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University of Washington Winter 1999
Department of Economics Eric Zivot

Economics 483

Final Exam

This is a closed book and closed note exam. However, you are allowed one page of handwritten
notes. Answer all questions and write all answers in a blue book. Total points = 100.

L. Portfolio Theory (20 points)

1. Consider the problem of allocating wealth between a collection of N risky assets and a risk-free
asset (T-bill) under the assumption that investors only care about maximizing portfolio expected
return and minimizing portfolio variance. Use the graph below to answer the following questions.

a. Mark on the graph the set of efficient portfolios for the risky assets only (transfer the graph to
your blue book). Briefly describe how you would compute this set using Excel. (10 pts)

b. Mark on the graph the set of efficient portfolios that include risky assets and a single risk-free
asset (transfer the graph to your blue book). Briefly describe how you would compute this set
using Excel. (10 pts)

I1. CAPM (20 points)
1. Consider the CAPM regression

R-re=a+pRy-rpte, t=1,..T
& ~ iid N(0, 07) and R, is independent of &, for all ¢

where R, denotes the return on an asset or portfolio, R, denotes the return on the market
portfolio proxy and ; denotes the risk-free T-bill rate. Let x# and u,; denote the expected returns
on the asset and the market, respectively, and let 6 and oy, denote the variances of the asset and
the market, respectively. Finally, let oy,, denote the covariance between the asset and the market.



a. What is the interpretation of a and f in the CAPM regression? What restriction does the CAPM
place on the value of a? (4 pts)

b. What is the interpretation of ¢, in the CAPM regression? (2 pts)
c. Using the CAPM regression compute E[R,] and var(R,). (2 pts)

d. Using the expression for var(R,), what is the proportion of the variance of the asset due to the
variability in the market return and what is the proportion unexplained by variability in the
market? (2 pts)

2. The following output is based on estimating the CAPM regression for IBM and an equally
weighted portfolio of 15 stocks using monthly return data over the period January 1978 to
December 1982:

Ry - 7= -0.0002 + 0.3390%(R,, - ry), K2 = 0.2008, var(ggp,,) = (0.0524)?
(0.0068) (0.0888)

Rigre - 7p = 0.0006 + 0.6316*(Ry - rp), R* = 0.6280, var(s,,) = (0.0335)?
(0.0030) (0.0447)

a. For IBM and the portfolio of 15 stocks, what are the estimated values of « and f and what are
the estimated standard errors for these estimates? (2 pts)

b. Is the beta for the portfolio estimated more precisely than the beta for IBM? Why or why not?
(2 pts)

c. For each regression, what is the proportion of market or systematic risk and what is the
proportion of firm specific or unsystematic risk? Why should the portfolio have a greater
proportion of systematic risk and smaller value of SD(&) than IBM? (2 pts)

d. Based on the regression estimates, does the CAPM appear to hold for IBM and the portfolio?
Justify your answer. (4 pts)

III. Return Calculations (20 points)

1. Consider a portfolio of 3 risky stocks denoted by A, B and C (say Apple, Boeing and Coca
Cola). Let R,, R and R denote the monthly returns on these stock and it is assumed that these
returns are jointly normally distributed with means u, (i = A,B,C), variances o (i = A.B,C) and
covariances o; (i = A,B,C and 1 # j). Consider forming a portfolio of these stocks where x; = share
of wealth invested in asset 7 such that x, + x5 + x. = 1.

a. What is the expected return on the portfolio? (2 pts)
b. What is the variance of the portfolio return? (2 pts)
c. What is the probability distribution for the portfolio return? (2 pts)



2. Throughout the course we have made the assumption that the continuously compounded
returns on risky assets (e.g. stocks) are normally distributed. Based on the data analysis we have
done in the labs and in class, is this a believable assumption? Briefly justify your answer. (8 pts)

3. Consider the following monthly data for Microsoft stock over the period December 1995
through December 1996:

End of Month Price Data for Microsoft Stock
December, 1995 43.12
January, 1996 43.87
February, 1996 47.06
March, 1996 47.75
April, 1996 51.37
May, 1996 57.56
June, 1996 59.19
July, 1996 61.16
August, 1996 60.31
September, 1996 61.25
October, 1996 66.06
November, 1996 68.69
December, 1996 78.87

a. Using the data in the table, what is the continuously compounded monthly return between
December, 1995 and January 19967 (2 pts)

b. Assuming that the continuously compounded monthly return you computed in part (a) is the
same for 12 months, what is the continuously compounded annual return? (2 pts)

c. Using the data in the table, compute the actual (annual) continuously compounded return
between December 1995 and December 1996. Compare with your result in part (b). (2 pts)

IV. Arbitrage (15 points)
a. What is an arbitrage opportunity? (5 pts)

b. Give a simple example of an arbitrage opportunity. (5 pts)
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1 Matrix Algebra Review

A matriz is just an array of numbers. The dimension of a matrix is determined by
the number of its rows and columns. For example, a matrix A with n rows and m
columns is illustrated below

ay; a1 ... QAim
Q21 A22 ... Q9m
A = .
(nxm)
An1 QAp2 ... QApm

where a;; denotes the i*" row and j column element of A.
A wector is simply a matrix with 1 column. For example,

T
T2
X =
(nx1)
Tn,
is an n x 1 vector with elements z1, x», . .., z,. Vectors and matrices are often written

in bold type (or underlined) to distinguish them from scalars (single elements of
vectors or matrices).

The transpose of an n X m matrix A is a new matrix with the rows and columns
of A interchanged and is denoted A’ or AT. For example,

1
A {123}7 A —

4
5
(2x3) 4 5 6 (3x2) 6

2
3



1

x = [2], x¥X=[12 3].
(3x1) 3 (1x3)

A symmetric matrix A is such that A = A’. Obviously this can only occur if A
is a square matrix; i.e., the number of rows of A is equal to the number of columns.
For example, consider the 2 x 2 matrix

a-[12]

r oA |12
xoa-[1?]

Clearly,

1.1 Basic Matrix Operations
1.1.1 Addition and subtraction

Matrix addition and subtraction are element by element operations and only apply
to matrices of the same dimension. For example, let

SR

Then

409 2 0] [4+2 9+0] [6 9
A+B = {21}*[ }_{2+0 1+7}_{ }

49 20 4—-2 9-0 2 9
A-B = {2 1]_[0 7}_{2—0 1—7}_{2 —6}
1.1.2 Scalar Multiplication

Here we refer to the multiplication of a matrix by a scalar number. This is also an
element-by-element operation. For example, let ¢ = 2 and

=05 ]
Then
A= l 22.'(8) 22(._51> } = [8 o }



1.1.3 Matrix Multiplication

Matrix multiplication only applies to conformable matrices. A and B are conformable
matrices of the number of columns in A is equal to the number of rows in B. For
example, if A is m xn and B is m x p then A and B are conformable. The mechanics
of matrix multiplication is best explained by example. Let

1 2 1 21
<2é2> [3 4]% <2]§3> [342}
Then

(1 2 1 21
(2x2)  (2x3) _34] {342}
o [1142-3 1-242-4 1-14+2-2
| 3-1+4-3 3-24+4-4 3-14+4-2
[ 7 10 5
o[ 1522 11}_(293)

The resulting matrix C has 2 rows and 3 columns. In general, if A is n x m and B
ismxpthen C=A-B isn xp.
As another example, let

1 2 2
A = and B = .
(2x2) [3 4} (2x1) [6]

Then
(1 2 5
dey @y |3 4} l6}
[ 1-5+2-6
N 3:-5+4-6
B 17
N 39
As a &nal example, let
1 4
X = , y=1|5
3 6
Then
4
xXy=[123]-|5|=1-442-543-6=32
6



1.2 The Identity Matrix

The identity matrix plays a similar role as the number 1. Multiplying any number by
1 gives back that number. In matrix algebra, pre or post multiplying a matrix A by
a conformable identity matrix gives back the matrix A. To illustrate, let

(0]

denote the 2 dimensional identity matrix and let

A:|:a11 6112]

Q21 Q22

denote an arbitrary 2 x 2 matrix. Then

. 1 0 . ajpr Q12
ea - [ ]

and

1.3 Inverse Matrix

To be completed.

1.4 Representing Summation Using Vector Notation

Consider the sum

n
E Ty =21+ + Tk
k=1

Let x = (21,...,2,) be an n x 1 vector and 1 = (1,...,1)" be an n x 1 vector of
ones. Then
1 n
x’lz[a:l a:n] : ::vl—{—---—{—:nk:Z:Ek
1 k=1



and
X1

Ux=[1 ... 1]-| : |=m+Fz.=> u
Tn k=1

Next, consider the sum of squared x values
n
Z 2 2 2
l‘k:ml_i_..._{_l‘n‘
k=1

This sum can be conveniently represented as

T

3

= )
_l’_
_l’_
&
3

Il
8
EIN)

XXZ[CEl mn] : =2

B
Il
—

Tn

Last, consider the sum of cross products

Zm% =ZT1Y1 + - TpYn.
k=1

This sum can be compactly represented by
Y1 n
Xy=[a o ]| | =y = Y Wl
Yn k=t

Note that x'y = y'x.

1.5 Representing Systems of Linear Equations Using Matrix
Algebra

Consider the system of two linear equations

r+y = 1 (1)
2e—y = 1 (2)

which is illustrated in Figure xxx. Equations (1) and (2) represent two straight lines

which intersect at the point x = % and y = % This point of intersection is determined

by solving for the values of z and y such that x + y = 22 — 3.

1Soving for = gives = 2y. Substituting this value into the equation z 4+ y =1 gives 2y +y = 1
and solving for y gives y = 1/3. Solving for x then gives x = 2/3.



The two linear equations can be written in matrix form as

BRI

A.-z=b

e[t o[- 1]

If there was a (2 x 2) matrix B, with elements b;;, such that B - A = I, where I
is the (2 x 2) identity matrix, then we could solve for the elements in z as follows. In
the equation A -z = b, pre-multiply both sides by B to give

or

where

B-A-z = B-:b
— I.z=B:-b
— z=B:-b

{CB} _ {bn 512] [1}_ [511'1—1-512'1}
y | | ba b L] | bar-1+0bx-1

If such a matrix B exists it is called the inverse of A and is denoted A~!. In-
tuitively, the inverse matrix A~! plays a similar role as the inverse of a number.
Suppose a is a number; e.g., a = 2. Then we know that % -a = a'a = 1. Similarly,
in matrix algebra A"'A = I where I is the identity matrix. Next, consider solving
the equation ax = 1. By simple division we have that x = ém = a~'z. Similarly, in
matrix algebra if we want to solve the system of equation Ax = b we multiply by
A" and get x = A" 'b.

Using B = A™!, we may express the solution for z as

or

z = A~ 'b.

As long as we can determine the elements in A~! then we can solve for the values of
x and y in the vector z. Since the system of linear equations has a solution as long as
the two lines intersect, we can determine the elements in A~! provided the two lines
are not parallel.

There are general numerical algorithms for &nding the elements of A~! and typical
spreadsheet programs like Excel have these algorithms available. However, if A is a
(2 x 2) matrix then there is a simple formula for A™!. Let A be a (2 x 2) matrix such

that
A — [ a1; a2 ] ‘

a1 a2



Then

1 a —a
- 22 12
At = .
11022 — G21012 | —@21 Q11
By brute force matrix multiplication we can verify this formula
1 [ a —a a; a
— 22 12 11 Q12
ATTA =
a11G22 — G21G12 | —A21 411 Q21 QA22
- 1 Q22011 — Q12021 Q22Q12 — A12A22
11022 — Q21Q12 | —a21011 + Q11021  —0A21012 + A11022
- 1 Q22011 — Q12021 0
G11022 — G21012 | 0 —a21012 + 11022
a22a11—a12a21 0
— a11a22—a21a12
—a21a12+a11022
a11a22—a21a12

-5 7]

Let[s apply the above rule to &d the inverse of A in our example:

1 [-1 -1
-1
SR

W Ibo =

Notice that

11 1 1 1 0
1A _ | 3 3 _
ara=y o L[]

Our solution for z is then
z = A'b
1 1 1
- [1 2]
[5?1 1
- [1]-17]
3 Yy

sothatmz%andyzé.
In general, if we have n linear equations in n unknown variables we may write the
system of equations as

a11T1 + 122 + -+ ATy, = bl
a91T1 + Qoo + -+ - + A9px, = bg
Ap1T1 + GpaZo + -+ + App®y = bn



which we may then express in matrix form as

a1; aiz -+ Qip T by
Q21 Q22 -+ A2y T2 by
an1 Ap2 - App Tp bn

or
A - x =b.
(TLXTL) (TLX].) (TLX].)
The solution to the system of equations is given by

x=A"'b

where A™*A =1 and I is the (n X n) identity matrix. If the number of equations is

greater than two, then we generally use numerical algorithms to &nd the elements in
AL

2 Further Reading

Excellent treatments of portfolio theory using matrix algebra are given in Ingersol
(1987), Huang and Litzenberger (1988) and Campbell, Lo and MacKinlay (1996).

3 Problems

To be completed
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1. The Capital Asset Pricing Model

The capital asset pricing model (CAPM) is an equilibrium model for expected

returns and relies on a set of rather strict assumptions.

CAPM Assumptions

1.
2.

7.

Many investors who are all price takers
All investors plan to invest over the same time horizon
There are no taxes or transactions costs

Investors can borrow and lend at the same risk-free rate over the planned
investment horizon

. Investors only care about expected return and variance. Investors like ex-

pected return but dislike variance. (A sufficient condition for this is that
returns are all normally distributed)

All investors have the same information and beliefs about the distribution
of returns

The market portfolio consists of all publicly traded assets

The implications of these assumptions are as follows

1.

All investors use the Markowitz algorithm to determine the same set of
efficient portfolios. That is, the efficient portfolios are combinations of the
risk-free asset and the tangency portfolio and everyone’s determination of
the tangency portfolio is the same.

Risk averse investors put a majority of wealth in the risk-free asset (i.e. lend
at the risk-free rate) whereas risk tolerant investors borrow at the risk-free
rate and leverage their holdings of the tangency portfolio. In equilibrium
total borrowing and lending must equalize so that the risk-free asset is in
zero net supply when we aggregate across all investors.

Since everyone holds the same tangency portfolio and the risk-free asset is
in zero net supply in the aggregate, when we aggregate over all investors the
aggregate demand for assets is simply the tangency portfolio. The supply
of all assets is simply the market portfolio (where the weight of an asset



in the market portfolio is just the market value of the asset divided by the
total market value of all assets) and in equilibrium supply equal demand.
Therefore, in equilibrium the tangency portfolio is the marketl portfolio.

4. Since the market portfolio is the tangency portfolio and the tangency port-
folio is (mean-variance) eflicient the market portfolio is also (mean-variance)
efficient.

5. Since the market portfolio is efficient and there is a risk-free asset the security
market line (SML) pricing relationship holds for all assets (and portfolios)

B[R] = r, + B(E[Ry] —7)

or
My =Tf + ﬂ(ﬂM - Tf)

where R; denotes the return on any asset or portfolio i, Ry denotes the
return on the market portfolio and 5 = cov(R;, Ryr) /var(R,,). The SML
says that there is a linear relationship between the expected return on an
asset and the “beta” of that asset with the market portfolio. Given a value
for the market risk premium, E[R] —r, > 0, the higher the beta on an asset
the higher the expected return on the asset and vice-versa.

The SML relationship can be rewritten in terms of risk premia by simply
subtracting r from both side of the SML equation:

E[R;)] =1, = B(E[Ry] —1y)

or
M =T = ﬂ(/J“M - Tf)

and this linear relationship is illustrated graphically in figure 1. In terms of risk
premia, the SML intersects the vertical axis at zero and has slope equal to p,, —77,
the risk premium on the market portfolio (which is assumed to be positive). Low
beta assets (less than 1) have risk premia less than the market and high beta
(greater than 1) assets have risk premia greater than the market.



1.1. A Simple Regression Test of the CAPM

The SML relationship allows a test of the CAPM using a modified version of the
market model regression equation. To see this, consider the excess return market
model regression equation

Rt—Tf = Oé‘l‘ﬂ(RMt_Tf)‘l‘gt, tzl,,T
g ~ iid N(0,0%), & is independent of Ry, (1.1)

where R; denotes the return on any asset or portfolio and Ry is the return on
some proxy for the market portfolio. Taking expectations of both sides of the
excess return market model regression gives

E[Ry — 7y = a4+ B(E[Rye) — )
and from the SML we see that the CAPM imposes the restriction
a=0
for every asset or portfolio. A simple testing strategy is as follows

e Eistimate the excess return market model for every asset trades

e Test that o = 0 in every regression

1.2. A Simple Prediction Test of the CAPM
Consider again the SML equation for the CAPM. The SML implies that there is a

simple positive linear relationship between expected returns on any asset and the
beta of that asset with the market portfolio. High beta assets have high expected
returns and low beta assets have low expected returns. This linear relationship
can be tested in the following way. Suppose we have a time series of returns on
N assets (say 10 years of monthly data).

e Split a sample of time series data on returns into two equal sized subsamples.

e Listimate [ for each asset in the sample using the first subsample of data.
This gives N estimates of 3.

e Using the second subsample of data, compute the average returns on the N
assets (this is an estimate of E[R;] = ;). This give N estimates of p.

e Plot the SML using the estimated betas and average returns and see if it
intersects at zero on the vertical axis and has slope equal to the average risk
premium on the market portfolio.



2. Hypothesis Testing using the Excess Return Market Model

In this section, we illustrate how to carry out some simple hypothesis tests con-
cerning the parameters of the excess returns market model regression. Before we
begin, we review some basic concepts from the theory of hypothesis testing.

2.1. Testing the CAPM Restriction o = 0.
Using the market model regression,

Rt—Tf = Oé—l—ﬂ(RMt—Tf)—l—&t, = 1,...,T
g ~ iid N(0,0%), & is independent of Ry, (2.1)

consider testing the null or maintained hypothesis that the CAPM holds for an
asset against the alternative hypothesis that the CAPM does not hold. These
hypotheses can be formulated as the two-sided test

Hy:a=0ws. H :a#0.

We will reject the null hypothesis, Hy : o = 0, if the estimated value of « is
either much larger than zero or much smaller than zero. To determine how big
the estimated value of a needs to be in order to reject the CAPM we use the
t-statistic

a—20

SE(@)’
where & is the least squares estimate of a and SE (@) is its estimated standard
error. The value of the t-statistic, {,—_g, gives the number of estimated standard
errors that & is from zero. If the absolute value of {,_g is much larger than 2
then the data cast considerable doubt on the null hypothesis & = 0 whereas if it

ta:O

is less than 2 the data are in support of the null hypothesis’. To determine how
big | ta—o| needs to be to reject the null, we use the fact that under the statistical
assumptions of the market model and assuming the null hypothesis is true

toa—o ~ Student —t with T" — 2 degrees of freedom

If we set the significance level (the probability that we reject the null given that
the null is true) of our test at, say, 5% then our decision rule is

Reject Hy : oo = 0 at the 5% level if |to—o| > toos.1-2

IThis interpretation of the t-statistic relies on the fact that, assuming the null hypothesis is
true so that @ = 0, & is normally distributed with mean O and estimated variance SE (@)2.

4



where 1,095 79 1s the 2%% critical value from a Student-t distribution with 7" — 2
degrees of freedom.

Example 2.1. CAPM Regression for IBM

To illustrate the testing of the CAPM using the excess returns market model
regression consider the regression output in figure 2

LS Jf Dependent Yariable is IBMRP
Date: 02123198 Time: 15:50
Sample: 1978:01 1982:12

Included observations: G0

Yariable Coefficient Std. Error t-Statistic Prob.

C -0.000248 0.006836  -0.0363M 0.9712
MARKETRP 0.339Mm2 0.088799 3.87747 0.0003
R-squared 0.200829 Mean dependent var 0.003548
Adjusted R-squared 0.187050 5.D. dependent var 0.058103
S.E. of regression 0.052388 Akaike info criterion -h. 865397
Sum squared resid 0.159180 Schwarz criterion -h. 795586
Log likelihood 92.82561 F-statistic 14.57520
Durbin-Yatson stat 1.566378 Prob[F-statistic] 0.000330

The estimated regression equation using monthly data from January 1978

through December 1982 is

RIB]\Z;— rp =—0.0002 + 0.3390 -(Rpr . — 7f), R? =0.20, ¢ = 0.0524
(0.0068) (0.0888)
where the estimated standard errors are in parentheses. Here @ = —0.0002, which

is very close to zero, and the estimated standard error is 0.0068 is much larger
than &. The t-statistic for testing Hy: a=0vs. Hy: a # 0 is

~ —0.0002 — 0

Ta—o = = —0.
0 0.0068 0.0363



so that & is only 0.0363 estimated standard errors from zero. Using a 5% signifi-
cance level, {09558 &~ 2 and

|ta_o| = 0.0363 < 2

so we do not reject Hy : o = 0 at the 5% level. Therefore, the CAPM appears to
hold for IBM.

2.2. Testing Hypotheses about 3

In the excess returns market model regression [ measures the contribution of an
asset to the variability of the market index portfolio. One hypothesis of interest
is to test if the asset has the same level of risk as the market index against the
alternative that the risk is different from the market:

Hoiﬂzll}s.Hllﬂ%l.

The data cast doubt on this hypothesis if the estimated value of 3 is much different
from one. This hypothesis can be tested using the t-statistic
B-1

tﬁ:l = /=

SE(f)

which measures how many estimated standard errors the least squares estimate
of 3 is from one. The null hypothesis is reject at the 5% level, say, if |tg—1| >
to.025 7—2. Notice that this is a two-sided test.

Alternatively, one might want to test the hypothesis that the risk of an asset
is strictly less than the risk of the market index against the alternative that the

risk is greater than or equal to that of the market:
H0§ﬂ<1US.H13ﬂ21.

Notice that this is a one-sided test. We will reject the null hypothesis only if the
estimated value of § much greater than one. The t-statistic for testing this null
hypothesis is the same as before but the decision rule is different. Now we reject

the null at the 5% level if
tg—1 < —loos,7-2

where {0572 is the one-sided 5% critical value of the Student-t distribution with
T — 2 degrees of freedom.



Example 2.2. CAPM Regression for IBM cont’d

Continuing with the previous example, consider testing Hy : 3 = 1 vs. Hy :
(3 # 1. Notice that the estimated value of 3 is 0.3390, with an estimated standard
error of 0.0888, and is fairly far from the hypothesized value 3 = 1. The t-statistic

for testing =1 is

. -1
0.0888

which tells us that E is more than 7 estimated standard errors below one. Since
Lo.025,58 ~ 2 we easily reject the hypothesis that 8 = 1.

Now consider testing Hy : 7 < 1 vs. Hy : § > 1. The t-statistic is still -
7.444 but the critical value used for the test is now —tgg558 =~ —1.671. Clearly,
lg—1 = —7.444 < —1.671 = —1p.0558 so we reject this hypothesis.

2.3. Testing Joint Hypotheses about o and 3

Often it is of interest to formulate hypothesis tests that involve both a and f.
For example, consider the joint hypothesis that the CAPM holds and that an
asset has the same risk as the market. The null hypothesis in this case can be
formulated as

Hy:a=0and g =1.
The null will be rejected if either the CAPM doesn’t hold, the asset has risk

different from the market index or both. Thus the alternative is formulated as

Hi:a#0or B#1ora#0and g #1.

This type of joint hypothesis is easily tested using a so-called F-test. The idea
behind the F-test is to estimate the model imposing the restrictions specified
under the null hypothesis and compare the fit of the restricted model to the fit of
the model with no restrictions imposed.

The fit of the unrestricted (UR) excess return market model is measured by
the (unrestricted) error sum of squares (ESS)

T T

ESSyr=3 & =Y (Ri—rf—a~— B(Rare — 1y))”.
1

= t=1
Recall, this is the quantity that is minimized during the least squares algorithm.
Now, the excess return market model imposing the restrictions under Hy is

Rt—Tf = 0+1'<RMt_Tf)+5t
= RMt—Tf—I—fit.
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Notice that there are no parameters to be estimated in this model which can be
seen by subtracting Ry, — 7y from both sides of the restricted model to give

Rt - RMt :gt

The fit of the restricted (R) model is then measured by the restricted error sum

of squares
T

T
ESSr =Y 2= (R — Ruu)*.
t=1 t=1
Now since the least squares algorithm works to minimize FSS, the restricted

error sum of squares, FSSk, must be at least as big as the unrestricted error
sum of squares, FSSyg. If the restrictions imposed under the null are true then
ESSg ~ ESSyg (with ESSk always slightly bigger than ESSpg) but if the
restrictions are not true then F.SSgk will be quite a bit bigger than £SSyg. The F-
statistic measures the (adjusted) percentage difference in fit between the restricted
and unrestricted models and is given by

ESSg — ESSyr)/q  (ESSr — ESSyg)

o
ESSUR/<T—I{7> q&QUR ’

where g equals the number of restrictions imposed under the null hypothesis,
k denotes the number of regression coefficients estimated under the unrestricted
model and 675, denotes the estimated variance of £; under the unrestricted model.
Under the assumption that the null hypothesis is true, the F-statistic is distributed
as an F random variable with ¢ and T" — 2 degrees of freedom:

F o~ F(q,T —2).

Notice that an F random variable is always positive since ESSg > ESSyg. The
null hypothesis is rejected, say at the 5% significance level, if

> F0.95(Q;T - 2)

where Fpo5(q, T — 2) is the 95% quantile of the distribution of F(q,T — 2). For
the hypothesis Hy : @ = 0 and [ = 1 there are ¢ = 2 restrictions under the null
and k = 2 regression coefficients estimated under the unrestricted model. The
F-statistic is then

(ESSg — ESSyr)/2

ESSUR/<T — 2)

Focop-1=



Example 2.3. CAPM Regression for IBM cont’d

Consider testing the hypothesis Hy : « = 0 and § = 1 for the IBM data.
The unrestricted error sum of squares, 1SSy g, is obtained from the unrestricted
regression output in figure 2 and is called Sum Square Resid:

ESSyr = 0.159180.

To form the restricted sum of squared residuals, we create the new variable £, =
R; — Ry and form the sum of squares FSSy = o7 7 = 0.31476. Notice that
ESSg > ESSygr. The F-statistic is then

(0.31476 — 0.159180) /2
0.159180/58

Foop1 = — 28.34.

The 95% quantile of the F-distribution with 2 and 58 degrees of freedom is about
3.15. Since F_gp-1 = 28.34 > 3.15 = Fp5(2,58) we reject Hy: o =0and § =1
at the 5% level.

2.4. Testing the Stability of o and [ over time

In many applications of the CAPM, 3 is estimated using past data and the es-
timated value of 3 is assumed to hold over some future time period. Since the
characteristics of assets change over time it is of interest to know if 3 changes over
time. To illustrate, suppose we have a ten year sample of monthly data (7" = 120)
on returns that we split into two five year subsamples. Denote the first five years
ast =1,...,Tg and the second five years as t = T’g,1,...,T. The date t = Ty is
the “break date” of the sample and it is chosen arbitrarily in this context. Since
the samples are of equal size (although they do not have to be) T'— Ty = Tp.
The excess returns market model regression which assumes that both o and (3 are
constant over the entire sample is

Rt—Tf = Oé—l—ﬂ(RMt—Tf)—l—&t, tzl,,T
g ~ iid N(0,0%) independent of Ryz.

There are two cases of interest: (1) § may differ over the two subsamples; (2) «
and 3 may differ over the two subsamples.



2.4.1. Testing Structural Change in 3 only

If « is the same but § is different over the subsamples then we really have two
excess return market model regressions

Rt—Tf = Oé—l—ﬂl(RMt—Tf)—l—&t,tzl,...,TB
Ri—ry = Oé‘l‘ﬂQ(RMt—Tf)“‘é?t,t:TBH;---;T

that share the same intercept o but have different slopes 3, # 3,. We can capture
such a model very easily using a “step dummy variable” defined as

Dt - O,tSTB
— 1,t>TB

and re-writing the regression model as
Ri—ry=a+ Ryt — 1) + Di(Rae —75) + &4
The model for the first subsample when D, = 0 is
Ri—ry=a+F(Ruc—rf)+e, t=1,....T8
and the model for the second subsample when D; =1 is

Rt—Tf = Oé—l-ﬂ(RMt—Tf)—I—(S(RMt—Tf)—I—&t, t:TB+1,...,T
= a+ (B+6)(Rur —1y) + &
Notice that the “beta” in the first sample is #; = 3 and the beta in the second
subsample is 3, = 4 6. If 6 < 0 the second sample beta is smaller than the first

sample beta and if 6 > 0 the beta is larger.
We can test the constancy of beta over time by testing whether 6 = 0:

Hy : (beta is constant over time) 6 = 0 vs. Hj : (beta is not constant over time) 6 # 0
The test statistic is simply the t-statistic

§—0 5

~SEG)  SE®)

ls—o

and we reject the hypothesis § = 0 at the 5% level, say, if |ts—0| > to.0057-3-
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Example 2.4. CAPM Regression for IBM cont’d

The Eviews output for the excess returns market model regression augmented
with the structural change dummy is give in figure 3.

LS Jf Dependent Yariable is IBMRP
Date: 0212598 Time: 16:37
Sample: 1978:01 198712

Included observations: 120

Yariable Coefficient Std. Error t-Statistic Prob.
C -0.0001 36 0.004553  -0.029853 0.9762
MARKETRP 0.3388M 0.083702 4.047689 0.00M
DUM*MARKETRP 0.315783 0.136575 2.312150 0.0225
R-squared 0.310824 Mean dependent var 0.002778
Adjusted R-squared 0.299043 5.D. dependent var 0.059299
S.E. of regression 0.049647 Akaike info criterion -5.980965
Sum squared resid 0.288381 Schwarz criterion 911278
Log likelihood 191.5853 F-statistic 26.38392
Durbin-Yatson stat 1.943555  Prob[F-statistic] 0.000000

and the estimated equation is given by

—

Bipue—rp = _((969)95(;1 + (()6%2??72)3 (Rare —75)+ (()031%5)65)3 D (Rare —ry),

R* = 0.311, 6 = 0.0496.

The estimated value of § is 0.3388, with a standard error of 0.0837, and the
estimated value of 6 is 0.3158, with a standard error of 0.1366. The t-statistic for
testing 6 = 0 is given by 0.3158
f=0= 51366~ 07

which is greater than ¢ g5117 = 1.98 so we reject the null hypothesis (at the 5%
significance level) that beta is the same over the two subsamples.

The estimated value of beta over the second subsample is ﬂ +6 = 0.3388 +
0.3158 = 0.6546. To get the estimated standard error for this estimate we note
that

o~ o~

5 (B + 8) = 5@ (3) + 5ar(3) + 2. @ov(5,5)
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and these numbers can be obtained from the elements of 52 (X' X)fl where X 1s a
T x 3 matrix with elements (1, Ryre — 75, Dy - (Rare — 7¢)). Eviews computes this
covariance matrix and it is displayed in figure 4.

M Equation: EQ1  Workfile: CAPM

‘I.Fiewl F‘rucsl Dhje-::tsl F'rintl Namel Freezel Estimate | Foreca

| Coefficient Covariance Matrix

| | C MABKETRP |DUM*MARKE I_
C 2.08E-0% -3.93E-0% 2.09E-0% ﬂ
 MARKETRP | -3.93E-05 0.007006 | -0.006971
DUM*MARKE 2.09E-05 -0.006971 0.018653
w

I ) Ay

From figure 4 we see that W(E) = 0.007006, 1}71\7"(5) = 0.018653 and EOT)(B, 5) =
—0.006971 so that

oar(f + &) = 0.007006 + 0.018653 + 2 - (—0.006971) = 0.011717

and

SE(B +6) = v0.011717 = 0.1082.

2.4.2. Testing Structural Change in a and (3

Now consider the case where both a and 3 are allowed to be different over the
two subsamples:

Rt—Tf = Oél—l—ﬂl(RMt—Tf)—l—&t,tzl,...,TB
Ri—rp = ap+ By(Bue —7yp) + &0, t=Tpya,..., T

The dummy variable specification in this case is
Rt—Tf :Oé‘l—ﬂ(RMt—Tf)‘l—(sl'Dt—l—(SQ'Dt(RMt—Tf)—I—&t, = 1,...,T.
When D; = 0 the model becomes

Rt—Tf:Oé—l—ﬂ(RMt—Tf)—l—&t, tzl,...,TB,

12



so that oy = a and 3, = 3, and when D; = 1 the model is
Ry —rp=(a+61)+ (B+6)( By —7yp) + &0, t=Tpya,..., T,

so that ay = a4+ 61 and By, = [ + d9. The hypothesis of no structural change is
now

Hy:61=0and 6 =0vs. Hy: 61 #0or 63 # 0 or 6; # 0 and 63 # 0.

The test statistic for this joint hypothesis is the F-statistic

e _ (BSSg— ESSyr)/2
B0 =0 T T B SS R/ (T — 4)

since there are two restrictions and four regression parameters estimated under
the unrestricted model. The unrestricted (UR) model is the dummy variable
regression that allows the intercepts and slopes to differ in the two subsamples and
the restricted model (R) is the regression where these parameters are constrained
to be the same in the two subsamples.

The unrestricted error sum of squares, F/SSyg, can be computed in two ways.
The first way 1s based on the dummy variable regression. The second is based
on estimating separate regression equations for the two subsamples and adding
together the resulting error sum of squares. Let £SS; and FSSy denote the error
sum of squares from separate regressions. Then

ESSUR = ESSl ‘I‘ ESSQ

Example 2.5. CAPM regression for IBM cont’d
The unrestricted regression (Eviews output not shown) is

—

RIBMt — Ty = —0.0001 + 0.3388 (RMt - Tf)
’ (0.0065) (0.0845)
+0.0002 -Dy+ 0.3158 -Dy(Rare — 75),
(0.0092) (0.1377)

R> = 0.311, 6 =0.050, ESSyp = 0.288379,

and the restricted regression is
Ripae —7; = —0.0005 + 0.4568 -(Ryp — 1),

(0.0046) (0.0675)

R? = 0.279, 6 =0.051, ESSk = 0.301558.
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The F-statistic for testing Hy : 61 = 0 and 65 = 0 is

(0.301558 — 0.288379) /2

= 2.651
0.288379/116

Fs—05,—0 =

The 95% quantile, Fy.95(2,116), is approximately 3.07. Since Fs,_os,—0 = 2.651 <
3.07 = Fp.95(2,116) we do not reject Hy : 6y = 0 and 83 = 0 at the 5% significance
level. Tt is interesting to note that when we allow both o and 3 to differ in the two
subsamples we cannot reject the hypothesis that these parameters are the same
between two samples but if we only allow (8 to differ between the two samples we
can reject the hypothesis that  is the same.

2.5. Other types of Structural Change in

An interesting question regarding the beta of an asset concerns the stability of beta
over the market cycle. For example, consider the following situations. Suppose
that the beta of an asset is greater than 1 if the market is in an “up cycle”,
Ry — 1y >0, and less than 1 in a “down cycle”, Ry, — 7y < 0. This would be a
very desirable asset to hold since it accentuates positive market movements but
down plays negative market movements. We can investigate this hypothesis using
a dummy variable as follows. Define

D;Lp = 1, RMt_Tf>0
= 0, RMt—TfSO.

Then D;? divides the sample into “up market” movements and “down market”
movements. The regression that allows beta to differ depending on the market
cycle is then

Rt — Tf = —I— ﬂ(RMt — Tf) —I— (SD;LP . (RMt — Tf) —I— Et.
In the down cycle, when D;* = 0, the model is
Rt—Tf:Oé—I—ﬂ(RMt—Tf)—I-&t

and (3 captures the down market beta, and in the up market, when D = 1, the
model is

Ri—rp=a+4 (8+06) (Rt —715) + &

14



so that 8 + 6 capture the up market beta. The hypothesis that 3 does not vary
over the market cycle is

Hy:6=0vs. H :6#0 (2.2)
50
SE(s)

If the estimated value of é is found to be statistically greater than zero we
might then want to go on to test the hypothesis that the up market beta is

and can be tested with the simple t-statistic t5_g =

greater than one. Since the up market beta is equal to 3 4 6 this corresponds to
testing
Hoy:0+6<1vs. H:0+6>1

which can be tested using the t-statistic
. B+6—1
BH+é=1 — /=~ .-
SE(B+96)
Since this is a one-sided test we will reject the null hypothesis at the 5% level if
lgrs—1 < —loos 13-

Example 2.6. CAPM regression for IBM and DEC

For IBM the CAPM regression allowing  to vary over the market cycle
(1978.01 - 1982.12) is

—

— — J— . — . up . —
Rams =17 = ~Q0010 + 163 (R = 1)+ Q533D (= )

R* = 0.201,6 = 0.053

Notice that § = 0.0552, with a standard error of 0.2860, is close to zero and not
estimated very precisely. Consequently, 5o = % = 0.1929 is not significant
at any reasonable significance level and we therefore reject the hypothesis that
beta varies over the market cycle. However, the results are very different for DEC

(Digital Electronics):

—

— — J— . — . up . —
Roscs =17 = 0028 + Q699 (s = b+ Q220 DI (R = 1)

R* = 0.460,5 = 0.064.

Here 6 = 0.8227, with a standard error of 0.3446, is statistically different from
zero at the 5% level since ts_o = 2.388. The estimate of the down market beta

15



is 0.3689, which is less than one, and the up market beta is 0.3689 + 0.8227 =
1.1916, which is greater than one. The estimated standard error for ﬂ +6 requires
the estimated variances of ﬂ and 6 and the estimated covariance between ﬂ and
) (which can be obtained from Eviews) and is given by

var(3) + var(8) + 2 - éon (3, )
= 0.031634 + 0.118656 + 2 - —0.048717
= 0.052856,

SEB+6) = \oar(3+ 6) = /0.052856 = 0.2299

Then tg15-1 = % = 0.8334 which is less than {p 0557 = 1.65 so we do not

reject the hypothesis that the up market beta is less than or equal to one.

ar (B + 8)
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1. The Capital Asset Pricing Model

The capital asset pricing model (CAPM) is an equilibrium model for expected
returns and relies on a set of rather strict assumptions.
CAPM Assumptions

1. Many investors who are all price takers
2. All investors plan to invest over the same time horizon
3. There are no taxes or transactions costs

4. Investors can borrow and lend at the same risk-free rate over the planned
investment horizon

5. Investors only care about expected return and variance. Investors like ex-
pected return but dislike variance. (A sufficient condition for this is that
returns are all normally distributed)

6. All investors have the same information and beliefs about the distribution
of returns

7. The market portfolio consists of all publicly traded assets

The implications of these assumptions are as follows



1. All investors use the Markowitz algorithm to determine the same set of
efficient portfolios. That is, the efficient portfolios are combinations of the
risk-free asset and the tangency portfolio and everyone’s determination of
the tangency portfolio is the same.

2. Risk averse investors put a majority of wealth in the risk-free asset (i.e. lend
at the risk-free rate) whereas risk tolerant investors borrow at the risk-free
rate and leverage their holdings of the tangency portfolio. In equilibrium
total borrowing and lending must equalize so that the risk-free asset is in
zero net supply when we aggregate across all investors.

3. Since everyone holds the same tangency portfolio and the risk-free asset is
in zero net supply in the aggregate, when we aggregate over all investors the
aggregate demand for assets is simply the tangency portfolio. The supply
of all assets is simply the market portfolio (where the weight of an asset
in the market portfolio is just the market value of the asset divided by the
total market value of all assets) and in equilibrium supply equal demand.
Therefore, in equilibrium the tangency portfolio is the market portfolio.

4. Since the market portfolio is the tangency portfolio and the tangency port-
folio is (mean-variance) efficient the market portfolio is also (mean-variance)
efficient.

5. Since the market portfolio is efficient and there is a risk-free asset the security
market line (SML) pricing relationship holds for all assets (and portfolios)

B[R] =1, + B; p(E[Rare] — 1)
or
My =Tf+ ﬁi,M(:uM —ry)
where R; denotes the return on any asset or portfolio 7, Ry, denotes the
return on the market portfolio and ; 5, = cov(R;, Rar) /var(Ry,). The SML
says that there is a linear relationship between the expected return on an
asset and the “beta” of that asset with the market portfolio. Given a value

for the market risk premium, E[R;] —r¢ > 0, the higher the beta on an asset
the higher the expected return on the asset and vice-versa.

The SML relationship can be rewritten in terms of risk premia by simply
subtracting r; from both side of the SML equation:

B[R] —ry = B (B[R] —7y)
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or
Ky —Tf = ﬁi,M(MM —7y)

and this linear relationship is illustrated graphically in figure 1. In terms of risk

premia, the SML intersects the vertical axis at zero and has slope equal to p,, —7y,

the risk premium on the market portfolio (which is assumed to be positive). Low

beta assets (less than 1) have risk premia less than the market and high beta

(greater than 1) assets have risk premia greater than the market.

1.1. Relationship Between the Market Model and the CAPM

The CAPM is encompassed within the market model in the following way. First,
consider the market model regression

Rit = ai—i—ﬁi,MRMt—l—sit, t= 1,...7T (11)
eq ~ iid N(0,0%), &4 is independent of Ry,

where Rj;; denotes the return on the “Market portfolio”. Usually, the market
portfolio is proxied by some value-weighted index of stocks like the S&P 500
index. Let 7y denote the risk-free rate (rate on T-bill). Now subtract r; from
both sides of (1.1) to give

Rit —Tf=0Q; =Ty + ﬁi,M(RMt — Tf) + €it- (12)

Next, add and subtract §,,r¢ from the right-hand-side of (1.2) and re-arrange to
give

Ry —ry = a;— Tf(l - ﬂi,M) + ﬁi,M(RMt - Tf) + Eit (1.3)
= a; + BBy — 1) + €ar

where
aj = a; —rp(1=Bia).
Equation (1.3) gives the market model where the return on the asset and the return

on the market are expressed in excess of the risk-free rate ry. This re-expressed
market model is called the excess return market model.



1.2. A Simple Regression Test of the CAPM

The SML relationship allows a test of the CAPM using a modified version of the
market model regression equation. To see this, consider the excess return market
model regression equation

Rit—rf = af+ﬁi7M(RMt—rf) +5it7 t= 1,...,T
eq ~ did N(0,0%), €4 is independent of Ry, (1.4)
where R; denotes the return on any asset or portfolio and Ry is the return on

some proxy for the market portfolio. Taking expectations of both sides of the
excess return market model regression gives

E[Ru] —ry = af + B, (B[R] — 1) (1.5)
and from the SML we see that the CAPM imposes the restriction
a; =0

for every asset or portfolio 7. A simple testing strategy is as follows

e Estimate the excess return market model for every asset trades

o Test that of = 0 in every regression

The value of af in the excess returns market model has an interesting inter-
pretation. Suppose that o > 0. Then from (1.5) we have that

a; = (B[R] —1f) — ﬁi,M(E[RMt] —715)>0

which indicates that the asset is yielding an excess expected return higher than the
CAPM predicts. One might think that this is a good stock to hold. The CAPM
would predict that this stock is underpriced (price is too low in the market)
because it’s expected excess return is higher than what the CAPM predicts. In
order for the expected return to fall, the current price of the stock needs to rise.

1.3. A Simple Prediction Test of the CAPM

Consider again the SML equation for the CAPM. The SML implies that there is a
simple positive linear relationship between expected returns on any asset and the
beta of that asset with the market portfolio. High beta assets have high expected
returns and low beta assets have low expected returns. This linear relationship
can be tested in the following way. Suppose we have a time series of returns on
i=1,..., N assets (say 10 years of monthly data).
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e Split a sample of time series data on returns into two equal sized subsamples.

e Estimate f3; ), for each asset in the sample using the first subsample of data.
This gives N estimates of 3, 5.

e Using the second subsample of data, compute the average returns on the N
assets (this is an estimate of E[R;] = ;). This give N estimates of p,.

e Plot the SML using the estimated betas and average returns and see if it
intersects at zero on the vertical axis and has slope equal to the average risk
premium on the market portfolio.

2. Testing the CAPM using the Excess Return Market Model

In this section, we illustrate how to carry out some simple hypothesis tests con-
cerning the parameters of the excess returns market model regression. Before we
begin, we review some basic concepts from the theory of hypothesis testing.

2.1. Testing the CAPM Restriction o} = 0.

Using the market model regression,

Riy—rp = o + ﬁi,M(RMt —rf)+en, t=1,..,T
eq ~ iid N(0,0%), gy is independent of Ry, (2.1)

consider testing the null or maintained hypothesis that the CAPM holds for an
asset against the alternative hypothesis that the CAPM does not hold. These
hypotheses can be formulated as the two-sided test

Hy:a; =0ws. Hy :af #0.

We will reject the null hypothesis, Hy : af = 0, if the estimated value of o] is
either much larger than zero or much smaller than zero. To determine how big
the estimated value of a] needs to be in order to reject the CAPM we use the
t-statistic

af — 0

0:7

SE(a;)

a=

where @ is the least squares estimate of o} and SE (@) is its estimated standard
error. The value of the t-statistic, t,—g, gives the number of estimated standard



errors that a; is from zero. If the absolute value of t,—¢ is much larger than 2
then the data cast considerable doubt on the null hypothesis o = 0 whereas if it
is less than 2 the data are in support of the null hypothesis!. To determine how
big | ta—o| needs to be to reject the null, we use the fact that under the statistical
assumptions of the market model and assuming the null hypothesis is true

ta—o ~ Student — t with T' — 2 degrees of freedom

If we set the significance level (the probability that we reject the null given that
the null is true) of our test at, say, 5% then our decision rule is

Reject Hy - 042< =0 at the 5% level if |ta:0| > t0_0257T_2

where g 025 72 is the 2%% critical value from a Student-t distribution with 7" — 2
degrees of freedom.

Example 2.1. CAPM Regression for IBM

To illustrate the testing of the CAPM using the excess returns market model
regression consider the regression output in figure 2

LS Jf Dependent Yariable is IBMRP
Date: 02{23/98 Time: 15:50
Sample: 1978:01 198212

Included observations: G0

Variable Coefficient Std. Error t-Statistic Prob.

C -0.000248 0.006836  -0.0363M 0.9712
MARKETRP 0.339m?2 0.088799 3nT7747 0.0003
R-squared 0.200829 Mean dependent wvar 0.0035%48
Adjusted R-squared 0.187050 5.D. dependent var 0.058103
S.E. of regression 0.052388 Akaike info criterion -5.865397
Sum squared resid 0.159180 Schwarz criterion -5.795586
Log likelihood 92.82561 F-statistic 14.57520
Durbin-¥atson stat 1.566378 Prob[F-statistic] 0.000330

IThis interpretation of the t-statistic relies on the fact that, assuming the null hypothesis is
true so that a = 0, @ is normally distributed with mean 0 and estimated variance SE(a)?.
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The estimated regression equation using monthly data from January 1978
through December 1982 is

Ripars — 17 =—0.0002 + 0.3390 -(Rare — ry), B2 =0.20, 5 = 0.0524
(0.0068) (0.0888)

where the estimated standard errors are in parentheses. Here a7z, = —0.0002,
which is very close to zero, and the estimated standard error is 0.0068 is much
larger than ajg,,. The t-statistic for testing Hy : ajg,, = 0 vs. Hy : ajgy # 0 is

~—0.0002 - 0

= — —0.0363
fa=o 0.0068

so that ajg,, is only 0.0363 estimated standard errors from zero. Using a 5%
significance level, ¢y.025 58 ~ 2 and

ltao| = 0.0363 < 2

so we do not reject Hy : afgy; = 0 at the 5% level. Therefore, the CAPM appears
to hold for IBM.
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1 The Time Value of Money

Consider an amount $V invested for n years at a simple interest rate of R
per annum (where R is expressed as a decimal). If compounding takes place
only at the end of the year the future value after n years is

FV, =$V-(1+R)"

Example 1 Consider putting $1000 in an interest checking account that
pays a simple annual percentage rate of 3%. The future value after n = 1,5
and 10 years s, respectively,

FVi = $1000-(1.03)* = $1030
FVs = $1000- (1.03)° = $1159.27
FViy = $1000 - (1.03)'° = $1343.92.

If interest is paid m time per year then the future value after n years is

FVnm:$V-<1+§> :

m

1



% is often referred to as the periodic interest rate. As m, the frequency of

compounding, increases the rate becomes continuously compounded and it
can be shown that future value becomes

c : R e Rn
FV¢= lim $V - (1+ — =$V . e,
m

where e() is the exponential function and e' = 2.71828.

Example 2 If the simple annual percentage rate is 10% then the value of
$1000 at the end of one year (n = 1) for different values of m is given in the
table below.

Compounding Frequency Value of $1000 at end of 1 year (R = 10%)

Annually (m = 1) 1100
Quarterly (m = 4) 1103.8
Weekly (m = 52) 1105.1
Daily (m = 365) 1105.515
Continuously (m = o0) 1105.517

We now consider the relationship between simple interest rates, periodic
rates, effective annual rates and continuously compounded rates. Suppose
an investment pays a periodic interest rate of 2% each quarter. This gives
rise to a simple annual rate of 8% (2% x4 quarters). At the end of the year,
$1000 invested accrues to

0.08\*!
$1000 - (1 + T) = $1082.40.

The effective annual rate, R4, on the investment is determined by the rela-
tionship
$1000 - (1 + R4) = $1082.40,

which gives R4 = 8.24%. The effective annual rate is greater than the simple
annual rate due to the payment of interest on interest.

The general relationship between the simple annual rate R with payments
m time per year and the effective annual rate, R4, is

(1+ Ra) = <1 + %)m'l .



Example 3 To determine the simple annual rate with quarterly payments
that produces an effective annual rate of 12%, we solve

4
112 = <1+§) N

R = ((1.12)V*-1)-4
— 0.0287-4
= 0.1148

Suppose we wish to calculate a value for a continuously compounded rate,
R., when we know the m—period simple rate R. The relationship between

such rates is given by
R m
fe = (1 —) : 1
e = (145 (1)
Solving (1) for R, gives

Rc:mln(l—{—E), (2)
m
and solving (1) for R gives

R:m(eRc/m— 1) : (3)

Example 4 Suppose an investment pays a periodic interest rate of 5% every
siz months (m = 2,R/2 = 0.05). In the market this would be quoted as
having an annual percentage rate of 10%. An investment of $100 yields
$100 - (1.05)* = $110.25 after one year. The effective annual rate is then
10.25%. Suppose we wish to convert the simple annual rate of R = 10% to
an equivalent continuously compounded rate. Using (2) with m = 2 gives

R.=2-1n(1.05) = 0.09758.

That is, if interest is compounded continuously at an annual rate of 9.758%
then $100 invested today would grow to $100 - 209758 = $110.25.

2 Asset Return Calculations



2.1 Simple Returns

Let P, denote the price in month ¢ of an asset that pays no dividends and
let P,_; denote the price in month ¢ — 1'. Then the one month simple net
return on an investment in the asset between months ¢ — 1 and ¢ is defined
as

P, —P_
R, =11 _%AP, (4)
Py
Writing % = % — 1, we can define the simple gross return as
B
1+ Ry = . 5
+ Iy Py (5)

Notice that the one month gross return has the interpretation of the future
value of $1 invested in the asset for one month. Unless otherwise stated,
when we refer to returns we mean net returns.

(mention that simple returns cannot be less than 1 (100%) since prices
cannot be negative)

Example 5 Consider a one month investment in Microsoft stock. Suppose
you buy the stock in month t — 1 at P,_; = $85 and sell the stock the next
month for P, = $90. Further assume that Microsoft does not pay a dividend
between monthst—1 and t. The one month simple net and gross returns are
then
$90 — $85  $90
R = ——=—
$85 $85
1+ R, = 1.0588.

The one month investment in Microsoft yielded a 5.88% per month return.
Alternatively, 31 invested in Microsoft stock in month t — 1 grew to $1.0588
in month t.

—1=1.0588 — 1 = 0.0588,

2.2 Multi-period returns

The simple two-month return on an investment in an asset between months

t — 2 and t is defined as

P-P., P
Py P

'We make the convention that the default investment horizon is one month and that

the price is the closing price at the end of the month. This is completely arbitrary and is
used only to simplify calculations.

1.

Rt(z) =




Since -2 = £+ . Po1 the two-month return can be rewritten as
Pi_o P11 P_o
R(2) = =L
. — . _
Py Py

— (1+Rt)(1+Rt—l> - ]_
Then the simple two-month gross return becomes
]_ —|— Rt(Z) == (1 —|— Rt)(l + Rt_1> == 1 + Rt—l + Rt + Rt—lRt;

which is a geometric (multiplicative) sum of the two simple one-month gross
returns and not the simple sum of the one month returns. If, however, R;_;
and R, are small then R, 1R, ~ 0 and 1+ R;(2) ~ 1+ R,_1 + R; so that
Rt<2) ~ Rtfl + Rt.

In general, the k-month gross return is defined as the geometric average
of k one month gross returns

L+ Ry(k) = 1+ R)(A+Ri1) - (14 Rypy1)

= [[(1+ Ry).

j=0

Example 6 Continuing with the previous example, suppose that the price of
Microsoft stock in month t —2 is $80 and no dividend is paid between months
t —2 and t. The two month net return s

~ %90 — 880  $90

= 2 1 =1.1250 — 1 = 0.1250,

m(2) $80  $80

or 12.50% per two months. The two one month returns are

85 — $80
R, = % — 1.0625 — 1 = 0.0625
$90 — 85
R, = 2222 _ 10588 —1=0.0588
! $85 ’

and the geometric average of the two one month gross returns is

1+ Ry(2) = 1.0625 x 1.0588 = 1.1250.



2.3 Annualizing returns

Very often returns over different horizons are annualized, i.e. converted to
an annual return, to facilitate comparisons with other investments. The an-
nualization process depends on the holding period of the investment and an
implicit assumption about compounding. We illustrate with several exam-
ples.

To start, if our investment horizon is one year then the annual gross and
net returns are just

P
1+ Ry = 1+Rt(12):Pt = (1+R)1+Ri1)--(1+ Ri_11),

t—12
Ra — PPt L= (14 R)(14 Rer)-- (14 Ben) — 1.
t—12
In this case, no compounding is required to create an annual return.
Next, consider a one month investment in an asset with return R;. What
is the annualized return on this investment? If we assume that we receive
the same return R = R, every month for the year then the gross 12 month

or gross annual return is

1+Ry=1+R(12) = (1 + R)*.

Notice that the annual gross return is defined as the monthly return com-
pounded for 12 months. The net annual return is then

Ra=(1+R)" -1

Example 7 In the first example, the one month return, Ry, on Microsoft
stock was 5.88%. If we assume that we can get this return for 12 months then
the annualized return is

R = (1.0588)'% — 1 = 1.9850 — 1 = 0.9850

or 98.50% per year. Pretty good!

Now, consider a two month investment with return R;(2). If we assume
that we receive the same two month return R(2) = R;(2) for the next 6 two
month periods then the gross and net annual returns are

1+Ry = (1+R(2)5,
Ry = (1+R(2)° -1

6



Here the annual gross return is defined as the two month return compounded
for 6 months.

Example 8 In the second example, the two month return, Ry(2), on Mi-
crosoft stock was 12.5%. If we assume that we can get this two month return
for the next 6 two month periods then the annualized return is

Ra = (1.1250)° — 1 = 2.0273 — 1 = 1.0273
or 102.73% per year.

To complicate matters, now suppose that our investment horizon is two
years. That is we start our investment at time £ — 24 and cash out at time
t. The two year gross return is then 1+ Ry(24) = Pt’%t%. What is the annual
return on this two year investment? To determine the annual return we solve
the following relationship for R4 :

(14 Ra)? = 1+ Ri(24) =
Ry = (14 R,(24)* —1.

In this case, the annual return is compounded twice to get the two year
return and the relationship is then solved for the annual return.

Example 9 Suppose that the price of Microsoft stock 24 months ago is
P94 = $50 and the price today is P, = $90. The two year gross return is

1+ R, (24) = % = 1.8000 which yields a two year net return of Ry(24) = 80%.

The annual return for this investment is defined as
Ra = (1.800)"2 — 1 =1.3416 — 1 = 0.3416

or 34.16% per year.

2.4 Adjusting for dividends

If an asset pays a dividend, D;, sometime between months ¢ — 1 and ¢, the
return calculation becomes

:Rt‘i‘Dt_Ptfl_Pt_Ptfl_{_ D,

R =
¢ P P, P,
where % is referred as the capital gain and % is referred to as the

dividend yield.



3 Continuously Compounded Returns

3.1 One Period Returns

Let R; denote the simple monthly return on an investment. The continuously
compounded monthly return, ry, is defined as

P,
rtzln(l—i—Rt):ln( L ) (6)
P
where In(-) is the natural log function?. To see why 7; is called the con-
tinuously compounded return, take the exponential of both sides of (6) to
give
B

ert:1+Rt:P .
t—1

Rearranging we get
P = Pae",

so that r; is the continuously compounded growth rate in prices between
months ¢ — 1 and ¢. This is to be contrasted with R, which is the simple
growth rate in prices between months ¢ — 1 and ¢ without any compounding.
Furthermore, since In (%) = In(z) — In(y) it follows that

_m( B
D = In Pt_l

= In(FP) —In(P,_q)
= Pt — Pt

where p; = In(P;). Hence, the continuously compounded monthly return, 7,
can be computed simply by taking the first difference of the natural loga-
rithms of monthly prices.

Example 10 Using the price and return data from example 1, the continu-
ously compounded monthly return on Microsoft stock can be computed in two
ways:
r = In(1.0588) = 0.0571
2The continuously compounded return is always defined since asset prices, P;, are

always non-negative. Properties of logarithms and exponentials are discussed in the ap-
pendix to this chapter.




or
r, = In(90) — In(85) = 4.4998 — 4.4427 = 0.0571.

Notice that ry is slightly smaller than Ry. Why?

Given a monthly continuously compounded return 7, is straightforward
to solve back for the corresponding simple net return R; :

Rt:e”—l

Hence, nothing is lost by considering continuously compounded returns in-
stead of simple returns.

Example 11 In the previous example, the continuously compounded monthly
return on Microsoft stock is r, = 5.71%. The implied simple net return is then

R, = %™ — 1 =0.0588.

Continuously compounded returns are very similar to simple returns as
long as the return is relatively small, which it generally will be for monthly or
daily returns. For modeling and statistical purposes, however, it is much more
convenient to use continuously compounded returns due to the additivity
property of multiperiod continuously compounded returns and unless noted
otherwise from here on we will work with continuously compounded returns.

3.2 Multi-Period Returns

The computation of multi-period continuously compounded returns is con-
siderably easier than the computation of multi-period simple returns. To
illustrate, consider the two month continuously compounded return defined
as

n@%zMﬂ+fM%):m<éz>:prﬂng

Taking exponentials of both sides shows that

P, = P,_ye®



so that 7,(2) is the continuously compounded growth rate of prices between
months ¢ — 2 and ¢. Using Piz = L. Botoand the fact that In(z - y) =

Pi1 P
In(x) 4 In(y) it follows that

P, P
r(2) = In .
2) (PH Ptz>

P, P,
= In + In

= T+ T.

Hence the continuously compounded two month return is just the sum of the
two continuously compounded one month returns. Recall that with simple
returns the two month return is of a multiplicative form (geometric average).

Example 12 Using the data from example 2, the continuously compounded
two month return on Microsoft stock can be computed in two equivalent ways.
The first way uses the difference in the logs of P, and P;_5:

ry(2) = In(90) — In(80) = 4.4998 — 4.3820 = 0.1178.

The second way uses the sum of the two continuously compounded one month
returns. Here r, = In(90) — In(85) = 0.0571 and r;—; = In(85) — In(80) =
0.0607 so that

r¢(2) = 0.0571 4+ 0.0607 = 0.1178.

Notice that 7,(2) = 0.1178 < Ry(2) = 0.1250.

The continuously compounded k—month return is defined by

ri(k) =In(1+ Ry(k)) =In < b

Ptlc) =Pt — Pt—k-

Using similar manipulations to the ones used for the continuously com-

pounded two month return we may express the continuously compounded
k—month return as the sum of k£ continuously compounded monthly returns:

k—1
ri(k) = Zrt—j'
j=0

The additivitity of continuously compounded returns to form multiperiod
returns is an important property for statistical modeling purposes.
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3.3 Annualizing Continuously Compounded Returns

Just as we annualized simple monthly returns, we can also annualize contin-
uously compounded monthly returns.

To start, if our investment horizon is one year then the annual continu-
ously compounded return is simply the sum of the twelve monthly continu-
ously compounded returns

ra = Tt(12) =T +7"t_1 + - +Tt_11
11
= Z Tt—j-
7=0
Define the average continuously compounded monthly return to be
1 11
Fm = — Z T’t,j.
1235
Notice that "
12T = > 11
5=0
so that we may alternatively express r4 as

ra=12-7,.

That is, the continuously compounded annual return is 12 times the average
of the continuously compounded monthly returns.

Next, consider a one month investment in an asset with continuously
compounded return ;. What is the continuously compounded annual return
on this investment? If we assume that we receive the same return r = r,
every month for the year then r4 = r(12) =12 -r .

4 Further Reading

This chapter describes basic asset return calculations with an emphasis on
equity calculations. Campbell, Lo and MacKinlay provide a nice treatment
of continuously compounded returns. A useful summary of a broad range
of return calculations is given in Watsham and Parramore (1998). A com-
prehensive treatment of fixed income return calculations is given in Stigum
(1981) and the official source of fixed income calculations is “The Pink Book”.
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5 Appendix: Properties of exponentials and
logarithms

The computation of continuously compounded returns requires the use of
natural logarithms. The natural logarithm function, In(-), is the inverse of
the exponential function, e() = exp(-), where e! = 2.718. That is, In(z) is
defined such that x = In(e®). Figure xxx plots e* and In(z). Notice that e”
is always positive and increasing in x. In(z) is monotonically increasing in x
and is only defined for « > 0. Also note that In(1) = 0 and In(—o0) = 0. The
exponential and natural logarithm functions have the following properties

1. In(z - y) = In(z) + In(y), z,y > 0

2. In(z/y) =In(z) — In(y), z,y > 0

5. dil (f(a:)) = %dif(m) (chain-rule)

10. d‘ie =X

11. Lo/ = /@)L f(z) (chain-rule)

6 Problems

Exercise 6.1 FEzxcel exercises
Go to http://finance.yahoo.com and download monthly data on Mi-

crosoft (ticker symbol msft) over the period December 1996 to December
2001. See the Project page on the class website for instructions on how to

12



download data from Yahoo. Read the data into Excel and make sure to re-
order the data so that time runs forward. Do your analysis on the monthly
closing price data (which should be adjusted for dividends and stock splits).
Name the spreadsheet tab with the data “data”.

1. Make a time plot (line plot in Excel) of the monthly price data over the
period (end of December 1996 through (end of) December 2001. Please
put informative titles and labels on the graph. Place this graph in a
separate tab (spreadsheet) from the data. Name this tab “graphs”.
Comment on what you see (eg. price trends, etc). If you invested
$1,000 at the end of December 1996 what would your investment be
worth at the end of December 20017 What is the annual rate of return
over this five year period assuming annual compounding?

2. Make a time plot of the natural logarithm of monthly price data over
the period December 1986 through December 2000 and place it in the
“oraph” tab. Comment on what you see and compare with the plot of
the raw price data. Why is a plot of the log of prices informative?

3. Using the monthly price data over the period December 1996 through
December 2001 in the “data” tab, compute simple (no compounding)
monthly returns (Microsoft does not pay a dividend). When computing
returns, use the convention that P, is the end of month closing price.
Make a time plot of the monthly returns, place it in the “graphs” tab
and comment. Keep in mind that the returns are percent per month
and that the annual return on a US T-bill is about 5%.

4. Using the simple monthly returns in the “data” tab, compute simple
annual returns for the years 1996 through 2001. Make a time plot of the
annual returns, put them in the “graphs” tab and comment. Note: You
may compute annual returns using overlapping data or non-overlapping
data. With overlapping data you get a series of annual returns for every
month (sounds weird, I know). That is, the first month annual return
is from the end of December, 1996 to the end of December, 1997. Then
second month annual return is from the end of January, 1997 to the
end of January, 1998 etc. With non-overlapping data you get a series of
5 annual returns for the 5 year period 1996-2001. That is, the annual
return for 1997 is computed from the end of December 1996 through

13



the end of December 1997. The second annual return is computed from
the end of December 1997 through the end of December 1998 etc.

5. Using the monthly price data over the period December 1996 through
December 2001, compute continuously compounded monthly returns
and place then in the “data” tab. Make a time plot of the monthly
returns, put them in the ”graphs” tab and comment. Briefly compare
the continuously compounded returns to the simple returns.

6. Using the continuously compounded monthly returns, compute contin-
uously compounded annual returns for the years 1997 through 2001.
Make a time plot of the annual returns and comment. Briefly compare
the continuously compounded returns to the simple returns.

Exercise 6.2 Return calculations

Consider the following (actual) monthly closing price data for Microsoft
stock over the period December 1999 through December 2000

End of Month Price Data for Microsoft Stock

December, 1999 $116.751
January, 2000 $97.875
February, 2000 $89.375
March, 2000 $106.25
April, 2000 $69.75
May, 2000 $62.5625
June, 2000 $80
July, 2000 $69.8125
August, 2000 $69.8125
September, 2000 $60.3125
October, 2000 $68.875
November, 2000 $57.375
December, 2000 $43.375

1. Using the data in the table, what is the simple monthly return between
December, 1999 and January 20007 If you invested $10,000 in Microsoft
at the end of December 1999, how much would the investment be worth
at the end of January 20007

14



7

. Using the data in the table, what is the continuously compounded

monthly return between December, 1999 and January 20007 Convert
this continuously compounded return to a simple return (you should
get the same answer as in part a).

. Assuming that the simple monthly return you computed in part (1)

is the same for 12 months, what is the annual return with monthly
compounding?

. Assuming that the continuously compounded monthly return you com-

puted in part (2) is the same for 12 months, what is the continuously
compounded annual return?

. Using the data in the table, compute the actual simple annual return

between December 1999 and December 2000. If you invested $10,000 in
Microsoft at the end of December 1999, how much would the investment
be worth at the end of December 20007 Compare with your result in
part (3).

. Using the data in the table, compute the actual annual continuously

compounded return between December 1999 and December 2000. Com-
pare with your result in part (4). Convert this continuously com-
pounded return to a simple return (you should get the same answer
as in part 5).
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1 Random Variables

We start with a basic de&nition of a random variable

De&nition 1 A Random variable X is a variable that can take on a given set of
values, called the sample space and denoted Sx , where the likelihood of the values
in Sx 1is determined by X [s probability distribution function (pdf).

For example, consider the price of Microsoft stock next month. Since the price
of Microsoft stock next month is not known with certainty today, we can consider
it a random variable. The price next month must be positive and realistically it
canlt get too large. Therefore the sample space is the set of positive real numbers
bounded above by some large number. It is an open question as to what is the
best characterization of the probability distribution of stock prices. The log-normal
distribution is one possibility®.

As another example, consider a one month investment in Microsoft stock. That
is, we buy 1 share of Microsoft stock today and plan to sell it next month. Then
the return on this investment is a random variable since we do not know its value
today with certainty. In contrast to prices, returns can be positive or negative and are
bounded from below by -100%. The normal distribution is often a good approximation
to the distribution of simple monthly returns and is a better approximation to the
distribution of continuously compounded monthly returns.

As a &nal example, consider a variable X de&ned to be equal to one if the monthly
price change on Microsoft stock is positive and is equal to zero if the price change

'Tf P is a positive random variable such that In P is normally distributed the P has a log-normal
distribution. We will discuss this distribution is later chapters.



is zero or negative. Here the sample space is trivially the set {0,1}. If it is equally
likely that the monthly price change is positive or negative (including zero) then the
probability that X =1 or X =0 is 0.5.

1.1 Discrete Random Variables

Consider a random variable generically denoted X and its set of possible values or
sample space denoted Sx.

De&nition 2 A discrete random variable X is one that can take on a Enite number
of n different values x1,xs,...,x, or, at most, an inéhite number of different values
T1,T2y....

De&nition 3 The pdf of a discrete random variable, denoted p(x), is a function such
that p(x) = Pr(X = x). The pdf must satisfy (i) p(z) > 0 for allx € Sx; (i) p(x) =0
forall x ¢ Sx; and (iii) ), .5 p(x) = 1.

As an example, let X denote the annual return on Microsoft stock over the next
year. We might hypothesize that the annual return will be in! uenced by the general
state of the economy. Consider &ve possible states of the economy: depression, reces-
sion, normal, mild boom and major boom. A stock analyst might forecast different
values of the return for each possible state. Hence X is a discrete random variable
that can take on &ve different values. The following table describes such a probability
distribution of the return.

Table 1
State of Economy Sx = Sample Space p(x) = Pr(X = z)
Depression -0.30 0.05
Recession 0.0 0.20
Normal 0.10 0.50
Mild Boom 0.20 0.20
Major Boom 0.50 0.05

A graphical representation of the probability distribution is presented in Figure

1.1.1 The Bernoulli Distribution

Let X =1 if the price next month of Microsoft stock goes up and X = 0 if the price
goes down (assuming it cannot stay the same). Then X is clearly a discrete random
variable with sample space Sx = {0, 1}. If the probability of the stock going up or
down is the same then p(0) = p(1) = 1/2 and p(0) +p(1) = 1.



The probability distribution described above can be given an exact mathematical
representation known as the Bernoulli distribution. Consider two mutually exclusive
events generically called [successl]and [failurell For example, a success could be a
stock price going up or a coin landing heads and a failure could be a stock price going
down or a coin landing tails. In general, let X = 1 if success occurs and let X = 0
if failure occurs. Let Pr(X = 1) = 7, where 0 < m < 1, denote the probability of
success. Clearly, Pr(X = 0) = 1 — « is the probability of failure. A mathematical
model for this set-up is

p(z) =Pr(X =z)=7"(1-7m)"" 2=0,1.

When z =0, p(0) =7°(1 —m)!'°=1—7 and when z = 1,p(1) = 7' (1 — 7)1t = 7.
This distribution is presented graphically in Figure 2.

1.2 Continuous Random Variables

De&mition 4 A continuous random variable X is one that can take on any real value.

De&anition 5 The probability density function (pdf) of a continuous random variable
X is a nonnegative function p, deéhed on the real line, such that for any interval A

Pr(X € A) :/p(a:)dx.

A

That is, Pr(X € A) is the Uarea under the probability curve over the interval A”. The
pdf p must satisfy (i) p(x) > 0; and (ii) ffooo p(z)dr = 1.

A typical [bell-shaped[pdf is displayed in Figure 3. In that &gure the total area
under the curve must be 1, and the value of Pr(a < X < b) is equal to the area of
the shaded region. For a continuous random variable, p(x) # Pr(X = x) but rather
gives the height of the probability curve at x. In fact, Pr(X = x) = 0 for all values of
x. That is, probabilities are not dedned over single points; they are only de&ned over
intervals.

1.2.1 The Uniform Distribution on an Interval

Let X denote the annual return on Microsoft stock and let a and b be two real
numbers such that a < b. Suppose that the annual return on Microsoft stock can
take on any value between a and b. That is, the sample space is restricted to the
interval Sx = {z € R : a < z < b}. Further suppose that the probability that X will
belong to any subinterval of Sx is proportional to the length of the interval. In this
case, we say that X is uniformly distributed on the interval [a, b]. The p.d.f. of X has
the very simple mathematical form

(l.)_lea fora<z<b
pP\r) = otherwise



and is presented graphically in Figure 4. Notice that the area under the curve over
the interval [a, ] integrates to 1 since

b b
1 1 1., 1
/ab_adm—b_a/ada:—b_a[m]a—b_a[b—a]—l.

Suppose, for example, a = —1 and b = 1 so that b — a = 2. Consider computing
the probability that the return will be between -50% and 50%.We solve

0.5

Pr(—50% < X < 50%) = / Lz =

1 o5 1 1
e =5l =5 05 (-0.5)] = 5.

Next, consider computing the probability that the return will fall in the interval [0, ]
where ¢ is some small number less than b =1 :

e 1.5 1

As 6§ — 0, Pr(0 < X <) — Pr(X = 0). Using the above result we see that

1
limPr(0 < X <¢) =Pr(X =0) =1lim -6 = 0.
§—0 6§—0 2
Hence, probabilities are de€med on intervals but not at distinct points. As a result,
for a continuous random variable X we have

Pra <X <b)=Pr(a<X <b)=Prla<X <b)=Pr(a<X <b).

1.2.2 The Standard Normal Distribution

The normal or Gaussian distribution is perhaps the most famous and most useful
continuous distribution in all of statistics. The shape of the normal distribution
is the familiar [bell curvell As we shall see, it is also well suited to describe the
probabilistic behavior of stock returns.

If a random variable X follows a standard normal distribution then we often write
X ~ N(0,1) as short-hand notation. This distribution is centered at zero and has
in! ection points at +1. The pdf of a normal random variable is given by

—o0 <z < o0.

It can be shown via the change of variables formula in calculus that the area under
the standard normal curve is one:

< 1 1.2
e 2% dr = 1.
/oo V 27




The standard normal distribution is graphed in Figure 5. Notice that the distribution
is symmetric about zero; i.e., the distribution has exactly the same form to the left
and right of zero.
The normal distribution has the annoying feature that the area under the normal
curve cannot be evaluated analytically. That is
1 1.2

b
Pr(a<X<b):/\/2_-e_2xd:E
o V2T

does not have a closed form solution. The above integral must be computed by
numerical approximation. Areas under the normal curve, in one form or another, are
given in tables in almost every introductory statistics book and standard statistical
software can be used to &nd these areas. Some useful results from the normal tables
are

Pr(-1 < X <1)~067,
Pr(—2 < X <2)~0.95,
Pr(—3 < X <3)~0.99.

Finding Areas Under the Normal Curve In the back of most introductory

statistics textbooks is a table giving information about areas under the standard
normal curve. Most spreadsheet and statistical software packages have functions for
&nding areas under the normal curve. Let X denote a standard normal random
variable. Some tables and functions give Pr(0 < X < z) for various values of z > 0,
some give Pr(X > z) and some give Pr(X < z). Given that the total area under
the normal curve is one and the distribution is symmetric about zero the following
results hold:

e PriX<z)=1-Pr(X >z)and Pr(X > 2) =1—-Pr(X < 2)

e Pr(X >2)=Pr(X < —2)

e Pr(X>0)=Pr(X<0)=05

The following examples show how to compute various probabilities.

Example 6 Find Pr(X > 2). We know that Pr(X >2) =Pr(X >0)-Pr(0 < X <
2) = 0.5 —Pr(0 < X <2). From the normal tables we have Pr(0 < X < 2) = 0.4772
and so Pr(X >2) = 0.5 — 0.4772 = 0.0228.

Example 7 Find Pr(X < 2). We know that Pr(X < 2) =1 —Pr(X > 2) and using
the result from the previous example we have Pr(X < 2)=1—0.0228 = 0.9772.

Example 8 Find Pr(—1 < X < 2). First, note that Pr(—1 < X < 2) = Pr(—1 <
X <0)+Pr(0 < X <2). Using symmetry we have that Pr(—1 < X <0) = Pr(0 <
X <1) =0.3413 from the normal tables. Using the result from the €st example we
get Pr(—1 < X <2)=0.3413 4+ 0.4772 = 0.8185.



1.3 The Cumulative Distribution Function

De&nition 9 The cumulative distribution function (cdf), F, of a random variable X
(discrete or continuous) is simply the probability that X < x :

F(z)=Pr(X <z), —oco<z<00.
The cdf has the following properties:
o If 21 < x5 then F(x;) < F(z3)
o F(—00) =0 and F(oo) =1
e Pr(X >uz)=1- F(x)
o Pr(z; < X <x9) = F(x2) — F(x7)

The cdf for the discrete distribution of Microsoft is given in Figure 6. Notice that
the cdf in this case is a discontinuous step function.
The cdf for the uniform distribution over [a,b] can be determined analytically

since . . )
s T—a
b—a/a dt_b—a[t]a_ b—a’

Notice that for this example, we can determine the pdf of X directly from the cdf via

p(o) = Fla) = 2 Fla) = o

The cdf of the standard normal distribution is used so often in statistics that it
is given its own special symbol:

F(z)=Pr(X <z) =

O(z)=P(X <z)= /ff \/% exp(—%f)dZ,

where X is a standard normal random variable. The cdf ®(x), however, does not
have an anaytic representation like the cdf of the uniform distribution and must be
approximated using numerical techniques.

1.4 Quantiles of the Distribution of a Random Variable

Consider a random variable X with CDF Fx(z) = Pr(X < z). The 100-a% quantile
of the distribution for X is the value g, that satis&es

Fx(ga) =Pr(X < ¢a) = o
For example, the 5% quantile of X, ¢ 5, satis&es

Fx(q_05) = PI'(X S q_05> = .05.
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The median of the distribution is 50% quantile. That is, the median satis&es
Fx(median) = Pr(X < median) = .5

The 5% quantile and the median are illustrated in Figure xxx using the CDF Fx as
well as the pdf fx.
If Fx is invertible then ¢, may be determined as

¢a = Fx'(@)

where F';' denotes the inverse function of Fy. Hence, the 5% quantile and the median
may be determined as

qos — F§1(05)
median = Fy'(.5)

Example 10 Let X Ula,b] where b > a. The cdf of X is given by

a=Pr(X <z)=Fx(x)= a<z<b

b—a’

Given a, solving for x gives the inverse cdf
r=F;'(a)= a(b—a)+a, 0<a<l

Using the inverse cdf, the 5% quantile and median, for example, are given by

qos = Fx'(.05)=.05(b—a)+a=.05b+.95a
median = Fy'(.5) = .5(b—a)+a = .5(a+b)

If a =0 and b =1 then qo5 = 0.05 and median = 0.5.

Example 11 Let X" N(0,1). The quantiles of the standard normal are determined
from

Qo = (bil(a)

where ®~1 denotes the inverse of the cdf ®. This inverse function must be approxi-
mated numerically. Using the numerical approrimation to the inverse function, the
5% quantile and median are given by

q.05 ®1(.05) = —1.645
median = ® 1(.5) =0



1.5 Shape Characteristics of Probability Distributions

Very often we would like to know certain shape characteristics of a probability distri-
bution. For example, we might want to know where the distribution is centered and
how spread out the distribution is about the central value. We might want to know
if the distribution is symmetric about the center. For stock returns we might want to
know about the likelihood of observing extreme values for returns. This means that
we would like to know about the amount of probability in the extreme tails of the
distribution. In this section we discuss four shape characteristics of a pdf:

expected value or mean - center of mass of a distribution

variance and standard deviation - spread about the mean

skewness - measure of symmetry about the mean

kurtosis - measure of [tail thickness[]

1.5.1 Expected Value

The expected value of a random variable X, denoted E[X] or iy, measures the center
of mass of the pdf For a discrete random variable X with sample space Sx

px = E[X] = Z z - Pr(X =uz).

TESx

Hence, E[X] is a probability weighted average of the possible values of X.

Example 12 Using the discrete distribution for the return on Microsoft stock in
Table 1, the expected return is

E[X] = (=0.3)-(0.05) + (0.0) - (0.20) + (0.1) - (0.5) + (0.2) - (0.2) + (0.5) - (0.05)
= 0.10.

Example 13 Let X be a Bernoulli random variable with success probability w. Then
EX|=0-1—-m+1-7m=m
That is, the expected value of a Bernoulli random variable is its probability of success.

For a continuous random variable X with pdf p(x)

iy = B[X] = / " o pla)da.

e}



Example 14 Suppose X has a uniform distribution over the interval |a,b]. Then

E[X] = ﬁ mdm:ﬁ{%ﬁ]
1 2 2
= 20—a) ¥~ ]
~ (b—a)bta) b+a
B 2(b—a) 2

Example 15 Suppose X has a standard normal distribution. Then it can be shown

that - )
Bl X] = x - e’%”da::O.
X= [ e

1.5.2 Expectation of a Function of a Random Variable

The other shape characteristics of distributions are based on expectations of certain
functions of a random variable. Let g(X) denote some function of the random variable
X. If X is a discrete random variable with sample space Sx then

Elg(X)]= ) g(x)-Pr(X = z),

rESx

and if X is a continuous random variable with pdf p then

Elg()) = [ gla) - pla)d
1.5.3 Variance and Standard Deviation
The variance of a random variable X, denoted var(X) or 0%, measures the spread of
the distribution about the origin using the function g(X) = (X — uy)?. For a discrete
random variable X with sample space Sx

0% = var(X) = B[(X — uy)?) = 3 (@ = uy)? - Pr(X = ).
€Sy

Notice that the variance of a random variable is always nonnegative.

Example 16 Using the discrete distribution for the return on Microsoft stock in
Table 1 and the result that py = 0.1, we have

var(X) = (-0.3—0.1)*-(0.05) + (0.0 — 0.1)*- (0.20) + (0.1 — 0.1)*- (0.5)

+(0.2 — 0.1)* - (0.2) + (0.5 — 0.1)* - (0.05)
= 0.020.



Example 17 Let X be a Bernoulli random variable with success probability w. Given
that py = m 1t follows that

var(X) = 0—7)?-(1—-m)+(1—7)?-7
= ?(1-m)+(1—-7"r
= 17(1—m)[m+ (1 —m)]
= 7n(l—mn).

The standard deviation of X, denoted SD(X) or ox, is just the square root of
the variance. Notice that SD(X) is in the same units of measurement as X whereas
var(X) is in squared units of measurement. For [bell-shaped[] or normal looking
distributions the S D measures the typical size of a deviation from the mean value.

Example 18 For the distribution in Table 1, we have SD(X) = ox = 1/0.020 =
0.141. Given that the distribution is fairly bell-shaped we can say that typical values
deviate from the mean value of 10% by about 14.1%.

For a continuous random variable X with pdf p(x)

o0

0% = var(X) = E[(X — jx)?] = / (2 — ) - pla)de.

—00

Example 19 Suppose X has a standard normal distribution so that pyy = 0. Then
it can be shown that

o 1 1
var (X) = / z?. e 2dr =1,
—oo V2T

and so SD(X) = 1.

1.5.4 The General Normal Distribution

Recall, if X has a standard normal distribution then E[X] = 0, var(X) = 1. If X
has general normal distribution, denoted X ~ N(uy,0%), then its pdf is given by

p(z) = L gl
\2mo% ’

It can be shown that E[X] = uy and var(X) = o%, although showing these results
analytically is a bit of work and is good calculus practice. As with the standard normal
distribution, areas under the general normal curve cannot be computed analytically.
Using numerical approximations, it can be shown that

—o00o <z < o0.

Pr(uy —ox < X <puy+ox)~0.67,
Pripny —20x < X < pyx+20x)~0.95,
PI"(;LX—?)O'X < X<MX+3UX> ~ 0.99.
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Hence, for a general normal random variable about 95% of the time we expect to see
values within + 2 standard deviations from its mean. Observations more than three
standard deviations from the mean are very unlikely.

(insert &gures showing different normal distributions)

1.5.5 The Log-Normal distribution

A random variable Y is said to be log-normally distributed with parameters p and
o? if

InY ~ N(u,o?).
Equivalently, let X ~ N(p,0?) and de&ne

Y =e¥.
Then Y is log-normally distributed and is denoted Y ~ In N (u, 02).
(insert &gure showing lognormal distribution).
It can be shown that

py = B[Y]=eno

o2 = war(Y) = et (¢

_1)

Example 20 Let r, = In(P,/P,_1) denote the continuously compounded monthly re-
turn on an asset and assume that ry ~ N(pu, 02). Let Ry = H_TI?” denote the simple
monthly return. The relationship between vy and Ry is given by r, = In(1 + R;) and
14+ R, = e™. Since ry 1s normally distributed 1+ Ry is log-normally distributed. Notice
that the distribution of 1 + Ry is only deéhed for positive values of 1 + Ry. This is

appropriate since the smallest value that R; can take on is —1.

1.5.6 Using standard deviation as a measure of risk

Consider the following investment problem. We can invest in two non-dividend paying
stocks A and B over the next month. Let R4 denote monthly return on stock A and
Rp denote the monthly return on stock B. These returns are to be treated as random
variables since the returns will not be realized until the end of the month. We assume
that R4 ™ N(pu,0%4) and Rgp ™ N(up,0%). Hence, p; gives the expected return, F[R;],
on asset ¢ and o; gives the typical size of the deviation of the return on asset i from its
expected value. Figure xxx shows the pdfs for the two returns. Notice that p, > up
but also that 04 > op. The return we expect on asset A is bigger than the return
we expect on asset B but the variability of the return on asset A is also greater than
the variability on asset B. The high return variability of asset A re! ects the risk
associated with investing in asset A. In contrast, if we invest in asset B we get a

11



lower expected return but we also get less return variability or risk. This example
illustrates the fundamental [ho free lunchl] principle of economics and &nance: you
canlt get something for nothing. In general, to get a higher return you must take on
extra risk.

1.5.7 Skewness

The skewness of a random variable X, denoted skew(X), measures the symmetry of
a distribution about its mean value using the function g(X) = (X — uy)?/0%, where
0% is just SD(X) raised to the third power. For a discrete random variable X with
sample space Sx

E X — 3 T xr — 3 . PI‘ X =X
S]{IGU)(X): [( S/JJX)] :Z ESX( qu) ( )
Ix Tx
If X has a symmetric distribution then skew(X) = 0 since positive and negative
values in the formula for skewness cancel out. If skew(X) > 0 then the distribution
of X has a [long right taillJand if skew(X) < 0 the distribution of X has a [long

left tailll These cases are illustrated in Figure 6.

Example 21 Using the discrete distribution for the return on Microsoft stock in
Table 1, the results that puyx = 0.1 and ox = 0.141, we have

skew(X) = [(—0.3—0.1)*-(0.05) + (0.0 — 0.1)*>- (0.20) + (0.1 — 0.1)* - (0.5)
+(0.2 - 0.1)* - (0.2) + (0.5 — 0.1)* - (0.05)]/(0.141)?
= 0.0

For a continuous random variable X with pdf p(x)

E[(X — puy)?] _ ffooo(x — px)? -p(:c)d:c.

skew(X) =

Example 22 Suppose X has a general normal distribution with mean py and vari-

ance o%. Then it can be shown that

00 _ 3 1 ol (g 2
skew(X) :/ (z U;ix) : \/We g ) dr = 0.
—o0 X

This result 1s expected since the normal distribution is symmetric about it's mean
value fiy.

12



1.5.8 Kurtosis

The kurtosis of a random variable X, denoted kurt(X ), measures the thickness in the
tails of a distribution and is based on g(X) = (X — puy)?*/0%. For a discrete random
variable X with sample space Sx

El(X — 4 x — 2.Pr(X ==z

2 2
Ox Ox

where o% is just SD(X) raised to the fourth power. Since kurtosis is based on

deviations from the mean raised to the fourth power, large deviations get lots of
weight. Hence, distributions with large kurtosis values are ones where there is the
possibility of extreme values. In contrast, if the kurtosis is small then most of the
observations are tightly clustered around the mean and there is very little probability
of observing extreme values.

Example 23 Using the discrete distribution for the return on Microsoft stock in
Table 1, the results that iy = 0.1 and ox = 0.141, we have

kurt(X) = [(—0.3 —0.1)*-(0.05) + (0.0 — 0.1)*- (0.20) + (0.1 — 0.1)* - (0.5)
+(0.2 = 0.1)*- (0.2) + (0.5 — 0.1)* - (0.05)] /(0.141)*
= 6.5

For a continuous random variable X with pdf p(x)

kEurt(X) = E[<XU_4 px)’] _ ffooo(m - /;)2)4 'p(m)dm.

Example 24 Suppose X has a general normal distribution mean py and variance

0%. Then it can be shown that

o0

(z — px)? 1
kurt(X) = / .

(X) oo o 3’} \/27‘(’0’%(
Hence a kurtosis of 3 is a benchmark value for tail thickness of bell-shaped distribu-
tions. If a distribution has a kurtosis greater than 3 then the distribution has thicker
tails than the normal distribution and if a distribution has kurtosis less than 3 then
the distribution has thinner tails than the normal.

e~ 2@=nx)? g — 3.

Sometimes the kurtosis of a random variable is described relative to the kurtosis
of a normal random variable. This relative value of kurtosis is referred to as excess
kurtosis and is de&ned as

excess kurt(X) = kurt(X) —3

If excess the excess kurtosis of a random variable is equal to zero then the random
variable has the same kurtosis as a normal random variable. If excess kurtosis is
greater than zero, then kurtosis is larger than that for a normal; if excess kurtosis is
less than zero, then kurtosis is less than that for a normal.

13



1.6 Linear Functions of a Random Variable

Let X be a random variable either discrete or continuous with F[X]| = uy, var(X) =
0% and let a and b be known constants. De&ne a new random variable Y via the

linear function of X
Y =¢g(X)=aX+0.

Then the following results hold:
o BlY] =aFE[X]+bor uy =aux +b.
e var(Y) = a*var(X) or 0% = a*c%.
The &rst result shows that expectation is a linear operation. That is,
ElaX +b] = aE[X] + b.

In the second result notice that adding a constant to X does not affect its variance
and that the effect of multiplying X by the constant a increases the variance of X by
the square of a. These results will be used often enough that it useful to go through

the derivations, at least for the case that X is a discrete random variable.
Proof. Consider the &st result. By the de&mition of E[g(X)] with g(X) = b+aX
we have

ElY] = > (ax+b) Pr(X =u)

TESX

= aZm-Pr(X::v)+bZPr(X:

TESx €Sy
= aE[X]+b-1
= apuyxy +0b
= Hy-
Next consider the second result. Since py = apy + b we have
var(Y) = E[(Y —p,)]
= E[(aX +b— (auy +b))?
= El(a(X — px) + (0= b))’]
= EBla*(X — py)’
= B[(X — py)?
= a*var(X)

20

]
]

(by the linearity of E[-])

Notice that our proof of the second result works for discrete and continuous random
variables. ®

A normal random variable has the special property that a linear function of it is
also a normal random variable. The following proposition establishes the result.
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Proposition 25 Let X ~ N(uy,0%) and let a and b be constants. Let Y = aX +b.
ThenY ~ N(apy + b, a*c%).

The above property is special to the normal distribution and may or may not hold
for a random variable with a distribution that is not normal.

1.6.1 Standardizing a Random Variable

Let X be a random variable with E[X] = py and var(X) = 0%. De&ne a new random
variable Z as

X — 1
7 — Px _ 1 X — Hx
Ox 0Xx Ox
which is a linear function a X + b where a = i and b = —ﬁ—ﬁ. This transformation is

called [standardizing[lthe random variable X since, using the results of the previous
section,

1 1
ElZ] = —EX]- 2=y, - o
ox ox ox ox
1)? o3
var(Z) = <—> var(X) == = 1.

Hence, standardization creates a new random variable with mean zero and variance
1. In addition, if X is normally distributed then so is Z.

Example 26 Let X ~ N(2,4) and suppose we want to énd Pr(X > 5). Since X is
not standard normal we can’t use the standard normal tables to evaluate Pr(X > 5)
directly. We solve the problem by standardizing X as follows:

Pr(X >5) = Pr <X\/_12 > 5;;)

3
— Pr(z>2
(73)

where Z ~ N(0,1) is the standardized value of X. Pr (Z > %)can be found directly
from the standard normal tables.

Standardizing a random variable is often done in the construction of test statistics.
For example, the so-called [t-statisticJor [t-ratio[Jused for testing simple hypotheses
on coefficients in the linear regression model is constructed by the above standard-
ization process.

A non-standard random variable X with mean uy and variance 0% can be created
from a standard random variable via the linear transformation

X =pux+ox2z.
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This result is useful for modeling purposes. For example, in Chapter 3 we will consider
the Constant Expected Return (CER) model of asset returns. Let R denote the
monthly continuously compounded return on an asset and let y = E[R] and 02 =
var(R). A simpli&ed version of the CER model is

R=p+o-¢

where ¢ is a random variable with mean zero and variance 1. The random variable ¢
is often interpreted as representing the random news arriving in a given month that
makes the observed return differ from the expected value p. The fact that € has mean
zero means that new, on average, is neutral. The value of o represents the typical
size of a news shock.

(Stuff to add: General functions of a random variable and the change of variables
formula. Example with the log-normal distribution)

1.7 Value at Risk

To illustrate the concept of Value-at-Risk (VaR), consider an investment of $10,000
in Microsoft stock over the next month. Let R denote the monthly simple return on
Microsoft stock and assume that R ~N(0.05, (0.10)?). That is, E[R] = u = 0.05 and
var(R) = 0% = (0.10)%. Let Wy denote the investment value at the beginning of the
month and W; denote the investment value at the end of the month. In this example,
Wy = $10,000. Consider the following questions:

e What is the probability distribution of end of month wealth, W;?

e What is the probability that end of month wealth is less than $9, 000 and what
must the return on Microsoft be for this to happen?

e What is the monthly VaR on the $10,000 investment in Microsoft stock with
5% probability? That is, what is the loss that would occur if the return on
Microsoft stock is equal to its 5% quantile, g o5?

To answer the &rst question, note that end of month wealth W is related to initial
wealth W, and the return on Microsoft stock R via the linear function

W, = Wo(1+ R)=Wy+ WyR
= $10,000 4 $10, 000 - R.

Using the properties of linear functions of a random variable we have

EWh] = Wo+WHEIR]
= $10,000 + $10,000(0.05) = $10, 500
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and
var(Wy) = (Wo)*var(R)
= ($10,000)%(0.10)?,
SD(Wy) = ($10,000)(0.10) = $1, 000.

Further, since R is assumed to be normally distributed we have
W, ~ N($10,500, ($1,000)%)

To answer the second question, we use the above normal distribution for W; to
get
Pr(WW; < $9,000) = 0.067
To &nd the return that produces end of month wealth of $9, 000 or a loss of $10, 000 —
$9,000 = $1,000 we solve

~$9,000 — $10, 000
B $10,000
In other words, if the monthly return on Microsoft is —10% or less then end of

month wealth will be $9,000 or less. Notice that —0.10 is the 6.7% quantile of the
distribution of R :

R* = —0.10.

Pr(R < —0.10) = 0.067
The third question can be answered in two equivalent ways. First, use R ~N(0.05, (0.10)?)
and solve for the the 5% quantile of Microsoft Stock:
Pr(R < ¢%) = 0.05 = ¢&% = —0.114.

That is, with 5% probability the return on Microsoft stock is —11.4% or less. Now,
if the return on Microsoft stock is —11.4% the loss in investment value is $10, 000 -
(0.114) = $1, 144. Hence, $1,144 is the 5% VaR over the next month on the $10,000
investment in Microsoft stock. In general, if Wy represents the initial wealth and ¢’
is the 5% quantile of distribution of R then the 5% VaR is

5% VaR = ’WO . qlg5|

For the second method, use W; ~N($10,500, ($1,000)?) and solve for the 5%
quantile of end of month wealth:

Pr(Wy < ¢2) = 0.05 = ¢'12 = $8,856

This corresponds to a loss of investment value of $10,000 — $8, 856 = $1, 144. Hence,
if Wy represents the initial wealth and qﬁ)"g is the 5% quantile of the distribution of
Wi then the 5% VaR is

5% VaR = Wy — qlg2.

(insert VaR calculations based on continuously compounded returns)
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1.8 Log-Normal Distribution and Jensenls Inequality

(discuss Jensenls inequality: FE[g(X)] < g(F[X]) for a convex function. Use this
to illustrate the difference between E[W,exp(R)| and Wyexp(E[R]) where R is a
continuously compounded return.) Note, this is where the log-normal distribution
will come in handy.

2 Bivariate Distributions

So far we have only considered probability distributions for a single random variable.
In many situations we want to be able to characterize the probabilistic behavior of
two or more random variables simultaneously.

2.1 Discrete Random Variables

For example, let X denote the monthly return on Microsoft Stock and let Y denote
the monthly return on Apple computer. For simplicity suppose that the sample
spaces for X and Y are Sx = {0,1,2,3} and Sy = {0,1} so that the random
variables X and Y are discrete. The joint sample space is the two dimensional
grid Sxy = {(0,0),(0,1),(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)}. The likelihood that
X and Y takes values in the joint sample space is determined by the joint probability

distribution
p(z,y) =Pr(X =2,Y =y).

The function p(z,y) satis&es
(i) p(z,y) > 0 for z,y € Sxv;
(ii) p(z,y) =0 for z,y ¢ Sxy;
(1) D20 yesyy PT:Y) = Dnesy 2yesy P(2:y) = 1.

Table 2 illustrates the joint distribution for X and Y.

Table 2
Y

% | 0 1 |Pr(X)

0 |1/8 0 | 1/8
X 1 2/8 1/8| 3/8

2 1/8 2/8| 3/8

3 0 1/8| 1/8

Pr(Y) |4/8 4/8 1
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For example, p(0,0) = Pr(X = 0,Y = 0) = 1/8. Notice that sum of all the
entries in the table sum to unity. The bivariate distribution is illustrated graphically
in Figure xxx.

Bivariate pdf

0.25  ’

2.1.1 DMarginal Distributions

What if we want to know only about the likelihood of X occurring? For example,
what is Pr(X = 0) regardless of the value of Y'? Now X can occur if Y = 0 or if
Y =1 and since these two events are mutually exclusive we have that Pr(X = 0) =
Pr(X =0,Y =0)+Pr(X =0,Y =1) =0+ 1/8 = 1/8. Notice that this probability
is equal to the horizontal (row) sum of the probabilities in the table at X = 0. The
probability Pr(X = x) is called the marginal probability of X and is given by

PrX =z) = Z PrX =z,Y =y).
y€Sy
The marginal probabilities of X = x are given in the last column of Table 2. Notice

that the marginal probabilities sum to unity.
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We can &nd the marginal probability of Y in a similar fashion. For example, using
the data in Table 2 Pr(Y = 1) =Pr(X =0,Y =1)+Pr(X =1,Y = 1)+ Pr(X =
2Y =1)+Pr(X =3 Y=1)=0+1/8+2/8+1/8 = 4/8. This probability is the
vertical (column) sum of the probabilities in the table at Y = 1. Hence, the marginal
probability of Y = y is given by

Pr(Y =y) = Z Pr(X =z,Y =vy).

€Sy

The marginal probabilities of Y = y are given in the last row of Table 2. Notice that
these probabilities sum to 1.
For future reference we note that

E[X] = zz,var(X) =zzx
ElY] = zz,var(Y) = zx

2.2 Conditional Distributions

Suppose we know that the random variable Y takes on the value Y = 0. How does this
knowledge affect the likelihood that X takes on the values 0,1,2 or 37 For example,
what is the probability that X = 0 given that we know Y = 0?7 To &nd this probability,
we use Bayes! law and compute the conditional probability

Pr(X=0,Y=0) 1/8

PI(X =0y = 0) = e = e = 14

The notation Pr(X = 0]Y = 0) is read as [the probability that X = 0 given that
Y = 0Ll Notice that the conditional probability that X = 0 given that ¥ = 0 is
greater than the marginal probability that X = 0. That is, Pr(X = 0]Y = 0) =
1/4 > Pr(X = 0) = 1/8. Hence, knowledge that ¥ = 0 increases the likelihood that
X = 0. Clearly, X depends on Y.

Now suppose that we know that X = 0. How does this knowledge affect the
probability that Y = 07 To &nd out we compute

Pr(X =0,Y =0) 1/8
Pr(X =0)  1/8

Pr(Y =0/X =0) =

Notice that Pr(Y = 0|X =0) =1 > Pr(Y = 0) = 1/2. That is, knowledge that
X = 0 makes it certain that Y = 0.
In general, the conditional probability that X = z given that Y = y is given by

Pr(X =z,Y =vy)
Pr(Y =y)

Pr(X =z|Y =y) =
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and the conditional probability that ¥ = y given that X = x is given by
Pr(X =2z,Y =vy)

Pr( X =xz)

For the example in Table 2, the conditional probabilities along with marginal
probabilities are summarized in Tables 3 and 4. The conditional and marginal distri-
butions of X are graphically displayed in &gure xxx and the conditional and marginal
distribution of Y are displayed in &ure xxx. Notice that the marginal distribution of
X is centered at © = 3/2 whereas the conditional distribution of X|Y = 0 is centered
at x = 1 and the conditional distribution of X|Y =1 is centered at x = 2.

Pr(Y =y|X =2) =

Table 3
x| Pr(X =2) Pr(X|Y =0) Pr(X|Y=1)
0 1/8 2/8 0
1 3/8 4/8 2/8
2| 38 2/8 4/8
3| 18 0 2/8
Table 4
y|Pr(Y =y) Pr(Y|X=0) Pr(Y|X=1 Pr(Y|X=2) Pr(Y|X =3)
ol 1/2 1 2/3 1/3 0
1 172 0 1/3 2/3 1

2.2.1 Conditional Expectation and Conditional Variance

Just as we de&ned shape characteristics of the marginal distributions of X and Y we
can also de&ne shape characteristics of the conditional distributions of X|Y = y and
Y|X = z. The most important shape characteristics are the conditional expectation
(conditional mean) and the conditional variance. The conditional mean of X|Y =y
is denoted by py|y—, = E[X|Y = y] and the conditional mean of Y'|X = z is denoted
by py|x—, = E[Y|X = z]. These means are computed as

xy—y = EX[Y =y|=) z Pr(X=2zY =y),
€Sy

pyix—e = BY|X =2]=) y Pr(Y =y|X =2).
yESy

Similarly, the conditional variance of X|Y = y is denoted by quyzy =var(X|Y =y)
and the conditional variance of Y'|X = x is denoted by 0'%,‘ vy = var(Y|X = z).
These variances are computed as

ooy = var(X|Y =y)= Y (¢ —pyy_,)? Pr(X =z|Y =y),

z€Sx

Fxe = var(VIX =2) = 3 (y— pyx,)? - Pr(Y = y|X = 2).

yeSy
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Example 27 For the data in Table 2, we have

EX)Y = 0=0-1/441-1/2+2-1/4+3-0=1

EX)Y = 1=0-04+1-1/4+2-1/2+3-1/4=2
var(X|Y = 0)=(0-12-1/44+(1—-1)*-1/2+(2-1)>-1/2+(3-1)>-0=1/2
var(X[Y = 1)=(0-2)-04+(1-2)>-1/44+(2-2)*-1/2+(3-2)%-1/4=1/2.
Using similar calculations gives

EY|IX = 0=0,EY|X=1]=1/3,EY|X =2]=2/3,E[Y|X =3] =1
var(Y|X = 0)=0,var(Y|X =1) =0,var(Y|X =2) = 0,var(Y|X = 3) = 0.

2.2.2 Conditional Expectation and the Regression Function

Consider the problem of predicting the value Y given that we know X = z. A natural
predictor to use is the conditional expectation E[Y|X = z|. In this prediction context,
the conditional expectation E[Y|X = x| is called the regression function. The graph
with E[Y|X = z| on the verticle axis and x on the horizontal axis gives the so-
called regression line. The relationship between Y and the regression function may
expressed using the trivial identity

Y = E[Y|X=2]+Y — E[Y|X =]
= EY|X=uz|+e¢
where ¢ =Y — E[Y|X] is called the regression error.

Example 28 For the data in Table 2, the regression line is plotted in Egure xxx.
Notice that there is a linear relationship between E[Y|X = x| and x. When such a
linear relationship exists we call the regression function a linear regression. It is
important to stress that linearity of the regression function is not guaranteed.

2.2.3 Law of Total Expectations

Notice that
E[X] = EX|Y =0]-Pr(Y =0)+ E[X|Y =1]-Pr(Y =1)
= 1-1/2+2-1/2=3/2

E[Y] = E[Y|X=0]-Pr(X =0)+E[Y|X =1]-Pr(X = 1)+ E[Y|X =2] - Pr(X =2) + E[Y|X =
= 1/2

This result is known as the law of total expectations. In general, for two random
variables X and Y we have

E[X] = B[EX|Y]]
ElY] = E[B[Y|X]
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2.3 Bivariate Distributions for Continuous Random Variables

Let X and Y be continuous random variables de&ned over the real line. We character-
ize the joint probability distribution of X and Y using the joint probability function
(pdf) p(x,y) such that p(x,y) > 0 and

/)/)M%MM@ZL

For example, in Figure xxx we illustrate the pdf of X and Y as a [bell-shaped[Isurface
in two dimensions. To compute joint probabilities of 1 < X < x5 and y; <Y < ys
we need to &nd the volume under the probability surface over the grid where the
intervals [z1, 23] and [y1, y2] overlap. To &nd this volume we must solve the double
integral

T2 Y2
Pr(zg < X <a,pn <Y <) = / / p(x,y)dxdy.
1 Y1

Example 29 A standard bivariate normal pdf for X and Y has the form

1
p(xuy) - %67%(12+y2)7 -0 S 3773/ S oo

and has the shape of a symmetric bell centered at x = 0 and y = 0 as illustrated in
Figure xxz (insert égure here). To énd Pr(—1 < X < 1,—1 <Y < 1) we must solve

Y L P
/ / —e 2@ dgdy
-1J-1 27T

which, unfortunately, does not have an analytical solution. Numerical approximation
methods are required to evaluate the above integral.

2.3.1 DMarginal and Conditional Distributions

The marginal pdf of X is found by integrating y out of the joint pdf p(x,y) and the
marginal pdf of Y is found by integrating = out of the joint pdf:

p(z) = /mp@wﬂy

—00

ply) = /mp@wM%

—00

The conditional pdf of X given that Y = y, denoted p(x|y), is computed as

p(xly) =L
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and the conditional pdf of Y given that X = x is computed as

plyle) = 20

p(z)
The conditional means are computed as
fxy—y = EX[Y =y|= /:v p(x|y)dx
By|x= = EY|X =2z]= /y p(y|z)dy

and the conditional variances are computed as
ey = varXY =) = [0 o, (el

gy = var(Y]X = 1) = / (v — tiy1xa)pyl2)dy

2.4 Independence

Let X and Y be two random variables. Intuitively, X is independent of YV if knowledge
about Y does not in! uence the likelihood that X = x for all possible values of z € Sx
and y € Sy. Similarly, Y is independent of X if knowledge about X does not in! uence
the likelihood that Y = y for all values of y € Sy. We represent this intuition formally
for discrete random variables as follows.

De&aition 30 Let X andY be discrete random variables with sample spaces Sx and
Sy, respectively. X andY are independent random variables iff

Pr(X = z|Y =y)=Pr(X =2x), foralze Sx,y €Sy
Pr(Y = y|X =2)=Pr(Y =y), forallz € Sx,y € Sy

Example 31 For the data in Table 2, we know that Pr(X = 0|Y = 0) = 1/4 #
Pr(X =0)=1/8 so X andY are not independent.

Proposition 32 Let X and Y be discrete random variables with sample spaces Sx
and Sy, respectively. If X and 'Y are independent then

Pr( X =2,Y=y)=Pr(X =2) -Pr(Y =vy), forallz € Sx,y € Sy
For continuous random variables, we have the following de&mition of independence

De&nition 33 Let X andY be continuous random variables. X andY are indepen-

dent iff

plzly) = p(z), for —oo <z,y < oo
plylz) = ply), for —oo <z,y<oo
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Proposition 34 Let X and Y be continuous random variables . X andY are inde-
pendent iff

p(x,y) = p(z)p(y)

The result in the proposition is extremely useful because it gives us an easy way
to compute the joint pdf for two independent random variables: we simple compute
the product of the marginal distributions.

Example 35 Let X ~ N(0,1),Y ~ N(0,1) and let X andY be independent. Then

1 1.2 1 1,2 ie_%(w2+y2)'

p(r,y) = p(x)ply) = Ee—zx \/—276_5 -

This result is a special case of the bivariate normal distribution.

(stuff to add: if X and Y are independent then f(X) and g(Y') are independent
for any functions f(-) and g(-).)

2.5 Covariance and Correlation

Let X and Y be two discrete random variables. Figure xxx displays several bivariate
probability scatterplots (where equal probabilities are given on the dots).

(insert &gure here)

In panel (a) we see no linear relationship between X and Y. In panel (b) we see a
perfect positive linear relationship between X and Y and in panel (c) we see a perfect
negative linear relationship. In panel (d) we see a positive, but not perfect, linear
relationship. Finally, in panel (e) we see no systematic linear relationship but we see a
strong nonlinear (parabolic) relationship. The covariance between X and Y measures
the direction of linear relationship between the two random variables. The correlation
between X and Y measures the direction and strength of linear relationship between
the two random variables.

Let X and Y be two random variables with E[X] = uy, var(X) = 0%, E[Y] = uy
and var(Y) = o%.

De&nition 36 The covariance between two random variables X and Y is given by

oxy = cov(X,Y)=E[(X —pux)(Y — py)]
- Z Z (x —px)(y — py) Pr(X =2,Y =y) for discrete X and Y

wESX yESY

= / / (x — pux)(y — py )p(z,y)dxdy  for continuous X and Y
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De&nition 37 The correlation between two random variables X and Y is given by

cov(X,Y) _ oxy
Vvar(X)var(Y) oxoy

pxy = corr(X,Y) =

Notice that the correlation coefficient, pyy, is just a scaled version of the covari-
ance.

To see how covariance measures the direction of linear association, consider the
probability scatterplot in &gure xxx.

(insert &gure here)

In the plot the random variables X and Y are distributed such that py = py = 0.
The plot is separated into quadrants. In the &rst quandrant, the realized values satisfy
x < fx,y > fy so that the product (z — py)(y — pty) < 0. In the second quadrant,
the values satisfy z > py and y > py so that the product (x — py)(y — py) > 0.
In the third quadrant, the values satisfy © > puy but y < uy so that the product
(x — px)(y — py) < 0. Finally, in the fourth quandrant, z < py and y < py so that
the product (z — px)(y — py) > 0. Covariance is then a probability weighted average
all of the product terms in the four quadrants. For the example data, this weighted
average turns out to be positive.

Example 38 For the data in Table 2, we have

oxy = coo(X,Y)=(0-3/2)(0—1/2)-1/8+ (0—3/2)(1 —1/2)-0+---+ (3 —3/2)(1 —1/2) -1/
1/4

(3/4)-(1/2)

= 0.577

pxy = corr(X,Y)=

2.5.1 Properties of Covariance and Correlation

Let X and Y be random variables and let a and b be constants. Some important
properties of cov(X,Y) are

1. cov(X, X) = var(X)
2. cov(X,Y) = cov(Y, X)
3. cov(aX,bY)=a-b-cov(X,Y)

4. If X and Y are independent thencov(X,Y) = 0 (no association = no linear
association). However, if cov(X,Y) = 0 then X and Y are not necessarily
independent (no linear association # no association).

5. If X and Y are jointly normally distributed and cov(X,Y’) = 0, then X and Y
are independent.
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The third property above shows that the value of cov(X,Y") depends on the scaling
of the random variables X and Y. By simply changing the scale of X or Y we can
make cov(X,Y) equal to any value that we want. Consequently, the numerical value
of cov(X,Y) is not informative about the strength of the linear association between
X and Y. However, the sign of cov(X,Y) is informative about the direction of linear
association between X and Y. The fourth property should be intuitive. Independence
between the random variables X and Y means that there is no relationship, linear or
nonlinear, between X and Y. However, the lack of a linear relationship between X and
Y does not preclude a nonlinear relationship. The last result illustrates an important
property of the normal distribution: lack of covariance implies independence.

Some important properties of corr(X,Y) are

2. If pyy = 1 then X and Y are perfectly positively linearly related. That is,
Y =aX + b where a > 0.

3. If pyy = —1 then X and Y are perfectly negatively linearly related. That is,
Y =aX + b where a < 0.

4. If pyy = 0 then X and Y are not linearly related but may be nonlinearly
related.

5. corr(aX,bY) = corr(X,Y) if a > 0 and b > 0; corr(X,Y) = —corr(X,Y) if
a>0,b<0ora<0,b>0.

(Stuff to add: bivariate normal distribution)

2.5.2 Expectation and variance of the sum of two random variables

Let X and Y be two random variables with well de&éned means, variances and covari-
ance and let a and b be constants. Then the following results hold.

1. ElaX +b0Y]| =aE[X]+DE]Y] = aux + buy

2. var(aX +bY) = d*var(X) + b*var(Y) +2-a-b- cov(X,Y) = a’o% + b*0% +
2-a-b- Oxy

The &rst result states that the expected value of a linear combination of two
random variables is equal to a linear combination of the expected values of the random
variables. This result indicates that the expectation operator is a linear operator. In
other words, expectation is additive. The second result states that variance of a
linear combination of random variables is not a linear combination of the variances
of the random variables. In particular, notice that covariance comes up as a term
when computing the variance of the sum of two (not independent) random variables.

27



Hence, the variance operator is not, in general, a linear operator. That is, variance,
in general, is not additive.

It is worthwhile to go through the proofs of these results, at least for the case of
discrete random variables. Let X and Y be discrete random variables. Then,

ElaX +bY] = > ) (ax+by)Pr(X =2,Y =y)
zeSx yeSY
= Z ZamPr(X:a:,Y:y)—i- Z bePr(X:m,Y:y)
zeSx yeSY reSx YyeSyY
= a Z :BZPI(X::E,Y:y)—i—be Z Pr(X =z,Y =vy)
re€Sx YESy yeSy wxESx
= a Z a:Pr(X::v)—{—bePr(Y:y)
wESX yESy

= aE[X]+bE[Y] = auyx + by

Furthermore,

var(aX +bY) = E[(aX +bY — E[aX + bY])?]

= E[(aX +bY —apux — buy)?]

= Bl(a(X — px) +0(Y = py))’]

= @Bl(X — px)’ ] +PE[(Y = py)’| +2-a- b B(X — px)(Y — py)]
= a*var(X)+b*var(Y)+2-a-b-cov(X,Y).

2.5.3 Linear Combination of two Normal random variables

The following proposition gives an important result concerning a linear combination
of normal random variables.

Proposition 39 Let X ~ N(uy,0%),Y ~ N(uy,0%), oxy = cov(X,Y) and a and
b be constants. Deéne the new random variable Z as

Z = aX +bY.

Then
Z ~ N(:uZaOzZ)

where

Bz = apx +buy
0y = d’c% +b°0y +2aboxy
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This important result states that a linear combination of two normally distributed
random variables is itself a normally distributed random variable. The proof of the
result relies on the change of variables theorem from calculus and is omitted. Not all
random variables have the property that their distributions are closed under addition.

3 Multivariate Distributions

The results for bivariate distributions generalize to the case of more than two random
variables. The details of the generalizations are not important for our purposes.
However, the following results will be used repeatedly.

3.1 Linear Combinations of N Random Variables

Let X3, Xs, ..., Xy denote a collection of N random variables with means p,,variances
o? and covariances ;. De&ne the new random variable Z as a linear combination

Z:a1X1+a2X2+---+aNXN

where aq,as,...,ay are constants. Then the following results hold

pz = ElZ] = aB[Xi] + aE[Xs] + - + anE[Xy]

N N
= D aBlXi] =) a
i=1

=1

2 2 2 2 2 2
oy, = var(Z)=ajo]+a305+ - +ayoy

+2a1a2012 + 2a1a3013 + - - + aanoiN
+2a9a3093 + 20904094 + - - - + aQ2anTaN
+ P +

+2an_1ano(N_1)N

In addition, if all of the X; are normally distributed then Z is normally distributed
with mean 1, and variance 0% as described above.

3.1.1 Application: Distribution of Continuously Compounded Returns

Let R; denote the continuously compounded monthly return on an asset at time t.
Assume that R; ~ #id N(u,0?). The annual continuously compounded return is equal
the sum of twelve monthly continuously compounded returns. That is,

11
— E Rt—j-
5=0
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Since each monthly return is normally distributed, the annual return is also normally
distributed. In addition,

E[R,(12)] = E

11
> R
j=0

11

= Z E[R;_;] (by linearity of expectation)
=0
11
= Z i (by identical distributions)
=0
= 12 pu,
so that the expected annual return is equal to 12 times the expected monthly return.
Furthermore,

var(Ry(12)) = wvar <ZRt_j>

11
= Zvar(Rt_j) (by independence)
=0

11
= Z o? (by identical distributions)
=0

= 12.07,

so that the annual variance is also equal to 12 times the monthly variance?. For the
annual standard deviation, we have

SD(R,(12)) = V120.

4 Further Reading

Excellent intermediate level treatments of probability theory using calculus are given
in DeGroot (1986), Hoel, Port and Stone (1971) and Hoag and Craig (19xx). Inter-
mediate treatments with an emphasis towards applications in &mance include Ross
(1999) and Watsom and Parramore (1998). Intermediate textbooks with an emphasis
on econometrics include Amemiya (1994), Goldberger (1991), Ramanathan (1995).
Advanced treatments of probability theory applied to &nance are given in Neftci
(1996). Everything you ever wanted to know about probability distributions is given
Johnson and Kotz (19xx).

2This result often causes some confusion. It is easy to make the mistake and say that the annual
variance is (12)? = 144 time the monthly variance. This result would occur if R4 = 12R;, so that
var(Ra) = (12)%var(Ry) = 144var(Ry).
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5 Problems

Let W, X,Y, and Z be random variables describing next yearls annual return on
Weyerhauser, Xerox, Yahoo! and Zymogenetics stock. The table below gives discrete
probability distributions for these random variables based on the state of the economy:

State of Economy W pw) X plx) Y »ply) Z p(z)
Depression -0.3 0.05 -0.5 0.056 -0.5 0.15 -0.8 0.05
Recession 00 02 -02 01 -02 05 00 0.2

Normal 0.1 0.5 0 0.2 0 0.2 0.1 0.5
Mild Boom 02 02 02 05 02 01 02 02
Major Boom 05 005 05 015 05 005 1 0.05

e Plot the distributions for each random variable (make a bar chart). Comment
on any differences or similarities between the distributions.

e For each random variable, compute the expected value, variance, standard de-
viation, skewness, kurtosis and brie! y comment.

Suppose X is a normally distributed random variable with mean 10 and variance
24.

Find Pr(X > 14)
Find Pr(8 < X < 20)

Find the probability that X takes a value that is at least 6 away from its mean.

e Suppose y is a constant de&ned such that Pr(X > y) = 0.10. What is the value
of y?

e Determine the 1%, 5%, 10%, 25% and 50% quantiles of the distribution of X.

Let X denote the monthly return on Microsoft stock and let Y denote the monthly
return on Starbucks stock. Suppose X N (0.05, (0.10)?) and Y~ N(0.025, (0.05)?).

e Plot the normal curves for X and Y
e Comment on the risk-return trade-offs for the two stocks

Let R denote the monthly return on Microsoft stock and let W, denote ini-
tial wealth to be invested in Microsoft stock over the next month. Assume that
R™N(0.07,(0.12)?) and that W, = $25, 000.

e What is the distribution of end of month wealth W7 = Wy (1 + R)?

e What is the probability that end of month wealth is less than $20,0007

e What is the Value-at-Risk (VaR) on the investment in Microsoft stock over the
next month with 5% probability?
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1 The Constant Expected Return Model of Asset
Returns

1.1 Assumptions

Let R; denote the continuously compounded return on an asset ¢ at time t. We
make the following assumptions regarding the probability distribution of R; for i =
1,..., N assets over the time horizon t =1,...,T.

1. Normality of returns: Ry ~ N(p;,0%) fori=1,...,Nandt=1,...,T.

2. Constant variances and covariances: cov(Ry, Rjt) = o;; for i = 1,..., N and
t=1,...,T.

3. No serial correlation across assets over time: cov(R;, Rjs) = 0 for ¢t # s and

i,j=1,...,N.

Assumption 1 states that in every time period asset returns are normally dis-
tributed and that the mean and the variance of each asset return is constant over
time. In particular, we have for each asset ¢

E[Ry:] = u,; for all values of ¢

var(Ry) = o3 for all values of ¢

The second assumption states that the contemporaneous covariances between assets
are constant over time. Given assumption 1, assumption 2 implies that the contem-
poraneous correlations between assets are constant over time as well. That is, for all

1



assets
corr (R, Rjt) = p;; for all values of ¢.

The third assumption stipulates that all of the asset returns are uncorrelated over
time!. In particular, for a given asset i the returns on the asset are serially uncorre-
lated which implies that

corr(Ry, Ris) = cov(Ry, R;s) = 0 for all t # s.

Additionally, the returns on all possible pairs of assets ¢ and j are serially uncorrelated
which implies that

corr(Rt, R;s) = cov(Ry, Rjs) = 0 for all i # j and ¢ # s.

Assumptions 1-3 indicate that all asset returns at a given point in time are jointly
(multivariate) normally distributed and that this joint distribution stays constant
over time. Clearly these are very strong assumptions. However, they allow us to de-
velopment a straightforward probabilistic model for asset returns as well as statistical
tools for estimating the parameters of the model and testing hypotheses about the
parameter values and assumptions.

1.2 Constant Expected Return Model Representation

A convenient mathematical representation or model of asset returns can be given
based on assumptions 1-3. This is the constant expected return (CER) model. For
assets 1 = 1,..., N and time periods t = 1,...,T the CER model is represented as

Ry = p;+ea (1)
ew ~ id.d. N(0,07)
cov(ei, €jt) = 0ij (2)

where 11; is a constant and we assume that €;; is independent of ¢, for all time periods
t # s. The notation ¢; ~ i.i.d. N (0,0’%) stipulates that the random variable &;; is
serially independent and identically distributed as a normal random variable with
mean zero and variance o?. In particular, note that, Ele;] = 0, var(e;) = o? and
cov(git,€j5) = 0 for i # j and ¢ # s.

Using the basic properties of expectation, variance and covariance discussed in
chapter 2, we can derive the following properties of returns. For expected returns we
have

ERy] = Elp; + i) = p; + Elew) = 15,

!Since all assets are assumed to be normally distributed (assumption 1), uncorrelatedness implies
the stronger condition of independence.



since p, is constant and Fle;] = 0. Regarding the variance of returns, we have
var(Ry) = var(p; + €i) = var(ey) = o7

which uses the fact that the variance of a constant (u,) is zero. For covariances of
returns, we have

cov(Ry, Rji) = cov(pi; + €it, jtj + €5¢) = cov(ei, €5¢) = 0

and
COU(Ritv Rj8> = COU(HJ@' + Eity Hj + gjs) = COU(Sit,SjS) =0,t 7é S,

which use the fact that adding constants to two random variables does not affect

the covariance between them. Given that covariances and variances of returns are
constant over time gives the result that correlations between returns over time are
also constant:

corr(Ry, Rj) = o0 (R, By =28 Pijs
\/U@T(Rit)Uar(Rjt) 00
corr(Ry, Rjs) = cov(Bi, Bys) 0 =0, i#j,t#s.

\/var(Rit)var(st) 040

Finally, since the random variable €;; is independent and identically distributed (i.i.d.)
normal the asset return R;; will also be 7.7.d. normal:

Ryt ~ id.i.d. N(p,,03).

Hence, the CER model (1) for R;; is equivalent to the model implied by assumptions
1-3.

1.3 Interpretation of the CER Model

The CER model has a very simple form and is identical to the measurement error
model in the statistics literature. In words, the model states that each asset return
is equal to a constant p,; (the expected return) plus a normally distributed random
variable g; with mean zero and constant variance. The random variable ; can be
interpreted as representing the unexpected news concerning the value of the asset
that arrives between times ¢ — 1 and time ¢. To see this, note that using (1) we can
write €;; as

e = Riu—py
= Ry — E[Ry]

so that €;; is de&med to be the deviation of the random return from its expected value.
If the news is good, then the realized value of €;; is positive and the observed return is
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above its expected value y,;. If the news is bad, then €;; is negative and the observed
return is less than expected. The assumption that E[e;] = 0 means that news, on
average, is neutral; neither good nor bad. The assumption that var(e;) = 0 can be
interpreted as saying that volatility of news arrival is constant over time. The random
news variable affecting asset i, e, is allowed to be contemporaneously correlated with
the random news variable affecting asset j, €;;, to capture the idea that news about
one asset may spill over and affect another asset. For example, let asset ¢ be Microsoft
and asset j be Apple Computer. Then one interpretation of news in this context is
general news about the computer industry and technology. Good news should lead
to positive values of ¢;; and €;;. Hence these variables will be positively correlated.
The CER model with continuously compounded returns has the following nice
property with respect to the interpretation of €; as news. Consider the default case
where R;; is interpreted as the continuously compounded monthly return. Since mul-
tiperiod continuously compounded returns are additive we can interpret, for example,

R;; as the sum of 30 daily continuously compounded returns?:

29
d
Ry = Z Rit—k
k=0

where R% denotes the continuously compounded daily return on asset i. If we assume
that daily returns are described by the CER model then

Ry = pi+el,
e~ did N(0,(c%)?),
cov(s‘ft, S?t) = afj,
cov(efy,ef,) = 0, i#jt#s
and the monthly return may then be expressed as

29

Ry = > (uf+eps)
k=0

29
= 30 p + > el
k=0
= W + Ei,
where

29
d
Eit = Z git—k} .
k=0

2For simplicity of exposition, we will ignore the fact that some assets do not trade over the
weekend.




Hence, the monthly expected return, p,, is simply 30 times the daily expected re-
turn. The interpretation of £; in the CER model when returns are continuously
compounded is the accumulation of news between months ¢ — 1 and t. Notice that

var(Ry) = var (Z(PJ? + 5?1&]9))

k=0

29 ;
= > var(ch )
k=0

29

and
29 29
cov(Ry, Rj1) = cov (Z ed ., Za?tk>
k=0 k=0
29 ; )
= Z cov(eg gjtfk)
k=0

29
= ngj
k=0
= 30-0y,
so that the monthly variance, o2, is equal to 30 times the daily variance and the

monthly covariance, 0;;, is equal to 30 times the daily covariance.

1.4 The CER Model of Asset Returns and the Random Walk
Model of Asset Prices

The CER model of asset returns (1) gives rise to the so-called random walk (RW)
model of the logarithm of asset prices. To see this, recall that the continuously
compounded return, R;, is de€med from asset prices via

P.
l - - it
! (PH) B

Since the log of the ratio of prices is equal to the difference in the logs of prices we
may rewrite the above as

111(Pit) - ln(ﬂtfl) = Ry.

Letting p; = In(P;) and using the representation of R; in the CER model (1), we
may further rewrite the above as

Dit — Pit—1 = [ + Eit- (3)
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The representation in (3) is know as the RW model for the log of asset prices.

In the RW model, pu,; represents the expected change in the log of asset prices
(continuously compounded return) between months ¢t — 1 and ¢ and €;; represents the
unexpected change in prices. That is,

Elpi —pi—1] = E[Ru] = u;,
&t = DPit — Dit—1 — E[pit - pit—l]-
Further, in the RW model, the unexpected changes in asset prices, ;;, are uncorrelated
over time (cov(e, €i5) = 0 for t # s) so that future changes in asset prices cannot be
predicted from past changes in asset prices?.

The RW model gives the following interpretation for the evolution of asset prices.
Let p;o denote the initial log price of asset . The RW model says that the price at
time t =1 is

Di1 = Pio + M + Ein
where ;1 is the value of random news that arrives between times 0 and 1. Notice that
at time ¢ = 0 the expected price at time t = 1 is

Elpi] = pio + p; + Elen] = pio + 1
which is the initial price plus the expected return between time 0 and 1. Similarly,
the price at time t = 2 is
Di2 = D1+ M +Ei2
Dio + H; + [ T+ €1+ €42

2
= pio+2 -+ Y €

t=1

which is equal to the initial price, p;o, plus the two period expected return, 2- p,, plus
the accumulated random news over the two periods, Zle €. By recursive substitu-
tion, the price at time t = T is

T
pir =pio+ T p; + ) eqr.
t=1
At time t = 0 the expected price at time ¢t = T is
Elpir] = pio + T - p;

The actual price, p;r, deviates from the expected price by the accumulated random
news

T
pir — Elpir] = Zé?it-
t=1

Figure xxx illustrates the random walk model of asset prices.

3The notion that future changes in asset prices cannot be predicted from past changes in asset
prices is often referred to as the weak form of the efficient markets hypothesis.
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Simulated Random Walk
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The term random walk was originally used to describe the unpredictable move-
ments of a drunken sailor staggering down the street. The sailor starts at an initial
position, pg, outside the bar. The sailor generally moves in the direction described
by p but randomly deviates from this direction after each step ¢ by an amount equal
to ;. After T steps the sailor ends up at position py = po + p- T + 3L, &.

2 Monte Carlo Simulation of the CER Model

A good way to understand the probabilistic behavior of a model is to use computer
simulation methods to create pseudo data from the model. The process of creating
such pseudo data is often called Monte Carlo simulation*. To illustrate the use of
Monte Carlo simulation, consider the problem of creating pseudo return data from
the CER model (1) for one asset. In order to simulate pseudo return data, values for
the model parameters ;1 and o must be selected. To mimic the monthly return data

on Microsoft, the values u = 0.05 and ¢ = 0.10 are used. Also, the number N of

4Monte Carlo referrs to the fameous city in Monaco where gambling is legal.



simulated data points must be determined. Here, N = 100. Hence, the model to be
simulated is

Rt = 0.05+5t, t = 1,,100
e “iid N(0,(0.10)?)

The key to simulating data from the above model is to simulate N = 100 observations
of the random news variable &; ~#id N(0, (0.10)?). Computer algorithms exist which
can easily create such observations. Let {e1,. .., 100} denote the 100 simulated values
of g;. The histogram of these values are given in &gure xxx below

Histogram of Simulated Errors
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The sample average of the simulated errors is &5 ;%) £, = —0.004 and the sample

standard deviation is \/ = 3120 (er — (—0.004))? = 0.109. These values are very close

to the population values Ele;] = 0 and SD(e;) = 0.10, respectively.
Once the simulated values of ¢; have been created, the simulated values of R; are
constructed as R; = 0.05 + ¢, t = 1,...,100. A time plot of the simulated values of

R; is given in &gure xxx below



Monte Carlo Simulation of CER Model
R(t) = 0.05 + e(t), e(t) ~ iid N(0, (0.10)*2)
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The simulated return data ! uctuates randomly about the expected return value
E[Ry] = p = 0.05. The typical size of the ! uctuation is approximately equal to
SE(e;) = 0.10. Notice that the simulated return data looks remarkably like the
actual return data of Microsoft.

Monte Carlo simulation of a model can be used as a &rst pass reality check of the
model. If simulated data from the model does not look like the data that the model is
supposed to describe then serious doubt is cast on the model. However, if simulated
data looks reasonably close to the data that the model is suppose to describe then
conddence is instilled on the model.

3 Estimating the CER Model
3.1 The Random Sampling Environment

The CER model of asset returns gives us a rigorous way of interpreting the time
series behavior of asset returns. At the beginning of every month ¢, R; is a random

100



variable representing the return to be realized at the end of the month. The CER
model states that Ry ~ i.i.d. N(u;,0?). Our best guess for the return at the end of the
month is E[R;]| = p,;, our measure of uncertainty about our best guess is captured by

0; = y/var(Ry) and our measure of the direction of linear association between R;; and
Rj, is 0;; = cov(Ry, Rj). The CER model assumes that the economic environment
is constant over time so that the normal distribution characterizing monthly returns
is the same every month.

Our life would be very easy if we knew the exact values of y;, 07 and oy, the
parameters of the CER model. In actuality, however, we do not know these values
with certainty. A key task in &nancial econometrics is estimating the values of y,, o2
and o;; from a history of observed data.

Suppose we observe monthly returns on N different assets over the horizon ¢ =
1,...,T. Let ry,...,r;r denote the observed history of T" monthly returns on asset
1 for i = 1,..., N. It is assumed that the observed returns are realizations of the
random variables Ry, ..., Rir , where Ry is described by the CER model (1). We
call R;1,..., R;r a random sample from the CER model (1) and we call r;,...,ry7
the realized values from the random sample. In this case, we can use the observed
returns to estimate the unknown parameters of the CER model

3.2 Estimation Theory

Before we describe the estimation of the CER model, it is useful to summarize some
concepts in estimation theory. Let 6 denote some characteristic of the CER model
(1) we are interested in estimating. For example, if we are interested in the expected
return then 6 = p,; if we are interested in the variance of returns then § = oZ. The
goal is to estimate 6 based on the observed data r;1,..., 71 .

De&mition 1 An estimator of 0 is a rule or algorithm for forming an estimate for

6.

De&mition 2 An estimate of 0 is simply the value of an estimator based on the
observed data.

To establish some notation, let 9(Ri1, ..., Ryr) denote an estimator of  treated as
a function of the random variables R;1, ..., R;r. Clearly, 9(Ri1, ..., Ryr) is a random
variable. Let 9(7’“, ...,rr) denote an estimate of 6 based on the realized values
Tily oy 3T 9(n~1, ...,ryr) is simply an number. We will often use 0 as shorthand
notation to represent either an estimator of # or an estimate of . The context will

determine how to interpret 6.

3.2.1 Properties of Estimators

Consider 6 = 6(Ry1, ..., Rir) as a random variable. In general, the pdf of Q, p(0),
depends on the pdf(s of the random variables R;1, . .., R;r. The exact form of p(f) may
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1 Introduction to Portfolio Theory

Consider the following investment problem. We can invest in two non-dividend paying
stocks A and B over the next month. Let R4 denote monthly return on stock A and
Rp denote the monthly return on stock B. These returns are to be treated as random
variables since the returns will not be realized until the end of the month. We assume
that the returns R4 and Rp are jointly normally distributed and that we have the
following information about the means, variances and covariances of the probability
distribution of the two returns:

pa = E[Ra], 0% =Var(Ra),
U = E[RB], 0'% = VCLT’(RB),
OAB — COU(RA, RB)

We assume that these values are taken as given. We might wonder where such values
come from. One possibility is that they are estimated from historical return data for
the two stocks. Another possibility is that they are subjective guesses.

The expected returns, 4 and ppz, are our best guesses for the monthly returns on
each of the stocks. However, since the investments are random we must recognize that
the realized returns may be different from our expectations. The variances, 0% and
0%, provide measures of the uncertainty associated with these monthly returns. We
can also think of the variances as measuring the risk associated with the investments.
Assets that have returns with high variability (or volatility) are often thought to
be risky and assets with low return volatility are often thought to be safe. The
covariance o4p gives us information about the direction of any linear dependence
between returns. If o 45 > 0 then the returns on assets A and B tend to move in the



same direction; if o4 < 0 the returns tend to move in opposite directions; if c 4 = 0
then the returns tend to move independently. The strength of the dependence between
the returns is measured by the correlation coefficient p 5 = P If psp is close to
one in absolute value then returns mimic each other extremely closely whereas if p 5

is close to zero then the returns may show very little relationship.

The portfolio problem is set-up as follows. We have a given amount of wealth and
it is assumed that we will exhaust all of our wealth between investments in the two
stocks. The investorls problem is to decide how much wealth to put in asset A and
how much to put in asset B. Let x4 denote the share of wealth invested in stock A
and zp denote the share of wealth invested in stock B. Since all wealth is put into
the two investments it follows that z4 + xp = 1. (Aside: What does it mean for x4
or zp to be negative numbers?) The investor must choose the values of x4 and xp.

Our investment in the two stocks forms a portfolio and the shares x4 and xg are
referred to as portfolio shares or weights. The return on the portfolio over the next
month is a random variable and is given by

Rp:I'ARA—FCL'BRB, (1)

which is just a simple linear combination or weighted average of the random return
variables R4 and Rp. Since R4 and Rp are assumed to be normally distributed, R,
is also normally distributed.

1.1 Portfolio expected return and variance

The return on a portfolio is a random variable and has a probability distribution
that depends on the distributions of the assets in the portfolio. However, we can
easily deduce some of the properties of this distribution by using the following results
concerning linear combinations of random variables:

t, = E[R)]=zaps+zpnp (2)

oo = wvar(R,) = 3305 + 1505 + 204250 4B (3)

These results are so important to portfolio theory that it is worthwhile to go
through the derivations. For the &rst result (2), we have

ER, = ElxaRa+ xpRp] = xAE[Ra] + xpE[Rp| = Tapy + g
by the linearity of the expectation operator. For the second result (3), we have

var(R,) = wvar(zaRa+ rpRp) = E[(vaRa+ xpRp) — E[xaRa + 13Rp))?
= El(xa(Ra — pa) +25(Rp — pig))?]
= El%(Ra— pa)® + 25(Rp — pp)” + 2xaxp(Ra — p14)(Rp — )]
TAE[(Ra — pa)?) + 23 E[(Rp — pip)?] + 22425 E[(Ra — p4)(Rp — p1p));
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and the result follows by the de&nitions of var(Ra),var(Rg) and cov(R4, Rpg)..

Notice that the variance of the portfolio is a weighted average of the variances
of the individual assets plus two times the product of the portfolio weights times
the covariance between the assets. If the portfolio weights are both positive then a
positive covariance will tend to increase the portfolio variance, because both returns
tend to move in the same direction, and a negative covariance will tend to reduce the
portfolio variance. Thus &nding negatively correlated returns can be very bene&cial
when forming portfolios. What is surprising is that a positive covariance can also be
benedrial to diversi&cation.

1.2 Efficient portfolios with two risky assets

In this section we describe how mean-variance efficient portfolios are constructed.
First we make some assumptions:
Assumptions

e Returns are jointly normally distributed. This implies that means, variances
and covariances of returns completely characterize the joint distribution of re-
turns.

e Investors only care about portfolio expected return and portfolio variance. In-
vestors like portfolios with high expected return but dislike portfolios with high
return variance.

Given the above assumptions we set out to characterize the set of portfolios that
have the highest expected return for a given level of risk as measured by portfolio
variance. These portfolios are called efficient portfolios and are the portfolios that
investors are most interested in holding.

For illustrative purposes we will show calculations using the data in the table
below.

Table 1: Example Data

Ha 14523 031 (7213 JA oB OAB PAB
0.175 0.055 0.067 0.013 0.258 0.115 -0.004875 -0.164

The collection of all feasible portfolios (the investment possibilities set) in the
case of two assets is simply all possible portfolios that can be formed by varying
the portfolio weights x4 and zp such that the weights sum to one (z4 + xp = 1).
We summarize the expected return-risk (mean-variance) properties of the feasible
portfolios in a plot with portfolio expected return, p,,, on the vertical axis and portfolio
standard-deviation, o,, on the horizontal axis. The portfolio standard deviation is
used instead of variance because standard deviation is measured in the same units as
the expected value (recall, variance is the average squared deviation from the mean).



Portfolio Frontier with 2 Risky Assets
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Figure 1

The investment possibilities set or portfolio frontier for the data in Table 1 is
illustrated in Figure 1. Here the portfolio weight on asset A, x4, is varied from
-0.4 to 1.4 in increments of 0.1 and, since g = 1 — x4, the weight on asset is
then varies from 1.4 to -0.4. This gives us 18 portfolios with weights (z4,25) =
(—0.4,1.4),(-0.3,1.3), ..., (1.3,—0.3), (1.4, —0.4). For each of these portfolios we use
the formulas (2) and (3) to compute p, and o, = \/072,. We then plot these values!.

Notice that the plot in (u,,,) space looks like a parabola turned on its side (in
fact it is one side of a hyperbola). Since investors desire portfolios with the highest
expected return for a given level of risk, combinations that are in the upper left corner
are the best portfolios and those in the lower right corner are the worst. Notice that
the portfolio at the bottom of the parabola has the property that it has the smallest
variance among all feasible portfolios. Accordingly, this portfolio is called the global
minimum variance portfolio.

It is a simple exercise in calculus to &nd the global minimum variance portfolio.
We solve the constrained optimization problem

. 2 2 2 2 2
min o, = z%0 THo 2r ax B0
Dm0, A0A+ TROp + 204TBOAB

st. xgy+2xp = 1.

!The careful reader may notice that some of the portfolio weights are negative. A negative
portfolio weight indicates that the asset is sold short and the proceeds of the short sale are used to
buy more of the other asset. A short sale occurs when an investor borrows an asset and sells it in
the market. The short sale is closed out when the investor buys back the asset and then returns the
borrowed asset. If the asset price drops then the short sale produces and pro&s.



Substituting xtp = 1 — x4 into the formula for 0]23 reduces the problem to

n%in ob=ah0y + (1 —z4)’0% +224(1 — 24)0 4B

The &rst order conditions for a minimum, via the chain rule, are

do? . . .
0= d:v—p = 22"0% — 2(1 — 2™ 0% + 20 45(1 — 2254™)
A

and straightforward calculations yield

2

i 4 O AB i ;

"t = — B 5 , gt =1— o™ (4)
0%+ 05 — 2048

For our example, using the data in table 1, we get %" = 0.2 and z'5™ = 0.8.

Efficient portfolios are those with the highest expected return for a given level
of risk. Inefficient portfolios are then portfolios such that there is another feasible
portfolio that has the same risk (o;,) but a higher expected return (y,). From the
plot it is clear that the inefficient portfolios are the feasible portfolios that lie below
the global minimum variance portfolio and the efficient portfolios are those that lie
above the global minimum variance portfolio.

The shape of the investment possibilities set is very sensitive to the correlation
between assets A and B. If p,5 is close to 1 then the investment set approaches a
straight line connecting the portfolio with all wealth invested in asset B, (z4,25) =
(0,1), to the portfolio with all wealth invested in asset A, (z4,z5) = (1,0). This
case is illustrated in Figure 2. As p,5 approaches zero the set starts to bow toward
the j, axis and the power of diversidration starts to kick in. If pyp = —1 then
the set actually touches the p, axis. What this means is that if assets A and B
are perfectly negatively correlated then there exists a portfolio of A and B that has
positive expected return and zero variance! To &nd the portfolio with 0]23 = 0 when

pap = —1 we use (4) and the fact that cap = pygoaop to give
min OB min 1
Ty =———, 1 =1—2
A oatop P 4
The case with p 5 = —1 is also illustrated in Figure 2.
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Given the efficient set of portfolios, which portfolio will an investor choose? Of
the efficient portfolios, investors will choose the one that accords with their risk
preferences. Very risk averse investors will choose a portfolio very close to the global
minimum variance portfolio and very risk tolerant investors will choose portfolios
with large amounts of asset A which may involve short-selling asset B.

1.3 Efficient portfolios with a risk-free asset

In the preceding section we constructed the efficient set of portfolios in the absence of
a risk-free asset. Now we consider what happens when we introduce a risk free asset.
In the present context, a risk free asset is equivalent to default-free pure discount bond
that matures at the end of the assumed investment horizon. The risk-free rate, ry, is
then the return on the bond, assuming no in! ation. For example, if the investment
horizon is one month then the risk-free asset is a 30-day Treasury bill (T-bill) and
the risk free rate is the nominal rate of return on the T-bill. If our holdings of the
risk free asset is positive then we are [lending money[lat the risk-free rate and if our
holdings are negative then we are [borrowingl]at the risk-free rate.

1.3.1 Efficient portfolios with one risky asset and one risk free asset

Continuing with our example, consider an investment in asset B and the risk free
asset (henceforth referred to as a T-bill) and suppose that ry = 0.03. Since the risk
free rate is &xed over the investment horizon it has some special properties, namely

By = Elry| =1y



var(ry) = 0
cov(Rp,ry) = 0

Let zp denote the share of wealth in asset B and xy = 1 — xp denote the share of
wealth in T-bills. The portfolio expected return is

Rp = ZL‘BRB—F(l—iL‘B)’I“f
= a:B(RB—rf)—l—rf

The quantity Rp — 7y is called the excess return (over the return on T-bills) on asset
B. The portfolio expected return is then

My = rp(pp — 77) + 7y

where the quantity (up — 7f) is called the expected excess return or risk premium
on asset B. We may express the risk premium on the portfolio in terms of the risk
premium on asset B:

py, —rf = xp(Hp — 1)
The more we invest in asset B the higher the risk premium on the portfolio.
The portfolio variance only depends on the variability of asset B and is given by

2 _
p=

2

2
0, = TR0y

The portfolio standard deviation is therefore proportional to the standard deviation
on asset B:

Op =TBOB
which can use to solve for zg
Op
rp = —
OB

Using the last result, the feasible (and efficient) set of portfolios follows the equation

— Hp —Tf
My =Ty + = 0 (5)

which is simply straight line in (/Lp, op) with intercept r¢ and slope %ﬂ The slope
of the combination line between T-bills and a risky asset is called the Sharpe ratio
or Sharpels slope and it measures the risk premium on the asset per unit of risk (as
measured by the standard deviation of the asset).

The portfolios which are combinations of asset A and T-bills and combinations of

asset B and T-bills using the data in Table 1 with ry = 0.03. is illustrated in Figure
4.
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Notice that expected return-risk trade off of these portfolios is linear. Also, notice
that the portfolios which are combinations of asset A and T-bills have expected
returns uniformly higher than the portfolios consisting of asset B and T-bills. This
occurs because the Sharpels slope for asset A is higher than the slope for asset B:

fla =75 0.175 - 0.03 —0.562, fp —Tf _ 0.055 — 0.03

= 0.217.
oA 0.258 oB 0.115

Hence, portfolios of asset A and T-bills are efficient relative to portfolios of asset B
and T-bills.

1.3.2 Efficient portfolios with two risky assets and a risk-free asset

Now we expand on the previous results by allowing our investor to form portfolios of
assets A, B and T-bills. The efficient set in this case will still be a straight line in
(14,,0p)— space with intercept r;. The slope of the efficient set, the maximum Sharpe
ratio, is such that it is tangent to the efficient set constructed just using the two risky
assets A and B. Figure 5 illustrates why this is so.
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If we invest in only in asset B and T-bills then the Sharpe ratio is 4 = 0.217
and the CAL intersects the parabola at point B. This is clearly not the officient, set
of portfolios. For example, we could do uniformly better if we instead invest only
in asset A and T-bills. This gives us a Sharpe ratio of ”A;T—:‘Tf = 0.562 and the new
CAL intersects the parabola at point A. However, we could do better still if we invest
in T-bills and some combination of assets A and B. Geometrically, it is easy to see
that the best we can do is obtained for the combination of assets A and B such that
the CAL is just tangent to the parabola. This point is marked 7" on the graph and
represents the tangency portfolio of assets A and B.

We can determine the proportions of each asset in the tangency portfolio by &nding
the values of x4 and zp that maximize the Sharpe ratio of a portfolio that is on the
envelope of the parabola. Formally, we solve

[ —r
max 27
TAXB Up

TAlg +ITBUB

2 2
= 2%0% + 250% + 22470 45

s.t.

=

Q
Rk

= Tat+TB

After various substitutions, the above problem can be reduced to

- Talpg—1) + (1 —24) (11 —14)
4" (2402 + (1 — 24)20% + 224(1 — 24)oa5)"?

9



This is a straightforward, albeit very tedious, calculus problem and the solution can
be shown to be
(ha—rp)ob — (g — 7)o aB T 1 T
3 5 , xp=1—1xy4.
o —7p)op + (g —1p)oh — (kg — 75+ pip — Tf)0 4B
For the example data using 7y = 0.03, we get 2y = 0.542 and x5 = 0.458. The
expected return on the tangency portfolio is

=

[y = Thpa+Tpip
= (0.542)(0.175) + (0.458)(0.055) = 0.110,

the variance of the tangency portfolio is
2 2
o3 = (mﬁ) o+ (mﬁ) 0%+ 20 rho A
= (0.542)%(0.067) + (0.458)%(0.013) + 2(0.542)(0.458) = 0.015,

and the standard deviation of the tangency portfolio is

or = /0% =+10.015 = 0.124.

The efficient portfolios now are combinations of the tangency portfolio and the
T-bill. This important result is known as the mutual fund separation theorem. The
tangency portfolio can be considered as a mutual fund of the two risky assets, where
the shares of the two assets in the mutual fund are determined by the tangency
portfolio weights, and the T-bill can be considered as a mutual fund of risk free
assets. The expected return-risk trade-off of these portfolios is given by the line
connecting the risk-free rate to the tangency point on the efficient frontier of risky
asset only portfolios. Which combination of the tangency portfolio and the T-bill
an investor will choose depends on the investor(s risk preferences. If the investor is
very risk averse, then she will choose a combination with very little weight in the
tangency portfolio and a lot of weight in the T-bill. This will produce a portfolio
with an expected return close to the risk free rate and a variance that is close to zero.

For example, a highly risk averse investor may choose to put 10% of her wealth in
the tangency portfolio and 90% in the T-bill. Then she will hold (10%) x (54.2%) =
5.42% of her wealth in asset A, (10%) x (45.8%) = 4.58% of her wealth in asset B
and 90% of her wealth in the T-bill. The expected return on this portfolio is

py = 715+ 0.10(up —7y)
— 0.03+0.10(0.110 — 0.03)

= 0.038.
and the standard deviation is
op = 0.1007
= 0.10(0.124)
0.012.

10



A very risk tolerant investor may actually borrow at the risk free rate and use these
funds to leverage her investment in the tangency portfolio. For example, suppose the
risk tolerant investor borrows 10% of her wealth at the risk free rate and uses the
proceed to purchase 110% of her wealth in the tangency portfolio. Then she would
hold (110%) x (54.2%) = 59.62% of her wealth in asset A, (110%) x (45.8%) = 50.38%
in asset B and she would owe 10% of her wealth to her lender. The expected return
and standard deviation on this portfolio is

p, = 0.03+1.1(0.110 — 0.03) = 0.118
o, = 1.1(0.124) = 0.136.

2 Efficient Portfolios and Value-at-Risk

As we have seen, efficient portfolios are those portfolios that have the highest expected
return for a given level of risk as measured by portfolio standard deviation. For
portfolios with expected returns above the T-bill rate, efficient portfolios can also be
characterized as those portfolios that have minimum risk (as measured by portfolio
standard deviation) for a given target expected return.

11



Efficient Portfolios
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Figure 5

To illustrate, consider &gure 5 which shows the portfolio frontier for two risky
assets and the efficient frontier for two risky assets plus a risk-free asset. Suppose
an investor initially holds all of his wealth in asset A. The expected return on this
portfolio is p1z = 0.055 and the standard deviation (risk) is o = 0.115. An efficient
portfolio (combinations of the tangency portfolio and T-bills) that has the same
standard deviation (risk) as asset B is given by the portfolio on the efficient frontier
that is directly above og = 0.115. To &nd the shares in the tangency portfolio and
T-bills in this portfolio recall from (xx) that the standard deviation of a portfolio with
xr invested in the tangency portfolio and 1 — z7 invested in T-bills is o, = zror.
Since we want to &nd the efficient portfolio with o, = op = 0.115, we solve

op 0.115
=—=——=091 =1—27 = 0.083.
xr o 0124 0.917, z; xp = 0.083
That is, if we invest 91.7% of our wealth in the tangency portfolio and 8.3% in T-bills
we will have a portfolio with the same standard deviation as asset B. Since this is an
efficient portfolio, the expected return should be higher than the expected return on
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asset B. Indeed it is since

My = vy +or(pr —ry)
0.03 4+ 0.917(0.110 — 0.03)
= 0.103

Notice that by diversifying our holding into assets A, B and T-bills we can obtain a
portfolio with the same risk as asset B but with almost twice the expected return!

Next, consider &nding an efficient portfolio that has the same expected return
as asset B. Visually, this involves &nding the combination of the tangency portfo-
lio and T-bills that corresponds with the intersection of a horizontal line with in-
tercept pp = 0.055 and the line representing efficient combinations of T-bills and
the tangency portfolio. To &nd the shares in the tangency portfolio and T-bills in
this portfolio recall from (xx) that the expected return of a portfolio with x7 in-
vested in the tangency portfolio and 1 — x7 invested in T-bills has expected return
equal to p, = 7 + xr(py — 75). Since we want to &nd the efficient portfolio with
t, = i = 0.055 we use the relation

pp — 15 = Tr(py — 7F)
and solve for zp and x5y =1 — zp

j,—7;  0.055—0.03
_ - = 0.313,2; = 1 — 27 = 0.687.
L —r;  0.110 — 0.03 b -

That is, if we invest 31.3% of wealth in the tangency portfolio and 68.7% of our
wealth in T-bills we have a portfolio with the same expected return as asset B. Since
this is an efficient portfolio, the standard deviation (risk) of this portfolio should be
lower than the standard deviation on asset B. Indeed it is since

Op = X70T
0.313(0.124)
= 0.039.

Notice how large the risk reduction is by forming an efficient portfolio. The standard
deviation on the efficient portfolio is almost three times smaller than the standard
deviation of asset B!

The above example illustrates two ways to interpret the benedts from forming
efficient portfolios. Starting from some benchmark portfolio, we can &k standard de-
viation (risk) at the value for the benchmark and then determine the gain in expected
return from forming a diversided portfolio?. The gain in expected return has concrete

2The gain in expected return by investing in an efficient portfolio abstracts from the costs asso-
ciated with selling the benchmark portfolio and buying the efficient portfolio.
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meaning. Alternatively, we can & expected return at the value for the benchmark
and then determine the reduction in standard deviation (risk) from forming a diver-
sided portfolio. The meaning to an investor of the reduction in standard deviation
is not as clear as the meaning to an investor of the increase in expected return. It
would be helpful if the risk reduction bene&t can be translated into a number that is
more interpretable than the standard deviation. The concept of Value-at-Risk (VaR)
provides such a translation.

Recall, the VaR of an investment is the expected loss in investment value over a
given horizon with a stated probability. For example, consider an investor who invests
Wy = $100, 000 in asset B over the next year. Assume that Rp represents the annual
(continuously compounded) return on asset B and that Rg ~N(0.055, (0.114)%). The
5% annual VaR of this investment is the loss that would occur if return on asset B is
equal to the 5% left tail quantile of the normal distribution of Rg. The 5% quantile,
Qo.05 is determined by solving

PI'(RB S Q0.05) = 0.05.

Using the inverse cdf for a normal random variable with mean 0.055 and standard
deviation 0.114 it can be shown that g5 = —0.133.That is, with 5% probability the
return on asset B will be —13.3% or less. If Rg = —0.133 then the loss in portfolio
value?, which is the 5% VaR, is

loss in portfolio value = VaR = [Wy- (e —1)| = |$100,000(e”*1** —1)| = $12, 413.

To reiterate, if the investor hold $100,000 in asset B over the next year then the 5%
VaR on the portfolio is $12, 413. This is the loss that would occur with 5% probability.

Now suppose the investor chooses to hold an efficient portfolio with the same
expected return as asset B. This portfolio consists of 31.3% in the tangency portfolio
and 68.7% in T-bills and has a standard deviation equal to 0.039. Let R, denote the
annual return on this portfolio and assume that R, “N(0.055, 0.039). Using the inverse
cdf for this normal distribution, the 5% quantile can be shown to be gg5 = —0.0009.
That is, with 5% probability the return on the efficient portfolio will be —0.9% or
less. This is considerably smaller than the 5% quantile of the distribution of asset B.
If R, = —0.009 the loss in portfolio value (5% VaR) is

loss in portfolio value = VaR = [Wy - (e% — 1)| = [$100,000(e~ %% — 1)| = $892.

Notice that the 5% VaR for the efficient portfolio is almost &fteen times smaller than
the 5% VaR of the investment in asset B. Since VaR translates risk into a dollar &gure
it is more interpretable than standard deviation.

3To compute the VaR we need to convert the continuous compounded return (quantile) to a
simple return (quantile). Recall, if R is a continuously compounded return and R; is a somple
return then R =1In(1 + R;) and R; = eff — 1.
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3 Further Reading

The classic text on portfolio optimization is Markowitz (1954). Good intermediate
level treatments are given in Benninga (2000), Bodie, Kane and Marcus (1999) and
Elton and Gruber (1995). An interesting recent treatment with an emphasis on
statistical properties is Michaud (1998). Many practical results can be found in the
Financial Analysts Journal and the Journal of Portfolio Management. An excellent
overview of value at risk is given in Jorian (1997).

4 Appendix Review of Optimization and Con-
strained Optimization

Consider the function of a single variable
y=f(z) =2

which is illustrated in Figure xxx. Clearly the minimum of this function occurs at
the point x = 0. Using calculus, we &nd the minimum by solving

: 2
min y = x°.
un -y

The &rst order (necessary) condition for a minimum is

and solving for = gives x = 0. The second order condition for a minimum is
2

0< ;l—xf(a:)

and this condition is clearly satis&ed for f(z) = z°.

Next, consider the function of two variables
y=flz,2) =2*+2° (6)

which is illustrated in Figure xxx.
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y =x"2 +zA2

Figure 6

This function looks like a salad bowl whose bottom is at z = 0 and 2z = 0. To &nd

the minimum of (6), we solve
ng}izn y=2°+ 2°

and the &rst order necessary conditions are

Oy

0=%: =%
and 5
Yy

= — = 2z.

0 9, z

Solving these two equations gives z = 0 and z = 0.
Now suppose we want to minimize (6) subject to the linear constraint

r+z=1 (7)
The minimization problem is now a constrained minimization
miny = 2°+ 2° subject to (s.t.)

T,z

r+z = 1
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and is illustrated in Figure xxx. Given the constraint = 4+ z = 1, the function (6) is
no longer minimized at the point (z,z) = (0,0) because this point does not satisfy
x 4+ z = 1. The One simple way to solve this problem is to substitute the restriction
(7) into the function (6) and reduce the problem to a minimization over one variable.
To illustrate, use the restriction (7) to solve for z as

z=1-—u. (8)
Now substitute (7) into (6) giving

y=f(z,2) = f(z,1 —2) =2+ (1 —2)% 9)

The function (9) satis&es the restriction (7) by construction. The constrained mini-
mization problem now becomes

miny = 2 + (1 — z)*.
T
The &rst order conditions for a minimum are

0:i(a:2+(1—m)2):2x—2(1—m):433—2
dx

and solving for = gives z = 1/2. To solve for z, use (8) to give z =1 — (1/2) = 1/2.
Hence, the solution to the constrained minimization problem is (z, z) = (1/2,1/2).

Another way to solve the constrained minimization is to use the method of La-
grange multipliers. This method augments the function to be minimized with a linear
function of the constraint in homogeneous form. The constraint (7) in homogenous
form is

r+2z—1=0

The augmented function to be minimized is called the Lagrangian and is given by
L(x,2,\) =2+ 2 = Az + 2 — 1).

The coefficient on the constraint in homogeneous form, A, is called the Lagrange
multiplier. It measures the cost, or shadow price, of imposing the constraint relative
to the unconstrained problem. The constrained minimization problem to be solved
is now

min L(z,z,A) =2° +2° + Az + 2 — 1).

T,2,\

The &rst order conditions for a minimum are

0 = HEzd o0
oz
0 = L@z d ooy
0z
_ OL(z,2,\)
0 = B =z4+2z—-1
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The &rst order conditions give three linear equations in three unknowns. Notice that
the &rst order condition with respect to A\ imposes the constraint. The &rst two
conditions give

20 =2z = —\

or
Tr = Z.

Substituting « = z into the third condition gives
22—-1=0

or
z=1/2.

The &nal solution is (z,y,\) = (1/2,1/2,—1).

The Lagrange multiplier, A\, measures the marginal cost, in terms of the value of
the objective function, of imposing the constraint. Here, A = —1 which indicates
that imposing the constraint x + z = 1 reduces the objective function. To understand
the roll of the Lagrange multiplier better, consider imposing the constraint x + z =
0. Notice that the unconstrained minimum achieved at x = 0,z = 0 satis&es this
constraint. Hence, imposing z + 2z = 0 does not cost anything and so the Lagrange
multiplier associated with this constraint should be zero. To con&rm this, the we
solve the problem

min L(z,2,A) = 2° + 2> + Az + 2 — 0).

T,2,A

The &rst order conditions for a minimum are

0 = L@aN _, )
ox
0 = L@aN _,
0z
_ OL(z,z,\)
0 = B =xr+=z
The &rst two conditions give
20 =2z = —\
or
x =z

Substituting x = z into the third condition gives
22 =10

or

z=0.

The &nal solution is (z,y,A) = (0,0,0). Notice that the Lagrange multiplier, A, is
equal to zero in this case.
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5 Problems

Exercise 1 Consider the problem of investing in two risky assets A and B and a
risk-free asset (T-bill). The optimization problem to énd the tangency portfolio may
be reduced to

- Ta(pa —75) + (1 —2) (U5 —15) :

A (2204 4+ (1 — 24)20% + 224(1 — 24)oap) "’

where x 4 is the share of wealth in asset A in the tangency portfolio and xg =1 — x4
is the share of wealth in asset B in the tangency portfolio. Using simple calculus,
show that

(g —15)0B — (g — T§)0AB
(g —7)0B+ (g —15)0% — (o — 15+ g — T§)0aB

TpA =

References

[1] Benninga, S. (2000), Financial Modeling, Second Edition. Cambridge, MA: MIT
Press.

[2] Bodie, Kane and Marcus (199x), Investments, xxx Edition.

[3] Elton, E. and G. Gruber (1995). Modern Portfolio Theory and Investment Anal-
ysis, Fifth Edition. New York: Wiley.

[4] Jorian, P. (1997). Value at Risk. New York: McGraw-Hill.

[5] Markowitz, H. (1987). Mean-Variance Analysis in Portfolio Choice and Capital
Markets. Cambridge, MA: Basil Blackwell.

[6] Markowitz, H. (1991). Portfolio Selection: Efficient Diversiécation of Invest-
ments. New York: Wiley, 1959; 2nd ed., Cambridge, MA: Basil Blackwell.

[7] Michaud, R.O. (1998). Efficient Asset Management: A Practical Guide to
Stock Portfolio Optimization and Asset Allocation. Boston, MA:Harvard Business
School Press.

19



Introduction to Financial Econometrics
Chapter 5 The Markowitz Algorithm

Eric Zivot
Department of Economics
University of Washington

January 26, 2000
This version: February 19, 2000

1 Efficient Portfolios with Three Risky Assets: The
Markowitz Algorithm

Consider the portfolio problem with three risky assets denoted A, B and C. Let R;
(i = A, B, C) denote the return on asset i and assume that

Ry ~ iid. N(p;,o?)
CO”U(RZ',RJ') = 0y

For illustrative purposes, Table 1 provides example data on means, variances and
covariances.

Table 1
Stock g, o  Pari (i) oy
A 0.229 0.924 (AB) 0.063
B 0138 0862 (AC) -0.582
B,C)

C 0.052 0.528 (B, -0.359

Let x; denote the share of wealth invested in asset 4 and assume that all wealth
is invested in the three assets so that x4 + x5 + x¢c = 1. The portfolio return, R, is
the random variable

Ry, =xaRA+2plRp +2cRe.

L,

The subscript “x” indicates that the portfolio is constructed using the x-weights
x4, rp and xo. The expected return on the portfolio is

oo = E[Rye] = wapy + 2ppip + Tope (1)
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and the variance of the portfolio return is

2 2 2 2 2 2 2
Opy = var(Ryy) = 2303 + 2505+ 3505+ 20430 A+ 204200 a0+ 22200 po. (2)

Notice that variance of the portfolio return depends on three variance terms and six
covariance terms. Hence, with three assets there are twice as many covariance terms
than variance terms contributing to portfolio variance. For example, let z; = 1/3.

Then

e = (3)(0220) 1 ()(0.138) + (3)(0.529)
= 0.140
Ory = (%)2(0.924) + (%)(0.862) + (%)(0.528)
+2(%)(%)(0.063) + 2(%)(%)(—0.582) + 2(%)(%)(—0.359)
= 0.062

The investment opportunity set is the set of portfolio expected return and portfolio
standard deviation values for all possible portfolios such that z4 +xg+x¢c = 1. Asin
the two risky asset case, this set can be described in a graph with p,, on the vertical
axis and 0, on the horizontal axis. Unlike the two asset case, however, the investment
opportunity set cannot be simply described by one side of an hyperbola. The general
shape of the set is complicated and depends crucially on the covariance terms o;;. As
we shall see, we do not have to fully characterize the investment opportunity set. If
we assume that investors only care about maximizing portfolio expected return and
minimizing portfolio variance in deciding their asset allocation then we can simplify
the portfolio problem by only concentrating on the combination of efficient portfolios
between assets A, B and C. This is the framework originally developed by Harry
Markowitz, the father of portfolio theory and winner of the Nobel Prize in economics.

We assume that the investor wishes to find portfolios that have the best expected
return-risk trade-off. In other words, we assume that the investor seeks to find port-
folios that maximize portfolio expected return for a given level of risk as measured
by portfolio variance. Let 0210 denote a target level of risk. Then the investor seeks
to solve the constrained maximization problem

max [, = Tafty+Tppig+ Tepe subject to (s.t.) (3)
TA,TBTC
2 2
Ip0 = pa

2 2 2 2 2 9
A0y + 2505 + 2506 + 20400 AR + 204000 A0 + 20Tc0BC

1l = za+zp+2c

This problem is illustrated in Figure xxx. The portfolio with weights (24,25, z¢)
that satisfies the above maximization problem is, by definition, an efficient portfolio.
The efficient portfolio frontier is graph of p,, versus o, for the set of efficient portfolios
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generated by solving (3) for all possible target risk levels 0?)’0.1 Just as in the two asset
case, the efficient frontier in resembles one side of an hyperbola.

The investor’s problem of maximizing portfolio expected return subject to a target
level of risk has an equivalent dual representation in which the investor minimizes the
risk of the portfolio (as measured by portfolio variance) subject to a target expected
return level. Let 1, denote a target expected return level. Then the dual problem
is the constrained minimization problem

: 2 _ 2 2 2 2 2 2
G N Oy = Tp04 + TR0+ 0 (4)
+2T 470 AR + 22 4Tc0 Ac + 22T C0BC ST
Hpo = Tapia+ Tplp+ Tokc

1l = za+ozp+20

To find efficient portfolios of risky assets in practice, the dual problem (4) is most
often solved. This is partially due to computational conveniences and partly due to
investors being more willing to specify target expected returns rather than target risk
levels. To solve the constrained minimization problem (4), we form the Lagrangian

2 2 2 2 2 9
L(xa,xB,Tc, A\, Ay) = X505 + 2505+ TH04 + 20420 A + 20 4T00 a0 + 22Zc0 BC

+A1(wapq + 2pg + Tope — fyo) T Ae(ra + 25 + 20 — 1),

The first order conditions for a minimum are

oL
0 = Oz a = 2&7140'124 + 220 AR + 2200 aB + Aty + Ao (5)
A
oL 9
0 = == =250+ 204045+ 25c0pc + Mifip + My
A
oL 9
0 = - = 220004, + 224040 + 22500 + Mo + Ao
A
oL
0 = ——=mapy+xlp+ Tcpe — Hp.0
oM
0 oL Lan 1
) —_— = X xr -
W A B c

These are five linear equations in five unknowns and a unique solution can be found
as long as there are no linear dependencies among the equations. The solution for
T4, 7rp and z¢ gives an efficient portfolio with expected return p,,, = p,, 4, variance
Jf)’m given by (2) and standard deviation 0,,. The pair (/prm, 0,.) plots as a single
point on the efficient frontier of portfolios of three risky assets.

For example, using the data in Table 1 and a target expected return of y,, o = 0.01
the solution for the efficient portfolio can be shown to be x4 = —0.398 25 = 0.331

I'Not all target risk levels are feasible. The feasible risk levels are those that are greater than or
equal to the global minimum variance portfolio.



and zc = 1.067. For future reference, call this portfolio “asset X”. Notice that asset A
is sold short in this portfolio. The expected return, variance and standard deviation
of this portfolio are

oo = Hpo=(—0.398)(0.229) + (0.331)(0.138) + (1.067)(0.528)

= 0.05
o, = (—0.398)2(0.924) + (0.331)(0.862) + (1.067)(0.528)
+2(—0.398)(0.331)(0.063) + 2(—0.398)(1.067)(—0.582) + 2(0.331)(1.067)(—0.359)
— 1.066

0y = V1.066=1.033.

The pair (1,9, 0p.e) = (0.01,1.033) is illustrated in figure xxx.

To get another point on the efficient frontier the minimization problem (4) needs
to be solved using another target expected return value f1,, | # g, o. That is, we need
to find a portfolio with weights 14,75 and y- that solves

- 2 9 9 9 9 | 9 9
min 0y, = Ya04 T YpOp T Yoo+ 2YaYpTas (6)
yAYBYo ’

+2YaYcOac + 2YgYcope S.t.
Hp1 = Yala +YBip + Yolc
1 = yatys+yec

The solution for y4,yp and yc gives an efficient portfolio with expected return p,, , =
15 Variance Uiy given by (??) and standard deviation ,,. The pair (up’y,op,y)
plots as a single point different from (, ,,0,,,) on the efficient frontier of portfolios.

For example, using the data in Table 1 and a target expected return of y,,, = 0.25
the solution for the efficient portfolio can be shown to be x4 = 1.097, 25 = 0.045 and
xe = —0.142. For future reference, call this portfolio “asset Y”. Notice that asset C
is sold short in this portfolio. The expected return, variance and standard deviation
of this portfolio are

fyy = g = (1.097)(0.229) + (0.045)(0.138) + (—0.142)(0.528)

= 025
o2, = (1.097)%(0.924) + (0.045)(0.862) + (—0.142)(0.528)
+2(1.097)(0.045)(0.063) 4 2(1.097)(—0.142) (—0.582) + 2(0.045)(—0.142)(—0.359)
= 1.316
0,y = V1316 =1.147.

The pair (p1,1,0p,) = (0.25,1.147) is illustrated in figure xxx.

To create the entire eflicient frontier we could solve the minimization problem
(4) for all possible target expected returns within some range. This brute force
approach, while illustrative, is not very practical computationally. Fortunately, there
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is an easier way to compute the entire efficient frontier that only requires solving
(4) for two target returns. As we shall see, given any two portfolios on the efficient
frontier another portfolio on the efficient frontier is a simple convex combination of
these two portfolios. Hence, the results for the construction of efficient portfolios with
two risky assets can be used to compute efficient portfolios with an arbitrary number
of risky assets.

To illustrate this result, consider the two efficient portfolios that are the solutions
of (4) and (6). Now consider forming a new portfolio that is a convex combination
of these two portfolios. Let z, denote the share of wealth invested in asset X (first
efficient portfolio) and let z, denote the share of wealth invested in asset Y (second
efficient portfolio) and impose the constraint z, + 2, = 1. The expected return and
variance of this portfolio is

Mp,z = Zﬂ?y’p,m + Zylj“p,y (7)
2 _ 2 2 2 .2
O, = 2505, 2,00, + 222,04 (8)

where
Oy = COU<Rp,w7 Ryy)

and R, , denotes the return on asset X and I?,,, denotes the return on asset Y. Once
we compute 0,, then we can easily trace out the efficient frontier.
To compute 04, we first note that
Rp’m = QTARA + ajBRB + ﬂUcRc
and
Ry, =yaBRa+yplRp+yche.

Then, by the additivity of covariances, we have

Opy = cov(xaRa+xpRp+ xcRo,yaRa+ ypRp + ycRe) 9)
= cov(xaRa,ysR4) + cov(xaR 4, ygRp) + cov(xaR A, yc Ro)
+cov(zpRp,yaRa) + cov(zpRp, ysRp) + cov(zpRp, yc Re)
+cov(zcRe,yaRa) + cov(xcRe,ypRE) + cov(zc Re, ye Re)
= TAYAOY + TBYBOH + LcYcT e
+(xayp + TBYA)oap + (TaYc + Tcya)oac + (XBYc + Toyp)o ac.
To illustrate these results, consider the example data with the previously com-
puted efficient portfolios denoted asset X and asset Y. Consider forming a portfolio of

these two portfolios with the weights 2, = 0.5 and 2z, = 0.5. Then by straightforward
calculations we have

Opy = —1.163
tp. = (0.5)(0.01)+ (0.5)(0.25) = 0.130
oo, = (0.5)*(1.066) + (0.5)*(1.316) + 2(0.5)(0.5)(—1.163) = 0.014

0., = 0.014=0.118



Portfolio Z is an efficient portfolio and the pair (u,,,0,.) = (0.130,0.118) lies on
the efficient frontier. This point is illustrated in figure xxx. To trace out the entire
frontier we simply vary the weights z, and z, over some range, say (z,,2,) = (0,1),
(0.1,0.9) ,..., (1,0),compute (7) and (8) and plot p,, , against 0,,. This is illustrated
in figure xxx.

1.1 Finding the Global Minimum Variance Portfolio

The global minimum variance portfolio m = (ma, mp, mc)’ for the three asset case
solves the constrained minimization problem

. 2 2 9 2 9 2 9
min 1%} = m5y0 Muo Mo 10
ma,mg,me P AY A + BY B + cYC ( )
+2mampo g + 2mamcoac + 2mpmecopge  S.T.
1 = ma+mp+me.

The Lagrangian for this problem is

L(ma,mp,me,\) = miai + mQBUQB + m2002c 4 2mAampo ap + 2mAameC ac + 2mpmeope
+A(ma +mp +meg — 1),

and the first order conditions for a minimum are

oL

0 = = 2ma0% + 2mpoap + 2mcoap + A (11)
8mA
oL 9

0 = =2mpoy + 2muoap + 2meope + A
8mA
oL 9

0 = = 2me0os + 2macac + 2mpope + A
8mA

0 oL + + 1

) —_— =m m m -

By A B C

This gives four linear equations in four unknowns which can be solved to find the
global minimum variance portfolio.

Using the data in Table 1, it can be shown that the global minimum variance
portfolio is my4 = 0.310,mp = 0.196 and mc = 0.495. The expected return, variance
and standard deviation of this portfolio are

fom = = (0.310)(0.229) + (0.196)(0.138) + (0.495)(0.528)

= 0.124
a2, = (0.310)2(0.924) + (0.196)(0.862) + (0.495)(0.528)
+2(0.310)(0.196)(0.063) + 2(0.310)(0.495)(—0.582) + 2(0.196)(0.495)(—0.359)
= 0.011

Opm = V0.011 =0.103.

The pair (ft,,,,, 0p,m) = (0.011,0.103) is illustrated in figure xxx.
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1.2 Adding a Risk-Free Asset

Consider adding a risk-free asset (T-bill) with known return r; to the investment
problem. From our analysis of portfolios of two risky assets and a risk-free asset we
know from the mutual fund separation theorem that the efficient set of portfolios are
combinations of the risk-free asset and the so-called tangency portfolio. The tangency
portfolio is the portfolio of risky assets that has the largest Sharpe’s slope. Let t4,t5
and to denote the proportions of assets A, B and C' in the tangency portfolio. To
find the tangency portfolio?, we solve

Mot —Tf
max ——

tastpsto Opt

where
Ppe = lapia+lppp+lopic,
o? 1404 F 1505 +120% 4+ 2 Al poap + 2 st o0 ac + 2 pleope.

p,t

Using the data from Table 1 and assuming a risk-free rate of ry = 0.12, it can be
shown that the tangency portfolio is t4 = 0.532,tp = 0.153 and tc = 0.315. The
expected return, variance and standard deviation of this portfolio are

e = (0.532)(0.229) 4 (0.153)(0.138) + (0.315)(0.528)

= 0.159
oo, = (0.532)(0.924) + (0.153)(0.862) 4 (0.315)(0.528)
+2(0.532)(0.153)(0.063) + 2(0.532)(0.315)(—0.582) + 2(0.153)(0.315)(—0.359)
= 0.115

0,0 = V0.115 = 0.339.

The pair (p1,,;, 0p,) = (0.115,0.339) is illustrated in figure xxx.

The tangency portfolio can also be found analytically using the formula for the
tangency portfolio in the case of two risky assets. In order to use this formula, how-
ever, the two risky assets must be efficient portfolios. To illustrate, consider the two
efficient portfolios, portfolios X and Y, that solve (4) and (6). These portfolios have
expected returns and variances f,, ,, up’y,ogym and ngy. In addition, the covariance
between the returns on these two portfolios is 0. Let ¢, denote the share of wealth
in portfolio X and ¢, = 1 — ¢, denote the share of wealth in portfolio Y. Then, using
the analytic formula for the two risky asset case, we have

(/J“p,:c - Tf>0_127,y - (/J“p,y - Tf)o_my

(Mp,:c - Tf>0_127,y + (/J“p,y - Tf)o_;z%,sc - (/J“p,:c - Ty + /J“p,y - Tf>0_$y

t, = by =1—t,. (12)

2This is a very tedious calculus problem. However, it is easily solved numerically using the Solver

in EXCEL.



The expected return and variance of this portfolio are

Ppt = laflpy T lybp,y,

2 _ 2 2 2 2
Opr = la0,, +1,0,,+ 25ty 0 gy

To illustrate this result using the data in Table 1, recall that u,, = 0.01,p,, =
0.25,0?)@ = 1.066, U?)’y = 1.316 and 0,, = —1.163. Substituting these values into
(12) gives t, = 0.378 and t, = 0.622. The expected return, variance and standard
deviation of the tangency portfolio are

i, = (0.378)(0.01) 4 (0.622)(0.25) = 0.159,

o2, = (0.378)2(1.066) + (0.622)(1.316) + 2(0.378)(0.622)(—1.163) = 0.115,
0pe = 0.103,

which are the same as those found above. The weights in assets A;B and C in the
tangency portfolio are

ta = loma+tya = (0.378)(—0.398) + (0.622)(1.097) = 0.532
ly = texp+tyys = (0.378)(0.331) + (0.622)(0.045) = 0.153,
te = toxe + tyye = (0.378)(1.067) + (0.622)(—0.142) = 0.315,

which are identical to those found above.

2 Portfolio math with matrix algebra

When working with large portfolios, the simple algebra of representing portfolio means
and variances becomes cumbersome. The use of matrix (linear) algebra can greatly
simplify many of the computations. Matrix algebra formulations are also very useful
when it comes time to do actual computations on the computer. Popular spreadsheet
programs like Excel and Lotus 123, which are the workhorse programs of many fi-
nancial houses, can handle basic matrix calculations which also make it worthwhile
to become familiar with matrix techniques®.

Consider again the simple three asset portfolio problem. First, we define the
following 3 x 1 column vectors containing the returns and portfolio weights

Ry T4
R=| Rg |, x=| x5
Re T

In matrix notation we can lump multiple returns in a single vector which we denote
by R. Since each of the elements in R is a random variable we call R a random vector.

3The matrix functions available in Excel and Lotus 123 are very limited. Serious analysis should
be done using matrix programming languages like Splus, Matlab or GAUSS.
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We can also talk about the probability distribution of the random vector R. This is
simply the joint distribution of the elements of R. In general, the distribution of R
is complicated but if we assume that all returns are jointly normally distributed then
all we need to worry about is the means, variances and covariances of the returns. We
can easily summarize these values using matrix notation as follows. First, we define
the 3 x 1 vector of portfolio expected values as

Ra B[R] [ha
ER|=E|| Rp || =] LIRs] | =] up | =1
Re E[R¢] %

and the 3 X 3 covariance matrix of returns as

var(Ra) cov(Ra, Rg) cov(Ra, Re)

cov(R) = cov(Rp, Ry var(Rpg cov(Rp, Re
(R) (R, Ra) (Bp) (R, o)

cov(Rg, Ry) cov(Re,Rg)  wvar(Re)

2
04 0AB OAc
2
= OAB O_B JBC :2

2
0Ac OBc O¢

Notice that the covariance matrix is symmetric (elements off the diagonal are equal so
that 3 = 3| where X denotes the transpose of 3) since cov(R 4, Rg) = cov(Rp, Ra),
cov(Ra,Rc) = cov(Re, Ra) and cov(Rp, Re) = cov(Re, Rg). Using the example

data in Table 1 we have

[ 0.229
p o= | ps | =] 0138 |,

L 0.052

0.924 0.063 —0.582
> = | 0063 0862 —0.359

—0.582 —0.359 0.528
The return on the portfolio using vector notation is

Ry
Rp,m :X/R: (,QTA,QTB,Qjc) . RB ZQTARA‘I—QTBRB—I—Qchc.
Re

Similarly, the expected return on the portfolio is

By
ppo = EXR] =xXER] =x'p = (z4,2p,30) - | pp | =zaps +zppps + zopc.
2%



Next, the variance of the portfolio is

2

04 0AB UAC LA

o2 = war(xXR) =x'Tx = (v4,7p,720)- | © oy o x

pa = = (Z4,ZB,Zc AB Op OpC B
2

0Aac Opc Og¢ Lo

= a:ioi + a:QBJQB + xQCUQC 4 204050 AR + 20 AT T A + 20200 BO
Finally, the condition that the portfolio weights sum to one can be expressed as
1

X'l =(z4,2g,2¢) | 1 |=za+25+20=1
1

where 1 is a 3 X 1 vector with each element equal to 1.
Consider another portfolio with weights y = (ya,¥5,yc). The return on this
portfolio is
Ryy = YR =yaRs +ypRp +yclic.
In the following we will need to compute the covariance between the return on port-
folio x and the return on portfolio y, cov(R, ., Ry,). It can be shown that

Ogy = cov(Rya, Rpy) = cov(x’R,y'R)

2
04 0OAB 0OAcC YA
_ /2 _ 2
= X Y—(JUA,JTB,QTC)' 0AB Op 0OBCc YB
2
0Ac OpBc O¢ Yo

9 9 9
= XAYAO, + TRYBOL + ToYcOE

Hxays + 2BYA)TAB + (TaYc + Toya)Tac + (Tpyc + Toyp)oac-

2.1 Finding Efficient Portfolios

The constrained minimization problem (4) to find an efficient portfolio can be re-
expressed using matrix algebra as

min 2. = xX¥x s.t.
X b,z
_ 7
Ppo = X[
1 = ¥1

where 11, is a target expected return. Matrix algebra can also be used to give an
analytic solution to the first order conditions from the minimization problem (4).
Since the first order conditions (5) consist of five linear equations in five unknowns
(xA,Zp,Zc, A, Ay) We can represent the system in matrix notation as

20% 204 2040 py 1 TA 0
20 4R 2023 200 pp 1 Tp 0
2040 20pc 2020 po 1 To | = 0

Ha KB Hc 0 0 A1 Hp,0

1 1 1 0 0 Ao 1

10



or

Azm: b()

where
20% 204 2040 py 1 TA 0
204n 2023 2080 pp 1 B 0
A= 204c 208c 20% po 1|, 2.=| zc and by = 0
Ha KB pe 00 M Hp,0
1 1 1 0 0 A 1
The solution for z, is then
Z,— Ailbo.
The first three elements of z, are the portfolio weights x = (z4,%p,2¢)" for the

efficient portfolio with expected return p,,, = p,, o and standard deviation oy .
To illustrate consider the data in Table 1 and the target expected return p,, =

0.01. Then
1.848 0.126
0.126 1.724
A = —1.164 —-0.718
0.229 0.138

1 1
0.095 —-0.196
—0.196 0.404
Al = 0.101 —0.208
6.220 —1.192
—0.460 0.343
and

—0.398 0.095
0.331 —0.196
Zy = 1.067 = 0.101
18.58 6.229
—2.319 —0.460

—1.164
—0.718
1.056
0.057
1

0.101
—0.208
0.107
—5.037
1.117

—0.196
0.404
—0.208
—1.192
0.343

0.229

0.138

0.052

0.052
0

6.229

—1.192
—5.037
—163.5

20.22

0.101

—0.208

0.107

—5.037

1.117

1

1

L1,

0

0
—0.460 0
0.343 0
1117 |, be=| 0
20.22 0.01
—2.521 1
6.220 —0.460 0
~1.192  0.343 0
~5.037 1.117 0
—163.5 20.22 0.01
20.22 —2.521 1

Hence, the efficient portfolio is x = (—0.398,0.331,1.067)". The expected return on

this portfolio is

/

/'Lp,ﬂ}‘ = X“

= (—0.398,0.331,1.067) -

11

0.229
0.138
0.052

= 0.01



and the variance is
2

0., = XXX
0.924 0.063 —0.582 —0.398
= (—0.398,0.331,1.067) - 0.063 0.862 —0.359 0.331 = 1.066.
—0.582 —0.359 0.528 1.067
To find another efficient portfolio y = (y4,¥yn, yc)' we solve
n%,in oy, = yXy st
Foa = VB
1 = y'1
where p,, | is a target expected return different from 41, 4. The solution has the form
AZy: bl
with
Ya 0
YB 0
VATIES Yo and b1 = 0
)‘1 Hpa
Ao 1

The first three elements of z, are the portfolio weights y = (ya,yn,yc) for the
efficient portfolio with expected return y,,, = p,,; and standard deviation o,,,.
Using the data in table 1 with the target expected return p,,; = 0.25 we have

1.097 0.095 —0.196 0.101 6.229 —0.460 0
0.045 —0.196 0.404 —0.208 —-1.192 0.343 0
z,= | —0.142 | = 0.101 —-0.208 0.107 —=5.037 1.117 0
20.66 6.229 —1.192 -5.037 —163.5 20.22 0.25
2.533 —0.460 0.343 1.117  20.22 —2.521 1

Hence, the second efficient portfolio is y = (1.097,0.045,—0.142). The expected
return on this portfolio is

/

Hpy = Y I
0.229
= (1.097, 0.045,—0.142) - | 0.138 | =0.25
0.052
and the variance is
U?J’y = yXy
0.924 0.063 —0.582 1.097
= (1.097,0.045,—0.142)- 0.063 0.862 —0.359 0.045 = 1.316.
—0.582 —0.359 0.528 —0.142

12



2.2 Finding the Global Minimum Variance Portfolio

Using matrix notation, the problem (10) may be concisely expressed as

: 2 _ /
min o, = m >m s.t.

= m'l.

The four linear equation describing the first order conditions (11) has the matrix
representation

204 204 204c 1 ma 0
QO_AB 2023 2030 1 mp . 0
QO'AC 2030 20’% 1 mg - 0
1 1 1 0 A 1
or
Cz,=b
where
20% 204 2040 1 ma 0
C = 2O_AB 20_23 20_320 1 , Ly = My and b = 0
20'AC 20’30 20'0 1 mc 0
1 1 1 0 A 1
The solution for z,, is then
z,= C 'b.

The first three elements of z,, are the portfolio weights m = (ma, mp, m¢)’ for the

global minimum variance portfolio with expected returnp,,, = m’'u and variance
o), =mYm.

’ Using the data in Table 1, we have

1.848  0.126 —1.164

1
o - 0.126 1.724 —-0.718 1
—1.164 —-0.718 1.056 1 |~
1 1 1 0
0.333 —0.242 —-0.091 0.310
o= —0.242 0413 —-0.171 0.196
—0.091 —-0.171 0.262 0.495

0.310 0.196  0.495 —0.021

and so
0.333 —0.242 —0.091 0.310 0 0.310
| —0.242 0413 —0.171 0.19 o| [ 019
Zm = _0.001 —0.171 0262  0.495 0 0.495
0.310 0.196 0.495 —0.021 1 —0.021
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Hence, the global minimum variance portfolio is m = (0.310,0.196,0.495)". The
expected return on this portfolio is

/

Pom = M p
0.229

= (0.310,0.196,0.495) | 0.138 | =0.124
0.052

and the variance is

orm = m'Ym
0.924  0.063 —0.582 0.310
= (0.310,0.196,0.495) - 0.063 0.862 —0.359 0.196 | =0.011.

—0.582 —0.359 0.528 0.495

2.3 Computing the Efficient Frontier

As mentioned previously, to compute the efficient frontier or Markowitz bullet one
only needs to find two efficient portfolios. The remaining efficient portfolios can
then be expressed as convex combinations of these two portfolios. The following
proposition describes the process for the three risky asset case using matrix algebra.

Proposition 1 Let x = (za,2p,2¢) and 'y = (ya,ys,yc) be any two efficient
portfolios. That is,x solves

min o, = X¥x sl
/’Lp,O = X/l'l’
1 = x1
and 'y solves
n%,in o, = YZy st
fpi = Y B
1 = y'1

Let o be any constant. Then the portfolio

z = a-x+(l—a)y
azs+ (1 — a)ya
= | azp+(1-a)yp
azrc + (1 — a)ye

14



is an efficient portfolio. Furthermore,

Hp, = Z/l’l’ = Uy + (1 - Oé) *Hpy

2 iy 22 322 _
0,, = z¥z=0a’0,,+(1—a)o,, +2a(l —a)os
where
2 _ /
Opr = XXX,
2 _ !
O_p,y =Y EYJ
Oz = X2y.

To illustrate the practical application of the proposition, we will use the data in
Table 1 and the previously computed efficient portfolios x = (—0.398,0.331,1.067)
and y = (1.097,0.045, —0.142)". Recall, that p,, = 0.01,02@ = 1.066, ,,, = 0.25
and U?)y = 1.316. First, we need to compute the covariance between the return on

portfolio x and the return on portfolio y :

Oy = XXy
0.924 0.063 —0.582 1.097
= (—0.398,0.331,1.067) - 0.063  0.862 —0.359 0.045 = —1.163.
—0.582 —0.359 0.528 —0.142

Next, consider convex combinations of x and y with the constant « ranging from 0
to 1 in increments of 0.1. For example, when « = 0.5 the portfolio z becomes

z = a-x+(l—a)y

—0.398 1.097
= 0.5 0.331 +0.5- 0.045
1.067 —0.142
(0.5)(—0.398) (0.5)(—0.398)
= (0.5)(0.331) + (0.5)(0.331)
(0.5)(1.067) (0.5)(1.067)
0.349 ZA
= 0188 | = | 2B
The expected return and variance of this portfolio is
fp. = Zp
0.229
= (0.349, 0.188,0.463) - [ 0.138 | =0.130,
0.052
0., = 73z

0.924 0.063 —0.582 0.349
= (0.349,0.188,0.463) - 0.063  0.862 —0.359 0.188 | = 0.014.
—0.582 —0.359 0.528 0.463
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Note that p,,, and 0227’ can also be computed as

z

Hp = Uy, + (1 o Oé)lj“p,y
= (0.5)(0.01) + (0.5)(0.25) = 0.13,
_ 22 2 2
o,, = a0, +(1—a)o;, +2a(l—a)o,
= (0.5)*(1.066) + (0.5)*(1.316) + 2(0.5)(0.5)(—1.163) = 0.014.
The graph of p,, against o, for a € (0,1) is exactly the same as that calculated in

section xxx and is illustrated in figure xxx.

2.4 Computing the Tangency Portfolio

The tangency portfolio solves
t'pu—ry
max ————
¢ (tXt)?
Alternatively, we can use (12) with two efficient portfolios x and y that solve (4) and

(6).

3 Efficient Portfolios with N Risky Assets and a
Risk free Asset Using Matrix Algebra

To be completed

4 Estimating the Inputs to the (General Portfolio
Problem

To be completed

4.1 Application: Global asset allocation
To be completed

5 Appendix A Digression on the Covariance Ma-
trix

The covariance matrix of returns, X, summarizes the variances and covariances of
the individual returns in the return vector R. In general, the covariance matrix of
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a random vector R (sometimes simply called the variance of vector R) with mean

vector p is defined as

cov(R) = BE[(R — p)(R — p)] = =

If R has N elements then X will be an NV x N matrix. For the case N = 2, we have

IR - w)(R—p)] = E[(

Ry —
Rp — pp

fia ) (Ba—pa, R — MB)]

(s T Ry |

_ ( E[(Ra — 114)°] Bl(Ra — pa)(Rp — pp)] )
E[(Rp — pg)(Ra — py)] El(Rp — MB)Q]

_ (var(RA) cov(Ra, Rp) ) _ ( 0% oasm ) 5

cov(Rp,R4) wvar(Rpg)

We can use the formal definition

2

of cov(R) to derive the variance of a portfolio.

Consider again the two asset case. The variance of the portfolio 7, = x'R is given

by

var(R,) = var(XR) = B[R - x'0)’) = E[(X/(R — p))’

since X'R is a scalar. Now we use a trick from matrix algebra. If z is a scalar (think

of z=2)then 2’z =22 =2% Let z =x'(R—p) and so 2- 2/ =xX'(R— pu)(R— pu)'x.

Then

var(R,) =

B[2? = Elz- ]
EX'(R — p)(R — p)'x]
X' E[(R — p)(R — p)']x

x'cov(R)x = x'¥x.

Next consider determining the covariance between the returns on two portfolios
x and y. The returns on these two portfolios are R, , = x'R and R,, = y'R. From

the definition of covariance we have

COU<RP,:67 Rp,y) = EKRP,SB - Mp,m)<Rp,y - ”p,y)]

which may be rewritten in matrix notation as

cov(xR,yR) =

El(xR —x'p)(yR — y'p)]
EXR - p)y' (R — p)]
EXR - p)(R—p)y]
x'E[((R— p)(R — )y
x'Ny.
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Chapter 6 The Single Index Model and Bivariate
Regression
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1 The single index model

Sharpels single index model, also know as the market model and the single factor
model, is a purely statistical model used to explain the behavior of asset returns.
It is a generalization of the constant expected return (CER) model to account for
systematic factors that may affect an assets return. It is not the same model as the
Capital Asset Pricing Model (CAPM), which is an economic model of equilibrium
returns, but is closely related to it as we shall see in the next chapter.

The single index model has the form of a simple bivariate linear regression model

Rit:&i+ﬁi7MRMt+€it,izl,...,N;tzl,...,T (1)

where R;; is the continuously compounded return on asset i (i = 1,..., N) between
time periods ¢t — 1 and ¢, and Ry is the continuously compounded return on a
market index portfolio between time periods ¢t — 1 and ¢. The market index portfolio
is usually some well diversided portfolio like the S&P 500 index, the Wilshire 5000
index or the CRSP! equally or value weighted index. As we shall see, the coefficient
B; »r multiplying Ry in (1) measures the contribution of asset 7 to the variance
(risk), o3, of the market index portfolio. If 3; 5, = 1 then adding the security does
not change the variability, o%;, of the market index; if B;y > 1 then adding the
security will increase the variability of the market index and if 3, , < 1 then adding
the security will decrease the variability of the market index.

The intuition behind the single index model is as follows. The market index R
captures [macrol]or market-wide systematic risk factors that affect all returns in one
way or another. This type of risk, also called covariance risk, systematic risk and

LCRSP refers to the Center for Research in Security Prices at the University of Chicago.



market risk, cannot be eliminated in a well diversi&ed portfolio. The random error
term €;; has a similar interpretation as the error term in the CER model. In the single
index model, £;; represents random [hews[ Ithat arrives between time ¢ — 1 and ¢ that
captures [microllor &m-speci&e risk factors that affect an individual assets return
that are not related to macro events. For example, €; may capture the news effects
of new product discoveries or the death of a CEQO. This type of risk is often called
E&rm speciét risk, idiosyncratic risk, residual risk or non-market risk. This type of
risk can be eliminated in a well diversi&ed portfolio.

The single index model can be expanded to capture multiple factors. The single
index model then takes the form a k—variable linear regression model

Rip = a; + B 1 Fuu + BioFor + -+ + By p Pt + €t

where Fj; denotes the j* systematic factorm, f3; ; denotes asset i's loading on the 5t
factor and e;; denotes the random component independent of all of the systematic
factors. The single index model results when Fj; = Ry and ﬁw = ... = 6% =0.In
the literature on multiple factor models the factors are usually variables that capture
specidx characteristics of the economy that are thought to affect returns - e.g. the
market index, GDP growth, unexpected in! ation etc., and &m speciéc or industry
specidx characteristics - &rm size, liquidity, industry concentration etc. Multiple
factor models will be discussed in chapter xxx.

The single index model is heavily used in empirical &nance. It is used to estimate
expected returns, variances and covariances that are needed to implement portfolio
theory. It is used as a model to explain the [hormall]or usual rate of return on an
asset for use in so-called event studies’. Finally, the single index model is often used
the evaluate the performance of mutual fund and pension fund managers.

1.1 Statistical Properties of Asset Returns in the single in-
dex model

The statistical assumptions underlying the single index model (1) are as follows:
1. (R, Rape) are jointly normally distributed fori=1,...,Nandt=1,...,T.
2. Eleg]=0fori=1,...,Nand t =1,...,T (news is neutral on average).
3. var(ey) = 02, for i =1,..., N (homoskedasticity).

4. cov(ey, Rypy) =0fori=1,...,Nandt=1,...,T.

2The purpose of an event study is to measure the effect of an economic event on the value of a &m.
Examples of event studies include the analysis of mergers and acquisitions, earning announcements,
announcements of macroeconomic variables, effects of regulatory change and damage assessments
in liability cases. An excellent overview of event studies is given in chapter 4 of Campbell, Lo and
MacKinlay (1997).



5. cov(ei, ejs) =0 for all t,s and ¢ # j
6. £; is normally distributed

The normality assumption is justi&ed on the observation that returns are fairly
well characterized by the normal distribution. The error term having mean zero
implies that &m speci&c news is, on average, neutral and the constant variance
assumptions implies that the magnitude of typical news events is constant over time.
Assumption 4 states that &m speci&e news is independent (since the random variables
are normally distributed) of macro news and assumption 5 states that news affecting
asset ¢ in time ¢ is independent of news affecting asset j in time s.

That € is unrelated to Ry, and €;, implies that any correlation between asset ¢
and asset 7 is solely due to their common exposure to Ry throught the values of 3,
and (3,.

1.1.1 Unconditional Properties of Returns in the single index model

The unconditional properties of returns in the single index model are based on the
marginal distribution of returns: that is, the distribution of R;; without regard to any
information about R,;. These properties are summarized in the following proposition.

Proposition 1 Under assumptions 1 - 6
L. E[Ry] = p; = i + By E[Rane] = i + By pritas
var(Ry) = 07 = B} yrvar(Rag) + var(ea) = 57 03 + 02,
COU(Rm Rjt) =04 = U%\/[ﬁiﬁj
Ry ~iid N(p;,02), Rage ~ iid N(pyy, 03f)

-~ W

5. ﬁ _ cov(Rit,Rapre) Uizﬂl

oM T war(Rae) o3y

The proofs of these results are straightforward and utilize the properties of linear
combinations of random variables. Results 1 and 4 are trivial. For 2, note that

var(Ry) = var(a; + B; y B + €it)
= ﬂinar(RMt) + var(ey) + 2cov( Ry, €it)
Bimoir + 02,

since, by assumption 4, cov(ey, Ry) = 0. For 3, by the additivity property of
covariance and assumptions 4 and 5 we have
cov(Ry, Rjr) = cov(ay + B; yyRae + €its 05 + By Ruae + €5t)

= cov(B; prBare + €its By ar Bare + €5t)

= cov(B; prRure, BjprRare) + cov(B prRure, €5¢) + cov(eu, B prRare) + cov(ew, €50)

= ﬁi,Mﬂj,MCOU(RMtv Ru) = 6i,Mﬁj,MU?\/[



Last, for 5 note that

cov(Rig, Rare) = cov(ou + By Bre + €ty Rre)
= COU(ﬁi,MRMh Raze)
= B; mcov(Rare, Rure)
= ﬂi,MUar(RMt):

which uses assumption 4. It follows that

cov(Ry, Ra) By pvar (Rar)
var(Ry)  var(Rap)

= @M

Remarks:

1.

Notice that unconditional expected return on asset %, y;, is constant and con-
sists of an intercept term c;, a term related to (3;,, and the unconditional
mean of the market index, p,,. This relationship may be used to create pre-
dictions of expected returns over some future period. For example, suppose
a; = 0.01, 8; ,y = 0.5 and that a market analyst forecasts p,, = 0.05. Then the
forecast for the expected return on asset 7 is

fi; = 0.01 + 0.5(0.05) = 0.026.

. The unconditional variance of the return on asset 7 is constant and consists of

variability due to the market index, ﬂi 104;, and variability due to speci&e risk,

2
0z

Since 0;; = aﬂﬁlﬂj the direction of the covariance between asset ¢ and asset j
depends of the values of 3; and ;. In particular

e 0;;=0if 8, =0or 8; =0 or both
e 0y > 0if §; and 3; are of the same sign
e 0;; < 0if §; and 3; are of opposite signs.

The expression for the expected return can be used to provide an unconditional
interpretation of «;. Subtracting 3; 5,4, from both sides of the expression for

; gives
O = My — 51,MHJM-



1.1.2 Decomposing Total Risk

The independence assumption between R,;; and ¢; allows the unconditional vari-
ability of Ry, var(Ry) = U?, to be decomposed into the variability due to the market
index, ﬁf’ 17027, plus the variability of the &m specidx component, ag’i. This decom-
position is often called analysis of variance (ANOVA). Given the ANOVA, it is useful
to de&me the proportion of the variability of asset ¢ that is due to the market index
and the proportion that is unrelated to the index. To determine these proportions,
divide both sides of 07 = 7,03, + 02, to give

9 2 9 2 2 9 2
1% _ Bimou +0z;  Bimoum n Oci
=2 = 2 = 2 2
g; 0; 0; 0;
Then we can de&ne

ﬁ2 0.2 2

2 i, MO M e

R; s =1—-—

o o

as the proportion of the total variability of R;; that is attributable to variability in
the market index. Similarly,

2
Ua,i

2
0;

1-R? =

is then the proportion of the variability of R;; that is due to &m speciéc factors. We
can think of R? as measuring the proportion of risk in asset i that cannot be diversi&ed
away when forming a portfolio and we can think of 1— R? as the proportion of risk that
can be diversi&ed away. It is important not to confuse R} with (3, 5;. The coefficient
f3; y measures the overall magnitude of nondiversi&able risk whereas R? measures the
proportion of this risk in the total risk of the asset.

William Sharpe computed R? for thousands of assets and found that for a typical
stock R? ~ 0.30. That is, 30% of the variability of the return on a typical is due
to variability in the overall market and 70% of the variability is due to non-market
factors.

1.1.3 Conditional Properties of Returns in the single index model

Here we refer to the properties of returns conditional on observing the value of the
market index random variable R ;. That is, suppose it is known that Ry;; = rps. The
following proposition summarizes the properties of the single index model conditional
on Ry = rame:

1. E[Ry|Ry = ran) = Hi|Ry, = Qi + ﬁi,MTMt

2. var(Ry|Rye = mae) = var(gy) = Ug,i

3. COU(Rit, Rjt’Rmt = TMt) =0



Property 1 states that the expected return on asset ¢ conditional on Ry;; = rasp
is allowed to vary with the level of the market index. Property 2 says conditional
on the value of the market index, the variance of the return on asset is equal to the
variance of the random news component. Property 3 shows that once movements in
the market are controlled for, assets are uncorrelated.

1.2 Matrix Algebra Representation of the Single Index Model

The single index model for the entire set of N assets may be conveniently represented
using matrix algebra. De&nie the (N x 1) vectors Ry = (Ry, Roy, ..., Ryy)', a0 =

(a1, 9,...,an), B = (B1,0s,-..,0y) and €, = (e14,€9,...,6nt)". Then the single
index model for all N assets may be represented as

Ry o B €1t
Ry an Bn ENt
or
Rt:a+,3'RMt+€t,t:].,...,T.

Since 07 = 7 ),0% + 02, and o;; = B;3;0%; the covariance matrix for the N
returns may be expressed as

2
U% 012 -+ OIN ﬁi,MU%\/I ﬁéﬁja%\i T ﬁiﬁja%\i 02,1 (2)
5 o1 05 v Oan B 6iﬁjg?\/f 61’,MU?\/[ ﬁiﬁjg?w n 0 o2,
oiN 0 0 ON ﬁiﬁjg%\/l ﬁiﬁjg%\i T 61‘,MU%\/1 0 0

The covariance matrix may be conveniently computes as
¥ =000 +A

where A is a diagonal matrix with Ugﬂ- along the diagonal.

1.3 The Single Index Model and Portfolios

Suppose that the single index model (1) describes the returns on two assets. That is,

Ry = o1+ By Rt + € (2)
Ry = ag+ By p Ryt + €2t (3)

Consider forming a portfolio of these two assets. Let x; denote the share of wealth
in asset 1, x5 the share of wealth in asset 2 and suppose that 21 + x5 = 1. The return



on this portfolio using (2) and (3) is then

Ry = xRy + x2Ro
= 1o + By R + €1p) + 2o + By prRase + €2t)
= (z100 + T2000) + (010 ps + 209 pr) Bare + (21616 + Tog2s)
= ap+ B, Bt + Ept
where o, = 101 + 22002, ﬁp’M = 181 0 + 2285y and ey = 1614 + T2€2. Hence,
the single index model will hold for the return on the portfolio where the parameters
of the single index model are weighted averages of the parameters of the individual

assets in the portfolio. In particular, the beta of the portfolio is a weighted average
of the individual betas where the weights are the portfolio weights.

Example 2 To be completed

The additivity result of the single index model above holds for portfolios of any
size. To illustrate, suppose the single index model holds for a collection of N assets:

Rit:ai+ﬁi7MRMt+€it (Z: 1,,N)

Consider forming a portfolio of these N assets. Let x; denote the share of wealth
invested in asset ¢ and assume that >, = 1. Then the return on the portfolio is

N
Ry = > xi(o+ 0y Rare + €4t)

i=1
N N N
= Yt (L) R+ Yoo
i=1 i=1 i=1
= Qp + ﬁpRMt + Ept
where o, = SN | m04, B, = (Zf\il xiﬁi’M) and g, = SN | g

1.3.1 The Single Index Model and Large Portfolios

To be completed

2 [Betall as a Measure of portfolio Risk

A key insight of portfolio theory is that, due to diversiération, the risk of an individual
asset should be based on how it affects the risk of a well diversi&ed portfolio if it is
added to the portfolio. The preceding section illustrated that individual speci&c
risk, as measured by the assets own variance, can be diversided away in large well
diversi&ed portfolios whereas the covariances of the asset with the other assets in

7



the portfolio cannot be completely diversi&ed away. The so-called [betallof an asset
captures this covariance contribution and so is a measure of the contribution of the
asset to overall portfolio variability.

To illustrate, consider an equally weighted portfolio of 99 stocks and let Rg9 denote
the return on this portfolio and o2, denote the variance. Now consider adding one
stock, say IBM, to the portfolio. Let Rrpyr and 0%5,, denote the return and variance
of IBM and let 099 1pm = cov(Rog, Rrpa). What is the contribution of IBM to the
risk, as measured by portfolio variance, of the portfolio? Will the addition of IBM
make the portfolio riskier (increase portfolio variance)? Less risky (decrease portfolio
variance)? Or have no effect (not change portfolio variance)? To answer this question,
consider a new equally weighted portfolio of 100 stocks constructed as

RIOO == (099) . Rgg + (001) . RIBM-
The variance of this portfolio is
00 = wvar(Rip) = (0.99)%c59 + (0.01)%07 5, + 2(0.99)(0.01)0g9 rpas
(0.98)02, + (0.0001)07 5,s + (0.02)099 1811
(0.98)059 + (0.02)099 1821

Now if
e o3y, = 02, then adding IBM does not change the variability of the portfolio;
e 02, > 05y then adding IBM increases the variability of the portfolio;

e 03, < 03y then adding IBM decreases the variability of the portfolio.
Consider the &rst case where 0%, = 025. This implies (approximately) that
(0.98)03g + (0.02)099 1B = Tag
which upon rearranging gives the condition

099,1BM _ COU(RQQ:RIBM) —1
ol var(Rgy)

Deé&ning
COU(R99, RIBM)

ﬁQQ,IBM - ’UCL’F(Rgg)
then adding IBM does not change the variability of the portfolio as long as 849 ;55 =
1. Similarly, it is easy to see that 03, > 0§y implies that S49 ;5 > 1 and 07y, < 03
implies that Bgg ;5 < 1.
In general, let R, denote the return on a large diversi&ed portfolio and let R;
denote the return on some asset i. Then
_cov(Ry,, Ry)
Bpi = var(R,)

measures the contribution of asset ¢ to the overall risk of the portfolio.

8



2.1 The single index model and Portfolio Theory
To be completed

2.2 Estimation of the single index model by Least Squares
Regression

Consider a sample of size T' of observations on R; and Rj;;. We use the lower case
variables r;; and r);; to denote these observed values. The method of least squares
&nds the [best &tingl[lline to the scatter-plot of data as follows. For a given estimate
of the best &ting line

Tit = Qi + By e, t=1,...,T

create the T observed errors

~

&‘it:Tit—rit:ﬁt—ai—ﬁi,MTMm t=1,...,T

Now some lines will & better for some observations and some lines will & better for
others. The least squares regression line is the one that minimizes the error sum of
squares (ESS)

T T
SSR(aiaﬁi,M) = ng Z it — ZM7“Mt)2
t=1 t=1

The minimizing values of &; and 31 u are called the (ordinary) least squares (OLS) es-
timates of a; and 3, 5,. Notice that SSR(a;, 31 ) is a quadratic function in (ay, @Z )
given the data and so the minimum values can be easily obtained using calculus. The
&rst order conditions for a minimum are

0SSR T R r
= % = —22 Tit — QG — erMt Ze
O[' t=1 t=1
0SSR &
= -2 Z Tit — l MT’Mt Tme = —2 Zgztth
851‘,M t=1

which can be rearranged as

T T
Z rie = Toa;+ ﬂi,M Z T Mt
=1

t=1

T T T
Z Tutme = O Z Tt + Bin Z o
t=1 t=1 t=1



These are two linear equations in two unknowns and by straightforward substitution
the solution is

~

@ = Ti—BiyTu
- _ ZtT:l(?“it — 7)) (rae — Tar)
’ Zthl(TMt —7ar)?

where
1 E 1 E
fiz—zrit, fMZ—ZTMt-
= =

The equation for BLM can be rewritten slightly to show that Bl 1S a simple
function of variAances and covariances. Divide the numerator and denominator of the
expression for 3, \; by ﬁ to give

B. — ﬁ S (rie = i) (raze — Tua) _ cov(Rit, Rae)
. 77 St (P — Tar)? var(Ry)

which shows that Bl u is the ratio of the estimated covariance between R;; and Ry
to the estimated variance of Ry;.
The least squares estimate of 02; = var(ey) is given by
1 T T N
~2 -2 ~ 2
Us,i = T _ 2 P 6it = T o 2 t:1<rt — QG — ﬁi,Mth)
The divisor 7" — 2 is used to make 8;- an unbiased estimator of o2 .
The least squares estimate of R? is given by

32 ~2 ~2

~ . O o,
R2= MM Ted
var(Ry) var(Ry)’
where
T (Re) = = S (1 — 7o)
var it) — Tit —T5),
t T—1% t

and gives a measure of the goodness of & of the regression equation. Notice that
fif = 1 whenever 83’1- = 0 which occurs when &;; = 0 for all values of ¢. In other
words, ]3%2 = 1 whenever the regression line has a perfect &. Conversely, ﬁf =0
when 8?71. = var(Ry); that is, when the market does not explain any of the variability
of R;;. In this case, the regression has the worst possible &.

3 Hypothesis Testing in the Single Index Model

3.1 A Review of Hypothesis Testing Concepts
To be completed.
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3.2 Testing the Restriction a = 0.

Using the single index model regression,

Rt = a+/8RMt+€t, t= ].,...,T
g, ~ did N(0,02), & is independent of Ry (4)

consider testing the null or maintained hypothesis a = 0 against the alternative that

a#0
Hy:a=0ws. H :a#0.

If Hy is true then the single index model regression becomes
Ry = B8R + &

and E[Ry|Ryre = rare] = Prare. We will reject the null hypothesis, Hy : a = 0, if
the estimated value of « is either much larger than zero or much smaller than zero.
Assuming Hp : « = 0 is true, & ~ N (0, SE(&)?) and so is fairly unlikely that & will
be more than 2 values of SE(&) from zero. To determine how big the estimated value
of a: needs to be in order to reject the null hypothesis we use the t-statistic

a—0
SE®@)’

ta=0 =

where & is the least squares estimate of o and SE (@) is its estimated standard error.
The value of the t-statistic, t,—g, gives the number of estimated standard errors that
a is from zero. If the absolute value of ¢,—¢ is much larger than 2 then the data cast
considerable doubt on the null hypothesis a = 0 whereas if it is less than 2 the data
are in support of the null hypothesis®. To determine how big | t,—o| needs to be to
reject the null, we use the fact that under the statistical assumptions of the single
index model and assuming the null hypothesis is true

ta—o ~ Student — t with T — 2 degrees of freedom

If we set the signi&cance level (the probability that we reject the null given that the
null is true) of our test at, say, 5% then our decision rule is

Reject Hy : o = 0 at the 5% level if |to—o| > |t7_2(0.025)]

where t7_5 is the 2%% critical value (quantile) from a Student-t distribution with
T — 2 degrees of freedom.

Example 3 single index model Regression for IBM

3This interpretation of the t-statistic relies on the fact that, assuming the null hypothesis is true
so that o = 0, @ is normally distributed with mean 0 and estimated variance SE(a)?.

11



Consider the estimated MM regression equation for IBM using monthly data from
January 1978 through December 1982:

ITBIBMJ =—0.0002 + 0.3390 -Raz, R?=0.20, 6. = 0.0524
(0.0068) (0.0888)

where the estimated standard errors are in parentheses. Here & = —0.0002, which is
very close to zero, and the estimated standard error, SE(&) = 0.0068, is much larger
than &. The t-statistic for testing Hy:a =0 vs. H; : a # 0 is
—0.0002 — 0
tomo = ———— = —0.0363
° 0.0068
so that @ is only 0.0363 estimated standard errors from zero. Using a 5% signi&cance
level, |t53(0.025)] ~ 2 and
|[ta=o| = 0.0363 < 2

so we do not reject Hy : a = 0 at the 5% level.

3.3 Testing Hypotheses about (3

In the single index model regression 3 measures the contribution of an asset to the
variability of the market index portfolio. One hypothesis of interest is to test if the
asset has the same level of risk as the market index against the alternative that the
risk is different from the market:

H[)Iﬂzl’US.Hliﬂ%l.

The data cast doubt on this hypothesis if the estimated value of § is much different
from one. This hypothesis can be tested using the t-statistic
-1

5:1:/\/\

SE(B)

which measures how many estimated standard errors the least squares estimate of 3
is from one. The null hypothesis is reject at the 5% level, say, if |tg—1| > |t7-2(0.025)|.
Notice that this is a two-sided test.

Alternatively, one might want to test the hypothesis that the risk of an asset is
strictly less than the risk of the market index against the alternative that the risk is
greater than or equal to that of the market:

Hy:8=1vs. H:3>1.

Notice that this is a one-sided test. We will reject the null hypothesis only if the
estimated value of § much greater than one. The t-statistic for testing this null

12



hypothesis is the same as before but the decision rule is different. Now we reject the
null at the 5% level if
tgzl < —tT,2(0.05)

where tr_2(0.05) is the one-sided 5% critical value of the Student-t distribution with
T — 2 degrees of freedom.

Example 4 Single Index Regression for IBM contld

Continuing with the previous example, consider testing Hy : 8 = 1 vs. Hy : 3 # 1.
Notice that the estimated value of 3 is 0.3390, with an estimated standard error of
0.0888, and is fairly far from the hypothesized value § = 1. The t-statistic for testing
gt 0.3390 — 1

o1 = "oses M
which tells us that B is more than 7 estimated standard errors below one. Since
t0.025,58 ~ 2 we easily reject the hypothesis that 3 = 1.

Now consider testing Hy : 6 = 1 vs. H; : § > 1. The t-statistic is still -7.444
but the critical value used for the test is now —#55(0.05) ~ —1.671. Clearly, tg—1 =
—7.444 < —1.671 = —t55(0.05) so we reject this hypothesis.

4 Estimation of the single index model: An Ex-
tended Example

Now we illustrate the estimation of the single index model using monthly data on
returns over the ten year period January 1978 - December 1987. As our dependent
variable we use the return on IBM and as our market index proxy we use the CRSP
value weighted composite monthly return index based on transactions from the New
York Stock Exchange and the American Stock Exchange. Let r; denote the monthly
return on IBM and rj;; denote the monthly return on the CRSP value weighted index.
Time plots of these data are given in &gure 1 below.
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Monthly Returns on IBM Monthly Returns on Market Index
0.2 0.2
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Figure 1

Notice that the IBM and the market index have similar behavior over the sample
with the market index looking a little more volatile than IBM. Both returns dropped
sharply during the October 1987 crash but there were a few times that the market
dropped sharply whereas IBM did not. Sample descriptive statistics for the returns
are displayed in &gure 2.

The mean monthly returns on IBM and the market index are 0.9617% and 1.3992%
per month and the sample standard deviations are 5.9024% and 6.8353% per month,
respectively.. Hence the market index on average had a higher monthly return and
more volatility than IBM.
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Monthly Returns on IBM Monthly Returns on Market Index

Series: IBM Series: MARKET

Sample 1978:01 1987:12 Sample 1978:01 1987:12
Observations 120 Observations 120

Mean 0.009617 Mean 0.013992
Median 0.002000 Median 0.012000
Maximum 0.150000 Maximum 0.148000
Minimum -0.187000 Minimum -0.260000
Std. Dev. 0.059024 Std. Dev. 0.068353
Skewness -0.036491 Skewness -1.104576
Kurtosis 3.126664 Kurtosis 5.952204
Jarque-Bera 0.106851 Jarque-Bera 67.97932
Probability 0.947976 Probability 0.000000

Figure 2

Notice that the histogram of returns on the market are heavily skewed left whereas
the histogram for IBM is much more sysingle index modeletric about the mean. Also,
the kurtosis for the market is much larger than 3 (the value for normally distributed
returns) and the kurtosis for IBM is just slightly larger than 3. The negative skewness
and large kurtosis of the market returns is caused by several large negative returns.
The Jarque-Bera statistic for the market returns is 67.97, with a p-value 0.0000, and
so we can easily reject the hypothesis that the market data are normally distributed.
However, the Jarque-Bera statistic for IBM is only 0.1068, with a p-value of 0.9479,
and we therefore cannot reject the hypothesis of normality.

The single index model regression is

Rt:a‘i‘ﬁRMt—i—gt, t:].,,T

where it is assumed that &, ~ iid N(0, 02) and is independent of R,;. We estimate
this regression using the &rst &ve years of data from January 1978 - December 1982.
In practice the single index model is seldom estimated using data covering more than
&ve years because it is felt that 5 may change through time. The computer printout
from Eviews is given in &gure 3 below
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LS Jf Dependent Yariable is IBM
Date: 02112198 Time: 11:41
Sample: 1978:01 1982:12
Included obhservations: G0

Variable Coefficient Std. Error t-Statistic Prob.
C 0.005312 0.006930 0.766533 0.4465
MARKET 0.327799 0.088987 3.683665 0.0005
R-squared 0.189598 Mean dependent var 0.011633
Adjusted R-squared 0.175625 5.D. dependent var 0.057283
S.E. of regression 0.052010 Akaike info criterion -b.879874
Sum squared resid 0.156892 Schwarz criterion -b.810063
Log likelihood 93.25991 F-statistic 13.56939
Durbin-¥atson stat 1.577416 Prob[F-statistic] 0.000507

Figure 3

4.1 Explanation of Computer Output

The the items under the column labeled Variable are the variables in the estimated
regression model. The variable [C[]refers to the intercept in the regression and
[ MARKET Urefers to rp;. The least squares regression coefficients are reported in
the column labeled [Coefficient[Jand the estimated standard errors for the coefficients
are in then next column. A standard way of reporting the estimated equation is

7y =0.0053 + 0.3278 -rpp
(0.0069)  (0.0890)

where the estimated standard errors are reported underneath the estimated coeffi-
cients. The estimated intercept is close to zero at 0.0053, with a standard error of
0.0069 (= SE(a)), and the estimated value of 3 is 0.3278, with an standard error of
0.0890 (= SE(f)). Notice that the estimated standard error of 3 is much smaller
than the estimated coefficient and indicates that 3 is estimated reasonably precisely.
The estimated regression equation is displayed graphically in &gure 4 below.
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Market Model Regression

0.2

IBM

-0.3 -0.2 -0.1 0.0 0.1 0.2

MARKET
Figure 4

To evaluate the overall & of the single index model regression we look at the R? of
the regression, which measures the percentage of variability of R; that is attributable
to the variability in Rj;, and the estimated standard deviation of the residuals, ..
From the table, R? = 0.190 so the market index explains only 19% of the variability
of IBM and 81% of the variability is not explained by the market. In the single index
model regression, we can also interpret R? as the proportion of market risk in IBM
and 1 — R? as the proportion of &m speci&e risk. The standard error (S.E.) of the
regression is the square root of the least squares estimate of o2 = var(e;). From the
above table, . = 0.052. Recall, ¢; captures the &m specidxe risk of IBM and so &, is
an estimate of the typical magnitude of the &m speci&e risk. In order to interpret the
magnitude of 7. it is useful to compare it to the estimate of the standard deviation
of R;, which measures the total risk of IBM. This is reported in the table by the
standard deviation (S.D.) of the dependent variable which equals 0.057. Notice that
0. = 0.052 is only slightly smaller than 0.057 so that the &m specidx risk is a large
proportion of total risk (which is also reported by 1 — R?).

Conddence intervals for the regression parameters are easily computed using the
reported regression output. Since g; is assumed to be normally distributed 95%
conddence intervals for a and § take the form

a+2-SE@)
B+2- SE(B)
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The 95% con&dence intervals are then

a : 0.0053 +2-0.0069 = [—.0085,0.0191]
B 0.3278 £2-0.0890 = [0.1498, 0.5058]

Our best guess of « is 0.0053 but we wouldnl be too surprised if it was as low as
-0.0085 or as high as 0.0191. Notice that there are both positive and negative values
in the con&dence interval. Similarly, our best guess of 3 is 0.3278 but it could be as
low as 0.1498 or as high as 0.5058. This is a fairly wide range given the interpretation
of # as a risk measure. The interpretation of these intervals are as follows. In
repeated samples, 95% of the time the estimated con&adence intervals will cover the
true parameter values.
The t-statistic given in the computer output is calculated as

estimated coeflicient — 0

t-statistic =
std. error

and it measures how many estimated standard errors the estimated coefficient is away
from zero. This t-statistic is often referred to as a basic signiétance test because it
tests the null hypothesis that the value of the true coefficient is zero. If an estimate is
several standard errors from zero, so that itls t-statistic is greater than 2, then it is a
good bet that the true coefficient is not equal to zero. From the data in the table, the
t-statistic for a is 0.767 so that a = 0.0053 is 0.767 standard errors from zero. Hence
it is quite likely that the true value of « equals zero. The ¢-statistic for 3 is 3.684,
( is more than 3 standard errors from zero, and so it is very unlikely that G = 0.
The Prob Value (p-value of the ¢-statistic) in the table gives the likelihood (computed
from the Student-t curve) that, given the true value of the coefficient is zero, the data
would generate the observed value of the t-statistic. The p-value for the t-statistic
testing a = 0 is 0.4465 so that it is quite likely that a = 0. Alternatively, the p-value
for the t-statistic testing 5 = 0 is 0.001 so it is very unlikely that 5 = 0.

4.2 Analysis of the Residuals

The single index model regression makes the assumption that €, ~ iid N(0,0?). That
is the errors are independent and identically distributed with mean zero, constant
variance 2 and are normally distributed. It is always a good idea to check the
behavior of the estimated residuals, £;, and see if they share the assumed properties
of the true residuals ;. The &ure below plots r; (the actual data), 7y = a + Oran
(the &ted data) and &, = r; — 7; (the estimated residual data).
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Notice that the &ted values do not track the actual values very closely and that
the residuals are fairly large. This is due to low R? of the regression. The residuals
appear to be fairly random by sight. We will develop explicit tests for randomness
later on. The histogram of the residuals, displayed below, can be used to investigate
the normality assumption. As a result of the least squares algorithm the residuals
have mean zero as long as a constant is included in the regression. The standard
deviation of the residuals is essentially equal to the standard error of the regression
- the difference being due to the fact that the formula for the standard error of the
regression uses 7' — 2 as a divisor for the error sum of squares and the standard

Market Model Regression for IBM
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deviation of the residuals uses the divisor 7" — 1.
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Residuals from Market Model Regression for IBM

8
Series: Residuals
Sample 1978:01 1982:12
5 Observations 60
Mean -2.31E-19
Median -0.000553
Maximum 0.139584
44 Minimum -0.104026
Std. Dev. 0.051567
Skewness 0.493494
2] Kurtosis 2.821260
Jarque-Bera 2.515234
Q X [a Probability 0.284331
0
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Figure 6

The skewness of the residuals is slightly positive and the kurtosis is a little less
than 3. The hypothesis that the residuals are normally distributed can be tested
using the Jarque-Bera statistic. This statistic is a function of the estimated skewness
and kurtosis and is give by

T (g (K-3)

where S denotes the estimated skewness and K denotes the estimated kurtosis. If
the residuals are normally distribued then S ~ 0 and K ~3and JB ~ 0. Therefore,
if S is moderately different from zero or K is much different from 3 then JB will get
large and suggest that the data are not normally distributed. To determine how large
J B needs to be to be able to reject the normality assumption we use the result that
under the maintained hypothesis that the residuals are normally distributed JB has
a chi-square distribution with 2 degrees of freedom:

JB ~ 3.

For a test with signi&cance level 5%, the 5% right tail critical value of the chi-square
distribution with 2 degrees of freedom, x3(0.05), is 5.99 so we would reject the null
that the residuals are normally distributed if JB > 5.99. The Probability (p-value)
reported by Eviews is the probability that a chi-square random variable with 2 degrees
of freedom is greater than the observed value of JB :

P(x3 > JB) = 0.2843.

For the IBM residuals this p-value is reasonably large and so there is not much data
evidence against the normality assumption. If the p-value was very small, e.g., 0.05 or
smaller, then the data would suggest that the residuals are not normally distributed.
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Chapter 1

The Constant Expected Return
Model

The first model of asset returns we consider is the very simple constant ex-
pected return (CER) model. This model assumes that an asset’s return over
time is normally distributed with a constant (time invariant) mean and vari-
ance The model also assumes that the correlations between asset returns
are constant over time. Although this model is very simple, it allows us to
discuss and develop several important econometric topics such as estimation,
hypothesis testing, forecasting and model evaluation.

1.0.1 Constant Expected Return Model Assumptions

Let R; denote the continuously compounded return on an asset ¢ at time t.
We make the following assumptions regarding the probability distribution of
R;; for e =1,..., N assets over the time horizon t =1,...,T.

1. Normality of returns: Ry ~ N(p;,07) fori=1,...,Nandt=1,...,T.

2. Constant variances and covariances: cov(R;, Rj1) = o;jfori =1,..., N
andt=1,...,T.

3. No serial correlation across assets over time: cov(R;, Rjs) = 0 for t # s
and i, =1,..., N.

Assumption 1 states that in every time period asset returns are normally
distributed and that the mean and the variance of each asset return is con-
stant over time. In particular, we have for each asset ¢ and every time period
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E[Rit] = Wy

var(Ry) = oF

The second assumption states that the contemporaneous covariances between
assets are constant over time. Given assumption 1, assumption 2 implies that
the contemporaneous correlations between assets are constant over time as
well. That is, for all assets and time periods

corr(Ry, Rji) = pj
The third assumption stipulates that all of the asset returns are uncorrelated
over time'. In particular, for a given asset i the returns on the asset are
serially uncorrelated which implies that

corr(Ry, Ris) = cov(Ry, R;is) = 0 for all t # s.

Additionally, the returns on all possible pairs of assets ¢ and j are serially
uncorrelated which implies that

corr(Rit, Rjs) = cov(Ri, Rjs) = 0 for all i # j and t # s.

Assumptions 1-3 indicate that all asset returns at a given point in time
are jointly (multivariate) normally distributed and that this joint distribution
stays constant over time. Clearly these are very strong assumptions. How-
ever, they allow us to development a straightforward probabilistic model for
asset returns as well as statistical tools for estimating the parameters of the
model and testing hypotheses about the parameter values and assumptions.

1.0.2 Regression Model Representation

A convenient mathematical representation or model of asset returns can be
given based on assumptions 1-3. This is the constant expected return (CER)
regression model. For assets ¢ = 1,..., N and time periods ¢t = 1,...,T the
CER model is represented as

gy ~ idid. N(0,07)
cov(gi, €jt) = Tij (1.2)

!Since all assets are assumed to be normally distributed (assumption 1), uncorrelated-
ness implies the stronger condition of independence.



where p, is a constant and Sn is a normally distributed random variable
with mean zero and variance o7 . Notice that the random error term &;; is
independent of ¢, for all time perlods t # s. The notation g;; ~ 7id. N(0, %)
stipulates that the random variable €;; is serially independent and identically
distributed as a normal random variable with mean zero and variance o?2.
This implies that, E[e;] = 0, var(e;) = 07 and cov(ey, e;5) = 0 for i # j and
t#s.

Using the basic properties of expectation, variance and covariance dis-
cussed in chapter 2, we can derive the following properties of returns. For
expected returns we have

E[Ry| = Elp; + €] = p; + Elea] = 1,

since p; is constant and Ele;] = 0. Regarding the variance of returns, we
have

var(Ry) = var(p; + €ir) = var(ey) = o7

which uses the fact that the variance of a constant (y;) is zero. For covari-
ances of returns, we have

cov( Ry, Rji) = cov(p,; + €it, f1; + €j¢) = cov(eir, €j¢) = 04
and
cov( Ry, Rjs) = cov(p; + €, j1j + €j5) = cov(ey, €55) =0, t # s,

which use the fact that adding constants to two random variables does not
affect the covariance between them. Given that covariances and variances
of returns are constant over time gives the result that correlations between
returns over time are also constant:

Ri aR' i
corr(Riy, Rj1) = COU( v Ry = Ju Pijs
Vvar(Ry)var(Rj) — 0i0;
Rz ; Rjs 0 o
corr(Ry, Rjs) = COU( v fis) = =0, 1 #£j,t #s.
\/var Jvar(Rjs)  0i0;

Finally, since the random variable ¢;; is independent and identically distrib-
uted (i.i.d.) normal the asset return R;; will also be i.i.d. normal:

Ry ~ id.i.d. N(p,,03).
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Hence, the CER model (1.1) for R;; is equivalent to the model implied by
assumptions 1-3.

1.0.3 Interpretation of the CER Regression Model

The CER model has a very simple form and is identical to the measurement
error model in the statistics literature. In words, the model states that each
asset return is equal to a constant p, (the expected return) plus a normally
distributed random variable e;; with mean zero and constant variance. The
random variable £;; can be interpreted as representing the unexpected news
concerning the value of the asset that arrives between times ¢t — 1 and time
t. To see this, note that using (1.1) we can write €, as

e = Ry —
= Ry — E[Ry]

so that g; is defined to be the deviation of the random return from its
expected value. If the news between times ¢ — 1 and time ¢ is good, then the
realized value of ¢ is positive and the observed return is above its expected
value p;. If the news is bad, then €;; is negative and the observed return is
less than expected. The assumption that E[e;] = 0 means that news, on
average, is neutral; neither good nor bad. The assumption that var(e;) =
o? can be interpreted as saying that volatility of news arrival is constant
over time. The random news variable affecting asset i, £, is allowed to
be contemporaneously correlated with the random news variable affecting
asset j, €+, to capture the idea that news about one asset may spill over
and affect another asset. For example, let asset ¢ be Microsoft and asset
j be Apple Computer. Then one interpretation of news in this context is
general news about the computer industry and technology. Good news should
lead to positive values of ¢;; and €. Hence these variables will be positively
correlated.

Time Aggregation and the CER Model

The CER model with continuously compounded returns has the following
nice property with respect to the interpretation of €; as news. Consider
the default case where R; is interpreted as the continuously compounded
monthly return on asset . Suppose we are interested in the annual contin-
uously compounded return Rf} = R;;(12)? Since multiperiod continuously



compounded returns are additive, R;(12) is the sum of 12 monthly continu-

ously compounded returns?:

11
Rﬁ = Ry (12) = Z Ry p=Ry+ Ry 1+ +Ry_n

t=0

Using the CER model representation (1.1) for the monthly return R;; we may
express the annual return R;;(12) as

11

Ru(12) = > (1 +en)

t=0

11
= 12 p; + Zeit
t=0
= 1+

where p#t = 12 - p; is the annual expected return on asset i and e} =
2,161:0 €it_r 18 the annual random news component. Hence, the annual ex-
pected return, pf, is simply 12 times the monthly expected return, p,. The
annual random news component, 4 , is the accumulation of news over the
year. Using the results from chapter 2 about the variance of a sum of ran-
dom variables, the variance of the annual news component is just 12 time

the variance of the monthly new component:

11
Uar(eﬁ) = var <Z 6#-1«))
k=0

11

= Z var(ey—k) since €, is uncorrelated over time
k=0
11

= Z o? since var(ey) is constant over time
k=0

=12-0}

= var(thl)

2For simplicity of exposition, we will ignore the fact that some assets do not trade over
the weekend.
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Similarly, using results from chapter 2 about the additivity of covariances
we have that covariance between ¢/ and gﬁ is just 12 times the monthly
covariance:

11 11
A _A
cov(ey, €5) = cov E Eit—ks E Ejt—k
k=0 k=0

11
= g cov(git—k, €j1—) since e; and €;; are uncorrelated over time

k=0
11

= g 0;; since cov(ey, €;¢) is constant over time
k=0

= 12 . Uij

_ A pA

= cov(Rj, Ry)

The above results imply that the correlation between ¢4 and sﬁ is the same
as the correlation between €;; and € :
A A
cov(ey, €4
corr (e, gﬁ) = (<, €it)
\/var(eﬁ) . var(eﬁ)
12-0 ij

1202 - 120?

00 *J

= corr(ei, €jt)

1.0.4 The CER Model of Asset Returns and the Ran-
dom Walk Model of Asset Prices

The CER model of asset returns (1.1) gives rise to the so-called random walk
(RW) model of the logarithm of asset prices. To see this, recall that the
continuously compounded return, R, is defined from asset prices via

P
1 - it
“<Pm> Ra

Since the log of the ratio of prices is equal to the difference in the logs of
prices we may rewrite the above as

hl(Pit> - ln(Pit—l) = Ry.




Letting p;; = In(P;) and using the representation of R;; in the CER model
(1.1), we may further rewrite the above as

Dit = Dit—1 = H; + Eit.- (1.3)

The representation in (1.3) is know as the RW model for the log of asset
prices.

In the RW model, p, represents the expected change in the log of asset
prices (continuously compounded return) between months t — 1 and ¢ and e
represents the unexpected change in prices. That is,

E[pit - pit—l] = E[Rit] = Wy
Eit = DPit — Pit—1 — E[pit - pitfl]-

Further, in the RW model, the unexpected changes in asset prices, €;, are

uncorrelated over time (cov(gq, €i5) = 0 for ¢t # s) so that future changes in

asset prices cannot be predicted from past changes in asset prices?.

The RW model gives the following interpretation for the evolution of asset
prices. Let p;o denote the initial log price of asset i. The RW model says
that the price at time t =1 is

Pi1 = Dio + M; + Ein

where ¢;; is the value of random news that arrives between times 0 and 1.
Notice that at time ¢t = 0 the expected price at time t =1 is

Elpal = pio + 1 + Eleal = pio + 14

which is the initial price plus the expected return between time 0 and 1.
Similarly, the price at time ¢ = 2 is

Pi2 = Pi1 + Uy + €2
= Dpio + p; + p; + €1 + Ei2

2
= pi0+2',ui+z€it

t=1

3The notion that future changes in asset prices cannot be predicted from past changes
in asset prices is often referred to as the weak form of the efficient markets hypothesis.
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which is equal to the initial price, p;o, plus the two period expected return,
2 p;, plus the accumulated random news over the two periods, Zle €ir- By
recursive substitution, the price at time ¢t = T is

T
it :pi0+T'M¢+Z€it-

t=1

At time t = 0 the expected price at time ¢t = T is
Elpir] = pio + T -

The actual price, p;7, deviates from the expected price by the accumulated
random news

T
bir — E[piT] = Zgit-
t=1

Figure 1.1 illustrates the random walk model of asset prices based on the
CER model with g = 0.05, ¢ = 0.10 and py = 1. The plot shows the log
price, p;, the expected price E[p;] = po + 0.05¢ and the accumulated random
news > ;_, ;.

The term random walk was originally used to describe the unpredictable
movements of a drunken sailor staggering down the street. The sailor starts
at an initial position, py, outside the bar. The sailor generally moves in the
direction described by p but randomly deviates from this direction after each
step ¢t by an amount equal to &;. After T" steps the sailor ends up at position

pr=pot+p-T+3 | &

1.1 Monte Carlo Simulation of the CER Model

A good way to understand the probabilistic behavior of a model is to use
computer simulation methods to create pseudo data from the model. The
process of creating such pseudo data is often called Monte Carlo simulation®.
To illustrate the use of Monte Carlo simulation, consider the problem of
creating pseudo return data from the CER model (1.1) for one asset. The
steps to create a Monte Carlo simulation from the CER model are:

e Fix values for the CER model parameters y and o (or o)

“Monte Carlo referrs to the fameous city in Monaco where gambling is legal.
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- p(t)
E[p(t)]
“T7 p(t)-Elp(t)]

0 20 40 60 80 100

Figure 1.1: Simulated random walk model for log prices.

e Determine the number of simulated values, T, to create.

e Use a computer random number generator to simulate T' iid values
of & from N(0,0?%) distribution. Denote these simulated values are
€]y, Ep

e Create simulated return data Ry = p+¢; fort =1,...,T

To mimic the monthly return data on Microsoft, the values p = 0.05 and
o = 0.10 are used as the model’s parameters and 7" = 100 is the number of
simulated values (sample size). The key to simulating data from the above
model is to simulate T' = 100 observations of the random news variable g,
“1id N(0,(0.10)?). Computer algorithms exist which can easily create such
observations..Let {e},... €75} denote the 100 simulated values of &;.The
simulated returns are then computed as

R =0.05+¢f t=1,...,100

A time plot and histogram of the simulated R; values are given in figure
.The simulated return data fluctuates randomly about the expected return
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Simulated returns from CER model Histogram of simulated returns
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Figure 1.2: Simulated returns from the CER model R, = 0.05 + &, &; ~iid
N(0,(0.10)?)

value E[R;] = 1 = 0.05. The typical size of the fluctuation is approximately
equal to SD(g;) = 0.10. Notice that the simulated return data looks remark-
ably like the actual monthly return data for Microsoft.

The sample average of the simulated returns is WIO ;}2‘1 R} =0.0522 and

the sample standard deviation is 4/ 55 SUP(R: — (0.0522))2 = 0.0914. These

values are very close to the population values E[R;] = 0.05 and SD(R;) =
0.10, respectively.

Monte Carlo simulation of a model can be used as a first pass reality
check of the model. If simulated data from the model does not look like the
data that the model is supposed to describe then serious doubt is cast on the
model. However, if simulated data looks reasonably close to the data that
the model is suppose to describe then confidence is instilled on the model.

1.1.1 Simulating End of Period Wealth

To be completed
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e insert example showing how to use Monte Carlo simulation to com-
pute expected end of period wealth. compare computations where end
of period wealth is based on the expected return over the period ver-
sus computations based on simulating different sample paths and then
taking the average. Essentially, compute E[W, eXp(Zi\il R;)] where R,
behaves according to the CER model and compare this to Wy exp(Np).

1.1.2 Simulating Returns on More than One Asset

To be completed

1.2 Estimating the Parameters of the CER
Model

1.2.1 The Random Sampling Environment

The CER model of asset returns gives us a rigorous way of interpreting the
time series behavior of asset returns. At the beginning of every month ¢, R;;
is a random variable representing the return to be realized at the end of the
month. The CER model states that R;; ~ i.i.d. N(j;,0%). Our best guess for
the return at the end of the month is E[R;] = p,;, our measure of uncertainty
about our best guess is captured by o; = \/var(R;) and our measure of the
direction of linear association between R;; and Rj; is 0;; = cov(R;, Rji). The
CER model assumes that the economic environment is constant over time
so that the normal distribution characterizing monthly returns is the same
every month.

Our life would be very easy if we knew the exact values of u;, 07 and o,
the parameters of the CER model. In actuality, however, we do not know
these values with certainty. A key task in financial econometrics is estimating
the values of y;, 07 and o;; from a history of observed data.

Suppose we observe monthly returns on /N different assets over the horizon
t =1,...,T. Let {ry,...,r;r} denote the observed history of 7" monthly
returns on asset ¢ for : = 1,..., N. It is assumed that the observed returns
are realizations of the time series of random variables {R;i, ..., Rir} , where
R;; is described by the CER model (1.1). We call {R;, ..., Rir} a random
sample from the CER model (1.1) and we call {r;, ..., r;r} the realized values
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from the random sample. Under these assumptions, we can use the observed
returns to estimate the unknown parameters of the CER model

1.2.2 Statistical Estimation Theory

Before we describe the estimation of the CER model, it is useful to summarize
some concepts in the statistical theory of estimation. Let 6 denote some
characteristic of the CER model (1.1) we are interested in estimating. For
example, if we are interested in the expected return then 6 = p,;; if we are
interested in the variance of returns then § = o?. The goal is to estimate
based on the observed data {r;,..., 7 }.

Definition 1 An estimator of 0 is a rule or algorithm for forming an esti-
mate for 6 based on the random sample {R;1, ..., Ry}

Definition 2 An estimate of 0 is simply the value of an estimator based on
the realized sample values {r1,...,rir}.

Example 3 The sample average %ZtT:l Ry is an algorithm for computing
an estimate of the expected return p,. Before the sample is observed, the sam-
ple average is a simple linear function of the random variables { R1, ..., Rir}
and so is itself a random variable. After the sample {ry, ..., 7} is observed,
the sample average can be evaluated giving % Zthl 73, which s just a number.
For example, if the observed sample is {0.05,0.03, —0.10} then the sample av-
erage estimate is 5(0.05 4 0.03 — 0.10) = —0.02.

To discuss the properties of estimators it is necessary to establish some
notation. Let 9(Ri1, ..., Rir) denote an estimator of # treated as a function
of the random variables {R;, ..., Rir}. Clearly, O(Ry, ..., Rir) is a random
variable. Let @(rﬂ, ..., ) denote an estimate of 6 based on the realized
values {r1,...,rr}. @(rﬂ, ..., ryr) is simply an number. We will often use 0
as shorthand notation to represent either an estimator of 6 or an estimate of

0. The context will determine how to interpret 6.

Example 4 Let Ry, ..., Ry denote a random sample of returns. An estima-
tor of the expected return, u, is the sample average

T
. 1
M(Rla"'aRT) :?;Rt
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Suppose T = 5 and the realized values of the returns are r1 = 0.1,ry =
0.05,73 = 0.025,r4, = —0.1,75 = —0.05. Then the estimate of the expected
return using the sample average s

1
(0.1, —0.05) = =(0.1+0.05+0.025 + —0.1 + ~0.05) = 0.005

1.2.3 Properties of Estimators

Consider 6 = 9(Rﬂ, ..., Ry7) as a random variable. In general, the pdf
of 6, p(A), depends on the pdf’s of the random variables R;i,..., Rir. The
exact form of p(@) may be very complicated. For analysis purposes, we
often focus on certain characteristics of p(6) like its expected value (center),
variance and standard deviation (spread about expected value). The expected
value of an estimator is related to the concept of estimator bias and the
variance/standard deviation of an estimator is related estimator precision.
Intuitively, a good estimator of 8 is one that will produce an estimate 8 that
is close 0 all of the time. That is, a good estimator will have small bias and

high precision.

Bias

Bias concerns the location or center of p(f). If p(f) is centered away from ¢
then we say 0 is biased. If p(0) is centered at 6 then we say that 6 is unbiased.
Formally we have the following definitions:

Definition 5 The estimation error is difference between the estimator and
the parameter being estimated

error =0 — 6.
Definition 6 The bias of an estimator 0 of 0 is given by

bias(0,6) = E[0] — 0.

Definition 7 An estimator 0 of  is unbiased if bias(0,0) = 0; i.e., if E[f] =
6 or Elerror| = 0.

Unbiasedness is a desirable property of an estimator. It means that the
estimator produces the correct answer “on average”, where “on average”
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Pdfs of competing estimators

— pdf1
—_pdf2
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estimator value

Figure 1.3: Pdf values for competing estimators of § = 0.

means over many hypothetical samples. It is important to keep in mind that
an unbiased estimator for # may not be very close to 6 for a particular sample
and that a biased estimator may be actually be quite close to 6. For example,
consider the pdf of #; in figure 1.3. The center of the distribution is at the
true value § = 0, K [91] = 0, but the distribution is very widely spread out
about 6 = 0. That is, var(0;) is large. On average (over many hypothetical
samples) the value of 6, will be close to # but in any given sample the value
of 6, can be quite a bit above or below . Hence, unbiasedness by itself does
not guarantee a good estimator of 6. Now consider the pdf for #,. The center
of the pdf is slightly higher than § = 0, bias(fs,6) = 0.25, but the spread
of the distribution is small. Although the value of 0 is not equal to 0 on
average we might prefer the estimator 0 over A, because it is generally closer
to 8 = 0 on average than 0;.

Precision

An estimate is, hopefully, our best guess of the true (but unknown) value of
6. Our guess most certainly will be wrong but we hope it will not be too far
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off. A precise estimate, loosely speaking, is one that has a small estimation
error. The magnitude of the estimation error is usually captured by the mean
squared error:

Definition 8 The mean squared error of an estimator 0 of 0 is given by

~ A

mse(6,0) = E[(6 — 0)?] = Elerror?]

The mean squared error measures the expected squared deviation of 0
from 6. If this expected deviation is small, then we know that 6 will almost
always be close to 6. Alternatively, if the mean squared is large then it is pos-
sible to see samples for which 0 to be quite far from #. A useful decomposition
of mse(@, 0) is given in the following proposition

Proposition 9 mse(d,0) = E[(é—E[@])z]—i—(E[@] — 9)2 = var(f)+bias(6, )

The proof of this proposition is straightforward and is given in the appen-
dix. The proposition states that for any estimator 0 of 0, mse(@, 6) can be
split into a variance component, var(f), and a bias component, bias(f, 0).
Clearly, mse(@, 6) will be small only if both components are small. If an es-
timator is unbiased then mse(f, 6) = var(0) = E[(0 — 0)?] is just the squared

deviation of 8 about 6. Hence, an unbiased estimator 6 of 6 is good if it has
a small variance.

1.2.4 Method of Moment Estimators for the Parame-
ters of the CER Model

Let {Ri1,...,Rir} denote a random sample from the CER model and let
{ra,...,rir} denote the realized values from the random sample. Consider
the problem of estimating the parameter p, in the CER model (1.1). As an
example, consider the observed monthly continuously compounded returns,
{r1,..., 7100}, for Microsoft stock over the period July 1992 through October
2000. These data are illustrated in figure 1.4.Notice that the data seem to
fluctuate up and down about some central value near 0.03. The typical size of
a deviation about 0.03 is roughly 0.10. Intuitively, the parameter p; = F[R;]
in the CER model represents this central value and o; represents the typical
size of a deviation about ,.
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Figure 1.4: Monthly continuously compounded returns on Microsoft stock.

The method of moments estimate of 4,

Let ji; denote a prospective estimate of p,°. The sample error or residual at
time ¢ associated with this estimate is defined as

éitzrit_,&m t=1,...,T.

This is the estimated news component for month ¢ based on the estimate f,.
Now the CER model imposes the condition that the expected value of the
true error is zero

FE [f‘:it] =0

The method of moments estimator of u; is the value of fi, that makes the
average of the sample errors equal to the expected value of the population
errors. That is, the method of moments estimator solves

1L T
T ;a z:: Tit — Eleq) =0 (1.4)

°In this book, quantities with a “*” denote an estimate.
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Figure 1.5: Monthly continuously compounded returns on Microsoft, Star-
bucks and the S&P 500 Index.

Solving (1.4) for ji; gives the method of moments estimate of p; :

1 T
Hi = T;Tu =T (1.5)

Hence, the method of moments estimate of u, (¢ = 1,..., N) in the CER
model is simply the sample average of the observed returns for asset .

Example 10 Consider the monthly continuously compounded returns on Mi-
crosoft, Starbucks and the SEP 500 index over the period July 1992 through
October 2000. The returns are shown n figure For the T = 100 monthly
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continuously returns the estimates of E[Ry) = u; are

1 100
[i = — msftt = 0.0276
/“Lmsft 100 tz:; r ftit

1 100
1 = Ton sbuz,t = 0.02
fia = o 2 Tabuae = 00278

| loo
[hspsoo = 100 ZTSpBOO,t = 0.0125
t—1

The mean returns for MSFT and SBUX are very similar at about 2.8%
per month whereas the mean return for SP500 is smaller at only 1.25% per
month.

The method of moments estimates of o7, 0;,0,; and Pij

The method of moments estimates of o7, 0;, 0;; and p;; are defined analo-
gously to the method of moments estimator for p,. Without going into the
details, the method of moments estimates of o7, 0y, 0;; and p;; are given by
the sample descriptive statistics

1 T

7= e Y (=)’ (16)
o; Tie — Ti)7, .
T-1 —
6; = \/62, (L.7)
T
R 1 _ _
Oij = ﬁzmt—m)(w—m), (1.8)
t=1
ﬁij = Aaij (1.9)
00

where 7; = %ZL ri = [1; is the sample average of the returns on asset.:.
Notice that (1.6) is simply the sample variance of the observed returns for
asset 4, (1.7) is the sample standard deviation, (1.8) is the sample covariance
of the observed returns on assets ¢ and j and (1.9) is the sample correlation
of returns on assets 7 and j.

Example 11 Consider again the monthly continuously compounded returns
on Microsoft, Starbucks and the SE&P 500 index over the period July 1992
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Figure 1.6: Scatterplot matrix of monthly returns on Microsoft, Starbucks
and S&P 500 index.

through October 2000. The estimates of the parameters o2, 0;, using (1.6)
and (1.7) are

Gosge = 0.0114, 6 ey = 0.1068
6%.e = 0.0185, 6 gpuz = 0.1359
62500 = 0.0014, 6 5500 = 0.0379

SBUX has the most variable monthly returns and SP500 has the smallest.
The scatterplots of the returns are illustrated in figure 1.6. All returns appear
to be positively related. The pairs (MSEFT,SP500) and (SBUX,SP500) appear

to be the most correlated. The estimates of o;; and p;; using (1.8) and (1.9)
are

a-msft,sbux = 000407 0A_msft,sp500 = 000227 &sbux,sp500 = 0.0022
/A)msft,sbux = 027777 /A)msft,sp500 = 055517 /A)sbu:r,sp500 = 0.4197

These estimates confirm the visual results from the scatterplot matriz.
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1.3 Statistical Properties of Estimates

1.3.1 Statistical Properties of i,

To determine the statistical properties of ji; in the CER model, we treat it
as a function of the random sample R;q, ..., Ryr:

T
. . 1
where R;; is assumed to be generated by the CER model (1.1).

Bias

In the CER model, the random variables R; (t = 1,...,T) are iid normal
with mean y; and variance o?. Since the method of moments estimator
(1.10) is an average of these normal random variables it is also normally
distributed. That is, p(j1;) is a normal density. To determine the mean of
this distribution we must compute E[,] = E[T~'Y._, Ry]. Using results
from chapter 2 about the expectation of a linear combination of random
variables it is straightforward to show (details are given in the appendix)
that
Eli;) = p;

Hence, the mean of the distribution of ji; is equal to p,. In other words, ji,
an unbiased estimator for p,.

Precision

To determine the variance of ji; we must compute var (fi;) = var(T~" 321, Rit).
Using the results from chapter 2 about the variance of a linear combination
of uncorrelated random variables it is easy to show (details in the appendix)

that

0.2

var(fi;) = T (1.11)
Notice that the variance of i, is equal to the variance of R;; divided by the
sample size and is therefore much smaller than the variance of R;;.

The standard deviation of fi; is just the square root of var (i)

SD(p;) = \/var (i) = 57 (1.12)
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Figure 1.7: Pdfs for fi; with small and large values of SE(f1;). True value of
p; = 0.

The standard deviation of fi; is most often referred to as the standard error

of the estimate fi;:
Oi

Jr
SE(f1;) is in the same units as fi; and measures the precision of fi;, as an
estimate. If SE(ji;) is small relative to fi; then [, is a relatively precise of
p; because p(ji;) will be tightly concentrated around p;; if SE(fi;) is large
relative to p,; then fi; is a relatively imprecise estimate of p,; because p(fi;)
will be spread out about p,. Figure 1.7 illustrates these relationships
Unfortunately, SFE(f;) is not a practically useful measure of the precision
of [i; because it depends on the unknown value of ;. To get a practically
useful measure of precision for ji; we compute the estimated standard error

SE(ji;) = SD(ji;) = (1.13)

~

SE(ji;) = \/oar(ji;) = jT (1.14)

which is just (1.13) with the unknown value of o; replaced by the method of

~2

moments estimate o; = 1/0; .
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Example 12 For the Microsoft, Starbucks and S&P 500 return data, the
values of SE(fi;) are

0.1068

SE(flymss) = o~ 01068
o~ 0.1359

SE (i) = o5 = 001859
SE(jiyps00) = 09379 _ ) 003785

+/100

Clearly, the mean return p,; is estimated more precisely for the SEIP 500 index
than it 1s for Microsoft and Starbucks.

Interpreting E[f;] and SE(j;) using Monte Carlo simulation

The statistical concepts E[u;] = p; and SE(u;) are a bit hard to grasp at first.
Strictly speaking, E[ji;] = p; means that over an infinite number of repeated
samples the average of the ji;, values computed over the infinite samples is
equal to the true value ;. Similarly, SE(j1;) represents the standard deviation
of these i, values. We may think of these hypothetical samples as Monte
Carlo simulations of the CER model. In this way we can approximate the
computations involved in evaluating E[f;] and SE(f;).
To illustrate, consider the CER model

Rt = 0-05+€it7t: 1,,50 (115)
ey “iid N(0,(0.10)?)

and simulate N = 1000 samples of size T" = 50 values from the above model
using the technique of Monte Carlo simulation. This gives j = 1,...,1000
sample realizations {ri*,...,rls}. The first 10 of these sample realizations
are illustrated in figure 1.8.Notice that there is considerable variation in the
simulated samples but that all of the simulated samples fluctuates about
the true mean value of © = 0.05. For each of the 1000 simulated samples the
estimate /1 is formed giving 1000 mean estimates {71, ..., z'°}. A histogram
of these 1000 mean values is illustrated in figure 1.9.The histogram of the
estimated means, /i, can be thought of as an estimate of the underlying pdf,
p(ft), of the estimator i which we know is a Normal pdf centered at p = 0.05
with SE(fi;) = %2 = 0.01414. Notice that the center of the histogram is

V50
very close to the true mean value p = 0.05. That is, on average over the
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returns

Figure 1.8: Ten simulated samples of size 7" = 50 from the CER model
Rt =0.05 + Et, Et “iid N(O<010)2)

1000 Monte Carlo samples the value of i is about 0.05. In some samples,
the estimate is too big and in some samples the estimate is too small but on

average the estimate is correct. In fact, the average value of {[Ll, e ,[Llooo}
from the 1000 simulated samples is
| Looo
1000 Z 0.05045

which is very close to the true value. If the number of simulated samples is
allowed to go to infinity then the sample average of ji’ will be exactly equal
to p:

The typical size of the spread about the center of the histogram represents
SE(j1;) and gives an indication of the precision of ji,. The value of SE(fi;) may
be approximated by computing the sample standard deviation of the 1000
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Figure 1.9: Histogram of 1000 values of ji from Monte Carlo simulation of
CER model.

i! values

1000

1 .
599 > (i —0.05045)2 = 0.01383
j=1

Notice that this value is very close to SE(fi;) = %X = 0.01414. If the number
of simulated sample goes to infinity then

@\

1 N1 .
lim —ZA—— N2 = SE(ji

The Sampling Distribution of /i,

o2

Using the results that pdf of ji; is normal with E[j;] = p; and var(f;) = =

we may write
2

N gy
fi; ~ N(Mm?)- (1.16)
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Figure 1.10: N(0, —=) density for 7"= 1,10 and 50.

S

T

The distribution for /i, is centered at the true value p, and the spread about
the average depends on the magnitude of o2, the variability of R;, and the
sample size. For a fixed sample size, T, the uncertainty in f, is larger for
larger values of o?. Notice that the variance of fi, is inversely related to
the sample size T. Given o2, var(ji;) is smaller for larger sample sizes than
for smaller sample sizes. This makes sense since we expect to have a more
precise estimator when we have more data. If the sample size is very large (as
T — o) then var(fi;) will be approximately zero and the normal distribution
of fi; given by (1.16) will be essentially a spike at u,. In other words, if the
sample size is very large then we essentially know the true value of ;. In the
statistics language we say that [i; is a consistent estimator of p,.

The distribution of fi,;, with p; = 0 and 0% = 1 for various sample sizes is
illustrated in figure 1.10. Notice how fast the distribution collapses at p; =0
as T increases. .
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Confidence intervals for

The precision of ji; is best communicated by computing a confidence interval
for the unknown value of u,. A confidence interval is an interval estimate of
1; such that we can put an explicit probability statement about the likeli-
hood that the confidence interval covers p;. The construction of a confidence
interval for p, is based on the following statistical result (see the appendix
for details).

Result: Let R;,..., R;r denote a random sample from the CER model.
Then .

Hi — Hi "

= ~lr_1,

SE(i)
where t7_; denotes a Student-t random variable with 7" — 1 degrees of free-
dom.

The above result states that the standardized value of ji; has a Student-t
distribution with 7' —1 degrees of freedom®. To compute a (1 —a)-100% con-
fidence interval for p; we use (7?) and the quantile (critical value) tr_1(/2)
to give

~

Pr| —tr 1(a/2) <P ti oy (a/2)) =1—a,

which can be rearranged as
Pr (i — tr-1(/2) - SE(n) < p < joi + t-1 - SE(i) ) = 0.95.
Hence, the interval
[ = tr2(0/2) - SE(f), i+ troy - SE(f)] = i % tr-a(a/2) - 5B ()

covers the true unknown value of p; with probability 1 — a.

For example, suppose we want to compute 95% confidence intervals for
;. In this case @ = 0.05 and 1 — o = 0.95. Suppose further that 7' — 1 = 60
(five years of monthly return data) so that tr_1(a/2) = t6(0.025) = 2 and
t60(0.005) = . Then the 95% confidence for y, is given by

i £2- SE(j1,). (1.17)

0This resut follows from the fact that fi; is normally distributed and gE(,&L) is equal
to the square root of a chi-square random variable divided by its degrees of freedom.
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The above formula for a 95% confidence interval is often used as a rule of
thumb for computing an approximate 95% confidence interval for moderate
sample sizes. It is easy to remember and does not require the computation
of quantile ¢7_1(a/2) from the Student-t distribution.

Example 13 Consider computing approximate 95% confidence intervals for
w; using (1.17) based on the estimated results for the Microsoft, Starbucks
and SEP 500 data. These confidence intervals are

MSFT : 0.02756 4+ 2 - 0.01068 = [0.0062, 0.0489]
SBUX : 0.02777 +2 - 0.01359 = [0.0006, 0.0549]
SP500 : 0.01253 4 2 - 0.003785 = [0.0050, 0.0201]

With probability .95, the above intervals will contain the true mean values
assuming the CER model is valid. The approzimate 95% confidence inter-
vals for MSFT and SBUX are fairly wide. The widths are almost 5% with
lower limits near 0 and upper limits near 5%. In contrast, the 95% con-
fidence interval for SP500 is about half the width of the MSFT or SBUX
confidence interval. The lower limit is near .5% and the upper limit is near
2%. This clearly shows that the mean return for SP500 is estimated much
more precisely than the mean return for MSFT or SBUX.

1.3.2 Statistical properties of the method of moments
estimators of o7, 0;,0;; and p,;.

To determine the statistical properties of 67 and 67 we need to treat them
as a functions of the random sample R;1, ..., Rir :

T

1
A2 a2p Nt a2
6; = 6;(Ri,...Rir) T_ltEﬂ(th ;)%

~

OA-i - &ARM,R@T) - &12<R117R1T)

Note also that ji; is to be treated as a random variable. Similarly, to de-
termine the statistical properties of ¢;; and p,;; we need to treat them as a
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functions of Ril: PN 7RiT and Ril: ce ey RjT :
1 T
OA'ij = 5ij(Ri17 .- '7RiT;Rj17 .- -7RjT) = ﬁ Z(Rit - ﬂi)(Rjt - /Al’j)7
t=1
0ij(Ri, ..., Rir; Ry, . .., Ryr)
5‘1(R11,R1T) '&j(lea---RjT)'

pij = OA'ij(Rily---uRiT;leu---ijT) =

Bias

Assuming that returns are generated by the CER model (1.1), the sample
variances and covariances are unbiased estimators,

E(57] = o}

1)

El6y] = o4,

but the sample standard deviations and correlations are biased estimators,
E[OA-Z] 7é T,
E [ﬁij] # Pij-

The proofs of these results are beyond the scope of this book. However, they
may be easily be evaluated using Monte Carlo methods.

Precision

The derivations of the variances of &?, i, 0ij and p,; are complicated and the
exact results are extremely messy and hard to work with. However, there are
simple approximate formulas for the variances of 67, &; and p;; that are valid
if the sample size, T, is reasonably large 7. These large sample approximate
formulas are given by

SE(67) ~ 11/2, (1.18)
SE(6;) ~ \;z_T (1.19)
SE(py;) ~ (=r) (1.20)

vT
"The large sample approximate formula for the variance of 6;; is too messy to work
with so we omit it here.
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where “x~” denotes approximately equal. The approximations are such that
the approximation error goes to zero as the sample size T' gets very large.
As with the formula for the standard error of the sample mean, the formulas
for the standard errors above are inversely related to the square root of the
sample size. Interestingly, SFE(&;) goes to zero the fastest and SE(67) goes to
zero the slowest. Hence, for a fixed sample size, it appears that o; is generally
estimated more precisely than 2 and pij» and p;; is estimated generally more
precisely than o2.

The above formulas are not practically useful, however, because they
depend on the unknown quantities o2, o; and p;;- Practically useful formulas
replace 02, 0; and p;; by the estimates 67,6, and p;; and give rise to the
estimated standard errors

SE(6?) ~ —2—, 1.21
(67) 7 (1.21)

__ G

SB(6) ~ (1.22)

_— 1— 2

SE(pi;) = S22 (1.23)

Example 14 To be completed

Sampling distribution

To be completed

Confidence Intervals for o7,0; and p;;

Approximate 95% confidence intervals for 0%, o; and p;; are give by

52+2-SEG?Y) = 62 +£2 —i
T/2

6;+£2-SE@G:) = 642 —2
V2T
(1-7%)

f)ijiz'SE@ij) = f)iin'i

Example 15 To be completed
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Figure 1.11: Histograms of 6% and & computed from N = 1000 Monte Carlo
samples from CER model.

Evaluating the Statistical Properties of &?, gi,04 and p;; by Monte
Carlo simulation

We may evaluate the statistical properties of 6?, i, 04 and p;; by Monte
Carlo simulation in the same way that we evaluated the statistical properties
of j1;. Consider first the variability estimates 6> and &;. We use the simulation
model (1.15) and N = 1000 simulated samples of size T = 50 to compute the
estimates {(62)1 o (67) 1000} and {6',...,6'°}. The histograms of these
values are displayed in figure 1.11.The histogram for the 62 values is bell-
shaped and slightly right skewed but is centered very close to 0.010 = o2. The
histogram for the ¢ values is more symmetric and is centered near 0.10 = o.
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The average values of 02 and o from the 1000 simulations are

~2
1000 2 o 0.009952
7j=1
1 000
— 576 = 0.0992
1000 o 0.09928

The sample standard deviation values of the Monte Carlo estimates of o
and o give approximations to SE(6%) and SE(). Using the formulas (1.18)
and (1.19) these values are

2

SE(6%) = (0.10) = 0.002
50,2
0.10

SE(6) = = 0.010
@) = oo

1.4 Further Reading

To be completed

1.5 Appendix

1.5.1 Proofs of Some Technical Results

Result: E[3,] = 1,
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Proof. Using the fact that i, = 71 ZtT:l Ry and R;; = p,; + i we have

1 T
Elju] = E |7 ) Ra

I
<
N =
]~
=
+
<

[]
Result: var(y;) = %2
Proof. Using the fact that i, = 71 Zle Ry and R;; = p,; + i we have

T
. 1
var(ji;) = var T Z Rit)

(p; + &?it)> (in the CER model Ry = u; + €it)

= var

N~
M1

t=1

N =
[M] =

= var ait> (since p; is a constant)

t=1

T
= = g var(e;y) (since g; is independent over time)

T
= ZO’? (since var(ey) = o7, t=1,...,T)
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1.5.2 Some Special Probability Distributions Used in
Statistical Inference

The Chi-Square distribution with 7" degrees of freedom

Let Z1, Z5, ..., Z7 be independent standard normal random variables. That

is,
Z; ~ iid. N(0,1), i=1,...,T.

Define a new random variable X such that
T
X=Z+Z3+ - Z3 =Y 7}
i=1

Then X is a chi-square random variable with 7" degrees of freedom. Such a
random variable is often denoted x3 and we use the notation X ~ x%. The
pdf of X is illustrated in Figure xxx for various values of T. Notice that X
is only allowed to take non-negative values. The pdf is highly right skewed
for small values of T" and becomes symmetric as T' gets large. Furthermore,

it can be shown that
E[X]=T.

The chi-square distribution is used often in statistical inference and prob-
abilities associated with chi-square random variables are needed. Critical
values, which are just quantiles of the chi-square distribution, are used in
typical calculations. To illustrate, suppose we wish to find the critical value
of the chi-square distribution with T degrees of freedom such that the prob-
ability to the right of the critical value is a.. Let x%(«) denote this critical
value®. Then

Pr(X > x2(a)) = a.

For example, if T =5 and o = 0.05 then x2(0.05) = 11.07; if "= 100 then

1.5.3 Student’s t distribution with 7" degrees of free-
dom

Let Z be a standard normal random variable, Z ~ N(0,1), and let X be
a chi-square random variable with 7' degrees of freedom, X ~ y2. Assume

8Excel has functions for computing probabilities from the chi-square distribution.
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that Z and X are independent. Define a new random variable ¢ such that
Z
VX/T

Then ¢ is a Student’s t random variable with 7" degrees of freedom and we
use the notation t ~ tr to indicate that ¢ is distributed Student-t. Figure
xxx shows the pdf of ¢ for various values of the degrees of freedom T'. Notice
that the pdf is symmetric about zero and has a bell shape like the normal.
The tail thickness of the pdf is determined by the degrees of freedom. For
small values of T', the tails are quite spread out and are thicker than the
tails of the normal. As T gets large the tails shrink and become close to the
normal. In fact, as T" — oo the pdf of the Student t converges to the pdf of
the normal.

The Student-t distribution is used heavily in statistical inference and
critical values from the distribution are often needed. Let tr(a) denote the
critical value such that

Pr(t > tr(a)) = a.

For example, if 7' = 10 and a = 0.025 then t10(0.025) = 2.228; if 7" = 100
then ¢60(0.025) = 2.00. Since the Student-t distribution is symmetric about
zero, we have that

Pr(—tr(a) <t <tr(a)) =1-2a.
For example, if 7' = 60 and a = 2 then ¢¢,(0.025) = 2 and

Pr(—tg0(0.025) < t < t60(0.025)) = Pr(—2 < ¢ < 2) = 1 — 2(0.025) = 0.95.

1.6 Problems

To be completed
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1 Hypothesis Testing in the Market Model

In this chapter, we illustrate how to carry out some simple hypothesis tests concerning
the parameters of the excess returns market model regression.

1.1 A Review of Hypothesis Testing Concepts
To be completed.

1.2 Testing the Restriction a = 0.
Using the market model regression,

Rt = Oé"-ﬁRMt—FSt, t= 1,...,T
g ~ did N(0,02), & is independent of Ry (1)

consider testing the null or maintained hypothesis @ = 0 against the alternative that

a#0
Hy:a=0ws. H :a#0.

If Hy is true then the market model regression becomes
Ry = BRy + &

and E[R;|Ryre = rae] = Brae. We will reject the null hypothesis, Hy : a = 0, if
the estimated value of « is either much larger than zero or much smaller than zero.
Assuming Hp : @ = 0 is true, & ~ N (0, SE(&)?) and so is fairly unlikely that & will



be more than 2 values of SE(&) from zero. To determine how big the estimated value
of a needs to be in order to reject the null hypothesis we use the t-statistic

a—0
SE(@)’

toe:O -

where o is the least squares estimate of o and SE (@) is its estimated standard error.
The value of the t-statistic, t,—o, gives the number of estimated standard errors that
a is from zero. If the absolute value of ¢,—¢ is much larger than 2 then the data cast
considerable doubt on the null hypothesis o = 0 whereas if it is less than 2 the data
are in support of the null hypothesis'. To determine how big | t,—o| needs to be to
reject the null, we use the fact that under the statistical assumptions of the market
model and assuming the null hypothesis is true

ta—o ~ Student — t with T — 2 degrees of freedom

If we set the significance level (the probability that we reject the null given that the
null is true) of our test at, say, 5% then our decision rule is

Reject Hy : o = 0 at the 5% level if |to—g| > t7-2(0.025)

where t7_5 is the 2%% critical value from a Student-t distribution with 7" — 2 degrees
of freedom.

Example 1 Market Model Regression for IBM

Consider the estimated MM regression equation for IBM using monthly data from
January 1978 through December 1982:

RIBMt =—0.0002 + 0. 3390 Ry, R =020, 6. = 0.0524
(0.0068) (0.0888

where the estimated standard errors are in parentheses. Here a = —0.0002, which is
very close to zero, and the estimated standard error, SE(&) = 0.0068, is much larger
than &. The t-statistic for testing Hy: a =0 vs. H; : a # 0 is

—0.0002 -0
toe:[) — 00068_ = —0.0363

so that & is only 0.0363 estimated standard errors from zero. Using a 5% significance
level, t55(0.025) ~ 2 and
|[ta=o| = 0.0363 < 2

so we do not reject Hy : a = 0 at the 5% level.

I This mterpretatlon of the t-statistic relies on the fact that, assuming the null hypothems is true
so that a = 0, & is normally distributed with mean 0 and estlmated variance SE( )2.
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1.3 Testing Hypotheses about

In the market model regression 3 measures the contribution of an asset to the vari-
ability of the market index portfolio. One hypothesis of interest is to test if the asset
has the same level of risk as the market index against the alternative that the risk is
different from the market:

H[)Zﬁ:].’l)S.Hllﬁ%l.

The data cast doubt on this hypothesis if the estimated value of  is much different
from one. This hypothesis can be tested using the t-statistic

o~

G6—1
tgoy = ——n
SE(B)
which measures how many estimated standard errors the least squares estimate of 3
is from one. The null hypothesis is reject at the 5% level, say, if |t3—1| > t7_2(0.025).
Notice that this is a two-sided test.
Alternatively, one might want to test the hypothesis that the risk of an asset is
strictly less than the risk of the market index against the alternative that the risk is
greater than or equal to that of the market:

H[):ﬁzl’l)S.HliﬁZL

Notice that this is a one-sided test. We will reject the null hypothesis only if the
estimated value of  much greater than one. The t-statistic for testing this null
hypothesis is the same as before but the decision rule is different. Now we reject the
null at the 5% level if

tgzl < —tT,2(0.05)

where tr_2(0.05) is the one-sided 5% critical value of the Student-t distribution with
T — 2 degrees of freedom.

Example 2 MM Regression for IBM cont’d

Continuing with the previous example, consider testing Hy : 8 = 1 vs. Hy : 3 # 1.
Notice that the estimated value of § is 0.3390, with an estimated standard error of
0.0888, and is fairly far from the hypothesized value § = 1. The t-statistic for testing
6 =1Iis

0.3390 — 1

o = 2 T2 7444
p=1 0.0888 7

which tells us that B is more than 7 estimated standard errors below one. Since
t0.025,58 ~ 2 we easily reject the hypothesis that 5 = 1.

Now consider testing Hy : 0 = 1 vs. Hy : § > 1. The t-statistic is still -7.444
but the critical value used for the test is now —#55(0.05) ~ —1.671. Clearly, tg_1 =
—7.444 < —1.671 = —t55(0.05) so we reject this hypothesis.
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1.4 Testing Joint Hypotheses about o and [

Often it is of interest to formulate hypothesis tests that involve both a and 3. For
example, consider the joint hypothesis that « =0 and =1

Hy:a=0and g =1.

The null will be rejected if either a« # 0,3 # 1 or both.. Thus the alternative is
formulated as

Hy:a#0,or f#1ora#0and g # 1.

This type of joint hypothesis is easily tested using a so-called F-test. The idea behind
the F-test is to estimate the model imposing the restrictions specified under the null
hypothesis and compare the fit of the restricted model to the fit of the model with
no restrictions imposed.

The fit of the unrestricted (UR) excess return market model is measured by the
(unrestricted) sum of squared residuals (RSS)

T
SSRUR—SSR ﬁ:Zf:ZRt—a—ﬁRMt).
t=1

Recall, this is the quantity that is minimized during the least squares algorithm. Now,
the market model imposing the restrictions under Hj is

Rt = O+1(RMt—Tf)+5t
= RMt+5t-

Notice that there are no parameters to be estimated in this model which can be seen
by subtracting Ry from both sides of the restricted model to give

Rt_RMt :gt

The fit of the restricted (R) model is then measured by the restricted sum of squared
residuals

T T
SSRr=SSR(a=0,8=1)=> " => (R — Rum:)".
t=1

Now since the least squares algorithm works to minimize S'S R, the restricted error
sum of squares, SSRg, must be at least as big as the unrestricted error sum of squares,
SSRyg. If the restrictions imposed under the null are true then SSRr ~ SSRyr
(with SSRp always slightly bigger than SSRyg) but if the restrictions are not true
then SSRr will be quite a bit bigger than SSRyg. The F-statistic measures the
(adjusted) percentage difference in fit between the restricted and unrestricted models
and is given by

SSRR — SSRUR)/(] . (SSRR — SSRUR)

F= ( =
SSRyr/(T — k) q- ag,UR 7




where ¢ equals the number of restrictions imposed under the null hypothesis, k£ denotes
the number of regression coefficients estimated under the unrestricted model and
8§7UR denotes the estimated variance of €; under the unrestricted model. Under the
assumption that the null hypothesis is true, the F-statistic is distributed as an F
random variable with ¢ and T"— 2 degrees of freedom:

F~ Fyps.

Notice that an F random variable is always positive since SSRr > SSRygr. The null
hypothesis is rejected, say at the 5% significance level, if

F > Fq,T—k(0-05)

where F,7_1(0.05) is the 95% quantile of the distribution of F, 7.
For the hypothesis Hy : @ = 0 and 3 = 1 there are ¢ = 2 restrictions under the
null and k& = 2 regression coefficients estimated under the unrestricted model. The

F-statistic is then
(SSRi — SSRyg)/2

SSRur/(T —2)

Fa:[),ﬂ:l -

Example 3 MM Regression for IBM cont’d

Consider testing the hypothesis Hy : @« = 0 and § = 1 for the IBM data. The
unrestricted error sum of squares, SS Ry g, is obtained from the unrestricted regression
output in figure 2 and is called Sum Square Resid:

SSRyr = 0.159180.

To form the restricted sum of squared residuals, we create the new variable &, =
R; — Ry and form the sum of squares SSRr = Zle'éf = 0.31476. Notice that
SSRr > SSRygr. The F-statistic is then

(0.31476 — 0.159180) /2

= 28.34.
0.159180/58 55

Fa:O,ﬂ:l =

The 95% quantile of the F-distribution with 2 and 58 degrees of freedom is about
3.15. Since F,—pp-1 = 28.34 > 3.15 = F353(0.05) we reject Hy: o =0 and § =1 at
the 5% level.

1.5 Testing the Stability of a and ( over time

In many applications of the MM, o and (8 are estimated using past data and the
estimated values of o and 3 are used to make decision about asset allocation and risk
over some future time period. In order for this analysis to be useful, it is assumed that
the unknown values of o and 3 are constant over time. Since the risk characteristics of
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assets may change over time it is of interest to know if a and 3 change over time. To
illustrate, suppose we have a ten year sample of monthly data (7" = 120) on returns
that we split into two five year subsamples. Denote the first five years ast =1,...,Tp
and the second five years as t = Tg1,...,T. The date t = Ty is the “break date” of
the sample and it is chosen arbitrarily in this context. Since the samples are of equal
size (although they do not have to be) T'—Tg = T or T' = 2-Tg. The market model
regression which assumes that both o and 3 are constant over the entire sample is
Rt = a+ﬂRMt+€t, t:]_,,T
g ~ idid N(0,0%) independent of Ryy;.
There are three main cases of interest: (1) § may differ over the two subsamples; (2) a
may differ over the two subsamples; (3) o and § may differ over the two subsamples.

1.5.1 Testing Structural Change in [ only

If a is the same but [ is different over the subsamples then we really have two market
model regressions

Rt = Oé—i‘ﬁlRMt—i‘éft,t:l,...?TB
Ry = a+ ByRye+e, t=Tpy1,..., T

that share the same intercept o but have different slopes (3, # 3,. We can capture
such a model very easily using a step dummy variable defined as

Dt = O,tSTB
= 1, t>1Tg

and re-writing the MM regression as the multiple regression
Ry = a+ BRuy + DiRyt + &4
The model for the first subsample when D, = 0 is
Ri=a+ Ry +e¢, t=1,...,1TR
and the model for the second subsample when D; =1 is

R, = a+ (Ryy+O0Rye +6&, t=Tpq1,..., T
= a+ (B4R + &

Notice that the “beta” in the first sample is 3, = @ and the beta in the second
subsample is 3, = B+ 6. If 6 < 0 the second sample beta is smaller than the first
sample beta and if 6 > 0 the beta is larger.



We can test the constancy of beta over time by testing 6 = 0:
Hy : (beta is constant over two sub-samples) 6 = 0 vs. H; : (beta is not constant over two sub-sample:

The test statistic is simply the t-statistic

and we reject the hypothesis 6 = 0 at the 5% level, say, if |ts—¢| > t7_3(0.025).
Example 4 MM regression for IBM cont’d

Consider the estimated MM regression equation for IBM using ten years of monthly
data from January 1978 through December 1987. We want to know if the beta on
IBM is using the first five years of data (January 1978 - December 1982) is different
from the beta on IBM using the second five years of data (January 1983 - December
1987). We define the step dummy variable

D; = 1ift > December 1982

= 0, otherwise
The estimated (unrestricted) model allowing for structural change in 3 is given by
Ripue = —0.0001 + 0,338 -Ryyy+ 03158 -D; - Ry,

(0.0045) (0.0837) )
R* = 0.311, 6. = 0.0496.

The estimated value of (3 is 0.3388, with a standard error of 0.0837, and the estimated
value of ¢ is 0.3158, with a standard error of 0.1366. The t-statistic for testing 6 =0

is given by
0.3158

= 0.1366

which is greater than t117(0.025) = 1.98 so we reject the null hypothesis (at the
5% significance level) that beta is the same over the two subsamples. The implied
estimate of beta over the period January 1983 - December 1987 is

=0 = 2.312

B+ 6 = 0.3388 4 0.3158 = 0.6546.

It appears that IBM has become more risky.



1.5.2 Testing Structural Change in a and f3

Now consider the case where both a and 3 are allowed to be different over the two
subsamples:

Rt = a1+ﬁlRMt—|—€t,t:17...,TB
R, = as+ ByRye +e, t=Tpi,..., T

The dummy variable specification in this case is
Ri=a+ Ryt + 061Dy + 069 DiRpypy 64, t=1,...,T.
When D; = 0 the model becomes
Ri=a+0Ry+e, t=1,...,1Tg,
so that a; = a and 3, = 3, and when D; = 1 the model is
Ry = (a+061)+ (B+62) Ry + e, t=Tpr1,...,T,
so that as = a+ 6; and (3, = 3+ 05. The hypothesis of no structural change is now
Hy:61=0and 6 =0vs. Hy: 61 #0or 63 # 0 or 6; # 0 and 65 # 0.

The test statistic for this joint hypothesis is the F-statistic

- _ (SSRg — SSRyg)/2
7700270 T S S Ry R/ (T — 4)

since there are two restrictions and four regression parameters estimated under the
unrestricted model. The unrestricted (UR) model is the dummy variable regression
that allows the intercepts and slopes to differ in the two subsamples and the restricted
model (R) is the regression where these parameters are constrained to be the same
in the two subsamples.

The unrestricted error sum of squares, SSRyg, can be computed in two ways.
The first way is based on the dummy variable regression. The second is based on
estimating separate regression equations for the two subsamples and adding together
the resulting error sum of squares. Let SSR; and SSRy denote the error sum of
squares from separate regressions. Then

SSRyr = SSR1 + SSR..

Example 5 MM regression for IBM cont’d



The unrestricted regression is

—

Ry = —0.0001 + 0. 3388 ‘Rt
(0.0065) (0.0845

+ 0.0002 -D;+ 0 3158 Dy - Ry,
(0.0092) 77)

R?* = 0311, 5. = 0.050, SSRyr = 0.288379,

and the restricted regression is

—

Rigyme = —0.0005 + 0.4568 Ry,
(0.0046)  (0.0675)

R* = 0.279, 6. = 0.051, SSRp = 0.301558.
The F-statistic for testing Hp : 61 = 0 and 65 = 0 is

(0.301558 — 0.288379)/2

= 2.651
0.288379/116

Fs,—06,—0 =

The 95% quantile, F5116(0.05), is approximately 3.07. Since Fs,—os5,—0 = 2.651 <
3.07 = F5116(0.05) we do not reject Hy : 61 = 0 and 62 = 0 at the 5% significance
level. It is interesting to note that when we allow both a and ( to differ in the
two subsamples we cannot reject the hypothesis that these parameters are the same
between two samples but if we only allow ( to differ between the two samples we can
reject the hypothesis that  is the same.

1.6 Other types of Structural Change in

An interesting question regarding the beta of an asset concerns the stability of beta
over the market cycle. For example, consider the following situations. Suppose that
the beta of an asset is greater than 1 if the market is in an “up cycle”, Ryy > 0,
and less than 1 in a “down cycle”, Ry < 0. This would be a very desirable asset to
hold since it accentuates positive market movements but down plays negative market
movements. We can investigate this hypothesis using a dummy variable as follows.
Define

Dzlp - ].7 RMt>0
- 0, RMtSO

Then D;? divides the sample into “up market” movements and “down market” move-
ments. The regression that allows beta to differ depending on the market cycle is
then

Ry = o+ B8Ry + 0D;" - Rapy + €.

In the down cycle, when D;? = 0, the model is

Rt:a_‘_ﬂRMt_‘_gt
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and (3 captures the down market beta, and in the up market, when D;” = 1, the
model is
Ri=a+ (B+6)Ru +e

so that 3+ 6 capture the up market beta. The hypothesis that § does not vary over
the market cycle is

Hy:6=0vs. H :6#0 (2)
and can be tested with the simple t-statistic ts—g = 73#

SE(8)
If the estimated value of ¢ is found to be statistically greater than zero we might
then want to go on to test the hypothesis that the up market beta is greater than

one. Since the up market beta is equal to 3 + 6 this corresponds to testing
Hy:86+6=1vs. H:f+6>1
which can be tested using the t-statistic
tats=1 = —/B\+§ _} .
SE(B+96)

Since this is a one-sided test we will reject the null hypothesis at the 5% level if
ta+s=1 < —t0.05,7—3-

Example 6 MM regression for IBM and DEC

For IBM the CAPM regression allowing (3 to vary over the market cycle (1978.01
- 1982.12) is

—

Ripye = —0.0019 + 0.3163 -Rys+ 0.0552 -D;? - Ry
’ (0.0111) (0.1476) (0.2860)

R?* = 0.201,5 = 0.053

Notice that 6 = 0.0552, with a standard error of 0.2860, is close to zero and not
estimated very precisely. Consequently, ts—g = 8:3223 = 0.1929 is not significant at
any reasonable significance level and we therefore reject the hypothesis that beta
varies over the market cycle. However, the results are very different for DEC (Digital
Electronics):

Rppcy = —0.0248 + 0.3689 -Ry+ 0.8227 -DI - Ry
(0.0134) (0.1779) (0.3446)

R* = 0.460,5 = 0.064.

Here 6 = 0.8227, with a standard error of 0.3446, is statistically different from zero
at the 5% level since ts—o = 2.388. The estimate of the down market beta is 0.3689,
which is less than one, and the up market beta is 0.3689 + 0.8227 = 1.1916, which
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is greater than one. The estimated standard error for ﬂ + 5 requires the estimated
variances of 6 and ¢ and the estimated covariance between ﬂ and § and is given by

var(B+06) = wvar(B)+ var() + 2 - cov(B, )
= 0.031634 + 0.118656 + 2 - —0.048717

= 0.052856,
SE(B+06) = \oar(B+0) =0.052856 = 0.2299
Then tg15—1 = 1'&9212%;1 = 0.8334 which is less than 557 = 1.65 so we do not reject

the hypothesis that the up market beta is less than or equal to one.
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