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Preface

Analyzing time-oriented data and forecasting future values of a time series are among
the most important problems that analysts face in many fields, ranging from finance
and economics, to managing production operations, to the analysis of political and
social policy sessions, to investigating the impact of humans and the policy decisions
that they make on the environment. Consequently, there is a large group of people in
a variety of fields including finance, economics, science, engineering, statistics, and
public policy who need to understand some basic concepts of time series analysis and
forecasting. Unfortunately, most basic statistics and operations management books
give little if any attention to time-oriented data, and little guidance on forecasting.
There are some very good high level books on time series analysis. These books
are mostly written for technical specialists who are taking a doctoral-level course or
doing research in the field. They tend to be very theoretical and often focus on a few
specific topics or techniques. We have written this book to fill the gap between these
two extremes.

This book is intended for practitioners who make real-world forecasts. Our focus
is on short- to medium-term forecasting where statistical methods are useful. Since
many organizations can improve their effectiveness and business results by making
better short- to medium-term forecasts, this book should be useful to a wide variety of
professionals. The book can also be used as a textbook for an applied forecasting and
time series analysis course at the advanced undergraduate or first-year graduate level.
Students in this course could come from engineering, business, statistics, operations
research, mathematics, computer science, and any area of application where making
forecasts is important. Readers need a background in basic statistics (previous ex-
posure to linear regression would be helpful but not essential), and some knowledge
of matrix algebra, although matrices appear mostly in the chapter on regression, and
if one is interested mainly in the results, the details involving matrix manipulation
can be skipped. Integrals and derivatives appear in a few places in the book, but no
detailed working knowledge of calculus is required.

Successful time series analysis and forecasting requires that the analyst interact
with computer software. The techniques and algorithms are just not suitable to manual
calculations. We have chosen to demonstrate the techniques presented using three

ix
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packages, Minitab, JMP, and SAS. We have selected these packages because they are
widely used in practice and because they have generally good capability for analyzing
time series data and generating forecasts. However, the basic principles that underlie
most of our presentation are not specific to any particular software package. Readers
can use any software that they like or have available that has basic statistical forecasting
capability. While the text examples do utilize Minitab, JMP. and SAS. and illustrate
the features and capability of those packages. these features or similar ones are found
in many other software packages.

There are three basic approaches to generating forecasts: regression-based meth-
ods, heuristic smoothing methods. and general time series models. Because all three
of these basic approaches are useful. we give an introduction to all of them. Chapter
1 introduces the basic forecasting problem. defines terminology. and illustrates many
of the common features of time series data. Chapter 2 contains many of the basic
statistical tools used in analyzing time series data. Topics include plots. numerical
summaries of time series data including the autocovariance and autocorrelation func-
tions, transformations, differencing, and decomposing a time series into trend and
seasonal components. We also introduce metrics for evaluating forecast errors. and
methods for evaluating and tracking forecasting performance over time. Chapter 3
discusses regression analysis and its use in forecasting. We discuss both cross-section
and time series regression data, least squares and maximum likelihood model fitting.
model adequacy checking, prediction intervals. and weighted and generalized least
squares. The first part of this chapter covers many of the topics typically seen in an in-
troductory treatment of regression, either in a stand-alone course or as part of another
applied statistics course. It should be a reasonable review for many readers. Chapter
4 presents exponential smoothing techniques, both for time series with polynomial
components and for seasonal data. We discuss and illustrate methods for selecting the
smoothing constant(s), forecasting, and constructing prediction intervals. The explicit
time series modeling approach to forecasting that we have chosen to emphasize is the
autoregressive integrated moving average (ARIMA) model approach. Chapter 5 in-
troduces ARIMA models and illustrates how to identify and fit these models for both
nonseasonal and seasonal time series. Forecasting and prediction interval construc-
tion are also discussed and illustrated. Chapter 6 extends this discussion into transfer
function models and intervention modeling and analysis. Chapter 7 surveys several
other useful topics from time series analysis and forecasting. including multivariate
time series problems, ARCH and GARCH models. and combinations of forecasts.
We also give some practical advice for using statistical approaches to forecasting and
provide some information about realistic expectations. The last two chapters of the
book are somewhat higher in level than the first five.

Each chapter has a set of exercises. Some of these exercises involve analyzing
the data sets given in Appendix B. These data sets represent an interesting cross
section of real time series data, typical of those encountered in practical forecasting
problems. Most of these data sets are used in exercises in two or more chapters.
an indication that there are usually several approaches to analyzing. modeling. and
forecasting a time series. There are other good sources of data for practicing the
techniques given in this book. Some of the ones that we have found very interesting
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and useful include the U.S. Department of Labor-Bureau of Labor Statistics
(http://www.bls.gov/data/home.htm), the U.S. Department of Agriculture—
National Agricultural Statistics Service, Quick Stats Agricultural Statistics Data
(http://www.nass.usda.gov/Data_and_Statistics/Quick_Stats/index
.asp), the U.S. Census Bureau (http://www.census.gov), and the U.S.
Department of the Treasury (http://www.treas.gov/offices/domestic-
finance/debt-management/interest-rate/). The time series data lib-
rary created by Rob Hyndman at Monash University (http://www-personal.
buseco.monash.edu.au/~hyndman/TSDL/index.htm) and the time series
data library at the Mathematics Department of the University of York (http://
www.york.ac.uk/depts/maths/data/ts)also contain many excellent data sets.
Some of these sources provide links to other data. Data sets and other materials re-
lated to this book can be found at ftp://ftp.wiley.com/public/scitechmed/
timeseries.

We have placed a premium in the book on bridging the gap between theory and
practice. We have not emphasized proofs or technical details and have tried to give
intuitive explanations of the material whenever possible. The result is a book that can
be used with a wide variety of audiences, with different interests and technical back-
grounds, whose common interests are understanding how to analyze time-oriented
data and constructing good short-term statistically based forecasts.

We express our appreciation to the individuals and organizations who have given
their permission to use copyrighted material. These materials are noted in the text.
Portions of the output contained in this book are printed with permission of Minitab
Inc. All material remains the exclusive property and copyright of Minitab Inc. All
rights reserved.

DoucLas C. MONTGOMERY
CHERYL L. JENNINGS
MURAT KULAHCI






CHAPTER 1

Introduction to Forecasting

It is difficult to make predictions, especially about the future.
NEILS BOHR, Danish physicist

1.1 THE NATURE AND USES OF FORECASTS

A forecast is a prediction of some future event or events. As suggested by Neils Bohr,
making good predictions is not always easy. Famously “bad” forecasts include the
following from the book Bad Predictions:

® “The population is constant in size and will remain so right up to the end of
mankind.” L’Encyclopedie, 1756.

® “1930 will be a splendid employment year.” U.S. Department of Labor, New
Year’s Forecast in 1929, just before the market crash on October 29.

® “Computers are multiplying at a rapid rate. By the turn of the century there will
be 220,000 in the U.S.” Wall Street Journal, 1966.

Forecasting is an important problem that spans many fields including business
and industry, government, economics, environmental sciences, medicine, social sci-
ence, politics, and finance. Forecasting problems are often classified as short-term,
medium-term, and long-term. Short-term forecasting problems involve predicting
events only a few time periods (days, weeks, months) into the future. Medium-term
forecasts extend from one to two years into the future, and long-term forecasting
problems can extend beyond that by many years. Short- and medium-term forecasts
are required for activities that range from operations management to budgeting and
selecting new research and development projects. Long-term forecasts impact issues
such as strategic planning. Short- and medium-term forecasting is typically based

Introduction to Time Series Analysis and Forecasting
By Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci
Copyright © 2008 John Wiley & Sons. Inc.
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FIGURE 1.1 Time series plot of the market yield on U.S. Treasury Securities at 10-year constant maturity.
(Source: U.S. Treasury.)

on identifying, modeling, and extrapolating the patterns found in historical data. Be-
cause these historical data usually exhibit inertia and do not change dramatically very
quickly, statistical methods are very useful for short- and medium-term forecasting.
This book is about the use of these statistical methods.

Most forecasting problems involve the use of time series data. A time series is
a time-oriented or chronological sequence of observations on a variable of interest.
For example, Figure 1.1 shows the market yield on U.S. Treasury Securities at 10-
year constant maturity from April 1953 through December 2006 (data in Appendix
B, Table B.1). This graph is called a time series plot. The rate variable is collected
at equally spaced time periods, as is typical in most time series and forecasting
applications. Many business applications of forecasting utilize daily. weekly. monthly.
quarterly, or annual data, but any reporting interval may be used. Furthermore, the
data may be instantaneous, such as the viscosity of a chemical product at the point in
time where it 1s measured; it may be cumulative. such as the total sales of a product
during the month; or it may be a statistic that in some way reflects the activity of the
variable during the time period, such as the daily closing price of a specific stock on
the New York Stock Exchange.

The reason that forecasting is so important is that prediction of future events is
a critical input into many types of planning and decision making processes, with
application to areas such as the following:

1. Operations Management. Business organizations routinely use forecasts of
product sales or demand for services in order to schedule production. con-
trol inventories, manage the supply chain, determine staffing requirements. and
plan capacity. Forecasts may also be used to determine the mix of products or
services to be offered and the locations at which products are to be produced.
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2.

n

Marketing. Forecasting is important in many marketing decisions. Forecasts of
sales response to advertising expenditures, new promotions, or changes in pric-
ing polices enable businesses to evaluate their effectiveness, determine whether
goals are being met, and make adjustments.

Finance and Risk Management. Investors in financial assets are interested in
forecasting the returns from their investments. These assets include but are not
limited to stocks, bonds, and commodities; other investment decisions can be
made relative to forecasts of interest rates, options, and currency exchange rates.
Financial risk management requires forecasts of the volatility of asset returns
so that the risks associated with investment portfolios can be evaluated and
insured, and so that financial derivatives can be properly priced.

Economics. Governments, financial institutions, and policy organizations re-
quire forecasts of major economic variables, such as gross domestic product,
population growth, unemployment, interest rates, inflation, job growth, pro-
duction, and consumption. These forecasts are an integral part of the guidance
behind monetary and fiscal policy and budgeting plans and decisions made by
governments. They are also instrumental in the strategic planning decisions
made by business organizations and financial institutions.

Industrial Process Control. Forecasts of the future values of critical quality
characteristics of a production process can help determine when important con-
trollable variables in the process should be changed, or if the process should
be shut down and overhauled. Feedback and feedforward control schemes are
widely used in monitoring and adjustment of industrial processes, and predic-
tions of the process output are an integral part of these schemes.

Demography. Forecasts of population by country and regions are made rou-
tinely, often stratified by variables such as gender, age, and race. Demographers
also forecast births, deaths, and migration patterns of populations. Govern-
ments use these forecasts for planning policy and social service actions, such as
spending on health care, retirement programs, and antipoverty programs. Many
businesses use forecasts of populations by age groups to make strategic plans
regarding developing new product lines or the types of services that will be
offered.

These are only a few of the many different situations where forecasts are required
in order to make good decisions. Despite the wide range of problem situations that re-
quire forecasts, there are only two broad types of forecasting techniques-—qualitative
methods and quantitative methods.

Qualitative forecasting techniques are often subjective in nature and require judg-
ment on the part of experts. Qualitative forecasts are often used in situations where
there is little or no historical data on which to base the forecast. An example would
be the introduction of a new product, for which there is no relevant history. In this
situation the company might use the expert opinion of sales and marketing personnel
to subjectively estimate product sales during the new product introduction phase of
its life cycle. Sometimes qualitative forecasting methods make use of marketing tests,
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surveys of potential customers, and experience with the sales performance of other
products (both their own and those of competitors). However. although some data
analysis may be performed, the basis of the forecast is subjective judgment.

Perhaps the most formal and widely known qualitative forecasting technique is
the Delphi Method. This technique was developed by the RAND Corporation (see
Dalkey [1967]). It employs a panel of experts who are assumed to be knowledgeable
about the problem. The panel members are physically separated to avoid their delib-
erations being impacted either by social pressures or by a single dominant individual.
Each panel member responds to a questionnaire containing a series of questions and
returns the information to a coordinator. Foliowing the first questionnaire, subsequent
questions are submitted to the panelists along with information about the opinions
of the panel as a group. This allows panelists to review their predictions relative to
the opinions of the entire group. After several rounds. it is hoped that the opinions
of the panelists converge to a consensus, although achieving a consensus is not re-
quired and justified differences of opinion can be included in the outcome. Qualitative
forecasting methods are not emphasized in this book.

Quantitative forecasting techniques make formal use of historical data and a fore-
casting model. The model formally summarizes patterns in the data and expresses a
statistical relationship between previous and current values of the variable. Then the
model is used to project the patterns in the data into the future. In other words. the
forecasting model is use to extrapolate past and current behavior into the future. There
are several types of forecasting models in general use. The three most widely used are
regression models, smoothing models, and general time series models. Regression
models make use of relationships between the variable of interest and one or more re-
lated predictor variables. Sometimes regression models are called causal forecasting
models, because the predictor variables are assumed to describe the forces that cause
or drive the observed values of the variable of interest. An example would be using
data on house purchases as a predictor variable to forecast furniture sales. The method
of least squares is the formal basis of most regression models. Smoothing models
typically employ a simple function of previous observations to provide a forecast of
the variable of interest. These methods may have a formal statistical basis, but they
are often used and justified heuristically on the basis that they are easy to use and
produce satisfactory results. General time series models employ the statistical prop-
erties of the historical data to specify a formal model and then estimate the unknown
parameters of this model (usually) by least squares. In subsequent chapters, we will
discuss all three types of quantitative forecasting models.

The form of the forecast can be important. We typically think of a forecast as a single
number that represents our best estimate of the future value of the variable of interest.
Statisticians would call this a point estimate or point forecast. Now these forecasts
are almost always wrong; that is, we experience forecast error. Consequently, it
is usually good practice to accompany a forecast with an estimate of how large a
forecast error might be experienced. One way to do this is to provide a prediction
interval (PI) to accompany the point forecast. The PI is a range of values for the
future observation, and it is likely to prove far more useful in decision making than a
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single number. We will show how to obtain Pls for most of the forecasting methods
discussed in the book.

Other important features of the forecasting problem are the forecast horizon and
the forecast interval. The forecast horizon is the number of future periods for which
forecasts must be produced. The horizon is often dictated by the nature of the prob-
lem. For example, in production planning, forecasts of product demand may be made
on a monthly basis. Because of the time required to change or modify a production
schedule, ensure that sufficient raw material and component parts are available from
the supply chain, and plan the delivery of completed goods to customers or inventory
facilities, it would be necessary to forecast up to three months ahead. The forecast
horizon is also often called the forecast lead time. The forecast interval is the fre-
quency with which new forecasts are prepared. For example, in production planning,
we might forecast demand on a monthly basis, for up to three months in the future
(the lead time or horizon), and prepare a new forecast each month. Thus the forecast
interval is one month, the same as the basic period of time for which each forecast
is made. If the forecast lead time is always the same length, say, T periods, and the
forecast is revised each time period, then we are employing a rolling or moving
horizon forecasting approach. This system updates or revises the forecasts for T —1
of the periods in the horizon and computes a forecast for the newest period 7. This
rolling horizon approach to forecasting is widely used when the lead time is several
periods long.

1.2 SOME EXAMPLES OF TIME SERIES

Time series plots can reveal patterns such as random, trends, level shifts, periods
or cycles, unusual observations, or a combination of patterns. Patterns commonly
found in time series data are discussed next with examples of situations that drive the
patterns.

The sales of a mature pharmaceutical product may remain relatively flat in the ab-
sence of unchanged marketing or manufacturing strategies. Weekly sales of a generic
pharmaceutical product shown in Figure 1.2 appear to be constant over time, at about
10,400 x 10? units, in a random sequence with no obvious patterns (data in Ap-
pendix B, Table B.2).

To assure conformance with customer requirements and product specifications, the
production of chemicals is monitored by many characteristics. These may be input
variables such as temperature and flow rate and output properties such as viscosity
and purity.

Due to the continuous nature of chemical manufacturing processes, output prop-
erties often are positively autocorrelated; that is, a value above the long-run average
tends to be followed by other values above the average, while a value below the
average tends to be followed by other values below the average.

The viscosity readings plotted in Figure 1.3 exhibit autocorrelated behavior, tend-
ing to a long-run average of about 85 centipoises (cP), but with a structured, not
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FIGURE 1.2 Pharmaceutical product sales.

completely random, appearance (data in Appendix B, Table B.3). Some methods for
describing and analyzing autocorrelated data are described in Chapter 2.

The USDA National Agricultural Statistics Service publishes agricultural statistics
for many commodities, including the annual production of dairy products such as
butter, cheese, ice cream, milk, yogurt, and whey. These statistics are used for market
analysis and intelligence, economic indicators, and identification of emerging issues.
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FIGURE 1.3 Chemical process viscosity readings.



SOME EXAMPLES OF TIME SERIES 7

40000

30000

20000

Production, 1000 lbs

10000 -

04
1950 1960 1970 1980 1990 1997

FIGURE 1.4 The U.S. annual production of blue and gorgonzola cheeses. (Source: USDA-NASS.)

Blue and gorgonzola cheese is one of 32 categories of cheese for which data are
published. The annual U.S. production of blue and gorgonzola cheeses (in 10* 1b) is
shown in Figure 1.4 (data in Appendix B, Table B.4). Production quadrupled from
1950 to 1997, and the linear trend has a constant positive slope with random, year-
to-year variation.

The U.S. Census Bureau publishes historic statistics on manufacturers’ shipments,
inventories, and orders. The statistics are based on North American Industry Clas-
sification System (NAICS) code and are utilized for purposes such as measuring
productivity and analyzing relationships between employment and manufacturing
output.

The manufacture of beverage and tobacco products is reported as part of the non-
durable subsector. The plot of monthly beverage product shipments (Figure 1.5)
reveals an overall increasing trend, with a distinct cyclic pattern that is repeated
within each year. January shipments appear to be the lowest, with highs in May and
June (data in Appendix B, Table B.S). This monthly, or seasonal, variation may be at-
tributable to some cause such as the impact of weather on the demand for beverages.
Techniques for making seasonal adjustments to data in order to better understand
general trends are discussed in Chapter 2.

To determine whether the Earth is warming or cooling, scientists look at annual
mean temperatures. At a single station, the warmest and the coolest temperatures in a
day are averaged. Averages are then calculated at stations all over the Earth, over an
entire year. The change in global annual mean surface air temperature is calculated
from a base established from 1951 to 1980, and the result is reported as an “anomaly.”

The plot of the annual mean anomaly in global surface air temperature (Figure 1.6)
shows an increasing trend since 1880; however, the slope, or rate of change, varies
with time periods (data in Appendix B, Table B.6). While the slope in earlier time
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FIGURE 1.5 The U.S. beverage manufacturer monthly product shipments. unadjusted. (Source: U.S.
Census Bureau.)

periods appears to be constant, slightly increasing, or slightly decreasing, the slope
from about 1975 to the present appears much steeper than the rest of the plot.
Business data such as stock prices and interest rates often exhibit nonstationary
behavior; that is, the time series has no natural mean. The daily closing price adjusted
for stock splits of Whole Foods Market (WFMI) stock in 2001 (Figure 1.7) exhibits a
combination of patterns for both mean level and slope (data in Appendix B, Table B.7).
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FIGURE 1.6 Global mean surface air temperature annual anomaly. (Source: NASA-GISS.)
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FIGURE 1.7 Whole Foods Market stock price, daily closing adjusted for splits.

While the price is constant in some short time periods, there is no consistent mean
level over time. In other time periods, the price changes at different rates, including
occasional abrupt shifts in level. This is an example of nonstationary behavior, which
is discussed in Chapter 2.

The Current Population Survey (CPS) or “household survey” prepared by the
U.S. Department of Labor, Bureau of Labor Statistics, contains national data on
employment, unemployment, earnings, and other labor market topics by demographic
characteristics. The data are used to report on the employment situation, for projections
with impact on hiring and training, and for a multitude of other business planning
activities. The data are reported unadjusted and with seasonal adjustment to remove
the effect of regular patterns that occur each year.

The plot of monthly unadjusted unemployment rates (Figure 1.8) exhibits a mixture
of patterns, similar to Figure 1.5 (data in Appendix B, Table B.8). There is a distinct
cyclic pattern within a year; January, February, and March generally have the highest
unemployment rates. The overall level is also changing, from a gradual decrease, to
a steep increase, followed by a gradual decrease. The use of seasonal adjustments as
described in Chapter 2 makes it easier to observe the nonseasonal movements in time
series data.

Solar activity has long been recognized as a significant source of noise impacting
consumer and military communications, including satellites, cell phone towers, and
electric power grids. The ability to accurately forecast solar activity is critical to
a variety of fields. The International Sunspot Number R; is the oldest solar activity
index. The number incorporates both the number of observed sunspots and the number
of observed sunspot groups. In Figure 1.9, the plot of annual sunspot numbers reveals
cyclic patterns of varying magnitudes (data in Appendix B, Table B.9).
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In addition to assisting in the identification of steady-state patterns, time series
plots may also draw attention to the occurrence of atypical events. Weekly sales of
a generic pharmaceutical product dropped due to limited availability resulting from
a fire at one of four production facilities. The five-week reduction is apparent in the
time series plot of weekly sales shown in Figure 1.10.
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FIGURE 1.9 The International Sunspot Number. (Source: SIDC.)
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FIGURE 1.10 Pharmaceutical product sales.

Another type of unusual event may be the failure of the data measurement or
collection system. After recording a vastly different viscosity reading at time period
70 (Figure 1.11), the measurement system was checked with a standard and deter-
mined to be out of calibration. The cause was determined to be a malfunctioning
SENsor.
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FIGURE 1.11 Chemical process viscosity readings. with sensor malfunction.
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FIGURE 1.12 The forecasting process.

1.3 THE FORECASTING PROCESS

A process is a series of connected activities that transform one or more inputs into
one or more outputs. All work activities are performed in processes, and forecasting
is no exception. The activities in the forecasting process are:

Problem definition
Data collection
Data analysis

Model validation

1.

2.

3.

4. Model selection and fitting

5.

6. Forecasting model deployment
7.

Monitoring forecasting model performance

These activities are shown in Figure 1.12.

Problem definition involves developing understanding of how the forecast will
be used along with the expectations of the “customer” (the user of the forecast).
Questions that must be addressed during this phase include the desired form of the
forecast (e.g.. are monthly forecasts required), the forecast horizon or lead time.
how often the forecasts need to be revised (the forecast interval). and what level of
forecast accuracy is required in order to make good business decisions. This is also
an opportunity to introduce the decision makers to the use of prediction intervals as a
measure of the risk associated with forecasts. if they are unfamiliar with this approach.
Oftenitis necessary to go deeply into many aspects of the business system that requires
the forecast to properly define the forecasting component of the entire problem. For
example, in designing a forecasting system for inventory control, information may
be required on issues such as product shelf life or other aging considerations, the
time required to manufacture or otherwise obtain the products (production lead tirme).
and the economic consequences of having too many or too few units of product
available to meet customer demand. When multiple products are involved. the level
of aggregation of the forecast (e.g., do we forecast individual products or families
consisting of several similar products) can be an important consideration. Much of
the ultimate success of the forecasting model in meeting the customer expectations
is determined in the problem definition phase.

Data collection consists of obtaining the relevant history for the variable(s) that
are to be forecast, including historical information on potential predictor variables.
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The key here is “relevant”; often information collection and storage methods and
systems change over time and not all historical data is useful for the current problem.
Often it is necessary to deal with missing values of some variables, potential outliers,
or other data-related problems that have occurred in the past. During this phase it is
also useful to begin planning how the data collection and storage issues in the future
will be handled so that the reliability and integrity of the data will be preserved.

Data analysis is an important preliminary step to selection of the forecasting model
to be used. Time series plots of the data should be constructed and visually inspected
for recognizable patterns, such as trends and seasonal or other cyclical components.
A trend is evolutionary movement, either upward or downward, in the value of the
variable. Trends may be long term or more dynamic and of relatively short duration.
Seasonality is the component of time series behavior that repeats on a regular basts,
such as each year. Sometimes we will smooth the data to make identification of the
patterns more obvious (data smoothing will be discussed in Chapter 2). Numerical
summaries of the data, such as the sample mean, standard deviation, percentiles, and
autocorrelations, should also be computed and evaluated. Chapter 2 will provide the
necessary background to do this. If potential predictor variables are available, scatter
plots of each pair of variables should be examined. Unusual data points or potential
outliers should be identified and flagged for possible further study. The purpose of
this preliminary data analysis is to obtain some “feel” for the data, and a sense of how
strong the underlying patterns such as trend and seasonality are. This information
will usually suggest the initial types of quantitative forecasting methods and models
to explore.

Model selection and fitting consists of choosing one or more forecasting models
and fitting the model to the data. By fitting, we mean estimating the unknown model
parameters, usually by the method of least squares. In subsequent chapters, we will
present several types of time series models and discuss the procedures of model
fitting. We will also discuss methods for evaluating the quality of the model fit, and
determining if any of the underlying assumptions have been violated. This will be
useful in discriminating between diftferent candidate models.

Model validation consists of an evaluation of the forecasting model to determine
how it is likely to perform in the intended application. This must go beyond just eval-
uating the “fit” of the model to the historical data and must examine what magnitude
of forecast errors will be experienced when the model is used to forecast “fresh” or
new data. The fitting errors will always be smaller than the forecast errors, and this is
an important concept that we will emphasize in this book. A widely used method for
validating a forecasting model before it is turned over to the customer is to employ
some form of data splitting, where the data is divided into two segments—a fitting
segment and a forecasting segment. The model is fit to only the fitting data segment,
and then forecasts from that model are simulated for the observations in the forecast-
ing segment. This can provide useful guidance on how the forecasting model will
perform when exposed to new data and can be a valuable approach for discriminating
between competing forecasting models.

Forecasting model deployment involves getting the model and the resulting fore-
casts in use by the customer. It is important to ensure that the customer understands
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how to use the model and that generating timely forecasts from the model becomes
as routine as possible. Model maintainance, including making sure that data sources
and other required information will continue to be available to the customer is also
an important issue that impacts the timeliness and ultimate usefulness of forecasts.

Monitoring forecasting model performance should be an ongoing activity after
the model has been deployed to ensure that it is still performing satisfactorily. Itis the
nature of forecasting that conditions change over time, and a model that performed
well in the past may deteriorate in performance. Usually performance deterioration
will result in larger or more systematic forecast errors. Therefore monitoring of fore-
cast errors is an essential part of good forecasting system design. Control charts of
forecast errors are a simple but effective way to routinely monitor the performance
of a forecasting model. We will illustrate approaches to monitoring forecast errors in
subsequent chapters.

1.4 RESOURCES FOR FORECASTING

There are a variety of good resources that can be helpful to technical professionals
involved in developing forecasting models and preparing forecasts. There are three
professional journals devoted to forecasting:

® Journal of Forecasting
® International Journal of Forecasting
® Journal of Business Forecasting Methods and Systems

These journals publish a mixture of new methodology, studies devoted to the evalua-
tion of current methods for forecasting, and case studies and applications. In addition
to these specialized forecasting journals, there are several other mainstream statistics
and operations research/management science journals that publish papers on fore-
casting, including:

Journal of Business and Economic Statistics
® Management Science

Naval Research Logistics
® QOperations Research
® [nternational Journal of Production Research

Journal of Applied Statistics

This is by no means a comprehensive list. Research on forecasting tends to be pub-
lished in a variety of outlets.

There are several books that are good complements to this one. We recom-
mend Box, Jenkins, and Reinsel [1994]; Chatfield [1996]: Fuller [1995]. Abraham
and Ledolter [1983]; Montgomery, Johnson, and Gardiner [1990]; Wei [2006]: and
Brockwell and Davis [1991, 2002). Some of these books are more specialized than
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this one, in that they focus on a specific type of forecasting model such as the au-
toregressive integrated moving average [ARIMA] model, and some also require more
background in statistics and mathematics.

Many statistics software packages have very good capability for fitting a variety of
forecasting models. Minitab® Statistical Software, IMP® and the Statistical Analy-
sis System (SAS) are the packages that we utilize and illustrate in this book. Matlab
and S-Plus are also two packages that have excellent capability for solving forecasting
problems.

EXERCISES

1.1 Why is forecasting an essential part of the operation of any organization or
business?

1.2 Whatis a time series? Explain the meaning of trend effects, seasonal variations,
and random error.

1.3 Explain the difference between a point forecast and an interval forecast.
1.4 What do we mean by a causal forecasting technique?

1.5 Everyone makes forecasts in their daily lives. Identify and discuss a situation
where you employ forecasts.

a. What decisions are impacted by your forecasts?

b. How do you evaluate the quality of your forecasts?

¢. What is the value to you of a good forecast?

d. What is the harm or penalty associated with a bad forecast?

1.6 What is meant by a rolling horizon forecast?
1.7 Explain the difference between forecast horizon and forecast interval.

1.8 Suppose that you are in charge of capacity planning for a large electric utility.
A major part of your job is ensuring that the utility has sufficient generating
capacity to meet current and future customer needs. If you do not have enough
capacity, you run the risks of brownouts and service interruption. If you have
too much capacity, it may cost more to generate electricity.

a. What forecasts do you need to do your job effectively?
b. Are these short-range or long-range forecasts?
¢. What data do you need to be able to generate these forecasts?

1.9 Your company designs and manufactures apparel for the North American mar-
ket. Clothing and apparel is a style good, with a relatively limited life. Items
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1.10

1.11

1.12

1.13

INTRODUCTION TO FORECASTING

not sold at the end of the season are usually sold through off-season outlet and
discount retailers. Items not sold through discounting and off-season merchants
are often given to charity or sold abroad.

a. What forecasts do you need in this business to be successful?

b. Are these short-range or long-range forecasts?

¢. What data do you need to be able to generate these forecasts?

d. What are the implications of forecast errors?

Suppose that you are in charge of production scheduling at a semiconductor
manufacturing plant. The plant manufactures about 20 different types of de-
vices, all on 8-inch silicon wafers. Demand for these products varies randomly.
When a lot or batch of wafers is started into production, it can take from four to
six weeks before the batch is finished, depending on the type of product. The
routing of each batch of wafers through the production tools can be different
depending on the type of product.

a. What forecasts do you need in this business to be successful?
b. Are these short-range or long-range forecasts?

]

. What data do you need to be able to generate these forecasts?

&

Discuss the impact that forecast errors can potentially have on the efficiency
with which your factory operates, including work-in-process inventory,
meeting customer delivery schedules, and the cycle time to manufacture
product.

You are the administrator of a large metropolitan hospital that operates the only

24-hour emergency room in the area. You must schedule attending physicians.

resident physicians, nurses, laboratory, and support personnel to operate this

facility effectively.

a. What measures of effectiveness do you think patients use to evaluate the
services that you provide?

b. How are forecasts useful to you in planning services that will maximize
these measures of effectiveness?

¢. What planning horizon do you need to use? Does this lead to short-range
or long-range forecasts?

Consider an airline that operates a network of flights that serves 200 cities in
the continental United States. What long-range forecasts do the operators of the
airline need to be successful? What forecasting problems does this business
face on a daily basis? What are the consequences of forecast errors for the
airline?

Discuss the potential difficulties of forecasting the daily closing price of a
specific stock on the New York Stock Exchange. Would the problem be different
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1.14

1.15

(harder, easier) if you were asked to forecast the closing price of a group of
stocks all in the same industry (say, the pharmaceutical industry)?

Explain how large forecast errors can lead to high inventory levels at a retailer.
At a manufacturing plant.

Your company manufactures and distributes soft drink beverages, sold in bot-
tles and cans at retail outlets such as grocery stores, restaurants and other
eating/drinking establishments, and vending machines in offices, schools,
stores, and other outlets. Your product line includes about 25 different products,
and many of these are produced in different package sizes.

a. What forecasts do you need in this business to be successful?

b. Is the demand for your product likely to be seasonal? Explain why or why
not?

¢. Does the shelf life of your product impact the forecasting problem?

d. What data do you think that you would need to be able to produce successful

forecasts?



CHAPTER 2

Statistics Background for Forecasting

The future ain’t what it used to be.
YOGI BERRA. New York Yankees catcher

2.1 INTRODUCTION

This chapter presents some basic statistical methods essential to modeling, analyzing.
and forecasting time series data. Both graphical displays and numerical summaries
of the properties of time series data are presented. We also discuss the use of data
transformations and adjustments in forecasting and some widely used methods for
characterizing and monitoring the performance of a forecasting model. Some as-
pects of how these performance measures can be used to select between competing
forecasting techniques are also presented.

Forecasts are based on data or observations on the variable of interest. This data
is usually in the form of a time series. Suppose that there are T periods of data
available, with period T being the most recent. We will let the observation on this
variable at time period r be denoted by y,,r = 1.2, ..., T. This variable can represent
a cumulative quantity, such as the total demand for a product during period z. or an
instantaneous quantity, such as the daily closing price of a specific stock on the New
York Stock Exchange.

Generally, we will need to distinguish between a forecast or predicted value of
¥, that was made at some previous time period, say, r — 7, and a fitted value of v,
that has resulted from estimating the parameters in a time series model to historical
data. Note that 7 is the forecast lead time. The forecast made at time period r — 7 is
denoted by ¥,(t — 7). There is a lot of interest in the lead — 1 forecast, which is the
forecast of the observation in period ¢, ¥,, made one period prior. ¥,(r — 1). We will
denote the fitted value of y, by ;.

Introduction to Time Series Analysis and Forecasting
By Douglas C. Montgomery, Cheryl L. Jennings. and Murat Kulahci
Copyright © 2008 John Wiley & Sons, Inc.
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We will also be interested in analyzing forecast errors. The forecast error that
results from a forecast of y, that was made at time period ¢t — 7 is the lead — 7T
forecast error

e(t)=y, — 3t —1) 2.1

For example, the lead — 1 forecast error is

e(N=y, —H(t—-1)

The difference between the observation y, and the value obtained by fitting a time
series model to the data, or a fitted value y, defined above, is called a residual, and
is denoted by

e =y — % 2.2)

The reason for this careful distinction between forecast errors and residuals is that
models usually fit historical data better than they forecast. That is, the residuals from
a model-fitting process will almost always be smaller than the forecast errors that are
experienced when that model is used to forecast future observations.

2.2 GRAPHICAL DISPLAYS

2.2.1 Time Series Plots

Developing a forecasting model should always begin with graphical display and
analysis of the available data. Many of the broad general features of a time series can
be seen visually. This is not to say that analytical tools are not useful, because they are,
but the human eye can be a very sophisticated data analysis tool. To paraphrase the
great New York Yankees catcher Yogi Berra, “You can observe a lot just by watching.”

The basic graphical display for time series data is the time series plot, illustrated
in Chapter 1. This is just a graph of y, versus the time period, ¢, fort =1,2,..., T.
Features such as trend and seasonality are usually easy to see from the time series
plot. Itis interesting to observe that some of the classical tools of descriptive statistics,
such as the histogram and the stem-and-leaf display, are not particularly useful for
time series data because they do not take time order into account.

Example 2.1

Figures 2.1 and 2.2 show time series plots for viscosity readings and beverage pro-
duction shipments (originally shown in Figures 1.3 and 1.5, respectively). At the
right-hand side of each time series plot is a histogram of the data. Note that while the
two time series display very different characteristics, the histograms are remarkably
similar. Essentially, the histogram summarizes the data across the time dimension,
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FIGURE 2.2 Time series plot and histogram of beverage production shipments.
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FIGURE 2.3  Scatter plot of temperature anomaly versus CO concentrations. (Sources: NASA-GISS
(anomaly), DOE-DIAC (CO»).)

and in so doing, the key time-dependent features of the data are lost. Stem-and-leaf
plots and boxplots would have the same issues, losing time-dependent features.
When there are two or more variables of interest, scatter plots can be useful in dis-
playing the relationship between the variables. For example, Figure 2.3 is a scatter plot
of the annual global mean surface air temperature anomaly first shown in Figure 1.6
versus atmospheric CO, concentrations. The scatter plot clearly reveals a relationship
between the two variables: low concentrations of CO; are usually accompanied by
negative anomalies, and higher concentrations of CO; tend to be accompanied by
positive anomalies. Note that this does not imply that higher concentrations of CO;
actually cause higher temperatures. The scatter plot cannot establish a causal relation-
ship between two variables (neither can naive statistical modeling techniques, such
as regression), but it is useful in displaying how the variables have varied together in
the historical data set. [ ]

There are many variations of the time series plot and other graphical displays that
can be constructed to show specific features of a time series. For example, Figure 2.4
displays daily price information for Whole Foods Market stock during the first quarter
of 2001 (the trading days from 2 January 2001 through 30 March 2001). This chart,
created in Excel®, shows the opening, closing, highest, and lowest prices experienced
within a trading day for the first quarter. If the opening price was higher than the
closing price, the box is filled, while if the closing price was higher than the opening
price, the box is open. This type of plot is potentially more useful than a time series
plot of just the closing (or opening) prices, because it shows the volatility of the stock
within a trading day. The volatility of an asset is often of interest to investors because
it is a measure of the inherent risk associated with the asset.
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FIGURE 2.4 Open-high/close-low chart of whole foods market stock price. (Source:

finance.yahoo.com .)

2.2.2 Plotting Smoothed Data

Sometimes it is useful to overlay a smoothed version of the original data on the
original time series plot to help reveal patterns in the original data. There are several
types of data smoothers that can be employed. One of the simplest and most widely
used is the ordinary or simple moving average. A simple moving average of span N
assigns weights 1/N to the most recent N observations yr, ¥r_y, ..., ¥r—~4+1. and
weight zero to all other observations. If we let M7 be the moving average, then the
N-span moving average at time period T is

yrtyr—it o+ yToN 1 Al
My == ' == > ¥ (2.3)
N N 1=T-N~1

Clearly, as each new observation becomes available it is added into the sum from which
the moving average is computed and the oldest observation is discarded. The moving
average has less variability than the original observations: in fact, if the variance of
an individual observation y; is o2, then the variance of the moving average is

N

1
Var(Mr) = Var | — > ow Z Var(\,)———

t=T-N+1 —N+1

Sometimes a “centered” version of the moving average is used. such as in
M =— § Ni—i (2.4)

where the span of the centered moving average is N = 25 + 1.
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FIGURE 2.5 Time series plot of global mean surface air temperature anomaly, with five-period moving
average. (Source: NASA-GISS.)

Example 2.2

Figure 2.5 plots the annual global mean surface air temperature anomaly data along
with a five-period (a period is one year) moving average of the same data. Note that
the moving average exhibits less variability than found in the original series. It also
makes some features of the data easier to see; for example, it is now more obvious
that the global air temperature decreased from about 1940 until about 1975.

Plots of moving averages are also used by analysts to evaluate stock price trends;
common MA periods are 5, 10, 20, 50, 100, and 200 days. A time series plot of Whole
Foods Market stock price with a 50-day moving average is shown in Figure 2.6. The
moving average plot smoothes the day-to-day noise and shows a generally increasing
trend. ]

The simple moving average is a linear data smoother, or a linear filter, because
it replaces each observation y, with a linear combination of the other data points
that are near to it in time. The weights in the linear combination are equal, so the
linear combination here is an average. Of course, unequal weights could be used. For
example, the Hanning filter is a weighted, centered moving average

M =025y, + 0.5y, +0.25y,_,

Julius von Hann, a 19th century Austrian meteorologist, used this filter to smooth
weather data.

An obvious disadvantage of a linear filter such as a moving average is that an
unusual or erroneous data point or an outlier will dominate the averages that contain
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that observation, contaminating the moving averages for a length of time equal to the
span of the filter. For example, consider the sequence of observations

15,18,13,12. 16,14, 16, 17. 18. 15, 18. 200. 19, 14, 21.24.19. 25

which increases reasonably steadily from 15 to 25, except for the unusual value 200.
Any reasonable smoothed version of the data should also increase steadily from 15
to 25 and not emphasize the value 200. Now even if the value 200 is a legitimate
observation, and not the result of a data recording or reporting error (perhaps it
should be 20!), it is so unusual that it deserves special attention and should likely not
be analyzed along with the rest of the data.

Odd-span moving medians (also called running medians) are an alternative to
moving averages that are effective data smoothers when the time series may be
contaminated with unusual values or outliers. The moving median of span N is
defined as

[N]
T

m," = med(y,_,..... AT Vivw) (2.5)

where N = 2u + 1. The median is the middle observation in rank order (or order of
value). The moving median of span 3 is a very popular and effective data smoother.
where

3
mY = med(yi_1. ¥, viar)
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This smoother would process the data three values at a time, and replace the three
original observations by their median. If we apply this smoother to the data above we
obtain

,15, 13,13, 14,16, 17,17, 18,18, 19,19, 19,21,21,24,

This smoothed data is a reasonable representation of the original data, but it conve-
niently ignores the value 200. The end values are lost when using the moving median,
and they are represented by “__".

In general, a moving median will pass monotone sequences of data unchanged. It
will follow a step function in the data, but it will eliminate a spike or more persistent
upset in the data that has duration of at most 1 consecutive observations. Moving
medians can be applied more than once if desired to obtain an even smoother series
of observations. For example, applying the moving median of span 3 to the smoothed

data above results in
. ,13,13.14,16,17,17,18,18,19,19,19,21,2%, . _____

This data is now as smooth as it can get; that is, repeated application of the moving
median will not change the data, apart from the end values.

If there are a lot of observations, the information loss from the missing end values
isnot serious. However, if it is necessary or desirable to keep the lengths of the original
and smoothed data sets the same, a simple way to do this is to “copy on” or add back
the end values from the original data. This would result in the smoothed data:

15,18,13,13, 14,16, 17, 17,18, 18, 19, 19, 19, 21, 21, 19, 25

There are also methods for smoothing the end values. Tukey [1979] is a basic reference
on this subject and contains many other clever and useful techniques for data analysis.

Example 2.3

The chemical process viscosity readings shown in Figure 1.11 are an example of
a time series that benefits from smoothing to evaluate patterns. The selection of a
moving median over a moving average, as shown in Figure 2.7, minimizes the impact
of the invalid measurements, such as the one at time period 70. [ |

2.3 NUMERICAL DESCRIPTION OF TIME SERIES DATA

2.3.1 Stationary Time Series

A very important type of time series is a stationary time series. A time series
is said to be strictly stationary if its properties are not affected by a change in
the time origin. That is, if the joint probability distribution of the observations
Vi Yeats - Yian 1s exactly the same as the joint probability distribution of the
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FIGURE 2.7 Viscosity readings with (a) moving average and (b) moving median.

observations y;y«, Vi+k+1- - - - » ¥r+k+n then the time series is strictly stationary. When
n = 0 the stationarity assumption means that the probability distribution of v, is the
same for all time periods and can be written as f(v). The pharmaceutical product
sales and chemical viscosity readings time series data originally shown in Figures 1.2
and 1.3, respectively, are examples of stationary time series. The time series plots are
repeated in Figures 2.8 and 2.9 for convenience. Note that both time series seem to
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FIGURE 2.8 Pharmaceutical product sales.

vary around a fixed level. Based on the earlier definition, this is a characteristic of
stationary time series.

Stationary implies a type of statistical equilibrium or stability in the data. Con-
sequently, the time series has a constant mean defined in the usual way as

by = Ey) = / yf )y (2.6)
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FIGURE 2.9 Chemical process viscosity readings.
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and constant variance defined as

o: = Var(y) = / (v — w7 fdy 2.7

>~

The sample mean and sample variance are used to estimate these parameters. If the
observations in the time series are y;. ya. . ... vr then the sample mean is

1 T

and the sample variance is

2 ~
§ =0

Rl Y

| & s

== Z: Oy — ¥)° (2.9)
1=

Note that the divisor in Eq. (2.9) is T rather than the more familiar T — 1. This is the

common convention in many time series applications, and because T is usually not

small, there will be little difference between using T instead of T — 1.

2.3.2 Autocovariance and Autocorrelation Functions

If a time series is stationary this means that the joint probability distribution of any two
observations, say, y, and y,4, is the same for any two time periods ¢ and ¢t + k that
are separated by the same interval k. Useful information about this joint distribution.
and hence about the nature of the time series, can be obtained by plotting a scatter
diagram of all of the data pairs y,. y,.4 that are separated by the same interval k. The
interval k is called the lag.

Example 2.4

Figure 2.10 is a scatter diagram for the pharmaceutical product sales for lag k = 1 and
Figure 2.11 is a scatter diagram for the chemical viscosity readings for lagk = 1. Both
scatter diagrams were constructed by plotting y,+; versus v,. Figure 2.10 exhibits little
structure; the plotted pairs of adjacent observations v;. ;.| seem to be uncorrelated.
That is, the value of y in the current period does not provide any useful information
about the value of y that will be observed in the next period. A different story is
revealed in Figure 2.11, where we observe that the pairs of adjacent observations
Vi+1. ¥, are positively correlated. That is, a small value of v tends to be followed in
the next time period by another small value of y. and a large value of y tends to be
followed immediately by another large value of v. Note from inspection of Figures
2.10 and 2.11 that the behavior inferred from inspection of the scatter diagrams is
reflected in the observed time series. [ |
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FIGURE 2.10  Scatter diagram of pharmaceutical product sales at lag k = 1.

The covariance between y, and its value at another time period, say, v, is called

the autocovariance at lag k, defined by

vk = Cov(y,, yipi) = El(y: — t)ix — )]

(2.10)

The collection of the values of y,, k = 0, 1, 2, . .. is called the autocovariance func-
tion. Note that the autocovariance at lag k = 0 is just the variance of the time series;
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FIGURE 2.11  Scatter diagram of chemical viscosity readings at lag k = 1.
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that is, yg = af. The autocorrelation coefficient at lag 4 is

E[(yv — 1Ok — )] Cov(y,. viek) W

pk = = == = = — (21 l )
VEI, — 1E[(viag — p1)°] Var(y,) Yo

The collection of the values of p;. k= 0.1.2.... is called the autocorrelation

function (ACF). Note that by definition po = 1. Also. the ACF is independent of the
scale of measurement of the time series, so it is a dimensionless quantity. Furthermore,
Pr = p—i; that is, the autocorrelation function is symmetric around zero, so it is only
necessary to compute the positive (or negative) half.

If a time series has a finite mean and autocovariance function it is said to be second-
order stationary (or weakly stationary of order 2). If. in addition. the joint probability
distribution of the observations at all times is multivariate normal. then that would be
sufficient to result in a time series that is strictly stationary.

It is necessary to estimate the autocovariance and autocorrelation functions
from a time series of finite length, say, v,. v>..... yr. The usual estimate of the
autocovariance function is

~

—k
Or = P)vyax — V). k=0.1.2..... K (2.12)
1

2
It
>
I
-

and the autocorrelation function is estimated by the sample autocorrelation function
(or sample ACF)

Ci

n=po= k=000 K (2.13)
0

A good general rule of thumb is that at least 50 observations are required to give a
reliable estimate of the ACF, and the individual sample autocorrelations should be
calculated up to lag K. where K is about T/4.

Often we will need to determine if the autocorrelation coefficient at a particular
lag is zero. This can be done by comparing the sample autocorrelation coefficient at
lag k. ri, to its standard error. If we make the assumption that the true value of the
autocorrelation coefficient at lag k is zero (p, = 0). then the variance of the sample
autocorrelation coefficient is

(2.14

and the standard error is
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TABLE 2.1 Chemical Process Viscosity Readings
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Time Time Time Time
Period Reading Period Reading Period Reading Period Reading
1 86.7418 26 87.2397 51 85.5722 76 84.7052
2 85.3195 27 87.5219 52 83.7935 77 83.8168
3 84.7355 28 86.4992 53 84.3706 78 82.4171
4 85.1113 29 85.6050 54 83.3762 79 83.0420
5 85.1487 30 86.8293 55 84.9975 80 83.6993
6 84.4775 31 84.5004 56 84.3495 81 82.2033
7 84.6827 32 84.1844 57 85.3395 82 82.1413
8 84.6757 33 85.4563 58 86.0503 83 81.7961
9 86.3169 34 86.1511 59 84.8839 84 82.3241
10 88.0006 35 86.4142 60 85.4176 85 81.5316
11 86.2597 36 86.0498 61 84.2309 86 81.7280
12 85.8286 37 86.6642 62 83.5761 87 82.5375
13 83.7500 38 84.7289 63 84.1343 88 82.3877
14 84.4628 39 85.9523 64 82.6974 89 82.4159
15 84.6476 40 86.8473 65 83.5454 90 82.2102
16 84.5751 41 88.4250 66 86.4714 91 82.7673
17 82.2473 42 89.6481 67 86.2143 92 83.1234
18 83.3774 43 87.8566 68 87.0215 93 83.2203
19 83.5385 44 88.4997 69 86.6504 94 84.4510
20 85.1620 45 87.0622 70 85.7082 95 84.9145
21 83.7881 46 85.1973 71 86.1504 96 85.7609
22 84.0421 47 85.0767 72 85.8032 97 85.2302
23 84.1023 48 84.4362 73 85.6197 98 86.7312
24 84.8495 49 84.2112 74 84.2339 99 87.0048
25 87.6416 50 85.9952 75 83.5737 100 85.0572
Example 2.5

Consider the chemical process viscosity readings plotted in Figure 2.9; the values are

listed in Table 2.1

The sample ACF at lag k = 1 is calculated as

oy =

100-0

100

Y = Do = )
=1

1
——[(86.7418 — 84.9153)(86.7418 — 84.9153) + - - -

100

+ (85.0572 — 84.9153)(85.0572 — 84.9153)]

= 280.9332
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1 1001
= @ ; O =¥ — 3)

1
W()[(867418 — 84.9153)(85.3195 — 849153y + - - -

+ (87.0048 — 84.9153)(85.0572 — 84.9153)]

= 220.3137
e _ 2203137 _ o
r=-—-—-=——— = U.
' e 2809332

A plot and listing of the sample ACFs generated by Minitab for the first 25 lags
are displayed in Figures 2.12 and 2.13, respectively. ]

Note the rate of decrease or decay in ACF values in Figure 2.12 from 0.78 to 0,
followed by a sinusoidal pattern about 0. This ACF pattern is typical of stationary
time series. The importance of ACF estimates exceeding the 5% significance limits
will be discussed in Chapter 5. In contrast, the plot of sample ACFs for a time series of
random values with constant mean has a much different appearance. The sample ACFs
for pharmaceutical product sales plotted in Figure 2.14 appear randomly positive or
negative, with values near zero.

While the autocorrelation function is defined only for a stationary time series. the
sample ACF can be computed for any time series, so a logical question is: What does
the sample ACF of a nonstationary time series look like? Consider the daily closing
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FIGURE 2.12 Sample autocorrelation function for chemical viscosity readings. with 5% significance
limits.
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Autocorrelation Function: Reading

Lag ACF T LBQ
1 0784221 7.84 63.36
2 0628050 4.21 104.42
3 0491587 283 129.83
4 0362880 1.94 143.82
5 0304554 157 153.78
6 0.208979 1.05 158.52
7 0.164320 0.82 161.48
8 0.144789 0.72 163.80
9 0.103625 0.51 165.01

10 0.066559 0.33 165.51
11 0.003949 0.02 165.51
12 -0.077226 -0.38 166.20
13 -0.061953 -0.25 166.52
14 0.020525 0.10 166.57
15 0.072784 036 167.21
16  0.070753 0.35 167.81
17 0.001334 0.01 167.81
18 -0.057435 -0.28 168.22
19 -0.123122 -0.60 170.13
20 -0.180546 -0.88 174.29
21 -0.162466 -0.78 177.70
22 -0.145979 -0.70 180.48
23 -0.087420 -0.42 181.50
24 -0.011579 -0.06 181.51
25 0.063170 0.30 182.06

FIGURE 2.13 Listing of sample autocorrelation functions for first 25 lags of chemical viscosity readings,
Minitab session window output (the definitions of T and LBQ will be given later).

price for Whole Foods Market stock in Figure 1.7. The sample ACF of this time series
is shown in Figure 2.15. Note that this sample ACF plot behaves quite differently than
the ACF plots in Figures 2.12 and 2.14. Instead of cutting off or tailing off near zero
after a few lags, this sample ACF is very persistent; that is, it decays very slowly
and exhibits sample autocorrelations that are still rather large even at long lags. This
behavior is characteristic of a nonstationary time series.
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FIGURE 2.14 Autocorrelation function for pharmaceutical product sales, with 5% significance limits.
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2.4 USE OF DATA TRANSFORMATIONS AND ADJUSTMENTS

2.4.1 Transformations

Data transformations are useful in many aspects of statistical work, often for stabiliz-
ing the variance of the data. Nonconstant variance is quite common in time series data.
For example, the International Sunspot Numbers plotted in Figure 2.16a show cyclic
patterns of varying magnitudes. The vanability from about 1800 to 1830 is smaller
than that from about 1830 to 1880; other small periods of constant, but different.
variances can also be identified.

A very popular type of data transformation to deal with nonconstant variance is
the power family of transformations, given by

Vi — 1
i — A F0
.‘.u\) — KAl rF (2.16)
vin v, A=0

where 3 = exp((1/T) ZL, In y,] is the geometric mean of the observations. If & = 1.
there is no transformation. Typical values of A used with time series data are A = 0.5
(a square root transformation). A = 0 (the log transformation), A4 = —0.5 (reciprocal
square root transformation), and A = —1 (inverse transformation). The divisor 3"~ is
simply a scale factor that ensures that when different models are fit to investigate
the utility of different transformations (values of 4), the residual sum of squares for
these models can be meaningfully compared. The reason that ;. = O implies a log
transformation is that (y* — 1)/ approaches the log of v as 4 approaches zero. Often

an appropriate value of 4 is chosen empirically by fitting a model to v'*’ for various
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FIGURE 2.16  Yearly International Sunspot Number, (a) untransformed and (b) natural logarithm trans-
formation. (Source: SIDC.)

values of A and then selecting the transformation that produces the minimum residual
sum of squares.

The log transformation is used frequently in situations where the variability in the
original time series increases with the average level of the series. When the standard
deviation of the original series increases linearly with the mean, the log transformation
is in fact an optimal variance-stabilizing transformation. The log transformation also
has a very nice physical interpretation as percentage change. To illustrate this, let the
time series be yi, y2, ..., yr and suppose that we are interested in the percentage
change in y;, say,

_ 100Cy; = yi-1)
Yi—1

Xr

The approximate percentage change in y, can be calculated from the differences of
the log-transformed time series x; = 100[In(y,) — In(y,_)] because

100[In(y;) — In(y, )] = IOOln( Al ) = 1001n ('V" Oz ""')>

Yi—1 Vi—i

1001n(1 n 1%) .

since In(1 + z) = z when z is small.

The application of a natural logarithm transformation to the International Sunspot
Number, as shown in Figure 2.16b, tends to stabilize the variance and leaves just a
few unusual values.
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2.4.2 Trend and Seasonal Adjustments

In addition to transformations, there are also several types of adjustments that are
useful in time series modeling and forecasting. Two of the most widely used are trend
adjustments and seasonal adjustments. Sometimes these procedures are called trend
and seasonal decomposition.

A time series that exhibits a trend is a nonstationary time series. Modeling and
forecasting of such a time series is greatly simplified if we can eliminate the trend.
One way to do this is to fit a regression model describing the trend component to the
data and then subtracting it out of the original observations, leaving a set of residuals
that are free of trend. The trend models that are usually considered are the linear trend,
in which the mean of y, is expected to change linearly with time as in

E(y) = Po+ Bt (2.17)
or as a quadratic function of time
E(y) = Bo+ But + Bot” (2.18)
or even possibly as an exponential function of time such as
E(y) = poe™ (2.19)

The models in Egs. (2.17)-(2.19) are usually fit to the data by using ordinary least
squares.

Example 2.6

We will show how least squares can be used to fit regression models in Chapter 3.
However, it would be useful at this point to illustrate how trend adjustment works.
Minitab can be used to perform trend adjustment. Consider the annual U.S. production
of blue and gorgonzola cheeses shown in Figure 1.4. There is clearly a positive, nearly
linear trend. The trend analysis plot in Figure 2.17 shows the original time series with
the fitted line.

Plots of the residuals from this model indicate that. in addition to an underlying
trend, there is additional structure. The normal probability plot (Figure 2.18a) and his-
togram (Figure 2.18c¢) indicate the residuals are approximately normally distributed.
However, the plots of residuals versus fitted values (Figure 2.18b) and versus obser-
vation order (Figure 2.18d) indicate nonconstant variance in the last half of the time
series. Analysis of model residuals is discussed more fully in Chapter 3. [ ]

Another approach to removing trend is by differencing the data; that is, applying
the difference operator to the original time series to obtain a new time series. say.

Xp=v, —¥_1 =Vy (2.20)

where V is the (backward) difference operator. Another way to write the differencing
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FIGURE 2.17 Blue and gorgonzola cheese production, with fitted regression line. (Source: USDA-
NASS.)

operation is in terms of a backshift operator B, defined as By, = y,_;, 0
X =0=B)y, =Vy =y —y- (2.21)

with V = (1 — B). Differencing can be performed successively if necessary until the
trend is removed; for example, the second difference is

X =V =V(Vy)=(1—-BP?y, =(1-2B+B) =y, — 2y +y-2 (222)
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FIGURE 2.18 Residual plots for simple linear regression model of blue and gorgonzola cheese production.
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FIGURE 2.19 Blue and gorgonzola cheese production. with one difference. (Source: USDA-NASS.)

In general, powers of the backshift operator and the backward difference operator are
defined as

Bd,\} = Mi-d
Vd — (1 _ B)l/

Differencing has two advantages relative to fitting a trend model to the data. First.
it does not require estimation of any parameters. so it is a more parsimonious (i.c..
simpler) approach; and second, model fitting assumes that the trend is fixed through-
out the time series history and will remain so in the (at least immediate) future. In
other words, the trend component, once estimated. is assumed to be deterministic.
Differencing can allow the trend component to change through time. The first dif-
ference accounts for a trend that impacts the change in the mean of the time series.
the second difference accounts for changes in the slope of the time series. and so
forth. Usually, one or two differences are all that is required in practice to remove an
underlying trend in the data.

Example 2.7

Reconsider the blue and gorgonzola cheese production data. A difference of one
applied to this time series removes the increasing trend (Figure 2.19) and also improves
the appearance of the residuals plotted versus fitted value and observation order
(Figure 2.20). This illustrates that differencing may be a very good alternative to
detrending a time series by using a regression model. u
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FIGURE 2.20 Residual plots for one difference of blue and gorgonzola cheese production.

Seasonal, or both trend and seasonal, components are present in many time se-
ries. Differencing can also be used to eliminate seasonality. Define a lag—d seasonal
difference operator as

Vay, = (1 - Bd) =Yt — Vi—d (2.24)

For example, if we had monthly data with an annual season (a very common sit-

uation), we would likely use ¢ = 12, so the seasonally differenced data would
be

Vizyr =(1 = Blz))’r =Y —Y-12

When both trend and seasonal components are simultaneously present, we can se-
quentially difference to eliminate these effects. That is, first seasonally difference
to remove the seasonal component and then difference one or more times using the
regular difference operator to remove the trend.

Example 2.8

The beverage shipment data shown in Figure 2.2 appears to have a strong monthly
pattern—January consistently has the lowest shipments in a year while the peak
shipments are in May and June. There is also an overall increasing trend from year
to year that appears to be the same regardless of month.
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FIGURE 2.21 Time series plots of seasonal- and trend-differenced beverage data.

A seasonal difference of twelve followed by a trend difference of one was applied
to the beverage shipments, and the results are shown in Figure 2.21. The seasonal
differencing removes the monthly pattern (Figure 2.21a), and the second difference
of one removes the overall increasing trend (Figure 2.21b). The fitted linear trend
line in Figure 2.21b has a slope of virtually zero. Examination of the residual plots in
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FIGURE 2.22 Residual plots for linear trend model of differenced beverage shipments.

Figure 2.22 does not reveal any problems with the linear trend model fit to the differ-
enced data. |

Regression models can also be used to eliminate seasonal (or trend and seasonal
components) from time series data. A simple but useful model is

.27 2
E(y:) = By + B sin ! + B2 cos —! (2.25)

where d is the period (or length) of the season and 27/d is expressed in radians. For
example, if we had monthly data and an annual season, then d = 12. This model
describes a simple, symmetric seasonal pattern that repeats every twelve periods. The
model is actually a sine wave. To see this, recall that a sine wave with amplitude 3,
phase angle or origin #, and period or cycle length w can be written as

E(y,) = Bsinw(t + 6) (2.26)

Equation (2.25) was obtained by writing Eq. (2.26) as a sine—cosine pair using the
trigonometric identity sin(u + v) = cos u sin v 4 sinu cos v and adding an intercept
term Bo:
E(v;) = Bsinw(t + 8)
= B coswb sinwt + B sin wb cos wt

= By sinwt + P coswt
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where 8) = B coswb and B> = B sinwh. Setting w = 27/12 and adding the intercept
term B produces Eq. (2.25). This model is very flexible: for example. if we set
w = 27 /52 we can model a yearly seasonal pattern that is observed weekly. if we
set w = 27 /4 we can model a yearly seasonal pattern observed quarterly. and if
we set w = 27 /13 we can model an annual seasonal pattern observed in thirteen
four-week periods instead of the usual months.

Equation (2.25) incorporates a single sine wave at the fundamental frequency
® = 2m/12. In general, we could add harmonics of the fundamental frequency to the
model in order to model more complex seasonal patterns. For example, a very general
model for monthly data and an annual season that uses the fundamental frequency
and the first three harmonics is

27
E(v)_ﬁo+2(ﬁ, sin —~ r+ﬂ4-,cos B ) (2.27)

If the data are observed in thirteen four-week periods. the model would be

.
EG) = Bo + Z‘ (ﬂ, sin 2 t + Bi-, cos 17311) (2.28)

There is also a “‘classical” approach to decomposition of a time series into trends and
seasonal components (actually, there are a lot of different decomposition algorithms:
here we explain a very simple but useful approach). The general mathematical model
for this decomposition is

= f(5.T.¢&)

where §; is the seasonal component, 7, is the trend effect (sometimes called the trend-
cycle effect), and ¢,1s the random error component. There are usually two forms for
the function f; an additive model

w=8+T +¢
and a multiplicative model
Yo = 8T

The additive model is appropriate if the magnitude (amplitude) of the seasonal varia-
tion does not vary with the level of the series, while the multiplicative version is more
appropriate if the amplitude of the seasonal fluctuations increases or decreases with
the average level of the time series.

Decomposition is useful for breaking a time series down into these component
parts. For the additive model, it is relatively easy. First, we would model and remove
the trend. A simple linear model could be used to do this. say. T, = By + B1. Other
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methods could also be used. Moving averages can be used to isolate a trend and
remove it from the original data, as could more sophisticated regression methods.
These techniques might be appropriate when the trend is not a straight line over the
history of the time series. Differencing could also be used, although it is not typically
in the classical decomposition approach.

Once the trend or trend-cycle component is estimated, the series is detrended:

w—T, =5 +¢g

Now a seasonal factor can be calculated for each period in the season. For exam-
ple, if the data is monthly and an annual season is anticipated, we would calculate
a season effect for each month in the data set. Then the seasonal indices are com-
puted by taking the average of all of the seasonal factors for each period in the
season. In this example, all of the January seasonal factors are averaged to produce
a January season index; all of the February seasonal factors are averaged to produce
a February season index; and so on. Sometimes medians are used instead of aver-
ages. In multiplicative decomposition, ratios are used, so that the data is detrended
by
Vi

= = §¢
7.,[ 1<t

The seasonal indices are estimated by taking the averages over all of the detrended
values for each period in the season.

Example 2.9

The decomposition approach can be applied to the beverage shipment data. Examining
the time series plot in Figure 2.2, there is both a strong positive trend as well as
month-to-month variation, so the model should include both a trend and a seasonal
component. It also appears that the magnitude of the seasonal variation does not vary
with the level of the series, so an additive model is appropriate.

Results of a Minitab time series decomposition analysis of the beverage shipments
are in Figure 2.23, showing the original data (labeled “Actual”) along with the fitted
trend line (“Trend”) and the predicted values (“Fits”) from the additive model with
both the trend and seasonal components.

Details of the seasonal analysis are shown in Figure 2.24. Estimates of the monthly
variation from the trend line for each season (seasonal indices) are in Figure 2.24a
with boxplots of the actual differences in Figure 2.24b. The percent of variation by
seasonal period is in Figure 2.24c, and model residuals by seasonal period are in
Figure 2.244d.

Additional details of the component analysis are shown in Figure 2.25. Figure
2.25a s the original time series, Figure 2.25b is a plot of the time series with the trend
removed, Figure 2.25¢ is a plot of the time series with the seasonality removed, and
Figure 2.25d is essentially aresidual plot of the detrended and seasonally adjusted data.
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FIGURE 2.23 Time series plot of decomposition model for beverage shipments.

The wave-like pattern in Figure 2.25d suggests a potential issue with the assumption
of constant variance over time.

Looking at the normal probability plot and histogram of residuals (Figure 2.26a,c).
there does not appear to be an issue with the normality assumption. Figure 2.26d is the
same plot as Figure 2.25d. However, variance does seem to increase as the predicted
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FIGURE 2.24 Seasonal analysis for beverage shipments.
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FIGURE 2.27 Time series plot of decomposition model for transformed beverage data.

value increases; there is a funnel shape to the residuals plotted in Figure 2.26b. A
natural logarithm transformation of the data may stabilize the variance and allow a
useful decomposition model to be fit.

Results from the decomposition analysis of the natural log-transformed beverage
shipment data are plotted in Figure 2.27, with the transformed data, fitted trend line.
and predicted values. Figure 2.28a shows the transformed data, Figure 2.28b the
transformed data with the trend removed, Figure 2.28¢ the transformed data with sea-
sonality removed, and Figure 2.28d the residual plot of the detrended and seasonally
adjusted transformed data. The residual plots in Figure 2.29 indicate that the variance
over the range of the predicted values is now stable (Figure 2.29b), and there are
no issues with the normality assumption (Figures 2.29a,c). However, there is still a
wave-like pattern in the plot of residuals versus time, both Figures 2.28d and 2.29d,
indicating that some other structure in the transformed data over time 1s not captured
by the decomposition model. This was not an issue with the model based on seasonal
and trend differencing (Figures 2.21 and 2.22), which may be a more appropriate
model for monthly beverage shipments. ]

2.5 GENERAL APPROACH TO TIME SERIES MODELING
AND FORECASTING

The techniques that we have been describing form the basis of a general approach
to modeling and forecasting time series data. We now give a broad overview of
the approach. This should give readers a general understanding of the connections
between the ideas we have presented in this chapter and guidance in understanding
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how the topics in subsequent chapters form a collection of useful techniques for
modeling and forecasting time series.
The basic steps in modeling and forecasting a time series are as follows:

1.

>

Plot the time series and determine its basic features, such as whether trends
or seasonal behavior or both are present. Look for possible outliers or any
indication that the time series has changed with respect to its basic features
(such as trends or seasonality) over the time period history.

Eliminate any trend or seasonal components, either by differencing or by fitting
an appropriate model to the data. Also consider using data transformations.
particularly if the variability in the time series seems to be proportional to the
average level of the series. The objective of these operations is to produce a set
of stationary residuals.

Develop a forecasting model for the residuals. It is not unusual to find that there
are several plausible models and additional analysis will have to be performed to
determine the best one to deploy. Sometimes potential models can be eliminated
on the basis of their fit to the historical data. It is unlikely that a model that fits
poorly will produce good forecasts.

Validate the performance of the model (or models) from the previous step. This
will probably involve some type of split-sample or cross-validation procedure.
The objective of this step is to select a model to use in forecasting. We will
discuss this more in the next section and illustrate these techniques throughout
the book.

Also of interest are the differences between the original time series ¥, and the
values that would be forecast by the model on the original scale. To forecast
values on the scale of the original time series y,, reverse the transformations
and any differencing adjustments made to remove trends or seasonal effects.
For forecasts of future values in period T + t on the original scale, if a trans-
formation was used, say, x, = In y,, then the forecast made at the end of period
T for T + 7 would be obtained by reversing the transformation. For the natural
log this would be

$74:(T) = expliri(T)]

If prediction intervals are desired for the forecast (and we recommend doing
this), construct prediction intervals for the residuals and then reverse the trans-
formations made to produce the residuals as described earlier. We will discuss
methods for finding prediction intervals for most of the forecasting methods
presented in this book.

Develop and implement a procedure for monitoring the forecast to ensure that

deterioration in performance will be detected reasonably quickly. Forecast mon-
itoring is usually done by evaluating the stream of forecast errors that are
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experienced. We will present methods for monitoring forecast errors with the
objective of detecting changes in performance of the forecasting model.

2.6 EVALUATING AND MONITORING FORECASTING
MODEL PERFORMANCE

2.6.1 Forecasting Model Evaluation

We now consider how to evaluate the performance of a forecasting technique for a
particular time series or application. It is important to carefully define the meaning
of performance. It is tempting to evaluate performance on the basis of the fit of the
forecasting or time series model to historical data. There are many statistical measures
that describe how well a model fits a given sample of data, and several of these will
be described in subsequent chapters. This goodness-of-fit approach often uses the
residuals and does not really reflect the capability of the forecasting technique to
successfully predict future observations. The user of the forecasts is very concerned
about the accuracy of future forecasts, not model goodness of fit, so it is important
to evaluate this aspect of any recommended technique. Sometimes forecast accuracy
is called “out-of-sample” forecast error, to distinguish it from the residuals that arise
from a model-fitting process.

Measure of forecast accuracy should always be evaluated as part of a model val-
idation effort (see step 4 in the general approach to forecasting in the previous sec-
tion). When more than one forecasting technique seems reasonable for a particular
application, these forecast accuracy measures can also be used to discriminate be-
tween competing models. We will discuss this more in Section 2.6.2.

It is customary to evaluate forecasting model performance using the one-step-ahead
forecast errors

e() =y —3 -1 (229

where §,(r — 1) is the forecast of y, that was made one period prior. Forecast errors
at other lags, or at several different lags, could be used if interest focused on those
particular forecasts. Suppose that there are n observations for which forecasts have
been made and n one-step-ahead forecast errors, ¢,(1),t = 1,2, ..., n. Standard
measures of forecast accuracy are the average error or mean error

1 n
ME = = "e,(1) (2.30)
ey
the mean absolute deviation (or mean absolute error)

l H
MAD = —Zle,(l)| (2.31)
n t=1
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and the mean squared error
1 & ,
MSE = =" [e, (1)) (2.32)
n =1

The mean forecast error in Eq. (2.30) is an estimate of the expected value of forecast
error, which we would hope to be zero; that is, the forecasting technique produces
unbiased forecasts. If the mean forecast error differs appreciably from zero, bias in
the forecast is indicated. If the mean forecast error drifts away from zero when the
forecasting technique is in use, this can be an indication that the underlying time series
has changed in some fashion, the forecasting technique has not tracked this change,
and now biased forecasts are being generated.

Both the mean absolute deviation (MAD) in Eq. (2.31) and the mean squared error
(MSE) in Eq. (2.32) measure the variability in forecast errors. Obviously, we want
the variability in forecast errors to be small. The MSE is a direct estimator of the
variance of the one-step-ahead forecast errors:

) 1 :
G5y =MSE=—3 le(DF’ (2.33)
=1

If the forecast errors are normally distributed (this is usually not a bad assumption,
and one that is easily checked), the MAD is related to the standard deviation of
forecast errors by

Gett) = ‘/%MAD = 1.25MAD (2.34)

The one-step-ahead forecast error and its summary measures, the ME, MAD, and
MSE, are all scale-dependent measures of forecast accuracy: that is. their values are
expressed in terms of the original units of measurement (or in the case of MSE, the
square of the original units). So, for example, if we were forecasting demand for
electricity in Phoenix during the summer, the units would be megawatts (MW). If
the MAD for the forecast error during summer months was 5 MW, we might not
know whether this was a large forecast error or a relatively small one. Furthermore,
accuracy measures that are scale dependent do not facilitate comparisons of a single
forecasting technique across different time series. or comparisons across different
time periods. To accomplish this, we need a measure of relative forecast error.

Define the relative forecast error (in percent) as

o — 1 .
re,(1) = (‘—‘—(’—)) 100 = ("(”) 100 (235)

Mt AY:
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This is customarily called the percent forecast error. The mean percent forecast
error (MPE) is

1 n
S , 3
MPE ane(l) (2.36)

r=1
and the mean absolute percent forecast error (MAPE) is

1 n
MAPE = ~ Z [re, (1] (2.37)

=1

Knowing that the relative or percent forecast error or the MAPE is 3% (say) can be
much more meaningful than knowing that the MAD is 5 MW. Note that the relative
or percent forecast error only makes sense if the time series y, does not contain zero
values.

Example 2.10

Table 2.2 illustrates the calculation of the one-step-ahead forecast error, the absolute

errors, the squared errors, the relative (percent) error, and the absolute percent error

from a forecasting model for 20 time periods. The last row of columns (3) through

(7) display the sums required to calculate the ME, MAD, MSE, MPE, and MAPE.
From Eq. (2.30), the mean (or average) forecast error is

i

ME = % ;e,(l) = 516(—11.6) = —0.58
the MAD is computed from Eq. (2.31) as
MAD = ! zn: le.(1)| = i(86.6) =433
n ‘= 20
and the MSE is computed from Eq. (2.32):

1< 1
MSE = — D = —(471.8) = 23.59
. ;[m I = 55(471.8)

Because the MSE estimates the variance of the one-step-ahead forecast errors, we
have

62, = MSE = 23.59
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TABLE 2.2 Calculation of Forecast Accuracy Measures

(N (2) (3) “4) (5) (6 (6)
Observed Forecast Forecast Absolute Squared Relative (%)  Absolute (%)

Time Value 3.t = 1) Error Error Error Error Error
Period v e(1) le ()] [eAD)]* (e, (1)/v.)100 |(e,(1)/v,) 100

1 47 51.1 —4.1 4.1 16.81 —8.7234 8.723404

2 46 529 —6.9 6.9 4761 —15 15

3 51 48.8 22 22 4.84 4.313725 4.313725

4 44 48.1 —4.1 4.1 16.81 —9.31818 9.318182

5 54 49.7 43 43 18.49 7.962963 7.962963

6 47 475 —0.5 0.5 0.25 —1.06383 1.06383

7 52 51.2 0.8 0.8 0.64 1.538462 1.538462

8 45 53.1 —8.1 8.1 65.61 —18 18

9 50 54.4 —4.4 4.4 19.36 —8.38 8.8

0 51 51.2 -0.2 0.2 0.04 —0.39216 0.392157
11 49 533 —43 4.3 18.49 —8.77551 8.77551
12 41 46.5 =55 55 30.25  —13.4146 13.41463
13 48 53.1 -5.1 5.1 26.01  —10.625 10.625
14 50 52.1 -2.1 2.1 4.41 —4.2 4.2
15 51 46.8 4.2 4.2 17.64 8.235294 8.235204
16 55 471.7 73 73 53.29 13.27273 13.27273
17 52 454 6.6 6.6 43.56 12.69231 12.69231
18 53 47.1 5.9 59 34.81 11.13208 11.13208
19 48 51.8 -3.8 38 14.44 —7.91667 7.916667
20 52 45.8 6.2 6.2 38.44 11.92308 11.92308

Totals —11.6 86.6 471.8 351588 177.3

and an estimate of the standard deviation of forecast errors is the square root of this
quantity, or 6.1, = vMSE = 4.86. We can also obtain an estimate of the standard
deviation of forecasts errors from the MAD using Eq. (2.34):

Ooy = 1.25MAD = 1.25(4.33) = 5.41

These two estimates are reasonably similar. The mean percent forecast error, MPE.
is computed from Eq. (2.36) as

MPE—Ii ()= l( 35.1588) = —1.76%
—n re; —20 . = . c

=1

and the mean absolute percent error is computed from Eq. (2.37) as

MAPE = i] ()i = —(177.3) = 8.87%
= - re = — .3) = 8.87¢
n & 20 )
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FIGURE 2.30 Normal probability plot of forecast errors from Table 2.2.

There is much empirical evidence (and even some theoretical justification) that
the distribution of forecast errors can be well approximated by a normal distribution.
This can easily be checked by constructing a normal probability plot of the forecast
errors in Table 2.2, as shown in Figure 2.30. The forecast errors deviate somewhat
from the straight line, indicating that the normal distribution is not a perfect model for
the distribution of forecast errors, but it is not unreasonable. Minitab calculates the
Anderson-Darling statistic, a widely used test statistic for normality. The P-value is
0.088, so the hypothesis of normality of the forecast errors would not be rejected at
the 0.05 level. This test assumes that the observations (in this case the forecast errors)
are uncorrelated. Minitab also reports the standard deviation of the forecast errors to
be 4.947, a slightly larger value than we computed from the MSE, because Minitab
uses the standard method for calculating sample standard deviations.

Note that Eq. (2.29) could have been written as

Error = Observation — Forecast

Hopefully, the forecasts do a good job of describing the structure in the observations.
In an ideal situation, the forecasts would adequately model all of the structure in the
data, and the sequence of forecast errors would be structureless. If they are, the sample
ACF of the forecast error should look like the ACF of random data; that is, there
should not be any large “spikes” on the sample ACF at low lag. Any systematic or
nonrandom pattern in the forecast errors will tend to show up as significant spikes on
the sample ACF. If the sample ACF suggests that the forecast errors are not random,
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TABLE 2.3 One-Step-Ahead Forecast Errors

Period,t ¢,(1) Period.t e,(l) Period.r e,(1) Period.t ¢,(1) Penod.t e/(])
| -0.62 11 —0.49 21 2.90 31 —1.88 41 -398
2 —-2.99 12 4.13 22 0.86 32 —4.46 12 —4.28
3 0.65 13 —-3.39 23 5.80 33 —1.93 43 1.06
4 0.81 14 2.81 24 1.66 34 —2.86 4 0.18
5 -2.25 15 —1.59 25 3.99 35 0.23 45 356
6 —2.63 16 -2.69 26 —1.76 36 —1.82 46 —-0.24
7 3.57 17 3.41 27 2.31 37 0.64 47 —298
8 0.11 18 4.35 28 —-2.24 38 —1.55 48 247
9 0.59 19 —4.37 29 295 39 0.78 49 0.66

10 -0.63 20 2.79 30 6.30 40 2.84 50 0.32

then this is evidence that the forecasts can be improved by refining the forecasting
model. Essentially, this would consist of taking the structure out of the forecast errors
and putting it into the forecasts, resulting in forecasts that are better prediction of
the data.

Example 2.11

Table 2.3 presents a set of 50 one-step-ahead errors from a forecasting model. and
Table 2.4 shows the sample ACF of these forecast errors. The sample ACF is plotted
in Figure 2.31. This sample ACF was obtained from Minitab. Note that sample auto-
correlations for the first 13 lags are computed. This is consistent with our guideline
indicating that for T observations only the first 7/4 autocorrelations should be com-
puted. The sample ACF does not provide any strong evidence to support a claim that
there is a pattern in the forecast errors. »

If a time series consists of uncorrelated observations and has constant variance.
we say that it is white noise. If, in addition, the observations in this time series
are normally distributed, the time series is Gaussian white noise. Ideally. forecast
errors are Gaussian white noise. The normal probability plot of the one-step-ahead
forecast errors from Table 2.3 are shown in Figure 2.32. This plot does not indicate
any serious problem, with the normality assumption, so the forecast errors in Table
2.3 are Gaussian white noise.

If a time series is white noise, the distribution of the sample autocorrelation coef-
ficient at lag k in large samples is approximately normal with mean zero and variance

1/T; that is,
1
ry ™~ N (O, —)
T



EVALUATING AND MONITORING FORECASTING MODEL PERFORMANCE 55

TABLE 2.4 Sample ACF of the One-Step-Ahead Forecast Errors in Table 2.3

Lag Sample ACEF, r, Z-Statistic Ljung-Box Statistic, Q1 g
1 0.004656 0.03292 0.0012
2 —0.102647 —0.72581 0.5719
3 0.136810 0.95734 1.6073
4 —0.033988 -0.23359 1.6726
5 0.118876 0.81611 2.4891
6 0.181508 1.22982 4.4358
7 —0.039223 —0.25807 4.5288
8 —0.118989 -0.78185 5.4053
9 0.003400 0.02207 5.4061

10 0.034631 0.22482 5.4840

11 —0.151935 —0.98533 7.0230

12 —0.207710 —1.32163 9.9749

13 0.089387 0.54987 10.5363

Therefore we could test the hypothesis Hy : o, = 0 using the test statistic

2= = = nNT (2.38)

Minitab calculates this Z-statistic (calling it a t-statistic), and it is reported in Table 2.4
for the one-step-ahead forecast errors of Table 2.3 (this is the f-statistic reported
in Figure 2.13 for the ACF of the chemical viscosity readings). Large values of
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FIGURE 2.31 Sample ACF of forecast errors from Table 2.4.
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FIGURE 2.32 Normal probability plot of forecast errors from Table 2.3.

this statistic (say, |Zo| > Z4/2, where Z,,; is the upper a/2 percentage point of the
standard normal distribution) would indicate that the corresponding autocorrelation
coefficient does not equal zero. Alternatively, we could calculate a P-value for this
test statistic. Since none of the absolute values of the Z-statistics in Table 2.4 exceeds
Zas2 = Zoozs = 1.96, we cannot conclude at significance level o = 0.05 that any
individual autocorrelation coefficient differs from zero.

This procedure is a one-at-a-time test; that is, the significance level applies to the
autocorrelations considered individually. We are often interested in evaluating a set
of autocorrelations jointly to determine if they indicate that the time series is white
noise. Box and Pierce [1970] have suggested such a procedure. Consider the square
of the test statistic Zo in Eq. (2.38). The distribution of Z3 = r;T is approximately
chi-square with one degree of freedom. The Box—Pierce statistic

K
Qep=T)Y r} (2.39)
k=1

is distributed approximately as chi-square with K degrees of freedom under the null
hypothesis that the time series is white noise. Therefore, if Qyp > x2 x we would
reject the null hypothesis and conclude that the time series is not white noise because
some of the autocorrelations are not zero. A P-value approach could also be used.
When this test statistic is applied to a set of residual autocorrelations the statistic
Opp ~ x(f_,(_p, where p is the number of parameters in the model, so the number of
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degrees of freedom in the chi-square distribution becomes K — p. Box and Pierce call
this procedure a “Portmanteau” or general goodness-of-fit statistic (it is testing the
goodness of fit of the autocorrelation function to the autocorrelation function of white
noise). A modification of this test that works better for small samples was devised by
Ljung and Box [1978]. The Ljung-Box goodness-of-fit statistic is

S0
Qup =T(T+2)) (m) 7 (2.40)
k=1

Note that the Ljung—Box goodness-of-fit statistic is very similar to the original Box—
Pierce statistic, the difference being that the squared sample autocorrelation at lag &
is weighted by (T + 2)/(T — k). For large values of T, these weights will be approx-
imately unity, and so the Qg and Qpp statistics will be very similar.

Minitab calculates the Ljung—Box goodness-of-fit statistic Q1 g, and the values for
the first 13 sample autocorrelations of the one-step-ahead forecast errors of Table 2.3
are shown in the last column of Table 2.4. At lag 13, the value Qg = 10.5363, and
since X(%Aoim = 22.36, there is no strong evidence to indicate that the first 13 auto-
correlations of the forecast errors considered jointly differ from zero. If we calculate
the P-value for this test statistic, we find that P = 0.65. This is a good indication
that the forecast errors are white noise. Note that Figure 2.13 also gave values for the
Ljung-Box statistic.

2.6.2 Choosing Between Competing Models

There are often several competing models that can be used for forecasting a partic-
ular time series. For example, there are several ways to model and forecast trends.
Consequently, selecting an appropriate forecasting model is of considerable practical
importance. In this section we discuss some general principles of model selection.
In subsequent chapters, we will illustrate how these principles are applied in specific
situations.

Selecting the model that provides the best fit to historical data generally does not
result in a forecasting method that produces the best forecasts of new data. Concen-
trating too much on the model that produces the best historical fit often results in
overfitting, or including too many parameters or terms in the model just because
these additional terms improve the model fit. In general, the best approach is to select
the model that results in the smallest standard deviation (or mean squared error) of
the one-step-ahead forecast errors when the model is applied to data that was not
used in the fitting process. Some authors refer to this as an out-of-sample forecast
error standard deviation (or mean squared error). A standard way to measure this
out-of-sample performance is by utilizing some form of data splitting; that is, di-
vide the time series data into two segments—one for model fitting and the other
for performance testing. Sometimes data splitting is called cross-validation. It is
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somewhat arbitrary as to how the data splitting is accomplished. However. a good
rule of thumb is to have at least 20 or 25 observations in the performance testing data
set.

When evaluating the fit of the model to historical data, there are several criteria
that may be of value. The mean squared error of the residuals is

s° = (2.41)

where T periods of data have been used to fit a model with p parameters and e, is
the residual from the model-fitting process in period . The mean squared error s? is
just the sample variance of the residuals and it is an estimator of the variance of the
model errors.

Another criterion is the R-squared statistic

T

Z €

RP=1-— TL (2.42)
Z O — S')Z

=1

The denominator of Eq. (2.42) is just the total sum of squares of the observations,
which is constant (not model dependent), and the numerator is just the residual sum of
squares. Therefore, selecting the model that maximizes R? is equivalent to selecting
the model that minimizes the sum of the squared residuals. Large values of R? suggest
a good fit to the historical data. Because the residual sum of squares always decreases
when parameters are added to a model, relying on R? to select a forecasting model
encourages overfitting or putting in more parameters than are really necessary to
obtain good forecasts. A large value of R? does not ensure that the out-of-sample
one-step-ahead forecast errors will be small.
A better criterion is the “adjusted” R? statistic, defined as

T
Zef/(T_p) s2
Rf\dj=1— _ el =1-- (2.43)
S —FPNT -1) SO =FP/NT -1
-1 1—1

The adjustment is a “size” adjustment—that is, adjust for the number of parameters
in the model. Note that a model that maximizes the adjusted R* statistic is also the
model that minimizes the residual mean square.
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Two other important criteria are the Akaike Information Criterion (AIC) (see
Akaike [1974]) and the Schwarz Information Criterion (SIC) (see Schwarz [1978]):

T
e

AIC=1n | =! 2p
—n + - (2.44)
and
T
e
sic—m| = L i) (2.45)
T T

These two criteria penalize the sum of squared residuals for including additional pa-
rameters in the model. Models that have small values of the AIC or SIC are considered
good models.

One way to evaluate model selection criteria is in terms of consistency. A model
selection criterion is consistent if it selects the true model when the true model is
among those considered with probability approaching unity as the sample size be-
comes large, and if the true model is not among those considered, it selects the best
approximation with probability approaching unity as the sample size becomes large.
It turns out that 52, the adjusted R?, and the AIC are all inconsistent, because they do
not penalize for adding parameters heavily enough. Relying on these criteria tends
to result in overfitting. The SIC, which caries a heavier “size adjustment” penalty, is
consistent.

Consistency, however, does not tell the complete story. It may turn out that the true
model and any reasonable approximation to it are very complex. An asymptotically
efficient model selection criterion chooses a sequence of models as 7' (the amount
of data available) gets large for which the one-step-ahead forecast error variances
approach the one-step-ahead forecast error variance for the true model at least as fast
as any other criterion. The AIC is asymptotically efficient but the SIC is not.

There are a number of variations and extensions of these criteria. The AIC is a
biased estimator of the discrepancy between all candidate models and the true model.
This has led to developing a “corrected” version of AIC:

T
de
= L2+ D)

AICC = In
T T—p-—-2

(2.46)
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Sometimes we see the first term in the AIC, AICC, or SIC written as —2In L{3. ¢2).
where L(3, o2) is the likelihood function for the fitted model evaluated at the maxi-
mum likelihood estimates of the unknown parameters 3 and o °. In this context, AIC.
AICC, and SIC are called penalized likelihood criteria.

Many software packages evaluate and print model selection criteria, such as those
discussed here. Whenboth AIC and SIC are available, we prefer using SIC. It generally
results in smaller, and hence simpler, models, and so its use is consistent with the
time-honored model-building principle of parsimony (all other things being equal,
simple models are preferred to complex ones). We will discuss and illustrate model
selection criteria again in subsequent chapters. However, remember that the best
way to evaluate a candidate model’s potential predictive performance is to use data
splitting. This will provide a direct estimate of the one-step-ahead forecast error
variance, and this method should always be used, if possible, along with the other
criteria that we have discussed here.

2.6.3 Monitoring a Forecasting Model

Developing and implementing procedures to monitor the performance of the forecast-
ing model is an essential component of good forecasting system design. No matter
how much effort has been expended in developing the forecasting model, and regard-
less of how well the model works initially, over time it is likely that its performance
will deteriorate. The underlying pattern of the time series may change. either be-
cause the internal inertial forces that drive the process may evolve through time, or
because of external events such as new customers entering the market. For example,
a level change or a slope change could occur in the variable that is being forecasted.
It is also possible for the inherent variability in the data to increase. Consequently.
performance monitoring is important.

The one-step-ahead forecast errors e, (1) are typically used for forecast monitoring.
The reason for this is that changes in the underlying time series will also typically
be reflected in the forecast errors. For example, if a level change occurs in the time
series, the sequence of forecast errors will no longer fluctuate around zero; that is. a
positive or negative bias will be introduced.

There are several ways to monitor forecasting model performance. The simplest
way is to apply Shewhart control charts to the forecast errors. A Shewhart control
chart is a plot of the forecast errors versus time containing a center line that represents
the average (or the target value) of the forecast errors and a set of control limits that
are designed to provide an indication that the forecasting model performance has
changed. The center line is usually taken as either zero (which is the anticipated
forecast error for an unbiased forecast) or the average forecast error (ME from Eq.
(2.30)), and the control limits are typically placed at three standard deviations of the
forecast errors above and below the center line. If the forecast errors plot within the
control limits, we assume that the forecasting model performance is satisfactory (or
in control), but if one or more forecast errors exceed the control limits, that is a signal
that something has happened and the forecast errors are no longer fluctuating around
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zero. In control chart terminology, we would say that the forecasting process is out
of control and some analysis is required to determine what has happened.

The most familiar Shewhart control charts are those applied to data that have
been collected in subgroups or samples. The one-step-ahead forecast errors e,(1) are
individual observations. Therefore the Shewhart control chart for individuals would
be used for forecast monitoring. On this control chart it is fairly standard practice
to estimate the standard deviation of the individual observations using a moving
range method. The moving range is defined as the absolute value of the difference
between any two successive one-step-ahead forecast errors, say, le, (1) — ¢, (1), and
the moving range based on »n observations is

MR =) " lei(1) — e, ((1)] (2.47)
=2

The estimate of the standard deviation of the one-step-ahead forecast errors is
based on the average of the moving ranges

0.8865 1) —e (1
0.8865MR ~ 1222|€t( )~ e ()]

n—1 n—1

= 0.8865MR (2.48)

Oe(1) =

This estimate of the standard deviation would be used to construct the control limits on
the control chart for forecast errors. For more details on constructing and interpreting
control charts, see Montgomery [2005].

Example 2.12

Minitab can be used to construct Shewhart control charts for individuals. Figure 2.33
shows the Minitab control charts for the one-step-ahead forecast errors in Table 2.3.
Note that both an individuals control chart of the one-step-ahead forecast errors and
a control chart of the moving ranges of these forecast errors are provided. On the
individuals control chart the center line is taken to be the average of the forecast
errors ME defined in Eq. (2.30) (denoted X in Figure 2.33) and the upper and lower
three-sigma control limits are abbreviated as UCL and LCL, respectively. The center
line on the moving range control chart is at the average of the moving ranges MR =
MR/(n — 1), the three-sigma upper control limit UCL is at 3.267MR/(n — 1), and the
lower control limit is at zero (for details on how the control limits are derived, see
Montgomery [2005]). All of the one-step-ahead forecast errors plot within the control
limits (and the moving range also plot within their control limits). Thus there is no
reason to suspect that the forecasting model is performing inadequately, at least from
the statistical stability viewpoint. Forecast errors that plot outside the control limits
would indicate model inadequacy, or possibly the presence of unusual observations
such as outliers in the data. An investigation would be required to determine why
these forecast errors exceed the control limits. n
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FIGURE 2.33 Individuals and moving range control charts of the one-step-ahead forecast errors in
Table 2.3.

Because the control charts in Figure 2.33 exhibit statistical control, we would
conclude that there is no strong evidence of statistical inadequacy in the forecasting
model. Therefore, these control limits would be retained and used to judge the perfor-
mance of future forecasts (in other words, we do not recalculate the control hmits with
each new forecast). However, the stable control chart does not imply that the forecast-
ing performance is satisfactory in the sense that the model results in small forecast
errors. In the quality control literature. these two aspects of process performance are
referred to as control and capability. respectively. It is possible for the forecasting
process to be stable or in statistical control but not capable—that is. produce forecast
errors that are unacceptably large.

Two other types of control charts. the cumulative sum (or CUSUM) control chart
and the exponentially weighted moving average (or EWMA) control chart, can also
be useful for monitoring the performance of a forecasting model. These charts are
more effective at detecting smaller changes or disturbances in the forecasting model
performance than the individuals control chart. The CUSUM is very effective in
detecting level changes in the monitored variable. It works by accumulating deviations
of the forecast errors that are above the desired target value T (usually either zero or
the average forecast error) with one statistic C* and deviations that are below the
target with another statistic C~. The statistics C™ and C~ are called the upper and
lower CUSUMs, respectively. They are computed as follows:

)
+
!

= max[0.e,(1) — (T + K) + C|]
(2.49)

2
I

min[0. e,(1) — (T — K)+ C,_|]

where the constant K, usually called the reference value. is usually chosen as
K = 0.50,(1, and 0.}, is the standard deviation of the one-step-ahead forecast errors.
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FIGURE 2.34 CUSUM control chart of the one-step-ahead forecast errors in Table 2.3.

The logic is that if the forecast errors begin to systematically fall on one side of the
target value (or zero), one of the CUSUMs in Eq. (2.49) will increase in magnitude.
When this increase becomes large enough, an out-of-control signal is generated. The
decision rule is to signal if the statistic Ct exceeds a decision interval H = So,), or
if C~ exceeds —H. The signal indicates that the forecasting model is not performing
satisfactorily (Montgomery [2005] discusses the choice of H and K in detail).

Example 2.13

The CUSUM control chart for the forecast errors shown in Table 2.3 is shown in
Figure 2.34. This CUSUM chart was constructed using Minitab with a target value of
T = 0 and 0,(;,was estimated using the moving range method described previously,
resultingin H = 56,1, = 5(0.8865)MR/(T ~ 1) = 5(0.8865)3.24 = 14.36. Minitab
labels H and — H as UCL and LCL, respectively. The CUSUM control chart reveals
no obvious forecasting model inadequacies. »

A control chart based on the exponentially weighted moving average (EWMA) is
also useful for monitoring forecast errors. The EWMA applied to the one-step-ahead
forecast errors is

e(l) = e, (1) + (1 = 2)é, (1) (2.50)

where A > 0 is a constant (usually called the smoothing constant) and the starting
value of the EWMA (required at the first observation) is either &,(1) = O or the average
of the forecast errors. Typical values of the smoothing constant for an EWMA control
chart are 0.05 < A < 0.2.
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The EWMA is a weighted average of all current and previous forecast errors, and
the weights decrease geometrically with the “‘age” of the forecast error. To see this,
simply substitute recursively for &,_,(1), then & _>(1). thene,_;(1); for j =3.4. ...,
until we obtain

n—1
a(1) =2 (1= Wer_;(1+ (1 — 1)'eo(1)
j=0
and note that the weights sum to unity because
n—1 .
WY a-n =1-( =

i=0

The standard deviation of the EWMA is

A
Og,(1) = Uem\/m[l — (1 =2

So an EWMA control chart for the one-step-ahead forecast errors with a center line
of T (the target for the forecast errors) is defined as follows:

A >
UCL=T + 309(1)\/ﬁ[1 — (1 -]
Centerline =T (2.51)

A )
LCL =T — 30}(1)\/5—_—)"[1 - (1 - )\)J]

Example 2.14

Minitab can be used to construct EWMA control charts. Figure 2.35 is the EWMA
control chart of the forecast errors in Table 2.3. This chart uses the mean forecast
error as the center line, o,(;,was estimated using the moving range method, and we
chose A = 0.1. None of the forecast errors exceeds the control limits so there is no
indication of a problem with the forecasting model.

Note from Eq. (2.51) and Figure 2.35 that the control limits on the EWMA control
chart increase in width for the first few observations and then stabilize at a constant
value because the term [1 — (1 — A)*] approaches unity as ¢ increases. Therefore
steady-state limits for the EWMA control chart are

A
UCL =T + 30, —
+ 301 3 _x
Centerline =T (2.52)
A
LCL=T = 30,4,/ —— [ ]

2—A
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FIGURE 2.35 EWMA control chart of the one-step-ahead forecast errors in Table 2.3.

In addition to control charts, other statistics have been suggested for monitoring
the performance of a forecasting model. The most common of these are tracking
signals. The cumulative error tracking signal is based on the cumulative sum of all
current and previous forecast errors, say,

n

Y(m)=) e =Yn—1)+e(l)

t=1

If the forecasts are unbiased we would expect Y (n) to fluctuate around zero. If it
differs from zero by very much, it could be an indication that the forecasts are biased.
The standard deviation of Y(n), say, oy, will provide a measure of how far ¥ (n)
can deviate from zero due entirely to random variation. Therefore we would conclude
that the forecast is biased if |Y (n)| exceeds some multiple of its standard deviation.
To operationalize this, suppose that we have an estimate 8y, of oy, and form the
cumulative error tracking signal

Y(n)

UY(n)

CETS = (2.53)

If the CETS exceeds a constant, say, K, we would conclude that the forecasts are
biased and that the forecasting model may be inadequate.

It is also possible to devise a smoothed error tracking signal based on the
smoothed one-step-ahead forecast errors in Eq. (2.50). This would lead to a ratio

eq(1)

O,(1)

SETS =

(2.54)
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If the SETS exceeds a constant, say, K>, this is an indication that the forecasts are
biased and that there are potentially problems with the forecasting model.

Note that the cumulative error tracking signal i1s very similar to the CUSUM
control chart and that the smoothed error tracking signal is essentially equivalent to the
EWMA control chart. Furthermore, the CUSUM and EWMA are available in standard
statistics software (such as Minitab) and the tracking signal procedures are not. So,
while tracking signals have been discussed extensively and recommended by some
authors, we are not going to encourage their use. Plotting and periodically visually
examining a control chart of forecast errors is also very informative, something that
is not typically done with tracking signals.

EXERCISES

2.1 Considerthe U.S. Treasury Securities rate data in Table B.1 (Appendix B). Find
the sample autocorrelation function for these data. Is the time series stationary
or nonstationary?

2.2 Consider the data on U.S. production of blue and gorgonzola cheeses in
Table B.4.
a. Find the sample autocorrelation function for these data. Is the time series
stationary or nonstationary?
b. Take the first difference of the time series and find the sample autocorrelation
function. What conclusions can you draw about the structure and behavior
of the time series?

2.3 Table B.5 contains the U.S. beverage product shipments data. Find the sample
autocorrelation function for these data. Is the time series stationary or nonsta-
tionary?

2.4 Table B.6 contains two time series: the global mean surface air tempera-
ture anomaly and the global CO» concentration. Find the sample autocor-
relation function for both of these time series. Is either one of the time series
stationary?

2.5 Reconsider the global mean surface air temperature anomaly and the global
CO, concentration time series from Exercise 2.4. Take the first difference of
both time series. Find the sample autocorrelation function of these new time
series. Is either one of these differenced time series stationary?

2.6 Table B.7 contains the Whole Foods Market closing stock prices. Find
the sample autocorrelation function for this time series. Is the time series
stationary?
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2.7

2.8

2.9

2.10

2.11

2.12

213

2.14

Reconsider the Whole Foods Market stock price data from Exercise 2.6. Take
the first difference of the data. Find the sample autocorrelation tunction of this
new time series. Is this ditferenced time series stationary?

Consider the unemployment rate data in Table B.8. Find the sample autocorre-
Jation function for this time series. Is the time series stationary or nonstationary?
What conclusions can you draw about the structure and behavior of the time
series?

Table B.9 contains the annual International Sunspot Numbers. Find the sample
autocorrelation function for this time series. Is the time series stationary or
nonstationary?

Table B.10 contains data on the number of airline miles flown in the United
Kingdom. This is strongly seasonal data. Find the sample autocorrelation func-
tion for this time series.

a. Is the seasonality apparent in the sample autocorrelation function?

b. Is the time series stationary or nonstationary?

Reconsider the data on the number of airline miles flown in the United Kingdom
from Exercise 2.10. Take the natural logarithm of the data and plot this new
time series.

a. What impact has the log transformation had on the time series?

b. Find the autocorrelation function for this time series.

c. Interpret the sample autocorrelation function.

Reconsider the data on the number of airline miles flown in the United Kingdom
from Exercises 2.10 and 2.11. Take the first difterence of the natural logarithm
of the data and plot this new time series.

a. What impact has the log transformation had on the time series?

b. Find the autocorrelation function for this time series.

c¢. Interpret the sample autocorrelation function.

The data on the number of airline miles flown in the United Kingdom in
Table B.10 is seasonal. Difference the data at a season lag of 12 months and
also apply a first difference to the data. Plot the differenced series. What effect
has the differencing had on the time series? Find the sample autocorrelation
function. What does the sample autocorrelation function tell you about the
behavior of the differenced series?

Table B.11 contains data on the monthly champagne sales in France. This is
strongly seasonal data. Find the sample autocorrelation function for this time
series.
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2.20
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a. s the seasonality apparent in the sample autocorrelation function?
b. Is the time series stationary or nonstationary?

Reconsider the champagne sales data from Exercise 2.14. Take the natural
logarithm of the data and plot this new time series.

a. What impact has the log transformation had on the time series?
b. Find the autocorrelation function for this time series.
c. Interpret the sample autocorrelation function.

Table B.13 contains data on ice cream and frozen yogurt production. Plot the
data and calculate the sample autocorrelation function. Is there an indication
of nonstationary behavior in the time series? Now plot the first difference of
the time series and compute the sample autocorrelation function of the first
differences. What impact has differencing had on the time series?

Table B.14 presents data on CO; readings from the Mauna Loa Observatory.
Plot the data and calculate the sample autocorrelation function. Is there an
indication of nonstationary behavior in the time series? Now plot the first
difference of the time series and compute the sample autocorrelation function
of the first differences. What impact has differencing had on the time series?

Data on violent crime rates is given in Table B.15. Plot the data and calculate
the sample autocorrelation function. Is there an indication of nonstationary
behavior in the time series? Now plot the first difference of the time series
and compute the sample autocorrelation function of the first differences. What
impact has differencing had on the time series?

Table B.16 presents data on the U.S. Gross Domestic Product (GDP). Plot
the GDP data and calculate the sample autocorrelation function. Is there an
indication of nonstationary behavior in the time series? Now plot the first
difference of the GDP time series and compute the sample autocorrelation
function of the first differences. What impact has differencing had on the time
series?

Table B.17 contains information on total annual energy consumption. Plot the
energy consumption data and calculate the sample autocorrelation function.
Is there an indication of nonstationary behavior in the time series? Now plot
the first difference of the time series and compute the sample autocorrelation
function of the first differences. What impact has differencing had on the time
series?

Data on U.S. coal production is given in Table B.18. Plot the coal production
data and calculate the sample autocorrelation function. Is there an indication
of nonstationary behavior in the time series? Now plot the first difference of
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2.22

2.23

2.24

2.25

2.26

the time series and compute the sample autocorrelation function of the first
differences. What impact has differencing had on the time series?

Consider the CO, readings from Mauna Loa in Table B.14. Use a six-period
moving average to smooth the data. Plot both the smoothed data and the original
CO, readings on the same axes. What has the moving average done? Repeat the
procedure with a three-period moving average. What is the effect of changing
the span of the moving average?

Consider the violent crime rate data in Table B.15. Use a ten-period moving
average to smooth the data. Plot both the smoothed data and the original CO;
readings on the same axes. What has the moving average done? Repeat the
procedure with a four-period moving average. What is the effect of changing
the span of the moving average?

Consider the N-span moving average applied to data that is uncorrelated with

mean y and variance o2,

a. Show that the variance of the moving average is Var(M,) = o%/N.
b. Show that Cov(M,, My,) = 02 "~ (1/NY, fork < N.
¢. Show that the autocorrelation function is

_
Pk = N

Consider an N-span moving average where each observation is weighted
by a constant, say, a; > 0. Therefore the weighted moving average at the
end of period T is

T

w )
M; = E AT 41—t Yt
t=T-N+1

a. Why would you consider using a weighted moving average?
b. Show that the variance of the weighted moving average is Var(M7}) =
CRD I
j=i %y
c. Show that Cov(My, M¥, ) =02 Y Fa;a;. kI < N,
d. Show that the autocorrelation function is

N—k N
ajdjk Za? , k=1,2,..., N -1
P = j=1 j=t

0, k>N

Consider the Hanning filter. This is a weighted moving average.
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a. Find the vanance of the weighted moving average for the Hanning filter. Is
this variance smaller than the variance of a simple span-3 moving average
with equal weights?

b. Find the autocorrelation function for the Hanning filter. Compare this with
the autocorrelation function for a simple span-3 moving average with equal
weights.

Suppose that a simple moving average of span N is used to forecast a time series
that varies randomly around a constant, thatis. v, = g + ., where the variance
of the error term is o', The forecast error at lead one is e7_1(1) = vr., — M7.
What is the variance of this lead-one forecast error?

Suppose that a simple moving average of span N is used to forecast a time
series that varies randomly around a constant, that is. v, = ¢ + ¢,. where the
variance of the error term is o >. You are interested in forecasting the cumulative
value of y over a lead time of L periods. say. ¥ro) + yro>+ -+ vrop.

a. The forecast of this cumulative demand is LM . Why?

b. What is the variance of the cumulative forecast error?

Suppose that a simple moving average of span N is used to forecast a time
series that varies randomly around a constant mean, that is, v, = u + &,. At
the start of period ¢, the process shifts to a new mean level. say. i + §. Show
that the expected value of the moving average is

u, T <t —1
t N -1
E(M7) = u+5—'+T§. h<T<t+N-=2
u+ 4. T>n+N

Suppose that a simple moving average of span N is used to forecast a time
series that varies randomly around a constant mean, that is, v, = u + &,. At
the start of period #, the process experiences a transient; that is. it shifts to a
new mean level, say, i + 8, but it reverts to its original level u at the start of
period t; + 1. Show that the expected value of the moving average is

. T <n—-1
é
EM7) = ,Ll‘*—ﬁ. nh<T<nH+N-1
Hu T>=n+N

If a simple N—span moving average is applied to a time series that has a
linear trend, say, ¥, = Bo + Bit + &, the moving average will lag behind the
observations. Assume that the observations are uncorrelated and have constant
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TABLE E2.1 One-Step-Ahead Forecast Errors for Exercise 2.34

Period, t e,(1) Period, ¢ e(1) Period, ¢ efl) Period, ¢ e(1)

Nelie TN B R N o S

—
<

1.83 I —2.30 21 3.30 31 —0.07
—1.80 12 0.65 22 1.036 32 0.57
0.09 13 -0.01 23 2.042 33 292
—1.53 14 —1.11 24 1.04 34 1.99
—0.58 15 0.13 25 —0.87 35 1.74
0.21 16 —-1.07 26 —0.39 36 -0.76
1.25 17 0.80 27 -0.29 37 235
—-1.22 18 —1.98 28 2.08 38 —1.91
1.32 19 0.02 29 3.36 39 222
3.63 20 0.25 30 —0.53 40 2.57

2.32

2.33

2.34

2.35

variance. Show that at time T the expected value of the moving average is

—1
2

N
EMz)=po+ BT ~ B2

Use a 3-period moving average to smooth the champagne sales data in Table
B.11. Plot the moving average on the same axes as the original data. What
impact has this smoothing procedure had on the data?

Use a 12-period moving average to smooth the champagne sales data in Table
B.11. Plot the moving average on the same axes as the original data. What
impact has this smoothing procedure had on the data?

Table E2.1 contains 40 one-step-ahead forecast errors from a forecasting model.
a. Find the sample ACF of the forecast errors. Interpret the results.

b. Construct a normal probability plot of the forecast errors. Is there evidence
to support a claim that the forecast errors are normally distributed?

¢. Calculate s, R?, and the adjusted R

d. Find the mean error, the mean squared error, and the mean absolute
deviation. Is it likely that the forecasting technique produces unbiased
forecasts?

Table E2.2 contains 40 one-step-ahead forecast errors from a forecasting model.

a. Find the sample ACF of the forecast errors. Interpret the results.

b. Construct a normal probability plot of the forecast errors. Is there evidence
to support a claim that the forecast errors are normally distributed?

c. Calculate 52, R?, and the adjusted R°.

d. Find the mean error, the mean squared error, and the mean absolute devia-
tion. Is it likely that the forecasting method produces unbiased forecasts?
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TABLE E2.2 One-Step-Ahead Forecast Errors for Exercise 2.35

Period, ¢ e, (1) Period, ¢ e, (1) Peniod, ¢ e (1) Period, t e, (1)

1 —4.26 11 3.62 21 —-6.24 31 —6.42
2 -3.12 12 —5.08 22 -0.25 32 —8.94
3 —1.87 13 -1.35 23 —-3.64 33 —-1.76
4 0.98 14 3.46 24 5.49 34 -0.57
5 —=5.17 15 -0.19 25 -2.01 35 —-10.32
6 0.13 16 —7.48 26 —-4.24 36 —5.64
7 1.85 17 —3.61 27 -4.61 37 —1.45
8 —-2.83 18 —4.21 28 3.24 38 -5.67
9 0.95 19 -6.49 29 —8.66 39 —4.45

10 7.56 20 4.03 30 —-1.32 40 —10.23

2.36 Exercises 2.34 and 2.35 present information on forecast errors. Suppose that
these two sets of forecast errors come from two different forecasting methods
applied to the same time series. Which of these two forecasting methods would
you recommend for use? Why?

2.37 Consider the forecast errors in Exercise 2.34. Construct individuals and moving
range control charts for these forecast errors. Does the forecasting system
exhibit stability over this time period?

2.38 Consider the forecast errors in Exercise 2.34. Construct a cumulative sum
control chart for these forecast errors. Does the forecasting system exhibit
stability over this time period?

2.39 Consider the forecast errors in Exercise 2.35. Construct individuals and moving
range control charts for these forecast errors. Does the forecasting system
exhibit stability over this time period?

2.40 Consider the forecast errors in Exercise 2.35. Construct a cumulative sum
control chart for these forecast errors. Does the forecasting system exhibit
stability over this time period?

2.41 Ten additional forecast errors for the forecasting model in Exercise 2.34 are
as follows: 5.5358, -2.6183, 0.0130, 1.3543, 12.6980, 2.9007, 0.8985, 2.9240,
2.6663, and —1.6710. Plot these additional ten forecast errors on the individuals
and moving range control charts constructed in Exercise 2.37. Is the forecasting
system still working satisfactorily?

2.42 Plot the additional ten forecast errors from Exercise 2. on the cumulative sum

control chart constructed in Exercise 2.38. [s the forecasting system still work-
ing satisfactorily?



CHAPTER 3

Regression Analysis and Forecasting

Weather forecast for tonight: dark.
GEORGE CARLIN, American comedian

3.1 INTRODUCTION

Regression analysis is a statistical technique for modeling and investigating the re-
lationships between an outcome or response variable and one or more predictor or
regressor variables. The end result of a regression analysis study is often to generate
a model that can be used to forecast or predict future values of the response variable
given specified values of the predictor variables.

The simple linear regression model involves a single predictor variable and is
written as

y:ﬂo+ﬂlx+5 (31)

where y is the response, x is the predictor variable, 8y and f)are unknown parameters,
and ¢ is an error term. The mode! parameters or regression coefficients 8, and j;
have a physical interpretation as the intercept and slope of a straight line, respectively.
The slope B, measures the change in the mean of the response variable y for a unit
change in the predictor variable x. These parameters are typically unknown and must
be estimated from a sample of data. The error term ¢ accounts for deviations of
the actual data from the straight line specified by the model equation. We usually
think of € as a statistical error, so we define it as a random variable and will make
some assumptions about its distribution. For example, we typically assume that &
is normally distributed with mean zero and variance o2, abbreviated N(0, ). Note
that the variance is assumed constant; that is, it does not depend on the value of the
predictor variable (or any other variable).

Introduction to Time Series Analysis and Forecasting
By Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci
Copyright © 2008 John Wiley & Sons, Inc.
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Regression models often include more than one predictor or regressor variable. 1f
there are k predictors, the multiple linear regression model is

y=PF+Bbx+pxa+-+fxit+e (3.2)

The parameters Sy, Bi. ..., B in this model are often called partial regression coef-
ficients because they convey information about the effect on y of the predictor that
they multiply given that all of the other predictors in the model do not change.

The regression models in Eqs. (3.1) and (3.2) are linear regression models because
they are linear in the unknown parameters (the 8’s}), and not because they necessarily
describe linear relationships between the response and the regressors. For example,
the model

yv=P0+ pfix + ,33.\”2 +¢

is a linear regression model because it is linear in the unknown parameters 8. 8.
and B,, although it describes a quadratic relationship between v and x. As another
example, consider the regression model

2 2
v = fo + Bisin —d£f+}33COS 7”1 + ¢ (3.3)

which describes the relationship between a response variable y that varies cyclically
with time (hence the subscript t) and the nature of this cyclic variation can be described
as a simple sine wave. Regression models such as Eq. (3.3) can be used to remove
seasonal effects from time series data (refer to Section 2.4.4 where models like this
were introduced). If the period d of the cycle is specified (such as d = 12 for monthly
data with an annual cycle), then sin (27/d)t and cos (2rr/d)t are just numbers for
each observation on the response variable and Eq. (3.3) is a standard linear regression
model.

We will discuss the use of regression models for forecasting or making predictions
in two different situations. The first of these is the situation where all of the data
are collected on y and the regressors in a single time period (or put another way,
the data are not time oriented). For example, suppose that we wanted to develop a
regression model to predict the proportion of consumers who will redeem a coupon for
purchase of a particular brand of milk (y) as a function of the amount of the discount
or face value of the coupon (x). These data are collected over some specified study
period (such as a month) and the data do not explicitly vary with time. This type of
regression data is called cross-section data. The regression model for cross-section
data is written as

Vi =/30+ﬂ1x,-1 +,32X,’2+"'+,3k.\','k + &;. i=1.2..... n (3.4

where the subscript i is used to denote each individual observation (or case) in the data
set and n represents the number of observations. In the other situation the response
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and the regressors are time series, so the regression model involves time series data.
For example, the response variable might be hourly CO, emissions from a chemical
plant and the regressor variables might be the hourly production rate, hourly changes
in the concentration of an input raw material, and ambient temperature measured each
hour. All of these are time-oriented or time series data.

The regression model for time series data is written as

vi=po+Bixn+Bxp+ -+ Bxute, t=1,2...,T (3.5)

In comparing Eq. (3.5) to Eq. (3.4), note that we have changed the observation or case
subscript from i to ¢ to emphasize that the response and the predictor variables are
time series. Also, we have used 7 instead of n to denote the number of observations
in keeping with our convention that, when a time series is used to build a forecasting
model, T represents the most recent or last available observation. Equation (3.3) is a
specific example of a time series regression model.

The unknown parameters B, 8, .. ., B in a linear regression model are typically
estimated using the method of least squares. We illustrated least squares model fitting
in Chapter 2 for removing trend and seasonal effects from time series data. This is
an important application of regression models in forecasting, but not the only one.
The next section gives a formal description of the least squares estimation procedure.
Subsequent sections deal with statistical inference about the model and its parameters,
and with model adequacy checking. We will also describe and illustrate several ways
in which regression models are used in forecasting.

3.2 LEAST SQUARES ESTIMATION IN LINEAR
REGRESSION MODELS

We begin with the situation where the regression model is used with cross-section
data. The model is given in Eq. (3.4). There are n > k observations on the response
variable available, say, yi, v2, ..., ¥,. Along with each observed response y;, we will
have an observation on each regressor or predictor variable and x;; denotes the ith
observation or level of variable x ;. The data will appear as in Table 3. 1. We assume that
the error term ¢ in the model has expected value E£(¢) = 0 and variance Var (¢) = o2,
and that the errors ¢;, 7 = 1, 2, ..., n are uncorrelated random variables.

TABLE 3.1 Cross-Section Data for Multiple Linear Regression

Observation Response, y X X5 ... X
1 Vi X1 X2 Xk
2 w2 X21 X22 S Xk

n Yu Xal X2 E Xk




76 REGRESSION ANALYSIS AND FORECASTING

The method of least squares chooses the model parameters (the £'s) in Eq. (3.4) so
that the sum of the squares of the errors, ¢;. is minimized. The least squares function
is

L= 25.2 =Z(.Vi — Bo— Bixit — Paxia — - — fxu)’
i=1 i=1
) (3.6)
=3 (- Lon)
This function is to be minimized with respect to fy. 8, . ... Bi. Therefore the least
squares estimators, say, Bo. 8. . .., Bk, must satisfy
aL u N
EvN =-2 Z ()’i —Bo— Zﬂjxij) = (3.7
Bolg.p1....5 i=1 j=1
and
aL d S
5 =—2Y |yi—=Bo=) Bjxij|x;=0. j=12. .k
ﬁ-’ Bo.Bi..... B i=1 j=I

Simplifying Eqgs. (3.7) and (3.8) we obtain

nBo + B ZX,H';B szz-f- + B ik = dow (3.9)

ﬂozx:1+ﬂlzx,1+ﬂzzx.zxn+ +Bi Z XikXi) =Z,\‘i-¥11

=
B3
=
=
3

These equations are called the least squares normal equations. Note that there are
p = k + 1 normal equations, one for each of the unknown regression coefficients.
The solutions to the normal equations will be the least squares estimators of the model
regression coefficients.

It is simpler to solve the normal equations if they are expressed in matrix notation.
We now give a matrix development of the normal equations that parallels the devel-
opment of Eq. (3.10). The multiple linear regression model may be written in matrix
notation as

y=XB+¢ (3.11)
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where
i I xy o xi2-00 Xk Bo €y
» I xo1 xpo X Bi £2
y=| . |. X=|. . . . , B=1] .|, and e=
Yn 1 Xnl Xp2 " Xnk ,Bk En

In general, y is an (n x 1) vector of the observations, X is an (n x p) matrix of the
levels of the regressor variables, 3 is a ( p x 1) vector of the regression coefficients,
and ¢ is an (n x 1) vector of random errors. X is usually called the model matrix,
because it is the original data table for the problem expanded to the form of the
regression model that you desire to fit.

The vector of least squares estimators minimizes

L=Ye=¢e=(y—Xp)(y - XB)
i=1

We can expand the right-hand side of L and obtain
L=yy-pXy-yXp+BXXB=yy-28Xy+pXXp

because B'X'y is a (1 x 1) matrix, or a scalar, and its transpose ('X'y)’ = y'Xp is the
same scalar. The least squares estimators must satisfy

oLy _ X'y +2X'X)p =0
ap B

which simplifies to
(X'X)B =Xy (3.12)

In Eq. (3.12) X'X is a (p x p) symmetric matrix and X'y is a (px 1) column vector.
Equation (3.12) is just the matrix form of the least squares normal equations. It is
identical to Eq. (3.10). To solve the normal equations, multiply both sides of Eq.
(3.12) by the inverse of X'X (we assume that this inverse exists). Thus the least
squares estimator of B is

B=XX)"'XYy (3.13)
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The fitted values of the response variable from the regression model are computed
from

>
Il
”

o}

(3.14)
or in scalar notation,

_{'/=l§o+/§|.\‘,‘1+B:X,z+---+f}k.\',-k. i=1.2..... n (3.15)
The difference between the actual observation y; and the corresponding fitted value

is the residual ¢; = v; — 3%,/ = 1.2, ..., n. The n residuals can be written as an
(n x 1) vector denoted by

e=y—-9=y-XpB (3.16)

In addition to estimating the regression coefficients 8y. 8. .. .. B, itis also neces-
sary to estimate the variance of the model errors, o>. The estimator of this parameter
involves the sum of squares of the residuals

SSe = (y — XB)'(y — XB)

We can show that E(SSg) = (n — p)a?, so the estimator of o is the residual or mean
square error

5 SS
2= 2°F (3.17)

n—p

The method of least squares is not the only way to estimate the parameters in a
linear regression model, but it is widely used, and it results in estimates of the model
parameters that have nice properties. If the model is correct (it has the right form and
includes all of the relevant predictors), the least squares estimator B is an unbiased
estimator of the model parameters 3; that is,

The variances and covariances of the estimators 3 are contained ina (p x p) covari-
ance matrix

Var (B) = o 2(X'X) ! (3.18)

The variances of the regression coefficients are on the main diagonal of this matrix
and the covariances are on the off-diagonals.
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Example 3.1

A hospital is implementing a program to improve quality and productivity. As part of
this program, the hospital is attempting to measure and evaluate patient satisfaction.
Table 3.2 contains some of the data that has been collected for a random sample of
25 recently discharged patients. The “severity” variable is an index that measures the
severity of the patient’s illness, measured on an increasing scale (i.e., more severe iil-
nesses have higher values of the index), and the response satisfaction is also measured
on an increasing scale, with larger values indicating greater satisfaction.

We will fit a multiple linear regression model to the patient satisfaction data. The
model is

y=PBo+pixi+ pPrxa+ ¢

where y = patient satisfaction, x; = patient age, and x, = illness severity. To solve
the least squares normal equations, we will need to set up the X'X matrix and the X'y

TABLE 3.2 Patient Satisfaction Survey Data

Observation Age (x)) Severity (x3) Satisfaction (y)
| 55 50 68
2 46 24 77
3 30 46 96
4 35 48 80
5 59 58 43
6 61 60 44
7 74 65 26
8 38 42 88
9 27 42 75
10 51 50 57
11 53 38 56
12 41 30 88
13 37 31 88
14 24 34 102
15 42 30 88
16 50 48 70
17 58 61 52
18 60 71 43
19 62 62 46

20 68 38 56
21 70 41 59
22 79 66 26
23 63 31 52
24 39 42 83

25 49 40 75
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vector. The model matrix X and observation vector y are

1 55 507) 68 ]
1 46 24 77
1 30 46 96
1 35 48 80
1 59 58 43
1 61 60 44
1 74 65 26
1 38 42 88
1 27 42 75
1 51 50 57
1 53 38 56
1 41 30 88

X=|1 37 31}, y=1 88
1 24 34 102
1 42 30 88
1 50 48 70
1 58 61 52
1 60 71 43
1 62 62 46
1 68 38 56
1 70 41 59
1 79 66 26
1 63 31 52
1 39 42 83
|1 49 40 ] | 75 |

The X'X matrix and the X'y vector are

I 55 50
1 1 -1 1 46 24 25 1271 1148
XX=1|55 46 --- 49 = [ 1271 69881 60814
50 24 --. 40 S : 1148 60814 56790
1 49 40
and
68
1 1 -1 77 1638
Xy=|55 46 --. 49 .| =] 76487
50 24 --- 40 : 70426

75
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Using Eq. (3.13), we can find the least squares estimates of the parameters in the
regression model as

B =XX) Xy
25 1271 1148 7' | 1638
= 1271 69881 60814 76487

| 1148 60814 56790 70426

[ 0.699946097 —0.006128086 —0.007586982 1638
= | —0.006128086  0.00026383  —0.000158646 | | 76487
| —0.007586982 —0.000158646  0.000340866 | | 70426

[ 143.4720118
= | —1.031053414
| —0.55603781

Therefore the regression model is

v = 143472 — 1.031x; — 0.556x,

where x; = patient age and x, = severity of illness, and we have reported the regres-
sion coefficients to three decimal places. [ |

Table 3.3 shows the output from the Minitab regression routine for the patient
satisfaction data. Note that, in addition to the fitted regression model, Minitab provides
a list of the residuals computed from Eq. (3.16) along with other output that will
provide information about the quality of the regression model. This output will be
explained in subsequent sections, and we will frequently refer back to Table 3.3.

Example 3.2 Trend Adjustment

One way to forecast time series data that contains a linear trend is with a trend
adjustment procedure. This involves fitting a model with a linear trend term in time,
subtracting the fitted values from the original observations to obtain a set of residuals
that are trend-free, then forecast the residuals, and compute the forecast by adding the
forecast of the residual value(s) to the estimate of trend. We described and illustrated
trend adjustment in Section 2.4.2, and the basic trend adjustment model introduced
there was

=B+ Bit+e t=12,...,T
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TABLE 3.3 Minitab Regression Output for the Patient Satisfaction Data in Table 3.2

Regression Analysis: Satisfaction Versus Age, Severity

The regression equation is
Satisfaction = 143 - 1.03 Age - 0.556 Severity

Predictor Coef SE Coef T P
Constant 143.472 5.955 24.09 0.000
Age -1.0311 0.1156 -8.92 0.000

Severity -0.5560 0.1314 -4.23 0.000

S = 7.11767 R-Sq = 89.7% R-Sg(adj) = 88.7%

Analysis of Variance

Source DF SS MS F P
Regression 2 9663.7 4831.8 95.38 0.000
Residual Error 22 1114.5 50.7

Total 24 10778.2

Source DF Seq SS

Age 1 8756.7

Severity 1 907.0

Obs Age Satisfaction Fit SE Fit Residual St Resid
1 55.0 68.00 58.96 1.51 9.04 1.30
2 46.0 77.00 82.70 2.99 -5.70 -0.88
3 30.0 96.00 86.96 2.80 9.04 1.38
4 35.0 80.00 80.70 2.45 -0.70 -0.10
5 59.0 43.00 50.39 1.96 -7.39 -1.08
6 61.0 44 .00 47.22 2.13 ~-3.22 -0.47
7 74.0 26.00 31.03 2.89 -5.03 -0.77
8 38.0 88.00 80.94 1.92 7.06 1.03
9 27.0 75.00 92.28 2.90 -17.28 -2.66R

10 51.0 57.00 63.09 1.52 -6.09 -0.88
11 53.0 56.00 67.70 1.86 -11.70 -1.70
12 41.0 88.00 84.52 2.28 3.48 0.52
13 37.0 88.00 88.09 2.26 -0.09 -0.01
14 24.0 102.00 99.82 2.99 2.18 0.34
15 42.0 88.00 83.49 2.28 4.51 0.67
16 50.0 70.00 65.23 1.46 4.77 0.68
17 58.0 52.00 49.75 2.21 2.25 0.33
18 60.0 43.00 42.13 3.21 0.87 0.14
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TABLE 3.3 Minitab Regression Output for the Patient Satisfaction Data in Table 3.2
(Continued)

19 62.0 46.00 45.07 2.30 0.93 0.14
20 68.0 56.00 52.23 3.04 3.77 0.59
21 70.0 59.00 48.50 2.98 10.50 1.62
22 79.0 26.00 25.32 3.24 0.68 0.11
23 63.0 52.00 61.28 3.28 -9.28 ~1.47
24 39.0 83.00 79.91 1.85 3.09 0.45
25 49.0 75.00 70.71 1.58 4.29 0.62

R denotes an observation with a large standardized residual.

The least squares normal equations for this model are

T(T + 1 Ll
rho+ A D < >

0 |

. T(T+1 ATT+12T+1 T
5 (2 ) ny ( )( ) Z

Because there are only two parameters, it is easy to solve the normal equations directly,
resulting in the least squares estimators

s 20T +1) 6
ﬂo—m;Yr—mZIYr
Pr= T(T2 ZE: Yr — (T — )ZgIYt

Minitab computes these parameter estimates in its trend adjustment procedure,
which we illustrated in Example 2.6. The least squares estimates obtained from this
trend adjustment model depend on the point in time at which they were computed,
thatis, 7. Sometimes it may be convenient to keep track of the period of computation
and denote the estimates as functions of time, say, ﬁ()(T) and Bl(T). The model can
be used to predict the next observation by predicting the point on the trend line in
period T + 1, which is Bo(T) + B](T)(T + 1), and adding to the trend a forecast
of the next residual, say, é74(1). If the residuals are structureless and have average
value zero, the forecast of the next residual would be zero. Then the forecast of the
next observation would be

Sr00(T) = Bo(T) + By(TUT + 1)
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When a new observation becomes available, the parameter estimates ﬁo( T) and ﬁ| (T)
could be updated to reflect the new information. This could be done by solving the
normal equations again. In some situations it is possible to devise simple updating
equations so that new estimates ,30(T + 1)and B,(T + 1) can be computed directly
from the previous ones ﬁO(T) and B,(T) without having to directly solve the normal
equations. We will show how to do this later. [ ]

3.3 STATISTICAL INFERENCE IN LINEAR REGRESSION

In linear regression problems, certain tests of hypotheses about the model parameters
and confidence interval estimates of these parameters are helpful in measuring the use-
fulness of the model. In this section, we describe several important hypothesis-testing
procedures and a confidence interval estimation procedure. These procedures require
that the errors ¢; in the model are normally and independently distributed with mean
zero and variance o 2, abbreviated NID(0, o2). As a result of this assumption, the ob-
servations y; are normally and independently distributed with mean 8y + Zﬁ:, Bjxij
and variance o°.

3.3.1 Test for Significance of Regression

The test for significance of regression is a test to determine whether there is a linear
relationship between the response variable y and a subset of the predictor or regressor
variables x,, x,, ..., x;. The appropriate hypotheses are

Hy:pr=p==p=0

H, : atleastone 8, # 0 (3.19)

Rejection of the null hypothesis Hy in Eq. (3.19) implies that at least one of the
predictor variables x;, x», ..., x; contributes significantly to the model. The test
procedure involves an analysis of variance partitioning of the total sum of squares

SSt= (i~ (3.20)
i=}

into a sum of squares due to the model (or to regression) and a sum of squares due
to residual (or error), say,

S51 = SSg + SSe (3.21)

Now if the null hypothesis in Eq. (3.19) is true and the model errors are normally
and independently distributed with constant variance as assumed. then the test statistic
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TABLE 3.4 Analysis of Variance for Testing Significance of Regression

Source of Degrees of o
Variation Sum of Squares Freedom Mean Square Test Statistic, Fy
SS SSr/k
Regression AN k 2R Fy = ‘.R/—
k SSe/(n — p)
. SSe
Residual (error) SSE n-—p R
n—p
Total S5t n—1
for significance of regression is
SSr/k
Fy / (3.22)

- SSe/(n — p)

and one rejects Hy if the test statistic F exceeds the upper tail point of the F distribu-
tion with kX numerator degrees of freedom and n — p denominator degrees of freedom,
Fak.n—p- Table A4 in Appendix A contains these upper tail percentage points of the
F distribution.

Alternatively, we could use the P-value approach to hypothesis testing and thus
reject the null hypothesis if the P-value for the statistic Fj is less than «. The quantities
in the numerator and denominator of the test statistic Fy are called mean squares.
Recall that the mean square for error or residual estimates o2,

The test for significance of regression is usually summarized in an analysis of
variance (ANOVA) table such as Table 3.4. Computational formulas for the sums of
squares in the ANOVA are

SSr=) (i =¥ =yy—ny’

i=1

Al
SSg = B X'y — ny’
SSe=y'y — B X'y

(3.23)

Regression model ANOVA computations are almost always performed using a com-
puter software package. The Minitab output in Table 3.3 shows the ANOVA test for
significance of regression for the regression model for the patient satisfaction data.
The hypotheses in this problem are

Hy:Bi=p=0
H, : atleastone 8; # 0

The reported value of the F-statistic from Eq. (3.22) is

3. 4851.
poo S0037/2 4858 oo
11145/22 507
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and the P-value is reported as 0.000 (Minitab reports P-values that are less than 0.001
as 0.000). The actual P-value is approximately 1.44 x 107", a very small value, so
there is strong evidence to reject the null hypothesis and we conclude that either
patient age or severity are useful predictors for patient satisfaction.

Table 3.3 also reports the coefficient of multiple determination R”. first introduced
in Section 2.6.2 in the context of choosing between competing forecasting models.
Recall that

SSr SSe

=1 (3.24)

=212
557 X5

For the regression model for the patient satisfaction data, we have

,  SSe 96637

= —=——=0.897
857 107738.2

and Minitab multiplies this by 100 % to report that R*> = 89.7%.

The statistic R? is a measure of the amount of reduction in the variability of y
obtained by using the predictor variables x|, xa, ..., x; in the model. It is a measure
of how well the regression model fits the data sample. However, as noted in Section
2.6.2, a large value of R? does not necessarily imply that the regression model is a
good one. Adding a variable to the model will never cause a decrease in R, even in
situations where the additional variable is not statistically significant. In almost all
cases, when a variable is added to the regression model R? increases. As a result, over
reliance on R? as a measure of model adequacy often results in overfitting; that is,
putting too many predictors in the model. In Section 2.6.2 we introduced the adjusted
R? statistic

SSe/(n — p)

- 3.25
SSt/(n—1) ( )

Ri;=1

In general, the adjusted R statistic will not always increase as variables are added to
the model. In fact, if unnecessary regressors are added, the value of the adjusted R’
statistic will often decrease. Consequently, models with a large value of the adjusted
R? statistic are usually considered good regression models. Furthermore, the regres-
sion model that maximizes the adjusted R? statistic is also the model that minimizes
the residual mean square.

Minitab reports both R? and Ridj in Table 3.4. The value of R* = 0.897 (or 89.7%),
and the adjusted R? statistic is

2 SSe/(n — p)

Rai =1~ S5/ = 1)

_ 1114.5/(25 - 3)
10778.2/(25 — 1)

= (.887
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Both R* and R3 ; are very similar, usually a good sign that the regression model does
not contain unnecessary predictor variables. It seems reasonable to conclude that the
regression model involving patient age and severity accounts for between about 88%
and 90% of the variability in the patient satisfaction data.

3.3.2 Tests on Individual Regression Coefficients and Groups of Coefficients

Tests on Individual Regression Coefficients

We are frequently interested in testing hypotheses on the individual regression coef-
ficients. These tests would be useful in determining the value or contribution of each
predictor variable in the regression model. For example, the model might be more
effective with the inclusion of additional variables or perhaps with the deletion of one
or more of the variables already in the model.

Adding a variable to the regression model always causes the sum of squares for
regression to increase and the error sum of squares to decrease. We must decide
whether the increase in the regression sum of squares is sufficient to warrant using
the additional variable in the model. Furthermore, adding an unimportant variable
to the model can actually increase the mean squared error, thereby decreasing the
usefulness of the model.

The hypotheses for testing the significance of any individual regression coefficient,
say, B, are

H()Zﬂj:()

3.26
Hi:B; #£0 (3:20)

If the null hypothesis Hy : 8; = 0 is not rejected, then this indicates that the predictor
variable x; can be deleted from the model.
The test statistic for this hypothesis is

fy = ——2— (3.27)

where C;; is the diagonal element of the (X'X)~!'matrix corresponding to the re-
gression coefficient B',- (in numbering the elements of the matrix C = (X'X)" it is
necessary to number the first row and column as zero so that the first diagonal element
Cuo will correspond to the subscript number on the intercept). The null hypothesis
Hy @ 8; = Ois rejected if the absolute value of the test statistic |fy| > /2 ,—p, Where
tas2.n—p 1s the upper «/2 percentage point of the ¢ distribution with n — p degrees of
freedom. Table A.3 in Appendix A contains these upper tail points of the ¢ distribu-
tion. A P-value approach could also be used. This z-test is really a partial or marginal
test because the regression coefficient 4 ; depends on all the other regressor variables
x; (i # j) that are in the model.
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The denominator of Eq. (3.27), \/62C};, is usually called the standard error of
the regression coefficient . That is,

se(B)) = ,/62C; (3.28)

Therefore an equivalent way to write the z-test statistic in Eq. (3.27) is

to = —22 (3.29)
0 se(B;)

Most regression computer programs provide the r-test for each model parameter. For
example, consider Table 3.3, which contains the Minitab output for Example 3.1.
The upper portion of this table gives the least squares estimate of each parameter, the
standard error, the ¢ statistic, and the corresponding P-value. To illustrate how these
quantities are computed, suppose that we wish to test the hypothesis that x; = patient
age contributes significantly to the model, given that x> = severity is included in the
regression equation. Stated formally, the hypotheses are

HO:,81=0
Hy: g #0

The regression coefficient for x; = patient age is B1 = —1.0311. The standard error
of this estimated regression coefficient is

se(B)) = V32Cyi = /(50.7)(0.00026383) = 0.1157

which agrees very closely with the Minitab output. (Often manual calculations will
differ slightly from those reported by the computer, because the computer carries more
decimal places. For instance, in this example if the mean squared error is computed to
four decimal places as M Sg = SSg/(n — p) = 1114.5/(25 — 3) = 50.6591 instead
of the two places reported in the Minitab output, and this value of the MSg is used
as the estimate 62 in calculating the standard error, then the standard error of B, will
match the Minitab output.) The test statistic is computed from Eq. (3.29) as

B —1.0311

= = —89118
se(B1) 0.1157

g =

This is also slightly different from the results reported by Minitab. which is £y =
—8.92. Because the P-value reported is small, we would conclude that patient age is
statistically significant; that is, it is an important predictor variable given that severity
is also in the model. If we use se(Bl) = 0.1156, then the value of the test statistic
would agree with Minitab. Similarly, because the 7-test statistic for x, = severity is
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large, we would conclude that severity is a significant predictor given that patient age
1s in the model.

Tests on Groups of Coefficients

We may also directly examine the contribution to the regression sum of squares for
a particular predictor, say, x;, or a group of predictors, given that other predictors
x; (i # j) are included in the model. The procedure for doing this is the general
regression significance test or, as it is more often called, the extra sum of squares
method. This procedure can also be used to investigate the contribution of a subser
involving several regressor or predictor variables to the model. Consider the regression
model with k regressor variables

y=XB+¢ (3.30)

whereyis(nx 1), Xis(n x p),Bis(px 1),eis(nx 1),and p = k + 1. We would like
to determine if a subset of the predictor variables x|, x,, ..., x, (r < k) contributes
significantly to the regression model. Let the vector of regression coefficients be

partitioned as follows:
By
o=
B2

where 3 is (rx 1) and B, is [(p — r)x 1]. We wish to test the hypotheses

Hy : =0
o0: By (3.31)
H] : BI 75 0
The model may be written as
y=XB+e=XB,+XoB; + ¢ (3.32)

where X, represents the columns of X (or the predictor variables) associated with (3,
and X, represents the columns of X (predictors) associated with 3,.

For the full model (including both 3, and 3,), we know that f = (X’X)*IX’y.
Also, the regression sum of squares for all predictor variables including the intercept
is

SSp(B) = B'X'y  (p degrees of freedom) (3.33)
and the estimate of o2 based on this full model is

Al
2 Yy—BXYy
grYy—pbAay
n—p

(3.34)
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SSr(B) is called the regression sum of squares due to 3. To find the contribution of
the terms in 3, to the regression, we fit the model assuming that the null hypothesis
Hy: B = 0is true. The reduced model is found from Eq. (3.32) with g, = O:

y=X:B,+¢ (3.35)

The least squares estimator of 3, is ﬁz = (X’>X3)"'X'»y and the regression sum of
squares for the reduced model is

SSr(By) = é/ZX'zy (p — r degrees of freedom) (3.36)

The regression sum of squares due to 3, given that 3, is already in the model is

SSR(BIB) = SSr(B) — SSx(B2) = B'X'y — B-X 2y (3.37)

This sum of squares has r degrees of freedom. It is the “extra sum of squares™ due
to B. Note that SSg(;| B2) is the increase in the regression sum of squares due
to including the predictor variables x|, x3, .. .. x, in the model. Now SSr($,] B,) 1s
independent of the estimate of o based on the full model from Eq. (3.34). so the null
hypothesis Hg: 31 = 0 may be tested by the statistic

_ SSk(B11By)/r

FO 2
62

(3.38)

where §° is computed from Eq. (3.34). If Fy > Fy,.—, We reject Hy, concluding
that at least one of the parameters in 3, is not zero, and, consequently, at least one of
the predictor variables x;, x2, .. ... x, in X contributes significantly to the regression
model. A P-value approach could also be used in testing this hypothesis. Some authors
call the test in Eq. (3.38) a partial F test.

The partial F test is very useful. We can use it to evaluate the contribution of an
individual predictor or regressor x; as if it were the last variable added to the model

by computing
SSr(B;1Bi+ 1 # J)

This is the increase in the regression sum of squares due to adding x; to a model that
already includes x, ..., x; _, Xj41.0---s x;. The partial F test on a single variable
x; is equivalent to the z-test in Equation (3.27). The computed value of Fy will be
exactly equal to the square of the r-test statistic 15. However, the partial F test is a
more general procedure in that we can evaluate simultaneously the contribution of
more than one predictor variable to the model.
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Example 3.3

To illustrate this procedure, consider again the patient satisfaction data from Table
3.2. Suppose that we wish to consider fitting a more elaborate model to this data;
specifically, consider the second-order polynomial

y = Bo+ Bixi + Boxa + Boxixa + ,311)(;2 + ﬂzzxgz +e

where x; = patient age and x» = severity. To fit the model, the model matrix would
need to be expanded to include columns for the second-order terms x x>, xlz. and xzz
The results of fitting this model using Minitab are shown in Table 3.5.

Suppose that we want to test the significance of the additional second-order terms.
That is, the hypotheses are

Hy:Bp=B1=p2=0
H, : atleast one of the parameters 8,2, 811, or By # 0

In the notation used in this section, these second-order terms are the parameters in the
vector 3. Since the quadratic model is the full model, we can find SSg(f3) directly

TABLE 3.5 Minitab Regression Output for the Second-Order Model for the
Patient Satisfaction Data

The regression equation is
Satisfaction = 128 - 0.995 Age + 0.144 Severity + 0.0065
AgexSev - 0.00283 Age”2 - 0.0114 Severity"2

Predictor Coef SE Coef T P
Constant 127.53 27.91 4.57 0.000
Age -0.9952 0.7021 -1.42 0.173
Severity 0.1441 0.9227 0.16 0.878
AgexSev 0.00646 0.01655 0.39 0.701
Agen?2 -0.002830 0.008588 -0.33 0.745
Severity”2 -0.01137 0.01353 -0.84 0.411
S = 7.50264 R-Sg = 90.1% R-Sg(adj) = 87.5%

Analysis of Variance

Source DF SS MS F P
Regression 5 9708.7 1941.7 34.50 0.000
Residual Error 19 1069.5 56.3

Total 24 10778.2
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from the Minitab output in Table 3.5 as
SSr(B) = 9708.7

with 5 degrees of freedom (because there are five predictors in this model). The
reduced model is the model with all of the predictors in the vector {3, equal to zero.
This reduced model is the original regression model that we fit to the data in Table
3.3. From Table 3.3, we can find the regression sum of squares for the reduced model
as

SSr(B,) = 9663.7

and this sum of squares has 2 degrees of freedom (the model has two predictors).

Therefore the extra sum of squares for testing the significance of the quadratic
terms is just the difference between the regression sums of squares for the full and
reduced models, or

SSR(BIB2) = SSr(B) — SSr(B>)
= 9708.7 — 9663.7
=450

with 5 — 2 = 3 degrees of freedom. These three degrees of freedom correspond to the
three additional terms in the second-order model. The test statistic from Eq. (3.38) is

Fy = SSk(BAlB)/r

_45.0/3
T 507
=0.296

This F-statistic is very small, so there is no evidence against the null hypothesis.
Furthermore, from Table 3.5, we observe that the individual ¢-statistics for the

second-order terms are very small and have large P-values, so there is no reason to

believe that the model would be improved by adding any of the second-order terms.

N

Itis also interesting to compare the R? and R} 4; Statistics for the two models. From
Table 3.3, we find that R® = 0.897 and Ridj = 0.887 for the original two-variable
model, and from Table 3.5, we find that R* = 0.901 and R}, = 0.875 for the quadratic
model. Adding the quadratic terms caused the ordinary R to increase slightly (it
will never decrease when additional predictors are inserted into the model). but the
adjusted R? statistic decreased. This decrease in the adjusted R- is an indication that
the additional variables did not contribute to the explanatory power of the model. ®
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3.3.3 Confidence Intervals on Individual Regression Coefficients

It is often necessary to construct confidence interval (CI) estimates for the parameters
in a linear regression and for other quantities of interest from the regression model.
The procedure for obtaining these confidence intervals requires that we assume that
the model errors are normally and independently distributed with mean zero and
variance ¢, the same assumption made in the two previous sections on hypothesis
testing.

Because the least squares estimator [3 is a linear combination of the observations,
it follows that ﬁ is normally distributed with mean vector  and covariance matrix
Var () = o 2(X’X)"". Then each of the statistics

Bi—Bi

2C..
6°Cy;

. =01,k (3.39)

is distributed as 1 withn — p degrees of freedom, where Cj; is the (jj)th element of the
(X'X)~'matrix, and 42 is the estimate of the error variance, obtained from Eq. (3.34).
Therefore a 100(1 — o) percent confidence interval for an individual regression co-
efficient 8;, j =0, 1,...,k,is

B_[ - tot/2.n—p\/ 62C;/ = ﬂj =< Bj + to(/2.n~p\/ 62C“ (340)

This CI could also be written as
B — tapn—pse(B;) < Bj < B + tajpn_pse(B))

because se(f ;) = \/62C;;.

Example 3.4

We will find a 95% CI on the regression for patient age in the patient satisfaction data
regression model. From the Minitab output in Table 3.3, we find that B; = —1.0331
and se(,él) = (0.1156. Therefore the 95% CI is

Bj - [a/Z.nfpse(ﬁj) = ,8/ = Bj + tut/l‘nfpse(Bj)
—1.0311 — (2.074)(0.1156) < ; < —1.0311 + (2.074)(0.1156)
—1.2709 < g, < —0.7913

This confidence interval does not include zero; this is equivalent to rejecting (at
the 0.05 level of significance) the null hypothesis that the regression coefficient
B =0. [ |
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3.3.4 Confidence Intervals on the Mean Response

We may also obtain a confidence interval on the mean response at a particular combi-
nation of the predictor or regressor varables. say. xg). xga...... vor. We first define a
vector that represents this point expanded to model form. Since the standard multiple
linear regression model contains the & predictors and an intercept term. this vector is

X
Xo =

X0k
The mean response at this point is
E[¥(Xo)) = tyix, = X0B
The estimator of the mean response at this point is found by substituting f’: for
V(x0) = ftyx, = Xé)ﬁ (3.41)

This estimator is normally distributed because B is normally distributed and it is also
unbiased because { is an unbiased estimator of 3. The variance of (xg) is

Var [$(x0)] = o2x0(X'X) "' xg (3.42)

Therefore, a 100(1 — «) percent CI on the mean response at the point xg;. xga.....
Xok 18

~ AV NI — N N
F(X0) = tayrn—p/ O XX X)X < 1w < F(X0) F 1o 20-py 0 -X0(X'X) "Xo

(3.43)

where 67 is the estimate of the error variance, obtained from Eq. (3.34). Note that the
length of this confidence interval will depend on the location of the point xq through
the term xo(X'X) ™ ! X in the confidence interval formula. Generally. the length of the
CI will increase as the point Xy moves further from the center of the predictor variable
data.

The quantity

\/VKT[_‘A'(XU)] = \/r‘rzx()(X’X)_lx()

used in the confidence interval calculations in Eq. (3.43) is sometimes called the
standard error of the fitted response. Minitab displays these standard errors for each
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individual observation in the sample used to fit the model. These standard errors can
be used to compute the CI in Eq. (3.43).

Example 3.5

Suppose that we want to find a confidence interval on mean patient satisfaction for the
point where x| = patient age = 55 and x; = severity = 50. This is the first observation
in the sample, so refer to Table 3.3, the Minitab output for the patient satisfaction
regression model. For this observation, Minitab reports that the “SE Fit” is 1.51, or
in our notation, v Var [$(xg)}] = 1.51. Therefore if we want to find a 95% CI on the
mean patient satisfaction for the case where x; = patient age = 55 and x, = severity =
50, we would proceed as follows:

PX0) — tayrn—pV EXHXX) X0 < fyn, < P(X0) + tasrn—pv/ G 2XH(XX) " X

58.96 — 2.074(1.51) <

A

A

58.96 + 2.074(1.51)

55.83 < piyx, < 62.09

From inspection of Table 3.3, note that the standard errors for each observation
are different. This reflects the fact that the length of the CI on the mean response
depends on the location of the observation. Generally, the standard error increases as
the distance of the point from the center of the predictor variable data increases.

In the case where the point of interest X is not one of the observations in the
sample, it is necessary to calculate the standard error for that point vV Var [3(xy)] =
V& 2x,(X'X) " xg, which involves finding xb(X'X) ™ 'xp for the observation xo. This
is not too difficult (you can do it in Excel), but it is not necessary, because Minitab
will provide the CI at any point that you specify. For example, it you want to find a
95% CI on the mean patient satisfaction for the point where x|, = patient age = 60
and x, = severity = 60 (this is not a sample observation), then Minitab reports the
desired CI as follows:

Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI
1 48.25 2.12 (43.85, 52.65) (32.84, 63.65)

Values of Predictors for New Observations
New

Obs Age Severity
1 60.0 60.0
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Minitab calculates the estimate of the mean patient satisfaction at the point x; =
patient age = 60 and x; = severity = 60 as ¥(xp) = 48.25, and the standard error

of the fitted response as V Var [§(xo)] = v/62x5(X’X)'x¢ = 2.12. Consequently, the
95% CI on the mean patient satisfaction at that point is

43.85 < p1y 1, < 52.65

Minitab also calculates a prediction interval at this point of interest, shown as the
“PI” in the computer output above. In the next section we show how that interval is
computed. |

3.4 PREDICTION OF NEW OBSERVATIONS

A regression model can be used to predict future observations on the response v
corresponding to a particular set of values of the predictor or regressor variables,
say, Xo1, X02, - - - » Xok- Let Xo represent this point, expanded to model form. That 1s,
if the regression model is the standard multiple regression model, then xy contains
the coordinates of the point of interest and unity to account for the intercept term,

so xg = {1, xo1, X02, . - . » X0k ]. A point estimate of the future observation v(x;) at the
point xq;, Xg2, - - ., Xox 1S computed from
$(x) = xo3 (3.44)

The prediction error in using ¥(Xg) to estimate y(xg) is y(Xy) — ¥(X¢). Because
¥(xo) and y(xg) are independent, the variance of this prediction error is

Var [y(xo) — $(Xo)] = Var [y(xo)] + Var [§(X0)] = 0 + o >x6(X'X) " 'xo
— ol [1 ¥ xb(X'X)_'xO] (3.45)
If we use 62 from Eq. (3.34) to estimate the error variance ¢, then the ratio

¥(xg) — $(x0)
\/62 [1+ x6(X'X)™"x0]

has a ¢ distribution with n — p degrees of freedom. Consequently, we can write the
following probability statement:

¥(Xg) — ¥(xp)

P —ta/Z,nAp =<
Jo2 [+ 26X %) %)

=< laj2n—p | = |l ~«
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This probability statement can be rearranged as follows:

P(?’(Xo) - ta/2,nfp\/a'2 [1+xX'X)""'%] < ¥(x0)

= jl(x()) + ta/2.n~p\/62 [1 + X/()(X/X)_IXO]> =1 -«

Therefore the probability is 1 — « that the future observation falls in the interval

$(x0) — ta/2,n—p\/62 [T+ x6(XX)""x0] < y(x0)

< 500) + fajzn-py/ 67 [1 4 X6X'X) 'x0] (3.46)

This statement is called a 100(1 — «) percent prediction interval (PI) for the future
observation y(xp) at the point xgy, Xp2, - . -, X0k -

The PI formula in Eq. (3.46) looks very similar to the formula for the CI on the
mean, Eq. (3.43). The difference is the “1” in the variance of the prediction error under
the square root. This will make a PI longer than the corresponding CI at the same
point. It is reasonable that the PI should be longer, as the CI is an interval estimate
on the mean of the response distribution at a specific point, while the PI is an interval
estimate on a single future observation from the response distribution at that point.
There should be more variability associated with an individual observation than with
an estimate of the mean, and this is reflected in the additional length of the PI.

Example 3.6

Minitab will compute the prediction interval in Eq. (3.46). To illustrate, suppose that
we want a 95% PI on a future observation of patient satisfaction for a patient whose
age is 75 and with severity of illness 60. Minitab gives the following result:

Predicted Values for New Observations
New

Obs Fit SE Fit 95% CI 95% PI
1 32.78 2.79 (26.99, 38.57) (16.93, 48.64)

Values of Predictors for New Observations
New

Obs Age Severity
1 75.0 60.0
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The predicted value of satisfaction at this new observation is ¥(xy) = 32.78. and the
prediction interval is

16.93 < v(xy) < 48.64 =

This example provides us with an opportunity to compare prediction and con-
fidence intervals. First, note that the PI is longer that the corresponding CI. Now
compare the length of the CI and the PI for this point with the length of the CI and the
PI for the point x; = patient age = 60 and x; = severity = 60 from Example 3.4. The
intervals are longer for the point in this example because this point with x; = patient
age = 75 and x, = severity = 60 is further from the center of the predictor variable
data than the point in Example 3.4, where x; = patient age = 60 and v, = severity =
60.

3.5 MODEL ADEQUACY CHECKING

3.5.1 Residual Plots

An important part of any data analysis and model-building procedure is checking
the adequacy of the model. We know that all models are wrong, but a model that
is a reasonable fit to the data used to build it and that does not seriously ignore
or violate any of the underlying model-building assumptions can be quite useful.
Model adequacy checking is particularly important in building regression models
for purposes of forecasting, because forecasting will almost always involve some
extrapolation or projection of the model into the future, and unless the model is
reasonable the forecasting process is almost certainly doomed to failure.

Regression model residuals, originally defined in Eq. (2.2). are very useful in
model adequacy checking and to get some sense of how well the regression model
assumptions of normally and independently distributed model errors with constant
variance are satisfied. Recall that if y; is the observed value of the response variable
and if the corresponding fitted value from the model is ¥;. then the residuals are

Residual plots are the primary approach to model adequacy checking. The sim-
plest way to check the adequacy of the normality assumption on the model errors is
to construct a normal probability plot of the residuals. In Section 2.6.1 we introduced
and used the normal probability plot of forecast errors to check tor the normality of
forecast errors. The use of the normal probability plot for regression residuals follows
the same approach. To check the assumption of constant variance. plot the residuals
versus the fitted values from the model. If the constant variance assumption is satis-
fied, this plot should exhibit a random scatter of residuals around zero. Problems with
the equal variance assumption usually show up as a pattern on this plot. The most
common pattern is an outward-opening funnel or megaphone pattern. indicating that
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the variance of the observations is increasing as the mean increases. Data transforma-
tions (see Section 2.4.1) are useful in stabilizing the variance. The log transformation
is frequently usetul in forecasting applications. It can also be helptul to plot the resid-
uals against each of the predictor or regressor variables in the model. Any deviation
from random scatter on these plots can indicate how well the model fits a particular
predictor.

When the data are a time series, itis also important to plot the residuals versus time
order. As usual, the anticipated pattern on this plot is random scatter. Trends, cycles,
or other patterns in the plot of residuals versus time indicate model inadequacies,
possibly due to missing terms or some other model specification issue. A funnel-
shaped pattern that increases in width with time is an indication that the variance of
the time series is increasing with time. This happens frequently in economic time
series data, and in data that span a long period of time. Log transformations are often
useful in stabilizing the variance of these types of time series.

Example 3.7

Table 3.3 presents the residuals for the regression model for the patient satisfaction
data from Example 3.1. Figure 3.1 plots these residuals in a format that Minitab refers
to as the “four-in-one” plot. The plot in the upper left-hand portion of the display is
a normal probability plot of the residuals. The residuals lie generally along a straight
line, so there is no obvious reason to be concerned with the normality assumption.
There is a very mild indication that one of the residuals (in the lower tail) may be
slightly larger than expected, so this could be an indication of an outlier (a very

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values
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FIGURE 3.1 Plots of residuals for the patient satisfaction model.
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mild one). The lower left plot is a histogram of the residuals. Histograms are more
useful for large samples of data than small ones, so since there are only 25 residuals,
this display is probably not as reliable as the normal probability plot. However. the
histogram does not give any serious indication of nonnormality. The upper right is a
plot of residuals versus the fitted values. This plot indicates essentially random scatter
in the residuals, the ideal pattern. If this plot had exhibited a funnel shape, it could
indicate problems with the equality of variance assumption. The lower right is a plot
of the observations in the order of the data. If this was the order in which the data were
collected, or if the data were a time series, this plot could reveal information about
how the data may be changing over time. For example, a funnel shape on this plot
might indicate that the variability of the observations was changing with time. [ |

In addition to residual plots, other model diagnostics are frequently useful in
regression. The following sections introduce and briefly illustrate some of these pro-
cedures. For more complete presentations, see Montgomery. Peck, and Vining [2006]
and Myers [1990].

3.5.2 Scaled Residuals and PRESS

Standardized Residuals

Many regression model builders prefer to work with scaled residuals in contrast to the
ordinary least squares residuals. These scaled residuals frequently convey more infor-
mation than do the ordinary residuals. One type of scaled residual is the standardized
residual,

d = (3.47)

Q| 0o

where we generally use § = /MSg in the computation. The standardized residuals
have mean zero and approximately unit variance; consequently. they are useful in
looking for outliers. Most of the standardized residuals should lie in the interval
—3 < d; < +3, and any observation with a standardized residual outside this interval
is potentially unusual with respect to its observed response. These outliers should
be carefully examined because they may represent something as simple as a data-
recording error or something of more serious concern, such as a region of the predictor
or regressor variable space where the fitted model is a poor approximation to the true
response.

Studentized Residuals

The standardizing process in Eq. (3.47) scales the residuals by dividing them by
their approximate average standard deviation. In some data sets. residuals may have
standard deviations that differ greatly. We now present a scaling that takes this into
account. The vector of fitted values ¥; that corresponds to the observed values y; is

§=XB = XX'X) 'X'y = Hy (3.48)
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The n x n matrix H = X(X'X)"'X’ is usually called the “hat” matrix because it
maps the vector of observed values into a vector of fitted values. The hat matrix and
its properties play a central role in regression analysis.

The residuals from the fitted model may be conveniently written in matrix notation
as

e=y—9y=y—Hy=d-H)y (3.49)
and the covariance matrix of the residuals is
Cov(e) = V[(I— H)y] = ¢*d — H)

The matrix T — H is in general not diagonal, so the residuals from a linear regression
model have different variances and are correlated. The variance of the ith residual is

Vie) = o*(1 — hy) (3.50)

where h;; is the ith diagonal element of the hat matrix H. Because 0 < h;; < 1
using the mean squared error MSg to estimate the variance of the residuals actually
overestimates the true variance. Furthermore, it turns out that /;; is a measure of
the location of the ith point in the predictor variable or x-space; the variance of the
residual e; depends on where the point X; lies. As h;; increases, the observation x; lies
further from the center of the region containing the data. Therefore residuals near the
center of the x-space have larger variance than do residuals at more remote locations.
Violations of model assumptions are more likely at remote points, so these violations
may be hard to detect from inspection of the ordinary residuals e; (or the standardized
residuals d;) because their residuals will usually be smaller.

We recommend taking this inequality of variance into account when scaling the
residuals. We suggest plotting the studentized residuals:

€;

e (3.5

V&A1 = hy)

with 6% = MSg instead of the ordinary residuals or the standardized residuals. The
studentized residuals have unit variance (i.e., V(r;) = 1) regardless of the location
of the observation x; when the form of the regression model is correct. In many
situations the variance of the residuals stabilizes, particularly for large data sets. In
these cases, there may be little difference between the standardized and studentized
residuals. Thus standardized and studentized residuals often convey equivalent infor-
mation. However, because any point with a large residual and a large hat diagonal h;;
is potentially highly influential on the least squares fit, examination of the studentized
residuals is generally recommended.

Table 3.6 displays the residuals, the studentized residuals, hat diagonals h;;, and
several other diagnostics for the regression model for the patient satisfaction data
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TABLE 3.6 Residuals and Other Diagnostics for the Regression Model for the Patient
Satisfaction Data in Example 3.1

Studentized Cook’s

Observation Residuals Residuals R-Student hi, Distance
1 9.0378 1.29925 1.32107 0.044855 0.026424
2 —5.6986 —0.88216 —0.87754 0.176299 0.055521
3 9.0373 1.38135 1.41222 0.155114 0.116772
4 —0.6953 —0.10403 —0.10166 0.118125 0.000483
5 —7.3897 —1.08009 —1.08440 0.076032 0.031999
6 —3.2155 —0.47342 —0.46491 0.089420 0.007337
7 —-5.0316 —0.77380 —0.76651 0.165396 0.039553
8 7.0616 1.03032 1.03183 0.072764 0.027768
9 —17.2800 ~2.65767 —3.15124 0.165533 0.467041
10 —6.0864 —0.87524 —-0.87041 0.045474 0.012165
11 —11.6967 —1.70227 —1.78483 0.068040 0.070519
12 3.4823 0.51635 0.50757 0.102232 0.010120
13 ~0.0859 —-0.01272 —0.01243 0.100896 0.000006
14 2.1786 0.33738 0.33048 0.176979 0.008159
15 4.5134 0.66928 0.66066 0.102355 0.017026
16 4.7705 0.68484 0.67634 0.042215 0.006891
17 2.2474 0.33223 0.32541 0.096782 0.003942
18 0.8699 0.13695 0.13386 0.203651 0.001599
19 0.9276 0.13769 0.13458 0.104056 0.000734
20 3.7691 0.58556 0.57661 0.182192 0.025462
21 10.4993 1.62405 1.69133 0.175015 0.186511
22 0.6797 0.10725 0.10481 0.207239 0.001002
23 —9.2785 —1.46893 —1.51118 0.212456 0.194033
24 3.0927 0.44996 0.44165 0.067497 0.004885
25 42911 0.61834 0.60945 0.049383 0.006621

in Example 3.1. These quantities were computer generated using Minitab. Note that
Minitab refers to studentized residuals as standardized residuals. To illustrate the
calculations, consider the first observation. The studentized residual is calculated as

follows:

ry, =

€|

V63— hyy)

€]

S/ =t

9.0378

7.117674/1 — 0.044855

1.2992

which agrees approximately with the value reported by Minitab in Table 3.6. Large
values of the studentized residuals are usually an indication of potential unusual
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values or outliers in the data. Absolute values of the studentized residuals that are
larger than three or four indicate potentially problematic observations. Note that none
of the studentized residuals in Table 3.6 is this large. The largest studentized residual,
—2.65767, is associated with observation 9. Minitab flags this observation as a large
studentized residual (refer to Table 3.3), and it does show up on the normal probability
plot of residuals in Figure 3.1 as a very mild outlier, but there is no indication of a
significant problem with this observation.

PRESS

Another very useful residual scaling can be based on the prediction error sum of
squares or PRESS. To calculate PRESS, we select an observation—for example, 7.
We fit the regression model to the remaining n — 1 observations and use this equation
to predict the withheld observation y;. Denoting this predicted value by ;,, we may
now find the prediction error for the ith observation as

eiy = yi — Y (3.52)

The prediction error is often called the ith PRESS residual. Note that the prediction
error for the ith observation differs from the i th residual because observation i was not
used in calculating the ith prediction value ¥,. This procedure is repeated for each
observationi = 1,2, ..., n, producing a set of n PRESS residuals ey, ¢(2), . . . , €).
Then the PRESS statistic is defined as the sum of squares of the n PRESS residuals
or

H

PRESS = ) "efy = Y [y — S’ (3.53)
i=1

= i=1

Thus PRESS is a form of data splitting (discussed in Chapter 2), since it uses each
possible subset of n — 1 observations as an estimation data set, and every observation
in turn is used to form a prediction data set. Generally, small values of PRESS imply
that the regression model will be useful in predicting new observations. To get an idea
about how well the model will predict new data, we can calculate an RZ-like statistic
called the R* for prediction

, PRESS

1

R e = —
Prediction
SSt

(3.54)

Now PRESS will always be larger than the residual sum of squares and, because the
ordinary R? =1 — (8Sg/SSr), if the value of the Rérediction is not much smaller than the
ordinary R?, this is a good indication about potential model predictive performance.

It would initially seem that calculating PRESS requires fitting n different regres-
sions. However, it is possible to calculate PRESS from the results of a single least

squares fit to all n observations. It turns out that the ith PRESS residual is

€y = (355)

I —hj;



104 REGRESSION ANALYSIS AND FORECASTING

where ¢; is the ordinary least squares residual. The hat matrix diagonals are directly
calculated as a routine part of solving the least squares normal equations. Therefore
PRESS is easily calculated as

n e_z
PRESS = ! 3.56
2 i (3.56)

i=1

Minitab will calculate the PRESS statistic for a regression model and the R* for
prediction based on PRESS from Eq. (3.54). The value of PRESS is PRESS = 1484.93
and the R* for prediction is

5 PRESS
RPrediclion =1- SST
B 1484.93
o 10778.2
= 0.8622

That is, this model would be expected to account for about 86.22% of the variability
in new data.

R-Student

The studentized residual r; discussed earlier is often considered an outlier diagnostic.
It is customary to use the mean squared error MSg as an estimate of o2 in computing
r;. This is referred to as internal scaling of the residual because MSg is an internally
generated estimate of o 2 obtained from fitting the model to all n observations. Another
approach would be to use an estimate of o2 based on a data set with the ith observation
removed. We denote the estimate of o so obtained by S?,. We can show that

2 (n — p)MSg — e /(1 — h;;)
Sy =

(3.57)
n—p-—1

The estimate of o2 in Eq. (3.57) is used instead of MSg to produce an externally
studentized residual, usually called R-student, given by
P — (3.58)
5(2,- = k)

In many situations, #; will differ little from the studentized residual r;. However, if
the ith observation is influential, then S(ZI-, candiffer significantly from MSg, and conse-
quently the R-student residual will be more sensitive to this observation. Furthermore,
under the standard assumptions, the R-student residual f; has a r-distribution with
n — p — 1 degrees of freedom. Thus R-student offers a more formal procedure for
investigating potential outliers by comparing the absolute magnitude of the residual
t; to an appropriate percentage point of #,_,_,.
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Minitab will compute the R-student residuals (Minitab calls these the deleted
t residuals). They are shown in Table 3.6 for the regression model for the patient
satisfaction data. The largest value of R-student is for observation 9, tg = —3.15124.
This is another indication that observation 9 is a very mild outlier.

3.5.3 Measures of Leverage and Influence

In building regression models, we occasionally find that a small subset of the data
exerts a disproportionate influence on the fitted model. That is, estimates of the model
parameters or predictions may depend more on the influential subset than on the
majority of the data. We would like to locate these influential points and assess their
impact on the model. If these influential points really are “bad” values, they should
be eliminated. On the other hand, there may be nothing wrong with these points, but
if they control key model properties, we would like to know it because it could affect
the use of the model. In this section we describe and illustrate some useful measures
of influence.

The disposition of points in the predictor variable space is important in determining
many properties of the regression model. In particular, remote observations potentially
have disproportionate leverage on the parameter estimates, predicted values, and the
usual summary statistics.

The hat matrix H = X(X'X)~'X' is very useful in identifying influential observa-
tions. As noted earlier, H determines the variances and covariances of the predicted
response and the residuals because

Var(§) = c*H and Var(e) = o%(I — H)

The elements h;; of the hat matrix H may be interpreted as the amount of leverage
exerted by the observation y; on the predicted value 3;. Thus inspection of the elements
of H can reveal points that are potentially influential by virtue of their location in
x-space.

Attention is usually focused on the diagonal elements of the hat matrix A;;. It
can be shown that Z:’Zl h;; = rank(H) = rank(X) = p, so the average size of the
diagonal elements of the H matrix is p/n. A widely used rough guideline is to compare
the diagonal elements A;;to twice their average value 2p/n, and if any hat diagonal
exceeds this value to consider that observation as a high-leverage point.

Minitab will calculate and save the values of the hat diagonals. Table 3.6 displays
the hat diagonals for the regression model for the patient satistaction data in Exam-
ple 3.1. Since there are p = 3 parameters in the model and n = 25 observations,
twice the average size of a hat diagonal for this problem is

2p/n =2(3)/25=0.24
The largest hat diagonal, 0.212456, is associated with observation 23. This does

not exceed twice the average size of a hat diagonal, so there are no high-leverage
observations in these data.
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The hat diagonals will identify points that are potentially influential due to their
location in x-space. It is desirable to consider both the location of the point and the
response variable in measuring influence. Cook [1977. 1979] has suggested using a
measure of the squared distance between the least squares estimate based on all n
points B and the estimate obtained by deleting the ith point, say., ﬁm. This distance
measure can be expressed as

_ (B~ B)XX(B - By)

D;
pMSE

1=1.2..... n (3.59)

A reasonable cutoff for D; is unity. That is, we usually consider observations for
which D; > 1 to be influential. Cook’s distance statistic D; is actually calculated
from

D — rPVar[$(x)]  r7 ok
" p Var(e) pl—h;

(3.60)

Note that, apart from the constant p, D; is the product of the square of the ith
studentized residual and the ratio h;; /(1 — h;;). This ratio can be shown to be the
distance from the vector x; to the centroid of the remaining data. Thus D; is made up
of a component that reflects how well the regression model fits the ith observation v,
and a component that measures how far that point is from the rest of the data. Either
component (or both) may contribute to a large value of D;.

Minitab will calculate and save the values of Cook’s distance statistic D;. Table
3.6 displays the values of Cook’s distance statistic for the regression model for the
patient satisfaction data in Example 3.1. The largest value, 0.467041, is associated
with observation 9. This value was calculated from Eq. (3.60) as follows:

r~2 h,‘,‘

{

T p T —hs
_ (=2.65767)° 0.165533
N 3 1 —0.165533
= 0.467041

This does not exceed twice the cutoff of unity, so there are no influential observations
in these data.

3.6 VARIABLE SELECTION METHODS IN REGRESSION

In our treatment of regression we have concentrated on fitting the full regression
model. Actually, in most applications of regression the analyst will have a very good
idea about the general form of the model he/she wishes to fit, but there may be
uncertainty about the exact structure of the model. For example. we may not know
if all of the predictor variables are really necessary. These applications of regression
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frequently involve a moderately large or large set of candidate predictors, and the
objective of the analyst here is to fit a regression model to the “best subset” of these
candidates. This can be a complex problem, as these data sets frequently have outliers,
strong correlations between subsets of the variables, and other complicating features.

There are several techniques that have been developed for selecting the best subset
regression model. Generally, these methods are either stepwise-type variable selec-
tion methods or all possible regressions. Stepwise-type methods build a regression
model by either adding or removing a predictor variable to the basic model at each
step. The forward selection version of the procedure begins with a model containing
none of the candidate predictor variables and sequentially inserts variables into the
model one-at-a-time until a final equation is produced. The criterion for entering a
variable into the equation is that the ¢-statistic for that variable must be significant.
The process is continued until there are no remaining candidate predictors that qualify
for entry into the equation. In backward elimination, the procedure begins with all of
the candidate predictor variables in the equation, and then variables are removed one-
at-a-time to produce a final equation. The criterion for removing a variable is usually
based on the ¢-statistic, with the variable having the smallest 7-statistic considered for
removal first. Variables are removed until all of the predictors remaining in the model
have significant 7-statistics. Stepwise regression usually consists of a combination of
forward and backward stepping. There are many variations of the basic procedures.

In all possible regressions with K candidate predictor variables, the analyst exam-
ines all 2% possible regression equations to identify the ones with potential to be a
useful model. Obviously, as K becomes even moderately large, the number of pos-
sible regression models quickly becomes formidably large. Efficient algorithms have
been developed that implicitly rather than explicitly examine all of these equations.
Typically, only the equations that are found to be “best” according to some criterion
(such as minimum MSg) at each subset size are displayed. For more discussion of
variable selection methods, see textbooks on regression such as Montgomery, Peck,
and Vining [2006] or Myers [1990].

Example 3.8

Table 3.7 contains an expanded set of data for the hospital patient satisfaction data
introduced in Example 3.1. In addition to the patient age and illness severity data,
there are two additional regressors, an indicator of whether the patent is a surgical
patient (1) or a medical patient (0), and an index indicating the patient’s anxiety level.
We will use this data to illustrate how variable selection methods in regression can
be used to help the analyst build a regression model.

We will illustrate the forward selection procedure first. The Minitab output that
results from applying forward selection to this data is shown in Table 3.8. We used
the Minitab defauit significance level of 0.25 for entering variables. The forward
selection algorithm inserted the predictor patient age first, then severity, and finally a
third predictor variable, anxiety, was inserted into the equation.

Table 3.9 presents the results of applying the Minitab backward elimination pro-
cedure to the patient satisfaction data, using the default level of 0.10 for remov-
ing variables. The procedure begins with all four predictors in the model, then the



TABLE 3.7 Expanded Patient Satisfaction Data

Observation Age Severity Surgical-Medical Anxiety Satisfaction
1 55 50 0 2.1 68
2 46 24 1 2.8 71
3 30 46 1 33 96
4 35 48 1 4.5 80
5 59 58 0 2.0 43
6 61 60 0 51 44
7 74 65 1 55 26
8 38 42 1 32 88
9 27 42 0 3.1 75

10 51 50 1 24 57
11 53 38 I 22 56
12 41 30 0 2.1 88
13 37 31 0 1.9 88
14 24 34 0 31 102
15 42 30 0 30 88
16 50 48 1 42 70
17 58 61 1 4.6 52
18 60 71 1 5.3 43
19 62 62 0 7.2 46
20 68 38 0 7.8 56
21 70 41 1 7.0 59
22 79 66 1 6.2 206
23 63 31 1 4.1 52
24 39 42 0 35 83
25 49 40 1 2.1 75

TABLE 3.8 Minitab Forward Selection for the Patient Satisfaction Data in Table 3.6

Stepwise Regression: Satisfaction Versus Age, Severity, ...

Forward selection.

Response is Satisfaction on 4 predictors,

Step
Constant

Age
T-Value
P-Value

Severity
T-Value
P-Value

Anxiety
T-Value

1
131.1

-1.29
-9.98
0.000

Alpha-to-Enter:

2
143 .5

-1.03
-8.92
0.000

~-0.56
-4.23
0.000

3
143.9

-1.11
-8.40
0.000

-0.58
-4.43
0.000

with N =
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TABLE 3.9 Minitab Backward Elimination for the Patient Satisfaction Data

Stepwise Regression: Satisfaction Versus Age, Severity, ...

Backward elimination. Alpha-to-Remove: 0.1

Response is Satisfaction on 4 predictors, with N = 25
Step 1 2 3
Constant 143.9 143.9 143.5
Age -1.12 -1.11 -1.03
T-Value -8.08 -8.40 -8.92
P-vValue 0.000 0.000 0.000
Severity -0.59 -0.58 -0.56
T-Value -4.32 -4.43 -4.23
P-Value 0.000 0.000 0.000
Surg-Med 0.4

T-Value 0.14

P-Value 0.892

Anxiety 1.3 1.3
T-Value 1.21 1.23
P-Value 0.242 0.233

S 7.21 7.04 7.12
R-Sg 90.36 90.35 89.66
R-Sg(adj) 88.43 88.97 88.72

surgical-medical indicator variable was removed, followed by the anxiety predictor.
The algorithm concluded with both patient age and severity in the model. Note that
in this example, the forward selection procedure produced a different model than the
backward elimination procedure. This happens fairly often, so it is usually a good
idea to investigate different model-building techniques for a problem.

Table 3.10 is the Minitab stepwise regression algorithm applied to the patient
satisfaction data. The default significance levels of 0.15 to enter or remove variables
from the model were used. At the first step, patient age is entered in the model.
Then severity is entered as the second variable. At that point, none of the remaining
predictors met the .15 significance level criterion to enter the model, so stepwise
regression terminated with age and severity as the model predictors. This is the same
model found by backwards elimination.

Table 3.11 shows the results of applying Minitab’s all possible regressions algo-
rithm to the patient satisfaction data. Since there are k = 4 predictors, there are 16
possible regression equations. Minitab shows only the best two of each subset size,
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TABLE 3.10 Minitab Stepwise Regression Applied to the Patient Satisfaction Data

Stepwise Regression: Satisfaction Versus Age, Severity, ...

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Satisfaction on 4 predictors, with N = 25
Step 1 2
Constant 131.1 143.5
Age -1.29 -1.03
T-Value -9.98 -8.92
P-Value 0.000 0.000
Severity -0.56
T-Value -4.23
P-Value 0.000
S 9.38 7.12
R-Sg 81.24 89.66
R-Sqg(adj) 80.43 88.72

TABLE 3.11 Minitab All Possible Regressions Algorithm Applied to the Patient
Satisfaction Data

Best Subsets Regression: Satisfaction Versus Age, Severity, ...

Response 1is Satisfaction

S S
e u A
v rn
e g x
r - 1
AiMe
Mallows gtet
Vars R-Sg R-Sg(adj) C-p S evydy
1 81.2 80.4 17.9 9.3752 X
1 52.3 50.2 78.0 14.955 X
2 89.7 88.7 2.5 7.1177 X X
2 81.3 79.6 19.7 9.5626 X X
3 90.4 89.0 3.0 7.0371 X X X
3 89.7 88.2 4.5 7.2846 X X X
4 90.4 88.4 5.0 7.2074 X X X X
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along with the full (four-variable) model. For each model, Minitab presents the value
of R?, the adjusted R2, the square root of the mean squared error (S), and the Mallows
C, statistic, which is a measure of the amount of bias and variance in the model. If a
model is specified incorrectly and important predictors are left out, then the predicted
values are biased and the value of the C,, statistic will exceed p, the number of model
parameters. However, a correctly specified regression model will have no bias and the
value of C, should equal p. Generally, models with small values of the C,, statistic
are desirable.

The model with the smallest value of C), is the two-variable model with age and
severity (the value of C, is 2.5, actually less than p = 3). The model with the smallest
value of the mean squared error (or its square root, S) is the three-variable model with
age, severity, and anxiety. Both of these models were found using the stepwise-
type algorithms. Either one of these models is likely to be a good regression model
describing the effects of the predictor variables on patient satisfaction. [ ]

3.7 GENERALIZED AND WEIGHTED LEAST SQUARES

In Section 3.5 we discussed methods for checking the adequacy of a linear regression
model. Analysis of the model residuals is the basic methodology. A common defect
that shows up in fitting regression models is nonconstant variance. That is, the variance
of the observations is not constant but changes in some systematic way with each
observation. This problem is often identified from a plot of residuals versus the fitted
values. Transformation of the response variable is a widely used method for handling
the inequality of variance problem.

Another technique for dealing with nonconstant error variance is to fit the model
using the method of weighted least squares. In this method of estimation the deviation
between the observed and expected values of y; is multiplied by a weight w; that is
inversely proportional to the variance of y; . For the case of simple linear regression,
the weighted least squares function is

L= ;w,-m — Bo — Bixi) (3.61)

where w; = 1 /ovi2 and ol.z is the variance of the ith observation y;. The resulting least
squares normal equations are

n n R
Bo E w; + By E wix; = E w; yi
el pay i=1
n n n
R R )
Bo E wixi+B E wix; = E WiXiyi
=1 i— i—

Solving Eq. (3.62) will produce weighted least squares estimates of the model pa-
rameters By and .

(3.62)
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In this section we give a development of weighted least squares for the multiple re-
gression model. We begin by considering a slightly more general situation concerning
the structure of the model errors.

3.7.1 Generalized Least Squares

The assumptions that we have made concerning the linear regression model y =
XB + ¢ are that E(g) = 0 and Var(¢) = o°I; that is, the errors have expected value
zero and constant variance, and they are uncorrelated. For testing hypotheses and
constructing confidence and prediction intervals we also assume that the errors are
normally distributed, in which case they are also independent. As we have observed.
there are situations where these assumptions are unreasonable. We will now consider
the modifications that are necessary to the ordinary least squares procedure when
E(¢e) = 0 and Var (&) = ¢V, where V is a known n x n matrix. This situation has a
simple interpretation; if V is diagonal but with unequal diagonal elements, then the
observations y are uncorrelated but have unequal variances, while if some of the
off-diagonal elements of V are nonzero, then the observations are correlated.
When the model is

y=Xp +e

s (3.63)
E(¢)=0 and Var(e)=o0°V

the ordinary least squares or OLS estimator ﬁ = (X'’X) 'X'yisno longer appropriate.

The OLS estimator is unbiased because

EB) = E[(X'X)"'Xy] = XX)'XE(y) = XX)'XB =B
but the covariance matrix of [3 is not 0 2(X'X) . Instead, the covariance matrix is

Var () = Var [(X'X)'X'y]
= (X'X)"'X'Var(y)X(X'X) '
= o 2X'X)" ' XVXX'X)™!

Practically, this implies that the variances of the regression coefficients are larger than
we expect them to be.

This problem can be avoided if we estimate the model parameters with a technique
that takes the correct variance structure in the errors into account. We will develop
this technique by transforming the model to a new set of observations that satisfy the
standard least squares assumptions. Then we will use ordinary least squares on the
transformed observations.

Because o2V is the covariance matrix of the errors, V must be nonsingular and
positive definite, so there exists an n x n nonsingular symmetric matrix K defined
such that

KK=KK=V
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The matrix K is often called the square root of V. Typically, the error variance o is
unknown, in which case V represents the known (or assumed) structure of the vari-
ances and covariances among the random errors apart from the constant o2,

Define the new variables

z=K'y, B=K'X, and §=K'e (3.64)
so that the regression model y = Xp + ¢ becomes, upon multiplication by K~!,
K'y=K'XB+K'e
or
z=Bp + 5 (3.65)

The errors in the transformed model Eq. (3.65) have zero expectation because E(8) =
E(K'¢) = K~1E(¢) = 0. Furthermore, the covariance matrix of & is

Var (8) = V(K 1e)
= K Var(e)K ™!
= o?K'VK!
= ¢’K KKK’
e |
Thus the elements of the vector of errors & have mean zero and constant vari-
ance and are uncorrelated. Since the errors & in the model in Eq. (3.65) satisfy the

usual assumptions, we may use OLS to estimate the parameters. The least squares
function is

L=258%
= (K 'e)Kle
=K 'K ¢
=V 'e

(y - XB)YVi(y - XB)

The corresponding normal equations are

X'V ' X)Bos =XV'y (3.66)
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In Equation (3.66) ﬁGLS is the generalized least squares (GLS) estimator of the
model parameters . The solution to the GLS normal equations is

Bors = XVIX) 'x'vly (3.67)

The GLS estimator is an unbiased estimator for the model parameters (3, and the
covariance matrix of B¢ is

Var (BgLs) = a2(X'V X)) (3.68)

The GLS estimator is a best linear unbiased estimator of the model parameters f3.
where “best” means minimum variance.

3.7.2 Weighted Least Squares

Weighted least squares or WLS is a special case of generalized least squares where
the n response observations y; do not have the same variances but are uncorrelated.
Therefore the matrix V is

gt 0 .- 0
0 022 0 0
V=
0 0 - o2
where o is the variance of the ith observation v;, i =1, 2, ..., n. Because the weight

for each observation should be the reciprocal of the variance of that observation, it is
convenient to define a diagonal matrix of weights W = V=, Clearly, the weights are
the main diagonals of the matrix W. Therefore the weighted least squares criterion is
L =(y—XB)W(y - XB) (3.69)
and the WLS normal equations are
X'WX)Bwis = X'Wy (3.70)
The weighted least squares estimator is

Bwis = X'WX)~'X'Wy 371

The WLS estimator is an unbiased estimator for the model parameters (3. and the
covariance matrix of By g is

Var (Bwis) = (X'WX) ™! (3.72)
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To use weighted least squares, the weights w; must be known. Sometimes prior
knowledge or experience or information from an underlying theoretical model can be
used to determine the weights. For example, suppose that a significant source of error
is measurement error and different observations are measured by different instruments
of unequal but known or well-estimated accuracy. Then the weights could be chosen
inversely proportional to the variances of measurement error.

In most practical situations, however, the analyst learns about the inequality of
variance problem from the residual analysis for the original model that was fit using
OLS. For example, the plot of the OLS residuals ¢; versus the fitted values $; may
exhibit an outward-opening funnel shape, suggesting that the variance of the observa-
tions is increasing with the mean of the response variable y. Plots of the OLS residuals
versus the predictor variables may indicate that the variance of the observations is a
function of one of the predictors. In these situations we can often use estimates of the
weights. There are several approaches that could be used to estimate the weights. We
describe two of the most widely used methods.

Estimation of a Variance Equation

In the first method, suppose that analysis of the OLS residuals indicates that the
variance of the ith observation is a function of one or more predictors or the mean of
v. The squared OLS residual e is an estimator of the variance of the ith observation
(riz if the form of the regression model is correct. Furthermore, the absolute value of

the residual |e;| is an estimator of the standard deviation o; (because o; = |,/0,-2I).

Consequently, we can find a variance equation or a regression model relating ol to
appropriate predictor variables by the following process:

1. Fit the model relating y to the predictor variables using OLS and find the OLS
residuals.

2. Use residual analysis to determine potential relationships between o and either
the mean of y or some of the predictor variables.

3. Regress the squared OLS residuals on the appropriate predictors to obtain an
equation for predicting the variance of each observation, say, §? = f(x) or §2 =
S

4. Use the fitted values from the estimated variance function to obtain estimates
of the weights, w; = 1/5%,i = 1,2,...,n.

5. Use the estimated weights as the diagonal elements of the matrix W in the WLS
procedure.

As an alternative to estimating a variance equation in step 3 above, we could use
the absolute value of the OLS residual and fit an equation that relates the standard
deviation of each observation to the appropriate regressors. This is the preferred
approach if there are potential outliers in the data, because the absolute value of the
residuals is less affected by outliers than the squared residuals.

When using the five-step procedure outlined above, it is a good idea to compare
the estimates of the model parameters obtained from the WLS fit to those obtained
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from the original OLS fit. Because both methods produce unbiased estimators. we
would expect to find that the point estimates of the parameters from both analyses are
very similar. If the WLS estimates differ significantly from their OLS counterparts.
it is usually a good idea to use the new WLS residuals and reestimate the variance
equation to produce a new set of weights and arevised set of WLS estimates using these
new weights. This procedure is called iteratively reweighted least squares (IRLS).
Usually one or two iterations are all that is required to produce stable estimates of the
model parameters.

Using Replicates or Nearest Neighbors

The second approach to estimating the weights makes use of replicate observations
or nearest neighbors. Exact replicates are sample observations that have exactly the
same values of the predictor variables. Suppose that there are replicate observations
at each of the combination of levels of the predictor variables. The weights w; can
be estimated directly as the reciprocal of the sample variances at each combination
of these levels. Each observation in a replicate group would receive the same weight.
This method works best when there are a moderately large number of observations in
each replicate group, because small samples don’t produce reliable estimates of the
variance.

Unfortunately, it is fairly unusual to find groups of replicate observations in most
regression-modeling situations. It is especially unusual to find them in time series
data. An alternative is to look for observations with similar x-levels, which can be
thought of as a nearest-neighbor group of observations. The observations in a nearest-
neighbor group can be considered as pseudoreplicates and the sample variance for all
of the observations in each nearest-neighbor group can be computed. The reciprocal
of a sample variance would be used as the weight for all observations in the nearest-
neighbor group.

Sometimes these nearest-neighbor groups can be identified visually by inspecting
the scatter plots of y versus the predictor variables or from plots of the predictor
variables versus each other. Analytical methods can also be used to find these nearest-
neighbor groups. One nearest-neighbor algorithm is described in Montgomery, Peck.
and Vining [2006]. These authors also present a complete example showing how the
nearest-neighbor approach can be used to estimate the weights for a WLS analysis.

Statistical Inference in WLS

In WLS the variances o/ are almost always unknown and must be estimated. Since
statistical inference on the model parameters as well as confidence intervals and pre-
diction intervals on the response are usually necessary. we should consider the effect
of using estimated weights on these procedures. Recall that the covariance matrix of
the model parameters in WLS was given in Eq. (3.72). This covariance matrix plays
a central role in statistical inference. Obviously, when estimates of the weights are
substituted into Eq. (3.72) an estimated covariance matrix is obtained. Generally. the
impact of using estimated weights is modest, provided that the sample size is not
very small. In these situations, statistical tests, confidence intervals, and prediction
intervals should be considered as approximate rather than exact.
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Example 3.9

Table 3.12 contains 28 observations on the strength of a connector and the age in
weeks of the glue used to bond the components of the connector together. A scatter
plot of the strength versus age, shown in Figure 3.2, suggests that there may be a
linear relationship between strength and age, but there may also be a problem with
nonconstant variance in the data. The regression model that was fit to these data is

$ = 25.936 + 0.3759x

where x = weeks.

The residuals from this model are shown in Table 3.12. Figure 3.3 is a plot of
the residuals versus weeks. The pronounced outward-opening funnel shape on this
plot confirms the inequality of variance problem. Figure 3.4 is a plot of the absolute

TABLE 3.12 Connector Strength Data

Observation Weeks Strength Residual Absolute Residual Weights
1 20 34 0.5454 0.5454 73.9274
2 21 35 1.1695 1.1695 5.8114
3 23 33 —1.5824 1.5824 0.9767
4 24 36 1.0417 1.0417 0.5824
5 25 35 —0.3342 0.3342 0.3863
6 28 34 —2.4620 2.4620 0.1594
7 29 37 0.1621 0.1621 0.1273
8 30 34 —3.2139 3.2139 0.1040
9 32 42 4.0343 4.0343 0.0731

10 33 35 —3.3416 3.3416 0.0626

11 35 33 —6.0935 6.0935 0.0474

12 37 46 6.1546 6.1546 0.0371

13 38 43 27787 2.7787 0.0332

14 40 32 —8.9731 8.9731 0.0270

15 41 37 —4.3491 4.3491 0.0245

16 43 50 7.8991 7.8991 0.0205

17 44 34 ~8.4769 8.4769 0.0189

18 45 54 11.1472 11.1472 0.0174

19 46 49 57713 57713 0.0161

20 48 55 11.0194 11.0194 0.0139

21 50 40 —4.7324 4.7324 0.0122

22 51 33 —12.1084 12.1084 0.0114

23 52 56 10.5157 10.5157 0.0107

24 55 58 11.3879 11.3879 0.0090

25 56 45 —1.9880 1.9880 0.0085

26 57 33 —14.3639 14.3639 0.0080

27 59 60 11.8842 11.8842 0.0072

[N
o0

60 35 —13.4917 13.4917 0.0069
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FIGURE 3.2 Scatter diagram of connector strength versus age from Table 3.12.

value of the residuals from this model versus week. There is an indication that a
linear relationship may exist between the absolute value of the residuals and weeks,
although there is evidence of one outlier in the data. Therefore it seems reasonable
to fit a model relating the absolute value of the residuals to weeks. Since the absolute
value of a residual is the residual standard deviation, the predicted values from this
equation could be used to determine weights for the regression model relating strength

to weeks. This regression model is

Residual

5i=

—5.854 + 0.29852x

®
10 L
[ J
5 - ¢ i
[ ]
o4 ® .. ®
[
. ® [ ]
5 L .
®
° o
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[
[ J
=15 - [}
T T T T
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Weeks
FIGURE 3.3 Plot of residuals versus weeks.
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FIGURE 3.4 Scatter plot of absolute residuals versus weeks.

The weights would be equal to the inverse of the square of the fitted value for each
observation. These weights are shown in Table 3.12. Using these weights to fit a new
regression model to strength using weighted least squares results in

v =127.545 4 0.32383x

Note that the weighted least squares model does not differ very much from the ordinary
least squares model. Because the parameter estimates didn’t change very much, this
is an indication that it is not necessary to iteratively reestimate the standard deviation
model and obtain new weights. [ |

3.7.3 Discounted Least Squares

Weighted least squares is typically used in situations where the variance of the ob-
servations is not constant. We now consider a different situation where a WLS-type
procedure is also appropriate. Suppose that the predictor variables in the regression
model are only functions of time. As an illustration, consider the linear regression
model with a linear trend in time:

w=PHF+pt+e, t=12,...,T (3.73)

This model was introduced to illustrate trend adjustment in a time series in Section
2.4.2 and Example 3.2. As another example, the regression model

.2 2m
¥ :ﬂ()+ﬂ1 s 71 “\"ﬁZCOS 71"‘8 (3.74)
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describes the relationship between a response variable v that varies cyclically or
periodically with time where the cyclic variation is modeled as a simple sine wave.
A very general model for these types of situations could be written as

vw=PF+ht)+ - FBx)+e. t=1.2..... T (3.75)

where the predictors x;(¢). xa(f), ... . x; (1) are mathematical functions of time. ¢. In
these types of models it is often logical to believe that older observations are of less
value in predicting the future observations at periods 7 + 1.7 +2...., than are
the observations that are close to the current time period, T. In other words, if you
want to predict the value of y at time 7 + 1 given that you are at the end of time
period T (or $7.1(T)), it is logical to assume that the more recent observations such
as yr, yr-1, and yr_, carry much more useful information than do older observa-
tions such as yr_jy. Therefore it seems reasonable to weight the observations in the
regression model so that recent observations are weighted more heavily than older
observations. A very useful variation of weighted least squares, called discounted
least squares, can be used to do this. Discounted least squares also leads to a rel-
atively simple way to update the estimates of the model parameters after each new
observation in the time series.
Suppose that the model for observation y, is given by Eq. (3.75):

e =pixit)+ -+ Bpxpt) + &
=x"p, t=1.2.....T

where xX'(t) = [x1(1), x2(¢), ..., x,(¢)] and B =1(B.Br.... B, 1. This model could
have an intercept term, in which case x,(¢) = 1. In matrix form. Eq. (3.75) is

y=X(T)B +¢ (3.76)

where y is a T x 1 vector of the observations, 3 is a p x 1 vector of the model
parameters, € is a T x 1 vector of the errors, and X(7') is the T x p matrix

x()  xA(l) - xp(D)

x(2) x(2) - xp(2)
X(T) =

x(Ty xoAT) --- x,(T)

Note that the sth row of X(T) contains the values of the predictor variables that
correspond to the rth observation of the response, y,.

We will estimate the parameters in Eq. (3.76) using weighted least squares. How-
ever, we are going to choose the weights so that they decrease in magnitude with
time. Specifically, let the weight for observation vr_; be 6/, where 0 < 6 < 1. We
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are also going to shift the origin of time with each new observation so that 7 is the
current time period. Therefore the WLS criterion is

~

—1

[vr ;= BUTxi(=j) + -+ Bp(Tixe(= ]

h
Il

I

3.77)

o

[yr-; = X(=)HBM)]

Jj=(

where 3(7) indicates that the vector of regression coefficients is estimated at the end
of time period 7', and x(— ) indicates that the predictor variables, which are just
mathematical functions of time, are evaluated at —j. This is just WLS witha T x T
diagonal weight matrix

(67" 0 0 - 0]

0 672 0 .. 0

W= = S
L. O 0 -

By analogy with Eq. (3.70), the WLS normal equations are
X(TYWX(T)B(T) = X(TY Wy
or
G(T)B(T) = g(T) (3.78)

where

G(T) = X(TYWX(T)

) (3.79)
g(T) =X(T)Wy
The solution to the WLS normal equations is
B(T) = G(T)'g(T) (3.80)

B(T) is called the discounted least squares estimator of 3.
In many important applications, the discounted least squares estimator can be
simplified considerably. Assume that the predictor variables x;(t) in the model are
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functions of time that have been chosen so that their values at time period ¢ + 1 are
linear combinations of their values at the previous time period. That is.

X,'(t+1):L,'|X](f)+L,'7_X2(f)+"'+L,'p.\’p(l'). i=1.2..... 14 (3.81)
In matrix form,
x(r + 1) = Lx(t) (3.82)

where L is the p x p matrix of the constants L;; in Eq. (3.81). The transition property
in Eq. (3.81) holds for polynomial, trigonometric, and certain exponential functions
of time. This transition relationship implies that

x(1) = L'x(0) (3.83)

Consider the matrix G(T') in the normal equations (3.78). We can write

T-1
G(T) =) 0/x(—=x(—j)

j=0
=G(T — 1)+ 67 'x(—j)x(—j)

If the predictor variables x;(¢) in the model are polynomial, trigonometric, or certain
exponential functions of time, the matrix G(7T') approaches a steady-state limiting
value G,where

G = Zefx(—j)x(-j)’ (3.84)
j=0

Consequently, the inverse of G would only need to be computed once. The right-hand
side of the normal equations can also be simplified. We can write

7-1
gT) =Y 6/5r_;x(—))
=0

T-1

= yrx(0) + Y 0/¥7;x(—))
j=1
! T-1 )
= rx(0)+ 6 /7 v L7'x(—j + 1)
j=1
! T-2
= yrx(0) +6L7' Y 6 v ux(—k)
k=0

= yrx(0)+ 6L 'g(T — 1)



GENERALIZED AND WEIGHTED LEAST SQUARES
So the discounted least squares estimator can be written as
B(T) =G 'g(T)
This can also be simplified. Note that

B(T) =G 'g(T)
=G '[yrx(0) + 0L 'g(T — 1)]
=G '[yrx(0) + OL7'GB(T — 1)]
= yrG'XO)+0GTILTIGR(T = 1)

or
B(T) =hyr + ZB(T - 1)
where
h = G 'x(0)
and
Z=60G'L'G

The right-hand side of Eq. (3.85) can still be simplified because
LG =L '¢w)'l

= 0L (= Hx(— iY@ L

Jj=0

0/ L™ x(— HIL ™ x(—j) L/

M 1M

~
!
<

0/x(—j — Dx(—j — 'L/
and letting k = j + 1,
LG =¢" Zka(—k)x(—k)/L’

k=1

=67"1G = x(0)x(0)'1L’

123

(3.85)

(3.86)

(3.87)
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Substituting for L~'G on the right-hand side of Eq. (3.87) results in

Z = 0G 07 G — x(0)x(0)']L’
= [I — G~ 'x(0)x(0)]L’

=L’ — hx(0O)L’
=L’ — h[Lx(0)
=L’ — hx(lY

Now the vector of discounted least squares parameter estimates at the end of time
period T in Eq. (3.85) is

B(T)=hyr + ZB(T — 1)
= hyr + [L' — hx(D}B(T — 1)
=L'B(T — 1)+ h[yvr —x(1)B(T — 1]

But x(l)'B(T — 1) = $7(T — 1) is the forecast of vy computed at the end of the
previous time period, T — 1, so the discounted least squares vector of parameter
estimates computed at the end of time period ¢ is

B(T)=L'B(T — 1)+ h[yr — (T — 1)]

N (3.88)
=L'8(T — 1) + he, (1)

The last line in Eq. (3.88) is an extremely important result: it states that in dis-
counted least squares the vector of parameter estimates computed at the end of time
period T can be computed as a simple linear combination of the estimates made at the
end of the previous time period T — 1 and the one-step-ahead forecast error for the
observation in period T. Note that there are really two things going on in estimating
B by discounted least squares: the origin of time is being shifted to the end of the
current period, and the estimates are being modified to reflect the forecast error in the
current time period. The first and second terms on the right-hand side of Eq. (3.88)
accomplish these objectives, respectively.

When discounted least squares estimation is started up, an initial estimate of the
parameters is required at time period zero, say, B(0). This could be found by a standard
least squares (or WLS) analysis of historical data.

Because the origin of time is shifted to the end of the current time period, forecasting
is easy with discounted least squares. The forecast of the observation at a future time
period T + 7, made at the end of time period 7. is

$74:(T) = B(TYx(1)

L (3.89)
=Y Bi(Tx;(0)
j=!
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Example 3.10 Discounted Least Squares and the Linear Trend Model

125

To illustrate the discounted least squares procedure, let’s consider the linear trend

model:

=B+ pit+e, t=12,...,T

To write the parameter estimation equations in Eq. (3.88), we need the transition

matrix L. For the linear trend model, this matrix is

Therefore the parameter estimation equations are

B(T) = L'B(T — 1) + her(1)
Bo(T) 1 1] BT =1 h
R = R 1
[ﬂm} [0 1] [ﬂl(T— 1)] i |:h2:|er( )

Bo(T) = Bo(T — 1)+ Bi(T — 1)+ hyer(l)
Bi(T) = Bi(T — 1) + haer(1)

or

The elements of the vector h are found from Eq. (3.86):

h = G~'x(0)

S

The steady-state matrix G is found as follows:

7-1
G(T) =) 6/x(=x(—jY

j=0

=§9-’[_1_,}[1 ~i]

j=0

T-1 :
— Z@.i L -/
i=0 _.j +J2

7

(3.90)
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| -1 (1 —67)

1-6 1-4

6(1 =87y 61 +0)1 —6")
1-6 (1 —6)°

The steady-state value of G(T) is found by taking the limitas T — oc, which results
in

G = lim G(T)
T

] 6
_ 1—-06 | ]
o ] 6(1 + 8)
1 -6 (1 —8)
The inverse of G is
1—6° (1-6)
G_] = 1—¢ 2
(1 —6) ( )
Therefore, the vector h is
h = G 'x(0)

1
:G71
1—62 (1—6) I
= N ]_92
(-2 S22 [0]

0
1 —6?
-6y
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Substituting the elements of the vector h into Eq. (3.90) we obtain the parameter
estimating equations for the linear trend model as

Bo(T) = Bo(T — D)+ (T — 1) + (1 — 0Her(1)
BI(T) =BT — 1)+ (1 —6)2er(1)

Inspection of these equations illustrates the twin aspects of discounted least squares;
shifting the origin of time, and updating the parameter estimates. In the first equation,
the updated intercept at time T consists of the old intercept plus the old slope (this
shifts the origin of time to the end of the current period T'), plus a fraction of the
current forecast error (this revises or updates the estimate of the intercept). The
second equation revises the slope estimate by adding a fraction of the current period
forecast error to the previous estimate of the slope.

To illustrate the computations, suppose that we are forecasting a time series with
a linear trend and we have initial estimates of the slope and intercept at time t = 0 as

Bo0)=50 and B, (0)=15

These estimates could have been obtained by regression analysis of historical data.

Assume that # =09, sothat ] =0 =1 — (0.9 =0.19and (1 —6)> = (1 —
0.9)> = 0.01. The forecast for time period ¢ = 1, made at the end of time period
t = 0, is computed from Eq. (3.89):

~

$1(0) = BOYx(1)
= Bo(0) + £1(0)
=50+15
=51.5

Suppose that the actual observation in time period 1 is y; = 52. The forecast error in
time period 1 is

el(1) = yi = 51(0)
=52-515
=0.5

The updated estimates of the model parameter computed at the end of time period |
are now

Bo(1) = Bo(0) + B1(0) + 0.19¢(0)
=504 1.5+ 0.19(0.5)
=51.60
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and

Bi(1) = B1(0) + 0.01¢,(0)
1.5+ 0.01(0.5)
1.55

The origin of time i1s now 7" = 1. Therefore the forecast for time period 2 made at the
end of period 1 is

$2(1) = Bo(1) + B1(1)
=51.6+1.55
= 53.15

If the observation in period 2 is y2» = 55, we would update the parameter estimates
exactly as we did at the end of time period 1. First, calculate the forecast error:

Second, revise the estimates of the model parameters:

Bo(2) = Bo(1) + B1(1) + 0.19x(1)
=516+ 1.55 4+ 0.19(1.85)
= 53.50

and

B1(2) = B1(1) + 0.01ex(1)
1.55 + 0.01(1.85)
=157

The forecast for period 3, made at the end of period 2, is

$3(2) = Bo(2) + B1(2)
= 5350+ 1.57
= 55.07

Suppose that a forecast at a longer lead time than one period is required. If a forecast
for time period 5 is required at the end of time period 2. then because the forecast
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lead time is T = 5 — 2 = 3, the desired forecast is

$5(2) = Po(2) + B1(2)3
= 53.50 + 1.57(3)
= 58.21

In general, the forecast for any lead time t, computed at the current origin of time
(the end of time period 2), is

95(2) = Bo(2) + Bi1 ()T
=53.50 + 1.577 n

When the discounted least squares procedure is applied to a linear trend model as
in Example 3.9, the resulting forecasts are equivalent to the forecasts produced by a
method called double exponential smoothing. Exponential smoothing is a popular
and very useful forecasting technique and will be discussed in detail in Chapter 4.

Discounted least squares can be applied to more complex models. For example,
suppose that the model is a polynomial of degree k. The transition matrix for this
model is a square (k + 1) x (k 4+ 1) matrix in which the diagonal elements are unity,
the elements immediately to the left of the diagonal are also unity, and all other
elements are zero. In this polynomial, the term of degree r is written as

t . t!
Br . —ﬁrm

In the next example we illustrate discounted least squares for a simple seasonal
model.

Example 3.11 A Simple Seasonal Model

Suppose that a time series can be modeled as a linear trend with a superimposed sine
wave to represent a seasonal pattern that is observed monthly. The model is a variation
of the one shown in Eq. (3.3):

. 2m 2w
v; = Bo+ Bit + Bz sin 7[ + B3 cos —d—*f + ¢ 390D

Since this model represents monthly data, d = 12, Eq. (3.91) becomes

2 2
v, = Bo + Bit + Basin Et+ﬁ3cos ~1—2—t+5 (3.92)
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The transition matrix L for this model, which contains a mixture of polynomial and
trigonometric terms, is

1 0 0 0
1 1 0 0
2 2
L=1p 0 cos—” sin—”
12 12
2 2
0 0 —sin—n cos—n
L 12 12

Note that L. has a block diagenal structure, with the first block containing the
elements for the polynomial portion of the model and the second block containing
the elements for the trigonometric terms, and the remaining elements of the matrix
are zero. The parameter estimation equations for this model are

B(T) = L'B(T — 1) + her(1)

. 1 0 0 0 T N

;ORI o 0 gozr 1; g

ﬂl(T) 271 27 I - 2

. = il in 2L~ A + er(l)
ﬂZ(T) 0 O CcoS 12 sSin 12 ﬁE(T _ 1) hjg 7

3 2 2 j —1 h

A(T) 0 0 ~sin =~ cos = P ) !

12 12
or

Bo(T) = Bo(T — 1)+ B(T = 1) + hyer(1)
BUT) = BUT — 1)+ haer(1)

N 0 N L2 .
B2(T) = cos —l—z—ﬂz(T — 1) —sin Eﬁ}(T — D)+ hzer(l)

. 2w . 2 .
B3(T) = sin Eﬂg(T — 1)+ cos E,B;(T — 1)+ hyer(l)
and since 27 /12 = 30°, these equations become

Bo(T) = Bo(T = 1)+ Bi(T — 1)+ hyer(1)

BUT) = Bi(T — 1)+ haer(1)

Bo(T) = 0.8668(T — 1) — 0.585(T — 1) + hser(1)
B3(T) = 0.58:(T — 1)+ 0.86685(T — 1) + hser(1)
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The steady-state G matrix for this model is

X0 oG oQ o0
ZO" — Zk@k — ZG" sin wk Z()" cos wk

k=0 k=0 k=0 k=0
oC oC o0

Z Kok k6" sinwk ~ Y k6" coswk
G = k=0 k=0 k=0
- 00 0

Z 6% sin wk sin wk  — Z 6% sin wk cos wk

.
T

k=0 )

6% cos wk cos wk

gk

==
I

0

<

where we have let w = 27 /12. Because G is symmetric, we only need to show the
upper half of the matrix. It turns out that there are closed-form expressions for all
of the entries in G. We will evaluate these expressions for 6 = 0.9. This gives the
following:

k=0
= 0.9
Z =90
— - 9)~ (1 - 0.9)?
= 9 146 0.9(14+0.9
Z (r1+0) _ (1+0.9) = 1710
— (1—6)y (1-0.9°
for the polynomial terms and
X 6 si 90.5
Z(’k Gnok — sinw __ (0.9 179
£ I —20cosw+62 1 —2(0.9)0.866 + (0.9)2
N 1 —6cosw I - (0.9)0.866
Y 0t coswk = = 5 = 0.8824
£ [—20cosw+6°  1—2(0.9)0.866 + (0.9)
= 6(1 — 6%)si 0.9[1 — (0.9)%]0.5
3 k6" sinwk = (L=0)sinw 0= OS5 ) 365
(1 — 26 cosw + 62)? [1 —2(0.9)0.866 + (0.9)*]°

X 207 —0(1 + 6% cosw  2(0.97 — 0.91 + (0.9)2]0.866
3 kbt coswk = (+6)cosw _ 20.9) [+ 09710860 _ 5 5466
(1= 20cosw 1 6272 [I - 2(0.9)0.866 + (0.9)2]

N g . 1 I — 6 cosQw) 1 — @ cos(0)
ZE) sinwk sinwk = — - s = .
k=0 21 —20cosRuw)+ 80 1 — 26 cos(0) + 6°
1 1 —0.9(0.5) B 1 —0.9(1)
21 =2(090.5+0.92 1 —20.9)1)+(0.9)

= 4.7528
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N 1 0 sin(2w) 6 sin(0)

ZG sin wk cos wk = = 5 — 5

— 211 —-260cosQw)+ 6° 1 — 26 cos(0) + 6~
1y 0.9(0.866) 0.9(0)
211 -2(0.9)0.5+(0.9?2 1 —20.9)1 + (0.92
= 0.4284

Ny 1T 1 —=6cosRw) 1 — 8 cos(0)

ZG cos wk cos wk = = 5 5

= 2 L1 —20cosRw) + 62 1 — 26 cos(0) + 6~
_ l [ 1 —0.9(0.5) 1 —-0.9(1)
T 211 —-20.90.5+0.972 1 —2(0.9)1)+ (0.9
= 5.3022

for the trignometric terms.

Therefore the G matrix is

10 —-90 -1.79 0.8824

G 1. 740 1.368 —3.3486

- 47528 —0.4284

5.3022

and G~ is

0.214401 0.01987 0.075545 -0.02264
G = 0.01987 0.001138 0.003737 —0.00081
| 0.075545 0.003737 0.238595 0.009066
—0.02264 —0.00081 0.009066 0.192591

where we have shown the entire matrix. The h vector is

h = G~'x(0)

[ 0.214401
0.01987

0.075545

| —0.02264

[(0.191762
0.010179
0.084611
| 0.169953

0.01987 0.075545 —0.02264 1
0.001138 0.003737 —0.00081 0
0.003737 0.238595  0.009066 0
—0.00081 0.009066 0.192591 1
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Therefore the discounted least squares parameter estimation equations are

Bo(T) = Bo(T — 1)+ B1(T — 1) +0.191762¢7(1)
Bi(T) = BT — 1)+ 0.010179¢7(1)

o 27 A 2w A
B2(T) = cos Eﬁz(T — 1) —sin 1—2/33(T — 1)+ 0.084611e7(1)

) 27 . 21 .
B+(T) = sin T’;ﬁz(T ~ 1)+ cos I—Zﬁ3(T — 1)+ 0.169953¢7 (1)

3.8 REGRESSION MODELS FOR GENERAL TIME SERIES DATA

Many applications of regression in forecasting involve both predictor and response
variables that are time series. Regression models using time series data occur relatively
often in economics, business, and many fields of engineering. The assumption of
uncorrelated or independent errors that is typically made for cross-section regression
data is often not appropriate for time series data. Usually the errors in time series data
exhibit some type of autocorrelated structure. You might find it useful at this point to
review the discussion of autocorrelation in time series data from Chapter 2.

There are several sources of autocorrelation in time series regression data. In many
cases, the cause of autocorrelation is the failure of the analyst to include one or more
important predictor variables in the model. For example, suppose that we wish to
regress the annual sales of a product in a particular region of the country against the
annual advertising expenditures for that product. Now the growth in the population
in that region over the period of time used in the study will also influence the product
sales. If population size is not included in the model, this may cause the errors in the
model to be positively autocorrelated, because if the per-capita demand for the product
is either constant or increasing with time, population size is positively correlated with
product sales.

The presence of autocorrelation in the errors has several effects on the ordinary
least squares regression procedure. These are summarized as follows:

1. The ordinary least squares (OLS) regression coefficients are still unbiased, but
they are no longer minimum-variance estimates. We know this from our study
of generalized least squares in Section 3.7.

2. When the errors are positively autocorrelated, the residual mean square may
seriously underestimate the error variance o 2. Consequently, the standard errors
of the regression coefficients may be too small. As a result, confidence and
prediction intervals are shorter than they really should be, and tests of hypotheses
on individual regression coefficients may be misleading in that they may indicate
that one or more predictor variables contribute significantly to the model when
they really do not. Generally, underestimating the error variance o2 gives the
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analyst a false impression of precision of estimation and potential forecast
accuracy.

3. The confidence intervals, prediction intervals, and tests of hypotheses based on
the 7 and Fdistributions are, strictly speaking. no longer exact procedures.

There are three approaches to dealing with the problem of autocorrelation. If auto-
correlation is present because of one or more omitted predictors and if those predictor
variable(s) can be identified and included in the model, the observed autocorrelation
should disappear. Alternatively, the weighted least squares or generalized least squares
methods discussed in Section 3.7 could be used if there were sufficient knowledge of
the autocorrelation structure. Finally, if these approaches cannot be used, the analyst
must turn to a model that specifically incorporates the autocorrelation structure. These
models usually require special parameter estimation techniques. We will provide an
introduction to these procedures in Section 3.8.2.

3.8.1 Detecting Autocorrelation: The Durbin—-Watson Test

Residual plots can be useful for the detection of autocorrelation. The most useful
display is the plot of residuals versus time. If there is positive autocorrelation, residuals
of identical sign occur in clusters: that is, there are not enough changes of sign in
the pattern of residuals. On the other hand, if there is negative autocorrelation. the
residuals will alternate signs too rapidly.

Various statistical tests can be used to detect the presence of autocorrelation.
The test developed by Durbin and Watson [1950, 1951, 1971} is a very widely used
procedure. This test is based on the assumption that the errors in the regression model
are generated by a first-order autoregressive process observed at equally spaced
time periods; that is,

& =¢& +q (3.93)

where ¢, is the error term in the model at time period 7, a, is an NID(0. 0,) random
variable, and ¢ is a parameter that defines the relationship between successive values
of the model errors ¢, and ¢, |. We will require that |¢| < 1, so that the model error
term in time period 7 is equal to a fraction of the error experienced in the immediately
preceding period plus a normally and independently distributed random shock or
disturbance that is unique to the current period. In time series regression models ¢
is sometimes called the autocorrelation parameter. Thus a simple linear regression
mode] with first-order autoregressive errors would be

=B+t Bix +t&. & =¢& +aq (3.94)

where y, and x, are the observations on the response and predictor variables at time
period ¢.
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When the regression model errors are generated by the first-order autoregressive
process in Eq. (3.93), there are several interesting properties of these errors. By

successively substituting for &, &), ... on the right-hand side of Eq. (3.93) we
obtain
o .
& = Z(p}arfj
j=0

In other words, the error term in the regression model for period ¢ is just a linear
combination of all of the current and previous realizations of the NID(0, o) random
variables ¢,. Furthermore, we can show that

E(c)=0

Var(e,) = 0% = 0] ( ! 2) (3.95)

) 1
Cov(e,, 845) = ¢>j%2 (1 — ¢2)

That is, the errors have zero mean and constant variance but have a nonzero covariance
structure unless ¢ = 0.

The autocorrelation between two errors that are one period apart, or the lag one
autocorrelation, is

Cov(ey, &41)

pr= &/ Var (g;)+/ Var (&;)

_ ea()
Jo2 ()72 ()

The autocorrelation between two errors that are £ periods apart is
=0 =12 ...

This is called the autocorrelation function (refer to Section 2.3.2). Recall that we
have required that |¢| < 1. When ¢ is positive, all error terms are positively correlated,
but the magnitude of the correlation decreases as the errors grow further apart. Only
if ¢ = 0 are the model errors uncorrelated.

Most time series regression problems involve data with positive autocorrelation.
The Durbin—Watson test is a statistical test for the presence of positive autocorrelation



136 REGRESSION ANALYSIS AND FORECASTING

in regression model errors. Specifically, the hypotheses considered in the Durbin—
Watson test are

(3.96)

The Durbin—Watson test statistic is

T T T T
Y —e))  Yer+d el -2 ee
d= "2 . ==z =2 =2 ~ 21 —r) (3.97)
Se
=1

~h

™
)

~to

wherethee,, t = 1.2, ..., Tare the residuals from an OLS regression of v, on x,. In
Eq. (3.97) r, is the lag one autocorrelation between the residuals, so for uncorrelated
errors the value of the Durbin—Watson statistic should be approximately 2. Statistical
testing is necessary to determine just how far away from 2 the statistic must fall
in order for us to conclude that the assumption of uncorrelated errors is violated.
Unfortunately, the distribution of the Durbin—Watson test statistic d depends on the X
matrix, and this makes critical values for a statistical test difficult to obtain. However.
Durbin and Watson [1951] show that d lies between lower and upper bounds, say, d
and dy , such that if d is outside these limits, a conclusion regarding the hypotheses
in Eq. (3.96) can be reached. The decision procedure is as follows:

Ifd <d_ reject Hy: p =0
Ifd > dy donotreject Hy: p =0

If di < d < dy the test is inconclusive

Table A.5 in Appendix A gives the bounds d; and dy for a range of sample sizes,
various numbers of predictors, and three type I error rates (o« = 0.05, o = 0.025, and
a = 0.01). It is clear that small values of the test statistic & imply that Hy : ¢ =0
should be rejected because positive autocorrelation indicates that successive error
terms are of similar magnitude, and the differences in the residuals ¢, — e, will
be small. Durbin and Watson suggest several procedures for resolving inconclusive
results. A reasonable approach in many of these inconclusive situations is to analyze
the data as if there were positive autocorrelation present to see if any major changes
in the results occur.

Situations where negative autocorrelation occurs are not often encountered. How-
ever, if a test for negative autocorrelation is desired, one can use the statistic 4 —d,
where d is defined in Eq. (3.97). Then the decision rules for testing the hypothe-
ses Hy: ¢ =0versus Hy : ¢ < O are the same as those used in testing for pos-
itive autocorrelation. It is also possible to test a two-sided alternative hypothesis
(Hp : ¢ = O versus H; : ¢ # 0) by using both of the one-sided tests simultaneously.
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If this is done, the two-sided procedure has type I error 2a;, where « is the type I error
used for each individual one-sided test.

Example 3.12

Montgomery, Peck, and Vining [2006] present an example of a regression model
used to relate annual regional advertising expenses to annual regional concentrate
sales for a soft drink company. Table 3.13 presents the twenty years of these data used
by Montgomery, Peck, and Vining [2006]. The authors assumed that a straight-line
relationship was appropriate and fit a simple linear regression model by ordinary least
squares. The Minitab output for this model is shown in Table 3.14 and the residuals
are shown in the last column of Table 3.13. Because these are time series data, there
is a possibility that autocorrelation may be present. The plot of residuals versus time,
shown in Figure 3.5, has a pattern indicative of potential autocorrelation; there is a
definite upward trend in the plot, followed by a downward trend.
We will use the Durbin—Watson test for

H()Z¢-——0
H11¢>0

TABLE 3.13 Soft Drink Concentrate Sales Data

Expenditures

Year Sales (Units) (10° dollars) Residuals
1 3083 75 —32.3298
2 3149 78 —26.6027
3 3218 80 2.2154
4 3239 82 —16.9665
5 3295 84 —1.1484
6 3374 88 —2.5123
7 3475 93 —1.9671
8 3569 97 11.6691
9 3597 99 —0.5128
10 3725 104 27.0324
11 3794 109 —4.4224
12 3959 115 40.0318
13 4043 120 23.5770
14 4194 127 33.9403
15 4318 135 —2.7874
16 4493 144 —8.6060
17 4683 153 0.5753
18 4850 161 6.8476
19 5005 170 ~18.9710
20 5236 182 ~29.0625
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TABLE 3.14 Minitab Output for the Soft Drink Concentrate Sales Data

Regression Analysis: Sales Versus Expenditures

The regression eguation is
Sales = 1609 + 20.1 Expenditures

Predictor Coef SE Coef T P
Constant 1608.51 17.02 94.49 0.000
Expenditures 20.0910 0.1428 140.71 0.000

S = 20.5316 R-Sqg = 99.9% R-Sqg(adj) = 99.9%

Analysis of vVariance

Source DF SS MS F P
Regression 1 8346283 8346283 19799.11 0.000
Residual Error 18 7588 422

Total 19 8353871

Unusual Observations

Obs Expenditures Sales Fit SE Fit Residual St Resid
12 115 3959.00 3918.97 4.59 40.03 2.00R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.08005

The test statistic is calculated as follows:

20
R
Z (e, —e1)
=2
20

Y ef
=]

[—26.6027 — (—=32.3298)1 + [2.2154 — (—=26.6027))2 4 - - - + [—29.0625 — (—18.9710)]°
(—32.3298)2 + (—26.6027)° + - - - + (—29.0625)°

= 1.08

Minitab will also calculate and display the Durbin—Watson statistic. Refer to the
Minitab output in Table 3.14. If we use a significance level of 0.05, Table A.5 in
Appendix A gives the critical values corresponding to one predictor variable and 20
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FIGURE 3.5 Plot of residuals versus time for the soft drink concentrate sales model.

observations as di. = 1.20 and dy = 1.41. Since the calculated value of the Durbin—
Watson statistic d = 1.08 is less than di. = 1.20, we reject the null hypothesis and
conclude that the errors in the regression model are positively autocorrelated. |

3.8.2 Estimating the Parameters in Time Series Regression Models

A significant value of the Durbin—Watson statistic or a suspicious residual plot indi-
cates a potential problem with autocorrelated model errors. This could be the result
of an actual time dependence in the errors or an “artificial” time dependence caused
by the omission of one or more important predictor variables. If the apparent au-
tocorrelation results from missing predictors and if these missing predictors can be
identified and incorporated into the model, the apparent autocorrelation problem may
be eliminated. This is illustrated in the following example.

Example 3.13

Table 3.15 presents an expanded set of data for the soft drink concentrate sales problem
introduced in Example 3.12. Because it is reasonably likely that regional population
affects soft drink sales, Montgomery, Peck, and Vining [2006] provided data on
regional population for each of the study years. Table 3.16 is the Minitab output for
a regression model that includes predictor variables, advertising expenditures, and
population. Both of these predictor variables are highly significant. The last column
of Table 3.15 shows the residuals from this model. Minitab calculates the Durbin—
Watson statistic for this model as d =3.05932, and the 5% critical values ared;, = 1.10
and dy; = 1.54, and since d is greater than yy, we conclude that there is no evidence to
reject the null hypothesis. That is, there is no indication of autocorrelation in the errors.
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TABLE 3.15 Expanded Soft Drink Concentrate Sales Data for Example 3.13

Expenditures

Year Sales (Units) (10° dotlars) Population Residuals
1 3083 75 825000 —4.8290
2 3149 78 830445 —3.2721
3 3218 80 838750 14.9179
4 3239 82 842940 —7.9842
5 3295 84 846315 5.4817
6 3374 88 852240 0.7986
7 3475 93 860760 —4.6749
8 3569 97 865925 6.9178
9 3597 99 871640 —11.5443

10 3725 104 877745 14.0362
11 3794 109 886520 —-23.8654
12 3959 115 894500 17.1334
13 4043 120 900400 —0.9420
14 4194 127 904005 14.9669
15 4318 135 908525 —16.0945
16 4493 144 912160 -~13.1044
17 4683 153 917630 1.8053
18 4850 161 922220 13.6264
19 5005 170 925910 —3.4759
20 5236 182 929610 0.1025

Figure 3.6 is a plot of the residuals from this regression model in time order. This
plot shows considerable improvement when compared to the plot of residuals from the
model using only advertising expenditures as the predictor. Therefore, we conclude
that adding the new predictor population size to the original model has eliminated an
apparent problem with autocorrelation in the errors. [ ]

The Cochrane-Orcutt Method
When the observed autocorrelation in the model errors cannot be removed by adding
one or more new predictor variables to the model, it is necessary to take explicit
account of the autocorrelative structure in the model and use an appropriate parameter
estimation method. A very good and widely used approach is the procedure devised
by Cochrane and Orcutt [1949].

We will describe the Cochrane—Orcutt method for the simple linear regression
model with first-order autocorrelated errors given in Eq. (3.94). The procedure is
based on transforming the response variable so that y, = ¥, — ¢,_;. Substituting for
v, and y,_1, the model becomes

Vi =Y — dyimy
= Bo+ Bixi + & — d(Bo+ Bixi—1 +&-1)
= Bo(l — @)+ Bi(x; — ¢x,-1) + & — P&,
= .86 + ﬁlx; + a;

(3.98)
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TABLE 3.16 Minitab Output for the Soft Drink Concentrate Data in Example 3.13

Regression Analysis: Sales Versus Expenditures, Population

The regression eqguation is
Sales = 320 + 18.4 Expenditures + 0.00168 Population

Predictor Coef SE Coef T P
Constant 320.3 217.3 1.47 0.159
Expenditures 18.4342 0.2915 63.23 0.000
Population 0.0016787 0.0002829 5.93 0.000
S = 12.0557 R-Sg = 100.0% R-Sg(adj) = 100.0%

Analysis of Variance

Source DF SS MS F P
Regression 2 8351400 4175700 28730.40 0.000
Residual Error 17 2471 145

Total 19 8353871

Source DF Seqg SS

Expenditures 1 8346283

Population 1 5117

Unusual Observations

Obs Expenditures Sales Fit SE Fit Residual St Resid
11 109 3794.00 3817.87 4.27 -23.87 -2.12R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 3.05932

where f = Bo(1 — ¢) and x; = x, — ¢x,_;. Note that the error terms g, in the trans-
formed or reparameterized model are independent random variables. Unfortunately,
this new reparameterized model contains an unknown parameter ¢ and it is also no
longer linear in the unknown parameters because it involves products of @, fy, and §;.
However, the first-order autoregressive process &, = ¢&,_| + g, can be viewed as a
simple linear regression through the origin and the parameter ¢ can be estimated by
obtaining the residuals of an OLS regression of y, on x; and then regressing e, on
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FIGURE 3.6 Plot of residuals versus time for the soft drink concentrate sales model in Example 3.13.

€;—;. The OLS regression of ¢, on e,_; results in

™~

€611

...
I
S

(3.99)

>
I

T el
2

v=l1

Using ¢ as an estimate of ¢, we can calculate the transformed response and predictor
variables as

.\',, =V — ¥

X,’ =X — ¢x,—y

Now apply ordinary least squares to the transformed data. This will result in
estimates of the transformed slope 56 the intercept f,.and a new set of residuals. The
Durbin—-Watson test can be applied to these new residuals from the reparameterized
model. If this test indicates that the new residuals are uncorrelated, then no additional
analysis is required. However, if positive autocorrelation is still indicated, then another
iteration is necessary. In the second iteration ¢ is estimated with new residuals that are
obtained by using the regression coefficients from the reparameterized model with the
original regressor and response variables. This iterative procedure may be continued
as necessary until the residuals indicate that the error terms in the reparameterized
model are uncorrelated. Usually only one or two iterations are sufficient to produce
uncorrelated errors.
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Example 3.14

Montgomery, Peck, and Vining [2006] give data on the market share of a particular
brand of toothpaste for 30 time periods and the corresponding selling price per pound.
These data are shown in Table 3.17. A simple linear regression model is fit to these
data, and the resulting Minitab output is in Table 3.18. The residuals are shown in
Table 3.17. The Durbin—Watson statistic for the residuals from this model is d =
1.13582 (see the Minitab output), and the 5% critical values are d; = 1.20 and dy =
1.41, so there is evidence to support the conclusion that the residuals are positively
autocorrelated.

We will use the Cochrane-Orcutt method to estimate the model parameters. The
autocorrelation coefficient can be estimated using the residuals in Table 3.17 and Eq.
(3.99) as follows:

T

Z €€

I t=2

¢=—F"
Y€l
y=1

_ 1.3547

"~ 3.3083
= 0.409

TABLE 3.17 Toothpaste Market Share Data

Time Market Share Price Residuals v, x, Residuals
1 3.63 0.97 0.281193
2 4.20 0.95 0.365398 2.715 0.533 —0.189435
3 3.33 0.99 0.466989 1.612 0.601 0.392201
4 4.54 091 —0.266193 3.178 0.505 —-0.420108
5 2.89 0.98 —0.215909 1.033 0.608 —0.013381
6 4.87 0.90 —0.179091 3.688 0.499 —0.058753
7 4.90 0.89 —0.391989 2.908 0.522 —0.268949
8 5.29 0.86 —0.730682 3.286 0.496 —0.535075
9 6.18 0.85 —0.083580 4.016 0.498 0.244473
10 7.20 0.82 0.207727 4.672 0.472 0.256348
11 7.25 0.79 —0.470966 4.305 0.455 —0.531811
12 6.09 0.83 —0.659375 3.125 0.507 —0.423560
13 6.80 0.81 —0.435170 4.309 0.471 —0.131426
14 8.65 0.77 0.443239 5.869 0.439 0.635804
15 8.43 0.76 -0.019659 4.892 0.445 —0.192552
16 8.29 0.80 0.811932 4.842 0.489 0.847507
17 7.18 0.83 0.430625 3.789 0.503 0.141344
18 7.90 0.79 0.179034 4.963 0.451 0.027093
19 8.45 0.76 0.000341 5.219 0.437 —0.063744

20 8.23 0.78 0.266136 4.774 0.469 0.284026
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TABLE 3.18 Minitab Regression Results for the Toothpaste Market Share Data

Regression Analysis: Market Share Versus Price

The regression equation 1is
Market Share = 26.9 - 24.3 Price

Predictor Coef SE Coef T P
Constant 26.910 1.110 24 .25 0.000
Price -24.290 1.298 -18.72 0.000
S = 0.428710 R-Sg = 95.1% R-Sg(adj) = 94.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 64.380 64.380 350.29 0.000
Residual Error 18 3.308 0.184

Total 19 67.688

Durbin-Watson statistic = 1.13582

The transformed variables are computed according to

¥, =y — 0.409y,_,
x, = x; — 0.409x,_,

!

fort = 2,3, ..., 20. These transformed variables are also shown in Table 3.17. The
Minitab results for fitting a regression model to the transformed data are summa-
rized in Table 3.19. The residuals from the transformed model are shown in the
last column of Table 3.17. The Durbin—Watson statistic for the transformed model is
d = 2.15671, and the 5% critical values from Table A.5 in Appendix A ared; = 1.18
and dy = 1.40, so we conclude that there is no problem with autocorrelated errors in
the transformed model. The Cochrane—Orcutt method has been effective in removing
the autocorrelation.

The slope in the transformed model B, is equal to the slope in the original model,
Bi. A comparison of the slopes in the two models in Tables 3.18 and 3.19 shows that
the two estimates are very similar. However, if the standard errors are compared. the
Cochrane—-Orcutt method produces an estimate of the slope that has a larger standard
error than the standard error of the ordinary least squares estimate. This reflects the
fact that if the errors are autocorrelated and OLS is used, the standard errors of the
model coefficients are likely to be underestimated. -
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TABLE 3.19 Minitab Regression Results for Fitting the Transformed Model
to the Toothpaste Sales Data

Regression Analysis: y’ Versus x’

The regression eqguation is
y-prime = 16.1 - 24.8 x-prime

Predictor Coef SE Coef T P
Constant 16.1090 0.9610 16.76 0.000
X-prime -24.774 1.934 -12.81 0.000
S = 0.390963 R-Sqg = 90.6% R-Sg(adj) = 90.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 25.080 25.080 164.08 0.000
Residual Error 17 2.598 0.153

Total 18 27.679

Unusual Observations

Obs x-prime y-prime Fit SE Fit Residual St Resid
2 0.601 1.6120 1.2198 0.2242 0.3922 1.22 X
4 0.608 1.0330 1.0464 0.2367 -0.0134 -0.04 X
15 0.489 4.8420 3.9945 0.0904 0.8475 2.23R

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

Durbin-Watson statistic = 2.15671

The Maximum Likelihood Approach

There are other alternatives to the Cochrane~Orcutt method. A popular approach is
to use the method of maximum likelihood to estimate the parameters in a time series
regression model. We will concentrate on the simple linear regression model with
first-order autoregressive errors

=P8+ Bixi+&, &=¢ 1 +aq (3.100)

One reason that the method of maximum likelihood is so attractive is that, unlike
the Cochrane—Orcutt method, it can be used in situations where the autocorrelative
structure of the errors is more complicated than first-order autoregressive.
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For readers unfamiliar with maximum likelihood estimation, we will present a
simple example. Consider the time series model

yr=u-+a; (3101)

where a; is N(0, 0°) and u is unknown. This is a time series model for a process that
varies randomly around a fixed level (1) and for which there is no autocorrelation. We
will estimate the unknown parameter p using the method of maximum likelihood.

Suppose that there are T observations available, y). v», .... yr. The probability
distribution of any observation is normal, that is,

|

fO) = L (V)
' o2
- 1 e~ (/o2
o2
The likelihood function is just the joint probability density function of the sample.
Because the observations y,, y,,..., yr are independent, the likelihood function is

just the product of the individual density functions, or

T
150w =[] £
=1

1

emllor 2 (3.102)

—-
9

10

1\’ 1 <
(7) "(TZ)

The maximum likelihood estimator of 4 is the value of the parameter that maximizes
the likelihood function. It is often easier to work with the log-likelihood, and this
causes no problems because the value of w that maximizes the likelihood function
also maximizes the log-likelihood.

The log-likelihood is

..
I

]

I 7

[}

T 1 L
Ini(y;u) = ’EIH(ZTT)* Tlhho — 2o E a
1=1

Suppose that o? is known. Then to maximize the log-likelihood we would choose the
estimate of u that minimizes
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Note that this is just the error sum of squares from the model in Eq. (3.101). So, in
the case of normally distributed errors, the maximum likelihood estimator of wu is
identical to the least squares estimator of . It is easy to show that this estimator is
just the sample average; that is,

~

p=y

Suppose that the mean of the model in Eq. (3.101) is a linear regression function
of time, say,

w=Po+ pit

so that the model is
y=p+a =po+Bit +a

with independent and normally distributed errors. The likelihood function for this
model is identical to Eq. (3.102), and, once again, the maximum likelihood estimators
of the model parameters By and 8, are found by minimizing the error sum of squares
from the model. Thus when the errors are normally and independently distributed,
the maximum likelihood estimators of the model parameters Sy and §; in the linear
regression model are identical to the least squares estimators.

Now let’s consider the simple linear regression model with first-order autoregres-
sive errors, first introduced in Eq. (3.94), and repeated for convenience below:

vi=PB+bixi+e&, &=¢5 1 +a

Recall that the a’s are normally and independently distributed with mean zero and
variance oaz and ¢ is the autocorrelation parameter. Write this equation for y,_; and
subtract ¢py,_| from y,. This results in

v — ¢y =1 =)o + B1(x; — dx,—1) +a;

or

ye=¢y 1+ =)o+ Bilxi —dx 1)+ a

3.103

=z, 0)+a ( )

wherez', = [y,_1, x;] and ©' = [&, Bo, B1]. We can think of z, as a vector of predictor

variables and © as the vector of regression model parameters. Since y,_.; appears on

the right-hand side of the model in Eq. (3.103), the index of time must run from
2;3,..., T. At time period ¢t = 2, we treat y; as an observed predictor.
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Because the a’s are normally and independently distributed. the joint probability
density of the a’s is

s
e—(a, o) /2

flaz, a3, ...,ar) =

—1~
N
§_
=)

=2

l T-1 1 T
= €X — -
(om) oo (- w)

and the likelihood function is obtained from this joint distribution by substituting for
the a’s:

| T-1
{(yr, ¢, Bo. =
(¥ @, Bo. B1) (%ﬂ)

1 & .
exp ( 252 Z — [Py + 0 = P)fo + Pi(x; — ¢~\'r—l)]}—)

207 =
The log-likelihood is

-1
I0i(y. @ o B1) = — =L In2r) — (T = DIna,

2

.
02 D v = [y + (1= )Bo + Bilx — DI
a (=2

This log-likelihood is maximized with respect to the parameters ¢. fy, and 8, by
minimizing the quantity

T
SSe =Y {vi = [yt + (1 — @)Bo + Bilx, — pxi_ D) (3.104)
=2

which is the error sum of squares for the model. Therefore the maximum likelihood
estimators of ¢, By, and B, are also least squares estimators.

There are two important points about the maximum likelihood (or least squares)
estimators. First, the sum of squares in Eq. (3.104) is conditional on the initial value
of the time series, y;. Therefore the maximum likelihood (or least squares) estimators
found by minimizing this conditional sum of squares are conditional maximum like-
lihood (or conditional least squares) estimators. Second, because the model involves
products of the parameters ¢ and Sy, the model is no longer linear in the unknown
parameters. That is, it’s not a linear regression model and consequently we cannot
give an explicit closed-form solution for the parameter estimators. Iterative meth-
ods for fitting nonlinear regression models must be used. These procedures work by
linearizing the model about a set of initial guesses for the parameters. solving the
linearized model to obtain improved parameter estimates, then using the improved
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estimates to define a new linearized model, which leads to new parameter estimates,
and so on. The details of fitting nonlinear models by least squares are discussed in
Montgomery, Peck, and Vining [2006].

Suppose that we have obtained a set of parameter estimates, say, = [, Po, B1].
The maximum likelihood estimate of o> is computed as

52 — SSE(0)

a

(3.105)

n—1

where SSE(é) is the error sum of squares in Eq. (3.104) evaluated at the con-
ditional maximum likelihood (or conditional least squares) parameter estimates
0 = [¢. Bo, B1]. Some authors (and computer programs) use an adjusted number
of degrees of freedom in the denominator to account for the number of parameters
that have been estimated. If there are k predictors, then the number of estimated
parameters will be p = k + 3, and the formula for estimating o2 is

52 SSe®)  SSe(®)
“ n—-p—-1 n—k-—4

(3.106)

In order to test hypotheses about the model parameters and to find confidence
intervals, standard errors of the model parameters are needed. The standard errors are
usually found by expanding the nonlinear model in a first-order Taylor series around
the final estimates of the parameters 8’ = [(23, 30, 51]. This results in

o ~ ,0u(z,, 0
Vi~ u(z, 0)+ (0 — 0) ouz, 0) +a;
a0 0_d

The column vector of derivatives, du(z,, 8)/00, is found by differentiating the model
with respect to each parameter in the vector 8" = [¢, By, B1]. This vector of derivatives
1S

Bz, 8) _ =9

50 Xp — X1
Yi—1 — Bo — Bix,

This vector is evaluated for each observation at the set of conditional maximum
likelihood parameter estimates ' = [¢, By, 8] and assembled into an X matrix.
Then the covariance matrix of the parameter estimates is found from

Cov(8) = o 2(X'X)™!
When o2 is replaced by the estimate 62 from Eq. (3.106) an estimate of the covariance

matrix results, and the standard errors of the model parameters are the main diagonals
of the covariance matrix.
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Example 3.15

We will fit the regression model with time series errors in Eq. (3.104) to the tooth-
paste market share data originally analyzed in Example 3.14. We will use a widely
available software package, SAS (the Statistical Analysis System). The SAS proce-
dure for fitting regression models with time series errors is SAS PROC AUTOREG.
Table 3.20 contains the output from this software program for the toothpaste market
share data. Note that the autocorrelation parameter (or the lag one autocorrelation) is
estimated to be 0.4094, which is very similar to the value obtained by the Cochrane—
Orcutt method. The overall R? for this model is 0.9601, and we can show that the
residuals exhibit no autocorrelative structure, so this is likely a reasonable model for
the data.

There is, of course, some possibility that a more complex autocorrelation structure
than first-order may exist. SAS PROC AUTOREG can fit more complex patterns.
Since there is obviously first-order autocorrelation present, an obvious possibility is
that the autocorrelation might be second-order autoregressive, as in

& =¢16-) g2t a

where the parameters ¢, and ¢» are autocorrelations at lags one and two. respectively.
The output from SAS PROC AUTOREG for this model is in Table 3.21. The ¢-statistic
for the lag two autocorrelation is not significant so there is no reason to believe that
this more complex autocorrelative structure is necessary to adequately model the data.
The model with first-order autoregessive errors is satisfactory. ]

Forecasting and Prediction Intervals

We now consider how to obtain forecasts at any lead time using a time series model.
It is very tempting to ignore the autocorrelation in the data when forecasting. and
simply substitute the conditional maximum likelihood estimates into the regression
equation:

W= 30 + 31-\'1

Now suppose that we are at the end of the current time period, 7, and we wish to
obtain a forecast for period T + 1. Using the above equation, this results in

$741(T) = Bo + Brxra

assuming that the value of the predictor variable in the next time period xr.; is
known.

Unfortunately, this naive approach isn’t correct. From Eq. (3.103), we know that
the observation at time period f is

=0y +U =)o+ Bilx; —dx,_1) + ¢ (3.107)
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TABLE 3.20 SAS PROC AUTOREG Output for the Toothpaste Market Share Data,
Assuming First-Order Autoregressive Errors

SSE
MSE
SBC
Regress R-Square
Durbin-Watson
Pr > DW

NOTE:

Pr<DW is the p-value for testing positive autocorrelation,

The SAS System

The AUTOREG Procedure

Dependent Variable v

Ordinary Least Sguares Estimates

3.30825739 DFE 18
0.18379 Root MSE 0.42871
26.762792 AIC 24.7713275
0.9511 Total R-Square 0.9511
1.1358 Pr < DW 0.0098
0.9902

and Pr>DW is

the p-value for testing negative autocorrelation.

Standard

Variable DF

Intercept 1

x 1

Lag Covariance
0.1654

1 0.0677

Standard

Lag Coefficient

1 ~-0.409437

Algorithm converged.

Approx Variable
Estimate Error t Value Pr > |t] Label
26.9099 1.1099 24.25 <.0001
-24.2898 1.2978 -18.72 <.0001 x

Estimates of Autocorrelations
Correlation -1 987654321012345617891

1.000000 |
0.409437 |

I*************x******l

[x******* l

Preliminary MSE 0.1377

Estimates of Autoregressive Parameters

Error t Value

0.221275 -1.85
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TABLE 3.20 SAS PROC AUTOREG Output for the Toothpaste Market Share Data,
Assuming First-Order Autoregressive Errors (Continued)

The SAS System

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 2.69864377 DFE 17
MSE 0.15874 Root MSE 0.39€43
SBC 25.8919447 AIC 22.9047479
Regress R-Square 0.9170 Total R-Square 0.9€01
Durbin-Watson 1.8924 Pr < DW 0.3472
Pr > DW 0.6528

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is
the p-value for testing negative autocorrelation.

Standard Approx variable
Variable DF Estimate Error t value Fro> 't Label
Intercept 1 26.3322 1.4777 17.82 <.0001

x 1 -23.5903 1.7222 -13.70 <.0001 X

AR1 1 -0.4323 0.2203 -1.96 0.0663

Autoregressive parameters assumed given.

Standard Approx Variable

Variable DF Estimate Error t value Pr > |t| Label
Intercept 1 26.3322 1.4776 17.82 <.0001

X 1 -23.5903 1.7218 -13.70 <.0001 X

So at the end of the current time period T the next observation is

yr+1 = @yt + (1 — @)Bo + Bilxry1 — ¢dx7) +arq

Assume that the future value of the regressor variable xr is known. Obviously, at
the end of the current time period, both yr and x7 are known. The random error at time
T+1, ar, . hasn’t been observed yet, and because we have assumed that the expected
value of the errors is zero, the best estimate we can make of a7 is a4 = 0. This
suggests that a reasonable forecast of the observation in time period 741 that we can
make at the end of the current time period T is

Sr1(T) = ¢yr + (1 = )fo + Bilxr41 — dx7) (3.108)

Note that this forecast is likely to be very different from the naive forecast obtained
by ignoring the autocorrelation.
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TABLE 3.21 SAS PROC AUTOREG Output for the Toothpaste Market Share Data,

Assuming Second-Order Autoregressive Errors

The SAS System

The AUTOREG Proc

Dependent Variabl

edure

e

Ordinary Least Squares Estimates

SSE 3.30825739 DFE

MSE 0.18379 Root MSE

SBC 26.762792 AIC

Regress R-Square 0.9511 Total R-Square
Durbin-Watson 1.1358 Pr < DW

Pr > DW 0.9902

NOTE: Pr<DW is the p-value for testing positive autocorrelation,

the p-value for testing negative autocorrelation.

Standard Approx Variable

Variable DF Estimate Error t value Pr > |t| Label

Intercept 1 26.9099 1.1099 24.25 <.0001

X 1 -24.2898 1.2978 -18.72 <.0001 x
Estimates of Autocorrelations

Lag Covariance Correlation -1987654321012345¢67891

0 0.1654 1.000000 ‘ ‘********************‘

1 0.0677 0.409437 | [ HExw ok x

2 0.0223 0.134686 | | *xx

Preliminary MSE

18

0.42871

24.7713275

0.1375

0.9511
0.0098

Estimates of Autoregressive Parameters

Standard

Lag Coefficient Error t Value
1 -0.425646 0.249804 -1.70

2 0.039590 0.249804 0.16

Algorithm converged.

and Pr>DW is
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TABLE 3.21 SAS PROC AUTOREG Output for the Toothpaste Market Share Data,
Assuming Second-Order Autoregressive Errors (Continued)

The SAS System

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 2.69583958 DFE 16
MSE 0.16849 Root MSE 0.41048
SBC 28.8691217 AIC 24.8861926
Regress R-Square 0.9191 Total R-Square 0.9602
Durbin-Watson 1.9168 Pr < DW 0.3732
Pr > DW 0.6268

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is
the p-value for testing negative autocorrelaticn.

Standard Approx Variable

Variable DF Estimate Error t Value Pr > |t Label
Intercept 1 26.3406 1.5493 17.00 <.0001

X 1 -23.6025 1.8047 -13.08 <.0001 X
AR1 1 -0.4456 0.2562 -1.74 0.1012

AR2 1 0.0297 0.2617 0.11 0.9110

Autoregressive parameters assumed given.

Standard Approx Variable

Variable DF Estimate Error t Value Pr > |t; Label
Intercept 1 26.3406 1.5016 17.54 <.0001

x 1 -23.6025 1.7502 -13.49 <.0001 X

To find a prediction interval on the forecast, we need to find the variance of the
prediction error. The one-step-ahead forecast error is

yre1t — ¥ra(T) = aryy

assuming that all of the parameters in the forecasting model are known. The variance
of the one-step-ahead forecast error is

Var (ar1) =0,

Using the variance of the one-step-ahead forecast error, we can constructa 100(1 — «)
percent prediction interval for the lead-one forecast from Eq. (3.107). The Pl is

S1+1(T) £ 24204
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where z,,, is the upper «/2 percentage point of the standard normal distribution. To
actually compute an interval, we must replace o, by an estimate, resulting in

$r41(T) £ 2426, (3.109)

as the PL. Because o, and the model parameters in the forecasting equation have
been replaced by estimates, the probability level on the PI in Eq. (3.109) is only
approximate.

Now suppose that we want to forecast two periods ahead assuming that we are at
the end of the current time period, T. Using Eq. (3.107), we can write the observation
at time period T + 2 as

Vi = @dyre1 + (1 = P)fo+ Bi(xrir — dxri) +arpo

= ¢lopyr + (1 — ¢)Bo + Bilxr41 — dxp) +arp ]+ (1 — ¢)Boy
+B1xr42 — Pxr1) + argo

Assume that the future value of the regressor variables x| and x7,, are known. At
the end of the current time period, both yr and x7 are known. The random errors at
time T + 1 and T + 2 haven’t been observed yet, and because we have assumed that
the expected value of the errors is zero, the best estimate we can make of both ar
and a7 is zero. This suggests that the forecast of the observation in time period
T + 2 made at the end of the current time period T is

$742(T) = Pldyr + (1 — P)Bo + Bi(x741 — dxr)]
+(1 — $)Beo + Bi(xri2 — dxrir) (3.110)
= ¢5r1(T)+ (1 = $)Bo + f1(xria — dxray)

The two-step-ahead forecast error is
yr+2 = yr+2(T) = ars2 + dar

assuming that all estimated parameters are actually known. The variance of the two-
step-ahead forecast error is

Var(ars2 + paryi) = 6} + ¢*o?
= (1 + ¢)o;

Using the variance of the two-step-ahead forecast error, we can constructa 100(1 — «)
percent PI for the lead-one forecast from Eq. (3.107):

I1:2(T) % 2 pl(1 4+ ¢H] 0,
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To actually compute the PI, both o, and ¢ must be replaced by estimates, resulting
in

$742(T) £ 2ol + 67136, (3.111)

as the PI. Because o, and ¢ have been replaced by estimates, the probability level on
the Pl in Eq. (3.111) is only approximate.
In general, if we want to forecast T periods ahead, the forecasting equation is

3740 (T) = @3710-1(T) + (1 — $)Bo + Bi(x74r — Pxric-1) (3.112)

The 7-step-ahead forecast error is (assuming that the estimated model parameters are
known)

. iy
Vrar = V(T =arpc +@arc + -+ @7 ars

and the variance of the 7-step-ahead forecast error is

5

Var (arse + @areoi+- + ¢ larn) =1+ @7+ + ¢ o]

1_¢2r 5
= X
1+¢°

A 100(1 — o) percent PI for the lead-t forecast from Eq. (3.112) is

i 1—¢\'"
Y4 (T X zap2 Tr o7 Oy

Replacing o, and ¢ by estimates, the approximate 100(1 — &) percent PI is actually
computed from

1 (ilr 172
$rae(T) £ 20 ( T ) u (3.113)

The Case Where the Predictor Variable Must Also Be Forecast
In the preceding discussion, we assumed that in order to make forecasts, any necessary
values of the predictor variable in future time periods T + v are known. This is often
(probably usually) an unrealistic assumption. For example, if you are trying to forecast
how many new vehicles will be registered in the state of Arizona in some future year
T + t as a function of the state population in year T + 1, it’s pretty unlikely that you
will know the state population in that future year.

A straightforward solution to this problem is to replace the required future values
of the predictor variable in future time periods T + 7 by forecasts of these values.
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For example, suppose that we are forecasting one period ahead. From Eq. (3.108) we
know that the forecast for y; | is

9141(T) = dyr + (1 — P)fo + Bilxr1 — dxr)

But the future value of x7,; isn’t known. Let x7,;(T) be an unbiased forecast of
xr+1, made at the end of the current time period 7. Now the forecast for yr is

S740(T) = dyr + (1 — §)fo + Bilir1((T) — dxr] (3.114)

If we assume that the model parameters are known, the one-step-ahead forecast error
is

yrv1 — Yrri(T) = arq1 + Bilxryr — Xr4(T)]
and the variance of this forecast error is
Var (ar 1) = o + Bra(1) (3.115)

where oZ(1) is the variance of the one-step-ahead forecast error for the predictor
variable x and we have assumed that the random error ary; in period T+1 is in-
dependent of the error in forecasting the predictor variable. Using the variance of
the one-step-ahead forecast error from Eq. (3.115), we can construct a 100(1 — o)
percent prediction interval for the lead-one forecast from Eq. (3.114). The Pl is

A 1/2
S741(T) £ zap2[02 + Bra2(1)]"

where z,,, is the upper a/2 percentage point of the standard normal distribution. To

actually compute an interval, we must replace the parameters 8, 0%, and 02(1) by
estimates, resulting in

Fro1(T) £ 2o o 62 + B 212 (3.116)

as the PI. Because the parameters have been replaced by estimates, the probability
level on the Pl in Eq. (3.116) is only approximate.
In general, if we want to forecast t periods ahead, the forecasting equation is

$740(T) = @9740-1(T) + (1 — P)Po + Bilk74:(T) — P74 1(T)]  (3.117)

The t-step-ahead forecast error is, assuming that the model parameters are known,

Vrtr = 5140(T) = argr + @are—i + -+ + " 'arsi + Pilxrsr — Ere(T)]
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and the variance of the t-step-ahead forecast error is

Var(aryr + dars—1 +--+ ¢ lars) = (1 + >+ + ¢ Mol + Blol(r)
l_d):r ] R
= 0, + Bioi (D)
1+ ¢2 i

where o >(t) is the variance of the 7-step-ahead forecast error for the predictor variable
x. A 100(1 — &) percent PI for the lead-t forecast from Eq. (3.117) is

1.2

1_¢2r

¥ rT:t:ot._ - 4
Sr4c(T) /7(1+¢2

i+ o)

Replacing all of the unknown parameters by estimates. the approximate 100(1 — «)
percent PI is actually computed from

1.2
+Bfaf(t)) (3.118)

Alternate Forms of the Model
The regression model with autocorrelated errors

Y =@y + (I =)o+ Bilx, — Ppxi_y) +q,

is a very useful model for forecasting time series regression data. However, when
using this model there are two alternatives that should be considered. The first of
these is

Yy =¢y 1+ B+ B+ B ta (3.119)

This model removes the requirement that the regression coefficient for the lagged
predictor variable x,_| be equal to —8,¢. An advantage of this model is that it can be
fit by ordinary least squares. Another alternative model to consider is to simply drop
the lagged value of the predictor variable from Eq. (3.119), resulting in

,\.l = ¢)‘l*] + ﬂ() + ﬂ]x/ + a,; (3.120)

Often just including the lagged value of the response variable is sufficient and Eq.
(3.120) will be satisfactory.

The choice between models should always be a data-driven decision. The different
models can be fit to the available data, and model selection can be based on the criteria
that we have discussed previously, such as model adequacy checking and residual
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analysis, and (if enough data are available to do some data splitting) forecasting
performance over a test or trial period of data.

Example 3.16

Reconsider the toothpaste market share data originally presented in Example 3.14 and
modeling with a time series regression model with first-order autoregressive errors in
Example 3.15. First we will try fitting the model in Eq. (3.119). This model simply
relaxes the restriction that the regression coefficient for the lagged predictor variable
x;-1 (price in this example) be equal to —B,¢. Since this is just a linear regression
model, we can fit it using Minitab. Table 3.22 contains the Minitab results.

TABLE 3.22 Minitab Results for Fitting Model (3.119) to the Toothpaste Market
Share Data

Regression Analysis: y Versus y,_,x,x,_;

The regression equation is

y = 16.1 + 0.425 y(t-1) - 22.2 x + 7.56 x{(t-1)
Predictor Coef SE Coef T P
Constant 16.100 6.095 2.64 0.019
yv{t-1) 0.4253 0.2239 1.90 0.077

be -22.250 2.488 -8.94 0.000
x(t-1) 7.562 5.872 1.29 0.217

S = 0.402205 R-Sg = 96.0% R-Sg({adj) = 95.2%

Analysis of Variance

Source DF 58 MS F P
Regression 3 58.225 19.408 119.97 0.000
Residual Error 15 2.427 0.162

Total 18 60.651

Source DF Seg SS

y(t-1) 1 44.768
x 1 13.188
x(tc-1) 1 0.268

Durbin-Watson statistic = 2.04203
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TABLE 3.23 Minitab Results for Fitting Model (3.120) to the Toothpaste Market
Share Data

Regression Analysis: y Versus y,_;,x

The regression equation is

y = 23.3 + 0.162 y(t-1) - 21.2 x

Predictor Coef SE Coef T P
Constant 23.279 2.515 9.26 0.000
yit-1) 0.16172 0.09238 1.75 0.099

X -21.181 2.394 -8.85 0.000

S = 0.410394 R-Sg = 95.6% R-Sg(adj) = 95.0%

Analysis of Variance

Source DF SS MS F P
Regression 2 57.956 28.978 172.06 0.0J0
Residual Error 16 2.695 0.168

Total 18 60.651

Source DF Seqg SS
y(t-1) 1 44.768
x 1 13.188

Durbin-Watson statistic = 1.61416

This model is a good fit to the data. The Durbin—Watson statistic is d = 2.04203.
which indicates no problems with autocorrelation in the residuals. However, note that
the r-statistic for the lagged predictor variable (price) is not significant (P = 0.217),
indicating that this variable could be removed from the model. If x,_; is removed,
the model becomes the one in Eq. (3.120). The Minitab output for this model is in
Table 3.23.

This model is also a good fit to the data. Both predictors, the lagged variable y,_)
and x,, are significant. The Durbin—Watson statistic does not indicate any significant
problems with autocorrelation. It seems that either of these models would be reason-
able for the toothpaste market share data. The advantage of these models relative to
the time series regression model with autocorrelated errors is that they can be fit by
ordinary least squares. In this example, including a lagged response variable and a
lagged predictor variable has essentially eliminated any problems with autocorrelated
errors. [ |
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3.1 Anarticle in the journal Air and Waste (Update on Ozone Trends in California’s
South Coast Air Basin, Vol. 43, 1993) investigated the ozone levels in the South
Coast Air Basin of California for the years 1976-1991. The author believes
that the number of days the ozone levels exceeded 0.20 ppm (the response)
depends on the seasonal meteorological index, which is the seasonal average

850-millibar Temperature (the predictor). Table E3.1 gives the data.
a.

b
c.
d

v

Construct a scatter diagram of the data.

Test for significance of regression.

. Estimate the prediction equation.

of 17. Interpret these quantities.

. Analyze the residuals. [s there evidence of model inadequacy?
. Is there any evidence of autocorrelation in the residuals?

TABLE E3.1 Days that Ozone Levels Exceed 20 ppm

and Seasonal Meteorological Index

Year Days Index
1976 91 16.7
1977 105 17.1
1978 106 18.2
1979 108 18.1
1980 88 17.2
1981 91 18.2
1982 58 16.0
1983 82 17.2
1984 81 18.0
1985 65 17.2
1986 61 16.9
1987 48 17.1
1988 61 18.2
1089 43 17.3
1990 33 17.5
1991 36 16.6

. Calculate the 95% CI and PI on for a seasonal meteorological index value

3.2 Montgomery, Peck, and Vining [2006] present data on the number of pounds
of steam used per month at a plant. Steam usage is thought to be related to the
average monthly ambient temperature. The past year’s usages and temperatures

are shown in Table E3.2.

a. Fit a simple linear regression model to the data.
b. Test for significance of regression.

¢. Analyze the residuals from this model.
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d. Plant management believes that an increase in average ambient tempera-
ture of one degree will increase average monthly steam consumption by
10,000 Ib. Do the data support this statement?

e. Construct a 99% prediction interval on steam usage in a month with average
ambient temperature of 5§8°F.

TABLE E3.2 Monthly Steam Usage and Average Ambient Temperature

Month Temperature (‘F)  Usage/1000 Month Temperature ('F)  Usage/1000
January 21 185.79 July 68 621.55
February 24 214.47 August 74 675.06
March 32 288.03 September 62 562.03
April 47 424.84 October 50 45293
May 50 454.68 November 41 369.95
June 59 539.03 December 30 273.98

3.3 On March 1, 1984, the Wall Street Journal published a survey of television
advertisements conducted by Video Board Tests, Inc., a New York ad-testing
company that interviewed 4000 adults. These people were regular product users

TABLE E3.3 Number of Retained Impressions and
Adpvertising Expenditures

Amount Spent Retained Impressions

Firm (millions) per Week (millions)
Miller Lite 50.1 32.1
Pepsi 74.1 99.6
Stroh’s 19.3 117
Federal Express 229 219
Burger King 824 60.3
Coca-Cola 40.1 78.6
McDonald’s 185.9 92.4
MCI 26.9 50.7
Diet Cola 20.4 214
Ford 166.2 40.1
Levi’s 27 40.8
Bud Lite 456 10.4
ATT Bell 154.9 88.9
Calvin Klein 5 12
Wendy’s 497 29.2
Polaroid 26.9 38
Shasta 5.7 10
Meow Mix 7.6 12.3
Oscar Meyer 9.2 234
Crest 324 71.1

Kibbles N Bits 6.1 4.4
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34

35

3.6

3.7

who were asked to cite a commercial they had seen for that product category in
the past week. In this case, the response is the number of millions of retained
impressions per week. The predictor variable is the amount of money spent by
the firm on advertising. The data are in Table E3.3.

a. Fit the simple linear regression model to these data.

b. Is there a significant relationship between the amount that a company spends
on advertising and retained impressions? Justify your answer statistically.

¢. Analyze the residuals from this model.
d. Construct the 95% confidence intervals on the regression coefficients.

e. Give the 95% confidence and prediction intervals for the number of retained
impressions for MCI.

Suppose that we have fit the straight-line regression model 3 = ,30 + ;23|x| , but
the response is affected by a second variable x; such that the true regression
function is

E(y) = Bo + Bix1 + Baxz

a. Is the least squares estimator of the slope in the original simple linear re-
gression model unbiased?
b. Show the bias in B.

Suppose that we are fitting a straight line and wish to make the standard error
of the slope as small as possible. Suppose that the “region of interest” for x is
—1 < x < 1. Where should the observations x;, xa, ..., x,, be taken? Discuss
the practical aspects of this data collection plan.

Consider the simple linear regression model

v=PHF+Px+e

where the intercept Sy is known.

a. Find the least squares estimator of 8, for this model. Does this answer seem
reasonable?

b. What is the variance of the slope (8, ) for the least squares estimator found
in part a?

c. Find a 100(1 — «) percent Cl for f,. Is this interval narrower than the
estimator for the case where both slope and intercept are unknown?

The quality of Pinot Noir wine is thought to be related to the properties of clarity,
aroma, body, flavor, and oakiness. Data for 38 wines are given in Table E3.4.

a. Fit a multiple linear regression model relating wine quality to these predic-
tors. Do not include the “Region” variable in the model.

b. Test for significance of regression. What conclusions can you draw?
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TABLE E3.4 Wine Quality Data“ (Found in Minitab)

Clarity, Aroma, Body, Flavor, Oakiness. Quality,
X, X3 X3 X4 Xs y Region
1 33 2.8 3.1 4.1 9.8 1
1 44 49 35 39 12.6 I
1 39 53 4.8 4.7 11.9 1
1 39 2.6 3.1 3.6 11.1 1
1 5.6 5.1 55 5.1 133 1
1 4.6 4.7 5 4.1 12.8 1
1 4.8 4.8 4.8 33 12.8 1
1 53 4.5 43 52 12 1
1 43 43 39 29 13.6 3
1 43 39 4.7 39 13.9 1
1 5.1 43 4.5 3.6 14.4 3
0.5 33 54 43 36 12.3 2
0.8 59 5.7 7 4.1 16.1 3
0.7 7.1 6.6 6.7 37 16.1 3
1 7.1 44 5.8 4.1 15.5 3
0.9 55 5.6 5.6 44 15.5 3
1 6.3 54 4.8 4.6 13.8 3
1 5 5.5 5.5 4.1 13.8 3
1 4.6 4.1 43 3.1 11.3 1
09 34 5 34 34 7.9 2
09 6.4 54 6.6 4.8 15.1 3
1 55 53 53 38 13.5 3
0.7 4.7 4.1 5 37 10.8 2
0.7 4.1 4 4.1 4 9.5 2
1 6 5.4 5.7 4.7 12.7 3
1 43 4.6 4.7 49 11.6 2
1 39 4 5.1 5.1 11.7 1
1 5.1 49 5 5.1 11.9 2
1 39 44 5 44 10.8 2
1 45 37 29 39 85 2
1 5.2 43 5 6 10.7 2
0.8 4.2 38 3 4.7 9.1 1
1 33 35 43 4.5 12.1 1
1 6.8 5 6 52 14.9 3
0.8 5 5.7 55 4.8 13.5 1
0.8 35 4.7 4.2 33 12.2 1
0.8 43 5.5 35 5.8 10.3 |
0.8 5.2 4.8 5.7 35 13.2 1

“ The wine here is Pinot Noir. Region refers to distinct geographic regions.
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3.8

3.9

3.10

3.11

c. Use z-tests to assess the contribution of each predictor to the model. Discuss
your findings.

d. Analyze the residuals from this model. Is the model adequate?

e. Calculate R? and the adjusted R? for this model. Compare these values to
the R? and adjusted R? for the linear regression model relating wine quality
to only the predictors “Aroma” and “Flavor.” Discuss your results.

f. Find a 95% CI for the regression coefficient for “Flavor” for both models
in part e. Discuss any differences.

Reconsider the wine quality data in Table E3.4. The “Region” predictor refers
to three distinct geographical regions where the wine was produced. Note that
this is a categorical variable.

a. Fit the mode! using the “Region” variable as it is given in Table E3.4. What
potential difficulties could be introduced by including this variable in the
regression model using the three levels shown in Table E3.4?

b. An alternative way to include the categorical variable “Region” would be
to introduce two indicator variables x| and x; as follows:

Region X X3
1 0 0
2 1 0
3 0 I

Why is this approach better than just using the codes 1, 2, and 3?

¢. Rework Exercise 3.7 using the indicator variables defined in part b for
“Region.”

Table B.6 in Appendix B contains data on the global mean surface air tempera-
ture anomaly and the global CO, concentration. Fit a regression model to these
data, using the global CO, concentration as the predictor. Analyze the residuals
from this model. Is there evidence of autocorrelation in these data? If so, use
one iteration of the Cochrane—Orcutt method to estimate the parameters.

Table B.13 in Appendix B contains hourly yield measurements from a chemical
process and the process operating temperature. Fit a regression model to these
data, using the temperature as the predictor. Analyze the residuals from this
model. Is there evidence of autocorrelation in these data?

The data in Table E3.5 give the percentage share of market of a particular brand

of canned peaches (y,) for the past 15 months and the relative selling price (x,).

a. Fit a simple linear regression model to these data. Plot the residuals versus
time. Is there any indication of autocorrelation?

b. Use the Durbin—Watson test to determine if there is positive autocorrelation
in the errors. What are your conclusions?
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TABLE E3.5 Market Share and Price of Canned Peaches

t X, ¥ t X, v,

1 100 15.93 9 85 16.60
2 98 16.26 10 83 17.16
3 100 1594 11 81 17.77
4 89 16.81 12 79 18.05
5 95 15.67 13 90 16.78
6 87 16.47 14 77 18.17
7 93 15.66 15 78 17.25
8 82 16.94

¢. Use one iteration of the Cochrane-Orcutt procedure to estimate the regres-

d.

sion coefficients. Find the standard errors of these regression coefficients.
Is there positive autocorrelation remaining after the first iteration? Would
you conclude that the iterative parameter estimation technique has been
successful?

The data in Table E3.6 give the monthly sales for a cosmetics manufacturer
(y,) and the corresponding monthly sales for the entire industry (x,). The units
of both variables are millions of dollars.

a.

Build a simple linear regression model relating company sales to industry
sales. Plot the residuals against time. Is there any indication of autocorrela-
tion?

. Use the Durbin—Watson test to determine if there is positive autocorrelation

in the errors. What are your conclusions?

. Use one iteration of the Cochrane—Orcutt procedure to estimate the model

parameters. Compare the standard error of these regression coefficients with
the standard error of the least squares estimates.

. Test for positive autocorrelation following the first iteration. Has the proce-

dure been successful?

TABLE E3.6 Cosmetic Sales Data for Exercise 3.12

t X, AV t X, v

1 5.00 0.318 10 6.16 0.650
2 5.06 0.330 11 6.22 0.655
3 5.12 0.356 12 6.31 0.713
4 5.10 0.334 13 6.38 0.724
5 5.35 0.386 14 6.54 0.775
6 5.57 0.455 15 6.68 0.78

7 5.61 0.460 16 6.73 0.796
8 5.80 0.527 17 6.89 0.859
9 6.04 0.598 18 6.97 0.88
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3.13

3.14

3.15

3.16

3.17

3.18

Reconsider the data in Exercise 3.12. Define a new set of transformed variables
as the first difference of the original variables, y; = y, — y,-y and x; = x, —
x;—1. Regress y; on x; through the origin. Compare the estimate of the slope
from this first-difference approach with the estimate obtained from the iterative
method in Exercise 3.12.

Show that an equivalent way to perform the test for significance of regression
in multiple linear regression is to base the test on R? as follows. To test Hy :

Bi = fr=--- = B versus H,: at least one B; # 0, calculate
R*n —
Fo = (n—p)
k(1 — R?)

and reject Hy if the computed value of Fy exceeds F, ¢ n—p, where p =k + .

Suppose that a linear regression model with k = 2 regressors has been fit to

n = 25 observations and R? = 0.90.

a. Test for significance of regression at « = 0.05. Use the results of the Exer-
cise 3.14.

b. What is the smallest value of R? that would lead to the conclusion of a
significant regression if ¢ = 0.057 Are you surprised at how small this
value of R? is?

Consider the simple linear regression model y, = fy + Bix + &, where the
errors are generated by the second-order autoregressive process

& = P1&—1 + ;&2 aq

Discuss how the Cochrane—Orcutt iterative procedure could be used in this
situation. What transformations would be used on the variables y, and x,?
How would you estimate the parameters p; and p,?

Show that an alternate computing formula for the regression sum of squares in
a linear regression model is

n
SSp =) §F —ny’
i=1

An article in Quality Engineering (The Catapult Problem: Enhanced Engi-
neering Modeling Using Experimental Design, Vol. 4, 1992) conducted an
experiment with a catapult to determine the effects of hook (x), arm length
(x2), start angle (x3), and stop angle (x4) on the distance that the catapult throws
a ball. They threw the ball three times for each setting of the factors. Table E3.7
summarizes the experimental results.
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3.20

3.21

REGRESSION ANALYSIS AND FORECASTING

TABLE E3.7 Catapult Experiment Data for Exercise 3.18

X X2 X3 X4 Yy

-1 -1 -1 -1 28.0 27.1 26.2

-1 —1 1 1 46.5 43.5 46.5

—1 1 -1 1 219 21.0 20.1

-1 1 1 -1 529 53.7 52.0
1 -1 -1 1 75.0 73.1 74.3
1 —1 1 -1 127.7 126.9 128.7
1 1 -1 -1 86.2 86.5 87.0
1 1 1 ! 195.0 1959 195.7

a. Fit a regression model to the data and perform a residual analysis for the
model.

b. Use the sample variances as the basis for weighted least squares estimation
of the original data (not the sample means).

¢. Fit an appropriate model to the sample variances. Use this model to develop
the appropriate weights and repeat part b.

Consider the simple linear regression model v; = Bo + fix; + €;. where the

variance of ¢; is proportional to xiz; that 1s, Var(g;) = az,xﬁ

a. Suppose that we use the transformations y' = v/x and x’ = 1/x. Is this a
variance-stabilizing transformation?

b. What are the relationships between the parameters in the original and trans-
formed models?

c. Suppose we use the method of weighted least squares with w; = 1/x7. Is
this equivalent to the transformation introduced in part a?

Consider the weighted least squares normal equations for the case of simple
linear regression where time is the predictor variable. Eq. (3.62). Suppose that
the variances of the errors are proportional to the index of time such that w, =
1/¢. Simplify the normal equations for this situation. Solve for the estimates of
the model parameters.

Consider the simple linear regression model where time is the predictor vari-
able. Assume that the errors are uncorrelated and have constant variance o°.
Show that the variances of the model parameter estimates are

. L22T + 1)
V(Bo) =0 T 1)
and
. Y
V(B)) =0~

T(T:-1)
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3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

Analyze the regression model in Exercise 3.1 for leverage and influence.
Discuss your results.

Analyze the regression model in Exercise 3.2 for leverage and influence.
Discuss your results.

Analyze the regression model in Exercise 3.3 for leverage and influence.
Discuss your results.

Analyze the regression model for the wine quality data in Exercise 3.7 for
leverage and influence. Discuss your results.

Consider the wine quality data in Exercise 3.7. Use variable selection tech-
niques to determine an appropriate regression model for these data.

Consider the catapult data in Exercise 3.18. Use variable selection techniques
to determine an appropriate regression model for these data. In determining
the candidate variables, consider all of the two-factor cross-products of the
original four variables.

Table B.10 in Appendix B presents monthly data on airline miles flown in the
United Kingdom. Fit an appropriate regression model to these data. Analyze
the residuals and comment on model adequacy.

Table B.11 in Appendix B presents data on monthly champagne sales. Fit an
appropriate regression model to these data. Analyze the residuals and comment
on model adequacy.

Consider the data in Table E3.5. Fit a time series regression model with auto-
corrected errors to these data. Compare this model with the results you obtained
in Exercise 3.12 using the Cochrane—Orcutt procedure.

Consider the data in Table E3.5. Fit the lagged variables regression models
shown in Egs. (3.119) and (3.120) to these data. Compare these models with
the results you obtained in Exercise 3.12 using the Cochrane—Orcutt procedure,
and with the time series regression model from Exercise 3.30.

Consider the data in Table E3.5. Fit a time series regression model with auto-
corrected errors to these data. Compare this model with the results you obtained
in Exercise 3.13 using the Cochrane—Orcutt procedure.

Consider the data in Table E3.6. Fit the lagged variables regression models
shown in Egs. (3.119) and (3.120) to these data. Compare these models with
the results you obtained in Exercise 3.13 using the Cochrane—Orcutt procedure,
and with the time series regression model from Exercise 3.32.
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Consider the global surface air temperature anomaly data and the CO, concen-
tration data in Table B.6 in Appendix B. Fit a time series regression model to
these data, using global surface air temperature anomaly as the response vari-
able. Is there any indication of autocorrelation in the residuals? What corrective
action and modeling strategies would you recommend?

Table B.20 in Appendix B contains data on tax refund amounts and population.
Fit an ordinary least squares regression model to these data.
a. Analyze the residuals and comment on model adequacy.

b. Fitthe lagged variables regression models shown in Eqs. (3.119) and (3.120)
to these data. How do these models compare with the OLS model in part a?



CHAPTER 4

Exponential Smoothing Methods

If you have to forecast, forecast often.
EDGAR R. FIEDLER. American economist

4.1 INTRODUCTION

We can often think of a data set as consisting of two distinct components: signal and
noise. Signal represents any pattern caused by the intrinsic dynamics of the process
from which the data is collected. These patterns can take various forms from a simple
constant process to a more complicated structure that cannot be extracted visually or
with any basic statistical tools. The constant process, for example, is represented as

Y =un+E 4.1)

where o represents the underlying constant level of system response and ¢, is the
noise at time ¢. The &, are often assumed to be uncorrelated with mean 0 and constant
variance o7

We have already discussed some basic data smoothers in Section 2.2.2. Smoothing
can be seen as a technique to separate the signal and the noise as much as possible
and in that a smoother acts as a filter to obtain an “estimate” for the signal. In Fig-
ure 4.1 we give various types of signals that with the help of a smoother can be
“reconstructed” and the underlying pattern of the signal is to some extent recovered.
The smoothers that we will discuss in this chapter achieve this by simply relating
the current observation to the previous ones. For a given data set, one can devise
forward and/or backward looking smoothers but in this chapter we will only consider
backward looking smoothers. That is, at any given T, the observation y; will be re-
placed by a combination of observations at and before 7'. It does then intuitively make

Introduction to Time Series Analysis and Forecasting
By Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci
Copyright © 2008 John Wiley & Sons, Inc.
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ACTUAL ACTUAL SMOOTHER ESTIMATED
DATA
SIGNAL | SIGNAL
MAIN
NOISE |.7,"." " -.t.0 .| NOISE

SIGNAL / / SIGNAL

NOISE [« -.- -+ .+ ... | NOISE

SIGNAL |\ N\ sioNaL
ANV

NOISE [ "~ ~..- .| NOISE

FIGURE 4.1 The process of smoothing a data set.

sense to use some sort of an “average” of the current and the previous observations
to smooth the data. An obvious choice is to replace the current observation with the
average of the observationsat T, T — 1, ..., 1. In fact this is the “best” choice in the
least squares sense for a constant process given in Eq. (4.1).

A constant process can be smoothed by replacing the current observation with
the best estimate for . Using the least squares criterion, we define the error sum of
squares, SS, for the constant process as

T
SSe =Y (3 — )
1=l

The least squares estimate of 4 can be found by setting the derivative of SS with
respect to u to 0. This gives

~N|

1 T
A= w (4.2)
=1

where (i is the least squares estimate of 1. Equation (4.2) shows that the least squares
estimate of u is indeed the average of observations up to time T .

Figure 4.2 shows the monthly data for the Dow Jones Index from June 1999 to
June 2001. Visual inspection suggests that a constant model can be used to describe
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FIGURE 4.2 The Dow Jones Index from June 1999 to June 2001.

the general pattern of the data.” To further confirm this claim, we use the smoother
described in Eq. (4.2) for each data point by taking the average of the available data
up to that point in time. The smoothed observations are shown by solid squares in
Figure 4.2. It can be seen that the smoother in Eq. (4.2) indeed extracts the main
pattern in the data and leads to the conclusion that during the two-year period from
June 1999 to June 2001, the Dow Jones Index was quite stable.

As we can see, for the constant process the smoother in Eq. (4.2) is quite effective
in providing a clear picture of the underlying pattern. What happens though if the
process is not constant but exhibits a more complicated pattern. Consider again, for
example, the Dow Jones Index from June 1999 to June 2006 given in Figure 4.3 (the
complete data set is in Table 4.1). It is clear that the data does not follow the behavior
typical of a constant behavior during this period. In Figure 4.3, we can also see the
pattern that the smoother in Eq. (4.2) extracts for the same period. As the process
changes, this smoother is having trouble keeping up with the process. What could
be the reason for the poor performance after June 2001? The answer is quite simple:
the constant process assumption is no longer valid. However, as time goes on, the
smoother in Eq. (4.2) accumulates more and more data points and gains some sort
of “inertia.” So when there is a change in the process, it becomes increasingly more
difficult for this smoother to react to it.

How often is the constant process assumption violated? The answer to this question
is provided by the Second Law of Thermodynamics, which in the most simplistic way

“Please note that for this data the independent errors assumption in the constant process in Eq. (4.1)
may have been violated. Remedies to check and handle such violations will be provided in the following
chapters.
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FIGURE 4.3 The Dow Jones Index from June 1999 to June 2006.

TABLE 4.1 Dow Jones Index at the End of the Month from June 1999 to June 2006

Date Dow Jones Date Dow Jones Date Dow Jones Date Dow Jones

Jun-99 10970.8  Apr-01 10735 Feb-03 7891.08 Dec-04 10783
Jul-99 10655.2  May-01 10911.9  Mar-03 7992.13  Jan-05 10489.9
Aug-99 10829.3 Jun-01 105024  Apr-03 8480.09 Feb-05 10766.2
Sep-99 10337 Jul-01 10522.8  May-03 8850.26 Mar-05 10503.8
Oct-99 107299  Aug-0l 9949.75  Jun-03 8985.44  Apr-05 10192.5
Nov-99 10877.8  Sep-0l 8847.56  Jul-03 92338 May-05 10467.5
Dec-99 11497.1 Oct-01 9075.14 Aug-03 9415.82  Jun-05 10275
Jan-00 10940.5  Nov-01 9851.56  Sep-03 9275.06  Jul-05 10640.9
Feb-00 10128.3  Dec-01 100216 Oct-03 9801.12  Aug-05 10481.6
Mar-00 10921.9 Jan-02 9920 Nov-03 9782.46 Sep-05 10568.7
Apr-00 10733.9  Feb-02 10106.1 Dec-03 10453.9 Oct-05 10440.1
May-00  10522.3  Mar-02 10403.9 Jan-04 10488.1 Nov-05 10805.9
Jun-00 104479  Apr-02 9946.22  Feb-04 10583.9  Dec-05 10717.5
Jul-00 10522 May-02 9925.25 Mar-04 10357.7 Jan-06 10864.9
Aug-00 11215.1 Jun-02 924326 Apr-04 10225.6  Feb-06 10993.4
Sep-00 10650.9 Jul-02 8736.59 May-04 101885  Mar-06 11109.3
Oct-00 10971.1  Aug-02 8663.5 Jun-04 10435.5 Apr-06 11367.1
Nov-00 10414.5 Sep-02 759193  Jul-04 10139.7  May-06 111683
Dec-00 10788 Oct-02 8397.03 Aug-04 101739 Jun-06 11247.9
Jan-01 10887.4  Nov-02 8896.09 Sep-04 10080.3

Feb-01 104953  Dec-02 8341.63 Oct-04 10027.5

Mar-01 9878.78  Jan-03 8053.81 Nov-04 10428
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states that if left on its own (free of external influences) any system will deteriorate.
Thus the constant process is not the norm but at best an exception. So what can we do
to deal with this issue? Recall that the problem with the smoother in Eq. (4.2) was that
it reacted too slowly to process changes because of its inertia. In fact, when there is a
change in the process, earlier data no longer carry the information about the change
in the process, yet they contribute to this inertia at an equal proportion compared
to the more recent (and probably more useful) data. The most obvious choice is to
somehow discount the older data. Also recall that in a simple average, as in Eq. (4.2),
all the observations are weighted equally and hence have the same amount of influence
on the average. Thus if the weights of each observation are changed so that earlier
observations are weighted less, a faster reacting smoother should be obtained. As
mentioned in Section 2.2.2, a common solution is to use the simple moving average
given in Eq. (2.3):

N

o yrtyr—i o yroNe

1
My N N Y

t=T—N+1

The most crucial issue in simple moving averages is the choice of the span, N.
A simple moving average will react faster to the changes if N is small. However,
we know from Section 2.2.2 that the variance of the simple moving average with
uncorrelated observations with variance o2 is given as

2

o
Var (M7) = —IV

This means that as N gets small, the variance of the moving average gets bigger. This
represents a dilemma in the choice of N. If the process is expected to be constant,
a large N can be used whereas a small N is preferred if the process is changing.
In Figure 4.4, we show the effect of going from a span of 10 observations to 5
observations. While the latter exhibits a more jittery behavior, it nevertheless follows
the actual data more closely. A more thorough analysis on the choice of N can
be performed based on the prediction error. We will explore this for exponential
smoothers in Section 4.6.1, where we will discuss forecasting using exponential
smoothing.

A final note on the moving average is that even if the individual observations are
independent, the moving averages will be autocorrelated as two successive moving
averages contain the same N — 1 observations. In fact, the autocorrelation function
(ACF) of the moving averages that are k-lags apart is given as

k)
1 - —, k<N

Pr = N
0, k>N
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FIGURE 4.4 The Dow Jones Index from June 1999 to June 2006 with moving averages of span 5 and 10.

4.2 FIRST-ORDER EXPONENTIAL SMOOTHING

Another approach to obtain a smoother that will react to process changes faster is
to give geometrically decreasing weights to the previous observations. Hence an
exponentially weighted smoother is obtained by introducing a discount factor 6 as

7-1
Zg'h_z =yr+0yro1+ 0%+ +6" 'y (4.3)
=0

Please note that if the previous observations are to be discounted in a geometrically
decreasing manner, then we should have |6| < 1. However, the smoother in Eq. (4.3)
is not an average as the sum of the weights is

T-1 T

1-6
Yy 6 = — (4.4)
1=0

and hence does not necessarily add up to 1. For that we can adjust the smoother in
Eq. (4.3) by multiplying it by (1 — 8)/(1 — 7). However, for large T values, 67 goes
to zero and so the exponentially weighted average will have the following form:

T-1
Fr=>1-6)) 0y,
=0

= =0)(yr+0yri +60°yr2+---+67 "y (4.5)



FIRST-ORDER EXPONENTIAL SMOOTHING 177

This is called a simple or first-order exponential smoother. There is an extensive
literature on exponential smoothing. For example, see the books by Brown [1963],
Abraham and Ledolter {1983], and Montgomery et al. [1990], and the papers by
Brown and Meyer [1961], Chatfield and Yar [1988], Cox {1961}, Gardner [1985],
Gardner and Dannenbring {1980}, and Ledolter and Abraham [1984].

An alternate expression in a recursive form for simple exponential smoothing is
given by

Sr=U=0)yr + =8 (Oyr1 + 87 yr24 - +6"""n)
=(1=0)yr +6(1—0)(yr_1+6"yr2+-+0"y) (4.6)

Sro1

=1 -0 yr+08yr

The recursive form in Eq. (4.6) shows that first-order exponential smoothing can
also be seen as the linear combination of the current observation and the smoothed
observation at the previous time unit. As the latter contains the data from all previous
observations, the smoothed observation at time T is in fact the linear combination
of the current observation and the discounted sum of all previous observations. The
simple exponential smoother is often represented in a different form by setting A =
1-06,

¥r=iyr + (1 - M)yr—, 4.7

In this representation the discount factor, X, represents the weight put on the
last observation and (1 — A) represents the weight put on the smoothed value of the
previous observations.

Analogous to the size of the span in moving average smoothers, an important issue
for the exponential smoothers is the choice of the discount factor, A. Moreover, from
Eq. (4.7), we can see that the calculation of ¥, would require us to know o. We will
discuss these issues in the next two sections.

4.2.1 The Initial Value, 7,

Since g is needed in the recursive calculations that start with 1 = A y; + (1 — A) Jo,
its value needs to be estimated. But from Eq. (4.7) we have

Vir=aAn+{0-13

Jo=an+0 =N i =ry+0=20Gy+ 1 =2 5o)
=1+ -Vy)+A =215

F3=Aa(n+U =Dy +0=2n)+0 -2 %

r=r(yr+ 0 =Dyror+-+ 0= y)+ U =1 o
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which means that as T gets large and hence (1 — 1)” gets small, the contribution of
o to 7 becomes negligible. Thus for large data sets, the estimation of ¥, has little
relevance. Nevertheless, two commonly used estimates for ¥ are the following.

1. Set yo = y;. If the changes in the process are expected to occur early and fast,
this choice for the starting value for ¥7 is reasonable.

2. Take the average of the available data or a subset of the available data, ¥, and set
Jo = ¥. If the process is at least at the beginning locally constant, this starting
value may be preferred.

4.2.2 The Value of A

In Figures 4.5 and 4.6, respectively, we have two simple exponential smoothers for
the Dow Jones Index data with A = 0.2 and A = 0.4. It can be seen that in the latter
the smoothed values follow the original observations more closely. In general, as A
gets closer to 1, and more emphasis is put on the last observation. the smoothed values
will approach the original observations. Two extreme cases will be when A = 0 and
A = 1. In the former, the smoothed values will all be equal to a constant, namely,
Jo. We can think of the constant line as the “smoothest™ version of whatever pattern
the actual time series follows. For A = I, we have 7 = y; and this will represent
the “least” smoothed (or unsmoothed) version of the original time series. We can
accordingly expect the variance of the simple exponential smoother to vary between
0 and the variance of the original time series based on the choice of A. Note that under
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FIGURE 4.5 The Dow Jones Index from June 1999 to June 2006 with first-order exponential smoothing
with A = 0.2.
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the independence and constant variance assumptions we have

o0
Var (7) = Var | A (1= 2 yr

=0
=232 (1 — 1) Var(yr-)
1;9
=323 (1= )" Var(yr) (4.8)
= Var(yr) 2> ) (1 = 1)
5 o t=0
(2 I ar (yr)

Thus the question will be how much smoothing is needed. In the literature, A values
between 0.1 and 0.4 are often recommended and do indeed perform well in practice.
A more rigorous method of finding the right A value will be discussed in Section 4.6.1.

Example 4.1

Consider the Dow Jones Index from June 1999 to June 2006 given in Figure 4.3.
For first-order exponential smoothing we would need to address two issues as
stated in the previous sections: how to pick the initial value ¥ and the smooth-
ing constant A. Following the recommendation in Section 4.2.2, we will consider
the smoothing constants 0.2 and 0.4. As for the initial value, we will consider the
first recommendation in Section 4.2.1 and set §, = y;. Figures 4.5 and 4.6 show the
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FIGURE 4.6 The Dow Jones Index from June 1999 to June 2006 with first-order exponential smoothing
with A = 0.4.
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smoothed and actual data obtained from Minitab with smoothing constants 0.2 and
0.4 respectively.

Note that Minitab reports several measures of accuracy; MAPE, MAD, and MSD.
Mean absolute percentage error (MAPE) is the average absolute percentage change
between the smoothed and the true values given as

M~

I(,"x - 5‘1)/.\'1‘
T

MAPE = * x 100 (v, #0)

Mean absolute deviation (MAD) is the average absolute difference between the
smoothed and the true values given as

(v = 30
T

M~

MAD = =1

Mean squared deviation (MSD) is the average squared difference between the
smoothed and the true values given as

T bl

20— %)

MSD="2="
T

It should also be noted that the smoothed data with A = 0.4 follows the actual data
closer. However, in both cases, when there is an apparent linear trend in the data (e.g.,
from February 2003 to February 2004) the smoothed values consistently underesti-
mate the actual data. We will discuss this issue in greater detail in the next section.

As an alternative estimate for the initial value, we can also use the average of the
data between June 1999 and June 2001 since during this period the time series data
appears to be stable. Figures 4.7 and 4.8 show the single exponential smoothing with
the initial value equal to the average of the first 25 observations corresponding to the
period between June 1999 and June 2001. Note that the choice of the initial value has
very little effect on the smoothed values as time goes on.

[ ]

4.3 MODELING TIME SERIES DATA

In Section 4.1 we considered the constant process where the time series data is
expected to be around a constant level with random fluctuations, which are usually
characterized by uncorrelated errors with mean 0 and constant variance o.*. In fact
the constant process represents a very special case in a more general set of models
often used in modeling time series data as a function of time. The general class of
models can be represented as

vi=fB)+e (4.9)



MODELING TIME SERIES DATA 181

12000 Variable
® Actual
Smoothed
11000 Smoothing Constant
Alpha 0.2
Accuracy Measures
3 MAPE 4
c 10000+ MAD 395
—o_‘ MSD 286466
2
[=}
o
9000 |
BOOOJ
.
T T T T T T T T -T
Q,cb QQ 90 ,\ 9{7/ Q‘L ,Q(b DD( Qb‘ 9@ Q‘b
SRRV off & off &

Date

FIGURE 4.7 The Dow Jones Index from June 1999 to June 2006 with first-order exponential smoothing
with A = 0.2 and ) = (Z,Zi] v¢)/25 (i.e., initial value equal to the average of the first 25 observations).

where 3 is the vector of unknown parameters and ¢, are the uncorrelated errors. Thus
as a member of this general class of models, the constant process can be represented as

v =Po+ & (4.10)

where f; is equal to w in Eq. (4.1). We have seen in Chapter 3 how to estimate and
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FIGURE 4.8 The Dow Jones Index from June 1999 to June 2006 with first-order exponential smoothing
with A = 0.4 and y5 = (Z,zi] v:)/25 (i.e., initial value equal to the average of the first 25 observations).
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make inferences about the regression coefficients. The same principles apply to the
class of models in Eq. (4.9). However, we have seen in Section 4.1 that the least
squares estimates for ) at any given time 7 will be very slow to react to changes in
the level of the process. For that. we suggested to use either the moving average or
simple exponential smoothing.

As mentioned earlier, smoothing techniques are effective in illustrating the under-
lying pattern in the time series data. We have so far focused particularly on exponential
smoothing techniques. For the class of models given in Eq. (4.9). we can find another
use for the exponential smoothers: model estimation. Indeed for the constant process.
we can see the simple exponential smoother as the estimate of the process level, or
in regards to Eq. (4.10) an estimate of Sy. To show this in greater detail we need to
introduce the sum of weighted squared errors for the constant process. Remember
that the sum of squared errors for the constant process is given by

.
SSe =Y (v —p)
=1

If we argue that not all observations should have equal influence on the sum and
decide to introduce a string of weights that are geometrically decreasing in time, the
sum of squared errors becomes

T-1
SS: = 29'()‘7—1 - Bo)’ (4.11)
1=0

where |8] < | . To find the least squares estimate for 8;. we take the derivative of
Eq. (4.11) with respect to fy and set it to zero:

dss;

T-1
=—-2 0" (v —Bo) =0 (4.12)
dﬁO B 1=0

0

The solution to Eq. (4.12), 50, which is the least squares estimate of By, is

T- T-1
}[: VI (4.13)
=0 1=0
From Eq. (4.4), we have
. 1-60 =
Bo= o7 D07 (4.14)
- =0

Once again for large T, 87 goes to zero. We then have

By =(1-6))_6'vr-, (4.15)
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We can see from Eq. (4.5) and (4.15) that ﬁ() = yr. Thus the simple exponential
smoothing procedure does in fact provide a weighted least squares estimate of 8y in
the constant process with weights that are exponentially decreasing in time.

Now we return to our general class of models given in Eq. (4.9) and note that f (¢ 8)
can in fact be any function of ¢. For practical purposes it is usually more convenient to
consider the polynomial family for nonseasonal time series. For seasonal time series,
we will consider other forms of f (¢; 3) that fit the data and exhibit a certain periodicity
better. In the polynomial family, the constant process is indeed the simplest model we
can consider. We will now consider the next obvious choice: the linear trend model.

4.4 SECOND-ORDER EXPONENTIAL SMOOTHING

We will now return to our Dow Jones Index data but consider only the subset of the
data from February 2003 to February 2004 as given in Figure 4.9. Evidently for that
particular time period it was a bullish market and correspondingly the Dow Jones
Index exhibits an upward linear trend as indicated with the dashed line.

For this time period, an appropriate model in time from the polynomial family
should be the linear trend model given as

ve = fo+ Bit +& (4.16)

where the &; are once again assumed to be uncorrelated with mean 0 and constant
variance o2. Based on what we have learned so far, we may attempt to smooth/model
this linear trend using the simple exponential smoothing procedure. The actual and
fitted values for the simple exponential smoothing procedure are given in Figure 4.10.
For the exponential smoother, without any loss of generality, we used yo = y; and
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FIGURE 4.9 The Dow Jones Index from February 2003 to February 2004.
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FIGURE 4.10 The Dow Jones Index from February 2003 to February 2004 with simple exponential
smoothing with A = 0.3.

A = 0.3. From Figure 4.10, we can see that while the simple exponential smoother
was to some extent able to capture the slope of the linear trend, it also exhibits some
bias. That is, the fitted values based on the exponential smoother are consistently
underestimating the actual data. More interestingly, the amount of underestimation is
more or less constant for all observations.

In fact similar behavior for the simple exponential smoother can be observed
in Figure 4.5 during the entire data from June 1999 to June 2006. Whenever the
data exhibit a linear trend, the simple exponential smoother seems to over- or
underestimate the actual data consistently. To further explore this, we will consider
the expected value of yr,

E(Fr)y=E{r) (1=3) ¥,
t=0

=AY (=1 E(yr-)

t=0

For the linear trend model in Eq. (4.16), E (v,) = By + B1t. So we have

EGr) =AY (=1 (Bo+ B (T — 1)

1=0
Y (=2 (Bo+BTI— 1Y (1= (Bin)
1=0

=0

= (Bo+HTIAY (1= 1) =By 3 (1 =AY 1

=0 =0
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But for the infinite sums we have

iu A : L ana i(l V=12t
— = = — an — =
— I—(1—=3 A A2

t=0

Hence the expected value of the simple exponential smoother for the linear trend
model is

B 1 — A
E@Gr)=Bo+bHT)— Tﬂl

1—Ax
=E()’T)—T/31

(4.17)

This means that the simple exponential smoother is a biased estimator for the lin-
ear trend model and the amount of bias is —[(1 — A)/1]8;. This indeed explains
the underestimation in Figure 4.10. One solution will be to use a large A value
since (1 —A)/A — 0 as A — L. In Figure 4.11, we show two simple exponential
smoothers with A = 0.3 and A = 0.99. It can be seen that the latter does a better job
in capturing the linear trend. However, it should also be noted that as the smoother
with A = 0.99 follows the actual observations very closely, it fails to smooth out the
constant pattern during the first two years of the data. A method based on adaptive
updating of the discount factor, A, following the changes in the process is given in
Section 4.6.4. In this section to model a linear trend model we will instead introduce
the second-order exponential smoothing by applying simple exponential smoothing
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FIGURE 4.11 The Dow Jones Index from June 1999 to June 2006 using exponential smoothing with
A =0.3and 0.99.
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on yr as

~(2) ~(1)

Yo=AY (- (4.18)

where ¥ yT "and )(T " denote the first- and second-order smoothed exponentials, respec-
tively. Of course, in Eq. (4.18) we can use a different A than in Eq. (4.7). However, for
the derivations that follow, we will assume that the same A is used in the calculations
of both 3" and 7.

From Eq. 4. 17), we can see that the first-order exponential smoother introduces
bias in estimating a linear trend. It can also be seen in Figure 4.7 that the first-
order exponential smoother for the linear trend model exhibits a linear trend as well.
Hence the second-order smoother—that is, a first-order exponential smoother of the
original first-order exponential smoother—should also have a bias. We can represent
this as

2 1 —A
E (;'(Th)) E ( “)) ——)\ B 4.19)
From Eq. (4.19), an estimate for 8; at time T is

. A .
Bir=—— (S-‘T“ — 5~‘;’) (4.20)

and for an estimate of By at time T we have from Eq. (4.17)

1 — A,
59 = (Bor +BirT) — —&ﬂl T

o 1—A .
=>,30.T=Vr —Tﬂ17+—ﬂlr

(4.21)

In terms of the first- and second-order exponential smoothers we have

. 1 —-A A s
~(1) ()~ - ~(2)
Bor =¥ T—l 3 (."r - ,"T)) + 5 (—1 Y ( ' - 37 ))

A -
=5 =T (3 =) + (37 - ) (4.22)

P SR TN (PR AL T
1—2/7T 1—x/)°T

Finally, combining Eq. (4.20) and (4.22), we have an estimate of v7 as

(4.23)
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FIGURE 4.12 The Dow Jones index from Feburary 2003 to Feburary 2004 with second order exponental
smoother with discount factors of 0.3

1t can easily be shown that $7 is an unbiased estimator of yr. In Figure 4.12, we use
Eq. (4.23) to estimate the Dow Jones Index from February 2003 to February 2004.
From Figures 4.10 and 4.12, we can clearly see that the second-order exponential
smoother is doing a much better job in modeling the linear trend compared to the
simple exponential smoother.

As in the simple exponential smoothing, we have the same two issues to deal
with: initial values for the smoothers and the discount factors. The latter will be
discussed in Section 4.6.1. For the former we will combine Eqs. (4.20) and (4.22) as the
following:

A I —A 4
yo = Boo — —ﬂl 0

A I —
3 = Boo—2 ( ) Bio

The initial estimates of the model parameters are usually obtained by fitting the linear
trend model to the entire or a subset of the available data. The lcast squares estimates
of the parameter estimates are then used for By and B o.

(4.24)

Example 4.2

Consider the U.S. Consumer Price Index (CPI) from January 1995 to December 2004
in Table 4.2. Figure 4.13 clearly shows that the data exhibits a linear trend. To smooth
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TABLE 4.2 Consumer Price Index from January 1995 to December 2004

Month-Year CPI Month-Year CPI Month-Year CPl Month-Year CPI Month-Year CPI
Jan-1995 150.3 Jan-1997 159.1 Jan-1999 164.3 Jan-2001 175.1  Jan-2003 181.7
Feb-1995 150.9 Feb-1997 159.6 Feb-1999 164.5 Feb-2001 1758 Feb-2003 183.1
Mar-1995 151.4 Mar-1997 160 Mar-1999 165 Mar-2001 176.2 Mar-2003 184.2
Apr-1995 1519  Apr-1997 1602 Apr-1999 166.2 Apr-2001 1769 Apr-2003 183.8
May-1995 1522 May-1997 160.1 May-1999 166.2 May-2001 177.7 May-2003 1835
Jun-1995 1525 Jun-1997 160.3 Jun-1999 166.2 Jun-2001 178 Jun-2003  183.7
Jul-1995 1525 Jul-1997  160.5 Jul-1999 166.7 Jul-2001 177.5 Jul-2003  183.9
Aug-1995 1529 Aug-1997 160.8 Aug-1999 167.1 Aug-2001 177.5 Aug-2003 184.6
Sep-1995 153.2  Sep-1997 161.2 Sep-1999 1679 Sep-2001 1783 Sep-2003 185.2
Oct-1995 153.7 Oct-1997 161.6 Oct-1999 168.2 Oct-2001 1777 Oct-2003 185
Nov-1995  153.6 Nov-1997 161.5 Nov-1999 1683 Nov-2001 1774 Nov-2003 1845
Dec-1995 1535 Dec-1997 161.3 Dec-1999 168.3 Dec-2001 176.7 Dec-2003 184.3
Jan-1996 1544 Jan-1998 161.6 Jan-2000 168.8 Jan-2002 177.1 Jan-2004 185.2
Feb-1996 1549 Feb-1998 161.9 Feb-2000 169.8 Feb-2002 177.8 Feb-2004 186.2
Mar-1996 1557 Mar-1998 162.2 Mar-2000 171.2 Mar-2002 178.8 Mar-2004 1874
Apr-1996 1563 Apr-1998 1625 Apr-2000 1713 Apr-2002 1798 Apr2004 188
May-1996  156.6 May-1998 1628 May-2000 171.5 May-2002 179.8 May-2004 189.1
Jun-1996 156.7 Jun-1998 163 Jun-2000 1724 Jun-2002 1799  Jun-2004 189.7
Jul-1996 157 Jul-1998 1632 Jul-2000 1728 Jul-2002  180.1  Jul-2004 1394
Aug-1996 157.3 Aug-1998 163.4 Aug-2000 172.8 Aug-2002 130.7 Aug-2004 189.5
Sep-1996 157.8  Sep-1998 163.6  Sep-2000 1737 Sep-2002 181 Sep-2004  189.9
Oct-1996 1583 Oct-1998 164 Oct-2000 174 Oct-2002 1813 Oct-2004 1909
Nov-1996  158.6 Nov-1998 164 Nov-2000 174.1 Nov-2002 181.3 Nov-2004 191
Dec-1996  158.6 Dec-1998 163.9 Dec-2000 174 Dec-2002 1809 Dec-2004 1903
190 >
[ ]
SN
180 ,‘Nf
?5 170 j
160
150 A
T T T T T T T T T T T
\gqb \qq‘o \Q’g‘b \q(’:’\ \gcb %3 (1900 q/og\ N q/QQQ’ Qobn
& ooc" oef" & / Qz“' oef" QQ;U oef" & OQ'G Qe."'
Date

FIGURE 4.13 U.S. Consumer Price Index from January 1995 to December 2004.
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FIGURE 4.14 Single exponential smoothing of the U.S. Consumer Price Index (with jy = y;).

the data, following the recommendation in Section 4.2, we can use single exponential
smoothing with A = 0.3 as given in Figure 4.14.

As we expected, the exponential smoother does a very good job in capturing the
general trend in the data and provides a less jittery (smooth) version of it. However, we
also notice that the smoothed values are consistently below the actual values. Hence
there is an apparent bias in our smoothing. To fix this problem we have two choices:
use a bigger A or second-order exponential smoothing. The former will lead to less
smooth estimates and hence defeat the purpose. For the latter, however, we can use

A = 0.3 to calculate j'(Tl) and 51;2) as given in Table 4.3.

TABLE 4.3 Second-Order Exponential Smoothing of the U.S.

Consumer Price Index (with A = 0.3, y:)” =y, and iff) = j:(l”)

5D M

Date Y iy 5y 5r =25y - 3¢
Jan-1995 150.3 150.300 150.300 150.300
Feb-1995 150.9 150.480 150.354 150.606
Mar-1995 151.4 150.756 150.475 151.037
Apr-1995 151.9 151.099 150.662 151.536
May-1995 152.2 151.429 150.892 151.967
Nov-2004 191.0 190.041 188.976 191.106

Dec-2004 190.3 190.119 189.319 190.919
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(D -2 = L il -2
Note that we used ¥, = v, and _\'(() =¥, as the initial values of )"T "and .\", LA

more rigorous approach would involve fitting a linear regression model in time to the
available data that gives

$ = Bor + Birt
= 149.89 + 0.33¢

where ¢ goes from 1 to 120. Then from Eq. in (4.24) we have

(1) A« 1 — A .
Yo = Boo— Tﬂl.o
1 -03

= 149.89 — ———0.33 = 146.22
0.3

o I -4\ -
.9(()2) = Boo — 2 ( )ﬂl.o

A

1-03
= 149.89 -2 —) 0.33 = 142.56
0.3

Figure 4.15 shows the second-order exponential smoothing of the CPI. As we can
see, the second-order exponential smoothing not only captures the trend in the data
but also does not exhibit any bias.

190
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& 170
160-
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e CPI
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150 !
T T T T T T T T T T T
» S F & PP S S
«\qg o"\ca o'@ G\q A e G qu c;Q G c;q’Q
¥ P FFF T F I
Date

FIGURE 4.15 Second-order exponential smoothing of the U.S. Consumer Price Index (with » = 0.3,

S ~(2) _ <(h
Foo =yrand 5 =30
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The calculations for the second-order smoothing for the CPI data are performed
using Minitab. We first obtained the first-order exponential smoother for the CPI,
yf,F), using A = 0.3 and jr(()” = y;. Then we obtained 5’(72) by taking the first-order
exponential smoother y(T” using A = 0.3 and j'(()z) = Szil). Then using Eq. (4.23) we
have §r = 257 — 75

The “Double Exponential Smoothing” option available in Minitab is a slightly
different approach based on Holt’s method (Holt [1957]). This method divides the
time series data into two components: the level, L,, and the trend, 7,. These two

components can be calculated from

Li=ay +{ —a)(L,y +T_1)
i=y(Li+L_p)+-y)T

Hence for a given set of o and y, these two components are calculated and L, is used
to obtain the double exponential smoothing of the data at time ¢. Furthermore, the
sum of the level and trend components at time ¢ can be used as the one-step-ahead
(t + 1) forecast. Figure 4.16 shows the actual and smoothed data using the double
exponential smoothing option in Minitab with ¢ = 0.3 and y = 0.3.

In general, the initial values for the level and the trend terms can be obtained by
fitting a linear regression model to the CPI data with time as the regressor. Then the
intercept and the slope can be used as the initial values of L, and T, respectively. ®

Variable
190+ e Actual
Fits

Smoothing Constants
Alpha (level} 0.3
180 o Gamma (trend) 0.3

Accuracy Measures
MAPE 0.270867
1704 MAD 0.472494
MSD 0.419906

CcPI

160+
150
T T T T T i T L] T T T
O H © L > o O N Q ) >
& P PP QIQQ Q,QQ (790 (?90 (790
& (V1 (vf < (v (ot < < (¢4 (v] (V]
Sb 0(2; OQ; OQ; 0@ OQ; QQ; OQJ OQ) OQJ 0@

FIGURE 4.16 The double exponential smoothing of the U.S. Consumer Price Index (with « = 0.3 and
y = 0.3).



192 EXPONENTIAL SMOOTHING METHODS
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FIGUREA4.17 The second-order exponential smoothing of the Dow Jones Index (with 2. = 0.3, S':,I' = ¥
and 557 = 5}").
Example 4.3

For the Dow Jones Index data, we observed that first-order exponential smoothing
with low values of A showed some bias when there were linear trends in the data.
We may therefore decide to use the second-order exponential smoothing approach
for this data as shown in Figure 4.17. Note that the bias present with first-order
exponential smoothing has been eliminated. The calculations for second-order expo-
nential smoothing for the Dow Jones Index are given in Table 4.4. =

TABLE 4.4 Second-Order Exponential Smoothing of the

=2 __

Dow Jones Index (with A =0.3, )’ =y, and 5;' = 7}')

Date v, g ¥ $ro=25" -7
Jun-1999 10970.8  10970.8  10970.8 10970.8
Jui-1999 106552 10876.1 109424 10809.8
Aug-1999  10829.3  10862.1  10918.3 10805.8
Sep-1999  10337.0  10704.6  10854.2 10554.9
Oct-1999 107299  10712.2  10811.6 10612.7
May-2006 111683  11069.4  10886.5 11252.3

Jun-2006 112479 11123.0 10957.4 11288.5
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4.5 HIGHER-ORDER EXPONENTIAL SMOOTHING

So far we have discussed the use of exponential smoothers in estimating the constant
and linear trend models. For the former we employed the simple or first-order
exponential smoother and for the latter the second-order exponential smoother. It
can further be shown that for the general nth-degree polynomial model of the form

= Bo+ At + %IZ +- ’3” t" s (4.25)

where the &, are assumed to be independent with mean 0 and constant variance o2,
we first employ (n 4 1)-order exponential smoothers

SO =ayr + =15

~(2 ~(1 2
y;) A 4+ ~A)yf,-ll

(l)

S)(n) kj/(" 1) + )\) y(n)

to estimate the model parameters. For even the quadratic model (second degree poly-
nomial), the calculations get quite complicated. Refer to Montgomery et al. [1990],
Brown [1963], and Abraham and Ledolter [1983] for the solutions to higher-order
exponential smoothing problems. If a high-order polynomial does seem to be re-
quired for the time series, the autoregressive integrated moving average models and
techniques discussed in the next chapter can instead be considered.

4.6 FORECASTING

We have so far considered exponential smoothing techniques as either visual aids
to point out the underlying patterns in the time series data or to estimate the model
parameters for the class of models given in Eq. (4.9). The latter brings up yet another
use of exponential smoothing—forecasting future observations. At time T, we may
wish to forecast the observation in the next time unit, T + 1, or further into the future.
For that, we will denote the t-step-ahead forecast made at time T as 374, (T). In
the next two sections and without any loss of generality, we will once again consider
first- and second-order exponential smoothers as examples for forecasting time series
data from the constant and linear trend processes.

4.6.1 Constant Process

In Section 4.2 we discussed first-order exponential smoothing for the constant process
in Eq. (4.1) as

r = Ayr + (1 = M)¥r_
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In Section 4.3 we further showed that the constant level in Eq. (4.1), By, can be
estimated by ¥7. Since the constant model consists of two parts—f, that can be
estimated by the first-order exponential smoother and the random error that cannot
be predicted—our forecast for the future observation is simply equal to the current
value of the exponential smoother

S+ (T) =57 (4.26)

Please note that, for the constant process, the forecast in Eq. (4.26) is the same
for all future values. Since there may be changes in the level of the constant process,
forecasting all future observations with the same value will most likely be misleading.
However, as we start accumulating more observations, we can update our forecast.
For exampile, if the data at T 4+ | becomes available, our forecast for the future
observations becomes

Yo = Ayr41 (1 = A)r

or
V44 T+ D =Avr + (1 =) 37 (T) (4.27)
We can rewrite Eq. (4.27) as

Sro(My=37 () + X (v — 37 (1)
=3 () + xer (1)

(4.28)

where et (1) = yr41 — $741(T) is called the one-step-ahead forecast or prediction
error. The interpretation of Eq. (4.28) makes it easier to understand the forecasting
process using exponential smoothing: our forecast for the next observation is simply
our previous forecast for the current observation plus a fraction of the forecast error
we made in forecasting the current observation. The fraction in this summation is
determined by A. Hence how fast our forecast will react to the forecast error depends
on the discount factor. A large discount factor will lead to fast reaction to the forecast
error but it may also make our forecast react fast to random fluctuations. This once
again brings up the issue of the choice of the discount factor.

Choice of A
We will define the sum of the squared one-step-ahead forecast errors as

T
SSE() =) el (1) (4.29)
t=1

For a given historic data, we can in general calculate SSg values for various values
of A and pick the value of A that gives the smallest sum of the squared forecast errors.
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Prediction Intervals

Another issue in forecasting is the uncertainty associated with it. That is, we may
be interested not only in the “point estimates™ but also in the quantification of the
prediction uncertainty. This is usually achieved by providing the prediction intervals
that are expected at a specific confidence level to contain the future observations.
Calculations of the prediction intervals will require the estimation of the variance of
the forecast errors. We will discuss two different techniques in estimating prediction
error variance in Section 4.6.3. For the constant process, the 100 (l — a/2) percent
prediction intervals for any lead time 7 are given as

¥r &+ Zy 6.

where ¥ is the first-order exponential smoother, Z,; is the 100(1 — «/2) percentile
of the standard normal distribution, and &, is the estimate of the standard deviation
of the forecast errors.

It should be noted that the prediction interval is constant for all lead times. This
of course can be (and probably is in most cases) quite unrealistic. As it will be
more likely that the process goes through some changes as time goes on, we would
correspondingly expect to be less and less “sure” about our predictions for large lead
times (or T values). Hence we would anticipate prediction intervals that are getting
wider and wider for increasing lead times. We propose a remedy for this in Section
4.6.3. We will discuss this issue further in Chapter 6.

Example 4.4

We are interested in the average speed on a specific stretch of a highway during non-
rush hours. For the past year and a half (78 weeks), we have available weekly averages
of the average speed in miles/hour between 10 AM and 3 PM. The data is given in
Table 4.5. Figure 4.18 shows that the time series data follows a constant process. To
smooth out the excessive variation, however, first-order exponential smoothing can
be used. The “best” smoothing constant can be determined by finding the smooth-
ing constant value that minimizes the sum of the squared one-step-ahead prediction
errors.

The sum of the squared one-step-ahead prediction errors for various A values is
given in Table 4.6. Furthermore, Figure 4.19 shows that the minimum SSg is obtained
for A =0.4.

Let’s assume that we are also asked to make forecasts for the next 12 weeks at week
78. Figure 4.20 shows the smoothed values for the first 78 weeks together with the
forecasts for weeks 79-90 with prediction intervals. It also shows the actual weekly
speed during that period. Note that since the constant process is assumed, the forecasts
for the next 12 weeks are constant. Similarly, the prediction intervals are constant for
that period. ]
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TABLE 4.5 The Weekly Average Speed During Nonrush Hours

Week Speed Week Speed Week Speed Week Speed
1 47.12 26 46.74 51 45.71 76 45.69
2 45.01 27 46.62 52 43.84 77 44.59
3 44.69 28 45.31 53 45.09 78 43.45
4 4541 29 44.69 54 44.16 79 44.75
5 45.45 30 46.39 55 46.21 80 45.46
6 44.77 31 43.79 56 45.11 81 43.73
7 45.24 32 44.28 57 46.16 82 44.15
8 45.27 33 46.04 58 46.50 83 44.05
9 46.93 34 46.45 59 44 .88 84 44.83

10 47.97 35 46.31 60 45.68 85 43.93
11 45.27 36 45.65 61 44.40 86 44.40
12 45.10 37 46.28 62 44.17 87 45.25
13 43.31 38 44.11 63 45.18 88 44.80
14 44.97 39 46.00 64 43.73 89 44.75
15 45.31 40 46.70 65 45.14 90 44.50
16 45.23 41 47.84 66 47.98 91 45.12
17 42.92 42 48.24 67 46.52 92 45.28
18 44.99 43 45.59 68 46.89 93 45.15
19 45.12 44 46.56 69 46.01 94 46.24
20 46.67 45 45.02 70 44.98 95 46.15
21 44.62 46 43.67 71 45.76 96 46.57
22 45.11 47 44.53 72 45.38 97 4551
23 45.18 48 4437 73 45.33 98 46.98
24 45.91 49 44.62 74 44.07 99 46.64
25 48.39 50 46.71 75 44.02 100 4431
49
48 -
47 -
? 46 -
]
»
45
44
43
1 16 24 32 40 48 56 64 72
Week

FIGURE 4.18 The weekly average speed during nonrush hours.
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TABLE 4.6 SS; for Different . Values for the Average Speed Data

A 0.10 0.20 0.30 0.40 0.50 0.90
Week Speed Forecast e(t) Forecast e(t) Forecast e(r) Forecast e(t) Forecast e(t) Forecast e(t)
1 47.12
2 45.01 47.12 0.00 47.12 0.00 47.12 0.00 47.12 0.00 47.12 0.00 47.12 0.00
3 44.69 47.12 —2.11 47.12 -2.11 47.12 =2.11 47.12 -2.11 47.12 —-2.11 47.12 —2.11
4 45.41 4691 -2.23 46.70 —2.01 46.49 —1.80 46.28 -1.59 46.07 —1.38 4523 —0.54
5 45.45 46.69 —1.28 46.30 -0.89 45.95 —-0.54 45.64 —0.23 45.38 0.03 44,74 0.67
6 44,77 46.56 —-1.11 46.12 —0.67 45.79 —-0.33 45.55 —-0.10 45.39 0.06 45.34 0.11
7 45.24 46.45 —1.68 45.99 —1.22 45.69 —0.92 45.51 —-0.74 4542 —0.65 45.44 -0.67
8 45.27 46.28 -1.05 45.74 -0.51 4541 -0.17 45.21 0.02 45.10 0.14 44.84 0.40
9 46.93 46.18 —-0.91 45.64 —0.38 45.36 —0.09 4522 0.04 45.17 0.10 45.20 0.07
10 47.97 46.09 0.84 45.57 1.36 45.33 1.59 45.24 1.69 45.22 1.71 45.26 1.67
75 44.02 45.57 —1.50 45.61 —1.54 45.57 —1.50 45.50 —1.43 45.44 —-1.36 45.34 —1.26
76 45.69 45.42 —1.40 45.30 —1.28 45.12 —1.10 44,93 —-0.91 44.75 —-0.73 44.20 -0.18
77 44.59 4528 0.41 45.05 0.64 44.79 0.90 44.56 1.12 44.39 1.30 44.04 1.65
78 4345 45.32 -0.73 45.18 —0.58 45.06 —0.47 45.01 —-0.42 45.04 —0.45 45.52 -0.93
SSe 120.93 116.28 115.08 114.71 115.04 127.34
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FIGURE 4.19  Scatter plot of SSg for various » values.

4.6.2 Linear Trend Process

The 7-step-ahead forecast for the linear trend model is given by

740 (T) = Bor + B (T +1)
=Bor+BaT+Birrt (4.30)
Sr+Birt

49

Variable
. o A

ual
481 b Smoothed
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95°% UPL
— 35° LPL
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1 9 18 27 36 45 54 63 72 81 90
Week

FIGURE 4.20 Forecasts for the weekly average speed data for weeks 79-90.
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In terms of the exponential smoothers, we can rewrite Eq. (4.30) as

. . - A -
14 (1) = (2y(71) - y(72)> T (.V(Tl) - ZY(TZ))

A A
(D ~(2)
:<2+1_)\r>yT—<1—1_)\7:>yT

It should be noted that the predictions for the trend model depend on the lead time and
as opposed to the the constant model will be different for different lead times. As we
collect more data we can improve our forecasts by updating our parameter estimates
using

(4.31)

Borst =21+ 1) yrr + (1 =2 (Bor + Brr)

N A 2(1 —A) 4 (4.32)
.31.T+1 - ( )

- (ﬁ()‘T—H - lgo.r) + mﬁl]

Subsequently, we can update our T-step-ahead forecasts based on Eq. (4.32). As in
the constant process, the discount factor, A, can be estimated by minimizing the sum
of the squared one-step-ahead forecast errors given in Eq. (4.29).

In this case, the 100(1 — o/2) percent prediction interval for any lead time 7 is

o ) s (1 )59 4 2,6
Y yr 1 —x yr oz/ZCI e

where

=1+

Gy L0 = 1434527 4200 (4 =30 + 2i%2]

Example 4.5

Consider the Consumer Price Index data in Example 4.2. Assume that we are currently
in December 2003 and would like to make predictions of the CPI for the following
year. Although the data from January 1995 to December 2003 clearly exhibit a linear
trend, we may still like to consider first-order exponential smoothing first. We will
then calculate the “best” A value that minimizes the sum of the squared one-step-ahead
prediction errors. The predictions and prediction errors for various A values are given
in Table 4.7.

Figure 4.21 shows the sum of the squared one-step-ahead prediction errors (SSg)
for various values of A.

We notice that the SSg keeps on getting smaller as A gets bigger. This suggests
that the data is highly autocorrelated. This can clearly be clearly seen in the ACF plot
in Figure 4.22. In fact if the “best” A value (i.e., A value that minimizes $Sg) turns
out to be high, it may indeed be better to switch to a higher-order smoothing or use
an ARIMA model as discussed in the next chapter.
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TABLE 4.7 The Predictions and Prediction Errors for Various 4 Values for CPI Data

A=0.1 A=02 A=03 A=09 A =099
Month-Year CPI Prediction Error Prediction Error Prediction Error Prediction  Error  Prediction  Error
Jan-1995 150.3 150.30 0.00 150.30 0.00 150.30 0.00 150.30 0.00 150.30 0.00
Feb-1995 150.9 150.30 0.60 150.30 0.60 150.30 0.60 150.30 0.60 150.30 0.60
Mar-1995 151.4 150.36 1.04 150.42 0.98 150.48 0.92 150.84 0.56 150.89 0.51
Apr-1995 151.9 150.46 1.44 150.62 1.28 150.76 1.14 151.34 0.56 151.39 0.51
Nov-2003 184.5 182.29 2.21 183.92 0.58 184.45 0.05 185.01 -0.51 185.00 —0.50
Dec-2003 184.3 182.51 1.79 184.03 0.27 184.46 -0.16 184.55 —0.25 184.51 -0.21
SSg 1061.50 309.14 153.71 31.90 28.62
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FIGURE 4.21 Scatter plot of the sum of the squared one-step ahead prediction errors versus A.

Since the first-order exponential smoothing is deemed inadequate, we will now try
the second-order exponential smoothing to forecast next year’s monthly CPI values.
Usually we have two options:

1. On December 2003, make forecasts for the entire 2004 year; that is, 1-step-
ahead, 2-step-ahead, . . ., 12-step-ahead forecasts. For that we can use Eq. (4.30)
or equivalently Eq. (4.31). Using the Double Exponential Smoothing option in
Minitab, we obtain the forecasts given in Figure 4.23.

Autocorrelation Function for CPI
(with 5% significance limits for the autocorrelations)

1.0 4
0.8 A
0.6
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0.0
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0.2 4
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~0.6 |
-0.8
-1.0 ]

-0.4 1 ~
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L T T
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FIGURE 4.22 ACF plot for the CPI data (with 5% significance limits for the autocorrelations).
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FIGURE 4.23 The I- to 12-step-ahead forecasts of the CPI data for 2004.

Note that the forecasts further in the future (for the later part of 2004) are
quite a bit off. To remedy this we may instead use the following strategy.

2. In December 2003, make the One-step-ahead forecast for January 2004. When
the data for January 2004 becomes available, then make the one-step-ahead
forecast for February 2004, and so on. We can see from Figure 4.24 that forecasts
when only one-step-ahead forecasts are used and adjusted as actual data becomes
available perform better than in the previous case where, for December 2003.
forecasts are made for the entire following year. m

The JMP software package also has an excellent forecasting capability. Table 4.8
shows output from JMP for the CPI data for double exponential smoothing. IMP uses
the double smoothing procedure that employs a single smoothing constant. The JMP
output shows the time series plot and summary statistics including the sample ACF.
It also provides a sample partial autocorrelation function, which we will discuss in
Chapter 5. Then an optimal smoothing constant is chosen by finding the value of A that
minimizes the eror sum of squares. The value selected is A = 0.814. This relatively
large value is not unexpected, because there is a very strong linear trend in the data
and considerable autocorrelation. Values of the forecast for the next 12 periods at
origin December 2004 and the associated prediction interval are also shown. Finally.
the residuals from the model fit are shown along with the sample ACF and sample
partial autocorrelation function plots of the residuals. The sample ACF indicates that
there may be a small amount of structure in the residuals. but it is not enough to cause
concern.
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FIGURE 4.24 The one-step-ahead forecasts of the CPI data for 2004.

TABLE 4.8 JMP Output for the CPI Data

Time Series CPI
190
180
& 170
160
150 T 7 T T T
0 20 40 60 80 100 120 140
Row
Mean 17613167
5td 11.629323
N 120
Zero Mean ADF 8.4844029
Single Mean ADF —0.075966

Trend ADF —2.443095
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TABLE 4.8 JMP Output for the CPI Data (Continued)

Time Series Basic Diagnostics

Lag AutoCorr Plot Autocorr Ljung-Box Q p-Value
0 1.0000 T —— - -
1 0.9743 T 116.774 <.0001
2 0.9472 T ES—— 228.081 <.0001
3 0.9203 T 334.053 <.0001
4 0.8947 T ) 435.091 <.0001
5 0.8694 [T mmm— 531.310 <.0001
6 0.8436 T mmammm 622.708 <.0001
7 0.8166 T m——m) 709.101 <.0001
8 0.7899 T — w1} 790.659 <.0001
9 0.7644 T e 867.721 <.0001
10 07399 Ty ) 940.580 <.0001
11 07161 T w1 1009.46 <.0001
Lag AutoCorr Plot Autocorr Ljung-Box Q p-Value
12 06924 T meammmy— 1074.46 <.0001
13 0669 T w1 1135.85 <.0001
14 06469 T w7 1193.64 <.0001
15 06235 [T w1 1247.84 <.0001
16 06001 (w1 1298.54 <.0001
17 05774 (T memmw 1345.93 <.0001
18 05550 Mo T 1390.14 <.0001
19 0.5324 [T ) 1431.24 <.0001
20 05098 M——— T 1469.29 <.0001
21 04870 T T3 1504.36 <.0001
22 04637 T mmmm T 1536.48 <.0001
23 04416 T — w1 1565.91 <.0001
24 04205 T w1 1592.87 <.0001
25 0.4000 (T — ) 1617.54 0.0000
Lag Partial Plot Partial
0 1.0000 T m——
1 0.9743 T ———
2 -0.0396 [ T I T —]
3 -0.0095 — 11 ]
4 0.0128 T ]
5 -0.0117 — T T 7 3
6 -0.0212 — T 1T ]
7 -0.0379 [ X1 ]
8 -0.0070 [— 17 )
9 0.0074 [— 7 ]
10 0.0033 [ T T |
11 -0.0001 — T T —/
12 -0.0116 [ T ]
13 0.0090 T T 1
14 -0.0224 — T 11 ]
15 -0.0220 [ T 1T I
16 -0.0139 [ T T 1 ]
17 -0.0022 [ [T 71 — )
18 -0.0089 [—- T1 1
19 -0.0174 T 11 —
20 -0.0137 [ . ]
21 -0.0186 [— T 1 1
22 -0.0234 [ | —]
23 0.0074 — 1 )
24 0.0030 [— T T 1
25 -0.0036 [ T 17 ]
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TABLE 4.8 (Continued)

Model Comparison

Model DF Variance AIC

Double (Brown) Exponential Smoothing 117 0.247119 171.05558
SBC RSquare -2LogLH AIC Rank SBC Rank MAPE MAE

173.82626 0.998 169.05558 0 0 0.216853 0.376884

Model: Double (Brown) Exponential Smoothing
Model Summary

DF 117
Sum of Sguared Errors 28.9129264
Variance Estimate 0.24711903
Standard Deviation 0.49711068
Akaike's 'A' Information Criterion 171.055579
Schwarz's Bayesian Criterion 173.826263
RSquare 0.99812888
RSquare Adj 0.99812888
MAPE 0.21685285
MAE 0.37688362

~2LogLikelihood 169.055579

Stable Yes
Invertible Yes

Parameter Estimates
Term Estimate Std Error t Ratio Prob> |t |
Level Smoothing Weight 0.81402446 0.0919040 B8.86 <.0001
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TABLE 4.8 JMP Output for the CPI Data (Continued)

Lag AutoCorr Plot Autocorr Ljung-Box Q p-Value
0 1.0000 T . .
1 0.0791 [ N1 ] 0.7574 0.3841
2 03880 T ] 19.1302 <.0001
3 -0.2913 T ] 29.5770 <.0001
4 -0.0338 X1 = 29.7188 <.0001
5 0.1064 [ | = ] 31.1383 <.0001
6 0.1125 [ T W1 ] 32.7373 <.0001
7 0.1867 - =] 37.1819 <.0001
8 -0.1157 [ T 1 ] 38.9063 <.0001
9 RUECECK] — ] 52.7344 <.0001
10 -0.1033 [ Tl 1 | 54.1324 <.0001
11 s L e [ e 60.2441 <.0001
12 0.2647 | T | 69.6022 <.0001
13 -0.0773 [ X1 ] 70.4086 <.0001
14 0.0345 [ j e == 1 70.5705 <.0001
15 -0.1243 | T 1 ] 726937 <.0001
16 -0.1429 T 1 ] 75.5304 <.0001
17 0.0602 [ (T u| 76.0384 <.0001
18 0.1068 [ W1 ] 77.6533 <.0001
19 0.0370 [ =1 ] 77.8497 <.0001
20 LS T E=F ) 79.0656 <.0001
21 -0.0363 [ 1 ] 79.2579 <.0001
22 Vs e 1 e e— 80.7177 <.0001
23 -0.0306 [ =i ] 80.8570 <.0001
24 0.2602 [ - ] 91.0544 <.0001
25 0.1728 [ T W1 ] 95.6007 <.0001
Lag Partial Plot Partial
0 1.0000 T I
1 0.0791 N1 |
2 -0.3967 N 1 ]
3 Ve rT—— T —
4 -0.1970 [ | B |
5 D5 1
6 -0.0775 [ T T ]
7 0.1575 [ T ]
8 -0.1144 T T ™y
9 -0.2228 [ | ]
10 -0.1482 — TR T |
Lag AutoCorr Plot Autocorr Ljung-Box Q p-Value
1 -0.0459 [ T 1 ]
12 0.0368 [ = = -
13 -0.1335 C — ]
14 0.2308 [ T ]
15 -0.0786 [ — TN ]
16 0.0050 — I T =1
17 0.0390 [ =1
18 -0.0903 [ T T ]
19 -0.0918 [ T T ]
20 0.0012 [ T I ]
21 -0.0077 [ [ |
22 -0.1935 [ BT ]
23 -0.0665 [ TN 1 ]
24 0.1783 [ | ]
]

T
25 0.0785 [ I
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4.6.3 Estimation of o2

In the estimation of the variance of the forecast errors, o2, it is often assumed that
the model (e.g., constant, linear trend) is correct and constant in time. With these
assumptions, we have two different ways of estimating o 2:

1. We already defined the one-step-ahead forecast error as ey (1) = yry | —
Y741 (T). The 1dea is to apply the model to the historic data and obtain the forecast
errors to calculate:

1 T
6 ==Y &)
r t=1

L (4.33)
= T Z Vi1 = Prn )
t=1

It should be noted that in the variance calculations the mean adjustment was not
needed since for the correct model the forecasts are unbiased; that is, the expected
value of the forecast errors is 0.

As more data is collected, the variance of the forecast errors can be updated as

1
22 A2 2
G; =——(T6,r+e 1 4.34
e, T+1 T +1 ( e,T T+1( )) ( )
As discussed in Section 4.6.1, it may be counterintuitive to have a constant forecast
error variance for all lead times. We can instead define 03 () as the t-step-ahead
forecast error variance and estimate it by

1 T
> el (1) (4.35)

1=t

A2 _
Al

Hence the estimate in Eq. (4.35) can instead be used in the calculations of the predic-
tion interval for the 7-step-ahead forecast.

2. For the second method of estimating 03 we will first define the mean absolute
deviation A as

A =E(le— E(e)]) (4.36)
and, assuming that the model is correct, calculate its estimate by
Ar =8ler (DI + (1 = 8) Ay, (4.37)
Then the estimate of the o2 is given by
Gor = 1.25A; (4.38)

For further details, see Montgomery et al. [1990].
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4.6.4 Adaptive Updating of the Discount Factor

In the previous sections we discussed estimation of the “best” discount factor, 4,
by minimizing the sum of the squared one-step-ahead forecasts errors. However, as
we have seen with the Dow Jones Index data, changes in the underlying time series
model will make it difficult for the exponential smoother with fixed discount factor to
follow these changes. Hence a need for monitoring and, if necessary, modifying the
discount factor arises. By doing so, the discount factor will adapt to the changes in
the time series model. For that we will employ the procedure originally described by
Trigg and Leach [1967] for single discount factor. As an example we will consider
the first-order exponential smoother and modify it as

Yr=Aryr+ —Ar)¥ry (4.39)

Please note that in Eq. (4.39), the discount factor At is given as a function of time
and hence it is allowed to adapt to changes in the time series model. We also define
the smoothed error as

Or =d8er(1)+(1 —8)Qr- (4.40)

where § is a smoothing parameter.
Finally, we define the tracking signal as

or
Ay

(4.41)

where A7 is given in Eq. (4.37). This ratio is expected to be close to 0 when the
forecasting system performs well and to approach 1 as it starts to fail. In fact, Trigg
and Leach [1967] suggest setting the discount factor to

Or

T AT

Equation (4.42) will allow for automatic updating of the discount factor.

Example 4.6

Consider the Dow Jones Index from June 1999 to June 2006 given in Table 4.1. Figure
4.2 shows that the data does not exhibit a single regime of constant or linear trend
behavior. Hence a single exponential smoother with adaptive discount factor as given
in Eq. (4.42) can be used. Figure 4.25 shows two simple exponential smoothers for
the Dow Jones Index: one with fixed A = 0.3 and another one with adaptive updating
based on the Trigg—Leach method given in Eq. (4.42).

This plot shows that a better smoother can be obtained by making automatic updates
to the discount factor. The calculations for the Trigg-Leach smoother are given in
Table 4.9. ]

The adaptive smoothing procedure suggested by Trigg and Leach is a useful tech-
nique. For other approaches to adaptive adjustment of exponential smoothing param-
eters, see Chow [1965], Roberts and Reed [1969], and Montgomery [1970].
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FIGURE 4.25 Time series plot of the Dow Jones Index from June 1999 to June 2006, the simple
exponential smoother with & = 0.3, and the Trigg-Leach (TL) smoother with § = 0.3.

4.6.5 Model Assessment

If the forecast model performs as expected, the forecast errors should not exhibit any
pattern or structure; that is, they should be uncorrelated. Therefore it is always a good
idea to verify this. As noted in Chapter 2, we can do so by calculating the sample
autocorrelation function of the forecast errors from

-1
Z e, (1) —e][e,— (1) — €]

=k

rg = — (4.43)
Y le () —eP

TABLE 4.9 The Trigg-Leach Smoother for the Dow Jones Index
Date Dow Jones  Smoothed A Error 0, D,
Jun-99 10970.8 10970.8 | 0
Jul-99 10655.2 10655.2 1 —315.6 —94.68 94.68
Aug-99 10829.3 10675.835 0.11853 174.1 —14.046 118.506
Sep-99 10337 10471.213  0.6039 —338.835 —111.483 184.605
Oct-99 10729.9 10471.753  0.00209 258.687 —0.43178  206.83
May-06 11168.3 11283.962 036695 —182.705 68.0123 185.346
Jun-06 112479 11274.523  0.26174 —36.0619 36.79 140.561
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where

lel
o1 |
é n’;e,()

If the one-step-ahead forecast errors are indeed uncorrelated, the sample autocorre-
lations for any lag k should be around 0 with a standard error 1/+/7T. Hence a sample
autocorrelation for any lag k that lies outside the +2/+/T limits will require further
investigation of the model.

4.7 EXPONENTIAL SMOOTHING FOR SEASONAL DATA

Some time series data exhibit cyclical or seasonal patterns that cannot be effectively
modeled using the polynomial model in Eq. (4.25). Several approaches are available
for the analysis of such data. In this chapter we will discuss exponential smoothing
techniques that can be used in modeling seasonal time series. The methodology we will
focus on was originally introduced by Holt [1957] and Winters [1960] and is generally
known as Winters’ method, where a seasonal adjustment is made to the linear trend
model. Two types of adjustments are suggested—additive and multiplicative.

4.7.1 Additive Seasonal Model

Consider the U.S. clothing sales data given in Figure 4.26. Clearly, for certain months
of every year we have high (or low) sales. Hence we can conclude that the data exhibit
seasonality. The data also exhibit a linear trend as the sales tend to get higher for the
same month as time goes on. As the final observation, we note that the amplitude of
the seasonal pattern, that is, the range of the periodic behavior within a year, remains
more or less constant in time and remains independent of the average level within a
year.

We will for this case assume that the seasonal time series can be represented by
the following model:

W= L[ + S} + & (444)

where L, represents the linear trend component and can in turn be represented by
Bo + Bit; S, represents the seasonal adjustment with S, = S, = S;4», = ---fort =
1,...,s — 1, where s is the length of the period of the cycles; and the ¢, are assumed
to be uncorrelated with mean 0 and constant variance o2. One usual restriction on
this model is that the seasonal adjustments add to zero during one period,

Z S, =0 (4.45)
=1
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FIGURE 4.26 Time series plot of U.S. clothing sales from January 1992 to December 2003.

In the model given in Eq. (4.44), for forecasting the future observations, we will
employ first-order exponential smoothers with difterent discount factors. The proce-
dure for updating the parameter estimates once the current observation yr is obtained
is as follows.

Step 1. Update the estimate of L using
Ly =x (yr =S ) + U =) (Lroi + Bir) (4.46)
where 0 < A; < 1. It should be noted that in Eq. (4.46), the first part can be

seen as the “current” value for Ly and the second part as the forecast of Ly
based on the estimates at 7 — 1.

Step 2. Update the estimate of 8, using
Bir=2(Lr—Lro) + (=2 Brro (4.47)

where 0 < X, < 1. Asin Step 1, the estimate of 8, in Eq. (4.47) can be seen as
the linear combination of the “current” value of 8; and its “forecast” at T — 1.

Step 3. Update the estimate of S, using

Sr=x(yr = Ly) + (1 —23) 87, (4.43)

where 0 < A3 < 1.



212 EXPONENTIAL SMOOTHING METHODS

Step 4. Finally, the t-step-ahead forecast, 31, (T), is
St =L+ st +Sr(t =) (4.49)

As before, estimating the initial values of the exponential smoothers can be an
issue. For a given set of historic data with n seasons (hence ns observations). we can
use the least squares estimates of the following model:

s—1
yo=Bo+Bit+Y vi(li—1ls)+e (4.50)
i=1
where

1 =11 [
1“:!, t=1i,i+s.i+2s, 451)

0, otherwise

The least squares estimates of the parameters in Eq. (4.50) are used to obtain the
initial values as

Bo‘o = 1:0=Bo
BI.O = B
Sj_vaJ for 1l <j<s—1

Prediction Intervals

As in the nonseasonal smoothing case, the calculations of the prediction intervals
would require an estimate for the prediction error variance. The most common ap-
proach is to use the relationship between the exponential smoothing techniques and
the autoregressive integrated moving average models of Chapter 5 as discussed in Sec-
tion 4.8, and estimate the prediction error variance accordingly. It can be shown that
the seasonal exponential smoothing using the three parameter Holt—Winters method
is optimal for an ARIMA (0, 1,5 4+ 1) x (0, 1, 0),, process, where s represents the
length of the period of the seasonal cycles. For further details see Yar and Chatfield
[1990] and McKenzie [1986].

An alternate approach is to recognize that the additive seasonal model is just a linear
regression model and to use the OLS regression procedure for constructing prediction
intervals as discussed in Chapter 3. If the errors are correlated, the regression methods
for autocorrelated errors could be used instead of OLS.
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TABLE 4.10 U.S. Clothing Sales from January 1992 to December 2003
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Date Sales  Date  Sales Date  Sales Date  Sales Date  Sales
Jan-92 4889 Aug-94 7824 Mar-97 7695 Oct-99 9481 May-02 9906
Feb-92 5197  Sep-94 7229 Apr-97 7161 Nov-99 10577 Jun-02 9530
Mar-92 6061  Oct-94 7772 May-97 7978 Dec-99 15552  Jul-02 9298
Apr-92 6720 Nov-94 8873  Jun-97 7506 Jan-00 6726 Aug-02 10755
May-92 6811 Dec-94 13397 Jul-97 7602  Feb-00 7514 Sep-02 9128
Jun-92 6579  Jan-95 5377 Aug-97 8877 Mar-00 9330 Oct-02 10408
Jul-92 6398 Feb-95 5516  Sep-97 7859  Apr-00 9472 Nov-02 11618
Aug-92 7536 Mar-95 6995  Oct-97 8500 May-00 9551 Dec-02 16721
Sep-92 6923  Apr-95 7131 Nov-97 9594  Jun-00 9203 Jan-03 7891
Oct-92 7566 May-95 7246  Dec-97 13952 Jul-00 8910 Feb-03 7892
Nov-92 8257 Jun-95 7140 Jan-98 6282 Aug-00 10378 Mar-03 9874
Dec-92 12804 Jul-95 6863  Feb-98 6419  Sep-00 9731 Apr-03 9920
Jan-93 5480 Aug-95 7790 Mar-98 7795 Oct-00 9868 May-03 10431
Feb-93 5322 Sep-95 7618 Apr-98 8478 Nov-00 11512 Jun-03 9758
Mar-93 6390 Oct-95 7484 May-98 8501 Dec-00 16422  Jul-03 10003
Apr-93 7155 Nov-95 9055 Jun-98 8044  Jan-O! 7263 Aug-03 11055
May-93 7175 Dec-95 13201  Jul-98 8272  Feb-01 7866 Sep-03 9941
Jun-93 6770  Jan-96 5375 Aug-98 9189 Mar-01 9535 Oct-03 10763
Jui-93 6954  Feb-96 6105  Sep-98 8099  Apr-01 9710 Nov-03 12058
Aug-93 7438 Mar-96 7246  Oct-98 9054 May-01 9711 Dec-03 17535
Sep-93 7144  Apr-96 7335 Nov-98 10093 Jun-01 9324
Oct-93 7585 May-96 7712  Dec-98 14668 Jul-01 9063
Nov-93 8558  Jun-96 7337 Jan-99 6617 Aug-01 10584
Dec-93 12753 Jul-96 7059  Feb-99 6928  Sep-01 8928
Jan-94 5166 Aug-96 8374 Mar-99 8734  Oct-01 9843
Feb-94 5464  Sep-96 7554  Apr-99 8973 Nov-01 11211
Mar-94 7145  Oct-96 8087 May-99 9237 Dec-01 16470
Apr-94 7062 Nov-96 9180 Jun-99 8689  Jan-02 7508
May-94 6993  Dec-96 13109 Jul-99 8869  Feb-02 8002
Jun-94 6995  Jan-97 5833 Aug-99 9764 Mar-02 10203
Jul-94 6886  Feb-97 5949  Sep-99 8970  Apr-02 9548
Example 4.7

Consider the clothing sales data given in Table 4.10. To obtain the smoothed version
of this data, we can use the Winters’ Method option in Minitab. Since the amplitude
of the seasonal pattern is constant over time, we decide to use the additive model. Two
issues we have encountered in previous exponential smoothers have to be addressed
in this case as well—initial values and the choice of smoothing constants. Similar
recommendations as in the previous exponential smoothing options can also be made
in this case. Of course, the choice of the smoothing constant, in particular, is a bit
more concerning since it involves the estimation of three smoothing constants. In this
example, we follow our usual recommendation and choose smoothing constants that
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FIGURE 4.27 Smoothed data for the U.S. clothing sales from January 1992 to December 2003 using
the additive model.

are all equal to 0.2. For more complicated cases, we recommend seasonal ARIMA
models, which we will discuss in the next chapter.

Figure 4.27 shows the smoothed version of the seasonal clothing sales data. To use
this model for forecasting, let’s assume that we are currently in December 2002 and we
are asked to make forecasts for the following year. Figure 4.28 shows the forecasted
sales for 2003 together with the actual data and the 95% prediction limits. Note that
the forecast for December 2003 is the 12-step-ahead forecast made in December 2002.
Even though the forecast is made further in the future, it still performs well since in
the “seasonal” sense it is in fact a one-step-ahead forecast. »

4.7.2 Multiplicative Seasonal Model

If the amplitude of the seasonal pattern is proportional to the average level of the
seasonal time series, as in the liquor store sales data given in Figure 4.29, the following
multiplicative seasonal model will be more appropriate:

»w=LS +e¢& (4.52)

where L, once again represents the trend component (i.e., B + Bi1); S, represents
the seasonal adjustment with S, = §,,;, = S,;>, =---fort =1....,5s — 1, where s
is the length of the period of the cycles; and the ¢, are assumed to be uncorrelated
with mean 0 and constant variance 2. The restriction for the seasonal adjustments
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FIGURE 4.28 Forecasts for 2003 for the U.S. clothing sales.

in this case becomes

XS:S,zs
t

(4.53)

As in the additive model, we will employ three exponential smoothers to estimate

the parameters in Eq. (4.52).
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FIGURE 4.29 Time series plot of liquor store sales data from January 1992 to December 2004.
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Step 1. Update the estimate of L using

N Yy ~ N
LT=A.S'T (=) (Eroi+Bir) (4.54)
T—5

where 0 < A; < 1. Similar interpretation as in the additive model can be made
for the exponential smoother in Eq. (4.54).

Step 2. Update the estimate of 8, using

Bir=r(lr—=Leo)+(0~22)B17-) (4.55)

where 0 < A, < 1.
Step 3. Update the estimate of S, using
yr

Sr =23 —+ (1—23) 87, (4.56)

T

where 0 < A3 < 1.
Step 4. The t-step-ahead forecast, 374.(T), is

$74c(T) = (Lr + Br77) S1(x —5) (4.57)

From the historic data set with n seasons, the initial values, f¢. 81 0. and Sy. can
be calculated as

5 o Yo — ¥
Bo.o 0= s
where
1 s
;’1 = - ¥:
t=(i~1)s+1
and
N _ S A
Bro =% —zBoo
2
~ %k
. Sj )
Sj s =95 forl <j<s
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where

Yi—)s+j
5 —((s + /2= j) Bo

t

i

For further details, please see Montgomery et al. [1990} and Abraham and Ledolter
[1983].

Prediction Intervals

Constructing prediction intervals for the multiplicative model is much harder than
the additive model as the former is nonlinear. Several authors have considered this
problem, including Chatfield and Yar [1991], Sweet [1985], and Gardner [1988].
Chatfield and Yar [1991] propose an empirical method in which the length of the
prediction interval depends on the point of origin of the forecast and may decrease
in length near the low points of the seasonal cycle. They also discuss the case where
the error is assumed to be proportional to the seasonal effect rather than constant,
which is the standard assumption in Winters’ method. Another approach would
be to obtain a “linearized” version of Winters’ model by expanding it in a first-
order Taylor series and use this to find an approximate variance of the predicted
value (statisticians call this the delta method). Then this prediction variance could be
used to construct prediction intervals much as is done in the linear regression model
case.

Example 4.8

Consider the liquor store data given in Table 4.11. In Figure 4.29, we can see
that the amplitude of the periodic behavior gets larger as the average level of the
seasonal data gets larger due to a linear trend. Hence the multiplicative model
will be more appropriate. Figures 4.30 and 4.31 show the smoothed data with ad-
ditive and multiplicative models, respectively. Based on the performance of the
smoothers, it should therefore be clear that the multiplicative model should indeed be
preferred.

As for forecasting using the multiplicative model, we can assume as usual that we
are currently in December 2003 and are asked to forecast the sales in 2004. Figure 4.32
shows the forecasts together with the actual values and the prediction intervals. B

4.8 EXPONENTIAL SMOOTHERS AND ARIMA MODELS

The first-order exponential smoother presented in Section 4.2 is a very effective model
in forecasting. The discount factor, A, makes this smoother fairly flexible in handling
time series data with various characteristics. The first-order exponential smoother is
particularly good in forecasting time series data with certain specific characteristics.
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TABLE 4.11 Liquor Store Sales from January 1992 to December 2004

EXPONENTIAL SMOOTHING METHODS

Date Sales Date Sales Date Sales Date Sales Date Sales
Jan-92 1519  Aug-94 1870 Mar-97 1862 Oct-99 2264 May-02 2661
Feb-92 1551 Sep-94 1834 Apr-97 1826 Nov-99 2321 Jun-02 2579
Mar-92 1606 Oct-94 1817 May-97 2071 Dec-99 3336 Jul-02 2667
Apr-92 1686 Nov-94 1857 Jun-97 2012 Jan-00 1963  Aug-02 2698
May-92 1834 Dec-94 2593 Jul-97 2109 Feb-00 2022 Sep-02 2392
Jun-92 1786 Jan-95 1565 Aug-97 2092 Mar-00 2242 Oct-02 2504
Jul-92 1924 Feb-95 1510 Sep-97 1904 Apr-00 2184 Nov-02 2719
Aug-92 1874 Mar95 1736 Oct-97 2063 May-00 2415 Dec-02 3647
Sep-92 1781 Apr-95 1709 Nov-97 2096 Jun-00 2473 Jan-03 2228
Oct-92 1894 May-95 1818 Dec-97 2842 Jul-00 2524  Feb-03 2153
Nov-92 1843 Jun-95 1873 Jan-98 1863  Aug-00 2483 Mar03 2395
Dec-92 2527 Jul-95 1898  Feb-98 1786  Sep-00 2419  Apr-03 2460
Jan-93 1623  Aug-95 1872 Mar-98 1913 Oct-00 2413 May-03 2718
Feb-93 1539 Sep-95 1856  Apr-98 1985 Nov-00 2615 Jun-03 2570
Mar-93 1688 Oct-95 1800 May-98 2164 Dec-00 3464 Jul-03 2758
Apr-93 1725 Nov-95 1892 Jun-98 2084 Jan-01 2165 Aug-03 2809
May-93 1807 Dec-95 2616 Jul-98 2237 Feb-01 2107 Sep-03 2597
Jun-93 1804 Jan-96 1690 Aug-98 2146 Mar-01 2390 Oct-03 2785
Jul-93 1962  Feb-96 1662  Sep-98 2058 Apr-01 2292 Nov-03 2803
Aug-93 1788 Mar-96 1849 Oct-98 2193 May-01 2538 Dec-03 3849
Sep-93 1717  Apr-96 1810 Nov-98 2186 Jun-01 2596 Jan-04 2406
Oct-93 1769 May-96 1970 Dec-98 3082 Jul-01 2553 Feb-04 2324
Nov-93 1794 Jun-96 1971 Jan-99 1897 Aug-01 2590 Mar-04 2509
Dec-93 2459 Jul-96 2047 Feb-99 1838 Sep-01 2384 Apr-04 2670
Jan-94 1557 Aug-96 2075 Mar-99 2021 Oct-01 2481 May-04 2809
Feb-94 1514  Sep-96 1791 Apr-99 2136 Nov-01 2717 Jun-04 2764
Mar-94 1724 Oct-96 1870 May-99 2250 Dec-01 3648 Jul-04 2995
Apr-94 1769 Nov-96 2003 Jun-99 2186 Jan-02 2182 Aug-04 2745
May-94 1842 Dec-96 2562 Jul-99 2383 Feb-02 2180  Sep-04 2742
Jun-94 1869 Jan-97 1716 Aug-99 2182 Mar-02 2347 Oct-04 2863
Jul-94 1994  Feb-97 1629  Sep-99 2169  Apr-02 2380 Nov-04 2912
Dec-04 4085
Recall that the first-order exponential smoother is given as
Sr=Xr+{d=-2)¥r (4.58)
and the forecast error is defined as
er =31 — ¥r-) (4.59)
Similarly, we have
er—1 = yr_| — ¥r-2 (4.60)
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FIGURE 4.30
additive model.

Smoothed data for the liquor store sales from January 1992 to December 2004 using the

By multiplying Eq. (4.60) by (1 — X) and subtracting it from Eq. (4.59), we obtain

er —(1 —X)er_,

Or — =) — U =) (yr-1 ~ Fr-2)

Yr—=Yr-1 —¥r1+Aiyr g+ =Xy

yr—yr-1 — Vyro1 + yro
Yr — Yr—

=¥r

4

.61)
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Accuracy Measures

MAPE 3.09
MAD 64.81
MSD 7263.29

FIGURE 4.31
multiplicative model.

Smoothed data for the liquor store sales from January 1992 to December 2004 using the
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FIGURE 4.32 Forecasts for the liquor store sales for 2004 using the multiplicative model.

We can rewrite Eq. (4.61) as
¥T — ¥r-1 = er —Ber_ (4.62)

where 6 = 1 — A. Recall from Chapter 2 the backshift operator, B, defined as
B(y:) = y;—. Thus Eq. (4.62) becomes

(1-B)yr=(1—-6B)er (4.63)

We will see in Chapter S that the model in Eq. (4.63) is called the integrated
moving average model denoted as IMA(1,1), for the backshift operator is used only
once on yr and only once on the error. It can be shown that if the process exhibits the
dynamics defined in (4.63), that is an IMA(1,1) process, the first-order exponential
smoother provides minimum mean squared error (MMSE) forecasts (see Muth [1960].
Box and Lucerio [1997], and Box, Jenkins, and Reinsel [1994]). For more discussion
of the equivalence between exponential smoothing techniques and the ARIMA models
see Abraham and Ledolter [1983], Cogger [1974], Goodman [1974], Pandit and Wu
[1974], and McKenzie [1984].

EXERCISES

4.1 Consider the time series data shown in Table E4.1.
a. Make a time series plot of the data.
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b. Use simple exponential smoothing with A = 0.2 to smooth the first 40 time
periods of this data. How well does this smoothing procedure work?

¢. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors.

TABLE E4.1 Data for Exercise 4.1

Period Vi Period Y Period Yy Period ¥ Period Vi
1 48.7 11 49.1 21 453 31 50.8 41 479
2 45.8 12 46.7 22 43.3 32 46.4 42 495
3 46.4 I3 47.8 23 44.6 33 523 43 44.0
4 46.2 14 45.8 24 47.1 34 50.5 44 53.8
5 44.0 15 45.5 25 534 35 53.4 45 52.5
6 53.8 16 49.2 26 449 36 53.9 46 52.0
7 47.6 17 54.8 27 50.5 37 52.3 47 50.6
8 47.0 18 44.7 28 48.1 38 53.0 48 48.7
9 47.6 19 51.1 29 454 39 48.6 49 51.4
10 51.1 20 473 30 51.6 40 52.4 50 47.7
4.2 Reconsider the time series data shown in Table E4.1.

4.3

44

4.5

a. Use simple exponential smoothing with the optimum value of A to smooth
the first 40 time periods of this data (you can find the optimum value from
Minitab). How well does this smoothing procedure work? Compare the
results with those obtained in Exercise 4.1.

b. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors. Compare these forecast errors with those from Exercise 4.1.
How much has using the optimum value of the smoothing constant improved
the forecasts?

Find the sample autocorrelation function for the time series in Table E4.1. Does
this give you any insight about the optimum value of the smoothing constant
that you found in Exercise 4.27

Consider the time series data shown in Table E4.2.
a. Make a time series plot of the data.

b. Use simple exponential smoothing with A = 0.2 to smooth the first 40 time
periods of this data. How well does this smoothing procedure work?

¢. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors.

Reconsider the time series data shown in Table E4.2.

a. Use simple exponential smoothing with the optimum value of A to smooth
the first 40 time periods of this data (you can find the optimum value from
Minitab). How well does this smoothing procedure work? Compare the
results with those obtained in Exercise 4.4.
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TABLE E4.2 Data for Exercise 4.4

Period ¥ Period ¥ Period ¥, Period ¥ Period v,

43.1 11 41.8 21 47.7 31 529 41 48.3
43.7 12 50.7 22 51.1 32 47.3 42 45.0
453 13 55.8 23 67.1 33 50.0 43 55.2
473 14 48.7 24 47.2 34 56.7 44 63.7
50.6 15 48.2 25 50.4 35 423 45 64.4
54.0 16 46.9 26 442 36 520 46 66.8
46.2 17 474 27 520 37 48.6 47 63.3
49.3 18 49.2 28 355 38 515 48 60.0
539 19 50.9 29 48.4 39 49.5 49 60.9
425 20 55.3 30 554 40 514 50 56.1

OO 0NN R W
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b. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors. Compare these forecast errors with those from Exercise 4.4.
How much has using the optimum value of the smoothing constant improved
the forecasts?

4.6 Find the sample autocorrelation function for the time series in Table E4.2. Does
this give you any insight about the optimum value of the smoothing constant
that you found in Exercise 4.5?

4.7 Consider the time series data shown in Table E4.3.
a. Make a time series plot of the data.

b. Use simple exponential smoothing with 4 = 0.1 to smooth the first 30 time
periods of this data. How well does this smoothing procedure work?

¢. Make one-step-ahead forecasts of the last 20 observations. Determine the
forecast errors.

TABLE E4.3 Data for Exercise 4.7

Period v Period v, Period v, Period v, Period v

275 1l 297 21 231 31 255 41 293
245 12 235 22 238 32 255 42 284
222 13 237 23 251 33 229 43 276

169 14 203 24 253 34 286 44 290
236 15 238 25 283 35 236 45 250
259 16 232 26 283 36 194 46 235
268 17 206 27 245 37 228 47 275
225 18 295 28 234 38 244 48 350
246 19 247 29 273 39 241 49 290
263 20 227 30 293 40 284 50 269

OO XX~ N RN —
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d.

Plot the forecast errors on a control chart for individuals. Use a moving range
chart to estimate the standard deviation of the forecast errors in constructing
this chart. What conclusions can you draw about the forecasting procedure
and the time series?

4.8 The data in Table E4.4 exhibits a linear trend.

a.
b.

Verify that there is a trend by plotting the data.

Using the first 12 observations, develop an appropriate procedure for fore-
casting.

. Forecast the last 12 observations and calculate the forecast errors. Does the

forecasting procedure seem to be working satisfactorily?

TABLE E4.4 Data for Exercise 4.8

Period Y Period Ve
1 315 13 460
2 195 14 395
3 310 15 390
4 316 16 450
5 325 17 458
6 335 18 570
7 318 19 520
8 355 20 400
9 420 21 420
10 410 22 580
11 485 23 475
12 420 24 560

4.9 Reconsider the linear trend data in Table E4.4. Take the first difference of this
data and plot the time series of first differences. Has differencing removed
the trend? Use exponential smoothing on the first 11 differences. Instead of
forecasting the original data, forecast the first differences for the remaining data
using exponential smoothing and use these forecasts of the first differences to
obtain forecasts for the original data.

4.10

Table B.1 in Appendix B contains data on the market yield on U.S. Treasury
Securities at 10-year constant maturity.

a.
b.

Make a time series plot of the data.

Use simple exponential smoothing with A = 0.2 to smooth the data, ex-
cluding the last 20 observations. How well does this smoothing procedure
work?

. Make one-step-ahead forecasts of the last 20 observations. Determine the

forecast errors.
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4.11

4.12

4.13

4.14

4.15
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Reconsider the U.S. Treasury Securities data shown in Table B.1.

a. Use simple exponential smoothing with the optimum value of A to smooth
the data, excluding the last 20 observations (you can find the optimum value
from Minitab). How well does this smoothing procedure work? Compare
the results with those obtained in Exercise 4.10.

b. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors. Compare these forecast errors with those from Exercise
4.10. How much has using the optimum value of the smoothing constant
improved the forecasts?

Table B.2 contains data on pharmaceutical product sales.

a. Make a time series plot of the data.

b. Use simple exponential smoothing with > = 0.1 to smooth this data. How
well does this smoothing procedure work?

c. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors.

Reconsider the pharmaceutical sales data shown in Table B.2.

a. Use simple exponential smoothing with the optimum value of A to smooth
the data (you can find the optimum value from Minitab). How well does
this smoothing procedure work? Compare the results with those obtained
in Exercise 4.12.

b. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors. Compare these forecast errors with those from Exercise
4.12. How much has using the optimum value of the smoothing constant
improved the forecasts?

¢. Construct the sample autocorrelation function for these data. Does this give
you any insight regarding the optimum value of the smoothing constant?

Table B.3 contains data on chemical process viscosity.

a. Make a time series plot of the data.

b. Use simple exponential smoothing with A = 0.1 to smooth this data. How
well does this smoothing procedure work?

c. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors.

Reconsider the chemical process data shown in Table B.3.

a. Use simple exponential smoothing with the optimum value of 4 to smooth
the data (you can find the optimum value from Minitab). How well does
this smoothing procedure work? Compare the results with those obtained
in Exercise 4.14.

b. Make one-step-ahead forecasts of the last 10 observations. Determine the
forecast errors. Compare these forecast errors with those from Exercise 4.14.



EXERCISES 225

4.16

4.17

4.18

4.19

4.20

How much has using the optimum value of the smoothing constant improved
the forecasts?

¢. Construct the sample autocorrelation function for these data. Does this give
you any insight regarding the optimum value of the smoothing constant?

Table B.4 contains data on the annual U.S. production of blue and gorgonzola
cheeses. This data has a strong trend.

a. Verify that there is a trend by plotting the data.
b. Develop an appropriate exponential smoothing procedure for forecasting.

c. Forecast the last 10 observations and calculate the forecast errors. Does the
forecasting procedure seem to be working satistactorily?

Reconsider the blue and gorgonzola cheese data in Table B.4 and Exercise 4.16.
Take the first difference of this data and plot the time series of first differences.
Has differencing removed the trend? Use exponential smoothing on the first
differences. Instead of forecasting the original data, develop a procedure for
forecasting the first differences and explain how you would use these forecasts
of the first differences to obtain forecasts for the original data.

Table B.5 shows data for U.S. beverage manufacturer product shipments. De-
velop an appropriate exponential smoothing procedure for forecasting these
data.

Table B.6 contains data on the global mean surface air temperature anomaly.
a. Make a time series plot of the data.

b. Use simple exponential smoothing with A = 0.2 to smooth the data. How
well does this smoothing procedure work? Do you think this would be a
reliable forecasting procedure?

Reconsider the global mean surface air temperature anomaly data shown in
Table B.6 and used in Exercise 4.19.

a. Use simple exponential smoothing with the optimum value of A to smooth
the data (you can find the optimum value from Minitab). How well does
this smoothing procedure work? Compare the results with those obtained
in Exercise 4.19.

b. Do you think that using the optimum value of the smoothing constant would
result in improved forecasts from exponential smoothing?

¢. Take the first difference of this data and plot the time series of first dif-
ferences. Use exponential smoothing on the first differences. Instead of
forecasting the original data, develop a procedure for forecasting the first
differences and explain how you would use these forecasts of the first
differences to obtain forecasts for the original global mean surface air tem-
perature anomaly.
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4.21

4.22

4.23

4.24
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Table B.7 contains daily closing stock prices for the Whole Foods Market.
a. Make a time series plot of the data.

b. Use simple exponential smoothing with A = 0.1 to smooth the data. How
well does this smoothing procedure work? Do you think this would be a
reliable forecasting procedure?

Reconsider the Whole Foods Market data shown in Table B.7 and used in
Exercise 4.21.

a. Use simple exponential smoothing with the optimum value of A to smooth
the data (you can find the optimum value from Minitab). How well does
this smoothing procedure work? Compare the results with those obtained
in Exercise 4.21.

b. Do you think that using the optimum value of the smoothing constant would
result in improved forecasts from exponential smoothing?

¢. Use an exponential smoothing procedure for trends on this data. Is this an
apparent improvement over the use of simple exponential smoothing with
the optimum smoothing constant?

d. Take the first difference of this data and plot the time series of first dif-
ferences. Use exponential smoothing on the first differences. Instead of
forecasting the original data, develop a procedure for forecasting the first
differences and explain how you would use these forecasts of the first dif-
ferences to obtain forecasts for the stock price.

Unemployment rate data is given in Table B.8.

a. Make a time series plot of the data.

b. Use simple exponential smoothing with A = 0.2 to smooth the data. How well
does this smoothing procedure work? Do you think that simple exponential
smoothing should be used to forecast this data?

Reconsider the unemployment rate data shown in Table B.8 and used in Exer-

cise 4.23.

a. Use simple exponential smoothing with the optimum value of A to smooth
the data (you can find the optimum value from Minitab). How well does
this smoothing procedure work? Compare the results with those obtained
in Exercise 4.23.

b. Do you think that using the optimum value of the smoothing constant would
result in improved forecasts from exponential smoothing?

¢. Use an exponential smoothing procedure for trends on this data. Is this an
apparent improvement over the use of simple exponential smoothing with
the optimum smoothing constant?

d. Take the first difference of this data and plot the time series of first differ-
ences. Use exponential smoothing on the first differences. Is this areasonable
procedure for forecasting the first differences?
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4.28

4.26

4.27

4.28

4.29

Table B.9 contains yearly data on the international sunspot numbers.
a. Construct a time series plot of the data.
b. Use simple exponential smoothing with A = 0.1 to smooth the data. How well

does this smoothing procedure work? Do you think that simple exponential
smoothing should be used to forecast this data?

Reconsider the sunspot data shown in Table B.9 and used in Exercise 4.25.

a. Use simple exponential smoothing with the optimum value of A to smooth
the data (you can find the optimum value from Minitab). How well does
this smoothing procedure work? Compare the results with those obtained
in Exercise 4.25.

b. Do you think that using the optimum value of the smoothing constant would
result in improved forecasts from exponential smoothing?

¢. Use an exponential smoothing procedure for trends on this data. Is this an
apparent improvement over the use of simple exponential smoothing with
the optimum smoothing constant?

Table B. 10 contains seven years of monthly data on the number of airline miles

flown in the United Kingdom. This is seasonal data.

a. Make a time series plot of the data and verify that it is seasonal.

b. Use Winters” multiplicative method for the first six years to develop a fore-
casting method for this data. How well does this smoothing procedure work?

¢. Make one-step-ahead forecasts of the last 12 months. Determine the forecast
errors. How well did your procedure work in forecasting the new data?

Reconsider the airline mileage data in Table B.10 and used in Exercise 4.27.

a. Use the additive seasonal effects model for the first six years to develop a
torecasting method for this data. How well does this smoothing procedure
work?

b. Make one-step-ahead forecasts of the last 12 months. Determine the forecast
errors. How well did your procedure work in forecasting the new data?

c. Compare these forecasts with those found using Winters’™ multiplicative
method in Exercise 4.27.

Table B.11 contains eight years of monthly champagne sales data. This is

seasonal data.

a. Make a time series plot of the data and verify that it is seasonal. Why do
you think seasonality is present in these data?

b. Use Winters’ multiplicative method for the first seven years to develop a
forecasting method for this data. How well does this smoothing procedure
work?

c. Make one-step-ahead forecasts of the last 12 months. Determine the forecast
errors. How well did your procedure work in forecasting the new data?
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4.30 Reconsider the monthly champagne sales data in Table B.11 and used in Ex-
ercise 4.29.

4.31

a. Use the additive seasonal effects model for the first seven years to develop a

forecasting method for this data. How well does this smoothing procedure
work?

. Make one-step-ahead forecasts of the last 12 months. Determine the forecast

errors. How well did your procedure work in forecasting the new data?

. Compare these forecasts with those found using Winters’ multiplicative

method in Exercise 4.29.

Montgomery et al. [1990] give four years of data on monthly demand for a soft
drink. These data are given in Table E4.5.

a.

b.

Make a time series plot of the data and verify that it is seasonal. Why do
you think seasonality is present in these data?

Use Winters’ multiplicative method for the first three years to develop a
forecasting method for this data. How well does this smoothing procedure
work?

. Make one-step-ahead forecasts of the last 12 months. Determine the forecast

errors. How well did your procedure work in forecasting the new data?

TABLE E4.5 Soft Drink Demand Data

Period ¥ Period ¥ Period v Period ¥,

1 143 13 189 25 359 37 332
2 191 14 326 26 264 38 244
3 195 15 289 27 315 39 320
4 225 16 293 28 362 40 437
5 175 17 279 29 414 41 544
6 389 18 552 30 647 42 830
7 454 19 674 31 836 43 1011
8 618 20 827 32 901 44 1081
9 770 21 1000 33 1104 45 1400

10 564 22 502 34 874 46 1123
11 327 23 512 35 683 47 713
12 235 24 300 36 352 48 487

4.32 Reconsider the soft drink demand data in Table E4.5 and used in Exercise 4.31.
a. Use the additive seasonal effects model for the first three years to develop a

forecasting method for this data. How well does this smoothing procedure
work?

b. Make one-step-ahead forecasts of the last 12 months. Determine the forecast

errors. How well did your procedure work in forecasting the new data?

¢. Compare these forecasts with those found using Winters™ multiplicative

method in Exercise 4.31.
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4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

Table B.12 presents data on the hourly yield from a chemical process and the
operating temperature. Consider only the yield data in this exercise.

a. Construct a time series plot of the data.

b. Use simple exponential smoothing with A = 0.2 to smooth the data. How well
does this smoothing procedure work? Do you think that simple exponential
smoothing should be used to forecast this data?

Reconsider the chemical process yield data shown in Table B.12.

a. Use simple exponential smoothing with the optimum value of A to smooth
the data (you can find the optimum value from Minitab). How well does
this smoothing procedure work? Compare the results with those obtained
in Exercise 4.33.

b. How much has using the optimum value of the smoothing constant improved
the forecasts?

Find the sample autocorrelation function for the chemical process yield data
in Table B.12. Does this give you any insight about the optimum value of the
smoothing constant that you found in Exercise 4.347

Table B.13 presents data on ice cream and frozen yogurt sales. Develop an
appropriate exponential smoothing forecasting procedure for this time series.

Table B.14 presents the CO, readings from Mauna Loa.

a. Use simple exponential smoothing with the optimum value of A to smooth
the data (you can find the optimum value from Minitab).

b. Use simple exponential smoothing with 2 = 0.1 to smooth the data. How
well does this smoothing procedure work? Compare the results with those
obtained using the optimum smoothing constant. How much has using the
optimum value of the smoothing constant improved the exponential smooth-
ing procedure?

Table B.15 presents data on the occurrence of violent crimes. Develop an
appropriate exponential smoothing forecasting procedure for this time series.

Table B.16 presents data on the U.S. gross domestic product (GDP). Develop
an appropriate exponential smoothing forecasting procedure for the GDP time
series.

Total annual energy consumption is shown in Table B.17. Develop an appropri-
ate exponential smoothing forecasting procedure for the energy consumption
time series.

Table B.18 contains data on coal production. Develop an appropriate exponen-
tial smoothing forecasting procedure for the coal production time series.
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443

4.4

4.45

4.46

447
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Table B.19 contains data on the number of children 0—4 years old who drowned
in Arizona.

a. Plot the data. What type of forecasting model seems appropriate”?
b. Develop a forecasting model for this data?

Data on tax refunds and population are shown in Table B.20. Develop an
appropriate exponential smoothing forecasting procedure for the tax refund
time series.

Suppose that simple exponential smoothing is being used to forecast a process.
At the start of period +*, the mean of the process shifts to a new level u + 8.
The mean remains at this new level for subsequent time periods. Show that the
expected value of the exponentially smoothed statistic is

EG.) w, T <1t*
W N rs—s(1 -+ T

Using the results of Exercise 4.44, determine the number of periods following

the step change for the expected value of the exponential smoothing statistic to

be within 0.10 8 of the new time series level u + §. Plot the number of periods

as a function of the smoothing constant. What conclusions can you draw?

Suppose that simple exponential smoothing is being used to forecast the process
¥: = 1 + &. At the start of period +*, the mean of the process experiences a
transient; that is, it shifts to a new level i 4+ §, but reverts to its original level
w at the start of the next period +* 4 1. The mean remains at this level for
subsequent time periods. Show that the expected value of the exponentially
smoothed statistic is

. w, T <1t*
E(v) = T_* *
uHSAMl - T=>r
Using the results of Exercise 4.46, determine the number of periods that it will
take following the impulse for the expected value of the exponential smoothing
statistic to return to within 0.10 § of the original time series level y. Plot the
number of periods as a function of the smoothing constant. What conclusions
can you draw?



CHAPTER 5

Autoregressive Integrated Moving
Average (ARIMA) Models

All models are wrong, some are useful.
GEORGE E. P. BOX, British statistician

5.1 INTRODUCTION

In the previous chapter, we discussed forecasting techniques that, in general, were
based on some variant of exponential smoothing. The general assumption for these
models was that any time series data can be represented as the sum of two distinct com-
ponents: deterministic and stochastic (random). The former is modeled as a function
of time whereas for the latter we assumed that some random noise that is added on the
deterministic signal generates the stochastic behavior of the time series. One very im-
portant assumption is that the random noise is generated through independent shocks
to the process. In practice, however, this assumption is often violated. That is, usually
successive observations show serial dependence. Under these circumstances, fore-
casting methods based on exponential smoothing may be inefficient and sometimes
inappropriate because they do not take advantage of the serial dependence in the obser-
vations in the most effective way. To formally incorporate this dependent structure, in
this chapter we will explore a general class of models called autoregressive integrated
moving average models or ARIMA models (also known as Box—Jenkins models).

5.2 LINEAR MODELS FOR STATIONARY TIME SERIES

In statistical modeling, we are often engaged in an endless pursuit of finding the
ever elusive true relationship between certain inputs and the output. As cleverly put

lntroduction to Time Series Analysis and Forecasting
By Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci
Copyright © 2008 John Wiley & Sons, Inc.
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by the quote of this chapter, these efforts usually result in models that are nothing
but approximations of the “true” relationship. This is generally due to the choices
the analyst makes along the way to ease the modeling efforts. A major assumption
that often provides relief in modeling efforts is the linearity assumption. A linear
filter, for example, is a linear operation from one time series x, to another time
series y,

+x
v =L(x)= Z Yixe i (5.1)
i=—0C
witht = ..., —1,0, 1, .. .. Inthat regard the linear filter can be seen as a “process™ that

converts the input, x,, into an output, y,, and that conversion is not instantaneous but
involves all (present, past, and future) values of the input in the form of a summation
with different “weights”, {1;}, on each x,. Furthermore, the linear filter in Eq. (5.1)
is said to have the following properties:

1. Time-invariant as the coefficients {y;} do not depend on time.

2. Physically realizableif yy;, = Ofori < 0;thatis, the output v, is alinear function
of the current and past values of the input: v, = Yox, + ¥yx,_ + - - -.

et

3. Stable if >/ ° _|¢i] < oc.

In linear filters, under certain conditions, some properties such as stationarity
of the input time series are also reflected in the output. We discussed stationarity
previously in Chapter 2. We will now give a more formal description of it before
proceeding further with linear models for time series.

5.2.1 Stationarity

The stationarity of a time series is related to its statistical properties in time. That is.
in the more strict sense, a stationary time series exhibits similar “statistical behavior™
in time and this is often characterized as a constant probability distribution in time.
However, it is usually satisfactory to consider the first two moments of the time
series and define stationarity (or weak stationarity) as follows: (1) the expected
value of the time series does not depend on time and (2) the autocovariance function
defined as Cov(y,, y.4«) for any lag k is only a function of £ and not time; that is,
vy (k) = Cov (3, yran)-

In a crude way, the stationarity of a time series can be determined by taking arbitrary
“snapshots” of the process at different points in time and observing the general behav-
ior of the time series. If it exhibits “similar” behavior, one can then proceed with the
modeling efforts under the assumption of stationarity. Further preliminary tests also
involve observing the behavior of the autocorrelation function. A strong and slowly
dying ACF will also suggest deviations from stationarity. Better and more method-
ological tests of stationarity also exist and we will discuss some of them later in this
chapter. Figure 5.1 shows examples of stationary and nonstationary time series data.
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For a time-invariant and stable linear filter and a stationary input time series x, with
iy = E(x,) and v, (k) = Cov(x,, x; ), the output time series y, given in Eq. (5.1) is
also a stationary time series with

E(y) =y = Z Wifhe
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and

o

Cov(ypy) =)= Y > Yitnli—j+k

I=—2C j=—2

It is then easy to show that the following stable linear process with white noise time
series, ¢&,, is also stationary:

xc
»=p+ Z Vi (5.2)
i=0

where ¢, represents the independent random shocks with E (g,) = 0, and

o) ifh=0
yf(h):{ 0 ifn#0

So for the autocovariance function of y,, we have

o0 00

=Y Wi — j+ K
=0 =0 (5.3)

o

=0’ le’ﬂ//H-k

i=0

We can rewrite the linear process in Eq. (5.2) in terms of the backshift operator,
B, as

Yo =pu+ Yo + V161 + V26 2+

S -
=+ B
i=0

=+ (Z w,-B") 2 (5:4)
i=0

:w(B)
=u+V¥(B)e

This is called the infinite moving average and serves as a general class of models
for any stationary time series. This is due to a theorem by Wold [1938] and basically
states that any nondeterministic weakly stationary time series v; can be represented
as in Eq. (5.2), where {y;} satisfy } -, t,//,v2 < 00. A more intuitive interpretation of
this theorem is that a stationary time series can be seen as the weighted sum of the
present and past random “disturbances.” For further explanations see Yule [1927] and
Bisgaard and Kulahci [2005]. It can also be seen from Eq. (5.3) that there is a direct
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relation between the weights {1/;} and the autocovariance function. In modeling a
stationary time series as in Eq. (5.4), it is obviously impractical to attempt to estimate
the infinitely many weights given in {v;}. Although very powerful in providing a
general representation of any stationary time series, the infinite moving average model
given in Eq. (5.2) is useless in practice except for certain special cases:

1. Finite order moving average (MA) models where, except for a finite number of
the weights in {y;}, they are set to 0.

2. Finite order autoregressive (AR) models, where the weights in {v;} are gener-
ated using only a finite number of parameters.

3. A mixture of finite order autoregressive and moving average models (ARMA).

We shall now discuss each of these classes of models in great detail.

5.3 FINITE ORDER MOVING AVERAGE (MA) PROCESSES

In finite order moving average or MA models, conventionally v is set to 1 and the
weights that are not set to 0 are represented by the Greek letter 6 with a minus sign
in front. Hence a moving average process of order ¢(MA(g)) is given as

vi=p+e — 015 — "'—9(/8174 (5.5)
where {¢,} is white noise. Since Eq. (5.5) is a special case of Eq. (5.4) with only finite

weights, a MA(q) process is always stationary regardless of values of the weights. In
terms of the backward shift operator, the MA(g) process is

vi=p+(1-6B—- - -0,B%¢
4
=u+ (1 - ZH,-B’) & (5.6)
i=1
=p+ O (B)sg

where © (B) = 1 — Y "7_, 6;B".
Furthermore, since {&,} is white noise, the expected value of the MA(g) process is
simply

E()’r) =E (ﬂ +é& — ngr—l - qul—q)
5.7
=p
and its variance is
Var (y,) = y, (0) = Var (it + & — 18,1 — -+ — 046,_4) 58

=0’ (1+6{+ - +6;)
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Similarly, the autocovariance at lag k can be calculated from

Yy(k) = Cov(yr, yrsi)

= E[(S, — 916,_1 — e = Oqé‘,_q)(6‘1+k - 9]6,+k_| — = 948,+k_4)] (59)
o+ 0O+ +6,46,), k=12.....4
- 0, k>gq

From Egs. (5.8) and (5.9), the autocovariance function of the MA(q) process is

6 + 61641 + -+ 0, 46,
1467 +---+6: '
k>gqg

— Yy (k) _

oy (k) =
vy (0) 0,

This feature of the ACF is very helpful in identifying the MA model and its
appropriate order as it “cuts off” after lag ¢. In real life applications, however, the
sample ACF, r (k), will not necessarily be equal to zero after lag ¢. It is expecied to
become very small in absolute value after lag ¢. For a data set of N observations, this
is often tested against +2/+/N limits, where 1/+/N is the approximate value for the
standard deviation of the ACF for any lag under the assumption of independence as
discussed in Chapter 2.

Note that a more accurate formula for the standard error of the kth sample auto-
correlation coefficient is provided by Bartlett [1946] as

=~

Jj=1

. 1/2
S(r) = NP2 (1 +2 r;.kz>

where

* rj forp; #0
0 forp; =0

A special case would be white noise data for which p; = 0 for all j’s. Hence for
a white noise process (i.e., no autocorrelation), a reasonable interval for the sample
autocorrelation coefficients to fall in would be £2/+/N and any indication otherwise
may be considered as evidence for serial dependence in the process.

5.3.1 The First-Order Moving Average Process, MA(1)
The simplest finite order MA model is obtained when ¢ = 1 in Eq. (5.5):

Yy =p+E — 015 (5.11)
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For the first-order moving average or MA(1) model, we have the autocovariance
function as
7y ) =0 (1 +6)
yy (1) = —60? (5.12)
vwk)=0, k=>1

Similarly, we have the autocorrelation function as

—6,
I+ 67 (5.13)
py (k) =0, k>1

py (1) =

From Eq. (5.13), we can see that the first lag autocorrelation in MA(1) is bounded as

16:]

5.14
1 +6f G194

=

S

oy (D] =

and the autocorrelation function cuts off after lag 1.
Consider, for example, the following MA(1) model:

vy, =40+ & + 0.8¢,_,

A realization of this model with its sample ACF is given in Figure 5.2. A visual
inspection reveals that the mean and variance remain stable while there are some
short runs where successive observations tend to follow each other for very brief
durations, suggesting that there is indeed some positive autocorrelation in the data as
revealed in the sample ACF plot.

Autocorrelation Function

Time Series Plot . Lo - .
(with 5% significance limits for the autocorrelations)
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FIGURE 5.2 A realization of the MA(1) process, v, =40 + ¢, + 0.8¢,_.
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Time Series Plot

Autocorrelation Function

(with 5% significance limits for the autocorrelations)
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FIGURE 5.3 A realization of the MA(1) process, y, =40 + ¢, — 0.8¢,_,.

We can also consider the following model:

v, =40+ ¢ — 0.8¢,_

A realization of this model is given in Figure 5.3. We can see that observations tend
to oscillate successively. This suggests a negative autocorrelation as confirmed by the
sample ACF plot.

5.3.2 The Second-Order Moving Average Process, MA(2)

Another useful finite order moving average process is MA(2), given as

Ve=p+E —016_ — b

(5.15)

=pu+(1-6B—6:B¢

The autocovariance and autocorrelation functions for the MA(2) model are given as

and

¥y (0) = 0% (1 + 62 4 63)
v (1) = 62 (=6, + 6,6,)

¥ (2) = o (—62)

yy(®k) =0, k>2
—0; + 6,6,
3 B
=TT e

(O
S T v o+ 02

py (k) =0, k>2

(5.16)

(5-17)
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Time Series Plot Autocorreiation Function
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FIGURE 5.4 A realization of the MA(2) process, y, = 40 + & + 0.7g,_1 — 0.28¢,_5.

Figure 5.4 shows the time series plot and the autocorrelation function for a realization
of the MA(2) model:

V= 40 + &+ 0.78t_1 — 0.28£,~2

Note that the sample ACF cuts off after lag 2.

5.4 FINITE ORDER AUTOREGRESSIVE PROCESSES

As mentioned in Section 5.1, while it is quite powerful and important, Wold’s de-
composition theorem does not help us much in our modeling and forecasting efforts
as it implicitly requires the estimation of the infinitely many weights,{v;}. In Section
5.2 we discussed a special case of this decomposition of the time series by assuming
that it can be adequately modeled by only estimating a finite number of weights and
setting the rest equal to 0. Another interpretation of the finite order MA processes is
that at any given time, of the infinitely many past disturbances, only a finite number
of those disturbances “contribute” to the current value of the time series and that the
time window of the contributors “moves” in time, making the “oldest” disturbance
obsolete for the next observation. It is indeed not too far fetched to think that some
processes might have these intrinsic dynamics. However, for some others, we may
be required to consider the “lingering” contributions of the disturbances that hap-
pened back in the past. This will of course bring us back to square one in terms of
our efforts in estimating infinitely many weights. Another solution to this problem
is through the autoregressive models in which the infinitely many weights are as-
sumed to follow a distinct pattern and can be successfully represented with only a
handful of parameters. We shall now consider some special cases of autoregressive
processes.
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5.4.1 First-Order Autoregressive Process, AR(1)

Let us first consider again the time series given in Eq. (5.2):

o
y=u+ Vg
i=0

o

=pu+ Z'#;Bi(?,
i=0

=u+V¥(B)sg

where W(B) =Y 2  ¥;B'. As in the finite order MA processes, one approach to
modeling this time series is to assume that the contributions of the disturbances that
are way in the past should be small compared to the more recent disturbances that
the process has experienced. Since the disturbances are independently and identically
distributed random variables, we can simply assume a set of infinitely many weights in
descending magnitudes reflecting the diminishing magnitudes of contributions of the
disturbances in the past. A simple and yet intuitive set of such weights can be created
following an exponential decay pattern. For that we will set ¥; = ¢, where |¢| < 1
to guarantee the exponential “decay.” In this notation, the weights on the disturbances
starting from the current disturbance and going back in past will be 1. ¢. ¢2. ¢°, . ..
Hence Eq. (5.2) can be written as

Vi=put+e+de_+dle o+

o (5.18)
=u+ Z¢181—i
i=0
From Eq. (5.18), we also have
i =p+e+ e 2+ ¢le - (5.19)
We can then combine Eqs. (5.18) and (5.19) as
Vi=pte e +ia ot
=¢¥i-1—pu
=p—dutdy ) te& (5.20)
N e’

=6
=8+ dy_1+&

where § = (1 — ¢) . The process in Eq. (5.20) is called a first-order autoregressive
process, AR(1), because Eq. (5.20) can be seen as a regression of y; on v;_; and hence
the term autoregressive process.
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The assumption of |¢| < 1 that is made to make the weights decay exponentially
in time also guarantees that Z?io |¥r;] < oo. Hence an AR(1) process is stationary
if |¢| < 1. The mean of a stationary AR(1) process is

)
E(yt)=u=l—_—$ (5.21)

The autocovariance function of a stationary AR(1) can be calculated from

Eq. (5.18) as

1
yk) = 02¢’<1_—¢2 fork=0,1,2,... (5.22)

The variance is then given as

y(0)=a* (5.23)

1
1 — ¢?
Correspondingly, the autocorrelation function for a stationary AR(1) process is
given as

plk) = yk )—¢ fork=0,1,2, ... (5.24)

y(0)

Hence the ACF for a stationary AR(1) process has an exponential decay form.
A realization of the following AR(1) model,

ye=8+08y_1+¢

is shown in Figure 5.5. As in the MA(1) model with § = —0.8, we can observe
some short runs during which observations tend to move in the upward or downward
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FIGURE 5.5 A realization of the AR(1) process, y, = 8 + 0.8v,_| + &;.
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Time Series Plot Autocorrelation Function
(with 5% significance limits for the autocorrelations)
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FIGURE 5.6 A realization of the AR(1) process, v, = 8 — 0.8y,_| + &;.

direction. As opposed to the MA(1) model, however, the duration of these runs tends
to be longer and the trend tends to linger. This can also be observed in the sample
ACF plot.

Figure 5.6 shows a realization of the AR(1) model y, =8 — 0.8y,_; + &,. We
observe that instead of lingering runs, the observations exhibit jittery up/down move-
ments because of the negative ¢ value.

5.4.2 Second-Order Autoregressive Process, AR(2)

In this section, we will first start with the obvious extension of Eq. (5.20) to include
the observation y,_, as

n=58+¢1y +dyi2+ & (5.25)

We will then show that Eq. (5.25) can be represented in the infinite MA form and
provide the conditions of stationarity for y, in terms of ¢, and ¢,. For that we will
rewrite Eq. (5.25) as
(1—¢1B~$:B)y =5+ (5.26)
or
DBy, =8+¢ (5.27)

Furthermore, applying ®(B)~" to both sides, we obtain

yo=®(B) 5+ d(B) &
N e’ S e’
= =¥(B)
=pu+ W(B)e, (5.28)
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=u-+ Z Vigi—i
i=0
=p+) ViBe
=0
where
w==oB)'s (5.29)

and
®(B)' = Z ¥ B' = W(B) (5.30)
i=0

We can use Eq. (5.30) to obtain the weights in Eq. (5.28) in terms of ¢, and ¢,. For
that, we will use

d(BYY(B)=1 (5.31)
That is,
(1—¢1B—$BHYWo+ 1B+ ynB +--)=1

or

Yo + (Y1 — d1¥0) B + (Y2 — d1¥y — o) B?

+ot (Y- oY~ ) B =1 (5.32)

Since on the right-hand side of the Eq. (5.32) there are no backshift operators, for
d(B)W(B) =1, we need

Yo =1
W — 1) =0 (5.33)
W=y —dpj2) =0 forallj=2,3,...

The equations in (5.33) can indeed be solved for each v; in a futile attempt to estimate

infinitely many parameters. However, it should be noted that the v; in Eq. (5.33)

satisfy the second-order linear difference equation and that they can be expressed as

the solution to this equation in terms of the two roots m; and m; of the associated
polynomial

m>—¢im—¢p =0 (5.34)
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If the roots obtained by

¢ £/ Pi + 4¢2
m.m; = ———
2
satisfy |m|, |m2| < 1, then we have Z,’io || < oc. Hence if the roots m, and m>
are both less than 1 in absolute value, then the AR(2) model is stationary. Note that if
the roots of Eq. (5.34) are complex conjugates of the form a + ib, the condition for
stationarity is that v/a2 + b? < 1.
Furthermore, under the condition that |m |, |m»| < 1, the AR(2) time series, {v,}.
has an infinite MA representation as in Eq. (5.28).
Now that we have established the conditions for the stationarity of an AR(2) time
series, let us now consider its mean, autocovariance, and autocorrelation functions.

From Eq. (5.25), we have

EGy)=8+®EQG 1)+ d:2E(y-2)+0
m=358+d 1+ du
)

= 5.35
1 -¢1-¢ 63

= u

Note that for 1 — ¢ — ¢, = 0,m = 1isone of the roots for the associated polynomial
in Eq. (5.34) and hence the time series is deemed nonstationary. The autocovariance
function is

y (k) = Cov(yr, ¥r—t)
=Cov(6 + D1yt + d2yi—2 + &0, yit)

(5.36)
= $1Cov(yi-1, ¥r-) + ¢2 Cov(y, 2. ¥, 1) + Cov(e,. ¥ k)
= iy (k= 1)+ oy k=) + {({; k=0
Thus y(0) = ¢ y(1) + ¢27(2) + o2 and
vy =diyk— D+ doyk —2), k=12, ... (5.37)

The equations in (5.37) are called the Yule-Walker equations for y (k). Similarly, we
can obtain the autocorrelation function by dividing Eq. (5.37) by y(0):

pky=¢1ptk = D)+ drptk —2). k=1 2.... (5.38)
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The Yule-Walker equations for p(k) in Eq. (5.38) can be solved recursively as

p(1) = ¢1 p(0)+¢2 p(—1)
S—— S’
=1 =p(1)
o)
1 — ¢
p(2)=¢1p(1)+ ¢
p(3)=drp 2+ dp(l)

Il

A general solution can be obtained through the roots m, and m; of the associated
polynomial m? — ¢ m — ¢ = 0. There are three cases.

Case 1. If m, and m, are distinct, real roots, we then have
pky = cym 4 comb, k=0,1,2,... (5.39)

where ¢| and ¢; are particular constants and can, for example, be obtained
from p(0) and p(1). Moreover, since for stationarity we have |m [, [mz| < 1,1in
this case, the autocorrelation function is a mixture of two exponential decay
terms.

Cuse 2. If m, and m; are complex conjugates in the form of a £ ib, we then have
p(k) = R* [¢c; cos (Ak) + casin(Ak)], k=0,1,2, ... (5.40)

where R = |m;| = +/a% + b? and A is determined by cos (1) = a/R, sin(A) =
b/R.Hence we have a £ ib = R[cos(A) £ i sin(1)].Once again ¢, and ¢, are
particular constants. The ACF in this case has the form of a damped sinusoid,
with damping factor R and frequency A; that is, the period is 27 /A.

Case 3. If there is one real root mg, m| = my = mg, we then have

p (k)= (ci +ckymi k=0,1,2,... (5.41)
In this case, the ACF will exhibit an exponential decay pattern.

In case |, for example, an AR(2) model can be seen as an “adjusted” AR(1) model
for which a single exponential decay expression as in the AR(1) model is not enough to
describe the pattern in the ACF, and hence an additional exponential decay expression
is “added” by introducing the second lag term, y, 5.

Figure 5.7 shows a realization of the AR(2) process

yve=4+04y,_(+05y, > +¢
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FIGURE 5.7 A realization of the AR(2) process, y, = 4 + 0.4y,-1+0.5y_2 +&.

Note that the roots of the associated polynomial of this model are real. Hence the
ACF is a mixture of two exponential decay terms.
Similarly, Figure 5.8 shows a realization of the following AR(2) process

V= 4408y — 0.5y;—2 +&-
For this process, the roots of the associated polynomial are complex conjugates.

Therefore the ACF plot exhibits a damped sinusoid behavior.

5.43 General Autoregressive Process, AR(p)

From the previous two sections, a general, pth-order AR model is given as
V=84 @y—1+ P2yt T EpyiptE (5.42)
where g, is white noise. Another representation of Eq. (5.42) can be given as
O(B)y, =b8+¢& (5.43)

where ®(B)=1— ¢ B —¢332_ vos = B2,
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FIGURE 5.8 A realization of the AR(2) process, y, =4 + 0.8y, — 0.5y;—2 + &.
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The AR(p) time series {y,} in Eq. (5.42) is stationary if the roots of the associated
polynomial

mP —gm’™ — pom?’r — ... —p, =0 (5.44)

are less than one in absolute value. Furthermore, under this condition, the AR(p) time
series {y,} is also said to have an absolutely summable infinite MA representation

V=t WB)E =p+ Y Pie (5.45)
i=0

where W(B) = ®(B)™! with 32 |¢] < oo.
As in AR(2), the weights of the random shocks in Eq. (5.45) can be obtained from
P(B)W(B)=1as

l/fj = 0, j <0
Yo =1 (5.46)
l//j — ¢1'l//j_1 - (]521,//1'_2 — e = d),,]//j,p = O forallj - l, 2, P
We can easily show that, for stationary AR(p),
E(y:) °
Yi) = =
’ =g~~~ ¢,

and

y (k) = Cov(y;, yr—&)
=Cov( + d1yi—1 + P2y + -+ DpYi—p + &1y Vi)

» 5.47)
=Y $iCov(yi_i. yi—i) + Covler, yi &)

i=1
~Yava-ns {0 HE=0
SLATETET o k0

Thus we have
P
y () = Y ¢iv(i)+0o’ (5.48)

i=1

P
=y O [1 - ip (i)] =0’ (5.49)
i=1
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By dividing Eq. (5.47) by y (0) for k > 0, it can be observed that the ACF of an
AR(p) process satisfies the Yule—Walker equations

14
p(k)zzqs,-p(k—i). k=1.2.... (5.50)
i=1

The equations in (5.50) are pth-order linear difference equations, implying that
the ACF for an AR(p) model can be found through the p roots of the associated
polynomial in Eq. (5.44). For example, if the roots are all distinct and real, we have

,o(k):clm'{+62m§+~--+c,,m’;,. k=1.2.... (5.51)
where ¢y, ¢, ..., cp are particular constants. However, in general, the roots may
not all be distinct or real. Thus the ACF of an AR(p) process can be a mixture of
exponential decay and damped sinusoid expressions depending on the roots of
Eq. (5.44).

5.4.4 Partial Autocorrelation Function, PACF

In Section 5.2, we saw that the ACF is an excellent tool in identifying the order of an
MA(qg) process, because it is expected to “cut off” after lag g. However, in the previous
section, we pointed out that the ACF is not as useful in the identification of the order of
an AR(p) process for which it will most likely have a mixture of exponential decay and
damped sinusoid expressions. Hence such behavior, while indicating that the process
might have an AR structure, fails to provide further information about the order
of such structure. For that, we will define and employ the partial autocorrelation
function (PACF) of the time series. But before that. we discuss the concept of partial
correlation to make the interpretation of the PACF easier.

Partial Correlation
Consider three random variables X, Y, and Z. Then consider simple linear regression
of Xon Z and Yon Z as

N Cov(Z, X
X=a+b2Z whereblz—ov—(——)
Var(Z)
and
A Cov(Z.7)
Y = b= —=
a + b,Z where b Var(Z)

Then the errors can be obtained from

X*=X-X=X-(a,+5,2)
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and
Y =Y -V =Y —(@+h2)

Then the partial correlation between X and Y after adjusting for Z is defined as
the correlation between X* and Y*; corr(X™, Y*) = corr(X — X, Y — ¥). That is,
partial correlation can be seen as the correlation between two variables after being
adjusted for a common factor that may be affecting them. The generalization is of
course possible by allowing for adjustment for more than just one factor.

Partial Autocorrelation Function
Following the above definition, the partial autocorrelation function between
v, and v, ; is the autocorrelation between y, and y,_; after adjusting for y,_,,
Yi—2. ..., Vi—k+1. Hence for an AR(p) model the partial autocorrelation function
between y, and y, 4 for k > p should be equal to zero. A more formal definition can
be found below.

Consider a stationary time series model {y,} that is not necessarily an AR process.
Further consider, for any fixed value of k, the Yule—Walker equations for the ACF of
an AR(p) process given in Eq. (5.50) as

k
pN=) dup(—0, j=1,2,....k (5.52)
i=1

or

p(1) = i + Pup(1) + - + otk — 1
p2) = up() +du + -+ duptk —2)

pk) = pup k=) + duptk —2)+ -+ du

Hence we can write the equations in (5.52) in matrix notation as

| o) p@ .. ptk—1] [ (1)

p(D) I p® o pk—2 || du p(2)

P2 p(l) U opk=3||ew |Z|e® | 3
pli—1) ph—2) pth—3) ... I e p(k)

or

Prop = pi (5.54)
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where
] p(1) p(2) oo plk=1)
p(l) 1 o(3) o plk=2)
P, = p(2) p(1) 1 ooptk=3)
ptk—=1) pk—-=2) pk-=-3) ... I
D1k (1)
b2 p(2)

de=|% |, and p,=|rPO3

Gix p(k)
Thus to solve for ¢, we have

& =P 'py (5.55)

For any given k, k = 1, 2, ..., the last coefficient ¢y, is called the partial autocor-
relation of the process at lag k. Note that for an AR(p) process ¢y, = 0 for k > p.
Hence we say that the PACF cuts off after lag p for an AR(p). This suggests that the
PACEF can be used in identifying the order of an AR process similar to how the ACF
can be used for an MA process.

For sample calculations, ¢y, the sample estimate of ¢, is obtained by using
the sample ACF, r(k). Furthermore, in a sample of N observations from an AR(p)
process, ¢y for k > p is approximately normally distributed with

N - 1
E(¢u) ~0 and  Var(gu) ~ N (5.56)

Hence the 95% limits to judge whether any ¢ is statistically significantly different
from zero are given by +2/+/N. For further detail see Quenouille [1949], Jenkins
[1954, 1956], and Daniels [1956].

Figure 5.9 shows the sample PACFs of the models we have considered so far. In
Figure 5.9a we have the sample PACF of the realization of the MA(1) model with
@ = 0.8 given in Figure 5.3. It exhibits an exponential decay pattern. Figure 9b shows
the sample PACF of the realization of the MA(2) model in Figure 5.4 and it also
has an exponential decay pattern in absolute value since for this model the roots of
the associated polynomial are real. Figures 5.9c and 5.9d show the sample PACFs of
the realization of the AR(1) model with ¢ = 0.8 and ¢ = —0.8, respectively. In both
cases the PACF ““cuts off™ after the first lag. That is, the only significant sample PACF
value is at lag 1, suggesting that the AR(1) model is indeed appropriate to fit the data.
Similarly, in Figures 5.9¢ and 5.9f, we have the sample PACFs of the realizations of
the AR(2) model. Note that the sample PACF cuts off after lag 2.
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{with 5% significance limits for the partial autocorrelations)
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FIGURE 5.9 Partial autocorrelation functions for the realizations of (a) MA(1) process, y, = 40 4+ ¢, —
0.8¢,-1; (b) MA(2) process, y; = 40 + ¢, + 0.7g,1 — 0.28g,_2; (¢} AR(1) process, ¥, =8 +0.8y,_) +
g3 {(d) AR(1) process, y, = 8 — 0.8y,-1 + & (¢) AR(2) process, y, =4+ 0.4y, + 0.5v,_2 + & and
() AR(2) process, y; =4 +0.8y,_1 —0.5y,_2 + &.

Invertibility of MA Models

In the previous section we showed that the PACF “cuts off” after lag p for an AR(p).
The PACF of an MA(g) model, however, exhibits a more complicated pattern. For
that we define an invertible moving average process as the following: the MA(g)
process in Eq. (5.5) is said to be invertible if it has an absolutely summable infinite
AR representation.
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Consider the MA(g) process

q
Vi =u+ (1 - OiB’>5r
i=1

=u+ O(B)g,
After multiplying both sides with @(B) ™', we have

OB) 'y, =0B) ' u+s

(5.57)
[[By =5+

where TTI(B) = 1 — Y ;2 m; B' = ©(B) ' and ©(B)~' uu = 8. Hence the infinite AR
representation of an MA(q) process is given as

50
Yo — Zﬂi_\'tfi =d+¢ (5.58)
i=1

with Zi, |7;| < oc. The 7; can be determined from
(1-6B—6:B>—---—0,B)Y1 —mB-mB*+--)=1 (5.59)

which in turn yields

T +9| =0
T — 6 +6=0
(5.60)
7Tj —917'[]'_1 _"'_Oq”j—q =0
with myp = —1 and m; =0 for j < 0. Hence as in the previous arguments for the

stationarity of AR(p) models, the 7; are the solutions to the gth-order linear difference
equations and therefore the condition for the invertibility of an MA(q) process turns
out to be very similar to the stationarity condition of an AR(p) process: the roots of
the associated polynomial given in Eq. (5.60) should be less than 1 in absolute value,

mi —6mi~t —Omi — ...~ 6, =0 (5.61)

An invertible MA(qg) process can then be written as an infinite AR process.

Correspondingly, for such a process, adjusting for y,_. v, . ..., v,_t4 does not
necessarily eliminate the correlation between y, and y,_; and therefore its PACF will
never “cut off.” In general, the PACF of an MA(g) process is a mixture of exponential
decay and damped sinusoid expressions.
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The ACF and the PACF do have very distinct and indicative properties for MA and
AR models, respectively. Therefore, in model identification, we strongly recommend
the use of both the sample ACF and the sample PACF simultaneously.

5.5 MIXED AUTOREGRESSIVE-MOVING AVERAGE
(ARMA) PROCESSES

In the previous sections we have considered special cases of Wold’s decomposition of
a stationary time series represented as a weighted sum of infinite random shocks. In
an AR(1) process, for example, the weights in the infinite sum are forced to follow an
exponential decay form with ¢ as the rate of decay. Since there are no restrictions apart
from Y77, ¥? < oo on the weights (¥;), it may not be possible to approximate them
by an exponential decay pattern. For that, we will need to increase the order of the AR
model to approximate any pattern that these weights may in fact be exhibiting. On
some occasions, however, it is possible to make simple adjustments to the exponential
decay pattern by adding only a few terms and hence to have a more parsimonious
model. Consider, for example, that the weights ¥; do indeed exhibit an exponential
decay pattern with a constant rate except for the fact that v/, is not equal to this rate of
decay as it would be in the case of an AR(1) process. Hence instead of increasing the
order of the AR model to accommodate for this “anomaly,” we can add an MA(1) term
that will simply adjust ¢, while having no effect on the rate of exponential decay
pattern of the rest of the weights. This results in a mixed autoregressive moving
average or ARMA(1,1) model. In general, an ARMA(p, g) model is given as

=8+ iyt hyiat -+ p e —Oie ) —hE 2 — =08,
14 q
=8+ by ite—y bie (5.62)
i= i=1
or
D(B)y, =8+ O(B) g (5.63)

where ¢, is a white noise process.
Stationarity of ARMA (p, q) Process

The stationarity of an ARMA process is related to the AR component in the model
and can be checked through the roots of the associated polynomial

m? —pymP~ — pym"r — ... — ¢, = 0. (5.64)

If all the roots of Eq. (5.64) are less than one in absolute value, then ARMA(p, g) is
stationary. This also implies that, under this condition, ARMA(p, ¢) has an infinite
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MA representation as

M=+ Yie_i = p+ ¥(B)g (5.65)
i=0

with W(B) = ®(B)~' ©(B). The coefficients in W(B) can be found from

-6, i=1...., q
Yi—dic ~ @i — - — P, = ) (5.66)
0. i>q

and ¥y = 1.

Invertibility of ARMA (p, q) Process
Similar to the stationarity condition, the invertibility of an ARMA process is related to
the MA component and can be checked through the roots of the associated polynomial

mi—O0mi ' —Omir ... -0, =0 (5.67)

If all the roots of Eq. (5.65) are less than one in absolute value, then ARMAC(p, q) is
said to be invertible and has an infinite AR representation,

HB)y =a+¢ (5.68)

where & = ©(B)~' 8 and T1(B) = O(B)~! ®(B). The coefficients in [1(B) can be
found from

oo i =1.....
T —-Omiy =iy — - — O, = ¢ . P (5.69)
e 0 i>p

and my = —1.
In Figure 5.10 we provide realizations of two ARMA(1.1) models:

vw=16+40.6y,_,+¢ +08¢_; and ¥ =16—-0.7v,_; +¢& —0.6¢_;.

Note that the sample ACFs and PACFs exhibit exponential decay behavior (sometimes
in absolute value depending on the signs of the AR and MA coefficients).

ACF and PACF of ARMA(p,q) Process

As in the stationarity and invertibility conditions, the ACF and PACF of an ARMA
process are determined by the AR and MA components, respectively. It can there-
fore be shown that the ACF and PACF of an ARMA(p, g) both exhibit exponential
decay and/or damped sinusoid patterns, which makes the identification of the order
of the ARMA(p, ¢) model relatively more difficult. For that. additional sample func-
tions such as the Extended Sample ACF (ESACF), the Generalized Sample PACF
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FIGURE 5.10  Two realizations of the ARMA(1,1) model: (a) y, = 16 + 0.6y, +& + 0.8, and
(b)y; = 16 — 0.7y, + & — 0.66,_). (c) The ACF of (a), (d) the ACF of (b), (¢) the PACF of (a), and (f)
the PACF of (b).

(GPACEF), the Inverse ACF (1ACF), and canonical correlations can be used. For fur-
ther information see Box, Jenkins, and Reinsel [1994], Wei [2006], Tiao and Box
[1981], Tsay and Tiao [1984], and Abraham and Ledolter [ 1984]. However, the avail-
ability of sophisticated statistical software packages such as Minitab, JIMP, and SAS
makes it possible for the practitioner to consider several different models with various
orders and compare them based on the model selection criteria such as AIC, AICC,
and SIC as described in Chapter 2 and residual analysis.

The theoretical values of the ACF and PACF for stationary time series are summa-
rized in Table 5.1. The summary of the sample ACFs and PACFs of the realizations
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TABLE 5.1 Behavior of Theoretical ACF and PACF for Stationary Processes

Model ACF PACF
MA(q) Cuts off after lag ¢ Exponential decay and/or damped
sinusoid
AR(p) Exponential decay and/or damped Cuts off after lag p
sinusoid
ARMA(p.q) Exponential decay and/or damped Exponential decay and/or damped
sinusoid sinusoid

of some of the models we have covered in this chapter are given in Table 5.2, Table
5.3, and Table 5.4 for MA, AR, and ARMA models. respectively.

5.6 NONSTATIONARY PROCESSES

It is often the case that while the processes may not have a constant level, they
exhibit homogeneous behavior over time. Consider, for example, the linear trend
process given in Figure 5.1c. It can be seen that different snapshots taken in time
do exhibit similar behavior except for the main level of the process. Similarly,
processes may show nonstationarity in the slope as well. We will call a time series.
¥;, homogeneous, nonstationary if it is not stationary but its first difference, that is,
w; = y; — v = (1 — B) y,, orhigher-order differences. v, = (1 — B)! ¥, produce
a stationary time series. We will further call v, an autoregressive integrated moving
average (ARIMA) process of orders p, d, and g—that is, ARIMA(p, d, g)—if its dth
difference, denoted by w, = (1 — B)? y,. produces a stationary ARMA( p. g) process.
The term integrated is used since, for d = 1, for example, we can write y, as the sum
(or “integral”) of the w, process as

V=Wt Vo
=w, +w,_ + ¥y_» (5.70)
=w, +w_+---+w+ 3

Hence an ARIMAC(p, d, g) can be written as
®(B)(1 - By, =8+ O(B)e, (5.71)

Thus once the differencing is performed and a stationary time series w, =
(1 — B)? y, is obtained, the methods provided in the previous sections can be used to
obtain the full model. In most applications first differencing (¢ = 1) and occasion-
ally second differencing (d = 2) would be enough to achieve stationarity. However,
sometimes transformations other than differencing are useful in reducing a nonsta-
tionary time series to a stationary one. For example, in many economic time series the
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variability of the observations increases as the average level of the process increases;
however, the percentage of change in the observations is relatively independent of
level. Therefore taking the logarithm of the original series will be useful in achieving
stationarity.

Some Examples of ARIMA(p, d, q) Processes
The random walk process, ARIMA(0, 1, 0) is the simplest nonstationary model. It
is given by

=By =d+¢ (5.72)

suggesting that first differencing eliminates all serial dependence and yields a white
noise process.

Consider the process y, = 20 + y,_| + &,. A realization of this process together
with its sample ACF and PACF are given in Figure 5.1 1 a—c. We can see that the sample
ACF dies out very slowly, while the sample PACF is only significant at the first lag.
Also note that the PACF value at the first lag is very close to one. All this evidence
suggests that the process is not stationary. The first difference, w, = y; — v;_, and
its sample ACF and PACF are shown in Figure 5.11d-f. The time series plot of w,
implies that the first difference is stationary. In fact, the sample ACF and PACF do
not show any significant values. This further suggests that differencing the original
data once “clears out” the autocorrelation. Hence the data can be modeled using the
random walk model given in Eq. (5.72).

The ARIMA(0, 1, 1) process is given by

(1 =By, =6+(1 —6B)¢ (5.73)
The infinite AR representation of Eq. (5.73) can be obtained from Eq. (5.69)

1, i=1
m; — 87'[,;] = . (574)
0. i>1

with 7rp = —1. Thus we have

o
=0+ Zni)’r—i + &

i=1

=0+ -0 +0y2+--)+¢g

(5.75)

This suggests that an ARIMA(O, 1, 1) (a.k.a. IMA(I, 1)) can be written as an expo-
nentially weighted moving average (EWMA) of all past values.
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TABLE 5.2 Sample ACFs and PACFs for Some Realizations of MA(1) and MA(2) Models
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TABLE 5.3 Sample ACFs and PACFs for Some Realizations of AR(1) and AR(2) Models
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TABLE 5.4 Sample ACFs and PACFs for Some Realizations of ARMA(1,1) Models
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Autocorrelation Function for y(t)

Time Series Plot of y(t) (with 5% significance limits for the autocorrelations)
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FIGURE 5.11 A realization of the ARIMA(0, 1, 0) model, v, its first difference, w;, and their sample
ACFs and PACFs.

Consider the time series data in Figure 5.12a. It looks like the mean of the process is
changing (moving upwards) in time. Yet the change in the mean (i.e., nonstationarity)
is not as obvious as in the previous example. The sample ACF plot of the data in Figure
5.12b dies relatively slowly and the sample PACF of the data in Figure 5.12¢ shows
two significant values at lags 1 and 2. Hence we might be tempted to model this data
using an AR(2) model because of the exponentially decaying ACF and significant
PACEF at the first two lags. Indeed, we might even have a good fit using an AR(2)



264 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS

Autocorrelation Function for
2 Time Series Plot of y(t) (with 5% significance limits for the amm’:rorelaliw)
1.0
3 c 0.8
2 53
ae ! g3 I‘H-Hrlllllllnnn. 1111
0 02~ __
= jg ————————————————————————
-2 <08
3 -1.0 1
1 10 20 30 40 50 60 70 80 90 100 2 4 6 810121416182022 24
Time Lag
(a) (b)
Partial Autocorrelation Function for y(t)
(with 5% significance limits for the partial autocorrelations) Time Series Plot of wit)
-4 5
6 101
£ 08 4
§ 0.6 1 3
sl 2
2_82.__2_' _______ o4 us i S |
<_04 -1
T 0.6 -2
£ -0.8 -3
& -1.0 1 T o =
2 4 6 81012141618 202224 1 10 20 30405}}6‘07-080901(*)
Lag Time
(c) (d)
Autocorrelation Function for w(t) wmmﬁmmqn :
(with 5% significance limits for the autocorrelations) & (with 5% significance limits for the partial autocorrelations)
1.0 1 o 1.0
c 0.8 1 & 08
S 06 B 0.6
® 04 0.4 1
BREE T ey R T o 0 [0 e e i
U o - E_ojz.Hu_'__'_'_._l.'_l__._._.'_.ﬁ_'_'._'__l
-0.4 <041
0.6 5061
(_0_5 £-08 1
g T s &-101 S—
2 4 6 81012141618202224 2 4 6 81012141618202224
Lag Lag
(e) ()

FIGURE 5.12 A realization of the ARIMA(0, 1, 1) model, y,, its first difference, w,, and their sample
ACFs and PACFs.

model. We should nevertheless check the roots of the associated polynomial given in
Eq. (5.34) to make sure that its roots are less than 1 in absolute value. Also note that a
technically stationary process will behave more and more nonstationary as the roots of
the associated polynomial approach unity. For that, observe the realization of the near
nonstationary process, ¥, = 2+ 0.95y,_, + &, given in Figure 5.1b. Based on the
visual inspection, however, we may deem the process nonstationary and proceed with
taking the first difference of the data. This is because the ¢ value of the AR(1) model
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is close to 1. Under these circumstances, where the nonstationarity of the process
is dubious, we strongly recommend that the analyst refer back to basic underlying
process knowledge. If, for example, the process mean is expected to wander off as in
some financial data, assuming that the process is nonstationary and proceeding with
differencing the data would be more appropriate. For the data given in Figure 5.12a,
its first difference given in Figure 5.12d looks stationary. Furthermore, its sample
ACF and PACF given in Figures 5.12¢ and 5.12f, respectively, suggest that an MA(1)
model would be appropriate for the first difference since its ACF cuts off after the
first lag and the PACF exhibits an exponential decay pattern. Hence the ARIMA
(0, 1, 1) model given in Eq. (5.73) can be used for this data.

5.7 TIME SERIES MODEL BUILDING

A three-step iterative procedure is used to build an ARIMA model. First, a tentative
model of the ARIMA class is identified through analysis of historical data. Second,
the unknown parameters of the model are estimated. Third, through residual analysis,
diagnostic checks are performed to determine the adequacy of the model, or to indicate
potential improvements. We shall now discuss each of these steps in more detail.

5.7.1 Model Identification

Model identification efforts should start with preliminary efforts in understanding the
type of process from which the data is coming and how it is collected. The process’s
perceived characteristics and sampling frequency often provide valuable information
in this preliminary stage of model identification. In today’s data rich environments,
it is often expected that the practitioners would be presented with “enough” data to
be able to generate reliable models. It would nevertheless be recommended that 50
or preferably more observations should be initially considered. Before engaging in
rigorous statistical model-building efforts, we also strongly recommend the use of
“creative” plotting of the data, such as the simple time series plot and scatter plots
of the time series data y, versus v,_{, y:-2, and so on. For the y, versus y,_; scatter
plot, for example, this can be achieved in a data set of N observations by plotting
the first N — 1 observations versus the last N — 1. Simple time series plots should be
used as the preliminary assessment tool for stationarity. The visual inspection of these
plots should later be confirmed as described earlier in this chapter. If nonstationarity is
suspected, the time series plot of the first (or dth) difference should also be considered.
The unit root test by Dickey and Fuller [1979] can also be performed to make sure that
the differencing is indeed needed. Once the stationarity can be presumed, the sample
ACF and PACF of the time series of the original time series (or its dth difference if
necessary) should be obtained. Depending on the nature of the autocorrelation, the
first 20-25 sample autocorrelations and partial autocorrelations should be sufficient.
More care should be taken of course if the process exhibits strong autocorrelation
and/or seasonality, as we will discuss in the following sections. Table 5.1 together
with the £2/+/N limits can be used as a guide for identifying AR or MA models.
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As discussed earlier, the identification of ARMA models would require more care.
as both the ACF and PACF will exhibit exponential decay and/or damped sinusoid
behavior.

We have already discussed that the differenced series {w,} may have a nonzero
mean, say, (L. At the identification stage we may obtain an indication of whether or
not a nonzero value of y,, is needed by comparing the sample mean of the differ-
enced series, say, 0 = Zf;{i [w/(n — d)], with its approximate standard error. Box.
Jenkins, and Reinsel [1994] give the approximate standard error of @ for several
useful ARIMA(p, d, g) models.

Identification of the appropriate ARIMA model requires skills obtained by ex-
perience. Several excellent examples of the identification process are given in Box
et al. [1994, Chap. 6] and Montgomery et al. [1990].

5.7.2 Parameter Estimation

There are several methods such as methods of moments, maximum likelihood, and
least squares that can be employed to estimate the parameters in the tentatively identi-
fied model. However, unlike the regression models of Chapter 2, most ARIMA models
are nonlinear models and require the use of a nonlinear model fitting procedure. How-
ever, this is usually automatically performed by sophisticated software packages such
as Minitab, JMP, and SAS. In some software packages, the user may have the choice
of estimation method and can accordingly choose the most appropriate method based
on the problem specifications.

5.7.3 Diagnostic Checking

After a tentative model has been fit to the data, we must examine its adequacy and,
if necessary, suggest potential improvements. This is done through residual analysis.
The residuals for an ARMA(p, g) process can be obtained from

P q
&=y — (8 + D by Zeém) (5.76)

If the specified model is adequate and hence the appropriate orders p and ¢ are
identified, it should transform the observations to a white noise process. Thus the
residuals in Eq. (5.76) should behave like white noise.

Let the sample autocorrelation function of the residuals be denoted by {r, (k)}.
If the model is appropriate, then the residual sample autocorrelation function should
have no structure to identify. That is, the autocorrelation should not differ significantly
from zero for all lags greater than one. If the form of the model were correct and if we
knew the true parameter values, then the standard error of the residual autocorrelations
would be N~1/2,

Rather than considering the r.(k) terms individually, we may obtain an indication
of whether the first K residual autocorrelations considered together indicate adequacy
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of the model. This indication may be obtained through an approximate chi-square test
of model adequacy. The test statistic is

K
Q=WN-d)) rik (5.77)
k=1

which is approximately distributed as chi-square with K — p — g degrees of freedom
if the model is appropriate. If the model is inadequate, the calculated value of Q will
be too large. Thus we should reject the hypothesis of model adequacy if Q exceeds
an approximate small upper tail point of the chi-square distribution with K — p — ¢
degrees of freedom. Further details of this test are in Chapter 2 and in the original
reference by Box and Pierce [1970]. The modification of this test by Ljung and Box
[1978] presented in Chapter 2 is also useful in assessing model adequacy.

5.7.4 Examples of Building ARIMA Models

In this section we shall present two examples of the identification, estimation, and
diagnostic checking process. One example presents the analysis for a stationary time
series, while the other is an example of modeling a nonstationary series.

Example 5.1

Table 5.5 shows the weekly total number of loan applications in a local branch of
a national bank for the last two years. It is suspected that there should be some
relationship (i.e., autocorrelation) between the number of applications in the current
week and the number of loan applications in the previous weeks. Modeling that
relationship will help the management to proactively plan for the coming weeks
through reliable forecasts. As always, we start our analysis with the time series plot
of the data, shown in Figure 5.13.

Figure 5.13 shows that the weekly data tend to have short runs and that the data
seem to be indeed autocorrelated. Next, we visually inspect the stationarity. Although
there might be a slight drop in the mean for the second year (weeks 53-104), in
general it seems to be safe to assume stationarity.

We now look at the sample ACF and PACF plots in Figure 5.14. Here are possible
interpretations of the ACF plot:

1. It cuts off after lag 2 (or maybe even 3), suggesting a MA(2) (or MA(3)) model.

2. It has an (or a mixture of) exponential decay(s) pattern suggesting an AR(p)
model.

To resolve the conflict, consider the sample PACF plot. For that, we have only one
interpretation; it cuts off after lag 2. Hence we use the second interpretation of the
sample ACF plot and assume that the appropriate model to fit is the AR(2) model.
Table 5.6 shows the Minitab output for the AR(2) model. The parameter estimates
are ¢; = 0.27 and @, = 0.42, and they turn out to be significant (see the P-values).
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TABLE 5.5 Weekly Total Number of Loan Applications for the Last Two Years

Week Applications Week Applications Week Applications Week Applications

1 71 27 62 53 66 79 63
2 57 28 77 54 71 80 61
3 62 29 76 55 59 81 73
4 64 30 88 56 57 82 72
5 65 31 71 57 66 83 65
6 67 32 72 58 51 84 70
7 65 33 66 59 59 85 54
8 82 34 65 60 56 86 63
9 70 35 73 61 57 87 62
10 74 36 76 62 55 88 60
1 75 37 81 63 53 89 67
12 81 38 84 64 74 90 59
13 71 39 68 65 64 91 74
14 75 40 63 66 70 92 61
15 82 41 66 67 74 93 61
16 74 a2 71 68 69 94 52
17 78 43 67 69 64 95 55
18 75 44 69 70 68 96 61
19 73 45 63 71 64 97 56
20 76 46 61 72 70 98 61
21 66 47 68 73 73 99 60
22 69 48 75 74 59 100 65
23 63 49 66 75 68 101 55
24 76 50 81 76 59 102 61
25 65 51 72 77 66 103 59
26 73 52 77 78 63 104 63
90

80+

o 701

601

\
50

T T T T T T T T

1 10 20 30 40 50 60 70 80 90 100
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FIGURE 5.13 Time series plot of the weekly total number of loan applications.



TIME SERIES MODEL BUILDING

Autocorrelation Function for the
Number of Loan Applications
(with 5% significance limits for the autocorrelations)
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Partial Autocorrelation Function for the
Number of Loan Apptlications
(with 5% significance limits for the autocorrelations)
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FIGURE 5.14 ACF and PACF for the weekly total number of loan applications.

MSE is calculated to be 39.35. The modified Box—Pierce test suggests that there is no
autocorrelation left in the residuals. We can also see this in the ACF and PACF plots
of the residuals in Figure 5.15.

As the last diagnostic check, we have the 4-in-1 residual plots in Figure 5.16 pro-
vided by Minitab: Normal Probability Plot, Residuals versus Fitted Value, Histogram
of the Residuals, and Time Series Plot of the Residuals. They indicate that the fit is
indeed acceptable.

TABLE 5.6 Minitab Output for the AR(2) Model for the Loan Application Data

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.2682 0.0903 2.97 0.004
AR 2 0.4212 0.0908 4.64 0.000
Constant 20.7642 0.6157 33.73 0.000
Mean 66.844 1.982

Number of observations: 104
Residuals: SS = 3974.30 (backforecasts excluded)
MS = 39.35 DF = 101

Modified Box-Pierce (Ljung-Box) Chi-Sguare statistic

Lag 12 24 36 48
Chi-Square 6.2 16.0 24.9 32.0
DF 9 21 33 45
P-Value 0.718 0.772 0.843 0.927
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FIGURE 5.15 The sample ACF and PACF of the residuals for the AR(2) model in Table 5.6.

Figure 5.17 shows the actual data and the fitted values. It looks like the fitted values
smooth out the highs and lows in the data.

Note that, in this example, we often and deliberately used “vague™ words such as
“seems” or “looks like.” It should be clear by now that the methodology presented
in this chapter has a very sound theoretical foundation. However, as in any modeling
effort, we should also keep in mind the subjective component of model identification.
In fact, as we mentioned earlier, time series model fitting can be seen as a mixture of
science and art and can best be learned by practice and experience. The next example

will illustrate this point further. ]
Normal Probability Plot Versus Fits
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FIGURE 5.16 Residual plots for the AR(2) model in Table 5.6.
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FIGURE 5.17 Time series plot of the actual data and fitted values for the AR(2) model in Table 5.6.

Example 5.2

Consider the Dow Jones Index data from Chapter 4. A time series plot of the data is
given in Figure 5.18. The process shows signs of nonstationarity with changing mean
and possibly variance.

Similarly, the slowly decreasing sample ACF and sample PACF with significant
value at lag 1, which is close to 1 in Figure 5.19, confirm that indeed the process

12000

11000+

10000

Dow Jones

9000

8000

T T T T T T T T
Jun-99 Jan-00 Sep-00 May-01 Jan-02 Sep-02 May-03 Jan-04 Sep-04 May-05 Jan-06
Date

FIGURE 5.18 Time series plot of the Dow Jones Index from June 1999 to June 2006.



272 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS
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FIGURE 5.19 Sample ACF and PACF of the Dow Jones Index.

can be deemed nonstationary. On the other hand, one might argue that the significant
sample PACF value at lag 1 suggests that the AR(1) model might also fit the data well.
We will consider this interpretation first and fit an AR(1) model to the Dow Jones
Index data.

Table 5.7 shows the Minitab output for the AR(1) model. Although it is close to
1, the AR(1) model coefficient estimate ¢ = 0.9045 turns out to be quite significant
and the modified Box—Pierce test suggests that there is no autocorrelation left in the
residuals. This is also confirmed by the sample ACF and PACF plots of the residuals
given in Figure 5.20.

The only concern in the residual plots in Figure 5.21 is in the changing variance
observed in the time series plot of the residuals. This is indeed a very important issue

TABLE 5.7 Minitab Output for the AR(1) Model for the Dow Jones Index

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.9045 0.0500 18.10 0.000
Constant 984 .94 44 .27 22.25 0.000
Mean 10309.9 463 .4

Number of observations: 85
Residuals: SS 13246015 (backforecasts excluded)
MS 159591 DF = 83

It

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 2.5 14.8 21.4 29.0
DF 10 22 34 46

P-Value 0.991 0.872 0.954 0.977
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PACF of Residuals from the AR(1) Model
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FIGURE 5.20 Sample ACF and PACF of the residuals from the AR(1) model for the Dow Jones Index
data.

since it violates the constant variance assumption. We will discuss this issue further
in Section 7.3 but for illustration purposes we will ignore it in this example.

Overall it can be argued that an AR(1) model provides a decent fit to the data.
However, we will now consider the earlier interpretation and assume that the Dow
Jones Index data comes from a nonstationary process. We then take the first difference
of the data as shown in Figure 5.22. While there are once again some serious concerns
about changing variance, the level of the first difference remains the same. If we ignore
the changing variance and look at the sample ACF and PACF plots given in Figure 5.23,
we may conclude that the first difference is in fact white noise. That is, since these
plots do not show any sign of significant autocorrelation, a model we may consider
for the Dow Jones Index data would be the random walk model, ARIMA (0, 1, 0).
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FIGURE 5.21 Residual plots from the AR(1) model for the Dow Jones Index data.
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FIGURE 5.22 Time series plot of the first difference w(t) of the Dow Jones Index data.

Now the analyst has to decide between the two models: AR(1) and ARIMA
(0, 1, 0). One can certainly use some of the criteria we discussed in Section 2.6.2 to
choose one of these models. Since these two models are fundamentally quite different,
we strongly recommend that the analyst use the subject matter/process knowledge as
much as possible. Do we expect a financial index such as the Dow Jones Index to
wander about a fixed mean as implied by the AR(1)? In most cases involving financial
data, the answer would be no. Hence a model such as ARIMA(0, 1, 0) that takes into
account the inherent nonstationarity of the process should be preferred. However, we
do have a problem with the proposed model. A random walk model means that the
price changes are random and cannot be predicted. If we have a higher price today
compared to yesterday, that would have no bearing on the forecasts tomorrow. That
is, tomorrow’s price can be higher or lower than today’s and we would have no way
to forecast it effectively. This further suggests that the best forecast for tomorrow’s
price is in fact the price we have today. This is obviously not a reliable and effective
forecasting model. This very same issue of the random walk models for financial
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FIGURE 5.23 Sample ACF and PACF plots of the first difference of the Dow Jones Index data.
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data has been discussed in great detail in the literature. We simply used this data to
illustrate that in time series model fitting we can end up with fundamentally different
models that will fit the data equally well. At this point, process knowledge can provide
the needed guidance in picking the “right” model.

It should be noted that, in this example, we tried to keep the models simple for
illustration purposes. Indeed, a more thorough analysis would (and should) pay close
attention to the changing variance issue. In fact, this is a very common concern
particularly when dealing with financial data. For that, we once again refer the reader
to Section 7.3. m

5.8 FORECASTING ARIMA PROCESSES

Once an appropriate time series model has been fit, it may be used to generate forecasts
of future observations. If we denote the current time by 7', the forecast for yr4. is
called the r-period-ahead forecast and denoted by 37, (7). The standard criterion to
use in obtaining the best forecast is the mean squared error for which the expected value
of the squared forecast errors, E[(yr4r — $74+ (TH?] = Eler (r)z], is minimized.
It can be shown that the best forecast in the mean square sense is the conditional
expectation of yr,, given current and previous observations, thatis, yr, yr—i,...:

S74: Ty = Elyrecdyryyro, .. (5.78)

Consider, for example, an ARIMA (p, d, ¢) process attime T + 7 (ie., T period in
the future):

p+d q
yroe =46+ Z@bi)’nrq +ET4r — 291‘8”1—,' (5.79)

i=1 i=l

Further consider its infinite MA representation,
o0
Yr4r = 4+ Z Vi€ 4o (5.80)
i=|

We can partition Eq. (5.80) as
r—1 00
YTrer = U+ Z YibT i + Z Yisryri (5.81)
i=1 i=t

In this partition we can clearly see that the Zi:]l Y6747 —; component involves the
future errors whereas the Zf’ir Yi6r4¢_; component involves the present and past
errors. From the relationship between the current and past observations and the cor-
responding random shocks as well as the fact that the random shocks are assumed
to have mean zero and to be independent, we can show that the best forecast in the
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mean square sense is

ok
Y4 (M) = Elyreelyr.yror .. d=p + Z Vier o (5.82)
since
0 if i<t
Elereeilyr,yror, ... 1= [g”r_,_ if it
Subsequently, the forecast error is calculated from
T—1
et (1) = ¥rae = Irac(T) = ) Vit e (5.83)
i=0

Since the forecast error in Eq. (5.83) is a linear combination of random shocks, we
have

Eler ()] =0 (5.84)
T -1

-1
Var [eT (t)] = Var[ ]//i€T+r~i} - Z W;ZV&NET+r-i)
i=0 i=0

=023 y? (5.85)
=0%(1), t=1,2,...

It should be noted that the variance of the forecast error gets bigger with increasing
forecast lead times 7. This intuitively makes sense as we should expect more uncer-
tainty in our forecasts further into the future. Moreover, if the random shocks are
assumed to be normally distributed, N(0, o2), then the forecast errors will also be
normally distributed with N(0, o2()). We can then obtain the 100(1 — &) percent
prediction intervals for the future observations from

P (37+: (T) = 2020 (¥) < ¥747 < S14: (T + 240 (1)) = 1 — @ (5.86)

where z,, is the upper « /2 percentile of the standard normal distribution, N (0, 1).
Hence the 100(1 — &) percent prediction interval for yr,, is

3740 (TY £ 24020 (1) (5.87)

There are two issues with the forecast equation in (5.82). First. it involves infinitely
many terms in the past. However, in practice, we will only have a finite amount of data.
For a sufficiently large data set, this can be overlooked. Second, Eq. (5.82) requires
knowledge of the magnitude of random shocks in the past, which is unrealistic. A
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solution to this problem is to “estimate” the past random shocks through one-step-
ahead forecasts. For the ARIMA model we can calculate

ptd q
R {a + D iy — Ze,@,f,} (5.88)
i=1 i=1

recursively by setting the initial values of the random shocksto zerofort < p +d + 1.
For more accurate results, these initial values together with the y, for ¢ < 0 can also
be obtained using back-forecasting. For further details, see Box, Jenkins, and Reinsel
[1994].

As an illustration consider forecasting the ARIMA(1, 1, 1) process

(1=¢B)(1 = B)yrr = (1 —0B)er s (5.89)
We will consider two of the most commonly used approaches:

1. As discussed earlier, this approach involves the infinite MA representation of
the model in Eq. (5.89), also known as the random shock form of the model:

[o.@)
Ve = E Vier o
)

(5.90)
= Vier 41 + V2brie2+ -
Hence the 1-step-ahead forecast can be calculated from
Y140 (T) = Yeer + Vo187 + -+ (5.91)
The weights ¥; can be calculated from
Wo+¥iB+--)(1-¢B—--—¢,B")(1-B)=(1-6B)  (592)

and the random shocks can be estimated using the one-step-ahead forecast error;
for example, &7 can be replaced by er (1) = yr — 37 (T — 1).

2. Another approach that is often employed in practice is to use difference equa-
tions as given by

Yroe = I+ @) yrae—1 — @yrar-2 + €740 — 08740 (5.93)
For T = 1, the best forecast in the mean squared error sense is
Jra (D) =Elyralyr,yrn, .. 1= A0+ @) yr —dyr—1 —Oer (1) (5.94)

We can further show that for lead times © > 2, the forecast is

I+ (M =0+ Ir (T =1 —¢Fr(r —2) (5.95)
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FIGURE 5.24 Forecasts for the weekly loan application data.
Example 5.3

Consider the loan applications data given in Table 5.5. Now assume that the manager
wants to make forecasts for the next 3 months (12 weeks). Hence at the 104th week we
need to make 1-step, 2-step, ...,12-step-ahead predictions, which are obtained and
plotted using Minitab in Figure 5.24 together with the 95% prediction interval. =

Table 5.8 shows the output from JMP for fitting an AR(2) model to the weekly
loan application data. In addition to the sample ACF and PACF, IMP provides

TABLE 5.8 JMP AR(2) Output for the Loan Application Data

Time Series y(t)

90
80
= 704
> —
604
50 T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 110
Row
Mean 67.067308
Std 7.663932
N 104
Zero Mean ADF —0.695158
Single Mean ADF —6.087814

Trend ADF

—7.396174
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TABLE 5.8 (Continued)
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Time Series Basic Diagnostics
AutoCorr Plot Autocorr

Lag
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1.0000
0.4617
0.5314
0.2915
0.2682
0.2297
0.1918
0.2484
0.1162
0.1701
0.0565
0.0716
0.1169
0.1151
0.2411
0.1137
0.2540
0.1279
0.2392
0.1138
0.1657
0.0745
0.1320
0.0708
0.0338
0.0057
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Partial Plot Partial
AutoCorr Plot Autocorr

1.0000
0.4617
0.4045
-0.0629
-0.0220
0.0976
0.0252
0.1155
-0.1017
0.0145
-0.0330
-0.0250
0.1349
0.0488
0.1489
-0.0842
0.1036
0.0105
0.0830
-0.0938
0.0052
-0.0927
0.1149
-0.0645
-0.0473
-0.0742
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pd Dt
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Ljung-Box Q

22.8186
53.3428
62.6167
70.5487
76.4252
80.5647
87.5762
89.1255
92.4847
92.8587
93.4667
95.1040
96.7080
103.829
105.430
113.515
115.587
122.922
124.603
128.206
128.944
131.286
131.968
132.125
132.130

Ljung-Box Q

p-Value

<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

p-Value
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AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS

TABLE 5.8 JMP AR(2) Output for the Loan Application Data (Continued)

Model Comparison

Model DF Variance AIC SBC RSquare
AR(2) 101 39.458251 680.92398 688.85715 0.343
Model: AR(2)
Model Summary
DF 101
Sum of Squared Errors 3985.