -0.730682 3.286 0.496 -0.535075 
9 6.18 0.85 -0.083580 4.016 0.498 0.244473 

10 7.20 0.82 0.207727 4.672 0.472 0.256348 
II 7.25 0.79 -0.470966 4.305 0.455 -0.531811 
12 6.09 0.83 -0.659375 3.125 0.507 -0.423560 
13 6.80 0.81 -0.435170 4.309 0.471 -0.131426 
14 8.65 0.77 0.443239 5.869 0.439 0.635804 
15 8.43 0.76 -0.019659 4.892 0.445 -0.192552 
16 8.29 0.80 0.811932 4.842 0.489 0.847507 
17 7.18 0.83 0.430625 3.789 0.503 0.141344 
18 7.90 0.79 0.179034 4.963 0.451 0.027093 
19 8.45 0.76 0.000341 5.219 0.437 -0.063744 
20 8.23 0.78 0.266136 4.774 0.469 0.284026 
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TABLE 3.18 Minitab Regression Results for the Toothpaste Market Share Data 

Regression Analysis: Market Share Versus Price 

The regression equation is 
Market Share = 26.9 - 24.3 Price 

Predictor 
Constant 
Price 

Coef 
26.910 

-24.290 

SE Coef 
1.110 
1. 298 

T 

24.25 
-18.72 

p 

0.000 
0.000 

s 0.428710 R-Sq 95.1% R-Sq(adj) 

Analysis of Variance 

Source DF ss MS F 
Regression 1 64.380 64.380 350.29 
Residual Error 18 3.308 0.184 
Total 19 67.688 

Durbin-Watson statistic 1.13582 

The transformed variables are computed according to 

Y; = Yr- 0.409Jr-I 

x; = x, - 0.409x,_ I 

94.8% 

p 

0.000 

fort = 2, 3, ... , 20. These transformed variables are also shown in Table 3.17. The 
Minitab results for fitting a regression model to the transformed data are summa­
rized in Table 3.19. The residuals from the transformed model are shown in the 
last column of Table 3.17. The Durbin-Watson statistic for the transformed model is 
d = 2.15671, and the 5% critical values from Table A.5 in Appendix A are dL = 1.18 
and du = 1.40, so we conclude that there is no problem with autocorrelated errors in 
the transformed model. The Cochrane-Orcutt method has been effective in removing 
the autocorrelation. 

The slope in the transformed model f3; is equal to the slope in the original model. 
f3I. A comparison of the slopes in the two models in Tables 3.18 and 3.19 shows that 
the two estimates are very similar. However, if the standard errors are compared. the 
Cochrane-Orcutt method produces an estimate of the slope that has a larger standard 
error than the standard error of the ordinary least squares estimate. This reflects the 
fact that if the errors are autocorrelated and OLS is used, the standard errors of the 
model coefficients are likely to be underestimated. • 
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TABLE 3.19 Minitab Regression Results for Fitting the Transformed Model 
to the Toothpaste Sales Data 

Regression Analysis: y' Versus x' 

The regression equation is 
y-prime = 16.1 - 24.8 x-prime 

Predictor Coef 
Constant 16.1090 
x-prime -24.774 

s 0.390963 R-Sq 

Analysis of Variance 

Source DF 

SE Coef 
0.9610 

1. 934 

90.6% 

ss 

T 

16.76 
-12.81 

p 

0.000 
0.000 

R-Sq(adj) 

MS F 

90.1% 

p 

Regression 1 25.080 25.080 164.08 0.000 
Residual Error 17 2.598 0.153 
Total 18 27.679 

Unusual Observations 

Obs x-prime y-prime Fit SE Fit Residual 
2 0.601 1.6120 1. 2198 0.2242 0.3922 
4 0.608 1.0330 1.0464 0.2367 -0.0134 

15 0.489 4.8420 3.9945 0.0904 0.8475 

St Resid 
1.22 X 

-0.04 X 
2.23R 

R denotes an observation with a large standardized residual. 
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X denotes an observation whose X value gives it large influence. 

Durbin-Watson statistic 2.15671 

The Maximum Likelihood Approach 
There are other alternatives to the Cochrane-Orcutt method. A popular approach is 
to use the method of maximum likelihood to estimate the parameters in a time series 
regression model. We will concentrate on the simple linear regression model with 
first-order autoregressive errors 

(3.100) 

One reason that the method of maximum likelihood is so attractive is that, unlike 
the Cochrane-Orcutt method, it can be used in situations where the autocorrelative 
structure of the errors is more complicated than first-order autoregressive. 
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For readers unfamiliar with maximum likelihood estimation, we will present a 
simple example. Consider the time series model 

(3.101) 

where a1 is N(O, a 2) and JJ- is unknown. This is a time series model for a process that 
varies randomly around a fixed level (JJ-) and for which there is no autocorrelation. We 
will estimate the unknown parameter JJ- using the method of maximum likelihood. 

Suppose that there are T observations available, y 1, y2 , ...• Yr. The probability 
distribution of any observation is normal, that is, 

I < , , = ---e- a,ja) 1-
a.Jbi 

The likelihood function is just the joint probability density function of the sample. 
Because the observations y 1, J'z, ... , Yr are independent, the likelihood function is 
just the product of the individual density functions, or 

T 

l(yr, JJ-) = n f(Yr) 
1=1 

T 
= n __ l_e-(a,ja)'/2 

r=l a.Jbi 
(3.102) 

= --- exp --La; ( 
J )r ( 1 T ') 

a.Jbi 2a2 t=l 

The maximum likelihood estimator of JJ- is the value of the parameter that maximizes 
the likelihood function. It is often easier to work with the log-likelihood, and this 
causes no problems because the value of JJ- that maximizes the likelihood function 
also maximizes the log-likelihood. 

The log-likelihood is 

T I T ' 
lnl(Yrtl) = --ln(2rr)- TIna- -

1 ""a; 2 2a- ~ 
1=1 

Suppose that a 2 is known. Then to maximize the log-likelihood we would choose the 
estimate of JJ- that minimizes 

T T 

La;= L(y,- JJ-) 2 

1=1 1=1 
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Note that this is just the error sum of squares from the model in Eq. (3.10 I). So, in 
the case of normally distributed errors, the maximum likelihood estimator of fJ is 

identical to the least squares estimator of fl. It is easy to show that this estimator is 

just the sample average; that is, 

(l = 5' 

Suppose that the mean of the model in Eq. (3.1 0 I) is a linear regression function 
of time, say, 

fl = f3o + fJ1t 

so that the model is 

Yt = fl +at = f3o + f31t +at 

with independent and normally distributed errors. The likelihood function for this 

model is identical to Eq. (3.1 02), and, once again, the maximum likelihood estimators 

of the model parameters {30 and {3 1 are found by minimizing the error sum of squares 

from the model. Thus when the errors are normally and independently distributed, 

the maximum likelihood estimators of the model parameters {30 and {3 1 in the linear 

regression model are identical to the least squares estimators. 
Now let's consider the simple linear regression model with first-order autoregres­

sive errors, first introduced in Eq. (3.94), and repeated for convenience below: 

Recall that the a's are normally and independently distributed with mean zero and 

variance a; and¢ is the autocorrelation parameter. Write this equation for Yt-l and 

subtract ¢Yt-l from Yt. This results in 

or 

Yt = ¢Yt-l + (1 - ¢)f3o + f31 (xt - c/Jxt-1) +at 
= fl(Zt, 8) +at 

(3.103) 

where z' t = [Yt _ 1 , X 1 ] and e' = [ ¢, {30 , f3 t]. We can think of z1 as a vector of predictor 

variables and e as the vector of regression model parameters. Since Yr-l appears on 
the right-hand side of the model in Eq. (3.103), the index of time must run from 
2;3, ... , T. At time period t = 2, we treat y1 as an observed predictor. 
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Because the a's are normally and independently distributed. the joint probability 
density of the a's is 

( 
1 )T-1 ( 1 T ") = --- exp --1 L:a; 

aa../2ii 2a;; r=l 

and the likelihood function is obtained from this joint distribution by substituting for 
thea's: 

( 
1 )T-1 

l(yl, ¢, f3o, f3J) = r;c 
aav 2rr 

exp --
2 
L {yl- [¢YI-I +(I- </J)f3o + f31(xl- ¢x1-1)]}_ 

( 
J T ") 

2aa 1=2 

The log-likelihood is 

T-1 
lnl(y1, ¢, f3o, f3J) =- -

2
-ln(2rr)- (T- l)lnaa 

This log-likelihood is maximized with respect to the parameters ¢. {30 , and {3 1 by 
minimizing the quantity 

T 

SSE= L {yl- [¢YI-I +(I- </J)f3o + f31(X1- ¢xi_J)Jf (3.104) 
1=2 

which is the error sum of squares for the model. Therefore the maximum likelihood 
estimators of¢, {30 , and {3 1 are also least squares estimators. 

There are two important points about the maximum likelihood (or least squares) 
estimators. First, the sum of squares in Eq. (3.1 04) is conditional on the initial value 
of the time series, y1• Therefore the maximum likelihood (or least squares) estimators 
found by minimizing this conditional sum of squares are conditional maximum like­
lihood (or conditional least squares) estimators. Second, because the model involves 
products of the parameters ¢ and {30 , the model is no longer linear in the unknown 
parameters. That is, it's not a linear regression model and consequently we cannot 
give an explicit closed-form solution for the parameter estimators. Iterative meth­
ods for fitting nonlinear regression models must be used. These procedures work by 
linearizing the model about a set of initial guesses for the parameters. solving the 
linearized model to obtain improved parameter estimates, then using the improved 
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estimates to define a new linearized model, which leads to new parameter estimates, 
and so on. The details of fitting nonlinear models by least squares are discussed in 
Montgomery, Peck, and Vining [2006]. 

", "' "' "' Suppose that we have obtained a set of parameter estimates, say, e = [¢, {3 0 , {3 1]. 

The maximum likelihood estimate of a J is computed as 

(3.105) 

where SSE(8) is the error sum of squares in Eq. (3.104) evaluated at the con­
ditional maximum likelihood (or conditional least squares) parameter estimates 

A/ A A A e = [¢, {3 0 , {3!]. Some authors (and computer programs) use an adjusted number 
of degrees of freedom in the denominator to account for the number of parameters 
that have been estimated. If there are k predictors, then the number of estimated 
parameters will be p = k + 3, and the formula for estimating a,; is 

(3.1 06) 

In order to test hypotheses about the model parameters and to find confidence 
intervals, standard errors of the model parameters are needed. The standard errors are 
usually found by expanding the nonlinear model in a first-order Taylor series around 
the final estimates of the parameters B' = [¢, /3o, /3 1]. This results in 

The column vector of derivatives, a fl(Zt' e) I a e' is found by differentiating the model 
with respect to each parameter in the vector e' = [¢, {30 , {3d. This vector of derivatives 
IS 

a11(z,, e) 

ae [ 

1-¢ ] 
Xt -Xt-1 

Yr-1 - f3o- f31xt-l 

This vector is evaluated for each observation at the set of conditional maximum 
likelihood parameter estimates B' = [¢, /3 0 , f3 il and assembled into an X matrix. 
Then the covariance matrix of the parameter estimates is found from 

When aJ is replaced by the estimate u,; from Eq. (3.106) an estimate of the covariance 
matrix results, and the standard errors of the model parameters are the main diagonals 
of the covariance matrix. 



150 REGRESSION ANALYSIS AND FORECASTING 

Example 3.15 

We will fit the regression model with time series errors in Eq. ( 3.104) to the tooth­
paste market share data originally analyzed in Example 3.14. We will use a widely 
available software package, SAS (the Statistical Analysis System). The SAS proce­
dure for fitting regression models with time series errors is SAS PROC AUTOREG. 
Table 3.20 contains the output from this software program for the toothpaste market 
share data. Note that the autocorrelation parameter (or the lag one autocorrelation) is 
estimated to be 0.4094, which is very similar to the value obtained by the Cochrane­
Orcutt method. The overall R 2 for this model is 0.9601. and we can show that the 
residuals exhibit no autocorrelative structure, so this is likely a reasonable model for 
the data. 

There is, of course, some possibility that a more complex autocorrelation structure 
than first-order may exist. SAS PROC AUTOREG can fit more complex patterns. 
Since there is obviously first-order autocorrelation present, an obvious possibility is 
that the autocorrelation might be second-order autoregressive, as in 

where the parameters ¢ 1 and ¢ 2 are autocorrelations at Jags one and two. respectively. 
The output from SAS PROC AUTOREG for this model is in Table 3.21. The t-statistic 
for the lag two autocorrelation is not significant so there is no reason to believe that 
this more complex autocorrelative structure is necessary to adequately model the data. 
The model with first-order autoregessive errors is satisfactory. • 

Forecasting and Prediction Intervals 
We now consider how to obtain forecasts at any lead time using a time series model. 
It is very tempting to ignore the autocorrelation in the data when forecasting. and 
simply substitute the conditional maximum likelihood estimates into the regression 
equation: 

Now suppose that we are at the end of the current time period. T. and we wish to 
obtain a forecast for period T + I. Using the above equation. this results in 

assuming that the value of the predictor variable in the next time period xr + 1 1s 
known. 

Unfortunately, this naive approach isn't correct. From Eq. (3. 103 ). we know that 
the observation at time period t is 

(3.107) 
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TABLE 3.20 SAS PROC AUTO REG Output for the Toothpaste Market Share Data, 
Assuming First-Order Autoregressive Errors 

SSE 
MSE 

SEC 
Regress R-Square 
Durbin-Watson 
Pr > DW 
NOTE: Pr<DW is the 

The SAS System 

The AUTOREG Procedure 

Dependent Variable y 

Ordinary Least Squares Estimates 

3.30825739 DFE 18 
0.18379 Root MSE 0.42871 

26.762792 AIC 24.7713275 
0. 9511 Total R-Square 0.9511 
1.1358 Pr < DW 0.0098 
0.9902 

p-value for testing positive autocorrelation, and Pr>DW is 
the p-value for testing negative autocorrelation. 

Standard 

Variable DF 

Intercept 
X 1 

Lag Covariance 

Standard 
Lag 

0.1654 
0.0677 

Coefficient 

-0.409437 

Algorithm converged. 

Estimate 

26.9099 
-24.2898 

Error 

1.1099 
1.2978 

t Value 

24.25 
-18.72 

Approx 

Pr > ltl 

<.0001 
<.0001 

Variable 

Label 

X 

Estimates of Autocorrelations 

Correlation 

1.000000 
0.409437 

-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1********************1 

l******** 

Preliminary MSE 0.1377 

Estimates of Autoregressive Parameters 

Error t Value 

0.221275 -1.85 
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TABLE 3.20 SAS PROC AUTO REG Output for the Toothpaste Market Share Data, 
Assuming First-Order Autoregressive Errors (Continued) 

The SAS System 

The AUTOREG Procedure 

Maximum Likelihood Estimates 

SSE 2.69864377 DFE 17 

MSE 0.15874 Root MSE 0.39t43 

SBC 25.8919447 AIC 22.904709 

Regress R-Square 0.9170 Total R-Square 0.9E01 

Durbin-Watson 1.8924 Pr < DW 0.302 

Pr > DW 0.6528 

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>m•J is 

the p-value for testing negative autocorrelation. 

Standard 

Variable 

Intercept 

X 

ARl 

Standard 

Variable 

Intercept 

X 

DF 

DF 

Estimate Error t Val·Je 

26.3322 1.4777 17.82 

-23.5903 1.7222 -13.70 
-0.4323 0.2203 -1.96 

Autoregressive parameters assumed 

Approx Variable 

Estimate Error t Value 

26.3322 1.4776 17.82 

-23.5903 1.7218 -13.70 

Approx 

?r > It I 

<.0001 

<.0001 

0.0663 

given. 

Pr > It I 

<.0001 

<.0001 

So at the end of the current time period T the next observation is 

Variable 

Label 

X 

Label 

X 

Assume that the future value of the regressor variable xr + 1 is known. Obviously, at 
the end of the current time period, both Yr and xr are known. The random error at time 

T + 1, ar +l, hasn't been observed yet, and because we have assumed that the expected 

value of the errors is zero, the best estimate we can make of ar+l is ar+l = 0. This 
suggests that a reasonable forecast of the observation in time period T +I that we can 
make at the end of the current time period T is 

(3.108) 

Note that this forecast is likely to be very different from the naive forecast obtained 
by ignoring the autocorrelation. 
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TABLE 3.21 SAS PROC AUTOREG Output for the Toothpaste Market Share Data, 
Assuming Second-Order Autoregressive Errors 

SSE 
MSE 

SEC 
Regress R-Square 

Durbin-Watson 
Pr > DW 

NOTE: Pr<DW is the 

The SAS System 

The AUTOREG Procedure 

Dependent Variable y 
y 

Ordinary Least Squares Estimates 

3.30825739 DFE 18 
0.18379 Root MSE 0.42871 

26.762792 AIC 24.7713275 

0. 9511 Total R-Square 0.9511 
1.1358 Pr < DW 0.0098 
0.9902 

p-value for testing positive autocorrelation, and Pr>DW is 
the p-value for testing negative autocorrelation. 

Standard 

Variable DF 

Intercept 

X 

Lag Covariance 

0 

1 

2 

Standard 
Lag 

2 

0.1654 
0.0677 

0.0223 

Coefficient 

-0.425646 
0.039590 

Algorithm converged. 

Approx 

Estimate 

26.9099 
-24.2898 

variable 

Error 

1.1099 
1.2978 

t Value 

24.25 
-18.72 

Pr > ltl 

<.0001 
<.0001 

Label 

X 

Estimates of Autocorrelations 

Correlation 

1.000000 
0.409437 
0.134686 

-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

1********************1 

!******** 

I*** 

Preliminary MSE 0.1375 

Estimates of Autoregressive Parameters 

Error 

0.249804 
0.249804 

t Value 

-1.70 
0.16 
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TABLE 3.21 SAS PROC AUTO REG Output for the Toothpaste Market Share Data, 
Assuming Second-Order Autoregressive Errors (Continuecl) 

SSE 
MSE 
SBC 
Regress R-Square 
Durbin-Watson 
Pr > DW 
NOTE: Pr<DW is the 

2.69583958 
0.16849 

28.8691217 
0.9191 
1.9168 
0.6268 

p-value for 

The SAS System 

The AUTOREG Procedure 

Maximum Likelihood Estimates 

DFE 16 
Root MSE 0.41048 
AIC 24.8861926 
Total R-Square 0.9602 
Pr < DW 0.3732 

testing positive autocorrelation, and 
the p-value for testing negative autocorrelation. 

Standard 
Variable 

Intercept 
X 

ARl 
AR2 

Standard 
Variable 

Intercept 

X 

DF 

1 

1 

DF 

1 

1 

Approx Variable 
Estimate Error t Value 

26.3406 1.5493 17.00 
-23.6025 1.8047 -13.08 

-0.4456 0.2562 -1.74 
0.0297 0.2617 0.11 

Autoregressive parameters assumed 

Approx Variable 
Estimate Error t Value 

26.3406 1.5016 17.54 

-23.6025 1.7502 -13.49 

Pr > It I 

<.0001 
<.0001 
0.1012 
0.9110 

given. 

Pr > It; 

<.0001 
<.0001 

Pr>DW is 

Label 

X 

Label 

X 

To find a prediction interval on the forecast, we need to find the variance of the 
prediction error. The one-step-ahead forecast error is 

assuming that all of the parameters in the forecasting model are known. The variance 
of the one-step-ahead forecast error is 

Using the variance of the one-step-ahead forecast error, we can construct a I 00( I - a) 

percent prediction interval for the lead-one forecast from Eq. (3.1 07). The PI is 
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where ZaJ2 is the upper a/2 percentage point of the standard normal distribution. To 
actually compute an interval, we must replace a 11 by an estimate, resulting in 

(3.109) 

as the PI. Because a 11 and the model parameters in the forecasting equation have 
been replaced by estimates, the probability level on the PI in Eq. (3.1 09) is only 
approximate. 

Now suppose that we want to forecast two periods ahead assuming that we are at 
the end of the current time period, T. Using Eq. (3.1 07), we can write the observation 
at time period T + 2 as 

V7+2 = rPYT+! +(I- r/J)f3o + f3,(xT+2- r/JXT+!) + aT+2 

=r/J[r/JyT+(I-r/J)f3o+f3,(xr+!-r/JXT)+aT+!l+(l-r/J)f3o 

Assume that the future value of the regressor variables XT + 1 and x 1 +2 are known. At 
the end of the current time period, both y1 and XT are known. The random errors at 
timeT+ I and T + 2 haven't been observed yet, and because we have assumed that 
the expected value of the errors is zero, the best estimate we can make of both aT+! 
and aT +2 is zero. This suggests that the forecast of the observation in time period 
T + 2 made at the end of the current time period T is 

h+2(T) = (/>[(/>yT + (1- (/>)/Jo + fJ,(xT+!- (/>xT)] 

+(I - ¢ )f3¢o + fJ 1 (xr +2 - (/>xT+ d 

= ¢S'T+l(T) +(I- (/>)/Jo + fJ,(xT+2- (/>xT+d 

The two-step-ahead forecast error is 

(3.110) 

assuming that all estimated parameters are actually known. The variance of the two­
step-ahead forecast error is 

Var(a1+2 + ¢ar+ 1) =a}+ ¢ 2a} 
=(I + ¢2)a} 

Using the variance of the two-step-ahead forecast error, we can construct a I 00( I - a) 
percent PI for the lead-one forecast from Eq. (3.1 07): 



156 REGRESSION ANALYSIS AND FORECASTING 

To actually compute the PI, both a a and ¢ must be replaced by estimates, resulting 
In 

(3.111) 

as the PI. Because a a and ¢ have been replaced by estimates, the probability level on 
the PI in Eq. (3.111) is only approximate. 

In general, if we want to forecast r periods ahead, the forecasting equation is 

(3.112) 

The r-step-ahead forecast error is (assuming that the estimated model parameters are 
known) 

and the variance of the r -step-ahead forecast error is 

Var(aT+r + ¢aT+r-l + · · · + ¢r-laT+ll =(I+ ¢ 2 + · · · + ¢ 2(r-l>)a,; 

I - ¢2r 1 

= a-
1 +¢2 (I 

A 100(1 -a) percent PI for the lead-r forecast from Eq. (3.112) is 

Replacing a a and¢ by estimates, the approximate I 00( I - a) percent PI is actually 
computed from 

(3.113) 

The Case Where the Predictor Variable Must Also Be Forecast 
In the preceding discussion, we assumed that in order to make forecasts, any necessary 
values of the predictor variable in future time periods T + r are known. This is often 
(probably usually) an unrealistic assumption. For example, if you are trying to forecast 
how many new vehicles will be registered in the state of Arizona in some future year 
T + r as a function of the state population in year T + r, it's pretty unlikely that you 
will know the state population in that future year. 

A straightforward solution to this problem is to replace the required future values 
of the predictor variable in future time periods T + r by forecasts of these values. 
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For example, suppose that we are forecasting one period ahead. From Eq. (3.1 08) we 
know that the forecast for YT + 1 is 

But the future value of XT + 1 isn't known. Let iT+ 1 (T) be an unbiased forecast of 
XT+I• made at the end of the current time period T. Now the forecast for YT+I is 

(3.114) 

If we assume that the model parameters are known, the one-step-ahead forecast error 
is 

and the variance of this forecast error is 

(3.115) 

where a;( I) is the variance of the one-step-ahead forecast error for the predictor 
variable x and we have assumed that the random error aT+ 1 in period T + 1 is in­
dependent of the error in forecasting the predictor variable. Using the variance of 
the one-step-ahead forecast error from Eq. (3.115), we can construct a 100(1 -a) 

percent prediction interval for the lead-one forecast from Eq. (3.114). The PI is 

where zcx;2 is the upper a/2 percentage point of the standard normal distribution. To 
actually compute an interval, we must replace the parameters {3 1, aJ, and a;(l) by 
estimates, resulting in 

(3.116) 

as the PI. Because the parameters have been replaced by estimates, the probability 
level on the PI in Eq. (3.116) is only approximate. 

In general, if we want to forecast r periods ahead, the forecasting equation is 

(3.117) 

The r -step-ahead forecast error is, assuming that the model parameters are known, 
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and the variance of the r -step-ahead forecast error is 

Var(aT+r + </JaT+r-1 + · · · + </Jr-laT+I) =(I+ ¢ 2 + · · · + ¢ 21 r-l 1)a} + f3~a}(r) 
1 - ¢2r -, -, ., 

1 
+ ¢ 2 a,;+ {3ja;(r) 

where a}( r) is the variance of the r -step-ahead forecast error for the predictor variable 
x. A 100(1 -a) percent PI for the lead-r forecast from Eq. (3.117) is 

Replacing all of the unknown parameters by estimates. the approximate I 00( I - a) 

percent PI is actually computed from 

(3.118) 

Alternate Forms of the Model 
The regression model with autocorrelated errors 

Yt =<PYt-1 +(l-¢)f3o+f31(xt -<Pxt-l)+at 

is a very useful model for forecasting time series regression data. However. when 
using this model there are two alternatives that should be considered. The first of 
these is 

(3.119) 

This model removes the requirement that the regression coefficient for the lagged 
predictor variable x1 _ 1 be equal to - {3 1 ¢.An advantage of this model is that it can be 
fit by ordinary least squares. Another alternative model to consider is to simply drop 
the lagged value of the predictor variable from Eq. (3.119). resulting in 

(3.120) 

Often just including the lagged value of the response variable is sufficient and Eq. 
(3.120) will be satisfactory. 

The choice between models should always be a data-driven decision. The different 
models can be fit to the available data. and model selection can he based on the criteria 
that we have discussed previously. such as model adequacy checking and residual 
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analysis, and (if enough data are available to do some data splitting) forecasting 
performance over a test or trial period of data. 

Example 3.16 

Reconsider the toothpaste market share data originally presented in Example 3.14 and 
modeling with a time series regression model with first-order autoregressive errors in 
Example 3.15. First we will try fitting the model in Eq. (3.119). This model simply 
relaxes the restriction that the regression coefficient for the lagged predictor variable 
x 1_ 1 (price in this example) be equal to -{3 1¢. Since this is just a linear regression 
model, we can fit it using Minitab. Table 3.22 contains the Minitab results. 

TABLE 3.22 Minitab Results for Fitting Model (3.119) to the Toothpaste Market 
Share Data 

Regression Analysis: y Versus y,_t,x,x1_ 1 

The regression equation is 
y = 16.1 + 0.425 y(t-1) - 22.2 x + 7.56 x(t-1) 

Predictor Coef 
Constant 16.100 
y(t-1) 0.4253 
X -22.250 
x(t-1) 7.562 

s 0.402205 R-Sq 

Analysis of Variance 

Source DF 
Regression 3 
Residual Error 15 
Total 

Source DF 
y(t-1) 1 
X 1 
x(t-1) 1 

18 

Seq SS 
44.768 
13.188 

0.268 

SE Coef T p 

6.095 2.64 0.019 
0.2239 1. 90 0.077 
2.488 -8.94 0.000 
5.872 1. 29 0.217 

96.0% R-Sq(adj) 

ss MS F 
58.225 19.408 119.97 
2.427 0.162 

60.651 

Durbin-Watson statistic 2.04203 

95.2% 

p 

0.000 
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TABLE 3.23 Minitab Results for Fitting Model (3.120) to the Toothpaste Market 
Share Data 

Regression Analysis: y Versusy1_t.X 

The regression equation is 
y = 23.3 + 0.162 y(t-1) - 21.2 X 

Predictor Coef 
Constant 23.279 
y(t-1) 0.16172 
X -21.181 

SE Coef 
2.515 

0.09238 
2.394 

T 

9.26 
l. 75 

-8.85 

p 

0.000 
0.099 
0.000 

s 0.410394 R-Sq 95.6% R-Sq(adj) 

Analysis of Variance 

Source DF 
Regression 2 
Residual Error 16 
Total 

Source DF 
y(t-1) 1 
X 1 

18 

Seq SS 
44.768 
13.188 

ss 
57.956 
2.695 

60.651 

Durbin-Watson statistic 

MS F 
28.978 172.06 

0.168 

1.61416 

95.0% 

p 

O.OJO 

This model is a good fit to the data. The Durbin-Watson statistic is d = 2.04203. 
which indicates no problems with autocorrelation in the residuals. However. note that 
the t-statistic for the lagged predictor variable (price) is not significant ( P = 0.217). 
indicating that this variable could be removed from the model. If x,_ 1 is removed, 
the model becomes the one in Eq. (3.120). The Minitab output for this model is in 
Table 3.23. 

This model is also a good fit to the data. Both predictors. the lagged variable Yr-1 

and x, are significant. The Durbin-Watson statistic does not indicate any significant 
problems with autocorrelation. It seems that either of these models would be reason­
able for the toothpaste market share data. The advantage of these models relative to 
the time series regression model with autocorrelated errors is that they can be fit by 
ordinary least squares. In this example, including a lagged response variable and a 
lagged predictor variable has essentially eliminated any problems with autocorrelated 
errors. • 
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EXERCISES 

3.1 An article in the journal Air and Waste (Update on Ozone Trends in California's 

South Coast Air Basin, Vol. 43, 1993) investigated the ozone levels in the South 
Coast Air Basin of California for the years 1976-1991. The author believes 

that the number of days the ozone levels exceeded 0.20 ppm (the response) 

depends on the seasonal meteorological index, which is the seasonal average 
850-millibar Temperature (the predictor). Table E3.1 gives the data. 

a. Construct a scatter diagram of the data. 

b. Estimate the prediction equation. 

c. Test for significance of regression. 

d. Calculate the 95% CI and PI on for a seasonal meteorological index value 

of 17. Interpret these quantities. 

e. Analyze the residuals. Is there evidence of model inadequacy? 

f. Is there any evidence of autocorrelation in the residuals? 

TABLE E3.1 Days that Ozone Levels Exceed 20 ppm 
and Seasonal Meteorological Index 

Year Days Index 

1976 91 16.7 
1977 105 17.1 
1978 106 18.2 
1979 108 18.1 
1980 88 17.2 
1981 91 18.2 
1982 58 16.0 
1983 82 17.2 
1984 81 18.0 
1985 65 17.2 
1986 61 16.9 
1987 48 17.1 
1988 61 18.2 
1989 43 17.3 
1990 33 17.5 
1991 36 16.6 

3.2 Montgomery, Peck, and Vining [2006] present data on the number of pounds 

of steam used per month at a plant. Steam usage is thought to be related to the 

average monthly ambient temperature. The past year's usages and temperatures 
are shown in Table E3.2. 

a. Fit a simple linear regression model to the data. 

b. Test for significance of regression. 

c. Analyze the residuals from this model. 
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d. Plant management believes that an increase in average ambient tempera­
ture of one degree will increase average monthly steam consumption by 
I 0,000 lb. Do the data support this statement? 

e. Construct a 99% prediction interval on steam usage in a month with average 
ambient temperature of 58°F. 

TABLEE3.2 Monthly Steam Usage and Average Ambient Temperature 

Month Temperature (' F) Usage/1000 Month Temperature (·F) Usage/1000 

January 21 185.79 July 68 621.55 
February 24 214.47 August 74 675.06 
March 32 288.03 September 62 562.03 
April 47 424.84 October 50 452.93 
May 50 454.68 November 41 369.95 
June 59 539.03 December 30 273.98 

3.3 On March I, 1984, the Wall Street Journal published a survey of television 
advertisements conducted by Video Board Tests, Inc., a New York ad-testing 
company that interviewed 4000 adults. These people were regular product users 

TABLE E3.3 Number of Retained Impressions and 
Advertising Expenditures 

Amount Spent Retained Impressions 
Firm (millions) per Week (millions) 

Miller Lite 50.1 32.1 
Pepsi 74.1 99.6 
Stroh's 19.3 11.7 
Federal Express 22.9 21.9 
Burger King 82.4 60.8 
Coca-Cola 40.1 78.6 
McDonald's 185.9 92.--1 
MCI 26.9 50.7 
Diet Cola 20.4 21.--1 
Ford 166.2 40.1 
Levi's 27 40.8 
Bud Lite 45.6 10.--1 
ATT Bell 154.9 88.9 
Calvin Klein 5 12 
Wendy's 49.7 29.2 
Polaroid 26.9 38 
Shasta 5.7 10 
Meow Mix 7.6 12.3 
Oscar Meyer 9.2 23.--1 
Crest 32.4 71.1 
Kibbles N Bits 6.1 4.--1 
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who were asked to cite a commercial they had seen for that product category in 
the past week. In this case, the response is the number of millions of retained 
impressions per week. The predictor variable is the amount of money spent by 
the firm on advertising. The data are in Table E3.3. 

a. Fit the simple linear regression model to these data. 

b. Is there a significant relationship between the amount that a company spends 
on advertising and retained impressions? Justify your answer statistically. 

c. Analyze the residuals from this model. 

d. Construct the 95% confidence intervals on the regression coefficients. 

e. Give the 95% confidence and prediction intervals for the number of retained 
impressions for MCI. 

3.4 Suppose that we have fit the straight-line regression model )· = /30 + /3 1 x 1, but 
the response is affected by a second variable x 2 such that the true regression 
function is 

a. Is the least squares estimator of the slope in the original simple linear re­
gression model unbiased? 

b. Show the bias in /3 1• 

3.5 Suppose that we are fitting a straight line and wish to make the standard error 
of the slope as small as possible. Suppose that the "region of interest" for x is 
-1 :::= x :::= I. Where should the observations x 1, x 2 , .•. , X 11 be taken? Discuss 
the practical aspects of this data collection plan. 

3.6 Consider the simple linear regression model 

where the intercept fJo is known. 

a. Find the least squares estimator of {3 1 for this model. Does this answer seem 
reasonable? 

b. What is the variance of the slope (/3 1) for the least squares estimator found 
in part a? 

c. Find a 100(1- a) percent CI for {3 1• Is this interval narrower than the 
estimator for the case where both slope and intercept are unknown? 

3.7 The quality ofPinot Noir wine is thought to be related to the properties of clarity, 
aroma, body, flavor, and oakiness. Data for 38 wines are given in Table E3.4. 

a. Fit a multiple linear regression model relating wine quality to these predic­
tors. Do not include the "Region" variable in the model. 

b. Test for significance of regression. What conclusions can you draw? 
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TABLEE3.4 Wine Quality Datau (Found in Minitab) 

Clarity, Aroma, Body, Flavor, Oakiness. Quality. 
XJ X2 X3 x4 x, y Region 

3.3 2.8 3.1 4.1 9.8 
4.4 4.9 3.5 3.9 12.6 
3.9 5.3 4.8 4.7 11.9 
3.9 2.6 3.1 3.6 II. I 
5.6 5.1 5.5 5.1 13.3 
4.6 4.7 5 4.1 12.8 
4.8 4.8 4.8 3.3 12.8 
5.3 4.5 4.3 5.2 12 
4.3 4.3 3.9 2.9 13.6 3 

I 4.3 3.9 4.7 3.9 13.9 I 
I 5.1 4.3 4.5 3.6 14.4 3 
0.5 3.3 5.4 4.3 3.6 12.3 2 
0.8 5.9 5.7 7 4.1 16.1 3 
0.7 7.7 6.6 6.7 3.7 16.1 3 
I 7.1 4.4 5.8 4.1 15.5 3 
0.9 5.5 5.6 5.6 4.4 15.5 3 

6.3 5.4 4.8 4.6 13.8 3 
5 5.5 5.5 4.1 13.8 3 

I 4.6 4.1 4.3 3.1 11.3 
0.9 3.4 5 3.4 3.4 7.9 2 
0.9 6.4 5.4 6.6 4.8 15.1 3 
I 5.5 5.3 5.3 3.8 13.5 3 
0.7 4.7 4.1 5 3.7 10.8 2 
0.7 4.1 4 4.1 4 9.5 2 

6 5.4 5.7 4.7 12.7 3 
4.3 4.6 4.7 4.9 11.6 2 
3.9 4 5.1 5.1 11.7 I 
5.1 4.9 5 5.1 11.9 2 
3.9 4.4 5 4.4 10.8 2 
4.5 3.7 2.9 3.9 8.5 2 

I 5.2 4.3 5 6 10.7 2 
0.8 4.2 3.8 3 4.7 9.1 
I 3.3 3.5 4.3 4.5 12.1 I 

I 6.8 5 6 5.2 14.9 3 
0.8 5 5.7 5.5 4.8 13.5 
0.8 3.5 4.7 4.2 3.3 12.2 
0.8 4.3 5.5 3.5 5.8 10.3 
0.8 5.2 4.8 5.7 3.5 13.2 

a The wine here is Pi not Noir. Region refers to distinct geographic regions. 
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c. Use t-tests to assess the contribution of each predictor to the model. Discuss 
your findings. 

d. Analyze the residuals from this model. Is the model adequate? 

e. Calculate R2 and the adjusted R2 for this model. Compare these values to 
the R 2 and adjusted R 2 for the linear regression model relating wine quality 
to only the predictors "Aroma" and "Flavor." Discuss your results. 

f. Find a 95% CI for the regression coefficient for "Flavor" for both models 
in part e. Discuss any differences. 

3.8 Reconsider the wine quality data in Table E3.4. The "Region" predictor refers 
to three distinct geographical regions where the wine was produced. Note that 
this is a categorical variable. 

a. Fit the model using the "Region" variable as it is given in Table E3.4. What 
potential difficulties could be introduced by including this variable in the 
regression model using the three levels shown in Table E3.4? 

b. An alternative way to include the categorical variable "Region" would be 
to introduce two indicator variables x 1 and x2 as follows: 

Region 

2 
3 

Xz 

0 0 
I 
0 

0 

Why is this approach better than just using the codes 1, 2, and 3? 

c. Rework Exercise 3.7 using the indicator variables defined in part b for 
"Region." 

3.9 Table B.6 in Appendix B contains data on the global mean surface air tempera­
ture anomaly and the global C02 concentration. Fit a regression model to these 
data, using the global C02 concentration as the predictor. Analyze the residuals 
from this model. Is there evidence of autocorrelation in these data? If so, use 
one iteration of the Cochrane-Orcutt method to estimate the parameters. 

3.10 Table B.l3 in Appendix B contains hourly yield measurements from a chemical 
process and the process operating temperature. Fit a regression model to these 
data, using the temperature as the predictor. Analyze the residuals from this 
model. Is there evidence of autocorrelation in these data? 

3.11 The data in Table E3.5 give the percentage share of market of a particular brand 
of canned peaches (y1) for the past 15 months and the relative selling price (x1 ). 

a. Fit a simple linear regression model to these data. Plot the residuals versus 
time. Is there any indication of autocorrelation? 

b. Use the Durbin-Watson test to determine if there is positive autocorrelation 
in the errors. What are your conclusions? 
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TABLEE3.5 Market Share and Price of Canned Peaches 

XI y 
.I Xr y • r 

I 100 15.93 9 85 16.60 
2 98 16.26 10 83 I7.I6 
3 100 15.94 I I 8I I7.77 
4 89 I6.81 I2 79 I8.05 
5 95 I5.67 I3 90 I6.78 
6 87 I6.47 I4 77 I8.I7 
7 93 15.66 I5 78 I7.25 
8 82 16.94 

c. Use one iteration of the Cochrane-Orcutt procedure to estimate the regres­
sion coefficients. Find the standard errors of these regression coefficients. 

d. Is there positive autocorrelation remaining after the first iteration? Would 
you conclude that the iterative parameter estimation technique has been 
successful? 

3.12 The data in Table E3.6 give the monthly sales for a cosmetics manufacturer 
(y1 ) and the corresponding monthly sales for the entire industry (x1 ). The units 
of both variables are millions of dollars. 

a. Build a simple linear regression model relating company sales to industry 
sales. Plot the residuals against time. Is there any indication of autocorrela­
tion? 

b. Use the Durbin-Watson test to determine if there is positive autocorrelation 
in the errors. What are your conclusions? 

c. Use one iteration of the Cochrane-Orcutt procedure to estimate the model 
parameters. Compare the standard error of these regression coefficients with 
the standard error of the least squares estimates. 

d. Test for positive autocorrelation following the first iteration. Has the proce­
dure been successful? 

TABLEE3.6 Cosmetic Sales Data for Exercise 3.12 

XI \' .I x, " • r 

I 5.00 0.318 10 6.16 0.650 
2 5.06 0.330 II 6.22 0.655 
3 5.12 0.356 12 6.31 0.7I3 
4 5.10 0.334 13 6.38 0.724 
5 5.35 0.386 14 6.54 0.775 
6 5.57 0.455 15 6.68 0.78 
7 5.61 0.460 16 6.73 0.796 
8 5.80 0.527 17 6.89 0.859 
9 6.04 0.598 18 6.97 0.88 
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3.13 Reconsider the data in Exercise 3.12. Define a new set of transformed variables 
as the first difference of the original variables, y; = y1 - y,_ 1 and x; = x 1 -

x,_ 1• Regress y; on x; through the origin. Compare the estimate of the slope 
from this first-difference approach with the estimate obtained from the iterative 
method in Exercise 3.12. 

3.14 Show that an equivalent way to perform the test for significance of regression 
in multiple linear regression is to base the test on R2 as follows. To test H0 : 

{3 1 = {32 = · · · = f3k versus H 1: at least one f3j -=!= 0, calculate 

R 2(n- p) 
Fo = -k(_l __ -R---=2-) 

and reject Ho if the computed value of Fa exceeds Fa.k.n-p• where p = k + 1. 

3.15 Suppose that a linear regression model with k = 2 regressors has been fit to 
n = 25 observations and R 2 = 0.90. 

a. Test for significance of regression at a = 0.05. Use the results of the Exer­
cise 3.14. 

b. What is the smallest value of R 2 that would lead to the conclusion of a 
significant regression if a = 0.05? Are you surprised at how small this 
value of R 2 is? 

3.16 Consider the simple linear regression model y, = {30 + f3 1x + £ 1 , where the 
errors are generated by the second-order autoregressive process 

Discuss how the Cochrane-Orcutt iterative procedure could be used in this 
situation. What transformations would be used on the variables y1 and x,? 
How would you estimate the parameters p 1 and p2? 

3.17 Show that an alternate computing formula for the regression sum of squares in 
a linear regression model is 

n 

Ss "'·2 -2 
R = ~Yi -ny 

i=l 

3.18 An article in Quality Engineering (The Catapult Problem: Enhanced Engi­
neering Modeling Using Experimental Design, Vol. 4, 1992) conducted an 
experiment with a catapult to determine the effects of hook (x 1 ), arm length 
(x2), start angle (x3), and stop angle (x4) on the distance that the catapult throws 
a ball. They threw the ball three times for each setting of the factors. Table E3. 7 
summarizes the experimental results. 
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TABLEE3.7 Catapult Experiment Data for Exercise 3.18 

XI x2 X3 X.j y 

-I -I -I -I 28.0 27.1 26.2 
-I -I 46.5 43.5 46.5 
-I -I I 21.9 21.0 20.1 
-I -I 52.9 53.7 52.0 

-I -I I 75.0 73.1 74.3 
-I I -I 127.7 126.9 128.7 

-I -I 86.2 86.5 87.0 
195.0 195.9 195.7 

a. Fit a regression model to the data and perform a residual analysis for the 
model. 

b. Use the sample variances as the basis for weighted least squares estimation 
of the original data (not the sample means). 

c. Fit an appropriate model to the sample variances. Use this model to develop 
the appropriate weights and repeat part b. 

3.19 Consider the simple linear regression model y; = {30 + fhx; + E;. where the 
variance of E; is proportional to xl; that is, Var(t:;) = a 2\l-
a. Suppose that we use the transformations y' = y/x and x' = I /x. Is this a 

variance-stabilizing transformation? 

b. What are the relationships between the parameters in the original and trans­
formed models? 

c. Suppose we use the method of weighted least squares with U'; = I /x,2. Is 
this equivalent to the transformation introduced in part a? 

3.20 Consider the weighted least squares normal equations for the case of simple 
linear regression where time is the predictor variable. Eq. (3.62). Suppose that 
the variances of the errors are proportional to the index of time such that ~t·1 = 
1/t. Simplify the normal equations for this situation. Solve for the estimates of 
the model parameters. 

3.21 Consider the simple linear regression model where time is the predictor vari­
able. Assume that the errors are uncorrelated and have constant variance a 2 . 

Show that the variances of the model parameter estimates are 

, , 2(2T +]) 
V(/3)- a----

0 - T(T- I) 

and 

' J 12 
V(f3 ) - a----=----

1 - T(T2- I) 
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3.22 Analyze the regression model in Exercise 3.1 for leverage and influence. 
Discuss your results. 

3.23 Analyze the regression model in Exercise 3.2 for leverage and influence. 
Discuss your results. 

3.24 Analyze the regression model in Exercise 3.3 for leverage and influence. 
Discuss your results. 

3.25 Analyze the regression model for the wine quality data in Exercise 3.7 for 
leverage and influence. Discuss your results. 

3.26 Consider the wine quality data in Exercise 3.7. Use variable selection tech­

niques to determine an appropriate regression model for these data. 

3.27 Consider the catapult data in Exercise 3.18. Use variable selection techniques 

to determine an appropriate regression model for these data. In determining 

the candidate variables, consider all of the two-factor cross-products of the 
original four variables. 

3.28 Table B .1 0 in Appendix B presents monthly data on airline miles flown in the 
United Kingdom. Fit an appropriate regression model to these data. Analyze 

the residuals and comment on model adequacy. 

3.29 Table B.ll in Appendix B presents data on monthly champagne sales. Fit an 

appropriate regression model to these data. Analyze the residuals and comment 

on model adequacy. 

3.30 Consider the data in Table E3.5. Fit a time series regression model with auto­

corrected errors to these data. Compare this model with the results you obtained 

in Exercise 3.12 using the Cochrane-Orcutt procedure. 

3.31 Consider the data in Table E3.5. Fit the lagged variables regression models 

shown in Eqs. (3.119) and (3.120) to these data. Compare these models with 
the results you obtained in Exercise 3.12 using the Cochrane-Orcutt procedure, 
and with the time series regression model from Exercise 3.30. 

3.32 Consider the data in Table E3.5. Fit a time series regression model with auto­
corrected errors to these data. Compare this model with the results you obtained 

in Exercise 3.13 using the Cochrane-Orcutt procedure. 

3.33 Consider the data in Table E3.6. Fit the lagged variables regression models 

shown in Eqs. (3.119) and (3.120) to these data. Compare these models with 
the results you obtained in Exercise 3.13 using the Cochrane-Orcutt procedure, 

and with the time series regression model from Exercise 3.32. 
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3.34 Consider the global surface air temperature anomaly data and the CO~ concen­
tration data in Table 8.6 in Appendix B. Fit a time series regression model to 
these data, using global surface air temperature anomaly as the response vari­
able. Is there any indication of autocorrelation in the residuals? What corrective 
action and modeling strategies would you recommend? 

3.35 Table 8.20 in Appendix B contains data on tax refund amounts and population. 
Fit an ordinary least squares regression model to these data. 

a. Analyze the residuals and comment on model adequacy. 

b. Fit the lagged variables regression models shown in Eqs. (3.119) and (3.120) 
to these data. How do these models compare with the OLS model in part a? 



CHAPTER 4 

Exponential Smoothing Methods 

If you have to forecast, forecast often. 

EDGAR R. FIEDLER. American economist 

4.1 INTRODUCTION 

We can often think of a data set as consisting of two distinct components: signal and 
noise. Signal represents any pattern caused by the intrinsic dynamics of the process 
from which the data is collected. These patterns can take various forms from a simple 

constant process to a more complicated structure that cannot be extracted visually or 
with any basic statistical tools. The constant process, for example, is represented as 

Yt = 11 + Et (4.1) 

where 11 represents the underlying constant level of system response and E1 is the 
noise at timet. The E1 are often assumed to be uncorrelated with mean 0 and constant 

. ? 
vanance cr,~. 

We have already discussed some basic data smoothers in Section 2.2.2. Smoothing 
can be seen as a technique to separate the signal and the noise as much as possible 
and in that a smoother acts as a filter to obtain an "estimate" for the signal. In Fig­
ure 4.1 we give various types of signals that with the help of a smoother can be 
"reconstructed" and the underlying pattern of the signal is to some extent recovered. 
The smoothers that we will discuss in this chapter achieve this by simply relating 
the current observation to the previous ones. For a given data set, one can devise 
forward and/or backward looking smoothers but in this chapter we will only consider 

backward looking smoothers. That is, at any given T, the observation YT will be re­
placed by a combination of observations at and before T. It does then intuitively make 

lntmduction to Time Series Analysis and Forecasting 
By Douglas C. Montgomery. Cheryl L. Jennings, and Murat Kulahci 
Copyright C() 2008 John Wiley & Sons. Inc. 
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ACTUAL SMOOTHER ESTI:\IATED 

SIGNAL 

NOISE NOISE 

NOISE NOISE 

NOISE NOISE 

FIGURE 4.1 The process of smoothing a data set. 

sense to use some sort of an "average" of the current and the previous observations 
to smooth the data. An obvious choice is to replace the current observation with the 
average of the observations at T, T - 1, ... , 1. In fact this is the "best" choice in the 
least squares sense for a constant process given in Eq. ( 4.1 ). 

A constant process can be smoothed by replacing the current observation with 
the best estimate for Jl. Using the least squares criterion, we define the error sum of 
squares, SS, for the constant process as 

T 

SSE= L (y,- JL)2 

t=l 

The least squares estimate of J1 can be found by setting the derivative of SS with 
respect to J1 to 0. This gives 

(4.2) 

where fl is the least squares estimate of Jl. Equation (4.2) shows that the least squares 
estimate of J1 is indeed the average of observations up to time T. 

Figure 4.2 shows the monthly data for the Dow Jones Index from June 1999 to 
June 2001. Visual inspection suggests that a constant model can be used to describe 
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FIGURE 4.2 The Dow Jones Index from June 1999 to June 2001. 
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• 

the general pattern of the data. t To further confirm this claim, we use the smoother 
described in Eq. (4.2) for each data point by taking the average of the available data 
up to that point in time. The smoothed observations are shown by solid squares in 
Figure 4.2. It can be seen that the smoother in Eq. (4.2) indeed extracts the main 
pattern in the data and leads to the conclusion that during the two-year period from 
June 1999 to June 2001, the Dow Jones Index was quite stable. 

As we can see, for the constant process the smoother in Eq. (4.2) is quite effective 
in providing a clear picture of the underlying pattern. What happens though if the 
process is not constant but exhibits a more complicated pattern. Consider again, for 
example, the Dow Jones Index from June 1999 to June 2006 given in Figure 4.3 (the 
complete data set is in Table 4.1 ). It is clear that the data does not follow the behavior 
typical of a constant behavior during this period. In Figure 4.3, we can also see the 
pattern that the smoother in Eq. (4.2) extracts for the same period. As the process 
changes, this smoother is having trouble keeping up with the process. What could 
be the reason for the poor performance after June 2001? The answer is quite simple: 
the constant process assumption is no longer valid. However, as time goes on, the 
smoother in Eq. (4.2) accumulates more and more data points and gains some sort 
of "inertia." So when there is a change in the process, it becomes increasingly more 
difficult for this smoother to react to it. 

How often is the constant process assumption violated? The answer to this question 
is provided by the Second Law of Thermodynamics, which in the most simplistic way 

Please note that tor thts data the mdependent errors assumption m the constant process m Eq ( 4 1) 
may have been violated. Remedies to check and handle such violations will be provided in the following 
chapters. 
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FIGURE 4.3 The Dow Jones Index from June 1999 to June 2006. 

Dow Jones Index at the End of the Month from June 1999 to June 2006 

Date Dow Jones Date Dow Jones Date Dow Jones Date Dow Jones 

Jun-99 10970.8 Apr-01 10735 Feb-03 7891.08 Dec-04 10783 
Jul-99 10655.2 May-O I 10911.9 Mar-03 7992.13 Jan-05 10489.9 
Aug-99 10829.3 Jun-O I 10502.4 Apr-03 8480.09 Feb-05 10766.2 
Sep-99 10337 Jul-01 10522.8 May-03 8850.26 Mar-05 10503.8 
Oct-99 10729.9 Aug-01 9949.75 Jun-03 8985.44 Apr-05 10192.5 
Nov-99 10877.8 Sep-01 8847.56 Jul-03 9233.8 May-05 10467.5 
Dec-99 11497.1 Oct-O! 9075.14 Aug-03 9415.82 Jun-05 10275 
Jan-00 10940.5 Nov-O! 9851.56 Sep-03 9275.06 Jul-05 10640.9 
Feb-00 10128.3 Dec-01 10021.6 Oct-03 9801.12 Aug-05 10481.6 
Mar-00 10921.9 Jan-02 9920 Nov-03 9782.46 Sep-05 10568.7 
Apr-00 10733.9 Feb-02 10106.1 Dec-03 10453.9 Oct-05 10440.1 
May-00 10522.3 Mar-02 10403.9 Jan-04 10488.1 Nov-05 10805.9 
Jun-00 10447.9 Apr-02 9946.22 Feb-04 10583.9 Dec-05 10717.5 
Jul-00 10522 May-02 9925.25 Mar-04 10357.7 Jan-06 10864.9 
Aug-00 11215.1 Jun-02 9243.26 Apr-04 10225.6 Feb-06 10993.4 
Sep-00 10650.9 Jul-02 8736.59 May-04 10188.5 Mar-06 11109.3 
Oct-00 10971.1 Aug-02 8663.5 Jun-04 10435.5 Apr-06 11367.1 
Nov-00 10414.5 Sep-02 7591.93 Jul-04 10139.7 \1ay-06 11168.3 
Dec-00 10788 Oct-02 8397.03 Aug-04 10173.9 Jun-06 11247.9 
Jan-01 10887.4 Nov-02 8896.09 Sep-04 10080.3 
Feb-01 10495.3 Dec-02 8341.63 Oct-04 10027.5 
Mar-01 9878.78 Jan-03 8053.81 Nov-04 10428 
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states that if left on its own (free of external influences) any system will deteriorate. 
Thus the constant process is not the norm but at best an exception. So what can we do 

to deal with this issue? Recall that the problem with the smoother in Eq. (4.2) was that 

it reacted too slowly to process changes because of its inertia. In fact, when there is a 
change in the process, earlier data no longer carry the information about the change 
in the process, yet they contribute to this inertia at an equal proportion compared 

to the more recent (and probably more useful) data. The most obvious choice is to 
somehow discount the older data. Also recall that in a simple average, as in Eq. (4.2), 
all the observations are weighted equally and hence have the same amount of influence 

on the average. Thus if the weights of each observation are changed so that earlier 
observations are weighted less, a faster reacting smoother should be obtained. As 

mentioned in Section 2.2.2, a common solution is to use the simple moving average 
given in Eq. (2.3): 

N 
Mr = Yr + Yr-1 + · · · + YT-N+I 

N L Yt 
N t=T-N+I 

The most crucial issue in simple moving averages is the choice of the span, N. 

A simple moving average will react faster to the changes if N is small. However, 
we know from Section 2.2.2 that the variance of the simple moving average with 
uncorrelated observations with variance a 2 is given as 

(]"2 

Var(Mr) =­
N 

This means that as N gets small, the variance of the moving average gets bigger. This 

represents a dilemma in the choice of N. If the process is expected to be constant, 
a large N can be used whereas a small N is preferred if the process is changing. 

In Figure 4.4, we show the effect of going from a span of 10 observations to 5 
observations. While the latter exhibits a more jittery behavior, it nevertheless follows 

the actual data more closely. A more thorough analysis on the choice of N can 

be performed based on the prediction error. We will explore this for exponential 
smoothers in Section 4.6.1, where we will discuss forecasting using exponential 

smoothing. 
A final note on the moving average is that even if the individual observations are 

independent, the moving averages will be autocorrelated as two successive moving 

averages contain the same N - 1 observations. In fact, the autocorrelation function 

(ACF) of the moving averages that are k-lags apart is given as 

I 
lkl 

1--
Pk = N' 

0, 

k < N 

k?:. N 
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FIGURE 4.4 The Dow Jones Index from June 1999 to June 2006 with moving averages of span 5 and I 0. 

4.2 FIRST-ORDER EXPONENTIAL SMOOTHING 

Another approach to obtain a smoother that will react to process changes faster is 
to give geometrically decreasing weights to the previous observations. Hence an 
exponentially weighted smoother is obtained by introducing a discount factor fJ as 

T-1 

L gt YT-t = YT + fJ YT-1 + fJ 2
YT-2 +. 0 0 + gT-I Yl (4.3) 

t=O 

Please note that if the previous observations are to be discounted in a geometrically 
decreasing manner, then we should have lfJI < 1. However, the smoother in Eqo (4o3) 

is not an average as the sum of the weights is 

T-1 1-fJT 

""et--
£.....- 1 - fJ 
t=O 

(4.4) 

and hence does not necessarily add up to 10 For that we can adjust the smoother in 
Eq. (4.3) by multiplying it by (1 - fJ)/(1 - fJT)o However, for large T values. gT goes 
to zero and so the exponentially weighted average will have the following form: 

T-1 

Yr = (1- fJ) L gt YT-t 

t=O 

(405) 
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This is called a simple or first-order exponential smoother. There is an extensive 

literature on exponential smoothing. For example, see the books by Brown [ 1963], 

Abraham and Ledolter [1983], and Montgomery et al. [1990], and the papers by 

Brown and Meyer [1961], Chatfield and Yar [1988], Cox [1961], Gardner [1985], 

Gardner and Dannenbring [1980], and Ledo1ter and Abraham [1984]. 

An alternate expression in a recursive form for simple exponential smoothing is 

given by 

VT =(I- 8) YT +(I- 8) (8YT-l + 82YT-2 + · · · + 8T-l Yt) 

= (1- 8) YT + 8 (1- 8) (YT-1 + 8 1 YT-2 + · · · + 8T-2yl) (4.6) 

= (1- 8)yT +8h-1 

The recursive form in Eq. (4.6) shows that first-order exponential smoothing can 

also be seen as the linear combination of the current observation and the smoothed 

observation at the previous time unit. As the latter contains the data from all previous 

observations, the smoothed observation at time T is in fact the linear combination 

of the current observation and the discounted sum of all previous observations. The 

simple exponential smoother is often represented in a different form by setting A. = 

1-e. 

YT = AYT + (1 - A) YT -I (4.7) 

In this representation the discount factor, A, represents the weight put on the 

last observation and (1 -'A) represents the weight put on the smoothed value of the 

previous observations. 
Analogous to the size of the span in moving average smoothers, an important issue 

for the exponential smoothers is the choice of the discount factor, A. Moreover, from 

Eq. (4.7), we can see that the calculation of y1 would require us to know y0 • We will 

discuss these issues in the next two sections. 

4.2.1 The Initial Value, .Yo 

Since Yo is needed in the recursive calculations that start with y1 = A. y 1 + ( l - 'A) y0 , 

its value needs to be estimated. But from Eq. ( 4. 7) we have 

Yt = A. Yt +(I - 'A)Yo 
572 = A Y2 +(I - 'A)Y1 =A Y2 + (l - 'A)('A Yt + (1 - 'A)Yo) 

= 'A (Y2 +(I - 'A) yt) + (1 - 'A)2 Yo 
Y3 ='A (Y3 +(I -A.) Y2 + (l- A.)2 Yl) +(I- 'A)3 Yo 

_VT =A (YT +(I- A)YT-1 + · · · + (1- 'Al-I Yt) +(I- 'Al_vo 
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which means that as T gets large and hence (I - A.l gets small, the contribution of 
y0 to Yr becomes negligible. Thus for large data sets, the estimation of .\\J has little 
relevance. Nevertheless, two commonly used estimates for 5·0 are the following. 

1. Set Yo = y 1• If the changes in the process are expected to occur early and fast. 
this choice for the starting value for h is reasonable. 

2. Take the average of the available data or a subset of the available data, s·. and set 
y0 = y. If the process is at least at the beginning locally constant, this starting 
value may be preferred. 

4.2.2 The Value of..\ 

In Figures 4.5 and 4.6, respectively, we have two simple exponential smoothers for 
the Dow Jones Index data with A = 0.2 and A = 0.4. It can be seen that in the latter 
the smoothed values follow the original observations more closely. In general, as A. 
gets closer to I, and more emphasis is put on the last observation. the smoothed values 
will approach the original observations. Two extreme cases will be when A = 0 and 
A = I. In the former, the smoothed values will all be equal to a constant, namely. 
y0• We can think of the constant line as the "smoothest" version of whatever pattern 
the actual time series follows. For A = l, we have h = YT and this will represent 
the "least" smoothed (or unsmoothed) version of the original time series. We can 
accordingly expect the variance of the simple exponential smoother to vary between 
0 and the variance of the original time series based on the choice of A. Note that under 
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FIGURE 4.5 The Dow Jones Index from June 1999 to June 2006 with first-order exponential smoothing 
with)..= 0.2. 
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the independence and constant variance assumptions we have 

Var(Yr) = Var (A.~ (I - W Yr-) 
00 

= A.2 L (I - ;,_}' Var(Yr-r) 
1=0 
= 

= ;..2 L (I- A)2' Var(yr) 
t=O 

00 

=Var(yr)A.2L(l-A.)2r 
t=O 

A 
= --Var(yr) 

(2 - A.) 
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(4.8) 

Thus the question will be how much smoothing is needed. In the literature, A values 

between 0.1 and 0.4 are often recommended and do indeed perform well in practice. 

A more rigorous method of finding the right A. value will be discussed in Section 4.6.1. 

Example 4.1 

Consider the Dow Jones Index from June 1999 to June 2006 given in Figure 4.3. 

For first-order exponential smoothing we would need to address two issues as 

stated in the previous sections: how to pick the initial value .Yo and the smooth­

ing constant A. Following the recommendation in Section 4.2.2, we will consider 

the smoothing constants 0.2 and 0.4. As for the initial value, we will consider the 

first recommendation in Section 4.2.1 and set .Yo = y1• Figures 4.5 and 4.6 show the 
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FIGURE 4.6 The Dow Jones Index from June 1999 to June 2006 with first-order exponential smoothing 

with A.= 0.4. 
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smoothed and actual data obtained from Minitab with smoothing constants 0.2 and 
0.4 respectively. 

Note that Minitab reports several measures of accuracy; MAPE, MAD, and MSD. 
Mean absolute percentage error (MAPE) is the average absolute percentage change 
between the smoothed and the true values given as 

T 

L I<YI- s·~)/YII 
MAPE= -1=-

1
----- X 100 

T 

Mean absolute deviation (MAD) is the average absolute difference between the 
smoothed and the true values given as 

T 

L l(yl - S'1 )I 
MAD= -1=-

1
----

T 

Mean squared deviation (MSD) is the average squared difference between the 
smoothed and the true values given as 

T 
"'(\' - \• )2 L., . I . I 

MSD = -1=-
1
----

T 

It should also be noted that the smoothed data with A = 0.4 follows the actual data 
closer. However, in both cases, when there is an apparent linear trend in the data (e.g., 
from February 2003 to February 2004) the smoothed values consistently underesti­
mate the actual data. We will discuss this issue in greater detail in the next section. 

As an alternative estimate for the initial value, we can also use the average of the 
data between June 1999 and June 2001 since during this period the time series data 
appears to be stable. Figures 4.7 and 4.8 show the single exponential smoothing with 
the initial value equal to the average of the first 25 observations corresponding to the 
period between June 1999 and June 200 I. Note that the choice of the initial value has 
very little effect on the smoothed values as time goes on. 

• 
4.3 MODELING TIME SERIES DATA 

In Section 4. 1 we considered the constant process where the time series data is 
expected to be around a constant level with random fluctuations, which are usually 
characterized by uncorrelated errors with mean 0 and constant variance aF2

. In fact 
the constant process represents a very special case in a more general set of models 
often used in modeling time series data as a function of time. The general class of 
models can be represented as 

Y1=j(t;j3)+E1 (4.9) 



MODELING TIME SERIES DATA 
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FIGURE 4.7 The Dow Jones Index from June 1999 to June 2006 with first-order exponential smoothing 
with A= 0.2 and .vo = (L;:I y1 )/25 (i.e., initial value equal to the average of the first 25 observations). 

where 13 is the vector of unknown parameters and E1 are the uncorrelated errors. Thus 
as a member of this general class of models, the constant process can be represented as 

Yt = f3o + Et (4.1 0) 

where {30 is equal to fL in Eq. (4.1). We have seen in Chapter 3 how to estimate and 
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FIGURE 4.8 The Dow Jones Index from June 1999 to June 2006 with first-order exponential smoothing 
with A= 0.4 and .Yo = (L~: 1 y1 )/25 (i.e., initial value equal to the average of the first 25 observations). 
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make inferences about the regression coefficients. The same principles apply to the 
class of models in Eq. ( 4.9). However, we have seen in Section 4.1 that the least 
squares estimates for {30 at any given time T will be very slow to react to changes in 
the level of the process. For that. we suggested to use either the moving average or 
simple exponential smoothing. 

As mentioned earlier, smoothing techniques are effective in illustrating the under­
lying pattern in the time series data. We have so far focused particularly on exponential 
smoothing techniques. For the class of models given in Eq. ( 4.9 ). we can find another 
use for the exponential smoothers: model estimation. Indeed for the constant process. 
we can see the simple exponential smoother as the estimate of the process level. or 
in regards to Eq. (4.10) an estimate of {30 . To show this in greater detail we need to 
introduce the sum of weighted squared errors for the constant process. Remember 
that the sum of squared errors for the constant process is given by 

T 

SSE= L Crt- JJ.)~ 
t=l 

If we argue that not all observations should have equal influence on the sum and 
decide to introduce a string of weights that are geometrically decreasing in time, the 
sum of squared errors becomes 

T-l 

* "' I 2 SSE=£.......(} (YT-t- f3o) (4.11) 
1=0 

where IB I < I . To find the least squares estimate for {30 • we take the derivative of 
Eq. ( 4.11) with respect to f3o and set it to zero: 

(4.12) 

The solution to Eq. ( 4.12), ~0 , which is the least squares estimate of {30 , is 

T-1 T-1 

'"'t "I f3o £....... 8 = £....... 8 Yr -1 (4.13) 
t=O t=O 

From Eq. (4.4), we have 

• 1 - (} T-1 t 

f3o = l - (} T L e YT -I 
t=O 

(4.14) 

Once again for large T, e T goes to zero. We then have 

T-1 

• "' I f3o = (l -B)£....... B .vr -t (4.15) 
1=0 
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We can see from Eq. (4.5) and (4.15) that ~0 = jr. Thus the simple exponential 
smoothing procedure does in fact provide a weighted least squares estimate of f30 in 

the constant process with weights that are exponentially decreasing in time. 

Now we return to our general class of models given in Eq. (4.9) and note that f (t; j3) 

can in fact be any function oft. For practical purposes it is usually more convenient to 

consider the polynomial family for nonseasonal time series. For seasonal time series, 
we will consider other forms off (t; j3) that fit the data and exhibit a certain periodicity 
better. In the polynomial family, the constant process is indeed the simplest model we 

can consider. We will now consider the next obvious choice: the linear trend model. 

4.4 SECOND-ORDER EXPONENTIAL SMOOTHING 

We will now return to our Dow Jones Index data but consider only the subset of the 
data from February 2003 to February 2004 as given in Figure 4.9. Evidently for that 

particular time period it was a bullish market and correspondingly the Dow Jones 
Index exhibits an upward linear trend as indicated with the dashed line. 

For this time period, an appropriate model in time from the polynomial family 
should be the linear trend model given as 

(4.16) 

where the t:1 are once again assumed to be uncorrelated with mean 0 and constant 

variance crj. Based on what we have learned so far, we may attempt to smooth/model 
this linear trend using the simple exponential smoothing procedure. The actual and 

fitted values for the simple exponential smoothing procedure are given in Figure 4.1 0. 

For the exponential smoother, without any loss of generality, we used y0 = y 1 and 
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FIGURE 4.9 The Dow Jones Index from February 2003 to February 2004. 
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FIGURE 4.10 The Dow Jones Index from February 2003 to February 2004 with simple exponential 
smoothing with A = 0.3. 

A = 0.3. From Figure 4.1 0, we can see that while the simple exponential smoother 
was to some extent able to capture the slope of the linear trend, it also exhibits some 
bias. That is, the fitted values based on the exponential smoother are consistently 
underestimating the actual data. More interestingly, the amount of underestimation is 
more or less constant for all observations. 

In fact similar behavior for the simple exponential smoother can be observed 
in Figure 4.5 during the entire data from June 1999 to June 2006. Whenever the 
data exhibit a linear trend, the simple exponential smoother seems to over- or 
underestimate the actual data consistently. To further explore this, we will consider 
the expected value of )'r, 

X 

=A L (I -AlE (YT- 1 ) 

1=0 

For the linear trend model in Eq. ( 4.16 ), E (.v1 ) = {30 + {3 1 t. So we have 

X 

E (Yr) =A L (l- 'A)1 (f3o + fh (T- t)) 
t=O 
X X 

=A. I:o- A)1 (fJo + fJ,T)- A 2::.:<1- Al1 (fJ,r) 
1=0 1=0 

OC X 

= (fJo + {3, T) A L (I - A)1 -A.{J, L (I - W t 
1=0 
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But for the infinite sums we have 

00 1 1 L (1 - A./ = I - (I - A.) = A and 
1=0 

00 1-A. 
"o-Wr =-~ ).2 
1=0 

Hence the expected value of the simple exponential smoother for the linear trend 

model is 

1-A 
E (Yr) = (f3o + f3, T)- --{3, 

A. 
I - A. 

= E (yr) - --{3, 
A. 

(4.17) 

This means that the simple exponential smoother is a biased estimator for the lin­

ear trend model and the amount of bias is -[(1- A.)/A.lf3 1• This indeed explains 

the underestimation in Figure 4.10. One solution will be to use a large A. value 

since (1- A.)/A.--* 0 as A.--* 1. In Figure 4.11, we show two simple exponential 

smoothers with A. = 0.3 and A. = 0.99. It can be seen that the latter does a better job 

in capturing the linear trend. However, it should also be noted that as the smoother 

with A. = 0.99 follows the actual observations very closely, it fails to smooth out the 

constant pattern during the first two years of the data. A method based on adaptive 

updating of the discount factor, A., following the changes in the process is given in 

Section 4.6.4. In this section to model a linear trend model we will instead introduce 

the second-order exponential smoothing by applying simple exponential smoothing 
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Jc = 0.3 and 0.99. 
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on S'r as 

-,<2> _,-.III+ (I_') -.12> -'r - A)r A -'r-I (4.18) 

where _yj.') and s·i1 denote the first- and second-order smoothed exponentials, respec­
tively. Of course, in Eq. (4.18) we can use a different A than in Eq. (4.7). However. for 
the derivations that follow, we will assume that the same A is used in the calculations 
of both .YY 1 and .Yi1. 

From Eq. (4.17), we can see that the first-order exponential smoother introduces 
bias in estimating a linear trend. It can also be seen in Figure 4.7 that the first­
order exponential smoother for the linear trend model exhibits a linear trend as welL 
Hence the second-order smoother-that is, a first-order exponential smoother of the 
original first-order exponential smoother-should also have a bias. We can represent 
this as 

(4.19) 

From Eq. (4.19), an estimate for {3 1 at timeT is 

A A (-11) -12)) 
f3I.r = I _A Yr - Yr (4.20) 

and for an estimate of f3o at time T we have from Eq. (4.17) 

-(1) (A A ) 1-AA 
Yr = f3o.T + f3I.rT - -A-f3I.T 

A -0) A 1-AA 
:::} f3o.r = Yr - Tf3u + -A-fhr 

(4.21) 

In terms of the first- and second-order exponential smoothers we have 

f3A - -(1) T A (-.(1) -,(2)) + I -A ( A (-.(11 -,121)) 
0, T - Yr - I - A )r - )r -----;:--- I - A _\ T - )r 

= -,(1)- T-A- (,_(1)- -,f21) +(\·(II- ',121) Yr I-A .r Yr .r -T (4.22) 

= (2 _ T-A-) -.<II_ (I_ T-A-) ,.121 
1-A )r 1-A .r 

Finally, combining Eq. (4.20) and (4.22), we have an estimate of Yr as 

5'r = ~O.T + ~I. T T 
(4.23) 
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FIGURE 4.12 The Dow Jones index from Feburary 2003 to Feburary 2004 with second order exponental 

smoother with discount factors of 0.3 

It can easily be shown that h is an unbiased estimator of Yr. In Figure 4.12, we use 
Eq. (4.23) to estimate the Dow Jones Index from February 2003 to February 2004. 
From Figures 4.10 and 4.12, we can clearly see that the second-order exponential 
smoother is doing a much better job in modeling the linear trend compared to the 

simple exponential smoother. 
As in the simple exponential smoothing, we have the same two issues to deal 

with: initial values for the smoothers and the discount factors. The latter will be 
discussed in Section 4.6.1. For the former we will combine Eqs. (4.20) and (4.22) as the 
following: 

-(1) A 1 -A A 

Yo = f3o.o- -A-!31.0 

(2) A (I- A) A Yo = f3o.o - 2 -A- f3 l.fl 

(4.24) 

The initial estimates of the model parameters are usually obtained by fitting the linear 
trend model to the entire or a subset of the available data. The least squares estimates 

of the parameter estimates are then used for ~o.o and~ l.O· 

Example 4.2 

Consider the U.S. Consumer Price Index (CPI) from January 1995 to December 2004 
in Table 4.2. Figure 4.13 clearly shows that the data exhibits a linear trend. To smooth 
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TABLE4.2 Consumer Price Index from January 1995 to December 2004 

Month-Year CPI 

Jan-1995 150.3 
Feb-1995 150.9 
Mar-1995 151.4 
Apr-1995 151.9 
May-1995 152.2 
Jun-1995 152.5 
Ju1-1995 152.5 
Aug-1995 152.9 
Sep-1995 153.2 
Oct-1995 153.7 
Nov-1995 153.6 
Dec-1995 153.5 
Jan-1996 154.4 
Feb-1996 154.9 
Mar-1996 155.7 
Apr-1996 156.3 
May-1996 156.6 
Jun-1996 156.7 
Ju1-1996 157 
Aug-1996 157.3 
Sep-1996 157.8 
Oct-1996 158.3 
Nov-1996 158.6 
Dec-1996 158.6 

190 

180 

ii: 170 
0 

160 

Month-Year CPI Month-Year 

Jan-1997 159.1 Jan-1999 
Feb-1997 159.6 Feb-1999 
Mar-1997 160 Mar-1999 
Apr-1997 160.2 Apr-1999 
May-1997 160.1 May-1999 
Jun-1997 160.3 Jun-1999 
Jul-1997 160.5 Jul-1999 

Aug-1997 160.8 Aug-1999 
Sep-1997 161.2 Sep-1999 
Oct-1997 161.6 Oct-1999 
Nov-1997 161.5 Nov-1999 
Dec-1997 161.3 Dec-1999 
Jan-1998 161.6 Jan-2000 
Feb-1998 161.9 Feb-2000 
Mar-1998 162.2 Mar-2000 
Apr-1998 162.5 Apr-2000 
May-1998 162.8 May-2000 
Jun-1998 163 Jun-2000 
Jul-1998 163.2 Jul-2000 

Aug-1998 163.4 Aug-2000 
Sep-1998 163.6 Sep-2000 
Oct-1998 164 Oct-2000 
Nov-1998 164 Nov-2000 
Dec-1998 163.9 Dec-2000 

CPI Month-Year CPI Month-Year 

164.3 Jan-200 I 175.1 Jan-2003 
164.5 Feb-2001 175.8 Feb-2003 
165 Mar-2001 176.2 Mar-2003 
166.2 Apr-2001 176.9 Apr-2003 
166.2 May-2001 177.7 May-2003 
166.2 Jun-200 I 178 Jun-2003 
166.7 Jul-2001 177.5 Jul-2003 
167.1 Aug-2001 177.5 Aug-2003 
167.9 Sep-2001 178.3 Sep-2!Xl3 
168.2 Oct-2001 177.7 Oct-2003 
168.3 Nov-2001 177.4 Nov-2003 
168.3 Dec-2001 176.7 Dec-2003 
168.8 Jan-2002 177.1 Jan-2004 
169.8 Feb-2002 177.8 Feb-2004 
171.2 Mar-2002 178.8 Mar-2004 
171.3 Apr-2002 179.8 Apr-2004 
171.5 May-2002 179.8 May-2004 
172.4 Jun-2002 179.9 Jun-2004 
172.8 Jul-2002 180.1 Ju1-2004 
172.8 Aug-2002 180.7 Aug-2004 
173.7 Sep-2002 181 Sep-2004 
174 Oct-2002 181.3 Oct-2004 
174.1 Nov-2002 IX 1.3 Nov-2004 
174 Dec-2002 180.9 Dec-2004 

FIGURE 4.13 U.S. Consumer Price Index from January 1995 to December 2004. 
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FIGURE 4.14 Single exponential smoothing of the U.S. Consumer Price Index (with .Yo = Yl ). 

the data, following the recommendation in Section 4.2, we can use single exponential 
smoothing with A.= 0.3 as given in Figure 4.14. 

As we expected, the exponential smoother does a very good job in capturing the 
general trend in the data and provides a less jittery (smooth) version of it. However, we 
also notice that the smoothed values are consistently below the actual values. Hence 
there is an apparent bias in our smoothing. To fix this problem we have two choices: 
use a bigger A. or second-order exponential smoothing. The former will lead to less 
smooth estimates and hence defeat the purpose. For the latter, however, we can use 
A. = 0.3 to calculate ji~1 ) and .v?) as given in Table 4.3. 

TABLE4.3 Second-Order Exponential Smoothing of the U.S. 
Consumer Price Index (with A.= 0.3, y~0 = y 1, and y~2 l = .Yi1l) 

Date y, _y~l) -m 
Yr h = 2.\i~l) - .Y?) 

Jan-1995 150.3 150.300 150.300 150.300 
Feb-1995 150.9 150.480 150.354 150.606 
Mar-1995 151.4 150.756 150.475 151.037 
Apr-1995 151.9 151.099 150.662 151.536 
May-1995 152.2 151.429 150.892 151.967 

Nov-2004 191.0 190.041 188.976 191.106 
Dec-2004 190.3 190.119 189.319 190.919 
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Note that we used ;;·~ 1 ) = Yl and _\·~2 ) = s·~ I) as the initial values of s-~1 ) and s·~C). A 
more rigorous approach would involve fitting a linear regression model in time to the 
available data that gives 

S·r = /3oT +/>ITt 
= 149.89 + 0.33t 

where t goes from 1 to 120. Then from Eq. in (4.24) we have 

-(1) A 1-AA 
Yo = f3o.o- -),_-f3J.o 

I -0.3 
= 149.89- --0.33 = 146.22 

0.3 

-(2) A ('-A)A Yo = f3o.o - 2 ----;:-- f3J.o 

(
I- 0.3) = 149.89-2 -- 0.33 = 142.56 

0.3 

Figure 4.15 shows the second-order exponential smoothing of the CPl. As we can 
see, the second-order exponential smoothing not only captures the trend in the data 
but also does not exhibit any bias. 

190 

180 

a: 
0 170 

160 

Date 

FIGURE 4.15 Second-order exponential smoothing of the U.S. Comumer Price Index (with i. = 0.3. 
_\·1\1) = _\"(. and s·ilcJ = s·: I I). 
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The calculations for the second-order smoothing for the CPI data are performed 
using Minitab. We first obtained the first-order exponential smoother for the CPI, 
.Yi' l, using A = 0.3 and .Y1\

1 
l = y 1• Then we obtained .v?l by taking the first-order 

exponential smoother y~l using A = 0.3 and 5'2l = }'~ 1 l. Then using Eq. (4.23) we 

h A 2-(1) -(2) 
ave YT = YT - Yr · 

The "Double Exponential Smoothing" option available in Minitab is a slightly 
different approach based on Holt's method (Holt [ 1957]). This method divides the 
time series data into two components: the level, L 1 , and the trend, T1 • These two 
components can be calculated from 

Lr = ayt +(I- a)(Lr-1 + Tr-d 

Tr = y (Lr +Lt-d+ (I - y) Tr-1 

Hence for a given set of a andy, these two components are calculated and L 1 is used 
to obtain the double exponential smoothing of the data at time t. Furthermore, the 
sum of the level and trend components at timet can be used as the one-step-ahead 
(t + I) forecast. Figure 4.16 shows the actual and smoothed data using the double 
exponential smoothing option in Minitab with a = 0.3 and y = 0.3. 

In general, the initial values for the level and the trend terms can be obtained by 
fitting a linear regression model to the CPI data with time as the regressor. Then the 
intercept and the slope can be used as the initial values of L, and T1 respectively. • 
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190 Actual 
--Fits 

Smoothing Constants 

Alpha (level) 0.3 
180 Gamma (trend) 0.3 

Accuracy Measures 
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(.) 170 MAD 0.472494 
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160 
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FIGURE 4.16 The double exponential smoothing of the U.S. Consumer Price Index (with a = 0.3 and 
y = 0.3). 
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Example 4.3 

For the Dow Jones Index data, we observed that first-order exponential smoothing 
with low values of A showed some bias when there were linear trends in the data. 
We may therefore decide to use the second-order exponential smoothing approach 
for this data as shown in Figure 4.17. Note that the bias present with first-order 
exponential smoothing has been eliminated. The calculations for second-order expo­
nential smoothing for the Dow Jones Index are given in Table 4.4. • 

TABLE4.4 Second-Order Exponential Smoothing of the 
Dow Jones Index (with .X =0.3,ji~1 ' =y 1, andji~2 ' =ji~1 ') 

Date \•(!) -121 S·r = 2_\·~1' - _\·~21 v \' _I - T -T 

Jun-1999 10970.8 10970.8 10970.8 10970.8 
Jul-1999 10655.2 10876.1 10942.4 I 0809.8 
Aug-1999 10829.3 10862.1 10918.3 10805.8 
Sep-1999 10337.0 10704.6 10854.2 10554.9 
Oct-1999 10729.9 10712.2 10811.6 10612.7 

May-2006 11168.3 11069.4 10886.5 11252.3 
Jun-2006 11247.9 11123.0 10957.4 I \288.5 
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4.5 HIGHER-ORDER EXPONENTIAL SMOOTHING 

So far we have discussed the use of exponential smoothers in estimating the constant 
and linear trend models. For the former we employed the simple or first-order 
exponential smoother and for the latter the second-order exponential smoother. It 

can further be shown that for the general nth-degree polynomial model of the form 

j3 j3 
/32 2 f3n n 

Yt = 0 + It+ -t + ... + -t + St 
2! n! 

(4.25) 

where the s1 are assumed to be independent with mean 0 and constant variance CJ}-, 
we first employ (n + I )-order exponential smoothers 

-(n) _A -(n-1) + (J _A.) -,(n) 
Yr - Yr h-1 

to estimate the model parameters. For even the quadratic model (second degree poly­
nomial), the calculations get quite complicated. Refer to Montgomery et al. [ 1990], 

Brown [1963], and Abraham and Ledolter l!983] for the solutions to higher-order 

exponential smoothing problems. If a high-order polynomial does seem to be re­
quired for the time series, the autoregressive integrated moving average models and 
techniques discussed in the next chapter can instead be considered. 

4.6 FORECASTING 

We have so far considered exponential smoothing techniques as either visual aids 
to point out the underlying patterns in the time series data or to estimate the model 

parameters for the class of models given in Eq. ( 4.9). The latter brings up yet another 

use of exponential smoothing-forecasting future observations. At time T, we may 

wish to forecast the observation in the next time unit, T + I, or further into the future. 

For that, we will denote the r-step-ahead forecast made at time T as h+r (T). ln 

the next two sections and without any loss of generality, we will once again consider 
first- and second-order exponential smoothers as examples for forecasting time series 

data from the constant and linear trend processes. 

4.6.1 Constant Process 

In Section 4.2 we discussed first -order exponential smoothing for the constant process 
in Eq. (4.1) as 

Yr = A.yr +(I- A)Yr-1 
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In Section 4.3 we further showed that the constant level in Eq. ( 4.1 ), f30, can be 
estimated by h. Since the constant model consists of two parts-J30 that can be 
estimated by the first-order exponential smoother and the random error that cannot 
be predicted--our forecast for the future observation is simply equal to the current 
value of the exponential smoother 

h+r (T) = _h (4.26) 

Please note that, for the constant process, the forecast in Eq. (4.26) is the same 
for all future values. Since there may be changes in the level of the constant process. 
forecasting all future observations with the same value will most likely be misleading. 
However, as we start accumulating more observations, we can update our forecast. 
For example, if the data at T + I becomes available, our forecast for the future 
observations becomes 

or 

h+I+r (T +I)= AYT+l +(I- A) _\·r-rr (T) 

We can rewrite Eq. ( 4.27) as 

h+l(Tl=h(I)+A(Yr+1-h(l)) 

= h (I) + ),er ( I ) 

(4.27) 

(4.28) 

where ey (I) = YT + 1 - 5'T+ 1 ( T) is called the one-step-ahead forecast or prediction 
error. The interpretation of Eq. (4.28) makes it easier to understand the forecasting 
process using exponential smoothing: our forecast for the next observation is simply 
our previous forecast for the current observation plus a fraction of the forecast error 
we made in forecasting the current observation. The fraction in this summation is 
determined by A. Hence how fast our forecast will react to the forecast error depends 
on the discount factor. A large discount factor will lead to fast reaction to the forecast 
error but it may also make our forecast react fast to random fluctuations. This once 
again brings up the issue of the choice of the discount factor. 

Choice of ..X 
We will define the sum of the squared one-step-ahead forecast errors as 

T 

SSE(A) = I>~-1 (I) (4.29) 
1=1 

For a given historic data, we can in general calculate 8S E values for various values 
of A and pick the value of A that gives the smallest sum of the squared forecast errors. 
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Prediction Intervals 
Another issue in forecasting is the uncertainty associated with it. That is, we may 
be interested not only in the "point estimates" but also in the quantification of the 
prediction uncertainty. This is usually achieved by providing the prediction intervals 
that are expected at a specific confidence level to contain the future observations. 
Calculations of the prediction intervals will require the estimation of the variance of 
the forecast errors. We will discuss two different techniques in estimating prediction 
error variance in Section 4.6.3. For the constant process, the 100 (I - a/ 2) percent 
prediction intervals for any lead time r are given as 

where }'r is the first-order exponential smoother, Za;2 is the 100(1 - a/2) percentile 
of the standard normal distribution, and Be is the estimate of the standard deviation 
of the forecast errors. 

It should be noted that the prediction interval is constant for all lead times. This 
of course can be (and probably is in most cases) quite unrealistic. As it will be 
more likely that the process goes through some changes as time goes on, we would 
correspondingly expect to be less and less "sure" about our predictions for large lead 
times (orr values). Hence we would anticipate prediction intervals that are getting 
wider and wider for increasing lead times. We propose a remedy for this in Section 
4.6.3. We will discuss this issue further in Chapter 6. 

Example 4.4 

We are interested in the average speed on a specific stretch of a highway during non­
rush hours. For the past year and a half(78 weeks), we have available weekly averages 
of the average speed in miles/hour between 10 AM and 3 PM. The data is given in 
Table 4.5. Figure 4.18 shows that the time series data follows a constant process. To 
smooth out the excessive variation, however, first-order exponential smoothing can 
be used. The "best" smoothing constant can be determined by finding the smooth­
ing constant value that minimizes the sum of the squared one-step-ahead prediction 
errors. 

The sum of the squared one-step-ahead prediction errors for various A values is 
given in Table 4.6. Furthermore, Figure 4.19 shows that the minimum SSE is obtained 
for A= 0.4. 

Let's assume that we are also asked to make forecasts for the next 12 weeks at week 
78. Figure 4.20 shows the smoothed values for the first 78 weeks together with the 
forecasts for weeks 79-90 with prediction intervals. It also shows the actual weekly 
speed during that period. Note that since the constant process is assumed, the forecasts 
for the next 12 weeks are constant. Similarly, the prediction intervals are constant for 
that period. • 
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TABLE 4.5 The Weekly Average Speed During Nonrush Hours 

Week 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

48 

47 

"C 8. 46 
1/) 

45 

44 

43 

Speed 

47.12 
45.01 
44.69 
45.41 
45.45 
44.77 
45.24 
45.27 
46.93 
47.97 
45.27 
45.10 
43.31 
44.97 
45.31 
45.23 
42.92 
44.99 
45.12 
46.67 
44.62 
45.11 
45.18 
45.91 
48.39 

8 

Week 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

16 

Speed 

46.74 
46.62 
45.31 
44.69 
46.39 
43.79 
44.28 
46.04 
46.45 
46.31 
45.65 
46.28 
44.11 
46.00 
46.70 
47.84 
48.24 
45.59 
46.56 
45.02 
43.67 
44.53 
44.37 
44.62 
46.71 

24 32 

Week 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

40 
Week 

48 

Speed 

45.71 
43.84 
45.09 
44.16 
46.21 
45.11 
46.16 
46.50 
44.88 
45.68 
44.40 
44.17 
45.18 
43.73 
45.14 
47.98 
46.52 
46.89 
46.01 
44.98 
45.76 
45.38 
45.33 
44.07 
44.02 

56 64 

Week 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

72 

FIGURE 4.18 The weekly average speed during nonrush hours. 

Speed 

45.69 
44.59 
43.45 
44.75 
45.46 
43.73 
44.15 
44.05 
44.83 
43.93 
44.40 
45.25 
44.80 
44.75 
44.50 
45.12 
45.28 
45.15 
46.24 
46.15 
46.57 
45.51 
46.98 
46.64 
44.31 
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TABLE4.6 SSE for Different A Values for the Average Speed Data 

A 0.10 0.20 0.30 

Week Speed Forecast e(t) Forecast e(t) Forecast 

I 47.12 
2 45.01 47.12 0.00 47.12 0.00 47.12 
3 44.69 47.12 -2.11 47.12 -2.11 47.12 
4 45.41 46.91 -2.23 46.70 -2.01 46.49 
5 45.45 46.69 -1.28 46.30 -0.89 45.95 
6 44.77 46.56 -1.11 46.12 -0.67 45.79 
7 45.24 46.45 -1.68 45.99 -1.22 45.69 
8 45.27 46.28 -1.05 45.74 -0.51 45.41 
9 46.93 46.18 -0.91 45.64 -0.38 45.36 

10 47.97 46.09 0.84 45.57 1.36 45.33 

75 44.02 45.57 -1.50 45.61 -1.54 45.57 
76 45.69 45.42 -1.40 45.30 -1.28 45.12 
77 44.59 45.28 0.41 45.05 0.64 44.79 
78 43.45 45.32 -0.73 45.18 -0.58 45.06 

SSE 120.93 116.28 

0.40 0.50 ... 0.90 

e(t) Forecast e(t) Forecast e(t) Forecast e(t) 

0.00 47.12 0.00 47.12 0.00 47.12 0.00 
-2.11 47.12 -2.11 47.12 -2.11 47.12 -2.11 
-1.80 46.28 -1.59 46.07 -1.38 45.23 -0.54 
-0.54 45.64 -0.23 45.38 0.03 44.74 0.67 
-0.33 45.55 -0.10 45.39 0.06 45.34 0.11 
-0.92 45.51 -0.74 45.42 -0.65 45.44 -0.67 
-0.17 45.21 0.02 45.10 0.14 44.84 0.40 
-0.09 45.22 0.04 45.17 0.10 45.20 0.07 

1.59 45.24 1.69 45.22 1.71 45.26 1.67 

-1.50 45.50 -1.43 45.44 -1.36 45.34 -1.26 
-1.10 44.93 -0.91 44.75 -0.73 44.20 -0.18 

0.90 44.56 1.12 44.39 1.30 44.04 1.65 
-0.47 45.01 -0.42 45.04 -0.45 45.52 -0.93 

115.08 114.71 115.04 127.34 
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FIGURE 4.19 Scatter plot of SSE for various i. value,. 

4.6.2 Linear Trend Process 

The r-step-ahead forecast for the linear trend model is given by 

49 

48 • 

47 

46 , 
CD 
CD 
Q. 45 (/) 

44 

• 
43 • 
42 

9 18 

FIGURE4.20 

S'T+r (T) = ~o.r + ~I.T (T + r) 

= ~O.T + ~I.TT + ~J.TT 
= _h + ~J.TT 

• • 
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27 36 45 54 63 72 81 90 
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Forecasts for the weekly average speed data for "eeh 79-90. 
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In terms of the exponential smoothers, we can rewrite Eq. ( 4.30) as 

}' (r) = (2y-,(I)- y-(2)) + r-A.- (v(l)- 2y-(2)) 
. T+r T T 1 -A - T T 

= ( 2 + l ~ A. r) y~) - (I - l ~ A. r) 51?) 
(4.31) 

It should be noted that the predictions for the trend model depend on the lead time and 
as opposed to the the constant model will be different for different lead times. As we 

collect more data we can improve our forecasts by updating our parameter estimates 
using 

~O.T+I =A.(! +A.)YT+I +(l-A.)2 (~o.r+~l,T) 

A A (A A ) 2 (1 - A.) A 
f3I.T+I = (2 _A.) f3o.T+I - f3o.r + (2 _A.) f3I.r 

( 4.32) 

Subsequently, we can update our r-step-ahead forecasts based on Eq. (4.32). As in 
the constant process, the discount factor, A., can be estimated by minimizing the sum 

of the squared one-step-ahead forecast errors given in Eq. ( 4.29). 

In this case, the 100(1 - a/2) percent prediction interval for any lead timer is 

where 

Example 4.5 

Consider the Consumer Price Index data in Example 4.2. Assume that we are currently 
in December 2003 and would like to make predictions of the CPI for the following 

year. Although the data from January 1995 to December 2003 clearly exhibit a linear 
trend, we may still like to consider first-order exponential smoothing first. We will 

then calculate the "best" A. value that minimizes the sum of the squared one-step-ahead 

prediction errors. The predictions and prediction errors for various A. values are given 

in Table 4.7. 
Figure 4.21 shows the sum of the squared one-step-ahead prediction errors (SSE) 

for various values of A.. 

We notice that the SSE keeps on getting smaller as A. gets bigger. This suggests 

that the data is highly autocorrelated. This can clearly be clearly seen in the ACF plot 
in Figure 4.22. In fact if the "best" A. value (i.e., A. value that minimizes SSE) turns 

out to be high, it may indeed be better to switch to a higher-order smoothing or use 
an ARIMA model as discussed in the next chapter. 
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TABLE4.7 The Predictions and Prediction Errors for Various A Values for CPI Data 

A= 0.1 A= 0.2 A= 0.3 A= 0.9 A= 0.99 

Month-Year CPI Prediction Error Prediction Error Prediction Error Prediction Error Prediction Error 

Jan-1995 150.3 150.30 0.00 150.30 0.00 150.30 0.00 ... 150.30 0.00 150.30 0.00 
Feb-1995 150.9 150.30 0.60 150.30 0.60 150.30 0.60 ... 150.30 0.60 150.30 0.60 
Mar-1995 151.4 150.36 1.04 150.42 0.98 150.48 0.92 ... 150.84 0.56 150.89 0.51 
Apr-1995 151.9 150.46 1.44 150.62 1.28 150.76 1.14 151.34 0.56 151.39 0.51 

Nov-20()3 184.5 182.29 2.21 183.92 0.5!\ 184.45 0.05 185.01 -0.51 185.00 -0.50 
Dec-2003 184.3 182.51 1.79 184.03 0.27 184.46 -0.16 ... 184.55 -0.25 184.51 -0.21 

SSr. I 061.50 309.14 153.71 31.90 28.62 
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FIGURE 4.21 Scatter plot of the sum of the squared one-step ahead prediction errors versus A. 

Since the first-order exponential smoothing is deemed inadequate, we will now try 
the second-order exponential smoothing to forecast next year's monthly CPI values. 

Usually we have two options: 

1. On December 2003, make forecasts for the entire 2004 year; that is, !-step­
ahead, 2-step-ahead, ... , 12-step-ahead forecasts. For that we can use Eq. ( 4.30) 
or equivalently Eq. ( 4.31). Using the Double Exponential Smoothing option in 
Minitab, we obtain the forecasts given in Figure 4.23. 

Autocorrelation Function for CPI 
(with 5% significance limits for the autocorrelations) 
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FIGURE 4.22 ACF plot for the CPI data (with 5% significance limits for the autocorrelations). 
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FIGURE 4.23 The 1- to 12-step-ahead forecasts of the CPI data for 2004. 

Note that the forecasts further in the future (for the later part of 2004) are 
quite a bit off. To remedy this we may instead use the following strategy. 

2. In December 2003, make the One-step-ahead forecast for January 2004. When 
the data for January 2004 becomes available. then make the one-step-ahead 
forecast for February 2004, and so on. We can see from Figure 4.24 that forecasts 
when only one-step-ahead forecasts are used and adjusted as actual data becomes 
available perform better than in the previous case where, for December 2003. 
forecasts are made for the entire following year. • 

The JMP software package also has an excellent forecasting capability. Table 4.8 
shows output from JMP for the CPI data for double exponential smoothing.JMP uses 
the double smoothing procedure that employs a single smoothing constant. The JMP 
output shows the time series plot and summary statistics including the sample ACF. 
It also provides a sample partial autocorrelation function, which we will discuss in 
Chapter 5. Then an optimal smoothing constant is chosen by finding the value of A that 
minimizes the eror sum of squares. The value selected is A = 0.814. This relatively 
large value is not unexpected, because there is a very strong linear trend in the data 
and considerable autocorrelation. Values of the forecast for the next 12 periods at 
origin December 2004 and the associated prediction interval are also shown. Finally. 
the residuals from the model fit are shown along with the sample ACF and sample 
partial autocorrelation function plots of the residuals. The sample ACF indicates that 
there may be a small amount of structure in the residuals. but it is not enough to cause 
concern. 
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FIGURE 4.24 The one-step-ahead forecasl\ of the CPI data for 2004. 

TABLE 4.8 JMP Output for the CPI Data 

Time Series CPI 

190 

180 

~ 170~---------------~~---------------

160 

20 40 60 80 100 120 140 

Row 

Mean 170.13167 
Std 11.629323 

N 120 

Zero Mean ADF 8. 4 844 029 

single Mean ADF -0.075966 
Trend ADF -2 . 443095 

203 
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TABLE 4.8 JMP Output for the CPI Data (Continuecl) 

Time Series Basic Diagnostics 
Lag AutoCorr Plot Autocorr Ljung-Box a p-Value 

0 1.0000 
1 0.9743 116.774 <.0001 
2 0.9472 228.081 <.0001 
3 0.9203 334.053 <.0001 
4 0.8947 435.091 <.0001 
5 0.8694 531.310 <.0001 
6 0.8436 622.708 <.0001 
7 0.8166 709.101 <.0001 
8 0.7899 790.659 <.0001 
9 0.7644 867.721 <.0001 

940.580 <.0001 
11 0.7161 1009.46 <.0001 

Lag AutoCorr Plot Autocorr Ljung-Box a p-Value 
1074.46 <.0001 

13 0.6699 1135.85 <.0001 
14 0.6469 1193.64 <.0001 
15 0.6235 1247.84 <.0001 
16 0.6001 1298.54 <.0001 
17 0.5774 1345.93 <.0001 
18 0.5550 1390.14 <.0001 
19 0.5324 1431.24 <.0001 
20 0.5098 1469.29 <.0001 
21 0.4870 1504.36 <.0001 
22 0.4637 1536.48 <.0001 
23 0.4416 1565.91 <.0001 
24 0.4205 1592.87 <.0001 
25 0.4000 1617.54 0.0000 

Lag Partial Plot Partial 
0 1.0000 
1 0.9743 
2 -0.0396 
3 -0.0095 
4 0.0128 
5 -0.0117 
6 -0.0212 
7 -0.0379 
8 -0.0070 
9 0.0074 

10 0.0033 
11 -0.0001 

13 0.0090 
14 -0.0224 
15 -0.0220 
16 -0.0139 
17 -0.0022 
18 -0.0089 
19 -0.0174 
20 -0.0137 
21 -0.0186 
22 -0.0234 
23 0.0074 
24 0.0030 
25 -0.0036 
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TABLE 4.8 (Continued) 

Model Ca.pari•on 
Model DF 

Double (Brown) Exponential Smoothing 117 
Variance 
0. 2 47119 

SBC Rank 

0.216853 

A.IC 

171.05558 
MAPB MAE 
0.376884 

SBC RSquare -2LogLH AIC Rank 
173 . 82626 0.998 169.05558 0 0 

Model: Double (Brown) Exponential Smoothing 
Mode 1 SWIIIII&ry 

OF 
Sum of Squared Errors 
Variance Estimate 
Standard Devi ation 
Akaike's 'A' Information Criterion 
Schwarz's Bayesian Criterion 
RSquare 
RSquar e Adj 
MAPE 
MAE 

-2LogLikelihood 

Stable Yes 
Invertible Yes 

117 
28.9129264 
0.24711903 
0. 49711068 
171.055579 
173 . 826263 
0.99812888 
0.99812888 
0.2168 5285 
0.37688362 
169.055579 

Parameter B•timate• 
Term 
Level Smoothing Weigh t 

B8timate 
0 . 814 02 44 6 

Std Error 
0.0919040 

t Ratio 

8.86 

Forecast 

200 

~ 190 
iii 
> 180 
"5l 
~ 170 
e 
a. 160 

20 40 60 80 

Row 
100 120 140 

Residuals 

1.0-

Q) 0.5-
:::J 

~ 0.0 
iii 
-6 -<>.5 
·~ 
a:: - 1.0 

..... .... ·... . ,.· •."'· ·.·'· ·,,.. · ... ·. ·. : . -· 
. .. ... .. . . .. .. 

·. 
- 1.5 

+---~--~--~--~--~--~--~ 
0 20 40 60 80 100 120 140 

Row 

Prob>ltl 
<.0001 
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TABLE 4.8 JMP Output for the CPI Data (Continued) 

Lag AutoCorr Plot Autocorr Ljung-Box Q p-Value 

0 1.()()()() 
1 0.0791 I I II 0.7574 0.3841 

2 .0.3880 19.1302 <.0001 
3 ·0.29131 -I 29.5no <.0001 

4 .0.0338 29.7189 <.0001 
5 0.1064 I II 31 .1383 <.0001 

6 0.1125 I I I 32.7373 <.0001 

7 0.1867 I M l 37.181 9 <.0001 

8 .0.1157 •• 38.9063 <.0001 
9 .0.3263 -I 52.7344 <.0001 

10 ·0.1033 I I 54.1324 <.0001 

11 0.2149 ., 60.2441 <.0001 

12 0.2647 - 69.6022 <.0001 

13 -o.on3 I 70.4086 <.0001 

14 0.0345 70.5705 <.0001 

15 .0.12431 I 72.6937 <.0001 

16 .0.14291 ,. 75.5304 <.0001 

17 0.0602 1 76.0384 <.0001 

18 0.10681 I n .6533 <.0001 

19 0.0370 n .8497 <.0001 

20 .0.0917 I I 79.0656 <.0001 

21 .0.0363 79.2579 <.0001 

22 .0.09951 I so.11n <.0001 

23 ·0.0306 80.8570 <.0001 

24 0.26021 - 91 .0544 <.0001 
25 0.17281 ., 95.6007 <.0001 

Lag Partial Plot Partial 
0 1.()()()() 
1 0.0791 I I II 

2 -0.3967 
3 .0.2592 -4 .0.1970 • 
5 .0.1435 ,. 
6 -o.on5 II 
7 0.1575 I M ! 

8 .0.1144 IM 
9 .0.2228 -10 -0.1482 ,. 

Lag AutoCorr Plot Autocorr Ljung-BoxQ p-Value 

11 .0.04591 I I 
12 0.0368 
13 .0.13351 IM 

14 0.2308 1 I -15 .0.0786 1 I I 

16 0.0050 
17 0.0390 
18 .0.09031 II 

19 .0.09181 I I 

20 0.0012 
21 -o.oon 
22 -0.19351 • 
23 .0.0665 I I I 

24 0.17831 • 
25 0.07851 I II 
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4.6.3 Estimation of a; 
In the estimation of the variance of the forecast errors, a]-, it is often assumed that 
the model (e.g., constant, linear trend) is correct and constant in time. With these 
assumptions, we have two different ways of estimating a}: 

I. We already defined the one-step-ahead forecast error as eT (I) = YT + 1 -

h+l (T). The idea is to apply the model to the historic data and obtain the forecast 
errors to calculate: 

(4.33) 

It should be noted that in the variance calculations the mean adjustment was not 
needed since for the correct model the forecasts are unbiased; that is, the expected 
value of the forecast errors is 0. 

As more data is collected, the variance of the forecast errors can be updated as 

(4.34) 

As discussed in Section 4.6.1, it may be counterintuitive to have a constant forecast 
error variance for all lead times. We can instead define a} (r) as the r-step-ahead 
forecast error variance and estimate it by 

I T 

a}(r)= .L:e;(r) 
T- r + 1 t=r 

(4.35) 

Hence the estimate in Eq. ( 4.35) can instead be used in the calculations of the predic­
tion interval for the r -step-ahead forecast. 

2. For the second method of estimating a; we will first define the mean absolute 
deviation 1-. as 

"'- = E (le-E (e)l) (4.36) 

and, assuming that the model is correct, calculate its estimate by 

(4.37) 

Then the estimate of the a; is given by 

(4.38) 

For further details, see Montgomery eta!. [ 1990]. 
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4.6.4 Adaptive Updating of the Discount Factor 

In the previous sections we discussed estimation of the "best" discount factor, ~. 
by minimizing the sum of the squared one-step-ahead forecasts errors. However. as 
we have seen with the Dow Jones Index data, changes in the underlying time series 
model will make it difficult for the exponential smoother with fixed discount factor to 
follow these changes. Hence a need for monitoring and, if necessary, modifying the 
discount factor arises. By doing so, the discount factor will adapt to the changes in 
the time series model. For that we will employ the procedure originally described by 
Trigg and Leach [ 1967] for single discount factor. As an example we will consider 
the first-order exponential smoother and modify it as 

( 4.39) 

Please note that in Eq. (4.39), the discount factor AT is given as a function of time 
and hence it is allowed to adapt to changes in the time series model. We also define 
the smoothed error as 

QT =8eT(I)+(I-8)QT-I 

where 8 is a smoothing parameter. 
Finally, we define the tracking signal as 

QT 

3,_T 

(4.40) 

(4.41) 

where 3..T is given in Eq. (4.37). This ratio is expected to be close to 0 when the 
forecasting system performs well and to approach ±I as it starts to fail. In fact, Trigg 
and Leach [ 1967] suggest setting the discount factor to 

(4.42) 

Equation ( 4.42) will allow for automatic updating of the discount factor. 

Example 4.6 

Consider the Dow Jones Index from June 1999 to June 2006 given in Table 4.1. Figure 
4.2 shows that the data does not exhibit a single regime of constant or linear trend 
behavior. Hence a single exponential smoother with adaptive discount factor as given 
in Eq. (4.42) can be used. Figure 4.25 shows two simple exponential smoothers for 
the Dow Jones Index: one with fixed A = 0.3 and another one with adaptive updating 
based on the Trigg-Leach method given in Eq. (4.42). 

This plot shows that a better smoother can be obtained by making automatic updates 
to the discount factor. The calculations for the Trigg-Leach smoother are given in 
Table 4.9. • 

The adaptive smoothing procedure suggested by Trigg and Leach is a useful tech­
nique. For other approaches to adaptive adjustment of exponential smoothing param­
eters, see Chow [ 1965], Roberts and Reed [ 1969], and Montgomery [ 1970]. 
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FIGURE 4.25 Time series plot of the Dow Jones Index from June 1999 to June 2006, the simple 

exponential smoother with).. = 0.3, and the Trigg-Leach (TL) smoother with 8 = 0.3. 

4.6.5 Model Assessment 

If the forecast model performs as expected, the forecast errors should not exhibit any 
pattern or structure; that is, they should be uncorrelated. Therefore it is always a good 
idea to verify this. As noted in Chapter 2, we can do so by calculating the sample 
autocorrelation function of the forecast errors from 

T-1 

I: [er 0)- eJ [er-k 0)- eJ 
t=k (4.43) rk = 

T-1 

L [er0)-e]2 

t=O 

TABLE4.9 The Trigg-Leach Smoother for the Dow Jones Index 

Date Dow Jones Smoothed A. Error Ql Dt 

Jun-99 10970.8 10970.8 0 0 
Jul-99 10655.2 10655.2 I -315.6 -94.68 94.68 
Aug-99 10829.3 10675.835 0.11853 174.1 -14.046 118.506 
Sep-99 10337 10471.213 0.6039 -338.835 -111.483 184.605 
Oct-99 10729.9 10471.753 0.00209 258.687 -0.43178 206.83 

May-06 11168.3 11283.962 0.36695 -182.705 68.0123 185.346 
Jun-06 11247.9 11274.523 0.26174 -36.0619 36.79 140.561 
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where 

I T-1 

e =-I>~ (I) 
11 

t=O 

If the one-step-ahead forecast errors are indeed uncorrelated, the sample autocorre­
lations for any lag k should be around 0 with a standard error l j ../T. Hence a sample 
autocorrelation for any lag k that lies outside the ±2/ ft limits will require further 
investigation of the model. 

4.7 EXPONENTIAL SMOOTHING FOR SEASONAL DATA 

Some time series data exhibit cyclical or seasonal patterns that cannot be effectively 
modeled using the polynomial model in Eq. (4.25). Several approaches are available 
for the analysis of such data. In this chapter we will discuss exponential smoothing 
techniques that can be used in modeling seasonal time series. The methodology we will 
focus on was originally introduced by Holt [ 1957] and Winters [ 1960] and is generally 
known as Winters' method, where a seasonal adjustment is made to the linear trend 
model. Two types of adjustments are suggested-additive and multiplicative. 

4.7.1 Additive Seasonal Model 

Consider the U.S. clothing sales data given in Figure 4.26. Clearly, for certain months 
of every year we have high (or low) sales. Hence we can conclude that the data exhibit 
seasonality. The data also exhibit a linear trend as the sales tend to get higher for the 
same month as time goes on. As the final observation, we note that the amplitude of 
the seasonal pattern, that is, the range of the periodic behavior within a year, remains 
more or less constant in time and remains independent of the average level within a 
year. 

We will for this case assume that the seasonal time series can be represented by 
the following model: 

(4.44) 

where L 1 represents the linear trend component and can in tum be represented by 
{30 + f3 1t; 51 represents the seasonal adjustment with Sr = 51+5 = St+2s =···fort = 
I, ... , s- l, where sis the length of the period of the cycles; and the E1 are assumed 
to be uncorrelated with mean 0 and constant variance a,2 . One usual restriction on 
this model is that the seasonal adjustments add to zero during one period, 

(4.45) 
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FIGURE 4.26 Time series plot of U.S. clothing sales from January 1992 to December 2003. 

In the model given in Eq. ( 4.44 ), for forecasting the future observations, we will 
employ first-order exponential smoothers with different discount factors. The proce­
dure for updating the parameter estimates once the current observation Yr is obtained 
is as follows. 

Step I. Update the estimate of Lr using 

( 4.46) 

where 0 < A. 1 < 1. It should be noted that in Eq. (4.46), the first part can be 
seen as the "current" value for Lr and the second part as the forecast of Lr 
based on the estimates at T - I. 

Step 2. Update the estimate of {3 1 using 

(4.47) 

where 0 < A. 2 < 1. As in Step I, the estimate of {3 1 in Eq. (4.47) can be seen as 
the linear combination of the "current" value of {3 1 and its "forecast" at T - 1. 

Step 3. Update the estimate of S1 using 

(4.48) 

where 0 < A. 3 < I. 
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Step 4. Finally, the r-step-ahead forecast, h+r(T), is 

(4.49) 

As before, estimating the initial values of the exponential smoothers can be an 
issue. For a given set of historic data with n seasons (hence ns observations). we can 
use the least squares estimates of the following model: 

where 

s-1 

Yr = f3o + f3tt + LY; (Ir.;- lu) + Er 

{ 
I, 

lt.i = 0. 

i=l 

t = i, i + s. i + 2s, ... 
otherwise 

(4.50) 

(4.51) 

The least squares estimates of the parameters in Eq. (4.50) are used to obtain the 
initial values as 

fio.o La = fio 

fit.o fi1 
Sj-s = Yj for I :S j :S s - I 

s-1 

So=- LYj 
j=l 

Prediction Intervals 
As in the nonseasonal smoothing case, the calculations of the prediction intervals 
would require an estimate for the prediction error variance. The most common ap­
proach is to use the relationship between the exponential smoothing techniques and 
the autoregressive integrated moving average models of Chapter 5 as discussed in Sec­
tion 4.8, and estimate the prediction error variance accordingly. It can be shown that 
the seasonal exponential smoothing using the three parameter Holt-Winters method 
is optimal for an ARIMA (0, I, s + l) x (0, I, 0)5 , process, where s represents the 
length of the period of the seasonal cycles. For further details see Yar and Chatfield 
[ 1990] and McKenzie [ 1986]. 

An alternate approach is to recognize that the additive seasonal model is just a linear 
regression model and to use the OLS regression procedure for constructing prediction 
intervals as discussed in Chapter 3. If the errors are correlated, the regression methods 
for autocorrelated errors could be used instead of OLS. 
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TABLE4.10 U.S. Clothing Sales from January 1992 to December 2003 

Date Sales Date Sales Date Sales Date Sales Date Sales 

Jan-92 4889 Aug-94 7824 Mar-97 7695 Oct-99 9481 May-02 9906 
Feb-92 5197 Sep-94 7229 Apr-97 7161 Nov-99 10577 Jun-02 9530 
Mar-92 6061 Oct-94 7772 May-97 7978 Dec-99 15552 Jul-02 9298 
Apr-92 6720 Nov-94 8873 Jun-97 7506 Jan-00 6726 Aug-02 10755 
May-92 6811 Dec-94 13397 Jul-97 7602 Feb-00 7514 Sep-02 9128 
Jun-92 6579 Jan-95 5377 Aug-97 8877 Mar-00 9330 Oct-02 10408 
Jul-92 6598 Feb-95 5516 Sep-97 7859 Apr-00 9472 Nov-02 11618 
Aug-92 7536 Mar-95 6995 Oct-97 8500 May-00 9551 Dec-02 16721 
Sep-92 6923 Apr-95 7131 Nov-97 9594 Jun-00 9203 Jan-03 7891 
Oct-92 7566 May-95 7246 Dec-97 13952 Jul-00 8910 Feb-03 7892 
Nov-92 8257 Jun-95 7140 Jan-98 6282 Aug-00 10378 Mar-03 9874 
Dec-92 12804 Jul-95 6863 Feb-98 6419 Sep-00 9731 Apr-03 9920 
Jan-93 5480 Aug-95 7790 Mar-98 7795 Oct-00 9868 May-03 10431 
Feb-93 5322 Sep-95 7618 Apr-98 8478 Nov-00 11512 Jun-03 9758 
Mar-93 6390 Oct-95 7484 May-98 8501 Dec-00 16422 Jul-03 10003 
Apr-93 7155 Nov-95 9055 Jun-98 8044 Jan-0 I 7263 Aug-03 11055 
May-93 7175 Dec-95 13201 Jul-98 8272 Feb-01 7866 Sep-03 9941 
Jun-93 6770 Jan-96 5375 Aug-98 9189 Mar-01 9535 Oct-03 10763 
Jul-93 6954 Feb-96 6!05 Sep-98 8099 Apr-01 9710 Nov-03 12058 
Aug-93 7438 Mar-96 7246 Oct-98 9054 May-O! 9711 Dec-03 17535 
Sep-93 7144 Apr-96 7335 Nov-98 10093 Jun-01 9324 
Oct-93 7585 May-96 7712 Dec-98 14668 Jul-01 9063 
Nov-93 8558 Jun-96 7337 Jan-99 6617 Aug-01 10584 
Dec-93 12753 Jul-96 7059 Feb-99 6928 Sep-01 8928 
Jan-94 5166 Aug-96 8374 Mar-99 8734 Oct-01 9843 
Feb-94 5464 Sep-96 7554 Apr-99 8973 Nov-01 11211 
Mar-94 7145 Oct-96 8087 May-99 9237 Dec-O! 16470 
Apr-94 7062 Nov-96 9180 Jun-99 8689 Jan-02 7508 
May-94 6993 Dec-96 13109 Jul-99 8869 Feb-02 8002 
Jun-94 6995 Jan-97 5833 Aug-99 9764 Mar-02 10203 
Jul-94 6886 Feb-97 5949 Sep-99 8970 Apr-02 9548 

Example 4.7 

Consider the clothing sales data given in Table 4.1 0. To obtain the smoothed version 
of this data, we can use the Winters' Method option in Minitab. Since the amplitude 
of the seasonal pattern is constant over time, we decide to use the additive model. Two 
issues we have encountered in previous exponential smoothers have to be addressed 
in this case as well-initial values and the choice of smoothing constants. Similar 
recommendations as in the previous exponential smoothing options can also be made 
in this case. Of course, the choice of the smoothing constant, in particular, is a bit 
more concerning since it involves the estimation of three smoothing constants. In this 
example, we follow our usual recommendation and choose smoothing constants that 
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FIGURE 4.27 Smoothed data for the U.S. clothing sale; from January 1992 to December 2003 using 
the additive model. 

are all equal to 0.2. For more complicated cases, we recommend seasonal ARIMA 
models, which we will discuss in the next chapter. 

Figure 4.27 shows the smoothed version of the seasonal clothing sales data. To use 
this model for forecasting, let's assume that we are current! y in December 2002 and we 
are asked to make forecasts for the following year. Figure 4.28 shows the forecasted 
sales for 2003 together with the actual data and the 95~ prediction limits. Note that 
the forecast for December 2003 is the 12-step-ahead forecast made in December 2002. 
Even though the forecast is made further in the future, it still performs well since in 
the "seasonal" sense it is in fact a one-step-ahead forecast. • 

4.7.2 Multiplicative Seasonal Model 

If the amplitude of the seasonal pattern is proportional to the average level of the 
seasonal time series, as in the liquor store sales data given in Figure 4.29. the following 
multiplicative seasonal model will be more appropriate: 

(4.52) 

where L 1 once again represents the trend component (i.e., f3o + {3 1 t ); 51 represents 
the seasonal adjustment with Sr = Sr+s = Sr+2s = · · · fort = I .... , s - 1, where s 
is the length of the period of the cycles; and the c1 are assumed to be uncorrelated 
with mean 0 and constant variance aE2 . The restriction for the seasonal adjustments 
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in this case becomes 
s z=s, =s (4.53) 

As in the additive model, we will employ three exponential smoothers to estimate 

the parameters in Eq. (4.52). 
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FIGURE 4.29 Time series plot of liquor store sales data from January 1992 to December 2004. 
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Step 1. Update the estimate of L 7 using 

( 4.54) 

where 0 < A. 1 < 1. Similar interpretation as in the additive model can be made 
for the exponential smoother in Eq. (4.54). 

Step 2. Update the estimate of {3 1 using 

(4.55) 

where 0 < A. 2 < 1. 

Step 3. Update the estimate of S1 using 

(4.56) 

where 0 < A. 3 < I. 

Step 4. The r -step-ahead forecast, h +r ( T), is 

)'T+r(Tl = (lT + fii.Tr) Sy (r- s) (4.57) 

From the historic data set with n seasons, the initial values, fio.o. fi I.O· and So. can 
be calculated as 

where 

and 

' ' )'n - 5"'1 
f3o.o = La = -(n ___ l_)_s 

is 

_}'; =- L Yt 
5 t=(i-1)s-t-1 

' s ' 
f3I.o = 5"'1 - 2 f3o.o 

for I :s j :s s 
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where 

A* 1 t Y(!-l)s+j 
51 =;; t=l Yt- ((s + 1)/2- ))Po 

For further details, please see Montgomery et a!. [ 1990] and Abraham and Ledolter 
[ 1983]. 

Prediction Intervals 
Constructing prediction intervals for the multiplicative model is much harder than 
the additive model as the former is nonlinear. Several authors have considered this 
problem, including Chatfield and Yar [1991], Sweet [1985], and Gardner [1988]. 
Chatfield and Yar [1991] propose an empirical method in which the length of the 
prediction interval depends on the point of origin of the forecast and may decrease 
in length near the low points of the seasonal cycle. They also discuss the case where 
the error is assumed to be proportional to the seasonal effect rather than constant, 
which is the standard assumption in Winters' method. Another approach would 
be to obtain a "linearized" version of Winters' model by expanding it in a first­
order Taylor series and use this to find an approximate variance of the predicted 
value (statisticians call this the delta method). Then this prediction variance could be 
used to construct prediction intervals much as is done in the linear regression model 
case. 

Example 4.8 

Consider the liquor store data given in Table 4.11. In Figure 4.29, we can see 
that the amplitude of the periodic behavior gets larger as the average level of the 
seasonal data gets larger due to a linear trend. Hence the multiplicative model 
will be more appropriate. Figures 4.30 and 4.31 show the smoothed data with ad­
ditive and multiplicative models, respectively. Based on the performance of the 
smoothers, it should therefore be clear that the multiplicative model should indeed be 
preferred. 

As for forecasting using the multiplicative model, we can assume as usual that we 
are currently in December 2003 and are asked to forecast the sales in 2004. Figure 4.32 
shows the forecasts together with the actual values and the prediction intervals. • 

4.8 EXPONENTIAL SMOOTHERS AND ARIMA MODELS 

The first-order exponential smoother presented in Section 4.2 is a very effective model 
in forecasting. The discount factor, A., makes this smoother fairly flexible in handling 
time series data with various characteristics. The first-order exponential smoother is 
particularly good in forecasting time series data with certain specific characteristics. 
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TABLE4.11 Liquor Store Sales from January 1992 to December 2004 

Date Sales Date Sales Date Sales Date Sales Date Sales 

Jan-92 1519 Aug-94 1870 Mar-97 1862 Oct-99 2264 May-02 2661 
Feb-92 1551 Sep-94 1834 Apr-97 1826 Nov-99 2321 Jun-02 2579 
Mar-92 1606 Oct-94 1817 May-97 2071 Dec-99 3336 Jul-02 2667 
Apr-92 1686 Nov-94 1857 Jun-97 2012 Jan-00 1963 Aug-02 2698 
May-92 1834 Dec-94 2593 Jul-97 2109 Feb-00 2022 Sep-02 2392 
Jun-92 1786 Jan-95 1565 Aug-97 2092 Mar-00 2242 Oct-02 2504 
Jul-92 1924 Feb-95 1510 Sep-97 1904 Apr-00 2184 Nov-02 2719 
Aug-92 1874 Mar-95 1736 Oct-97 2063 May-00 2415 Dec-02 3647 
Sep-92 1781 Apr-95 1709 Nov-97 2096 Jun-00 2473 Jan-03 2228 
Oct-92 1894 May-95 1818 Dec-97 2842 Jul-00 2524 Feb-03 2153 
Nov-92 1843 Jun-95 1873 Jan-98 1863 Aug-00 2483 Mar-03 2395 
Dec-92 2527 Jul-95 1898 Feb-98 1786 Sep-00 2419 Apr-03 2460 
Jan-93 1623 Aug-95 1872 Mar-98 1913 Oct-00 2413 May-03 2718 
Feb-93 1539 Sep-95 1856 Apr-98 1985 Nov-00 2615 Jun-03 2570 
Mar-93 1688 Oct-95 1800 May-98 2164 Dec-00 3464 Jul-03 2758 
Apr-93 1725 Nov-95 1892 Jun-98 2084 Jan-01 2165 Aug-03 2809 
May-93 1807 Dec-95 2616 Jul-98 2237 Feb-01 2107 Sep-03 2597 
Jun-93 1804 Jan-96 1690 Aug-98 2146 Mar-01 2390 Oct-03 2785 
Jul-93 1962 Feb-96 1662 Sep-98 2058 Apr-01 2292 Nov-03 2803 
Aug-93 1788 Mar-96 1849 Oct-98 2193 May-O! 2538 Dec-03 3849 
Sep-93 1717 Apr-96 1810 Nov-98 2186 Jun-01 2596 Jan-04 2406 
Oct-93 1769 May-96 1970 Dec-98 3082 Jul-01 2553 Feb-04 2324 
Nov-93 1794 Jun-96 1971 Jan-99 1897 Aug-01 2590 Mar-04 2509 
Dec-93 2459 Jul-96 2047 Feb-99 1838 Sep-01 2384 Apr-04 2670 
Jan-94 1557 Aug-96 2075 Mar-99 2021 Oct-01 2481 May-04 2809 
Feb-94 1514 Sep-96 1791 Apr-99 2136 Nov-01 2717 Jun-04 2764 
Mar-94 1724 Oct-96 1870 May-99 2250 Dec-01 3648 Jul-04 2995 
Apr-94 1769 Nov-96 2003 Jun-99 2186 Jan-02 2182 Aug-04 2745 
May-94 1842 Dec-96 2562 Jul-99 2383 Feb-02 2180 Sep-04 2742 
Jun-94 1869 Jan-97 1716 Aug-99 2182 Mar-02 2447 Oct-04 2863 
Jul-94 1994 Feb-97 1629 Sep-99 2169 Apr-02 2380 Nov-04 2912 

Dec-04 4085 

Recall that the first-order exponential smoother is given as 

(4.58) 

and the forecast error is defined as 

eT = YT- 5"T-I (4.59) 

Similarly, we have 

eT-1 = YT-1 - s·T-~ (4.60) 
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By multiplying Eq. (4.60) by (1- A.) and subtracting it from Eq. (4.59), we obtain 

eT- (I- A.)eT-1 = (YT- YT-1)- (I- A.)()'T-1 YT-2) 
= YT- YT-1- YT-1 +A YT-1 + (1- A.)h-2 
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FIGURE 4.31 Smoothed data for the liquor store sales from January 1992 to December 2004 using the 
multiplicative model. 
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FIGURE 4.32 Forecasts for the liquor store sale» for 2004 using the multiplicative model. 

We can rewrite Eq. (4.61) as 

YT- YT~I = eT- (JeT~! (4.62) 

where (} = I -A.. Recall from Chapter 2 the backshift operator, B. defined as 
B(yr) = Yr~I· Thus Eq. (4.62) becomes 

(I - B) YT =(I -(}B) eT ( 4.63) 

We will see in Chapter 5 that the model in Eq. (4.63) is called the integrated 
moving average model denoted as IMA( 1,1 ), for the backshift operator is used only 
once on YT and only once on the error. It can be shown that if the process exhibits the 
dynamics defined in (4.63), that is an IMA( 1,1) process, the first-order exponential 
smoother provides minimum mean squared error (MMSE) forecasts (see Muth [ 1960]. 
Box and Luceno [1997], and Box, Jenkins, and Reinsel [ 1994]). For more discussion 
ofthe equivalence between exponential smoothing techniques and the A RIMA models 
see Abraham and Ledolter [1983], Cogger [1974], Goodman [1974], Pandit and Wu 
[ 197 4], and McKenzie [ !984]. 

EXERCISES 

4.1 Consider the time series data shown in Table E4.1. 

a. Make a time series plot of the data. 
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b. Use simple exponential smoothing with A = 0.2 to smooth the first 40 time 
periods of this data. How well does this smoothing procedure work? 

c. Make one-step-ahead forecasts of the last I 0 observations. Determine the 
forecast errors. 

TABLEE4.1 Data for Exercise 4.1 

Period 

2 
3 
4 
5 
6 
7 
8 
9 

10 

4.2 

y, Period y, Period y, Period y, Period v ·' 
48.7 II 49.1 21 45.3 31 50.8 41 47.9 
45.8 12 46.7 22 43.3 32 46.4 42 49.5 
46.4 13 47.8 23 44.6 33 52.3 43 44.0 
46.2 14 45.8 24 47.1 34 50.5 44 53.8 
44.0 15 45.5 25 53.4 35 53.4 45 52.5 
53.8 16 49.2 26 44.9 36 53.9 46 52.0 
47.6 17 54.8 27 50.5 37 52.3 47 50.6 
47.0 18 44.7 28 48.1 38 53.0 48 48.7 
47.6 19 51.1 29 45.4 39 48.6 49 51.4 
51.1 20 47.3 30 51.6 40 52.4 50 47.7 

Reconsider the time series data shown in Table E4.1. 

a. Use simple exponential smoothing with the optimum value of A to smooth 
the first 40 time periods of this data (you can find the optimum value from 
Minitab). How well does this smoothing procedure work? Compare the 
results with those obtained in Exercise 4.1. 

b. Make one-step-ahead forecasts of the last 10 observations. Determine the 
forecast errors. Compare these forecast errors with those from Exercise 4.1 . 
How much has using the optimum value of the smoothing constant improved 
the forecasts? 

4.3 Find the sample autocorrelation function for the time series in Table E4.1. Does 
this give you any insight about the optimum value of the smoothing constant 
that you found in Exercise 4.2? 

4.4 Consider the time series data shown in Table E4.2. 

a. Make a time series plot of the data. 

b. Use simple exponential smoothing with A= 0.2 to smooth the first 40 time 
periods of this data. How well does this smoothing procedure work? 

c. Make one-step-ahead forecasts of the last 10 observations. Determine the 
forecast errors. 

4.5 Reconsider the time series data shown in Table E4.2. 

a. Use simple exponential smoothing with the optimum value of A to smooth 
the first 40 time periods of this data (you can find the optimum value from 
Minitab). How well does this smoothing procedure work? Compare the 
results with those obtained in Exercise 4.4. 
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TABLE E4.2 Data for Exercise 4.4 

Period Yl Period \' -I Period \' -I Period \' -I Period \' -I 

43.1 II 41.8 21 47.7 31 52.9 41 48.3 
2 43.7 12 50.7 22 51.1 32 47.J 42 45.0 
3 45.3 13 55.8 23 67.1 33 50.0 43 55.2 
4 47.3 14 48.7 24 47.2 34 56.7 44 63.7 
5 50.6 15 48.2 25 50.4 35 42.J 45 64.4 
6 54.0 16 46.9 26 44.2 36 52.0 46 66.8 
7 46.2 17 47.4 27 52.0 37 48.6 47 63.3 
8 49.3 18 49.2 28 35.5 38 51.5 48 60.0 
9 53.9 19 50.9 29 48.4 39 49.5 49 60.9 

10 42.5 20 55.3 30 55.4 40 51.4 50 56.1 

b. Make one-step-ahead forecasts of the last I 0 observations. Determine the 
forecast errors. Compare these forecast errors with those from Exercise 4.4. 
How much has using the optimum value of the smoothing constant improved 
the forecasts? 

4.6 Find the sample autocorrelation function for the time series in Table E4.2. Does 
this give you any insight about the optimum value of the smoothing constant 
that you found in Exercise 4.5? 

4.7 Consider the time series data shown in Table E4.3. 

a. Make a time series plot of the data. 

b. Use simple exponential smoothing with A. = 0.1 to smooth the first 30 time 
periods of this data. How well does this smoothing procedure work? 

c. Make one-step-ahead forecasts of the last 20 observations. Determine the 
forecast errors. 

TABLEE4.3 Data for Exercise 4.7 

Period \' • I Period \' -I Period \' . I Period \' -I Period , . 
. I 

I 275 II 297 21 231 31 255 41 293 
2 245 12 235 22 238 32 255 42 284 
3 222 13 237 23 251 33 229 43 276 
4 169 14 203 24 253 34 286 44 290 
5 236 15 238 25 283 35 236 45 250 
6 259 16 232 26 283 36 194 46 235 
7 268 17 206 27 245 37 228 47 275 
8 225 18 295 28 234 38 244 48 350 
9 246 19 247 29 273 39 241 49 290 

10 263 20 227 30 293 40 284 50 269 
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d. Plot the forecast errors on a control chart for individuals. Use a moving range 
chart to estimate the standard deviation of the forecast errors in constructing 
this chart. What conclusions can you draw about the forecasting procedure 
and the time series? 

4.8 The data in Table E4.4 exhibits a linear trend. 

a. Verify that there is a trend by plotting the data. 

b. Using the first 12 observations, develop an appropriate procedure for fore­
casting. 

c. Forecast the last 12 observations and calculate the forecast errors. Does the 
forecasting procedure seem to be working satisfactorily? 

TABLE E4.4 Data for Exercise 4.8 

Period Yt Period Yt 

315 13 460 
2 195 14 395 
3 310 15 390 
4 316 16 450 
5 325 17 458 
6 335 18 570 
7 318 19 520 
8 355 20 400 
9 420 21 420 

10 410 22 580 
II 485 23 475 
12 420 24 560 

4.9 Reconsider the linear trend data in Table E4.4. Take the first difference of this 
data and plot the time series of first differences. Has differencing removed 
the trend? Use exponential smoothing on the first 11 differences. Instead of 
forecasting the original data, forecast the first differences for the remaining data 
using exponential smoothing and use these forecasts of the first differences to 
obtain forecasts for the original data. 

4.10 Table B. I in Appendix B contains data on the market yield on U.S. Treasury 
Securities at 10-year constant maturity. 

a. Make a time series plot of the data. 

b. Use simple exponential smoothing with A = 0.2 to smooth the data, ex­
cluding the last 20 observations. How well does this smoothing procedure 
work? 

c. Make one-step-ahead forecasts of the last 20 observations. Determine the 
forecast errors. 
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4.11 Reconsider the U.S. Treasury Securities data shown in Table B. I. 

a. Use simple exponential smoothing with the optimum value of A to smooth 
the data, excluding the last 20 observations (you can find the optimum value 
from Minitab). How well does this smoothing procedure work? Compare 
the results with those obtained in Exercise 4.1 0. 

b. Make one-step-ahead forecasts of the last I 0 observations. Determine the 
forecast errors. Compare these forecast errors with those from Exercise 
4.10. How much has using the optimum value of the smoothing constant 
improved the forecasts? 

4.12 Table B.2 contains data on pharmaceutical product sales. 

a. Make a time series plot of the data. 

b. Use simple exponential smoothing with)~ = 0.1 to smooth this data. How 
well does this smoothing procedure work? 

c. Make one-step-ahead forecasts of the last I 0 observations. Determine the 
forecast errors. 

4.13 Reconsider the pharmaceutical sales data shown in Table B.2. 

a. Use simple exponential smoothing with the optimum value of ic to smooth 
the data (you can find the optimum value from Minitab). How well does 
this smoothing procedure work? Compare the results with those obtained 
in Exercise 4.12. 

b. Make one-step-ahead forecasts of the last I 0 observations. Determine the 
forecast errors. Compare these forecast errors with those from Exercise 
4.12. How much has using the optimum value of the smoothing constant 
improved the forecasts? 

c. Construct the sample autocorrelation function for these data. Does this give 
you any insight regarding the optimum value of the smoothing constant? 

4.14 Table B.3 contains data on chemical process viscosity. 

a. Make a time series plot of the data. 

b. Use simple exponential smoothing with A = 0.1 to smooth this data. How 
well does this smoothing procedure work? 

c. Make one-step-ahead forecasts of the last I 0 observations. Determine the 
forecast errors. 

4.15 Reconsider the chemical process data shown in Table B.3. 

a. Use simple exponential smoothing with the optimum value of)~ to smooth 
the data (you can find the optimum value from Minitab). How well does 
this smoothing procedure work? Compare the results with those obtained 
in Exercise 4.14. 

b. Make one-step-ahead forecasts of the last I 0 observations. Determine the 
forecast errors. Compare these forecast errors with those from Exercise 4.14. 



EXERCISES 225 

How much has using the optimum value of the smoothing constant improved 
the forecasts? 

c. Construct the sample autocorrelation function for these data. Does this give 
you any insight regarding the optimum value of the smoothing constant? 

4.16 Table B.4 contains data on the annual U.S. production of blue and gorgonzola 
cheeses. This data has a strong trend. 

a. Verify that there is a trend by plotting the data. 

b. Develop an appropriate exponential smoothing procedure for forecasting. 

c. Forecast the last I 0 observations and calculate the forecast errors. Does the 
forecasting procedure seem to be working satisfactorily'? 

4.17 Reconsider the blue and gorgonzola cheese data in Table B.4 and Exercise 4.16. 
Take the first difference of this data and plot the time series of first differences. 
Has differencing removed the trend? Use exponential smoothing on the first 
differences. Instead of forecasting the original data, develop a procedure for 
forecasting the first differences and explain how you would use these forecasts 
of the first differences to obtain forecasts for the original data. 

4.18 Table 8.5 shows data for U.S. beverage manufacturer product shipments. De­
velop an appropriate exponential smoothing procedure for forecasting these 
data. 

4.19 Table B.6 contains data on the global mean surface air temperature anomaly. 

a. Make a time series plot of the data. 

b. Use simple exponential smoothing with A = 0.2 to smooth the data. How 
well does this smoothing procedure work? Do you think this would be a 
reliable forecasting procedure? 

4.20 Reconsider the global mean surface air temperature anomaly data shown in 
Table B .6 and used in Exercise 4.19. 

a. Use simple exponential smoothing with the optimum value of A to smooth 
the data (you can find the optimum value from Minitab). How well does 
this smoothing procedure work? Compare the results with those obtained 
in Exercise 4.19. 

b. Do you think that using the optimum value of the smoothing constant would 
result in improved forecasts from exponential smoothing? 

c. Take the first difference of this data and plot the time series of first dif­
ferences. Use exponential smoothing on the first differences. Instead of 
forecasting the original data, develop a procedure for forecasting the first 
differences and explain how you would use these forecasts of the first 
differences to obtain forecasts for the original global mean surface air tem­
perature anomaly. 
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4.21 Table B.7 contains daily closing stock prices for the Whole Foods Market. 

a. Make a time series plot of the data. 

b. Use simple exponential smoothing with A = 0.1 to smooth the data. How 
well does this smoothing procedure work? Do you think this would be a 
reliable forecasting procedure? 

4.22 Reconsider the Whole Foods Market data shown in Table 8.7 and used in 
Exercise 4.21. 

a. Use simple exponential smoothing with the optimum value of A to smooth 
the data (you can find the optimum value from Minitab). How well does 
this smoothing procedure work? Compare the results with those obtained 
in Exercise 4.21. 

b. Do you think that using the optimum value of the smoothing constant would 
result in improved forecasts from exponential smoothing? 

c. Use an exponential smoothing procedure for trends on this data. Is this an 
apparent improvement over the use of simple exponential smoothing with 
the optimum smoothing constant? 

d. Take the first difference of this data and plot the time series of first dif­
ferences. Use exponential smoothing on the first differences. Instead of 
forecasting the original data, develop a procedure for forecasting the first 
differences and explain how you would use these forecasts of the first dif­
ferences to obtain forecasts for the stock price. 

4.23 Unemployment rate data is given in Table B.8. 

a. Make a time series plot of the data. 

b. Use simple exponential smoothing with A= 0.2 to smooth the data. How well 
does this smoothing procedure work? Do you think that simple exponential 
smoothing should be used to forecast this data? 

4.24 Reconsider the unemployment rate data shown in Table 8.8 and used in Exer­
cise 4.23. 

a. Use simple exponential smoothing with the optimum value of .A to smooth 
the data (you can find the optimum value from Minitab). How well does 
this smoothing procedure work? Compare the results with those obtained 
in Exercise 4.23. 

b. Do you think that using the optimum value of the smoothing constant would 
result in improved forecasts from exponential smoothing? 

c. Use an exponential smoothing procedure for trends on this data. Is this an 
apparent improvement over the use of simple exponential smoothing with 
the optimum smoothing constant? 

d. Take the first difference of this data and plot the time series of first differ­
ences. Use exponential smoothing on the first differences. Is this a reasonable 
procedure for forecasting the first differences? 
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4.25 Table B.9 contains yearly data on the international sunspot numbers. 

a. Construct a time series plot of the data. 

b. Use simple exponential smoothing with A= 0.1 to smooth the data. How well 
does this smoothing procedure work? Do you think that simple exponential 
smoothing should be used to forecast this data? 

4.26 Reconsider the sunspot data shown in Table B.9 and used in Exercise 4.25. 

a. Use simple exponential smoothing with the optimum value of A to smooth 
the data (you can find the optimum value from Mini tab). How well does 
this smoothing procedure work? Compare the results with those obtained 
in Exercise 4.25. 

b. Do you think that using the optimum value of the smoothing constant would 
result in improved forecasts from exponential smoothing? 

c. Use an exponential smoothing procedure for trends on this data. Is this an 
apparent improvement over the use of simple exponential smoothing with 
the optimum smoothing constant? 

4.27 Table B.l 0 contains seven years of monthly data on the number of airline miles 
flown in the United Kingdom. This is seasonal data. 

a. Make a time series plot of the data and verify that it is seasonal. 

b. Use Winters' multiplicative method for the first six years to develop a fore­
casting method for this data. How well does this smoothing procedure work? 

c. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

4.28 Reconsider the airline mileage data in Table B.l 0 and used in Exercise 4.27. 

a. Use the additive seasonal effects model for the first six years to develop a 
forecasting method for this data. How well does this smoothing procedure 
work? 

b. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

c. Compare these forecasts with those found using Winters' multiplicative 
method in Exercise 4.27. 

4.29 Table B .11 contains eight years of monthly champagne sales data. This is 
seasonal data. 

a. Make a time series plot of the data and verify that it is seasonal. Why do 
you think seasonality is present in these data? 

b. Use Winters' multiplicative method for the first seven years to develop a 
forecasting method for this data. How well does this smoothing procedure 
work? 

c. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 
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4.30 Reconsider the monthly champagne sales data in Table B.ll and used in Ex­
ercise 4.29. 

a. Use the additive seasonal effects model for the first seven years to develop a 
forecasting method for this data. How well does this smoothing procedure 
work? 

b. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

c. Compare these forecasts with those found using Winters' multiplicative 
method in Exercise 4.29. 

4.31 Montgomery eta!. [ 1990] give four years of data on monthly demand for a soft 
drink. These data are given in Table E4.5. 

4.32 

a. Make a time series plot of the data and verify that it is seasonal. Why do 
you think seasonality is present in these data? 

b. Use Winters' multiplicative method for the first three years to develop a 
forecasting method for this data. How well does this smoothing procedure 
work? 

c. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

TABLEE4.5 Soft Drink Demand Data 

Period y, Period v ·' Period v 
. ' Period \" . ' 

143 13 189 25 359 37 332 
2 191 14 326 26 264 38 244 
3 195 15 289 27 315 39 320 
4 225 16 293 28 362 40 437 
5 175 17 279 29 414 41 544 
6 389 18 552 30 647 42 830 
7 454 19 674 31 836 43 1011 
8 618 20 827 32 901 44 1081 
9 770 21 1000 33 1104 45 1400 

10 564 22 502 34 874 46 1123 
II 327 23 512 35 683 47 713 
12 235 24 300 36 352 48 487 

Reconsider the soft drink demand data in Table E4.5 and used in Exercise 4.31. 

a. Use the additive seasonal effects model for the first three years to develop a 
forecasting method for this data. How well does this smoothing procedure 
work? 

b. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

c. Compare these forecasts with those found using Winters' multiplicative 
method in Exercise 4.31. 
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4.33 Table B.l2 presents data on the hourly yield from a chemical process and the 
operating temperature. Consider only the yield data in this exercise. 

a. Construct a time series plot of the data. 

b. Use simple exponential smoothing with A= 0.2 to smooth the data. How well 
does this smoothing procedure work? Do you think that simple exponential 

smoothing should be used to forecast this data? 

4.34 Reconsider the chemical process yield data shown in Table B .12. 

a. Use simple exponential smoothing with the optimum value of A to smooth 

the data (you can find the optimum value from Minitab). How well does 
this smoothing procedure work? Compare the results with those obtained 

in Exercise 4.33. 

b. How much has using the optimum value ofthe smoothing constant improved 
the forecasts? 

4.35 Find the sample autocorrelation function for the chemical process yield data 
in Table B.l2. Does this give you any insight about the optimum value of the 

smoothing constant that you found in Exercise 4.34? 

4.36 Table B.l3 presents data on ice cream and frozen yogurt sales. Develop an 
appropriate exponential smoothing forecasting procedure for this time series. 

4.37 Table B.l4 presents the C02 readings from Mauna Loa. 

a. Use simple exponential smoothing with the optimum value of A to smooth 

the data (you can find the optimum value from Mini tab). 

b. Use simple exponential smoothing with A = 0.1 to smooth the data. How 
well does this smoothing procedure work? Compare the results with those 

obtained using the optimum smoothing constant. How much has using the 

optimum value of the smoothing constant improved the exponential smooth­
ing procedure? 

4.38 Table B.l5 presents data on the occurrence of violent crimes. Develop an 

appropriate exponential smoothing forecasting procedure for this time series. 

4.39 Table B.l6 presents data on the U.S. gross domestic product (GOP). Develop 

an appropriate exponential smoothing forecasting procedure for the GOP time 
series. 

4.40 Total annual energy consumption is shown in Table B.l7. Develop an appropri­
ate exponential smoothing forecasting procedure for the energy consumption 

time series. 

4.41 Table B.l8 contains data on coal production. Develop an appropriate exponen­
tial smoothing forecasting procedure for the coal production time series. 
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4.42 Table B.l9 contains data on the number of children 0--4 years old who drowned 
in Arizona. 

a. Plot the data. What type of forecasting model seems appropriate? 
b. Develop a forecasting model for this data? 

4.43 Data on tax refunds and population are shown in Table B.20. Develop an 
appropriate exponential smoothing forecasting procedure for the tax refund 
time series. 

4.44 Suppose that simple exponential smoothing is being used to forecast a process. 
At the start of period r*, the mean of the process shifts to a new level fl + 8. 
The mean remains at this new level for subsequent time periods. Show that the 
expected value of the exponentially smoothed statistic is 

I fl, T < r* 
£()")- * 1 

- fl + 8 - 8(1 - ;,_)'-t +I. T ~ t* 

4.45 Using the results of Exercise 4.44. determine the number of periods following 
the step change for the expected value of the exponential smoothing statistic to 
be within 0.10 8 of the new time series level fl + 8. Plot the number of periods 
as a function of the smoothing constant. What conclusions can you draw? 

4.46 Suppose that simple exponential smoothing is being used to forecast the process 
y, = fl + t:1 • At the start of period t*, the mean of the process experiences a 
transient; that is, it shifts to a new level fl + 8, but reverts to its original level 
fl at the start of the next period r* + I. The mean remains at this level for 
subsequent time periods. Show that the expected value of the exponentially 
smoothed statistic is 

l
fl, T<t* 

£(.\•,) = fl + 8)_(1- ;,_)'-c*. T ~ r* 

4.47 Using the results of Exercise 4.46, determine the number of periods that it will 
take following the impulse for the expected value of the exponential smoothing 
statistic to return to within 0.10 8 of the original time series level fl. Plot the 
number of periods as a function of the smoothing constant. What conclusions 
can you draw? 



CHAPTER 5 

Autoregressive Integrated Moving 
Average (ARIMA) Models 

All models are wrong, some are useful. 

GEORGE E. P. BOX, British statistician 

5.1 INTRODUCTION 

In the previous chapter, we discussed forecasting techniques that, in general, were 
based on some variant of exponential smoothing. The general assumption for these 
models was that any time series data can be represented as the sum of two distinct com­
ponents: deterministic and stochastic (random). The former is modeled as a function 
of time whereas for the latter we assumed that some random noise that is added on the 
deterministic signal generates the stochastic behavior of the time series. One very im­
portant assumption is that the random noise is generated through independent shocks 
to the process. In practice, however, this assumption is often violated. That is, usually 
successive observations show serial dependence. Under these circumstances, fore­
casting methods based on exponential smoothing may be inefficient and sometimes 
inappropriate because they do not take advantage of the serial dependence in the obser­
vations in the most effective way. To formally incorporate this dependent structure, in 
this chapter we will explore a general class of models called autoregressive integrated 
moving average models or ARIMA models (also known as Box-Jenkins models). 

5.2 LINEAR MODELS FOR STATIONARY TIME SERIES 

In statistical modeling, we are often engaged in an endless pursuit of finding the 
ever elusive true relationship between certain inputs and the output. As cleverly put 
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by the quote of this chapter, these efforts usually result in models that are nothing 
but approximations of the "true" relationship. This is generally due to the choices 
the analyst makes along the way to ease the modeling efforts. A major assumption 
that often provides relief in modeling efforts is the linearity assumption. A linear 
filter, for example, is a linear operation from one time serie~ Xc to another time 
series Yc. 

+x 

Yc = L(Xc) = L l/I;Xc-i (5.1) 
i=-x 

with t = ... , -I, 0, 1, .... In that regard the linear filter can be seen as a "process·· that 
converts the input, Xc, into an output, Yc. and that conversion is not instantaneous but 
involves all (present, past, and future) values of the input in the form of a summation 
with different "weights", { l/J;}, on each Xc. Furthermore, the linear filter in Eq. ( 5.1) 
is said to have the following properties: 

1. Time-invariant as the coefficients { l/1;} do not depend on time. 

2. Physically realizable if l/1; = 0 fori < 0; that is, the output r 1 is a linear function 
of the current and past values of the input: Yc = l/Joxr + l/11 Xc-1 + · · ·. 

3. Stable if L:i=~x )l/1;) < oo. 

In linear filters, under certain conditions. some properties such as stationarity 
of the input time series are also reflected in the output. We discussed stationarity 
previously in Chapter 2. We will now give a more formal description of it before 
proceeding further with linear models for time series. 

5.2.1 Stationarity 

The stationarity of a time series is related to its statistical properties in time. That is. 
in the more strict sense, a stationary time series exhibits similar "statistical behavior" 
in time and this is often characterized as a constant probability distribution in time. 
However, it is usually satisfactory to consider the first two moments of the time 
series and define stationarity (or weak stationarity) as follows: (I) the expected 
value of the time series does not depend on time and (2) the autocovariance function 
defined as Cov(y1 • Yr+k) for any lag k is only a function of k and not time: that is. 
y, (k) = Cov (Yc, Yc+k ). 

In a crude way, the stationarity of a time series can be determined by taking arbitrary 
"snapshots" of the process at different points in time and observing the general behav­
ior of the time series. If it exhibits "similar" behavior, one can then proceed with the 
modeling efforts under the assumption of stationarity. Further preliminary tests also 
involve observing the behavior of the autocorrelation function. A strong and slowly 
dying ACF will also suggest deviations from stationarity. Better and more method­
ological tests of stationarity also exist and we will discuss some of them later in this 
chapter. Figure 5.1 shows examples of stationary and nonstationary time series data. 
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FIGURE 5.1 Realizations of (a) stationary, (b) near nonstationary. and (c) nonstationary processes. 

5.2.2 Stationary Time Series 

For a time-invariant and stable linear filter and a stationary input time series x 1 with 

fl., = E(x1 ) and Yx (k) = Cov(x1 , x 1+k), the output time series y1 given in Eq. (5.1) is 

also a stationary time series with 

fly 

-oo 
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and 

X X 

Cov(y1 • Yr+k) = y, (k) = L L 1/1;1/IJYr (i- j + k) 
i=-Xj=-X 

It is then easy to show that the following stable linear process with white noise time 
series, E1 , is also stationary: 

X 

Yr = 11 + L 1/I;Er-i 
i=O 

where E1 represents the independent random shocks with E (E1 ) = 0, and 

iflz = 0 
if h =f. 0 

So for the autocovariance function of y1 , we have 

= = 
y, (k) = L L 1/l;l/J)Yc (i- j + k) 

i=O )=0 

X 

= a2 L 1/1;1/l;+k 
i=O 

(5.2) 

(5.3) 

We can rewrite the linear process in Eq. (5.2) in terms of the backshift operator, 
B, as 

X 

= 11 + L 1/1; BiEr 
i=O 

=IJI(B) 

= 11 + W (B)E1 

(5.4) 

This is called the infinite moving average and serves as a general class of models 
for any stationary time series. This is due to a theorem by Wold [ 1938] and basically 
states that any nondeterministic weakly stationary time series y1 can be represented 
as in Eq. (5.2), where { 1/1;} satisfy L~o 1/1? < oo. A more intuitive interpretation of 
this theorem is that a stationary time series can be seen as the weighted sum of the 
present and past random "disturbances." For further explanations see Yule [ 1927] and 
Bisgaard and Kulahci [2005]. It can also be seen from Eq. (5.3) that there is a direct 
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relation between the weights { 1/J;} and the autocovariance function. In modeling a 
stationary time series as in Eq. (5.4), it is obviously impractical to attempt to estimate 

the infinitely many weights given in { 1/J;}. Although very powerful in providing a 

general representation of any stationary time series, the infinite moving average model 
given in Eq. (5.2) is useless in practice except for certain special cases: 

1. Finite order moving average (MA) models where, except for a finite number of 

the weights in { 1/J; }, they are set to 0. 

2. Finite order autoregressive (AR) models, where the weights in { 1/J;} are gener­

ated using only a finite number of parameters. 

3. A mixture of finite order autoregressive and moving average models (ARMA). 

We shall now discuss each of these classes of models in great detail. 

5.3 FINITE ORDER MOVING AVERAGE (MA) PROCESSES 

In finite order moving average or MA models, conventionally 1/Jo is set to I and the 

weights that are not set to 0 are represented by the Greek letter () with a minus sign 

in front. Hence a moving average process of order q(MA(q)) is given as 

(5.5) 

where {E1 } is white noise. Since Eq. (5.5) is a special case of Eq. (5.4) with only finite 

weights, a MA(q) process is always stationary regardless of values of the weights. In 

terms of the backward shift operator, the MA(q) process is 

Yr =fl+(l-8lB-···-8qB")Er 

= fl + (1- ~8;8;) Er (5.6) 

= fl + B(B)Er 

where 0) (B) = I - Lf= 1 8; B;. 

Furthermore, since {E1 } is white noise, the expected value of the MA(q) process is 

simply 

(5.7) 
=fl 

and its variance is 

2 ( 2 2) = (J I +()I + ... + ()" 
(5.8) 



236 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS 

Similarly, the autocovariance at lag k can be calculated from 

Yy(k) = Cov(y,, Yr+k) 

= E[(Er - eiE'r-1 - ... - OqE'r-q)(E't+k - OIE'r+k-1 - ... - BqEr+k-q)] (5.9) 

=I a 2
(-ek + elek+l + ... + eq-kOq). k =I, 2 .... 'q 

0, k > q 

From Eqs. (5.8) and (5.9), the autocovariance function of the MA(q) process is 

k = I. 2 ..... q 
(5.10) 

This feature of the ACF is very helpful in identifying the MA model and its 
appropriate order as it "cuts off' after lag q. In real life applications, however, the 
sample ACF, r (k), will not necessarily be equal to zero after lag q. It is expected to 
become very small in absolute value after lag q. For a data set of N observations, this 
is often tested against ±2/ ..fN limits, where I I ..fN is the approximate value for the 
standard deviation of the ACF for any lag under the assumption of independence as 
discussed in Chapter 2. 

Note that a more accurate formula for the standard error of the kth sample auto­
correlation coefficient is provided by Bartlett [ 1946] as 

where 

forpj #0 
forpj =0 

A special case would be white noise data for which Pj = 0 for all j's. Hence for 
a white noise process (i.e., no autocorrelation), a reasonable interval for the sample 
autocorrelation coefficients to fall in would be ±2/ ..fN and any indication otherwise 
may be considered as evidence for serial dependence in the process. 

5.3.1 The First-Order Moving Average Process, MA(l) 

The simplest finite order MA model is obtained when q = I in Eq. (5.5 ): 

(5.11) 
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For the first-order moving average or MA(l) model, we have the autocovariance 
function as 

Yy (0) = a 2 
( 1 + Bf} 

y, (!) = -B1a
2 

y, (k) = 0, k > 

(5.12) 

Similarly, we have the autocorrelation function as 

-e, 
Pv0) = --2 

· I +81 

p, (k) = 0, k > 

(5.13) 

From Eq. (5.13), we can see that the first lag autocorrelation in MA(l) is bounded as 

(5.14) 

and the autocorrelation function cuts off after lag 1. 
Consider, for example, the following MA(l) model: 

Yr = 40 + E1 + 0.8Er-l 

A realization of this model with its sample ACF is given in Figure 5.2. A visual 

inspection reveals that the mean and variance remain stable while there are some 

short runs where successive observations tend to follow each other for very brief 
durations, suggesting that there is indeed some positive autocorrelation in the data as 

revealed in the sample ACF plot. 
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FIGURE 5.2 A realization of the MA(I) process, y1 = 40 + E1 + 0.8Er-l· 
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FIGURE 5.3 A realization of the MA( l) process, y, = 40 + t:1 - 0.8t:1_ 1. 

We can also consider the following model : 

Yr = 40 + £1 - 0.8£1_1 

A realization of this model is given in Figure 5.3. We can see that observations tend 
to osci llate successively. This suggests a negative autocorrelation as confirmed by the 
sample ACF plot. 

5.3.2 The Second-Order Moving Average Process, MA(2) 

Another useful finite order moving average process is MA(2), given as 

(5.15) 

The autocovariance and autocorrelation functions for the MA(2) model are given as 

and 

Yv (0) = a 2 (I + 8l + 8}) 
Yy ( I)= a 2 (-81 + 8182) 

Yy (2) = a 2 
( -{}2) 

Yy (k) = 0, k > 2 

-e, + e,e2 
Py(l)= 2 2 

I +81 +82 

-8z 
P.v (2) = ----=---

1 + e~ + e:? 
P.v (k) = 0, k > 2 

(5.16) 

(5.17) 
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Time Series Plot 
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FIGURE 5.4 A realization of the MA(2) process, y, = 40 + c:, + 0.7cr-I - 0.28Er-2· 

Figure 5.4 shows the time series plot and the autocorrelation function for a realization 
of the MA(2) model: 

Note that the sample ACF cuts off after lag 2. 

5.4 FINITE ORDER AUTOREGRESSIVE PROCESSES 

As mentioned in Section 5.1, while it is quite powerful and important, Wold's de­
composition theorem does not help us much in our modeling and forecasting efforts 
as it implicitly requires the estimation of the infinitely many weights, { 1/Ji}. In Section 
5.2 we discussed a special case of this decomposition of the time series by assuming 
that it can be adequately modeled by only estimating a finite number of weights and 
setting the rest equal to 0. Another interpretation of the finite order MA processes is 
that at any given time, of the infinitely many past disturbances, only a finite number 
of those disturbances "contribute" to the current value of the time series and that the 
time window of the contributors "moves" in time, making the "oldest" disturbance 
obsolete for the next observation. It is indeed not too far fetched to think that some 
processes might have these intrinsic dynamics. However, for some others, we may 
be required to consider the "lingering" contributions of the disturbances that hap­
pened back in the past. This will of course bring us back to square one in terms of 

our efforts in estimating infinitely many weights. Another solution to this problem 
is through the autoregressive models in which the infinitely many weights are as­
sumed to follow a distinct pattern and can be successfully represented with only a 
handful of parameters. We shall now consider some special cases of autoregressive 
processes. 
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5.4.1 First-Order Autoregressive Process, AR(l) 

Let us first consider again the time series given in Eq. (5.2): 

X 

Yr = /). + L 1/I;Er-i 

i=O 

X 

= /). + L 1/1; Bi E1 

i=O 

= /.1 + IJi (B) E: 1 

where IJ!(B) = "L::o 1/J; 8 1
. As in the finite order MA processes, one approach to 

modeling this time series is to assume that the contributions of the disturbances that 
are way in the past should be small compared to the more recent disturbances that 
the process has experienced. Since the disturbances are independently and identically 
distributed random variables, we can simply assume a set of infinitely many weights in 
descending magnitudes reflecting the diminishing magnitudes of contributions of the 
disturbances in the past. A simple and yet intuitive set of such weights can be created 
following an exponential decay pattern. For that we will set 1/11 = ¢1

, where 1¢1 < I 
to guarantee the exponential "decay." In this notation, the weights on the disturbances 
starting from the current disturbance and going back in past will be I. ¢. ¢ 2 • ¢ 3 , ... 

Hence Eq. (5.2) can be written as 

00 

=IJ.+ L¢1
Er-i 

i=O 

From Eq. (5.18), we also have 

We can then combine Eqs. (5.18) and (5.19) as 

= /.1 - ¢1J. +¢Yr-J + Er 
'--v-"' 

=8 

= 8 + ¢Yr-J + Er 

(5.18) 

(5.19) 

(5.20) 

where 8 = (I - ¢) /.1· The process in Eq. (5.20) is called a first-order autoregressive 
process, AR(l), because Eq. (5.20) can be seen as a regression of Yr on Yr- 1 and hence 
the term autoregressive process. 
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The assumption of 1¢1 < I that is made to make the weights decay exponentially 
in time also guarantees that L:::o I1J;; I < oo. Hence an AR( 1) process is stationary 
if 1¢1 < I. The mean of a stationary AR(l) process is 

8 
E(y,) = JL = --

1-¢ 
(5.21) 

The autocovariance function of a stationary AR( 1) can be calculated from 
Eq. (5.18) as 

I 
y(k) = a 2¢k__ fork= 0, I, 2, ... 

I- ¢2 

The variance is then given as 

I 
y(O) = a2 I - ¢2 

(5.22) 

(5.23) 

Correspondingly, the autocorrelation function for a stationary AR(l) process is 

given as 

(k) = y(k) = r~.k 
p y(O) '~'" for k = 0, 1, 2, ... (5.24) 

Hence the ACF for a stationary AR(l) process has an exponential decay form. 
A realization of the following AR(l) model, 

Yt = 8 + 0.8y,_l + Et 

is shown in Figure 5.5. As in the MA(l) model with () = -0.8, we can observe 
some short runs during which observations tend to move in the upward or downward 
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FIGURE 5.5 A realization of the AR(l) process, y, = 8 + 0.8y1-1 + E:1 . 
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Time Series Plot Autocorrelation Function 
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FIGURE 5.6 A realization of the AR( I) process, y, = 8 - O.Srr-1 + F:1 . 

direction. As opposed to the MA( 1) model, however, the duration of these runs tends 
to be longer and the trend tends to linger. This can also be observed in the sample 
ACF plot. 

Figure 5.6 shows a realization of the AR(l) model y1 = 8- 0.8y1 _ 1 + E1 • We 
observe that instead of lingering runs, the observations exhibit jittery up/down move­
ments because of the negative ¢ value. 

5.4.2 Second-Order Autoregressive Process, AR(2) 

In this section, we will first start with the obvious extension of Eq. (5.20) to include 
the observation Yt-2 as 

Yt = 8 + cPIYt-1 + ¢2Yt-2 + Et (5.25) 

We will then show that Eq. (5.25) can be represented in the infinite MA form and 
provide the conditions of stationarity for y1 in terms of ¢ 1 and ¢ 2• For that we will 
rewrite Eq. (5.25) as 

or 

<I>(B)y1 = 8 + E1 

Furthermore, applying <I>(B)- 1 to both sides, we obtain 

Yt = <I>(B)- 1 8 + <I>(B)- 1 
E1 

'-,.-' "-,.-' 

=Jl =ljJ(B) 

(5.26) 

(5.27) 

(5.28) 
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where 

and 

CXJ 

= J-L+ LlfiiEr-i 
i=O 

CXJ 

= 1-L + L o/;BiE1 

i=O 

"" 
<t>(B)-1 = L lj!; Bi = \II(B) 

i=O 
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(5.29) 

(5.30) 

We can use Eq. (5.30) to obtain the weights in Eq. (5.28) in terms of ¢ 1 and ¢2• For 
that, we will use 

<t>(B) \II(B) = 1 (5.31) 

That is, 

or 

o/o + Co/1 - ¢1 o/o) B + (o/z- ¢1 o/1 - ¢zo/o) 8 2 

+ · · · + (o/1 - ¢Jo/J-I ¢zo/J-2) B1 + · · · = I (5.32) 

Since on the right-hand side of the Eq. (5.32) there are no backshift operators, for 
<t>(B) \11(8) = 1, we need 

o/o = 1 

( o/1 - ¢Jo/o) = 0 

(o/J- ¢Jo/J-I- ¢zo/J-2) = 0 forallj = 2, 3, ... 

(5.33) 

The equations in (5.33) can indeed be solved for each lj!1 in a futile attempt to estimate 
infinitely many parameters. However, it should be noted that the o/j in Eq. (5.33) 
satisfy the second-order linear difference equation and that they can be expressed as 
the solution to this equation in terms of the two roots m 1 and m 2 of the associated 
polynomial 

(5.34) 
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If the roots obtained by 

<Pt ± )<t>? + 4¢2 
m 1,m2 = 

2 

satisfy lmtl. lm21 <I, then we have L~o 11/1;1 < oo. Hence if the roots m1 and m2 

are both less than I in absolute value, then the AR(2) model is stationary. Note that if 
the roots of Eq. (5.34) are complex conjugates of the form a ± i b, the condition for 
stationarity is that J a2 + b2 < I. 

Furthermore, under the condition that lmtl. 1m 2 I < I, the AR(2) time series, {y,}. 
has an infinite MA representation as in Eq. (5.28). 

Now that we have established the conditions for the stationarity of an AR(2) time 
series, let us now consider its mean, autocovariance, and autocorrelation functions. 
From Eq. (5.25), we have 

E(y,) = 8 + </>t E(y,_t) + </>zE (Yr-2) + 0 

J1 = 8 + <Pt J1 + </>z/1 

8 
==}Jl = ----

1- <l>t- </>2 
(5.35) 

Note that for I - ¢ 1 - ¢ 2 = 0, m = I is one of the roots for the associated polynomial 
in Eq. (5.34) and hence the time series is deemed nonstationary. The autocovariance 
function is 

y(k) = Cov(y,, Yr-d 

= Cov(8 + <f>tYr-1 + </>2Yr-2 + E,, Yr-kl 

= ¢,Cov(y,_,, Yr-d + </>2 Cov(.rr-2· Yr-kl + Cov(E,. Yr-kl 

= <f>,y(k -I) +</>2y(k- 2) + { ~
2 

Thus y(O) = ¢ 1 y(I) + ¢ 2y(2) + a 2 and 

if k = () 
if k > () 

y(k) = ¢ 1y(k- I)+ ¢2y(k- 2), k =I, 2, ... 

(5.36) 

(5.37) 

The equations in (5.37) are called the Yule-Walker equations for y(k). Similarly, we 
can obtain the autocorrelation function by dividing Eq. (5.37) by y(O): 

p(k) = <f>tp(k- l) + </>2p(k- 2). k = I. 2 .... (5.38) 
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The Yule-Walker equations for p(k) in Eq. (5.38) can be solved recursively as 

p(l) = ¢I P (0) +¢z p (-I) 
'-v-' ~ 

=I =p(l) 

cfJI 
1-¢2 

p (2) = cfJ1 p (I)+ cfJ2 

p (3) = ¢IP (2) + cfJzp (I) 
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A general solution can be obtained through the roots m 1 and m 2 of the associated 

polynomial m 2
- ¢ 1m- ¢2 = 0. There are three cases. 

Case 1. If m 1 and m 2 are distinct, real roots, we then have 

(5.39) 

where c1 and c2 are particular constants and can, for example, be obtained 

from p(O) and p(l). Moreover, since for stationarity we have lm 11, 1m 2 I < 1, in 
this case, the autocorrelation function is a mixture of two exponential decay 
terms. 

Case 2. If m 1 and m 2 are complex conjugates in the form of a ± i b, we then have 

p(k) = Rk [c1 cos (Ak) + c2 sin (Ak)], k = 0, I, 2, ... (5.40) 

where R = lm; I = J a2 + b2 and A is determined by cos (A) =a/ R, sin (A) = 

bj R. Hence we have a± ib = R [cos (A)± i sin (A)].Once again c1 and c2 are 

particular constants. The ACF in this case has the form of a damped sinusoid, 
with damping factor R and frequency A; that is, the period is 2rr /A. 

Case 3. If there is one real root m0 , m 1 = m 2 = m0 , we then have 

p (k) = (c 1 + c2k)m~ k = 0, I, 2 .... (5.41) 

In this case, the ACF will exhibit an exponential decay pattern. 

In case I, for example, an AR(2) model can be seen as an "adjusted" AR( I) model 

for which a single exponential decay expression as in the AR( 1) model is not enough to 

describe the pattern in the ACF, and hence an additional exponential decay expression 

is "added" by introducing the second lag term, y1_ 2 . 

Figure 5.7 shows a realization of the AR(2) process 

Yt = 4 + 0.4Yt-1 + O.S.Yt-2 + Ct 
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FIGURE 5.7 A rcalizauon of the AR(2) process. 1', = 4 + 0.4v, 1 + 0.5y, 2 + f,. 

Note that the roots of the associated polynomial of this model are real. Hence the 

ACF is a mixture of two exponential decay terms. 

Similarly, Figure 5.8 shows a realization of the following AR(2) proces!> 

Yr = 4 + 0.8_\'r-1- 0.5_\'r-2 + fr· 

For this process, the roots of the associated polynomial are complex conjugates. 

Therefore the ACF plot exhibits a damped sinusoid behavior. 

5.4.3 General Autoregressive Process, AR(p) 

From the previous two sections, a general, pth-order AR model is given as 

Yr = 8 + <PtYr- 1 + </J2Yr-2 + · · · + </J1,Yr-p + er 

where t:1 is white noise. Another representation of Eq. (5.42) can be given as 

<l>(B )yr = 8 + er 

where <l>(B) = I - ¢ 18- t/>2 8 2 - • · ·- ¢ 1,8". 
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FIGURE 5.8 A realizauon of the AR(2) process, y, = 4 + O.Sy, 1 - 0.5y, 2 + £1 • 
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The AR(p) time series {y1 ) in Eq. (5.42) is stationary if the roots of the associated 
polynomial 

(5.44) 

are less than one in absolute value. Furthermore, under this condition, the AR(p) time 
series {y1 ) is also said to have an absolutely summable infinite MA representation 

00 

Yr = fl + IJ!(B) E:r = fl + L 1/JiE:t-i 
i=O 

where IJ!(B) = <t>(B)- 1 with L~o 11/Jil < oo. 

(5.45) 

As in AR(2), the weights of the random shocks in Eq. (5.45) can be obtained from 
<t>(B) IJ!(B) = I as 

1/!j = 0, j < 0 

1/lo = 1 (5.46) 

1/!.i - ¢I'ifJJ-I - ¢21/JJ-2 - · · · - </Jp 'ifJJ-p = 0 for all j = I, 2 .... 

We can easily show that, for stationary AR(p ), 

8 
E(vr) = fl = --------

~ 1 - </JJ - </J2 - · · · - </Jp 

and 

y(k) = Cov(yr, Yr-k) 

Thus we have 

= Cov(8 + ¢IYr-I + ¢2Yr-2 + · · · + </JpYt-p + E:r, Yr-k) 

p 

= L ¢iCov(Yr-i, Yr-d + Cov(cr, Yr-k) 
i=l 

p 

if k = 0 

if k > 0 

r co) = L: ¢iy(i) + u 2 

i=l 

(5.47) 

(5.48) 

(5.49) 
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By dividing Eq. (5.47) by y (0) fork > 0, it can be observed that the ACF of an 
AR(p) process satisfies the Yule-Walker equations 

l' 

p(k) = L_¢;p(k- i). k = 1. 2 .... (5.50) 
i=l 

The equations in (5.50) are pth-order linear difference equations. implying that 
the ACF for an AR(p) model can be found through the p roots of the associated 
polynomial in Eq. (5.44 ). For example, if the roots are all distinct and real. we have 

(5.51) 

where c 1, c2 , ••. , c, are particular constants. However, in general, the roots may 
not all be distinct or real. Thus the ACF of an AR(p) process can be a mixture of 
exponential decay and damped sinusoid expressions depending on the roots of 
Eq. (5.44). 

5.4.4 Partial Autocorrelation Function, PACF 

In Section 5.2, we saw that the ACF is an excellent tool in identifying the order of an 
MA(q) process, because it is expected to "cut off" after lag q. However, in the previous 
section, we pointed out that the ACF is not as useful in the identification of the order of 
an AR(p) process for which it will most likely have a mixture of exponential decay and 
damped sinusoid expressions. Hence such behavior, while indicating that the process 
might have an AR structure, fails to provide further information about the order 
of such structure. For that, we will define and employ the partial autocorrelation 
function (PACF) of the time series. But before that. we discuss the concept of partial 
correlation to make the interpretation of the PACF easier. 

Partial Correlation 
Consider three random variables X, Y, and Z. Then consider simple linear regression 
of Xon Z and Yon Z as 

and 

Y = a2 + b2Z 

Then the errors can be obtained from 

Cov(Z, X) 
where b1 = ---­

Var(Z) 

Cov(Z. Y) 
where bo = _ ___:. _ ___:_ 

• Var(Z) 
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and 

Then the partial correlation between X and Y after adjusting for Z is defined as 
the correlation between X* andY*; corr(X*, Y*) = corr(X- X, Y- Y). That is, 
partial correlation can be seen as the correlation between two variables after being 
adjusted for a common factor that may be affecting them. The generalization is of 
course possible by allowing for adjustment for more than just one factor. 

Partial Autocorrelation Function 
Following the above definition, the partial autocorrelation function between 
y1 and Yt-k is the autocorrelation between y1 and Yt-k after adjusting for Yt-I, 

Yt-2• ... , Yt-k+I· Hence for an AR(p) model the partial autocorrelation function 
between )'1 and Yt-k fork > p should be equal to zero. A more formal definition can 
be found below. 

Consider a stationary time series model {y1 } that is not necessarily an AR process. 
Further consider, for any fixed value of k, the Yule-Walker equations for the ACF of 
an AR(p) process given in Eq. (5.50) as 

or 

k 

p(j) = LcPikPCi- i), j = 1, 2, ... 'k 
i=l 

p(l) = cPik + cP2kP0) + · · · + cPkkP(k- 1) 

p(2) = cPikPO) + cP2k + · · · + cPHP(k - 2) 

P (k) = cPikP (k-) + cP2kP(k - 2) + · · · + cPkk 

Hence we can write the equations in (5.52) in matrix notation as 

1 p(l) p(2) p(k- l) cPik 
p(l) 1 p(3) p(k - 2) cP2k 
p(2) p(l) 1 p(k - 3) cP3k 

p(k- I) p(k - 2) p(k - 3) cPkk 

or 

Pk¢k = Pk 

(5.52) 

p(l) 
p(2) 
p(3) (5.53) 

p(k) 

(5.54) 
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where 

I p(l) p(2) p(k- I) 
p(l) I p(3) p(k - 2) 

pk = p(2) p(l) I p(k - 3) 

p(k- I) p(k- 2) p(k- 3) 

</Jik p(l) 
¢2k p(2) 

¢k = ¢3k and Pk = p(3) 

</Ju p(k) 

Thus to solve for ¢k, we have 

¢k = PZ 1
Pk (5.55) 

For any given k, k = I, 2, ... , the last coefficient </Ju is called the partial autocor­
relation of the process at lag k. Note that for an AR(p) process ¢kk = 0 fork > p. 
Hence we say that the PACF cuts off after lag p for an AR(p ). This suggests that the 
PACF can be used in identifying the order of an AR process similar to how the ACF 
can be used for an MA process. 

For sample calculations, ¢kk, the sample estimate of </Ju, is obtained by using 
the sample ACF, r(k). Furthermore, in a sample of N observations from an AR(p) 
process, ¢u fork > pis approximately normally distributed with 

A A 1 
E(</Ju) ~ 0 and Var(</Ju) ~­

N 
(5.56) 

Hence the 95% limits to judge whether any ¢u is statistically significantly different 
from zero are given by ±2/ .JR. For further detail see Quenouille [ 1949], Jenkins 
[1954, 1956], and Daniels [1956]. 

Figure 5.9 shows the sample PACFs of the models we have considered so far. In 
Figure 5.9a we have the sample PACF of the realization of the MA( I) model with 
e = 0.8 given in Figure 5.3. It exhibits an exponential decay pattern. Figure 9b shows 
the sample PACF of the realization of the MA(2) model in Figure 5.4 and it also 
has an exponential decay pattern in absolute value since for this model the roots of 
the associated polynomial are real. Figures 5.9c and 5.9d show the sample PACFs of 
the realization of the AR( 1) model with¢ = 0.8 and¢ = -0.8. respectively. In both 
cases the PACF "cuts off' after the first lag. That is, the only significant sample PACF 
value is at lag 1, suggesting that the AR( I) model is indeed appropriate to fit the data. 
Similarly, in Figures 5.9e and 5.9f, we have the sample PACFs of the realizations of 
the AR(2) model. Note that the sample PACF cuts off after lag 2. 
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FIGURE 5.9 Partial autocorrelation functions for the realizations of (a) MA( I) process, y1 = 40 + £ 1 -

0.8£1_,; (b) MA(2) process, y1 = 40 + £1 + 0.7£1-1 - 0.28~:1 -z; (c) AR( I) process, .\'1 = 8 + 0.8\'1-l + 
£1; (d) AR(I) process, y1 = 8- 0.8y1_, + £1; (e) AR(2) process, y1 = 4 + 0.4}'1-1 + O.Sv1-2 + E:1; and 

(I) AR(2) process, .\'1 = 4 + 0.8v1-1 - 0.51'1-2 + £1. 

Invertibility of MA Models 
In the previous section we showed that the PACF "cuts off" after lag p for an AR(p ). 
The PACF of an MA(q) model, however, exhibits a more complicated pattern. For 
that we define an invertible moving average process as the following: the MA(q) 
process in Eq. (5.5) is said to be invertible if it has an absolutely summable infinite 
AR representation. 
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Consider the MA(q) process 

= J1 + 8(8)t:1 

After multiplying both sides with 8(8)~ 1 , we have 

8(8)~ 1 
)'1 = 8(8)~ 1 J1 + E1 

n < 8) Yt = 8 + E I 

(5.57) 

where n(8) = I- L: 1 rri8i = 8(8)~ 1 and 8(8)~ 1 J1 = 8. Hence the infinite AR 
representation of an MA(q) process is given as 

X 

Yt - L lfi_\"t~i = 8 + Et 

i=l 

with L: 1 lrril < oo. The rri can be determined from 

which in tum yields 

(5.58) 

(5.59) 

(5.60) 

with rr0 = -I and rr1 = 0 for j < 0. Hence as in the previous arguments for the 
stationarity of AR(p) models, the rri are the solutions to the qth-order linear difference 
equations and therefore the condition for the invertibility of an MA(q) process turns 
out to be very similar to the stationarity condition of an AR(p) process: the roots of 
the associated polynomial given in Eq. (5.60) should be less than I in absolute value, 

(5.61) 

An invertible MA(q) process can then be written as an infinite AR process. 
Correspondingly, for such a process, adjusting for Yt~ I· Yt~2· ... , Yt~k+l does not 

necessarily eliminate the correlation between y1 and Yt~k and therefore its PACF will 
never "cut off." In general, the PACF of an MA( q) process is a mixture of exponential 
decay and damped sinusoid expressions. 
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The ACF and the PACF do have very distinct and indicative properties forMA and 
AR models, respectively. Therefore, in model identification, we strongly recommend 
the use of both the sample ACF and the sample PACF simultaneously. 

5.5 MIXED AUTOREGRESSIVE-MOVING AVERAGE 
(ARMA) PROCESSES 

In the previous sections we have considered special cases of Wold's decomposition of 
a stationary time series represented as a weighted sum of infinite random shocks. In 
an AR( 1) process, for example, the weights in the infinite sum are forced to follow an 
exponential decay form with </J as the rate of decay. Since there are no restrictions apart 
from 'L:o 1/J? < oo on the weights ( 1/11 ), it may not be possible to approximate them 
by an exponential decay pattern. For that, we will need to increase the order of the AR 
model to approximate any pattern that these weights may in fact be exhibiting. On 
some occasions, however, it is possible to make simple adjustments to the exponential 
decay pattern by adding only a few terms and hence to have a more parsimonious 
model. Consider, for example, that the weights 1/11 do indeed exhibit an exponential 
decay pattern with a constant rate except for the fact that 1/11 is not equal to this rate of 
decay as it would be in the case of an AR( I) process. Hence instead of increasing the 
order of the AR model to accommodate for this "anomaly," we can add an MA( I) term 
that will simply adjust 1/1 1 while having no effect on the rate of exponential decay 
pattern of the rest of the weights. This results in a mixed autoregressive moving 
average or ARMA(l,l) model. In general, an ARMA(p, q) model is given as 

p q 

= 8 + L<PiYt-i + c:t- Leic:t-i (5.62) 
i=l 1=1 

or 

<I>( B) Yt = 8 + 8(B) £ 1 (5.63) 

where £ 1 is a white noise process. 

Stationarity of ARMA (p, q) Process 
The stationarity of an ARMA process is related to the AR component in the model 
and can be checked through the roots of the associated polynomial 

(5.64) 

If all the roots of Eq. (5.64) are less than one in absolute value, then ARMA(p, q) is 
stationary. This also implies that, under this condition, ARMA(p, q) has an infinite 
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MA representation as 

ex; 

y, = 11 + L 1/liEt-i = 11 + 41(8)E, 
i=O 

with 41(8) = <1>(8)-I 8(8). The coefficients in 41(8) can be found from 

and 1/lo = l. 

lnvertibility of ARMA (p, q) Process 

i = I. .... q 

i > q 

(5.65) 

(5.66) 

Similar to the stationarity condition. the invertibility of an ARMA process is related to 
the MA component and can be checked through the roots of the associated polynomial 

(5.67) 

If all the roots of Eq. (5.65) are less than one in absolute value, then ARMA(p, q) is 
said to be invertible and has an infinite AR representation, 

0(8)y, = Q' + E, (5.68) 

where a= 8(8)-I 8 and 0(8) = 8(8)- 1 <1>(8). The coefficients in 0(8) can be 
found from 

i =I. .... p 
(5.69) 

l>p 

and ITo= -I. 
In Figure 5.10 we provide realizations of two ARMA( I. I) models: 

y1 = 16+0.6y,_ 1 +s, +0.8s,_ 1 and y, = 16-0.7y,_ 1 +E1 -0.6s,_ 1• 

Note that the sample ACFs and PACFs exhibit exponential decay behavior (sometimes 
in absolute value depending on the signs of the AR and MA coefficients). 

ACF and PACF of ARMA(p,q) Process 
As in the stationarity and invertibility conditions, the ACF and PACF of an ARMA 
process are determined by the AR and MA components. respectively. It can there­
fore be shown that the ACF and PACF of an ARMA(p, q) both exhibit exponential 
decay and/or damped sinusoid patterns, which makes the identification of the order 
of the ARMA(p, q) model relatively more difficult. For that, additional sample func­
tions such as the Extended Sample ACF (ESACF), the Generalized Sample PACF 
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FIGURE 5.10 Two real izations of the ARMA ( I . I ) model: (a) Yr = 16 + 0.6y, 1 + e, + 0.8t 1 1 and 
(b) y1 = 16 - 0.7v, 1 +e, - 0.6£, 1-(c) T heACFof (a),(d) theACFof (b). (e)thePACFof(a). and (f) 
I he PACF of (h) 

(GPACF), the Inverse ACF (IACF), and canonical correlations can be used. For fur­
ther information see Box, Jenkins, and Reinsel [ 1994], Wei [2006], Tiao and Box 
[ 198 1], Tsay and Tiao [ 1984], and Abraham and Ledolter [ 1984] . However, the avail­
ability of sophisticated statistical software packages such as Minitab, JMP, and SAS 
makes it possible for the practitioner to consider several different models with various 
orders and compare them based on the model selection criteria such as AlC, AICC, 
and SIC as described in Chapter 2 and residual analysis. 

The theoretical values of the ACF and PACF for stationary time series are summa­
rized in Table 5. 1. The summary of the sample ACFs and PACFs of the realizations 
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TABLE 5.1 Behavior of Theoretical ACF and PACF for Stationary Processes 

Model 

MA(q) 

AR(p) 

ARMA(p,q) 

ACF 

Cuts off after lag q 

Exponential decay and/or damped 
sinusoid 

Exponential decay and/or damped 
sinusoid 

PACF 

Exponential decay and/or damped 
sinusoid 

Cuts off after lag p 

Exponential decay and/or damped 
sinusoid 

of some of the models we have covered in this chapter are given in Table 5.2. Table 
5.3, and Table 5.4 forMA, AR, and ARMA models. respectively. 

5.6 NONSTATIONARY PROCESSES 

It is often the case that while the processes may not have a constant level, they 
exhibit homogeneous behavior over time. Consider, for example, the linear trend 
process given in Figure 5.1 c. It can be seen that different snapshots taken in time 
do exhibit similar behavior except for the main level of the process. Similarly. 
processes may show nonstationarity in the slope as well. We will call a time series. 
Y~> homogeneous. nonstationary if it is not stationary but its first difference, that is, 
W 1 = y1 - Yr-1 =(I- B)y1,orhigher-orderdifferences. W 1 =(I- B)" Y1 .produce 
a stationary time series. We will further call y1 an autoregressive integrated moving 
average (ARIMA) process of orders p,d, andq-that is, ARIMA(p, d, q)-ifits dth 
difference, denoted by w 1 = (I -B)" y1 • produces a stationary ARMA(p. ql process. 
The term integrated is used since, ford = I, for example, we can write Yr as the sum 
(or "integral") of the w1 process as 

Yr = Wr + Yr-1 

= Wr + Wr-1 + Yr-2 (5.70) 

= Wr + Wr-1 +···+WI+ .\"0 

Hence an ARIMA(p, d, q) can be written as 

<t>(B)(l- B)" Yr = 8 + 0)(B)t: 1 (5.71) 

Thus once the differencing is performed and a stationary time series w 1 = 
(I - B)" y1 is obtained, the methods provided in the previous sections can be used to 
obtain the full model. In most applications first differencing (d = I) and occasion­
ally second differencing (d = 2) would be enough to achieve stationarity. However, 
sometimes transformations other than differencing are useful in reducing a nonsta­
tionary time series to a stationary one. For example, in many economic time series the 
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variability of the observations increases as the average level of the process increases; 
however, the percentage of change in the observations is relatively independent of 
level. Therefore taking the logarithm of the original series will be useful in achieving 
stationarity. 

Some Examples of ARIMA(p, d, q) Processes 
The random walk process, ARIMA(O, 1, 0) is the simplest nonstationary modeL It 
is given by 

(1- B)yr =o+Er (5.72) 

suggesting that first differencing eliminates all serial dependence and yields a white 
noise process. 

Consider the process y1 = 20 + Yr-l + E1 • A realization of this process together 
with its sample ACF and PACF are given in Figure 5.lla-c. We can see that the sample 
ACF dies out very slowly, while the sample PACF is only significant at the first lag. 
Also note that the PACF value at the first lag is very close to one. All this evidence 
suggests that the process is not stationary. The first difference, w1 = y1 - y1_ 1 , and 
its sample ACF and PACF are shown in Figure 5.11 d-f. The time series plot of w 1 

implies that the first difference is stationary. In fact, the sample ACF and PACF do 
not show any significant values. This further suggests that differencing the original 
data once "clears out" the autocorrelation. Hence the data can be modeled using the 
random walk model given in Eq. (5.72). 

The ARIMA(O, 1, 1) process is given by 

(I- B)y1 = 8 +(I- 8B)E1 

The infinite AR representation of Eq. (5.73) can be obtained from Eq. (5.69) 

rr; -err;-1 = 1
1, 

0. 

with rr0 = -I. Thus we have 

oc 

Yt = 0'. + LTriYt-i + Et 
i=l 

i =I 

i > I 

= 0'. +(I - ()) (Yt-1 + ()Yt-2 + · · ·) + Et 

(5.73) 

(5.74) 

(5.75) 

This suggests that an ARIMA(O, I, I) (a.k.a. IMA(l, 1 )) can be written as an expo­
nentially weighted moving average (EWMA) of all past values. 
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TABLE 5.2 Sample ACFs and PACFs for Some Realizations of MA(l) and MA(2) Models 
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TABLE 5.3 Sample ACFs and PACFs for Some Realizations of AR(l) and AR(2) Models 
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TABLE 5.4 Sample ACFs and PACFs for Some Realizations of ARMA(l,l) Models 
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FIGURE 5.11 A realization of the ARIMA(O, I, 0) model, y1 , its first difference, w1 , and their sample 

ACFs and PACFs. 

Consider the time series data in Figure 5. 12a. It looks like the mean of the process is 

changing (moving upwards) in time. Yet the change in the mean (i.e., nonstationarity) 

is not as obvious as in the previous example. The sample ACF plot ofthedata in Figure 

5. 12b dies relatively slowly and the sample PACF of the data in Figure 5. 12c shows 

two significant values at lags I and 2. Hence we might be tempted to model this data 

using an AR(2) model because of the exponentially decaying ACF and significant 

PACF at the first two lags. Indeed, we might even have a good fit using an AR(2) 
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FIGURE 5.12 A realization of the ARIMA(O, I, I) model, y1, its first difference, w, and their sample 
ACFs and PACFs. 

model. We should nevertheless check the roots of the associated polynomial given in 
Eq. (5.34) to make sure that its roots are less than 1 in absolute value. Also note that a 
technically stationary process will behave more and more nonstationary as the roots of 
the associated polynomial approach unity. For that, observe the realization of the near 
nonstationary process, y, = 2 + 0.95y,_ 1 + e,, given in Figure 5.lb. Based on the 
visual inspection, however, we may deem the process nonstationary and proceed with 
taking the first difference of the data. This is because the¢ value of the AR( 1) model 
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is close to 1. Under these circumstances, where the nonstationarity of the process 
is dubious, we strongly recommend that the analyst refer back to basic underlying 
process knowledge. If, for example, the process mean is expected to wander otT as in 
some financial data, assuming that the process is nonstationary and proceeding with 
differencing the data would be more appropriate. For the data given in Figure 5.12a, 
its first difference given in Figure 5.12d looks stationary. Furthermore, its sample 
ACF and PACF given in Figures 5.12e and 5.12f, respectively, suggest that an MA( 1) 

model would be appropriate for the first difference since its ACF cuts off after the 
first lag and the PACF exhibits an exponential decay pattern. Hence the ARIMA 
(0, 1, 1) model given in Eq. (5.73) can be used for this data. 

5.7 TIME SERIES MODEL BUILDING 

A three-step iterative procedure is used to build an ARIMA model. First, a tentative 
model of the ARIMA class is identified through analysis of historical data. Second, 
the unknown parameters of the model are estimated. Third, through residual analysis, 
diagnostic checks are performed to determine the adequacy of the model, or to indicate 
potential improvements. We shall now discuss each of these steps in more detail. 

5.7.1 Model Identification 

Model identification efforts should start with preliminary efforts in understanding the 
type of process from which the data is coming and how it is collected. The process's 
perceived characteristics and sampling frequency often provide valuable information 
in this preliminary stage of model identification. In today's data rich environments, 
it is often expected that the practitioners would be presented with "enough" data to 
be able to generate reliable models. It would nevertheless be recommended that 50 
or preferably more observations should be initially considered. Before engaging in 
rigorous statistical model-building efforts, we also strongly recommend the use of 
"creative" plotting of the data, such as the simple time series plot and scatter plots 
of the time series data y1 versus Yr-l, Yr-2. and so on. For the Yr versus Yr-l scatter 
plot, for example, this can be achieved in a data set of N observations by plotting 
the first N - I observations versus the last N - I. Simple time series plots should be 
used as the preliminary assessment tool for stationarity. The visual inspection of these 
plots should later be confirmed as described earlier in this chapter. If nonstationarity is 
suspected, the time series plot of the first (or dth) difference should also be considered. 
The unit root test by Dickey and Fuller [ 1979] can also be performed to make sure that 
the differencing is indeed needed. Once the stationarity can be presumed, the sample 
ACF and PACF of the time series of the original time series (or its dth difference if 
necessary) should be obtained. Depending on the nature of the autocorrelation, the 
first 20-25 sample autocorrelations and partial autocorrelations should be sufficient. 
More care should be taken of course if the process exhibits strong autocorrelation 
and/or seasonality, as we will discuss in the following sections. Table 5.1 together 

with the ±2/ J7V limits can be used as a guide for identifying AR or MA models. 
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As discussed earlier, the identification of ARMA models would require more care, 
as both the ACF and PACF will exhibit exponential decay and/or damped sinusoid 
behavior. 

We have already discussed that the differenced series { w1 } may have a nonzero 
mean, say, Jlw· At the identification stage we may obtain an indication of whether or 
not a nonzero value of Jlu· is needed by comparing the sample mean of the differ­
enced series, say, w = L7~f [w/(n- d)], with its approximate standard error. Box. 
Jenkins, and Reinsel [ 1994] give the approximate standard error of U) for several 
useful ARIMA(p, d, q) models. 

Identification of the appropriate ARIMA model requires skills obtained by ex­
perience. Several excellent examples of the identification process are given in Box 
eta!. [1994, Chap. 6] and Montgomery eta!. [1990]. 

5.7.2 Parameter Estimation 

There are several methods such as methods of moments, maximum likelihood, and 
least squares that can be employed to estimate the parameters in the tentatively identi­
fied model. However, unlike the regression models of Chapter 2, most ARIMA models 
are nonlinear models and require the use of a nonlinear model fitting procedure. How­
ever, this is usually automatically performed by sophisticated software packages such 
as Mini tab, JMP, and SAS. In some software packages, the user may have the choice 
of estimation method and can accordingly choose the most appropriate method based 
on the problem specifications. 

5.7.3 Diagnostic Checking 

After a tentative model has been fit to the data, we must examine its adequacy and, 
if necessary, suggest potential improvements. This is done through residual analysis. 
The residuals for an ARMA(p, q) process can be obtained from 

(5.76) 

If the specified model is adequate and hence the appropriate orders p and q are 
identified, it should transform the observations to a white noise process. Thus the 
residuals in Eq. (5.76) should behave like white noise. 

Let the sample autocorrelation function of the residuals be denoted by {re (k)}. 
If the model is appropriate, then the residual sample autocorrelation function should 
have no structure to identify. That is, the autocorrelation should not differ significantly 
from zero for all lags greater than one. If the form of the model were correct and if we 
knew the true parameter values, then the standard error of the residual autocorrelations 
would be N- 112• 

Rather than considering the re(k) terms individually, we may obtain an indication 
of whether the first K residual autocorrelations considered together indicate adequacy 
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of the model. This indication may be obtained through an approximate chi-square test 
of model adequacy. The test statistic is 

K 

Q = (N -d) L r; (k) (5.77) 
k=l 

which is approximately distributed as chi-square with K - p - q degrees of freedom 
if the model is appropriate. If the model is inadequate, the calculated value of Q will 
be too large. Thus we should reject the hypothesis of model adequacy if Q exceeds 
an approximate small upper tail point of the chi-square distribution with K - p - q 

degrees of freedom. Further details of this test are in Chapter 2 and in the original 
reference by Box and Pierce [ 1970]. The modification of this test by Ljung and Box 
f 1978 J presented in Chapter 2 is also useful in assessing model adequacy. 

5. 7.4 Examples of Building A RIMA Models 

In this section we shall present two examples of the identification, estimation, and 
diagnostic checking process. One example presents the analysis for a stationary time 
series, while the other is an example of modeling a nonstationary series. 

Example 5.1 

Table 5.5 shows the weekly total number of loan applications in a local branch of 
a national bank for the last two years. It is suspected that there should be some 
relationship (i.e., autocorrelation) between the number of applications in the current 
week and the number of loan applications in the previous weeks. Modeling that 
relationship will help the management to proactively plan for the coming weeks 
through reliable forecasts. As always, we start our analysis with the time series plot 
of the data, shown in Figure 5.13. 

Figure 5.13 shows that the weekly data tend to have short runs and that the data 
seem to be indeed autocorrelated. Next, we visually inspect the stationarity. Although 
there might be a slight drop in the mean for the second year (weeks 53-104 ), in 
general it seems to be safe to assume stationarity. 

We now look at the sample ACF and PACF plots in Figure 5.14. Here are possible 

interpretations of the ACF plot: 

1. It cuts off after lag 2 (or maybe even 3), suggesting a MA(2) (or MA(3)) model. 

2. It has an (or a mixture ot) exponential decay(s) pattern suggesting an AR(p) 
model. 

To resolve the conflict, consider the sample PACF plot. For that, we have only one 
interpretation; it cuts off after lag 2. Hence we use the second interpretation of the 
sample ACF plot and assume that the appropriate model to fit is the AR(2) model. 

Table 5.6 shows the Mini tab output for the AR(2) model. The parameter estimates 
are ¢ 1 = 0.27 and ¢2 = 0.42, and they turn out to be significant (see the ?-values). 
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TABLES.S Weekly Total Number of Loan Applications for the Last Two Years 

Week 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Applications Week Applications Week Applications Week Applications 

71 
57 
62 
64 
65 
67 
65 
82 
70 
74 
75 
81 
71 
75 
82 
74 
78 
75 
73 
76 
66 
69 
63 
76 
65 
73 

90 

27 62 53 66 79 
28 77 54 71 80 
29 76 55 59 81 
30 88 56 57 82 
31 71 57 66 83 
32 72 58 51 84 
33 66 59 59 85 
34 65 60 56 86 
35 73 61 57 87 
36 76 62 55 88 
37 81 63 53 89 
38 84 64 74 90 
39 68 65 64 91 
40 63 66 70 92 
41 66 67 74 93 
42 71 68 69 94 
43 67 69 64 95 
44 69 70 68 96 
45 63 71 64 97 
46 61 72 70 98 
47 68 73 73 99 
48 75 74 59 100 
49 66 75 68 101 
so 81 76 59 102 
51 72 77 66 103 
52 77 78 63 104 

10 20 30 40 50 60 70 80 90 100 
Week 

FIGURE 5.13 Time series plot of the weekly total number of loan applications. 
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FIGURE 5.14 ACF and PACF for the weekly total number of loan applications. 

MSE is calculated to be 39.35. The modified Box-Pierce test suggests that there is no 
autocorrelation left in the residuals. We can also see this in the ACF and PACF plots 
of the residuals in Figure 5.15. 

As the last diagnostic check, we have the 4-in-1 residual plots in Figure 5.16 pro­
vided by Mini tab: Normal Probability Plot, Residuals versus Fitted Value, Histogram 
of the Residuals, and Time Series Plot of the Residuals. They indicate that the fit is 
indeed acceptable. 

TABLE 5.6 Minitab Output for the AR(2) Model for the Loan Application Data 

Final Estimates of Parameters 

Type Coef SE Coef T p 

AR l 0.2682 0.0903 2.97 0.004 
AR 2 0.4212 0.0908 4.64 0.000 
Constant 20.7642 0.6157 33.73 0.000 
Mean 66.844 1. 982 

Number of observations: 104 
Residuals: SS 3974.30 (backforecasts excluded) 

MS = 39.35 DF = 101 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 
Chi-Square 6.2 16.0 24.9 32.0 
DF 9 21 33 45 
P-Value 0. 718 0.772 0.843 0.927 
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FIGURE 5_15 The sample ACF and PACF of the residuals for the AR(2) model in Table 5.6. 

Figure 5.17 shows the actual data and the fitted values. It looks like the fitted values 
smooth out the highs and lows in the data. 

Note that, in this example, we often and deliberately used "vague" words such as 
"seems" or " looks like." It should be clear by now that the methodo logy presented 
in this chapter has a very sound theoretical foundation. However, as in any modeling 
effort, we should also keep in mind the subjective component of model identification. 
In fact, as we mentioned earlier, time series model fitting can be seen as a mixture of 
science and art and can best be learned by practice and experience. The next example 
will illustrate this point further. • 
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FIGURE 5.16 Residual plots for the AR(2) model in Table 5.6. 
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FIGURE 5.17 Time series plot of the actual data and fitted values for the AR(2) model in Table 5.6. 

Example 5.2 

Consider the Dow Jones Index data from Chapter 4. A time series plot of the data is 
given in Figure 5.18. The process shows signs of nonstationarity with changing mean 

and possibly variance. 
Similarly, the slowly decreasing sample ACF and sample PACF with significant 

value at lag 1, which is close to l in Figure 5.19, confirm that indeed the process 
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FIGURE 5.18 Time series plot of the Dow Jones Index from June 1999 to June 2006. 



272 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS 

1.0 
0.8 

c 0.6 

Autocorrelation Function for Dow Jones Index 
(with 5% significance limits for the autocorrelations) 

i 0.4 
"!! 0.2 
~ 0.0 t'-.l.__l__L__j__JLL_L_LL-'-L..L--'--...__. __ -.--,rr-n 
g-D2 
:; -{).4 

<!-{) 6 
-{).8 

-1.0 L__----~------------~--~--__j 
2 4 6 8 10 12 14 16 18 20 

Lag 

Partial Autocorrelation Function for Dow Jones Index 
(with 5% significance l1mits for the autocorrelat1ons) 

1 0' 

§o.8L' 1;; 0.6 1 

i g ~ J . . - - --.-~--.~--'--.------.--.--...J 
-:; -{).2 • -

::: -{).4 ' -f -{).6 i 
~-{)81 

-10·L_~~~--~~--------------~ 
2 4 6 8 10 12 14 16 18 20 

Lag 

FIGURE 5.19 Sample ACF and PACF of the Dow Jones Index. 

can be deemed nonstationary. On the other hand, one might argue that the significant 
sample PACF value at lag I suggests that the AR( I) model might also fit the data well. 
We will consider this interpretation first and fit an AR( I) model to the Dow Jones 
Index data. 

Table 5.7 shows the Minitab output for the AR(l) model. Although it is close to 
l, the AR( l) model coefficient estimate ¢ = 0. 9045 turns out to be quite significant 
and the modified Box-Pierce test suggests that there is no autocorrelation left in the 
residuals. This is also confirmed by the sample ACF and PACF plots of the residuals 
given in Figure 5.20. 

The only concern in the residual plots in Figure 5.21 is in the changing variance 
observed in the time series plot of the residuals. This is indeed a very important issue 

TABLE 5.7 Minitab Output for the AR(l) Model for the Dow Jones Index 

Final Estimates of Parameters 

Type 
AR l 
Constant 
Mean 

Coef 
0.9045 
984.94 

10309.9 

SE Coef 
0.0500 

T 

18.10 

p 

0.000 
44.27 22.25 0.000 
463.4 

Number of observations: 85 
Residuals: SS 13246015 (backforecasts excluded) 

MS = 159591 DF = 83 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 
Chi-Square 2.5 14.8 21.4 29.0 
DF 10 22 34 46 
P-Value 0.991 0.872 0.954 0.977 
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PACF of Residuals from the AR(1) Model 
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FIGURE 5.20 Sample ACF and PACF of the residuals from the AR( I) model for the Dow Jones Index 
data. 

since it violates the constant variance assumption. We will discuss this issue further 
in Section 7.3 but for illustration purposes we will ignore it in this example. 

Overall it can be argued that an AR(l) model provides a decent fit to the data. 
However, we will now consider the earlier interpretation and assume that the Dow 
Jones Index data comes from a nonstationary process. We then take the first difference 
of the data as shown in Figure 5.22. While there are once again some serious concerns 
about changing variance, the level of the first difference remains the same. If we ignore 
the changing variance and look at the sample ACF and PACF plots given in Figure 5.23, 
we may conclude that the first difference is in fact white noise. That is, since these 
plots do not show any sign of significant autocorrelation, a model we may consider 
for the Dow Jones Index data would be the random walk model, ARIMA (0, 1, 0). 
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FIGURE 5.21 Residual plots from the AR(l) model for the Dow Jones Index data. 
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FIGURE 5.22 Time series plot of the first difference w(t) of the Do\\ Jones Index data. 

Now the analyst has to decide between the two models: AR( 1) and ARIMA 
(0, I, 0). One can certainly use some of the criteria we discussed in Section 2.6.2 to 
choose one of these models. Since these two models are fundamentally quite different. 
we strongly recommend that the analyst use the subject matter/process knowledge as 
much as possible. Do we expect a financial index such as the Dow Jones Index to 
wander about a fixed mean as implied by the AR( I)? In most cases involving financial 
data, the answer would be no. Hence a model such as ARIMA(O, I, 0) that takes into 
account the inherent nonstationarity of the process should be preferred. However, we 
do have a problem with the proposed model. A random walk model means that the 
price changes are random and cannot be predicted. If we have a higher price today 
compared to yesterday, that would have no bearing on the forecasts tomorrow. That 
is, tomorrow's price can be higher or lower than today's and we would have no way 
to forecast it effectively. This further suggests that the best forecast for tomorrow's 
price is in fact the price we have today. This is obviously not a reliable and effective 
forecasting model. This very same issue of the random walk models for financial 
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FIGURE 5.23 Sample ACF and PACF plots of the first difference of the Dow Jones Index data. 
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data has been discussed in great detail in the literature. We simply used this data to 

illustrate that in time series model fitting we can end up with fundamentally different 

models that will fit the data equally well. At this point, process knowledge can provide 

the needed guidance in picking the "right" model. 

It should be noted that, in this example, we tried to keep the models simple for 

illustration purposes. Indeed, a more thorough analysis would (and should) pay close 

attention to the changing variance issue. In fact, this is a very common concern 

particularly when dealing with financial data. For that, we once again refer the reader 

to Section 7.3. • 

5.8 FORECASTING ARIMA PROCESSES 

Once an appropriate time series model has been fit, it may be used to generate forecasts 

of future observations. If we denote the current time by T, the forecast for YT +r is 

called the r -period-ahead forecast and denoted by h +r (T). The standard criterion to 

use in obtaining the best forecast is the mean squared error for which the expected value 

of the squared forecast errors, Ef(YT+r- YT+r (T))2] = E[er (r)2], is minimized. 

It can be shown that the best forecast in the mean square sense is the conditional 

expectation of YT +r given current and previous observations, that is, YT, YT _ 1, ••• : 

h +r ( T) = E r YT +r I YT' YT -1 0 ° 0 
.] 

(5.78) 

Consider, for example, an ARIMA (p, d, q) process at timeT+ r (i.e., r period in 

the future): 

p+d q 

YT+r = 8 + L c/J;YT+r-i + CT+r- L 8;£T+r-i 

i=l i=l 

Further consider its infinite MA representation, 

:)() 

YT+r = 1-t + L 1/f;t:T+r-i 
i=l 

We can partition Eq. (5.80) as 

r-1 oo 

YT+r = 1-t + L 1/f;t:T+r-i + L 1/f;t:T+r-i 
i=I i=r 

(5.79) 

(5.80) 

(5.81) 

In this partition we can clearly see that the L.r::/ 1/f;t:T+r-i component involves the 

future errors whereas the L~r 1/f;t:T+r-i component involves the present and past 

errors. From the relationship between the current and past observations and the cor­

responding random shocks as well as the fact that the random shocks are assumed 

to have mean zero and to be independent, we can show that the best forecast in the 



276 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS 

mean square sense is 

X 

YT+r (T) = E [YT+rl YT• YT-1· ··.]=fl.+ L lji;ET+r-i 
i=r 

since 

E[ET+r-iiYr.YT-1 •... ]={ O 
ET+r-i 

Subsequently, the forecast error is calculated from 

r-1 

if i < T 

if C:: T 

er (T) = JT+r- h+r (T) = L lji;ET+r-i 
i=O 

(5.82) 

(5.83) 

Since the forecast error in Eq. (5.83) is a linear combination of random shocks, we 
have 

E [er (T)] = 0 (5.84) 

[

r-1 J r-1 
Var[er (T)] = Var ~ lji;Er+r-i = ~ JjllVar(Er+r-il 

r-1 

= a2 L ljl/ (5.85) 
i=O 

It should be noted that the variance of the forecast error gets bigger with increasing 
forecast lead times T. This intuitively makes sense as we should expect more uncer­
tainty in our forecasts further into the future. Moreover, if the random shocks are 
assumed to be normally distributed, N(O, a 2 ), then the forecast errors will also be 
normally distributed with N(O, a 2(T)). We can then obtain the 100(1 -a) percent 
prediction intervals for the future observations from 

(5.86) 

where ZafZ is the upper a (2 percentile of the standard normal distribution, N (0. I). 
Hence the 100(1 -a) percent prediction interval for YT+r is 

(5.87) 

There are two issues with the forecast equation in (5.82). First. it involves infinitely 
many terms in the past. However, in practice, we will only have a finite amount of data. 
For a sufficiently large data set, this can be overlooked. Second. Eq. (5.82) requires 
knowledge of the magnitude of random shocks in the past, which is unrealistic. A 
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solution to this problem is to "estimate" the past random shocks through one-step­
ahead forecasts. For the ARIMA model we can calculate 

(5.88) 

recursively by setting the initial values of the random shocks to zero fort < p + d + I. 
For more accurate results, these initial values together with the y1 for t ::::; 0 can also 
be obtained using back-forecasting. For further details, see Box, Jenkins, and Reinsel 
[1994]. 

As an illustration consider forecasting the ARIMA( l, I, I) process 

(I - ¢B)(I -B) YT+r = (1 - 8B) ET+r (5.89) 

We will consider two of the most commonly used approaches: 

1. As discussed earlier, this approach involves the infinite MA representation of 
the model in Eq. (5.89), also known as the random shock form of the model: 

00 

YT+r = L lf;;ET+r-i 
i=l 

Hence the r -step-ahead forecast can be calculated from 

The weights lf;; can be calculated from 

(5.90) 

(5.91) 

(5.92) 

and the random shocks can be estimated using the one-step-ahead forecast error; 
for example, s 7 can be replaced by er (I)= YT- h (T- 1). 

2. Another approach that is often employed in practice is to use difference equa­
tions as given by 

YT+r =(I+¢) YT+r-1 - tPYT+r-2 + CT+r- ec:T+r-1 (5.93) 

For r = 1, the best forecast in the mean squared error sense is 

h+l (T) = E [YT+II Yr, YT-1, · · .) = (1 + ¢) YT- tPYT-1- 8er(l) (5.94) 

We can further show that for lead times r > 2, the forecast is 

YT+r (T) = (1 + ¢)Yr (r- l)- ¢h (r- 2) (5.95) 
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FIGURE 5.24 Forecasts for the weekly loan application data. 

Example5.3 

Consider the loan applications data given in Table 5.5. Now assume that the manager 
wants to make forecasts for the next 3 months ( 12 weeks). Hence at the I 04th week we 
need to make 1-step, 2-step, ... , 12-step-ahead predictions, which are obtained and 
plotted using Minitab in Figure 5.24 together with the 95% prediction interval. • 

Table 5.8 shows the output from JMP for fitting an AR(2) model to the weekly 
loan application data. In addition to the sample ACF and PACE JMP provides 

TABLE 5.8 JMP AR(2) Output for the Loan Application Data 

Time Series y(t) 

90.---------;-------------------------, 

80 

10 20 30 40 50 60 70 80 90 100 110 
Row 

Mean 
Std 
N 

zero Mean ADF 
Single Mean ADF 
Trend ADF 

67.067308 
7.663932 

104 
··0. 695158 
-6.087814 

.396174 
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TABLE 5.8 (Continuetf) 

Time Series Basic Diagnostics 
Lag AutoCorr Plot Autocorr Ljung-Box Q p-Value 

0 1.0000 
1 0.4617 22.8186 <.0001 
2 0.5314 53.3428 <.0001 
3 0.2915 - 62.6167 <.0001 
4 0.2682 M! 70.5487 <.0001 
5 0.2297 Ml 76.4252 <.0001 
6 0.1918 Mi 80.5647 <.0001 
7 0.2484 Mi 87.5762 <.0001 
8 0.1162 89.1255 <.0001 
9 0.1701 • 92.4847 <.0001 

10 0.0565 92.8587 <.0001 
11 0.0716 93.4667 <.0001 
12 0.1169 95.1040 <.0001 
13 0.1151 I I 96.7080 <.0001 
14 0.2411 Mi 103.829 <.0001 
15 0.1137 I I 105.430 <.0001 
16 0.2540 Mi 113.515 <.0001 
17 0.1279 I I 115.587 <.0001 
18 0.2392 .I 122.922 <.0001 
19 0.1138 124.603 <.0001 
20 0.1657 • 128.206 <.0001 
21 0.0745 128.944 <.0001 
22 0.1320 I 131.286 <.0001 
23 0.0708 131.968 <.0001 
24 0.0338 132.125 <.0001 
25 0.0057 132.130 <.0001 

Lag Partial Plot Partial 
Lag AutoCorr Plot Autocorr 

0 1.0000 Ljung-Box Q p-Value 
1 0.4617 
2 0.4045 
3 -0.0629 
4 -0.0220 
5 0.0976 
6 0.0252 
7 0.1155 I II 
8 -0.1017 II 
9 0.0145 

10 -0.0330 
11 -0.0250 
12 0.1349 II 
13 0.0488 
14 0.1489 .! 
15 -0.0842 
16 0.1036 II 
17 0.0105 
18 0.0830 
19 -0.0938 II 
20 0.0052 
21 -0.0927 II 
22 0.1149 II 
23 -0.0645 
24 -0.0473 
25 -0.0742 
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TABLE 5.8 JMP AR(2) Output for the Loan Application Data (Continued) 

Model Comparison 

Model DF Variance 
AR(2) 101 39.458251 

AIC 
680.92398 

SBC RSquare 
688.85715 0.343 

Model: AR(2) 
Model Summary 

DF 
Sum of Squared Errors 
Variance Estimate 
Standard Deviation 
Akaike's 'A' Information Criterion 
Schwarz's Bayesian Criterion 
RSquare 
RSquare Adj 
MAPE 
MAE 
-2LogLikelihood 

Stable 
Invertible 

Yes 
Yes 

Parameter Estimates 
Term Lag Estimate 
AR1 1 0.265885 
AR2 2 0.412978 
Intercept 0 66.854262 

Std Error 
0.089022 
0.090108 
1.833390 

t Ratio 
2.99 
4.58 

36.46 

101 
3985.28336 
39.4582511 

6.2815803 
680.923978 
688.857151 
0.34278547 
0.32977132 
7.37857799 
4.91939717 
674.923978 

Prob>ltl 
0.0035 
<.0001 
<.0001 

Forecast 
90.-------~----------------,----. 

85 

~ 80 
~ 75 

~ 70 
ij65 

£60 

• • 

55 
50,_----,-----~--~·r-----r----.~~--~ 

• "· • 
0 20 40 

Residuals 

15 • • 

60 

Row 

• 

80 100 120 

Q) 10 
::J 

• • . "' , .. . . 
• • • • • • • • o; 

> 5 ~- • • ., ·' . .• ... I • • • 
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"gj -5 
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• • • 
• • • • 

• 
-154--.,--.--.--.--.-~--.--.--.---.-~ 
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Row 

-2LogLH 

674.92398 

Constant Estimate 
21.469383 
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TABLES.S (Continued) 

Lag AutoCorr Plot Autocorr Ljung-Box a p-Value 

0 1.0000 
0.0320 0.1094 0.7408 

2 0.0287 0.1986 0.9055 

3 -0.0710 0.7489 0.8617 

4 -0.0614 1.1647 0.8839 

5 -0.0131 1.1839 0.9464 

6 0.0047 1.1864 0.9776 

7 0.14651 81 3.6263 0.8217 

8 -0.0309 3.7358 0.8801 

9 0.0765 4.4158 0.8820 

10 -0.09381 II I 5.4479 0.8593 

11 -0.0698 6.0251 0.8717 

12 0.0019 6.0255 0.9148 

13 0.0223 6.0859 0.9430 

14 0.16041 Mi 9.2379 0.8155 

15 -0.0543 9.6028 0.8440 

16 0.11811 II 11.3501 0.7874 

17 -0.0157 11.3812 0.8361 

18 0.12991 II 13.5454 0.7582 

19 -0.0059 13.5499 0.8093 

20 0.0501 13.8788 0.8366 

21 -0.0413 14.1056 0.8650 

22 0.0937 15.2870 0.8496 

23 0.0409 15.5146 0.8752 

24 -0.0035 15.5163 0.9047 

25 -0.0335 15.6731 0.9242 

Lag Partial Plot Partial 

0 1.0000 
1 0.0320 
2 0.0277 
3 -0.0729 
4 -0.0580 
5 -0.0053 
6 0.0038 
7 0.13991 II 
8 -0.0454 
9 0.0715 

10 -0.0803 

Lag AutoCorr Plot Autocorr Ljung-Box a p-Value 

11 -0.0586 
12 0.0201 
13 0.0211 
14 0.1306 81 
15 -0.0669 
16 0.1024 II 
17 0.0256 
18 0.1477 81 
19 -0.0027 
20 0.0569 
21 -0.0823 II I 
22 0.1467 I 81 
23 -0.0124 
24 0.0448 
25 -0.0869 II 
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the model fitting information including the estimates of the model parameters, the 
forecasts for 10 periods into the future and the associated prediction intervals, and 
the residual autocorrelation and partial autocorrelation functions. The AR(2) model 
is an excellent fit to the data. 

5.9 SEASONAL PROCESSES 

Time series data may sometimes exhibit strong periodic patterns. This is often referred 
to as the time series having a seasonal behavior. This mostly occurs when data is taken 
in specific intervals-monthly, weekly, and so on. One way to represent such data is 
through an additive model where the process is assumed to be composed of two parts, 

(5.96) 

where S1 is the deterministic component with periodicity s and N, is the stochastic 
component that may be modeled as an ARMA process. In that. y, can be seen as a 
process with predictable periodic behavior with some noise sprinkled on top of it. 
Since the S, is deterministic and has periodicity s, we have S, = S,+s or 

S, - S,_5 =(I - 8 5 )51 = 0 

Applying the (1 - B') operator to Eq. (5.96), we have 

(1 - 8 5 )y1 =(I - 8 5 )5, +(I - B')N, --...- --...-
::w, =0 

w, = (1 - 8 5 )N, 

(5.97) 

(5.98) 

The process w1 can be seen as seasonally stationary. Since an ARMA process can 
be used to model N,, in general we have 

<1>(8)w1 =(I - 8 5 )G(8)E1 (5.99) 

where E1 is white noise. 
We can also consider S, as a stochastic process. We will further assume that after 

seasonal differencing, (1 - 8'), (I - 8 5
) y, = w, becomes stationary. This, however, 

may not eliminate all seasonal features in the process. That is, the seasonally differ­
enced data may still show strong autocorrelation at lags s, 2s, .... So the seasonal 
ARMA model is 

( * 5 * 2s * P 5} ( * 5 * 2s * Qs} 1-¢18-¢28 -···-</Jp8 w,= 1-0]8 -028 -···-Oo8 E, 

(5.100) 

This representation, however, only takes into account the autocorrelation at seasonal 
lags s, 2s, .... Hence a more general seasonal ARIMA model of orders (p. d, q) x 
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(P, D, Q) with periods is 

(5.101) 

In practice, although it is case specific, it is not expected to have P, D, and Q greater 

than I. The results for regular ARIMA processes that we discussed in previous sections 

apply to the seasonal models given in Eq. (5.101). 
As in the nonseasonal ARIMA models, the forecasts for the seasonal ARIMA 

models can be obtained from the difference equations as illustrated for example in 

Eq. (5.95) for a nonseasonal ARIMA (1,1,1) process. Similarly the weights in the 

random shock form given in Eq. (5.90) can be estimated as in Eq. (5.92) to obtain 

the estimate for the variance of the forecast errors as well as the prediction intervals 

given in Eqs. (5.85) and (5.86) respectively. 

Example 5.4 

The ARIMA (0, 1, I) x (0, 1, 1) model with s = 12 is 

For this process, the autocovariances are calculated as 

Example 5.5 

y(O) = Var(w1 ) = a 2 (1 + e~ + e~2 + ( -e 1 e~) 2 ) 

= a 2 (i + e~)(l + et2
) 

y(l) = Cov(wr. Wr-1) = a 2(-e! + e~(-e!e~)) 
= -e 1a

2 (1 + et) 
y(2) = y(3) = .. · = y(IO) = 0 

0 * y(ll) = a-elel 

y(l2) = -a 2e 1*(1 +en 
2 * y(l3) =a elei 

y(j)=O, }>13 • 

Consider the U.S. clothing sales data in Table 4.9. The data obviously exhibit some 

seasonality and upward linear trend. The sample ACF and PACF plots given in 

Figure 5.25 indicate a monthly seasonality, s = 12, as ACF values at lags 12, 24, 36 

are significant and slowly decreasing, and there is a significant PACF value at lag 12 
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Autocorrelation Function lor U.S. Clothing Sales 
(with 5% significance limits for the autocorrelations) 
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FIGURE 5.25 Sample ACF and PACF plots of the U.S. clothing sales data. 

that is close to 1. Moreover, the slowly decreasing ACF in general also indicates a 
nonstationarity that can be remedied by taking the first difference. Hence we would 
now consider W 1 = (l- B)(1 - B 12 )y1 • 

Figure 5.26 shows that first difference together with seasonal differencing--that is, 
Wr = (I - B)( 1 - B 12 )y1--helps in terms of stationarity and eliminating the season­
ality, which is also confirmed by sample ACF and PACF plots given in Figure 5.27. 
Moreover, the sample ACF with a significant value at lag I and the sample PACF with 
exponentially decaying values at the first 8 lags suggest that a nonseasonal MA( I) 
model should be used. 

The interpretation of the remaining seasonality is a bit more difficult. For that we 
should focus on the sample ACF and PACF values at lags 12. 24, 36, and so on. 
The sample ACF at lag 12 seems to be significant and the sample PACF at lags 12, 

Jan-92 Mar-93 Jun-94 Sep-95 Dec-96 Mar-98 Jun-99 Sep-00 Dec-01 Mar-03 

Date 

FIGURE 5.26 Time series plot of w, = (I - B)( I - B 12 )y, for the U.S. clothing sales data. 
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Autocorrelation Function for w(t) Partial Autocorrelation Function for w(t) 
(with 5% significance limits for the autocorrelations) (with 5% significance limits for the Partial autocorrelations) 
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FIGURE 5.27 Sample ACF and PACF plots of w1 = (I - B)( I - B 12 )y1 . 

24, 36 (albeit not significant) seems to be alternating in sign. That suggests that a 
seasonal MA(l) model can be used as well. Hence an ARIMA (0, 1, 1) x (0, 1, 1) 12 

model is used to model the data, y1 • The output from Minitab is given in Table 5.9. 
Both MA( 1) and seasonal MA( 1) coefficient estimates are significant. As we can 
see from the sample ACF and PACF plots in Figure 5.28, while there are still some 
small significant values, as indicated by the modified Box-Pierce statistic, most of the 
autocorrelation is now modeled out. 

The residual plots in Figure 5.29 provided by Minitab seem to be acceptable as 
well. 

Finally, the time series plot of the actual and fitted values in Figure 5.30 suggests 
that the ARIMA(O, 1, I) x (0, I, 1) 12 model provides a reasonable fit to this highly 
seasonal and nonstationary time series data. • 

TABLE 5.9 Minitab Output for the ARIMA (0, 1, 1) x (0, 1, 1)12 

Model for the U.S. Clothing Sales Data 

Final Estimates of Parameters 

Type Coef SE Coef T P 

MA 0.7626 0.0542 14.06 0.000 

SMA 12 0.5080 0.0771 6.59 0.000 

Differencing: 1 regular, 1 seasonal of order 12 
Number of observations: Original series 155, after 

differencing 142 

Residuals: ss 
MS 

Modified Box-Pierce 

Lag 12 
Chi-Square 15.8 

DF 10 
P-Value 0.107 

10033560 (backforecasts excluded) 

71668 DF = 140 

(Ljung-Box) Chi-Square statistic 

24 36 48 
37.7 68.9 92.6 

22 34 46 

0.020 0.000 0.000 
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FIGURE 5.28 Sample ACF and PACF plots of residuals from the ARIMA(O. I. I) x (0. I. I lie model. 

5.10 FINAL COMMENTS 

ARIMA models (a.k.a. Box-Jenkins models) represent a very powerful and flexible 
class of models for time series analysis and forecasting. Over the years, they have been 
very successfully applied to many problems in research and practice. However, there 
might be certain situations where they may fall short on providing the "right" answers. 
For example, in ARIMA models, forecasting future observations primarily relies on 
the past data and implicitly assumes that the conditions at which the data is collected 
will remain the same in the future as well. In many situations this assumption may 
(and most likely will) not be appropriate. For those cases, the transfer function-noise 
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FIGURE 5.29 Residual plots from the ARIMA(O. I. I) x ({). I. 1) 12 modd for the U.S. clothing 

sales data. 
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FIGURE 5.30 Time series plot of the actual data and fitted values from the ARIMA(O, I, I) x (0. I, I )12 
model for the U.S. clothing sales data. 

models, where a set of input variables that may have an effect on the time series are 
added to the model, provide suitable options. We shall discuss these models in the 
next chapter. For an excellent discussion of this matter and of time series analysis and 
forecasting in general, see Jenkins [1979]. 

EXERCISES 

5.1 Consider the time series data shown in Chapter 4, Table E4.2. 

a. Fit an appropriate ARIMA model to the first 40 observations of this time 
series. 

b. Make one-step-ahead forecasts of the last l 0 observations. Determine the 
forecast errors. 

c. In Exercise 4.4 you used simple exponential smoothing with A = 0.2 to 
smooth the first 40 time periods of this data and make forecasts of the 
last I 0 observations. Compare the ARIMA forecasts with the exponential 
smoothing forecasts. How well do both of these techniques work? 

5.2 Consider the time series data shown in Table E5.1. 

a. Make a time series plot of the data. 

b. Calculate and plot the sample autocorrelation and partial autocorrelation 
functions. Is there significant autocorrelation in this time series? 
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TABLE E5.1 Data for Exercise 5.2 

Period v .I Period )' .I Period r .I Period r .I Period r .I 

29 II 29 21 31 31 28 41 36 
2 20 12 28 22 30 32 30 42 35 
3 25 13 28 23 37 33 29 43 33 
4 29 14 26 24 30 34 34 44 29 
5 31 15 27 25 33 35 30 45 25 
6 33 16 26 26 31 36 20 46 27 
7 34 17 30 27 27 37 17 47 30 
8 27 18 28 28 33 38 23 48 29 
9 26 19 26 29 37 39 24 49 28 
10 30 20 30 30 29 40 34 50 32 

c. Identify and fit an appropriate ARIMA model to these data. Check for model 
adequacy. 

d. Make one-step-ahead forecasts of the last 10 observations. Determine the 
forecast errors. 

5.3 Consider the time series data shown in Table E5.2. 

a. Make a time series plot of the data. 

b. Calculate and plot the sample autocorrelation and partial autocorrelation 
functions. Is there significant autocorrelation in this time series? 

c. Identify and fit an appropriate ARIMA model to these data. Check for model 
adequacy. 

d. Make one-step-ahead forecasts of the last 10 observations. Determine the 
forecast errors. 

TABLEE5.2 Data for Exercise 5.3 

Period Yr Period Y1 Period )' .I Period )' .I Period )' 
.I 

1 500 II 508 21 475 31 639 41 637 
2 496 12 510 22 485 32 679 42 606 
3 450 13 512 23 495 33 674 43 610 
4 448 14 503 24 500 34 677 44 620 
5 456 15 505 25 541 35 700 45 613 
6 458 16 494 26 555 36 704 46 593 
7 472 17 491 27 565 37 727 47 578 
8 495 18 487 28 601 38 736 48 581 
9 491 19 491 29 610 39 693 49 598 
10 488 20 486 30 605 40 65 50 613 
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5.4 Consider the time series model 

Yt = 200 + 0.7Yt-l + Ct 

a. Is this a stationary time series process? 

b. What is the mean of the time series? 

c. If the current observation is y 100 = 750, would you expect the next obser­
vation to be above or below the mean? 

5.5 Consider the time series model 

Yt = 150- 0.5yt-l + Cf 

a. Is this a stationary time series process? 

b. What is the mean of the time series? 

c. If the current observation is y 100 = 85, would you expect the next observa­
tion to be above or below the mean? 

5.6 Consider the time series model 

Yt =50+ 0.8Yr-l- 0.15 + c1 

a. Is this a stationary time series process? 

b. What is the mean of the time series? 

c. If the current observation is y100 = 160, would you expect the next obser­
vation to be above or below the mean? 

5. 7 Consider the time series model 

y1 = 20 + c1 + 0.2E:r-l 

a. Is this a stationary time series process? 

b. Is this an invertible time series? 

c. What is the mean of the time series? 

d. If the current observation is y 100 = 23, would you expect the next observa­
tion to be above or below the mean? Explain your answer. 

5.8 Consider the time series model 

Yr =50+ 0.8Yr-l + E:1 - 0.2E:r-l 

a. Is this a stationary time series process? 

b. What is the mean of the time series? 

c. If the current observation is y100 = 270, would you expect the next obser­
vation to be above or below the mean? 
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5.9 The data in Chapter 4, Table E4.4, exhibits a linear trend. Difference the data 
to remove the trend. 

a. Fit an ARIMA model to the first differences. 

b. Explain how this model would be used for forecasting. 

5.10 Table B. I in Appendix B contains data on the market yield on U.S. Treasury 
Securities at I 0-year constant maturity. 

a. Fit an ARIMA model to this time series, excluding the last 20 observations. 
Investigate model adequacy. Explain how this model would be used for 
forecasting. 

b. Forecast the last 20 observations. 

c. In Exercise 4.1 0, you were asked to use simple exponential smoothing with 
A = 0.2 to smooth the data, and to forecast the last 20 observations. Com­
pare the ARIMA and exponential smoothing forecasts. Which forecasting 
method do you prefer? 

5.11 Table 8.2 contains data on pharmaceutical product sales. 

a. Fit an ARIMA model to this time series, excluding the last I 0 observations. 
Investigate model adequacy. Explain how this model would be used for 
forecasting. 

b. Forecast the last I 0 observations. 

c. In Exercise 4.12, you were asked to use simple exponential smoothing 
with A = 0.1 to smooth the data, and to forecast the last I 0 observations. 
Compare the ARIMA and exponential smoothing forecasts. Which fore­
casting method do you prefer? 

d. How would prediction intervals be obtained for the ARIMA forecasts? 

5.12 Table B.3 contains data on chemical process viscosity. 

a. Fit an ARIMA model to this time series, excluding the last 20 observations. 
Investigate model adequacy. Explain how this model would be used for 
forecasting. 

b. Forecast the last 20 observations. 

c. Show how to obtain prediction intervals for the forecasts in part b above. 

5.13 Table B.4 contains data on the annual U.S. production of blue and gorgonzola 
cheeses. 

a. Fit an ARIMA model to this time series, excluding the last I 0 observations. 
Investigate model adequacy. Explain how this model would be used for 
forecasting. 

b. Forecast the last l 0 observations. 

c. In Exercise 4.16, you were asked to use exponential smoothing methods 
to smooth the data, and to forecast the last I 0 observations. Compare the 
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ARIMA and exponential smoothing forecasts. Which forecasting method 
do you prefer? 

d. How would prediction intervals be obtained for the ARIMA forecasts? 

5.14 Reconsider the blue and gorgonzola cheese data in Table B.4 and Exercise 
5. 13. In Exercise 4.17 you were asked to take the first difference of this data 
and develop a forecasting procedure based on using exponential smoothing 
on the first differences. Compare this procedure with the ARIMA model of 
Exercise 5.13. 

5.15 Table B.5 shows U.S. beverage manufacturer product shipments. Develop an 
appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.16 Table B.6 contains data on the global mean surface air temperature anomaly. 
Develop an appropriate ARIMA model and a procedure for forecasting for 
these data. Explain how prediction intervals would be computed. 

5.17 Reconsider the global mean surface air temperature anomaly data shown in 
Table B.6 and used in Exercise 5.16. In Exercise 4.20 you were asked to 
use simple exponential smoothing with the optimum value of A to smooth 
the data. Compare the results with those obtained with the ARIMA model in 
Exercise 5.16. 

5.18 Table B.7 contains daily closing stock prices for the Whole Foods Market. 
Develop an appropriate ARIMA model and a procedure for these data. Explain 
how prediction intervals would be computed. 

5.19 Reconsider the Whole Foods Market data shown in Table B.7 and used in 
Exercise 5.18. In Exercise 4.22 you used simple exponential smoothing with 
the optimum value of A to smooth the data. Compare the results with those 
obtained from the ARIMA model in Exercise 5.18. 

5.20 Unemployment rate data is given in Table B.S. Develop an appropriate ARIMA 
model and a procedure for forecasting for these data. Explain how prediction 
intervals would be computed. 

5.21 Reconsider the unemployment rate data shown in Table B.S and used in 
Exercise 5.21. In Exercise 4.24 you used simple exponential smoothing with 
the optimum value of A to smooth the data. Compare the results with those 
obtained from the ARIMA model in Exercise 5.20. 

5.22 Table B.9 contains yearly data on the international sunspot numbers. Develop 
an appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 
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5.23 Reconsider the sunspot data shown in Table B.9 and used in Exercise 5.22. 

a. In Exercise 4.26 you were asked to use simple exponential smoothing with 
the optimum value of ).. to smooth the data, and to use an exponential 
smoothing procedure for trends. How do these procedures compare to the 
ARIMA model from Exercise 5.22? Compare the results with those obtained 
in Exercise 4.26. 

b. Do you think that using either exponential smoothing procedure would result 
in better forecasts than those from the ARIMA model') 

5.24 Table B.IO contains seven years of monthly data on the number of airline miles 
flown in the United Kingdom. This is seasonal data. 

a. Using the first six years of data, develop an appropriate ARIMA model and 
a procedure for these data. 

b. Explain how prediction intervals would be computed. 

c. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

5.25 Reconsider the airline mileage data in Table B.IO and used in Exercise 5.24. 

a. In Exercise 4.27 you used Winters' method to develop a forecasting model 
using the first six years of data and you made forecasts for the last 12 months. 
Compare those forecasts with the ones you made using the ARIMA model 
from Exercise 5.24. 

b. Which forecasting method would you prefer and why? 

5.26 Table B.ll contains eight years of monthly champagne sales data. This is 
seasonal data. 

a. Using the first seven years of data, develop an appropriate ARIMA model 
and a procedure for these data. 

b. Explain how prediction intervals would be computed. 

c. Make one-step-ahead forecasts of the last 12 months. Determine the fore­
cast errors. How well did your procedure work in forecasting the new 
data? 

5.27 Reconsider the monthly champagne sales data in Table B.ll and used in 
Exercise 5.26. 

a. In Exercise 4.29 you used Winters' method to develop a forecasting model 
using the first seven years of data and you made forecasts for the last 
12 months. Compare those forecasts with the ones you made using the 
ARIMA model from Exercise 5.26. 

b. Which forecasting method would you prefer and why? 

5.28 Montgomery et al. [ 1990] give four years of data on monthly demand for a soft 
drink. These data are given in Chapter 4, Table E4.5. 
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a. Using the first three years of data, develop an appropriate ARIMA model 
and a procedure for these data. 

b. Explain how prediction intervals would be computed. 

c. Make one-step-ahead forecasts of the last 12 months. Determine the forecast 
errors. How well did your procedure work in forecasting the new data? 

5.29 Reconsider the soft drink demand data in Table E4.5 and used in Exercise 5.28. 

a. In Exercise 4.31 you used Winters' method to develop a forecasting model 
using the first seven years of data and you made forecasts for the last 
12 months. Compare those forecasts with the ones you made using the 
ARIMA model from the previous exercise. 

b. Which forecasting method would you prefer and why? 

5.30 Table B.l2 presents data on the hourly yield from a chemical process and the 
operating temperature. Consider only the yield data in this exercise. Develop 
an appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.31 Table B .13 presents data on ice cream and frozen yogurt sales. Develop an 
appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.32 Table B .14 presents the C02 readings from Mauna Loa. Develop an appropriate 
ARIMA model and a procedure for forecasting for these data. Explain how 
prediction intervals would be computed. 

5.33 Table B .15 presents data on the occurrence of violent crimes. Develop an 
appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.34 Table B.l6 presents data on the U.S. gross domestic product (GOP). Develop 
an appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.35 Total annual energy consumption is shown in Table B.l7. Develop an appro­
priate ARIMA model and a procedure for forecasting for these data. Explain 
how prediction intervals would be computed. 

5.36 Table B .18 contains data on coal production. Develop an appropriate A RIMA 
model and a procedure for forecasting for these data. Explain how prediction 
intervals would be computed. 

5.37 Table B.l9 contains data on the number of children 0-4 years old who drowned 
in Arizona. Develop an appropriate ARIMA model and a procedure for fore­
casting for these data. Explain how prediction intervals would be computed. 
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5.38 Data on tax refunds and population are shown in Table 8.20. Develop an 
appropriate ARIMA model and a procedure for forecasting for these data. 
Explain how prediction intervals would be computed. 

5.39 An ARIMA model has been fit to a time series, resulting in 

a. Suppose that we are at time period T = I 00 and v 11x1 = 31. Determine 
forecasts for periods 101, 102, 103, ... from this model at origin 100. 

b. What is the shape of the forecast function from this model? 

c. Suppose that the observation for time period 10 I turns out to be \'nn = 33. 
Revise your forecasts for periods I 02, I 03 .... using period I 0 I as the new 
origin of time. 

d. If your estimate 6 2 = 2, find a 95% prediction interval on the forecast of 
period I 01 made at the end of period 100. 

5.40 The following ARIMA model has been fit to a time series: 

_Vt = 25 + 0.8yt-l - 0.3_\'t-2 + Et 

a. Suppose that we are at the end of time period T = I 00 and we know 
that y 100 = 40 and _\'99 = 38. Determine forecasts for periods 10 I. I 02. 
103, ... from this model at origin 100. 

b. What is the shape of the forecast function from this model? 

c. Suppose that the observation for time period 101 turns out to be v101 = 35. 
Revise your forecasts for periods 102, 103, ... using period 101 as the new 
origin of time. 

d. If your estimate 6 2 = 1, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

5.41 The following ARIMA model has been fit to a time series: 

S't = 25 + 0.8_\'t-1 - 0.2Et-l + Et 

a. Suppose that we are at the end of time period T = I 00 and we know that the 
forecast for period 100 was 130 and the actual observed value was -"10o = 
140. Determine forecasts for periods 101, I 02, I 03, ... from this model at 
origin 100. 

b. What is the shape of the forecast function from this model? 

c. Suppose that the observation for time period I 01 turns out to be .\'HJI = 132. 
Revise your forecasts for periods 102, I 03, ... using period I 0 I as the new 
origin of time. 
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d. If your estimate a 2 = 1.5, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

5.42 The following ARIMA model has been fit to a time series: 

Yt = 20 + Et + 0.45Et-l - 0.3Et-2 

a. Suppose that we are at the end of time period T = 100 and we know that the 
observed forecast error for period 100 was 0.5 and for period 99 we know 
that the observed forecast error was -0.8. Determine forecasts for periods 
1 01, 102, I 03, ... from this model at origin 1 00. 

b. What is the shape of the forecast function that evolves from this model? 

c. Suppose that the observations for the next four time periods turn out to be 
17.5, 21.25, 18.75, and 16.75. Revise your forecasts for periods 102, 103, 
... using a rolling horizon approach. 

d. If your estimate a = 0.5, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

5.43 The following ARIMA model has been fit to a time series: 

Yt =50+ Et + 0.5Et-l 

a. Suppose that we are at the end of time period T = 100 and we know that 
the observed forecast error for period 100 was 2. Determine forecasts for 
periods 101, 102, 103, ... from this model at origin 100. 

b. What is the shape of the forecast function from this model? 

c. Suppose that the observations for the next four time periods turn out to be 
53, 55, 46, and 50. Revise your forecasts for periods 102, 103, ... using a 
rolling horizon approach. 

d. If your estimate a = 1, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

5.44 For each of the ARIMA models shown below, give the forecasting equation 
that evolves for lead times r = I, 2, ... , L. In each case, explain the shape of 
the resulting forecast function over the forecast lead time. 

a. AR(l) 

b. AR(2) 

c. MA(l) 

d. MA(2) 

e. ARMA(l, I) 

f. IMA(l, l) 

g. ARIMA( I, I, 0) 
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5.45 Use a random number generator and generate I 00 observations from the AR( I) 
model Yr = 25 + 0.8y1 _ 1 + c1 • Assume that the errors are normally and inde­
pendently distributed with mean zero and variance a 2 = I. 

a. Verify that your time series is AR( I). 

b. Generate 100 observations for a N (0, I) process and add these random 
numbers to the 100 AR( 1) observations in part a to create a new time series 
that is the sum of AR( 1) and "white noise." 

c. Find the sample autocorrelation and partial autocorrelation functions for the 
new time series created in part b. Can you identify the new time series? 

d. Does this give you any insight about how the new time series might arise in 
practical settings? 

5.46 Assume that you have fit the following model: 

Yr = Yr-1 + O.?cr-1 + cr 

a. Suppose that we are at the end of time period T = 100. What is the equation 
for forecasting the time series in period I 0 I? 

b. What does the forecast equation look like for future periods I 02, I 03 .... ? 

c. Suppose that we know that the observed value of y 100 was 250 and forecast 
error in period 100 was 12. Determine forecasts for periods 10 I, 102, 103, 
... from this model at origin I 00. 

d. If your estimate a = 1, find a 95% prediction interval on the forecast of 
period 101 made at the end of period 100. 

e. Show the behavior of this prediction interval for future lead times beyond 
period 101. Are you surprised at how wide the interval is? Does this tell 
you something about the reliability of forecasts from this model at long lead 
times? 

5.47 Consider the AR(l) model y, = 25 + 0.75y,_ 1 + c,. Assume that the variance 
of the white noise process is a 2 = 1. 

a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( I) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoret­
ical ACF and PACF. How similar to the theoretical values are the sample 
values? 

c. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 

5.48 Considerthe AR(l) model y, = 25 + 0.75y,_ 1 +£,.Assume that the variance 
of the white noise process is a 2 = 10. 
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a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( 1) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoret­
ical ACF and PACF. How similar to the theoretical values are the sample 
values? 

c. Compare the results from part b with the results from part b of Exercise 5.47. 
How much has changing the variance of the white noise process impacted 
the results? 

d. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 

e. Compare the results from part d with the results from part c of Exercise 5.47. 
How much has changing the variance of the white noise process impacted 
the results? 

5.49 Consider the AR(2) model y1 = 25 + 0.6y1 _ 1 + 0.25Yr-2 + E1 • Assume that 
the variance of the white noise process is rr 2 = I. 

a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( 1) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoret­
ical ACF and PACF. How similar to the theoretical values are the sample 
values? 

c. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 

5.50 Consider the MA( I) model Yr = 40 + 0.4E1_ 1 + E1 • Assume that the variance 
of the white noise process is rr 2 = 2. 

a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( I) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoret­
ical ACF and PACF. How similar to the theoretical values are the sample 
values? 

c. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 

5.51 Consider the ARMA(l, 1) model y1 =50- 0.7y1_, + 0.5Er-l + E1 • Assume 
that the variance of the white noise process is rr 2 = 2. 
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a. Sketch the theoretical ACF and PACF for this model. 

b. Generate 50 realizations of this AR( I) process and compute the sample ACF 
and PACF. Compare the sample ACF and the sample PACF to the theoretical 
ACF and PACF. How similar to the theoretical values are the sample values? 

c. Repeat part b using 200 realizations. How has increasing the sample size 
impacted the agreement between the sample and theoretical ACF and PACF? 
Does this give you any insight about the sample sizes required for model 
building, or the reliability of models built to short time series? 



CHAPTER 6 

Transfer Functions and 
Intervention Models 

Indeed, ifyou want a simple model for predictinx the unemployment 
rate in the United States over the next few years, here it is: It will be 
what Greenspan wants it to be, plus or minus a random error refiectinx 
the fact that he is not quite God. 

PAUL KRUGMAN, American economist 

6.1 INTRODUCTION 

The ARIMA models discussed in the previous chapter represent a general class of 
models that can be used very effectively in time series modeling and forecasting 
problems. An implicit assumption in these models is that the conditions under which 
the data for the time series process is collected remain the same. If, however, these 
conditions change over time, ARIMA models can be improved by introducing certain 
inputs reflecting these changes in the process conditions. This will lead to what is 
known as transfer function-noise models. These models can be seen as regression 
models in Chapter 3 with serially dependent response, inputs, and the error term. The 
identification and the estimation ofthese models can be challenging. Furthermore, not 
all standard statistical software packages possess the capability to fit such models. So 
far in this book, we have mainly used the Minitab software package to illustrate time 
series model fitting. However, Mini tab (version I 5) lacks the capability of fitting trans­
fer function-noise models. Therefore for Chapters 6 and 7. we will use SAS and JMP 
instead. 

Introduction to Time Series Analysis and Forecasting 
By Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci 
Copyright© 2008 John Wiley & Sons, lnc. 
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6.2 TRANSFER FUNCTION MODELS 

In Section 5.2, we discussed the linear filter and defined it as 

X 

Yr = L(xr) = L V;Xr-i 
i=-x 

(6.1) 

= v(B)x1 

where v(B) = L:-oo V; Bi is called the transfer function. Following the definition 
of a linear filter Eq. (6.1) is: 

1. Time-invariant as the coefficients { v;} do not depend on time. 

2. Physically realizable if v; = 0 for i < 0; that is, the output Yr is a linear 
function of the current and past values of the input: 

Yr = VoXr + V!Xr-1 + · · · 
00 

= LV;Xr-i 
i=O 

3. Stable if L:-oo lv; I < oo. 

There are two interesting special cases for the input x1 : 

Impulse Response Function. If x1 is a unit impulse at time t = 0, that is, 

then the output Yr is 

Xr = II' 
0, 

00 

t = 0 

t=foO 

Yr = L V;Xr-i = Vr 
i=O 

(6.2) 

(6.3) 

(6.4) 

Therefore the coefficients v; in Eq. (6.2) are also called the impulse response 
function. 

Step Response Function. If x1 is a unit step, that is, 

Xr = I 0, 

I, 

t < 0 

t 2: 0 
(6.5) 
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then the output Yt is 

00 

Yt = LV;Xt-i 
i=O 

t 

=Lv; 
i=O 

which is also called the step response function. 

301 

(6.6) 

A generalization of the step response function is obtained when Eq. (6.5) is mod­
ified so that x 1 is kept at a certain target value X after t ::: 0; that is, 

Hence we have 

Xt = ( O, 
X, 

00 

t < 0 

tC::O 

Yt = LV;Xt-i 
i=O 

=gX 

where g is called the steady-state gain. 

(6.7) 

(6.8) 

A more realistic representation of the response is obtained by adding a disturbance 
term to Eq. (6.2) to account for unanticipated and/or ignored factors that may have 
an effect on the response as well. Hence the "additive" model representation of the 
dynamic systems is given as 

(6.9) 

where N 1 represents the unobservable noise process. In Eq. (6.9), x 1 and N1 are 
assumed to be independent. The model representation in Eq. (6.9) is also called the 
transfer function-noise model. 

Since the noise process is unobservable, the predictions ofthe response can be made 
by estimating the impulse response function { v1 }. Similar to our discussion about the 
estimation of the coefficients in Wold's decomposition theorem in Chapter 5, attempt­
ing to estimate the infinitely many coefficients in { v1 } is a futile exercise. Therefore 
also parallel to the arguments we made in Chapter 5, we will make assumptions about 
these infinitely many coefficients to be able to represent them with only a handful of 
parameters. Following the derivations we had for the ARMA models, we will assume 
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that the coefficients in { v,} have a structure and can be represented as 

~ . w(B) 
v(B) = ~ viB' = --

i=O o(B) 

wo - w 1 B - · · · - w., B' 

I- o1B- · · ·- orW 

(6.10) 

The interpretation of Eq. (6. 10) is quite similar to the one we had for ARMA 
models; the denominator summarizes the infinitely many coefficients with a certain 
structure determined by {oi} as in the AR part of the ARMA model and the numerator 
represents the adjustment we may like to make to the strictly structured infinitely 
many coefficients as in the MA part of the ARMA model. 

So the transfer function-noise model in Eq. (6.9) can be rewritten as 

w(B) 
Yr = --x, +N, 
. o(B) 

I "+X . where w(B)jo(B) = o(B)- w(B) = Li=D vi B'. For some processes, there may also 
be a delay before a change in the input x, shows its effect on the response y,. If we 
assume that there is b time units of delay between the response and the input, a more 
general representation for the transfer function-noise models can be obtained as 

w(B) 
Yr = o(B) Xr-h + N, (6.11) 

Since the denominator o(B) in Eq. (6.11) determines the structure of the infinitely 
many coefficients, the stability of v(B) depends on the coefficients in o( B). In fact 
v(B) = w(B)/ o(B) is said to be stable if all the roots of mr - o1 mr-l - · · · - Or are 
less than I in absolute value. 

Once the finite number of parameters in w(B) and o(B) are estimated, v(B) can 
be computed recursively from 

o(B)v(B) = w(B) 

or 

with Vb = w0 and Vj = 0 for j <b. 

j =b+ l, ... ,b+s 

)>b+s 
(6.12) 
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Example 6.1 

For illustration, we will consider cases forb = 2, r _::: 2, and s _::: 2. 

Case I. r = 0 and s _::: 2. 

We have 

From Eq. (6.12), we have 

Vo = Vt = 0 

V4 = -w2 

Vj = 0, j > 4 

Hence v1 will only be nonzero fort = 2, 3, and 4. 

Case 2. r = 1 and s ::;: 2. 

We have 

As in the AR(l) model, the stability of the transfer function is achieved for 18 1 I < I. 
Once again from Eq. (6.12), we have 

vo = v, = 0 

V2 = Wo 

V3 = OtWO- WI 

v4 = 8fwo- t5,w,- w2 

Vj = OtVj-1, j > 4 

Since 18 11 < I, the impulse response function will go to zero asymptotically. 

Case 3. r = 2 and s ::;: 2. 

We have 

(wo- w,B- w2 B2
) 

Yt = 1- OtB- 82B 2 Xt-l 
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The stability of the transfer function depends on the roots of the associated polynomial 
m 2 

- 81 m 1 
- 82• For stability the roots obtained by 

must satisfy lm 11, 1m 2 I < I. This also means that 

or 

82 - 81 < 

82 + 81 < 

-I < 8z < I 

18Ii < 1 - 82 

-1 < 82 < 1 

This set of two equations implies that the stability is achieved with the triangular 
region given in Figure 6.1. Within that region we might have two real roots or two 
complex conjugates. For the latter we need o? + 482 < 0, which occurs in the area 
under the curve within the triangle in Figure 6.1. Hence for the values of o 1 and 
82within that curve, the impulse response function would exhibit a damped sinusoid 
behavior. Everywhere else in the triangle, however, it will have an exponential decay 
pattern. 

Note that when 82 = 0 (i.e., r = 1 ), stability is achieved when 1811 < las expected. 
Table 6.1 summarizes the impulse response functions for the cases we have just 

discussed with specific values for the parameters. • 

0.5 

--o.5 
Complex Roots 

-1.0 +---.....----~---~--.311 
0.0 0.5 1.0 1.5 2.0 

lo1l 
FIGURE 6.1 The stable region for the impulse response function for r = 2. 
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TABLE 6.1 Impulse Response Function with b = 2, r ~ 2, and s ~ 2 

b r s 

200 

201 

202 

210 

2 1 I 

Model 

Yt = WOXt - 2 

y, = (wo- Wt B)x,_2 

y, = (wo - Wt B - w2 B2)x,_2 

wo 
_ Xt - 2 

y, = I- 8t B 

Wo- w 18 
y, = I - .s. B Xt-2 

Impulse Response Function 

Wo = 0.5 IL_ 
I I o 0 0 '0 

wo=0.5 ~­Wt = - 0.4 

. I 

.... . .. 

:::~bW__ 
. . . . . . 

Wo = 0.5 

iL 
.s. = 0.6 

w0 =0.5 L 8t=0.6 
Wt = -0.4 • 

• I , . . . . . ... 

w,~-o.s~ 

wo =0.5 h---
Wt =0.4 . 

I 
- I 

w0 =0.5 -~ 
w1 = -0.4 = 
w2 = -0.6: . 

Wo~-0.5~ ,,~ 0.6 

j :I 
w0 = 0.5 =.~ 8t = 0.6 
Wt = - 0.4 . 

' ' . ' . 
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TABLE 6.1 Impulse Response Function with b = 2, r ~ 2, and s ~ 2 (Continued) 

b rs Model 

2 12 Wo- Wt8- w28 2 

y, = 1 -8,8 Xr-2 

220 wo 
y, = I-8

1
8-828 2 x,_2 

22 1 
w0 - w,8 

y, = 1-8, 8 -~81Xr-2 

222 
Wo- Wt8- w28 1 

y, = I - 8,8 -~82 Xr-2 

Impulse Response Function 

wo=0.5 ~8,=0.6 
Wt = -0.4 
W2 = -0.6 

• 0 • 0 . .. 

wo =0.5 

•

8,=0.6 
8, = 0.3 

I 
....... 

wo = 0.
5 3 I J 11 I 1 1 • 

81 
= 0.

6 
w0 - -0.4 Llliillill So - 0.3 

.... ... 

w0 = 0.5 Lili1llli 81 = 0.6 
Wt = - 0.4 . I 8, = 0.3 
w2 = -0.6 

I I 0 I 0 00 

wo=0.5 ~81 =0.6 
Wt = -0.4 
W2 = -0.6 

wo = 0.5 ~ II I I 

81 
= o.

6 

~ s,--0.1 

wo = 0.5 ~ II I . 81 = 0.6 
Wo- -0.4 ~ S,- -0.1 

wo = 0.5 tmr- 81 = 0.6 
Wt = -0.4 82 = -0.7 
W2 = -0.6 . 
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6.3 TRANSFER FUNCTION-NOISE MODELS 

As mentioned in the previous section, in the transfer function-noise model in Eq. 

(6.11) x1 and N1 are assumed to be independent. Moreover, we will assume that the 
noise N 1 can be represented by an ARIMA(p, d, q) model, 

rj>(B) (I - B)d N, = &(B)t:t -----­=<p(B) 

(6.13) 

where .s 1 represents the independent random shocks with E(t:1) = 0. Hence the trans­

fer function-noise model can be written as 

Yt = v(B)xt + 1/J(B)t:1 

w(B) 8(B) 
= 8(8) Xt + cp(B) E, 

(6.14) 

After rearranging Eq. (6.14), we have 

8(B)cp(B) y1 = cp(B)w(B) Xt + 8(B)e(B) Et 
~ '-,.-' '-,.-' 

=o*(BJ =w*(B) =II*<B) 
(6.15) 

or 

* * * r s q 

'"""* * '"""* '"""* Yr - i....J 8; Yt-i = W0 Xr - i....J W; Xt-i + Et - i....J {}i Et-i (6.16) 
i=l i=l i=l 

Ignoring the terms involving x,, Eq. ( 6.16) is the ARMA representation of the response 

y1 • Due to the addition of x1 , the model in Eq. (6.16) is also called an ARMAX model. 

Hence the transfer function-noise model as given in Eq. (6.16) can be interpreted as 
an ARMA model for the response with the additional exogenous factor x1 • 

6.4 CROSS CORRELATION FUNCTION 

For the bivariate time series (x,, y, ), we define the cross-covariance function as 

Yxy(t, s) = Cov(x,, Ys) 

Assuming that (x,, y,) is (weakly) stationary, we have 

E (x,) = flx, 

E (yt) = flv, 

Cov(x,,Xr+J) = YxU), 

Cov (y,, Yt+J) = h (j), 

constant for all t 
constant for all t 
depends only on j 
depends only on j 

(6.17) 
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and 

Cov(xr. Yr+j) = YxvU). depends only on j for j = 0. ±I, ±2 .... 

Hence the cross-correlation function (CCF) is defined as 

( .) ( ) YnU) Pxr } = corr Xr. Yr+j = ---r.=;:·~:::::;:;~ 
. Jyt(O)yr(O) 

for j = 0. ±l. ±2 .... 

It should be noted that P.nU) =/= Pxy(- j) but Pn(j) = Prx(- j ). 
We then define the correlation matrix at lag j as 

p(j) = [ PxU: Pxv(!)] 
Prx(J) PAJ) 

=corr[(~:).(xr+J Yr+j)J 

(6.18) 

(6.19) 

For a given sample of N observations, the sample cross covariance is estimated from 

and 

I N-j 

Yxv(J) = N l._)xr- x)(Yr+j- 5') for j = 0, I, 2 .... 
t=l 

I N 
Yxy(j) = N L (Xr- x)(Yr+j- )•) for j = -1, -2, ... 

t=j+l 

Similarly, the sample cross correlations are estimated from 

( .) • c·) YxvU) f · o ±I ±2 rn J = Px, J = Jyx(O)yr(O) or J = . . .... 

where 

I N 
Yx (0) = N L (x,- i)

2 

t=l 

I N 
and y', (0) = - "" ( v, - }·)2 

. NL.... . 
t=l 

(6.20) 

(6.2 I) 

(6.22) 

Sampling properties such as the mean and variance of the sample cross-correlation 
function are quite complicated. For a few special cases, however, we have the 
following. 

I. For large data sets, E(rx,(j)) ~ Px,(j) but the variance is still complicated. 
2. If x, andy, are autocorrelated but un(cross)correlated at all lags, that is, Px,(j) = 

0, we then have E(rx, (j)) ~ 0 and var(rrr(j)) ~ (l / N) Li:-x p,(i )p,(i ). 
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3. If Px, (j) = 0 for all lags j but also x 1 is white noise, that is, PxU) = 0 for 
j #- 0, then we have var(r.n(j)) ~ 1/ N for j = 0, ± 1, ±2, .... 

4. If PxrU) = 0 for all lags j but also both x 1 and y1 are white noise, then we have 
corr(rxy(i), rn(j)) ~ 0 fori =f. j. 

6.5 MODEL SPECIFICATION 

In this section, we will discuss the issues regarding the specification of the model 
order in a transfer function-noise model. Further discussion can be found in Bisgaard 
and Kulahci [2006a,b]. 

We will first consider the general form of the transfer function-noise model with 
time delay given as 

Yr = v(B)x1 + N1 

(6.23) 

The six-step model specification process is outlined next. 

Step I. Obtaining the preliminary estimates of the coefficients in v(B). 

One approach is to assume that the coefficients in v(B) are zero except for the first k 

lags: 

k 

Yt ~ L ViXt-i + N, 
i=O 

We can then attempt to obtain the initial estimates for v1, v 2 , ... , vk through ordinary 
least squares. However, this approach can lead to highly inaccurate estimates as x, 
may have strong autocorrelation. Therefore a method called prewhitening of the 
input is generally preferred. 

Method of Prewhitening 
For the transfer function-noise model in Eq. (6.23), suppose that x, follows an ARIMA 
model as 

¢x(B)(l - B)d x, = 8x(B)a1 
~ 

=cp,(B) 

where a1 is white noise with variance a;. Equivalently, we have 

(6.24) 

(6.25) 
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In this notation Bx(B)- 1 cp,(B) can be seen as a filter that when applied to x 1 generates 
a white noise time series, hence the name "prewhitening." 

When we apply this filter to the transfer function-noise model in Eq. (6.23). we 
obtain 

The cross covariance between the filtered series a 1 and {31 is given by 

Yaf3(j) = Cov(a1 , f3r+J) = Cov ( ct1 , v( B)ar+J + N1:J) 

= Cov (a1 , t V;Cir+j-i + Nr:J) 
t=O 

= Cov (a1 , t V;Cir+j-i) + Cov ( ct1 • Nr:j) 
t=O -,.--

X 

=LV; Cov(ar, Cir+J-il 
i=O 

=0 

Note that Cov(a1 , /111:) = 0 since X1 and /111 are assumed to be independent. 

From Eq. (6.27), we have Yafi = via; and hence 

(6.26) 

(6.27) 

(6.28) 

where Pafi(j) = corr(a1 • f3r+ j) is the cross-correlation function between a 1 and {31 • So 
through the sample estimates we can obtain the initial estimates for the v J: 

(6.29) 

Equation (6.29) implies that there is a simple relationship between the impulse re­
sponse function, v(B), and the cross-correlation function of the prewhitened response 
and input series. Hence the estimation of the coefficients in v(B) is possible through 
this relationship as summarized in Eq. (6.29). A similar relationship exists when the 
response and the input are not prewhitened (see Box et al. [1994, pp. 416-417]. 
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However, the calculations become fairly complicated when the series are not 
prewhitened. Therefore we strongly recommend the use of prewhitening in model 
identification and estimation of transfer function-noise models. 

Moreover, since a 1 is white noise, the variance of r af! (j) is relatively easier to 
obtain than that of rnCJ). In fact, from the special case 3 in the previous section, we 
have 

I 
Var[rafJCi)J ~ -

N 
(6.30) 

if PatJCi) = 0 for all lags j. We can then use ±2/ ..fN as the approximate 95% confi­
dence interval to judge the significance of rafJCJ). 

Step 2. Specifications of the orders r and s. 

Once the initial estimates of the Vj from Eq. (6.29) are obtained, we can use them to 
specify the orders r and s in 

w0 - w1B- · · ·- w,B' b 
----~----------B 

1 - 81 B - · · · -orB' 

The specification of the orders r and s can be accomplished by plotting the v j. In 
Figure 6.2, we have an example of the plot of the initial estimates for the v j in 

1.0 

0.8 

0.6 
~ .. 
> 

0.4 

0.2 

0.0 I I I 

0 2 4 6 8 10 12 
Lag 

FIGURE 6.2 Example of an impulse response function. 
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which we can see that ilo ~ 0, implying that there might be a time delay (i.e., b = I). 
However, for j > l, we have an exponential decay pattern, suggesting that we may 
have r = l, which implies 

vj-8vj_ 1 =0 for}> 

and 

s=O 

Hence for this example our initial attempt in specifying the order of the transfer 
function noise model will be 

Wo 
Yt = ---Xr-1 + Nr 

I- 8B 
(6.31) 

Caution: In model specification one should be acutely aware of over­
parameterization as for an arbitrary '7 the model in Eq. (6.31) can also be written 
as 

Wo (l- ryB) 

(6.32) 

But the parameters in Eq. (6.32) are not identifiable, since '7 can arbitrarily take any 
value. 

Step 3. Obtain the estimates of the 8; and w;. 

From S(B)il(B) = w(B), we can recursively estimate the 8; and w; using 
Eq. (6.12), 

j=b+l, .... b+s 

j>b+s 

with vb = w0 and Vj = 0 for j <b. Hence for the example in Step 2, we have 

il1 = wo 
w2- 82v1 = o 
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Step 4. Model the noise. 

Once the initial estimates of the model parameters are obtained, the estimated noise 
can be obtained as 

(6.33) 

To obtain the estimated noise we define y1 = (w(B)j8(B))x1_t,· We can then calculate 
y1 recursively. To model the estimated noise, we observe its ACF and PACF and 
determine the orders of the A RIMA model, ¢(B) (I - B )d Nt = e ( B )E I. 

Step 5. Fitting the overall model. 

Steps I through 4 provide us with the model specifications and the initial estimates 
of the parameters in the transfer function-noise model, 

The final estimates of the model parameters are then obtained by a nonlinear model 
fit. Model selection criteria such as AIC and BIC can be used to pick the "best" model 

among competing models. 

Step 6. Model adequacy checks. 

At this step, we check the validity of the two assumptions in the fitted model: 

1. The assumption that the noise E1 is white noise requires the examination of the 
residuals £1 . We perform the usual checks through ACF and PACF. 

2. We should also check the independence between E1 and x 1 • For that, we observe 
the sample cross-correlation function between £1 and x1 • Alternatively, we can 
examine r&g(j), where a 1 = Bx(B)- 1{/!x(B)x1 • Under the assumption the model 
is adequate, racU) will have 0 mean, 1/-/N standard deviation, and be inde­
pendent for different lags j. Hence we can use ±2/ -/N as the limit to check 
the independence assumption. 

Example 6.2 

In a chemical process it is expected that changes in temperature affect viscosity, a 
key quality characteristic. It is therefore of great importance to learn more about this 
relationship. The data is collected every I 0 seconds and given in Table 6.2. (Note that 
an arbitrary target value is subtracted from each variable; hence the data shown are 
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TABLE6.2 The Viscosity, y(t), and Temperature, x(t) 

x(t) y(t) x(t) y(t) x(r) v(t) 

0.70 -0.12 -1.25 -1.22 -1.56 -2.48 
0.64 1.55 -1.65 0.46 -0.47 -1.78 
0.60 -0.59 -1.43 0.12 0.67 -1.94 
0.66 -0.32 0.48 -0.15 0.49 -2.12 

-0.99 1.20 -0.54 -0.38 -1.23 -1.62 
-2.43 2.67 0.97 -1.39 -1.24 0.93 
-1.32 0.28 0.11 0.47 -0.10 0.45 
-1.08 -1.33 -0.53 1.12 2.23 -0.34 
-0.32 -1.79 -0.97 0.29 1.52 -2.91 
-0.38 -4.51 -0.74 -0.35 2.39 -3.91 
-0.40 0.09 0.26 -2.70 2.54 -0.46 

0.47 2.69 -1.52 -2.03 1.82 1.84 
1.44 1.60 -1.34 -1.67 2.48 1.65 
0.62 -1.18 -2.27 -0.84 2.26 0.64 
0.80 -0.44 -0.26 -0.11 1.24 -1.78 
2.63 1.45 -1.67 -1.91 0.80 0.49 
1.82 2.34 -1.37 -4.28 0.53 2.66 
1.76 2.84 -0.11 -3.12 1.27 -0.58 
1.43 -0.51 0.34 -1.28 1.61 -2.56 

-0.13 1.50 O.Ql -1 .44 1.60 -2.00 
-0.50 0.82 -0.88 -0.91 0.46 0.68 
-0.35 -0.70 -1.22 -0.41 0.38 2.56 
-1.12 -1.08 0.01 0.08 -0.88 2.24 

0.07 -1.56 -0.84 0.06 -0.81 -0.42 
-0.73 -0.88 -0.57 -1.51 0.38 -0.89 
-1.09 -0.90 -0.32 -1.40 -0.83 -0.20 
-3.48 0.38 -0.15 -0.59 -1.70 1.22 
-2.37 0.61 0.27 -0.33 -1.30 2.14 

0.05 -1.85 0.19 0.29 0.39 1.76 
-0.28 -3.60 -1.54 0.25 -0.06 -0.81 
-0.43 -4.01 -2.13 -0.34 0.63 -1.28 
-0.06 -1.74 -1.73 0.06 -0.34 -0.42 

0.25 2.33 -0.84 -0.71 -1.01 2.76 
0.69 0.61 -1.18 -1.38 0.19 1.59 
1.58 1.16 -I. II -2.71 0.42 0.33 
0.17 -1.38 -2.68 -1.40 -0.15 -0.82 

-0.47 0.27 -0.99 -0.18 0.39 -2.93 
-0.98 0.89 -1.42 -0.10 -0.66 -0.49 

1.75 1.95 -1.07 -2.54 -1.08 1.33 
-0.29 -0.41 -2.19 -4.15 -0.42 1.24 



MODEL SPECIFICATION 315 

3 • • • 

<a 
1U -1 c • 

-2 • • 
• .. • 

-3 • • • 
• 

-4 • • 
• • 

-5 

12 24 36 48 60 72 84 96 108 120 
Time 

FIGURE6.3 Time series plots of the viscosity, y(t) and temperature, x(t ). 

the deviations of the two variables from their respective targets.) Figure 6.3 shows 
the time series plots of these two variables. 

Since the data is taken in time and in frequent intervals, we expect the variables 
to exhibit some autocorrelation and decide to fit a transfer function-noise model 
following the steps provided earlier. 

Step I. Obtaining the preliminary estimates of the coefficients in v(B). 

In this step we use the prewhitening method. We first fit an ARIMA model to the 
temperature. Since the time series plot in Figure 6.3 shows that the process is changing 
around a constant mean and has a constant variance, we will assume that it is stationary. 

Sample ACF and PACF plots in Figure 6.4 suggest that an AR( I) model should be 
used to fit the temperature data. The Mini tab output in Table 6.3 shows that¢ = 0.67. 

Autocorrelation Function for Temperature 
(with 5% significance limits for the autocorrelations) 
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Partial Autocorrelation Function for Temperature 
(with 5% significance limits for the part1al autocorrelations) 
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FIGURE 6.4 Sample ACF and PACF of the temperature. 
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TABLE 6.3 Minitab Output of the AR(l) Model for Temperature x(t) 

Final Estimates of Parameters 

Type 
AR 1 

Coef 
0.6703 

SE Coef 
0.0681 

T 

9.85 

Number of observations: 120 

p 

0.000 

Residuals: SS 97.4530 (backforecasts excluded) 
MS = 0.8189 DF = 119 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 
Chi-Square 13.5 24.3 27.5 41.0 
DF 11 23 35 47 
P-Value 0.262 0.387 0.812 0. 717 

The sample ACF and PACF plots in Figure 6.5 as well as further residual plots in 
Figure 6.6 reveal that no autocorrelation is left in the data and the model gives a 
reasonable fit. 

Hence we define 

a, = ( 1 - 0.67 B) x, 

and 

{3, = (I - 0.67 B) y, 

We then compute the sample cross correlation of a, and {3,, Taf3 given in Figure 6.7. 
Since the cross correlation at lags 0, 1, and 2 does not seem to be significant. we 
conclude that there is a delay of 3 lags (30 seconds) in the system, that is, b = 3. 
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FIGURE 6.5 Sample ACF and PACF of the residuals from the AR( I) model for the temperature. 
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FIGURE 6.6 Residual plots from the AR( I) model for the temperature. 

From Eq. (6.29), we have 
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FIGURE 6.7 Sample cross-correlation function between a1 and {31 • 
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FIGURE 6.8 Plot of the impulse response function \ersus lag for the viscosity data. 

where a a and a 13 are the sample standard deviations of a1 and f3r. 

Step 2. Specifications of the orders r and s. 

To identify the pattern in Figures 6.7 and 6.8. we can refer back to Table 6.1. From 
the examples of impulse response functions given in that table, we may conclude the 
denominator of the transfer function is a second-order polynomial in B. That is, we 
have I - 81 B - 82 B2 for the denominator. For the numerator, it seems like w0 - w 1 B 
would be appropriate. Hence our tentative impulse response function is the following: 

Step 3. Obtain the estimates of 8; and w;. 

To obtain the estimates of 8; and w;, we refer back to Eq. (6.12 l which implies that 
we have 

vo ~ 0 

v3 = 0.46 = wo 
i)4 = 0.76 = 0.468, - w, 
Ds = -0.03 = 0. 768, + 0.4682 

v6 = -0.54 = -0.038, + 0.7682 
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or 

The parameter estimates are then 

wo = 0.46 

w, = -0.58 

8, = 0.38 

82 = -0.69 

0.46 + 0.588 1 
Dt = ---------,.8· 

1 - 0.388 + 0.6982 

Step 4. Model the noise. 

To model the noise, we first define y1 = (w(8)j8(8))x1_ 3 or 

8(8)y1 = w(8)xt-3 

(l - 0.388 + 0.698 2)y1 = (0.46 + 0.588)x1-3 

y1 = 0.38.Yt-t - 0.69.Yt-2 + 0.46xt-3 + 0.58xt-4 

We then define 

319 

Figures 6.9 and 6.10 show the time series plot of N1 and its sample ACF/PACF plots, 
respectively. From these figures, AR(2) seems to be an appropriate model. 
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FIGURE 6.9 Time series plot of N1 • 
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FIGURE 6.10 Sample ACF and PACF of N, . 

The Minitab output of the AR(2) model for N1 is given in Table 6.4. Diagnostic 
checks of the residuals through sample ACF and PACF plots in Figure 6.11 and 
residual plots in Figure 6.12 imply that we have a good fit. 

Note that we do not necessarily need the coefficient estimates as they will get 
reestimated in the next step. Thus at this stage all we need is a sensible model for N1 

to put into the overall model. 

Step 5. Fitting the overall model. 

From Step 4, we have the tentative overall model as 

TABLE 6.4 Minitab Output of the AR(2) Model for N, 

Final Estimates of Parameters 

Type 
AR 1 
AR 2 

Coef 
0.1605 
0.5056 

SE Coef 
0.0809 
0.0810 

T 

1. 99 
6.25 

Number of observations: 116 

p 

0.050 
0.000 

Residuals: SS 123.384 (backforecasts excluded) 
MS = 1.082 OF = 114 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag 12 24 36 48 
Chi-Square 10.1 28.3 37.8 57.4 
OF 10 22 34 46 
P-Value 0.428 0.165 0.301 0.12 
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FIGURE 6.11 Sample ACF and PACF of the residuals of the AR(2) model for N1 • 

So far we have made all of our calculations using Mini tab. However, as we mentioned 
earlier Minitab lacks the capability to fit transfer function-noise models. Therefore 

we will now use SAS to fit the final model. Table 6.5 shows the SAS commands used 
to fit the transfer function-noise model using the ARIMA procedure. 

The abridged SAS output is given in Table 6.6, which gives the estimated coeffi­

cients as 

wo = -0.46, w1 = 0.02, 81 = 0.62, 82 = -0.75, ¢1 = 0.68, ¢2 = 0.01 

The SAS output suggests that w1 and ¢2 are not significant and hence may be dropped. 
We then attempt to fit the following reduced model (See Tables 6.7 and 6.8): 

wo l 
y,= l-81B-828 2 x 1

_
3 + l-¢18 81 
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FIGURE 6.12 Residual plots of the AR(2) model for N1 • 



322 TRANSFER FUNCTIONS AND INTERVENTION MODELS 

TABLE 6.5 SAS ARIMA Procedure for the Transfer Function-Noise Model for the 
Viscosity Data 

proc arima data=sasinp; 
identify var=yt crosscorr=xt; 
estimate p=2 input=( 3 $ (1 )/(1 2) xt ) noconstant; 
run; 

All coefficients in the reduced model seem to be significant. Further comparison 
can be made using, for example, the AIC, which implies in this case that the 
reduced model performs better than the "full" model since A I Creduced = 370.848 
and AI Crull= 374.818. Hence we deem the reduced model appropriate and have the 
coefficient estimates as 

w0 = -0.47, 81 = 0.63, 82 = -0.76 and ¢1 = 0.69 

Step 6. Model adequacy checks. 

To obtain the residuals we run the ARIMA procedure again with added commands 
to obtain the residuals. The commands to do this are given in Table 6.9. 

As suggested previously, we then check the time series plot of the residuals in 
Figure 6.13 and the sample ACF/PACF plots in Figure 6.14. It seems there is no 
autocorrelation left in the residuals. We further check the cross-correlation function 
between the a 1 = ( 1 - 0.67 B) x1 and the residuals as given in Figure 6.15. There is 
some significant cross correlation at lags 3 and 4. We can certainly go back to the earlier 
steps and try to further improve the model. However, at this point we will assume 
those cross-correlation values to be insignificant and claim that the reduced model is 
indeed a good fit for the data. We would certainly revisit the fitted model particularly 
when obvious discrepancies are observed in making forecasts using this model. • 

6.6 FORECASTING WITH TRANSFER FUNCTION-NOISE MODELS 

In this section we discuss making r-step-ahead forecasts using the transfer function­
noise model in Eq. (6.23). We can rearrange Eq. (6.23) and rewrite it in the difference 
equation form as 

8(B)<p(B)y1 = w(B)<p(B)xr-h + ()(B)o(B)E1 (6.34) 

or 

(6.35) 

Then at time t + r, we will have 

r+p* s+p* q+r 

Yt+r = L 0;* Yl+r-i + w; x,+r-b - L wi* Xr+r-h-i + Er+r - Lei* Cf+r-i 
i=l i=l i=l 

(6.36) 

where r is the order of o(B), p* is the order of¢( B), and s is the order of w( B). and 
q is the order of (}(B). 
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TABLE 6.6 SAS Output of the Transfer Function-Noise Model for the Viscosity Data 

Parameter 

AR1,1 

AR1,2 

NUM1 
NUM1,1 
DEN1,1 

DEN1,2 

The ARIMA Procedure 

Name of Variable = yt 

Mean of Working Series 

Standard Deviation 

Number of Observations 

-0.38521 

1.641022 

120 

Conditional Least Squares Estimation 

Standard 

Estimate Error t Value 

0.68240 0.09619 7.09 

0.01489 0.10285 0.14 

-0.46715 0.10889 -4.29 
0.01653 0.13686 0.12 
0.61596 0.08419 7.32 

-0.75439 0.06816 -11. 07 

Variance Estimate 

Std Error Estimate 

AIC 
SBC 

Approx 
Pr > It I 

<.0001 

0.8852 
<.0001 
0.9041 
<.0001 

<.0001 

1.448671 

1.203607 

374.818 
391.2876 

Number of Residuals 115 

Lag Variable 

1 yt 

2 yt 

0 xt 
xt 
xt 

xt 

* AIC and SBC do not include log determinant. 

Correlations of Parameter Estimates 

Variable yt yt xt xt xt 

Parameter ARl,l AR1,2 NUMl NUM1, 1 DENl,l 

yt AR1, 1 1.000 -0.663 0.061 0.025 -0.011 

yt AR1, 2 -0.663 1.000 -0.317 0.087 -0.140 

xt NUM1 0.061 -0.317 1.000 0.238 0.007 

xt NUM1,1 0.025 0.087 0.238 1.000 -0.865 

xt DENl,l -0.011 -0.140 0.007 -0.865 1.000 

xt DEN1, 2 -0.034 0.296 -0.720 0.221 -0.458 

Model for variable yt 

No mean term in this model. 

Autoregressive Factors 

Factor 1: 1 - 0.6824 B**(1) - 0.01489 B**(2) 

Input Number 

Input Variable xt 
Shift 

Numerator Factors 

Factor 1: -0.4671 - 0.01653 B**(l) 

Denominator Factors 

Factor 1: - 0.61596 B**(l) + 0.75439 B**(2) 

Shift 

xt 
DEN1,2 

-0.034 
0.296 

-0.720 

0.221 
-0.458 

1.000 

0 
0 



TABLE 6.7 SAS ARIMA Procedure for Reduced Model for the Viscosity Data 

proc arima data=sasinp; 

identify var=yt crosscorr=xt; 
estimate p=l input=( 3 $ /(1 2) xt ) noconstant; 
run; 

TABLE 6.8 SAS Output for the Reduced Model for the Viscosity Data 

Parameter 

AR1,1 
NUM1 
DEN1,1 
DEN1,2 

Variable 
Parameter 

yt 
xt 
xt 
xt 

324 

The ARIMA Procedure 

Conditional Least Squares Estimation 

Standard 
Estimate Error t Value 

0.69003 0.07134 9.67 
-0.46496 0.09899 -4.70 

0.62573 0.04208 14.87 
-0.75867 0.06373 -11. 90 

Variance Estimate 
Std Error Estimate 

AIC 
SBC 
Number of Residuals 

Approx 
Pr > It I 

<.0001 
<.0001 
<.0001 
<.0001 

1.422949 
1.192874 
370.8488 
381.8285 

115 

Lag Variable 

1 yt 
0 xt 

xt 
2 xt 

• AIC and SBC do not include log determinant. 

AR1,1 
NUM1 

DEN1,1 
DEN1, 2 

Correlations of Parameter Estimates 

yt xt xt 
AR1,1 NUM1 DEN1,1 

1.000 -0.261 -0.100 
-0.261 1.000 0.444 
-0.100 0.444 1. 000 

0.218 -0.800 -0.551 

Model for variable yt 

No mean term in this model. 

Autoregressive Factors 

Factor 1: 1 - 0.69003 B**(11 

Input Number 

Input Variable 
Shift 
Overall Regression Factor 

Denominator Factors 

xt 
DEN1, 2 

0.218 
-0.800 
-0.551 
1.000 

xt 
3 

-0.46496 

Factor 1: 1- 0.62573 B**(1) + 0.75867 B**(21 

Shift 

0 
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TABLE 6.9 SAS ARIMA Procedure with Commands Added to Obtain the Residuals 

proc arima data=sasinp ; 

identify var=yt crosscorr=xt; 
estimate p=l input=( 3 $ /(1 2) xt) noconstant; 
forecast out=residuals; 
run; 

proc print data=residuals; 
run; 
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FIGURE 6.13 Time series plot of the residuals from the reduced model. 
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FIGURE 6.14 Sample ACF and PACF plots of the residuals of the reduced model. 
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FIGURE 6.15 Sample cross-correlation function between a, and the residuals of the reduced model. 

The minimum MSE forecasts are obtained from 

r+p* 

L 8;* y, (r- i) + w; x1 (r- b) (6.37) 
i=l 

s+p* q+r 

- L w;*x,(r -b-i)- Le;*t:r+r-i forr = 1.2 ..... q 
i=l i=l 

Note that the MA terms will vanish for r > q + r. We obtain Eq. (6.37) using 

and 

I Ct+r-i• 
E (t:t+r-;/ y,, Yt-1• · · ·, x,, Xr-1• · · .) = 

0. 

Xr (I) = E (xr+ll Yr, Yt-1, ... , Xr, Xr-1,. · .) 

i :::: r 

i < r 

(6.38) 

Equation (6.38) implies that the relationship between x, and v1 is unidirectional 
and that x1(l) is the forecast from the univariate ARIMA model, t/Jx(B)( I - B)d x, = 
()x(B)a,. 

So forecasts y1(1), y1(2), ... can be computed recursively from Eqs. (6.37) and 
(6.38). 
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The variance of the forecast errors can be obtained from the infinite MA represen­
tations for x 1 and N, given as 

and 

x, rpx(B)- 18x(B)fi1 

= Vrx(B)fi, 

N, = rp(B)- 1e(B)t:, 

1/r(B)t:t 

00 

= LVriCt-i 
i=O 

Hence the infinite MA form of the transfer function-noise model is given as 

Yr v(B)1Jrx(B) fir. b + 1/r(B)t:, 
~ 

=v*(B) 

(X) :::::0 

= L v; fir-h-i+ L 1/r;et-i 
i=O i=O 

Thus the minimum MSE forecast can be represented as 

00 00 

Yt+r (t) L vi* fir+r-h-i+ L 1/r;Ettr-i 
i=r-b i=r 

and the r -step-ahead forecast error is 

r-b-1 r-1 

2:.:: v; fit+r-h-i+ 2:.:: 1/r;E:t+r-i 
1=0 i=O 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

As we can see in Eq. (6.43), the forecast error has two components that are assumed 

to be independent: forecast errors in forecasting x1 , 
1 

v,.* fittr-h-i; and forecast 

errors in forecasting N 1 , 1/r;t:r+r-t· The forecast variance is simply the sum of 
the two variances: 

a 2 (r) Var[e1 (r)] 
(6.44) 

To check the effect of adding x 1 in the model when forecasting, it may be appealing 

to compare the forecast errors between the transfer function-noise model and the 
univariate ARIMA model for y1 • Let the forecast error variances for the former and 
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the latter be denoted by a.fFN (r) and a0M (r), respectively. We may then consider 

a 2 (r) 
R2(r) = 1- TFN 

a0M (r) 

a0M (r)- a.fFN (r) 
a0M (r) 

(6.45) 

This quantity is expected to go down significantly if the introduction of x 1 were 
indeed appropriate. 

Example 6.3 

Suppose we need to make forecasts for the next minute ( 6 observations) for the viscos­
ity data in Example 6.2. We first consider the final model suggested in Example 6.2, 

wo I 
Yr = l-8,B-lhB2Xr-3+ l-¢,B£r 

After some rearrangement, we have 

From Eq. (6.37), we have the r-step-ahead prediction as 

Yt+r(t) = (8, + J>,)[Yr+r-tl + (82- 8,<]>,)[Yr+r-2l- 82¢tb'r+r-3] 

+ Wo[Xr+r-3l - wo<l>t [Xr+r -41 + [cr+r l - 8, [ct+r- tl - 82[£r+r-2l 

where 

( Yt+J• j~O 
[Yr+j] = A ( ) j > 0 Yt+ 1 t , 

( Xr+J• j~O 
[Xt+j]= A() j > 0 Xt+J t , 

and 

[ ]-(er+J• 
j~O 

ct+J -
j > 0 0, 

Hence for the current and past response and input values, we can use the actual data. 
For the future response and input values we will instead use their respective forecasts. 
To forecast the input variable x1 , we will use the AR(l) model, ( l - 0.67 B) x1 = a1 • 

As for the error estimates, we can use the residuals from the transfer function-noise 
model, or forb :::: 1, the one-step-ahead forecast errors for the current and past values 
of the errors, and set the error estimates equal to zero for future values. 

We can obtain the variance of the prediction error from Eq. (6.44). The estimates 
of a.'; and a} in Eq. (6.44) can be obtained from the univariate AR(l) model for x1 

and the transfer function-noise model from Example 6.2, respectively. Hence for this 
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example we have a-,; = 0.82 and 8-
8

2 = 1.423. The coefficients in v*(B) and 1/J(B) 
can be calculated from 

(X) 

* "' * i v (B) = L v,. B = v(B)Jj;x(B) 

or 

which means 
* Vo = wo 

* * * v2 = (8, + ¢x) v1 - (8z- 8I¢x) v0 

= [(8, + ¢x)2 - (82- 8I¢x)] Wo 

and 
1/J,. = ¢~ for i = 0, 1, 2, ... 

Hence the estimates of the coefficients in v*(B) and 1/J(B) can be obtained by using 
the estimates of the parameters given in Example 6.2. The time series plot of the 
forecasts is given in Figure 6.16 together with the ±28- ( r) prediction limits. 
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FIGURE 6.16 The time series plots of the actual and forecasts for the next 6 observations for the viscosity 
data (Example 6.3). 
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TABLE 6.10 Estimated Standard Deviations of the 
Prediction Error for the Transfer Function-Noise 
Model (TFM) and the Univariate Model (UM) 

Observation 

121 
122 
123 
124 
125 
126 

Estimated Standard Deviation 
of the Prediction Error 

TFM UM 

1.193 1.242 
1.449 1.562 
1.557 1.590 
1.659 1.612 
1.768 1.613 
1.790 1.635 

For comparison purposes we fit a univariate ARIMA model for Yr. Following the 
model identification procedure given in Chapter 5, an AR(4) model is deemed a good 
fit. The estimated standard deviations of the prediction error for the transfer function­
noise model and the univariate model are given in Table 6.10. For small lead times, 
the transfer function-noise model performs better. But for the forecasts further into 
the future, the situation is reversed. This may be due to the fact that the uncertainty 
from forecasting x1 is also introduced into the forecast error after lead time 3. But this 
may also be an indication that more effort may be needed at the model identification 
stage. Note that in this example we deliberately attempted to keep the model as simple 
as possible. A better model, however, can be used to fit the N1 . This will make the 
calculations more complicated but may also result in better forecasting performance 
for long-term lead times. • 

JMP also has transfer function modeling capability. Table 6.11 is the JMP output 
that results from fitting the reduced form of the transfer function model to the viscosity 
and temperature data that we introduced earlier and modeled using a combination of 
Minitab and SAS. The JMP output contains information about the fitted model, the 
residuals, and the residual ACF and PACE Note that the parameter estimates in the 
fitted transfer function model do not exactly match those found using SAS. This is 
not unusual when fitting these types of complex nonlinear models. 

6.7 INTERVENTION ANALYSIS 

In some cases, the response y1 can be affected by a known event that happens at a 
specific time such as fiscal policy changes, introduction of new regulatory laws, or 
switching suppliers. Since these interventions do not have to be quantitative variables. 
we can represent them with indicator variables. Consider, for example, the transfer 
function-noise model as the following: 

w(B) m 8(B) 
Yr = o(B) ~~ + cp(B) Er 

= v(B)~1(T) + N1 

(6.46) 



TABLE 6.11 JMP Output for the Viscosity-Temperature-Transfer Function Model 

Transfer Function Analysis 
Time Series y(t) 

3.-.-.-.-----------------------~--or------, 

2 

0 

~-1 
-2 

-3 
-4 
-54------r-----.----~------~----.-----.-----~ 

Mean 

Std 

N 

0 20 
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Model Comparison 
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Row 
-0.385214 

1.6410223 

120 

-5.941692 
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Transfer 113 0.9989168 

Function 
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Model Summary 

DF 
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Akaike's 'A' Information Criterion 
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0.6261107 
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0.4394189 

120 
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0.651 

140 

-2LogLH 

328.04938 
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112.877597 

0.99891676 

0.99945823 

336.049375 

347.098071 

0.65070085 

0.64166725 

121.827041 

0.75715379 

328.049375 

Std Error t 
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0.0403212 
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MAPE 
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TABLE 6.11 JMP Output for the Viscosity-Temperature-Transfer Function Model 
(Continued) 

Lag AutoCorr Plot Autocorr Ljung-Box a p-Value 
0 1.0000 
1 ·0.0347 0.1485 0.6999 
2 -0.0575 I 0.5592 0.7561 
3 0.0063 0.5642 0.9046 
4 0.0050 0.5674 0.9666 
5 0.1756 • 4.4926 0.4809 
6 0.1247 II 6.4886 0.3707 
7 0.0147 6.5166 0.4809 
8 -0.0640 I 7.0513 0.5311 
9 0.0794 I 7.8834 0.5459 

10 0.0018 7.8838 0.6402 
11 0.0012 7.8840 0.7237 
12 0.0341 8.0417 0.7819 
13 -0.0833 I 8.9902 0.7737 
14 -0.0786 I 9.8431 0.7736 
15 0.0174 9.8851 0.8269 
16 -0.1938 - 15.1701 0.5122 
17 0.0042 15.1727 0.5830 
18 -0.0484 I I 15.5088 0.6268 
19 0.1283 I • 17.8959 0.5294 
20 -0.1193 IM 19.9807 0.4591 
21 -0.1424 IM 22.9802 0.3450 
22 0.1046 I I 24.6158 0.3158 
23 -0.0332 I I 24.7826 0.3616 
24 0.1059 I I 26.4943 0.3286 
25 -0.1190 IM 28.6779 0.2776 

Lag Partial Plot Partial 
0 1.0000 
1 -0.0347 
2 -0.0588 I 
3 0.0022 
4 0.0019 
5 0.1772 • 6 0.1432 Ml 
7 0.0512 I I 
8 -0.0500 I I 
9 0.0743 II 

10 -0.0336 
11 -0.0412 
12 -0.0003 
13 -0.0777 II 

Lag AutoCorr Plot Autocorr Ljung-Box a p-Value 
14 -0.1068 II 
15 -0.0164 
16 -0.2198 -17 -0.0167 
18 -0.0684 II 
19 0.1989 I -20 -0.0806 II I 
21 -0.0574 I I I 
22 0.1620 I • 23 0.0246 
24 0.0823 I II 
25 -0.0892 II I 
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where t;,<T> is a deterministic indicator variable, taking only the values 0 and 1 to 
indicate nonoccurrence and occurrence of some event. The model in Eq. (6.46) is 
called the intervention model. Note that this model has only one intervention event. 
Generalization of this model with several intervention events is also possible. 

The most common indicator variables are the pulse and step variables, 

P/n = [ ~ ift # T 
(6.47) 

ift = T 

and 

s;n = [ ~ ift < T 

ift::: T 
(6.48) 

where T is a specified occurrence time of the intervention event. The transfer function 
operator v(B) = w(B)/8(B) in Eq. (6.46) usually has a fairly simple and intuitive 
form. 

Examples of Responses to Pulse and Step Inputs 
I. We will first consider the pulse indicator variable. We will further assume a 

simple transfer function-noise model as 

-~p(T) 
Yt- I- 8B I 

After rearranging Eq. (6.49), we have 

or 

So we have 

(T) { 0 (I- 8B)yt = woP1 = 
wo 

YT = wo 
YT+l = 8yr 
YT+2 = DYT+l = 82yT 

YT+k = ... = OkYT 

which means Yt = 8(1-T)YT fort ::: T. 

ift # T 
ift = T 

ift < T 
if t ::: T 

(6.49) 
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2. For the step indicator variable with the same transfer function-noise model as 
in the previous case, we have 

V =~SIT! 
.I I- 88 I 

Solving the difference equation 

we have 

or 

IT! { 0 (I- 88)y1 = w0 51 = 
wo 

Yr = wo 

YT+l = 8yr + wo = wo(l + 8) 

ift < T 
if t 2: T 

YT+2 = 8yr+l + wo = wo(l + 8 + 82
) 

YT+k = 8yT+k-l + Wo = wo(l + 8 + ... + 8k) 

In intervention analysis, one of the things we could be interested in may be how 
permanent the effect of the event will be. Generally, for y1 = (w(8)/8(8))~/Ti with 
stable 8(8), if the intervention event is a pulse, we will then have a transient (short­
lived) effect. On the other hand, if the intervention event is a step, we will have a 
permanent effect. 

Example 6.4 

The weekly sales data of a cereal brand for the last two years is given in Table 6.12. As 
can be seen from Figure 6.17, the sales were showing a steady increase during most of 
the two-year period. At the end of the summer of the second year (Week 88), the rival 
company introduced a similar product into the market. Using intervention analysis. 
we want to study whether that had an effect on the sales. For that, we will first fit 
an ARIMA model to the preintervention data from Week 1 to Week 87. The sample 
ACF and PACF of the data for that time period in Figure 6.18 show that the process is 
nonstationary. The sample ACF and PACF of the first difference given in Figure 6.19 
suggest that an ARIMA(O, I, 1) model is appropriate. Then the intervention model has 
the following form: 

1881 1-e8 
Y1 = Wo51 + ~E1 
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TABLE 6.12 Weekly Cereal Sales Data 

Week Sales Week Sales Week Sales Week Sales 

I 102450 27 114980 53 167170 79 181560 
2 98930 28 130250 54 161200 80 202130 
3 91550 29 128070 55 166710 81 183740 
4 111940 30 135970 56 156430 82 191880 
5 103380 31 142370 57 162440 83 197950 
6 112120 32 121300 58 177260 84 209040 
7 105780 33 121380 59 163920 85 203990 
8 103000 34 128790 60 166040 86 201220 
9 111920 35 139290 61 182790 87 202370 
10 106170 36 128530 62 169510 88 201100 
11 106350 37 139260 63 173940 89 203210 
12 113920 38 157960 64 179350 90 198770 
13 126860 39 145310 65 177980 91 171570 
14 115680 40 150340 66 180180 92 184320 
15 122040 41 158980 67 188070 93 182460 
16 134350 42 152690 68 191930 94 173430 
17 131200 43 157440 69 186070 95 177680 
18 132990 44 144500 70 171860 96 186460 
19 126020 45 156340 71 180240 97 185140 
20 152220 46 137440 72 180910 98 183970 
21 137350 47 166750 73 185420 99 154630 
22 132240 48 171640 74 195470 100 174720 
23 144550 49 170830 75 183680 101 169580 
24 128730 50 174250 76 190200 102 180310 
25 137040 51 178480 77 186970 103 154080 
26 136830 52 178560 78 182330 104 163560 

Week88 
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FIGURE6.17 Time series plot of the weekly cereal sales data. 
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0.8 

1: 0.6 

Autocorrelation Function for Sales (Weeks 1-87) 
(with 5% significance limits for the autocorrelations) 

~ 0.4 
! 0.2 
0 0.0 t'---'---'~-'---L-'-~L..-'--'---'---'~-'---L-'-~L...<--'---'1 

g-D.2 '· 
'5 --Q.4 
C--{).6 

--{)8 

-1.0 L-~~~-~--~~~-~----,-J 
2 4 6 8 10 12 14 16 18 20 22 

Lag 

Partial Au1ocorrelation Function for Sales (Weeks 1-87) 
(with 5% significance l1mits for the parttal autocorrelations) 

1.0 
~ 0.8 
.. 0.6 
! 0.4 
0 0.2 h---s 0.0 t'---'---'...--L-L--.-~....-....-J...--<--,-,.~-'-1 
~--{)2 
ii--{).4 
:;:-D.6 
:-{).8 

-1.0 L-~~~-~--~---~-.__,..J 
2 4 6 8 10 12 14 16 18 20 22 

Lag 

FIGURE 6.18 Sample ACF and PACF plots of the sales data for weeks 1-87. 

where 

ift < 88 

if t ::::. 88 

This means that for the intervention analysis we assume that the competition simply 
slows down (or reverses) the rate of increase in the sales. To fit the model we use the 
ARIMA procedure in SAS with s:S8

l as the input. The output in Table 6.13 shows 
that there was indeed a significant effect on sales due to the introduction of a similar 
product in the market. The coefficient estimate w0 = -2071.5 further suggests that 
if no appropriate action is taken the sales will most likely continue to go down. 

There have been many interesting applications of intervention analysis. For some 
very good examples, see the following references: 

• Box and Tiao [1975] investigate the effects on ozone (03) concentration in 
downtown Los Angeles of a new law that restricted the amount of reactive 
hydrocarbons in locally sold gasoline, regulations that mandated automobile 
engine design changes, and the diversion oftraffic by opening of the Golden State 
Freeway. They showed that these interventions did indeed lead to reductions in 
ozone levels. 

Autocorrelation Function for the first difference (Weeks 1-87) Partial Autocorrelation Function for the first difference (Weeks 1-87) 
(with 5% significance limtts for the autocorrelations) (with 5% signrficance hmrts for the partial autocorrelations) 
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0.8 
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FIGURE 6.19 Sample ACF and PACF plots of the first difference of the sales data for weeks 1-87. 



INTERVENTION ANALYSIS 

TABLE 6.13 SAS Output for the Intervention Analysis 

Parameter 

MA1,1 

NUM1 

The ARIMA Procedure 

Conditional Least Squares Estimation 

Standard Approx 
Estimate Error t Value Pr > It I 

0.75886 0.06555 

-2071.5 637.43397 

Variance Estimate 
Std Error Estimate 

AIC 
SEC 

11.58 <.0001 

-3.25 0.0016 

82507397 
9083.358 
2171.807 

2177.076 
Number of Residuals 103 

* AIC and SEC do not include log determinant. 

Correlations of Parameter Estimates 

Variable Sales Step 
Parameter MAl,l NUMl 

Sales MA1,1 1.000 -0.156 

Step NUMl -0.156 1. 000 

337 

Lag Variable Shift 

1 Sales 0 
0 Step 0 

• Wichern and 1 ones [ 1977] analyzed the impact of the endorsement by the Ameri­
can Dental Association of Crest toothpaste as an effective aid in reducing cavities 
on the market shares of Crest and Colgate toothpaste. The endorsement led to a 
significant increase in market share for Crest. 

• Atkins [ 1979] used intervention analysis to investigate the effect of compulsory 
automobile insurance, a company strike, and a change in insurance companies' 
policies on the number of highway accidents on freeways in British Columbia. 

• Montgomery and Weatherby [1980] investigated the effect of the November 
1973 Arab oil embargo on the rate of growth of electricity consumption. They 
concluded that the embargo resulted in a permanent change in the rate of growth 
of electricity consumption. 

• lzenman and Zabell [ 1981] study the effect of the 9 November, 1965 blackout 
in New York City that resulted from a widespread power failure on the birth 
rate nine months later. An article in The New York Times in August 1966 noted 
that births were up, but subsequent medical and demographic articles appeared 
with conflicting statements. Using the weekly birth rate from 1961 to 1966, the 
authors show that there is no statistically significant increase in the birth rate. 

• Ledolter and Chan [ 1996] used intervention analysis to study the effect of a 
speed change on rural interstate highways in Iowa on the occurrence of traffic 
accidents. 
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Another important application of intervention analysis is in the detection of time 
series outliers. Time series observations are often influenced by external disruptive 

events, such as strikes, social/political events, economic crises, or wars and civil dis­

turbances. The consequences of these events are observations that are not consistent 

with the other observations in the time series. These inconsistent observations are 

called outliers. In addition to the external events identified above, outliers can also be 

caused by more mundane forces, such as data recording or transmission errors. Out­

liers can have a very disruptive effect on model identification, parameter estimation, 
and forecasting, so it is important to be able to detect their presence so that they can 
be removed. Intervention analysis can be useful for this. 

There are two kinds of time series outliers: additive outliers and innovation outliers. 
An additive outlier affects only the level of the t* observation, while an innovation 

outlier affects all observations y
1
*, Yr* +I, Yr* + 2, ... beyond timet* where the original 

outlier effect occurred. An additive outlier can be modeled as 

()(B) <r*> 
Zr = --E:r + Wl1 ¢(B) 

h / (t*). . d" . . d fi d w ere 1 IS an m 1cator time senes e ne as 

An innovation outlier is modeled as 

if t = (* 

ifti=t* 

()(B) U*> 
Zr = --(E:r + w/1 ) 

¢(B) 

When the timing of the outlier is known, it is relatively straightforward to fit the 

intervention model. Then the presence of the outlier can be tested by comparing the 
estimate of the parameter w, say, w, to its standard error. When the timing of the 
outlier is not known, an iterative procedure is required. This procedure is described 

in Box, Jenkins, and Reinsel [1994] and in Wei [2006]. The iterative procedure is 

capable of identifying multiple outliers in the time series. • 

EXERCISES 

6.1 An input and output time series consists of 300 observations. The prewhitened 

input series is well modeled by an AR(2) model y1 = O.Syr-1 + 0.2Yr-2 + ar. 

We have estimated ua = 0.2 and up = 0.4. The estimated cross-correlation 
function between the prewhitened input and output time series is shown below. 

Lag, j 0 2 3 4 5 6 7 8 9 10 

TafJ(j) O.oJ O.o3 -0.03 -0.25 -0.35 -0.51 -0.30 -0.15 -0.02 0.09 -0.01 
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a. Find the approximate standard error of the cross-correlation function. Which 
spikes on the cross-correlation function appear to be significant? 

b. Estimate the impulse response function. Tentatively identify the form of the 
transfer function model. 

6.2 Find initial estimates of the parameters of the transfer function model for the 
situation in Exercise 6.1. 

6.3 An input and output time series consists of 200 observations. The prewhitened 
input series is well modeled by an MA(l) model y1 = 0.8a1_ 1 + a 1 • We have 
estimated a a = 0.4 and a fJ = 0.6. The estimated cross-correlation function be­
tween the prewhitened input and output time series is shown below. 

Lag, j 0 2 3 4 5 6 7 8 9 10 

ra13 (j) 0.01 0.55 0.40 0.28 0.20 0.07 0.02 0.01 -0.02 0.01 -0.01 

a. Find the approximate standard error ofthe cross-correlation function. Which 
spikes on the cross-correlation function appear to be significant? 

b. Estimate the impulse response function. Tentatively identify the form of the 
transfer function model. 

6.4 Find initial estimates of the parameters of the transfer function model for the 
situation in Exercise 6.3. 

6.5 Write the equations that must be solved in order to obtain initial estimates of 
the parameters in a transfer function model with b = 2, r = I, and s = 0. 

6.6 Write the equations that must be solved in order to obtain initial estimates of 
the parameters in a transfer function model with b = 2, r = 2, and s = I. 

6.7 Write the equations that must be solved in order to obtain initial estimates of 
the parameters in a transfer function model with b = 2, r = I, and s = I. 

6.8 Consider a transfer function model with b = 2, r = I, and s = 0. Assume that 
the noise model is AR( I). Find the forecasts in terms of the transfer function 
and noise model parameters. 

6.9 Consider the transfer function model in Exercise 6.8 with b = 2, r = I, and 
s = 0. Now assume that the noise model is AR(2). Find the forecasts in terms 
of the transfer function and noise model parameters. What difference does this 
noise model make on the forecasts? 

6.10 Consider the transfer function model in the Exercise 6.8 with b = 2, r = I, 
and s = 0. Now assume that the noise model is MA(l). Find the forecasts in 
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terms of the transfer function and noise model parameters. What difference 
does this noise model make on the forecasts? 

6.11 Consider the transfer function model 

-0.5 - 0.4B - 0.2B 2 I 
Yr = I- 0.5B Xr-l + I- 0.5BE1 

Find the forecasts that are generated from this model. 

6.12 Sketch a graph of the impulse response function for the following transfer 
function: 

2B 
y, = I- 0.6Bx, 

6.13 Sketch a graph of the impulse response function for the following transfer 
function: 

I- 0.2B 
Yr = I- 0.8Bx1 

6.14 Sketch a graph of the impulse response function for the following transfer 
function: 

Yr = I - I.2B + 0.4B 2 x, 

6.15 Box, Jenkins, and Reinsel [ 1994] fit a transfer function model to data from a 
gas furnace. The input variable is the volume of methane entering the chamber 
in cubic feet per minute and the output is the concentration of carbon dioxide 
emitted. The transfer function model is 

-(0.53 + 0.37 B + 0.51 B2
) I 

Yr = I - 0.57 B Xr + l - 0.53B + 0.63B 2 Et 

where the input and output variables are measured every nine seconds. 

a. What are the values of b, s,and r for this model? 

b. What is the form of the ARIMA model for the errors? 

c. If the methane input was increased, how long would it take before the carbon 
dioxide concentration in the output is impacted? 

6.16 Consider the global mean surface air temperature anomaly and global C02 

concentration data in Table B.6 in Appendix B. Fit an appropriate transfer 
function model to this data, assuming that C02 concentration is the input 
variable. 

6.17 Consider the chemical process yield and uncontrolled operating temperature 
data in Table B.l2. Fit an appropriate transfer function model to this data, 
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assuming that temperature is the input variable. Does including the temperature 
data improve your ability to forecast the yield data? 

6.18 Consider the U.S. Internal Revenue tax refunds data in Table B.20. Fit an 
appropriate transfer function model to this data, assuming that population is 
the input variable. Does including the population data improve your ability to 
forecast the tax refund data? 

6.19 Find time series data of interest to you where a transfer function-noise model 
would be appropriate. 

a. Identify and fit the appropriate transfer function-noise model. 

b. Use an ARIMA model to fit only the y1 series. 

c. Compare the forecasting performance of the two models from parts a and b. 

6.20 Find a time series of interest to you that you think may be impacted by an 
outlier. Fit an appropriate ARIMA model to the time series and use either the 
additive outlier or innovation outlier model to see if the potential outlier is 
statistically significant. 

6.21 Table E6.1 provides I 00 observations on a time series. 

a. Plot the data. 

b. There is an apparent outlier in the data. Use intervention analysis to inves-
tigate the presence of this outlier. 

TABLEE6.1 Time Series Data for Exercise 6.21 
(100 observations, read down then across) 

86.74 83.79 88.42 84.23 82.20 
85.32 84.04 89.65 83.58 82.14 
84.74 84.10 97.85 84.13 81.80 
85.11 84.85 88.50 82.70 82.32 
85.15 87.64 87.06 83.55 81.53 
84.48 87.24 85.20 86.47 81.73 
84.68 87.52 85.08 86.21 82.54 
84.68 86.50 84.44 87.02 82.39 
86.32 85.61 84.21 86.65 82.42 
88.00 86.83 86.00 85.71 82.21 
86.26 84.50 85.57 86.15 82.77 
85.83 84.18 83.79 85.80 83.12 
83.75 85.46 84.37 85.62 83.22 
84.46 86.15 83.38 84.23 84.45 
84.65 86.41 85.00 83.57 84.91 
84.58 86.05 84.35 84.71 85.76 
82.25 86.66 85.34 83.82 85.23 
83.38 84.73 86.05 82.42 86.73 
83.54 85.95 84.88 83.04 87.00 
85.16 86.85 85.42 83.70 85.06 
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6.22 Table E6.2 provides I 00 observations on a time series. This data represents 
weekly shipments of a product. 

a. Plot the data. 

b. Note that there is an apparent increase in the level of the time series at about 
observation 80. Management suspects that this increase in shipments may 
be due to a strike at a competitor's plant. Build an appropriate intervention 
model for this data. Do you think that the impact of this intervention is likely 
to be permanent? 

TABLEE6.2 Time Series Data for Exercise 
6.22 (100 observations, read down then across) 

1551 1556 1613 1552 1838 
1548 1557 1595 1558 1838 
1554 1564 1601 1543 1834 
1557 1592 1587 1552 1840 
1552 1588 1568 1581 1832 
1555 1591 1567 1578 1834 
1556 1581 1561 1587 1842 
1574 1572 1558 1583 1840 
1591 1584 1576 1573 1840 
1575 1561 1572 1578 1838 
1571 1558 1554 1574 1844 
1551 1571 1560 1573 1848 
1558 1578 1550 1559 1849 
1561 1580 1566 1552 1861 
1560 1577 1560 1563 1865 
1537 1583 1570 1555 1874 
1549 1564 1577 1541 1869 
1551 1576 1565 1547 1884 
1567 1585 1571 1553 1886 
1553 1601 1559 1538 18(>7 



CHAPTER 7 

Survey of Other Forecasting Methods 

I always avoid prophesying beforehand, because it is a much better 

policy to prophesy after the event has already taken place. 

SIR WINSTON CHURCHILL, British Prime Minister 

7.1 MULTIVARIATE TIME SERIES MODELS AND FORECASTING 

In many forecasting problems, it may be the case that there are more than just one 

variable to consider. Attempting to model each variable individually may at times 

work. However, in these situations, it is often the case that these variables are some­
how cross-correlated, and that structure can be effectively taken advantage of in 

forecasting. In the previous chapter we explored this for the "unidirectional" case, 

where it is assumed that certain inputs have impact on the variable of interest but not 
the other way around. Multivariate time series models involve several variables that 

are not only serially but also cross-correlated. As in the univariate case, multivariate 

or vector ARIMA models can often be successfully used in forecasting multivariate 
time series. Many of the concepts we have seen in Chapter 5 will be directly applicable 

in the multivariate case as well. We will first start with the property of stationarity. 

7.1.1 Multivariate Stationary Process 

Suppose that the vector time series Y, = (y 11 , y2,, •.• , Ymr) consists of m univariate 

time series. Then Y, with finite first and second order moments is said to be weakly 
stationary if 

(i) E(Y,) = E(Y,+,) = 11, constant for all s 

(ii) Cov(Y,) = E[(Y,- 1-t)(Y,- ll)'] = r(O) 

(iii) Cov(Y,, Yr+s) = r(s) depends only on s 
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Note that the diagonal elements of r(s) give the autocovariance function of the 
individual time series, y;; (s). Similarly, the autocorrelation matrix is given by 

[

PII (s) P12 (s) 

P21 (s) P22 (s) 
p (s) = 

~mds) Pm~(s)-
which can also be obtained by defining 

Pim(s)l 

••.. :~~ ~~~ 
V = diag{y"(O), yn(O) .... , Ymm(O)} 

We then have 

0 

Y22(0) 

0 YmLl 

p(s) = y-I/lf(s)V-lfl 

We can further show that f(s) = f( -s)' and p(s) = p( -s)'. 

7.1.2 Vector ARIMA Models 

(7.1) 

(7.2) 

(7.3) 

The stationary vector time series can be represented with a vector ARMA model 
given by 

~(B)Y1 = E> + E>(B)t:1 (7.4) 

where ~(B)= I- ~ 1 B- ~2B2 - · · ·- ~PBP, E>(B) =I- E> 1B- E>2 B2 - · • · 

- E>q Bq, and t:1 represents the sequence of independent random vectors with£( t:1 ) = 
0 and Cov(t:1) =:E. Since the random vectors are independent, we have rE (s) = 0 
for all s # 0. 

The process Y1 in Eq. (7 .4) is stationary if the roots of 

(7.5) 

are all greater than one in absolute value. Then the process Y, is also said to have 
infinite MA representation given as 

Yr = 1-1 + ii!(B)t:r 
X 

= 1-1 + L ii!;t:r-i 
i=O 

(7.6) 
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Similarly, if the roots ofdet[8(B)] = det[I- 8 1B- 8 2B2 - · · ·- 8qBq] = 0 
are greater than unity in absolute value the process Y1 in Eq. (7.4) is invertible. 

To illustrate the vector ARMA model given in Eq. (7.4), consider the bivariate 

ARMA(l,l) model with 

cl>(B) =I- «<> 1B 

=[I 0]-[¢11 
0 I ¢21 c/J12] B 

¢22 

and 

8(B) =I- 8 1B 

= [ 6 n- [~~: 
Hence the model can be written as 

[[ I o]-[c/J11 ¢12]s]Y~=[81]+[[I o]-[e11 el2]s][c:l.t] 
0 l ¢21 ¢22 82 0 I 821 822 C2.t 

or 

Yu = 81 + ¢11Y1.1-1 + c/J12Y2.1-1 + c:u- 811c:1,1-1- e12c:2.1-1 
Y2.t = 82 + c/Jz1Yu-1 + c/J22Y2.1-1 + c:2.1- e21c:1.1-1- e22c:2.1-1 

As in the univariate case, if nonstationarity is present, through an appropriate degree 

of differencing a stationary vector time series may be achieved. Hence the vector 

ARIMA model can be represented as 

cl>(B)D(B)Y1 = 8 + 8(B)ft 

where 

However, the degree of differencing is usually quite complicated and has to be handled 
with care (Reinsel [1997]). 

The identification of the vector ARIMA model can indeed be fairly difficult. There­

fore in the next section we will concentrate on the more commonly used and intuitively 

appealing vector autoregressive models. For a more general discussion see Reinsel 
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[1997], Liitkepoh1 [2005], Tiao and Box [ 1981], Tiao and Tsay [1989], Tsay [ 1989], 
and Tjostheim and Paulsen [1982]. 

7.1.3 Vector AR (VAR) Models 

The vector AR(p) model is given by 

or 

p 

Yr = 6 + L «<>;Yr-i + E.r 
i=l 

For a stationary vector AR process, the infinite MA representation is given as 

Yr = J.l + lJ!(B)E.r 

(7.7) 

(7.8) 

where lJ!(B) =I+ lJ! 1B + lJ!2B2 +···and J.1 = «1>(8)- 16. Hence we have E (Y1 ) = 
J.l and Cov(E.r. Y1_ 5 ) = 0 for any s > 0 since Y1_, is only concerned with f. 1_,, 

E.r-s-I, ... , which are not correlated with f. 1 • Moreover, we also have 

and 

Cov(E.r, Yr) = Cov(E.r, E.r + lJ!,E.r-1 + lJ!2E.r-2 + · · ·) 

= Cov(E.r, f. 1 ) 

=:E 

r(s) = Cov(f1_,, Y1 ) = Cov(Yr-s· 6 + t«<>;Yr-i +f.) 

= Cov(Yr-s. t «<>;Yr-i) + Cov(Yr-s• E.r) 
i= I ------....--

=0fors>0 

p 

= L Cov(Yr-s, <I>; Yr-i) 
i=l 

p 

= L Cov(Yr-s. Y1_;)«<>; 
i=l 

Hence we have 

p 

r (s) = L r <s- i)«~>; 
i=l 

(7.9) 

(7. 10) 
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and 

" r(O) = L r c -i)<I>; + ~ (7.11) 
i=l 

As in the univariate case, the Yule-Walker equations can be obtained from the first p 

equations as 

r(l)' 

r(O) 

r(p- 2) 

r(p- I)'] [ <1>'1 l 
C(p ~ 2)' ~:12' 

r(O) '*' 

(7.12) 

The model parameters in <I> and ~ can be estimated from Eqs. (7 .II) and (7 .12). 
For the VAR(p), the autocorrelation matrix in Eq. (7.3) will exhibit a decaying 

behavior following a mixture of exponential decay and damped sinusoid. 

Example 7.1 VAR(l) Model 

The autocovariance matrix for VAR( I) is given as 

and 

r(s) = r(s - I )<I>' = ere~ - 2)<1>')<1>' = · · · = r(O)( <I>')' 

p(s) = v-l/2r(s)v-l/2 

= y-1/2r(O)(<I>')'V-I/2 

= y-1/2r(O)V-I/2yi/\<I>')'V-I/2 

= p(O)VI/2(<1>')'V-I/2 

(7.13) 

(7.14) 

where V = diag{y11 (0), Yn(O), ... , Ymm(O)}. The eigenvalues of <I> determine the 
behavior of the autocorrelation matrix. In fact, if the eigenvalues of <I> are a mixture 
of real and complex conjugates, the behavior will be a mixture of the exponential 
decay and damped sinusoid. • 

Example 7.2 

The pressure readings at two ends of an industrial furnace are taken every ten minutes 
and given in Table 7.1. It is expected the individual time series are not only auto­
correlated but also cross-correlated. Therefore it is decided to fit a multivariate time 
series model to this data. The time series plots of the data are given in Figure 7 .1. To 
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TABLE 7.1 Pressure Readings at Both Ends of the Furnace 

Pressure Pressure Pressure Pressure Pressure 

Index Front Back Index Front Back Index Front Back Index Front Back Index Front Back 

7.98 20.1 39 
2 8.64 20.37 40 
3 10.06 19.99 41 
4 8.13 19.62 42 
5 8.84 20.26 43 
6 10.28 19.46 44 
7 9.63 20.21 45 
8 10.5 19.72 46 
9 7.91 19.5 47 

10.23 22.2 
I 1.27 18.86 
9.57 21.16 

10.6 17.89 
9.22 20.55 
8.91 20.47 

10.15 20 
I 1.32 20.07 
12.41 20.82 

77 9.23 21.19 I 15 12.73 19.88 153 
78 10.18 I 8.52 I I 6 I 3.86 22.36 I 54 
79 8.6 21.79 I 17 12.38 19.04 155 
80 9.66 18.4 118 12.51 23.32 156 
81 8.66 19.17 I 19 14.32 20.42 157 
82 7.55 I 8.86 I 20 I 3.47 20.88 158 
83 9.2 I I 9.42 I 2 I I 2.96 20.25 I 59 
84 9.45 I 9.54 I 22 I 1.65 20.69 I 60 
85 10.61 19.79 123 11.99 19.7 161 

5.45 I 9.46 
6.5 18.33 
5.23 19.22 
4.97 I 7.7 
4.3 18.42 
4.47 17.85 
5.48 19.16 
5.7 17.91 
3.78 19.36 

10 9.71 18.97 48 12.41 20.98 86 10.78 18.6 124 9.6 1~.51 162 5.86 18.18 
II I 0.43 22.31 49 I 0.36 20.91 87 I 0.68 22.5 125 7.38 1~.48 163 6.56 20.82 
12 10.99 20.16 50 9.27 20.07 88 14.05 19.1 126 6.98 20.37 164 6.82 18.47 
13 10.08 20.73 51 11.77 19.82 89 14.1 23.82 127 8.18 18.21 165 5.18 19.09 
14 9.75 20.14 52 I 1.93 21.81 90 16.11 21.25 128 7.5 20.85 166 6.3 18.91 
15 9.37 20.34 53 13.6 20.71 
16 I 1.52 18.83 54 14.26 21.94 
17 10.6 24.01 55 14.81 21.75 
18 14.31 19.7 56 11.97 18.97 
19 13.3 22.53 57 10.99 23.11 
20 14.45 20.77 58 10.61 18.92 
21 14.8 21.69 59 9.77 20.28 
22 15.09 20.87 60 I 1.5 21.18 

91 13.58 20.46 129 
92 12.06 22.55 130 
93 13.76 20.78 131 
94 13.55 20.94 132 
95 13.69 21.66 133 
96 15.07 21.61 134 

7.04 18.9 167 9.12 20.93 
9.06 19.84 168 9.3 18.73 
8.61 19.15 169 10.37 22.17 
8.93 20.77 170 11.87 19.03 
9.81 18.95 171 12.36 22.15 
9.57 20.33 172 14.61 20.67 

97 15.14 21.69 135 10.31 21.69 173 13.63 22.39 
98 14.01 21.85 136 11.88 18.66 174 13.12 19.75 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

12.96 21.42 61 
11.28 18.95 62 
10.78 22.61 63 
10.42 19.93 64 
9.79 21.88 65 
11.66 18.3 66 
10.81 20.76 67 
9.79 17.66 68 

10.02 23.09 69 
11.09 17.86 70 
10.28 20.9 71 
9.24 19.5 72 

10.32 22.6 73 
10.65 19 74 
8.51 20.39 75 

11.46 19.23 76 

10.52 19.29 99 12.69 20.87 137 12.36 22.35 175 I 0.07 18.94 
12.58 19.9 100 11.6 20.93 138 12.18 19.34 176 10.14 21.47 
12.33 19.87 101 12.15 20.57 139 12.94 22.76 177 11.02 19.79 
9.77 19.43 102 12.99 21.17 140 14.25 19.6 178 11.37 21.94 

10.71 21.32 103 11.89 19.53 141 12.86 V.74 179 10.98 18.73 
10.01 17.85 104 10.85 21.14 142 12.14 18.06 180 10.04 21.41 
9.48 21.55 105 11.81 20.09 143 10.06 20.11 181 11.3 19.2 
9.39 19.04 106 9.46 18.48 144 10.17 19.56 182 10.59 23 
9.05 19.04 107 9.25 20.33 145 7.56 19.27 183 11.69 17.47 
9.06 21.39 108 9.26 19.82 146 7.77 1!1.59 184 10.73 21.59 
9.87 17.66 109 8.55 20.07 147 9.03 21.85 185 13.64 21.62 
7.84 21.61 110 8.86 19.81 148 10.8 19.21 186 12.92 20.23 
7.78 18.05 Ill 10.32 20.64 149 9.41 19.42 
6.44 19.07 112 11.39 20.04 ISO 7.81 19.79 
7.67 19.92 1\3 11.78 21.52 151 7.99 18.81 
8.48 18.3 114 13.13 20.35 152 5.78 18.46 

identify the model we consider the sample ACF plots as well as the cross correlation 
of the time series given in Figure 7 .2. These plots exhibit an exponential decay pattern, 
suggesting that an autoregressive model may be appropriate. It is further conjectured 
that a VAR(I) or VAR(2) model may provide a good fit. Another approach to model 
identification would be to fit ARIMA models to the individual time series and consider 
the cross correlation of the residuals. For that, we fit an AR( I) model to both time 
series. The cross-correlation plot of the residuals given in Figure 7.3 further suggests 
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FIGURE 7.1 Time series plots of the pressure readings at both ends of the furnace. 
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FIGURE 7.2 The sample ACF plot for (a) the pressure readings at the front end of the furnace, Yt; (b) 

the pressure readings at the back end of the furnace, y2; (c) the cross correlation between _v 1 and y2; and 

(d) the cross correlation between the residuals from the AR( I) model for front pressure and the residuals 

from the AR(l) model for back pressure. 
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FIGURE 7.3 Time series plots of the residuab from the VARII) model. 

that the VAR( 1) model may indeed provide an appropriate fit. Using the SAS ARIMA 
procedure given in Table 7.2, we fit a VAR(l) model. The SAS output in Table 7.3 
contains the estimates of the model parameters, and ¢ 11 = 0.73281.¢ 12 = 0.47405, 
rP21 = 0.41047, and rPn = -0.56040. The constants are 81 = -6.76331 and 82 = 
27.23208. The t statistic in this table confirm that the VAR(l) model provides an 
appropriate fit for the data. The time series plots of the residuals and the fitted values 
are given in Figures 7.3, 7.4, and 7.5. • 

7.2 STATE SPACE MODELS 

In this section we give a brief introduction to an approach to forecasting based on the 
state space model. This is a very general approach that can include regression models 
and ARIMA models. It can also incorporate a Bayesian approach to forecasting and 
models with time-varying coefficients. State space models are based on the Markov 
property, which implies the independence of the future of a process from its past, 
given the present system state. In this type of system, the state of the process at the 

TABLE 7.2 SAS Commands to Fit a VAR(l) Model to the Pressure Data 

proc varmax data=simul4; 
model yl y2 I p=l 
output out=residuals; 

run; 

proc print data=residuals; 
run; 
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TABLE 7.3 SAS Output for the VAR(l) Model for the Pressure Data 

Equation 
yl 

y2 

The VARMAX Procedure 

Type of Model 
Estimation Method 

VAR(l) 
Least Squares Estimation 

Lag 

Parameter 
CONSTl 
AR1 1 1 
AR1 1 2 
CONST2 
AR1 _2_ 1 
AR1 2 2 

Constant Estimates 

Variable 

y1 
y2 

Constant 

-6.76331 
27.23208 

AR Coefficient Estimates 

Variable y1 

y1 
y2 

0.73281 
0.41047 

Schematic 
Representation of 

Parameter Estimates 

Variable/ 
Lag c AR1 

yl ++ 

y2 + +-

+ is > 2*std error, 
- is < -2*std error, 

is between, 
* is N/A 

Model Parameter Estimates 

Standard 
Estimate Error t Value 

-6.76331 1.18977 -5.68 
0.73281 0.03772 19.43 
0.47405 0.06463 7.33 

27.23208 1.11083 24.51 
0.41047 0.03522 11.66 

-0.56040 0.06034 -9.29 
Covariances of Innovations 

y2 

0.47405 
-0.56040 

Pr > It I 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 

Variable y1 y2 

y1 .25114 0. 59716 
y2 0.59716 1.09064 

Information 
Criteria 

AICC 0.041153 
HQC 0.082413 
AIC 0.040084 
SBC 0.144528 
FPEC 1.040904 

351 

Variable 
1 

y1(t-1) 
y2(t-1) 

1 
y1(t-1) 
y2(t-1) 
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FIGURE 7.4 Actual and fitted values for the pressure readings at the front end of the furnace. 

current time contains all of the past information that is required to predict future 
process behavior. We will let the system state at time t be represented by the state 
vector X1.The elements of this vector are not necessarily observed. A state space 
model consists of two equations: an observation or measurement equation that 
describes how time series observations are produced from the state vector, and a state 

; 
Q 

24 

23 

22 

21 

20 

19 

18 

• 

• 

• 
• • • 

• 
• 

•• • 

• 

• 

• 

• 
• 

Variable 

• y2 
--fitted 

• .. 
.. 

17 L,--~----.---.----.---.----.---.----.---,--~ 
19 38 57 76 95 

Time 
114 133 152 171 

FIGURE 7.5 Actual and fitted values for the pressure readings at the back end of the furnace. 
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or system equation that describes how the state vector evolves through time. We will 
write these two equations as 

Yr = h'rXr + £ 1 (observation equation) (7.15) 

and 

X1 = AXr~I + Ga1 (state equation) (7 .16) 

respectively. In the observation equation h1 is a known vector of constants and £ 1 is 
the observation error. If the time series is multivariate then y1 and £ 1 become vectors 
y1 and £ 1 , and the vector h1 becomes a matrix H. In the state equation A and G are 
known matrices and a1 is the process noise. Note that the state equation resembles a 
multivariate AR(l) model, except that it represents the state variables rather than an 
observed time series, and it has an extra matrix G. 

The state space model does not look like any of the time series models we have 
studied previously. However, we can put many of these models in the state space 
form. This is illustrated in the following two examples. 

Example 7.3 

Consider an AR(l) model, which we have previously written as 

Yr = ¢Yr~l + Er 

In this case we let X 1 = y1 and a1 = £ 1 and write the state equation as 

and the observation equation is 

Yr = [l]Xr +0 

Yt = ¢Yt~l + Er 

In the AR( 1) model the state vector consists of previous consecutive observations of 

the time series y1 • • 

Any ARIMA model can be written in the state space form. Refer to Brockwell and 
Davis [1991]. 
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Example 7.4 

Now let's consider a regression model with one predictor variable and AR( I) errors. 
We will write this model as 

Yr = f3o + f3IPr + Er 

Er = 1/>Er-1 + Gr 

where p1 is the predictor variable and E1 is the AR( I) error term. To write this in state 
space form, define the state vector as 

The vector h1 and the matrix A are 

and the state space representation of this model becomes 

Yr =[I, Pr, l]Xr +Er 

Multiplying these equations out will produce the time series regression model with 
one predictor and AR( I) errors. • 

The state space formulation does not admit any new forecasting techniques. Con­
sequently, it does not produce better forecasts than any of the other methods. The 
state space approach does admit a Bayesian formulation of the problem, in which 
the model parameters have a prior distribution that represents our degree of belief 
concerning the values of these coefficients. Then after some history of the process 
(observation) becomes available, this prior distribution is updated into a posterior 
distribution. Another formulation allows the coefficients in the regression model to 
vary through time. 

The state space formulation does allow a common mathematical framework to be 
used for model development. It also permits relatively easy generalization of many 
models. This has some advantages for researchers. It also would allow common 
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computer software to be employed for making forecasts from a variety of techniques. 
This could have some practical appeal to forecasters. 

7.3 ARCH AND GARCH MODELS 

In the standard regression and time series models we have covered so far, many 
diagnostic checks were based on the assumptions that we imposed on the errors: 

independent, identically distributed with zero mean, and constant variance. Our main 

concern has mostly been about the independence of the errors. The constant variance 
assumption is often taken as a given. In many practical cases and particularly in 
finance, it is fairly common to observe the violation of this assumption. Figure 7 .6, 

for example, shows the S&P500 Index (weekly close) from 1995 to 1998. Most of 

the 1990s enjoyed a bull market up until toward the end when the dot-com bubble 
burst. The worrisome market resulted in high volatility (i.e., increasing variance). A 

linear trend model, an exponential smoother, or even an ARIMA model would have 

failed to capture this phenomenon, as all assume constant variance of the errors. This 
will in turn result in the underestimation of the standard errors calculated using OLS 

and will lead to erroneous conclusions. There are different ways of dealing with this 

situation. For example, if the changes in the variance at certain time intervals are 
known, weighted regression can be employed. However, it is often the case that these 

changes are unknown to the analyst. Moreover, it is usually of great value to the 
analyst to know why, when, and how these changes in the variance occur. Hence, if 

possible, modeling these changes (i.e., the variance) can be quite beneficial. 
Consider, for example, the simple AR(p) model from Chapter 5 given as 

Q) 
<f) 

900 

BOO 

0 700 
0 

600 

500 

.'r't = 8 + cfJIYt-1 + ¢2Yt-2 + · · · + c/JpYt-p + <'t 

Date 

FIGURE 7.6 Time series plot of S&P500 Index weekly close from 1995 to 1998. 

(7.17) 
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where e1 is the uncorrelated, zero mean noise with changing variance. Please note 
that we used e1 to distinguish it from our general white noise error E1 • Since we let 
the variance of e1 change in time, one approach is to modele~ as an AR(l) model as 

(7.18) 

where a1 is a white noise sequence with zero mean and constant variance a,~. In this 
notation e1 is said to follow an autoregressive conditional heteroskedastic process 
of order I, ARCH(/). 

To check for a need for an ARCH model, once the ARIMA or regression model 
is fitted, not only the standard residual analysis and diagnostics checks have to be 
performed but also some serial dependence checks fore~ should be made. 

To further generalize the ARCH model, we will consider the alternative repre­
sentation originally proposed by Engle [ 1982]. Let's assume that the error can be 
represented as 

(7.19) 

where w1 is independent and identically distributed with mean 0 and variance I, and 

(7.20) 

Hence the conditional variance of e1 is 

(7 .21) 

We can also argue that the current conditional variance should also depend on the 
previous conditional variances as 

(7.22) 

In this notation, the error term e, is said to follow a generalized autoregressive 
conditional heteroskedastic process of orders k and/, GARCH(k, /),proposed by 
Bollerslev [1986]. In Eq. (7.22) the model for conditional variance resembles an 
ARMA model. However, it should be noted that the model in Eq. (7.22) is not a 
proper ARMA model, as this would have required a white noise error term with a 
constant variance for the MA part. But none of the terms on the right-hand side of the 
equation possess this property. For further details, see Hamilton [ 1994], Bollerslev 
et al. [1992], and Degiannakis and Xekalaki [2004]. Further extensions of ARCH 
models also exist for various specifications of v, in Eq. (7.22): for example, Inte­
grated GARCH (I-GARCH) by Engle and Bollerslev [1986], Exponential GARCH 
(E-GARCH) by Nelson [1991], Nonlinear GARCH by Glosten et al. [1993], and 
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GARCH for multivariate data by Engle and Kroner [1993]. But they are beyond the 
scope of this book. For a brief overview of these models see Hamilton [ 1994]. 

Example 7.5 

Consider the weekly closing values for the S&P500 Index from 1995 to 1998 given 
in Table 7 .4. Figure 7.6 shows that the data exhibits nonstationarity. But before taking 
the first difference of the data, we decided to take the log transformation of the data 
first. As observed in Chapters 2 and 3, the log transformation is sometimes used for 
financial data when we are interested, for example, in the rate of change or percentage 
changes in the price of a stock. For further details, see Granger and Newbold [ 1986]. 
The time series plot of the first differences of the log of the S&P500 Index is given in 
Figure 7.7, which shows that while the mean seems to be stable around 0, the changes 

TABLE7.4 Weekly Closing Values for the S&PSOO Index from 1995 to 1998 

Date Close Date Close Date Close Date Close Date Close 

l/3/1995 460.68 8/14/1995 559.21 3/25/1996 645.5 ll/4/1996 730.82 6/16/1997 898.7 

1/9/1995 465.97 8/21/1995 560.1 4/1/1996 655.86 ll/11/1996 737.62 6/23/1997 887.3 

1/16/1995 464.78 8/28/1995 563.84 4/8/1996 636.71 11/18/1996 748.73 6/30/1997 916.92 

l/23/1995 470.39 9/5/1995 572.68 4/15/1996 645.07 11/25/1996 757.02 7/7/1997 916.68 

1/30/1995 478.65 9/11/1995 583.35 4/22/1996 653.46 12/2/1996 739.6 7/14/1997 915.3 

2/6/1995 481.46 9/18/1995 581.73 4/29/1996 641.63 12/9/1996 728.64 7/21/1997 938.79 

2/13/1995 481.97 9/25/1995 584.41 5/6/1996 652.09 12/16/1996 748.87 7128/1997 947.14 

2/21/1995 488.11 10/2/1995 582.49 5/13/1996 668.91 12/23/1996 756.79 8/4/1997 933.54 

2/27/1995 485.42 10/9/1995 584.5 5/20/1996 678.51 12/30/1996 748.03 8/ll/1997 900.81 

3/6/1995 489.57 10/16/1995 587.46 5/28/1996 669.12 l/6/1997 759.5 8/18/1997 923.54 
3/13/1995 495.52 10/23/1995 579.7 6/3/1996 673.31 l/13/1997 776.17 8/25/1997 899.47 
3/20/1995 500.97 10/30/1995 590.57 6/10/1996 665.85 l/20/1997 770.52 9/2/1997 929.05 

3/27/1995 500.71 11/6/1995 592.72 6/17/1996 666.84 1/27/1997 786.16 9/8/1997 923.91 

4/3/1995 506.42 11/13/1995 600.07 6/24/1996 670.63 2/3/1997 789.56 9/15/1997 950.51 
4/10/1995 509.23 11/20/1995 599.97 7/1/1996 657.44 2/10/1997 808.48 9/22/1997 945.22 

4/17/1995 508.49 11/27/1995 606.98 7/8/1996 646.19 2/18/1997 801.77 9/29/1997 965.03 

4/24/1995 514.71 12/4/1995 617.48 7/15/1996 638.73 2/24/1997 790.82 10/6/1997 966.98 

5/l/1995 520.12 12/11/1995 616.34 7/22/1996 635.9 3/3/1997 804.97 10/13/1997 944.16 

5/8/1995 525.55 12/18/1995 611.95 7/29/1996 662.49 3/1 0/]997 793.17 10/20/1997 941.64 

5/15/1995 519.19 12/26/1995 615.93 8/5/1996 662.1 3/17/1997 784.1 10/27/1997 914.62 

5/22/1995 523.65 1/2/1996 616.71 8/12/1996 665.21 3/24/1997 773.88 11/3/1997 927.51 

5/30/1995 532.51 1/8/1996 601.81 8/19/1996 667.03 3/31/1997 757.9 11/10/1997 928.35 

6/5/1995 527.94 1/15/1996 611.83 8/26/1996 651.99 4/7/1997 737.65 11/17/1997 963.09 

6/12/1995 539.83 1/22/1996 621.62 9/3/1996 655.68 4/14/1997 766.34 11/24/1997 955.4 

6/19/1995 549.71 1/29/1996 635.84 9/9/1996 680.54 4/21/1997 765.37 12/1/1997 983.79 

6/26/1995 544.75 2/5/1996 656.37 9/16/1996 687.03 4/28/1997 812.97 12/8/1997 953.39 

7/3/1995 556.37 2/12/1996 647.98 9/23/1996 686.19 5/5/1997 824.78 12/15/1997 946.78 

7/10/1995 559.89 2/20/1996 659.08 9/30/1996 701.46 5/12/1997 829.75 12/22/1997 936.46 

7/17/1995 553.62 2/26/1996 644.37 10/7/1996 700.66 5/19/1997 847.03 12/29/1997 975.04 

7/24/1995 562.93 3/4/1996 633.5 10/14/1996 710.82 5/27/1997 848.28 
7/31/1995 558.94 3/ll/1996 641.43 10/21/1996 700.92 6/2/1997 858.01 

8/7/1995 555.11 3/18/1996 650.62 10/28/1996 703.77 6/9/1997 893.27 
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FIGURE 7.7 Time series plot of the first difference of the log transformation of the weekly close for 
S&P500 Index from 1995 to 1998. 

in the variance are worrisome. The ACF and PACF plots of the first difference given 
in Figure 7.8 suggest that, except for some borderline significant ACF values at 
seemingly arbitrary lags, there is no autocorrelation left in the data. As in the case 
of the Dow Jones Index in Chapter 5, this suggests that the S&P500 Index follows a 
random walk process. However, the time series plot of the differences does not exhibit 
a constant variance behavior. For that, we consider the ACF and PACF of the squared 
differences given in Figure 7.9, which suggests that an AR(3) model can be used. 
Thus we fit the ARCH(3) model for the variance using the AUTOREG procedure in 
SAS given in Table 7.5. The SAS output in Table 7.6 gives the coefficient estimates 
for the ARCH(3) model for the variance. • 
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FIGURE 7.8 ACF and PACF plots of the first difference of the log transformation of the weekly close 
for the S&P500 Index from 1995 to 1998. 
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FIGURE 7.9 ACF and PACF plots of the square of the first difference of the log transformation of the 
weekly close for S&PSOO Index from 1995 to 1998. 

There are other studies on financial indices also yielding the ARCH(3) model for 
the variance, for example, Bodurtha and Mark [ 1991] and Attanasio [ 1991]. In fact, 
successful implementations of reasonably simple, low-order ARCH/GARCH models 
have been reported in various research studies; see, for example, French eta!. [ 1987]. 

7.4 DIRECT FORECASTING OF PERCENTILES 

Throughout this book we have stressed the concept that a forecast should almost 
always be more than a point estimate of the value of some future event. A prediction 
interval should accompany most point forecasts, because the PI will give the decision 
maker some idea about the inherent variability of the forecast and the likely forecast 
error that could be experienced. Most of the forecasting techniques in this book have 
been presented showing how both point forecasts and Pis are obtained. 

A PI can be thought of as an estimate of the percentiles of the distribution of the 
forecast variable. Typically, a PI is obtained by forecasting the mean and then adding 
appropriate multiples of the standard deviation of forecast error to the estimate of 
the mean. In this section we present and illustrate a different method that directly 
smoothes the percentiles of the distribution of the forecast variable. 

Suppose that the forecast variable y1 has a probability distribution f(y ). We will 
assume that the variable y1 is either stationary or is changing slowly with time. There­
fore a model for y1 that is correct at least locally is 

Yt = J-L + Et 

TABLE 7.5 SAS Commands to Fit the ARCH(3) Model" 

proc autoreg data=sp5003; 
model dlogc = I garch=( q=3); 

run; 

"dlogc is the first difference of the log transformed data. 
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TABLE 7.6 SAS output for the ARCH(3) model 

SSE 
MSE 
Log Likelihood 
SBC 
Normality Test 

Variable DF 

Intercept 1 
ARCHO 1 
ARCH1 1 
ARCH2 1 
ARCH3 1 

GARCH Estimates 

0.04463228 Observations 
0.0002861 Uncond Var 

156 
0.00030888 

422.53308 Total R-Square 
-824.86674 AIC 

1.6976 Pr > ChiSq 

The AUTOREG Procedure 

Standard Approx 
Estimate Error 

0.004342 0.001254 
0.000132 0.0000385 

4.595E-10 3.849E-11 
0.2377 0.1485 
0.3361 0.1684 

-837.06616 
0.4279 

t Value Pr > It I 

3.46 0.0005 
3.42 0.0006 

11.94 <.0001 
1.60 0.1096 
2.00 0.0460 

Let the observations on y1 be classified into a finite number of bins, where the bins 
are defined with limits 

Bo < B1 < · · · < Bn 

The n bins should be defined so that they don't overlap; that is, each observation 
can be classified into one and only one bin. The bins do not have to be of equal 
width. In fact, there may be situations where bins may be defined with unequal width 
to obtain more information about specific percentiles that are of interest. Typically, 
10 :S n :S 20 bins are used. 

Let Pk be the probability that the variable Yr falls in the bin defined by the limits 
Bk-1 and Bk. That is, 

Pk = P(Bk-1 < Yr :S Bk}, k = I, 2, ... , n 

Assume that :L~=I Pk = 1 . Also, note that P(y1 :S Bk) = :L~=I Pj· Now let's con­
sider estimating the probabilities. Write the probabilities as ann x 1 vector p defined 
as 
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Let the estimate of the vector p at time period T be 

[ 

jJ,(T) l 
fJl(T) 

p(T) = . 

Pn(T) 

Note that if we wanted to estimate the percentile of the distribution of Yr corresponding 

to Bk at time period Twe could do this by calculating L~=l Pj(T). 

We will use an exponential smoothing procedure to compute the estimated prob­

abilities in the vector p(T). Suppose that we are at the end of time period t and the 

current observation YT is known. Let uk(T) be an indicator variable defined as follows: 

if Bk-1 < YT :s Bk 

otherwise 

So the indicator variable uk(T) is equal to unity if the observation YT in period T falls 

in the kth bin. Note that L;=J uk(t) is the total number of observations that fell in the 
kth bin during the time periods t = 1, 2, ... , T. Define the n x 1 observation vector 
u(T) as 

[

UJ(T)l uz(T) 
u(T) = . 

Un(T) 

This vector will have n - 1 elements equal to zero and one element equal to unity. 
The exponential smoothing procedure for revising the probabilities fJk(T- 1) given 

that we have a new observation YT is 

Pk(T) = Auk(T) + (l- A)fJk(T- l), k =I, 2, ... , n (7.23) 

where 0 < A < 1 is the smoothing constant. In vector form, Eq. (7.23) for updating 

the probabilities is 

This smoothing procedure produces an unbiased estimate of the probabilities Pk. 

Furthermore, because uk(T) is a Bernoulli random variable with parameter Pk. the 
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variance of fJk(T) is 

, A 
Var[pk(T)] = --pk(l- pk) 

2-A 

Starting estimates or initial values of the probabilities at time T = 0 are required. 
These starting values Pk(O), k = I, 2, ... , n could be subjective estimates or they 
could be obtained from an analysis of historical data. 

The estimated probabilities can be used to obtain estimates of specific percentiles 
of the distribution of the variable y1 • One way to do this would be to estimate the 
cumulative probability distribution of y1 at time T as follows: 

I 
0, if y::: B0 

F(y) = j~ Pj(T), ify = Bk, k =I, 2, ... , n 

1, if y ~ Bn 

The values of the cumulative distribution could be plotted on a graph with F(y) on the 
vertical axis and y on the horizontal axis and the points connected by a smooth curve. 
Then to obtain an estimate of any specific percentile, say, F1_y = I - y, all you would 
need to do is determine the value of y on the horizontal axis corresponding to the 
desired percentile 1 - y on the vertical axis. For example, to find the 95th percentile of 
the distribution of y, find the value of yon the horizontal axis that corresponds to 0.95 
on the vertical axis. This can also be done mathematically. If the desired percentile 
I - y exactly matches one of the bin limits so that F(Bd = I - y, then the solution 
is easy and the desired percentile estimate is F1_y = Bk. However, if the desired 
percentile 1- y is between two of the bin limits, say, F(Bk_ 1) < 1- y < F(Bd, 
then interpolation is required. A linear interpolation formula is 

[F(Bk)- (1- y)]Bk-l + [(1- y)- F(Bk-l)]Bk 
Fl-y = --------------------------------------

F(Bd- F(Bk-l) 
(7.24) 

In the extreme tails of the distribution or in cases where the bins are very wide, it may 
be desirable to use a nonlinear interpolation scheme. 

Example 7.6 

A financial institution is interested in forecasting the number of new automobile loan 
applications generated each week by a particular business channel. The information 
in Table 7. 7 is known at the end of week T - 1. The next-to-last column of this table 
is the cumulative distribution of loan applications at the end of week T - I. This 
cumulative distribution is shown in Figure 7 .I 0. 

Suppose that 74 loan applications are received during the current week, T. This 
number of loan applications fall into the eighth bin (k = 7 in Table 7.7). Therefore 
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TABLE7.7 Distribution of New Automobile Loan Applications 

F(Bk ), at the 
end of week 

k Bk-1 B, p1(T- I) week T -I 

0 0 10 0.02 0.02 
I 10 20 0.04 0.06 
2 20 30 0.05 0.11 
3 30 40 0.05 0.16 
4 40 50 0.09 0.25 
5 50 60 0.10 0.35 
6 60 70 0.13 0.48 
7 70 80 0.16 0.64 
8 80 90 0.20 0.84 
9 90 100 0.10 0.94 

10 100 110 0.06 1.00 

we can construct the observation vector u(T) as follows: 

~ 
:g 0.8 
.a 
0 

~ 0.6 
-~ 
~ 
::J 0.4 
E 
::J 
(.) 0.2 

0 20 

0 
0 
0 
0 
0 

u(T) = 0 

40 

0 
I 
0 
0 
0 

60 

Number of loans 

80 

F(Bd,at 
the end of 
week T -I 

0.018 
0.054 
0.099 
0.144 
0.225 
0.315 
0.432 
0.676 
0.856 
0.946 
1.000 

100 120 

FIGURE 7.10 Cumulative Distribution of the Number of Loan Applications. week T - l. 
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Equation (7.23) is now used with 'A= 0.10 to update the probabilities: 

Pk(T) = AUk(T) + (1- A)pk(T- 1) 

0 0.02 0.018 
0 0.04 0.036 
0 0.05 0.045 
0 0.05 0.045 
0 0.09 0.081 

= 0.1 0 +0.9 0.10 0.090 
0 0.13 0.117 
1 0.16 0.244 
0 0.20 0.180 
0 0.10 0.090 
0 0.06 0.054 

Therefore the new cumulative distribution of loan applications is found by summing 
the cumulative probabilities in Pk(T - 1 ): 

O.oi8 
0.054 
0.099 
0.144 
0.225 

F(Bk) = 0.315 
0.432 
0.676 
0.856 
0.946 
1.000 

These cumulative probabilities are also listed in the last column of Table 7.7. The 
graph of the updated cumulative distribution is shown in Figure 7 .11. 

Now suppose that we want to find the number of loan applications that corresponds 
to a particular percentile of this distribution. If this percentile corresponds exactly to 
one of the cumulative probabilities, such as the 67.6 th percentile, the problem is easy. 
From the last column of Table 7. 7 we would find that 

Fo.676 = 80 

That is, in about two of every three weeks we would expect to have 80 or fewer loan 
applications from this particular channel. However, if the desired percentile does not 
correspond to one of the cumulative probabilities in the last column of Table 7. 7, we 
will need to interpolate using Eq. (7 .24 ). For instance, if we want the 75th percentile, 
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FIGURE 7.11 Cumulative distribution of the number of loan applications. week T. 

we would use Eq. (7.24) as follows: 

j;; _ [F(Bk)- (0.75)]Bk-t + [(0.75)- [F(Bk-t)]Bk 
o.?s- F(Bk)- F(Bk-t) 

(0.856- 0.75)90 + (0.75- 0.676)80 

0.856 - 0.676 

= 85.89 ~ 86 

365 

120 

Therefore, in about three of every four weeks, we would expect to have approximately 
86 or fewer loan applications from this loan channel. • 

7.5 COMBINING FORECASTS TO IMPROVE 
PREDICTION PERFORMANCE 

Readers have been sure to notice that any time series can be modeled and forecast 
using several methods. For example, it is not at all unusual to find that the time series 
Yr, t = 1, 2, ... , which contains a trend (say), can be forecast by both an exponential 
smoothing approach and an ARIMA model. In such situations, it seems inefficient 
to use one forecast and ignore all of the information in the other. It turns out that 
the forecasts from the two methods can be combined to produce a forecast that is 
superior in terms of forecast error than either forecast alone. For a review paper on 
the combination of forecasts, see Clemen [ 1989]. 

Bates and Granger [1969] suggested using a linear combination of the two fore­
casts. Let Yt.T+r(T) and hT+r(T) be the forecasts from two different methods at 
the end of time period T for some future period T + r for the time series Yr. The 
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combined forecast is 

(7.25) 

where k1 and k2 are weights. If these weights are chosen properly, the combined fore­
cast y~ +r can have some nice properties. Let the two individual forecasts be unbiased. 
Then we should choose k2 = I - k1 so that the combined forecast will also be unbiased. 
Let k = k1 so that the combined forecast is 

(7 .26) 

Let the error from the combined forecast bee~ +r ( T) = YT +r - s·~ +r ( T). The variance 
of this forecast error is 

Var[e~+r(T)] = Var[YT+r- )'~+r(T)] 

= Var[kel.T+r(T) +(I- k)e2.T+r(T)] 

where el.r+r(T) and e2s.T+r(T) are the forecast errors in period T + r for the two 
individual forecasting methods, a? and a} are the variances of the individual forecast 
errors for the two forecasting methods, and p is the correlation between the two 
individual forecast errors. A good combined forecast would be one that minimizes 
the variance of the combined forecast error. If we choose the weight k equal to 

(7.27) 

this will minimize the variance of the combined forecast error. By choosing this value 
for the weight, the minimum variance of the combined forecast error is equal to 

(7.28) 

and this minimum variance of the combined forecast error is less than or equal to 
the minimum of the variance of the forecast errors of the two individual forecasting 
methods. That is, 

It turns out that the variance of the combined forecast error depends on the corre­
lation coefficient. Let a? be the smaller of the two individual forecast error variances. 
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Then we have the following: 

1. If p = a 1ja2, then Min Var [e~+r(T)] =a?. 

2. If p = 0, then Var [e~+r(T)] = a?af /(a?+ a:}). 

3. If p--+ -I, then Var [e~+r(T)]--+ 0. 

4. If p--+ 1, then Var [e~+r(T)]--+ 0 if ar f. ai. 
Clearly, we would be happiest if the two forecasting methods have forecast errors 

with large negative correlation. The best possible case is when the two individual 
forecasting methods produce forecast errors that are perfectly negatively correlated. 
However, even if the two individual forecasting methods have forecast errors that are 
positively correlated, the combined forecast will still be superior to the individual 
forecasts provided that p # aJ!a2. 

Example 7.7 

Suppose that two forecasting methods can be used for a time series, and that the two 
variances of the forecast errors are a? = 20 and a:} = 40. If the correlation coefficient 
p = -0.6, then we can calculate the optimum value of the weight from Eq. (7.27) as 
follows: 

40- ( -0.6)-J(40)(20) 

40 + 20- 2( -0.6)-J(40)(20) 

56.9706 

93.9411 

= 0.6065 

So the combined forecasting equation is 

Y~+r = 0.6065yi,T+r(T) + 0.3935hT+r(T) 

Forecasting method one, which has the smallest individual forecast error variance, 
receives about 1.5 times the weight of forecasting method two. The variance of the 
forecast error for the combined forecast is computed from Eq. (7.28): 

a2a2(1 _ p2) 
Min Var[e~+r(T)] = ----o-

2
--'-

1 ---"c\,-----­
a1 + a2 - 2pa!a2 

(20)(40)[1 - ( -0.6?] 

20 + 40- 2( -0.6)-J(20)(40) 

512 

93.9411 

= 5.45 
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This is a considerable reduction in the variance of forecast error. If the correlation 
had been positive instead of negative, then 

40- (0.6)J(40)(20) 

40 + 20- 2(0.6)J(40)(20) 

23.0294 

26.0589 

= 0.8837 

Now forecasting method one, which has the smallest variance of forecast error, 
receives much more weight. The variance of the forecast error for the combined 
forecast is 

a2a2(l _ p2) 
Min Var [ e~ +< ( T)] = ----=-2---'--

1 
-

2
=-o2,-----

a1 + a 2 - 2pa1a2 

(20)(40)[1- (0.6)2] 

20 + 40- 2(0.6)J(20)(40) 

512 

26.0589 

= 19.6478 

In this situation, there is very little improvement in the forecast error resulting from 
the combination of forecasts. 

Newbold and Granger [1974] have extended this technique to the combination 
of n forecasts. Let Yi.T +r(T), i = 1, 2, ... , n be the n unbiased forecasts at the 
end of period T for some future period T + r for the time series y,. The combined 
forecast is 

n 

Y~+r(T) = L k;Yr+r(T) 
i=l 

where k' = [k 1, k2 , .•• , kn] is the vector of weights, and y~+r(T) is a vector of the 
individual forecasts. We require that all of the weights 0 ::=:: k; ::=:: 1 and L~ = 1 k; = l. 
The variance of the forecast error is minimized if the weights are chosen as 
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where LT +r ( T) is the covariance matrix of the lead T forecast errors given by 

1' = [1, I, ... , I] is a vector of ones, and eT+r(T) = YT+rl- YT+r(T) is a vector 
of the individual forecast errors. 

The elements of the covariance matrix are usually unknown and will need to be 
estimated. This can be done by straightforward methods for estimating variances and 
covariances (refer to Chapter 2). It may also be desirable to regularly update the 
estimates of the covariance matrix so that these quantities reflect current forecasting 
performance. Newbold and Granger [ 197 4] suggested several methods for doing this, 
and Montgomery, Johnson and Gardiner [1990] investigate several of these methods. 
They report that a smoothing approach for updating the elements of the covariance 
matrix seems to work well in practice. • 

7.6 AGGREGATION AND DISAGGREGATION OF FORECASTS 

Suppose that you wish to forecast the unemployment level of the state in which you 
live. One way to do this would be to forecast this quantity directly, using the time 
series of current and previous unemployment data, plus any other predictors that you 
think are relevant. Another way to do this would be to forecast unemployment at a 
substate level (say, by county and/or metropolitan area), and then to obtain the state 
level forecast by summing up the forecasts for each substate region. Thus individual 
forecasts of a collection of subseries are aggregated to form the forecasts of the 
quantity of interest. If the substate level forecasts are useful in their own right (as they 
probably are), this second approach seems very useful. However, there is another 
way to do this. First, forecast the state level unemployment and then disaggregate 
this forecast into the individual substate level regional forecasts. This disaggregation 
could be accomplished by multiplying the state level forecasts by a series of indices 
that reflect the proportion of total statewide unemployment that is accounted for by 
each region at the substate level. These indices also evolve with time, so it will be 
necessary to forecast them as well as part of a complete system. 

This problem is sometimes referred to as the top-down versus bottom-up fore­
casting problem. In many if not most of these problems, we are interested in both 
forecasts for the top level quantity (the aggregate time series) and forecasts for the 
bottom level time series that are the components of the aggregate. 

This leads to an obvious question: Is it better to forecast the aggregate or top level 
quantity directly and then disaggregate, or to forecast the individual components 
directly and then aggregate them to form the forecast of the total? In other words, 
is it better to forecast from the top down or from the bottom up? The literature in 
statistical forecasting, business forecasting and econometrics, and time series analysis 
suggests that this question is far from settled at either the theoretical or empirical 
levels. Sometimes the aggregate quantity is more accurate than the disaggregated 
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components, and sometimes the aggregate quantity is subject to less measurement 
error. It may be more complete and timely as well, and these aspects of the problem 
should encourage those who consider forecasting the aggregate quantity and then 
disaggregating. On the other hand, sometimes the bottom level data is easier to obtain 
and is at least thought to be more timely and accurate, and this would suggest that a 
bottom-up approach would be superior to the top-down approach. 

In any specific practical application it will be difficult to argue on theoretical 
grounds what the correct approach should be. Therefore, in most situations, this 
question will have to be settled empirically by trying both approaches. With mod­
ern computer software for time series analysis and forecasting, this isn't difficult. 
However, in conducting such a study it is a good idea to have an adequate amount 
of data for identifying and fitting the time series models for both the top level series 
and the bottom level series, and a reasonable amount of data for testing the two ap­
proaches. Obviously, data splitting should be done here, and the data used for model 
building should not be used for investigating forecasting model performance. Once 
an approach is determined, the forecasts should be carefully monitored over time to 
make sure that the dynamics of the problem have not changed, and that the top-down 
approach that was found to be optimal in testing (say) is now no longer as effective as 
the bottom-up approach. The methods for monitoring forecasting model performance 
presented in Chapter 2 are useful in this regard. 

There are some results available about the effect of adding time series together. 
This is a special case of a more general problem called temporal aggregation, in 
which several time series may be combined as, for instance, when monthly data are 
aggregated to form quarterly data. For example, suppose that we have a top level 
time series Y1 that is the sum of two independent time series YJ.t and y2_1 , and let's 
assume that both of the bottom level time series are moving average (MA) processes 
of orders q 1 and q2 , respectively. So, using the notation for ARIMA models introduced 
in Chapter 5, we have 

where a1and b1 are independent white noise processes. Now let q be the maximum of 
q1 and q2• The autocorrelation function for the top level time series Y1 must be zero 
for all of the lags beyond q. This means that there is a representation of the top level 
time series as an MA process 

where u1 is white noise. This moving average process has the same order as the higher 
order bottom level time series. 

Now consider the general ARIMA(p1, d, q1) model 
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and suppose that we are interested in the sum of two time series Z1 = y1 + w1 • A 
practical situation where this occurs, in addition to the top-down versus bottom-up 

problem, is when the time series y1 we are interested in cannot be observed directly 

and w1represents added noise due to measurement error. We want to know something 

about the nature of the sum of the two series, z,. The sum can be written as 

Assume that the time series w 1can be represented as a stationary ARMA(p2,0, q2) 
model 

where b1 is white noise independent of a1 • Then the top level time series is 

The term on the left-hand side is a polynomial of order P = p 1 + p 2 , the first term 
on the right-hand side is a polynomial of order q1 + p 2 , and the second term on 

the right-hand side is a polynomial of order p 1 + q2 +d. Let Q be the maximum 
of q 1 + p 2 andp 1 + q2 +d. Then the top level time series is an ARIMA(P, d, Q) 

model, say, 

where u1 is white noise. 

Example 7.8 

Suppose that we have a time series that is represented by an IMA( 1, 1) model, and to 
this time series is added white noise. This could be a situation where measurements 

on a periodic sample of some characteristic in the output of a chemical process are 

made with a laboratory procedure, and the laboratory procedure has some built­

in measurement error, represented by the white noise. Suppose that the underlying 
IMA( I, I) model is 

Yt = Yt-l - 0.6at-l +at 

Let D 1 be the first difference of the observed time series Z1 = y1 + w1 , where W 1 is 
white noise: 

Dt = Zt- Zt-l 

=(I- 8B)a1 +(I - B)wt 
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The autocovariances of the differenced series are 

Yo = a;(l + 8 2
) + 2a~ 

Yl = -a2(} - a2 a u• 

YJ = 0, j ::: 2 

Because the autocovariances at and beyond lag 2 are zero, we know that the observed 
time series will be IMA(l, 1). In general, we could write this as 

Zt = Zt-1- (}*ut-I+ Ur 

where the parameter e* is unknown. However, we can find e* easily. The autoco­
variances of the first differences of this observed time series are 

Yo = a;(l + 8*2
) 

Y1 = -a;e* 

YJ = 0, j::: 2 

Now all we have to do is to equate the autocovariances for this observed series in 
terms of the parameter(}* with the autocovariances of the time series D 1 and we can 
solve fore* and a;. This gives the following: 

e* 0.6 

I - (}* I - 0.6 + aJ,/a} 

2 2 (0.6)2 
au = aa (}*2 

Suppose that a; = 2 and a~ = 1. Then it turns out that the solution is e* = 0.4 
and a; = 4.50. Adding the measurement error from the laboratory procedure to the 
original sample property has inflated the variability of the observed value rather 
considerably over the original variability that was present in the sample property. • 

7.7 NEURAL NETWORKS AND FORECASTING 

Neural networks, or more accurately artificial neural networks, have been moti­
vated by the recognition that the human brain processes information in a way that 
is fundamentally different from the typical digital computer. The neuron is the basic 
structural element and information-processing module of the brain. A typical human 
brain has an enormous number of them (approximately 10 billion neurons in the 
cortex and 60 trillion synapses or connections between them) arranged in a highly 
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complex, nonlinear, and parallel structure. Consequently, the human brain is a very 
efficient structure for information processing, learning, and reasoning. 

An artificial neural network is a structure that is designed to solve certain types 
of problems by attempting to emulate the way the human brain would solve the 
problem. The general form of a neural network is a "black-box" type of model that is 
often used to model high-dimensional, nonlinear data. In the forecasting environment, 
neural networks are sometimes used to solve prediction problems instead of using a 
formal model building approach or development of the underlying knowledge of the 
system that would be required to develop an analytical forecasting procedure. If it 
was a successful approach that might be satisfactory. For example, a company might 
want to forecast demand for its products. If a neural network procedure can do this 
quickly and accurately, the company may have little interest in developing a specific 
analytical forecasting model to do it. Hill eta!. [1994] is a basic reference on artificial 
neural networks and forecasting. 

Multilayer feedforward artificial neural networks are multivariate statistical models 
used to relate p predictor variables x 1, x2 , .•• , x r to one or more output or response 
variables y. In a forecasting application, the inputs could be explanatory variables 
such as would be used in a regression model, and they could be previous values of the 
outcome or response variable (lagged variables). The model has several layers, each 
consisting of either the original or some constructed variables. The most common 

structure involves three layers: the inputs, which are the original predictors; the 
hidden layer, comprised of a set of constructed variables; and the output layer, made 
up of the responses. Each variable in a layer is called a node. Figure 7.12 shows a 
typical three-layer artificial neural network for forecasting the output variable y in 
terms of several predictors. 

A node takes as its input a transformed linear combination of the outputs from the 
nodes in the layer below it. Then it sends as an output a transformation of itself that 

Inputs Hidden Layer Output Layer 

FIGURE 7.12 Artificial neural network with one hidden layer. 
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becomes one of the inputs to one or more nodes on the next layer. The transformation 
functions are usually either sigmoidal (S shaped) or linear and are usually called 
activation functions or transfer functions. Let each of the k hidden layer nodes a 11 

be a linear combination of the input variables: 

p 

all= L WijiiXj +ell 
j=l 

where the w 1j 11 are unknown parameters that must be estimated (called weights) and 
Ouis a parameter that plays the role of an intercept in linear regression (this parameter 
is sometimes called the bias node). 

Each node is transformed by the activation function g( ). Much of the neural 
networks literature refers to these activation functions notationally as a 11 because of 
theirS shape (the use of a is an unfortunate choice of notation so far as statisticians are 
concerned). Let the output of node a 11 be denoted by Z. 11 = g(a 11 ). Now we form a linear 
combination of these outputs, say, b = L~=l W 11 aZ. 11 • Finally, the output response or 
the predicted value for y is a transformation of the b, say, y = g(b ), where g(b) is the 
activation function for the response. 

The response variable y is a transformed linear combination of transformed linear 
combinations of the original predictors. For the hidden layer, the activation function 
is often chosen to be either a logistic function or a hyperbolic tangent function. The 
choice of activation function for the output layer often depends on the nature of the 
response variable. If the response is bounded or dichotomous, the output activation 
function is usually taken to be sigmoidal, while if it is continuous. an identity function 
is often used. 

The neural network model is a very flexible form containing many parameters, and 
it is this feature that gives a neural network a nearly universal approximation property. 
That is, it will fit many historical data sets very well. However. the parameters in the 
underlying model must be estimated (parameter estimation is called "training" in the 
neural network literature), and there are a lot of them. The usual approach is to estimate 
the parameters by minimizing the overall residual sum of squares taken over all 
responses and all observations. This is a nonlinear least squares problem, and a variety 
of algorithms can be used to solve it. Often a procedure called backpropagation 
(which is a variation of steepest descent) is used, although derivative-based gradient 
methods have also been employed. As in any nonlinear estimation procedure. starting 
values for the parameters must be specified in order to use these algorithms. It is 
customary to standardize all the input variables, so small essentially random values 
are chosen for the starting values. 

With so many parameters involved in a complex nonlinear function, there is consid­
erable danger of overfitting. That is, a neural network will proYide a nearly perfect 
fit to a set of historical or "training" data, but it will often predict new data very 
poorly. Overfitting is a familiar problem to statisticians trained in empirical model 
building. The neural network community has developed various methods for dealing 
with this problem, such as reducing the number of unknown parameters (this is called 
"optimal brain surgery"), stopping the parameter estimation process before complete 
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convergence and using cross-validation to determine the number of iterations to use, 
and adding a penalty function to the residual sum of squares that increases as a function 
of the sum of the squares of the parameter estimates. 

There are also many different strategies for choosing the number of layers and 
number of neurons and the form of the activation functions. This is usually referred 
to as choosing the network architecture. Cross-validation can be used to select the 
number of nodes in the hidden layer. 

Artificial neural networks are an active area of research and application in many 
fields, particularly for the analysis of large, complex, highly nonlinear problems. The 
overfitting issue is frequently overlooked by many users and even the advocates of 
neural networks, and because many members of the neural network community do 
not have sound training in empirical model building, they often do not appreciate 
the difficulties overfitting may cause. Furthermore, many computer programs for 
implementing neural networks do not handle the overfitting problem particularly 
well. Studies of the ability of neural networks to predict future values of a time 
series that were not used in parameter estimation (fitting) have been, in many cases. 
disappointing. Our view is that neural networks are a complement to the familiar 
statistical tools of forecasting, and they might be one of the approaches you should 
consider, but they are not a replacement for them. 

7.8 SOME COMMENTS ON PRACTICAL IMPLEMENTATION AND 
USE OF STATISTICAL FORECASTING PROCEDURES 

Over the last 35 years there has been considerable information accumulated about 
forecasting techniques and how these methods are applied in a wide variety of set­
tings. Despite the development of excellent analytical techniques, many business 
organizations still rely on judgment forecasts by their marketing, sales, and man­
agerial/executive teams. The empirical evidence regarding judgment forecasts is that 
they are not as successful as statistically based forecasts. There are some fields, such 
as financial investments, where there is considerable strong evidence that this is so. 
There are a number of reasons why we would expect judgment forecasts to be inferior 
to statistical methods 

Inconsistency, or changing one's mind for no compelling or obvious reason, is 
a significant source of judgment forecast errors. Formalizing the forecasting process 
through the use of analytical methods is one approach to eliminating inconsistency 
as a source of error. Formal decision rules that predict the variables of interest using a 
relatively few inputs invariably predict better than humans, because humans are incon­
sistent over time in their choice of input factors to consider, and how to weight them. 

Letting more recent events dominate one's thinking, instead of weighting current 
and previous experience more evenly, is another source of judgment forecast errors. 
If these recent events are essentially random in nature, they can have undue impact 
on current forecasts. A good forecasting system will certainly monitor and evaluate 
recent events and experiences, but will only incorporate them into the forecasts if 
there is sufficient evidence to indicate that they represent real effects. 
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Mistaking correlation for causality can also be a problem. This is the belief that 
two (or more) variables are related in a causal manner and taking action on this, 
when the variables exhibit only a correlation between them. It is not difficult to find 
correlative relationships; any two variables that are monotonically related will exhibit 
strong correlation. So company sales may appear to be related to some factor that 
over a short time period is moving synchronously with sales, but relying on this as a 
causal relationship will lead to problems. The statistical significance of patterns and 
relationships does not necessarily imply a cause-and-effect relationship. 

Judgment forecasts are often dominated by optimistic thinking. Most humans 
are naturally optimistic. An executive wants sales for the product line to increase 
because his/her bonus may depend on the results. A product manager wants his/her 
product to be successful. Sometimes bonus payouts are made for exceeding sales 
goals, and this can lead to unrealistically low forecasts, which in tum are used to set 
the goals. However, unrealistic forecasts, whether too high or too low, always result 
in problems downstream in the organization where forecast errors have meaningful 
impact on efficiency, effectiveness, and bottom-line results. 

Humans are notorious for underestimating variability. Judgment forecasts rarely 
incorporate uncertainty in any formal way and, as a result, often underestimate its 
magnitude and impact. A judgment forecaster often completely fails to express any 
uncertainly in his/her forecast. Because all forecasts are wrong, one must have some 
understanding of the magnitude of forecast errors. Furthermore. planning for appro­
priate actions in the face of likely forecast error should be part of the decision-making 
process that is driven by the forecast. Statistical forecasting methods can be accom­
panied by prediction intervals. In our view, every forecast should be accompanied 
by a PI that adequately expresses for the decision maker how much uncertainty is 
associated with the point forecast. 

In general, both the users of forecasts (decision makers) and the preparers (fore­
casters) have reasonably good awareness of many of the basic analytical forecasting 
techniques, such as exponential smoothing and regression-based methods. They are 
less familiar with time series models such as the ARIMA model, transfer function 
models, and other more sophisticated methods. Decision makers are often unsatisfied 
with subjective and judgment methods and want better forecasts. They often feel that 
analytical methods can be helpful in this regard. 

This leads to a discussion of expectations. What kind of results can one reasonably 
expect to obtain from analytical forecasting methods? By results, we mean forecast 
errors. Obviously, the results that a specific forecaster obtains are going to depend on 
the specific situation: what variables are being forecast, the availability and quality of 
data, the methods that can be applied to the problem, and the tools and expertise that 
are available. However, because there have been many surveys of both forecasters and 
users of forecasts, as well as forecast competitions (e.g., see Makridakis et al. [ 1993]) 
where many different techniques have been applied in head-to-head challenges, some 
broad conclusions can be drawn. 

In general, exponential smoothing type methods, including Winters' method, typ­
ically experience mean absolute prediction errors ranging from 10% to 15% for lead­
one forecasts. As the lead time increases, the prediction error increases, with mean 
absolute prediction errors typically in the 17-25% range at lead times of six periods. 
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At 12 period lead times, the mean absolute prediction error can range from 18% to 
45%. More sophisticated time series models such as ARIMA models are not usually 
much better, with the mean absolute prediction error ranging from about 10% for 
lead-one forecasts, to about 17% for lead-six forecasts, and up to 25% for 12 period 
lead times. This probably accounts for some of the dissatisfaction that forecasters 
often express with the more sophisticated techniques; they can be much harder to use, 
but they don't have substantial payback in terms of reducing forecasting errors. Re­
gression methods often produce mean absolute prediction errors ranging from 12% to 
18% for lead-one forecasts. As the lead time increases, the prediction error increases, 
with mean absolute prediction errors typically in the 17-20% range for six period 
lead times. At 12 period lead times, the mean absolute prediction error can range 
from 20% to 25%. Seasonal time series are often easier to predict than nonseasonal 
ones, because seasonal patterns are relatively stable through time, and relatively sim­
ple methods such as Winters' method and seasonal adjustment procedures typically 
work very well as forecasting techniques. Interestingly, seasonal adjustment tech­
niques are not used nearly as widely as we would expect, given their relatively good 
performance. 

When forecasting is done well in an organization, it is typically done by a group 
of individuals who have some training and experience in the techniques, have access 
to the right information, and have an opportunity to see how the forecasts are used. If 
higher levels of management routinely intervene in the process and use their judgment 
to modify the forecasts, it's highly desirable if the forecast preparers can interact with 
these managers to learn why the original forecasts require modification. Unfortunately, 
in many organizations, forecasting is done in an informal way, and the forecasters are 
often marketing or sales personnel, or market researchers, for whom forecasting is 
only a (sometimes small) part of their responsibilities. There is often a great deal of 
turnover in these positions, and so no long-term experience base or continuity builds 
up. The lack of a formal, organized process is often a big part of the reason why 
forecasting is not as successful as it should be. 

Any evaluation of a forecasting effort in an organization should consider at least 

the following questions: 

1. What methods are being used? Are the methods appropriate to organizational 
needs, when planning horizons and other business issues are taken into account? 
Is there an opportunity to use more than one forecasting procedure? Could 
forecasts be combined to improve results? 

2. Are the forecasting methods being used correctly? 

3. Is an appropriate set of data being used in preparing the forecasts? Is data quality 
an issue? Are the underlying assumptions of the methods employed satisfied at 
least well enough for the methods to be successful? 

4. Is uncertainty being addressed adequately? Are prediction intervals used as part 
of the forecast report? Do forecast users understand the Pis? 

5. Does the forecasting system take economic/market forces into account? Is there 
an ability to capitalize on current events, natural forces, and swings in customer 
preferences and tastes? 
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6. Is forecasting separate from planning? Very often the forecast is really just a 
plan or schedule. For example, it may reflect a production plan, not a forecast 
of what we could realistically expect to sell (i.e., demand). Many individuals 
do not understand the difference between a forecast and a plan. 

In the short to medium term, most businesses can benefit b) taking advantage of 
the relative stability of seasonal patterns and the inertia present in most time series of 
interest. These are the methods we have focused on in this book. 

EXERCISES 

7.1 Show that an AR(2) model can be represented in state space form. 

7.2 Show that an MA( I) model can be written in state space form. 

7.3 Consider the information on weekly spare part demand shown in Table E7.1. 
Suppose that 74 requests for 65 parts are received during the current week, T. 
Find the new cumulative distribution of demand. Use A. = 0.1. What is your 
forecast of the 70th percentile of the demand distribution? 

TABLE E7.1 Spare Part Demand Information for 
Exercise 7.3 

F(B1 ). at the 
end of week 

k B,_J B, Jh(T-1) T-1 

0 0 5 0.02 0.02 
5 10 0.03 0.05 

2 10 15 O.o4 0.09 
3 15 20 0.05 0.14 
4 20 25 0.08 0.::!2 
5 25 30 0.09 0.31 
6 30 35 0.12 0.43 
7 35 40 0.17 O.nO 
8 45 50 0.21 0.81 
9 50 55 0.11 0.92 

10 55 60 0.08 1.00 

7.4 Consider the information on weekly luxury car rentals shown in Table E7.2. 
Suppose that 37 requests for rentals are received during the current week. T. 
Find the new cumulative distribution of demand. Use A = 0.1. What is your 
forecast of the 90th percentile of the demand distribution? 
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TABLEE7.2 Luxury Car Rental Demand 
Information for Exercise 7.4 

F(B!}, at the 
end of week 

k Bk- I Bk fh(T- l) T-1 

0 0 5 0.06 0.06 
5 10 0.07 0.13 

2 10 15 0.08 0.21 
3 15 20 0.09 0.30 
4 20 25 0.15 0.45 
5 25 30 0.22 0.67 
6 30 35 0.24 0.91 
7 35 40 0.05 0.96 
8 45 50 0.04 1.00 

7.5 Rework Exercise 7.3 using A = 0.4. How much difference does changing the 
value of the smoothing parameter make in your estimate of the 70th percentile 
of the demand distribution? 

7.6 Rework Exercise 7.4 using 'A = 0.4. How much difference does changing the 
value of the smoothing parameter make in your estimate of the 70th percentile 
of the demand distribution? 

7.7 Suppose that two forecasting methods can be used for a time series, and that the 
two variances of the forecast errors are o} = I 0 and af = 25. If the correlation 
coefficient p = -0.75, calculate the optimum value of the weight used to 
optimally combine the two individual forecasts. What is the variance of the 
combined forecast? 

7.8 Suppose that two forecasting methods can be used for a time series, and that 
the two variances of the forecast errors are a~ = 15 and aJ = 20. If the cor­
relation coefficient p = -0.4, calculate the optimum value of the weight used 
to optimally combine the two individual forecasts. What is the variance of the 
combined forecast? 

7.9 Suppose that two forecasting methods can be used for a time series, and that 
the two variances of the forecast errors are a 1

2 = 8 and af = 16. If the corre­
lation coefficient p = -0.3, calculate the optimum value of the weight used 
to optimally combine the two individual forecasts. What is the variance of the 
combined forecast? 

7.10 Suppose that two forecasting methods can be used for a time series, and that the 
two variances of the forecast errors are a~ = I and aJ = 8. If the correlation 
coefficient p = -0.65, calculate the optimum value of the weight used to 
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optimally combine the two individual forecasts. What is the variance of the 
combined forecast? 

7.11 Rework Exercise 7.8 assuming that p = 0.4. What effect does changing the 
sign of the correlation coefficient have on the weight used to optimally combine 
the two forecasts? What is the variance of the combined forecast? 

7.12 Rework Exercise 7.9 assuming that p = 0.3. What effect does changing the 
sign of the correlation coefficient have on the weight used to optimally combine 
the two forecasts? What is the variance of the combined forecast? 

7.13 Suppose that there are three lead-one forecasts available for a time series, and 
the covariance matrix of the three forecasts is as follows: 

Find the optimum weights for combining these three forecasts. What is the 
variance of the combined forecast? 

7.14 Suppose that there are three lead-one forecasts available for a time series, and 
the covariance matrix of the three forecasts is as follows: 

Lr+I(T) = [~2 ~
2 

=~] 
-1 -2 10 

Find the optimum weights for combining these three forecasts. What is the 
variance of the combined forecast? 

7.15 Table E7.3 presents 25 forecast errors for two different forecasting techniques 
applied to the same time series. Is it possible to combine the two forecasts to 
improve the forecast errors? What is the optimum weight for combining the 
forecasts? What is the variance of the combined forecast"? 

7.16 Show that when combining two forecasts, if the correlation between the two 
sets of forecast errors is p = a 1ja2, then Min Var [e~+r(T)] = a 1

2, where a? 
is the smaller of the two forecast error variances. 

7.17 Show that when combining two forecasts, if the correlation between the two 
sets of forecast errors is p = 0, then Var [e~ +r(T)) = afai/(a1

2 + af). 
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TABLEE7.3 Forecast Errors for Exercise 7.15 

Time Period Forecast Errors, Method I Forecasts Errors, Method 2 

-0.78434 6.9668 

2 -0.31111 4.5512 

3 2.15622 -1.2681 

4 -1.81293 6.8967 

5 -0.77498 1.6574 

6 2.31673 -8.7601 
7 -0.94866 0.7472 

8 0.81314 -0.7457 

9 -2.95718 -0.5355 

10 0.08175 -1.3458 

11 1.08915 -5.8232 

12 -0.20637 1.2722 

13 0.57157 -2.4561 

14 0.41435 4.3111 

15 0.47138 5.9894 

16 1.23274 -6.8757 

17 -0.66288 1.5996 

18 1.71193 10.5031 

19 -2.00317 9.8664 

20 -2.87901 3.0399 

21 -2.87901 14.1992 

22 -0.16103 9.0080 

23 2.12427 -0.4551 

24 0.60598 0.7123 

25 0.18259 1.7346 

7.18 Let y1 be an IMA(l, 1) time series with parameter e = 0.4. Suppose that this 

time series is observed with an additive white noise error. 

a. What is the model form of the observed error? 

b. Find the parameters of the observed time series, assuming that the variances 

of the errors in the original time series and the white noise are equal. 

7.19 Show that an AR(l) time series that is observed with an additive white noise 

error is an ARMA( 1, 1) process. 

7.20 Generate 100 observations of an ARIMA(l, 1, 0) time series. Add 100 

observations of white noise to this time series. Calculate the sample ACF and 

sample PACF of the new time series. Identify the model form and estimate 

the parameters. 

7.21 Generate I 00 observations of an ARIMA( 1, 1, 0) time series. Generate another 

100 observations of an AR( 1) time series and add these observations to the 
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original time series. Calculate the sample ACF and sample PACF of the new 
time series. Identify the model form and estimate the parameters. 

7.22 Generate 100 observations of an AR(2) time series. Generate another 100 
observations of an AR( I) time series and add these observations to the original 
time series. Calculate the sample ACF and sample PACF of the new time 
series. Identify the model form and estimate the parameters. 

7.23 Generate 100 observations of an MA(2) time series. Generate another 100 
observations of an MA( I) time series and add these observations to the 
original time series. Calculate the sample ACF and sample PACF of the new 
time series. Identify the model form and estimate the parameters. 

7.24 Table E7.4 presents data on the type of heating fuel used in new single-family 
houses built in the United States from 1971 through 2005. Develop an appro­
priate multivariate time series model for the gas, electricity, and oil time series. 

7.25 Reconsider the data on heating fuel in Table E7.4. Suppose that you are 
interested in forecasting the aggregate series (the Total column in Table E7 .4). 
One way to do this is to forecast the total directly. Another way is to forecast 
the individual component series and sum the forecasts of the components to 
obtain a forecast for the total. Investigate these approaches for this data and 
report on your conclusions. 

7.26 Reconsider the data on heating fuel in Table E7.4. Suppose that you are 
interested in forecasting the four individual components series (the Gas, 
Electricity, Oil, and Other Types columns in Table E7.4). One way to do this 
is to forecast the individual time series directly. Another way is to forecast the 
total and obtain forecasts of the individual component series by decomposing 
the forecast for the totals into component parts. Investigate these approaches 
for this data and report on your conclusions. 

7.27 Table E7.5 contains data on property crimes reported to the police in the 
United States. Both the number of property crimes and the crime rate per 
100,000 individuals are shown. Using the data on the number of crimes 
reported, develop an appropriate multivariate time series model for the 
burglary, larceny-theft, and motor vehicle theft time series. 

7.28 Repeat Exercise 7.27 using the property crime rate data. Compare the models 
obtained using the number of crimes reported versus the crime rate. 

7.29 Reconsider the data on property crimes in Table E7.5. Suppose that you are 
interested in forecasting the aggregate crime rate series. One way to do this is to 
forecast the total directly. Another way is to forecast the individual component 
series and sum the forecasts of the components to obtain a forecast for the 
total. Investigate these approaches for this data and report on your conclusions. 
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TABLE E7.4 Data for Exercise 7.24 

Number of Houses (in thousands) 

Other Types 
Year Total Gas Electricity Oil or None 

1971 1014 605 313 83 15 
1972 1143 621 416 93 13 
1973 1197 560 497 125 16 
1974 940 385 458 85 II 
1975 875 347 429 82 18 
1976 1034 407 499 110 19 
1977 1258 476 635 120 28 
1978 1369 511 710 109 40 
1979 1301 512 662 86 41 
1980 957 394 482 29 52 
1981 819 339 407 16 57 
1982 632 252 315 17 48 
1983 924 400 448 22 53 
1984 1025 460 492 24 49 
1985 1072 466 528 36 42 
1986 1120 527 497 52 45 
1987 1123 583 445 58 3S 
1988 1085 587 402 60 36 
1989 1026 596 352 50 28 
1990 966 573 318 4S 27 
1991 838 505 267 37 29 
1992 964 623 283 36 22 
1993 1039 682 303 34 20 
1994 1160 772 333 39 16 
1995 1066 708 305 37 16 
1996 1129 781 299 37 II 
1997 1116 771 296 38 II 
1998 1160 809 307 34 10 

1999 1270 884 343 35 9 
2000 1242 868 329 37 8 
2001 1256 875 336 35 9 
2002 1325 907 371 38 10 
2003 1386 967 377 31 12 
2004 1532 1052 440 29 10 
2005 1636 1082 514 31 9 

7.30 Reconsider the data on property crimes in Table E7.5. Suppose that you are 
interested in forecasting the four individual component series (the Burglary, 
Larceny-Theft, and Motor Vehicle Theft columns in Table E7 .5). One way 
to do this is to forecast the individual time series directly. Another way is 
to forecast the total and obtain forecasts of the individual component series 
by decomposing the forecast for the totals into component parts. Investigate 
these approaches using the crime rate data, and report on your conclusions. 
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TABLEE7.5 Property Crime Data for Exercise 7.27 

Property Crime (in thousands) 

Motor Vehicle 
Year Total Burglary Larceny-Theft Theft 

1960 3,096 912 1,855 328 
!961 3,199 950 1,913 336 
1962 3,451 994 2,090 367 
1963 3,793 1,086 2,298 408 
1964 4,200 1,213 2,514 473 
1965 4,352 1,283 2,573 497 
1966 4,793 1,410 2,822 561 
!967 5,404 1,632 3,112 660 
1968 6,125 1,859 3,483 784 
!969 6,749 1,982 3,889 879 
1970 7,359 2,205 4,226 928 
1971 7,772 2,399 4,424 948 
1972 7,414 2,376 4,15 I 887 
1973 7,842 2,566 4,348 929 
1974 9,279 3,039 5,263 977 
1975 10,253 3,265 5,978 1,010 
1976 10,346 3,109 6,271 966 
1977 9,955 3,072 5,906 978 
1978 10,123 3,128 5,991 1.004 
1979 11,042 3,328 6,601 I ,113 
1980 12,064 3,795 7,137 1,132 
1981 12,062 3,780 7,194 1.088 
1982 11,652 3,447 7,143 1,062 
1983 10,851 3,130 6,713 1,008 
1984 10,608 2,984 6,592 1,032 
1985 11,103 3,073 6,926 1,103 
1986 11,723 3,241 7,257 1,224 
1987 12,025 3,236 7,500 1,289 
1988 12,357 3,218 7,706 1,433 
1989 12,605 3,168 7,872 1,565 
1990 12,655 3,074 7,946 1,636 
1991 12,961 3,157 8,142 1,662 
1992 12,506 2,980 7,915 1,611 
1993 12,219 2,835 7,821 1,563 
1994 12,132 2,713 7,880 1,539 
1995 12,064 2,594 7,998 1,472 
1996 11,805 2,506 7,905 1,394 
1997 11,558 2,461 7,744 1,354 
1998 10,952 2,333 7,376 1,243 
1999 10,208 2,102 6,956 1,152 
2000 10,183 2,051 6,972 1,160 
2001 10,437 2,117 7,092 1,228 
2002 10,451 2,152 7,053 1,246 
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TABLE E7.5 (Continued) 

Crime Rate (per 100,000 population) 

Motor Vehicle 
Year Total Burglary Larceny-Theft Theft 

1960 1,726.3 508.6 1,034.7 183.0 
1961 1,747.9 518.9 1,045.4 183.6 
1962 1,857.5 535.2 1,124.8 197.4 
1963 2,012.1 576.4 1,219.1 216.6 
1964 2,197.5 634.7 1,315.5 247.4 
1965 2,248.8 662.7 1,329.3 256.8 
1966 2,450.9 721.0 I ,442.9 286.9 
1967 2,736.5 826.6 1,575.8 334.1 
1968 3,071.8 932.3 1,746.6 393.0 
1969 3,351.3 984.1 1,930.9 436.2 
1970 3,621.0 1,084.9 2,079.3 456.8 
1971 3,768.8 1,163.5 2,145.5 459.8 
1972 3,560.4 1,140.8 1,993.6 426.1 
1973 3,737.0 1,222.5 2,071.9 442.6 
1974 4,389.3 1,437.7 2,489.5 462.2 
1975 4,810.7 1,532.1 2,804.8 473.7 
1976 4,819.5 I ,448.2 2,921.3 450.0 
1977 4,601.7 1,419.8 2,729.9 451.9 
1978 4,642.5 1,434.6 2,747.4 460.5 
1979 5,016.6 I ,511.9 2,999.1 505.6 
1980 5,353.3 1,684.1 3,167.0 502.2 
1981 5,263.9 1,647.2 3,135.3 474.1 
1982 5,032.5 1,488.0 3,083.1 458.6 
1983 4,637.4 1,338.7 2,871.3 431.1 
1984 4,492.1 1,265.5 2,795.2 437.7 
1985 4,666.4 1,291.7 2,911.2 463.5 
1986 4,881.8 1,349.8 3.022.1 509.8 
1987 4,963.0 1,335.7 3,095.4 531.9 
1988 5,054.0 1,316.2 3,151.7 586.1 
1989 5,107.1 1,283.6 3,189.6 634.0 
1990 5,073.1 1,232.2 3,185.1 655.8 
1991 5,140.2 1,252.1 3,229.1 659.0 
1992 4,903.7 I, 168.4 3,103.6 631.6 
1993 4,740.0 1,099.7 3,033.9 606.3 
1994 4,660.2 1,042.1 3,026.9 591.3 
1995 4,590.5 987.0 3,043.2 560.3 
1996 4,451.0 945.0 2,980.3 525.7 
1997 4,316.3 918.8 2,891.8 505.7 
1998 4,052.5 863.2 2,729.5 459.9 
1999 3,743.6 770.4 2,550.7 422.5 
2000 3,618.3 728.8 2,477.3 412.2 
2001 3,658.1 741.8 2,485.7 430.5 
2002 3,624.1 746.2 2.445.8 432.1 
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TABLE A.l Cumulative Standard Normal Distribution 

r 1 -u2f2 du 
4>(z) = P(Z ~ z) = J -oo ...tfife 

0 z 

z -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.00 z 

-3.9 0.000033 0.000034 0.000036 0.000037 0.000039 0.000041 0.000042 0.000044 0.000046 0.000048 -3.9 
-3.8 0.000050 0.000052 0.000054 0.000057 0.000059 0.000062 0.000064 0.000067 0.000069 0.000072 -3.8 
-3.7 0.000075 0.000078 0.000082 0.000085 0.000088 0.000092 0.000096 0.000100 0.000104 0.000108 -3.7 
-3.6 0.000112 0.000117 0.000121 0.000126 0.000131 0.000136 0.000142 0.000147 0.000153 0.000159 -3.6 
-3.5 0.000165 0.000172 0.000179 0.000185 0.000193 0.000200 0.000208 0.000216 0.000224 0.000233 -3.5 
-3.4 0.000242 0.000251 0.000260 0.000270 0.000280 0.000291 0.000302 0.000313 0.000325 0.000337 -3.4 
-3.3 0.000350 0.000362 0.000376 0.000390 0.000404 0.000419 0.000434 0.000450 0.000467 0.000483 -3.3 
-3.2 0.000501 0.000519 0.000538 0.000557 0.000577 0.000598 0.000619 0.000641 0.000664 0.000687 -3.2 
-3.1 0.00071 I 0.000736 0.000762 0.000789 0.000816 0.000845 0.000874 0.000904 0.000935 0.000968 -3.1 
-3.0 0.001001 0.001035 0.001070 0.001107 0.001144 0.001183 0.001223 0.001264 0.001306 0.001350 -3.0 
-2.9 0.001395 0.001441 0.001489 0.001538 0.001589 0.001641 0.001695 0.001750 0.001807 0.001866 -2.9 
-2.8 0.001926 0.001988 0.002052 0.002118 0.002186 0.002256 0.002327 0.002401 0.002477 0.002555 -2.8 
-2.7 0.002635 0.002718 0.002803 0.002890 0.002980 0.003072 0.003167 0.003264 0.003364 0.003467 -2.7 
-2.6 0.003573 0.003681 0.003793 0.003907 0.004025 0.004145 0.004269 0.004396 0.004527 0.004661 -2.6 
-2.5 0.004799 0.004940 0.005085 0.005234 0.005386 0.005543 0.005703 0.005868 0.006037 0.006210 -2.5 
-2.4 0.006387 0.006569 0.006756 0.006947 0.007143 0.007344 0.007549 0.007760 0.007976 0.008198 -2.4 
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-2.3 0.008424 0.008656 0.008894 0.009137 0.009387 0.009642 0.009903 0.010170 0.010444 0.010724 -2.3 
-2.2 0.011011 0.011304 0.011604 0.011911 0.012224 0.012545 0.012874 0.013209 0.013553 0.013903 -2.2 
-2.1 0.014262 0.014629 0.015003 0.015386 0.015778 0.016177 0.016586 0.017003 0.017429 0.017864 -2.1 
-2.0 0.018309 0.018763 0.019226 0.019699 0.020182 0.020675 0.021178 0.021692 0.022216 0.022750 -2.0 
-1.9 0.023295 0.023852 0.024419 0.024998 0.025588 0.026190 0.026803 0.027429 0.028067 0.028717 -1.9 
-1.8 0.029379 0.030054 0.030742 0.031443 0.032157 0.032884 0.033625 0.034379 0.035148 0.035930 -1.8 
-1.7 0.036727 0.037538 0.038364 0.039204 0.040059 0.040929 0.041815 0.042716 0.043633 0.044565 -1.7 
-1.6 0.045514 0.046479 0.047460 0.048457 0.049471 0.050503 0.051551 0.052616 0.053699 0.054799 -1.6 
- 1.5 0.055917 0.057053 0.058208 0.059380 0.060571 0.061780 0.063008 0.064256 0.065522 0.066807 -1.5 
-1.4 0.068112 0.069437 0.070781 0.072145 0.073529 0.074934 0.076359 0.077804 0.079270 0.080757 -1.4 
-1.3 0.082264 0.083793 0.085343 0.086915 0.088508 0.090123 0.091759 0.093418 0.095098 0.096801 -1.3 
-1.2 0.098525 0.100273 0.102042 0.103835 0.105650 0.107488 0.109349 0.111233 0.113140 0.115070 -1.2 
-1.1 0.117023 0.119000 0.121001 0.123024 0.125072 0.127143 0.129238 0.131357 0.133500 0.135666 -1.1 
-1.0 0.137857 0.140071 0.142310 0.144572 0.146859 0.149170 0.151505 0.153864 0.156248 0.158655 -1.0 
-0.9 0.161087 0.163543 0.166023 0.168528 0.171056 0.173609 0.176185 0.178786 0.181411 0.184060 -0.9 
-0.8 0.186733 0.189430 0.192150 0.194894 0.197662 0.200454 0.203269 0.206108 0.208970 0.211855 -0.8 
-0.7 0.214764 0.217695 0.220650 0.223627 0.226627 0.229650 0.232695 0.235762 0.238852 0.241964 -0.7 
-0.6 0.245097 0.248252 0.251429 0.254627 0.257846 0.261086 0.264347 0.267629 0.270931 0.274253 -0.6 
-0.5 0.277595 0.280957 0.284339 0.287740 0.291160 0.294599 0.298056 0.301532 0.305026 0.308538 -0.5 
-0.4 0.312067 0.315614 0.319178 0.322758 0.326355 0.329969 0.333598 0.337243 0.340903 0.344578 -0.4 
-0.3 0.348268 0.351973 0.355691 0.359424 0.363169 0.366928 0.370700 0.374484 0.378281 0.382089 -0.3 
-0.2 0.385908 0.389739 0.393580 0.397432 0.401294 0.405165 0.409046 0.412936 0.416834 0.420740 -0.2 
-0.1 0.424655 0.428576 0.432505 0.436441 0.440382 0.444330 0.448283 0.452242 0.456205 0.460172 -0.1 
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TABLEA.l (Continued) 

z -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.00 z 

0.0 0.464144 0.468119 0.472097 0.476078 0.480061 0.484047 0.488033 0.492022 0.496011 0.500000 0.0 
0.0 0.500000 0.503989 0.507978 0.511967 0.515953 0.519939 0.523922 0.527903 0.531881 0.535856 0.0 
0.1 0.539828 0.543795 0.547758 0.551717 0.555760 0.559618 0.563559 0.567495 0.571424 0.575345 0.1 
0.2 0.579260 0.583166 0.587064 0.590954 0.594835 0.598706 0.602568 0.606420 0.610261 0.614092 0.2 
0.3 0.617911 0.621719 0.625516 0.629300 0.633072 0.636831 0.640576 0.644309 0.648027 0.651732 0.3 
0.4 0.655422 0.659097 0.662757 0.666402 0.670031 0.673645 0.677242 0.680822 0.684386 0.687933 0.4 
0.5 0.691462 0.694974 0.698468 0.701944 0.705401 0.708840 0.712260 0.715661 0.719043 0.722405 0.5 
0.6 0.725747 0.729069 0.732371 0.735653 0.738914 0.742154 0.745373 0.748571 0.751748 0.754903 0.6 
0.7 0758036 0.761148 0.764238 0.767305 0.770350 0.773373 0.776373 0.779350 0.782305 0.785236 0.7 
0.8 0.788145 0.791030 0.793892 0.796731 0.799546 0.802338 0.805106 0.807850 0.810570 0.813267 0.8 
0.9 0.815940 0.818589 0.821214 0.823815 0.826391 0.828944 0.831472 0.833977 0.836457 0.838913 0.9 
1.0 0.841345 0.843752 0.846136 0.848495 0.850830 0.853141 0.855428 0.857690 0.859929 0.862143 1.0 
1.1 0.864334 0.866500 0.868643 0.870762 0.872857 0.874928 0.876976 0.878999 0.881000 0.882977 1.1 
1.2 0.884930 0.886860 0.888767 0.890651 0.892512 0.894350 0.896165 0.897958 0.899727 0.901475 1.2 
1.3 0.903199 0.904902 0.906582 0.908241 0.909877 0.911492 0.913085 0.914657 0.916207 0.917736 1.3 
1.4 0.919243 0.920730 0.922196 0.923641 0.925066 0.926471 0.927855 0.929219 0.930563 0.931888 1.4 
1.5 0.933193 0.934478 0.935744 0936992 0.938220 0.939429 0.940620 0.941792 0.942947 0.944083 1.5 
1.6 0.945201 0.946301 0.947384 0.948449 0.949497 0.950529 0.951543 0.952540 0.953521 0.954486 1.6 
1.7 0.955435 0.956367 0.957284 0.958185 0.959071 0.959941 0.960796 0.961636 0.962462 0.963273 1.7 
1.8 0.964070 0.964852 0965621 0.966375 0.967116 0.967843 0.968557 0.969258 0.969946 0.970621 1.8 
1.9 0.971283 0.971933 0.972571 0.973197 0.973810 0.974412 0.975002 0.975581 0.976148 0.976705 1.9 



(J.j 
1,0 -

2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

0.977250 0.977784 
0.982136 0.982571 
0.986097 0.986447 
0.989276 0.989556 
0.991802 0.992024 
0.993790 0.993963 
0.995339 0.995473 
0.996533 0.996636 
0.997445 0.997523 
0.998134 0.998193 
0.998650 0.998694 
0.999032 0.999065 
0.999313 0.999336 
0.999517 0.999533 
0.999663 0.999675 
0.999767 0.999776 
0.999841 0.999847 
0.999892 0.999896 
0.999928 0.999931 
0.999952 0.999954 

0.978308 0.978822 0.979325 
0.982997 0.983414 0.983823 
0.986791 0.987126 0.987455 
0.989830 0.990097 0.990358 
0.992240 0.992451 0.992656 
0.994132 0.994297 0.994457 
0.995604 0.995731 0.995855 
0.996736 0.996833 0.996928 
0.997599 0.997673 0.997744 
0.998250 0.998305 0.998359 
0.998736 0.998777 0.998817 
0.999096 0.999126 0.999155 
0.999359 0.999381 0.999402 
0.999550 0.999566 0.999581 
0.999687 0.999698 0.999709 
0.999784 0.999792 0.999800 
0.999853 0.999858 0.999864 
0.999900 0.999904 0.999908 
0.999933 0.999936 0.999938 
0.999956 0.999958 0.999959 

0.979818 0.980301 0.980774 0.981237 0.981691 2.0 
0.984222 0.984614 0.984997 0.985371 0.985738 2.1 
0.987776 0.988089 0.988396 0.988696 0.988989 2.2 
0.990613 0.990863 0.991106 0.991344 0.991576 2.3 
0.992857 0.993053 0.993244 0.993431 0.993613 2.4 
0.994614 0.994766 0.994915 0.995060 0.995201 2.5 
0.995975 0.996093 0.996207 0.996319 0.996427 2.6 
0.997020 0.997110 0.997197 0.997282 0.997365 2.7 
0.997814 0.997882 0.997948 0.998012 0.998074 2.8 
0.998411 0.998462 0.998511 0.998559 0.998605 2.9 
0.998856 0.998893 0.998930 0.998965 0.998999 3.0 
0.999184 0.999211 0.999238 0.999264 0.999289 3.1 
0.999423 0.999443 0.999462 0.999481 0.999499 3.2 
0.999596 0.999610 0.999624 0.999638 0.999650 3.3 
0.999720 0.999730 0.999740 0.999749 0.999758 3.4 
0.999807 0.999815 0.999821 0.999828 0.999835 3.5 
0.999869 0.999874 0.999879 0.999883 0.999888 3.6 
0.999912 0.999915 0.999918 0.999922 0.999925 3.7 
0.999941 0.999943 0.999946 0.999948 0.999950 3.8 
0.999961 0.999963 0.999964 0.999966 0.999967 3.9 
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TABLE A.2 Percentage Points t 0 ,. of the t Distribution 

~a 
0 ta,v 

vSa .40 .25 .10 .05 .025 .01 .005 

1 0.325 1.000 3.078 6.3 14 12.706 31.821 63.657 
2 0.289 0.8 16 1.886 2.920 4.303 6.965 9.925 
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 
6 0.265 0.7 18 1.440 1.943 2.447 3. 143 3.707 
7 0.263 0.7 11 1.415 1.895 2.365 2.998 3.499 
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 
9 0.261 0.703 1.383 1.833 2.262 2.82 1 3.250 

10 0.260 0.700 1.372 1.8 12 2.228 2.764 3.169 
I I 0.260 0.697 1.363 1.796 2.201 2.718 3.106 
12 0.259 0.695 1.356 1.782 2. 179 2.68 1 3.055 
13 0.259 0.694 1.350 1.77 1 2.160 2.650 3.012 
14 0.258 0.692 1.345 1.761 2.1 45 2.624 2.977 
15 0 .258 0.691 1.341 1.753 2. 13 1 2.602 2.947 
16 0.258 0.690 1.337 1.746 2. 120 2.583 2.921 

.0025 .001 .0005 

127.32 318.31 636.62 
14.089 23.326 31.598 
7.453 10.213 12.924 
5.598 7.173 8.610 
4.773 5.893 6.869 
4.317 5.208 5.959 
4.029 4.785 5.408 
3.833 4.501 5.04 1 
3.690 4.297 4.78 1 
3.581 4.144 4.587 
3.497 4.025 4.437 
3.428 3.930 4.318 
3.372 3.852 4.22 1 
3.326 3.787 4. 140 
3.286 3.733 4.073 
3.252 3.686 4.015 



17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 

18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 

19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 

22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 

23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767 
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 

28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 

29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 

40 0.255 0.681 1.303 1.684 2.001 2.423 2.704 2.971 3.307 3.551 

60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 

00 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 

v = degrees of freedom . 

...... 
~ 
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TABLE A.3 Percentage Points ~.v of the Chi-Square Distribution 

X 2a,v 

vSa .995 .990 .975 .950 .900 .500 .100 .050 .025 .010 .005 

I 0.00+ 0.00+ 0.00+ 0.00+ 0.02 0.45 2.71 3.84 5.02 6.63 7.88 
2 0.01 0.02 0.05 0.10 0.21 1.39 4.61 5.99 7.38 9.2 1 10.60 
3 0.07 0. 1 I 0.22 0.35 0.58 2.37 6.25 7.81 9.35 11.34 12.84 
4 0.21 0.30 0.48 0.7 1 1.06 3.36 7.78 9.49 11.14 13.28 14.86 
5 0.41 0.55 0.83 1.1 5 1.61 4.35 9.24 11.07 12.83 15.09 16.75 
6 0.68 0.87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.8 1 18.55 
7 0.99 1.24 1.69 2. 17 2.83 6.35 12.03 14.07 16.01 18.48 20.28 
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96 
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59 

10 2. 16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19 
II 2.60 3.05 3.82 4 .57 5.58 10.34 17.28 19.68 21.92 24.72 26.76 
12 3.07 3.57 4.40 5.23 6.30 11 .34 18.55 21.03 23.34 26.22 28.30 
13 3.57 4. 11 5.01 5.89 7.04 12.34 19.8 1 22.36 24.74 27.69 29.82 
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32 
15 4.60 5.23 6.27 7.26 8.55 14.34 22.3 1 25.00 27.49 30.58 32.80 



~ 
~ 
Ul 

16 5.14 
17 5.70 
18 6.26 
19 6.84 
20 7.43 
21 8.03 
22 8.64 
23 9.26 
24 9.89 
25 10.52 
26 11.16 
27 11.81 
28 12.46 
29 13.12 
30 13.79 
40 20.71 
50 27.99 
60 35.53 
70 43.28 
80 51.17 
90 59.20 

100 67.33 

v = degrees of freedom. 

5.81 6.91 7.96 
6.41 7.56 8.67 
7.01 8.23 9.39 
7.63 8.91 10.12 
8.26 9.59 10.85 
8.90 10.28 11.59 
9.54 10.98 12.34 

10.20 11.69 13.09 
10.86 12.40 13.85 
11.52 13.12 14.61 
12.20 13.84 15.38 
12.88 14.57 16.15 
13.57 15.31 16.93 
14.26 16.05 17.71 
14.95 16.79 18.49 
22.16 24.43 26.51 
29.71 32.36 34.76 
37.48 40.48 43.19 
45.44 48.76 51.74 
53.54 57.15 60.39 
61.75 65.65 69.13 
70.06 74.22 77.93 

9.31 15.34 23.54 26.30 28.85 32.00 34.27 
10.09 16.34 24.77 27.59 30.19 33.41 35.72 
10.87 17.34 25.99 28.87 31.53 34.81 37.16 
11.65 18.34 27.20 30.14 32.85 36.19 38.58 
12.44 19.34 28.41 31.41 34.17 37.57 40.00 
13.24 20.34 29.62 32.67 35.48 38.93 41.40 
14.04 21.34 30.81 33.92 36.78 40.29 42.80 
14.85 22.34 32.01 35.17 38.08 41.64 44.18 
15.66 23.34 33.20 36.42 39.36 42.98 45.56 
16.47 24.34 34.28 37.65 40.65 44.31 46.93 
17.29 25.34 35.56 38.89 41.92 45.64 48.29 
18.11 26.34 36.74 40.11 43.19 46.96 49.65 
18.94 27.34 37.92 41.34 44.46 48.28 50.99 
19.77 28.34 39.09 42.56 45.72 49.59 52.34 
20.60 29.34 40.26 43.77 46.98 50.89 53.67 
29.05 39.34 51.81 55.76 59.34 63.69 66.77 
37.69 49.33 63.17 67.50 71.42 76.15 79.49 
46.46 59.33 74.40 79.08 83.30 88.38 91.95 
55.33 69.33 85.53 90.53 95.02 100.42 104.22 
64.28 79.33 96.58 101.88 106.63 112.33 116.32 
73.29 89.33 107.57 113.14 118.14 124.12 128.30 
82.36 99.33 118.50 124.34 129.56 135.81 140.17 
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TABLE A.4 Percentage Points f a.j.t . • of the F Distribution 

v 

~ 2 
9 3 
"' ·= 4 E g 5 
0 6 

~ 7 
.2 8 
E 9 
0 

1l 10 
"' U: II 
'0 12 
:a 
~ 13 
0 14 

15 

5.83 

2.57 

2.02 

1.81 

1.69 

1.62 

1.57 

[.54 
1.51 

1.49 

1.47 

1.46 

1.45 

1.44 

1.43 

2 

7.50 

3.00 

2.28 

2.00 

1.85 

1.76 

1.70 

1.66 

1.62 

1.60 

1.58 

1.56 

1.55 

1.53 

1.52 

3 

8.20 

3. 15 

2.36 

2.05 

1.88 

1.78 

1.72 

1.67 

1.63 

1.60 

1.58 

1.56 

1.55 
1.53 

1.52 

4 

8.58 

3.23 

2.39 

2.06 

1.89 

1.79 

1.72 

1.66 

1.63 

1.59 

1.57 

1.55 

1.53 

1.52 

1.51 

5 

8.82 

3.28 

2.4 1 

2.07 

1.89 

1.79 

1.71 

1.66 

1.62 

1.59 

1.56 

1.54 

1.52 

1.51 

1.49 

fo.25,~J-,v 

Degrees of Freedom for the Numerator (iJ.) 

6 7 

8.98 9.10 

3.31 3.34 

2.42 2.43 

2.08 2.08 

1.89 1.89 

1.78 1.78 

1.71 1.70 

1.65 1.64 

1.61 1.60 

1.58 1.57 

1.55 1.54 

1.53 1.52 

1.5 1 1.50 

1.50 1.49 

1.48 1.47 

8 

9.19 

3.35 

2.44 

2.08 

1.89 

1.78 
1.70 

1.64 

1.60 

1.56 

1.53 

1.51 

1.49 

1.48 

1.46 

9 

9.26 

3.37 

2.44 

2.08 

1.89 

1.77 

1.70 

1.63 

1.59 

1.56 

1.53 

1.51 

1.49 

1.47 

1.46 

10 

9.32 

3.38 

2.44 

2.08 

1.89 

1.77 

1.69 

1 .. 63 

1.59 

1.55 

1.52 

1.50 

1.48 

1.46 

1.45 

12 

9.41 

3.39 

2.45 

2.08 

1.89 

1.77 

1.68 

1.62 

1.58 

1.54 

1.51 

1.49 

1.47 

1.45 

1.44 

15 

9.49 

3.41 

2.46 

2.08 

1.89 

1.76 

1.68 

1.62 

1.57 

1.53 

1.50 

1.48 

1.46 

1.44 

1.43 

20 24 

9 .58 9.63 

3.43 3.43 

2.46 2.46 

2.08 2.08 

1.88 1.88 

1.76 1.75 

1.67 1.67 

1.61 1.60 

1.56 1.56 

1.52 1.52 

1.49 1.49 

1.47 1.46 

1.45 1.44 

1.43 1.42 

1.41 1.41 

30 

9.67 

3.44 

2.47 

2.08 

1.88 

1.75 
1.66 

1.60 

1.55 

1.51 

1.48 

1.45 

1.43 

1.41 

1.40 

40 

9.7 1 

3.45 

2.47 

2.08 

1.88 

1.75 

1.66 

1.59 

1.54 

1.51 

1.47 

1.45 

1.42 

1.41 

1.39 

60 

9.76 

3.46 

2.47 

2.08 

1.87 

1.74 

1.65 

1.59 

1.54 

1.50 

1.47 

1.44 

1.42 

1.40 

1.38 

120 00 

9.80 

3.47 

2.47 

2.08 

1.87 

1.74 
1.65 

1.58 

1.53 

1.49 

1.46 

1.43 

1.41 

1.39 

1.37 

9.85 

3.48 

2.47 

2.08 

1.87 

1.74 

1.65 

1.58 

1.53 

1.48 

1.45 

1.42 

1.40 

1.38 

1.36 
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'0 
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CJ) 
<l.l 

0 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 

120 
:x; 

1.42 
1.42 
1.41 
1.41 
1.40 
1.40 
1.40 
1.39 
1.39 
1.39 
1.38 

1.38 
1.38 
1.38 

1.38 

1.36 
1.35 
1.34 

1.32 

1.51 
1.51 
1.50 
1.49 
1.49 
1.48 
1.48 
1.47 
1.47 
1.47 
1.46 
1.46 
1.46 
1.45 
1.45 
1.44 
1.42 
1.40 
1.39 

1.51 
1.50 
1.49 
1.49 
1.48 
1.48 
1.47 
1.47 
1.46 
1.46 
1.45 
1.45 
1.45 
1.45 
1.44 
1.42 
1.41 
1.39 
1.37 

1.50 
1.49 
1.48 
1.47 
1.47 
1.46 
1.45 
1.45 
1.44 
1.44 
1.44 
1.43 
1.43 
1.43 
1.42 
1.40 
1.38 

1.37 

135 

1.48 
1.47 
1.46 
1.46 
1.45 

1.44 
1.44 
1.43 
1.43 
1.42 
1.42 
1.42 
1.41 
1.41 
1.41 
1.39 
1.37 

1.35 
133 

1.47 
1.46 
145 

1.44 
1.44 
1.43 
1.42 
1.42 
1.41 
1.41 
1.41 
1.40 
1.40 
1.40 
1.39 

1.37 
1.35 
1.33 
1.31 

1.46 
1.45 
1.44 
1.43 
1.43 
1.42 
1.41 
1.41 
1.40 
1.40 
1.39 
1.39 
1.39 

1.38 
1.38 

1.36 
1.33 

1.31 
1.29 

1.45 
1.44 
1.43 
1.42 
1.42 
1.41 
1.40 
1.40 
1.39 
1.39 
1.38 
1.38 

1.38 

1.37 
1.37 

1.35 
132 
1.30 
1.28 

1.44 
1.43 
1.42 
1.41 
1.41 
1.40 
1.39 
1.39 
1.38 
1.38 

1.37 
1.37 
1.37 

1.36 
1.36 
1.34 
1.31 
1.29 
1.27 

1.44 
1.43 
1.42 
1.41 
1.40 
1.39 
1.39 
1.38 
1.38 
1.37 

1.37 

1.36 
1.36 
1.35 
1.35 
1.33 

1.30 
1.28 
1.25 

1.43 
1.41 
1.40 
1.40 
1.39 

1.38 

1.37 
1.37 
1.36 
1.36 
1.35 
1.35 
1.34 
1.34 
1.34 
1.31 
1.29 
1.26 
1.24 

1.41 
1.40 
1.39 
1.38 

1.37 

1.37 
1.36 

1.35 
1.35 

1.34 
1.34 
1.33 

1.33 

1.32 
1.32 

1.30 
1.27 
1.24 
1.22 

1.40 
1.39 
1.38 
1.37 
1.36 
1.35 
1.34 

1.34 
1.33 

1.33 

1.32 
1.32 
1.31 
1.31 
1.30 
1.28 
1.25 
1.22 
1.19 

1.39 
1.38 
1.37 
1.36 
1.35 
1.34 
1.33 
1.33 
1.32 
1.32 
1.31 
1.31 
1.30 
1.30 

1.29 
1.26 
1.24 
1.21 
1.18 

1.38 
1.37 
1.36 
1.35 

1.34 
1.33 
1.32 

1.32 
1.31 

1.31 
1.30 

1.30 
1.29 
1.29 
1.28 
1.25 
1.22 
1.19 
1.16 

1.37 
1.36 

1.35 
1.34 
1.33 
1.32 
1.31 
1.31 
1.30 
1.29 
1.29 
1.28 
1.28 
1.27 
1.27 
1.24 
1.21 
1.18 
1.14 

1.36 

1.35 

1.34 
1.33 

1.32 
1.31 
1.30 
1.30 
1.29 
1.28 
1.28 
1.27 
1.27 
1.26 
1.26 
1.22 
1.19 
1.16 
1.12 

1.35 
1.34 
1.33 
1.32 
1.31 

1.30 
1.29 
1.28 
1.28 
1.27 
1.26 
1.26 
1.25 
1.25 
1.24 
1.21 
1.17 
1.13 
1.08 

1.34 
1.33 

1.32 

1.30 

1.29 
1.28 
1.28 
1.27 
1.26 
1.25 
1.25 
1.24 
1.24 
1.23 
1.23 
1.19 
1.15 
1.10 

1.00 
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TABLEA.4 

v I 

I :19.86 

~ 2 8.53 ... 
3 5.54 0 

:;; 

" 4 4.54 § 
0 5 4.06 
" 0) 

6 :1.78 Cl 
0) 

7 3.59 -5 ... 
X 3.46 2 

E 9 3.30 
0 

"0 10 3.29 0) 

J: II 3.23 
'-
0 12 3.18 vo 
0) 

1.3 3.14 1: 
CIJ 

0 14 3.10 

15 3.07 

(Continued) 

2 3 4 5 6 

49.50 53.59 55.83 57.24 58.20 

9.00 9.16 9.24 9.29 9.33 

5.46 5.39 5.34 5.31 5.28 

4 .. 12 4.19 4.11 4.05 4.01 

3.78 3.62 3.52 3.45 3.40 

3.46 3.29 3.18 3.11 3.05 

3.26 3.07 2.96 2.88 2.83 

3. II 2.92 2.8 I 2.73 2.67 

3.01 2.81 2.69 2.ol 2.55 

2.92 2.73 2.61 2.52 2.4o 

2.86 2.66 2.54 2.45 2.39 

2.81 2.61 2.48 2.39 2.33 

2.76 2.50 2.43 2.35 2.28 

2.73 2.52 2.39 2.31 2.24 

2.70 2.49 2.36 2.27 2.21 

h.J0./1.1' 

Degrees of Freedom for the Numerator (Jl) 

7 8 9 10 12 15 20 24 30 40 60 120 00 

58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33 

9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49 

5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13 

3.98 3.95 3.94 3.92 3.90 3.87 3.X4 3.83 3X2 uo 3.79 3.78 D6 

3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10 

3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72 

2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47 

2.62 2.59 256 2.'i4 250 2.46 2.42 2.40 238 2.30 2.34 2.32 2.29 

2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16 

2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06 

2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97 

2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90 

2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.% 1.'.1.3 1.90 1.88 1.85 

2.19 2.1'i 2.12 2.10 2.0'i 2.01 1.90 1.94 1.91 1.89 J.Xo 1.83 1.80 

2.1o 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 I.X5 1.82 1.79 J.7o 



~ 
10 
10 

16 

17 

18 

~ 19 

8 20 
'" ·= 21 E g 22 
Q 23 

-5 24 

c8 25 
E 
0 

"t:l 

~ 
4-< 
0 

26 

27 

28 

29 
"' 0) 

1: 30 
Oil 
Q 40 

60 

120 

CXJ 

3.05 2.67 

3.03 2.64 
3.01 2.62 

2.99 2.61 

2.97 2.59 

2.96 2.57 

2.95 2.56 

2.94 2.55 

2.93 2.54 

2.92 2.53 

2.91 2.52 

2.90 2.51 

2.89 2.50 

2.89 2.50 

2.88 2.49 

2.84 2.44 

2.79 2.39 

2.75 2.35 

2.71 2.30 

2.46 

2.44 

2.42 

2.40 

2.38 

2.36 

2.35 

2.34 

2.33 

2.32 

2.31 

2.30 

2.29 

2.28 

2.28 

2.23 

2.18 

2.13 

2.08 

2.33 

2.31 

2.29 

2.27 

2.25 

2.23 

2.22 

2.21 

2.19 

2.18 

2.17 

2.17 

2.16 

2.15 

2.14 

2.09 

2.04 

1.99 

1.94 

2.24 

2.22 

2.20 

2.18 

2.16 

2.14 

2.13 

2.11 

2.10 

2.09 

2.08 

2.07 

2.06 

2.06 

2.03 

2.00 

1.95 

1.90 

1.85 

2.18 

2.15 

2.13 

2.11 

2.09 

2.08 

2.06 

2.05 

2.04 

2.02 

2.01 

2.00 

2.00 

1.99 

1.98 

1.93 

1.87 

1.82 

1.77 

2.13 

2.10 

2.08 

2.06 

2.04 

2.02 

2.01 

1.99 

1.98 

1.97 

1.96 

1.95 

1.94 

1.93 

1.93 

1.87 

1.82 

1.77 

1.72 

2.09 

2.06 

2.04 

2.02 

2.00 

1.98 

1.97 

1.95 

1.94 

1.93 

1.92 

1.91 

1.90 

1.89 

1.88 

1.83 

1.77 

1.72 

1.67 

2.06 

2.03 

2.00 

1.98 

1.96 

1.95 

1.93 

1.92 

1.91 

1.89 

1.88 

1.87 

1.87 

1.86 

1.85 

1.79 

1.74 

1.68 

1.63 

2.03 

2.00 

1.98 

1.96 

1.94 

1.92 

1.90 

1.89 

1.88 

1.87 

1.86 

1.85 

1.84 

1.83 

1.82 

1.76 

1.71 

1.65 

1.60 

1.99 

1.96 

1.93 

1.91 

1.89 

1.87 

1.86 

1.84 

1.83 

1.82 

1.81 

1.80 

1.79 

1.78 

1.77 

1.71 

1.66 

1.60 

1.55 

1.94 

1.91 

1.89 

1.86 

1.84 

1.83 

1.81 

1.80 

1.78 

1.77 

1.76 

1.75 

1.74 

1.73 

1.72 

1.66 

1.60 

1.55 

1.49 

1.89 

1.86 

1.84 

1.81 

1.79 

1.78 

1.76 

1.74 

1.73 

1.72 

1.71 

1.70 

1.69 

1.68 

1.67 

1.61 

1.54 

1.48 

1.42 

1.87 

1.84 

1.81 

1.79 

1.77 

1.75 

1.73 

1.72 

1.70 

1.69 

1.68 

1.67 

1.66 

1.65 

1.64 

1.57 

1.51 

1.45 

1.38 

1.84 

1.81 

1.78 

1.76 

1.74 

1.72 

1.70 

1.69 

1.67 

1.66 

1.65 

1.64 
1.63 

1.62 

1.61 

1.54 

1.48 

1.41 

1.34 

1.81 

1.78 

1.75 

1.73 

1.71 

1.69 

1.67 

1.66 

1.64 

1.63 

1.61 

1.60 

1.59 

1.58 

1.57 

1.51 

1.44 

1.37 

1.30 

1.78 

1.75 

1.72 

1.70 

1.68 

1.66 

1.64 

1.62 

1.61 

1.59 

1.58 

1.57 

1.56 

1.55 

1.54 

1.47 

1.40 

1.32 

1.24 

1.75 

1.72 

1.69 

1.67 

1.64 

1.62 

1.60 

1.59 

1.57 

1.56 

1.54 

1.53 

1.52 

1.51 

1.50 

1.42 

1.35 

1.26 

1.17 

1.72 

1.69 

1.66 

1.63 

1.61 

1.59 

1.57 

1.55 

1.53 

1.52 
1.50 

1.49 
1.48 

1.47 

1.46 

1.38 

1.29 
1.19 

1.00 



""' g 

TABLEA.4 (Continued) 
fo.os. 1,,,, 

Degrees of Freedom for the Numerator (Jl.) 

\1 I 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 00 

I 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3 

..:: 2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50 
.... 

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 0 
'i'5 
" 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.6') 5.66 5.63 
§ 
0 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 
" v 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.X I 3.77 174 370 3.67 0 
v 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 .1.30 3.27 3.23 -5 

.~ 8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 

E 
0 

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 

"" 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 v 

J: II 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 
'-
0 12 4.75 3.89 3.49 
"' 

3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 
v 

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 230 2.25 2.21 1: 
OlJ v 14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 
0 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 
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~ c ... 
3 
"' "' '§ 
0 

ii 
Cl 

a.> 
-5 ... ,.s 
E c 
"0 

a.> 

£ 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

~ 29 

'"' ~ 30 
O!J 
Cl 40 

60 

120 

ex:: 

4.49 

4.45 

4.41 

4.38 

4.35 

4.32 

4.30 

4.28 

4.26 

4.24 

4.23 

4.21 

4.20 

4.18 

4.17 

4.08 

4.00 

3.92 

3.84 

3.63 

3.59 

3.55 

3.52 

3.49 

3.47 

3.44 

3.42 

3.40 

3.39 

3.37 

3.35 

3.34 

3.33 

3.32 

3.23 

3.15 

3.07 

3.00 

3.24 

3.20 

3.16 

3.13 

3.10 

3.07 

3.05 

3.03 

3.01 

2.99 

2.98 

2.96 

2.95 

2.93 

2.92 

2.84 

2.76 

2.68 

2.60 

3.01 

2.96 

2.93 

2.90 

2.87 

2.84 

2.82 

2.80 

2.78 

2.76 

2.74 

2.73 

2.71 

2.70 

2.69 

2.61 

2.53 

2.45 

2.37 

2.85 

2.81 

2.77 

2.74 

2.71 

2.68 

2.66 

2.64 

2.62 

2.60 

2.59 

2.57 

2.56 

2.55 

2.53 

2.45 

2.37 

2.29 

2.21 

2.74 

2.70 

2.66 

2.63 

2.60 

2.57 

2.55 

2.53 

2.51 

2.49 

2.47 

2.46 

2.45 

2.43 

2.42 

2.34 

2.25 

2.17 

2.10 

2.66 2.59 

2.61 2.55 

2.58 2.51 

2.54 2.48 

2.51 2.45 

2.49 2.42 

2.46 2.40 

2.44 2.37 

2.42 2.36 

2.40 2.34 

2.39 2.32 

2.37 2.31 

2.36 2.29 

2.35 2.28 

2.33 2.27 

2.25 2.18 

2.17 2.10 

2.09 2.02 

2.01 1.94 

2.54 

2.49 

2.46 

2.42 

2.39 

2.37 

2.34 

2.32 

2.30 

2.28 

2.27 

2.25 

2.24 

2.22 

2.21 

2.12 

2.04 

1.96 

1.88 

2.49 

2.45 

2.41 

2.38 

2.35 

2.32 

2.30 

2.27 

2.25 

2.24 

2.22 

2.20 

2.19 

2.18 

2.16 

2.08 

1.99 

1.91 

1.83 

2.42 

2.38 

2.34 

2.31 

2.28 

2.25 

2.23 

2.20 

2.18 

2.16 

2.15 

2.13 

2.12 

2.10 

2.09 

2.00 

1.92 

1.83 

1.75 

2.35 

2.31 

2.27 

2.23 

2.20 

2.18 

2.15 

2.13 

2.11 

2.09 

2.07 

2.06 

2.04 

2.03 

2.01 

1.92 

1.84 

1.75 

1.67 

2.28 

2.23 

2.19 

2.16 

2.12 

2.10 

2.07 

2.05 

2.03 

2.01 

1.99 

1.97 

1.96 

1.94 

1.93 

1.84 

1.75 

1.66 

1.57 

2.24 

2.19 

2.15 

2.11 

2.08 

2.05 

2.03 

2.01 

1.98 

1.96 

1.95 

1.93 

1.91 

1.90 

1.89 

1.79 

1.70 

1.61 

1.52 

2.19 

2.15 

2.11 

2.07 

2.04 

2.01 

1.98 

1.96 

1.94 

1.92 

1.90 

1.88 

1.87 

1.85 

1.84 

1.74 

1.65 

1.55 

1.46 

2.15 

2.10 

2.06 

2.03 

1.99 

1.96 

1.94 

1.91 

1.89 

1.87 

1.85 

1.84 

1.82 

1.81 

1.79 

1.69 

1.59 

1.55 

1.39 

2.11 

2.06 

2.02 

1.98 

1.95 

1.92 

1.89 

1.86 

1.84 

1.82 

1.80 

1.79 

1.77 

1.75 

1.74 

1.64 

1.53 

1.43 

1.32 

2.06 

2.01 

1.97 

1.93 

1.90 

1.87 

1.84 

1.81 

1.79 

1.77 

1.75 

1.73 

1.71 

1.70 

1.68 

1.58 

1.47 

135 
1.22 

2.01 
1.96 

1.92 

1.88 

1.84 

1.81 

1.78 

1.76 

1.73 

1.71 

1.69 

1.67 

1.65 

1.64 

1.62 

1.51 

1.39 

1.25 

1.00 



s 

TABLE A.4 (Continued) 
fo.zs,Jl-.v 

Degrees of Freedom for the Numerator (J-t) 

\) 2 3 4 5 6 7 8 9 \0 12 IS 20 24 30 40 60 120 00 

I 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018 

,::. 2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50 
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90 ~ 

c 
§ 4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.16 8.31 8.26 
0 
c 5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02 

0 6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.0 I 4.96 4.90 4.85 

.s 7 8.07 

.2 8 7.57 

6.54 

6.06 

5.89 

5.42 

!3 9 7.21 5.71 5.08 
] 10 6.94 5.46 4.83 
~ II 6.72 5.26 4.63 

~ 12 6.55 5.10 4.47 
~ 13 6.41 4.97 4.35 
Cll 0 14 6.30 4.86 4.24 

15 6.20 4.77 4.15 

5.52 

5.05 

5.29 5.12 4.99 

4.82 4.65 4.53 
4.72 4.48 4.32 4.20 

4.47 4.24 4.07 3.95 

4.28 4.04 3.88 3.76 
4.12 3.89 3.73 3.61 

4.00 3.77 3.60 3.48 

3.89 3.o6 3.50 3.38 

3.80 3.58 3.41 3.29 

4.90 4.82 4.76 4.67 4.57 4.47 

4.43 4.36 4.30 4.20 4.10 4.00 
4.10 4.03 

3.85 3.78 

3.66 3.59 
3.51 3.44 

3.39 3.31 
3.29 3.21 

3.20 3.12 

_'\.l)6 3.87 

3.72 3.62 

3.53 3.43 
3.37 3.28 

3.25 3.15 

3.15 3.05 
3.06 2.96 

3.77 

3.52 

3.33 

3.18 
3.05 

2.lJ5 

2.86 

3.67 

3.42 

3.23 
3.07 

2.95 

2.84 
2.76 

4.42 

3.95 
3.61 

3.37 

3.17 

3.02 
2.89 

2.79 

2.70 

4.36 4.31 

3.89 3.84 

3.56 3.51 
3.31 3.26 

3.12 3.06 

2.% 2.91 
2.84 2.78 

2.73 2.67 

2.64 2.59 

4.25 

3.78 
3.45 

3.20 

3.00 

2.85 
2.72 

2.ol 

2.52 

4.20 4.14 

3.73 3.67 

3.3lJ 
3.14 

2.94 

2.79 
2.oo 

2.55 
2.46 

3.33 
3.08 

2.88 

2.72 
2.oo 

2.4lJ 

2.40 
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~ .... 
0 

'" c: 
§ 
0 

" "' 0 

"' -5 .... 
,..s 
6 
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"' J: 
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~ 

"' ~ 
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16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

40 

60 

120 

00 

6.12 

6.04 

5.98 

5.92 

5.87 

5.83 

5.79 

5.75 

5.72 

5.69 

5.66 

5.63 

5.61 

5.59 

5.57 

5.42 

5.29 

5.15 

5.02 

4.69 

4.62 

4.56 

4.51 

4.46 

4.42 

4.38 

4.35 

4.32 

4.29 

4.27 

4.24 

4.22 

4.20 

4.18 

4.05 

3.93 

3.80 

3.69 

4.08 

4.01 

3.95 

3.90 

3.86 

3.82 

3.78 

3.75 

3.72 

3.69 

3.67 

3.65 

3.63 

3.61 

3.59 

3.46 

3.34 

3.23 

3.12 

3.73 

3.66 

3.61 

3.56 

3.51 

3.48 

3.44 

3.41 

3.38 

3.35 

3.33 

3.31 

3.29 

3.27 

3.25 

3.13 

3.01 

2.89 

2.79 

3.50 

3.44 

3.38 

3.33 

3.29 

3.25 

3.22 

3.18 

3.15 

3.13 

3.10 

3.08 

3.06 

3.04 

3.03 

2.90 

2.79 

2.67 

2.57 

3.34 

3.28 

3.22 

3.17 

3.13 

3.09 

3.05 

3.02 

2.99 

2.97 

2.94 

2.92 

2.90 

2.88 

2.87 

2.74 

2.63 

2.52 

2.41 

3.22 

3.16 

3.10 

3.05 

3.01 

2.97 

2.93 

2.90 

2.87 

2.85 

2.82 

2.80 

2.78 

2.76 

2.75 

2.62 

2.51 

2.39 

2.29 

3.12 

3.06 

3.01 

2.96 

2.91 

2.87 

2.84 

2.81 

2.78 

2.75 

2.73 

2.71 

2.69 

2.67 

2.65 

2.53 

2.41 

2.30 

2.19 

3.05 

2.98 

2.93 

2.88 

2.84 

2.80 

2.76 

2.73 

2.70 

2.68 

2.65 

2.63 

2.61 

2.59 

2.57 

2.45 

2.33 

2.22 

2.11 

2.99 

2.92 

2.87 

2.82 

2.77 

2.73 

2.70 

2.67 

2.64 

2.61 

2.59 

2.57 

2.55 

2.53 

2.51 

2.39 

2.27 

2.16 

2.05 

2.89 

2.82 

2.77 

2.72 

2.68 

2.64 

2.60 

2.57 

2.54 

2.51 

2.49 

2.47 

2.45 

2.43 

2.41 

2.29 

2.17 

2.05 

1.94 

2.79 

2.72 

2.67 

2.62 

2.57 

2.53 

2.50 

2.47 

2.44 

2.41 

2.39 

2.36 

2.34 

2.32 

2.31 

2.18 

2.06 

1.94 

1.83 

2.68 

2.62 

2.56 

2.51 

2.46 

2.42 

2.39 

2.36 

2.33 

2.30 

2.28 

2.25 

2.23 

2.21 

2.20 

2.07 

1.94 

1.82 

1.71 

2.63 

2.56 

2.50 

2.45 

2.41 

2.37 

2.33 

2.30 

2.27 

2.24 

2.22 

2.19 

2.17 

2.15 

2.14 

2.01 

1.88 

1.76 

1.64 

2.57 

2.50 

2.44 

2.39 

2.35 

2.31 

2.27 

2.24 

2.21 

2.18 

2.16 

2.13 

2.11 

2.09 

2.07 

1.94 

1.82 

1.69 

!.57 

2.51 

2.44 

2.38 

2.33 

2.29 

2.25 

2.21 

2.18 

2.15 

2.12 

2.09 

2.07 

2.05 

2.03 

2.01 

1.88 

1.74 

1.61 

1.48 

2.45 

2.38 

2.32 

2.27 

2.22 

2.18 

2.14 

2.11 

2.08 

2.05 

2.03 

2.00 

1.98 

1.96 

1.94 

1.80 

1.67 

!.53 

1.39 

2.38 

2.32 

2.26 

2.20 

2.16 

2.11 

2.08 

2.04 

2.01 

1.98 

1.95 

1.93 

1.91 

1.89 

1.87 

1.72 

!.58 

1.43 

1.27 

2.32 

2.25 

2.19 

2.13 

2.09 

2.04 

2.00 

1.97 

1.94 

1.91 

1.88 

1.85 

1.83 

1.81 

1.79 

1.64 

1.48 

1.31 

1.00 
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TABLE A.4 (Continued) 

v 2 3 

I 4052 4999.5 5403 

5 
;; 

2 9X.50 99.00 99.17 
3 34.12 30.X2 2Y.46 
4 21.20 I X.OO 16.69 

t: 

§ 
c 
t: 

" Cl 

" -5 

5 

6 

7 

X 

2 l) 

E 10 

~ II 
" w: 12 
'o 13 
£ 14 
to I~ Cl . 

16.26 

13.75 

12.25 

11.26 

10.56 

10.04 

9.(>5 

Y.33 

9.07 

X.X6 

X.6X 

13.27 

10.92 

9.55 

X.65 

l\.02 

7.56 

7.21 

6.93 

6.70 

6.51 

6.36 

12.06 

Y.n 
l\.45 

7.59 

6.99 

6.55 

(>.22 

5.95 

5.74 

5.56 

5.42 
16 X.53 6.23 5.29 
17 l\.40 6.11 5. I X 

4 

5625 

Y9.25 

28.71 

15.98 

II.W 

9.15 

7.X5 

7.01 

6.42 

5.99 

5.(>7 

5.41 

5.21 

5.04 

4.X9 

4.77 

4.67 

5 

5764 

99.30 

2X.24 

15.52 

10.97 

X.75 

7.46 

6.63 

6.06 

5.64 

5.32 

5.06 

4.X6 

4.6'1 

4.36 

4.44 

4.34 

.fo.oJ.,u 

Degrees of Freedom for the Numerator (f.L) 

6 7 8 9 10 12 15 20 24 30 40 60 120 00 

5859 5928 5982 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366 
99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50 
27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.00 26.50 26.41 26.32 26.22 26.13 
15.21 14.9X 14.XO 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46 
I 0.67 I 0.46 I 0.29 I 0.16 I 0.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02 
l\.47 l\.26 X.IO 7.9X 7.X7 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.8ll 
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TABLEA.S Critical Values of the Durbin-Watson Statistic 

Probability in k = Number of Regressors (Excluding the Intercept) 
Lower Tail 

Sample (Significance 2 3 4 5 

Size Level= a) dl du dl dl' dl de dl du dl de 

.01 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96 
15 .025 0.95 1.23 0.83 1.40 0.71 1.61 0.59 1.84 0.48 2.09 

.05 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21 

.01 0.95 1.15 0.86 1.27 0.77 1.41 0.63 1.57 0.60 1.74 
20 .025 1.08 1.28 0.99 1.41 0.89 1.55 0.79 1.70 0.70 1.87 

.05 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99 

.01 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65 
25 .025 1.13 1.34 1.10 1.43 1.02 1.54 0.94 1.65 0.86 1.77 

.05 1.20 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89 

.01 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61 
30 .025 1.25 1.38 1.18 1.46 1.12 1.54 1.05 1.63 0.98 1.73 

.05 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83 

.01 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58 
40 .025 1.35 1.45 1.30 1.51 1.25 1.57 1.20 1.63 1.15 1.69 

.05 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79 

.01 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59 
50 .025 1.42 1.50 1.38 1.54 1.34 1.59 1.30 1.64 1.26 1.69 

.05 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77 

.01 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60 
60 .025 1.47 1.54 1.44 1.57 1.40 1.61 1.37 1.65 1.33 1.69 

.05 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77 

.01 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62 
80 .025 1.54 1.59 1.52 1.62 1.49 1.65 1.47 1.67 1.44 1.70 

.05 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 

.01 1.52 1.56 1.50 1.58 1.48 1.60 1.45 1.63 1.44 1.65 
100 .025 1.59 1.63 1.57 1.65 1.55 1.67 1.53 1.70 1.51 1.72 

.OS 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78 

Source: Adapted from J. Durbin and G. S. Watson [ 1951 ]. Testing for serial correlation in least squares 
regression II. Biometrika 38, with permission of the publisher. 
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TABLEB.l Market Yield on U.S. Treasury Securities at 10-Year Constant Maturity 

Month Rate(%) Month Rate(%) Month Rate (o/c) Month Rate (o/c) 

Apr-1953 2.83 Oct-1966 5.01 Apr-1980 11.47 Oct-1993 5.33 
May-1953 3.05 Nov-1966 5.16 May-1980 10.18 :-.Jov-1993 5.72 
Jun-1953 3.11 Dec-1966 4.84 Jun-1980 9.78 Dec-1993 5.77 
Ju1-1953 2.93 Jan-1967 4.58 Ju1-1980 10.25 Jan-1994 5.75 
Aug-1953 2.95 Feb-1967 4.63 Aug-1980 11.10 Feb-1994 5.97 
Sep-1953 2.87 Mar-1967 4.54 Sep-1980 11.51 :vtar-1994 6.48 
Oct-1953 2.66 Apr-1967 4.59 Oct-1980 11.75 Apr-1994 6.97 
Nov-1953 2.68 May-1967 4.85 Nov-1980 12.68 May-1994 7.18 
Dec-1953 2.59 Jun-1967 5.02 Dec-1980 12.84 Jun-1994 7.10 
Jan-1954 2.48 Jul-1967 5.16 Jan-1981 12.57 Jul-1994 7.30 
Feb-1954 2.47 Aug-1967 5.28 Feb-1981 13.19 Aug-1994 7.24 
Mar-1954 2.37 Sep-1967 5.30 Mar-1981 13.12 Sep-1994 7.46 
Apr-1954 2.29 Oct-1967 5.48 Apr-1981 13.68 Oct-1994 7.74 
May-1954 2.37 Nov-1967 5.75 May-1981 14.10 Nov-1994 7.96 
Jun-1954 2.38 Dec-1967 5.70 Jun-1981 13.47 Dec-1994 7.81 
Jul-1954 230 Jan-1968 5.53 Jul-1981 14.28 Jan-1995 7.78 
Aug-1954 2.36 Feb-1968 5.56 Aug-1981 14.94 Feb-1995 7.47 
Sep-1954 2.38 Mar-1968 5.74 Sep-1981 15.32 Mar-1995 7.20 
Oct-1954 2.43 Apr-1968 564 Oct-1981 15.15 Apr-1995 7.06 
Nov-1954 2.48 May-1968 5.87 Nov-1981 13.39 May-1995 6.63 
Dec-1954 2.51 Jun-1968 5.72 Dec-1981 13.72 Jun-1995 6.17 
Jan-1955 2.61 Jul-1968 5.50 Jan-1982 14.59 Jul-1995 6.28 
Feb-1955 2.65 Aug-1968 5.42 Feb-1982 14.43 Aug-1995 6.49 
Mar-1955 2.68 Sep-1968 5.46 Mar-1982 13.86 Sep-1995 6.20 
Apr-1955 2.75 Oct-1968 5.58 Apr-1982 13.87 Oct-1995 6.04 
May-1955 2.76 Nov-1968 5.70 May-1982 13.62 Nov-1995 5.93 
Jun-1955 2.78 Dec-1968 6.03 Jun-1982 14.30 Dec-1995 5.71 
Jul-1955 2.90 Jan-1969 6.04 Jul-1982 13.95 Jan-1996 5.65 
Aug-1955 2.97 Feb-1969 6.19 Aug-1982 13.06 Feb-1996 5.81 
Sep-1955 2.97 Mar-1969 6.30 Sep-1982 12.34 Mar-1996 6.27 
Oct-1955 2.88 Apr-1969 6.17 Oct-1982 10.91 Apr-1996 6.51 
Nov-1955 2.89 May-1969 6.32 Nov-1982 10.55 May-1996 6.74 
Dec-1955 2.96 Jun-1969 6.57 Dec-1982 10.54 Jun-1996 6.91 
Jan-1956 2.90 Jul-1969 6.72 Jan-1983 10.46 Jul-1996 6.87 
Feb-1956 2.84 Aug-1969 6.69 Feb-1983 10.72 Aug-1996 6.64 
Mar-1956 2.96 Sep-1969 7.16 Mar-1983 10.51 Sep-1996 6.83 
Apr-1956 3.18 Oct-1969 7.10 Apr-1983 10.40 Oct-1996 6.53 
May-1956 3.07 Nov-1969 7.14 May-1983 10.38 Nov-1996 6.20 
Jun-1956 3.00 Dec-1969 7.65 Jun-1983 10.85 Dec-1996 6.30 
Ju1-1956 3.11 Jan-1970 7.79 Jul-1983 11.38 Jan-1997 6.58 
Aug-1956 3.33 Feb-1970 7.24 Aug-1983 11.85 Feb-1997 6.42 
Sep-1956 3.38 Mar-1970 7.07 Sep-1983 11.65 Mar-1997 6.69 
Oct-1956 3.34 Apr-1970 7.39 Oct-1983 11.54 Apr-1997 6.89 
Nov-1956 3.49 May-1970 7.91 Nov-1983 11.69 May-1997 6.71 
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TABLEB.l (Continued) 

Month Rate(%) Month Rate(%) Month Rate(%) Month Rate(%) 

Dec-1956 3.59 Jun-1970 7.84 Dec-1983 11.83 Jun-1997 6.49 
Jan-1957 3.46 Ju1-1970 7.46 Jan-1984 11.67 Ju1-1997 6.22 
Feb-1957 3.34 Aug-1970 7.53 Feb-1984 11.84 Aug-1997 6.30 
Mar-1957 3.41 Sep-1970 7.39 Mar-1984 12.32 Sep-1997 6.21 
Apr-1957 3.48 Oct-1970 7.33 Apr-1984 12.63 Oct-1997 6.03 
May-1957 3.60 Nov-1970 6.84 May-1984 13.41 Nov-1997 5.88 
Jun-1957 3.80 Dec-1970 6.39 Jun-1984 13.56 Dec-1997 5.81 
Jul-1957 3.93 Jan-1971 6.24 Jul-1984 13.36 Jan-1998 5.54 
Aug-1957 3.93 Feb-1971 6.11 Aug-1984 12.72 Feb-1998 5.57 
Sep-1957 3.92 Mar-1971 5.70 Sep-1984 12.52 Mar-1998 5.65 
Oct-1957 3.97 Apr-1971 5.83 Oct-1984 12.16 Apr-1998 5.64 
Nov-1957 3.72 May-1971 6.39 Nov-1984 11.57 May-1998 5.65 
Dec-1957 3.21 Jun-1971 6.52 Dec-1984 11.50 Jun-1998 5.50 
Jan-1958 3.09 Jul-1971 6.73 Jan-1985 11.38 Ju1-1998 5.46 
Feb-1958 3.05 Aug-1971 6.58 Feb-1985 11.51 Aug-1998 5.34 
Mar-1958 2.98 Sep-1971 6.14 Mar-1985 11.86 Sep-1998 4.81 
Apr-1958 2.88 Oct-1971 5.93 Apr-1985 11.43 Oct-1998 4.53 
May-1958 2.92 Nov-1971 5.81 May-1985 10.85 Nov-1998 4.83 
Jun-1958 2.97 Dec-1971 5.93 Jun-1985 10.16 Dec-1998 4.65 
Ju1-1958 3.20 Jan-1972 5.95 Jul-1985 10.31 Jan-1999 4.72 
Aug-1958 3.54 Feb-1972 6.08 Aug-1985 10.33 Feb-1999 5.00 
Sep-1958 3.76 Mar-1972 6.07 Sep-1985 10.37 Mar-1999 5.23 
Oct-1958 3.80 Apr-1972 6.19 Oct-1985 10.24 Apr-1999 5.18 
Nov-1958 3.74 May-1972 6.13 Nov-1985 9.78 May-1999 5.54 
Dec-1958 3.86 Jun-1972 6.11 Dec-1985 9.26 Jun-1999 5.90 
Jan-1959 4.02 Jul-1972 6.11 Jan-1986 9.19 Jul-1999 5.79 
Feb-1959 3.96 Aug-1972 6.21 Feb-1986 8.70 Aug-1999 5.94 
Mar-1959 3.99 Sep-1972 6.55 Mar-1986 7.78 Sep-1999 5.92 
Apr-1959 4.12 Oct-1972 6.48 Apr-1986 7.30 Oct-1999 6.11 
May-1959 4.31 Nov-1972 6.28 May-1986 7.71 Nov-1999 6.03 
Jun-1959 4.34 Dec-1972 6.36 Jun-1986 7.80 Dec-1999 6.28 
Jul-1959 4.40 Jan-1973 6.46 Jul-1986 7.30 Jan-2000 6.66 
Aug-1959 4.43 Feb-1973 6.64 Aug-1986 7.17 Feb-2000 6.52 
Sep-1959 4.68 Mar-1973 6.71 Sep-1986 7.45 Mar-2000 6.26 
Oct-1959 4.53 Apr-1973 6.67 Oct-1986 7.43 Apr-2000 5.99 
Nov-1959 4.53 May-1973 6.85 Nov-1986 7.25 May-2000 6.44 
Dec-1959 4.69 Jun-1973 6.90 Dec-1986 7.11 Jun-2000 6.10 
Jan-1960 4.72 Jul-1973 7.13 Jan-1987 7.08 Jul-2000 6.05 
Feb-1960 4.49 Aug-1973 7.40 Feb-1987 7.25 Aug-200f) 5.83 
Mar-1960 4.25 Sep-1973 7.09 Mar-1987 7.25 Sep-2000 5.80 
Apr-1960 4.28 Oct-1973 6.79 Apr-1987 8.02 Oct-2000 5.74 
May-1960 4.35 Nov-1973 6.73 May-1987 8.61 Nov-2000 5.72 
Jun-1960 4.15 Dec-1973 6.74 Jun-1987 8.40 Dec-2000 5.24 
Jul-1960 3.90 Jan-1974 6.99 Jul-1987 8.45 Jan-2001 5.16 
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TABLEB.l (Continued) 

Month Rate(%) Month Rate (o/c) Month Rate (o/c) Month Rate (o/c) 

Aug-1960 3.80 Feb-1974 6.96 Aug-1987 8.76 Feb-2001 5.10 
Sep-1960 3.80 Mar-1974 7.21 Sep-1987 9.42 Mar-2001 4.89 
Oct-1960 3.89 Apr-1974 7.51 Oct-1987 9.52 Apr-2001 5.14 
Nov-1960 3.93 May-1974 7.58 Nov-1987 8.86 May-2001 5.39 
Dec-1960 3.84 Jun-1974 7.54 Dec-1987 8.99 Jun-2001 5.28 
Jan-1961 3.84 Jul-1974 7.81 Jan-1988 8.67 Jul-2001 5.24 
Feb-1961 3.78 Aug-1974 8.04 Feb-1988 8.21 Aug-2001 4.97 
Mar-1961 3.74 Sep-1974 8.04 Mar-1988 8.37 Sep-2001 4.73 
Apr-1961 3.78 Oct-1974 7.90 Apr-1988 8.72 Oct-2001 4.57 
May-1961 3.71 Nov-1974 7.68 May-1988 9.09 Nov-2001 4.65 
Jun-1961 3.88 Dec-1974 7.43 Jun-1988 8.92 Dec-2001 5.09 
Ju1-1961 3.92 Jan-1975 7.50 Jul-1988 9.06 Jan-2002 5.04 
Aug-1961 4.04 Feb-1975 7.39 Aug-1988 9.26 Feb-2002 4.91 
Sep-1961 3.98 Mar-1975 7.73 Sep-1988 8.98 Mar-2002 5.28 
Oct-1961 3.92 Apr-1975 8.23 Oct-1988 8.80 Apr-2002 5.21 
Nov-1961 3.94 May-1975 8.06 Nov-1988 8.96 May-2002 5.16 
Dec-1961 4.06 Jun-1975 7.86 Dec-1988 9.11 Jun-2002 4.93 
Jan-1962 4.08 Jul-1975 8.06 Jan-1989 9.09 Jul-2002 4.65 
Feb-1962 4.04 Aug-1975 8.40 Feb-1989 9.17 Aug-2002 4.26 
Mar-1962 3.93 Sep-1975 8.43 Mar-1989 9.36 Sep-2002 3.87 
Apr-1962 3.84 Oct-1975 8.14 Apr-1989 9.18 Oct-2002 3.94 
May-1962 3.87 Nov-1975 8.05 May-1989 8.86 Nov-2002 4.05 
Jun-1962 3.91 Dec-1975 8.00 Jun-1989 8.28 Dec-2002 4.03 
Ju1-1962 4.01 Jan-1976 7.74 Jul-1989 8.02 Jan-2003 4.05 
Aug-1962 3.98 Feb-1976 7.79 Aug-1989 8.11 Feb-2003 3.90 
Sep-1962 3.98 Mar-1976 7.73 Sep-1989 8.19 Mar-2003 3.81 

Oct-1962 3.93 Apr-1976 7.56 Oct-1989 8.01 Apr-2003 3.96 
Nov-1962 3.92 May-1976 7.90 Nov-1989 7.87 May-2003 3.57 
Dec-1962 3.86 Jun-1976 7.86 Dec-1989 7.84 Jun-2003 3.33 
Jan-1963 3.83 Jul-1976 7.83 Jan-1990 8.21 Jul-2003 3.98 
Feb-1963 3.92 Aug-1976 7.77 Feb-1990 8.47 Aug-2003 4.45 
Mar-1963 3.93 Sep-1976 7.59 Mar-1990 8.59 Sep-2003 4.27 
Apr-1963 3.97 Oct-1976 7.41 Apr-1990 8.79 Oct-2003 4.29 
May-1963 3.93 Nov-1976 7.29 May-1990 8.76 Nov-2003 4.30 
Jun-1963 3.99 Dec-1976 6.87 Jun-1990 8.48 Dec-2003 4.27 
Jul-1963 4.02 Jan-1977 7.21 Jul-1990 8.47 Jan-2004 4.15 
Aug-1963 4.00 Feb-1977 7.39 Aug-1990 8.75 Feb-2004 4.08 
Sep-1963 4.08 Mar-1977 7.46 Sep-1990 8.89 Mar-2004 3.83 
Ocl-1963 4.11 Apr-1977 7.37 Oct-1990 8.72 Apr-2004 4.35 
Nov-1963 4.12 May-1977 7.46 Nov-1990 8.39 May-2004 4.72 
Dec-1963 4.13 Jun-1977 7.28 Dec-1990 8.08 Jun-2004 4.73 
Jan-1964 4.17 Jul-1977 7.33 Jan-1991 8.09 Jul-2004 4.50 
Feb-1964 4.15 Aug-1977 7.40 Feb-1991 7.85 Aug-2004 4.28 
Mar-1964 4.22 Sep-1977 7.34 Mar-1991 8.11 Sep-2004 4.13 
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TABLE B.l (Continued) 

Month Rate(%) Month Rate(%) Month Rate(%) Month Rate(%) 

Apr-1964 4.23 Oct-1977 7.52 Apr-1991 8.04 Oct-2004 4.10 
May-1964 4.20 Nov-1977 7.58 May-1991 8.07 Nov-2004 4.19 
Jun-1964 4.17 Dec-1977 7.69 Jun-1991 8.28 Dec-2004 4.23 
Jul-1964 4.19 Jan-1978 7.96 Ju1-1991 8.27 Jan-2005 4.22 
Aug-1964 4.19 Feb-1978 8.03 Aug-1991 7.90 Feb-2005 4.17 
Sep-1964 4.20 Mar-1978 8.04 Sep-1991 7.65 Mar-2005 4.50 
Oct-1964 4.19 Apr-1978 8.15 Oct-1991 7.53 Apr-2005 4.34 
Nov-1964 4.15 May-1978 8.35 Nov-1991 7.42 May-2005 4.14 
Dec-1964 4.18 Jun-1978 8.46 Dec-1991 7.09 Jun-2005 4.00 
Jan-1965 4.19 Ju1-1978 8.64 Jan-1992 7.03 Jul-2005 4.18 
Feb-1965 4.21 Aug-1978 8.41 Feb-1992 7.34 Aug-2005 4.26 
Mar-1965 4.21 Sep-1978 8.42 Mar-1992 7.54 Sep-2005 4.20 
Apr-1965 4.20 Oct-1978 8.64 Apr-1992 7.48 Oct-2005 4.46 
May-1965 4.21 Nov-1978 8.81 May-1992 7.39 Nov-2005 4.54 
Jun-1965 4.21 Dec-1978 9.01 Jun-1992 7.26 Dec-2005 4.47 
Jul-1965 4.20 Jan-1979 9.10 Jul-1992 6.84 Jan-2006 4.42 
Aug-1965 4.25 Feb-1979 9.10 Aug-1992 6.59 Feb-2006 4.57 
Sep-1965 4.29 Mar-1979 9.12 Sep-1992 6.42 Mar-2006 4.72 
Oct-1965 4.35 Apr-1979 9.18 Oct-1992 6.59 Apr-2006 4.99 
Nov-1965 4.45 May-1979 9.25 Nov-1992 6.87 May-2006 5.11 
Dec-1965 4.62 Jun-1979 8.91 Dec-1992 6.77 Jun-2006 5.11 
Jan-1966 4.61 Jul-1979 8.95 Jan-1993 6.60 Jul-2006 5.09 
Feb-1966 4.83 Aug-1979 9.03 Feb-1993 6.26 Aug-2006 4.88 
Mar-1966 4.87 Sep-1979 9.33 Mar-1993 5.98 Sep-2006 4.72 
Apr-1966 4.75 Oct-1979 10.30 Apr-1993 5.97 Oct-2006 4.73 
May-1966 4.78 Nov-1979 10.65 May-1993 6.04 Nov-2006 4.60 
Jun-1966 4.81 Dec-1979 10.39 Jun-1993 5.96 Dec-2006 4.56 
Ju1-1966 5.02 Jan-1980 10.80 Ju1-1993 5.81 Jan-2007 4.76 
Aug-1966 5.22 Feb-1980 12.41 Aug-1993 5.68 Feb-2007 4.72 
Sep-1966 5.18 Mar-1980 12.75 Sep-1993 5.36 
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TABLEB.2 Pharmaceutical Product Sales 

Sales Sales Sales Sales 

Week (in thousands) Week (in thousands) Week (in thousands) Week (in thousands) 

10618.1 31 10334.5 61 10538.2 91 10375.4 

2 10537.9 32 10480.1 62 10286.2 92 10123.4 

3 10209.3 33 10387.6 63 10171.3 93 10462.7 

4 10553.0 34 10202.6 64 10393.1 94 10205.5 

5 9934.9 35 10219.3 65 10162.3 95 10522.7 

6 10534.5 36 10382.7 66 10164.5 96 10253.2 

7 10196.5 37 10820.5 67 10327.0 97 10428.7 

8 10511.8 38 10358.7 68 10365.1 98 10615.8 

9 10089.6 39 10494.6 69 10755.9 99 10417.3 

10 10371.2 40 10497.6 70 10463.6 100 10445.4 

II 10239.4 41 10431.5 71 10080.5 101 10690.6 

12 10472.4 42 10447.8 72 10479.6 102 10271.8 

13 10827.2 43 10684.4 73 9980.9 103 10524.8 

14 10640.8 44 10176.5 74 10039.2 104 9815.0 

15 10517.8 45 10616.0 75 10246.1 105 10398.5 

16 10154.2 46 10627.7 76 10368.0 106 10553.1 

17 9969.2 47 10684.0 77 10446.3 107 10655.8 

18 10260.4 48 10246.7 78 10535.3 108 10199.1 

19 10737.0 49 10265.0 79 10786.9 109 10416.6 

20 10430.0 50 10090.4 80 9975.8 110 10391.3 

21 10689.0 51 9881.1 81 10160.9 Ill 10210.1 

22 10430.4 52 10449.7 82 10422.1 112 10352.5 

23 10002.4 53 10276.3 83 10757.2 113 10423.8 

24 10135.7 54 10175.2 84 10463.8 114 10519.3 

25 10096.2 55 10212.5 85 10307.0 115 10596.7 

26 10288.7 56 10395.5 86 10134.7 116 10650.0 

27 10289.1 57 10545.9 87 10207.7 117 I 0741.6 

28 10589.9 58 10635.7 88 10488.0 118 10246.0 

29 10551.9 59 10265.2 89 10262.3 119 10354.4 

30 10208.3 60 10551.6 90 10785.9 120 10155.4 



DATA SETS FOR EXERCISES 413 

TABLEB.3 Chemical Process Viscosity 

Time Time Time Time 
Period Reading Period Reading Period Reading Period Reading 

I 86.7418 26 87.2397 51 85.5722 76 84.7052 

2 85.3195 27 87.5219 52 83.7935 77 83.8168 

3 84.7355 28 86.4992 53 84.3706 78 82.4171 
4 85.1113 29 85.6050 54 83.3762 79 83.0420 

5 85.1487 30 86.8293 55 84.9975 80 83.6993 

6 84.4775 31 84.5004 56 84.3495 81 82.2033 

7 84.6827 32 84.1844 57 85.3395 82 82.1413 

8 84.6757 33 85.4563 58 86.0503 83 81.7961 

9 86.3169 34 86.1511 59 84.8839 84 82.3241 

10 88.0006 35 86.4142 60 85.4176 85 81.5316 

II 86.2597 36 86.0498 61 84.2309 86 81.7280 

12 85.8286 37 86.6642 62 83.5761 87 82.5375 

13 83.7500 38 84.7289 63 84.1343 88 82.3877 

14 84.4628 39 85.9523 64 82.6974 89 82.4159 

15 84.6476 40 86.8473 65 83.5454 90 82.2102 

16 84.5751 41 88.4250 66 86.4714 91 82.7673 

17 82.2473 42 89.6481 67 86.2143 92 83.1234 

18 83.3774 43 87.8566 68 87.0215 93 83.2203 

19 83.5385 44 88.4997 69 86.6504 94 84.4510 

20 85.1620 45 87.0622 70 85.7082 95 84.9145 

21 83.7881 46 85.1973 71 86.1504 96 85.7609 

22 84.0421 47 85.0767 72 85.8032 97 85.2302 

23 84.1023 48 84.4362 73 85.6197 98 86.7312 

24 84.8495 49 84.2112 74 84.2339 99 87.0048 

25 87.6416 50 85.9952 75 83.5737 100 85.0572 
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TABLEB.4 U.S. Production of Blue and Gorgonzola Cheeses 

Year Production (I 01 lb) Year Production ( I 01 lb) 

1950 7,657 1974 28,262 
1951 5,451 1975 28,506 
1952 10,883 1976 33,885 
1953 9,554 1977 34.776 
1954 9,519 1978 35,347 
1955 10,047 1979 34.628 
1956 10,663 1980 33,043 
1957 10,864 1981 30.214 
1958 11,447 1982 31.013 
1959 12,710 1983 31.496 
1960 15,169 1984 34.115 
1961 16,205 1985 33.433 
1962 14,507 1986 34,198 
1963 15,400 1987 35,863 
1964 16,800 1988 37,789 
1965 19,000 1989 34,561 
1966 20,198 1990 36,434 
1967 18,573 1991 34,371 
1968 19,375 1992 33.307 
1969 21,032 1993 33,295 
1970 23,250 1994 36,514 
1971 25,219 1995 36.593 
1972 28,549 1996 38.311 
1973 29,759 1997 42,773 

Source: http: 1 /www. nass. usda. gov /QuickStats/. 



TABLEB.S U.S. Beverage Manufacturer Product Shipments, Unadjusted 

Dollars Dollars Dollars Dollars 
Month (in millions) Month (in millions) Month (in millions) Month (in millions) 

Jan-1992 3,519 Oct-1995 4,681 Jul-1999 5,339 Apr-2003 5,576 
Feb-1992 3,803 Nov-1995 4,466 Aug-1999 5,474 May-2003 6,160 
Mar-1992 4,332 Dec-1995 4,463 Sep-1999 5,278 Jun-2003 6,121 
Apr-1992 4,251 Jan-1996 4,217 Oct-1999 5,184 Jul-2003 5,900 
May-1992 4,661 Feb-1996 4,322 Nov-1999 4,975 Aug-2003 5,994 
Jun-1992 4,811 Mar-1996 4,779 Dec-1999 4,751 Sep-2003 5,841 
Ju1-1992 4,448 Apr-1996 4,988 Jan-2000 4,600 Oct-2003 5,832 
Aug-1992 4,451 May-1996 5,383 Feb-2000 4,718 Nov-2003 5,505 
Sep-1992 4,343 Jun-1996 5,591 Mar-2000 5.218 Dec-2003 5,573 
Oct-1992 4,067 Ju1-1996 5,322 Apr-2000 5.336 Jan-2004 5,331 
Nov-1992 4,001 Aug-1996 5,404 May-2000 5,665 Feb-2004 5,355 
Dec-1992 3,934 Sep-1996 5,106 Jun-2000 5,900 Mar-2004 6,057 
Jan-1993 3,652 Oct-1996 4,871 Jul-2000 5.330 Apr-2004 6,055 
Feb-1993 3,768 Nov-1996 4,977 Aug-2000 5,626 May-2004 6,771 
Mar-1993 4,082 Dec-1996 4,706 Sep-2000 5.512 Jun-2004 6,669 
Apr-1993 4,101 Jan-1997 4,193 Oct-2000 5,293 Ju1-2004 6,375 
May-1993 4,628 Feb-1997 4,460 Nov-2000 5,143 Aug-2004 6,666 
Jun-1993 4,898 Mar-1997 4,956 Dec-2000 4,842 Sep-2004 6,383 
Ju1-1993 4,476 Apr-1997 5,022 Jan-2001 4,627 Oct-2004 6,118 
Aug-1993 4,728 May-1997 5,408 Feb-2001 4.881 Nov-2004 5,927 
Sep-1993 4,458 Jun-1997 5,565 Mar-2001 5,321 Dec-2004 5,750 
Oct-1993 4,004 Ju1-1997 5,360 Apr-2001 5,290 Jan-2005 5,122 
Nov-1993 4,095 Aug-1997 5,490 May-2001 6,002 Feb-2005 5,398 
Dec-1993 4,056 Sep-1997 5,286 Jun-2001 5,811 Mar-2005 5,817 ... ..... 

Ul 
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TABLEB.S (Continued) 

Dollars Dollars Dollars Dollars 
Month (in millions) Month (in millions) Month (in millions) Month (in millions) 

Jan-1994 3,641 Oct-1997 5,257 Jul-2001 5,671 Apr-2005 6,163 
Feb-1994 3,966 Nov-1997 5,002 Aug-2001 6,102 May-2005 6,763 
Mar-1994 4,417 Dec-1997 4,897 Sep-2001 5,482 Jun-2005 6,835 
Apr-1994 4,367 Jan-1998 4,577 Oct-2001 5,429 Jul-2005 6,678 
May-1994 4,821 Feb-1998 4,764 Nov-2001 5,356 Aug-2005 6,821 
Jun-1994 5,190 Mar-1998 5,052 Dec-2001 5,167 Sep-2005 6,421 
Jul-1994 4,638 Apr-1998 5,251 Jan-2002 4,608 Oct-2005 6,338 
Aug-1994 4,904 May-1998 5,558 Feb-2002 4,889 Nov-2005 6,265 
Sep-1994 4,528 Jun-1998 5,931 Mar-2002 5,352 Dec-2005 6,291 
Oct-1994 4,383 Jul-1998 5,476 Apr-2002 5,441 Jan-2006 5,540 
Nov-1994 4,339 Aug-1998 5,603 May-2002 5,970 Feb-2006 5,822 
Dec-1994 4,327 Sep-1998 5,425 Jun-2002 5,750 Mar-2006 6,318 
Jan-1995 3,856 Oct-1998 5,177 Jul-2002 5,670 Apr-2006 6,268 
Feb-1995 4,072 Nov-1998 4,792 Aug-2002 5,860 May-2006 7,270 
Mar-1995 4,563 Dec-1998 4,776 Sep-2002 5,449 Jun-2006 7,096 
Apr-1995 4,561 Jan-1999 4,450 Oct-2002 5,401 Jul-2006 6,505 
May-1995 4,984 Feb-1999 4,659 Nov-2002 5,240 Aug-2006 7,039 
Jun-1995 5,316 Mar-1999 5,043 Dec-2002 5,22\i Sep-2006 6,440 
Jul-1995 4,843 Apr-1999 5,233 Jan-2003 4,770 Oct-2006 6,446 
Aug-1995 5,383 May-1999 5,423 Feb-2003 5,006 Nov-2006 6,717 
Sep-1995 4,889 Jun-1999 5,814 Mar-2003 5,518 Dec-2006 6,320 

Sou roe: http: //www. census. gov I indica tor /www /m3/ni st /nal cshis t2. htm. 



TABLEB.6 Global Mean Surface Air Temperature Anomaly and Global C02 Concentration 

Year Anomaly CC) C02 (ppmv) Year Anomaly (0 C) C02 (ppmv) Year Anomaly ('C) C02 (ppmv) 

1880 -0.11 290.7 1922 -0.09 303.8 1964 -0.25 319.2 
1881 -0.13 291.2 1923 -0.16 304.1 1965 -0.15 320.0 
1882 -0.01 291.7 1924 -0.11 304.5 1966 -0.07 321.1 
1883 -0.04 292.1 1925 -0.15 305.0 1967 -0.02 322.0 
1884 -0.42 292.6 1926 0.04 305.4 1968 -0.09 322.9 
1885 -0.23 293.0 1927 -0.05 305.8 1969 0.00 324.2 
1886 -0.25 293.3 1928 0.01 306.3 1970 0.04 325.2 
1887 -0.45 293.6 1929 -0.22 306.8 1971 -0.10 326.1 
1888 -0.23 293.8 1930 -0.03 307.2 1972 -0.05 327.2 
1889 0.04 294.0 1931 0.03 307.7 1973 0.18 328.8 
1890 -0.22 294.2 1932 0.04 308.2 1974 -0.06 329.7 
1891 -0.55 294.3 1933 -0.11 308.6 1975 -0.02 330.7 
1892 -0.40 294.5 1934 0.05 309.0 1976 -0.21 331.8 
1893 -0.39 294.6 1935 -0.08 309.4 1977 0.16 333.3 
1894 -0.32 294.7 1936 0.01 309.8 1978 0.07 334.6 
1895 -0.32 294.8 1937 0.12 310.0 1979 0.13 336.9 
1896 -0.27 294.9 1938 0.15 310.2 1980 0.27 338.7 
1897 -0.15 295.0 1939 -0.02 310.3 1981 0.40 339.9 
1898 -0.21 295.2 1940 0.14 310.4 1982 0.10 341.1 
1899 -0.25 295.5 1941 0.11 310.4 1983 0.34 342.8 
1900 -0.05 295.8 1942 0.10 310.3 1984 0.16 344.4 
1901 -0.05 296.1 1943 0.06 310.2 1985 0.13 345.9 
1902 -0.30 296.5 1944 0.10 310.1 1986 0.19 347.2 
1903 -0.35 296.8 1945 -0.01 310.1 1987 0.35 348.9 
1904 -0.42 297.2 1946 0.01 310.1 1988 0.42 351.5 

.&;.. 1905 -0.25 297.6 1947 0.12 310.2 1989 0.28 352.9 

...... 
-..I 



""' ..... 
oe 

TABLEB.6 (Continued) 

Year Anomaly ("C) C02 (ppmv) 

1906 -0.15 298.1 
1907 -0.41 298.5 
1908 -0.30 298.9 
1909 -0.31 299.3 
1910 -0.21 299.7 
1911 -0.25 300.1 
1912 -0.33 300.4 
1913 -0.28 300.8 
1914 -0.02 301.1 
1915 0.06 301.4 
1916 -0.20 301.7 
1917 -0.46 302.1 
1918 -0.33 302.4 
1919 -0.09 302.7 
1920 -0.15 303.0 
1921 -0.04 303.4 

Source: http: I /data.giss.nasa.gov.gistemp/. 

Year 

1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 

Anomaly (°C) C02 (ppmv) Year Anomaly (°C) C02 (ppmv) 

-0.03 310.3 1990 0.49 354.2 
-0.09 310.5 1991 0.44 355.6 
-0.17 310.7 1992 0.16 356.4 
-0.02 311.1 1993 0.18 357.0 

0.03 311.5 1994 0.31 358.9 
0.12 311.9 1995 0.47 360.9 

-0.09 312.4 1996 0.36 362.6 
-0.09 313.0 1997 0.40 363.8 
-0.18 313.6 1998 0.71 366.6 

0.08 314.2 1999 0.43 368.3 
0.10 314.9 2000 0.41 369.5 
0.05 315.8 2001 0.56 371.0 

-0.02 316.6 2002 0.70 373.1 
0.10 317.3 2003 0.66 375.6 
0.05 318.1 2004 0.60 377.4 
0.03 318.7 



TABLE B.7 Whole Foods Market Stock Price, Daily Closing Adjusted for Splits 

Date" 

1/2/01 

1/3101 

1/4/01 

1/5/01 

1/8/01 

1/9/01 

1/10/01 

1/11/01 

1/12/01 

1/16/0 I 

1/17/01 

1/18/01 

l/19101 

1/22/0l 

1/23/01 

l/24101 

1/25/01 

1/26/0 I 

l/29/01 

1/30/01 

1131/01 

2/1/01 

2/2/0 I 

2/5/01 

2/6/01 

217/01 

2/8101 

2/9/01 

2/12/0 I 

2/13/0 I 

2/14/01 

2/15/0 I 

2/16/0l 

2/20/01 

2/21/01 

2/22/01 

2/23/01 

2/26/01 

2/27/01 

2/28/01 

3/1/01 

3/2/01 

3/5/01 

3/6/01 

317/0 I 

3/8/01 

3/9/01 

3/12/0 I 

3/13101 

3/14/01 

Dollars 

28.05 

28.23 

26.25 

2541 

26.25 

26.03 

26.09 

26.28 

26.00 

25.63 

25.57 

25.57 

25.16 

26.52 

27.18 

26.93 

26.50 

26.50 

27.27 

27.70 

28.17 

28.26 

28.29 

28.23 

28.54 

28.94 

28.51 

27.55 

28.05 

27.98 

23.55 

24.21 

23.92 

2.1.77 

23.74 

23.55 

23.34 

23.22 

22.87 

21.36 

21.30 

21.51 

21.32 

21.67 

21.48 

21.85 

21.49 

2148 

22.10 

21.79 

Date 

3/15/0 I 

3/16/01 

3/1910 I 

3/20/01 

3/21101 

3/22/01 

3/23/01 

3/26/01 

3/27/01 

3/28/0 I 

3/29/01 

3/30/01 

4/2/01 

4/3/01 

4/4/01 

4/5/01 

4/6/01 

4/9/01 

4/10/01 

4/ll/01 

4/12/01 

4/16/01 

4/17/0l 

4/18101 

4/19/01 

4/20/01 

4/23/01 

4/24/01 

4/25/01 

4/26/01 

4/27/01 

4/30/01 

5/l/01 

5/2/01 

5/3/01 

5/4/0l 

5!7/01 

5/8/01 

5/9/01 

5110/0 I 

5/11/01 

5/14/01 

5/1510 I 

511610 I 

5/17/01 

5/18/01 

5/21/01 

5/22/01 

5/23/01 

5/24/01 

"Date: Month/Day/Year. 

Dollars 

22.01 

22.26 

22.35 

23.06 

22.78 

22.19 

22.19 

22.66 

22.50 

21.36 

20.71 

20.86 

20.95 

20.12 

19.50 

20.30 

20.09 

20.38 

21.13 

20.63 

20.35 

20.39 

20.95 

21.94 

21.43 

21.37 

21.24 

21.13 

22.36 

22.93 

23.26 

24.07 

23.79 

24.56 

2443 

24.29 

23.33 

25.20 

24.94 

24.95 

25.25 

25.70 

26.33 

27.81 

28.04 

28.75 

28.72 

28.33 

27.61 

27.98 

Date 

5/25/01 

5/29/01 

5/30/01 

5131/01 

6/1/01 

6/4/01 

6/5/01 

6/6/01 

617/01 

6/8/0l 

6/ll/0 I 

6/12/01 

6113/0 I 

6/14/01 

6/15/0 I 

6/18/01 

6/19/01 

6/20/0l 

6/21/01 

6/22/01 

6/25/01 

6/26/01 

6/27/0l 

6/28/01 

6/29/01 

7/2/01 

7/3101 

7/5/01 

7/6/01 

7/9/01 

7/10/01 

7/11/01 

7/12/01 

7/13/01 

7/16/01 

7/17/01 

7/18/01 

7/19/0 I 

7/20/01 

7/23/01 

7/24/01 

7/25/01 

7/26101 

7/27/01 

7/30/01 

7/31/01 

8/1/01 

8/2/0l 

8/3/0l 

8/6/01 

Dollars 

27.88 

27.7X 

28.03 

28.36 

28.31 

27.58 

27.43 

27.16 

27.92 

27.36 

27.17 

27.39 

27.58 

27.55 

27.49 

27.70 

27.19 

26.76 

26.53 

26.45 

25.97 

26.11 

26.50 

26.98 

26.84 

28.03 

28.00 

28.01 

27.20 

27.92 

27.10 

27.15 

27.19 

26.69 

26.79 

27.17 

26.72 

26.33 

26.23 

26.59 

26.82 

27.24 

28.49 

31.65 

34.47 

33.63 

32.58 

32.62 

32.09 

32.41 

Date 

817/01 

8/8/01 

8/9/01 

8/10/01 

8/13/0 I 

8/14/01 

8/1510 I 

8/16/01 

8/17/01 

8/20/0l 

8/21101 

8/22/01 

8/23/01 

8/24/01 

8/27/01 

8/28/01 

8/29/01 

8/30/01 

8/31/01 

9/4/0l 

9/5/01 

9/6/01 

917/01 

9/10/01 

9/17/0 I 

9/18/01 

9/19/01 

9/20/01 

9/21/01 

9/24/01 

9/25/01 

9/26/01 

9/27/01 

9/28/01 

10/1/01 

10/2/01 

10/3/01 

10/4/01 

10/5/01 

10/8/01 

10/9/01 

10/10/01 

10/11/0 I 

10/12/01 

10/15/01 

10/16/0 I 

10/17/01 

10/18/01 

J0/19/0l 

10/22/01 

Dollars 

32.24 

31.60 

31.78 

32.99 

32.69 

33.31 

32.n 

32.78 

3282 

33.04 

33.79 

32.69 

32.40 

32.91 

33.38 

34.72 

35.22 

34.77 

34.85 

33.91 

34.39 

34.49 

34.37 

3344 

33.24 

33.18 

31.26 

31.04 

30.33 

30.69 

30.84 

29.95 

29.22 

31.11 

30.93 

30.98 

32.59 

32.50 

32.12 

32.09 

32.85 

33.44 

32.68 

32.54 

32.07 

33.18 

33.45 

34.35 

33.95 

34.42 

Date 

10/23/01 

10/24/01 

10/25/01 

10/26/01 

10/29/01 

10/30/01 

10/31/0 I 

11/1/01 

11/2/01 

11/5/0l 

1116/01 

1117/0 I 

11/8101 

11/9/01 

11/12/01 

11113/0 I 

11/14/01 

11/15/0 I 

11/16/01 

11/19/01 

11/20/01 

1112110 I 

ll/23/01 

11/26/01 

11/27/01 

11/28/01 

11/29/01 

11/30/01 

12/3/01 

12/4/01 

12/5/01 

12/6/01 

1217/01 

12/10101 

12/11/0 I 

12/12/0 I 

12/13/01 

12/14/0l 

12/17/01 

12/18/01 

12/19/01 

12/20/01 

12/21101 

12/24/01 

12/26/01 

12/27/0l 

12/28/01 

12/31/01 

Dollars 

35.20 

35.30 

35.65 

35 96 

35.86 

35.61 

34.42 

34.55 

35.43 

34.92 

35.56 

35.85 

36.89 

37.24 

37.01 

37.52 

37.24 

40.36 

39.42 

40.16 

42.64 

41.86 

42.58 

42.63 

42.14 

41.62 

42.59 

42.50 

42.38 

42.77 

43 80 

45.13 

45.40 

43.8! 

42.1() 

41.24 

40.91 

41.05 

41.U 

41.55 

41.35 

41.27 

42.46 

42.96 

43.63 

43.63 

43.59 

43.14 



"" TABLEB.S Unemployment Rate--Full-Time Labor Force, Not Seasonally Adjusted 
N = Month Rate(%) Month Rate(%) Month Rate(%) Month Rate(%) Month Rate(%) Month Rate(%) 

Jan-1963 6.8 Jan-1970 3.8 Jan-1977 7.9 Jan-1984 8.9 Jan-1991 7.0 Jan-1998 5.0 
Feb-1963 6.8 Feb-1970 4.3 Feb-1977 8.2 Feb-1984 8.5 Feb-1991 7.4 Feb-1998 4.8 
Mar-1963 6.2 Mar-1970 4.2 Mar-1977 7.6 Mar-1984 8.3 Mar-1991 7.1 Mar-1998 4.8 
Apr-1963 5.6 Apr-1970 4.1 Apr-1977 6.7 Apr-1984 7.8 Apr-1991 6.6 Apr-1998 4.0 
May-1963 5.4 May-1970 4.2 May-1977 6.4 May-1984 7.4 May-1991 6.7 May-1998 4.2 
Jun-1963 6.0 Jun-1970 5.5 Jun-1977 7.3 Jun-1984 7.4 Jun-1991 7.0 Jun-1998 4.6 
Jul-1963 5.4 Jul-1970 5.1 Ju1-1977 6.9 Jul-1984 7.6 Ju1-1991 6.9 Ju1-1998 4.6 
Aug-1963 4.9 Aug-1970 4.7 Aug-1977 6.6 Aug-1984 7.2 Aug-1991 6.5 Aug-1998 4.3 
Sep-1963 4.3 Sep-1970 4.5 Sep-1977 6.0 Sep-1984 6.8 Sep-1991 6.3 Sep-1998 4.1 
Oct-1963 4.4 Oct-1970 4.5 Oct-1977 5.9 Oct-1994 6.9 Oct-1991 6.3 Oct-1998 3.9 
Nov-1963 4.9 Nov-1970 4.9 Nov-1977 5.9 Nov-1984 6.8 Nov-1991 6.6 Nov-1998 3.8 
Dec-1963 5.1 Dec-1970 5.2 Dec-1977 5.7 Dec-1984 7.1 Dec-1991 7.0 Dec-1998 3.9 
Jan-1964 6.2 Jan-1971 6.1 Jan-1978 6.7 Jan-1985 8.0 Jan-1992 8.1 Jan-1999 4.6 
Feb-1964 6.1 Feb-1971 6.2 Feb-1978 6.6 Feb-1985 7.9 Feb-1992 8.3 Feb-1999 4.6 
Mar-1964 5.7 Mar-1971 5.9 Mar-1978 6.2 Mar-1985 7.5 Mar-1992 7.9 Mar-1999 4.3 
Apr-1964 5.1 Apr-1971 5.4 Apr-1978 5.5 Apr-1985 7.1 Apr-1992 7.4 Apr-1999 4.0 
May-1964 4.7 May-1971 5.2 May-1978 5.5 May-1985 7.0 May-1992 7.4 May-1999 3.9 
Jun-1964 5.7 Jun-1971 6.4 Jun-1978 6.1 Jun-1985 7.5 Jun-1992 8.0 Jun-1999 4.3 
Jul-1964 4.7 Jul-1971 6.0 Ju1-1978 6.1 Ju1-1985 7.4 Ju1-1992 7.8 Ju1-1999 4.4 
Aug-1964 4.5 Aug-1971 5.6 Aug-1978 5.5 Aug-1985 6.8 Aug-1992 7.3 Aug-1999 4.1 
Sep-1964 4.0 Sep-1971 5.1 Scp-1978 5.1 Sep-1985 6.6 Sep-1992 7.0 Sep-199lJ 3.X 
Oct-1964 4.0 Oct-1971 4.8 Oct-1978 4.8 Oct-1985 6.5 Oct-1992 6.7 Oct-1999 3.7 
Nov-1964 4.0 Nov-1971 5.1 Nov-1978 5.0 Nov-1986 6.6 Nov-1992 7.0 Nov-1999 3.6 
Dec-1964 4.3 Dec-1971 5.2 Dec-1978 5.2 Dec-1985 6.6 Dec-1992 7.1 Dec-1999 3.7 
Jan-1965 5.3 Jan-1972 6.1 Jan-1979 5.9 Jan-1986 7.3 Jan-1993 7.9 Jan-2000 4.3 
Feb-1965 5.5 Feb-1972 6.0 Feb-1979 6.1 Feb-1986 7.8 Feb-1993 7.9 Feb-2(}()() 4.2 
Mar-1965 4.9 Mar-1972 5.8 Mar-1979 5.7 Mar-1986 7.5 Mar-1993 7.5 Mar-2000 4.1 
Apr-1965 4.5 Apr-1972 5.2 Apr-1979 5.3 Apr-1986 7.0 Apr-1993 6.9 Apr-2000 3.5 



May-1965 4.1 May-1972 5.1 May-1979 5.0 May-1986 7.1 May-1993 6.9 May-2000 3.7 

Jun-1965 5.1 Jun-1972 6.0 Jun-1979 5.9 Jun-1986 7.3 Jun-1993 7.2 Jun-2000 4.0 

Ju1-1965 4.2 Jul-1972 5.7 Ju1-1979 5.7 Jul-1986 7.0 Ju1-1993 7.1 Jul-2000 4.0 

Aug-1965 3.9 Aug-1972 5.2 Aug-1979 5.5 Aug-1986 6.4 Aug-1993 6.5 Aug-2000 3.9 

Sep-1965 3.4 Sep-1972 4.6 Sep-1979 5.1 Sep-1986 6.5 Sep-1993 6.2 Sep-2000 3.5 

Oct-1965 3.2 Oct-1972 4.5 Oct-1979 5.1 Oct-1986 6.3 Oct-1993 6.1 Oct-2000 3.5 

Nov-1965 3.3 Nov-1972 4.2 Nov-1979 5.2 Nov-1986 6.4 Nov-1993 6.0 Nov-2000 3.5 

Dec-1965 3.4 Dec-1972 4.2 Dec-1979 5.3 Dec-1986 6.3 Dec-1993 6.2 Dec-2000 3.6 

Jan-1966 4.1 Jan-1973 5.1 Jan-1980 6.5 Jan-1987 7.2 Jan-1994 7.5 Jan-2001 4.5 

Feb-1966 4.0 Feb-1973 5.2 Feb-1980 6.5 Feb-1987 7.1 Feb-1994 7.4 Feb-2001 4.4 

Mar-1966 3.8 Mar-1973 4.9 Mar-1980 6.4 Mar-1987 6.7 Mar-1994 7.0 Mar-2001 4.4 

Apr-1966 3.5 Apr-1973 4.4 Apr-1980 6.6 Apr-1987 6.1 Apr-1994 6.3 Apr-2001 4.0 

May-1966 3.4 May-1973 4.2 May-1980 7.2 May-1987 6.1 May-1994 5.9 May-2001 4.1 

Jun-1966 4.3 Jun-1973 5.1 Jun-1980 8.0 Jun-1987 6.4 Jun-1994 6.3 Jun-2001 4.6 

Jul-1966 3.7 Jul-1973 4.7 Jul-1980 8.1 Jul-1987 6.1 Ju1-1994 6.4 Ju1-2001 4.6 

Aug-1966 3.2 Aug-1973 4.3 Aug-1980 7.6 Aug-1987 5.6 Aug-1994 5.8 Aug-2001 4.7 

Sep-1966 2.9 Sep-1973 3.9 Sep-1980 6.9 Sep-1987 5.3 Sep-1994 5.5 Sep-2001 4.7 

Oct-1966 2.8 Oct-1973 3.6 Oct-1980 6.8 Oct-1987 5.3 Oct-1994 5.3 Oct-2001 4.9 

Nov-1966 3.0 Nov-1973 4.0 Nov-1980 7.0 Nov-1987 5.4 Nov-1994 5.2 Nov-2001 5.2 

Dec-1966 3.1 Dec-1973 4.1 Dec-1980 7.0 Dec-1987 5.3 Dec-1994 5.0 Dec-2001 5.5 

Jan-1967 3.8 Jan-1974 5.2 Jan-1981 8.0 Jan-1988 6.1 Jan-1995 6.1 Jan-2002 6.5 

Feb-1967 3.6 Feb-1974 5.3 Feb-1981 8.0 Feb-1988 6.1 Feb-1995 5.8 Feb-2002 6.3 

Mar-1967 3.5 Mar-1974 5.0 Mar-1981 7.6 Mar-1988 5.8 Mar-1995 5.7 Mar-2002 6.2 

Apr-1967 3.2 Apr-1974 4.6 Apr-1981 7.0 Apr-1988 5.2 Apr-1995 5.5 Apr-2002 5.9 

May-1967 3.0 May-1974 4.5 May-1981 7.2 May-1988 5.4 May-1995 5.4 May-2002 5.7 

Jun-1967 4.3 Jurv1974 5.6 Jun-1981 7.8 Jun-1988 5.4 Jun-1995 5.7 Jun-2002 5.2 

Jul-1967 3.7 Ju1-1974 5.4 Jul-1981 7.4 Ju1-1988 5.4 Jul-1995 5.8 Jul-2002 6.0 

Aug-1967 3.4 Aug-1974 4.9 Aug-1981 7.0 Aug-1988 5.2 Aug-1995 5.5 Aug-2002 5.6 

Sep-1967 3.1 Sep-1974 4.9 Sep-1981 6.9 Sep-1988 4.8 Sep-1995 5.2 Sep-2002 5.3 

""' N Oct-1967 3.1 Oct-1974 5.0 Oct-1981 7.3 Oct-1988 4.7 Oct-1995 5.0 Oct-2002 5.4 -



""' TABLEB.8 (Continued) 
N 
N 

Month Rate(%) Month Rate(%) Month Rate(%) Month Rate(%) Month Rate(%) Month Rate(%) 

Nov-1967 3.0 Nov-1974 5.7 Nov-1981 7.8 Nov-1988 4.9 Nov-1995 5.1 Nov-2002 5.7 
Dec-1967 3.0 Dec-1974 6.3 Dec-1981 8.5 Dec-1988 5.0 Dec-1995 5.2 Dec-2002 5.9 
Jan-1968 3.7 Jan-1975 8.7 Jan-1982 9.5 Jan-1989 5.7 Jan-1996 6.2 Jan-2003 6.6 
Feb-1968 3.8 Feb-1975 9.0 Feb-1982 9.6 Feb-1989 5.5 Feb-1996 5.9 Feb-2003 6.5 
Mar-1968 3.4 Mar-1975 9.1 Mar-1982 9.7 Mar-1989 5.2 Mar-1996 5.8 Mar-2003 6.3 
Apr-1968 2.9 Apr-1975 8.7 Apr-1982 9.4 Apr-1989 5.0 Apr-1996 5.3 Apr-2003 6.0 
May-1968 2.7 May-1975 8.6 May-1982 9.5 May-1989 5.0 May-1996 5.3 May-2003 6.0 
Jun-1968 4.2 Jun-1975 9.3 Jun-1982 10.3 Jun-1989 5.3 Jun-1996 5.4 Jun-2003 6.6 
Ju1-1968 3.7 Ju1-1975 8.7 Ju1-1982 10.1 Ju1-1989 5.3 Ju1-1996 5.6 Ju1-2003 6.4 
Aug-1966 3.1 Aug-1975 7.9 Aug-1982 9.8 Aug-1989 4.9 Aug-1996 4.9 Aug-2003 6.1 
Sep-1968 2.7 Sep-1975 7.6 Sep-1982 9.7 Sep-1969 4.7 Sep-1996 4.8 Sep-2003 5.7 
Oct-1968 2.7 Oct-1975 7.4 Oct-1982 10.1 Oct-1969 4.6 Oct-1996 4.7 Oct-2003 5.6 
Nov-1968 2.6 Nov-1975 7.5 Nov-1962 10.6 Nov-1989 4.9 Nov-1996 4.9 Nov-2003 5.7 
Dec-1968 2.5 Dec-1975 7.5 Dec-1962 11.0 Dec-1989 4.9 Dec-1996 4.9 Dec-2003 5.6 
Jan-1969 3.3 Jan-1976 8.6 Jan-1983 11.9 Jan-1990 5.8 Jan-1997 5.8 Jan-2004 6.3 
Feb-1969 3.3 Feb-1976 8.4 Feb-1983 11.9 Feb-1990 5.6 Feb-1997 5.5 Fcb-2004 6.1 
Mar-1969 3.1 Mar-1976 8.0 Mar-1983 11.4 Mar-1990 5.4 Mar-1997 5.4 Mar-2004 6.2 
Apr-1969 2.9 Apr-1976 7.2 Apr-1983 10.6 Apr-1990 5.2 Apr-1997 4.7 Apr-2004 5.4 
May-1969 2.7 May-1976 6.8 May-1983 10.3 May-1990 5.1 May-1997 4.7 May-2004 5.5 
Jun-1969 4.0 Jun-1976 8.1 Jun-1983 10.6 Jun-1990 5.3 Jun-1997 5.1 Jun-2004 5.8 
Ju1-1969 3.6 Ju1-1976 7.6 Ju1-1983 9.8 Ju1-1990 5.4 JuL-1997 5.0 Jul-2004 5.8 
Aug-1969 3.1 Aug-1976 7.3 Aug-1983 9.4 Aug-1990 5.2 Aug-1997 4.6 Aug-2004 5.3 
Sep-1969 3.0 Sep-1976 6.9 Sep-1983 8.8 Sep-1990 5.3 Sep-1997 4.5 Sep-2004 5.1 
Oct-1969 2.8 Oct-1976 6.7 Oct-1983 8.4 Oct-1990 5.2 Oct-1997 4.2 Oct-2004 5.0 
Nov-1969 2.7 Nov-1976 7.0 Nov-1983 8.2 Nov-1990 5.7 Nov-1997 4.1 Nov-2004 5.1 
Dec-1969 2.8 Dec-1976 7.2 Dcc-1983 6.2 Dec-1990 6.0 Dec-1997 4.3 Dec-2004 5.2 

Soun~:http://data.bls.gov/cgi-bin/srgate. 
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TABLE B.9 International Sunspot Numbers 

Sunspot 
Year Number 

1700 5.1 
1701 11.1 
1702 16.1 
1703 23.1 
1704 36.1 
1705 58.1 
1706 29.1 
1707 20.1 
1708 10.1 
1709 8.1 
1710 3.1 
1711 0.1 
1712 0.1 
1713 2.1 
1714 11.1 
1715 27.1 
1716 47.1 
1717 63.1 
1718 60.1 
1719 39.1 
1720 28.1 
1721 26.1 
1722 22.1 
1723 11.1 
1724 21.1 
1725 40.1 
1726 78.1 
1727 122.1 
1728 103.1 
1729 73.1 
1730 47.1 
1731 35.1 
1732 11.1 
1733 5.1 
1734 16.1 
1735 34.1 
1736 70.1 
1737 81.1 
1738 111.1 
1739 101.1 
1740 73.1 
1741 40.1 
1742 20.1 

Sunspot 
Year Number 

1761 86 
1762 61.3 
1763 45.2 
1764 36.5 
1765 21 
1766 11.5 
1767 37.9 
1768 69.9 
1769 106.2 
1770 100.9 
1771 81.7 
1772 66.6 
1773 34.9 
1774 30.7 
1775 7.1 
1776 19.9 
1777 92.6 
1778 154.5 
1779 126 
1780 84.9 
1781 68.2 
1782 38.6 
1783 22.9 
1784 10.3 
1785 24.2 
1786 83 
1787 132.1 
1788 131 
1789 118.2 
1790 90 
1791 66.7 
1792 60.1 
1793 47 
1794 41.1 
1795 21.4 
1796 16.1 
1797 6.5 
1798 4.2 
1799 6.9 
1800 14.6 
1801 34.1 
1802 45.1 
1803 43.2 

Sunspot 
Year Number 

1622 4.1 
1623 1.9 
1824 8.6 
1825 16.7 
1826 36.4 
1827 49.7 
1828 64.3 
1829 67.1 
1830 71 
1831 47.9 
1832 27.6 
1833 8.6 
1834 13.3 
1835 57 
1836 121.6 
1837 138.4 
1838 103.3 
1839 85.8 
1840 64.7 
1841 36.8 
1842 24.3 
1843 10.8 
1844 15.1 
1845 40.2 
1846 61.6 
1847 98.6 
1848 124.8 
1849 96.4 
1850 66.7 
1851 64.6 
1852 54.2 
1853 39.1 
1854 20.7 
1855 6.8 
1856 4.4 
1857 22.8 
1858 54.9 
1859 93.9 
1860 95.9 
1861 77.3 
1862 59.2 
1863 44.1 
1864 47.1 

Sunspot 
Year Number 

1883 63.8 
1884 63.6 
1885 52.3 
1886 25.5 
1887 13.2 
1888 6.9 
1889 64 
1890 7.2 
1891 35.7 
1892 73.1 
1893 85.2 
1894 78.1 
1895 64.1 
1896 41.9 
1897 26.3 
1898 26.8 
1899 12.2 
1900 9.6 
1901 2.8 
1902 5.1 
1903 24.5 
1904 42.1 
1905 63.6 
1906 53.9 
1907 62.1 
1908 48.6 
1909 44 
1910 18.7 
1911 5.8 
1912 3.7 
1913 1.5 
1914 9.7 
1915 47.5 
1916 57.2 
1917 104 
1918 80.7 
1919 63.7 
1920 37.7 
1921 26.2 
1922 14.3 
1923 59 
1924 16.8 
1925 44.4 

Year 

1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1966 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 

423 

Sunspot 
Number 

9.7 
33.3 
92.7 

151.7 
136.4 
134.8 
84 
69.5 
31.6 
14 
4.5 

38.1 
141.8 
190.3 
184.9 
159.1 
112.4 
54 
37.7 
28 
10.3 

152 
47.1 
93.8 

106 
105.6 
104.6 
66.7 
69 
38.1 
34.6 
15.6 
12.7 
27.6 
92.6 

155.5 
154.7 
140.6 
116 
66.7 
46 
18 
13.5 
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TABLEB.9 (Continued) 

Sunspot Sunspot Sunspot Sunspot Sunspot 
Year Number Year Number Year Number Year Number Year Number 

1743 16.1 1804 47.6 1865 30.6 1926 M 1987 29.3 
1744 5.1 1805 42.3 1866 16.4 1927 69.1 1988 100.3 
1745 11.1 1606 28.2 1867 7.4 1928 77.9 1989 157.7 
1746 22.1 1807 10.2 1868 37.7 1929 65 1990 142.7 
1747 40.1 1808 8.2 1869 74.1 1930 35.8 1991 145.8 
1748 60.1 1809 2.6 1870 139.1 1931 21.3 1992 94.4 
1749 81 1810 0.1 1871 111.3 1932 11.2 1993 54.7 
1750 83.5 1811 1.5 1872 101.7 1933 5.8 1994 30 
1751 47.8 1812 5.1 1873 66.3 1934 8.8 1995 17.6 
1752 47.9 1813 12.3 1874 44.8 1935 36.2 1996 8.7 
1753 30.8 1814 14 1875 17.1 1936 79.8 1997 21.6 
1754 12.3 1815 35.5 1876 11.4 1937 114.5 1998 64.4 
1755 9.7 1816 45.9 1877 12.5 1938 109.7 1999 93.4 
1756 10.3 1817 41.1 1878 3.5 1939 88.9 2000 119.7 
1757 32.5 1818 30.2 1879 6.1 1940 67.9 2001 Ill. I 
1758 47.7 1819 24 1880 32.4 1941 47.6 2002 104.1 
1759 54.1 1620 15.7 1881 54.4 1942 30.7 2003 63.8 
1760 63 1821 6.7 1882 59.8 1943 16.4 2004 40.5 

Source: http: I /side. oma. be/html/sunspot. html (yearly sunspot number). 
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TABLE B. tO United Kingdom Airline Miles Flown 

Miles Miles 
Month (in millions) Month (in millions) 

Jan-1964 7.269 Jul-1967 12.222 
Feb-1964 6.775 Aug-1967 12.246 

Mar-1964 7.819 Sep-1967 13.281 
Apr-1964 8.371 Oct-1967 10.366 
May-1964 9.069 Nov-1967 8.730 
Jun-1964 10.248 Dec-1967 9.614 
Ju1-1964 11.030 Jan-1968 8.639 
Aug-1964 10.882 Feb-1968 8.772 
Sep-1964 10.333 Mar-1968 10.894 
Oct-1964 9.109 Apr-1968 10.455 
Nov-1964 7.685 May-1968 11.179 
Dec-1964 7.682 Jun-1968 10.588 
Jan-1965 8.350 Jul-1968 10.794 
Feb-1965 7.829 Aug-1968 12.770 
Mar-1965 8.829 Sep-1968 13.812 
Apr-1965 9.948 Oct-1968 10.857 
May-1965 10.638 Nov-1968 9.290 
Jun-1965 11.253 Dec-1968 10.925 
Jul-1965 11.424 Jan-1969 9.491 
Aug-1965 11.391 Feb-1969 8.919 
Sep-1965 10.665 Mar-1969 11.607 
Oct-1965 9.396 Apr-1969 8.852 
Nov-1965 7.775 May-1969 12.537 
Dec-1965 7.933 Jun-1969 14.759 
Jan-1966 8.186 Jul-1969 13.667 
Feb-1966 7.444 Aug-1969 13.731 
Mar-1966 8.484 Sep-1969 15.110 
Apr-1966 9.864 Oct-1969 12.185 
May-1966 10.252 Nov-1969 10.645 
Jun-1966 12.282 Dec-1969 12.161 
Ju1-1966 11.637 Jan-1970 10.840 
Aug-1966 11.577 Feb-1970 10.436 
Sep-1966 12.417 Mar-1970 13.589 
Oct-1966 9.637 Apr-1970 13.402 
Nov-1966 8.094 May-1970 13.103 
Dec-1966 9.280 Jun-1970 14.933 
Jan-1967 8.334 Ju1-1970 14.147 
Feb-1967 7.899 Aug-1970 14.057 
Mar-1967 9.994 Sep-1970 16.234 
Apr-1967 10.078 Oct-1970 12.389 
May-1967 10.801 Nov-1970 11.594 
Jun-1967 12.953 Dec-1970 12.772 

Source: Montgomery, Johnson, and Gardner (1990). 
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TABLE B.ll Champagne Sales 

Sales Sales Sales 
(in thousands (in thousands (in thousands 

Month of bottles) Month of bottles) Month of bottles) 

Jan-1962 2.851 Sep-1964 3.528 May-1967 4.968 
Feb-1962 2.672 Oct-1964 5.211 Jun-1967 4.677 
Mar-1962 2.755 Nov-1964 7.614 Jul-1967 3.523 
Apr-1962 2.721 Dec-1964 9.254 Aug-1967 1.821 
May-1962 2.946 Jan-1965 5.375 Sep-1967 5.222 
Jun-1962 3.036 Feb-1965 3.088 Oct-1967 6.873 
Jul-1962 2.282 Mar-1965 3.718 Nov-1967 10.803 
Aug-1962 2.212 Apr-1965 4.514 Dec-1967 13.916 
Sep-1962 2.922 May-1965 4.520 Jan-1968 2.639 
Oct-1962 4.301 Jun-1965 4.539 Feb-1968 2.899 
Nov-1962 5.764 Jul-1965 3.663 Mar-1968 3.370 
Dec-1962 7.132 Aug-1965 1.643 Apr-1968 3.740 
Jan-1963 2.541 Sep-1965 4.739 May-1968 2.927 
Feb-1963 2.475 Oct-1965 5.428 Jun-1968 3.986 
Mar-1963 3.031 Nov-1965 8.314 Jul-1968 4.217 
Apr-1963 3.266 Dec-1965 10.651 Aug-1968 1.738 
May-1963 3.776 Jan-1966 3.633 Sep-1968 5.221 
Jun-1963 3.230 Feb-1966 4.292 Oct-1968 6.424 
Jul-1963 3.028 Mar-1966 4.154 Nov-1968 9.842 
Aug-1963 1.759 Apr-1966 4.121 Dec-1968 13.076 
Sep-1963 3.595 May-1966 4.647 Jan-1969 3.934 
Oct-1963 4.474 Jun-1966 4.753 Feb-1969 3.162 
Nov-1963 6.838 Jul-1966 3.965 Mar-1969 4.286 
Dec-1963 8.357 Aug-1966 1.723 Apr-1969 4.676 
Jan-1964 3.113 Sep-1966 5.048 May-1969 5.010 
Feb-1964 3.006 Oct-1966 6.922 Jun-1969 4.874 
Mar-1964 4.047 Nov-1966 9.858 Jul-1969 4.633 
Apr-1964 3.523 Dec-1966 11.331 Aug-1969 1.659 
May-1964 3.937 Jan-1967 4.016 Sep-1969 5.951 
Jun-1964 3.986 Feb-1967 3.957 Oct-1969 6.981 
Jul-1964 3.260 Mar-1967 4.510 Nov-1969 9.851 
Aug-1964 1.573 Apr-1967 4.276 Dec-1969 12.670 
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TABLE B.l2 Chemical Process Yield, with Operating Temperature (Uncontrolled) 

Hour Yield(%) Temperature (oF) Hour Yield(%) Temperature CF) 

89.0 153 26 99.4 152 
2 90.5 152 27 99.6 153 
3 91.5 153 28 99.8 153 
4 93.2 153 29 98.8 154 
5 93.9 154 30 99.9 154 
6 94.6 151 31 98.2 153 
7 94.7 153 32 98.7 153 
8 93.5 152 33 97.5 154 
9 91.2 151 34 97.9 152 

10 89.3 150 35 98.3 152 
II 85.6 150 36 98.8 151 
12 80.3 149 37 99.1 150 
13 75.9 149 38 99.2 149 
14 75.3 147 39 98.6 148 
15 78.3 146 40 95.3 147 
16 89.1 143 41 94.2 146 
17 88.3 148 42 91.3 148 
18 89.2 151 43 90.6 145 
19 90.1 152 44 91.2 143 
20 94.3 153 45 88.3 145 
21 97.7 154 46 84.1 150 
22 98.6 152 47 86.5 147 
23 98.7 153 48 88.2 150 
24 98.9 152 49 89.5 151 
25 99.2 152 50 89.5 152 
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TABLEB.13 U.S. Production of Ice Cream and Frozen Yogurt 

Ice Cream Frozen Yogurt Ice Cream Frozen Yogurt 
Year (103 gal) (103 gal) Year (103 gal) (103 gal) 

1950 554,351 1975 836.552 
1951 568,849 1976 818,241 
1952 592,705 1977 809.849 
1953 605,051 1978 815,360 
1954 596,821 1979 811,079 
1955 628,525 1980 829.798 
1956 641.333 1981 832.450 
1957 650,583 1982 852,072 
1958 657,175 1983 881.543 
1959 698.931 1984 894,468 
1960 697,552 1985 901.449 
1961 697.151 1986 923.597 
1962 704,428 1987 928.356 
1963 717.597 1988 882.079 
1964 738.743 1989 831.159 82.454 
1965 757,000 1990 823,610 117.577 
1966 751,159 1991 862.638 147.1J7 
1967 745,409 1992 866.110 134.067 
1968 773,207 1993 866,248 149.933 
1969 765,501 1994 876.097 150.565 
1970 761,732 1995 862.232 152.097 
1971 765,843 1996 878.572 114.168 
1972 767,750 1997 913.770 92.167 
1973 773,674 1998 937.485 87.777 
1974 781,971 2000 979.645 94.478 

Source: USDA-National Agricultural Statistics Service. http: ;~ww.nass.usda.gov QuickStats 
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TABLE B.14 Atmospheric C02 Concentrations at Mauna Loa Observatory 

Average C02 Concentration Average C02 Concentration 
Year (ppmv) Year (ppmv) 

1959 316.00 1982 341.09 
1960 316.91 1983 342.75 
1961 317.63 1984 344.44 
1962 318.46 1985 345.86 
1963 319.Q2 1986 347.14 
1964 319.52 1987 348.99 
1965 320.09 1988 351.44 
1966 321.34 1989 352.94 
1967 322.13 1990 354.19 
1968 323.11 1991 355.62 
1969 324.60 1992 356.36 
1970 325.65 1993 357.10 
1971 326.32 1994 358.86 
1972 327.52 1995 360.90 
1973 329.61 1996 362.58 
1974 330.29 1997 363.84 
1975 331.16 1998 366.58 
1976 332.18 1999 368.30 
1977 333.88 2000 369.47 
1978 335.52 2001 371.03 
1979 336.89 2002 373.07 
1980 338.67 2003 375.61 
1981 339.95 

Source: C. D. Keeling, T. P. Wharf, and the Carbon Dioxide Research Group; Scripps Institution of 
Oceanography (SIO), University of California, La Jolla, California USA 92093-0444. 
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TABLE 8.15 U.S. National Violent Crime Rate 

Violent Crime Rate 
Year (per 100,000 inhabitants) 

1984 539.9 
1985 558.1 
1986 620.1 
1987 612.5 
1988 640.6 
1989 666.9 
1990 729.6 
1991 758.2 
1992 757.7 
1993 747.1 
1994 713.6 
1995 684.5 
1996 636.6 
1997 611.0 
1998 567.6 
1999 523.0 
2000 506.5 
2001" 504.5 
2002 494.4 
2003 475.8 
2004 463.2 
2005 469.2 

Source: http: I /www. census. gov /compendia/ statab/ 

hist_stats.html. 

"The murder and nonnegligent homicides that occurred as a 
result of the events of September II. 200 I are not included in 
the rate for the year 200 I. 
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TABLE B.16 U.S. Gross Domestic Product 

Year GOP, Current Dollars (billions) 

1976 1,823.9 
1977 2,031.4 
1978 2,295.9 
1979 2,566.4 
1980 2,795.6 
1981 3,131.3 
1982 3,259.2 
1983 3,534.9 
1984 3,932.7 
1985 4,213.0 
1986 4,452.9 
1987 4,742.5 
1988 5,108.3 
1989 5,489.1 
1990 5,803.2 
1991 5,986.2 
1992 6,318.9 
1993 6,642.3 
1994 7,054.3 
1995 7,400.5 
1996 7,813.2 
1997 8,318.4 
1998 8,781.5 
1999 9,274.3 
2000 9,824.6 
2001 10,082.2 
2002 10,446.2 

431 

GOP, Real (1996) Dollars (billions) 

4,311.7 
4,511.8 
4,760.6 
4,912.1 
4,900.9 
5,021.0 
4,919.3 
5,132.3 
5,505.2 
5,717.1 
5,912.4 
6,113.3 
6,368.4 
6,591.8 
6,707.9 
6,676.4 
6,880.0 
7,062.6 
7,347.7 
7,543.8 
7,813.2 
8,159.5 
8,508.9 
8,859.0 
9,191.4 
9,214.5 
9,439.9 

Source: http://www. census. gov /compendia/ statab/hist_stats. htrnl. 
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TABLE 8.17 Total Annual U.S. Energy Consumption 

Year BTUs (billions) Year BTUs (billions) 

1949 31,981,503 1978 79.986,371 
1950 34,615,768 1979 80,903,214 
1951 36,974,030 1980 78,280,238 
1952 36,747,825 1981 76.342,955 
1953 37,664,468 1982 73,286.151 
1954 36,639,382 1983 73.145,527 
1955 40,207,971 1984 76.792,960 
1956 41,754,252 1985 76,579,965 
1957 41,787,186 1986 76,825,812 
1958 41,645,028 1987 79,223,446 
1959 43,465,722 1988 82,869,321 
1960 45,086,870 1989 84.999,308 
1961 45,739,017 1990 84,729,945 
1962 47,827,707 1991 84.667,227 
1963 49,646,160 1992 86,014,860 
1964 51,817,177 1993 87,652.195 
1965 54,017,221 1994 89.291,713 
1966 57,016,544 1995 91.199,841 
1967 58,908,107 1996 94.225,791 
1968 62,419,392 1997 94.800,047 
1969 65,620,879 1998 95.200,433 
1970 67,844,161 1999 96.836,647 
1971 69,288,965 2000 98,976.371 
1972 72,704,267 2001 96.497,865 
1973 75,708,364 2002 97,966,872 
1974 73,990,880 2003 98,273,323 
1975 71,999,191 2004 100,414,461 
1976 76,012,373 2005 99,894,296 
1977 77,999,554 

Source: Annual Energy Review-Energy Overview 1949-2005. U.S. Department of Energy-Energy 

information Center, http: I /www. eia. doe. gov/ aer /overview. htrnl. 
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TABLE 8.18 Annual U.S. Coal Production 

Year Coal Production (103 short tons) Year Coal Production (103 short tons) 

1949 480.570 1978 670,164 
1950 560,386 1979 781,134 

1951 576,335 1980 829,700 
1952 507,424 1981 823,775 
1953 488,239 1982 838,112 
1954 420,789 1983 782,091 
1955 490,838 1984 895,921 
1956 529,774 1985 883,638 
1957 518,042 1986 890,315 
1958 431,617 1987 918,762 
1959 432,677 1988 950,265 
1960 434,329 1969 980,729 
1961 420,423 1990 1,029,076 
1962 439,043 1991 995,984 
1963 477,195 1992 997,545 
1964 504,182 1993 945,424 
1965 526,954 1994 1,033,504 
1966 546,822 1995 1,032,974 
1967 564,882 1996 1,063,856 
1968 556,706 1997 1,089,932 
1969 570,978 1998 1,117,535 
1970 612,661 1999 I, 100,431 
1971 560,919 2000 1,073,612 
1972 602,492 2001 1,127,689 
1973 598,568 2002 1,094,283 
1974 610,023 2003 1,071,753 
1975 654,641 2004 I,l12,099 
1976 684,913 2005 I, 133,253 
1977 697,205 

Source: Annual Energy Review~Coal Overview 1949-2005, U.S. Department of Energy-Energy 
Information Center, http/ /www. eia. doe. gov/ aer I coai. html. 
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TABLEB.19 Arizona Drowning Rate, Children 1-4 Years Old 

Drowning Rate Drowning Rate 
Year per I 00,000 Children 1--4 years old Year per I 00,000 Children 1--4 years old 

1970 19.9 1988 9.2 
1971 16.1 1989 11.9 
1972 19.5 1990 5.8 
1973 19.8 1991 8.5 
1974 21.3 1992 7.1 
1975 15.0 1993 7.9 
1976 15.5 1994 8.0 
1977 16.4 1995 9.9 
1978 18.2 1996 8.5 
1979 15.3 1997 9.1 
1980 15.6 1998 9.7 
1981 19.5 1999 6.2 
1982 14.0 2000 7.2 
1983 13.1 2001 8.7 
1984 10.5 2002 5.8 
1985 11.5 2003 5.7 
1986 12.9 2004 5.2 
1987 8.4 

Source: http: I /www. azdhs. gov /plan/report/ im/dd/drown96/ Oldro96. htm. 
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TABLE 8.20 U.S. Internal Revenue Tax Refunds 

Fiscal Year Amount Refunded (millions dollars) 

1987 96,969 
1988 94.480 
1989 93,613 
1990 99.656 
1991 104,380 
1992 113,108 
1993 93,580 
1994 96,980 
1995 108,035 
1996 132,710 
1997 142,599 
1998 153,828 
1999 185.282 
2000 195.751 
2001 252.787 
2002 257,644 
2003 296,064 
2004 270.893 
2005 255,439 
2006 263,501 

435 

National Population (thousands) 

242,289 
244,499 
246,819 
249,464 
252,153 
255,030 
257,783 
260,327 
262,803 
265,229 
267,784 
270,248 
272,691 
282,193 
285,108 
287.985 
290,850 
293,657 
296,410 
299,103 

Source: U.S. DepartmentofEnergy-lnterna1 Revenue Service, SOl Tax Stats-lndividua1 Time Series Statis­

tical Tables. http: llwww. irs. gov I taxstats I indtaxs tats I articleiO, id=9 6 67 9, 0 O.html. 
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Cross-section data, 74 
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Cyclic patterns, 7 

Data splitting, 13, 57, I 03, 370 
Decomposition of a time series, 43 
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Differencing, 36, 39, 256 
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Forecasting model evaluation. 49 
Forecasting percentiles, 359 
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GARCH models, 355 
Gaussian white noise, 54 
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