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1 Matrix Algebra Review
A matrix is just an array of numbers. The dimension of a matrix is determined by
the number of its rows and columns. For example, a matrix A with n rows and m
columns is illustrated below

A
(n×m)

=


a11 a12 . . . a1m
a21 a22 . . . a2m
...

... . . .
...

an1 an2 . . . anm


where aij denotes the ith row and jth column element of A.
A vector is simply a matrix with 1 column. For example,

x
(n×1)

=


x1
x2
...
xn


is an n×1 vector with elements x1, x2, . . . , xn. Vectors and matrices are often written
in bold type (or underlined) to distinguish them from scalars (single elements of
vectors or matrices).
The transpose of an n×m matrix A is a new matrix with the rows and columns

of A interchanged and is denoted A0 or A|. For example,

A
(2×3)

=

·
1 2 3
4 5 6

¸
, A0

(3×2)
=

 1 4
2 5
3 6


1



x
(3×1)

=

 12
3

 , x0
(1×3)

=
£
1 2 3

¤
.

A symmetric matrix A is such that A = A0. Obviously this can only occur if A
is a square matrix; i.e., the number of rows of A is equal to the number of columns.
For example, consider the 2× 2 matrix

A =

·
1 2
2 1

¸
.

Clearly,

A0 = A =

·
1 2
2 1

¸
.

1.1 Basic Matrix Operations

1.1.1 Addition and subtraction

Matrix addition and subtraction are element by element operations and only apply
to matrices of the same dimension. For example, let

A =

·
4 9
2 1

¸
, B =

·
2 0
0 7

¸
.

Then

A+B =

·
4 9
2 1

¸
+

·
2 0
0 7

¸
=

·
4 + 2 9 + 0
2 + 0 1 + 7

¸
=

·
6 9
2 8

¸
,

A−B =

·
4 9
2 1

¸
−
·
2 0
0 7

¸
=

·
4− 2 9− 0
2− 0 1− 7

¸
=

·
2 9
2 −6

¸
.

1.1.2 Scalar Multiplication

Here we refer to the multiplication of a matrix by a scalar number. This is also an
element-by-element operation. For example, let c = 2 and

A =

·
3 −1
0 5

¸
.

Then

c ·A =
·
2 · 3 2 · (−1)
2 · (0) 2 · 5

¸
=

·
6 −2
0 10

¸
.

2



1.1.3 Matrix Multiplication

Matrix multiplication only applies to conformable matrices. A andB are conformable
matrices of the number of columns in A is equal to the number of rows in B. For
example, if A is m×n and B ism×p then A and B are conformable. The mechanics
of matrix multiplication is best explained by example. Let

A
(2×2)

=

·
1 2
3 4

¸
and B

(2×3)
=

·
1 2 1
3 4 2

¸
.

Then

A
(2×2)

· B
(2×3)

=

·
1 2
3 4

¸
·
·
1 2 1
3 4 2

¸
=

·
1 · 1 + 2 · 3 1 · 2 + 2 · 4 1 · 1 + 2 · 2
3 · 1 + 4 · 3 3 · 2 + 4 · 4 3 · 1 + 4 · 2

¸
=

·
7 10 5
15 22 11

¸
= C
(2×3)

The resulting matrix C has 2 rows and 3 columns. In general, if A is n×m and B
is m× p then C = A ·B is n× p.
As another example, let

A
(2×2)

=

·
1 2
3 4

¸
and B

(2×1)
=

·
2
6

¸
.

Then

A
(2×2)

· B
(2×1)

=

·
1 2
3 4

¸
·
·
5
6

¸
=

·
1 · 5 + 2 · 6
3 · 5 + 4 · 6

¸
=

·
17
39

¸
.

As a &nal example, let

x =

 12
3

 , y =
 45
6

 .
Then

x0y =
£
1 2 3

¤ ·
 45
6

 = 1 · 4 + 2 · 5 + 3 · 6 = 32
3



1.2 The Identity Matrix

The identity matrix plays a similar role as the number 1. Multiplying any number by
1 gives back that number. In matrix algebra, pre or post multiplying a matrix A by
a conformable identity matrix gives back the matrix A. To illustrate, let

I =

·
1 0
0 1

¸
denote the 2 dimensional identity matrix and let

A =

·
a11 a12
a21 a22

¸
denote an arbitrary 2× 2 matrix. Then

I ·A =

·
1 0
0 1

¸
·
·
a11 a12
a21 a22

¸
=

·
a11 a12
a21 a22

¸
= A

and

A · I =

·
a11 a12
a21 a22

¸
·
·
1 0
0 1

¸
=

·
a11 a12
a21 a22

¸
= A.

1.3 Inverse Matrix

To be completed.

1.4 Representing Summation Using Vector Notation

Consider the sum

nX
k=1

xk = x1 + · · ·+ xk.

Let x = (x1, . . . , xn)
0 be an n × 1 vector and 1 = (1, . . . , 1)0 be an n × 1 vector of

ones. Then

x01 =
£
x1 . . . xn

¤ ·
 1...
1

 = x1 + · · ·+ xk = nX
k=1

xk

4



and

10x =
£
1 . . . 1

¤ ·
 x1...
xn

 = x1 + · · ·+ xn = nX
k=1

xk.

Next, consider the sum of squared x values

nX
k=1

x2k = x
2
1 + · · ·+ x2n.

This sum can be conveniently represented as

x0x =
£
x1 . . . xn

¤ ·
 x1...
xn

 = x21 + · · ·+ x2n = nX
k=1

x2k.

Last, consider the sum of cross products

nX
k=1

xkyk = x1y1 + · · ·xnyn.

This sum can be compactly represented by

x0y =
£
x1 . . . xn

¤ ·
 y1...
yn

 = x1y1 + · · ·xnyn = nX
k=1

xkyk.

Note that x0y = y0x.

1.5 Representing Systems of Linear Equations Using Matrix
Algebra

Consider the system of two linear equations

x+ y = 1 (1)

2x− y = 1 (2)

which is illustrated in Figure xxx. Equations (1) and (2) represent two straight lines
which intersect at the point x = 2

3
and y = 1

3
. This point of intersection is determined

by solving for the values of x and y such that x+ y = 2x− y1.
1Soving for x gives x = 2y. Substituting this value into the equation x+ y = 1 gives 2y + y = 1

and solving for y gives y = 1/3. Solving for x then gives x = 2/3.

5



The two linear equations can be written in matrix form as·
1 1
2 −1

¸ ·
x
y

¸
=

·
1
1

¸
or

A · z = b
where

A =

·
1 1
2 −1

¸
, z =

·
x
y

¸
and b =

·
1
1

¸
.

If there was a (2 × 2) matrix B, with elements bij, such that B ·A = I, where I
is the (2× 2) identity matrix, then we could solve for the elements in z as follows. In
the equation A · z = b, pre-multiply both sides by B to give

B ·A · z = B · b
=⇒ I · z = B · b
=⇒ z = B · b

or ·
x
y

¸
=

·
b11 b12
b21 b22

¸ ·
1
1

¸
=

·
b11 · 1 + b12 · 1
b21 · 1 + b22 · 1

¸
If such a matrix B exists it is called the inverse of A and is denoted A−1. In-

tuitively, the inverse matrix A−1 plays a similar role as the inverse of a number.
Suppose a is a number; e.g., a = 2. Then we know that 1

a
· a = a−1a = 1. Similarly,

in matrix algebra A−1A = I where I is the identity matrix. Next, consider solving
the equation ax = 1. By simple division we have that x = 1

a
x = a−1x. Similarly, in

matrix algebra if we want to solve the system of equation Ax = b we multiply by
A−1 and get x = A−1b.
Using B = A−1, we may express the solution for z as

z = A−1b.

As long as we can determine the elements in A−1 then we can solve for the values of
x and y in the vector z. Since the system of linear equations has a solution as long as
the two lines intersect, we can determine the elements in A−1 provided the two lines
are not parallel.
There are general numerical algorithms for &nding the elements ofA−1 and typical

spreadsheet programs like Excel have these algorithms available. However, if A is a
(2×2) matrix then there is a simple formula for A−1. Let A be a (2×2) matrix such
that

A =

·
a11 a12
a21 a22

¸
.

6



Then

A−1 =
1

a11a22 − a21a12

·
a22 −a12
−a21 a11

¸
.

By brute force matrix multiplication we can verify this formula

A−1A =
1

a11a22 − a21a12

·
a22 −a12
−a21 a11

¸ ·
a11 a12
a21 a22

¸
=

1

a11a22 − a21a12

·
a22a11 − a12a21 a22a12 − a12a22
−a21a11 + a11a21 −a21a12 + a11a22

¸
=

1

a11a22 − a21a12

·
a22a11 − a12a21 0

0 −a21a12 + a11a22
¸

=

· a22a11−a12a21
a11a22−a21a12 0

0 −a21a12+a11a22
a11a22−a21a12

¸
=

·
1 0
0 1

¸
.

Let�s apply the above rule to &nd the inverse of A in our example:

A−1 =
1

−1− 2
· −1 −1
−2 1

¸
=

·
1
3

1
3

2
3

−1
3

¸
.

Notice that

A−1A =
·

1
3

1
3

2
3

−1
3

¸ ·
1 1
2 −1

¸
=

·
1 0
0 1

¸
.

Our solution for z is then

z = A−1b

=

·
1
3

1
3

2
3

−1
3

¸ ·
1
1

¸
=

·
2
3
1
3

¸
=

·
x
y

¸
so that x = 2

3
and y = 1

3
.

In general, if we have n linear equations in n unknown variables we may write the
system of equations as

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... =

...

an1x1 + an2x2 + · · ·+ annxn = bn

7



which we may then express in matrix form as
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
an1 an2 · · · ann



x1
x2
...
xn

 =

b1
b2
...
bn


or

A
(n×n)

· x
(n×1)

= b.
(n×1)

The solution to the system of equations is given by

x = A−1b

where A−1A = I and I is the (n× n) identity matrix. If the number of equations is
greater than two, then we generally use numerical algorithms to &nd the elements in
A−1.

2 Further Reading
Excellent treatments of portfolio theory using matrix algebra are given in Ingersol
(1987), Huang and Litzenberger (1988) and Campbell, Lo and MacKinlay (1996).

3 Problems
To be completed
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41 Wkh Fdslwdo Dvvhw Sulflqj Prgho

Wkh fdslwdo dvvhw sulflqj prgho +FDSP, lv dq htxloleulxp prgho iru h{shfwhg
uhwxuqv dqg uholhv rq d vhw ri udwkhu vwulfw dvvxpswlrqv1

FDSP Dvvxpswlrqv

41 Pdq| lqyhvwruv zkr duh doo sulfh wdnhuv

51 Doo lqyhvwruv sodq wr lqyhvw ryhu wkh vdph wlph krul}rq

61 Wkhuh duh qr wd{hv ru wudqvdfwlrqv frvwv

71 Lqyhvwruv fdq eruurz dqg ohqg dw wkh vdph ulvn0iuhh udwh ryhu wkh sodqqhg
lqyhvwphqw krul}rq

81 Lqyhvwruv rqo| fduh derxw h{shfwhg uhwxuq dqg yduldqfh1 Lqyhvwruv olnh h{0
shfwhg uhwxuq exw glvolnh yduldqfh1 +D vx!flhqw frqglwlrq iru wklv lv wkdw
uhwxuqv duh doo qrupdoo| glvwulexwhg,

91 Doo lqyhvwruv kdyh wkh vdph lqirupdwlrq dqg eholhiv derxw wkh glvwulexwlrq
ri uhwxuqv

:1 Wkh pdunhw sruwirolr frqvlvwv ri doo sxeolfo| wudghg dvvhwv

Wkh lpsolfdwlrqv ri wkhvh dvvxpswlrqv duh dv iroorzv

41 Doo lqyhvwruv xvh wkh Pdunrzlw} dojrulwkp wr ghwhuplqh wkh vdph vhw ri
h!flhqw sruwirolrv1 Wkdw lv/ wkh h!flhqw sruwirolrv duh frpelqdwlrqv ri wkh
ulvn0iuhh dvvhw dqg wkh wdqjhqf| sruwirolr dqg hyhu|rqh*v ghwhuplqdwlrq ri
wkh wdqjhqf| sruwirolr lv wkh vdph1

51 Ulvn dyhuvh lqyhvwruv sxw d pdmrulw| ri zhdowk lq wkh ulvn0iuhh dvvhw +l1h1 ohqg
dw wkh ulvn0iuhh udwh, zkhuhdv ulvn wrohudqw lqyhvwruv eruurz dw wkh ulvn0iuhh
udwh dqg ohyhudjh wkhlu kroglqjv ri wkh wdqjhqf| sruwirolr1 Lq htxloleulxp
wrwdo eruurzlqj dqg ohqglqj pxvw htxdol}h vr wkdw wkh ulvn0iuhh dvvhw lv lq
}hur qhw vxsso| zkhq zh djjuhjdwh dfurvv doo lqyhvwruv1

61 Vlqfh hyhu|rqh krogv wkh vdph wdqjhqf| sruwirolr dqg wkh ulvn0iuhh dvvhw lv
lq }hur qhw vxsso| lq wkh djjuhjdwh/ zkhq zh djjuhjdwh ryhu doo lqyhvwruv wkh
djjuhjdwh ghpdqg iru dvvhwv lv vlpso| wkh wdqjhqf| sruwirolr1 Wkh vxsso|
ri doo dvvhwv lv vlpso| wkh pdunhw sruwirolr +zkhuh wkh zhljkw ri dq dvvhw



lq wkh pdunhw sruwirolr lv mxvw wkh pdunhw ydoxh ri wkh dvvhw glylghg e| wkh
wrwdo pdunhw ydoxh ri doo dvvhwv, dqg lq htxloleulxp vxsso| htxdo ghpdqg1
Wkhuhiruh/ lq htxloleulxp wkh wdqjhqf| sruwirolr lv wkh pdunhw sruwirolr1

71 Vlqfh wkh pdunhw sruwirolr lv wkh wdqjhqf| sruwirolr dqg wkh wdqjhqf| sruw0
irolr lv +phdq0yduldqfh, h!flhqw wkh pdunhw sruwirolr lv dovr +phdq0yduldqfh,
h!flhqw1

81 Vlqfh wkh pdunhw sruwirolr lv h!flhqw dqg wkhuh lv d ulvn0iuhh dvvhw wkh vhfxulw|
pdunhw olqh +VPO, sulflqj uhodwlrqvkls krogv iru doo dvvhwv +dqg sruwirolrv,

.d-�o ' oo n qE.d-�|o� os �

ru
>� ' os n qE>� � os �

zkhuh -� ghqrwhv wkh uhwxuq rq dq| dvvhw ru sruwirolr �c -� ghqrwhv wkh
uhwxuq rq wkh pdunhw sruwirolr dqg q ' SJ�E-�c -� �*�@oE-6�� Wkh VPO
vd|v wkdw wkhuh lv d olqhdu uhodwlrqvkls ehwzhhq wkh h{shfwhg uhwxuq rq dq
dvvhw dqg wkh �ehwd� ri wkdw dvvhw zlwk wkh pdunhw sruwirolr1 Jlyhq d ydoxh
iru wkh pdunhw ulvn suhplxp/ .d-o� oo : fc wkh kljkhu wkh ehwd rq dq dvvhw
wkh kljkhu wkh h{shfwhg uhwxuq rq wkh dvvhw dqg ylfh0yhuvd1

Wkh VPO uhodwlrqvkls fdq eh uhzulwwhq lq whupv ri ulvn suhpld e| vlpso|
vxewudfwlqj os iurp erwk vlgh ri wkh VPO htxdwlrq=

.d-�o� oo ' qE.d-�|o� os�

ru
>� � os ' qE>� � os �

dqg wklv olqhdu uhodwlrqvkls lv looxvwudwhg judsklfdoo| lq �jxuh 41 Lq whupv ri ulvn
suhpld/ wkh VPO lqwhuvhfwv wkh yhuwlfdo d{lv dw }hur dqg kdv vorsh htxdo wr >��os /
wkh ulvn suhplxp rq wkh pdunhw sruwirolr +zklfk lv dvvxphg wr eh srvlwlyh,1 Orz
ehwd dvvhwv +ohvv wkdq 4, kdyh ulvn suhpld ohvv wkdq wkh pdunhw dqg kljk ehwd
+juhdwhu wkdq 4, dvvhwv kdyh ulvn suhpld juhdwhu wkdq wkh pdunhw1
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4141 D Vlpsoh Uhjuhvvlrq Whvw ri wkh FDSP

Wkh VPO uhodwlrqvkls doorzv d whvw ri wkh FDSP xvlqj d prgl�hg yhuvlrq ri wkh
pdunhw prgho uhjuhvvlrq htxdwlrq1 Wr vhh wklv/ frqvlghu wkh h{fhvv uhwxuq pdunhw

prgho uhjuhvvlrq htxdwlrq

-| � os ' kn qE-�| � os� n 0|c | ' �c ���c A

0| � ��_ �Efc j2�c 0| lv lqghshqghqw ri -�| +414,

zkhuh -| ghqrwhv wkh uhwxuq rq dq| dvvhw ru sruwirolr dqg -�| lv wkh uhwxuq rq
vrph sur{| iru wkh pdunhw sruwirolr1 Wdnlqj h{shfwdwlrqv ri erwk vlghv ri wkh
h{fhvv uhwxuq pdunhw prgho uhjuhvvlrq jlyhv

.d-|o� os ' kn qE.d-�|o� os�

dqg iurp wkh VPO zh vhh wkdw wkh FDSP lpsrvhv wkh uhvwulfwlrq

k ' f

iru hyhu| dvvhw ru sruwirolr1 D vlpsoh whvwlqj vwudwhj| lv dv iroorzv

� Hvwlpdwh wkh h{fhvv uhwxuq pdunhw prgho iru hyhu| dvvhw wudghv

� Whvw wkdw k ' f lq hyhu| uhjuhvvlrq

4151 D Vlpsoh Suhglfwlrq Whvw ri wkh FDSP

Frqvlghu djdlq wkh VPO htxdwlrq iru wkh FDSP1 Wkh VPO lpsolhv wkdw wkhuh lv d
vlpsoh srvlwlyh olqhdu uhodwlrqvkls ehwzhhq h{shfwhg uhwxuqv rq dq| dvvhw dqg wkh
ehwd ri wkdw dvvhw zlwk wkh pdunhw sruwirolr1 Kljk ehwd dvvhwv kdyh kljk h{shfwhg
uhwxuqv dqg orz ehwd dvvhwv kdyh orz h{shfwhg uhwxuqv1 Wklv olqhdu uhodwlrqvkls
fdq eh whvwhg lq wkh iroorzlqj zd|1 Vxssrvh zh kdyh d wlph vhulhv ri uhwxuqv rq
� dvvhwv +vd| 43 |hduv ri prqwko| gdwd,1

� Vsolw d vdpsoh ri wlph vhulhv gdwd rq uhwxuqv lqwr wzr htxdo vl}hg vxevdpsohv1

� Hvwlpdwh q iru hdfk dvvhw lq wkh vdpsoh xvlqj wkh �uvw vxevdpsoh ri gdwd1
Wklv jlyhv � hvwlpdwhv ri q1

� Xvlqj wkh vhfrqg vxevdpsoh ri gdwd/ frpsxwh wkh dyhudjh uhwxuqv rq wkh �
dvvhwv +wklv lv dq hvwlpdwh ri .d-�o ' >��1 Wklv jlyh � hvwlpdwhv ri >�

� Sorw wkh VPO xvlqj wkh hvwlpdwhg ehwdv dqg dyhudjh uhwxuqv dqg vhh li lw
lqwhuvhfwv dw }hur rq wkh yhuwlfdo d{lv dqg kdv vorsh htxdo wr wkh dyhudjh ulvn
suhplxp rq wkh pdunhw sruwirolr1
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51 K|srwkhvlv Whvwlqj xvlqj wkh H{fhvv UhwxuqPdunhwPrgho

Lq wklv vhfwlrq/ zh looxvwudwh krz wr fduu| rxw vrph vlpsoh k|srwkhvlv whvwv frq0

fhuqlqj wkh sdudphwhuv ri wkh h{fhvv uhwxuqv pdunhw prgho uhjuhvvlrq1 Ehiruh zh

ehjlq/ zh uhylhz vrph edvlf frqfhswv iurp wkh wkhru| ri k|srwkhvlv whvwlqj1

5141 Whvwlqj wkh FDSP Uhvwulfwlrq k ' f1

Xvlqj wkh pdunhw prgho uhjuhvvlrq/

-| � os ' kn qE-�| � os� n 0|c | ' �c ���c A

0| � ��_ �Efc j2�c 0| lv lqghshqghqw ri -�| +514,

frqvlghu whvwlqj wkh qxoo ru pdlqwdlqhg k|srwkhvlv wkdw wkh FDSP krogv iru dq
dvvhw djdlqvw wkh dowhuqdwlyh k|srwkhvlv wkdw wkh FDSP grhv qrw krog1 Wkhvh
k|srwkhvhv fdq eh irupxodwhg dv wkh wzr0vlghg whvw

Mf G k ' f �r� M� G k 9' f�

Zh zloo uhmhfw wkh qxoo k|srwkhvlv/ Mf G k ' f/ li wkh hvwlpdwhg ydoxh ri k lv
hlwkhu pxfk odujhu wkdq }hur ru pxfk vpdoohu wkdq }hur1 Wr ghwhuplqh krz elj
wkh hvwlpdwhg ydoxh ri k qhhgv wr eh lq rughu wr uhmhfw wkh FDSP zh xvh wkh
w0vwdwlvwlf

|k'f '
ek� f
g7.Eek�

c

zkhuh ek lv wkh ohdvw vtxduhv hvwlpdwh ri k dqg g7.Eek� lv lwv hvwlpdwhg vwdqgdug
huuru1 Wkh ydoxh ri wkh w0vwdwlvwlf/ |k'f/ jlyhv wkh qxpehu ri hvwlpdwhg vwdqgdug
huuruv wkdw ek lv iurp }hur1 Li wkh devroxwh ydoxh ri |k'f lv pxfk odujhu wkdq 5
wkhq wkh gdwd fdvw frqvlghudeoh grxew rq wkh qxoo k|srwkhvlv k ' f zkhuhdv li lw
lv ohvv wkdq 5 wkh gdwd duh lq vxssruw ri wkh qxoo k|srwkhvlv41 Wr ghwhuplqh krz
elj m |k'fm qhhgv wr eh wr uhmhfw wkh qxoo/ zh xvh wkh idfw wkdw xqghu wkh vwdwlvwlfdo
dvvxpswlrqv ri wkh pdunhw prgho dqg dvvxplqj wkh qxoo k|srwkhvlv lv wuxh

|k'f � 7|�_e?|� | zlwk A � 2 ghjuhhv ri iuhhgrp

Li zh vhw wkh vljql�fdqfh ohyho +wkh suredelolw| wkdw zh uhmhfw wkh qxoo jlyhq wkdw
wkh qxoo lv wuxh, ri rxu whvw dw/ vd|/ 8( wkhq rxu ghflvlrq uxoh lv

Uhmhfw Mf G k ' f dw wkh 8( ohyho li m|k'fm : |f�f2DcA32

4Wklv lqwhusuhwdwlrq ri wkh w0vwdwlvwlf uholhv rq wkh idfw wkdw/ dvvxplqj wkh qxoo k|srwkhvlv lv

wuxh vr wkdw � @ 3> e� lv qrupdoo| glvwulexwhg zlwk phdq 3 dqg hvwlpdwhg yduldqfhgVH+e�,5=
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zkhuh |f�f2DcA32 lv wkh 5
�

2
I fulwlfdo ydoxh iurp d Vwxghqw0w glvwulexwlrq zlwk A � 2

ghjuhhv ri iuhhgrp1

H{dpsoh 5141 FDSP Uhjuhvvlrq iru LEP

Wr looxvwudwh wkh whvwlqj ri wkh FDSP xvlqj wkh h{fhvv uhwxuqv pdunhw prgho

uhjuhvvlrq frqvlghu wkh uhjuhvvlrq rxwsxw lq �jxuh 5

Wkh hvwlpdwhg uhjuhvvlrq htxdwlrq xvlqj prqwko| gdwd iurp Mdqxdu| 4<:;

wkurxjk Ghfhpehu 4<;5 lv

g-U��c| � os '�f�fff2
Ef�ffSH�

n f���bf
Ef�fHHH�

�E-�c| � os�c -
2 ' f�2fc ej ' f�fD2e

zkhuh wkh hvwlpdwhg vwdqgdug huuruv duh lq sduhqwkhvhv1 Khuh ek ' �f�fff2/ zklfk
lv yhu| forvh wr }hur/ dqg wkh hvwlpdwhg vwdqgdug huuru lv 31339; lv pxfk odujhu

wkdq ek1 Wkh w0vwdwlvwlf iru whvwlqj Mf G k ' f yv1 M� G k 9' f lv

|k'f '
�f�fff2 � f

f�ffSH
' �f�f�S�
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vr wkdw ek lv rqo| 313696 hvwlpdwhg vwdqgdug huuruv iurp }hur1 Xvlqj d 8( vljql�0

fdqfh ohyho/ |f�f2DcDH � 2 dqg

m|k'fm ' f�f�S� 	 2

vr zh gr qrw uhmhfw Mf G k ' f dw wkh 8( ohyho1 Wkhuhiruh/ wkh FDSP dsshduv wr

krog iru LEP1

5151 Whvwlqj K|srwkhvhv derxw q

Lq wkh h{fhvv uhwxuqv pdunhw prgho uhjuhvvlrq q phdvxuhv wkh frqwulexwlrq ri dq

dvvhw wr wkh yduldelolw| ri wkh pdunhw lqgh{ sruwirolr1 Rqh k|srwkhvlv ri lqwhuhvw

lv wr whvw li wkh dvvhw kdv wkh vdph ohyho ri ulvn dv wkh pdunhw lqgh{ djdlqvw wkh

dowhuqdwlyh wkdw wkh ulvn lv gl�huhqw iurp wkh pdunhw=

Mf G q ' � �r� M� G q 9' ��

Wkh gdwd fdvw grxew rq wklv k|srwkhvlv li wkh hvwlpdwhg ydoxh ri q lv pxfk gl�huhqw

iurp rqh1 Wklv k|srwkhvlv fdq eh whvwhg xvlqj wkh w0vwdwlvwlf

|q'� '
eq � �
g7.Eeq�

zklfk phdvxuhv krz pdq| hvwlpdwhg vwdqgdug huuruv wkh ohdvw vtxduhv hvwlpdwh

ri q lv iurp rqh1 Wkh qxoo k|srwkhvlv lv uhmhfw dw wkh 8( ohyho/ vd|/ li m|q'�m :
|f�f2DcA321 Qrwlfh wkdw wklv lv d wzr0vlghg whvw1

Dowhuqdwlyho|/ rqh pljkw zdqw wr whvw wkh k|srwkhvlv wkdw wkh ulvn ri dq dvvhw

lv vwulfwo| ohvv wkdq wkh ulvn ri wkh pdunhw lqgh{ djdlqvw wkh dowhuqdwlyh wkdw wkh

ulvn lv juhdwhu wkdq ru htxdo wr wkdw ri wkh pdunhw=

Mf G q 	 � �r� M� G q � ��

Qrwlfh wkdw wklv lv d rqh0vlghg whvw1 Zh zloo uhmhfw wkh qxoo k|srwkhvlv rqo| li wkh

hvwlpdwhg ydoxh ri q pxfk juhdwhu wkdq rqh1 Wkh w0vwdwlvwlf iru whvwlqj wklv qxoo

k|srwkhvlv lv wkh vdph dv ehiruh exw wkh ghflvlrq uxoh lv gl�huhqw1 Qrz zh uhmhfw

wkh qxoo dw wkh 8( ohyho li

|q'� 	 �|f�fDcA32

zkhuh |f�fDcA32 lv wkh rqh0vlghg 8( fulwlfdo ydoxh ri wkh Vwxghqw0w glvwulexwlrq zlwk

A � 2 ghjuhhv ri iuhhgrp1
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H{dpsoh 5151 FDSP Uhjuhvvlrq iru LEP frqw*g

Frqwlqxlqj zlwk wkh suhylrxv h{dpsoh/ frqvlghu whvwlqj Mf G q ' � �r� M� G

q 9' �� Qrwlfh wkdw wkh hvwlpdwhg ydoxh ri q lv 3166<3/ zlwk dq hvwlpdwhg vwdqgdug

huuru ri 313;;;/ dqg lv idluo| idu iurp wkh k|srwkhvl}hg ydoxh q ' �� Wkh w0vwdwlvwlf

iru whvwlqj q ' � lv

|q'� '
f���bf � �

f�fHHH
' �.�eee

zklfk whoov xv wkdw eq lv pruh wkdq : hvwlpdwhg vwdqgdug huuruv ehorz rqh1 Vlqfh

|f�f2DcDH � 2 zh hdvlo| uhmhfw wkh k|srwkhvlv wkdw q ' �1

Qrz frqvlghu whvwlqj Mf G q 	 � �r� M� G q � �� Wkh w0vwdwlvwlf lv vwloo 0

:1777 exw wkh fulwlfdo ydoxh xvhg iru wkh whvw lv qrz �|f�fDcDH � ���S.�1 Fohduo|/

|q'� ' �.�eee 	 ���S.� ' �|f�fDcDH vr zh uhmhfw wklv k|srwkhvlv1

5161 Whvwlqj Mrlqw K|srwkhvhv derxw k dqg q

Riwhq lw lv ri lqwhuhvw wr irupxodwh k|srwkhvlv whvwv wkdw lqyroyh erwk k dqg q�

Iru h{dpsoh/ frqvlghu wkh mrlqw k|srwkhvlv wkdw wkh FDSP krogv dqg wkdw dq
dvvhw kdv wkh vdph ulvn dv wkh pdunhw1 Wkh qxoo k|srwkhvlv lq wklv fdvh fdq eh
irupxodwhg dv

Mf G k ' f dqg q ' ��

Wkh qxoo zloo eh uhmhfwhg li hlwkhu wkh FDSP grhvq*w krog/ wkh dvvhw kdv ulvn
gl�huhqw iurp wkh pdunhw lqgh{ ru erwk1 Wkxv wkh dowhuqdwlyh lv irupxodwhg dv

M� G k 9' fc ru q 9' � ru k 9' f dqg q 9' ��

Wklv w|sh ri mrlqw k|srwkhvlv lv hdvlo| whvwhg xvlqj d vr0fdoohg I0whvw1 Wkh lghd
ehklqg wkh I0whvw lv wr hvwlpdwh wkh prgho lpsrvlqj wkh uhvwulfwlrqv vshfl�hg
xqghu wkh qxoo k|srwkhvlv dqg frpsduh wkh �w ri wkh uhvwulfwhg prgho wr wkh �w ri
wkh prgho zlwk qr uhvwulfwlrqv lpsrvhg1

Wkh �w ri wkh xquhvwulfwhg +XU, h{fhvv uhwxuq pdunhw prgho lv phdvxuhg e|
wkh +xquhvwulfwhg, huuru vxp ri vtxduhv +HVV,

.77L- '
A[
|'�

e02| '
A[
|'�

E-| � os � ek � eqE-�| � os ��
2�

Uhfdoo/ wklv lv wkh txdqwlw| wkdw lv plqlpl}hg gxulqj wkh ohdvw vtxduhv dojrulwkp1
Qrz/ wkh h{fhvv uhwxuq pdunhw prgho lpsrvlqj wkh uhvwulfwlrqv xqghu Mf lv

-| � os ' f n � � E-�| � os � n 0|

' -�| � os n 0|�

:



Qrwlfh wkdw wkhuh duh qr sdudphwhuv wr eh hvwlpdwhg lq wklv prgho zklfk fdq eh
vhhq e| vxewudfwlqj -�| � os iurp erwk vlghv ri wkh uhvwulfwhg prgho wr jlyh

-| �-�| ' h0|
Wkh �w ri wkh uhvwulfwhg +U, prgho lv wkhq phdvxuhg e| wkh uhvwulfwhg huuru vxp
ri vtxduhv

.77- '
A[
|'�

h02| '
A[
|'�

E-| �-�|�
2�

Qrz vlqfh wkh ohdvw vtxduhv dojrulwkp zrunv wr plqlpl}h .77/ wkh uhvwulfwhg
huuru vxp ri vtxduhv/ .77-c pxvw eh dw ohdvw dv elj dv wkh xquhvwulfwhg huuru
vxp ri vtxduhv/ .77L-� Li wkh uhvwulfwlrqv lpsrvhg xqghu wkh qxoo duh wuxh wkhq
.77- � .77L- +zlwk .77- dozd|v voljkwo| eljjhu wkdq .77L-� exw li wkh
uhvwulfwlrqv duh qrw wuxh wkhq .77- zloo eh txlwh d elw eljjhu wkdq .77L-� Wkh I0
vwdwlvwlf phdvxuhv wkh +dgmxvwhg, shufhqwdjh gl�huhqfh lq �w ehwzhhq wkh uhvwulfwhg
dqg xquhvwulfwhg prghov dqg lv jlyhq e|

8 '
E.77- � .77L-�*^

.77L-*EA � &�
'

E.77- � .77L-�

^ � ej2L-
c

zkhuh ^ htxdov wkh qxpehu ri uhvwulfwlrqv lpsrvhg xqghu wkh qxoo k|srwkhvlv/
& ghqrwhv wkh qxpehu ri uhjuhvvlrq frh!flhqwv hvwlpdwhg xqghu wkh xquhvwulfwhg
prgho dqg ej2L- ghqrwhv wkh hvwlpdwhg yduldqfh ri 0| xqghu wkh xquhvwulfwhg prgho1
Xqghu wkh dvvxpswlrq wkdw wkh qxoo k|srwkhvlv lv wuxh/ wkh I0vwdwlvwlf lv glvwulexwhg
dv dq I udqgrp yduldeoh zlwk ^ dqg A � 2 ghjuhhv ri iuhhgrp=

8 � 8 E^c A � 2��

Qrwlfh wkdw dq I udqgrp yduldeoh lv dozd|v srvlwlyh vlqfh .77- : .77L-1 Wkh
qxoo k|srwkhvlv lv uhmhfwhg/ vd| dw wkh 8( vljql�fdqfh ohyho/ li

8 : 8f�bDE^c A � 2�

zkhuh 8f�bDE^c A � 2� lv wkh <8( txdqwloh ri wkh glvwulexwlrq ri 8 E^c A � 2�� Iru
wkh k|srwkhvlv Mf G k ' f dqg q ' � wkhuh duh ^ ' 2 uhvwulfwlrqv xqghu wkh qxoo
dqg & ' 2 uhjuhvvlrq frh!flhqwv hvwlpdwhg xqghu wkh xquhvwulfwhg prgho1 Wkh
I0vwdwlvwlf lv wkhq

8k'fcq'� '
E.77- �.77L-�*2

.77L-*EA � 2�

;



H{dpsoh 5161 FDSP Uhjuhvvlrq iru LEP frqw*g

Frqvlghu whvwlqj wkh k|srwkhvlv Mf G k ' f dqg q ' � iru wkh LEP gdwd1

Wkh xquhvwulfwhg huuru vxp ri vtxduhv/ .77L-/ lv rewdlqhg iurp wkh xquhvwulfwhg

uhjuhvvlrq rxwsxw lq �jxuh 5 dqg lv fdoohg Vxp Vtxduh Uhvlg=

.77L- ' f��Db�Hf�

Wr irup wkh uhvwulfwhg vxp ri vtxduhg uhvlgxdov/ zh fuhdwh wkh qhz yduldeoh h0| '

-| � -�| dqg irup wkh vxp ri vtxduhv .77- '
SA

|'�
h02| ' f���e.S� Qrwlfh wkdw

.77- : .77L-� Wkh I0vwdwlvwlf lv wkhq

8k'fcq'� '
Ef���e.S� f��Db�Hf�*2

f��Db�Hf*DH
' 2H��e�

Wkh <8( txdqwloh ri wkh I0glvwulexwlrq zlwk 5 dqg 8; ghjuhhv ri iuhhgrp lv derxw

61481 Vlqfh 8k'fcq'� ' 2H��e : ���D ' 8f�bDE2cDH� zh uhmhfw Mf G k ' f dqg q ' �
dw wkh 8( ohyho1

5171 Whvwlqj wkh Vwdelolw| ri k dqg q ryhu wlph

Lq pdq| dssolfdwlrqv ri wkh FDSP/ q lv hvwlpdwhg xvlqj sdvw gdwd dqg wkh hv0
wlpdwhg ydoxh ri q lv dvvxphg wr krog ryhu vrph ixwxuh wlph shulrg1 Vlqfh wkh
fkdudfwhulvwlfv ri dvvhwv fkdqjh ryhu wlph lw lv ri lqwhuhvw wr nqrz li q fkdqjhv ryhu
wlph1 Wr looxvwudwh/ vxssrvh zh kdyh d whq |hdu vdpsoh ri prqwko| gdwd +A ' �2f�
rq uhwxuqv wkdw zh vsolw lqwr wzr �yh |hdu vxevdpsohv1 Ghqrwh wkh �uvw �yh |hduv
dv | ' �c ���c A� dqg wkh vhfrqg �yh |hduv dv | ' A�n�c ���c A� Wkh gdwh | ' A� lv
wkh �euhdn gdwh� ri wkh vdpsoh dqg lw lv fkrvhq duelwudulo| lq wklv frqwh{w1 Vlqfh
wkh vdpsohv duh ri htxdo vl}h +dowkrxjk wkh| gr qrw kdyh wr eh, A � A� ' A��

Wkh h{fhvv uhwxuqv pdunhw prgho uhjuhvvlrq zklfk dvvxphv wkdw erwk k dqg q duh
frqvwdqw ryhu wkh hqwluh vdpsoh lv

-| � os ' kn qE-�| � os� n 0|c | ' �c � � � c A

0| � ��_ �Efc j2� lqghshqghqw ri -�|�

Wkhuh duh wzr fdvhv ri lqwhuhvw= +4, q pd| gl�hu ryhu wkh wzr vxevdpsohv> +5, k
dqg q pd| gl�hu ryhu wkh wzr vxevdpsohv1
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517141 Whvwlqj Vwuxfwxudo Fkdqjh lq q rqo|

Li k lv wkh vdph exw q lv gl�huhqw ryhu wkh vxevdpsohv wkhq zh uhdoo| kdyh wzr
h{fhvv uhwxuq pdunhw prgho uhjuhvvlrqv

-| � os ' kn q�E-�| � os � n 0|c | ' �c � � � c A�

-| � os ' kn q2E-�| � os � n 0|c | ' A�n�c � � � c A

wkdw vkduh wkh vdph lqwhufhsw k exw kdyh gl�huhqw vorshv q� 9' q21 Zh fdq fdswxuh
vxfk d prgho yhu| hdvlo| xvlqj d �vwhs gxpp| yduldeoh� gh�qhg dv

(| ' fc | � A�

' �c | : A�

dqg uh0zulwlqj wkh uhjuhvvlrq prgho dv

-| � os ' kn qE-�| � os� n(|E-�| � os � n 0|

Wkh prgho iru wkh �uvw vxevdpsoh zkhq (| ' f lv

-| � os ' kn qE-�| � os� n 0|c | ' �c � � � c A�

dqg wkh prgho iru wkh vhfrqg vxevdpsoh zkhq (| ' � lv

-| � os ' k n qE-�| � os � n BE-�| � os� n 0|c | ' A�n�c � � � c A

' k n Eq n B�E-�| � os� n 0|�

Qrwlfh wkdw wkh �ehwd� lq wkh �uvw vdpsoh lv q� ' q dqg wkh ehwd lq wkh vhfrqg
vxevdpsoh lv q2 ' qn B� Li B 	 f wkh vhfrqg vdpsoh ehwd lv vpdoohu wkdq wkh �uvw
vdpsoh ehwd dqg li B : f wkh ehwd lv odujhu1

Zh fdq whvw wkh frqvwdqf| ri ehwd ryhu wlph e| whvwlqj zkhwkhu B ' f=

Mf G Eehwd lv frqvwdqw ryhu wlph, B ' f yv1 M� G Eehwd lv qrw frqvwdqw ryhu wlph, B 9' f

Wkh whvw vwdwlvwlf lv vlpso| wkh w0vwdwlvwlf

|B'f '
eB � f
g7.EeB�

'
eB

g7.EeB�

dqg zh uhmhfw wkh k|srwkhvlv B ' f dw wkh 8( ohyho/ vd|/ li m|B'fm : |f�f2DcA3�1
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H{dpsoh 5171 FDSP Uhjuhvvlrq iru LEP frqw*g

Wkh Hylhzv rxwsxw iru wkh h{fhvv uhwxuqv pdunhw prgho uhjuhvvlrq dxjphqwhg

zlwk wkh vwuxfwxudo fkdqjh gxpp| lv jlyh lq �jxuh 61

dqg wkh hvwlpdwhg htxdwlrq lv jlyhq e|

g-U��c| � os ' �f�fff�
Ef�ffeD�

n f���HH
Ef�fH�.�

�E-�c| � os �n f���DH
Ef���SS�

�( � E-�c| � os �c

-2 ' f����c ej ' f�febS�

Wkh hvwlpdwhg ydoxh ri q lv f���HH/ zlwk d vwdqgdug huuru ri f�fH�.c dqg wkh

hvwlpdwhg ydoxh ri B lv f���DH/ zlwk d vwdqgdug huuru ri f���SS� Wkh w0vwdwlvwlf iru

whvwlqj B ' f lv jlyhq e|

|B'f '
f���DH

f���SS
' 2���2

zklfk lv juhdwhu wkdq |f�f2Dc��. ' ��bH vr zh uhmhfw wkh qxoo k|srwkhvlv +dw wkh 8(
vljql�fdqfh ohyho, wkdw ehwd lv wkh vdph ryhu wkh wzr vxevdpsohv1

Wkh hvwlpdwhg ydoxh ri ehwd ryhu wkh vhfrqg vxevdpsoh lv eq n eB ' f���HH n
f���DH ' f�SDeS� Wr jhw wkh hvwlpdwhg vwdqgdug huuru iru wklv hvwlpdwh zh qrwh
wkdw

g�@oEeq n eB� ' g�@oEeq� n g�@oEeB� n 2 � gSJ�Eeqc eB�
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dqg wkhvh qxpehuv fdq eh rewdlqhg iurp wkh hohphqwv ri ej2Ej�
j�3� zkhuh j lv d

A � � pdwul{ zlwk hohphqwv E�c -�| � os c(| � E-�| � os ��� Hylhzv frpsxwhv wklv

fryduldqfh pdwul{ dqg lw lv glvsod|hg lq �jxuh 71

Iurp �jxuh 7 zh vhh wkdw g�@oEeq� ' f�ff.ffSc g�@oEeB� ' f�f�HSD� dqggSJ�Eeqc eB� '
�f�ffSb.� vr wkdw

g�@oEeq n eB� ' f�ff.ffS n f�f�HSD� n 2 � E�f�ffSb.�� ' f�f��.�.

dqg
g7.Eeq n eB� '

s
f�f��.�. ' f��fH2�

517151 Whvwlqj Vwuxfwxudo Fkdqjh lq k dqg q

Qrz frqvlghu wkh fdvh zkhuh erwk k dqg q duh doorzhg wr eh gl�huhqw ryhu wkh

wzr vxevdpsohv=

-| � os ' k� n q
�
E-�| � os � n 0|c | ' �c � � � c A�

-| � os ' k2 n q2E-�| � os � n 0|c | ' A�n�c � � � c A

Wkh gxpp| yduldeoh vshfl�fdwlrq lq wklv fdvh lv

-| � os ' k n qE-�| � os � n B� �(| n B2 �(|E-�| � os � n 0|c | ' �c � � � c A�

Zkhq (| ' f wkh prgho ehfrphv

-| � os ' k n qE-�| � os � n 0|c | ' �c � � � c A�c
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vr wkdw k� ' k dqg q� ' q/ dqg zkhq (| ' � wkh prgho lv

-| � os ' Ek n B�� n Eq n B2�E-�| � os� n 0|c | ' A�n�c � � � c Ac

vr wkdw k2 ' k n B� dqg q2 ' q n B2� Wkh k|srwkhvlv ri qr vwuxfwxudo fkdqjh lv

qrz

Mf G B� ' f dqg B2 ' f yv1 M� G B� 9' f ru B2 9' f ru B� 9' f dqg B2 9' f1

Wkh whvw vwdwlvwlf iru wklv mrlqw k|srwkhvlv lv wkh I0vwdwlvwlf

8B�'fcB2'f '
E.77- � .77L-�*2

.77L-*EA � e�

vlqfh wkhuh duh wzr uhvwulfwlrqv dqg irxu uhjuhvvlrq sdudphwhuv hvwlpdwhg xqghu
wkh xquhvwulfwhg prgho1 Wkh xquhvwulfwhg +XU, prgho lv wkh gxpp| yduldeoh
uhjuhvvlrq wkdw doorzv wkh lqwhufhswv dqg vorshv wr gl�hu lq wkh wzr vxevdpsohv dqg
wkh uhvwulfwhg prgho +U, lv wkh uhjuhvvlrq zkhuh wkhvh sdudphwhuv duh frqvwudlqhg
wr eh wkh vdph lq wkh wzr vxevdpsohv1

Wkh xquhvwulfwhg huuru vxp ri vtxduhv/ .77L-/ fdq eh frpsxwhg lq wzr zd|v1
Wkh �uvw zd| lv edvhg rq wkh gxpp| yduldeoh uhjuhvvlrq1 Wkh vhfrqg lv edvhg
rq hvwlpdwlqj vhsdudwh uhjuhvvlrq htxdwlrqv iru wkh wzr vxevdpsohv dqg dgglqj
wrjhwkhu wkh uhvxowlqj huuru vxp ri vtxduhv1 Ohw .77� dqg .772 ghqrwh wkh huuru
vxp ri vtxduhv iurp vhsdudwh uhjuhvvlrqv1 Wkhq

.77L- ' .77� n .772�

H{dpsoh 5181 FDSP uhjuhvvlrq iru LEP frqw*g
Wkh xquhvwulfwhg uhjuhvvlrq +Hylhzv rxwsxw qrw vkrzq, lv

g-U��c| � os ' �f�fff�
Ef�ffSD�

n f���HH
Ef�fHeD�

�E-�| � os �

n f�fff2
Ef�ffb2�

�(|n f���DH
Ef���..�

�(|E-�| � os �c

-2 ' f����c ej ' f�fDfc .77L- ' f�2HH�.bc

dqg wkh uhvwulfwhg uhjuhvvlrq lv

g-U��c| � os ' �f�fffD
Ef�ffeS�

n f�eDSH
Ef�fS.D�

�E-�| � os�c

-2 ' f�2.bc ej ' f�fD�c .77- ' f��f�DDH�
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Wkh I0vwdwlvwlf iru whvwlqj Mf G B� ' f dqg B2 ' f lv

8B�'fcB2'f '
Ef��f�DDH� f�2HH�.b�*2

f�2HH�.b*��S
' 2�SD�

Wkh <8( txdqwloh/ 8f�bDE2c ��S�/ lv dssur{lpdwho| 613:1 Vlqfh 8B�'fcB2'f ' 2�SD� 	
��f. ' 8f�bDE2c��S� zh gr qrw uhmhfw Mf G B� ' f dqg B2 ' f dw wkh 8( vljql�fdqfh

ohyho1 Lw lv lqwhuhvwlqj wr qrwh wkdw zkhq zh doorz erwk k dqg q wr gl�hu lq wkh wzr

vxevdpsohv zh fdqqrw uhmhfw wkh k|srwkhvlv wkdw wkhvh sdudphwhuv duh wkh vdph

ehwzhhq wzr vdpsohv exw li zh rqo| doorz q wr gl�hu ehwzhhq wkh wzr vdpsohv zh

fdq uhmhfw wkh k|srwkhvlv wkdw q lv wkh vdph1

5181 Rwkhu w|shv ri Vwuxfwxudo Fkdqjh lq q

Dq lqwhuhvwlqj txhvwlrq uhjduglqj wkh ehwd ri dq dvvhw frqfhuqv wkh vwdelolw| ri ehwd
ryhu wkh pdunhw f|foh1 Iru h{dpsoh/ frqvlghu wkh iroorzlqj vlwxdwlrqv1 Vxssrvh
wkdw wkh ehwd ri dq dvvhw lv juhdwhu wkdq 4 li wkh pdunhw lv lq dq �xs f|foh�/
-�| � os : fc dqg ohvv wkdq 4 lq d �grzq f|foh�/ -�| � os 	 f1 Wklv zrxog eh d
yhu| ghvludeoh dvvhw wr krog vlqfh lw dffhqwxdwhv srvlwlyh pdunhw pryhphqwv exw
grzq sod|v qhjdwlyh pdunhw pryhphqwv1 Zh fdq lqyhvwljdwh wklv k|srwkhvlv xvlqj
d gxpp| yduldeoh dv iroorzv1 Gh�qh

(
�R
| ' �c -�| � os : f

' fc -�| � os � f�

Wkhq (
�R
| glylghv wkh vdpsoh lqwr �xs pdunhw� pryhphqwv dqg �grzq pdunhw�

pryhphqwv1 Wkh uhjuhvvlrq wkdw doorzv ehwd wr gl�hu ghshqglqj rq wkh pdunhw
f|foh lv wkhq

-| � os ' kn qE-�| � os� n B(
�R
| � E-�| � os � n 0|�

Lq wkh grzq f|foh/ zkhq (
�R
| ' fc wkh prgho lv

-| � os ' kn qE-�| � os� n 0|

dqg q fdswxuhv wkh grzq pdunhw ehwd/ dqg lq wkh xs pdunhw/ zkhq (
�R
| ' �c wkh

prgho lv
-| � os ' k n Eq n B�E-�| � os � n 0|
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vr wkdw q n B fdswxuh wkh xs pdunhw ehwd1 Wkh k|srwkhvlv wkdw q grhv qrw ydu|
ryhu wkh pdunhw f|foh lv

Mf G B ' f yv1 M� G B 9' f +515,

dqg fdq eh whvwhg zlwk wkh vlpsoh w0vwdwlvwlf |B'f '
eB3f
f7.EeB�

�

Li wkh hvwlpdwhg ydoxh ri B lv irxqg wr eh vwdwlvwlfdoo| juhdwhu wkdq }hur zh
pljkw wkhq zdqw wr jr rq wr whvw wkh k|srwkhvlv wkdw wkh xs pdunhw ehwd lv
juhdwhu wkdq rqh1 Vlqfh wkh xs pdunhw ehwd lv htxdo wr q n B wklv fruuhvsrqgv wr
whvwlqj

Mf G q n B � � yv1 M� G q n B � �

zklfk fdq eh whvwhg xvlqj wkh w0vwdwlvwlf

|qnB'� '
eq n eB � �
g7.Eeq n eB�

�

Vlqfh wklv lv d rqh0vlghg whvw zh zloo uhmhfw wkh qxoo k|srwkhvlv dw wkh 8( ohyho li

|qnB'� 	 �|f�fDcA3�1

H{dpsoh 5191 FDSP uhjuhvvlrq iru LEP dqg GHF

Iru LEP wkh FDSP uhjuhvvlrq doorzlqj q wr ydu| ryhu wkh pdunhw f|foh
+4<:;134 0 4<;5145, lv

g-U��c| � os ' �f�ff�b
Ef�f����

n f���S�
Ef��e.S�

�E-�| � os�n f�fDD2
Ef�2HSf�

�(
�R
| � E-�| � os�

-2 ' f�2f�c ej ' f�fD�

Qrwlfh wkdw eB ' f�fDD2c zlwk d vwdqgdug huuru ri 315;93/ lv forvh wr }hur dqg qrw
hvwlpdwhg yhu| suhflvho|1 Frqvhtxhqwo|/ |B'f ' f�fDD2

f�2HSf
' f��b2b lv qrw vljql�fdqw

dw dq| uhdvrqdeoh vljql�fdqfh ohyho dqg zh wkhuhiruh uhmhfw wkh k|srwkhvlv wkdw
ehwd ydulhv ryhu wkh pdunhw f|foh1 Krzhyhu/ wkh uhvxowv duh yhu| gl�huhqw iru GHF
+Gljlwdo Hohfwurqlfv,=

g-(.�c| � os ' �f�f2eH
Ef�f��e�

n f��SHb
Ef��..b�

�E-�| � os �n f�H22.
Ef��eeS�

�(�R
| � E-�| � os �

-2 ' f�eSfc ej ' f�fSe�

Khuh eB ' f�H22./ zlwk d vwdqgdug huuru ri 316779/ lv vwdwlvwlfdoo| gl�huhqw iurp
}hur dw wkh 8( ohyho vlqfh |B'f ' 2��HH1 Wkh hvwlpdwh ri wkh grzq pdunhw ehwd
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lv 3169;</ zklfk lv ohvv wkdq rqh/ dqg wkh xs pdunhw ehwd lv 3169;< . 31;55: @
414<49/ zklfk lv juhdwhu wkdq rqh1 Wkh hvwlpdwhg vwdqgdug huuru iru eqn eB uhtxluhv
wkh hvwlpdwhg yduldqfhv ri eq dqg eB dqg wkh hvwlpdwhg fryduldqfh ehwzhhq eq dqgeB +zklfk fdq eh rewdlqhg iurp Hylhzv, dqg lv jlyhq e|

g�@oEeq n eB� ' g�@oEeq� n g�@oEeB� n 2 �gSJ�Eeqc eB�
' f�f��S�e n f���HSDS n 2 � �f�feH.�.
' f�fD2HDSc

g7.Eeq n eB� '
t
g�@oEeq n eB� ' s

f�fD2HDS ' f�22bb

Wkhq |qnB'� ' ���b�S3�
f�22bb

' f�H��e zklfk lv ohvv wkdq |f�fDcD. ' ��SD vr zh gr qrw

uhmhfw wkh k|srwkhvlv wkdw wkh xs pdunhw ehwd lv ohvv wkdq ru htxdo wr rqh1
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1. The Capital Asset Pricing Model

The capital asset pricing model (CAPM) is an equilibrium model for expected
returns and relies on a set of rather strict assumptions.
CAPM Assumptions

1. Many investors who are all price takers

2. All investors plan to invest over the same time horizon

3. There are no taxes or transactions costs

4. Investors can borrow and lend at the same risk-free rate over the planned
investment horizon

5. Investors only care about expected return and variance. Investors like ex-
pected return but dislike variance. (A sufficient condition for this is that
returns are all normally distributed)

6. All investors have the same information and beliefs about the distribution
of returns

7. The market portfolio consists of all publicly traded assets

The implications of these assumptions are as follows



1. All investors use the Markowitz algorithm to determine the same set of
efficient portfolios. That is, the efficient portfolios are combinations of the
risk-free asset and the tangency portfolio and everyone’s determination of
the tangency portfolio is the same.

2. Risk averse investors put a majority of wealth in the risk-free asset (i.e. lend
at the risk-free rate) whereas risk tolerant investors borrow at the risk-free
rate and leverage their holdings of the tangency portfolio. In equilibrium
total borrowing and lending must equalize so that the risk-free asset is in
zero net supply when we aggregate across all investors.

3. Since everyone holds the same tangency portfolio and the risk-free asset is
in zero net supply in the aggregate, when we aggregate over all investors the
aggregate demand for assets is simply the tangency portfolio. The supply
of all assets is simply the market portfolio (where the weight of an asset
in the market portfolio is just the market value of the asset divided by the
total market value of all assets) and in equilibrium supply equal demand.
Therefore, in equilibrium the tangency portfolio is the market portfolio.

4. Since the market portfolio is the tangency portfolio and the tangency port-
folio is (mean-variance) efficient the market portfolio is also (mean-variance)
efficient.

5. Since the market portfolio is efficient and there is a risk-free asset the security
market line (SML) pricing relationship holds for all assets (and portfolios)

E[Ri] = rr + βi,M(E[RMt]− rf)
or

µi = rf + βi,M(µM − rf )
where Ri denotes the return on any asset or portfolio i, RM denotes the
return on the market portfolio and βi,M = cov(Ri, RM)/var(Rm). The SML
says that there is a linear relationship between the expected return on an
asset and the “beta” of that asset with the market portfolio. Given a value
for the market risk premium, E[Ri]−rf > 0, the higher the beta on an asset
the higher the expected return on the asset and vice-versa.

The SML relationship can be rewritten in terms of risk premia by simply
subtracting rf from both side of the SML equation:

E[Ri]− rf = βi,M(E[RMt]− rf)
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or
µi − rf = βi,M(µM − rf)

and this linear relationship is illustrated graphically in figure 1. In terms of risk
premia, the SML intersects the vertical axis at zero and has slope equal to µM−rf ,
the risk premium on the market portfolio (which is assumed to be positive). Low
beta assets (less than 1) have risk premia less than the market and high beta
(greater than 1) assets have risk premia greater than the market.

1.1. Relationship Between the Market Model and the CAPM

The CAPM is encompassed within the market model in the following way. First,
consider the market model regression

Rit = αi + βi,MRMt + εit, t = 1, ..., T (1.1)

εit ∼ iid N(0,σ2), εit is independent of RMt

where RMt denotes the return on the “Market portfolio”. Usually, the market
portfolio is proxied by some value-weighted index of stocks like the S&P 500
index. Let rf denote the risk-free rate (rate on T-bill). Now subtract rf from
both sides of (1.1) to give

Rit − rf = αi − rf + βi,M(RMt − rf) + εit. (1.2)

Next, add and subtract βMrf from the right-hand-side of (1.2) and re-arrange to
give

Rit − rf = αi − rf(1− βi,M) + βi,M(RMt − rf) + εit (1.3)

= α∗i + βi,M(RMt − rf ) + εit
where

α∗i = αi − rf(1− βi,M).
Equation (1.3) gives the market model where the return on the asset and the return
on the market are expressed in excess of the risk-free rate rf . This re-expressed
market model is called the excess return market model.
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1.2. A Simple Regression Test of the CAPM

The SML relationship allows a test of the CAPM using a modified version of the
market model regression equation. To see this, consider the excess return market
model regression equation

Rit − rf = α∗i + βi,M(RMt − rf) + εit, t = 1, ..., T
εit ∼ iid N(0, σ2), εit is independent of RMt (1.4)

where Rt denotes the return on any asset or portfolio and RMt is the return on
some proxy for the market portfolio. Taking expectations of both sides of the
excess return market model regression gives

E[Rit]− rf = α∗i + βi,M(E[RMt]− rf) (1.5)

and from the SML we see that the CAPM imposes the restriction

α∗i = 0

for every asset or portfolio i. A simple testing strategy is as follows

• Estimate the excess return market model for every asset trades
• Test that α∗i = 0 in every regression
The value of α∗i in the excess returns market model has an interesting inter-

pretation. Suppose that α∗i > 0. Then from (1.5) we have that

α∗i = (E[Rit]− rf )− βi,M(E[RMt]− rf ) > 0
which indicates that the asset is yielding an excess expected return higher than the
CAPM predicts. One might think that this is a good stock to hold. The CAPM
would predict that this stock is underpriced (price is too low in the market)
because it’s expected excess return is higher than what the CAPM predicts. In
order for the expected return to fall, the current price of the stock needs to rise.

1.3. A Simple Prediction Test of the CAPM

Consider again the SML equation for the CAPM. The SML implies that there is a
simple positive linear relationship between expected returns on any asset and the
beta of that asset with the market portfolio. High beta assets have high expected
returns and low beta assets have low expected returns. This linear relationship
can be tested in the following way. Suppose we have a time series of returns on
i = 1, . . . , N assets (say 10 years of monthly data).

4



• Split a sample of time series data on returns into two equal sized subsamples.
• Estimate βi,M for each asset in the sample using the first subsample of data.
This gives N estimates of βi,M .

• Using the second subsample of data, compute the average returns on the N
assets (this is an estimate of E[Ri] = µi). This give N estimates of µi.

• Plot the SML using the estimated betas and average returns and see if it
intersects at zero on the vertical axis and has slope equal to the average risk
premium on the market portfolio.

2. Testing the CAPM using the Excess Return Market Model

In this section, we illustrate how to carry out some simple hypothesis tests con-
cerning the parameters of the excess returns market model regression. Before we
begin, we review some basic concepts from the theory of hypothesis testing.

2.1. Testing the CAPM Restriction α∗i = 0.

Using the market model regression,

Ri,t − rf = α∗i + βi,M(RMt − rf) + εit, t = 1, ..., T
εit ∼ iid N(0, σ2), εit is independent of RMt (2.1)

consider testing the null or maintained hypothesis that the CAPM holds for an
asset against the alternative hypothesis that the CAPM does not hold. These
hypotheses can be formulated as the two-sided test

H0 : α
∗
i = 0 vs. H1 : α

∗
i 6= 0.

We will reject the null hypothesis, H0 : α
∗
i = 0, if the estimated value of α∗i is

either much larger than zero or much smaller than zero. To determine how big
the estimated value of α∗i needs to be in order to reject the CAPM we use the
t-statistic

tα=0 =
bα∗i − 0dSE(bα∗i ) ,

where bα∗i is the least squares estimate of α∗i and dSE(bα∗i ) is its estimated standard
error. The value of the t-statistic, tα=0, gives the number of estimated standard
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errors that bα∗i is from zero. If the absolute value of tα=0 is much larger than 2
then the data cast considerable doubt on the null hypothesis α∗i = 0 whereas if it
is less than 2 the data are in support of the null hypothesis1. To determine how
big | tα=0| needs to be to reject the null, we use the fact that under the statistical
assumptions of the market model and assuming the null hypothesis is true

tα=0 ∼ Student− t with T − 2 degrees of freedom
If we set the significance level (the probability that we reject the null given that
the null is true) of our test at, say, 5% then our decision rule is

Reject H0 : α
∗
i = 0 at the 5% level if |tα=0| > t0.025,T−2

where t0.025,T−2 is the 212% critical value from a Student-t distribution with T − 2
degrees of freedom.

Example 2.1. CAPM Regression for IBM

To illustrate the testing of the CAPM using the excess returns market model
regression consider the regression output in figure 2

1This interpretation of the t-statistic relies on the fact that, assuming the null hypothesis is
true so that α = 0, bα is normally distributed with mean 0 and estimated variancedSE(bα)2.
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The estimated regression equation using monthly data from January 1978
through December 1982 is

dRIBM,t − rf =−0.0002
(0.0068)

+ 0.3390
(0.0888)

·(RM,t − rf), R2 = 0.20, bσ = 0.0524
where the estimated standard errors are in parentheses. Here bα∗IBM = −0.0002,
which is very close to zero, and the estimated standard error is 0.0068 is much
larger than bα∗IBM . The t-statistic for testing H0 : α∗IBM = 0 vs. H1 : α

∗
IBM 6= 0 is

tα=0 =
−0.0002− 0
0.0068

= −0.0363

so that bα∗IBM is only 0.0363 estimated standard errors from zero. Using a 5%
significance level, t0.025,58 ≈ 2 and

|tα=0| = 0.0363 < 2

so we do not reject H0 : α
∗
IBM = 0 at the 5% level. Therefore, the CAPM appears

to hold for IBM.
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1 The Time Value of Money

Consider an amount $V invested for n years at a simple interest rate of R
per annum (where R is expressed as a decimal). If compounding takes place
only at the end of the year the future value after n years is

FVn = $V · (1 +R)n.

Example 1 Consider putting $1000 in an interest checking account that
pays a simple annual percentage rate of 3%. The future value after n = 1, 5
and 10 years is, respectively,

FV1 = $1000 · (1.03)1 = $1030
FV5 = $1000 · (1.03)5 = $1159.27
FV10 = $1000 · (1.03)10 = $1343.92.

If interest is paid m time per year then the future value after n years is

FV mn = $V ·
µ
1 +

R

m

¶m·n
.
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R
m
is often referred to as the periodic interest rate. As m, the frequency of

compounding, increases the rate becomes continuously compounded and it
can be shown that future value becomes

FV cn = lim
m→∞ $V ·

µ
1 +

R

m

¶m·n
= $V · eR·n,

where e(·) is the exponential function and e1 = 2.71828.

Example 2 If the simple annual percentage rate is 10% then the value of
$1000 at the end of one year (n = 1) for different values of m is given in the
table below.

Compounding Frequency Value of $1000 at end of 1 year (R = 10%)
Annually (m = 1) 1100
Quarterly (m = 4) 1103.8
Weekly (m = 52) 1105.1
Daily (m = 365) 1105.515
Continuously (m =∞) 1105.517

We now consider the relationship between simple interest rates, periodic
rates, effective annual rates and continuously compounded rates. Suppose
an investment pays a periodic interest rate of 2% each quarter. This gives
rise to a simple annual rate of 8% (2% ×4 quarters). At the end of the year,
$1000 invested accrues to

$1000 ·
µ
1 +

0.08

4

¶4·1
= $1082.40.

The effective annual rate, RA, on the investment is determined by the rela-
tionship

$1000 · (1 +RA) = $1082.40,
which gives RA = 8.24%. The effective annual rate is greater than the simple
annual rate due to the payment of interest on interest.
The general relationship between the simple annual rate R with payments

m time per year and the effective annual rate, RA, is

(1 +RA) =
µ
1 +

R

m

¶m·1
.
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Example 3 To determine the simple annual rate with quarterly payments
that produces an effective annual rate of 12%, we solve

1.12 =
µ
1 +

R

4

¶4
=⇒

R =
³
(1.12)1/4 − 1

´
· 4

= 0.0287 · 4
= 0.1148

Suppose we wish to calculate a value for a continuously compounded rate,
Rc, when we know the m−period simple rate R. The relationship between
such rates is given by

eRc =
µ
1 +

R

m

¶m
. (1)

Solving (1) for Rc gives

Rc = m ln
µ
1 +

R

m

¶
, (2)

and solving (1) for R gives

R = m
³
eRc/m − 1

´
. (3)

Example 4 Suppose an investment pays a periodic interest rate of 5% every
six months (m = 2, R/2 = 0.05). In the market this would be quoted as
having an annual percentage rate of 10%. An investment of $100 yields
$100 · (1.05)2 = $110.25 after one year. The effective annual rate is then
10.25%. Suppose we wish to convert the simple annual rate of R = 10% to
an equivalent continuously compounded rate. Using (2) with m = 2 gives

Rc = 2 · ln(1.05) = 0.09758.

That is, if interest is compounded continuously at an annual rate of 9.758%
then $100 invested today would grow to $100 · e0.09758 = $110.25.

2 Asset Return Calculations
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2.1 Simple Returns

Let Pt denote the price in month t of an asset that pays no dividends and
let Pt−1 denote the price in month t − 11. Then the one month simple net
return on an investment in the asset between months t − 1 and t is defined
as

Rt =
Pt − Pt−1
Pt−1

= %∆Pt. (4)

Writing Pt−Pt−1
Pt−1

= Pt
Pt−1
− 1, we can define the simple gross return as

1 +Rt =
Pt
Pt−1

. (5)

Notice that the one month gross return has the interpretation of the future
value of $1 invested in the asset for one month. Unless otherwise stated,
when we refer to returns we mean net returns.
(mention that simple returns cannot be less than 1 (100%) since prices

cannot be negative)

Example 5 Consider a one month investment in Microsoft stock. Suppose
you buy the stock in month t − 1 at Pt−1 = $85 and sell the stock the next
month for Pt = $90. Further assume that Microsoft does not pay a dividend
between months t− 1 and t. The one month simple net and gross returns are
then

Rt =
$90− $85
$85

=
$90

$85
− 1 = 1.0588− 1 = 0.0588,

1 +Rt = 1.0588.

The one month investment in Microsoft yielded a 5.88% per month return.
Alternatively, $1 invested in Microsoft stock in month t− 1 grew to $1.0588
in month t.

2.2 Multi-period returns

The simple two-month return on an investment in an asset between months
t− 2 and t is defined as

Rt(2) =
Pt − Pt−2
Pt−2

=
Pt
Pt−2

− 1.
1We make the convention that the default investment horizon is one month and that

the price is the closing price at the end of the month. This is completely arbitrary and is
used only to simplify calculations.
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Since Pt
Pt−2

= Pt
Pt−1

· Pt−1
Pt−2

the two-month return can be rewritten as

Rt(2) =
Pt
Pt−1

· Pt−1
Pt−2

− 1
= (1 +Rt)(1 +Rt−1)− 1.

Then the simple two-month gross return becomes

1 +Rt(2) = (1 +Rt)(1 +Rt−1) = 1 +Rt−1 +Rt +Rt−1Rt,

which is a geometric (multiplicative) sum of the two simple one-month gross
returns and not the simple sum of the one month returns. If, however, Rt−1
and Rt are small then Rt−1Rt ≈ 0 and 1 + Rt(2) ≈ 1 + Rt−1 + Rt so that
Rt(2) ≈ Rt−1 +Rt.
In general, the k-month gross return is defined as the geometric average

of k one month gross returns

1 +Rt(k) = (1 +Rt)(1 +Rt−1) · · · (1 +Rt−k+1)

=
k−1Y
j=0

(1 +Rt−j).

Example 6 Continuing with the previous example, suppose that the price of
Microsoft stock in month t−2 is $80 and no dividend is paid between months
t− 2 and t. The two month net return is

Rt(2) =
$90− $80
$80

=
$90

$80
− 1 = 1.1250− 1 = 0.1250,

or 12.50% per two months. The two one month returns are

Rt−1 =
$85− $80
$80

= 1.0625− 1 = 0.0625

Rt =
$90− 85
$85

= 1.0588− 1 = 0.0588,

and the geometric average of the two one month gross returns is

1 +Rt(2) = 1.0625× 1.0588 = 1.1250.

5



2.3 Annualizing returns

Very often returns over different horizons are annualized, i.e. converted to
an annual return, to facilitate comparisons with other investments. The an-
nualization process depends on the holding period of the investment and an
implicit assumption about compounding. We illustrate with several exam-
ples.
To start, if our investment horizon is one year then the annual gross and

net returns are just

1 +RA = 1 +Rt(12) =
Pt
Pt−12

= (1 + Rt)(1 +Rt−1) · · · (1 +Rt−11),

RA =
Pt
Pt−12

− 1 = (1 +Rt)(1 +Rt−1) · · · (1 +Rt−11)− 1.

In this case, no compounding is required to create an annual return.
Next, consider a one month investment in an asset with return Rt.What

is the annualized return on this investment? If we assume that we receive
the same return R = Rt every month for the year then the gross 12 month
or gross annual return is

1 +RA = 1 +Rt(12) = (1 +R)
12.

Notice that the annual gross return is defined as the monthly return com-
pounded for 12 months. The net annual return is then

RA = (1 +R)
12 − 1.

Example 7 In the first example, the one month return, Rt, on Microsoft
stock was 5.88%. If we assume that we can get this return for 12 months then
the annualized return is

RA = (1.0588)
12 − 1 = 1.9850− 1 = 0.9850

or 98.50% per year. Pretty good!

Now, consider a two month investment with return Rt(2). If we assume
that we receive the same two month return R(2) = Rt(2) for the next 6 two
month periods then the gross and net annual returns are

1 +RA = (1 +R(2))6,

RA = (1 +R(2))6 − 1.
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Here the annual gross return is defined as the two month return compounded
for 6 months.

Example 8 In the second example, the two month return, Rt(2), on Mi-
crosoft stock was 12.5%. If we assume that we can get this two month return
for the next 6 two month periods then the annualized return is

RA = (1.1250)
6 − 1 = 2.0273− 1 = 1.0273

or 102.73% per year.

To complicate matters, now suppose that our investment horizon is two
years. That is we start our investment at time t − 24 and cash out at time
t. The two year gross return is then 1 + Rt(24) = Pt

Pt−24
. What is the annual

return on this two year investment? To determine the annual return we solve
the following relationship for RA :

(1 +RA)
2 = 1 +Rt(24) =⇒

RA = (1 +Rt(24))
1/2 − 1.

In this case, the annual return is compounded twice to get the two year
return and the relationship is then solved for the annual return.

Example 9 Suppose that the price of Microsoft stock 24 months ago is
Pt−24 = $50 and the price today is Pt = $90. The two year gross return is
1+Rt(24) =

$90
$50
= 1.8000 which yields a two year net return of Rt(24) = 80%.

The annual return for this investment is defined as

RA = (1.800)
1/2 − 1 = 1.3416− 1 = 0.3416

or 34.16% per year.

2.4 Adjusting for dividends

If an asset pays a dividend, Dt, sometime between months t − 1 and t, the
return calculation becomes

Rt =
Pt +Dt − Pt−1

Pt−1
=
Pt − Pt−1
Pt−1

+
Dt
Pt−1

where Pt−Pt−1
Pt−1 is referred as the capital gain and Dt

Pt−1 is referred to as the
dividend yield.
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3 Continuously Compounded Returns

3.1 One Period Returns

Let Rt denote the simple monthly return on an investment. The continuously
compounded monthly return, rt, is defined as

rt = ln(1 +Rt) = ln

Ã
Pt
Pt−1

!
(6)

where ln(·) is the natural log function2. To see why rt is called the con-
tinuously compounded return, take the exponential of both sides of (6) to
give

ert = 1 +Rt =
Pt
Pt−1

.

Rearranging we get
Pt = Pt−1ert ,

so that rt is the continuously compounded growth rate in prices between
months t − 1 and t. This is to be contrasted with Rt which is the simple
growth rate in prices between months t− 1 and t without any compounding.
Furthermore, since ln

³
x
y

´
= ln(x)− ln(y) it follows that

rt = ln

Ã
Pt
Pt−1

!
= ln(Pt)− ln(Pt−1)
= pt − pt−1

where pt = ln(Pt). Hence, the continuously compounded monthly return, rt,
can be computed simply by taking the first difference of the natural loga-
rithms of monthly prices.

Example 10 Using the price and return data from example 1, the continu-
ously compounded monthly return on Microsoft stock can be computed in two
ways:

rt = ln(1.0588) = 0.0571
2The continuously compounded return is always defined since asset prices, Pt, are

always non-negative. Properties of logarithms and exponentials are discussed in the ap-
pendix to this chapter.
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or
rt = ln(90)− ln(85) = 4.4998− 4.4427 = 0.0571.

Notice that rt is slightly smaller than Rt. Why?

Given a monthly continuously compounded return rt, is straightforward
to solve back for the corresponding simple net return Rt :

Rt = e
rt − 1

Hence, nothing is lost by considering continuously compounded returns in-
stead of simple returns.

Example 11 In the previous example, the continuously compounded monthly
return on Microsoft stock is rt = 5.71%. The implied simple net return is then

Rt = e
.0571 − 1 = 0.0588.

Continuously compounded returns are very similar to simple returns as
long as the return is relatively small, which it generally will be for monthly or
daily returns. For modeling and statistical purposes, however, it is muchmore
convenient to use continuously compounded returns due to the additivity
property of multiperiod continuously compounded returns and unless noted
otherwise from here on we will work with continuously compounded returns.

3.2 Multi-Period Returns

The computation of multi-period continuously compounded returns is con-
siderably easier than the computation of multi-period simple returns. To
illustrate, consider the two month continuously compounded return defined
as

rt(2) = ln(1 +Rt(2)) = ln

Ã
Pt
Pt−2

!
= pt − pt−2.

Taking exponentials of both sides shows that

Pt = Pt−2ert(2)
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so that rt(2) is the continuously compounded growth rate of prices between
months t − 2 and t. Using Pt

Pt−2
= Pt

Pt−1
· Pt−1
Pt−2

and the fact that ln(x · y) =
ln(x) + ln(y) it follows that

rt(2) = ln

Ã
Pt
Pt−1

· Pt−1
Pt−2

!

= ln

Ã
Pt
Pt−1

!
+ ln

Ã
Pt−1
Pt−2

!
= rt + rt−1.

Hence the continuously compounded two month return is just the sum of the
two continuously compounded one month returns. Recall that with simple
returns the two month return is of a multiplicative form (geometric average).

Example 12 Using the data from example 2, the continuously compounded
two month return on Microsoft stock can be computed in two equivalent ways.
The first way uses the difference in the logs of Pt and Pt−2:

rt(2) = ln(90)− ln(80) = 4.4998− 4.3820 = 0.1178.
The second way uses the sum of the two continuously compounded one month
returns. Here rt = ln(90) − ln(85) = 0.0571 and rt−1 = ln(85) − ln(80) =
0.0607 so that

rt(2) = 0.0571 + 0.0607 = 0.1178.

Notice that rt(2) = 0.1178 < Rt(2) = 0.1250.

The continuously compounded k−month return is defined by

rt(k) = ln(1 +Rt(k)) = ln

Ã
Pt
Pt−k

!
= pt − pt−k.

Using similar manipulations to the ones used for the continuously com-
pounded two month return we may express the continuously compounded
k−month return as the sum of k continuously compounded monthly returns:

rt(k) =
k−1X
j=0

rt−j .

The additivitity of continuously compounded returns to form multiperiod
returns is an important property for statistical modeling purposes.
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3.3 Annualizing Continuously Compounded Returns

Just as we annualized simple monthly returns, we can also annualize contin-
uously compounded monthly returns.
To start, if our investment horizon is one year then the annual continu-

ously compounded return is simply the sum of the twelve monthly continu-
ously compounded returns

rA = rt(12) = rt + rt−1 + · · ·+ rt−11
=

11X
j=0

rt−j.

Define the average continuously compounded monthly return to be

rm =
1

12

11X
j=0

rt−j.

Notice that

12 · rm =
11X
j=0

rt−j

so that we may alternatively express rA as

rA = 12 · rm.
That is, the continuously compounded annual return is 12 times the average
of the continuously compounded monthly returns.
Next, consider a one month investment in an asset with continuously

compounded return rt.What is the continuously compounded annual return
on this investment? If we assume that we receive the same return r = rt
every month for the year then rA = rt(12) = 12 · r .

4 Further Reading
This chapter describes basic asset return calculations with an emphasis on
equity calculations. Campbell, Lo and MacKinlay provide a nice treatment
of continuously compounded returns. A useful summary of a broad range
of return calculations is given in Watsham and Parramore (1998). A com-
prehensive treatment of fixed income return calculations is given in Stigum
(1981) and the official source of fixed income calculations is “The Pink Book”.
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5 Appendix: Properties of exponentials and
logarithms

The computation of continuously compounded returns requires the use of
natural logarithms. The natural logarithm function, ln(·), is the inverse of
the exponential function, e(·) = exp(·), where e1 = 2.718. That is, ln(x) is
defined such that x = ln(ex). Figure xxx plots ex and ln(x). Notice that ex

is always positive and increasing in x. ln(x) is monotonically increasing in x
and is only defined for x > 0. Also note that ln(1) = 0 and ln(−∞) = 0. The
exponential and natural logarithm functions have the following properties

1. ln(x · y) = ln(x) + ln(y), x, y > 0
2. ln(x/y) = ln(x)− ln(y), x, y > 0
3. ln(xy) = y ln(x), x > 0

4. d ln(x)
dx

= 1
x
, x > 0

5. d
ds
ln(f(x)) = 1

f(x)
d
dx
f(x) (chain-rule)

6. exey = ex+y

7. exe−y = ex−y

8. (ex)y = exy

9. eln(x) = x

10. d
dx
ex = ex

11. d
dx
ef(x) = ef(x) d

dx
f(x) (chain-rule)

6 Problems
Exercise 6.1 Excel exercises

Go to http://finance.yahoo.com and download monthly data on Mi-
crosoft (ticker symbol msft) over the period December 1996 to December
2001. See the Project page on the class website for instructions on how to
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download data from Yahoo. Read the data into Excel and make sure to re-
order the data so that time runs forward. Do your analysis on the monthly
closing price data (which should be adjusted for dividends and stock splits).
Name the spreadsheet tab with the data “data”.

1. Make a time plot (line plot in Excel) of the monthly price data over the
period (end of December 1996 through (end of) December 2001. Please
put informative titles and labels on the graph. Place this graph in a
separate tab (spreadsheet) from the data. Name this tab “graphs”.
Comment on what you see (eg. price trends, etc). If you invested
$1,000 at the end of December 1996 what would your investment be
worth at the end of December 2001? What is the annual rate of return
over this five year period assuming annual compounding?

2. Make a time plot of the natural logarithm of monthly price data over
the period December 1986 through December 2000 and place it in the
“graph” tab. Comment on what you see and compare with the plot of
the raw price data. Why is a plot of the log of prices informative?

3. Using the monthly price data over the period December 1996 through
December 2001 in the “data” tab, compute simple (no compounding)
monthly returns (Microsoft does not pay a dividend). When computing
returns, use the convention that Pt is the end of month closing price.
Make a time plot of the monthly returns, place it in the “graphs” tab
and comment. Keep in mind that the returns are percent per month
and that the annual return on a US T-bill is about 5%.

4. Using the simple monthly returns in the “data” tab, compute simple
annual returns for the years 1996 through 2001. Make a time plot of the
annual returns, put them in the “graphs” tab and comment. Note: You
may compute annual returns using overlapping data or non-overlapping
data. With overlapping data you get a series of annual returns for every
month (sounds weird, I know). That is, the first month annual return
is from the end of December, 1996 to the end of December, 1997. Then
second month annual return is from the end of January, 1997 to the
end of January, 1998 etc. With non-overlapping data you get a series of
5 annual returns for the 5 year period 1996-2001. That is, the annual
return for 1997 is computed from the end of December 1996 through
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the end of December 1997. The second annual return is computed from
the end of December 1997 through the end of December 1998 etc.

5. Using the monthly price data over the period December 1996 through
December 2001, compute continuously compounded monthly returns
and place then in the “data” tab. Make a time plot of the monthly
returns, put them in the ”graphs” tab and comment. Briefly compare
the continuously compounded returns to the simple returns.

6. Using the continuously compounded monthly returns, compute contin-
uously compounded annual returns for the years 1997 through 2001.
Make a time plot of the annual returns and comment. Briefly compare
the continuously compounded returns to the simple returns.

Exercise 6.2 Return calculations

Consider the following (actual) monthly closing price data for Microsoft
stock over the period December 1999 through December 2000

End of Month Price Data for Microsoft Stock
December, 1999 $116.751
January, 2000 $97.875
February, 2000 $89.375
March, 2000 $106.25
April, 2000 $69.75
May, 2000 $62.5625
June, 2000 $80
July, 2000 $69.8125
August, 2000 $69.8125
September, 2000 $60.3125
October, 2000 $68.875
November, 2000 $57.375
December, 2000 $43.375

1. Using the data in the table, what is the simple monthly return between
December, 1999 and January 2000? If you invested $10,000 in Microsoft
at the end of December 1999, how much would the investment be worth
at the end of January 2000?
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2. Using the data in the table, what is the continuously compounded
monthly return between December, 1999 and January 2000? Convert
this continuously compounded return to a simple return (you should
get the same answer as in part a).

3. Assuming that the simple monthly return you computed in part (1)
is the same for 12 months, what is the annual return with monthly
compounding?

4. Assuming that the continuously compounded monthly return you com-
puted in part (2) is the same for 12 months, what is the continuously
compounded annual return?

5. Using the data in the table, compute the actual simple annual return
between December 1999 and December 2000. If you invested $10,000 in
Microsoft at the end of December 1999, howmuch would the investment
be worth at the end of December 2000? Compare with your result in
part (3).

6. Using the data in the table, compute the actual annual continuously
compounded return between December 1999 and December 2000. Com-
pare with your result in part (4). Convert this continuously com-
pounded return to a simple return (you should get the same answer
as in part 5).
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1 Random Variables
We start with a basic de&nition of a random variable

De&nition 1 A Random variable X is a variable that can take on a given set of
values, called the sample space and denoted SX , where the likelihood of the values
in SX is determined by X�s probability distribution function (pdf).

For example, consider the price of Microsoft stock next month. Since the price
of Microsoft stock next month is not known with certainty today, we can consider
it a random variable. The price next month must be positive and realistically it
can�t get too large. Therefore the sample space is the set of positive real numbers
bounded above by some large number. It is an open question as to what is the
best characterization of the probability distribution of stock prices. The log-normal
distribution is one possibility1.
As another example, consider a one month investment in Microsoft stock. That

is, we buy 1 share of Microsoft stock today and plan to sell it next month. Then
the return on this investment is a random variable since we do not know its value
today with certainty. In contrast to prices, returns can be positive or negative and are
bounded from below by -100%. The normal distribution is often a good approximation
to the distribution of simple monthly returns and is a better approximation to the
distribution of continuously compounded monthly returns.
As a &nal example, consider a variable X de&ned to be equal to one if the monthly

price change on Microsoft stock is positive and is equal to zero if the price change

1If P is a positive random variable such that lnP is normally distributed the P has a log-normal
distribution. We will discuss this distribution is later chapters.
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is zero or negative. Here the sample space is trivially the set {0, 1}. If it is equally
likely that the monthly price change is positive or negative (including zero) then the
probability that X = 1 or X = 0 is 0.5.

1.1 Discrete Random Variables

Consider a random variable generically denoted X and its set of possible values or
sample space denoted SX .

De&nition 2 A discrete random variable X is one that can take on a &nite number
of n different values x1, x2, . . . , xn or, at most, an in&nite number of different values
x1, x2, . . . .

De&nition 3 The pdf of a discrete random variable, denoted p(x), is a function such
that p(x) = Pr(X = x). The pdf must satisfy (i) p(x) ≥ 0 for all x ∈ SX ; (ii) p(x) = 0
for all x /∈ SX; and (iii)

P
x∈SX p(x) = 1.

As an example, let X denote the annual return on Microsoft stock over the next
year. We might hypothesize that the annual return will be in! uenced by the general
state of the economy. Consider &ve possible states of the economy: depression, reces-
sion, normal, mild boom and major boom. A stock analyst might forecast different
values of the return for each possible state. Hence X is a discrete random variable
that can take on &ve different values. The following table describes such a probability
distribution of the return.

Table 1
State of Economy SX = Sample Space p(x) = Pr(X = x)
Depression -0.30 0.05
Recession 0.0 0.20
Normal 0.10 0.50

Mild Boom 0.20 0.20
Major Boom 0.50 0.05

A graphical representation of the probability distribution is presented in Figure
1.

1.1.1 The Bernoulli Distribution

Let X = 1 if the price next month of Microsoft stock goes up and X = 0 if the price
goes down (assuming it cannot stay the same). Then X is clearly a discrete random
variable with sample space SX = {0, 1}. If the probability of the stock going up or
down is the same then p(0) = p(1) = 1/2 and p(0) + p(1) = 1.
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The probability distribution described above can be given an exact mathematical
representation known as the Bernoulli distribution. Consider two mutually exclusive
events generically called �success�and �failure�. For example, a success could be a
stock price going up or a coin landing heads and a failure could be a stock price going
down or a coin landing tails. In general, let X = 1 if success occurs and let X = 0
if failure occurs. Let Pr(X = 1) = π, where 0 < π < 1, denote the probability of
success. Clearly, Pr(X = 0) = 1 − π is the probability of failure. A mathematical
model for this set-up is

p(x) = Pr(X = x) = πx(1− π)1−x, x = 0, 1.

When x = 0, p(0) = π0(1− π)1−0 = 1− π and when x = 1, p(1) = π1(1− π)1−1 = π.
This distribution is presented graphically in Figure 2.

1.2 Continuous Random Variables

De&nition 4 A continuous random variable X is one that can take on any real value.

De&nition 5 The probability density function (pdf) of a continuous random variable
X is a nonnegative function p, de&ned on the real line, such that for any interval A

Pr(X ∈ A) =
Z
A

p(x)dx.

That is, Pr(X ∈ A) is the �area under the probability curve over the interval A”. The
pdf p must satisfy (i) p(x) ≥ 0; and (ii) R∞−∞ p(x)dx = 1.
A typical �bell-shaped�pdf is displayed in Figure 3. In that &gure the total area

under the curve must be 1, and the value of Pr(a ≤ X ≤ b) is equal to the area of
the shaded region. For a continuous random variable, p(x) 6= Pr(X = x) but rather
gives the height of the probability curve at x. In fact, Pr(X = x) = 0 for all values of
x. That is, probabilities are not de&ned over single points; they are only de&ned over
intervals.

1.2.1 The Uniform Distribution on an Interval

Let X denote the annual return on Microsoft stock and let a and b be two real
numbers such that a < b. Suppose that the annual return on Microsoft stock can
take on any value between a and b. That is, the sample space is restricted to the
interval SX = {x ∈ R : a ≤ x ≤ b}. Further suppose that the probability that X will
belong to any subinterval of SX is proportional to the length of the interval. In this
case, we say that X is uniformly distributed on the interval [a, b]. The p.d.f. of X has
the very simple mathematical form

p(x) =
1
b−a
0

for a ≤ x ≤ b
otherwise
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and is presented graphically in Figure 4. Notice that the area under the curve over
the interval [a, b] integrates to 1 sinceZ b

a

1

b− adx =
1

b− a
Z b

a

dx =
1

b− a [x]
b
a =

1

b− a [b− a] = 1.

Suppose, for example, a = −1 and b = 1 so that b − a = 2. Consider computing
the probability that the return will be between -50% and 50%.We solve

Pr(−50% < X < 50%) =

Z 0.5

−0.5

1

2
dx =

1

2
[x]0.5−0.5 =

1

2
[0.5− (−0.5)] = 1

2
.

Next, consider computing the probability that the return will fall in the interval [0, δ]
where δ is some small number less than b = 1 :

Pr(0 ≤ X ≤ δ) =
1

2

Z δ

0

dx =
1

2
[x]δ0 =

1

2
δ.

As δ → 0, Pr(0 ≤ X ≤ δ)→ Pr(X = 0). Using the above result we see that

lim
δ→0

Pr(0 ≤ X ≤ δ) = Pr(X = 0) = lim
δ→0

1

2
δ = 0.

Hence, probabilities are de&ned on intervals but not at distinct points. As a result,
for a continuous random variable X we have

Pr(a ≤ X ≤ b) = Pr(a ≤ X < b) = Pr(a < X ≤ b) = Pr(a < X < b).

1.2.2 The Standard Normal Distribution

The normal or Gaussian distribution is perhaps the most famous and most useful
continuous distribution in all of statistics. The shape of the normal distribution
is the familiar �bell curve�. As we shall see, it is also well suited to describe the
probabilistic behavior of stock returns.
If a random variable X follows a standard normal distribution then we often write

X ∼ N(0, 1) as short-hand notation. This distribution is centered at zero and has
in! ection points at ±1. The pdf of a normal random variable is given by

p(x) =
1√
2π
· e− 1

2
x2 −∞ ≤ x ≤ ∞.

It can be shown via the change of variables formula in calculus that the area under
the standard normal curve is one:Z ∞

−∞

1√
2π
· e− 1

2
x2dx = 1.
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The standard normal distribution is graphed in Figure 5. Notice that the distribution
is symmetric about zero; i.e., the distribution has exactly the same form to the left
and right of zero.
The normal distribution has the annoying feature that the area under the normal

curve cannot be evaluated analytically. That is

Pr(a < X < b) =

Z b

a

1√
2π
· e− 1

2
x2dx

does not have a closed form solution. The above integral must be computed by
numerical approximation. Areas under the normal curve, in one form or another, are
given in tables in almost every introductory statistics book and standard statistical
software can be used to &nd these areas. Some useful results from the normal tables
are

Pr(−1 < X < 1) ≈ 0.67,
Pr(−2 < X < 2) ≈ 0.95,
Pr(−3 < X < 3) ≈ 0.99.

Finding Areas Under the Normal Curve In the back of most introductory

statistics textbooks is a table giving information about areas under the standard
normal curve. Most spreadsheet and statistical software packages have functions for
&nding areas under the normal curve. Let X denote a standard normal random
variable. Some tables and functions give Pr(0 ≤ X < z) for various values of z > 0,
some give Pr(X ≥ z) and some give Pr(X ≤ z). Given that the total area under
the normal curve is one and the distribution is symmetric about zero the following
results hold:

• Pr(X ≤ z) = 1− Pr(X ≥ z) and Pr(X ≥ z) = 1− Pr(X ≤ z)
• Pr(X ≥ z) = Pr(X ≤ −z)
• Pr(X ≥ 0) = Pr(X ≤ 0) = 0.5
The following examples show how to compute various probabilities.

Example 6 Find Pr(X ≥ 2). We know that Pr(X ≥ 2) = Pr(X ≥ 0)−Pr(0 ≤ X ≤
2) = 0.5− Pr(0 ≤ X ≤ 2). From the normal tables we have Pr(0 ≤ X ≤ 2) = 0.4772
and so Pr(X ≥ 2) = 0.5− 0.4772 = 0.0228.
Example 7 Find Pr(X ≤ 2). We know that Pr(X ≤ 2) = 1− Pr(X ≥ 2) and using
the result from the previous example we have Pr(X ≤ 2) = 1− 0.0228 = 0.9772.
Example 8 Find Pr(−1 ≤ X ≤ 2). First, note that Pr(−1 ≤ X ≤ 2) = Pr(−1 ≤
X ≤ 0) + Pr(0 ≤ X ≤ 2). Using symmetry we have that Pr(−1 ≤ X ≤ 0) = Pr(0 ≤
X ≤ 1) = 0.3413 from the normal tables. Using the result from the &rst example we
get Pr(−1 ≤ X ≤ 2) = 0.3413 + 0.4772 = 0.8185.
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1.3 The Cumulative Distribution Function

De&nition 9 The cumulative distribution function (cdf), F, of a random variable X
(discrete or continuous) is simply the probability that X ≤ x :

F (x) = Pr(X ≤ x), −∞ ≤ x ≤ ∞.
The cdf has the following properties:

• If x1 < x2 then F (x1) ≤ F (x2)
• F (−∞) = 0 and F (∞) = 1
• Pr(X > x) = 1− F (x)
• Pr(x1 < X ≤ x2) = F (x2)− F (x1)
The cdf for the discrete distribution of Microsoft is given in Figure 6. Notice that

the cdf in this case is a discontinuous step function.
The cdf for the uniform distribution over [a, b] can be determined analytically

since

F (x) = Pr(X < x) =
1

b− a
Z x

a

dt =
1

b− a [t]
x
a =

x− a
b− a .

Notice that for this example, we can determine the pdf of X directly from the cdf via

p(x) = F 0(x) =
d

dx
F (x) =

1

b− a.

The cdf of the standard normal distribution is used so often in statistics that it
is given its own special symbol:

Φ(x) = P (X ≤ x) =
Z x

−∞

1√
2π
exp(−1

2
z2)dz,

where X is a standard normal random variable. The cdf Φ(x), however, does not
have an anaytic representation like the cdf of the uniform distribution and must be
approximated using numerical techniques.

1.4 Quantiles of the Distribution of a Random Variable

Consider a random variable X with CDF FX(x) = Pr(X ≤ x). The 100 ·α% quantile
of the distribution for X is the value qα that satis&es

FX(qα) = Pr(X ≤ qα) = α

For example, the 5% quantile of X, q.05, satis&es

FX(q.05) = Pr(X ≤ q.05) = .05.
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The median of the distribution is 50% quantile. That is, the median satis&es

FX(median) = Pr(X ≤ median) = .5

The 5% quantile and the median are illustrated in Figure xxx using the CDF FX as
well as the pdf fX .
If FX is invertible then qa may be determined as

qa = F
−1
X (α)

where F−1X denotes the inverse function of FX . Hence, the 5% quantile and the median
may be determined as

q.05 = F−1X (.05)

median = F−1X (.5)

Example 10 Let X˜U [a, b] where b > a. The cdf of X is given by

α = Pr(X ≤ x) = FX(x) = x− a
b− a , a ≤ x ≤ b

Given α, solving for x gives the inverse cdf

x = F−1X (α) = α(b− a) + a, 0 ≤ α ≤ 1

Using the inverse cdf, the 5% quantile and median, for example, are given by

q.05 = F−1X (.05) = .05(b− a) + a = .05b+ .95a
median = F−1X (.5) = .5(b− a) + a = .5(a+ b)

If a = 0 and b = 1 then q.05 = 0.05 and median = 0.5.

Example 11 Let X˜N(0, 1). The quantiles of the standard normal are determined
from

qα = Φ−1(α)

where Φ−1 denotes the inverse of the cdf Φ. This inverse function must be approxi-
mated numerically. Using the numerical approximation to the inverse function, the
5% quantile and median are given by

q.05 = Φ−1(.05) = −1.645
median = Φ−1(.5) = 0
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1.5 Shape Characteristics of Probability Distributions

Very often we would like to know certain shape characteristics of a probability distri-
bution. For example, we might want to know where the distribution is centered and
how spread out the distribution is about the central value. We might want to know
if the distribution is symmetric about the center. For stock returns we might want to
know about the likelihood of observing extreme values for returns. This means that
we would like to know about the amount of probability in the extreme tails of the
distribution. In this section we discuss four shape characteristics of a pdf:

• expected value or mean - center of mass of a distribution
• variance and standard deviation - spread about the mean
• skewness - measure of symmetry about the mean
• kurtosis - measure of �tail thickness�

1.5.1 Expected Value

The expected value of a random variable X, denoted E[X] or µX , measures the center
of mass of the pdf For a discrete random variable X with sample space SX

µX = E[X] =
X
x∈SX

x · Pr(X = x).

Hence, E[X] is a probability weighted average of the possible values of X.

Example 12 Using the discrete distribution for the return on Microsoft stock in
Table 1, the expected return is

E[X] = (−0.3) · (0.05) + (0.0) · (0.20) + (0.1) · (0.5) + (0.2) · (0.2) + (0.5) · (0.05)
= 0.10.

Example 13 Let X be a Bernoulli random variable with success probability π. Then

E[X] = 0 · (1− π) + 1 · π = π

That is, the expected value of a Bernoulli random variable is its probability of success.

For a continuous random variable X with pdf p(x)

µX = E[X] =

Z ∞

−∞
x · p(x)dx.
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Example 14 Suppose X has a uniform distribution over the interval [a, b]. Then

E[X] =
1

b− a
Z b

a

xdx =
1

b− a
·
1

2
x2
¸b
a

=
1

2(b− a)
£
b2 − a2¤

=
(b− a)(b+ a)
2(b− a) =

b+ a

2
.

Example 15 Suppose X has a standard normal distribution. Then it can be shown
that

E[X] =

Z ∞

−∞
x · 1√

2π
e−

1
2
x2dx = 0.

1.5.2 Expectation of a Function of a Random Variable

The other shape characteristics of distributions are based on expectations of certain
functions of a random variable. Let g(X) denote some function of the random variable
X. If X is a discrete random variable with sample space SX then

E[g(X)] =
X
x∈SX

g(x) · Pr(X = x),

and if X is a continuous random variable with pdf p then

E[g(X)] =

Z ∞

−∞
g(x) · p(x)dx.

1.5.3 Variance and Standard Deviation

The variance of a random variable X, denoted var(X) or σ2X , measures the spread of
the distribution about the origin using the function g(X) = (X−µX)2. For a discrete
random variable X with sample space SX

σ2X = var(X) = E[(X − µX)2] =
X
x∈SX

(x− µX)2 · Pr(X = x).

Notice that the variance of a random variable is always nonnegative.

Example 16 Using the discrete distribution for the return on Microsoft stock in
Table 1 and the result that µX = 0.1, we have

var(X) = (−0.3− 0.1)2 · (0.05) + (0.0− 0.1)2 · (0.20) + (0.1− 0.1)2 · (0.5)
+(0.2− 0.1)2 · (0.2) + (0.5− 0.1)2 · (0.05)

= 0.020.
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Example 17 Let X be a Bernoulli random variable with success probability π. Given
that µX = π it follows that

var(X) = (0− π)2 · (1− π) + (1− π)2 · π
= π2(1− π) + (1− π2)π

= π(1− π) [π + (1− π)]

= π(1− π).

The standard deviation of X, denoted SD(X) or σX , is just the square root of
the variance. Notice that SD(X) is in the same units of measurement as X whereas
var(X) is in squared units of measurement. For �bell-shaped� or normal looking
distributions the SD measures the typical size of a deviation from the mean value.

Example 18 For the distribution in Table 1, we have SD(X) = σX =
√
0.020 =

0.141. Given that the distribution is fairly bell-shaped we can say that typical values
deviate from the mean value of 10% by about 14.1%.

For a continuous random variable X with pdf p(x)

σ2X = var(X) = E[(X − µX)2] =
Z ∞

−∞
(x− µX)2 · p(x)dx.

Example 19 Suppose X has a standard normal distribution so that µX = 0. Then
it can be shown that

var (X) =

Z ∞

−∞
x2 · 1√

2π
e−

1
2
x2dx = 1,

and so SD(X) = 1.

1.5.4 The General Normal Distribution

Recall, if X has a standard normal distribution then E[X] = 0, var(X) = 1. If X
has general normal distribution, denoted X ∼ N(µX , σ2X), then its pdf is given by

p(x) =
1p
2πσ2X

e
− 1

2σ2
X

(x−µX)2
, −∞ ≤ x ≤ ∞.

It can be shown that E[X] = µX and var(X) = σ2X , although showing these results
analytically is a bit of work and is good calculus practice. As with the standard normal
distribution, areas under the general normal curve cannot be computed analytically.
Using numerical approximations, it can be shown that

Pr(µX − σX < X < µX + σX) ≈ 0.67,
Pr(µX − 2σX < X < µX + 2σX) ≈ 0.95,
Pr(µX − 3σX < X < µX + 3σX) ≈ 0.99.
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Hence, for a general normal random variable about 95% of the time we expect to see
values within ± 2 standard deviations from its mean. Observations more than three
standard deviations from the mean are very unlikely.

(insert &gures showing different normal distributions)

1.5.5 The Log-Normal distribution

A random variable Y is said to be log-normally distributed with parameters µ and
σ2 if

lnY ~ N(µ, σ2).

Equivalently, let X ~ N(µ,σ2) and de&ne

Y = eX .

Then Y is log-normally distributed and is denoted Y ~ lnN(µ, σ2).

(insert &gure showing lognormal distribution).

It can be shown that

µY = E[Y ] = eµ+σ
2/2

σ2Y = var(Y ) = e2µ+σ
2

(eσ
2 − 1)

Example 20 Let rt = ln(Pt/Pt−1) denote the continuously compounded monthly re-
turn on an asset and assume that rt ~ N(µ, σ2). Let Rt =

Pt−Pt−1
Pt

denote the simple
monthly return. The relationship between rt and Rt is given by rt = ln(1 + Rt) and
1+Rt = e

rt . Since rt is normally distributed 1+Rt is log-normally distributed. Notice
that the distribution of 1 + Rt is only de&ned for positive values of 1 + Rt. This is
appropriate since the smallest value that Rt can take on is −1.

1.5.6 Using standard deviation as a measure of risk

Consider the following investment problem. We can invest in two non-dividend paying
stocks A and B over the next month. Let RA denote monthly return on stock A and
RB denote the monthly return on stock B. These returns are to be treated as random
variables since the returns will not be realized until the end of the month. We assume
that RA ˜N(µA,σ

2
A) and RB ˜ N(µB, σ

2
B). Hence, µi gives the expected return, E[Ri],

on asset i and σi gives the typical size of the deviation of the return on asset i from its
expected value. Figure xxx shows the pdfs for the two returns. Notice that µA > µB
but also that σA > σB. The return we expect on asset A is bigger than the return
we expect on asset B but the variability of the return on asset A is also greater than
the variability on asset B. The high return variability of asset A re! ects the risk
associated with investing in asset A. In contrast, if we invest in asset B we get a
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lower expected return but we also get less return variability or risk. This example
illustrates the fundamental �no free lunch�principle of economics and &nance: you
can�t get something for nothing. In general, to get a higher return you must take on
extra risk.

1.5.7 Skewness

The skewness of a random variable X, denoted skew(X), measures the symmetry of
a distribution about its mean value using the function g(X) = (X −µX)3/σ3X , where
σ3X is just SD(X) raised to the third power. For a discrete random variable X with
sample space SX

skew(X) =
E[(X − µX)3]

σ3X
=

P
x∈SX (x− µX)3 · Pr(X = x)

σ3X
.

If X has a symmetric distribution then skew(X) = 0 since positive and negative
values in the formula for skewness cancel out. If skew(X) > 0 then the distribution
of X has a �long right tail�and if skew(X) < 0 the distribution of X has a �long
left tail�. These cases are illustrated in Figure 6.

Example 21 Using the discrete distribution for the return on Microsoft stock in
Table 1, the results that µX = 0.1 and σX = 0.141, we have

skew(X) = [(−0.3− 0.1)3 · (0.05) + (0.0− 0.1)3 · (0.20) + (0.1− 0.1)3 · (0.5)
+(0.2− 0.1)3 · (0.2) + (0.5− 0.1)3 · (0.05)]/(0.141)3

= 0.0

For a continuous random variable X with pdf p(x)

skew(X) =
E[(X − µX)3]

σ3X
=

R∞
−∞(x− µX)3 · p(x)dx

σ3X
.

Example 22 Suppose X has a general normal distribution with mean µX and vari-
ance σ2X. Then it can be shown that

skew(X) =

Z ∞

−∞

(x− µX)3
σ3X

· 1√
2πσ2

e
− 1

2σ2
X

(x−µX)2
dx = 0.

This result is expected since the normal distribution is symmetric about it�s mean
value µX .
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1.5.8 Kurtosis

The kurtosis of a random variable X, denoted kurt(X), measures the thickness in the
tails of a distribution and is based on g(X) = (X − µX)4/σ4X . For a discrete random
variable X with sample space SX

kurt(X) =
E[(X − µX)4]

σ4X
=

P
x∈SX (x− µX)2 · Pr(X = x)

σ4X
,

where σ4X is just SD(X) raised to the fourth power. Since kurtosis is based on
deviations from the mean raised to the fourth power, large deviations get lots of
weight. Hence, distributions with large kurtosis values are ones where there is the
possibility of extreme values. In contrast, if the kurtosis is small then most of the
observations are tightly clustered around the mean and there is very little probability
of observing extreme values.

Example 23 Using the discrete distribution for the return on Microsoft stock in
Table 1, the results that µX = 0.1 and σX = 0.141, we have

kurt(X) = [(−0.3− 0.1)4 · (0.05) + (0.0− 0.1)4 · (0.20) + (0.1− 0.1)4 · (0.5)
+(0.2− 0.1)4 · (0.2) + (0.5− 0.1)4 · (0.05)]/(0.141)4

= 6.5

For a continuous random variable X with pdf p(x)

kurt(X) =
E[(X − µX)4]

σ4X
=

R∞
−∞(x− µX)4 · p(x)dx

σ4X
.

Example 24 Suppose X has a general normal distribution mean µX and variance
σ2X . Then it can be shown that

kurt(X) =

Z ∞

−∞

(x− µX)4
σ4X

· 1p
2πσ2X

e−
1
2
(x−µX)2dx = 3.

Hence a kurtosis of 3 is a benchmark value for tail thickness of bell-shaped distribu-
tions. If a distribution has a kurtosis greater than 3 then the distribution has thicker
tails than the normal distribution and if a distribution has kurtosis less than 3 then
the distribution has thinner tails than the normal.

Sometimes the kurtosis of a random variable is described relative to the kurtosis
of a normal random variable. This relative value of kurtosis is referred to as excess
kurtosis and is de&ned as

excess kurt(X) = kurt(X)− 3
If excess the excess kurtosis of a random variable is equal to zero then the random
variable has the same kurtosis as a normal random variable. If excess kurtosis is
greater than zero, then kurtosis is larger than that for a normal; if excess kurtosis is
less than zero, then kurtosis is less than that for a normal.
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1.6 Linear Functions of a Random Variable

Let X be a random variable either discrete or continuous with E[X] = µX , var(X) =
σ2X and let a and b be known constants. De&ne a new random variable Y via the
linear function of X

Y = g(X) = aX + b.

Then the following results hold:

• E[Y ] = aE[X] + b or µY = aµX + b.
• var(Y ) = a2var(X) or σ2Y = a2σ2X .
The &rst result shows that expectation is a linear operation. That is,

E[aX + b] = aE[X] + b.

In the second result notice that adding a constant to X does not affect its variance
and that the effect of multiplying X by the constant a increases the variance of X by
the square of a. These results will be used often enough that it useful to go through
the derivations, at least for the case that X is a discrete random variable.
Proof. Consider the &rst result. By the de&nition of E[g(X)] with g(X) = b+aX

we have

E[Y ] =
X
x∈SX

(ax+ b) · Pr(X = x)

= a
X
x∈SX

x · Pr(X = x) + b
X
x∈SX

Pr(X = x)

= aE[X] + b · 1
= aµX + b

= µY .

Next consider the second result. Since µY = aµX + b we have

var(Y ) = E[(Y − µy)2]
= E[(aX + b− (aµX + b))2]
= E[(a(X − µX) + (b− b))2]
= E[a2(X − µX)2]
= a2E[(X − µX)2] (by the linearity of E[·])
= a2var(X)

a2σ2X .

Notice that our proof of the second result works for discrete and continuous random
variables.
A normal random variable has the special property that a linear function of it is

also a normal random variable. The following proposition establishes the result.
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Proposition 25 Let X ∼ N(µX , σ2X) and let a and b be constants. Let Y = aX + b.
Then Y ∼ N(aµX + b, a2σ2X).
The above property is special to the normal distribution and may or may not hold

for a random variable with a distribution that is not normal.

1.6.1 Standardizing a Random Variable

LetX be a random variable with E[X] = µX and var(X) = σ2X . De&ne a new random
variable Z as

Z =
X − µX

σX
=

1

σX
X − µX

σX

which is a linear function aX + b where a = 1
σX
and b = −µX

σX
. This transformation is

called �standardizing�the random variable X since, using the results of the previous
section,

E[Z] =
1

σX
E[X]− µX

σX
=

1

σX
µX −

µX
σX

= 0

var(Z) =

µ
1

σX

¶2
var(X) =

σ2X
σ2X

= 1.

Hence, standardization creates a new random variable with mean zero and variance
1. In addition, if X is normally distributed then so is Z.

Example 26 Let X ∼ N(2, 4) and suppose we want to &nd Pr(X > 5). Since X is
not standard normal we can�t use the standard normal tables to evaluate Pr(X > 5)
directly. We solve the problem by standardizing X as follows:

Pr (X > 5) = Pr

µ
X − 2√
4
>
5− 2√
4

¶
= Pr

µ
Z >

3

2

¶
where Z ∼ N(0, 1) is the standardized value of X. Pr ¡Z > 3

2

¢
can be found directly

from the standard normal tables.

Standardizing a random variable is often done in the construction of test statistics.
For example, the so-called �t-statistic�or �t-ratio�used for testing simple hypotheses
on coefficients in the linear regression model is constructed by the above standard-
ization process.
A non-standard random variable X with mean µX and variance σ

2
X can be created

from a standard random variable via the linear transformation

X = µX + σXZ.
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This result is useful for modeling purposes. For example, in Chapter 3 we will consider
the Constant Expected Return (CER) model of asset returns. Let R denote the
monthly continuously compounded return on an asset and let µ = E[R] and σ2 =
var(R). A simpli&ed version of the CER model is

R = µ+ σ · ε

where ε is a random variable with mean zero and variance 1. The random variable ε
is often interpreted as representing the random news arriving in a given month that
makes the observed return differ from the expected value µ. The fact that ε has mean
zero means that new, on average, is neutral. The value of σ represents the typical
size of a news shock.
(Stuff to add: General functions of a random variable and the change of variables

formula. Example with the log-normal distribution)

1.7 Value at Risk

To illustrate the concept of Value-at-Risk (VaR), consider an investment of $10,000
in Microsoft stock over the next month. Let R denote the monthly simple return on
Microsoft stock and assume that R ~N(0.05, (0.10)2). That is, E[R] = µ = 0.05 and
var(R) = σ2 = (0.10)2. Let W0 denote the investment value at the beginning of the
month andW1 denote the investment value at the end of the month. In this example,
W0 = $10, 000. Consider the following questions:

• What is the probability distribution of end of month wealth, W1?

• What is the probability that end of month wealth is less than $9, 000 and what
must the return on Microsoft be for this to happen?

• What is the monthly VaR on the $10, 000 investment in Microsoft stock with
5% probability? That is, what is the loss that would occur if the return on
Microsoft stock is equal to its 5% quantile, q.05?

To answer the &rst question, note that end of month wealthW1 is related to initial
wealth W0 and the return on Microsoft stock R via the linear function

W1 = W0(1 +R) = W0 +W0R

= $10, 000 + $10, 000 ·R.

Using the properties of linear functions of a random variable we have

E[W1] = W0 +W0E[R]

= $10, 000 + $10, 000(0.05) = $10, 500
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and

var(W1) = (W0)
2var(R)

= ($10, 000)2(0.10)2,

SD(W1) = ($10, 000)(0.10) = $1, 000.

Further, since R is assumed to be normally distributed we have

W1 ~ N($10, 500, ($1, 000)2)

To answer the second question, we use the above normal distribution for W1 to
get

Pr(W1 < $9, 000) = 0.067

To &nd the return that produces end of month wealth of $9, 000 or a loss of $10, 000−
$9, 000 = $1, 000 we solve

R∗ =
$9, 000− $10, 000

$10, 000
= −0.10.

In other words, if the monthly return on Microsoft is −10% or less then end of
month wealth will be $9, 000 or less. Notice that −0.10 is the 6.7% quantile of the
distribution of R :

Pr(R < −0.10) = 0.067
The third question can be answered in two equivalent ways. First, useR ~N(0.05, (0.10)2)

and solve for the the 5% quantile of Microsoft Stock:

Pr(R < qR.05) = 0.05⇒ qR.05 = −0.114.
That is, with 5% probability the return on Microsoft stock is −11.4% or less. Now,
if the return on Microsoft stock is −11.4% the loss in investment value is $10, 000 ·
(0.114) = $1, 144. Hence, $1, 144 is the 5% VaR over the next month on the $10, 000
investment in Microsoft stock. In general, if W0 represents the initial wealth and qR.05
is the 5% quantile of distribution of R then the 5% VaR is

5% VaR = |W0 · qR.05|.
For the second method, use W1 ~N($10, 500, ($1, 000)2) and solve for the 5%

quantile of end of month wealth:

Pr(W1 < q
W1
.05 ) = 0.05⇒ qW1

.05 = $8, 856

This corresponds to a loss of investment value of $10, 000− $8, 856 = $1, 144. Hence,
if W0 represents the initial wealth and q

W1
.05 is the 5% quantile of the distribution of

W1 then the 5% VaR is
5% VaR =W0 − qW1

.05 .

(insert VaR calculations based on continuously compounded returns)
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1.8 Log-Normal Distribution and Jensen�s Inequality

(discuss Jensen�s inequality: E[g(X)] < g(E[X]) for a convex function. Use this
to illustrate the difference between E[W0 exp(R)] and W0 exp(E[R]) where R is a
continuously compounded return.) Note, this is where the log-normal distribution
will come in handy.

2 Bivariate Distributions
So far we have only considered probability distributions for a single random variable.
In many situations we want to be able to characterize the probabilistic behavior of
two or more random variables simultaneously.

2.1 Discrete Random Variables

For example, let X denote the monthly return on Microsoft Stock and let Y denote
the monthly return on Apple computer. For simplicity suppose that the sample
spaces for X and Y are SX = {0, 1, 2, 3} and SY = {0, 1} so that the random
variables X and Y are discrete. The joint sample space is the two dimensional
grid SXY = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}. The likelihood that
X and Y takes values in the joint sample space is determined by the joint probability
distribution

p(x, y) = Pr(X = x, Y = y).

The function p(x, y) satis&es

(i) p(x, y) > 0 for x, y ∈ SXY ;
(ii) p(x, y) = 0 for x, y /∈ SXY ;
(iii)

P
x,y∈SXY p(x, y) =

P
x∈SX

P
y∈SY p(x, y) = 1.

Table 2 illustrates the joint distribution for X and Y.

Table 2
Y

% 0 1 Pr(X)
0 1/8 0 1/8

X 1 2/8 1/8 3/8
2 1/8 2/8 3/8
3 0 1/8 1/8

Pr(Y ) 4/8 4/8 1
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For example, p(0, 0) = Pr(X = 0, Y = 0) = 1/8. Notice that sum of all the
entries in the table sum to unity. The bivariate distribution is illustrated graphically
in Figure xxx.

0
1

2
3

0

10

0.05

0.1

0.15

0.2

0.25

p(x,y)

x

y

Bivariate pdf

2.1.1 Marginal Distributions

What if we want to know only about the likelihood of X occurring? For example,
what is Pr(X = 0) regardless of the value of Y ? Now X can occur if Y = 0 or if
Y = 1 and since these two events are mutually exclusive we have that Pr(X = 0) =
Pr(X = 0, Y = 0) + Pr(X = 0, Y = 1) = 0 + 1/8 = 1/8. Notice that this probability
is equal to the horizontal (row) sum of the probabilities in the table at X = 0. The
probability Pr(X = x) is called the marginal probability of X and is given by

Pr(X = x) =
X
y∈SY

Pr(X = x, Y = y).

The marginal probabilities of X = x are given in the last column of Table 2. Notice
that the marginal probabilities sum to unity.
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We can &nd the marginal probability of Y in a similar fashion. For example, using
the data in Table 2 Pr(Y = 1) = Pr(X = 0, Y = 1) + Pr(X = 1, Y = 1) + Pr(X =
2, Y = 1) + Pr(X = 3, Y = 1) = 0 + 1/8 + 2/8 + 1/8 = 4/8. This probability is the
vertical (column) sum of the probabilities in the table at Y = 1. Hence, the marginal
probability of Y = y is given by

Pr(Y = y) =
X
x∈SX

Pr(X = x, Y = y).

The marginal probabilities of Y = y are given in the last row of Table 2. Notice that
these probabilities sum to 1.
For future reference we note that

E[X] = xx, var(X) = xx

E[Y ] = xx, var(Y ) = xx

2.2 Conditional Distributions

Suppose we know that the random variable Y takes on the value Y = 0. How does this
knowledge affect the likelihood that X takes on the values 0, 1, 2 or 3? For example,
what is the probability thatX = 0 given that we know Y = 0? To &nd this probability,
we use Bayes�law and compute the conditional probability

Pr(X = 0|Y = 0) = Pr(X = 0, Y = 0)

Pr(Y = 0)
=
1/8

4/8
= 1/4.

The notation Pr(X = 0|Y = 0) is read as �the probability that X = 0 given that
Y = 0�. Notice that the conditional probability that X = 0 given that Y = 0 is
greater than the marginal probability that X = 0. That is, Pr(X = 0|Y = 0) =
1/4 > Pr(X = 0) = 1/8. Hence, knowledge that Y = 0 increases the likelihood that
X = 0. Clearly, X depends on Y.
Now suppose that we know that X = 0. How does this knowledge affect the

probability that Y = 0? To &nd out we compute

Pr(Y = 0|X = 0) =
Pr(X = 0, Y = 0)

Pr(X = 0)
=
1/8

1/8
= 1.

Notice that Pr(Y = 0|X = 0) = 1 > Pr(Y = 0) = 1/2. That is, knowledge that
X = 0 makes it certain that Y = 0.
In general, the conditional probability that X = x given that Y = y is given by

Pr(X = x|Y = y) = Pr(X = x, Y = y)

Pr(Y = y)
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and the conditional probability that Y = y given that X = x is given by

Pr(Y = y|X = x) =
Pr(X = x, Y = y)

Pr(X = x)
.

For the example in Table 2, the conditional probabilities along with marginal
probabilities are summarized in Tables 3 and 4. The conditional and marginal distri-
butions of X are graphically displayed in &gure xxx and the conditional and marginal
distribution of Y are displayed in &gure xxx. Notice that the marginal distribution of
X is centered at x = 3/2 whereas the conditional distribution of X|Y = 0 is centered
at x = 1 and the conditional distribution of X|Y = 1 is centered at x = 2.

Table 3
x Pr(X = x) Pr(X|Y = 0) Pr(X|Y = 1)
0 1/8 2/8 0
1 3/8 4/8 2/8
2 3/8 2/8 4/8
3 1/8 0 2/8

Table 4
y Pr(Y = y) Pr(Y |X = 0) Pr(Y |X = 1) Pr(Y |X = 2) Pr(Y |X = 3)
0 1/2 1 2/3 1/3 0
1 1/2 0 1/3 2/3 1

2.2.1 Conditional Expectation and Conditional Variance

Just as we de&ned shape characteristics of the marginal distributions of X and Y we
can also de&ne shape characteristics of the conditional distributions of X|Y = y and
Y |X = x. The most important shape characteristics are the conditional expectation
(conditional mean) and the conditional variance. The conditional mean of X|Y = y
is denoted by µX|Y=y = E[X|Y = y] and the conditional mean of Y |X = x is denoted
by µY |X=x = E[Y |X = x]. These means are computed as

µX|Y=y = E[X|Y = y] =
X
x∈SX

x · Pr(X = x|Y = y),

µY |X=x = E[Y |X = x] =
X
y∈SY

y · Pr(Y = y|X = x).

Similarly, the conditional variance of X|Y = y is denoted by σ2X|Y=y = var(X|Y = y)
and the conditional variance of Y |X = x is denoted by σ2Y |X=x = var(Y |X = x).
These variances are computed as

σ2X|Y=y = var(X|Y = y) =
X
x∈SX

(x− µX|Y=y)2 · Pr(X = x|Y = y),

σ2Y |X=x = var(Y |X = x) =
X
y∈SY

(y − µY |X=x)2 · Pr(Y = y|X = x).
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Example 27 For the data in Table 2, we have

E[X|Y = 0] = 0 · 1/4 + 1 · 1/2 + 2 · 1/4 + 3 · 0 = 1
E[X|Y = 1] = 0 · 0 + 1 · 1/4 + 2 · 1/2 + 3 · 1/4 = 2

var(X|Y = 0) = (0− 1)2 · 1/4 + (1− 1)2 · 1/2 + (2− 1)2 · 1/2 + (3− 1)2 · 0 = 1/2
var(X|Y = 1) = (0− 2)2 · 0 + (1− 2)2 · 1/4 + (2− 2)2 · 1/2 + (3− 2)2 · 1/4 = 1/2.
Using similar calculations gives

E[Y |X = 0] = 0, E[Y |X = 1] = 1/3, E[Y |X = 2] = 2/3, E[Y |X = 3] = 1

var(Y |X = 0) = 0, var(Y |X = 1) = 0, var(Y |X = 2) = 0, var(Y |X = 3) = 0.

2.2.2 Conditional Expectation and the Regression Function

Consider the problem of predicting the value Y given that we know X = x. A natural
predictor to use is the conditional expectation E[Y |X = x]. In this prediction context,
the conditional expectation E[Y |X = x] is called the regression function. The graph
with E[Y |X = x] on the verticle axis and x on the horizontal axis gives the so-
called regression line. The relationship between Y and the regression function may
expressed using the trivial identity

Y = E[Y |X = x] + Y − E[Y |X = x]

= E[Y |X = x] + ε

where ε = Y − E[Y |X] is called the regression error.
Example 28 For the data in Table 2, the regression line is plotted in &gure xxx.
Notice that there is a linear relationship between E[Y |X = x] and x. When such a
linear relationship exists we call the regression function a linear regression. It is
important to stress that linearity of the regression function is not guaranteed.

2.2.3 Law of Total Expectations

Notice that

E[X] = E[X|Y = 0] · Pr(Y = 0) + E[X|Y = 1] · Pr(Y = 1)
= 1 · 1/2 + 2 · 1/2 = 3/2

and

E[Y ] = E[Y |X = 0] · Pr(X = 0) + E[Y |X = 1] · Pr(X = 1) + E[Y |X = 2] · Pr(X = 2) + E[Y |X = 3

= 1/2

This result is known as the law of total expectations. In general, for two random
variables X and Y we have

E[X] = E[E[X|Y ]]
E[Y ] = E[E[Y |X]]
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2.3 Bivariate Distributions for Continuous RandomVariables

LetX and Y be continuous random variables de&ned over the real line. We character-
ize the joint probability distribution of X and Y using the joint probability function
(pdf) p(x, y) such that p(x, y) ≥ 0 andZ ∞

−∞

Z ∞

−∞
p(x, y)dxdy = 1.

For example, in Figure xxx we illustrate the pdf ofX and Y as a �bell-shaped�surface
in two dimensions. To compute joint probabilities of x1 ≤ X ≤ x2 and y1 ≤ Y ≤ y2
we need to &nd the volume under the probability surface over the grid where the
intervals [x1, x2] and [y1, y2] overlap. To &nd this volume we must solve the double
integral

Pr(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) =
Z x2

x1

Z y2

y1

p(x, y)dxdy.

Example 29 A standard bivariate normal pdf for X and Y has the form

p(x, y) =
1

2π
e−

1
2
(x2+y2),−∞ ≤ x, y ≤ ∞

and has the shape of a symmetric bell centered at x = 0 and y = 0 as illustrated in
Figure xxx (insert &gure here). To &nd Pr(−1 < X < 1,−1 < Y < 1) we must solveZ 1

−1

Z 1

−1

1

2π
e−

1
2
(x2+y2)dxdy

which, unfortunately, does not have an analytical solution. Numerical approximation
methods are required to evaluate the above integral.

2.3.1 Marginal and Conditional Distributions

The marginal pdf of X is found by integrating y out of the joint pdf p(x, y) and the
marginal pdf of Y is found by integrating x out of the joint pdf:

p(x) =

Z ∞

−∞
p(x, y)dy,

p(y) =

Z ∞

−∞
p(x, y)dx.

The conditional pdf of X given that Y = y, denoted p(x|y), is computed as

p(x|y) = p(x, y)

p(y)
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and the conditional pdf of Y given that X = x is computed as

p(y|x) = p(x, y)

p(x)
.

The conditional means are computed as

µX|Y=y = E[X|Y = y] =
Z
x · p(x|y)dx,

µY |X=x = E[Y |X = x] =

Z
y · p(y|x)dy

and the conditional variances are computed as

σ2X|Y=y = var(X|Y = y) =
Z
(x− µX|Y=y)2p(x|y)dx,

σ2Y |X=x = var(Y |X = x) =

Z
(y − µY |X=x)2p(y|x)dy.

2.4 Independence

LetX and Y be two random variables. Intuitively,X is independent of Y if knowledge
about Y does not in! uence the likelihood that X = x for all possible values of x ∈ SX
and y ∈ SY . Similarly, Y is independent of X if knowledge aboutX does not in! uence
the likelihood that Y = y for all values of y ∈ SY .We represent this intuition formally
for discrete random variables as follows.

De&nition 30 Let X and Y be discrete random variables with sample spaces SX and
SY , respectively. X and Y are independent random variables iff

Pr(X = x|Y = y) = Pr(X = x), for all x ∈ SX , y ∈ SY
Pr(Y = y|X = x) = Pr(Y = y), for all x ∈ SX , y ∈ SY

Example 31 For the data in Table 2, we know that Pr(X = 0|Y = 0) = 1/4 6=
Pr(X = 0) = 1/8 so X and Y are not independent.

Proposition 32 Let X and Y be discrete random variables with sample spaces SX
and SY , respectively. If X and Y are independent then

Pr(X = x, Y = y) = Pr(X = x) · Pr(Y = y), for all x ∈ SX , y ∈ SY
For continuous random variables, we have the following de&nition of independence

De&nition 33 Let X and Y be continuous random variables. X and Y are indepen-
dent iff

p(x|y) = p(x), for −∞ < x, y <∞
p(y|x) = p(y), for −∞ < x, y <∞
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Proposition 34 Let X and Y be continuous random variables . X and Y are inde-
pendent iff

p(x, y) = p(x)p(y)

The result in the proposition is extremely useful because it gives us an easy way
to compute the joint pdf for two independent random variables: we simple compute
the product of the marginal distributions.

Example 35 Let X ∼ N(0, 1), Y ∼ N(0, 1) and let X and Y be independent. Then

p(x, y) = p(x)p(y) =
1√
2π
e−

1
2
x2 1√

2π
e−

1
2
y2 =

1

2π
e−

1
2
(x2+y2).

This result is a special case of the bivariate normal distribution.

(stuff to add: if X and Y are independent then f(X) and g(Y ) are independent
for any functions f(·) and g(·).)

2.5 Covariance and Correlation

Let X and Y be two discrete random variables. Figure xxx displays several bivariate
probability scatterplots (where equal probabilities are given on the dots).

(insert &gure here)

In panel (a) we see no linear relationship between X and Y. In panel (b) we see a
perfect positive linear relationship between X and Y and in panel (c) we see a perfect
negative linear relationship. In panel (d) we see a positive, but not perfect, linear
relationship. Finally, in panel (e) we see no systematic linear relationship but we see a
strong nonlinear (parabolic) relationship. The covariance betweenX and Y measures
the direction of linear relationship between the two random variables. The correlation
between X and Y measures the direction and strength of linear relationship between
the two random variables.
Let X and Y be two random variables with E[X] = µX , var(X) = σ2X , E[Y ] = µY

and var(Y ) = σ2Y .

De&nition 36 The covariance between two random variables X and Y is given by

σXY = cov(X, Y ) = E[(X − µX)(Y − µY )]
=

X
x∈SX

X
y∈SY

(x− µX)(y − µY ) Pr(X = x, Y = y) for discrete X and Y

=

Z ∞

−∞

Z ∞

−∞
(x− µX)(y − µY )p(x, y)dxdy for continuous X and Y
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De&nition 37 The correlation between two random variables X and Y is given by

ρXY = corr(X, Y ) =
cov(X, Y )p
var(X)var(Y )

=
σXY
σXσY

Notice that the correlation coefficient, ρXY , is just a scaled version of the covari-
ance.
To see how covariance measures the direction of linear association, consider the

probability scatterplot in &gure xxx.

(insert &gure here)

In the plot the random variables X and Y are distributed such that µX = µY = 0.
The plot is separated into quadrants. In the &rst quandrant, the realized values satisfy
x < µX , y > µY so that the product (x − µX)(y − µY ) < 0. In the second quadrant,
the values satisfy x > µX and y > µY so that the product (x − µX)(y − µY ) > 0.
In the third quadrant, the values satisfy x > µX but y < µY so that the product
(x− µX)(y − µY ) < 0. Finally, in the fourth quandrant, x < µX and y < µY so that
the product (x−µX)(y−µY ) > 0. Covariance is then a probability weighted average
all of the product terms in the four quadrants. For the example data, this weighted
average turns out to be positive.

Example 38 For the data in Table 2, we have

σXY = cov(X, Y ) = (0− 3/2)(0− 1/2) · 1/8 + (0− 3/2)(1− 1/2) · 0 + · · ·+ (3− 3/2)(1− 1/2) · 1/8
ρXY = corr(X, Y ) =

1/4p
(3/4) · (1/2) = 0.577

2.5.1 Properties of Covariance and Correlation

Let X and Y be random variables and let a and b be constants. Some important
properties of cov(X, Y ) are

1. cov(X,X) = var(X)

2. cov(X, Y ) = cov(Y,X)

3. cov(aX, bY ) = a · b · cov(X,Y )
4. If X and Y are independent then cov(X, Y ) = 0 (no association =⇒ no linear
association). However, if cov(X, Y ) = 0 then X and Y are not necessarily
independent (no linear association ; no association).

5. If X and Y are jointly normally distributed and cov(X, Y ) = 0, then X and Y
are independent.
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The third property above shows that the value of cov(X, Y ) depends on the scaling
of the random variables X and Y. By simply changing the scale of X or Y we can
make cov(X,Y ) equal to any value that we want. Consequently, the numerical value
of cov(X, Y ) is not informative about the strength of the linear association between
X and Y . However, the sign of cov(X, Y ) is informative about the direction of linear
association between X and Y. The fourth property should be intuitive. Independence
between the random variables X and Y means that there is no relationship, linear or
nonlinear, betweenX and Y. However, the lack of a linear relationship betweenX and
Y does not preclude a nonlinear relationship. The last result illustrates an important
property of the normal distribution: lack of covariance implies independence.
Some important properties of corr(X, Y ) are

1. −1 ≤ ρXY ≤ 1.
2. If ρXY = 1 then X and Y are perfectly positively linearly related. That is,
Y = aX + b where a > 0.

3. If ρXY = −1 then X and Y are perfectly negatively linearly related. That is,
Y = aX + b where a < 0.

4. If ρXY = 0 then X and Y are not linearly related but may be nonlinearly
related.

5. corr(aX, bY ) = corr(X, Y ) if a > 0 and b > 0; corr(X, Y ) = −corr(X, Y ) if
a > 0, b < 0 or a < 0, b > 0.

(Stuff to add: bivariate normal distribution)

2.5.2 Expectation and variance of the sum of two random variables

Let X and Y be two random variables with well de&ned means, variances and covari-
ance and let a and b be constants. Then the following results hold.

1. E[aX + bY ] = aE[X] + bE[Y ] = aµX + bµY

2. var(aX + bY ) = a2var(X) + b2var(Y ) + 2 · a · b · cov(X,Y ) = a2σ2X + b2σ2Y +
2 · a · b · σXY

The &rst result states that the expected value of a linear combination of two
random variables is equal to a linear combination of the expected values of the random
variables. This result indicates that the expectation operator is a linear operator. In
other words, expectation is additive. The second result states that variance of a
linear combination of random variables is not a linear combination of the variances
of the random variables. In particular, notice that covariance comes up as a term
when computing the variance of the sum of two (not independent) random variables.
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Hence, the variance operator is not, in general, a linear operator. That is, variance,
in general, is not additive.
It is worthwhile to go through the proofs of these results, at least for the case of

discrete random variables. Let X and Y be discrete random variables. Then,

E[aX + bY ] =
X
x∈SX

X
y∈Sy

(ax+ by) Pr(X = x, Y = y)

=
X
x∈SX

X
y∈Sy

axPr(X = x, Y = y) +
X
x∈SX

X
y∈Sy

bxPr(X = x, Y = y)

= a
X
x∈SX

x
X
y∈Sy

Pr(X = x, Y = y) + b
X
y∈Sy

y
X
x∈SX

Pr(X = x, Y = y)

= a
X
x∈SX

xPr(X = x) + b
X
y∈Sy

yPr(Y = y)

= aE[X] + bE[Y ] = aµX + bµY .

Furthermore,

var(aX + bY ) = E[(aX + bY −E[aX + bY ])2]
= E[(aX + bY − aµX − bµY )2]
= E[(a(X − µX) + b(Y − µY ))2]
= a2E[(X − µX)2] + b2E[(Y − µY )2] + 2 · a · b · E[(X − µX)(Y − µY )]
= a2var(X) + b2var(Y ) + 2 · a · b · cov(X, Y ).

2.5.3 Linear Combination of two Normal random variables

The following proposition gives an important result concerning a linear combination
of normal random variables.

Proposition 39 Let X ∼ N(µX ,σ2X), Y ∼ N(µY ,σ2Y ), σXY = cov(X,Y ) and a and
b be constants. De&ne the new random variable Z as

Z = aX + bY.

Then
Z ∼ N(µZ, σ

2
Z)

where

µZ = aµX + bµY
σ2Z = a2σ2X + b

2σ2Y + 2abσXY
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This important result states that a linear combination of two normally distributed
random variables is itself a normally distributed random variable. The proof of the
result relies on the change of variables theorem from calculus and is omitted. Not all
random variables have the property that their distributions are closed under addition.

3 Multivariate Distributions
The results for bivariate distributions generalize to the case of more than two random
variables. The details of the generalizations are not important for our purposes.
However, the following results will be used repeatedly.

3.1 Linear Combinations of N Random Variables

LetX1,X2, . . . ,XN denote a collection ofN random variables with means µi,variances
σ2i and covariances σij. De&ne the new random variable Z as a linear combination

Z = a1X1 + a2X2 + · · ·+ aNXN
where a1, a2, . . . , aN are constants. Then the following results hold

µZ = E[Z] = a1E[X1] + a2E[X2] + · · ·+ aNE[XN ]

=
NX
i=1

aiE[Xi] =
NX
i=1

aiµi.

σ2Z = var(Z) = a21σ
2
1 + a

2
2σ
2
2 + · · ·+ a2Nσ2N

+2a1a2σ12 + 2a1a3σ13 + · · ·+ a1aNσ1N
+2a2a3σ23 + 2a2a4σ24 + · · ·+ a2aNσ2N
+ · · ·+
+2aN−1aNσ(N−1)N

In addition, if all of the Xi are normally distributed then Z is normally distributed
with mean µZ and variance σ

2
Z as described above.

3.1.1 Application: Distribution of Continuously Compounded Returns

Let Rt denote the continuously compounded monthly return on an asset at time t.
Assume that Rt ˜ iid N(µ, σ2). The annual continuously compounded return is equal
the sum of twelve monthly continuously compounded returns. That is,

Rt(12) =
11X
j=0

Rt−j.
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Since each monthly return is normally distributed, the annual return is also normally
distributed. In addition,

E[Rt(12)] = E

"
11X
j=0

Rt−j

#

=
11X
j=0

E[Rt−j] (by linearity of expectation)

=
11X
j=0

µ (by identical distributions)

= 12 · µ,
so that the expected annual return is equal to 12 times the expected monthly return.
Furthermore,

var(Rt(12)) = var

Ã
11X
j=0

Rt−j

!

=
11X
j=0

var(Rt−j) (by independence)

=
11X
j=0

σ2 (by identical distributions)

= 12 · σ2,
so that the annual variance is also equal to 12 times the monthly variance2. For the
annual standard deviation, we have

SD(Rt(12)) =
√
12σ.

4 Further Reading
Excellent intermediate level treatments of probability theory using calculus are given
in DeGroot (1986), Hoel, Port and Stone (1971) and Hoag and Craig (19xx). Inter-
mediate treatments with an emphasis towards applications in &nance include Ross
(1999) and Watsom and Parramore (1998). Intermediate textbooks with an emphasis
on econometrics include Amemiya (1994), Goldberger (1991), Ramanathan (1995).
Advanced treatments of probability theory applied to &nance are given in Neftci
(1996). Everything you ever wanted to know about probability distributions is given
Johnson and Kotz (19xx).

2This result often causes some confusion. It is easy to make the mistake and say that the annual
variance is (12)2 = 144 time the monthly variance. This result would occur if RA = 12Rt, so that
var(RA) = (12)

2var(Rt) = 144var(Rt).
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5 Problems
Let W,X, Y, and Z be random variables describing next year�s annual return on
Weyerhauser, Xerox, Yahoo! and Zymogenetics stock. The table below gives discrete
probability distributions for these random variables based on the state of the economy:

State of Economy W p(w) X p(x) Y p(y) Z p(z)
Depression -0.3 0.05 -0.5 0.05 -0.5 0.15 -0.8 0.05
Recession 0.0 0.2 -0.2 0.1 -0.2 0.5 0.0 0.2
Normal 0.1 0.5 0 0.2 0 0.2 0.1 0.5

Mild Boom 0.2 0.2 0.2 0.5 0.2 0.1 0.2 0.2
Major Boom 0.5 0.05 0.5 0.15 0.5 0.05 1 0.05

• Plot the distributions for each random variable (make a bar chart). Comment
on any differences or similarities between the distributions.

• For each random variable, compute the expected value, variance, standard de-
viation, skewness, kurtosis and brie! y comment.

Suppose X is a normally distributed random variable with mean 10 and variance
24.

• Find Pr(X > 14)

• Find Pr(8 < X < 20)

• Find the probability that X takes a value that is at least 6 away from its mean.

• Suppose y is a constant de&ned such that Pr(X > y) = 0.10.What is the value
of y?

• Determine the 1%, 5%, 10%, 25% and 50% quantiles of the distribution of X.

LetX denote the monthly return on Microsoft stock and let Y denote the monthly
return on Starbucks stock. SupposeX˜N(0.05, (0.10)2) and Y ˜N(0.025, (0.05)2).

• Plot the normal curves for X and Y

• Comment on the risk-return trade-offs for the two stocks
Let R denote the monthly return on Microsoft stock and let W0 denote ini-

tial wealth to be invested in Microsoft stock over the next month. Assume that
R˜N(0.07, (0.12)2) and that W0 = $25, 000.

• What is the distribution of end of month wealth W1 =W0(1 +R)?

• What is the probability that end of month wealth is less than $20,000?
• What is the Value-at-Risk (VaR) on the investment in Microsoft stock over the
next month with 5% probability?
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1 The Constant Expected Return Model of Asset
Returns

1.1 Assumptions

Let Rit denote the continuously compounded return on an asset i at time t. We
make the following assumptions regarding the probability distribution of Rit for i =
1, . . . , N assets over the time horizon t = 1, . . . , T.

1. Normality of returns: Rit ∼ N(µi,σ2i ) for i = 1, . . . , N and t = 1, . . . , T.

2. Constant variances and covariances: cov(Rit, Rjt) = σij for i = 1, . . . , N and
t = 1, . . . , T.

3. No serial correlation across assets over time: cov(Rit, Rjs) = 0 for t 6= s and
i, j = 1, . . . , N.

Assumption 1 states that in every time period asset returns are normally dis-
tributed and that the mean and the variance of each asset return is constant over
time. In particular, we have for each asset i

E[Rit] = µi for all values of t

var(Rit) = σ2i for all values of t

The second assumption states that the contemporaneous covariances between assets
are constant over time. Given assumption 1, assumption 2 implies that the contem-
poraneous correlations between assets are constant over time as well. That is, for all
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assets
corr(Rit, Rjt) = ρij for all values of t.

The third assumption stipulates that all of the asset returns are uncorrelated over
time1. In particular, for a given asset i the returns on the asset are serially uncorre-
lated which implies that

corr(Rit, Ris) = cov(Rit, Ris) = 0 for all t 6= s.

Additionally, the returns on all possible pairs of assets i and j are serially uncorrelated
which implies that

corr(Rit, Rjs) = cov(Rit, Rjs) = 0 for all i 6= j and t 6= s.

Assumptions 1-3 indicate that all asset returns at a given point in time are jointly
(multivariate) normally distributed and that this joint distribution stays constant
over time. Clearly these are very strong assumptions. However, they allow us to de-
velopment a straightforward probabilistic model for asset returns as well as statistical
tools for estimating the parameters of the model and testing hypotheses about the
parameter values and assumptions.

1.2 Constant Expected Return Model Representation

A convenient mathematical representation or model of asset returns can be given
based on assumptions 1-3. This is the constant expected return (CER) model. For
assets i = 1, . . . , N and time periods t = 1, . . . , T the CER model is represented as

Rit = µi + εit (1)

εit ∼ i.i.d. N(0, σ2i )

cov(εit, εjt) = σij (2)

where µi is a constant and we assume that εit is independent of εjs for all time periods
t 6= s. The notation εit ∼ i.i.d. N(0,σ2i ) stipulates that the random variable εit is
serially independent and identically distributed as a normal random variable with
mean zero and variance σ2i . In particular, note that, E[εit] = 0, var(εit) = σ2i and
cov(εit, εjs) = 0 for i 6= j and t 6= s.
Using the basic properties of expectation, variance and covariance discussed in

chapter 2, we can derive the following properties of returns. For expected returns we
have

E[Rit] = E[µi + εit] = µi + E[εit] = µi,

1Since all assets are assumed to be normally distributed (assumption 1), uncorrelatedness implies
the stronger condition of independence.

2



since µi is constant and E[εit] = 0. Regarding the variance of returns, we have

var(Rit) = var(µi + εit) = var(εit) = σ
2
i

which uses the fact that the variance of a constant (µi) is zero. For covariances of
returns, we have

cov(Rit, Rjt) = cov(µi + εit, µj + εjt) = cov(εit, εjt) = σij

and
cov(Rit, Rjs) = cov(µi + εit, µj + εjs) = cov(εit, εjs) = 0, t 6= s,

which use the fact that adding constants to two random variables does not affect
the covariance between them. Given that covariances and variances of returns are
constant over time gives the result that correlations between returns over time are
also constant:

corr(Rit, Rjt) =
cov(Rit, Rjt)q
var(Rit)var(Rjt)

=
σij
σiσj

= ρij ,

corr(Rit, Rjs) =
cov(Rit, Rjs)q
var(Rit)var(Rjs)

=
0

σiσj
= 0, i 6= j, t 6= s.

Finally, since the random variable εit is independent and identically distributed (i.i.d.)
normal the asset return Rit will also be i.i.d. normal:

Rit ∼ i.i.d. N(µi, σ
2
i ).

Hence, the CER model (1) for Rit is equivalent to the model implied by assumptions
1-3.

1.3 Interpretation of the CER Model

The CER model has a very simple form and is identical to the measurement error
model in the statistics literature. In words, the model states that each asset return
is equal to a constant µi (the expected return) plus a normally distributed random
variable εit with mean zero and constant variance. The random variable εit can be
interpreted as representing the unexpected news concerning the value of the asset
that arrives between times t − 1 and time t. To see this, note that using (1) we can
write εit as

εit = Rit − µi
= Rit −E[Rit]

so that εit is de&ned to be the deviation of the random return from its expected value.
If the news is good, then the realized value of εit is positive and the observed return is
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above its expected value µi. If the news is bad, then εjt is negative and the observed
return is less than expected. The assumption that E[εit] = 0 means that news, on
average, is neutral; neither good nor bad. The assumption that var(εit) = σ2i can be
interpreted as saying that volatility of news arrival is constant over time. The random
news variable affecting asset i, eit, is allowed to be contemporaneously correlated with
the random news variable affecting asset j, εjt, to capture the idea that news about
one asset may spill over and affect another asset. For example, let asset i be Microsoft
and asset j be Apple Computer. Then one interpretation of news in this context is
general news about the computer industry and technology. Good news should lead
to positive values of εit and εjt. Hence these variables will be positively correlated.
The CER model with continuously compounded returns has the following nice

property with respect to the interpretation of εit as news. Consider the default case
where Rit is interpreted as the continuously compounded monthly return. Since mul-
tiperiod continuously compounded returns are additive we can interpret, for example,
Rit as the sum of 30 daily continuously compounded returns2:

Rit =
29X
k=0

Rdit−k

where Rdit denotes the continuously compounded daily return on asset i. If we assume
that daily returns are described by the CER model then

Rdit = µdi + ε
d
it,

εdit ∼ i.i.d N(0, (σdi )
2),

cov(εdit, ε
d
jt) = σdij ,

cov(εdit, ε
d
js) = 0, i 6= j, t 6= s

and the monthly return may then be expressed as

Rit =
29X
k=0

(µdi + ε
d
it−k)

= 30 · µdi +
29X
k=0

εdit−k

= µi + εit,

where

µi = 30 · µdi ,

εit =
29X
k=0

εdit−k.

2For simplicity of exposition, we will ignore the fact that some assets do not trade over the
weekend.
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Hence, the monthly expected return, µi, is simply 30 times the daily expected re-
turn. The interpretation of εit in the CER model when returns are continuously
compounded is the accumulation of news between months t− 1 and t. Notice that

var(Rit) = var

Ã
29X
k=0

(µdi + ε
d
it−k)

!

=
29X
k=0

var(εdit−k)

=
29X
k=0

³
σdi
´2

= 30 ·
³
σdi
´2

and

cov(Rit, Rjt) = cov

Ã
29X
k=0

εdit−k,
29X
k=0

εdjt−k

!

=
29X
k=0

cov(εdit−k, ε
d
jt−k)

=
29X
k=0

σdij

= 30 · σdij,
so that the monthly variance, σ2i , is equal to 30 times the daily variance and the
monthly covariance, σij, is equal to 30 times the daily covariance.

1.4 The CERModel of Asset Returns and the RandomWalk
Model of Asset Prices

The CER model of asset returns (1) gives rise to the so-called random walk (RW)
model of the logarithm of asset prices. To see this, recall that the continuously
compounded return, Rit, is de&ned from asset prices via

ln

Ã
Pit
Pit−1

!
= Rit.

Since the log of the ratio of prices is equal to the difference in the logs of prices we
may rewrite the above as

ln(Pit)− ln(Pit−1) = Rit.
Letting pit = ln(Pit) and using the representation of Rit in the CER model (1), we
may further rewrite the above as

pit − pit−1 = µi + εit. (3)
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The representation in (3) is know as the RW model for the log of asset prices.
In the RW model, µi represents the expected change in the log of asset prices

(continuously compounded return) between months t− 1 and t and εit represents the
unexpected change in prices. That is,

E[pit − pit−1] = E[Rit] = µi,

εit = pit − pit−1 − E[pit − pit−1].
Further, in the RWmodel, the unexpected changes in asset prices, εit, are uncorrelated
over time (cov(εit, εis) = 0 for t 6= s) so that future changes in asset prices cannot be
predicted from past changes in asset prices3.
The RW model gives the following interpretation for the evolution of asset prices.

Let pi0 denote the initial log price of asset i. The RW model says that the price at
time t = 1 is

pi1 = pi0 + µi + εi1

where εi1 is the value of random news that arrives between times 0 and 1. Notice that
at time t = 0 the expected price at time t = 1 is

E[pi1] = pi0 + µi + E[εi1] = pi0 + µi

which is the initial price plus the expected return between time 0 and 1. Similarly,
the price at time t = 2 is

pi2 = pi1 + µi + εi2

= pi0 + µi + µi + εi1 + εi2

= pi0 + 2 · µi +
2X
t=1

εit

which is equal to the initial price, pi0, plus the two period expected return, 2 ·µi, plus
the accumulated random news over the two periods,

P2
t=1 εit. By recursive substitu-

tion, the price at time t = T is

piT = pi0 + T · µi +
TX
t=1

εit.

At time t = 0 the expected price at time t = T is

E[piT ] = pi0 + T · µi
The actual price, piT , deviates from the expected price by the accumulated random
news

piT − E[piT ] =
TX
t=1

εit.

Figure xxx illustrates the random walk model of asset prices.
3The notion that future changes in asset prices cannot be predicted from past changes in asset

prices is often referred to as the weak form of the efficient markets hypothesis.
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Simulated Random Walk
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The term random walk was originally used to describe the unpredictable move-
ments of a drunken sailor staggering down the street. The sailor starts at an initial
position, p0, outside the bar. The sailor generally moves in the direction described
by µ but randomly deviates from this direction after each step t by an amount equal
to εt. After T steps the sailor ends up at position pT = p0 + µ · T +PT

t=1 εt.

2 Monte Carlo Simulation of the CER Model
A good way to understand the probabilistic behavior of a model is to use computer
simulation methods to create pseudo data from the model. The process of creating
such pseudo data is often called Monte Carlo simulation4. To illustrate the use of
Monte Carlo simulation, consider the problem of creating pseudo return data from
the CER model (1) for one asset. In order to simulate pseudo return data, values for
the model parameters µ and σ must be selected. To mimic the monthly return data
on Microsoft, the values µ = 0.05 and σ = 0.10 are used. Also, the number N of

4Monte Carlo referrs to the fameous city in Monaco where gambling is legal.
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simulated data points must be determined. Here, N = 100. Hence, the model to be
simulated is

Rt = 0.05 + εt, t = 1, . . . , 100

εt ~iid N(0, (0.10)2)

The key to simulating data from the above model is to simulate N = 100 observations
of the random news variable εt ~iid N(0, (0.10)2). Computer algorithms exist which
can easily create such observations. Let {ε1, . . . , ε100} denote the 100 simulated values
of εt. The histogram of these values are given in &gure xxx below

Histogram of Simulated Errors
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The sample average of the simulated errors is 1
100

P100
t=1 εt = −0.004 and the sample

standard deviation is
q

1
99

P100
t=1(εt − (−0.004))2 = 0.109. These values are very close

to the population values E[εt] = 0 and SD(εt) = 0.10, respectively.
Once the simulated values of εt have been created, the simulated values of Rt are

constructed as Rt = 0.05 + εt, t = 1, . . . , 100. A time plot of the simulated values of
Rt is given in &gure xxx below
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Monte Carlo Simulation of CER Model
R(t) = 0.05 + e(t), e(t) ~ iid N(0, (0.10)^2)
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The simulated return data ! uctuates randomly about the expected return value
E[Rt] = µ = 0.05. The typical size of the ! uctuation is approximately equal to
SE(εt) = 0.10. Notice that the simulated return data looks remarkably like the
actual return data of Microsoft.
Monte Carlo simulation of a model can be used as a &rst pass reality check of the

model. If simulated data from the model does not look like the data that the model is
supposed to describe then serious doubt is cast on the model. However, if simulated
data looks reasonably close to the data that the model is suppose to describe then
con&dence is instilled on the model.

3 Estimating the CER Model

3.1 The Random Sampling Environment

The CER model of asset returns gives us a rigorous way of interpreting the time
series behavior of asset returns. At the beginning of every month t, Rit is a random
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variable representing the return to be realized at the end of the month. The CER
model states thatRit ∼ i.i.d. N(µi,σ2i ). Our best guess for the return at the end of the
month is E[Rit] = µi, our measure of uncertainty about our best guess is captured by
σi =

q
var(Rit) and our measure of the direction of linear association between Rit and

Rjt is σij = cov(Rit, Rjt). The CER model assumes that the economic environment
is constant over time so that the normal distribution characterizing monthly returns
is the same every month.
Our life would be very easy if we knew the exact values of µi, σ

2
i and σij , the

parameters of the CER model. In actuality, however, we do not know these values
with certainty. A key task in &nancial econometrics is estimating the values of µi, σ

2
i

and σij from a history of observed data.
Suppose we observe monthly returns on N different assets over the horizon t =

1, . . . , T. Let ri1, . . . , riT denote the observed history of T monthly returns on asset
i for i = 1, . . . , N. It is assumed that the observed returns are realizations of the
random variables Ri1, . . . , RiT , where Rit is described by the CER model (1). We
call Ri1, . . . , RiT a random sample from the CER model (1) and we call ri1, . . . , riT
the realized values from the random sample. In this case, we can use the observed
returns to estimate the unknown parameters of the CER model

3.2 Estimation Theory

Before we describe the estimation of the CER model, it is useful to summarize some
concepts in estimation theory. Let θ denote some characteristic of the CER model
(1) we are interested in estimating. For example, if we are interested in the expected
return then θ = µi; if we are interested in the variance of returns then θ = σ

2
i . The

goal is to estimate θ based on the observed data ri1, . . . , riT .

De&nition 1 An estimator of θ is a rule or algorithm for forming an estimate for
θ.

De&nition 2 An estimate of θ is simply the value of an estimator based on the
observed data.

To establish some notation, let θ̂(Ri1, . . . , RiT ) denote an estimator of θ treated as
a function of the random variables Ri1, . . . , RiT . Clearly, θ̂(Ri1, . . . , RiT ) is a random
variable. Let θ̂(ri1, . . . , riT ) denote an estimate of θ based on the realized values
ri1, . . . , riT . θ̂(ri1, . . . , riT ) is simply an number. We will often use θ̂ as shorthand
notation to represent either an estimator of θ or an estimate of θ. The context will
determine how to interpret θ̂.

3.2.1 Properties of Estimators

Consider θ̂ = θ̂(Ri1, . . . , RiT ) as a random variable. In general, the pdf of θ̂, p(θ̂),
depends on the pdf�s of the random variables Ri1, . . . , RiT . The exact form of p(θ̂)may
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1 Introduction to Portfolio Theory
Consider the following investment problem. We can invest in two non-dividend paying
stocks A and B over the next month. Let RA denote monthly return on stock A and
RB denote the monthly return on stock B. These returns are to be treated as random
variables since the returns will not be realized until the end of the month. We assume
that the returns RA and RB are jointly normally distributed and that we have the
following information about the means, variances and covariances of the probability
distribution of the two returns:

µA = E[RA], σ
2
A = V ar(RA),

µB = E[RB], σ
2
B = V ar(RB),

σAB = Cov(RA, RB).

We assume that these values are taken as given. We might wonder where such values
come from. One possibility is that they are estimated from historical return data for
the two stocks. Another possibility is that they are subjective guesses.
The expected returns, µA and µB, are our best guesses for the monthly returns on

each of the stocks. However, since the investments are random we must recognize that
the realized returns may be different from our expectations. The variances, σ2A and
σ2B, provide measures of the uncertainty associated with these monthly returns. We
can also think of the variances as measuring the risk associated with the investments.
Assets that have returns with high variability (or volatility) are often thought to
be risky and assets with low return volatility are often thought to be safe. The
covariance σAB gives us information about the direction of any linear dependence
between returns. If σAB > 0 then the returns on assets A and B tend to move in the
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same direction; if σAB < 0 the returns tend to move in opposite directions; if σAB = 0
then the returns tend to move independently. The strength of the dependence between
the returns is measured by the correlation coefficient ρAB =

σAB
σAσB

. If ρAB is close to
one in absolute value then returns mimic each other extremely closely whereas if ρAB
is close to zero then the returns may show very little relationship.

The portfolio problem is set-up as follows. We have a given amount of wealth and
it is assumed that we will exhaust all of our wealth between investments in the two
stocks. The investor�s problem is to decide how much wealth to put in asset A and
how much to put in asset B. Let xA denote the share of wealth invested in stock A
and xB denote the share of wealth invested in stock B. Since all wealth is put into
the two investments it follows that xA + xB = 1. (Aside: What does it mean for xA
or xB to be negative numbers?) The investor must choose the values of xA and xB.
Our investment in the two stocks forms a portfolio and the shares xA and xB are

referred to as portfolio shares or weights. The return on the portfolio over the next
month is a random variable and is given by

Rp = xARA + xBRB, (1)

which is just a simple linear combination or weighted average of the random return
variables RA and RB. Since RA and RB are assumed to be normally distributed, Rp
is also normally distributed.

1.1 Portfolio expected return and variance

The return on a portfolio is a random variable and has a probability distribution
that depends on the distributions of the assets in the portfolio. However, we can
easily deduce some of the properties of this distribution by using the following results
concerning linear combinations of random variables:

µp = E[Rp] = xAµA + xBµB (2)

σ2p = var(Rp) = x
2
Aσ

2
A + x

2
Bσ

2
B + 2xAxBσAB (3)

These results are so important to portfolio theory that it is worthwhile to go
through the derivations. For the &rst result (2), we have

E[Rp] = E[xARA + xBRB] = xAE[RA] + xBE[RB] = xAµA + xBµB

by the linearity of the expectation operator. For the second result (3), we have

var(Rp) = var(xARA + xBRB) = E[(xARA + xBRB)− E[xARA + xBRB])2]
= E[(xA(RA − µA) + xB(RB − µB))2]
= E[x2A(RA − µA)2 + x2B(RB − µB)2 + 2xAxB(RA − µA)(RB − µB)]
= x2AE[(RA − µA)2] + x2BE[(RB − µB)2] + 2xAxBE[(RA − µA)(RB − µB)],
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and the result follows by the de&nitions of var(RA), var(RB) and cov(RA, RB)..
Notice that the variance of the portfolio is a weighted average of the variances

of the individual assets plus two times the product of the portfolio weights times
the covariance between the assets. If the portfolio weights are both positive then a
positive covariance will tend to increase the portfolio variance, because both returns
tend to move in the same direction, and a negative covariance will tend to reduce the
portfolio variance. Thus &nding negatively correlated returns can be very bene&cial
when forming portfolios. What is surprising is that a positive covariance can also be
bene&cial to diversi&cation.

1.2 Efficient portfolios with two risky assets

In this section we describe how mean-variance efficient portfolios are constructed.
First we make some assumptions:
Assumptions

• Returns are jointly normally distributed. This implies that means, variances
and covariances of returns completely characterize the joint distribution of re-
turns.

• Investors only care about portfolio expected return and portfolio variance. In-
vestors like portfolios with high expected return but dislike portfolios with high
return variance.

Given the above assumptions we set out to characterize the set of portfolios that
have the highest expected return for a given level of risk as measured by portfolio
variance. These portfolios are called efficient portfolios and are the portfolios that
investors are most interested in holding.
For illustrative purposes we will show calculations using the data in the table

below.

Table 1: Example Data
µA µB σ2A σ2B σA σB σAB ρAB
0.175 0.055 0.067 0.013 0.258 0.115 -0.004875 -0.164

The collection of all feasible portfolios (the investment possibilities set) in the
case of two assets is simply all possible portfolios that can be formed by varying
the portfolio weights xA and xB such that the weights sum to one (xA + xB = 1).
We summarize the expected return-risk (mean-variance) properties of the feasible
portfolios in a plot with portfolio expected return, µp, on the vertical axis and portfolio
standard-deviation, σp, on the horizontal axis. The portfolio standard deviation is
used instead of variance because standard deviation is measured in the same units as
the expected value (recall, variance is the average squared deviation from the mean).
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Figure 1

The investment possibilities set or portfolio frontier for the data in Table 1 is
illustrated in Figure 1. Here the portfolio weight on asset A, xA, is varied from
-0.4 to 1.4 in increments of 0.1 and, since xB = 1 − xA, the weight on asset is
then varies from 1.4 to -0.4. This gives us 18 portfolios with weights (xA, xB) =
(−0.4, 1.4), (−0.3, 1.3), ..., (1.3,−0.3), (1.4,−0.4). For each of these portfolios we use
the formulas (2) and (3) to compute µp and σp =

q
σ2p. We then plot these values

1.
Notice that the plot in (µp, σp) space looks like a parabola turned on its side (in

fact it is one side of a hyperbola). Since investors desire portfolios with the highest
expected return for a given level of risk, combinations that are in the upper left corner
are the best portfolios and those in the lower right corner are the worst. Notice that
the portfolio at the bottom of the parabola has the property that it has the smallest
variance among all feasible portfolios. Accordingly, this portfolio is called the global
minimum variance portfolio.
It is a simple exercise in calculus to &nd the global minimum variance portfolio.

We solve the constrained optimization problem

min
xA,xB

σ2p = x2Aσ
2
A + x

2
Bσ

2
B + 2xAxBσAB

s.t. xA + xB = 1.

1The careful reader may notice that some of the portfolio weights are negative. A negative
portfolio weight indicates that the asset is sold short and the proceeds of the short sale are used to
buy more of the other asset. A short sale occurs when an investor borrows an asset and sells it in
the market. The short sale is closed out when the investor buys back the asset and then returns the
borrowed asset. If the asset price drops then the short sale produces and pro&t.
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Substituting xB = 1− xA into the formula for σ2p reduces the problem to

min
xA

σ2p = x
2
Aσ

2
A + (1− xA)2σ2B + 2xA(1− xA)σAB.

The &rst order conditions for a minimum, via the chain rule, are

0 =
dσ2p
dxA

= 2xminA σ2A − 2(1− xminA )σ2B + 2σAB(1− 2xminA )

and straightforward calculations yield

xminA =
σ2B − σAB

σ2A + σ2B − 2σAB
, xminB = 1− xminA . (4)

For our example, using the data in table 1, we get xminA = 0.2 and xminB = 0.8.
Efficient portfolios are those with the highest expected return for a given level

of risk. Inefficient portfolios are then portfolios such that there is another feasible
portfolio that has the same risk (σp) but a higher expected return (µp). From the
plot it is clear that the inefficient portfolios are the feasible portfolios that lie below
the global minimum variance portfolio and the efficient portfolios are those that lie
above the global minimum variance portfolio.
The shape of the investment possibilities set is very sensitive to the correlation

between assets A and B. If ρAB is close to 1 then the investment set approaches a
straight line connecting the portfolio with all wealth invested in asset B, (xA, xB) =
(0, 1), to the portfolio with all wealth invested in asset A, (xA, xB) = (1, 0). This
case is illustrated in Figure 2. As ρAB approaches zero the set starts to bow toward
the µp axis and the power of diversi&cation starts to kick in. If ρAB = −1 then
the set actually touches the µp axis. What this means is that if assets A and B
are perfectly negatively correlated then there exists a portfolio of A and B that has
positive expected return and zero variance! To &nd the portfolio with σ2p = 0 when
ρAB = −1 we use (4) and the fact that σAB = ρABσAσB to give

xminA =
σB

σA + σB
, xminB = 1− xA

The case with ρAB = −1 is also illustrated in Figure 2.
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Figure 2

Given the efficient set of portfolios, which portfolio will an investor choose? Of
the efficient portfolios, investors will choose the one that accords with their risk
preferences. Very risk averse investors will choose a portfolio very close to the global
minimum variance portfolio and very risk tolerant investors will choose portfolios
with large amounts of asset A which may involve short-selling asset B.

1.3 Efficient portfolios with a risk-free asset

In the preceding section we constructed the efficient set of portfolios in the absence of
a risk-free asset. Now we consider what happens when we introduce a risk free asset.
In the present context, a risk free asset is equivalent to default-free pure discount bond
that matures at the end of the assumed investment horizon. The risk-free rate, rf , is
then the return on the bond, assuming no in! ation. For example, if the investment
horizon is one month then the risk-free asset is a 30-day Treasury bill (T-bill) and
the risk free rate is the nominal rate of return on the T-bill. If our holdings of the
risk free asset is positive then we are �lending money�at the risk-free rate and if our
holdings are negative then we are �borrowing�at the risk-free rate.

1.3.1 Efficient portfolios with one risky asset and one risk free asset

Continuing with our example, consider an investment in asset B and the risk free
asset (henceforth referred to as a T-bill) and suppose that rf = 0.03. Since the risk
free rate is &xed over the investment horizon it has some special properties, namely

µf = E[rf ] = rf
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var(rf ) = 0

cov(RB, rf ) = 0

Let xB denote the share of wealth in asset B and xf = 1 − xB denote the share of
wealth in T-bills. The portfolio expected return is

Rp = xBRB + (1− xB)rf
= xB(RB − rf) + rf

The quantity RB − rf is called the excess return (over the return on T-bills) on asset
B. The portfolio expected return is then

µp = xB(µB − rf) + rt
where the quantity (µB − rf) is called the expected excess return or risk premium
on asset B. We may express the risk premium on the portfolio in terms of the risk
premium on asset B:

µp − rf = xB(µB − rf)
The more we invest in asset B the higher the risk premium on the portfolio.
The portfolio variance only depends on the variability of asset B and is given by

σ2p = x
2
Bσ

2
B.

The portfolio standard deviation is therefore proportional to the standard deviation
on asset B:

σp = xBσB

which can use to solve for xB
xB =

σp
σB

Using the last result, the feasible (and efficient) set of portfolios follows the equation

µp = rf +
µB − rf

σB
· σp (5)

which is simply straight line in (µp, σp) with intercept rf and slope
µB−rf
σB

. The slope
of the combination line between T-bills and a risky asset is called the Sharpe ratio
or Sharpe�s slope and it measures the risk premium on the asset per unit of risk (as
measured by the standard deviation of the asset).
The portfolios which are combinations of asset A and T-bills and combinations of

asset B and T-bills using the data in Table 1 with rf = 0.03. is illustrated in Figure
4.
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Figure 3

Notice that expected return-risk trade off of these portfolios is linear. Also, notice
that the portfolios which are combinations of asset A and T-bills have expected
returns uniformly higher than the portfolios consisting of asset B and T-bills. This
occurs because the Sharpe�s slope for asset A is higher than the slope for asset B:

µA − rf
σA

=
0.175− 0.03
0.258

= 0.562,
µB − rf

σB
=
0.055− 0.03
0.115

= 0.217.

Hence, portfolios of asset A and T-bills are efficient relative to portfolios of asset B
and T-bills.

1.3.2 Efficient portfolios with two risky assets and a risk-free asset

Now we expand on the previous results by allowing our investor to form portfolios of
assets A, B and T-bills. The efficient set in this case will still be a straight line in
(µp,σp)− space with intercept rf . The slope of the efficient set, the maximum Sharpe
ratio, is such that it is tangent to the efficient set constructed just using the two risky
assets A and B. Figure 5 illustrates why this is so.
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If we invest in only in asset B and T-bills then the Sharpe ratio is µB−rf
σB

= 0.217
and the CAL intersects the parabola at point B. This is clearly not the efficient set
of portfolios. For example, we could do uniformly better if we instead invest only
in asset A and T-bills. This gives us a Sharpe ratio of µA−rf

σA
= 0.562 and the new

CAL intersects the parabola at point A. However, we could do better still if we invest
in T-bills and some combination of assets A and B. Geometrically, it is easy to see
that the best we can do is obtained for the combination of assets A and B such that
the CAL is just tangent to the parabola. This point is marked T on the graph and
represents the tangency portfolio of assets A and B.
We can determine the proportions of each asset in the tangency portfolio by &nding

the values of xA and xB that maximize the Sharpe ratio of a portfolio that is on the
envelope of the parabola. Formally, we solve

max
xA,xB

µp − rf
σp

s.t.

µp = xAµA + xBµB
σ2p = x2Aσ

2
A + x

2
Bσ

2
B + 2xAxBσAB

1 = xA + xB

After various substitutions, the above problem can be reduced to

max
xA

xA(µA − rf) + (1− xA)(µB − rf)
(x2Aσ

2
A + (1− xA)2σ2B + 2xA(1− xA)σAB)1/2

.
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This is a straightforward, albeit very tedious, calculus problem and the solution can
be shown to be

xTA =
(µA − rf)σ2B − (µB − rf)σAB

(µA − rf)σ2B + (µB − rf )σ2A − (µA − rf + µB − rf )σAB
, xTB = 1− xTA.

For the example data using rf = 0.03, we get xTA = 0.542 and xTB = 0.458. The
expected return on the tangency portfolio is

µT = xTAµA + x
T
BµB

= (0.542)(0.175) + (0.458)(0.055) = 0.110,

the variance of the tangency portfolio is

σ2T =
³
xTA
´2

σ2A +
³
xTB
´2

σ2B + 2x
T
Ax

T
BσAB

= (0.542)2(0.067) + (0.458)2(0.013) + 2(0.542)(0.458) = 0.015,

and the standard deviation of the tangency portfolio is

σT =
q
σ2T =

√
0.015 = 0.124.

The efficient portfolios now are combinations of the tangency portfolio and the
T-bill. This important result is known as the mutual fund separation theorem. The
tangency portfolio can be considered as a mutual fund of the two risky assets, where
the shares of the two assets in the mutual fund are determined by the tangency
portfolio weights, and the T-bill can be considered as a mutual fund of risk free
assets. The expected return-risk trade-off of these portfolios is given by the line
connecting the risk-free rate to the tangency point on the efficient frontier of risky
asset only portfolios. Which combination of the tangency portfolio and the T-bill
an investor will choose depends on the investor�s risk preferences. If the investor is
very risk averse, then she will choose a combination with very little weight in the
tangency portfolio and a lot of weight in the T-bill. This will produce a portfolio
with an expected return close to the risk free rate and a variance that is close to zero.
For example, a highly risk averse investor may choose to put 10% of her wealth in

the tangency portfolio and 90% in the T-bill. Then she will hold (10%)× (54.2%) =
5.42% of her wealth in asset A, (10%) × (45.8%) = 4.58% of her wealth in asset B
and 90% of her wealth in the T-bill. The expected return on this portfolio is

µp = rf + 0.10(µT − rf )
= 0.03 + 0.10(0.110− 0.03)
= 0.038.

and the standard deviation is

σp = 0.10σT

= 0.10(0.124)

= 0.012.
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A very risk tolerant investor may actually borrow at the risk free rate and use these
funds to leverage her investment in the tangency portfolio. For example, suppose the
risk tolerant investor borrows 10% of her wealth at the risk free rate and uses the
proceed to purchase 110% of her wealth in the tangency portfolio. Then she would
hold (110%)×(54.2%) = 59.62% of her wealth in asset A, (110%)×(45.8%) = 50.38%
in asset B and she would owe 10% of her wealth to her lender. The expected return
and standard deviation on this portfolio is

µp = 0.03 + 1.1(0.110− 0.03) = 0.118
σp = 1.1(0.124) = 0.136.

2 Efficient Portfolios and Value-at-Risk
As we have seen, efficient portfolios are those portfolios that have the highest expected
return for a given level of risk as measured by portfolio standard deviation. For
portfolios with expected returns above the T-bill rate, efficient portfolios can also be
characterized as those portfolios that have minimum risk (as measured by portfolio
standard deviation) for a given target expected return.
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To illustrate, consider &gure 5 which shows the portfolio frontier for two risky
assets and the efficient frontier for two risky assets plus a risk-free asset. Suppose
an investor initially holds all of his wealth in asset A. The expected return on this
portfolio is µB = 0.055 and the standard deviation (risk) is σB = 0.115. An efficient
portfolio (combinations of the tangency portfolio and T-bills) that has the same
standard deviation (risk) as asset B is given by the portfolio on the efficient frontier
that is directly above σB = 0.115. To &nd the shares in the tangency portfolio and
T-bills in this portfolio recall from (xx) that the standard deviation of a portfolio with
xT invested in the tangency portfolio and 1 − xT invested in T-bills is σp = xTσT .
Since we want to &nd the efficient portfolio with σp = σB = 0.115, we solve

xT =
σB
σT

=
0.115

0.124
= 0.917, xf = 1− xT = 0.083.

That is, if we invest 91.7% of our wealth in the tangency portfolio and 8.3% in T-bills
we will have a portfolio with the same standard deviation as asset B. Since this is an
efficient portfolio, the expected return should be higher than the expected return on
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asset B. Indeed it is since

µp = rf + xT (µT − rf)
= 0.03 + 0.917(0.110− 0.03)
= 0.103

Notice that by diversifying our holding into assets A, B and T-bills we can obtain a
portfolio with the same risk as asset B but with almost twice the expected return!
Next, consider &nding an efficient portfolio that has the same expected return

as asset B. Visually, this involves &nding the combination of the tangency portfo-
lio and T-bills that corresponds with the intersection of a horizontal line with in-
tercept µB = 0.055 and the line representing efficient combinations of T-bills and
the tangency portfolio. To &nd the shares in the tangency portfolio and T-bills in
this portfolio recall from (xx) that the expected return of a portfolio with xT in-
vested in the tangency portfolio and 1 − xT invested in T-bills has expected return
equal to µp = rf + xT (µT − rf ). Since we want to &nd the efficient portfolio with
µp = µB = 0.055 we use the relation

µp − rf = xT (µT − rF )

and solve for xT and xf = 1− xT

xT =
µp − rf
µT − rf

=
0.055− 0.03
0.110− 0.03 = 0.313, xf = 1− xT = 0.687.

That is, if we invest 31.3% of wealth in the tangency portfolio and 68.7% of our
wealth in T-bills we have a portfolio with the same expected return as asset B. Since
this is an efficient portfolio, the standard deviation (risk) of this portfolio should be
lower than the standard deviation on asset B. Indeed it is since

σp = xTσT

= 0.313(0.124)

= 0.039.

Notice how large the risk reduction is by forming an efficient portfolio. The standard
deviation on the efficient portfolio is almost three times smaller than the standard
deviation of asset B!
The above example illustrates two ways to interpret the bene&ts from forming

efficient portfolios. Starting from some benchmark portfolio, we can &x standard de-
viation (risk) at the value for the benchmark and then determine the gain in expected
return from forming a diversi&ed portfolio2. The gain in expected return has concrete

2The gain in expected return by investing in an efficient portfolio abstracts from the costs asso-
ciated with selling the benchmark portfolio and buying the efficient portfolio.
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meaning. Alternatively, we can &x expected return at the value for the benchmark
and then determine the reduction in standard deviation (risk) from forming a diver-
si&ed portfolio. The meaning to an investor of the reduction in standard deviation
is not as clear as the meaning to an investor of the increase in expected return. It
would be helpful if the risk reduction bene&t can be translated into a number that is
more interpretable than the standard deviation. The concept of Value-at-Risk (VaR)
provides such a translation.
Recall, the VaR of an investment is the expected loss in investment value over a

given horizon with a stated probability. For example, consider an investor who invests
W0 = $100, 000 in asset B over the next year. Assume that RB represents the annual
(continuously compounded) return on asset B and that RB ~N(0.055, (0.114)2). The
5% annual VaR of this investment is the loss that would occur if return on asset B is
equal to the 5% left tail quantile of the normal distribution of RB. The 5% quantile,
q0.05 is determined by solving

Pr(RB ≤ q0.05) = 0.05.

Using the inverse cdf for a normal random variable with mean 0.055 and standard
deviation 0.114 it can be shown that q0.05 = −0.133.That is, with 5% probability the
return on asset B will be −13.3% or less. If RB = −0.133 then the loss in portfolio
value3, which is the 5% VaR, is

loss in portfolio value = V aR = |W0 ·(eq0.05−1)| = |$100, 000(e−0.133−1)| = $12, 413.

To reiterate, if the investor hold $100,000 in asset B over the next year then the 5%
VaR on the portfolio is $12, 413. This is the loss that would occur with 5% probability.
Now suppose the investor chooses to hold an efficient portfolio with the same

expected return as asset B. This portfolio consists of 31.3% in the tangency portfolio
and 68.7% in T-bills and has a standard deviation equal to 0.039. Let Rp denote the
annual return on this portfolio and assume thatRp ~N(0.055, 0.039).Using the inverse
cdf for this normal distribution, the 5% quantile can be shown to be q0.05 = −0.009.
That is, with 5% probability the return on the efficient portfolio will be −0.9% or
less. This is considerably smaller than the 5% quantile of the distribution of asset B.
If Rp = −0.009 the loss in portfolio value (5% VaR) is

loss in portfolio value = V aR = |W0 · (eq0.05 − 1)| = |$100, 000(e−0.009 − 1)| = $892.

Notice that the 5% VaR for the efficient portfolio is almost &fteen times smaller than
the 5% VaR of the investment in asset B. Since VaR translates risk into a dollar &gure
it is more interpretable than standard deviation.

3To compute the VaR we need to convert the continuous compounded return (quantile) to a
simple return (quantile). Recall, if Rct is a continuously compounded return and Rt is a somple
return then Rct = ln(1 +Rt) and Rt = e

Rc
t − 1.
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3 Further Reading
The classic text on portfolio optimization is Markowitz (1954). Good intermediate
level treatments are given in Benninga (2000), Bodie, Kane and Marcus (1999) and
Elton and Gruber (1995). An interesting recent treatment with an emphasis on
statistical properties is Michaud (1998). Many practical results can be found in the
Financial Analysts Journal and the Journal of Portfolio Management. An excellent
overview of value at risk is given in Jorian (1997).

4 Appendix Review of Optimization and Con-
strained Optimization

Consider the function of a single variable

y = f(x) = x2

which is illustrated in Figure xxx. Clearly the minimum of this function occurs at
the point x = 0. Using calculus, we &nd the minimum by solving

min
x

y = x2.

The &rst order (necessary) condition for a minimum is

0 =
d

dx
f(x) =

d

dx
x2 = 2x

and solving for x gives x = 0. The second order condition for a minimum is

0 <
d2

dx
f(x)

and this condition is clearly satis&ed for f(x) = x2.
Next, consider the function of two variables

y = f(x, z) = x2 + z2 (6)

which is illustrated in Figure xxx.
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This function looks like a salad bowl whose bottom is at x = 0 and z = 0. To &nd
the minimum of (6), we solve

min
x,z
y = x2 + z2

and the &rst order necessary conditions are

0 =
∂y

∂x
= 2x

and

0 =
∂y

∂z
= 2z.

Solving these two equations gives x = 0 and z = 0.
Now suppose we want to minimize (6) subject to the linear constraint

x+ z = 1. (7)

The minimization problem is now a constrained minimization

min
x,z
y = x2 + z2 subject to (s.t.)

x+ z = 1

16



and is illustrated in Figure xxx. Given the constraint x + z = 1, the function (6) is
no longer minimized at the point (x, z) = (0, 0) because this point does not satisfy
x + z = 1. The One simple way to solve this problem is to substitute the restriction
(7) into the function (6) and reduce the problem to a minimization over one variable.
To illustrate, use the restriction (7) to solve for z as

z = 1− x. (8)

Now substitute (7) into (6) giving

y = f(x, z) = f(x, 1− x) = x2 + (1− x)2. (9)

The function (9) satis&es the restriction (7) by construction. The constrained mini-
mization problem now becomes

min
x
y = x2 + (1− x)2.

The &rst order conditions for a minimum are

0 =
d

dx
(x2 + (1− x)2) = 2x− 2(1− x) = 4x− 2

and solving for x gives x = 1/2. To solve for z, use (8) to give z = 1− (1/2) = 1/2.
Hence, the solution to the constrained minimization problem is (x, z) = (1/2, 1/2).
Another way to solve the constrained minimization is to use the method of La-

grange multipliers. This method augments the function to be minimized with a linear
function of the constraint in homogeneous form. The constraint (7) in homogenous
form is

x+ z − 1 = 0
The augmented function to be minimized is called the Lagrangian and is given by

L(x, z,λ) = x2 + z2 − λ(x+ z − 1).
The coefficient on the constraint in homogeneous form, λ, is called the Lagrange
multiplier. It measures the cost, or shadow price, of imposing the constraint relative
to the unconstrained problem. The constrained minimization problem to be solved
is now

min
x,z,λ

L(x, z,λ) = x2 + z2 + λ(x+ z − 1).
The &rst order conditions for a minimum are

0 =
∂L(x, z,λ)

∂x
= 2x+ λ

0 =
∂L(x, z,λ)

∂z
= 2z + λ

0 =
∂L(x, z,λ)

∂λ
= x+ z − 1

17



The &rst order conditions give three linear equations in three unknowns. Notice that
the &rst order condition with respect to λ imposes the constraint. The &rst two
conditions give

2x = 2z = −λ
or

x = z.

Substituting x = z into the third condition gives

2z − 1 = 0
or

z = 1/2.

The &nal solution is (x, y,λ) = (1/2, 1/2,−1).
The Lagrange multiplier, λ, measures the marginal cost, in terms of the value of

the objective function, of imposing the constraint. Here, λ = −1 which indicates
that imposing the constraint x+z = 1 reduces the objective function. To understand
the roll of the Lagrange multiplier better, consider imposing the constraint x + z =
0. Notice that the unconstrained minimum achieved at x = 0, z = 0 satis&es this
constraint. Hence, imposing x + z = 0 does not cost anything and so the Lagrange
multiplier associated with this constraint should be zero. To con&rm this, the we
solve the problem

min
x,z,λ

L(x, z,λ) = x2 + z2 + λ(x+ z − 0).

The &rst order conditions for a minimum are

0 =
∂L(x, z,λ)

∂x
= 2x− λ

0 =
∂L(x, z,λ)

∂z
= 2z − λ

0 =
∂L(x, z,λ)

∂λ
= x+ z

The &rst two conditions give
2x = 2z = −λ

or
x = z.

Substituting x = z into the third condition gives

2z = 0

or
z = 0.

The &nal solution is (x, y,λ) = (0, 0, 0). Notice that the Lagrange multiplier, λ, is
equal to zero in this case.
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5 Problems
Exercise 1 Consider the problem of investing in two risky assets A and B and a
risk-free asset (T-bill). The optimization problem to &nd the tangency portfolio may
be reduced to

max
xA

xA(µA − rf ) + (1− xA)(µB − rf)
(x2Aσ

2
A + (1− xA)2σ2B + 2xA(1− xA)σAB)1/2

where xA is the share of wealth in asset A in the tangency portfolio and xB = 1− xA
is the share of wealth in asset B in the tangency portfolio. Using simple calculus,
show that

xA =
(µA − rf)σ2B − (µB − rf)σAB

(µA − rf )σ2B + (µB − rf )σ2A − (µA − rf + µB − rf)σAB
.
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Introduction to Financial Econometrics
Chapter 6 The Single Index Model and Bivariate

Regression

Eric Zivot
Department of Economics

University of Washington

March 1, 2001

1 The single index model

Sharpe�s single index model, also know as the market model and the single factor
model, is a purely statistical model used to explain the behavior of asset returns.
It is a generalization of the constant expected return (CER) model to account for
systematic factors that may affect an asset�s return. It is not the same model as the
Capital Asset Pricing Model (CAPM), which is an economic model of equilibrium
returns, but is closely related to it as we shall see in the next chapter.
The single index model has the form of a simple bivariate linear regression model

Rit = αi + βi,MRMt + εit, i = 1, . . . ,N ; t = 1, . . . , T (1)

where Rit is the continuously compounded return on asset i (i = 1, . . . , N) between
time periods t − 1 and t, and RMt is the continuously compounded return on a
market index portfolio between time periods t− 1 and t. The market index portfolio
is usually some well diversi&ed portfolio like the S&P 500 index, the Wilshire 5000
index or the CRSP1 equally or value weighted index. As we shall see, the coefficient
βi,M multiplying RMt in (1) measures the contribution of asset i to the variance
(risk), σ2M , of the market index portfolio. If βi,M = 1 then adding the security does
not change the variability, σ2M , of the market index; if βi,M > 1 then adding the
security will increase the variability of the market index and if βi,M < 1 then adding
the security will decrease the variability of the market index.
The intuition behind the single index model is as follows. The market index RMt

captures �macro�or market-wide systematic risk factors that affect all returns in one
way or another. This type of risk, also called covariance risk, systematic risk and

1CRSP refers to the Center for Research in Security Prices at the University of Chicago.
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market risk, cannot be eliminated in a well diversi&ed portfolio. The random error
term εit has a similar interpretation as the error term in the CER model. In the single
index model, εit represents random �news�that arrives between time t−1 and t that
captures �micro�or &rm-speci&c risk factors that affect an individual asset�s return
that are not related to macro events. For example, εit may capture the news effects
of new product discoveries or the death of a CEO. This type of risk is often called
&rm speci&c risk, idiosyncratic risk, residual risk or non-market risk. This type of
risk can be eliminated in a well diversi&ed portfolio.
The single index model can be expanded to capture multiple factors. The single

index model then takes the form a k−variable linear regression model

Rit = αi + βi,1F1t + βi,2F2t + · · ·+ βi,kFkt + εit

where Fjt denotes the jth systematic factorm, βi,j denotes asset i
0s loading on the jth

factor and εit denotes the random component independent of all of the systematic
factors. The single index model results when F1t = RMt and βi,2 = · · · = βi,k = 0. In
the literature on multiple factor models the factors are usually variables that capture
speci&c characteristics of the economy that are thought to affect returns - e.g. the
market index, GDP growth, unexpected in! ation etc., and &rm speci&c or industry
speci&c characteristics - &rm size, liquidity, industry concentration etc. Multiple
factor models will be discussed in chapter xxx.
The single index model is heavily used in empirical &nance. It is used to estimate

expected returns, variances and covariances that are needed to implement portfolio
theory. It is used as a model to explain the �normal�or usual rate of return on an
asset for use in so-called event studies2. Finally, the single index model is often used
the evaluate the performance of mutual fund and pension fund managers.

1.1 Statistical Properties of Asset Returns in the single in-
dex model

The statistical assumptions underlying the single index model (1) are as follows:

1. (Rit, RMt) are jointly normally distributed for i = 1, . . . , N and t = 1, . . . , T .

2. E[εit] = 0 for i = 1, . . . , N and t = 1, . . . , T (news is neutral on average).

3. var(εit) = σ2ε,i for i = 1, . . . , N (homoskedasticity).

4. cov(εit, RMt) = 0 for i = 1, . . . , N and t = 1, . . . , T .

2The purpose of an event study is to measure the effect of an economic event on the value of a &rm.
Examples of event studies include the analysis of mergers and acquisitions, earning announcements,
announcements of macroeconomic variables, effects of regulatory change and damage assessments
in liability cases. An excellent overview of event studies is given in chapter 4 of Campbell, Lo and
MacKinlay (1997).
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5. cov(εit, εjs) = 0 for all t, s and i 6= j
6. εit is normally distributed

The normality assumption is justi&ed on the observation that returns are fairly
well characterized by the normal distribution. The error term having mean zero
implies that &rm speci&c news is, on average, neutral and the constant variance
assumptions implies that the magnitude of typical news events is constant over time.
Assumption 4 states that &rm speci&c news is independent (since the random variables
are normally distributed) of macro news and assumption 5 states that news affecting
asset i in time t is independent of news affecting asset j in time s.
That εit is unrelated to RMs and εjs implies that any correlation between asset i

and asset j is solely due to their common exposure to RMt throught the values of βi
and βj.

1.1.1 Unconditional Properties of Returns in the single index model

The unconditional properties of returns in the single index model are based on the
marginal distribution of returns: that is, the distribution of Rit without regard to any
information aboutRMt. These properties are summarized in the following proposition.

Proposition 1 Under assumptions 1 - 6

1. E[Rit] = µi = αi + βi,ME[RMt] = αi + βi,MµM

2. var(Rit) = σ2i = β2i,Mvar(RMt) + var(εit) = β2i,Mσ2M + σ2ε,i

3. cov(Rit, Rjt) = σij = σ2Mβiβj

4. Rit ~ iid N(µi, σ
2
i ), RMt ~ iid N(µM , σ

2
M)

5. βi,M =
cov(Rit,RMt)
var(RMt)

= σiM
σ2M

The proofs of these results are straightforward and utilize the properties of linear
combinations of random variables. Results 1 and 4 are trivial. For 2, note that

var(Rit) = var(αi + βi,MRMt + εit)

= β2i,Mvar(RMt) + var(εit) + 2cov(RMt, εit)

= β2i,Mσ2M + σ2ε,i

since, by assumption 4, cov(εit, RMt) = 0. For 3, by the additivity property of
covariance and assumptions 4 and 5 we have

cov(Rit, Rjt) = cov(αi + βi,MRMt + εit,αj + βj,MRMt + εjt)

= cov(βi,MRMt + εit,βj,MRMt + εjt)

= cov(βi,MRMt, βj,MRMt) + cov(βi,MRMt, εjt) + cov(εit, βj,MRMt) + cov(εit, εjt)

= βi,Mβj,Mcov(RMt, RMt) = βi,Mβj,Mσ2M

3



Last, for 5 note that

cov(Rit, RMt) = cov(αi + βi,MRMt + εit, RMt)

= cov(βi,MRMt, RMt)

= βi,Mcov(RMt, RMt)

= βi,Mvar(RMt),

which uses assumption 4. It follows that

cov(Rit, RMt)

var(RMt)
=

βi,Mvar(RMt)

var(RMt)
= βi,M .

Remarks:

1. Notice that unconditional expected return on asset i, µi, is constant and con-
sists of an intercept term αi, a term related to βi,M and the unconditional
mean of the market index, µM . This relationship may be used to create pre-
dictions of expected returns over some future period. For example, suppose
αi = 0.01, βi,M = 0.5 and that a market analyst forecasts µM = 0.05. Then the
forecast for the expected return on asset i is

bµi = 0.01 + 0.5(0.05) = 0.026.
2. The unconditional variance of the return on asset i is constant and consists of
variability due to the market index, β2i,Mσ2M , and variability due to speci&c risk,
σ2ε,i.

3. Since σij = σ2Mβiβj the direction of the covariance between asset i and asset j
depends of the values of βi and βj. In particular

• σij = 0 if βi = 0 or βj = 0 or both

• σij > 0 if βi and βj are of the same sign

• σij < 0 if βi and βj are of opposite signs.

4. The expression for the expected return can be used to provide an unconditional
interpretation of αi. Subtracting βi,MµM from both sides of the expression for
µi gives

αi = µi − βi,MµM .
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1.1.2 Decomposing Total Risk

The independence assumption between RMt and εit allows the unconditional vari-
ability of Rit, var(Rit) = σ2i , to be decomposed into the variability due to the market
index, β2i,Mσ2M , plus the variability of the &rm speci&c component, σ2ε,i. This decom-
position is often called analysis of variance (ANOVA). Given the ANOVA, it is useful
to de&ne the proportion of the variability of asset i that is due to the market index
and the proportion that is unrelated to the index. To determine these proportions,
divide both sides of σ2i = β2i,Mσ2M + σ2ε,i to give

1 =
σ2i
σ2i
=

β2i,Mσ2M + σ2ε,i
σ2i

=
β2i,Mσ2M

σ2i
+

σ2ε,i
σ2i

Then we can de&ne

R2i =
β2i,Mσ2M

σ2i
= 1− σ2ε,i

σ2i

as the proportion of the total variability of Rit that is attributable to variability in
the market index. Similarly,

1−R2i =
σ2ε,i
σ2i

is then the proportion of the variability of Rit that is due to &rm speci&c factors. We
can think of R2i as measuring the proportion of risk in asset i that cannot be diversi&ed
away when forming a portfolio and we can think of 1−R2i as the proportion of risk that
can be diversi&ed away. It is important not to confuse R2i with βi,M . The coefficient
βi,M measures the overall magnitude of nondiversi&able risk whereas R

2
i measures the

proportion of this risk in the total risk of the asset.
William Sharpe computed R2i for thousands of assets and found that for a typical

stock R2i ≈ 0.30. That is, 30% of the variability of the return on a typical is due
to variability in the overall market and 70% of the variability is due to non-market
factors.

1.1.3 Conditional Properties of Returns in the single index model

Here we refer to the properties of returns conditional on observing the value of the
market index random variable RMt. That is, suppose it is known thatRMt = rMt. The
following proposition summarizes the properties of the single index model conditional
on RMt = rMt:

1. E[Rit|RMt = rMt] = µi|RM = αi + βi,MrMt

2. var(Rit|RMt = rMt) = var(εit) = σ2ε,i

3. cov(Rit, Rjt|Rmt = rMt) = 0
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Property 1 states that the expected return on asset i conditional on RMt = rMt
is allowed to vary with the level of the market index. Property 2 says conditional
on the value of the market index, the variance of the return on asset is equal to the
variance of the random news component. Property 3 shows that once movements in
the market are controlled for, assets are uncorrelated.

1.2 Matrix Algebra Representation of the Single IndexModel

The single index model for the entire set of N assets may be conveniently represented
using matrix algebra. De&nie the (N × 1) vectors Rt = (R1t, R2t, . . . , RNt)

0, α =
(α1,α2, . . . ,αN )

0, β = (β1,β2, . . . , βN)
0 and εt = (ε1t, ε2t, . . . , εNt)

0. Then the single
index model for all N assets may be represented as

R1t
...
RNt

 =


α1
...

αN

+


β1
...

βN

RMt +


ε1t
...

εNt

 , t = 1, . . . , T
or

Rt = α+ β ·RMt + εt, t = 1, . . . , T.

Since σ2i = β2i,Mσ2M + σ2ε,i and σij = βiβjσ
2
M the covariance matrix for the N

returns may be expressed as

Σ =


σ21 σ12 · · · σ1N
σ12 σ22 · · · σ2N
...

...
. . .

...
σ1N · · · · · · σ2N

 =


β2i,Mσ2M βiβjσ
2
M · · · βiβjσ

2
M

βiβjσ
2
M β2i,Mσ2M · · · βiβjσ

2
M

...
...

. . .
...

βiβjσ
2
M βiβjσ

2
M · · · β2i,Mσ2M

+


σ2ε,1 0 · · · 0
0 σ2ε,2 · · · 0
...

...
. . .

...
0 0 · · · σ2ε,N


The covariance matrix may be conveniently computes as

Σ = σ2Mββ
0 +∆

where ∆ is a diagonal matrix with σ2ε,i along the diagonal.

1.3 The Single Index Model and Portfolios

Suppose that the single index model (1) describes the returns on two assets. That is,

R1t = α1 + β1,MRMt + ε1t, (2)

R2t = α2 + β2,MRMt + ε2t. (3)

Consider forming a portfolio of these two assets. Let x1 denote the share of wealth
in asset 1, x2 the share of wealth in asset 2 and suppose that x1+ x2 = 1. The return
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on this portfolio using (2) and (3) is then

Rpt = x1R1t + x2R2t

= x1(α1 + β1,MRMt + ε1t) + x2(α2 + β2,MRMt + ε2t)

= (x1α1 + x2α2) + (x1β1,M + x2β2,M)RMt + (x1ε1t + x2ε2t)

= αp + βp,MRMt + εpt

where αp = x1α1 + x2α2, βp,M = x1β1,M + x2β2,M and εpt = x1ε1t + x2ε2t. Hence,
the single index model will hold for the return on the portfolio where the parameters
of the single index model are weighted averages of the parameters of the individual
assets in the portfolio. In particular, the beta of the portfolio is a weighted average
of the individual betas where the weights are the portfolio weights.

Example 2 To be completed

The additivity result of the single index model above holds for portfolios of any
size. To illustrate, suppose the single index model holds for a collection of N assets:

Rit = αi + βi,MRMt + εit (i = 1, . . . , N)

Consider forming a portfolio of these N assets. Let xi denote the share of wealth
invested in asset i and assume that

PN
i=1 = 1. Then the return on the portfolio is

Rpt =
NX
i=1

xi(αi + βi,MRMt + εit)

=
NX
i=1

xiαi +

Ã
NX
i=1

xiβi,M

!
RMt +

NX
i=1

xiεit

= αp + βpRMt + εpt

where αp =
PN
i=1 xiαi, βp =

³PN
i=1 xiβi,M

´
and εpt =

PN
i=1 xiεit.

1.3.1 The Single Index Model and Large Portfolios

To be completed

2 �Beta� as a Measure of portfolio Risk
A key insight of portfolio theory is that, due to diversi&cation, the risk of an individual
asset should be based on how it affects the risk of a well diversi&ed portfolio if it is
added to the portfolio. The preceding section illustrated that individual speci&c
risk, as measured by the asset�s own variance, can be diversi&ed away in large well
diversi&ed portfolios whereas the covariances of the asset with the other assets in

7



the portfolio cannot be completely diversi&ed away. The so-called �beta�of an asset
captures this covariance contribution and so is a measure of the contribution of the
asset to overall portfolio variability.
To illustrate, consider an equally weighted portfolio of 99 stocks and let R99 denote

the return on this portfolio and σ299 denote the variance. Now consider adding one
stock, say IBM, to the portfolio. Let RIBM and σ2IBM denote the return and variance
of IBM and let σ99,IBM = cov(R99, RIBM). What is the contribution of IBM to the
risk, as measured by portfolio variance, of the portfolio? Will the addition of IBM
make the portfolio riskier (increase portfolio variance)? Less risky (decrease portfolio
variance)? Or have no effect (not change portfolio variance)? To answer this question,
consider a new equally weighted portfolio of 100 stocks constructed as

R100 = (0.99) ·R99 + (0.01) ·RIBM .
The variance of this portfolio is

σ2100 = var(R100) = (0.99)
2σ299 + (0.01)

2σ2IBM + 2(0.99)(0.01)σ99,IBM

= (0.98)σ299 + (0.0001)σ
2
IBM + (0.02)σ99,IBM

≈ (0.98)σ299 + (0.02)σ99,IBM .

Now if

• σ2100 = σ299 then adding IBM does not change the variability of the portfolio;

• σ2100 > σ299 then adding IBM increases the variability of the portfolio;

• σ2100 < σ299 then adding IBM decreases the variability of the portfolio.

Consider the &rst case where σ2100 = σ299. This implies (approximately) that

(0.98)σ299 + (0.02)σ99,IBM = σ299

which upon rearranging gives the condition

σ99,IBM
σ299

=
cov(R99, RIBM)

var(R99)
= 1

De&ning

β99,IBM =
cov(R99, RIBM)

var(R99)

then adding IBM does not change the variability of the portfolio as long as β99,IBM =
1. Similarly, it is easy to see that σ2100 > σ299 implies that β99,IBM > 1 and σ2100 < σ299
implies that β99,IBM < 1.
In general, let Rp denote the return on a large diversi&ed portfolio and let Ri

denote the return on some asset i. Then

βp,i =
cov(Rp, Ri)

var(Rp)

measures the contribution of asset i to the overall risk of the portfolio.
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2.1 The single index model and Portfolio Theory

To be completed

2.2 Estimation of the single index model by Least Squares
Regression

Consider a sample of size T of observations on Rit and RMt. We use the lower case
variables rit and rMt to denote these observed values. The method of least squares
&nds the �best &tting�line to the scatter-plot of data as follows. For a given estimate
of the best &tting line

brit = bαi + bβi,MrMt, t = 1, . . . , T
create the T observed errors

bεit = rit − brit = rit − bαi − bβi,MrMt, t = 1, . . . , T
Now some lines will &t better for some observations and some lines will &t better for
others. The least squares regression line is the one that minimizes the error sum of
squares (ESS)

SSR(bαi, bβi,M) = TX
t=1

bε2it = TX
t=1

(rit − bαi − bβi,MrMt)2
The minimizing values of bαi and bβi,M are called the (ordinary) least squares (OLS) es-
timates of αi and βi,M . Notice that SSR(bαi, bβi,M) is a quadratic function in (bαi, bβi,M)
given the data and so the minimum values can be easily obtained using calculus. The
&rst order conditions for a minimum are

0 =
∂SSR

∂bαi = −2
TX
t=1

(rit − bαi − bβi,MrMt) = −2 TX
t=1

bεit
0 =

∂SSR

∂bβi,M = −2
TX
t=1

(rit − bαi − bβi,MrMt)rMt = −2 TX
t=1

bεitrMt
which can be rearranged as

TX
t=1

rit = T bαi + bβi,M TX
t=1

rMt

TX
t=1

ritrMt = bαi TX
t=1

rMt + bβi,M TX
t=1

r2Mt

9



These are two linear equations in two unknowns and by straightforward substitution
the solution is

bαi = r̄i − bβi,M r̄M
bβi,M =

PT
t=1(rit − r̄i)(rMt − r̄M)PT

t=1(rMt − r̄M)2
where

r̄i =
1

T

TX
t=1

rit, r̄M =
1

T

TX
t=1

rMt.

The equation for bβi,M can be rewritten slightly to show that bβi,M is a simple
function of variances and covariances. Divide the numerator and denominator of the
expression for bβi,M by 1

T−1 to give

bβi,M = 1
T−1

PT
t=1(rit − r̄i)(rMt − r̄M)
1

T−1
PT
t=1(rMt − r̄M)2

=
dcov(Rit, RMt)dvar(RMt)

which shows that bβi,M is the ratio of the estimated covariance between Rit and RMt
to the estimated variance of RMt.
The least squares estimate of σ2ε,i = var(εit) is given by

bσ2ε,i = 1

T − 2
TX
t=1

be2it = 1

T − 2
TX
t=1

(rt − bαi − bβi,MrMt)2
The divisor T − 2 is used to make bσ2ε,i an unbiased estimator of σ2ε,ι.
The least squares estimate of R2 is given by

bR2i = bβ2i,M bσ2Mdvar(Rit) = 1−
bσ2ε,idvar(Rit) ,

where

dvar(Rit) = 1

T − 1
TX
t=1

(rit − r̄i)2,

and gives a measure of the goodness of &t of the regression equation. Notice thatbR2i = 1 whenever bσ2ε,i = 0 which occurs when bεit = 0 for all values of t. In other
words, bR2i = 1 whenever the regression line has a perfect &t. Conversely, bR2i = 0
when bσ2ε,i = dvar(Rit); that is, when the market does not explain any of the variability
of Rit. In this case, the regression has the worst possible &t.

3 Hypothesis Testing in the Single Index Model

3.1 A Review of Hypothesis Testing Concepts

To be completed.
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3.2 Testing the Restriction α = 0.

Using the single index model regression,

Rt = α+ βRMt + εt, t = 1, ..., T

εt ∼ iid N(0,σ2ε), εt is independent of RMt (4)

consider testing the null or maintained hypothesis α = 0 against the alternative that
α 6= 0

H0 : α = 0 vs. H1 : α 6= 0.
If H0 is true then the single index model regression becomes

Rt = βRMt + εt

and E[Rt|RMt = rMt] = βrMt. We will reject the null hypothesis, H0 : α = 0, if
the estimated value of α is either much larger than zero or much smaller than zero.
Assuming H0 : α = 0 is true, α̂ ∼ N(0, SE(α̂)2) and so is fairly unlikely that α̂ will
be more than 2 values of SE(α̂) from zero. To determine how big the estimated value
of α needs to be in order to reject the null hypothesis we use the t-statistic

tα=0 =
bα− 0dSE(bα) ,

where bα is the least squares estimate of α and dSE(bα) is its estimated standard error.
The value of the t-statistic, tα=0, gives the number of estimated standard errors thatbα is from zero. If the absolute value of tα=0 is much larger than 2 then the data cast
considerable doubt on the null hypothesis α = 0 whereas if it is less than 2 the data
are in support of the null hypothesis3. To determine how big | tα=0| needs to be to
reject the null, we use the fact that under the statistical assumptions of the single
index model and assuming the null hypothesis is true

tα=0 ∼ Student− t with T − 2 degrees of freedom

If we set the signi&cance level (the probability that we reject the null given that the
null is true) of our test at, say, 5% then our decision rule is

Reject H0 : α = 0 at the 5% level if |tα=0| > |tT−2(0.025)|

where tT−2 is the 212% critical value (quantile) from a Student-t distribution with
T − 2 degrees of freedom.

Example 3 single index model Regression for IBM
3This interpretation of the t-statistic relies on the fact that, assuming the null hypothesis is true

so that α = 0, bα is normally distributed with mean 0 and estimated variancedSE(bα)2.
11



Consider the estimated MM regression equation for IBM using monthly data from
January 1978 through December 1982:

bRIBM,t =−0.0002
(0.0068)

+ 0.3390
(0.0888)

·RMt, R2 = 0.20, bσε = 0.0524

where the estimated standard errors are in parentheses. Here bα = −0.0002, which is
very close to zero, and the estimated standard error, dSE(α̂) = 0.0068, is much larger
than bα. The t-statistic for testing H0 : α = 0 vs. H1 : α 6= 0 is

tα=0 =
−0.0002− 0
0.0068

= −0.0363

so that bα is only 0.0363 estimated standard errors from zero. Using a 5% signi&cance
level, |t58(0.025)| ≈ 2 and

|tα=0| = 0.0363 < 2
so we do not reject H0 : α = 0 at the 5% level.

3.3 Testing Hypotheses about β

In the single index model regression β measures the contribution of an asset to the
variability of the market index portfolio. One hypothesis of interest is to test if the
asset has the same level of risk as the market index against the alternative that the
risk is different from the market:

H0 : β = 1 vs. H1 : β 6= 1.

The data cast doubt on this hypothesis if the estimated value of β is much different
from one. This hypothesis can be tested using the t-statistic

tβ=1 =
bβ − 1dSE(bβ)

which measures how many estimated standard errors the least squares estimate of β
is from one. The null hypothesis is reject at the 5% level, say, if |tβ=1| > |tT−2(0.025)|.
Notice that this is a two-sided test.
Alternatively, one might want to test the hypothesis that the risk of an asset is

strictly less than the risk of the market index against the alternative that the risk is
greater than or equal to that of the market:

H0 : β = 1 vs. H1 : β ≥ 1.

Notice that this is a one-sided test. We will reject the null hypothesis only if the
estimated value of β much greater than one. The t-statistic for testing this null

12



hypothesis is the same as before but the decision rule is different. Now we reject the
null at the 5% level if

tβ=1 < −tT−2(0.05)
where tT−2(0.05) is the one-sided 5% critical value of the Student-t distribution with
T − 2 degrees of freedom.

Example 4 Single Index Regression for IBM cont�d

Continuing with the previous example, consider testing H0 : β = 1 vs. H1 : β 6= 1.
Notice that the estimated value of β is 0.3390, with an estimated standard error of
0.0888, and is fairly far from the hypothesized value β = 1. The t-statistic for testing
β = 1 is

tβ=1 =
0.3390− 1
0.0888

= −7.444

which tells us that bβ is more than 7 estimated standard errors below one. Since
t0.025,58 ≈ 2 we easily reject the hypothesis that β = 1.
Now consider testing H0 : β = 1 vs. H1 : β ≥ 1. The t-statistic is still -7.444

but the critical value used for the test is now −t58(0.05) ≈ −1.671. Clearly, tβ=1 =
−7.444 < −1.671 = −t58(0.05) so we reject this hypothesis.

4 Estimation of the single index model: An Ex-
tended Example

Now we illustrate the estimation of the single index model using monthly data on
returns over the ten year period January 1978 - December 1987. As our dependent
variable we use the return on IBM and as our market index proxy we use the CRSP
value weighted composite monthly return index based on transactions from the New
York Stock Exchange and the American Stock Exchange. Let rt denote the monthly
return on IBM and rMt denote the monthly return on the CRSP value weighted index.
Time plots of these data are given in &gure 1 below.

13
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Figure 1

Notice that the IBM and the market index have similar behavior over the sample
with the market index looking a little more volatile than IBM. Both returns dropped
sharply during the October 1987 crash but there were a few times that the market
dropped sharply whereas IBM did not. Sample descriptive statistics for the returns
are displayed in &gure 2.
The mean monthly returns on IBM and the market index are 0.9617% and 1.3992%

per month and the sample standard deviations are 5.9024% and 6.8353% per month,
respectively.. Hence the market index on average had a higher monthly return and
more volatility than IBM.
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Notice that the histogram of returns on the market are heavily skewed left whereas
the histogram for IBM is much more sysingle index modeletric about the mean. Also,
the kurtosis for the market is much larger than 3 (the value for normally distributed
returns) and the kurtosis for IBM is just slightly larger than 3. The negative skewness
and large kurtosis of the market returns is caused by several large negative returns.
The Jarque-Bera statistic for the market returns is 67.97, with a p-value 0.0000, and
so we can easily reject the hypothesis that the market data are normally distributed.
However, the Jarque-Bera statistic for IBM is only 0.1068, with a p-value of 0.9479,
and we therefore cannot reject the hypothesis of normality.
The single index model regression is

Rt = α+ βRMt + εt, t = 1, . . . , T

where it is assumed that εt ∼ iid N(0, σ2) and is independent of RMt. We estimate
this regression using the &rst &ve years of data from January 1978 - December 1982.
In practice the single index model is seldom estimated using data covering more than
&ve years because it is felt that β may change through time. The computer printout
from Eviews is given in &gure 3 below
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Figure 3

4.1 Explanation of Computer Output

The the items under the column labeled Variable are the variables in the estimated
regression model. The variable �C� refers to the intercept in the regression and
�MARKET�refers to rMt. The least squares regression coefficients are reported in
the column labeled �Coefficient�and the estimated standard errors for the coefficients
are in then next column. A standard way of reporting the estimated equation is

brt =0.0053
(0.0069)

+ 0.3278
(0.0890)

·rMt

where the estimated standard errors are reported underneath the estimated coeffi-
cients. The estimated intercept is close to zero at 0.0053, with a standard error of
0.0069 (= dSE(bα)), and the estimated value of β is 0.3278, with an standard error of
0.0890 (= dSE(bβ)). Notice that the estimated standard error of bβ is much smaller
than the estimated coefficient and indicates that β is estimated reasonably precisely.
The estimated regression equation is displayed graphically in &gure 4 below.
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To evaluate the overall &t of the single index model regression we look at the R2 of
the regression, which measures the percentage of variability of Rt that is attributable
to the variability in RMt, and the estimated standard deviation of the residuals, bσε.
From the table, R2 = 0.190 so the market index explains only 19% of the variability
of IBM and 81% of the variability is not explained by the market. In the single index
model regression, we can also interpret R2 as the proportion of market risk in IBM
and 1 − R2 as the proportion of &rm speci&c risk. The standard error (S.E.) of the
regression is the square root of the least squares estimate of σ2ε = var(εt). From the
above table, bσε = 0.052. Recall, εt captures the &rm speci&c risk of IBM and so bσε is
an estimate of the typical magnitude of the &rm speci&c risk. In order to interpret the
magnitude of bσε it is useful to compare it to the estimate of the standard deviation
of Rt, which measures the total risk of IBM. This is reported in the table by the
standard deviation (S.D.) of the dependent variable which equals 0.057. Notice thatbσε = 0.052 is only slightly smaller than 0.057 so that the &rm speci&c risk is a large
proportion of total risk (which is also reported by 1−R2).
Con&dence intervals for the regression parameters are easily computed using the

reported regression output. Since εt is assumed to be normally distributed 95%
con&dence intervals for α and β take the form

bα± 2 ·dSE(bα)bβ ± 2 ·dSE(bβ)
17



The 95% con&dence intervals are then

α : 0.0053± 2 · 0.0069 = [−.0085, 0.0191]
β : 0.3278± 2 · 0.0890 = [0.1498, 0.5058]

Our best guess of α is 0.0053 but we wouldn�t be too surprised if it was as low as
-0.0085 or as high as 0.0191. Notice that there are both positive and negative values
in the con&dence interval. Similarly, our best guess of β is 0.3278 but it could be as
low as 0.1498 or as high as 0.5058. This is a fairly wide range given the interpretation
of β as a risk measure. The interpretation of these intervals are as follows. In
repeated samples, 95% of the time the estimated con&dence intervals will cover the
true parameter values.
The t-statistic given in the computer output is calculated as

t-statistic =
estimated coefficient− 0

std. error

and it measures how many estimated standard errors the estimated coefficient is away
from zero. This t-statistic is often referred to as a basic signi&cance test because it
tests the null hypothesis that the value of the true coefficient is zero. If an estimate is
several standard errors from zero, so that it�s t-statistic is greater than 2, then it is a
good bet that the true coefficient is not equal to zero. From the data in the table, the
t-statistic for α is 0.767 so that bα = 0.0053 is 0.767 standard errors from zero. Hence
it is quite likely that the true value of α equals zero. The t-statistic for β is 3.684,bβ is more than 3 standard errors from zero, and so it is very unlikely that β = 0.
The Prob Value (p-value of the t-statistic) in the table gives the likelihood (computed
from the Student-t curve) that, given the true value of the coefficient is zero, the data
would generate the observed value of the t-statistic. The p-value for the t-statistic
testing α = 0 is 0.4465 so that it is quite likely that α = 0. Alternatively, the p-value
for the t-statistic testing β = 0 is 0.001 so it is very unlikely that β = 0.

4.2 Analysis of the Residuals

The single index model regression makes the assumption that εt ∼ iid N(0,σ2ε). That
is the errors are independent and identically distributed with mean zero, constant
variance σ2ε and are normally distributed. It is always a good idea to check the
behavior of the estimated residuals, bεt, and see if they share the assumed properties
of the true residuals εt. The &gure below plots rt (the actual data), brt = bα + bβrMt
(the &tted data) and bεt = rt − brt (the estimated residual data).
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Notice that the &tted values do not track the actual values very closely and that
the residuals are fairly large. This is due to low R2 of the regression. The residuals
appear to be fairly random by sight. We will develop explicit tests for randomness
later on. The histogram of the residuals, displayed below, can be used to investigate
the normality assumption. As a result of the least squares algorithm the residuals
have mean zero as long as a constant is included in the regression. The standard
deviation of the residuals is essentially equal to the standard error of the regression
- the difference being due to the fact that the formula for the standard error of the
regression uses T − 2 as a divisor for the error sum of squares and the standard
deviation of the residuals uses the divisor T − 1.
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The skewness of the residuals is slightly positive and the kurtosis is a little less
than 3. The hypothesis that the residuals are normally distributed can be tested
using the Jarque-Bera statistic. This statistic is a function of the estimated skewness
and kurtosis and is give by

JB =
T

6

Ã bS2 + (cK − 3)2
4

!

where bS denotes the estimated skewness and cK denotes the estimated kurtosis. If
the residuals are normally distribued then bS ≈ 0 and cK ≈ 3 and JB ≈ 0. Therefore,
if bS is moderately different from zero or cK is much different from 3 then JB will get
large and suggest that the data are not normally distributed. To determine how large
JB needs to be to be able to reject the normality assumption we use the result that
under the maintained hypothesis that the residuals are normally distributed JB has
a chi-square distribution with 2 degrees of freedom:

JB ∼ χ22.

For a test with signi&cance level 5%, the 5% right tail critical value of the chi-square
distribution with 2 degrees of freedom, χ22(0.05), is 5.99 so we would reject the null
that the residuals are normally distributed if JB > 5.99. The Probability (p-value)
reported by Eviews is the probability that a chi-square random variable with 2 degrees
of freedom is greater than the observed value of JB :

P (χ22 ≥ JB) = 0.2843.
For the IBM residuals this p-value is reasonably large and so there is not much data
evidence against the normality assumption. If the p-value was very small, e.g., 0.05 or
smaller, then the data would suggest that the residuals are not normally distributed.
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Chapter 1

The Constant Expected Return
Model

The first model of asset returns we consider is the very simple constant ex-
pected return (CER) model. This model assumes that an asset’s return over
time is normally distributed with a constant (time invariant) mean and vari-
ance The model also assumes that the correlations between asset returns
are constant over time. Although this model is very simple, it allows us to
discuss and develop several important econometric topics such as estimation,
hypothesis testing, forecasting and model evaluation.

1.0.1 Constant Expected Return Model Assumptions

Let Rit denote the continuously compounded return on an asset i at time t.
We make the following assumptions regarding the probability distribution of
Rit for i = 1, . . . ,N assets over the time horizon t = 1, . . . , T.

1. Normality of returns: Rit ∼ N(µi, σ2i ) for i = 1, . . . ,N and t = 1, . . . , T.

2. Constant variances and covariances: cov(Rit, Rjt) = σij for i = 1, . . . , N
and t = 1, . . . , T.

3. No serial correlation across assets over time: cov(Rit, Rjs) = 0 for t 6= s
and i, j = 1, . . . , N.

Assumption 1 states that in every time period asset returns are normally
distributed and that the mean and the variance of each asset return is con-
stant over time. In particular, we have for each asset i and every time period

1
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t

E[Rit] = µi
var(Rit) = σ2i

The second assumption states that the contemporaneous covariances between
assets are constant over time. Given assumption 1, assumption 2 implies that
the contemporaneous correlations between assets are constant over time as
well. That is, for all assets and time periods

corr(Rit, Rjt) = ρij

The third assumption stipulates that all of the asset returns are uncorrelated
over time1. In particular, for a given asset i the returns on the asset are
serially uncorrelated which implies that

corr(Rit, Ris) = cov(Rit, Ris) = 0 for all t 6= s.
Additionally, the returns on all possible pairs of assets i and j are serially
uncorrelated which implies that

corr(Rit, Rjs) = cov(Rit, Rjs) = 0 for all i 6= j and t 6= s.
Assumptions 1-3 indicate that all asset returns at a given point in time

are jointly (multivariate) normally distributed and that this joint distribution
stays constant over time. Clearly these are very strong assumptions. How-
ever, they allow us to development a straightforward probabilistic model for
asset returns as well as statistical tools for estimating the parameters of the
model and testing hypotheses about the parameter values and assumptions.

1.0.2 Regression Model Representation

A convenient mathematical representation or model of asset returns can be
given based on assumptions 1-3. This is the constant expected return (CER)
regression model. For assets i = 1, . . . , N and time periods t = 1, . . . , T the
CER model is represented as

Rit = µi + εit (1.1)

εit ∼ iid. N(0, σ2i )

cov(εit, εjt) = σij (1.2)
1Since all assets are assumed to be normally distributed (assumption 1), uncorrelated-

ness implies the stronger condition of independence.
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where µi is a constant and εit is a normally distributed random variable
with mean zero and variance σ2i . Notice that the random error term εit is
independent of εjs for all time periods t 6= s. The notation εit ∼ iid. N(0, σ2i )
stipulates that the random variable εit is serially independent and identically
distributed as a normal random variable with mean zero and variance σ2i .
This implies that, E[εit] = 0, var(εit) = σ2i and cov(εit, εjs) = 0 for i 6= j and
t 6= s.
Using the basic properties of expectation, variance and covariance dis-

cussed in chapter 2, we can derive the following properties of returns. For
expected returns we have

E[Rit] = E[µi + εit] = µi + E[εit] = µi,

since µi is constant and E[εit] = 0. Regarding the variance of returns, we
have

var(Rit) = var(µi + εit) = var(εit) = σ2i

which uses the fact that the variance of a constant (µi) is zero. For covari-
ances of returns, we have

cov(Rit, Rjt) = cov(µi + εit, µj + εjt) = cov(εit, εjt) = σij

and

cov(Rit, Rjs) = cov(µi + εit, µj + εjs) = cov(εit, εjs) = 0, t 6= s,
which use the fact that adding constants to two random variables does not
affect the covariance between them. Given that covariances and variances
of returns are constant over time gives the result that correlations between
returns over time are also constant:

corr(Rit, Rjt) =
cov(Rit, Rjt)p
var(Rit)var(Rjt)

=
σij
σiσj

= ρij,

corr(Rit, Rjs) =
cov(Rit, Rjs)p
var(Rit)var(Rjs)

=
0

σiσj
= 0, i 6= j, t 6= s.

Finally, since the random variable εit is independent and identically distrib-
uted (i.i.d.) normal the asset return Rit will also be i.i.d. normal:

Rit ∼ i.i.d. N(µi,σ
2
i ).
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Hence, the CER model (1.1) for Rit is equivalent to the model implied by
assumptions 1-3.

1.0.3 Interpretation of the CER Regression Model

The CER model has a very simple form and is identical to the measurement
error model in the statistics literature. In words, the model states that each
asset return is equal to a constant µi (the expected return) plus a normally
distributed random variable εit with mean zero and constant variance. The
random variable εit can be interpreted as representing the unexpected news
concerning the value of the asset that arrives between times t − 1 and time
t. To see this, note that using (1.1) we can write εit as

εit = Rit − µi
= Rit −E[Rit]

so that εit is defined to be the deviation of the random return from its
expected value. If the news between times t− 1 and time t is good, then the
realized value of εit is positive and the observed return is above its expected
value µi. If the news is bad, then εjt is negative and the observed return is
less than expected. The assumption that E[εit] = 0 means that news, on
average, is neutral; neither good nor bad. The assumption that var(εit) =
σ2i can be interpreted as saying that volatility of news arrival is constant
over time. The random news variable affecting asset i, εit, is allowed to
be contemporaneously correlated with the random news variable affecting
asset j, εjt, to capture the idea that news about one asset may spill over
and affect another asset. For example, let asset i be Microsoft and asset
j be Apple Computer. Then one interpretation of news in this context is
general news about the computer industry and technology. Good news should
lead to positive values of εit and εjt. Hence these variables will be positively
correlated.

Time Aggregation and the CER Model

The CER model with continuously compounded returns has the following
nice property with respect to the interpretation of εit as news. Consider
the default case where Rit is interpreted as the continuously compounded
monthly return on asset i. Suppose we are interested in the annual contin-
uously compounded return RAit = Rit(12)̇? Since multiperiod continuously
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compounded returns are additive, Rit(12) is the sum of 12 monthly continu-
ously compounded returns2:

RAit = Rit(12) =
11X
t=0

Rit−k = Rit +Rit−1 + · · ·+Rit−11

Using the CER model representation (1.1) for the monthly return Rit we may
express the annual return Rit(12) as

Rit(12) =
11X
t=0

(µi + εit)

= 12 · µi +
11X
t=0

εit

= µAi + εAit

where µAi = 12 · µi is the annual expected return on asset i and εAit =P11
k=0 εit−k is the annual random news component. Hence, the annual ex-

pected return, µAi , is simply 12 times the monthly expected return, µi. The
annual random news component, εAit , is the accumulation of news over the
year. Using the results from chapter 2 about the variance of a sum of ran-
dom variables, the variance of the annual news component is just 12 time
the variance of the monthly new component:

var(εAit) = var

Ã
11X
k=0

εit−k)

!

=
11X
k=0

var(εit−k) since εit is uncorrelated over time

=
11X
k=0

σ2i since var(εit) is constant over time

= 12 · σ2i
= var(RAit)

2For simplicity of exposition, we will ignore the fact that some assets do not trade over
the weekend.
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Similarly, using results from chapter 2 about the additivity of covariances
we have that covariance between εAit and εAjt is just 12 times the monthly
covariance:

cov(εAit, ε
A
jt) = cov

Ã
11X
k=0

εit−k,
11X
k=0

εjt−k

!

=
11X
k=0

cov(εit−k, εjt−k) since εit and εjt are uncorrelated over time

=
11X
k=0

σij since cov(εit, εjt) is constant over time

= 12 · σij
= cov(RAit , R

A
jt)

The above results imply that the correlation between εAit and εAjt is the same
as the correlation between εit and εjt :

corr(εAit, ε
A
jt) =

cov(εAit, ε
A
jt)q

var(εAit) · var(εAjt)

=
12 · σijq
12σ2i · 12σ2j

=
σij
σiσj

= ρij

= corr(εit, εjt)

1.0.4 The CER Model of Asset Returns and the Ran-
dom Walk Model of Asset Prices

The CER model of asset returns (1.1) gives rise to the so-called random walk
(RW) model of the logarithm of asset prices. To see this, recall that the
continuously compounded return, Rit, is defined from asset prices via

ln

µ
Pit
Pit−1

¶
= Rit.

Since the log of the ratio of prices is equal to the difference in the logs of
prices we may rewrite the above as

ln(Pit)− ln(Pit−1) = Rit.
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Letting pit = ln(Pit) and using the representation of Rit in the CER model
(1.1), we may further rewrite the above as

pit − pit−1 = µi + εit. (1.3)

The representation in (1.3) is know as the RW model for the log of asset
prices.
In the RW model, µi represents the expected change in the log of asset

prices (continuously compounded return) between months t−1 and t and εit
represents the unexpected change in prices. That is,

E[pit − pit−1] = E[Rit] = µi,

εit = pit − pit−1 −E[pit − pit−1].

Further, in the RW model, the unexpected changes in asset prices, εit, are
uncorrelated over time (cov(εit, εis) = 0 for t 6= s) so that future changes in
asset prices cannot be predicted from past changes in asset prices3.
The RWmodel gives the following interpretation for the evolution of asset

prices. Let pi0 denote the initial log price of asset i. The RW model says
that the price at time t = 1 is

pi1 = pi0 + µi + εi1

where εi1 is the value of random news that arrives between times 0 and 1.
Notice that at time t = 0 the expected price at time t = 1 is

E[pi1] = pi0 + µi + E[εi1] = pi0 + µi

which is the initial price plus the expected return between time 0 and 1.
Similarly, the price at time t = 2 is

pi2 = pi1 + µi + εi2

= pi0 + µi + µi + εi1 + εi2

= pi0 + 2 · µi +
2X
t=1

εit

3The notion that future changes in asset prices cannot be predicted from past changes
in asset prices is often referred to as the weak form of the efficient markets hypothesis.
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which is equal to the initial price, pi0, plus the two period expected return,
2 · µi, plus the accumulated random news over the two periods,

P2
t=1 εit. By

recursive substitution, the price at time t = T is

piT = pi0 + T · µi +
TX
t=1

εit.

At time t = 0 the expected price at time t = T is

E[piT ] = pi0 + T · µi
The actual price, piT , deviates from the expected price by the accumulated
random news

piT −E[piT ] =
TX
t=1

εit.

Figure 1.1 illustrates the random walk model of asset prices based on the
CER model with µ = 0.05, σ = 0.10 and p0 = 1. The plot shows the log
price, pt, the expected price E[pt] = p0 + 0.05t and the accumulated random
news

Pt
t=1 εt.

The term random walk was originally used to describe the unpredictable
movements of a drunken sailor staggering down the street. The sailor starts
at an initial position, p0, outside the bar. The sailor generally moves in the
direction described by µ but randomly deviates from this direction after each
step t by an amount equal to εt. After T steps the sailor ends up at position
pT = p0 + µ · T +

PT
t=1 εt.

1.1 Monte Carlo Simulation of the CERModel
A good way to understand the probabilistic behavior of a model is to use
computer simulation methods to create pseudo data from the model. The
process of creating such pseudo data is often calledMonte Carlo simulation4.
To illustrate the use of Monte Carlo simulation, consider the problem of
creating pseudo return data from the CER model (1.1) for one asset. The
steps to create a Monte Carlo simulation from the CER model are:

• Fix values for the CER model parameters µ and σ (or σ2)
4Monte Carlo referrs to the fameous city in Monaco where gambling is legal.
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Figure 1.1: Simulated random walk model for log prices.

• Determine the number of simulated values, T, to create.
• Use a computer random number generator to simulate T iid values
of εt from N(0,σ2) distribution. Denote these simulated values are
ε∗1, . . . , ε

∗
T .

• Create simulated return data R∗t = µ+ ε∗t for t = 1, . . . , T

To mimic the monthly return data on Microsoft, the values µ = 0.05 and
σ = 0.10 are used as the model’s parameters and T = 100 is the number of
simulated values (sample size). The key to simulating data from the above
model is to simulate T = 100 observations of the random news variable εt
~iid N(0, (0.10)2). Computer algorithms exist which can easily create such
observations..Let {ε∗1, . . . , ε∗100} denote the 100 simulated values of εt.The
simulated returns are then computed as

R∗t = 0.05 + ε∗t , t = 1, . . . , 100

A time plot and histogram of the simulated R∗t values are given in figure
.The simulated return data fluctuates randomly about the expected return
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Simulated returns from CER model

months

re
tu

rn

0 20 40 60 80 100

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

-0.2 -0.1 0.0 0.1 0.2 0.3

0
5

10
15

20
25

30

Histogram of simulated returns

return
fre

qu
en

cy

Figure 1.2: Simulated returns from the CER model Rt = 0.05 + εt, εt ~iid
N(0, (0.10)2)

value E[Rt] = µ = 0.05. The typical size of the fluctuation is approximately
equal to SD(εt) = 0.10. Notice that the simulated return data looks remark-
ably like the actual monthly return data for Microsoft.
The sample average of the simulated returns is 1

100

P100
t=1R

∗
t = 0.0522 and

the sample standard deviation is
q

1
99

P100
t=1(R

∗
t − (0.0522))2 = 0.0914. These

values are very close to the population values E[Rt] = 0.05 and SD(Rt) =
0.10, respectively.
Monte Carlo simulation of a model can be used as a first pass reality

check of the model. If simulated data from the model does not look like the
data that the model is supposed to describe then serious doubt is cast on the
model. However, if simulated data looks reasonably close to the data that
the model is suppose to describe then confidence is instilled on the model.

1.1.1 Simulating End of Period Wealth

To be completed
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• insert example showing how to use Monte Carlo simulation to com-
pute expected end of period wealth. compare computations where end
of period wealth is based on the expected return over the period ver-
sus computations based on simulating different sample paths and then
taking the average. Essentially, compute E[W0 exp(

PN
t=1Rt)] where Rt

behaves according to the CER model and compare this toW0 exp(Nµ).

1.1.2 Simulating Returns on More than One Asset

To be completed

1.2 Estimating the Parameters of the CER
Model

1.2.1 The Random Sampling Environment

The CER model of asset returns gives us a rigorous way of interpreting the
time series behavior of asset returns. At the beginning of every month t, Rit
is a random variable representing the return to be realized at the end of the
month. The CER model states that Rit ∼ i.i.d. N(µi,σ2i ). Our best guess for
the return at the end of the month is E[Rit] = µi, our measure of uncertainty
about our best guess is captured by σi =

p
var(Rit) and our measure of the

direction of linear association between Rit and Rjt is σij = cov(Rit, Rjt). The
CER model assumes that the economic environment is constant over time
so that the normal distribution characterizing monthly returns is the same
every month.
Our life would be very easy if we knew the exact values of µi, σ

2
i and σij ,

the parameters of the CER model. In actuality, however, we do not know
these values with certainty. A key task in financial econometrics is estimating
the values of µi, σ

2
i and σij from a history of observed data.

Suppose we observe monthly returns onN different assets over the horizon
t = 1, . . . , T. Let {ri1, . . . , riT} denote the observed history of T monthly
returns on asset i for i = 1, . . . , N. It is assumed that the observed returns
are realizations of the time series of random variables {Ri1, . . . , RiT} , where
Rit is described by the CER model (1.1). We call {Ri1, . . . , RiT} a random
sample from the CERmodel (1.1) and we call {ri1, . . . , riT} the realized values
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from the random sample. Under these assumptions, we can use the observed
returns to estimate the unknown parameters of the CER model

1.2.2 Statistical Estimation Theory

Before we describe the estimation of the CERmodel, it is useful to summarize
some concepts in the statistical theory of estimation. Let θ denote some
characteristic of the CER model (1.1) we are interested in estimating. For
example, if we are interested in the expected return then θ = µi; if we are
interested in the variance of returns then θ = σ2i . The goal is to estimate θ
based on the observed data {ri1, . . . , riT }.

Definition 1 An estimator of θ is a rule or algorithm for forming an esti-
mate for θ based on the random sample {Ri1, . . . , RiT}

Definition 2 An estimate of θ is simply the value of an estimator based on
the realized sample values {ri1, . . . , riT}.

Example 3 The sample average 1
T

PT
t=1Rit is an algorithm for computing

an estimate of the expected return µi. Before the sample is observed, the sam-
ple average is a simple linear function of the random variables {Ri1, . . . , RiT}
and so is itself a random variable. After the sample {ri1, . . . , riT} is observed,
the sample average can be evaluated giving 1

T

PT
t=1 rit, which is just a number.

For example, if the observed sample is {0.05, 0.03,−0.10} then the sample av-
erage estimate is 1

3
(0.05 + 0.03− 0.10) = −0.02.

To discuss the properties of estimators it is necessary to establish some
notation. Let θ̂(Ri1, . . . , RiT ) denote an estimator of θ treated as a function
of the random variables {Ri1, . . . , RiT}. Clearly, θ̂(Ri1, . . . , RiT ) is a random
variable. Let θ̂(ri1, . . . , riT ) denote an estimate of θ based on the realized
values {ri1, . . . , riT}. θ̂(ri1, . . . , riT ) is simply an number. We will often use θ̂
as shorthand notation to represent either an estimator of θ or an estimate of
θ. The context will determine how to interpret θ̂.

Example 4 Let R1, . . . , RT denote a random sample of returns. An estima-
tor of the expected return, µ, is the sample average

µ̂(R1, . . . , RT ) =
1

T

TX
t=1

Rt
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Suppose T = 5 and the realized values of the returns are r1 = 0.1, r2 =
0.05, r3 = 0.025, r4 = −0.1, r5 = −0.05. Then the estimate of the expected
return using the sample average is

µ̂(0.1, . . . ,−0.05) = 1

5
(0.1 + 0.05 + 0.025 +−0.1 +−0.05) = 0.005

1.2.3 Properties of Estimators

Consider θ̂ = θ̂(Ri1, . . . , RiT ) as a random variable. In general, the pdf
of θ̂, p(θ̂), depends on the pdf’s of the random variables Ri1, . . . , RiT . The
exact form of p(θ̂) may be very complicated. For analysis purposes, we
often focus on certain characteristics of p(θ̂) like its expected value (center),
variance and standard deviation (spread about expected value). The expected
value of an estimator is related to the concept of estimator bias and the
variance/standard deviation of an estimator is related estimator precision.
Intuitively, a good estimator of θ is one that will produce an estimate θ̂ that
is close θ all of the time. That is, a good estimator will have small bias and
high precision.

Bias

Bias concerns the location or center of p(θ̂). If p(θ̂) is centered away from θ
then we say θ̂ is biased. If p(θ̂) is centered at θ then we say that θ̂ is unbiased.
Formally we have the following definitions:

Definition 5 The estimation error is difference between the estimator and
the parameter being estimated

error = θ̂ − θ.

Definition 6 The bias of an estimator θ̂ of θ is given by

bias(θ̂, θ) = E[θ̂]− θ.

Definition 7 An estimator θ̂ of θ is unbiased if bias(θ̂, θ) = 0; i.e., if E[θ̂] =
θ or E[error] = 0.

Unbiasedness is a desirable property of an estimator. It means that the
estimator produces the correct answer “on average”, where “on average”
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Figure 1.3: Pdf values for competing estimators of θ = 0.

means over many hypothetical samples. It is important to keep in mind that
an unbiased estimator for θ may not be very close to θ for a particular sample
and that a biased estimator may be actually be quite close to θ. For example,
consider the pdf of θ̂1 in figure 1.3. The center of the distribution is at the
true value θ = 0, E[θ̂1] = 0, but the distribution is very widely spread out
about θ = 0. That is, var(θ̂1) is large. On average (over many hypothetical
samples) the value of θ̂1 will be close to θ but in any given sample the value
of θ̂1 can be quite a bit above or below θ. Hence, unbiasedness by itself does
not guarantee a good estimator of θ. Now consider the pdf for θ̂2. The center
of the pdf is slightly higher than θ = 0, bias(θ̂2, θ) = 0.25, but the spread
of the distribution is small. Although the value of θ̂2 is not equal to 0 on
average we might prefer the estimator θ̂2 over θ̂1 because it is generally closer
to θ = 0 on average than θ̂1.

Precision

An estimate is, hopefully, our best guess of the true (but unknown) value of
θ. Our guess most certainly will be wrong but we hope it will not be too far
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off. A precise estimate, loosely speaking, is one that has a small estimation
error. The magnitude of the estimation error is usually captured by the mean
squared error:

Definition 8 The mean squared error of an estimator θ̂ of θ is given by

mse(θ̂, θ) = E[(θ̂ − θ)2] = E[error2]

The mean squared error measures the expected squared deviation of θ̂
from θ. If this expected deviation is small, then we know that θ̂ will almost
always be close to θ. Alternatively, if the mean squared is large then it is pos-
sible to see samples for which θ̂ to be quite far from θ. A useful decomposition
of mse(θ̂, θ) is given in the following proposition

Proposition 9 mse(θ̂, θ) = E[(θ̂−E[θ̂])2]+
³
E[θ̂]− θ

´2
= var(θ̂)+bias(θ̂, θ)2

The proof of this proposition is straightforward and is given in the appen-
dix. The proposition states that for any estimator θ̂ of θ, mse(θ̂, θ) can be
split into a variance component, var(θ̂), and a bias component, bias(θ̂, θ)2.
Clearly, mse(θ̂, θ) will be small only if both components are small. If an es-
timator is unbiased then mse(θ̂, θ) = var(θ̂) = E[(θ̂−θ)2] is just the squared
deviation of θ̂ about θ. Hence, an unbiased estimator θ̂ of θ is good if it has
a small variance.

1.2.4 Method of Moment Estimators for the Parame-
ters of the CER Model

Let {Ri1, . . . , RiT} denote a random sample from the CER model and let
{ri1, . . . , riT} denote the realized values from the random sample. Consider
the problem of estimating the parameter µi in the CER model (1.1). As an
example, consider the observed monthly continuously compounded returns,
{r1, . . . , r100}, for Microsoft stock over the period July 1992 through October
2000. These data are illustrated in figure 1.4.Notice that the data seem to
fluctuate up and down about some central value near 0.03. The typical size of
a deviation about 0.03 is roughly 0.10. Intuitively, the parameter µi = E[Rit]
in the CER model represents this central value and σi represents the typical
size of a deviation about µi.
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Figure 1.4: Monthly continuously compounded returns on Microsoft stock.

The method of moments estimate of µi

Let µ̂i denote a prospective estimate of µi
5. The sample error or residual at

time t associated with this estimate is defined as

ε̂it = rit − µ̂i, t = 1, . . . , T.

This is the estimated news component for month t based on the estimate µ̂i.
Now the CER model imposes the condition that the expected value of the
true error is zero

E[εit] = 0

The method of moments estimator of µi is the value of µ̂i that makes the
average of the sample errors equal to the expected value of the population
errors. That is, the method of moments estimator solves

1

T

TX
t=1

ε̂it =
1

T

TX
t=1

(rit − µ̂i) = E[εit] = 0 (1.4)

5In this book, quantities with a “ˆ” denote an estimate.
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Figure 1.5: Monthly continuously compounded returns on Microsoft, Star-
bucks and the S&P 500 Index.

Solving (1.4) for µ̂i gives the method of moments estimate of µi :

µ̂i =
1

T

TX
t=1

rit = r̄. (1.5)

Hence, the method of moments estimate of µi (i = 1, . . . , N) in the CER
model is simply the sample average of the observed returns for asset i.

Example 10 Consider the monthly continuously compounded returns on Mi-
crosoft, Starbucks and the S&P 500 index over the period July 1992 through
October 2000. The returns are shown in figure For the T = 100 monthly
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continuously returns the estimates of E[Rit] = µi are

µ̂msft =
1

100

100X
t=1

rmsft,t = 0.0276

µ̂sbux =
1

100

100X
t=1

rsbux,t = 0.0278

µ̂sp500 =
1

100

100X
t=1

rsp500,t = 0.0125

The mean returns for MSFT and SBUX are very similar at about 2.8%
per month whereas the mean return for SP500 is smaller at only 1.25% per
month.

The method of moments estimates of σ2i , σi, σij and ρij

The method of moments estimates of σ2i ,σi, σij and ρij are defined analo-
gously to the method of moments estimator for µi. Without going into the
details, the method of moments estimates of σ2i ,σi, σij and ρij are given by
the sample descriptive statistics

σ̂2i =
1

T − 1
TX
t=1

(rit − r̄i)2, (1.6)

σ̂i =
q

σ̂2i , (1.7)

σ̂ij =
1

T − 1
TX
t=1

(rit − r̄i)(rjt − r̄j), (1.8)

ρ̂ij =
σ̂ij
σ̂iσ̂j

(1.9)

where r̄i = 1
T

PT
t=1 rit = µ̂i is the sample average of the returns on asset.i.

Notice that (1.6) is simply the sample variance of the observed returns for
asset i, (1.7) is the sample standard deviation, (1.8) is the sample covariance
of the observed returns on assets i and j and (1.9) is the sample correlation
of returns on assets i and j.

Example 11 Consider again the monthly continuously compounded returns
on Microsoft, Starbucks and the S&P 500 index over the period July 1992
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Figure 1.6: Scatterplot matrix of monthly returns on Microsoft, Starbucks
and S&P 500 index.

through October 2000. The estimates of the parameters σ2i , σi, using (1.6)
and (1.7) are

σ̂2msft = 0.0114, σ̂msft = 0.1068

σ̂2sbux = 0.0185, σ̂sbux = 0.1359

σ̂2sp500 = 0.0014, σ̂sp500 = 0.0379

SBUX has the most variable monthly returns and SP500 has the smallest.
The scatterplots of the returns are illustrated in figure 1.6. All returns appear
to be positively related. The pairs (MSFT,SP500) and (SBUX,SP500) appear
to be the most correlated.The estimates of σij and ρij using (1.8) and (1.9)
are

σ̂msft,sbux = 0.0040, σ̂msft,sp500 = 0.0022, σ̂sbux,sp500 = 0.0022

ρ̂msft,sbux = 0.2777, ρ̂msft,sp500 = 0.5551, ρ̂sbux,sp500 = 0.4197

These estimates confirm the visual results from the scatterplot matrix.
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1.3 Statistical Properties of Estimates

1.3.1 Statistical Properties of µ̂i
To determine the statistical properties of µ̂i in the CER model, we treat it
as a function of the random sample Ri1, . . . , RiT :

µ̂i = µ̂i(Ri1, . . . , RiT ) =
1

T

TX
t=1

Rit (1.10)

where Rit is assumed to be generated by the CER model (1.1).

Bias

In the CER model, the random variables Rit (t = 1, . . . , T ) are iid normal
with mean µi and variance σ2i . Since the method of moments estimator
(1.10) is an average of these normal random variables it is also normally
distributed. That is, p(µ̂i) is a normal density. To determine the mean of
this distribution we must compute E[µ̂i] = E[T−1

PT
t=1Rit]. Using results

from chapter 2 about the expectation of a linear combination of random
variables it is straightforward to show (details are given in the appendix)
that

E[µ̂i] = µi

Hence, the mean of the distribution of µ̂i is equal to µi. In other words, µ̂i
an unbiased estimator for µi.

Precision

To determine the variance of µ̂i wemust compute var(µ̂i) = var(T
−1PT

t=1Rit).
Using the results from chapter 2 about the variance of a linear combination
of uncorrelated random variables it is easy to show (details in the appendix)
that

var(µ̂i) =
σ2

T
. (1.11)

Notice that the variance of µ̂i is equal to the variance of Rit divided by the
sample size and is therefore much smaller than the variance of Rit.
The standard deviation of µ̂i is just the square root of var(µ̂it)

SD(µ̂i) =
p
var(µ̂i) =

σi√
T
. (1.12)
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Figure 1.7: Pdfs for µ̂i with small and large values of SE(µ̂i). True value of
µi = 0.

The standard deviation of µ̂i is most often referred to as the standard error
of the estimate µ̂i:

SE(µ̂i) = SD(µ̂i) =
σi√
T
. (1.13)

SE(µ̂i) is in the same units as µ̂i and measures the precision of µ̂i as an
estimate. If SE(µ̂i) is small relative to µ̂i then µ̂i is a relatively precise of
µi because p(µ̂i) will be tightly concentrated around µi; if SE(µ̂i) is large
relative to µi then µ̂i is a relatively imprecise estimate of µi because p(µ̂i)
will be spread out about µi. Figure 1.7 illustrates these relationships
Unfortunately, SE(µ̂i) is not a practically useful measure of the precision

of µ̂i because it depends on the unknown value of σi. To get a practically
useful measure of precision for µ̂i we compute the estimated standard error

cSE(µ̂i) =pdvar(µ̂i) = bσi√
T

(1.14)

which is just (1.13) with the unknown value of σi replaced by the method of

moments estimate bσi =qbσ2i .
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Example 12 For the Microsoft, Starbucks and S&P 500 return data, the
values of cSE(µ̂i) are

cSE(µ̂msft) = 0.1068√
100

= 0.01068

cSE(µ̂sbux) = 0.1359√
100

= 0.01359

cSE(µ̂sp500) = 0.0379√
100

= 0.003785

Clearly, the mean return µi is estimated more precisely for the S&P 500 index
than it is for Microsoft and Starbucks.

Interpreting E[µ̂i] and SE(µ̂i) using Monte Carlo simulation

The statistical concepts E[µi] = µi and SE(µi) are a bit hard to grasp at first.
Strictly speaking, E[µ̂i] = µi means that over an infinite number of repeated
samples the average of the µ̂i values computed over the infinite samples is
equal to the true value µi. Similarly, SE(µ̂i) represents the standard deviation
of these µ̂i values. We may think of these hypothetical samples as Monte
Carlo simulations of the CER model. In this way we can approximate the
computations involved in evaluating E[µ̂i] and SE(µ̂i).
To illustrate, consider the CER model

Rt = 0.05 + εit, t = 1, . . . , 50 (1.15)

εit ~iid N(0, (0.10)2)

and simulate N = 1000 samples of size T = 50 values from the above model
using the technique of Monte Carlo simulation. This gives j = 1, . . . , 1000
sample realizations {rj∗1 , . . . , rj∗50}. The first 10 of these sample realizations
are illustrated in figure 1.8.Notice that there is considerable variation in the
simulated samples but that all of the simulated samples fluctuates about
the true mean value of µ = 0.05. For each of the 1000 simulated samples the
estimate µ̂ is formed giving 1000mean estimates {µ̂1, . . . , µ̂1000}. A histogram
of these 1000 mean values is illustrated in figure 1.9.The histogram of the
estimated means, µ̂j , can be thought of as an estimate of the underlying pdf,
p(µ̂), of the estimator µ̂ which we know is a Normal pdf centered at µ = 0.05
with SE(µ̂i) =

0.10√
50
= 0.01414. Notice that the center of the histogram is

very close to the true mean value µ = 0.05. That is, on average over the
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Figure 1.8: Ten simulated samples of size T = 50 from the CER model
Rt = 0.05 + εt, εt ~iid N(0.(0.10)2)

1000 Monte Carlo samples the value of µ̂ is about 0.05. In some samples,
the estimate is too big and in some samples the estimate is too small but on
average the estimate is correct. In fact, the average value of {µ̂1, . . . , µ̂1000}
from the 1000 simulated samples is

1

1000

1000X
j=1

µ̂j = 0.05045

which is very close to the true value. If the number of simulated samples is
allowed to go to infinity then the sample average of µ̂j will be exactly equal
to µ :

lim
N→∞

1

N

NX
j=1

µ̂j = µ

The typical size of the spread about the center of the histogram represents
SE(µ̂i) and gives an indication of the precision of µ̂i.The value of SE(µ̂i)may
be approximated by computing the sample standard deviation of the 1000
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Figure 1.9: Histogram of 1000 values of µ̂ from Monte Carlo simulation of
CER model.

µ̂j values vuut 1

999

1000X
j=1

(µ̂j − 0.05045)2 = 0.01383

Notice that this value is very close to SE(µ̂i) =
0.10√
50
= 0.01414. If the number

of simulated sample goes to infinity then

lim
N→∞

vuut 1

N − 1
NX
j=1

(µ̂j − 1

N

NX
j=1

µ̂j)2 = SE(µ̂i)

The Sampling Distribution of µ̂i

Using the results that pdf of µ̂i is normal with E[µ̂i] = µi and var(µ̂i) =
σ2i
T

we may write

µ̂i ∼ N

µ
µi,

σ2i
T

¶
. (1.16)
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Figure 1.10: N(0, 1√
T
) density for T = 1, 10 and 50.

The distribution for µ̂i is centered at the true value µi and the spread about
the average depends on the magnitude of σ2i , the variability of Rit, and the
sample size. For a fixed sample size, T , the uncertainty in µ̂i is larger for
larger values of σ2i . Notice that the variance of µ̂i is inversely related to
the sample size T. Given σ2i , var(µ̂i) is smaller for larger sample sizes than
for smaller sample sizes. This makes sense since we expect to have a more
precise estimator when we have more data. If the sample size is very large (as
T →∞) then var(µ̂i) will be approximately zero and the normal distribution
of µ̂i given by (1.16) will be essentially a spike at µi. In other words, if the
sample size is very large then we essentially know the true value of µi. In the
statistics language we say that µ̂i is a consistent estimator of µi.

The distribution of µ̂i, with µi = 0 and σ2i = 1 for various sample sizes is
illustrated in figure 1.10. Notice how fast the distribution collapses at µi = 0
as T increases. .
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Confidence intervals for µi

The precision of µ̂i is best communicated by computing a confidence interval
for the unknown value of µi. A confidence interval is an interval estimate of
µi such that we can put an explicit probability statement about the likeli-
hood that the confidence interval covers µi. The construction of a confidence
interval for µi is based on the following statistical result (see the appendix
for details).
Result: Let Ri1, . . . , RiT denote a random sample from the CER model.

Then
µ̂i − µicSE(µ̂i) ∼ tT−1,

where tT−1 denotes a Student-t random variable with T − 1 degrees of free-
dom.
The above result states that the standardized value of µ̂i has a Student-t

distribution with T −1 degrees of freedom6. To compute a (1−α) ·100% con-
fidence interval for µi we use (??) and the quantile (critical value) tT−1(α/2)
to give

Pr

Ã
−tT−1(α/2) ≤ µ̂i − µicSE(µ̂i) ≤ tT−1(α/2)

!
= 1− α,

which can be rearranged as

Pr
³
µ̂i − tT−1(α/2) · cSE(µ̂i) ≤ µi ≤ µ̂i + tT−1 · cSE(µ̂i)´ = 0.95.

Hence, the interval

[µ̂i − tT−1(α/2) · cSE(µ̂i), µ̂i + tT−1 · cSE(µ̂i)] = µ̂i ± tT−1(α/2) · cSE(µ̂i)
covers the true unknown value of µi with probability 1− α.
For example, suppose we want to compute 95% confidence intervals for

µi. In this case α = 0.05 and 1− α = 0.95. Suppose further that T − 1 = 60
(five years of monthly return data) so that tT−1(α/2) = t60(0.025) = 2 and
t60(0.005) = . Then the 95% confidence for µi is given by

µ̂i ± 2 · cSE(µ̂i). (1.17)

6This resut follows from the fact that µ̂i is normally distributed anddSE(µ̂i) is equal
to the square root of a chi-square random variable divided by its degrees of freedom.
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The above formula for a 95% confidence interval is often used as a rule of
thumb for computing an approximate 95% confidence interval for moderate
sample sizes. It is easy to remember and does not require the computation
of quantile tT−1(α/2) from the Student-t distribution.

Example 13 Consider computing approximate 95% confidence intervals for
µi using (1.17) based on the estimated results for the Microsoft, Starbucks
and S&P 500 data. These confidence intervals are

MSFT : 0.02756± 2 · 0.01068 = [0.0062, 0.0489]
SBUX : 0.02777± 2 · 0.01359 = [0.0006, 0.0549]
SP500 : 0.01253± 2 · 0.003785 = [0.0050, 0.0201]

With probability .95, the above intervals will contain the true mean values
assuming the CER model is valid. The approximate 95% confidence inter-
vals for MSFT and SBUX are fairly wide. The widths are almost 5% with
lower limits near 0 and upper limits near 5%. In contrast, the 95% con-
fidence interval for SP500 is about half the width of the MSFT or SBUX
confidence interval. The lower limit is near .5% and the upper limit is near
2%. This clearly shows that the mean return for SP500 is estimated much
more precisely than the mean return for MSFT or SBUX.

1.3.2 Statistical properties of the method of moments
estimators of σ2i , σi, σij and ρij.

To determine the statistical properties of σ̂2i and σ̂2i we need to treat them
as a functions of the random sample Ri1, . . . , RiT :

σ̂2i = σ̂2i (Ri1, . . . RiT ) =
1

T − 1
TX
t=1

(Rit − µ̂i)2,

σ̂i = σ̂i(Ri1, . . . RiT ) =

q
σ̂2i (Ri1, . . . RiT ).

Note also that µ̂i is to be treated as a random variable. Similarly, to de-
termine the statistical properties of σ̂ij and ρ̂ij we need to treat them as a
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functions of Ri1, . . . , RiT and Ri1, . . . , RjT :

σ̂ij = σ̂ij(Ri1, . . . , RiT ;Rj1, . . . , RjT ) =
1

T − 1
TX
t=1

(Rit − µ̂i)(Rjt − µ̂j),

ρ̂ij = σ̂ij(Ri1, . . . , RiT ;Rj1, . . . , RjT ) =
σ̂ij(Ri1, . . . , RiT ;Rj1, . . . , RjT )

σ̂i(Ri1, . . . RiT ) · σ̂j(Rj1, . . . RjT ) .

Bias

Assuming that returns are generated by the CER model (1.1), the sample
variances and covariances are unbiased estimators,

E[σ̂2i ] = σ2i ,

E[σ̂ij ] = σij ,

but the sample standard deviations and correlations are biased estimators,

E[σ̂i] 6= σi,

E[ρ̂ij ] 6= ρij.

The proofs of these results are beyond the scope of this book. However, they
may be easily be evaluated using Monte Carlo methods.

Precision

The derivations of the variances of σ̂2i , σ̂i, σ̂ij and ρ̂ij are complicated and the
exact results are extremely messy and hard to work with. However, there are
simple approximate formulas for the variances of σ̂2i , σ̂i and ρ̂ij that are valid
if the sample size, T, is reasonably large 7. These large sample approximate
formulas are given by

SE(σ̂2i ) ≈
σ2ip
T/2

, (1.18)

SE(σ̂i) ≈ σi√
2T
, (1.19)

SE(ρij) ≈
(1− ρ2ij)√

T
, (1.20)

7The large sample approximate formula for the variance of σ̂ij is too messy to work
with so we omit it here.
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where “≈” denotes approximately equal. The approximations are such that
the approximation error goes to zero as the sample size T gets very large.
As with the formula for the standard error of the sample mean, the formulas
for the standard errors above are inversely related to the square root of the
sample size. Interestingly, SE(σ̂i) goes to zero the fastest and SE(σ̂

2
i ) goes to

zero the slowest. Hence, for a fixed sample size, it appears that σi is generally
estimated more precisely than σ2i and ρij , and ρij is estimated generally more
precisely than σ2i .
The above formulas are not practically useful, however, because they

depend on the unknown quantities σ2i , σi and ρij. Practically useful formulas
replace σ2i ,σi and ρij by the estimates σ̂2i , σ̂i and ρ̂ij and give rise to the
estimated standard errors

cSE(σ̂2i ) ≈ σ̂2ip
T/2

, (1.21)

cSE(σ̂i) ≈ σ̂i√
2T
, (1.22)

cSE(ρij) ≈ (1− ρ̂2ij)√
T

. (1.23)

Example 14 To be completed

Sampling distribution

To be completed

Confidence Intervals for σ2i ,σi and ρij

Approximate 95% confidence intervals for σ2i ,σi and ρij are give by

σ̂2i ± 2 · cSE(σ̂2i ) = σ̂2i ± 2 ·
σ̂2ip
T/2

,

σ̂i ± 2 · cSE(σ̂i) = σ̂i ± 2 · σ̂i√
2T

ρ̂ij ± 2 · cSE(ρ̂ij) = ρ̂ij ± 2 ·
(1− ρ̂2ij)√

T

Example 15 To be completed
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Figure 1.11: Histograms of σ̂2 and σ̂ computed from N = 1000 Monte Carlo
samples from CER model.

Evaluating the Statistical Properties of σ̂2i , σ̂i, σ̂ij and ρ̂ij by Monte
Carlo simulation

We may evaluate the statistical properties of σ̂2i , σ̂i, σ̂ij and ρ̂ij by Monte
Carlo simulation in the same way that we evaluated the statistical properties
of µ̂i. Consider first the variability estimates σ̂

2
i and σ̂i.We use the simulation

model (1.15) and N = 1000 simulated samples of size T = 50 to compute the
estimates {¡σ̂2¢1 , . . . , ¡σ̂2¢1000} and {σ̂1, . . . , σ̂1000}. The histograms of these
values are displayed in figure 1.11.The histogram for the σ̂2 values is bell-
shaped and slightly right skewed but is centered very close to 0.010 = σ2. The
histogram for the σ̂ values is more symmetric and is centered near 0.10 = σ.
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The average values of σ2 and σ from the 1000 simulations are

1

1000

1000X
j=1

σ̂2 = 0.009952

1

1000

1000X
j=1

σ̂ = 0.09928

The sample standard deviation values of the Monte Carlo estimates of σ2

and σ give approximations to SE(σ̂2) and SE(σ̂). Using the formulas (1.18)
and (1.19) these values are

SE(σ̂2) =
(0.10)2p
50/2

= 0.002

SE(σ̂) =
0.10√
2 · 50 = 0.010

1.4 Further Reading

To be completed

1.5 Appendix

1.5.1 Proofs of Some Technical Results

Result: E[µ̂i] = µi



32CHAPTER 1 THECONSTANTEXPECTEDRETURNMODEL

Proof. Using the fact that µ̂i = T−1
PT

t=1Rit and Rit = µi+ εit we have

E[µ̂i] = E

"
1

T

TX
t=1

Rit

#

= E

"
1

T

TX
t=1

(µi + εit)

#

=
1

T

TX
t=1

µi +
1

T

TX
t=1

E[εit] (by the linearity of E[·])

=
1

T

TX
t=1

µi (since E[εit] = 0, t = 1, . . . , T )

=
1

T
T · µi

= µi.

Result: var(µi) =
σ2i
T
.

Proof. Using the fact that µ̂i = T−1
PT

t=1Rit and Rit = µi+ εit we have

var(µ̂i) = var

Ã
1

T

TX
t=1

Rit

!

= var

Ã
1

T

TX
t=1

(µi + εit)

!
(in the CER model Rit = µi + εit)

= var

Ã
1

T

TX
t=1

εit

!
(since µi is a constant)

=
1

T 2

TX
t=1

var(εit) (since εit is independent over time)

=
1

T 2

TX
t=1

σ2i (since var(εit) = σ2i , t = 1, . . . , T )

=
1

T 2
Tσ2i

=
σ2i
T
.
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1.5.2 Some Special Probability Distributions Used in
Statistical Inference

The Chi-Square distribution with T degrees of freedom

Let Z1, Z2, . . . , ZT be independent standard normal random variables. That
is,

Zi ∼ i.i.d. N(0, 1), i = 1, . . . , T.

Define a new random variable X such that

X = Z21 + Z
2
2 + · · ·Z2T =

TX
i=1

Z2i .

Then X is a chi-square random variable with T degrees of freedom. Such a
random variable is often denoted χ2T and we use the notation X ∼ χ2T . The
pdf of X is illustrated in Figure xxx for various values of T. Notice that X
is only allowed to take non-negative values. The pdf is highly right skewed
for small values of T and becomes symmetric as T gets large. Furthermore,
it can be shown that

E[X] = T.

The chi-square distribution is used often in statistical inference and prob-
abilities associated with chi-square random variables are needed. Critical
values, which are just quantiles of the chi-square distribution, are used in
typical calculations. To illustrate, suppose we wish to find the critical value
of the chi-square distribution with T degrees of freedom such that the prob-
ability to the right of the critical value is α. Let χ2T (α) denote this critical
value8. Then

Pr(X > χ2T (α)) = α.

For example, if T = 5 and α = 0.05 then χ25(0.05) = 11.07; if T = 100 then
χ2100(0.05) = 124.34.

1.5.3 Student’s t distribution with T degrees of free-
dom

Let Z be a standard normal random variable, Z ∼ N(0, 1), and let X be
a chi-square random variable with T degrees of freedom, X ∼ χ2T . Assume

8Excel has functions for computing probabilities from the chi-square distribution.



34CHAPTER 1 THECONSTANTEXPECTEDRETURNMODEL

that Z and X are independent. Define a new random variable t such that

t =
Zp
X/T

.

Then t is a Student’s t random variable with T degrees of freedom and we
use the notation t ∼ tT to indicate that t is distributed Student-t. Figure
xxx shows the pdf of t for various values of the degrees of freedom T. Notice
that the pdf is symmetric about zero and has a bell shape like the normal.
The tail thickness of the pdf is determined by the degrees of freedom. For
small values of T , the tails are quite spread out and are thicker than the
tails of the normal. As T gets large the tails shrink and become close to the
normal. In fact, as T →∞ the pdf of the Student t converges to the pdf of
the normal.
The Student-t distribution is used heavily in statistical inference and

critical values from the distribution are often needed. Let tT (α) denote the
critical value such that

Pr(t > tT (α)) = α.

For example, if T = 10 and α = 0.025 then t10(0.025) = 2.228; if T = 100
then t60(0.025) = 2.00. Since the Student-t distribution is symmetric about
zero, we have that

Pr(−tT (α) ≤ t ≤ tT (α)) = 1− 2α.

For example, if T = 60 and α = 2 then t60(0.025) = 2 and

Pr(−t60(0.025) ≤ t ≤ t60(0.025)) = Pr(−2 ≤ t ≤ 2) = 1− 2(0.025) = 0.95.

1.6 Problems
To be completed
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1 Hypothesis Testing in the Market Model

In this chapter, we illustrate how to carry out some simple hypothesis tests concerning
the parameters of the excess returns market model regression.

1.1 A Review of Hypothesis Testing Concepts

To be completed.

1.2 Testing the Restriction α = 0.

Using the market model regression,

Rt = α+ βRMt + εt, t = 1, ..., T

εt ∼ iid N(0,σ2ε), εt is independent of RMt (1)

consider testing the null or maintained hypothesis α = 0 against the alternative that
α 6= 0

H0 : α = 0 vs. H1 : α 6= 0.
If H0 is true then the market model regression becomes

Rt = βRMt + εt

and E[Rt|RMt = rMt] = βrMt. We will reject the null hypothesis, H0 : α = 0, if
the estimated value of α is either much larger than zero or much smaller than zero.
Assuming H0 : α = 0 is true, α̂ ∼ N(0, SE(α̂)2) and so is fairly unlikely that α̂ will

1



be more than 2 values of SE(α̂) from zero. To determine how big the estimated value
of α needs to be in order to reject the null hypothesis we use the t-statistic

tα=0 =
bα− 0dSE(bα) ,

where bα is the least squares estimate of α and dSE(bα) is its estimated standard error.
The value of the t-statistic, tα=0, gives the number of estimated standard errors thatbα is from zero. If the absolute value of tα=0 is much larger than 2 then the data cast
considerable doubt on the null hypothesis α = 0 whereas if it is less than 2 the data
are in support of the null hypothesis1. To determine how big | tα=0| needs to be to
reject the null, we use the fact that under the statistical assumptions of the market
model and assuming the null hypothesis is true

tα=0 ∼ Student− t with T − 2 degrees of freedom

If we set the significance level (the probability that we reject the null given that the
null is true) of our test at, say, 5% then our decision rule is

Reject H0 : α = 0 at the 5% level if |tα=0| > tT−2(0.025)

where tT−2 is the 212% critical value from a Student-t distribution with T − 2 degrees
of freedom.

Example 1 Market Model Regression for IBM

Consider the estimated MM regression equation for IBM using monthly data from
January 1978 through December 1982:

bRIBM,t =−0.0002
(0.0068)

+ 0.3390
(0.0888)

·RMt, R2 = 0.20, bσε = 0.0524
where the estimated standard errors are in parentheses. Here bα = −0.0002, which is
very close to zero, and the estimated standard error, dSE(α̂) = 0.0068, is much larger
than bα. The t-statistic for testing H0 : α = 0 vs. H1 : α 6= 0 is

tα=0 =
−0.0002− 0
0.0068

= −0.0363

so that bα is only 0.0363 estimated standard errors from zero. Using a 5% significance
level, t58(0.025) ≈ 2 and

|tα=0| = 0.0363 < 2
so we do not reject H0 : α = 0 at the 5% level.

1This interpretation of the t-statistic relies on the fact that, assuming the null hypothesis is true
so that α = 0, bα is normally distributed with mean 0 and estimated variancedSE(bα)2.
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1.3 Testing Hypotheses about β

In the market model regression β measures the contribution of an asset to the vari-
ability of the market index portfolio. One hypothesis of interest is to test if the asset
has the same level of risk as the market index against the alternative that the risk is
different from the market:

H0 : β = 1 vs. H1 : β 6= 1.
The data cast doubt on this hypothesis if the estimated value of β is much different
from one. This hypothesis can be tested using the t-statistic

tβ=1 =
bβ − 1dSE(bβ)

which measures how many estimated standard errors the least squares estimate of β
is from one. The null hypothesis is reject at the 5% level, say, if |tβ=1| > tT−2(0.025).
Notice that this is a two-sided test.
Alternatively, one might want to test the hypothesis that the risk of an asset is

strictly less than the risk of the market index against the alternative that the risk is
greater than or equal to that of the market:

H0 : β = 1 vs. H1 : β ≥ 1.
Notice that this is a one-sided test. We will reject the null hypothesis only if the
estimated value of β much greater than one. The t-statistic for testing this null
hypothesis is the same as before but the decision rule is different. Now we reject the
null at the 5% level if

tβ=1 < −tT−2(0.05)
where tT−2(0.05) is the one-sided 5% critical value of the Student-t distribution with
T − 2 degrees of freedom.
Example 2 MM Regression for IBM cont’d

Continuing with the previous example, consider testing H0 : β = 1 vs. H1 : β 6= 1.
Notice that the estimated value of β is 0.3390, with an estimated standard error of
0.0888, and is fairly far from the hypothesized value β = 1. The t-statistic for testing
β = 1 is

tβ=1 =
0.3390− 1
0.0888

= −7.444
which tells us that bβ is more than 7 estimated standard errors below one. Since
t0.025,58 ≈ 2 we easily reject the hypothesis that β = 1.
Now consider testing H0 : β = 1 vs. H1 : β ≥ 1. The t-statistic is still -7.444

but the critical value used for the test is now −t58(0.05) ≈ −1.671. Clearly, tβ=1 =
−7.444 < −1.671 = −t58(0.05) so we reject this hypothesis.
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1.4 Testing Joint Hypotheses about α and β

Often it is of interest to formulate hypothesis tests that involve both α and β. For
example, consider the joint hypothesis that α = 0 and β = 1 :

H0 : α = 0 and β = 1.

The null will be rejected if either α 6= 0, β 6= 1 or both.. Thus the alternative is
formulated as

H1 : α 6= 0, or β 6= 1 or α 6= 0 and β 6= 1.
This type of joint hypothesis is easily tested using a so-called F-test. The idea behind
the F-test is to estimate the model imposing the restrictions specified under the null
hypothesis and compare the fit of the restricted model to the fit of the model with
no restrictions imposed.
The fit of the unrestricted (UR) excess return market model is measured by the

(unrestricted) sum of squared residuals (RSS)

SSRUR = SSR(α̂, β̂) =
TX
t=1

bε2t = TX
t=1

(Rt − bα− bβRMt)2.
Recall, this is the quantity that is minimized during the least squares algorithm. Now,
the market model imposing the restrictions under H0 is

Rt = 0 + 1 · (RMt − rf ) + εt
= RMt + εt.

Notice that there are no parameters to be estimated in this model which can be seen
by subtracting RMt from both sides of the restricted model to give

Rt −RMt = eεt
The fit of the restricted (R) model is then measured by the restricted sum of squared
residuals

SSRR = SSR(α = 0, β = 1) =
TX
t=1

eε2t = TX
t=1

(Rt −RMt)2.

Now since the least squares algorithm works to minimize SSR, the restricted error
sum of squares, SSRR,must be at least as big as the unrestricted error sum of squares,
SSRUR. If the restrictions imposed under the null are true then SSRR ≈ SSRUR
(with SSRR always slightly bigger than SSRUR) but if the restrictions are not true
then SSRR will be quite a bit bigger than SSRUR. The F-statistic measures the
(adjusted) percentage difference in fit between the restricted and unrestricted models
and is given by

F =
(SSRR − SSRUR)/q
SSRUR/(T − k) =

(SSRR − SSRUR)
q · bσ2ε,UR ,
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where q equals the number of restrictions imposed under the null hypothesis, k denotes
the number of regression coefficients estimated under the unrestricted model andbσ2ε,UR denotes the estimated variance of εt under the unrestricted model. Under the
assumption that the null hypothesis is true, the F-statistic is distributed as an F
random variable with q and T − 2 degrees of freedom:

F ∼ Fq,T−2.

Notice that an F random variable is always positive since SSRR > SSRUR. The null
hypothesis is rejected, say at the 5% significance level, if

F > Fq,T−k(0.05)

where Fq,T−k(0.05) is the 95% quantile of the distribution of Fq,T−k.
For the hypothesis H0 : α = 0 and β = 1 there are q = 2 restrictions under the

null and k = 2 regression coefficients estimated under the unrestricted model. The
F-statistic is then

Fα=0,β=1 =
(SSRR − SSRUR)/2
SSRUR/(T − 2)

Example 3 MM Regression for IBM cont’d

Consider testing the hypothesis H0 : α = 0 and β = 1 for the IBM data. The
unrestricted error sum of squares, SSRUR, is obtained from the unrestricted regression
output in figure 2 and is called Sum Square Resid:

SSRUR = 0.159180.

To form the restricted sum of squared residuals, we create the new variable eεt =
Rt − RMt and form the sum of squares SSRR =

PT
t=1 eε2t = 0.31476. Notice that

SSRR > SSRUR. The F-statistic is then

Fα=0,β=1 =
(0.31476− 0.159180)/2

0.159180/58
= 28.34.

The 95% quantile of the F-distribution with 2 and 58 degrees of freedom is about
3.15. Since Fα=0,β=1 = 28.34 > 3.15 = F2,58(0.05) we reject H0 : α = 0 and β = 1 at
the 5% level.

1.5 Testing the Stability of α and β over time

In many applications of the MM, α and β are estimated using past data and the
estimated values of α and β are used to make decision about asset allocation and risk
over some future time period. In order for this analysis to be useful, it is assumed that
the unknown values of α and β are constant over time. Since the risk characteristics of
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assets may change over time it is of interest to know if α and β change over time. To
illustrate, suppose we have a ten year sample of monthly data (T = 120) on returns
that we split into two five year subsamples. Denote the first five years as t = 1, ..., TB
and the second five years as t = TB+1, ..., T. The date t = TB is the “break date” of
the sample and it is chosen arbitrarily in this context. Since the samples are of equal
size (although they do not have to be) T −TB = TB or T = 2 ·TB. The market model
regression which assumes that both α and β are constant over the entire sample is

Rt = α+ βRMt + εt, t = 1, . . . , T

εt ∼ iid N(0, σ2) independent of RMt.

There are three main cases of interest: (1) β may differ over the two subsamples; (2) α
may differ over the two subsamples; (3) α and β may differ over the two subsamples.

1.5.1 Testing Structural Change in β only

If α is the same but β is different over the subsamples then we really have two market
model regressions

Rt = α+ β1RMt + εt, t = 1, . . . , TB

Rt = α+ β2RMt + εt, t = TB+1, . . . , T

that share the same intercept α but have different slopes β1 6= β2. We can capture
such a model very easily using a step dummy variable defined as

Dt = 0, t ≤ TB
= 1, t > TB

and re-writing the MM regression as the multiple regression

Rt = α+ βRMt +DtRMt + εt.

The model for the first subsample when Dt = 0 is

Rt = α+ βRMt + εt, t = 1, . . . , TB

and the model for the second subsample when Dt = 1 is

Rt = α+ βRMt + δRMt + εt, t = TB+1, . . . , T

= α+ (β + δ)RMt + εt.

Notice that the “beta” in the first sample is β1 = β and the beta in the second
subsample is β2 = β + δ. If δ < 0 the second sample beta is smaller than the first
sample beta and if δ > 0 the beta is larger.
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We can test the constancy of beta over time by testing δ = 0:

H0 : (beta is constant over two sub-samples) δ = 0 vs. H1 : (beta is not constant over two sub-samples

The test statistic is simply the t-statistic

tδ=0 =
bδ − 0dSE(bδ) =

bδdSE(bδ)
and we reject the hypothesis δ = 0 at the 5% level, say, if |tδ=0| > tT−3(0.025).

Example 4 MM regression for IBM cont’d

Consider the estimated MM regression equation for IBM using ten years of monthly
data from January 1978 through December 1987. We want to know if the beta on
IBM is using the first five years of data (January 1978 - December 1982) is different
from the beta on IBM using the second five years of data (January 1983 - December
1987). We define the step dummy variable

Dt = 1 if t > December 1982

= 0, otherwise

The estimated (unrestricted) model allowing for structural change in β is given by

dRIBM,t = −0.0001
(0.0045)

+ 0.3388
(0.0837)

·RM,t+ 0.3158
(0.1366)

·Dt ·RM,t,
R2 = 0.311, bσε = 0.0496.

The estimated value of β is 0.3388, with a standard error of 0.0837, and the estimated
value of δ is 0.3158, with a standard error of 0.1366. The t-statistic for testing δ = 0
is given by

tδ=0 =
0.3158

0.1366
= 2.312

which is greater than t117(0.025) = 1.98 so we reject the null hypothesis (at the
5% significance level) that beta is the same over the two subsamples. The implied
estimate of beta over the period January 1983 - December 1987 is

β̂ + δ̂ = 0.3388 + 0.3158 = 0.6546.

It appears that IBM has become more risky.
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1.5.2 Testing Structural Change in α and β

Now consider the case where both α and β are allowed to be different over the two
subsamples:

Rt = α1 + β1RMt + εt, t = 1, . . . , TB

Rt = α2 + β2RMt + εt, t = TB+1, . . . , T

The dummy variable specification in this case is

Rt = α+ βRMt + δ1 ·Dt + δ2 ·DtRMt + εt, t = 1, . . . , T.

When Dt = 0 the model becomes

Rt = α+ βRMt + εt, t = 1, . . . , TB,

so that α1 = α and β1 = β, and when Dt = 1 the model is

Rt = (α+ δ1) + (β + δ2)RMt + εt, t = TB+1, . . . , T,

so that α2 = α+ δ1 and β2 = β + δ2. The hypothesis of no structural change is now

H0 : δ1 = 0 and δ2 = 0 vs. H1 : δ1 6= 0 or δ2 6= 0 or δ1 6= 0 and δ2 6= 0.

The test statistic for this joint hypothesis is the F-statistic

Fδ1=0,δ2=0 =
(SSRR − SSRUR)/2
SSRUR/(T − 4)

since there are two restrictions and four regression parameters estimated under the
unrestricted model. The unrestricted (UR) model is the dummy variable regression
that allows the intercepts and slopes to differ in the two subsamples and the restricted
model (R) is the regression where these parameters are constrained to be the same
in the two subsamples.
The unrestricted error sum of squares, SSRUR, can be computed in two ways.

The first way is based on the dummy variable regression. The second is based on
estimating separate regression equations for the two subsamples and adding together
the resulting error sum of squares. Let SSR1 and SSR2 denote the error sum of
squares from separate regressions. Then

SSRUR = SSR1 + SSR2.

Example 5 MM regression for IBM cont’d
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The unrestricted regression is

dRIBM,t = −0.0001
(0.0065)

+ 0.3388
(0.0845)

·RMt
+ 0.0002

(0.0092)
·Dt+ 0.3158

(0.1377)
·Dt ·RMt,

R2 = 0.311, bσε = 0.050, SSRUR = 0.288379,
and the restricted regression is

dRIBM,t = −0.0005
(0.0046)

+ 0.4568
(0.0675)

·RMt,
R2 = 0.279, bσε = 0.051, SSRR = 0.301558.

The F-statistic for testing H0 : δ1 = 0 and δ2 = 0 is

Fδ1=0,δ2=0 =
(0.301558− 0.288379)/2

0.288379/116
= 2.651

The 95% quantile, F2,116(0.05), is approximately 3.07. Since Fδ1=0,δ2=0 = 2.651 <
3.07 = F2,116(0.05) we do not reject H0 : δ1 = 0 and δ2 = 0 at the 5% significance
level. It is interesting to note that when we allow both α and β to differ in the
two subsamples we cannot reject the hypothesis that these parameters are the same
between two samples but if we only allow β to differ between the two samples we can
reject the hypothesis that β is the same.

1.6 Other types of Structural Change in β

An interesting question regarding the beta of an asset concerns the stability of beta
over the market cycle. For example, consider the following situations. Suppose that
the beta of an asset is greater than 1 if the market is in an “up cycle”, RMt > 0,
and less than 1 in a “down cycle”, RMt < 0. This would be a very desirable asset to
hold since it accentuates positive market movements but down plays negative market
movements. We can investigate this hypothesis using a dummy variable as follows.
Define

Dup
t = 1, RMt > 0

= 0, RMt ≤ 0.
Then Dup

t divides the sample into “up market” movements and “down market” move-
ments. The regression that allows beta to differ depending on the market cycle is
then

Rt = α+ βRMt + δD
up
t ·RMt + εt.

In the down cycle, when Dup
t = 0, the model is

Rt = α+ βRMt + εt
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and β captures the down market beta, and in the up market, when Dup
t = 1, the

model is
Rt = α+ (β + δ)RMt + εt

so that β + δ capture the up market beta. The hypothesis that β does not vary over
the market cycle is

H0 : δ = 0 vs. H1 : δ 6= 0 (2)

and can be tested with the simple t-statistic tδ=0 =
bδ−0cSE(bδ) .

If the estimated value of δ is found to be statistically greater than zero we might
then want to go on to test the hypothesis that the up market beta is greater than
one. Since the up market beta is equal to β + δ this corresponds to testing

H0 : β + δ = 1 vs. H1 : β + δ ≥ 1

which can be tested using the t-statistic

tβ+δ=1 =
bβ + bδ − 1dSE(bβ + bδ) .

Since this is a one-sided test we will reject the null hypothesis at the 5% level if
tβ+δ=1 < −t0.05,T−3.

Example 6 MM regression for IBM and DEC

For IBM the CAPM regression allowing β to vary over the market cycle (1978.01
- 1982.12) is

dRIBM,t = −0.0019
(0.0111)

+ 0.3163
(0.1476)

·RMt+ 0.0552
(0.2860)

·Dup
t ·RMt

R2 = 0.201, bσ = 0.053
Notice that bδ = 0.0552, with a standard error of 0.2860, is close to zero and not
estimated very precisely. Consequently, tδ=0 =

0.0552
0.2860

= 0.1929 is not significant at
any reasonable significance level and we therefore reject the hypothesis that beta
varies over the market cycle. However, the results are very different for DEC (Digital
Electronics):

dRDEC,t = −0.0248
(0.0134)

+ 0.3689
(0.1779)

·RMt+ 0.8227
(0.3446)

·Dup
t ·RMt

R2 = 0.460, bσ = 0.064.
Here bδ = 0.8227, with a standard error of 0.3446, is statistically different from zero
at the 5% level since tδ=0 = 2.388. The estimate of the down market beta is 0.3689,
which is less than one, and the up market beta is 0.3689 + 0.8227 = 1.1916, which

10



is greater than one. The estimated standard error for bβ + bδ requires the estimated
variances of bβ and bδ and the estimated covariance between bβ and bδ and is given by

dvar(bβ + bδ) = dvar(bβ) + dvar(bδ) + 2 ·dcov(bβ, bδ)
= 0.031634 + 0.118656 + 2 ·−0.048717
= 0.052856,dSE(bβ + bδ) =

qdvar(bβ + bδ) = √0.052856 = 0.2299
Then tβ+δ=1 =

1.1916−1
0.2299

= 0.8334 which is less than t0.05,57 = 1.65 so we do not reject
the hypothesis that the up market beta is less than or equal to one.

11


	localhost
	localhost - /Financial Econometrics/
	Under Construction
	C:\Classes\econ483\483final_99.wpd
	http://localhost/Financial%20Econometrics/AppMatrix.pdf
	capm.dvi
	http://localhost/Financial%20Econometrics/Ch--capm2.pdf
	swp0000.dvi
	probrev.dvi
	http://localhost/Financial%20Econometrics/Ch3cermodel.pdf
	portf.dvi
	marko.dvi
	mm.dvi
	constantexpectedreturn.dvi
	http://localhost/Financial%20Econometrics/mmtest.pdf


