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Preface to the fourth edition
The fourth edition is augmented by more than 70 new formulas. In particular, we
have included some key concepts and results from trade theory, games of incomplete
information and combinatorics. In addition there are scattered additions of new
formulas in many chapters.

Again we are indebted to a number of people who has suggested corrections, im-
provements and new formulas. In particular, we would like to thank Jens-Henrik
Madsen, Larry Karp, Harald Goldstein, and Geir Asheim.

In a reference book, errors are particularly destructive. We hope that readers who
find our remaining errors will call them to our attention so that we may purge them
from future editions.

Oslo and Berkeley, May 2005

Knut Sydsæter, Arne Strøm, Peter Berck

From the preface to the third edition
The practice of economics requires a wide-ranging knowledge of formulas from mathe-
matics, statistics, and mathematical economics. With this volume we hope to present
a formulary tailored to the needs of students and working professionals in economics.
In addition to a selection of mathematical and statistical formulas often used by
economists, this volume contains many purely economic results and theorems. It
contains just the formulas and the minimum commentary needed to relearn the math-
ematics involved. We have endeavored to state theorems at the level of generality
economists might find useful. In contrast to the economic maxim, “everything is
twice more continuously differentiable than it needs to be”, we have usually listed
the regularity conditions for theorems to be true. We hope that we have achieved a
level of explication that is accurate and useful without being pedantic.

During the work with this book we have had help from a large group of peo-
ple. It grew out of a collection of mathematical formulas for economists originally
compiled by Professor B. Thalberg and used for many years by Scandinavian stu-
dents and economists. The subsequent editions were much improved by the sugges-
tions and corrections of: G. Asheim, T. Akram, E. Biørn, T. Ellingsen, P. Frenger,
I. Frihagen, H. Goldstein, F. Greulich, P. Hammond, U. Hassler, J. Heldal,
Aa. Hylland, G. Judge, D. Lund, M. Machina, H. Mehlum, K. Moene, G. Nordén,
A. Rødseth, T. Schweder, A. Seierstad, L. Simon, and B. Øksendal.

As for the present third edition, we want to thank in particular, Olav Bjerkholt,
Jens-Henrik Madsen, and the translator to Japanese, Tan-no Tadanobu, for very
useful suggestions.

Oslo and Berkeley, November 1998

Knut Sydsæter, Arne Strøm, Peter Berck
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Chapter 1

Set Theory. Relations. Functions

1.1 x ∈ A, x /∈ B
The element x belongs
to the set A, but x does
not belong to the set B.

1.2 A ⊂ B ⇐⇒ Each element of A is also
an element of B.

A is a subset of B.
Often written A ⊆ B.

1.3

If S is a set, then the set of all elements x in S
with property ϕ(x) is written

A = {x ∈ S : ϕ(x)}
If the set S is understood from the context, one
often uses a simpler notation:

A = {x : ϕ(x)}

General notation for the
specification of a set.
For example,
{x ∈ R : −2 ≤ x ≤ 4} =
[−2, 4].

1.4

The following logical operators are often used
when P and Q are statements:
• P ∧Q means “P and Q”
• P ∨Q means “P or Q”
• P ⇒ Q means “if P then Q” (or “P only if

Q”, or “P implies Q”)
• P ⇐ Q means “if Q then P”
• P ⇔ Q means “P if and only if Q”
• ¬P means “not P”

Logical operators.
(Note that “P or Q”
means “either P or Q or
both”.)

1.5

P Q ¬P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q

T T F T T T T
T F F F T F F

F T T F T T F

F F T F F T T

Truth table for logical
operators. Here T means
“true” and F means
“false”.

1.6

• P is a sufficient condition for Q: P ⇒ Q

• Q is a necessary condition for P : P ⇒ Q

• P is a necessary and sufficient condition for
Q: P ⇔ Q

Frequently used
terminology.
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1.7

A ∪B = {x : x ∈ A ∨ x ∈ B} (A union B)
A ∩B = {x : x ∈ A ∧ x ∈ B} (A intersection B)
A \B = {x : x ∈ A ∧ x /∈ B} (A minus B)

A
B = (A \B) ∪ (B \A) (symmetric difference)
If all the sets in question are contained in some
“universal” set Ω, one often writes Ω \A as

Ac = {x : x /∈ A} (the complement of A)

Basic set operations.
A \ B is called the differ-
ence between A and B.
An alternative symbol
for Ac is �A.

A

B

Ω

A ∪ B

A

B

Ω

A ∩ B

A

B

Ω

A \ B

A

Ω

Ac

A

B

Ω

A�B

1.8

(A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A
B = (A ∪B) \ (A ∩B)
(A
B)
 C = A
 (B 
 C)
A \ (B ∪ C) = (A \B) ∩ (A \ C)
A \ (B ∩ C) = (A \B) ∪ (A \ C)

A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

Important identities
in set theory. The last
four identities are called
De Morgan’s laws.

1.9 A1 ×A2 × · · · ×An =
{(a1, a2, . . . , an) : ai ∈ Ai for i = 1, 2, . . . , n}

The Cartesian product of
the sets A1, A2, . . . , An.

1.10 R ⊂ A×B
Any subset R of A × B
is called a relation from
the set A into the set B.

1.11
xRy ⇐⇒ (x, y) ∈ R

x/Ry ⇐⇒ (x, y) /∈ R

Alternative notations
for a relation and its
negation. We say that
x is in R-relation to y if
(x, y) ∈ R.

1.12

• dom(R) = {a ∈ A : (a, b) ∈ R for some b in B}
= {a ∈ A : aRb for some b in B}

• range(R) = {b ∈ B : (a, b) ∈ R for some a in A}
= {b ∈ B : aRb for some a in A}

The domain and range
of a relation.
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1.13

B

A

range(R)

dom(R)

R

Illustration of the do-
main and range of a re-
lation, R, as defined in
(1.12). The shaded set is
the graph of the relation.

1.14 R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}
The inverse relation of a
relation R from A to B.
R−1 is a relation from B
to A.

1.15

Let R be a relation from A to B and S a relation
from B to C. Then we define the composition
S ◦R of R and S as the set of all (a, c) in A×C
such that there is an element b in B with aRb
and bSc. S ◦R is a relation from A to C.

S ◦ R is the composition
of the relations R and S.

1.16

A relation R from A to A itself is called a binary
relation in A. A binary relation R in A is said
to be
• reflexive if aRa for every a in A;
• irreflexive if a /Ra for every a in A;
• complete if aRb or bRa for every a and b in

A with a �= b;
• transitive if aRb and bRc imply aRc;
• symmetric if aRb implies bRa;
• antisymmetric if aRb and bRa implies a = b;
• asymmetric if aRb implies b /Ra.

Special relations.

1.17

A binary relation R in A is called
• a preordering (or a quasi-ordering) if it is

reflexive and transitive;
• a weak ordering if it is transitive and com-

plete;
• a partial ordering if it is reflexive, transitive,

and antisymmetric;
• a linear (or total) ordering if it is reflexive,

transitive, antisymmetric, and complete;
• an equivalence relation if it is reflexive, tran-

sitive, and symmetric.

Special relations. (The
terminology is not uni-
versal.) Note that a
linear ordering is the
same as a partial order-
ing that is also complete.

Order relations are of-
ten denoted by symbols
like �, ≤, �, etc. The
inverse relations are then
denoted by �, ≥, �,
etc.
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1.18

• The relation = between real numbers is an
equivalence relation.

• The relation ≤ between real numbers is a
linear ordering.

• The relation < between real numbers is a
weak ordering that is also irreflexive and
asymmetric.

• The relation ⊂ between subsets of a given
set is a partial ordering.

• The relation x � y (y is at least as good as
x) in a set of commodity vectors is usually
assumed to be a complete preordering.

• The relation x ≺ y (y is (strictly) preferred
to x) in a set of commodity vectors is usually
assumed to be irreflexive, transitive, (and
consequently asymmetric).

• The relation x ∼ y (x is indifferent to y) in a
set of commodity vectors is usually assumed
to be an equivalence relation.

Examples of relations.
For the relations x � y,
x ≺ y, and x ∼ y, see
Chap. 26.

1.19

Let � be a preordering in a set A. An element
g in A is called a greatest element for � in A if
x � g for every x in A. An element m in A is
called a maximal element for � in A if x ∈ A
and m � x implies x � m. A least element and
a minimal element for � are a greatest element
and a maximal element, respectively, for the
inverse relation � of �.

The definition of a great-
est element, a maximal
element, a least element,
and a minimal element
of a preordered set.

1.20

If � is a preordering in A and M is a subset of
A, an element b in A is called an upper bound
for M (w.r.t. �) if x � b for every x in M . A
lower bound for M is an element a in A such
that a � x for all x in M .

Definition of upper and
lower bounds.

1.21

If � is a preordering in a nonempty set A and
if each linearly ordered subset M of A has an
upper bound in A, then there exists a maximal
element for � in A.

Zorn’s lemma. (Usually
stated for partial order-
ings, but also valid for
preorderings.)
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1.22

A relation R from A to B is called a function or
mapping if for every a in A, there is a unique b
in B with aRb. If the function is denoted by f ,
then we write f(a) = b for afb, and the graph
of f is defined as:

graph(f) = {(a, b) ∈ A×B : f(a) = b}.

The definition of a func-
tion and its graph.

1.23

A function f from A to B (f : A → B) is called
• injective (or one-to-one) if f(x) = f(y) im-

plies x = y;
• surjective (or onto) if range(f) = B;
• bijective if it is injective and surjective.

Important concepts re-
lated to functions.

1.24
If f : A → B is bijective (i.e. both one-to-one
and onto), it has an inverse function g : B → A,
defined by g(f(u)) = u for all u in A.

Characterization of in-
verse functions. The
inverse function of f is
often denoted by f−1.

1.25 f(u)u

g

f

A B

Illustration of the
concept of an inverse
function.

1.26

If f is a function from A to B, and C ⊂ A,
D ⊂ B, then we use the notation
• f(C) = {f(x) : x ∈ C}
• f−1(D) = {x ∈ A : f(x) ∈ D}

f(C) is called the
image of A under f , and
f−1(D) is called the
inverse image of D.

1.27

If f is a function from A to B, and S ⊂ A,
T ⊂ A, U ⊂ B, V ⊂ B, then
• f(S ∪ T ) = f(S) ∪ f(T )
• f(S ∩ T ) ⊂ f(S) ∩ f(T )
• f−1(U ∪ V ) = f−1(U) ∪ f−1(V )
• f−1(U ∩ V ) = f−1(U) ∩ f−1(V )
• f−1(U \ V ) = f−1(U) \ f−1(V )

Important facts. The
inclusion ⊂ in

f(S ∩ T ) ⊂ f(S) ∩ f(T )

cannot be replaced by =.

1.28

Let N = {1, 2, 3, . . .} be the set of natural num-
bers, and let Nn = {1, 2, 3, . . . , n}. Then:
• A set A is finite if it is empty, or if there

exists a one-to-one function from A onto Nn

for some natural number n.
• A set A is countably infinite if there exists a

one-to-one function of A onto N.

A set that is either finite
or countably infinite,
is often called count-
able. The set of rational
numbers is countably
infinite, while the set
of real numbers is not
countable.
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1.29

Suppose that A(n) is a statement for every nat-
ural number n and that
• A(1) is true,
• if the induction hypothesis A(k) is true, then

A(k + 1) is true for each natural number k.
Then A(n) is true for all natural numbers n.

The principle of mathe-
matical induction.

References

See Halmos (1974), Ellickson (1993), and Hildenbrand (1974).



Chapter 2

Equations. Functions of one variable.
Complex numbers

2.1 ax2 + bx + c = 0 ⇐⇒ x1,2 =
−b±√b2 − 4ac

2a

The roots of the gen-
eral quadratic equation.
They are real provided
b2 ≥ 4ac (assuming that
a, b, and c are real).

2.2
If x1 and x2 are the roots of x2 + px + q = 0,
then

x1 + x2 = −p, x1x2 = q

Viète’s rule.

2.3 ax3 + bx2 + cx + d = 0 The general cubic
equation.

2.4 x3 + px + q = 0
(2.3) reduces to the form
(2.4) if x in (2.3) is
replaced by x − b/3a.

2.5

x3 + px + q = 0 with ∆ = 4p3 + 27q2 has
• three different real roots if ∆ < 0;
• three real roots, at least two of which are

equal, if ∆ = 0;
• one real and two complex roots if ∆ > 0.

Classification of the
roots of (2.4) (assuming
that p and q are real).

2.6

The solutions of x3 + px + q = 0 are
x1 = u+ v, x2 = ωu+ω2v, and x3 = ω2u+ωv,
where ω = − 1

2 + i
2

√
3, and

u =
3

√
−q

2
+

1
2

√
4p3 + 27q2

27

v =
3

√
−q

2
− 1

2

√
4p3 + 27q2

27

Cardano’s formulas
for the roots of a cubic
equation. i is the imagi-
nary unit (see (2.75))
and ω is a complex third
root of 1 (see (2.88)).
(If complex numbers be-
come involved, the cube
roots must be chosen so
that 3uv = −p. Don’t
try to use these formulas
unless you have to!)
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2.7

If x1, x2, and x3 are the roots of the equation
x3 + px2 + qx + r = 0, then

x1 + x2 + x3 = −p

x1x2 + x1x3 + x2x3 = q

x1x2x3 = −r

Useful relations.

2.8 P (x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

A polynomial of degree
n. (an 
= 0.)

2.9

For the polynomial P (x) in (2.8) there exist
constants x1, x2, . . . , xn (real or complex) such
that

P (x) = an(x− x1) · · · (x− xn)

The fundamental
theorem of algebra.
x1, . . . , xn are called
zeros of P (x) and roots
of P (x) = 0.

2.10

x1 + x2 + · · ·+ xn = −an−1

an

x1x2 + x1x3 + · · ·+ xn−1xn =
∑
i<j

xixj =
an−2

an

x1x2 · · ·xn = (−1)n a0

an

Relations between the
roots and the coefficients
of P (x) = 0, where P (x)
is defined in (2.8). (Gen-
eralizes (2.2) and (2.7).)

2.11

If an−1, . . . , a1, a0 are all integers, then any
integer root of the equation

xn + an−1x
n−1 + · · ·+ a1x + a0 = 0

must divide a0.

Any integer solutions of
x3 + 6x2 − x − 6 = 0
must divide −6. (In this
case the roots are ±1
and −6.)

2.12

Let k be the number of changes of sign in the
sequence of coefficients an, an−1, . . . , a1, a0
in (2.8). The number of positive real roots of
P (x) = 0, counting the multiplicities of the
roots, is k or k minus a positive even number.
If k = 1, the equation has exactly one positive
real root.

Descartes’s rule of signs.

2.13

The graph of the equation
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

is
• an ellipse, a point or empty if 4AC > B2;
• a parabola, a line, two parallel lines, or

empty if 4AC = B2;
• a hyperbola or two intersecting lines if

4AC < B2.

Classification of conics.
A, B, C not all 0.
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2.14
x = x′ cos θ − y′ sin θ, y = x′ sin θ + y′ cos θ

with cot 2θ = (A− C)/B

Transforms the equa-
tion in (2.13) into a
quadratic equation in
x′ and y′, where the
coefficient of x′y′ is 0.

2.15 d =
√

(x2 − x1)2 + (y2 − y1)2
The (Euclidean) distance
between the points
(x1, y1) and (x2, y2).

2.16 (x− x0)2 + (y − y0)2 = r2 Circle with center at
(x0, y0) and radius r.

2.17
(x− x0)2

a2 +
(y − y0)2

b2 = 1
Ellipse with center at
(x0, y0) and axes parallel
to the coordinate axes.

2.18

y

x

r
(x, y)

x0

y0

y

x

b

a

(x, y)

x0

y0 Graphs of (2.16) and
(2.17).

2.19
(x− x0)2

a2 − (y − y0)2

b2 = ±1
Hyperbola with center at
(x0, y0) and axes parallel
to the coordinate axes.

2.20
Asymptotes for (2.19):

y − y0 = ± b

a
(x− x0)

Formulas for asymp-
totes of the hyperbolas
in (2.19).

2.21

y

xx0

y0 a
b

y

x

b
a

x0

y0

Hyperbolas with asymp-
totes, illustrating (2.19)
and (2.20), correspond-
ing to + and − in
(2.19), respectively. The
two hyperbolas have the
same asymptotes.

2.22 y − y0 = a(x− x0)2, a �= 0
Parabola with vertex
(x0, y0) and axis parallel
to the y-axis.

2.23 x− x0 = a(y − y0)2, a �= 0
Parabola with vertex
(x0, y0) and axis parallel
to the x-axis.
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2.24

y

x

y0

x0

y

x

y0

x0

Parabolas illustrating
(2.22) and (2.23) with
a > 0.

2.25

A function f is
• increasing if

x1 < x2 ⇒ f(x1) ≤ f(x2)
• strictly increasing if

x1 < x2 ⇒ f(x1) < f(x2)
• decreasing if

x1 < x2 ⇒ f(x1) ≥ f(x2)
• strictly decreasing if

x1 < x2 ⇒ f(x1) > f(x2)
• even if f(x) = f(−x) for all x

• odd if f(x) = −f(−x) for all x

• symmetric about the line x = a if
f(a + x) = f(a− x) for all x

• symmetric about the point (a, 0) if
f(a− x) = −f(a + x) for all x

• periodic (with period k) if there exists a
number k > 0 such that

f(x + k) = f(x) for all x

Properties of functions.

2.26

• If y = f(x) is replaced by y = f(x) + c, the
graph is moved upwards by c units if c > 0
(downwards if c is negative).

• If y = f(x) is replaced by y = f(x + c), the
graph is moved c units to the left if c > 0 (to
the right if c is negative).

• If y = f(x) is replaced by y = cf(x), the
graph is stretched vertically if c > 0 (stretch-
ed vertically and reflected about the x-axis
if c is negative).

• If y = f(x) is replaced by y = f(−x), the
graph is reflected about the y-axis.

Shifting the graph of
y = f(x).
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2.27

y

x

y

x

Graphs of increasing
and strictly increasing
functions.

2.28

y

x

y

x

Graphs of decreasing
and strictly decreasing
functions.

2.29

y

x

y

x

y

xx = a

Graphs of even and odd
functions, and of a func-
tion symmetric about
x = a.

2.30

y

x(a, 0)

y

x

k
Graphs of a function
symmetric about the
point (a, 0) and of a
function periodic with
period k.

2.31

y = ax + b is a nonvertical asymptote for the
curve y = f(x) if

lim
x→∞

(
f(x)− (ax + b)

)
= 0

or
lim

x→−∞
(
f(x)− (ax + b)

)
= 0

Definition of a nonverti-
cal asymptote.

2.32

y

x

f(x) − (ax + b)

y = ax + b

y = f(x)

x

y = ax + b is an
asymptote for the curve
y = f(x).
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2.33

How to find a nonvertical asymptote for the
curve y = f(x) as x→∞:
• Examine lim

x→∞
(
f(x)/x

)
. If the limit does not

exist, there is no asymptote as x→∞.
• If lim

x→∞
(
f(x)/x

)
= a, examine the limit

lim
x→∞

(
f(x)−ax

)
. If this limit does not exist,

the curve has no asymptote as x→∞.
• If lim

x→∞
(
f(x)−ax

)
= b, then y = ax+b is an

asymptote for the curve y = f(x) as x→∞.

Method for finding non-
vertical asymptotes for
a curve y = f(x) as
x → ∞. Replacing
x → ∞ by x → −∞
gives a method for find-
ing nonvertical asymp-
totes as x → −∞.

2.34

To find an approximate root of f(x) = 0, define
xn for n = 1, 2, . . . , by

xn+1 = xn − f(xn)
f ′(xn)

If x0 is close to an actual root x∗, the sequence
{xn} will usually converge rapidly to that root.

Newton’s approxima-
tion method. (A rule of
thumb says that, to ob-
tain an approximation
that is correct to n deci-
mal places, use Newton’s
method until it gives the
same n decimal places
twice in a row.)

2.35

y

xxn xn+1

x∗

y = f(x)

Illustration of Newton’s
approximation method.
The tangent to the
graph of f at (xn, f(xn))
intersects the x-axis at
x = xn+1.

2.36

Suppose in (2.34) that f(x∗) = 0, f ′(x∗) �= 0,
and that f ′′(x∗) exists and is continuous in a
neighbourhood of x∗. Then there exists a δ > 0
such that the sequence {xn} in (2.34) converges
to x∗ when x0 ∈ (x∗ − δ, x∗ + δ).

Sufficient conditions for
convergence of Newton’s
method.

2.37

Suppose in (2.34) that f is twice differentiable
with f(x∗) = 0 and f ′(x∗) �= 0. Suppose fur-
ther that there exist a K > 0 and a δ > 0 such
that for all x in (x∗ − δ, x∗ + δ),
|f(x)f ′′(x)|

f ′(x)2
≤ K|x− x∗| < 1

Then if x0 ∈ (x∗− δ, x∗ + δ), the sequence {xn}
in (2.34) converges to x∗ and
|xn − x∗| ≤ (δK)2

n

/K

A precise estimation of
the accuracy of Newton’s
method.
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2.38 y − f(x1) = f ′(x1)(x− x1)
The equation for the
tangent to y = f(x) at
(x1, f(x1)).

2.39 y − f(x1) = − 1
f ′(x1)

(x− x1)
The equation for the
normal to y = f(x) at
(x1, f(x1)).

2.40

y

xx1

y = f(x)

tangentnormal

The tangent and the
normal to y = f(x) at
(x1, f(x1)).

2.41

(i) ar · as = ar+s (ii) (ar)s = ars

(iii) (ab)r = arbr (iv) ar/as = ar−s

(v)
(a

b

)r

=
ar

br
(vi) a−r =

1
ar

Rules for powers. (r and
s are arbitrary real num-
bers, a and b are positive
real numbers.)

2.42

• e = lim
n→∞

(
1 +

1
n

)n

= 2.718281828459 . . .

• ex = lim
n→∞

(
1 +

x

n

)n

• lim
n→∞ an = a ⇒ lim

n→∞

(
1 +

an

n

)n

= ea

Important definitions
and results. See (8.22)
for another formula for
ex.

2.43 eln x = x
Definition of the natural
logarithm.

2.44

y

x

ln x

ex

1

1

The graphs of y = ex

and y = ln x are sym-
metric about the line
y = x.

2.45
ln(xy) = lnx + ln y; ln

x

y
= lnx− ln y

lnxp = p lnx; ln
1
x

= − lnx

Rules for the natural
logarithm function.
(x and y are positive.)

2.46 aloga x = x (a > 0, a �= 1) Definition of the loga-
rithm to the base a.
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2.47
loga x =

lnx

ln a
; loga b · logb a = 1

loge x = lnx; log10 x = log10 e · lnx

Logarithms with differ-
ent bases.

2.48

loga(xy) = loga x + loga y

loga

x

y
= loga x− loga y

loga xp = p loga x, loga

1
x

= − loga x

Rules for logarithms.
(x and y are positive.)

2.49 1◦ =
π

180
rad, 1 rad =

(
180
π

)◦
Relationship between de-
grees and radians (rad).

2.50 0

π/6
π/4

π/3
π/2

3π/4

π

3π/2

0◦

90◦

180◦

270◦

30◦
45◦

60◦
135◦

Relations between de-
grees and radians.

2.51

x
1

cos x

sin x
tan x

cot x

Definitions of the basic
trigonometric functions.
x is the length of the
arc, and also the radian
measure of the angle.

2.52

y

x

− 3π
2 −π − π

2
π
2 π 3π

2

y = sin xy = cos x

The graphs of y = sin x
(—) and y = cos x (- - -).
The functions sin and
cos are periodic with
period 2π:
sin(x + 2π) = sin x,
cos(x + 2π) = cos x.

2.53 tanx =
sin x

cos x
, cot x =

cos x

sin x
=

1
tanx

Definition of the tangent
and cotangent functions.
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2.54

y

x

− 3π
2 −π − π

2
π
2 π 3π

2

y = tan xy = cot x

The graphs of y = tan x
(—) and y = cot x (- - -).
The functions tan and
cot are periodic with
period π:
tan(x + π) = tan x,
cot(x + π) = cot x.

2.55

x 0 π
6 = 30◦ π

4 = 45◦ π
3 = 60◦ π

2 = 90◦

sin x 0 1
2

1
2

√
2 1

2

√
3 1

cos x 1 1
2

√
3 1

2

√
2 1

2 0

tan x 0 1
3

√
3 1

√
3 ∗

cot x ∗ √
3 1 1

3

√
3 0

* not defined

Special values of the
trigonometric functions.

2.56

x 3π
4 = 135◦ π = 180◦ 3π

2 = 270◦ 2π = 360◦

sin x 1
2

√
2 0 −1 0

cos x − 1
2

√
2 −1 0 1

tan x −1 0 ∗ 0

cot x −1 ∗ 0 ∗

* not defined

2.57 lim
x→0

sin ax

x
= a An important limit.

2.58 sin2 x + cos2 x = 1

Trigonometric formulas.
(For series expansions of
trigonometric functions,
see Chapter 8.)

2.59 tan2 x =
1

cos2 x
− 1, cot2 x =

1
sin2 x

− 1

2.60

cos(x + y) = cosx cos y − sin x sin y

cos(x− y) = cosx cos y + sin x sin y

sin(x + y) = sinx cos y + cos x sin y

sin(x− y) = sinx cos y − cos x sin y
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2.61
tan(x + y) =

tanx + tan y

1− tanx tan y

tan(x− y) =
tanx− tan y

1 + tan x tan y

Trigonometric formulas.

2.62
cos 2x = 2 cos2 x− 1 = 1− 2 sin2 x

sin 2x = 2 sinx cos x

2.63 sin2 x

2
=

1− cos x

2
, cos2

x

2
=

1 + cos x

2

2.64
cos x + cos y = 2 cos

x + y

2
cos

x− y

2

cos x− cos y = −2 sin
x + y

2
sin

x− y

2

2.65
sin x + sin y = 2 sin

x + y

2
cos

x− y

2

sin x− sin y = 2 cos
x + y

2
sin

x− y

2

2.66

y = arcsin x⇔ x = sin y, x ∈ [−1, 1], y ∈ [−π

2
,
π

2
]

y = arccos x⇔ x = cos y, x ∈ [−1, 1], y ∈ [0, π]

y = arctanx⇔ x = tan y, x ∈ R, y ∈ (−π

2
,
π

2
)

y = arccot x⇔ x = cot y, x ∈ R, y ∈ (0, π)

Definitions of the inverse
trigonometric functions.

2.67

y

x

y = arcsin x

− π
2

π
2

1−1

y

x

y = arccos x

1−1

π

π
2 Graphs of the inverse

trigonometric functions
y = arcsin x and y =
arccos x.

2.68

y

x

y = arccot x

y = arctan x

π

π
2

− π
2

1

Graphs of the inverse
trigonometric functions
y = arctan x and y =
arccot x.
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2.69
arcsin x = sin−1 x, arccos x = cos−1 x

arctanx = tan−1 x, arccot x = cot−1 x

Alternative notation for
the inverse trigonometric
functions.

2.70

arcsin(−x) = − arcsin x

arccos(−x) = π − arccos x

arctan(−x) = arctanx

arccot(−x) = π − arccot x

arcsin x + arccos x =
π

2
arctanx + arccot x =

π

2

arctan
1
x

=
π

2
− arctanx, x > 0

arctan
1
x

= −π

2
− arctanx, x < 0

Properties of the inverse
trigonometric functions.

2.71 sinhx =
ex − e−x

2
, cosh x =

ex + e−x

2
Hyperbolic sine and
cosine.

2.72

y

x

y = sinh x

y = cosh x

1

1

Graphs of the hyperbolic
functions y = sinh x and
y = cosh x.

2.73

cosh2 x− sinh2 x = 1
cosh(x + y) = cosh x cosh y + sinhx sinh y

cosh 2x = cosh2 x + sinh2 x

sinh(x + y) = sinhx cosh y + cosh x sinh y

sinh 2x = 2 sinhx cosh x

Properties of hyperbolic
functions.

2.74

y = arsinhx ⇐⇒ x = sinh y

y = arcosh x, x ≥ 1 ⇐⇒ x = cosh y, y ≥ 0

arsinhx = ln
(
x +

√
x2 + 1

)
arcosh x = ln

(
x +

√
x2 − 1

)
, x ≥ 1

Definition of the inverse
hyperbolic functions.
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Complex numbers

2.75 z = a + ib, z̄ = a− ib

A complex number and
its conjugate. a, b ∈ R,
and i2 = −1. i is called
the imaginary unit .

2.76 |z| = √
a2 + b2, Re(z) = a, Im(z) = b

|z| is the modulus of
z = a + ib. Re(z) and
Im(z) are the real and
imaginary parts of z.

2.77

|z|

z = a + ib

z̄ = a − ib

Real axis

Imaginary axis

a

b

Geometric representation
of a complex number
and its conjugate.

2.78

• (a + ib) + (c + id) = (a + c) + i(b + d)
• (a + ib)− (c + id) = (a− c) + i(b− d)
• (a + ib)(c + id) = (ac− bd) + i(ad + bc)

• a + ib

c + id
=

1
c2 + d2

(
(ac + bd) + i(bc− ad)

)
Addition, subtraction,
multiplication, and
division of complex
numbers.

2.79
|z̄1| = |z1|, z1z̄1 = |z1|2, z1 + z2 = z̄1 + z̄2,
|z1z2| = |z1||z2|, |z1 + z2| ≤ |z1|+ |z2|

Basic rules. z1 and z2

are complex numbers.

2.80
z = a + ib = r(cos θ + i sin θ) = reiθ, where

r = |z| = √
a2 + b2, cos θ =

a

r
, sin θ =

b

r

The trigonometric or
polar form of a complex
number. The angle θ is
called the argument of z.
See (2.84) for eiθ.

2.81
θ

r

a + ib = r(cos θ + i sin θ)
b

Imaginary axis

a Real axis

Geometric representa-
tion of the trigonomet-
ric form of a complex
number.
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2.82

If zk = rk(cos θk + i sin θk), k = 1, 2, then

z1z2 = r1r2
(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
z1

z2
=

r1

r2

(
cos(θ1 − θ2) + i sin(θ1 − θ2)

)
Multiplication and di-
vision on trigonometric
form.

2.83 (cos θ + i sin θ)n = cos nθ + i sin nθ
De Moivre’s formula,
n = 0, 1, . . . .

2.84

If z = x + iy, then
ez = ex+iy = ex · eiy = ex(cos y + i sin y)

In particular,
eiy = cos y + i sin y

The complex exponential
function.

2.85 eπi = −1 A striking relationship.

2.86
ez̄ = ez, ez+2πi = ez, ez1+z2 = ez1ez2 ,
ez1−z2 = ez1/ez2

Rules for the complex
exponential function.

2.87 cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
Euler’s formulas.

2.88

If a = r(cos θ + i sin θ) �= 0, then the equation
zn = a

has exactly n roots, namely

zk = n
√

r
(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
for k = 0, 1, . . . , n− 1.

nth roots of a complex
number, n = 1, 2, . . . .

References

Most of these formulas can be found in any calculus text, e.g. Edwards and Penney
(1998) or Sydsæter and Hammond (2005). For (2.3)–(2.12), see e.g. Turnbull (1952).



Chapter 3

Limits. Continuity. Differentiation
(one variable)

3.1

f(x) tends to A as a limit as x approaches a,
limx→a f(x) = A or f(x) → A as x→ a

if for every number ε > 0 there exists a number
δ > 0 such that
|f(x)−A| < ε if x ∈ Df and 0 < |x−a| < δ

The definition of a limit
of a function of one var-
iable. Df is the domain
of f .

3.2

If limx→a f(x) = A and limx→a g(x) = B, then
• lim

x→a

(
f(x)± g(x)

)
= A±B

• lim
x→a

(
f(x) · g(x)

)
= A ·B

• lim
x→a

f(x)
g(x)

=
A

B
(if B �= 0)

Rules for limits.

3.3

f is continuous at x = a if lim
x→a

f(x) = f(a), i.e.
if a ∈ Df and for each number ε > 0 there is a
number δ > 0 such that
|f(x)−A| < ε if x ∈ Df and |x− a| < δ

f is continuous on a set S ⊂ Df if f is contin-
uous at each point of S.

Definition of continuity.

3.4

If f and g are continuous at a, then:
• f ± g and f · g are continuous at a.
• f/g is continuous at a if g(a) �= 0.

Properties of continuous
functions.

3.5
If g is continuous at a, and f is continuous at
g(a), then f(g(x)) is continuous at a.

Continuity of composite
functions.

3.6

Any function built from continuous functions
by additions, subtractions, multiplications, di-
visions, and compositions, is continuous where
defined.

A useful result.
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3.7

f is uniformly continuous on a set S if for each
ε > 0 there exists a δ > 0 (depending on ε but
NOT on x and y) such that
|f(x)− f(y)| < ε if x, y ∈ S and |x− y| < δ

Definition of uniform
continuity.

3.8 If f is continuous on a closed bounded interval
I, then f is uniformly continuous on I.

Continuous functions
on closed bounded in-
tervals are uniformly
continuous.

3.9

If f is continuous on an interval I containing a
and b, and A lies between f(a) and f(b), then
there is at least one ξ between a and b such that
A = f(ξ).

The intermediate value
theorem.

3.10

y

x

f(b)

A

f(a)

a ξ b

y = f(x)

Illustration of the inter-
mediate value theorem.

3.11 f ′(x) = lim
h→0

f(x + h)− f(x)
h

The definition of the
derivative. If the limit
exists, f is called differ-
entiable at x.

3.12

Other notations for the derivative of y = f(x)
include

f ′(x) = y′ =
dy

dx
=

df(x)
dx

= Df(x)

Other notations for the
derivative.

3.13 y = f(x)± g(x) ⇒ y′ = f ′(x)± g′(x) General rules.

3.14 y = f(x)g(x) ⇒ y′ = f ′(x)g(x) + f(x)g′(x)

3.15 y =
f(x)
g(x)

⇒ y′ =
f ′(x)g(x)− f(x)g′(x)(

g(x)
)2

3.16 y = f
(
g(x)

) ⇒ y′ = f ′(g(x)) · g′(x) The chain rule.

3.17
y = f(x)g(x) ⇒

y′ = f(x)g(x)
(
g′(x) ln f(x) + g(x)

f ′(x)
f(x)

) A useful formula.
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3.18

If g = f−1 is the inverse of a one-to-one function
f , and f is differentiable at x with f ′(x) �= 0,
then g is differentiable at f(x), and

g′(f(x)) =
1

f ′(x)

f−1 denotes the inverse
function of f .

3.19

y

x

Q

P

(f(x), x)

(x, f(x))

g

f

The graphs of f and
g = f−1 are symmet-
ric with respect to the
line y = x. If the slope
of the tangent at P is
k = f ′(x), then the slope
g′(f(x)) of the tangent
at Q equals 1/k.

3.20 y = c ⇒ y′ = 0 (c constant) Special rules.

3.21 y = xa ⇒ y′ = axa−1 (a constant)

3.22 y =
1
x
⇒ y′ = − 1

x2

3.23 y =
√

x ⇒ y′ =
1

2
√

x

3.24 y = ex ⇒ y′ = ex

3.25 y = ax ⇒ y′ = ax ln a (a > 0)

3.26 y = lnx ⇒ y′ =
1
x

3.27 y = loga x ⇒ y′ =
1
x

loga e (a > 0, a �= 1)

3.28 y = sinx ⇒ y′ = cos x

3.29 y = cos x ⇒ y′ = − sin x

3.30 y = tanx ⇒ y′ =
1

cos2 x
= 1 + tan2 x

3.31 y = cot x ⇒ y′ = − 1
sin2 x

= −(1 + cot2 x)
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3.32 y = sin−1 x = arcsin x ⇒ y′ =
1√

1− x2
Special rules.

3.33 y = cos−1 x = arccos x ⇒ y′ = − 1√
1− x2

3.34 y = tan−1 x = arctanx ⇒ y′ =
1

1 + x2

3.35 y = cot−1 x = arccot x ⇒ y′ = − 1
1 + x2

3.36 y = sinhx ⇒ y′ = cosh x

3.37 y = cosh x ⇒ y′ = sinhx

3.38

If f is continuous on [a, b] and differentiable on
(a, b), then there exists at least one point ξ in
(a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a

The mean value theorem.

3.39

y

xa ξ b

b − a

f(b) − f(a)
Illustration of the mean
value theorem.

3.40

If f and g are continuous on [a, b] and differ-
entiable on (a, b), then there exists at least one
point ξ in (a, b) such that[

f(b)− f(a)
]
g′(ξ) =

[
g(b)− g(a)

]
f ′(ξ)

Cauchy’s generalized
mean value theorem.

3.41

Suppose f and g are differentiable on an inter-
val (α, β) around a, except possibly at a, and
suppose that f(x) and g(x) both tend to 0 as x
tends to a. If g′(x) �= 0 for all x �= a in (α, β)
and limx→a f ′(x)/g′(x) = L (L finite, L = ∞
or L = −∞), then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

= L

L’Hôpital’s rule. The
same rule applies for
x → a+, x → a−,
x → ∞, or x → −∞,
and also if
f(x) → ±∞ and
g(x) → ±∞.
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3.42
If y = f(x) and dx is any number,

dy = f ′(x) dx

is the differential of y.

Definition of the differ-
ential.

3.43

y

x

y = f(x)

∆y

Q

R

dy

dx
P

x x + dx

Geometric illustration of
the differential.

3.44
∆y = f(x + dx)− f(x) ≈ f ′(x) dx

when |dx| is small.

A useful approximation,
made more precise in
(3.45).

3.45
f(x + dx)− f(x) = f ′(x) dx + ε dx

where ε → 0 as dx → 0

Property of a differenti-
able function. (If dx is
very small, then ε is very
small, and ε dx is “very,
very small”.)

3.46

d(af + bg) = a df + b dg (a and b are constants)
d(fg) = g df + fdg

d(f/g) = (g df − fdg)/g2

df(u) = f ′(u) du

Rules for differentials. f
and g are differentiable,
and u is any differentia-
ble function.

References

All formulas are standard and are found in almost any calculus text, e.g. Edwards
and Penney (1998), or Sydsæter and Hammond (2005). For uniform continuity, see
Rudin (1982).



Chapter 4

Partial derivatives

4.1

If z = f(x1, . . . , xn) = f(x), then
∂z

∂xi
=

∂f

∂xi
= f ′

i(x) = Dxif = Dif

all denote the derivative of f(x1, . . . , xn) with
respect to xi when all the other variables are
held constant.

Definition of the partial
derivative. (Other nota-
tions are also used.)

4.2

x

y

z

y0

x0

P z = f(x, y)

lxly

Geometric interpretation
of the partial derivatives
of a function of two vari-
ables, z = f(x, y):
f ′
1(x0, y0) is the slope of

the tangent line lx and
f ′
2(x0, y0) is the slope of

the tangent line ly.

4.3
∂2z

∂xj∂xi
= f

′′
ij(x1, . . . , xn) =

∂

∂xj
f ′

i(x1, . . . , xn)
Second-order partial
derivatives of
z = f(x1, . . . , xn).

4.4
∂2f

∂xj∂xi
=

∂2f

∂xi∂xj
, i, j = 1, 2, . . . , n

Young’s theorem, valid
if the two partials are
continuous.

4.5
f(x1, . . . , xn) is said to be of class Ck, or simply
Ck, in the set S ⊂ R

n if all partial derivatives
of f of order ≤ k are continuous in S.

Definition of a Ck func-
tion. (For the defini-
tion of continuity, see
(12.12).)

4.6
z = F (x, y), x = f(t), y = g(t) ⇒

dz

dt
= F ′

1(x, y)
dx

dt
+ F ′

2(x, y)
dy

dt

A chain rule.
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4.7

If z = F (x1, . . . , xn) and xi = fi(t1, . . . , tm),
i = 1, . . . , n, then for all j = 1, . . . , m

∂z

∂tj
=

n∑
i=1

∂F (x1, . . . , xn)
∂xi

∂xi

∂tj

The chain rule. (General
case.)

4.8

If z = f(x1, . . . , xn) and dx1, . . . , dxn are arbi-
trary numbers,

dz =
n∑

i=1

f ′
i(x1, . . . , xn) dxi

is the differential of z.

Definition of the differ-
ential.

4.9

x

y

z

dz
∆z

z = f(x, y)

R

S

P

(x, y) Q = (x + dx, y + dy)

Geometric illustration
of the definition of the
differential for functions
of two variables. It also
illustrates the approx-
imation ∆z ≈ dz in
(4.10).

4.10
∆z ≈ dz when |dx1|, . . . , |dxn| are all small,
where
∆z = f(x1 +dx1, . . . , xn +dxn)−f(x1, . . . , xn)

A useful approximation,
made more precise for
differentiable functions
in (4.11).

4.11

f is differentiable at x if f ′
i(x) all exist and

there exist functions εi = εi(dx1, . . . , dxn), i =
1, . . . , n, that all approach zero as dxi all ap-
proach zero, and such that

∆z − dz = ε1 dx1 + · · ·+ εn dxn

Definition of differentia-
bility.

4.12 If f is a C1 function, i.e. it has continuous first
order partials, then f is differentiable.

An important fact.

4.13

d(af + bg) = a df + b dg (a and b constants)
d(fg) = g df + fdg

d(f/g) = (g df − fdg)/g2

dF (u) = F ′(u) du

Rules for differentials.
f and g are differen-
tiable functions of x1,
. . . , xn, F is a differen-
tiable function of one
variable, and u is any
differentiable function of
x1, . . . , xn.
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4.14 F (x, y) = c ⇒ dy

dx
= −F ′

1
(
x, y
)

F ′
2

(
x, y
) Formula for the slope

of a level curve for
z = F (x, y). For precise
assumptions, see (4.17).

4.15

y

x

P

F (x, y) = c

The slope of the tangent
at P is
dy

dx
= −F ′

1(x, y)
F ′

2(x, y)
.

4.16

If y = f(x) is a C2 function satisfying F (x, y) =
c, then

f ′′(x) = −F ′′
11(F

′
2)

2 − 2F ′′
12F

′
1F

′
2 + F ′′

22(F
′
1)

2

(F ′
2)3

=
1

(F ′
2)3

∣∣∣∣∣∣∣
0 F ′

1 F ′
2

F ′
1 F ′′

11 F ′′
12

F ′
2 F ′′

12 F ′′
22

∣∣∣∣∣∣∣

A useful result. All
partials are evaluated
at (x, y).

4.17

If F (x, y) is Ck in a set A, (x0, y0) is an interior
point of A, F (x0, y0) = c, and F ′

2(x0, y0) �= 0,
then the equation F (x, y) = c defines y as a Ck

function of x, y = ϕ(x), in some neighborhood
of (x0, y0), and the derivative of y is

dy

dx
= −F ′

1(x, y)
F ′

2(x, y)

The implicit function
theorem. (For a more
general result, see (6.3).)

4.18
If F (x1, x2, . . . , xn, z) = c (c constant), then

∂z

∂xi
= −∂F/∂xi

∂F/∂z
, i = 1, 2, . . . , n

(∂F

∂z
�= 0
) A generalization of

(4.14).

Homogeneous and homothetic functions

4.19

f(x) = f(x1, x2, . . . , xn) is homogeneous of
degree k in D ⊂ R

n if
f(tx1, tx2, . . . , txn) = tkf(x1, x2, . . . , xn)

for all t > 0 and all x = (x1, x2, . . . , xn) in D.

The definition of a
homogeneous function.
D is a cone in the sense
that tx ∈ D whenever
x ∈ D and t > 0.
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4.20

x

y

z

z = f(x, y) Geometric illustration
of a function homoge-
neous of degree 1. (Only
a portion of the graph is
shown.)

4.21

f(x) = f(x1, . . . , xn) is homogeneous of degree
k in the open cone D if and only if

n∑
i=1

xif
′
i(x) = kf(x) for all x in D

Euler’s theorem, valid for
C1 functions.

4.22

If f(x) = f(x1, . . . , xn) is homogeneous of de-
gree k in the open cone D, then
• ∂f/∂xi is homogeneous of degree k− 1 in D

•
n∑

i=1

n∑
j=1

xixjf
′′
ij(x) = k(k − 1)f(x)

Properties of homoge-
neous functions.

4.23
f(x) = f(x1, . . . , xn) is homothetic in the cone
D if for all x,y ∈ D and all t > 0,

f(x) = f(y) ⇒ f(tx) = f(ty)

Definition of homothetic
function.

4.24
f(u) = c1
f(u) = c2

tx

ty

y

x

Geometric illustration of
a homothetic function.
With f(u) homothetic, if
x and y are on the same
level curve, then so are
tx and ty (when t > 0).

4.25

Let f(x) be a continuous, homothetic function
defined in a connected cone D. Assume that f
is strictly increasing along each ray in D, i.e. for
each x0 �= 0 in D, f(tx0) is a strictly increasing
function of t. Then there exist a homogeneous
function g and a strictly increasing function F
such that

f(x) = F (g(x)) for all x in D

A property of continu-
ous, homothetic func-
tions (which is some-
times taken as the defi-
nition of homotheticity).
One can assume that g
is homogeneous of de-
gree 1.
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Gradients, directional derivatives, and tangent planes

4.26 ∇f(x) =
(∂f(x)

∂x1
, . . . ,

∂f(x)
∂xn

)
The gradient of f at
x = (x1, . . . , xn).

4.27 f ′
a(x) = lim

h→0

f(x + ha)− f(x)
h

, ‖a‖ = 1
The directional deriva-
tive of f at x in the di-
rection a.

4.28 f ′
a(x) =

n∑
i=1

f ′
i(x)ai = ∇f(x) · a

The relationship between
the directional derivative
and the gradient.

4.29

• ∇f(x) is orthogonal to the level surface
f(x) = C.

• ∇f(x) points in the direction of maximal in-
crease of f .

• ‖∇f(x)‖ measures the rate of change of f in
the direction of ∇f(x).

Properties of the gradi-
ent.

4.30

y

x

(x0, y0)

f(x, y) = C

∇f(x0, y0)
The gradient ∇f(x0, y0)
of f(x, y) at (x0, y0).

4.31

The tangent plane to the graph of z = f(x, y) at
the point P = (x0, y0, z0), with z0 = f(x0, y0),
has the equation

z−z0 = f ′
1(x0, y0)(x−x0)+f ′

2(x0, y0)(y−y0)

Definition of the tangent
plane.

4.32

x

y

z

P

(x0, y0)

z = f(x, y)

Tangent plane

The graph of a function
and its tangent plane.
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4.33

The tangent hyperplane to the level surface
F (x) = F (x1, . . . , xn) = C

at the point x0 = (x0
1, . . . , x

0
n) has the equation

∇F (x0) · (x− x0) = 0

Definition of the tangent
hyperplane. The vector
∇F (x0) is a normal to
the hyperplane.

4.34

Let f be defined on a convex set S ⊆ R
n, and

let x0 be an interior point in S.
• If f is concave, there is at least one vector p

in R
n such that

f(x)− f(x0) ≤ p · (x− x0) for all x in S

• If f is convex, there is at least one vector p
in R

n such that

f(x)− f(x0) ≥ p · (x− x0) for all x in S

A vector p that satis-
fies the first inequality is
called a supergradient for
f at x0. A vector satis-
fying the second inequal-
ity is called a subgradient
for f at x0.

4.35

If f is defined on a set S ⊆ R
n and x0 is an

interior point in S at which f is differentiable
and p is a vector that satisfies either inequality
in (4.34), then p = ∇f(x0).

A useful result.

Differentiability for mappings from R
n to R

m

4.36

A transformation f = (f1, . . . , fm) from a sub-
set A of R

n into R
m is differentiable at an inte-

rior point x of A if (and only if) each component
function fi : A → R, i = 1, . . . m, is differentia-
ble at x. Moreover, we define the derivative of
f at x by

f ′(x) =

⎛⎜⎜⎜⎜⎜⎝
∂f1

∂x1
(x)

∂f1

∂x2
(x) · · · ∂f1

∂xn
(x)

...
...

...
∂fm

∂x1
(x)

∂fm

∂x2
(x) · · · ∂fm

∂xn
(x)

⎞⎟⎟⎟⎟⎟⎠
the m × n matrix whose ith row is f ′

i(x) =
∇fi(x).

Generalizes (4.11).

4.37
If a transformation f from A ⊆ R

n into R
m is

differentiable at an interior point a of A, then
f is continuous at a.

Differentiability implies
continuity.
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4.38

A transformation f = (f1, . . . , fm) from (a sub-
set of) R

n into R
m is said to be of class Ck

if each of its component functions f1, . . . , fm

is Ck.

An important definition.
(See (4.12).)

4.39
If f is a C1 transformation from an open set
A ⊆ R

n into R
m, then f is differentiable at

every point x in A.

C1 transformations are
differentiable.

4.40

Suppose f : A → R
m and g : B → R

p are
defined on A ⊆ R

n and B ⊆ R
m, with f(A) ⊆

B, and suppose that f and g are differentiable
at x and f(x), respectively. Then the composite
transformation g ◦ f : A → R

p defined by
(g ◦ f)(x) = g(f(x)) is differentiable at x, and

(g ◦ f)′(x) = g′(f(x)) f ′(x)

The chain rule.

References

Most of the formulas are standard and can be found in almost any calculus text,
e.g. Edwards and Penney (1998), or Sydsæter and Hammond (2005). For supergradi-
ents and differentiability, see e.g. Sydsæter et al. (2005). For properties of homothetic
functions, see Simon and Blume (1994), Shephard (1970), and Førsund (1975).



Chapter 5

Elasticities. Elasticities of substitution

5.1 Elx f(x) =
x

f(x)
f ′(x) =

x

y

dy

dx
=

d(ln y)
d(lnx)

Elx f(x), the elasticity
of y = f(x) w.r.t. x, is
approximately the per-
centage change in f(x)
corresponding to a one
per cent increase in x.

5.2

y

x

P (x, f(x))

y = f(x)

Ay

Ax

Illustration of Marshall’s
rule.

5.3

Marshall’s rule: To find the elasticity of y =
f(x) w.r.t. x at the point P in the figure, first
draw the tangent to the curve at P . Measure
the distance Ay from P to the point where the
tangent intersects the y-axis, and the distance
Ax from P to where the tangent intersects the
x-axis. Then Elx f(x) = ±Ay/Ax.

Marshall’s rule. The dis-
tances are measured pos-
itive. Choose the plus
sign if the curve is in-
creasing at P , the minus
sign in the opposite case.

5.4

• If |Elx f(x)| > 1, then f is elastic at x.
• If |Elx f(x)| = 1, then f is unitary elastic

at x.
• If |Elx f(x)| < 1, then f is inelastic at x.
• If |Elx f(x)| = 0, then f is completely in-

elastic at x.

Terminology used by
many economists.

5.5 Elx(f(x)g(x)) = Elx f(x) + Elx g(x) General rules for calcu-
lating elasticities.

5.6 Elx

(
f(x)
g(x)

)
= Elx f(x)− Elx g(x)



36

5.7 Elx(f(x)± g(x)) =
f(x) Elx f(x)± g(x) Elx g(x)

f(x)± g(x)
General rules for calcu-
lating elasticities.

5.8 Elx f(g(x)) = Elu f(u) Elx u, u = g(x)

5.9

If y = f(x) has an inverse function x = g(y) =
f−1(y), then, with y0 = f(x0),

Ely x =
y

x

dx

dy
, i.e. Ely(g(y0)) =

1
Elx f(x0)

The elasticity of the in-
verse function.

5.10
Elx A = 0, Elx xa = a, Elx ex = x.
(A and a are constants, A �= 0.)

Special rules for elastici-
ties.

5.11 Elx sin x = x cot x, Elx cos x = −x tanx

5.12 Elx tanx =
x

sin x cos x
, Elx cot x =

−x

sin x cos x

5.13 Elx lnx =
1

lnx
, Elx loga x =

1
lnx

5.14 Eli f(x) = Elxi f(x) =
xi

f(x)
∂f(x)
∂xi

The partial elasticity of
f(x) = f(x1, . . . , xn)
w.r.t. xi, i = 1, . . . , n.

5.15

If z = F (x1, . . . , xn) and xi = fi(t1, . . . , tm) for
i = 1, . . . , n, then for all j = 1, . . . , m,

Eltj
z =

n∑
i=1

Eli F (x1, . . . , xn) Eltj
xi

The chain rule for elasti-
cities.

5.16

The directional elasticity of f at x, in the di-
rection of x/‖x‖, is

Ela f(x) =
‖x‖
f(x)

f ′
a(x) =

1
f(x)

∇f(x) · x

Ela f(x) is approxi-
mately the percentage
change in f(x) corre-
sponding to a one per
cent increase in each
component of x. See
(4.27)–(4.28) for f ′

a(x).)

5.17 Ela f(x) =
n∑

i=1

Eli f(x), a =
x
‖x‖

A useful fact (the passus
equation).

5.18

The marginal rate of substitution (MRS) of y
for x is

Ryx =
f ′
1(x, y)

f ′
2(x, y)

, f(x, y) = c

Ryx is approximately
how much one must add
of y per unit of x re-
moved to stay on the
same level curve for f .
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5.19

• When f is a utility function, and x and y
are goods, Ryx is called the marginal rate of
substitution (abbreviated MRS).

• When f is a production function and x and y
are inputs, Ryx is called the marginal rate of
technical substitution (abbreviated MRTS).

• When f(x, y) = 0 is a production function in
implicit form (for given factor inputs), and
x and y are two products, Ryx is called the
marginal rate of product transformation (ab-
breviated MRPT).

Different special cases of
(5.18). See Chapters 25
and 26.

5.20

The elasticity of substitution between y and x is

σyx = ElRyx

(y

x

)
= −

∂ ln
(y

x

)
∂ ln
(

f ′
2

f ′
1

) , f(x, y) = c

σyx is, approximately,
the percentage change
in the factor ratio y/x
corresponding to a one
percent change in the
marginal rate of substi-
tution, assuming that f
is constant.

5.21 σyx =

1
xf ′

1
+

1
yf ′

2

−
f ′′
11

(f ′
1)2

+ 2
f ′′
12

f ′
1f

′
2
− f ′′

22

(f ′
2)2

, f(x, y) = c

An alternative formula
for the elasticity of sub-
stitution. Note that
σyx = σxy.

5.22
If f(x, y) is homogeneous of degree 1, then

σyx =
f ′
1f

′
2

ff ′′
12

A special case.

5.23 hji(x) =
∂f(x)
∂xi

/
∂f(x)
∂xj

, i, j = 1, 2, . . . , n
The marginal rate of
substitution of factor j
for factor i.

5.24

If f is a strictly increasing transformation of
a homogeneous function, as in (4.25), then the
marginal rates of substitution in (5.23) are ho-
mogeneous of degree 0.

A useful result.

5.25 σij = −
∂ ln
(

xi

xj

)
∂ ln

(
f ′

i

f ′
j

) , f(x1, . . . , xn) = c, i �= j
The elasticity of substi-
tution in the n-variable
case.
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5.26 σij =

1
xif ′

i

+
1

xjf ′
j

−
f ′′

ii

(f ′
i)2

+
2f ′′

ij

f ′
if

′
j

− f ′′
jj

(f ′
j)2

, i �= j
The elasticity of substi-
tution, f(x1, . . . , xn) = c.

References
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and Fuss and McFadden (1978). For elasticities of substitution in production theory,
see Chapter 25.



Chapter 6

Systems of equations

6.1

f1(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0
f2(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0

A general system of
equations with n exoge-
nous variables, x1, . . . ,
xn, and m endogenous
variables, y1, . . . , ym.

6.2
∂f(x,y)

∂y
=

⎛⎜⎜⎜⎜⎜⎝
∂f1

∂y1
· · · ∂f1

∂ym
...

. . .
...

∂fm

∂y1
· · · ∂fm

∂ym

⎞⎟⎟⎟⎟⎟⎠
The Jacobian matrix of
f1, . . . , fm with respect
to y1, . . . , ym.

6.3

Suppose f1, . . . , fm are Ck functions in a set A
in R

n+m, let (x0,y0) = (x0
1, . . . , x

0
n, y0

1 , . . . , y0
m)

be a solution to (6.1) in the interior of A. Sup-
pose also that the determinant of the Jacobian
matrix ∂f(x,y)/∂y in (6.2) is different from 0
at (x0,y0). Then (6.1) defines y1, . . . , ym as Ck

functions of x1, . . . , xn in some neighborhood
of (x0,y0), and the Jacobian matrix of these
functions with respect to x is

∂y
∂x

=
(

∂f(x,y)
∂y

)−1
∂f(x,y)

∂x

The general implicit
function theorem. (It
gives sufficient condi-
tions for system (6.1) to
define the endogenous
variables y1, . . . , ym as
differentiable functions
of the exogenous varia-
bles x1, . . . , xn. (For the
case n = m = 1, see
(4.17).)

6.4

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0
. . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, . . . , xn) = 0

A general system of
m equations and n
variables.
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6.5

System (6.4) has k degrees of freedom if there
is a set of k of the variables that can be freely
chosen such that the remaining n− k variables
are uniquely determined when the k variables
have been assigned specific values. If the varia-
bles are restricted to vary in a set S in R

n, the
system has k degrees of freedom in S.

Definition of degrees of
freedom for a system of
equations.

6.6

To find the number of degrees of freedom for
a system of equations, count the number, n, of
variables and the number, m, of equations. If
n > m, there are n −m degrees of freedom in
the system. If n < m, there is, in general, no
solution of the system.

The “counting rule”.
This is a rough rule
which is not valid in
general.

6.7 If the conditions in (6.3) are satisfied, then sys-
tem (6.1) has n degrees of freedom.

A precise (local) count-
ing rule.

6.8 f ′(x) =

⎛⎜⎜⎜⎜⎜⎝
∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
...

∂fm(x)
∂x1

· · · ∂fm(x)
∂xn

⎞⎟⎟⎟⎟⎟⎠
The Jacobian matrix of
f1, . . . , fm with respect
to x1, . . . , xn, also de-
noted by ∂f(x)/∂x.

6.9

If x0 = (x0
1, . . . , x

0
n) is a solution of (6.4), m ≤

n, and the rank of the Jacobian matrix f ′(x) is
equal to m, then system (6.4) has n−m degrees
of freedom in some neighborhood of x0.

A precise (local) count-
ing rule. (Valid if the
functions f1, . . . , fm are
C1.)

6.10

The functions f1(x), . . . , fm(x) are functionally
dependent in an open set A in R

n if there exists
a real-valued C1 function F defined on an open
set containing

S = {(f1(x), . . . , fm(x)) : x ∈ A}
such that

F (f1(x), . . . , fm(x)) = 0 for all x in A

and ∇F �= 0 in S.

Definition of functional
dependence.

6.11

If f1(x), . . . , fm(x) are functionally dependent
in an open set A ⊂ R

n, then the rank of the
Jacobian matrix f ′(x) is less than m for all x
in A.

A necessary condition
for functional
dependence.

6.12
If the equation system (6.4) has solutions, and
if f1(x), . . . , fm(x) are functionally dependent,
then (6.4) has at least one redundant equation.

A sufficient condition for
the counting rule to fail.
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6.13 det(f ′(x)) =

∣∣∣∣∣∣∣∣∣∣∣

∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fn(x)

∂x1
· · · ∂fn(x)

∂xn

∣∣∣∣∣∣∣∣∣∣∣
The Jacobian deter-
minant of f1, . . . , fn

with respect to x1, . . . ,
xn. (See Chapter 20 for
determinants.)

6.14 If f1(x), . . . , fn(x) are functionally dependent,
then the determinant det(f ′(x)) ≡ 0.

A special case of (6.11).
The converse is not gen-
erally true.

6.15
y1 = f1(x1, . . . , xn)
. . . . . . . . . . . . . . . . . .

yn = fn(x1, . . . , xn)
⇐⇒ y = f(x) A transformation f from

R
n to R

n.

6.16

Suppose the transformation f in (6.15) is C1

in a neighborhood of x0 and that the Jacobian
determinant in (6.13) is not zero at x0. Then
there exists a C1 transformation g that is lo-
cally an inverse to f , i.e. g(f(x)) = x for all x
in some neighborhood of x0.

The existence of a lo-
cal inverse. (Inverse
function theorem. Lo-
cal version.)

6.17

Suppose f : R
n → R

n is C1 and that there exist
positive numbers h and k such that
|det(f ′(x))| ≥ h and |∂fi(x)/∂xj | ≤ k

for all x and all i, j = 1, . . . , n. Then f has an
inverse defined and C1 on all of R

n.

Existence of a global
inverse. (Hadamard’s
theorem.)

6.18

Suppose f : R
n → R

n is C1 and that the de-
terminant in (6.13) is �= 0 for all x. Then f(x)
has an inverse that is C1 and defined over all
of R

n, if and only if
inf{‖f(x)‖ : ‖x‖ ≥ n} → ∞ as n →∞

A global inverse function
theorem.

6.19

Suppose f : R
n → R

n is C1 and let Ω be the
rectangle Ω = {x ∈ R

n : a ≤ x ≤ b}, where a
and b are given vectors in R

n. Then f is one-
to-one in Ω if one of the following conditions is
satisfied for all x:
• The Jacobian matrix f ′(x) has only strictly

positive principal minors.
• The Jacobian matrix f ′(x) has only strictly

negative principal minors.

A Gale–Nikaido theorem.
(For principal minors,
see (20.15).)
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6.20
An n×n matrix A (not necessarily symmetric)
is called positive quasidefinite if x′Ax > 0 for
every n-vector x �= 0.

Definition of a positive
quasidefinite matrix.

6.21

Suppose f : R
n → R

n is a C1 function and
assume that the Jacobian matrix f ′(x) is posi-
tive quasidefinite everywhere in a convex set Ω.
Then f is one-to-one in Ω.

A Gale–Nikaido theorem.

6.22

f : R
n → R

n is called a contraction mapping if
there exists a constant k in [0, 1) such that
‖f(x)− f(y)‖ ≤ k‖x− y‖

for all x and y in R
n.

Definition of a contrac-
tion mapping.

6.23

If f : R
n → R

n is a contraction mapping, then
f has a unique fixed point, i.e. a point x∗ in R

n

such that f(x∗) = x∗. For any x0 in R
n we have

x∗ = lim
n→∞ xn, where xn = f(xn−1) for n ≥ 1.

The existence of a fixed
point for a contraction
mapping. (This result
can be generalized to
complete metric spaces.
See (18.26).)

6.24

Let S be a subset of R
n, and let B denote the

set of all bounded functions from S into R
m.

The supremum distance between two functions
ϕ and ψ in B is defined as

d(ϕ, ψ) = sup
x∈S

‖ϕ(x)−ψ(x)‖

A definition of dis-
tance between functions.
(F : S → R

m is called
bounded on S if there ex-
ists a positive number M
such that ‖F (x)‖ ≤ M
for all x in S.)

6.25

Let S be a nonempty subset of R
n and let B

be the set of all bounded functions from S into
R

m. Suppose that the function T : B → B is a
contraction mapping in the sense that

d(T (ϕ), T (ψ)) ≤ βd(ϕ, ψ) for all ϕ, ψ in B
Then there exists a unique function ϕ∗ in B
such that ϕ∗ = T (ϕ∗).

A contraction mapping
theorem for spaces of
bounded functions.

6.26

Let K be a nonempty, compact and convex set
in R

n and f a continuous function mapping K
into K. Then f has a fixed point x∗ ∈ K, i.e. a
point x∗ such that f(x∗) = x∗.

Brouwer’s fixed point
theorem.
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6.27

y

x

K

f(x∗)

K x∗

y = f(x) Illustration of Brouwer’s
fixed point theorem for
n = 1.

6.28

Let K be a nonempty compact, convex set in
R

n and f a correspondence that to each point
x in K associates a nonempty, convex subset
f(x) of K. Suppose that f has a closed graph,
i.e. the set{

(x,y) ∈ R
2n : x ∈ K and y ∈ f(x)

}
is closed in R

2n. Then f has a fixed point, i.e. a
point x∗ in K, such that x∗ ∈ f(x∗).

Kakutani’s fixed point
theorem. (See (12.25)
for the definition of
correspondences.)

6.29

y

x

K

x∗K

F

F Illustration of Kaku-
tani’s fixed point theo-
rem for n = 1.

6.30

If x = (x1, . . . , xn) and y = (y1, . . . , yn) are two
points in R

n, then the meet x∧y and join x∨y
of x and y are points in R

n defined as follows:
x ∧ y = (min{x1, y1}, . . . ,min{xn, yn})
x ∨ y = (max{x1, y1}, . . . ,max{xn, yn})

Definition of the meet
and the join of two vec-
tors in R

n.

6.31

A set S in R
n is called a sublattice of R

n if the
meet and the join of any two points in S are
also in S. If S is also a compact set, the S is
called a compact sublattice.

Definition of a (com-
pact) sublattice of R

n.

6.32

Let S be a nonempty compact sublattice of R
n.

Let f : S → S be an increasing function, i.e. if
x,y ∈ S and x ≤ y, then f(x) ≤ f(y). Then f
has a fixed point in S, i.e. a point x∗ in S such
that f(x∗) = x∗.

Tarski’s fixed point the-
orem. (The theorem is
not valid for decreasing
functions. See (6.33).)
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6.33

y

x

S

S x∗

y

x

S

S

x∗ is a fixed point for
the increasing function
in the figure to the left.
The decreasing function
in the other figure has
no fixed point.

6.34

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

The general linear sys-
tem with m equations
and n unknowns.

6.35

A =

⎛⎜⎜⎝
a11 · · · a1n

a21 · · · a2n
...

...
am1 · · · amn

⎞⎟⎟⎠

Ab =

⎛⎜⎜⎝
a11 · · · a1n b1
a21 · · · a2n b2
...

...
...

am1 · · · amn bm

⎞⎟⎟⎠

A is the coefficient ma-
trix of (6.34), and Ab is
the augmented coefficient
matrix.

6.36

• System (6.34) has at least one solution if and
only if r(A) = r(Ab).

• If r(A) = r(Ab) = k < m, then system
(6.34) has m− k superfluous equations.

• If r(A) = r(Ab) = k < n, then system
(6.34) has n− k degrees of freedom.

Main results about lin-
ear systems of equations.
r(B) denotes the rank
of the matrix B. (See
(19.23).)

6.37

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = 0

The general homoge-
neous linear equation
system with m equations
and n unknowns.

6.38

• The homogeneous system (6.37) has a non-
trivial solution if and only if r(A) < n.

• If n = m, then the homogeneous system
(6.37) has nontrivial solutions if and only if
|A| = 0.

Important results on
homogeneous linear
systems.
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Chapter 7

Inequalities

7.1
∣∣|a| − |b|∣∣ ≤ |a± b| ≤ |a|+ |b| Triangle inequalities.

a, b ∈ R (or C).

7.2
n∑n

i=1 1/ai
≤
( n∏

i=1

ai

)1/n

≤
∑n

i=1 ai

n
, ai > 0

Harmonic mean ≤
geometric mean ≤
arithmetic mean.
Equalities if and only if
a1 = · · · = an.

7.3
2

1/a1 + 1/a2
≤ √a1a2 ≤ a1 + a2

2
(7.2) for n = 2.

7.4 (1 + x)n ≥ 1 + nx (n ∈ N, x ≥ −1) Bernoulli’s inequality.

7.5 aλ1
1 · · · aλn

n ≤ λ1a1 + · · ·+ λnan

Inequality for weighted
means. ai ≥ 0,∑n

i=1 λi = 1, λi ≥ 0.

7.6 a1
λa2

1−λ ≤ λa1 + (1− λ)a2
(7.5) for n = 2, a1 ≥ 0,
a2 ≥ 0, λ ∈ [0, 1].

7.7
n∑

i=1

|aibi| ≤
[ n∑

i=1

|ai|p
]1/p[ n∑

i=1

|bi|q
]1/q

Hölder’s inequality.
p, q > 1, 1/p + 1/q = 1.
Equality if |bi| = c|ai|p−1

for a nonnegative con-
stant c.

7.8
[ n∑

i=1

|aibi|
]2
≤
[ n∑

i=1

a2
i

][ n∑
i=1

b2
i

] Cauchy–Schwarz’s in-
equality. (Put p = q = 2
in (7.7).)

7.9
[ n∑

i=1

ai

][ n∑
i=1

bi

]
≤ n

n∑
i=1

aibi

Chebyshev’s inequality.
a1 ≥ · · · ≥ an,
b1 ≥ · · · ≥ bn.
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7.10
[ n∑

i=1

|ai + bi|p
]1/p

≤
[ n∑

i=1

|ai|p
]1/p

+
[ n∑

i=1

|bi|p
]1/p

Minkowski’s inequality.
p ≥ 1. Equality if bi =
cai for a nonnegative
constant c.

7.11 If f is convex, then f

[ n∑
i=1

aixi

]
≤

n∑
i=1

aif(xi)
Jensen’s inequality.∑n

i=1 ai = 1, ai ≥ 0,
i = 1, . . . , n.

7.12
[ n∑

i=1

|ai|q
]1/q

≤
[ n∑

i=1

|ai|p
]1/p

Another Jensen’s in-
equality ; 0 < p < q.

7.13

∫ b

a

|f(x)g(x)| dx ≤[ ∫ b

a

|f(x)|p dx

]1/p[ ∫ b

a

|g(x)|q dx

]1/q

Hölder’s inequality. p >
1, q > 1, 1/p + 1/q =
1. Equality if |g(x)| =
c|f(x)|p−1 for a non-
negative constant c.

7.14
[ ∫ b

a

f(x)g(x) dx

]2
≤
∫ b

a

(f(x))2dx

∫ b

a

(g(x))2dx
Cauchy–Schwarz’s
inequality.

7.15

[ ∫ b

a

|f(x) + g(x)|p dx

]1/p

≤
[ ∫ b

a

|f(x)|p dx

]1/p

+
[ ∫ b

a

|g(x)|p dx

]1/p

Minkowski’s inequality.
p ≥ 1. Equality if g(x) =
cf(x) for a nonnegative
constant c.

7.16
If f is convex, then

f
(∫

a(x)g(x) dx
)
≤
∫

a(x)f(g(x)) dx

Jensen’s inequality.
a(x) ≥ 0, f(u) ≥ 0,∫

a(x) dx = 1. f is de-
fined on the range of g.

7.17

If f is convex on the interval I and X is a ran-
dom variable with finite expectation, then

f(E[X]) ≤ E[f(X)]
If f is strictly convex, the inequality is strict
unless X is a constant with probability 1.

Special case of Jensen’s
inequality. E is the ex-
pectation operator.

7.18
If U is concave on the interval I and X is a
random variable with finite expectation, then

E[U(X)] ≤ U(E[X])

An important fact in
utility theory. (It follows
from (7.17) by putting
f = −U .)

References
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Chapter 8

Series. Taylor’s formula

8.1
n−1∑
i=0

(a + id)na +
n(n− 1)d

2
Sum of the first n terms
of an arithmetic series.

8.2 a + ak + ak2 + · · ·+ akn−1 = a
1− kn

1− k
, k �= 1 Sum of the first n terms

of a geometric series.

8.3 a + ak + · · ·+ akn−1 + · · · a

1− k
if |k| < 1 Sum of an infinite geo-

metric series.

8.4
∞∑

n=1

an = s means that lim
n→∞

n∑
k=1

ak = s

Definition of the con-
vergence of an infinite
series. If the series does
not converge, it diverges.

8.5
∞∑

n=1

an converges ⇒ lim
n→∞ an = 0

A necessary (but NOT
sufficient) condition for
the convergence of an
infinite series.

8.6 lim
n→∞

∣∣∣an+1

an

∣∣∣ < 1 ⇒
∞∑

n=1

an converges The ratio test .

8.7 lim
n→∞

∣∣∣an+1

an

∣∣∣ > 1 ⇒
∞∑

n=1

an diverges The ratio test .

8.8

If f(x) is a positive-valued, decreasing, and con-
tinuous function for x ≥ 1, and if an = f(n) for
all integers n ≥ 1, then the infinite series and
the improper integral

∞∑
n=1

an and
∞∫
1

f(x) dx

either both converge or both diverge.

The integral test .
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8.9

If 0 ≤ an ≤ bn for all n, then
• ∑ an converges if

∑
bn converges.

• ∑ bn diverges if
∑

an diverges.
The comparison test .

8.10
∞∑

n=1

1
np

is convergent ⇐⇒ p > 1 An important result.

8.11
A series

∞∑
n=1

an is said to converge absolutely if

the series
∞∑

n=1
|an| converges.

Definition of absolute
convergence. |an| de-
notes the absolute value
of an.

8.12
Every absolutely convergent series is conver-
gent, but not all convergent series are abso-
lutely convergent.

A convergent series that
is not absolutely conver-
gent, is called condition-
ally convergent.

8.13

If a series is absolutely convergent, then the
sum is independent of the order in which terms
are summed. A conditionally convergent series
can be made to converge to any number (or
even diverge) by suitable rearranging the order
of the terms.

Important results on the
convergence of series.

8.14 f(x) ≈ f(a) + f ′(a)(x− a) (x close to a)
First-order (linear)
approximation about
x = a.

8.15
f(x) ≈ f(a) + f ′(a)(x− a) + 1

2f ′′(a)(x− a)2

(x close to a)

Second-order (quadratic)
approximation about
x = a.

8.16
f(x) = f(0) +

f ′(0)
1!

x + · · ·+ f (n)(0)
n!

xn

+
f (n+1)(θx)
(n + 1)!

xn+1 , 0 < θ < 1

Maclaurin’s formula.
The last term is La-
grange’s error term.

8.17 f(x) = f(0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 + · · ·

The Maclaurin series for
f(x), valid for those x
for which the error term
in (8.16) tends to 0 as n
tends to ∞.

8.18
f(x) = f(a)+

f ′(a)
1!

(x−a)+· · ·+f (n)(a)
n!

(x−a)n

+
f (n+1)(a + θ(x− a))

(n + 1)!
(x−a)n+1 , 0 < θ < 1

Taylor’s formula. The
last term is Lagrange’s
error term.
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8.19 f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)
2!

(x−a)2+· · ·

The Taylor series for
f(x), valid for those x
where the error term in
(8.18) tends to 0 as n
tends to ∞.

8.20 f(x, y) ≈ f(a, b)+f ′
1(a, b)(x−a)+f ′

2(a, b)(y−b)
((x, y) close to (a, b))

First-order (linear) ap-
proximation to f(x, y)
about (a, b).

8.21
f(x, y) ≈
f(a, b) + f ′

1(a, b)(x − a) + f ′
2(a, b)(y − b)

+ 1
2 [f ′′

11(a, b)(x−a)2+2f ′′
12(a, b)(x−a)(y−b)+f ′′

22(a, b)(y−b)2]

Second-order (quadratic)
approximation to f(x, y)
about (a, b).

8.22

f(x) = f(a) +
n∑

i=1

f ′
i(a)(xi − ai)

+ 1
2

n∑
i=1

n∑
j=1

f ′′
ij(a + θ(x− a))(xi − ai)(xj − aj)

Taylor’s formula of or-
der 2 for functions of n
variables, θ ∈ (0, 1).

8.23 ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · Valid for all x.

8.24 ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · Valid if −1 < x ≤ 1.

8.25 (1 + x)m =
(

m

0

)
+
(

m

1

)
x +

(
m

2

)
x2 + · · ·

Valid if −1 < x < 1.
For the definition of(

m
k

)
, see (8.30).

8.26 sinx = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · · Valid for all x.

8.27 cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · · Valid for all x.

8.28 arcsin x = x +
1
2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ · · · Valid if |x| ≤ 1.

8.29 arctanx = x− x3

3
+

x5

5
− x7

7
+ · · · Valid if |x| ≤ 1.

8.30
•
(

r

k

)
=

r(r − 1) · · · (r − k + 1)
k!

•
(

r

0

)
= 1,

(
r

−k

)
= 0

Binomial coefficients.
(r is an arbitrary real
number, k is a natural
number.)
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8.31

•
(

n

k

)
=

n!
n!(n− k)!

(0 ≤ k ≤ n)

•
(

n

k

)
=
(

n

n− k

)
(n ≥ 0)

•
(

r

k

)
=
(

r − 1
k − 1

)
+
(

r − 1
k

)
•
(−r

k

)
= (−1)k

(
r + k − 1

k

)
•
(

r

k

)
=

r

k

(
r − 1
k − 1

)
(k �= 0)

Important properties of
the binomial coefficients.
n and k are integers, and
r is a real number.

8.32
(

r

m

)(
m

k

)(
r

k

)(
r − k

m− k

)
m and k are integers.

8.33
n∑

k=0

(
r

k

)(
s

n− k

)(
r + s

n

)
n is a nonnegative
integer.

8.34
n∑

k=0

(
r + k

k

)
=
(

r + n + 1
n

)
n is a nonnegative
integer.

8.35
n∑

k=0

(
k

m

)
=
(

m + 1
n + 1

)
m and n are nonnegative
integers.

8.36
n∑

k=0

(
n

k

)
an−kbk = (a + b)n Newton’s binomial for-

mula.

8.37
n∑

k=0

(
n

k

)
= (1 + 1)n = 2n A special case of (8.36).

8.38
n∑

k=0

(
n

k

)
kn2n−1 (n ≥ 0)

8.39
n∑

k=0

(
n

k

)
k2(n2 + n)2n−2 (n ≥ 0)

8.40
n∑

k=0

(
n

k

)2

=
(

2n

n

)

8.41
(a1 + a2 + · · ·+ am)n =∑

k1+···+km=n

n!
k1! · · · km!

ak1
1 · · · akm

m

The multinomial for-
mula.
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8.42 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
Summation formulas.

8.43 1 + 3 + 5 + · · ·+ (2n− 1) = n2

8.44 12 + 22 + 32 + · · ·+ n2 n(n + 1)(2n + 1)
6

8.45 13 + 23 + 33 + · · ·+ n3
(

n(n + 1)
2

)2

8.46
14 + 24 + 34 + · · ·+ n4 =

n(n + 1)(2n + 1)(3n2 + 3n− 1)
30

8.47
1
12 +

1
22 +

1
32 + · · ·+ 1

n2 + · · · = π2

6
A famous result.

8.48 lim
n→∞

[(
1
1

+
1
2

+ · · ·+ 1
n

)
− lnn

]
γ ≈ 0.5772 . . .

The constant γ is called
Euler’s constant .

References

All formulas are standard and are usually found in calculus texts, e.g. Edwards and
Penney (1998). For results about binomial coefficients, see a book on probability
theory, or e.g. Graham, Knuth, and Patashnik (1989).



Chapter 9

Integration

Indefinite integrals

9.1
∫

f(x) dx = F (x) + C ⇐⇒ F ′(x) = f(x) Definition of the indefi-
nite integral.

9.2
∫

(af(x) + bg(x)) dx = a

∫
f(x) dx + b

∫
g(x) dx

Linearity of the integral.
a and b are constants.

9.3
∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx Integration by parts.

9.4
∫

f(x) dx =
∫

f(g(t))g′(t) dt, x = g(t)
Change of variable.
(Integration by substi-
tution.)

9.5
∫

xn dx =

⎧⎨⎩
xn+1

n + 1
+ C, n �= −1

ln |x|+ C, n = −1

Special integration re-
sults.

9.6
∫

ax dx =
1

ln a
ax + C, a > 0, a �= 1

9.7
∫

ex dx = ex + C

9.8
∫

xex dx = xex − ex + C

9.9
∫

xneax dx =
xn

a
eax − n

a

∫
xn−1eax dx, a �= 0

9.10
∫

loga x dx = x loga x−x loga e+C, a > 0, a �= 1
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9.11
∫

lnx dx = x lnx− x + C
Special integration
results.

9.12
∫

xn lnx dx =
xn+1

(
(n + 1) lnx− 1

)
(n + 1)2

+ C (n 
= −1)

9.13
∫

sin x dx = − cos x + C

9.14
∫

cos x dx = sinx + C

9.15
∫

tanx dx = − ln |cos x|+ C

9.16
∫

cot x dx = ln |sin x|+ C

9.17
∫

1
sin x

dx = ln
∣∣∣∣1− cos x

sin x

∣∣∣∣+ C

9.18
∫

1
cos x

dx = ln
∣∣∣∣1 + sin x

cos x

∣∣∣∣+ C

9.19
∫

1
sin2 x

dx = − cot x + C

9.20
∫

1
cos2 x

dx = tanx + C

9.21
∫

sin2 x dx =
1
2
x− 1

2
sin x cos x + C

9.22
∫

cos2 x dx =
1
2
x +

1
2

sin x cos x + C

9.23

∫
sinn x dx =

− sinn−1 x cos x

n
+

n− 1
n

∫
sinn−2 x dx

(n 
= 0)

9.24

∫
cosn x dx =

cosn−1 x sin x

n
+

n− 1
n

∫
cosn−2 x dx

(n 
= 0)
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9.25

∫
eαx sin βx dx =

eαx

α2 + β2 (α sin βx− β cos βx) + C

(α2 + β2 
= 0)

9.26

∫
eαx cos βx dx =

eαx

α2 + β2 (β sin βx + α cos βx) + C

(α2 + β2 
= 0)

9.27
∫

1
x2 − a2 dx =

1
2a

ln
∣∣∣∣x− a

x + a

∣∣∣∣+ C (a 
= 0)

9.28
∫

1
x2 + a2 dx =

1
a

arctan
x

a
+ C (a 
= 0)

9.29
∫

1√
a2 − x2

dx = arcsin
x

a
+ C (a > 0)

9.30
∫

1√
x2 ± a2

dx = ln
∣∣∣x +

√
x2 ± a2

∣∣∣+ C

9.31
∫ √

a2 − x2 dx =
x

2

√
a2 − x2 +

a2

2
arcsin

x

a
+ C (a > 0)

9.32

∫ √
x2 ± a2 dx =

x

2

√
x2 ± a2 ± a2

2
ln
∣∣∣x +

√
x2 ± a2

∣∣∣+ C

9.33

∫
dx

ax2 + 2bx + c
=

1
2
√

b2 − ac
ln

∣∣∣∣∣ax + b−√b2 − ac

ax + b +
√

b2 − ac

∣∣∣∣∣+ C

(b2 > ac, a 
= 0)

9.34

∫
dx

ax2 + 2bx + c
=

1√
ac− b2

arctan
ax + b√
ac− b2

+ C

(b2 < ac)

9.35
∫

dx

ax2 + 2bx + c
=

−1
ax + b

+ C (b2 = ac, a 
= 0)
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Definite integrals

9.36

∫ b

a

f(x) dx =
b

a

F (x) = F (b)− F (a)

if F ′(x) = f(x) for all x in [a, b].

Definition of the definite
integral of a function f .

9.37
• A(x) =

∫ x

a

f(t) dt ⇒ A′(x) = f(x)

• A(x) =
∫ b

x

f(t) dt ⇒ A′(x) = −f(x)
Important facts.

9.38

y

t

A(x)

a x

y = f(t)
The shaded area is
A(x) =

∫ x

a
f(t) dt, and

the derivative of the
area function A(x) is
A′(x) = f(x).

9.39

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx∫ a

a

f(x) dx = 0∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

a, b, c, and α are arbi-
trary real numbers.

9.40
∫ b

a

f(g(x))g′(x) dx =
∫ g(b)

g(a)
f(u) du, u = g(x)

Change of variable. (In-
tegration by substitu-
tion.)

9.41
∫ b

a

f(x)g′(x) dx =
b

a

f(x)g(x)−
∫ b

a

f ′(x)g(x) dx Integration by parts.

9.42
∫ ∞

a

f(x) dx = lim
M→∞

∫ M

a

f(x) dx

If the limit exists, the
integral is convergent .
(In the opposite case,
the integral diverges.)

9.43
∫ b

−∞
f(x) dx = lim

N→∞

∫ b

−N

f(x) dx

If the limit exists, the
integral is convergent .
(In the opposite case,
the integral diverges.)
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9.44

y

xa M

y = f(x)

y

x−N b

y = f(x)

The figures illustrate
(9.42) and (9.43). The
shaded areas are∫M

a
f(x) dx in the first

figure, and
∫ b

−N
f(x) dx

in the second.

9.45

∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx +

∫ ∞

a

f(x) dx

= lim
N→∞

∫ a

−N

f(x) dx + lim
M→∞

∫ M

a

f(x) dx

Both limits on the right-
hand side must exist. a
is an arbitrary number.
The integral is then said
to converge. (If either of
the limits does not exist,
the integral diverges.)

9.46
∫ b

a

f(x) dx = lim
h→0+

∫ b

a+h

f(x) dx
The definition of the in-
tegral if f is continuous
in (a, b].

9.47
∫ b

a

f(x) dx = lim
h→0+

∫ b−h

a

f(x) dx
The definition of the in-
tegral if f is continuous
in [a, b).

9.48

y

xa b − h b

y = f(x) Illustrating definition
(9.47). The shaded area
is
∫ b−h

a
f(x) dx.

9.49
|f(x)| ≤ g(x) for all x ≥ a ⇒∣∣∣∣∫ ∞

a

f(x) dx

∣∣∣∣ ≤ ∫ ∞

a

g(x) dx

Comparison test for in-
tegrals. f and g are con-
tinuous for x ≥ a.

9.50
d

dx

∫ b

a

f(x, t) dt =
∫ b

a

f ′
x(x, t) dt

“Differentiation under
the integral sign”. a and
b are independent of x.

9.51
d

dx

∫ ∞

c

f(x, t) dt =
∫ ∞

c

f ′
x(x, t) dt

Valid for x in (a, b)
if f(x, t) and f ′

x(x, t)
are continuous for all
t ≥ c and all x in (a, b),
and

∫∞
c

f(x, t) dt and∫∞
c

f ′
x(x, t) dt converge

uniformly on (a, b).
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9.52

d

dx

∫ v(x)

u(x)
f(x, t) dt =

f
(
x, v(x)

)
v′(x)− f

(
x, u(x)

)
u′(x) +

v(x)∫
u(x)

f ′
x(x, t) dt

Leibniz’s formula.

9.53 Γ(x) =
∫ ∞

0
e−ttx−1 dt, x > 0 The gamma function.

9.54

y

1

2

3

x
1 2 3 4

Γ(x)
The graph of the gamma
function. The minimum
value is ≈ 0.8856 at x ≈
1.4616.

9.55 Γ(x + 1) = x Γ(x) for all x > 0 The functional equation
for the gamma function.

9.56 Γ(n) = (n− 1)! when n is a positive integer.
Follows immediately
from the functional
equation.

9.57
∫ +∞

−∞
e−at2 dt =

√
π/a (a > 0) An important formula.

9.58

y

t

1y = e−at2

According to (9.57) the
shaded area is

√
π/a .

9.59
∫ ∞

0
tke−at2 dt =

1
2
a−(k+1)/2Γ((k + 1)/2) Valid for a > 0, k > −1.

9.60 Γ(x) =
√

2π xx− 1
2 e−xeθ/12x, x > 0, θ ∈ (0, 1) Stirling’s formula.

9.61 B(p, q) =
∫ 1

0
up−1(1− u)q−1 du, p, q > 0 The beta function.

9.62 B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

The relationship between
the beta function and
the gamma function.
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9.63

b∫
a

f(x) dx ≈ b− a

2n
[f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)]

The trapezoid formula.

xi = a + i
b − a

n
,

i = 0, . . . , n.

9.64
If f is C2 on [a, b] and |f ′′(x)| ≤M for all x in
[a, b], then M(b − a)3/12n2 is an upper bound
on the error of approximation in (9.63).

Trapezoidal error
estimate.

9.65

∫ b

a

f(x) dx ≈ b− a

6n
D, where D =

f(x0) + 4
n∑

i=1

f(x2i−1) + 2
n−1∑
i=1

f(x2i) + f(x2n)

Simpson’s formula. The

points xj = a + j
b − a

2n
,

j = 0, . . . , 2n,
partition [a, b] into 2n
equal subintervals.

9.66
If f is C4 on [a, b] and |f (4)(x)| ≤M for all x in
[a, b], then M(b− a)5/180n4 is an upper bound
on the error of approximation in (9.65).

Simpson’s error
estimate.

Multiple integrals

9.67

∫∫
R

f(x, y) dx dy =
∫ b

a

(
∫ d

c

f(x, y) dy) dx

=
∫ d

c

(
∫ b

a

f(x, y) dx) dy

Definition of the double
integral of f(x, y) over
a rectangle R = [a, b] ×
[c, d]. (The fact that the
two iterated integrals
are equal for continuous
functions, is Fubini’s
theorem.)

9.68
∫∫

ΩA

f(x, y) dx dy =
∫ b

a

(
∫ v(x)

u(x)
f(x, y) dy) dx

The double integral of a
function f(x, y) over the
region ΩA in figure A.

9.69
∫∫

ΩB

f(x, y) dx dy =
∫ d

c

(
∫ q(y)

p(y)
f(x, y) dx) dy

The double integral of a
function f(x, y) over the
region ΩB in figure B.

y

x

y = v(x)

y = u(x)

a b

ΩA

y

x

d

c

x = p(y)

x = q(y)

ΩB

A B
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9.70

F ′′
xy(x, y) = f(x, y), (x, y) ∈ [a, b]× [c, d] ⇒∫ d

c

(
∫ b

a

f(x, y) dx) dy =

F (b, d)− F (a, d)− F (b, c) + F (a, c)

An interesting result.
f(x, y) is a continuous
function.

9.71

∫∫
A

f(x, y) dx dy =∫∫
A′

f(g(u, v), h(u, v))|J | du dv

Change of variables
in a double integral.
x = g(u, v), y =
h(u, v) is a one-to-one
C1 transformation of
A′ onto A, and the
Jacobian determinant
J = ∂(g, h)/∂(u, v) does
not vanish in A′. f is
continuous.

9.72

∫∫
· · ·
∫

Ω
f(x) dx1 . . . dxn−1 dxn =∫ bn

an

(
∫ bn−1

an−1

· · · (
∫ b1

a1

f(x) dx1) · · · dxn−1) dxn

The n-integral of f over
an n-dimensional rectan-
gle Ω. x = (x1, . . . , xn).

9.73

∫
· · ·
∫

A

f(x) dx1 . . . dxn =∫
· · ·
∫

A′
f(g1(u), . . . , gn(u))

∣∣J∣∣ du1 . . . dun

Change of variables in
the n-integral. xi =
gi(u), i = 1, . . . , n, is
a one-to-one C1 trans-
formation of A′ onto A,
and the Jacobian deter-
minant

J =
∂(g1, . . . , gn)
∂(u1, . . . , un)

does

not vanish in A′. f is
continuous.

References

Most of these formulas can be found in any calculus text, e.g. Edwards and Penney
(1998). For (9.67)–(9.73), see Marsden and Hoffman (1993), who have a precise
treatment of multiple integrals. (Not all the required assumptions are spelled out in
the subsection on multiple integrals.)



Chapter 10

Difference equations

10.1 xt = atxt−1 + bt, t = 1, 2, . . .
A first-order linear
difference equation.

10.2 xt =
( t∏
s=1

as

)
x0 +

t∑
k=1

( t∏
s=k+1

as

)
bk

The solution of (10.1) if
we define the “empty”
product

∏t

s=t+1 as as 1.

10.3 xt = atx0 +
t∑

k=1

at−kbk, t = 1, 2, . . .
The solution of (10.1)
when at = a, a constant.

10.4
• xt = Aat +

∞∑
s=0

asbt−s, |a| < 1

• xt = Aat −
∞∑

s=1

(
1
a

)s

bt+s, |a| > 1

The backward and for-
ward solutions of (10.1),
respectively, with at = a,
and with A as an arbi-
trary constant.

10.5 xt = axt−1 + b ⇔ xt = at
(
x0 − b

1− a

)
+

b

1− a

Equation (10.1) and its
solution when
at = a 
= 1, bt = b.

10.6
(∗) xt + a1(t)xt−1 + · · ·+ an(t)xt−n = bt

(∗∗) xt + a1(t)xt−1 + · · ·+ an(t)xt−n = 0

(∗) is the general linear
inhomogeneous difference
equation of order n, and
(∗∗) is the associated
homogeneous equation.

10.7

If u1(t), . . . , un(t) are linearly independent solu-
tions of (10.6) (∗∗), u∗

t is some particular solu-
tion of (10.6) (∗), and C1, . . . , Cn are arbitrary
constants, then the general solution of (∗∗) is

xt = C1u1(t) + · · ·+ Cnun(t)
and the general solution of (∗) is

xt = C1u1(t) + · · ·+ Cnun(t) + u∗
t

The structure of the
solutions of (10.6). (For
linear independence, see
(11.21).)
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10.8

For b �= 0, xt + axt−1 + bxt−2 = 0 has the
solution:
• For 1

4a2 − b > 0 : xt = C1m
t
1 + C2m

t
2,

where m1,2 = − 1
2a±

√
1
4a2 − b .

• For 1
4a2 − b = 0 : xt = (C1 + C2t)(−a/2)t.

• For 1
4a2 − b < 0 : xtArt cos(θt + ω),

where r =
√

b and cos θ = − a

2
√

b
, θ ∈ [0, π].

The solutions of a homo-
geneous, linear second-
order difference equation
with constant coefficients
a and b. C1, C2, and ω
are arbitrary constants.

10.9

To find a particular solution of
(∗) xt + axt−1 + bxt−2 = ct, b �= 0
use the following trial functions and determine
the constants by using the method of undeter-
mined coefficients:
• If ct = c, try u∗

t = A.
• If ct = ct + d, try u∗

t = At + B.
• If ct = tn, try u∗

t = A0 + A1t + · · ·+ Antn.
• If ct = ct, try u∗

t = Act.
• If ct = α sin ct + β cos ct, try u∗

t = A sin ct +
B cos ct.

If the function ct is
itself a solution of the
homogeneous equation,
multiply the trial solu-
tion by t. If this new
trial function also satis-
fies the homogeneous
equation, multiply the
trial function by t again.
(See Hildebrand (1968),
Sec. 1.8 for the general
procedure.)

10.10
(∗) xt + a1xt−1 + · · ·+ anxt−n = bt

(∗∗) xt + a1xt−1 + · · ·+ anxt−n = 0

Linear difference equa-
tions with constant
coefficients.

10.11 mn + a1m
n−1 + · · ·+ an−1m + an = 0

The characteristic equa-
tion of (10.10). Its roots
are called characteristic
roots.

10.12

Suppose the characteristic equation (10.11) has
n different roots, λ1, . . . , λn, and define

θr
λr∏

1≤s≤n

s�=r

(λr − λs)
, r = 1, 2, . . . , n

Then a special solution of (10.10) (∗) is given
by

u∗
t =

n∑
r=1

θr

∞∑
i=0

λi
rbt−i

The backward solution
of (10.10)(∗), valid if
|λr| < 1 for r = 1, . . . , n.
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10.13

To obtain n linearly independent solutions of
(10.10) (∗∗): Find all roots of the characteristic
equation (10.11). Then:
• A real root mi with multiplicity 1 gives rise

to a solution mt
i.

• A real root mj with multiplicity p > 1, gives
rise to solutions mt

j , tmt
j , . . . , tp−1mt

j .
• A pair of complex roots mk = α + iβ,

mk = α − iβ with multiplicity 1, gives rise
to the solutions rt cos θt, rt sin θt, where r =√

α2 + β2, and θ ∈ [0, π] satisfies cos θ =
α/r, sin θ = β/r.

• A pair of complex roots me = λ + iµ, me =
λ − iµ with multiplicity q > 1 gives rise to
the solutions u, v, tu, tv, . . . , tq−1u, tq−1v,
with u = st cos ϕt, v = st sin ϕt, where s =√

λ2 + µ2, and ϕ ∈ [0, π] satisfies cos ϕ =
λ/s, and sinϕ = µ/s.

A general method for
finding n linearly in-
dependent solutions of
(10.10) (∗∗).

10.14

The equations in (10.10) are called (globally
asymptotically) stable if any solution of the ho-
mogeneous equation (10.10) (∗∗) approaches 0
as t →∞.

Definition of stability for
a linear equation with
constant coefficients.

10.15
The equations in (10.10) are stable if and only
if all the roots of the characteristic equation
(10.11) have moduli less than 1.

Stability criterion for
(10.10).

10.16

∣∣∣∣ 1 an

an 1

∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
1 0 an an−1

a1 1 0 an

an 0 1 a1

an−1 an 0 1

∣∣∣∣∣∣∣∣ > 0, . . . ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 an an−1 . . . a1

a1 1 . . . 0 0 an . . . a2
...

...
. . .

...
...

...
. . .

...
an−1 an−2 . . . 1 0 0 . . . an

an 0 . . . 0 1 a1 . . . an−1

an−1 an . . . 0 0 1 . . . an−2
...

...
. . .

...
...

...
. . .

...
a1 a2 . . . an 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

A necessary and suffi-
cient condition for all
the roots of (10.11) to
have moduli less than 1.
(Schur’s theorem.)

10.17 xt + a1xt−1 = bt is stable ⇐⇒ |a1| < 1 Special case of (10.15)
and (10.16).
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10.18

xt + a1xt−1 + a2xt−2 = bt is stable

⇐⇒
⎧⎨⎩ 1− a2 > 0

1− a1 + a2 > 0
1 + a1 + a2 > 0

Special case of (10.15)
and (10.16).

10.19

xt + a1xt−1 + a2xt−2 + a3xt−3 = bt is stable

⇐⇒
⎧⎨⎩

3− a2 > 0
1− a2 + a1a3 − a2

3 > 0
1 + a2 − |a1 + a3| > 0

Special case of (10.15)
and (10.16).

10.20

xt + a1xt−1 + a2xt−2 + a3xt−3 + a4xt−4bt

is stable ⇐⇒⎧⎪⎪⎨⎪⎪⎩
1− a4 > 0

3 + 3a4 − a2 > 0
1 + a2 + a4 − |a1 + a3| > 0
(1− a4)2(1 + a4 − a2) > (a1 − a3)(a1a4 − a3)

Special case of (10.15)
and (10.16).

10.21
x1(t) = a11(t)x1(t − 1) + · · · + a1n(t)xn(t − 1) + b1(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn(t) = an1(t)x1(t − 1) + · · · + ann(t)xn(t − 1) + bn(t)

Linear system of differ-
ence equations.

10.22 x(t) = A(t)x(t− 1) + b(t), t = 1, 2, . . .
Matrix form of (10.21).
x(t) and b(t) are n × 1,
A(t) = (aij(t)) is n × n.

10.23 x(t) = Atx(0)+ (At−1 +At−2 + · · ·+A+ I)b The solution of (10.22)
for A(t) = A, b(t) = b.

10.24 x(t) = Ax(t− 1) ⇐⇒ x(t) = Atx(0)
A special case of (10.23)
where b = 0, and with
A0 = I.

10.25

If A is an n × n diagonalizable matrix with
eigenvalues λ1, λ2, . . . , λn, then the solution
in (10.24) can be written as

x(t) = P

⎛⎜⎜⎝
λt

1 0 . . . 0
0 λt

2 . . . 0
...

...
. . .

...
0 0 . . . λt

n

⎞⎟⎟⎠P−1x(0)

where P is a matrix of corresponding linearly
independent eigenvectors of A.

An important result.

10.26
The difference equation (10.22) with A(t) = A
is called stable if Atx(0) converges to the zero
vector for every choice of the vector x(0).

Definition of stability of
a linear system.
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10.27
The difference equation (10.22) with A(t) = A
is stable if and only if all the eigenvalues of A
have moduli less than 1.

Characterization of sta-
bility of a linear system.

10.28

If all eigenvalues of A = (aij)n×n have moduli
less than 1, then every solution x(t) of

x(t) = Ax(t− 1) + b, t = 1, 2, . . .

converges to the vector (I−A)−1b.

The solution of an im-
portant equation.

Stability of first-order nonlinear difference equations

10.29 xt+1 = f(xt), t = 0, 1, 2, . . .
A general first-order
difference equation.

10.30
An equilibrium state of the difference equation
(10.29) is a point x∗ such that f(x∗) = x∗.

x∗ is a fixed point for f .
If x0 = x∗, then xt = x∗

for all t = 0, 1, 2, . . . .

10.31

An equilibrium state x∗ of (10.29) is locally
asymptotically stable if there exists a δ > 0 such
that, if |x0 − x∗| < δ then limt→∞ xt = x∗.

An equilibrium state x∗ is locally unstable if
there is a δ > 0 such that |f(x)−x∗| > |x−x∗|
for every x with 0 < |x− x∗| < δ.

A solution of (10.29)
that starts sufficiently
close to a locally asymp-
totically stable equilib-
rium x∗ converges to x∗.
A solution that starts
close to a locally unsta-
ble equilibrium x∗ will
move away from x∗, at
least to begin with.

10.32

If x∗ is an equilibrium state for equation (10.29)
and f is C1 in an open interval around x∗, then
• If |f ′(x∗)| < 1, then x∗ is locally asymptoti-

cally stable.
• If |f ′(x∗)| > 1, then x∗ is locally unstable.

A simple criterion for
local stability. See figure
(10.37) (a).

10.33
A cycle or periodic solution of xt+1 = f(xt)
with period n > 0 is a solution such that xt+n =
xt for some t, while xt+k �= xt for k = 1, . . . , n.

A cycle will repeat itself
indefinitely.

10.34
The equation xt+1 = f(xt) admits a cycle of
period 2 if and only if there exists points ξ1
and ξ2 such that f(ξ1) = ξ2 and f(ξ2) = ξ1.

ξ1 and ξ2 are fixed
points of F = f ◦ f .
See (10.37) (b).
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10.35

A period 2 cycle for xt+1 = f(xt) alternat-
ing between ξ1 and ξ2 is locally asymptotically
stable if every solution starting close to ξ1 (or
equivalently ξ2) converges to the cycle.

The cycle is locally
asymptotically stable
if ξ1 and ξ2 are locally
asymptotically stable
equilibria of the equation
yt+1 = f(f(yt)).

10.36

If f is C1 and xt+1 = f(xt) admits a period 2
cycle ξ1, ξ2 then:
• If |f ′(ξ1)f ′(ξ2)| < 1, then the cycle is locally

asymptotically stable.
• If |f ′(ξ1)f ′(ξ2)| > 1, then the cycle is locally

unstable.

An easy consequence
of (10.32). The cycle is
locally unstable if ξ1 or
ξ2 (or both) is a locally
unstable equilibrium of
yt+1 = f(f(yt)).

10.37

y

x

P0
P1

P2

x0 x1x2 x∗

y = f(x)

y

x
ξ1 ξ2

y = f(x)

(a) x∗ is stable (b) A cycle of period 2

Illustrations of (10.32)
and (10.34). In figure
(a), the sequence x0, x1,
x2, . . . is a solution of
(10.29), converging to
the equilibrium x∗. The
points Pi = (xi, xi+1) are
the corresponding points
on the graph of f .

References

Most of the formulas and results are found in e.g. Goldberg (1961), Gandolfo (1996),
and Hildebrand (1968). For (10.19) and (10.20), see Farebrother (1973). For (10.29)–
(10.36), see Sydsæter et al. (2005).



Chapter 11

Differential equations

First-order equations

11.1 ẋ(t) = f(t) ⇐⇒ x(t) = x(t0) +
∫ t

t0

f(τ) dτ

A simple differential
equation and its solu-
tion. f(t) is a given
function and x(t) is the
unknown function.

11.2

dx

dt
= f(t)g(x) ⇐⇒

∫
dx

g(x)
=
∫

f(t) dt

Evaluate the integrals. Solve the resulting im-
plicit equation for x = x(t).

A separable differential
equation. If g(a) = 0,
x(t) ≡ a is a solution.

11.3 ẋ = g(x/t) and z = x/t =⇒ t
dz

dt
= g(z)− z

A projective differential
equation. The substitu-
tion z = x/t leads to a
separable equation for z.

11.4

The equation ẋ = B(x − a)(x − b) has the so-
lutions

x ≡ a, x ≡ b, x = a +
b− a

1− CeB(b−a)t

a 
= b. a = 0 gives the
logistic equation. C is a
constant.

11.5
• ẋ + ax = b ⇔ x = Ce−at +

b

a
• ẋ + ax = b(t) ⇔ x = e−at(C +

∫
b(t)eat dt)

Linear first-order dif-
ferential equations with
constant coefficient
a 
= 0. C is a constant.

11.6
ẋ + a(t) x = b(t) ⇐⇒

x = e−
∫

a(t) dt

(
C +

∫
e
∫

a(t) dtb(t) dt

) General linear first-order
differential equation.
a(t) and b(t) are given.
C is a constant.
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11.7
ẋ + a(t) x = b(t) ⇐⇒

x(t) = x0e
−
∫ t

t0
a(ξ) dξ

+
∫ t

t0

b(τ)e−
∫ t

τ
a(ξ) dξ

dτ

Solution of (11.6) with
given initial condition
x(t0) = x0.

11.8

ẋ + a(t)x = b(t)xr has the solution

x(t)=e−A(t)
[
C+(1− r)

∫
b(t)e(1−r)A(t) dt

] 1
1−r

where A(t) =
∫

a(t) dt.

Bernoulli’s equation and
its solution (r 
= 1). C is
a constant. (If r = 1, the
equation is separable.)

11.9 ẋ = P (t) + Q(t) x + R(t) x2

Riccati’s equation. Not
analytically solvable in
general. The substitu-
tion x = u + 1/z works
if we know a particular
solution u = u(t).

11.10

The differential equation
(∗) f(t, x) + g(t, x) ẋ = 0

is called exact if f ′
x(t, x) = g′

t(t, x). The solu-
tion x = x(t) is then given implicitly by the
equation

∫ t

t0
f(τ, x) dτ +

∫ x

x0
g(t0, ξ) dξ = C for

some constant C.

An exact equation and
its solution.

11.11

A function β(t, x) is an integrating factor for (∗)
in (11.10) if β(t, x)f(t, x) + β(t, x)g(t, x)ẋ = 0
is exact.
• If (f ′

x − g′
t)/g is a function of t alone, then

β(t) = exp[
∫

(f ′
x − g′

t)/g dt] is an integrating
factor.

• If (g′
t − f ′

x)/f is a function of x alone, then
β(x) = exp[

∫
(g′

t−f ′
x)/f dx] is an integrating

factor.

Results which occasion-
ally can be used to solve
equation (∗) in(11.10).

11.12

Consider the initial value problem
(∗) ẋ = F (t, x), x(t0) = x0

where F (t, x) and F ′
x(t, x) are continuous over

the rectangle
Γ =

{
(t, x) : |t− t0| ≤ a, |x− x0| ≤ b

}
Define

M = max
(t,x)∈Γ

|F (t, x)|, r = min
(
a, b/M

)
Then (∗) has a unique solution x(t) on the open
interval (t0 − r, t0 + r), and |x(t) − x0| ≤ b in
this interval.

A (local) existence and
uniqueness theorem.
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11.13

Consider the initial value problem

ẋ = F (t, x), x(t0) = x0

Suppose that F (t, x) and F ′
x(t, x) are continu-

ous for all (t, x). Suppose too that there exist
continuous functions a(t) and b(t) such that

(∗) |F (t, x)| ≤ a(t)|x|+ b(t) for all (t, x)

Given an arbitrary point (t0, x0), there exists a
unique solution x(t) of the initial value prob-
lem, defined on (−∞,∞).

If (∗) is replaced by the condition

xF (t, x) ≤ a(t)|x|2 + b(t) for all x and all t ≥ t0

then the initial value problem has a unique so-
lution defined on [t0,∞).

Global existence and
uniqueness.

11.14 ẋ = F (x)

An autonomous first-
order differential equa-
tion. If F (a) = 0, then a
is called an equilibrium.

11.15

ẋ

x

ẋ = F (x)

a2a1

If a solution x starts
close to a1, then x(t)
will approach a1 as t in-
creases. On the other
hand, if x starts close to
a2 (but not at a2), then
x(t) will move away from
a2 as t increases. a1 is
a locally stable equilib-
rium state for ẋ = F (x),
whereas a2 is unstable.

11.16

• F (a) = 0 and F ′(a) < 0 ⇒ a is a locally
asymptotically stable equilibrium.

• F (a) = 0 and F ′(a) > 0 ⇒ a is an unstable
equilibrium.

On stability of equilib-
rium for (11.14). The
precise definitions of sta-
bility is given in (11.52).

11.17

If F is a C1 function, every solution of the auto-
nomous differential equation ẋ = F (x) is either
constant or strictly monotone on the interval
where it is defined.

An interesting result.
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11.18

Suppose that x = x(t) is a solution of

ẋ = F (x)

where the function F is continuous. Suppose
that x(t) approaches a (finite) limit a as t ap-
proaches ∞. Then a must be an equilibrium
state for the equation—i.e. F (a) = 0.

A convergent solu-
tion converges to an
equilibrium

Higher order equations

11.19 dnx

dtn
+ a1(t)

dn−1x

dtn−1 + · · · + an−1(t)
dx

dt
+ an(t)x = f(t)

The general linear nth-
order differential equa-
tion. When f(t) is not
0, the equation is called
inhomogeneous.

11.20 dnx

dtn
+ a1(t)

dn−1x

dtn−1 + · · · + an−1(t)
dx

dt
+ an(t)x = 0

The homogeneous equa-
tion associated with
(11.19).

11.21

The functions u1(t), . . . , um(t) are linearly in-
dependent if the equation

C1u1(t) + · · ·+ Cmum(t) = 0

holds for all t only if the constants C1, . . . , Cm

are all 0. The functions are linearly dependent
if they are not linearly independent.

Definition of linear
independence and
dependence.

11.22

If u1(t), . . . , un(t) are linearly independent so-
lutions of the homogeneous equation (11.20)
and u∗(t) is some particular solution of the non-
homogeneous equation (11.19), then the general
solution of (11.20) is

x(t) = C1u1(t) + · · ·+ Cnun(t)

and the general solution of (11.19) is

x(t) = C1u1(t) + · · ·+ Cnun(t) + u∗(t)

where C1, . . . , Cn are arbitrary constants.

The structure of the so-
lutions of (11.20) and
(11.19). (Note that it is
not possible, in general,
to find analytic expres-
sions for the required
n solutions u1(t), . . . ,
un(t) of (11.20).)
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11.23

Method for finding a particular solution of
(11.19) if u1, . . . , un are n linearly independent
solutions of (11.20): Solve the system

Ċ1(t)u1 + · · ·+ Ċn(t)un = 0
Ċ1(t)u̇1 + · · ·+ Ċn(t)u̇n = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ċ1(t)u
(n−2)
1 + · · ·+ Ċn(t)u(n−2)

n = 0

Ċ1(t)u
(n−1)
1 + · · ·+ Ċn(t)u(n−1)

n = b(t)

for Ċ1(t), . . . , Ċn(t). Integrate to find C1(t),
. . . , Cn(t). Then one particular solution of
(11.19) is u∗(t) = C1(t)u1 + · · ·+ Cn(t)un.

The method of variation
of parameters, which al-
ways makes it possible
to find a particular solu-
tion of (11.19), provided
one knows the general
solution of (11.20). Here
u

(i)
j = diuj/dti is the ith

derivative of uj .

11.24

ẍ + aẋ + bx = 0 has the general solution:
• If 1

4a2 − b > 0 : x = C1e
r1t + C2e

r2t

where r1,2 = − 1
2a±

√
1
4a2 − b.

• If 1
4a2 − b = 0 : x = (C1 + C2t)e−at/2.

• If 1
4a2 − b < 0 : x = Aeαt cos(βt + ω),

where α = − 1
2a, β =

√
b− 1

4a2.

The solution of a homo-
geneous second-order lin-
ear differential equation
with constant coefficients
a and b. C1, C2, A, and
ω are constants.

11.25

ẍ + aẋ + bx = f(t), b �= 0, has a particular
solution u∗ = u∗(t):
• f(t) = A : u∗ = A/b

• f(t) = At + B : u∗ =
A

b
t +

bB − aA

b2

• f(t) = At2 + Bt + C :

u∗ = A
b t2 + (bB−2aA)

b2 t + Cb2−(2A+aB)b+2a2A
b3

• f(t) = peqt : u∗ = peqt/(q2 + aq + b)
(if q2 + aq + b �= 0).

Particular solutions of
ẍ + aẋ + bx = f(t). If
f(t) = peqt, q2 + aq + b =
0, and 2q + a 
= 0, then
u∗ = pteqt/(2q + a) is a
solution. If f(t) = peqt ,
q2 + aq + b = 0, and
2q + a = 0, then u∗ =
1
2pt2eqt is a solution.

11.26

t2ẍ + atẋ + bx = 0, t > 0, has the general
solution:
• If (a− 1)2 > 4b : x = C1t

r1 + C2t
r2 ,

where r1,2 = − 1
2

[
(a−1)±√(a− 1)2 − 4b

]
.

• If (a− 1)2 = 4b : x = (C1 + C2 ln t) t(1−a)/2.

• If (a− 1)2 < 4b : x = Atλ cos(µ ln t + ω),
where λ = 1

2 (1− a), µ = 1
2

√
4b− (a− 1)2.

The solutions of Euler’s
equation of order 2. C1,
C2, A, and ω are arbi-
trary constants.
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11.27
dnx

dtn
+ a1

dn−1x

dtn−1 + · · ·+ an−1
dx

dt
+ anx = f(t)

The general linear
differential equation of
order n with constant
coefficients.

11.28
dnx

dtn
+ a1

dn−1x

dtn−1 + · · ·+ an−1
dx

dt
+ anx = 0

The homogeneous equa-
tion associated with
(11.27).

11.29 rn + a1r
n−1 + · · ·+ an−1r + an = 0

The characteristic equa-
tion associated with
(11.27) and (11.28).

11.30

To obtain n linearly independent solutions of
(11.28): Find all roots of (11.29).
• A real root ri with multiplicity 1 gives rise

to a solution erit.
• A real root rj with multiplicity p > 1 gives

rise to the solutions erjt, terjt, . . . , tp−1erjt.
• A pair of complex roots rk = α + iβ, r̄k =

α − iβ with multiplicity 1 gives rise to the
solutions eαt cos βt and eαt sin βt.

• A pair of complex roots re = λ + iµ, r̄e =
λ − iµ with multiplicity q > 1, gives rise to
the solutions u, v, tu, tv, . . . , tq−1u, tq−1v,
where u = eλt cos µt and v = eλt sin µt.

General method for find-
ing n linearly indepen-
dent solutions of (11.28).

11.31 x = x(t) = C1e
r1t + C2e

r2t + · · ·+ Cnernt

The general solution
of (11.28) if the roots
r1, . . . , rn of (11.29) are
all real and different.

11.32
Equation (11.28) (or (11.27)) is stable (glob-
ally asymptotically stable) if every solution of
(11.28) tends to 0 as t →∞.

Definition of stability
for linear equations with
constant coefficients.

11.33
Equation (11.28) is stable ⇐⇒ all the roots
of the characteristic equation (11.29) have neg-
ative real parts.

Stability criterion for
(11.28).

11.34 (11.28) is stable ⇒ ai > 0 for all i = 1, . . . , n
Necessary condition for
the stability of (11.28).
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11.35 A =

⎛⎜⎜⎜⎜⎜⎜⎝

a1 a3 a5 . . . 0 0
a0 a2 a4 . . . 0 0
0 a1 a3 . . . 0 0
...

...
...

...
...

0 0 0 . . . an−1 0
0 0 0 . . . an−2 an

⎞⎟⎟⎟⎟⎟⎟⎠

A matrix associated with
the coefficients in (11.28)
(with a0 = 1). The kth
column of this matrix is
. . . ak+1 ak ak−1 . . . ,
where the element ak

is on the main diagonal.
An element ak+j with
k + j negative or greater
than n, is set to 0.)

11.36 (a1),
(

a1 0
1 a2

)
,

⎛⎝ a1 a3 0
1 a2 0
0 a1 a3

⎞⎠ The matrix A in (11.35)
for n = 1, 2, 3, with
a0 = 1.

11.37 (11.28) is stable ⇐⇒

⎧⎪⎨⎪⎩
all leading principal
minors of A in (11.35)
(with a0 = 1) are pos-
itive.

Routh–Hurwitz’s stabil-
ity conditions.

11.38

• ẋ + a1x = f(t) is stable ⇐⇒ a1 > 0

• ẍ+a1ẋ+a2x = f(t) is stable ⇐⇒
{

a1 > 0
a2 > 0

• ...
x + a1ẍ + a2ẋ + a3x = f(t) is stable

⇐⇒ a1 > 0, a3 > 0 and a1a2 > a3

Special cases of (11.37).
(It is easily seen that
the conditions are equiv-
alent to requiring that
the leading principal mi-
nors of the matrices in
(11.36) are all positive.)

Systems of differential equations

11.39

dx1

dt
= f1(t, x1, . . . , xn)

. . . . . . . . . . . . . . . . . . . . . .
dxn

dt
= fn(t, x1, . . . , xn)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇐⇒ ẋ = F(t,x)

A normal (nonauton-
omous) system of dif-
ferential equations.
Here x = (x1, . . . , xn),
ẋ = (ẋ1, . . . , ẋn), and
F = (f1, · · · , fn).

11.40
ẋ1 = a11(t)x1 + · · ·+ a1n(t)xn + b1(t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẋn = an1(t)x1 + · · ·+ ann(t)xn + bn(t)

A linear system of differ-
ential equations.

11.41 ẋ = A(t)x + b(t), x(t0) = x0

A matrix formulation of
(11.40), with an initial
condition. x, ẋ, and b(t)
are column vectors and
A(t) = (aij(t))n×n.
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11.42 ẋ = Ax, x(t0) = x0 ⇐⇒ x = eA(t−t0)x0

The solution of (11.41)
for A(t) = A, b(t) = 0.
(For matrix exponen-
tials, see (19.30).)

11.43

Let pj(t) = (p1j(t), . . . , pnj(t))′, j = 1, . . . ,
n be n linearly independent solutions of the
homogeneous differential equation ẋ = A(t)x,
with pj(t0) = ej , j = 1, . . . , n, where ej is
the jth standard unit vector in R

n. Then the
resolvent of the equation is the matrix

P(t, t0) =

⎛⎜⎝ p11(t) . . . p1n(t)
...

. . .
...

pn1(t) . . . pnn(t)

⎞⎟⎠

The definition of the
resolvent of a homoge-
neous linear differen-
tial equation. Note that
P(t0, t0) = In.

11.44 x = P(t, t0)x0 +
∫ t

t0

P(t, s)b(s) ds The solution of (11.41).

11.45

If P(t, s) is the resolvent of

ẋ = A(t)x

then P(s, t)′ (the transpose of P(s, t)) is the
resolvent of

ż = −A(t)′z

A useful fact.

11.46

Consider the nth-order differential equation

(∗) dnx

dtn
= F

(
t, x,

dx

dt
, . . . ,

dn−1x

dtn−1

)
By introducing new variables,

y1 = x, y2 =
dx

dt
, . . . , yn =

dn−1x

dtn−1

one can transform (∗) into a normal system:
ẏ1 = y2

ẏ2 = y3

. . . . . . . .
ẏn−1 = yn

ẏn = F (t, y1, y2, . . . , yn)

Any nth-order differ-
ential equation can be
transformed into a nor-
mal system by introduc-
ing new unknowns.
(A large class of systems
of higher order differ-
ential equations can be
transformed into a nor-
mal system by introduc-
ing new unknowns in a
similar way.)



77

11.47

Consider the initial value problem
(∗) ẋ = F(t,x), x(t0) = x0

where F = (f1, . . . , fn) and its first-order par-
tials w.r.t. x1, . . . , xn are continuous over the
set

Γ =
{

(t,x) : |t− t0| ≤ a, ‖x− x0‖ ≤ b
}

Define
M = max

(t,x)∈Γ
‖F(t,x)‖, r = min

(
a, b/M

)
Then (∗) has a unique solution x(t) on the open
interval (t0 − r, t0 + r), and ‖x(t)− x0‖ ≤ b in
this interval.

A (local) existence and
uniqueness theorem.

11.48

Consider the initial value problem
(1) ẋ = F(t,x), x(t0) = x0

where F = (f1, . . . , fn) and its first-order par-
tials w.r.t. x1, . . . , xn are continuous for all
(t,x). Assume, moreover, that there exist con-
tinuous functions a(t) and b(t) such that
(2) ‖F(t,x)‖ ≤ a(t)‖x‖+ b(t) for all (t,x)
or
(3) x · F(t,x) ≤ a(t)‖x‖2 + b(t) for all (t,x)
Then, given any point (t0,x0), there exists a
unique solution x(t) of (1) defined on (−∞,∞).

The inequality (2) is satisfied, in particular,
if for all (t,x),
(4) ‖F′

x(t,x)‖ ≤ c(t) for a continuous c(t)

A global existence and
uniqueness theorem. In
(4) any matrix norm for
F′

x(t,x) can be used.
(For matrix norms, see
(19.26).)

Autonomous systems

11.49
ẋ1 = f1(x1, . . . , xn)
. . . . . . . . . . . . . . . . . . .
ẋn = fn(x1, . . . , xn)

An autonomous system
of first-order differential
equations.

11.50 a = (a1, . . . , an) is an equilibrium point for the
system (11.49) if fi(a) = 0, i = 1, . . . , n.

Definition of an equilib-
rium point for (11.49).

11.51

If x(t) = (x1(t), . . . , xn(t)) is a solution of the
system (11.49) on an interval I, then the set of
points x(t) in R

n trace out a curve in R
n called

a trajectory (or an orbit) for the system.

Definition of a trajectory
(or an orbit), also called
an integral curve.
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11.52

An equilibrium point a for (11.49) is (locally)
stable if all solutions that start close to a stay
close to a: For every ε > 0 there is a δ > 0
such that if ‖x − a‖ < δ, then there exists a
solution ϕ(t) of (11.49), defined for t ≥ 0, with
ϕ(0) = x, that satisfies

‖ϕ(t)− a‖ < ε for all t > 0

If a is stable and there exists a δ′ > 0 such that

‖x− a‖ < δ′ =⇒ lim
t→∞ ‖ϕ(t)− a‖ = 0

then a is (locally) asymptotically stable.
If a is not stable, it is called unstable.

Definition of (local) sta-
bility and unstability.

11.53
δ

ε
a
x

Locally stable

δ

ε
a
x

Asymptotically
stable

δ

ε
a
x

Unstable

Illustrations of stability
concepts. The curves
with arrows attached are
possible trajectories.

11.54
If every solution of (11.49), whatever its initial
point, converges to a unique equilibrium point
a, then a is globally asymptotically stable.

Global asymptotic sta-
bility.

11.55

Locally stable Globally stable Unstable Unstable

Less technical illus-
trations of stability
concepts.

11.56

Suppose x(t) is a solution of system (11.49)
with F = (f1, . . . , fn) a C1 function, and with
x(t0 + T ) = x(t0) for some t0 and some T > 0.
Then x(t + T ) = x(t) for all t.

If a solution of (11.49)
returns to its starting
point after a length of
time T , then it must be
periodic, with period T .
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11.57

Suppose that a solution (x(t), y(t)) of the sys-
tem

ẋ = f(x, y), ẏ = g(x, y)
stays within a compact region of the plane that
contains no equilibrium point of the system. Its
trajectory must then spiral into a closed curve
that is itself the trajectory of a periodic solution
of the system.

The Poincaré–Bendixson
theorem.

11.58

Let a be an equilibrium point for (11.49) and
define

A =

⎛⎜⎜⎜⎜⎜⎝
∂f1(a)
∂x1

. . .
∂f1(a)
∂xn

...
. . .

...
∂fn(a)

∂x1
. . .

∂fn(a)
∂xn

⎞⎟⎟⎟⎟⎟⎠
If all the eigenvalues of A have negative real
parts, then a is (locally) asymptotically stable.

If at least one eigenvalue has a positive real
part, then a is unstable.

A Liapunov theorem.
The equilibrium point a
is called a sink if all the
eigenvalues of A have
negative real parts. (It is
called a source if all the
eigenvalues of A have
positive real parts.)

11.59

A necessary and sufficient condition for all the
eigenvalues of a real n× n matrix A = (aij)
to have negative real parts is that the following
inequalities hold:
• For n = 2: tr(A) < 0 and |A| > 0
• For n = 3: tr(A) < 0, |A| < 0, and∣∣∣∣∣∣

a22 + a33 −a12 −a13
−a21 a11 + a33 −a23
−a31 −a32 a11 + a22

∣∣∣∣∣∣ < 0

Useful characterizations
of stable matrices of or-
ders 2 and 3. (An n × n
matrix is often called
stable if all its eigen-
values have negative real
parts.)

11.60

Let (a, b) be an equilibrium point for the system
ẋ = f(x, y), ẏ = g(x, y)

and define

A =

⎛⎜⎜⎝
∂f(a, b)

∂x

∂f(a, b)
∂y

∂g(a, b)
∂x

∂g(a, b)
∂y

⎞⎟⎟⎠
Then, if tr(A) < 0 and |A| > 0, (a, b) is locally
asymptotically stable.

A special case of (11.58).
Stability in terms of the
signs of the trace and
the determinant of A,
valid if n = 2.
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11.61
An equilibrium point a for (11.49) is called hy-
perbolic if the matrix A in (11.58) has no eigen-
value with real part zero.

Definition of a hyper-
bolic equilibrium point.

11.62 A hyperbolic equilibrium point for (11.49) is
either unstable or asymptotically stable.

An important result.

11.63

Let (a, b) be an equilibrium point for the system
ẋ = f(x, y), ẏ = g(x, y)

and define

A(x, y) =
(

f ′
1(x, y) f ′

2(x, y)
g′
1(x, y) g′

2(x, y)

)
Assume that the following three conditions are
satisfied:
(a) tr(A(x, y)) = f ′

1(x, y) + g′
2(x, y) < 0

for all (x, y) in R
2

(b) |A(x, y)| =
∣∣∣∣ f ′

1(x, y) f ′
2(x, y)

g′
1(x, y) g′

2(x, y)

∣∣∣∣ > 0

for all (x, y) in R
2

(c) f ′
1(x, y)g′

2(x, y) �= 0 for all (x, y) in R
2 or

f ′
2(x, y)g′

1(x, y) �= 0 for all (x, y) in R
2

Then (a, b) is globally asymptotically stable.

Olech’s theorem.

11.64

V (x) = V (x1, . . . , xn) is a Liapunov function
for system (11.49) in an open set Ω containing
an equilibrium point a if
• V (x) > 0 for all x �= a in Ω, V (a) = 0, and

• V̇ (x) =
n∑

i=1

∂V (x)
∂xi

dxi

dt
=

n∑
i=1

∂V (x)
∂xi

fi(x) ≤ 0

for all x �= a in Ω.

Definition of a Liapunov
function.

11.65

Let a be an equilibrium point for (11.49) and
suppose there exists a Liapunov function V (x)
for the system in an open set Ω containing a.
Then a is a stable equilibrium point. If also

V̇ (x) < 0 for all x �= a in Ω
then a is locally asymptotically stable.

A Liapunov theorem.
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11.66

The modified Lotka–Volterra model
ẋ = kx−axy−εx2, ẏ = −hy+bxy−δy2

has an asymptotically stable equilibrium

(x0, y0) =
(

ah + kδ

ab + δε
,
bk − hε

ab + δε

)
The function V (x, y) = H(x, y) − H(x0, y0),
where

H(x, y) = b(x− x0 lnx) + a(y − y0 ln y)
is a Liapunov function for the system, with
V̇ (x, y) < 0 except at the equilibrium point.

Example of the use of
(11.65): x is the num-
ber of rabbits, y is the
number of foxes. (a, b,
h, k, δ, and ε are posi-
tive, bk > hε.) ε = δ = 0
gives the classical Lotka–
Volterra model with
V̇ = 0 everywhere, and
integral curves that are
closed curves around the
equilibrium point.

11.67

Let (a, b) be an equilibrium point for the system
ẋ = f(x, y), ẏ = g(x, y)

and define A as the matrix in (11.60). If |A| <
0, there exist (up to a translation of t) precisely
two solutions (x1(t), y1(t)) and (x2(t), y2(t)) de-
fined on an interval [t0,∞) and converging to
(a, b). These solutions converge to (a, b) from
opposite directions, and both are tangent to the
line through (a, b) parallel to the eigenvector
corresponding to the negative eigenvalue. Such
an equilibrium is called a saddle point .

A local saddle point the-
orem. (|A| < 0 if and
only if the eigenvalues of
A are real and of oppo-
site signs.) For a global
version of this result, see
Seierstad and Sydsæter
(1987), Sec. 3.10, Theo-
rem 19.)

Partial differential equations

11.68

Method for finding solutions of

(∗) P (x, y, z)
∂z

∂x
+ Q(x, y, z)

∂z

∂y
= R(x, y, z)

• Find the solutions of the system
dy

dx
=

Q

P
,

dz

dx
=

R

P
where x is the independent variable. If the
solutions are given by y = ϕ1(x, C1, C2) and
z = ϕ2(x, C1, C2), solve for C1 and C2 to
obtain C1 = u(x, y, z) and C2 = v(x, y, z).

• If Φ is an arbitrary C1 function of two var-
iables, and at least one of the functions u
and v contains z, then z = z(x, y) defined
implicitly by the equation

Φ
(
u(x, y, z), v(x, y, z)

)
= 0,

is a solution of (∗).

The general quasilinear
first-order partial dif-
ferential equation and a
solution method. The
method does not, in gen-
eral, give all the solu-
tions of (∗). (See Zach-
manoglou and Thoe
(1986), Chap. II for
more details.)
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11.69

The following system of partial differential
equations

∂z(x)
∂x1

= f1(x, z(x))

∂z(x)
∂x2

= f2(x, z(x))
. . . . . . . . . . . . . . . . . . .
∂z(x)
∂xn

= fn(x, z(x))

in the unknown function z(x) = z(x1, . . . , xn),
has a solution if and only if the n× n matrix
of first-order partial derivatives of f1, . . . , fn

w.r.t. x1, . . . , xn is symmetric.

Frobenius’s theorem.
The functions f1, . . . ,
fn are C1.

References

Braun (1993) is a good reference for ordinary differential equations. For (11.10)–
(11.18) see e.g. Sydsæter et al. (2005). For (11.35)–(11.38) see Gandolfo (1996) or
Sydsæter et al. (2005). Beavis and Dobbs (1990) have most of the qualitative results
and also economic applications. For (11.68) see Sneddon (1957) or Zachmanoglou
and Thoe (1986). For (11.69) see Hartman (1982). For economic applications of
(11.69) see Mas-Colell, Whinston, and Green (1995).



Chapter 12

Topology in Euclidean space

12.1 B(a; r) = {x : ‖x− a‖ < r } (r > 0)

Definition of an open
n-ball of radius r and
center a in R

n. (‖ ‖ is
defined in (18.13).)

12.2

• A point a in S ⊂ R
n is an interior point of

S if there exists an n-ball with center at a,
all of whose points belong to S.

• A point b ∈ R
n (not necessarily in S) is

a boundary point of S if every n-ball with
center at b contains at least one point in S
and at least one point not in S.

Definition of interior
points and boundary
points.

12.3

A set S in R
n is called

• open if all its points are interior points,
• closed if R

n \ S is open,
• bounded if there exists a number M such that
‖x‖ ≤ M for all x in S,

• compact if it is closed and bounded.

Important definitions.
R

n \ S
= {x ∈ R

n : x 
∈ S}.

12.4

A set S in R
n is closed if and only if it contains

all its boundary points. The set S̄ consisting
of S and all its boundary points is called the
closure of S.

A useful characterization
of closed sets, and a defi-
nition of the closure of a
set.

12.5 A set S in R
n is called a neighborhood of a point

a in R
n if a is an interior point of S.

Definition of a neighbor-
hood.

12.6
A sequence {xk} in R

n converges to x if for
every ε > 0 there exists an integer N such that
‖xk − x‖ < ε for all k ≥ N .

Convergence of a se-
quence in R

n. If the se-
ries does not converge, it
diverges.

12.7
A sequence {xk} in R

n is a Cauchy sequence if
for every ε > 0 there exists an integer N such
that ‖xj − xk‖ < ε for all j, k ≥ N .

Definition of a Cauchy
sequence.
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12.8 A sequence {xk} in R
n converges if and only if

it is a Cauchy sequence.
Cauchy’s convergence
criterion.

12.9
A set S in R

n is closed if and only if the limit
x = limk xk of each convergent sequence {xk}
of points in S also lies in S.

Characterization of a
closed set.

12.10
Let {xk} be a sequence in R

n, and let k1 < k2 <
k3 < · · · be an increasing sequence of integers.
Then {xkj}∞

j=1, is called a subsequence of {xk}.
Definition of a subse-
quence.

12.11
A set S in R

n is compact if and only if every
sequence of points in S has a subsequence that
converges to a point in S.

Characterization of a
compact set.

12.12

A collection U of open sets is said to be an open
covering of the set S if every point of S lies in
at least one of the sets from U . The set S has
the finite covering property if whenever U is an
open covering of S, then a finite subcollection
of the sets in U covers S.

A useful concept.

12.13 A set S in R
n is compact if and only if it has

the finite covering property.
The Heine–Borel the-
orem.

12.14

f : M ⊂ R
n → R is continuous at a in M if for

each ε > 0 there exists a δ > 0 such that
|f(x)− f(a)| < ε

for all x in M with ‖x− a‖ < δ.

Definition of a continu-
ous function of n vari-
ables.

12.15

The function f = (f1, . . . , fm) : M ⊂ R
n → R

m

is continuous at a point a in M if for each ε > 0
there is a δ > 0 such that
‖f(x)− f(a)‖ < ε

for all x in M with ‖x− a‖ < δ.

Definition of a continu-
ous vector function of n
variables.

12.16

Let f = (f1, . . . , fm) be a function from M ⊂
R

n into R
m, and let a be a point in M . Then:

• f is continuous at a if and only if each fi is
continuous at a according to definition
(12.14).

• f is continuous at a if and only if f(xk) →
f(a) for every sequence {xk} in M that con-
verges to a.

Characterizations of a
continuous vector func-
tion of n variables.
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12.17
A function f : R

n → R
m is continuous at each

point x in R
n if and only if f−1(T ) is open

(closed) for every open (closed) set T in R
m.

Characterization of a
continuous vector func-
tion from R

n to R
m.

12.18
If f is a continuous function of R

n into R
m and

M is a compact set in R
n, then f(M) is com-

pact.

Continuous functions
map compact sets onto
compact sets.

12.19
Given a set A in R

n. The relative ball BA(a; r)
around a ∈ A of radius r is defined by the for-
mula BA(a; r) = B(a; r) ∩A.

Definition of a relative
ball.

12.20

Relative interior points, relative boundary
points, relatively open sets, and relatively closed
sets are defined in the same way as the ordi-
nary versions of these concepts, except that R

n

is replaced by a subset A, and balls by relative
balls.

Relative topology con-
cepts.

12.21

• U ⊂ A is relatively open in A ⊂ R
n if and

only if there exists an open set V in R
n such

that U = V ∩A.
• F ⊂ A is relatively closed in A ⊂ R

n if and
only if there exists a closed set H in R

n such
that F = H ∩A.

Characterizations of
relatively open and rela-
tively closed subsets of a
set A ⊂ R

n.

12.22

A function f from S ⊂ R
n to R

m is continuous
if and only if either of the following conditions
are satisfied:
• f−1(U) is relatively open in S for each open

set U in R
m.

• f−1(T ) is relatively closed in S for each
closed set T in R

m.

A characterization of
continuity that applies
to functions whose do-
main is not the whole of
R

n.

12.23

A function f : M ⊂ R
n → R

m is called uni-
formly continuous on the set S ⊂M if for each
ε > 0 there exists a δ > 0 (depending on ε but
NOT on x and y) such that
‖f(x)− f(y)‖ < ε

for all x and y in S with ‖x− y‖ < δ.

Definition of uniform
continuity of a function
from R

n to R
m.

12.24
If f : M ⊂ R

n → R
m is continuous and the set

S ⊂ M is compact, then f is uniformly contin-
uous on S.

Continuous functions on
compact sets are uni-
formly continuous.
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12.25

Let {fn} be a sequence of functions defined on
a set S ⊂ R

n and with range in R
m. The se-

quence {fn} is said to converge pointwise to a
function f on S, if the sequence {fn(x)} (in R

m)
converges to f(x) for each x in S.

Definition of (point-
wise) convergence of a
sequence of functions.

12.26

A sequence {fn} of functions defined on a set
S ⊂ R

n and with range in R
m, is said to con-

verge uniformly to a function f on S, if for each
ε > 0 there is a natural number N(ε) (depend-
ing on ε but NOT on x) such that
‖fn(x)− f(x)‖ < ε

for all n ≥ N(ε) and all x in S.

Definition of uniform
convergence of a se-
quence of functions.

12.27

A correspondence F from a set A to a set B
is a rule that maps each x ∈ A to a nonempty
subset F (x) of B. The graph of F is the set

graph(F ) = {(a, b) ∈ A×B : b ∈ F (a)}

Definition of a corre-
spondence and its graph.

12.28

The correspondence F : X ⊂ R
n → R

m has a
closed graph if for every pair of convergent se-
quences {xk} in X and {yk} in R

m with
yk ∈ F(xk) and limk xk = x ∈ X, the limit
limk yk belongs to F(x).

Thus F has a closed graph if and only if
graph(F) is a relatively closed subset of the set
X × R

m ⊂ R
n × R

m.

Definition of a corre-
spondence with a closed
graph.

12.29

The correspondence F : X ⊂ R
n → R

m is said
to be lower hemicontinuous at x0 if, for each
y0 in F(x0) and each neighborhood U of y0,
there exists a neighborhood N of x0 such that
F(x) ∩ U �= ∅ for all x in N ∩X.

Definition of lower
hemicontinuity of a
correspondence.

12.30

The correspondence F : X ⊂ R
n → R

m is said
to be upper hemicontinuous at x0 if for every
open set U that contains F(x0), there exists a
neighborhood N of x0 such that F(x) ⊂ U for
all x in N ∩X.

Definition of upper
hemicontinuity of a
correspondence.

12.31

Let F : X ⊂ R
n → K ⊂ R

m be a correspon-
dence where K is compact. Suppose that for
every x ∈ X the set F(x) is a closed subset of
K. Then F has a closed graph if and only if F
is upper hemicontinuous.

An interesting result.
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Infimum and supremum

12.32

• Any non-empty set S of real numbers that is
bounded above has a least upper bound b∗,
i.e. b∗ is an upper bound for S and b∗ ≤ b for
every upper bound b of S. b∗ is called the
supremum of S, and we write b∗ = supS.

• Any non-empty set S of real numbers that
is bounded below has a greatest lower bound
a∗, i.e. a∗ is a lower bound for S and a∗ ≥ a
for every lower bound a of S. a∗ is called the
infimum of S, and we write a∗ = inf S.

The principle of least
upper bound and greatest
lower bound for sets of
real numbers. If S is not
bounded above, we write
sup S = ∞, and if S is
not bounded below, we
write inf S = −∞. One
usually defines sup ∅ =
−∞ and inf ∅ = ∞.

12.33
inf
x∈B

f(x) = inf{f(x) : x ∈ B}

sup
x∈B

f(x) = sup{f(x) : x ∈ B}

Definition of infimum
and supremum of a real
valued function defined
on a set B in R

n.

12.34
inf
x∈B

(f(x) + g(x)) ≥ inf
x∈B

f(x) + inf
x∈B

g(x)

sup
x∈B

(f(x) + g(x)) ≤ sup
x∈B

f(x) + sup
x∈B

g(x)
Results about sup and
inf.

12.35
inf
x∈B

(λf(x)) = λ inf
x∈B

f(x) if λ > 0

sup
x∈B

(λf(x)) = λ sup
x∈B

f(x) if λ > 0
λ is a real number.

12.36
sup
x∈B

(−f(x)) = − inf
x∈B

f(x)

inf
x∈B

(−f(x)) = − sup
x∈B

f(x)

12.37 sup
(x,y)∈A×B

f(x,y) = sup
x∈A

(sup
y∈B

f(x,y)) A × B =
{(x,y) : x ∈ A ∧ y ∈ B}

12.38

lim
x→x0

f(x) =

lim
r→0

(
inf
{
f(x) : 0 < ‖x− x0‖ < r, x ∈M

})
lim

x→x0
f(x) =

lim
r→0

(
sup
{
f(x) : 0 < ‖x− x0‖ < r, x ∈M

})

Definition of
lim = lim inf and
lim = lim sup. f is de-
fined on M ⊂ R

n and
x0 is in the closure of
M \ {x0}.

12.39
lim(f + g) ≥ lim f + lim g

lim(f + g) ≤ lim f + lim g

The inequalities are
valid if the right hand
sides are defined.
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12.40 lim f ≤ lim f
Results on lim inf and
lim sup.

12.41 lim f = − lim(−f), lim f = − lim(−f)

12.42

Let f be a real valued function defined on the
interval [t0,∞). Then we define:
• lim

t→∞
f(t) = lim

t→∞ inf{f(s) : s ∈ [t0,∞)}

• lim
t→∞ f(t) = lim

t→∞ sup{f(s) : s ∈ [t0,∞)}

Definition of lim
t→∞

and limt→∞. Formulas
(12.39)–(12.41) are still
valid.

12.43

• lim
t→∞

f(t) ≥ a ⇔
⎧⎨⎩For each ε > 0 there is a

t′ such that f(t) ≥ a− ε
for all t ≥ t′.

• lim
t→∞ f(t) ≥ a ⇔

⎧⎪⎪⎨⎪⎪⎩
For each ε > 0 and each
t′ there is a t ≥ t′ such
that f(t) ≥ a− ε for all
t ≥ t′.

Basic facts.

References
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Chapter 13

Convexity

13.1
A set S in R

n is convex if
x,y ∈ S and λ ∈ [0, 1] ⇒ λx+(1−λ)y ∈ S

Definition of a convex
set. The empty set is, by
definition, convex.

13.2 S
S The first set is convex,

while the second is not
convex.

13.3

If S and T are convex sets in R
n, then

• S ∩ T = {x : x ∈ S and x ∈ T} is convex
• aS + bT = {as+ bt : s ∈ S, t ∈ T} is convex

Properties of convex
sets. (a and b are real
numbers.)

13.4

Any vector x = λ1x1+· · ·+λmxm, where λi ≥ 0
for i = 1, . . . , m and

∑m
i=1 λi = 1, is called a

convex combination of the vectors x1, . . . ,xm

in R
n.

Definition of a convex
combination of vectors.

13.5 co(S) =
{

the set of all convex combinations of
finitely many vectors in S.

co(S) is the convex hull
of a set S in R

n.

13.6 S
If S is the unshaded set,
then co(S) includes the
shaded parts in addition.

13.7 co(S) is the smallest convex set containing S. A useful characterization
of the convex hull.

13.8 If S ⊂ R
n and x ∈ co(S), then x is a convex

combination of at most n + 1 points in S.
Carathéodory’s theorem.

13.9
z is an extreme point of a convex set S if z ∈ S
and there are no x and y in S and λ in (0, 1)
such that x �= y and z = λx + (1− λ)y.

Definition of an extreme
point.
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13.10 Let S be a compact, convex set in R
n. Then S

is the convex hull of its extreme points. Krein–Milman’s theorem.

13.11

Let S and T be two disjoint non-empty convex
sets in R

n. Then S and T can be separated by
a hyperplane, i.e. there exists a non-zero vector
a such that

a · x ≤ a · y for all x in S and all y in T

Minkowski’s separation
theorem. A hyperplane
{x : a · x = A}, with
a · x ≤ A ≤ a · y for all
x in S and all y in T , is
called separating .

13.12 S T

H

S T

In the first figure S and
T are (strictly) sepa-
rated by H. In the sec-
ond, S and T cannot be
separated by a hyper-
plane.

13.13

Let S be a convex set in R
n with interior points

and let T be a convex set in R
n such that no

point in S ∩ T (if there are any) is an interior
point of S. Then S and T can be separated by
a hyperplane, i.e. there exists a vector a �= 0
such that

a · x ≤ a · y for all x in S and all y in T .

A general separation
theorem in R

n.

Concave and convex functions

13.14

f(x) = f(x1, . . . , xn) defined on a convex set S
in R

n is concave on S if
f(λx + (1− λ)x0) ≥ λf(x) + (1− λ)f(x0)

for all x, x0 in S and all λ in (0, 1).

To define a convex func-
tion, reverse the inequal-
ity. Equivalently, f is
convex if and only if −f
is concave.

13.15

x1

x2

z

z = f(x)

R

S

x0 x
T

λx + (1 − λ)x0

The function f(x) is
(strictly) concave. TR =
f(λx+(1−λ)x0) ≥ TS =
λf(x) + (1 − λ)f(x0).
(TR and TS are the
heights of R and S
above the x-plane. The
heights are negative if
the points are below the
x-plane.)
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13.16 f(x) is strictly concave if f(x) is concave and
the inequality ≥ in (13.14) is strict for x �= x0.

Definition of a strictly
concave function. For
strict convexity, reverse
the inequality.

13.17
If f(x), defined on the convex set S in R

n, is
concave (convex), then f(x) is continuous at
each interior point of S.

On the continuity of
concave and convex
functions.

13.18

• If f(x) and g(x) are concave (convex) and a
and b are nonnegative numbers, then af(x)+
bg(x) is concave (convex).

• If f(x) is concave and F (u) is concave and
increasing, then U(x) = F (f(x)) is concave.

• If f(x) = a ·x+ b and F (u) is concave, then
U(x) = F (f(x)) is concave.

• If f(x) is convex and F (u) is convex and in-
creasing, then U(x) = F (f(x)) is convex.

• If f(x) = a · x + b and F (u) is convex, then
U(x) = F (f(x)) is convex.

Properties of concave
and convex functions.

13.19

A C1 function f(x) is concave on an open, con-
vex set S of R

n if and only if

f(x)− f(x0) ≤
n∑

i=1

∂f(x0)
∂xi

(xi − x0
i )

or, equivalently,
f(x)− f(x0) ≤ ∇f(x0) · (x− x0)

for all x and x0 in S.

Concavity for C1 func-
tions. For convexity, re-
verse the inequalities.

13.20
A C1 function f(x) is strictly concave on an
open, convex set S in R

n if and only if the in-
equalities in (13.19) are strict for x �= x0.

Strict concavity for C1

functions. For strict
convexity, reverse the
inequalities.

13.21

A C1 function f(x) is concave on an open in-
terval I if and only if

f(x)− f(x0) ≤ f ′(x0)(x− x0)

for all x and x0 in I.

One-variable version of
(13.19).
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13.22

y

x

f(x) − f(x0)
f ′(x0)(x − x0)

x0 x

f

Geometric interpreta-
tion of (13.21). The C1

function f is concave if
and only if the graph of
f is below the tangent
at any point. (In the fig-
ure, f is actually strictly
concave.)

13.23

A C1 function f(x, y) is concave on an open,
convex set S in the (x, y)-plane if and only if

f(x, y)− f(x0, y0)
≤ f ′

1(x
0, y0)(x− x0) + f ′

2(x
0, y0)(y − y0)

for all (x, y), (x0, y0) in S.

Two-variable version of
(13.19).

13.24 f ′′(x) =

⎛⎜⎜⎜⎝
f ′′
11(x) f ′′

12(x) . . . f ′′
1n(x)

f ′′
21(x) f ′′

22(x) . . . f ′′
2n(x)

...
...

. . .
...

f ′′
n1(x) f ′′

n2(x) . . . f ′′
nn(x)

⎞⎟⎟⎟⎠ The Hessian matrix of f
at x. If f is C2, then the
Hessian is symmetric.

13.25

The principal minors ∆r(x) of order r in the
Hessian matrix f ′′(x) are the determinants of
the sub-matrices obtained by deleting n− r ar-
bitrary rows and then deleting the n−r columns
having the same numbers.

The principal minors of
the Hessian. (See also
(20.15).)

13.26

A C2 function f(x) is concave on an open, con-
vex set S in R

n if and only if for all x in S and
for all ∆r,

(−1)r∆r(x) ≥ 0 for r = 1, . . . , n

Concavity for C2 func-
tions.

13.27

A C2 function f(x) is convex on an open, con-
vex set S in R

n if and only if for all x in S and
for all ∆r,

∆r(x) ≥ 0 for r = 1, . . . , n

Convexity for C2 func-
tions.

13.28 Dr(x) =

∣∣∣∣∣∣∣∣∣∣

f ′′
11(x) f ′′

12(x) . . . f ′′
1r(x)

f ′′
21(x) f ′′

22(x) . . . f ′′
2r(x)

...
...

. . .
...

f ′′
r1(x) f ′′

r2(x) . . . f ′′
rr(x)

∣∣∣∣∣∣∣∣∣∣
The leading principal
minors of the Hessian
matrix of f at x, where
r = 1, 2, . . . , n.
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13.29
A C2 function f(x) is strictly concave on an
open, convex set S in R

n if for all x ∈ S,
(−1)rDr(x) > 0 for r = 1, . . . , n

Sufficient (but NOT nec-
essary) conditions for
strict concavity for C2

functions.

13.30
A C2 function f(x) is strictly convex on an
open, convex set S in R

n if for all x ∈ S,
Dr(x) > 0 for r = 1, . . . , n

Sufficient (but NOT nec-
essary) conditions for
strict convexity for C2

functions.

13.31

Suppose f(x) is a C2 function on an open in-
terval I. Then:
• f(x) is concave on I ⇔ f ′′(x) ≤ 0 for all x

in I

• f(x) is convex on I ⇔ f ′′(x) ≥ 0 for all x
in I

• f ′′(x) < 0 for all x in I ⇒ f(x) is strictly
concave on I

• f ′′(x) > 0 for all x in I ⇒ f(x) is strictly
convex on I

One-variable versions of
(13.26), (13.27), (13.29),
and (13.30). The im-
plication arrows CAN-
NOT be replaced by
equivalence arrows.
(f(x) = −x4 is strictly
concave, but f ′′(0) = 0.
f(x) = x4 is strictly
convex, but f ′′(0) = 0.)

13.32

A C2 function f(x, y) is concave on an open,
convex set S in the (x, y)-plane if and only if

f ′′
11(x, y) ≤ 0, f ′′

22(x, y) ≤ 0 and
f ′′
11(x, y)f ′′

22(x, y)− (f ′′
12(x, y))2 ≥ 0

for all (x, y) in S.

Two-variable version of
(13.26). For convexity of
C2 functions, reverse the
first two inequalities.

13.33

A C2 function f(x, y) is strictly concave on an
open, convex set S in the (x, y)-plane if (but
NOT only if)

f ′′
11(x, y) < 0 and

f ′′
11(x, y)f ′′

22(x, y)− (f ′′
12(x, y))2 > 0

for all (x, y) in S.

Two-variable version of
(13.29). (Note that the
two inequalities imply
f ′′
22(x, y) < 0.) For strict

convexity, reverse the
first inequality.

Quasiconcave and quasiconvex functions

13.34

f(x) is quasiconcave on a convex set S ⊂ R
n if

the (upper) level set
Pa = {x ∈ S : f(x) ≥ a}

is convex for each real number a.

Definition of a quasicon-
cave function. (Upper
level sets are also called
upper contour sets.)
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13.35

x1

x2

z

z = f(x1, x2)

a
A typical example of a
quasiconcave function
of two variables, z =
f(x1, x2).

13.36

x2

x1

Pa

f(x1, x2) = a

An (upper) level set for
the function in (13.35),
Pa = {(x1, x2) ∈ S :
f(x1, x2) ≥ a}.

13.37

f(x) is quasiconcave on an open, convex set S
in R

n if and only if
f(x) ≥ f(x0) ⇒ f(λx + (1− λ)x0) ≥ f(x0)

for all x, x0 in S and all λ in [0, 1].

Characterization of
quasiconcavity.

13.38

f(x) is strictly quasiconcave on an open, convex
set S in R

n if
f(x) ≥ f(x0) ⇒ f(λx+(1−λ)x0) > f(x0)

for all x �= x0 i S and all λ in (0, 1).

The (most common) def-
inition of strict quasi-
concavity.

13.39 f(x) is (strictly) quasiconvex on S ⊂ R
n if

−f(x) is (strictly) quasiconcave.
Definition of a (strictly)
quasiconvex function.

13.40

If f1, . . . , fm are concave functions defined on
a convex set S in R

n and g is defined for each
x in S by

g(x) = F (f1(x), . . . , fm(x))
with F (u1, . . . , um) quasiconcave and increas-
ing in each variable, then g is quasiconcave.

A useful result.
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13.41

(1) f(x) concave ⇒ f(x) quasiconcave.
(2) f(x) convex ⇒ f(x) quasiconvex.
(3) Any increasing or decreasing function of one

variable is quasiconcave and quasiconvex.
(4) A sum of quasiconcave (quasiconvex) func-

tions is not necessarily quasiconcave (quasi-
convex).

(5) If f(x) is quasiconcave (quasiconvex) and F
is increasing, then F (f(x)) is quasiconcave
(quasiconvex).

(6) If f(x) is quasiconcave (quasiconvex) and F
is decreasing, then F (f(x)) is quasiconvex
(quasiconcave).

(7) Let f(x) be a function defined on a convex
cone K in R

n. Suppose that f is quasicon-
cave and homogeneous of degree q, where
0 < q ≤ 1, that f(0) = 0, and that f(x) > 0
for all x �= 0 in K. Then f is concave.

Basic facts about quasi-
concave and quasicon-
vex functions. (Exam-
ple of (4): f(x) = x3

and g(x) = −x are
both quasiconcave, but
f(x) + g(x) = x3 − x
is not.) For a proof of
(7), see Sydsæter et al.
(2005).

13.42

A C1 function f(x) is quasiconcave on an
open, convex set S in R

n if and only if
f(x) ≥ f(x0) ⇒ ∇f(x0) · (x− x0) ≥ 0

for all x and x0 in S.

Quasiconcavity for
C1 functions.

13.43

α

∇f(x0)
x

f(u) = f(x0)x0

A geometric interpre-
tation of (13.42). Here
∇f(x0) · (x − x0) ≥ 0
means that the angle α
is acute, i.e. less than
90◦.

13.44 Br(x) =

∣∣∣∣∣∣∣∣∣
0 f ′

1(x) . . . f ′
r(x)

f ′
1(x) f ′′

11(x) . . . f ′′
1r(x)

...
...

. . .
...

f ′
r(x) f ′′

r1(x) . . . f ′′
rr(x)

∣∣∣∣∣∣∣∣∣
A bordered Hessian asso-
ciated with f at x.

13.45

If f(x) is quasiconcave on an open, convex set
S in R

n, then
(−1)r

Br(x) ≥ 0 for r = 1, . . . , n

for all x ∈ S.

Necessary conditions
for quasiconcavity of C2

functions.
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13.46
If (−1)r

Br(x) > 0 for r = 1, . . . , n for all x
in an open, convex set S in R

n, then f(x) is
quasiconcave in S.

Sufficient conditions for
quasiconcavity of C2

functions.

13.47

If f(x) is quasiconvex on an open, convex set S
in R

n, then
Br(x) ≤ 0 for r = 1, . . . , n

and for all x in S.

Necessary conditions
for quasiconvexity of C2

functions.

13.48
If Br(x) < 0 for r = 1, . . . , n and for all x
in an open, convex set S in R

n, then f(x) is
quasiconvex in S.

Sufficient conditions for
quasiconvexity of C2

functions.

Pseudoconcave and pseudoconvex functions

13.49

A C1 function f(x) defined on a convex set S
in R

n is pseudoconcave at the point x0 in S if
(∗) f(x) > f(x0) ⇒ ∇f(x0) · (x− x0) > 0
for all x in S. f(x) is pseudoconcave over S if
(∗) holds for all x and x0 in S.

To define pseudocon-
vex functions, reverse
the second inequality in
(∗). (Compare with the
characterization of quasi-
concavity in (13.42).)

13.50

Let f(x) be a C1 function defined on a convex
set S in R

n. Then:
• If f is pseudoconcave on S, then f is quasi-

concave on S.
• If S is open and if ∇f(x) �= 0 for all x in S,

then f is pseudoconcave on S if and only if
f is quasiconcave on S.

Important relationships
between pseudoconcave
and quasiconcave
functions.

13.51

Let S be an open, convex set in R
n, and let

f : S → R be a pseudoconcave function. If
x0 ∈ S has the property that
∇f(x0) · (x− x0) ≤ 0 for all x in S

(which is the case if ∇f(x0) = 0), then x0 is a
global maximum point for f in S.

Shows one reason for
introducing the concept
of pseudoconcavity.
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Blume (1994) or Sydsæter et al. (2005). For pseudoconcave and pseudoconvex func-
tions, see e.g. Simon and Blume (1994), and their references. For special results
on convex sets, see Nikaido (1968) and Takayama (1985). A standard reference for
convexity theory is Rockafellar (1970).



Chapter 14

Classical optimization

14.1

f(x) = f(x1, . . . , xn) has a maximum (mini-
mum) at x∗ = (x∗

1, . . . , x
∗
n) ∈ S if

f(x∗)− f(x) ≥ 0 (≤ 0) for all x in S

x∗ is called a maximum (minimum) point and
f(x∗) is called a maximum (minimum) value.

Definition of (global)
maximum (minimum) of
a function of n variables.
As collective names, we
use optimal points and
values, or extreme points
and values.

14.2 x∗ maximizes f(x) over S if and only if x∗ mini-
mizes −f(x) over S.

Used to convert mini-
mization problems to
maximization problems.

14.3

y

x

y = f(x)

x0

y = −f(x)

Illustration of (14.2).
x∗ maximizes f(x) if
and only if x∗ minimizes
−f(x)

14.4

Suppose f(x) is defined on S ⊂ R
n and that

F (u) is strictly increasing on the range of f .
Then x∗ maximizes (minimizes) f(x) on S if
and only if x∗ maximizes (minimizes) F (f(x))
on S.

An important fact.

14.5
If f : S → R is continuous on a closed, bounded
set S in R

n, then there exist maximum and min-
imum points for f in S.

The extreme value theo-
rem (or Weierstrass’s
theorem).

14.6
x∗ = (x∗

1, . . . , x
∗
n) is a stationary point of f(x)

if
f ′
1(x

∗) = 0, f ′
2(x

∗) = 0, . . . , f ′
n(x∗) = 0

Definition of stationary
points for a differentiable
function of n variables.

14.7

Let f(x) be concave (convex) and defined on a
convex set S in R

n, and let x∗ be an interior
point of S. Then x∗ maximizes (minimizes)
f(x) on S, if and only if x∗ is a stationary point.

Maximum (minimum)
of a concave (convex)
function.
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14.8

y

x
x0

y = f(x)

One-variable illustration
of (14.7). f is concave,
f ′(x∗) = 0, and x∗ is a
maximum point.

14.9

If f(x) has a maximum or minimum in S ⊂ R
n,

then the maximum/minimum points are found
among the following points:
• interior points of S that are stationary
• extreme points of f at the boundary of S

• points in S where f is not differentiable

Where to find (global)
maximum or minimum
points.

14.10

f(x) has a local maximum (minimum) at x∗ if
(∗) f(x∗)− f(x) ≥ 0 (≤ 0)
for all x in S sufficiently close to x∗. More
precisely, there exists an n-ball B(x∗; r) such
that (∗) holds for all x in B(x∗; r).

Definition of local (or
relative) maximum (min-
imum) points of a func-
tion of n variables. A
collective name is local
extreme points.

14.11
If f(x) = f(x1, . . . , xn) has a local maximum
(minimum) at an interior point x∗ of S, then
x∗ is a stationary point of f .

The first-order condi-
tions for differentiable
functions.

14.12

A stationary point x∗ of f(x) = f(x1, . . . , xn)
is called a saddle point if it is neither a local
maximum point nor a local minimum point,
i.e. if every n-ball B(x∗; r) contains points x
such that f(x) < f(x∗) and other points z such
that f(z) > f(x∗).

Definition of a saddle
point.

14.13

x1

x2

z

P

Q
R

S

The points P , Q, and R
are all stationary points.
P is a maximum point,
Q is a local maximum
point, whereas R is a
saddle point.
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Special results for one-variable functions

14.14

If f(x) is differentiable in an interval I, then
• f ′(x) > 0 =⇒ f(x) is strictly increasing
• f ′(x) ≥ 0 ⇐⇒ f(x) is increasing
• f ′(x) = 0 ⇐⇒ f(x) is constant
• f ′(x) ≤ 0 ⇐⇒ f(x) is decreasing
• f ′(x) < 0 =⇒ f(x) is strictly decreasing

Important facts. The
implication arrows
cannot be reversed.
(f(x) = x3 is strictly in-
creasing, but f ′(0) = 0.
g(x) = −x3 is strictly
decreasing, but g′(0) =
0.)

14.15

• If f ′(x) ≥ 0 for x ≤ c and f ′(x) ≤ 0 for
x ≥ c, then x = c is a maximum point for f .

• If f ′(x) ≤ 0 for x ≤ c, and f ′(x) ≥ 0 for
x ≥ c, then x = c is a minimum point for f .

A first-derivative test
for (global) max/min.
(Often ignored in ele-
mentary mathematics for
economics texts.)

14.16

y

xI
c

y = f(x)

y

xI

y = f(x)

d

One-variable illustra-
tions of (14.15). c is a
maximum point. d is a
minimum point.

14.17 c is an inflection point for f(x) if f ′′(x) changes
sign at c.

Definition of an inflec-
tion point for a function
of one variable.

14.18

An unorthodox illus-
tration of an inflection
point. Point P , where
the slope is steepest, is
an inflection point.

14.19

Let f be a function with a continuous second
derivative in an interval I, and suppose that c
is an interior point of I. Then:
• c is an inflection point for f =⇒ f ′′(c) = 0
• f ′′(c) = 0 and f ′′ changes sign at c

=⇒ c is an inflection point for f

Test for inflection points.
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Second-order conditions

14.20

If f(x) = f(x1, . . . , xn) has a local maximum
(minimum) at x∗, then

n∑
i=1

n∑
j=1

f ′′
ij(x

∗)hihj ≤ 0 (≥ 0)

for all choices of h1, . . . , hn.

A necessary (second-
order) condition for local
maximum (minimum).

14.21

If x∗ = (x∗
1, . . . , x

∗
n) is a stationary point of

f(x1, . . . , xn), and if Dk(x∗) is the following de-
terminant,

Dk(x∗) =

∣∣∣∣∣∣∣∣∣
f ′′
11(x

∗) f ′′
12(x

∗) . . . f ′′
1k(x∗)

f ′′
21(x

∗) f ′′
22(x

∗) . . . f ′′
2k(x∗)

...
...

. . .
...

f ′′
k1(x

∗) f ′′
k2(x

∗) . . . f ′′
kk(x∗)

∣∣∣∣∣∣∣∣∣
then:
• If (−1)kDk(x∗) > 0 for k = 1, . . . , n, then

x∗ is a local maximum point.
• If Dk(x∗) > 0 for k = 1, . . . , n, then x∗ is a

local minimum point.
• If Dn(x∗) �= 0 and neither of the two condi-

tions above is satisfied, then x∗ is a saddle
point.

Classification of sta-
tionary points of a
C2 function of n var-
iables. Second-order
conditions for local
maximum/minimum.

14.22

f ′(x∗) = 0 and f ′′(x∗) < 0 =⇒
x∗ is a local maximum point for f .

f ′(x∗) = 0 and f ′′(x∗) > 0 =⇒
x∗ is a local minimum point for f .

One-variable second-
order conditions for local
maximum/minimum.

14.23

If (x0, y0) is a stationary point of f(x, y) and
D = f ′′

11(x0, y0)f ′′
22(x0, y0)−(f ′′

12(x0, y0))2, then

• f ′′
11(x0, y0) > 0 and D > 0 =⇒

(x0, y0) is a local minimum point for f .

• f ′′
11(x0, y0) < 0 and D > 0 =⇒

(x0, y0) is a local maximum point for f .

• D < 0 =⇒ (x0, y0) is a saddle point for f .

Two-variable second-
order conditions for local
maximum/minimum.
(Classification of station-
ary points of a C2 func-
tion of two variables.)
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Optimization with equality constraints

14.24 max (min) f(x, y) subject to g(x, y) = b
The Lagrange problem.
Two variables, one con-
straint.

14.25

Lagrange’s method . Recipe for solving (14.24):
(1) Introduce the Lagrangian function

L(x, y) = f(x, y)− λ(g(x, y)− b)
where λ is a constant.

(2) Differentiate L with respect to x and y, and
equate the partials to 0.

(3) The two equations in (2), together with the
constraint, yield the following three equa-
tions:

f ′
1(x, y) = λg′

1(x, y)
f ′
2(x, y) = λg′

2(x, y)
g(x, y) = b

(4) Solve these three equations for the three
unknowns x, y, and λ. In this way you find
all possible pairs (x, y) that can solve the
problem.

Necessary conditions for
the solution of (14.24).
Assume that g′

1(x, y)
and g′

2(x, y) do not both
vanish. For a more pre-
cise version, see (14.27).
λ is called a Lagrange
multiplier .

14.26

Suppose (x0, y0) satisfies the conditions in
(14.25). Then:
(1) If L(x, y) is concave, then (x0, y0) solves the

maximization problem in (14.24).
(2) If L(x, y) is convex, then (x0, y0) solves the

minimization problem in (14.24).

Sufficient conditions for
the solution of problem
(14.24).

14.27

Suppose that f(x, y) and g(x, y) are C1 in a do-
main S of the xy-plane, and that (x0, y0) is both
an interior point of S and a local extreme point
for f(x, y) subject to the constraint g(x, y) = b.
Suppose further that g′

1(x0, y0) and g′
2(x0, y0)

are not both 0. Then there exists a unique num-
ber λ such that the Lagrangian function
L(x, y) = f(x, y)− λ (g(x, y)− b)

has a stationary point at (x0, y0).

A precise version of the
Lagrange multiplier
method. (Lagrange’s
theorem.)
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14.28

Consider the problem
local max(min) f(x, y) s.t. g(x, y) = b

where (x0, y0) satisfies the first-order conditions
in (14.25). Define the bordered Hessian deter-
minant D(x, y) as

D(x, y) =

∣∣∣∣∣∣∣
0 g′

1 g′
2

g′
1 f ′′

11 − λg′′
11 f ′′

12 − λg′′
12

g′
2 f ′′

21 − λg′′
21 f ′′

22 − λg′′
22

∣∣∣∣∣∣∣
(1) If D(x0, y0) > 0, then (x0, y0) solves the

local maximization problem.
(2) If D(x0, y0) < 0, then (x0, y0) solves the

local minimization problem.

Local sufficient condi-
tions for the Lagrange
problem.

14.29 max(min)f(x1, . . . , xn) s.t.

⎧⎨⎩ g1(x1, . . . , xn) = b1
. . . . . . . . . . . . . . . . . . . .
gm(x1, . . . , xn) = bm

The general Lagrange
problem. Assume m < n.

14.30

Lagrange’s method . Recipe for solving (14.29):
(1) Introduce the Lagrangian function

L(x) = f(x)−
m∑

j=1
λj(gj(x)− bj)

where λ1, . . . , λm are constants.
(2) Equate the first-order partials of L to 0:

∂L(x)
∂xk

=
∂f(x)
∂xk

−
m∑

j=1

λj
∂gj(x)
∂xk

= 0

(3) Solve these n equations together with the m
constraints for x1, . . . , xn and λ1, . . . , λm.

Necessary conditions for
the solution of (14.29),
with f and g1, . . . , gm

as C1 functions in an
open set S in R

n, and
with x = (x1, . . . , xn).
Assume the rank of the
Jacobian (∂gj/∂xi)m×n

to be equal to m. (See
(6.8).) λ1, . . . , λm are
called Lagrange multipli-
ers.

14.31

If x∗ is a solution to problem (14.29) and the
gradients ∇g1(x∗), . . . , ∇gm(x∗) are linearly
independent, then there exist unique numbers
λ1, . . . , λm such that
∇f(x∗) = λ1∇g1(x∗) + · · ·+ λm∇gm(x∗)

An alternative formula-
tion of (14.30).

14.32

Suppose f(x) and g1(x), . . . , gm(x) in (14.29)
are defined on an open, convex set S in R

n. Let
x∗ ∈ S be a stationary point of the Lagrangian
and suppose gj(x∗) = bj , j = 1, . . . , m. Then:
L(x) concave ⇒ x∗ solves problem (14.29).

Sufficient conditions for
the solution of prob-
lem (14.29). (For the
minimization problem,
replace “L(x) concave”
by “L(x) convex”.)
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14.33 Br =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . 0
∂g1

∂x1
. . .

∂g1

∂xr
...

. . .
...

...
...

0 . . . 0
∂gm

∂x1
. . .

∂gm

∂xr
∂g1

∂x1
. . .

∂gm

∂x1
L′′

11 . . . L′′
1r

...
...

...
. . .

...
∂g1

∂xr
. . .

∂gm

∂xr
L′′

r1 . . . L′′
rr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A bordered Hessian de-
terminant associated
with problem (14.29),
r = 1, . . . , n. L is the
Lagrangian defined in
(14.30).

14.34

Let f(x) and g1(x), . . . , gm(x) be C2 functions
in an open set S in R

n, and let x∗ ∈ S satisfy
the necessary conditions for problem (14.29)
given in (14.30). Let Br(x∗) be the determi-
nant in (14.33) evaluated at x∗. Then:
• If (−1)m

Br(x∗) > 0 for r = m + 1, . . . , n,
then x∗ is a local minimum point for problem
(14.29).

• If (−1)rBr(x∗) > 0 for r = m + 1, . . . , n,
then x∗ is a local maximum point for pro-
blem (14.29).

Local sufficient condi-
tions for the Lagrange
problem.

Value functions and sensitivity

14.35 f∗(b) = max
x
{f(x) : gj(x) = bj , j = 1, . . . , m} f∗(b) is the value func-

tion. b = (b1, . . . , bm).

14.36
∂f∗(b)

∂bi
= λi(b), i = 1, . . . , m

The λi(b)’s are the
unique Lagrange mul-
tipliers from (14.31).
(For a precise result see
Sydsæter et al. (2005),
Chap. 3.)

14.37 f∗(r) = max
x∈X

f(x, r) , X ⊂ R
n, r ∈ A ⊂ R

k. The value function of a
maximization problem.

14.38

If f(x, r) is continuous on X×A and X is com-
pact, then f∗(r) defined in (14.37) is continuous
on A. If the problem in (14.37) has a unique
solution x = x(r) for each r in A, then x(r) is
a continuous function of r.

Continuity of the value
function and the maxi-
mizer.
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14.39

Suppose that the problem of maximizing
f(x, r) for x in a compact set X has a unique
solution x(r∗) at r = r∗, and that ∂f/∂ri, i =
1, . . . , k, exist and are continuous in a neighbor-
hood of (x(r∗), r∗). Then for i = 1, . . . , k,

∂f∗(r∗)
∂ri

=
[
∂f(x, r)

∂ri

]
x=x(r∗)
r=r∗

An envelope theorem.

14.40 maxx f(x, r) s.t. gj(x, r) = 0, j = 1, . . . , m
A Lagrange problem
with parameters,
r = (r1, . . . , rk).

14.41 f∗(r) = max{f(x, r) : gj(x, r) = 0, j = 1, . . . , m} The value function of
problem (14.40).

14.42
∂f∗(r∗)

∂ri
=
[
∂L(x, r)

∂ri

]
x=x(r∗)
r=r∗

, i = 1, . . . , k

An envelope theorem for
(14.40). L = f −∑λjgj

is the Lagrangian. For
precise assumptions for
the equality to hold, see
Sydsæter et al. (2005),
Chapter 3.

References

See Simon and Blume (1994), Sydsæter et al. (2005), Intriligator (1971), Luenberger
(1984), and Dixit (1990).



Chapter 15

Linear and nonlinear programming

Linear programming

15.1

max z = c1x1 + · · ·+ cnxn subject to

a11x1 + · · ·+ a1nxn ≤ b1

a21x1 + · · ·+ a2nxn ≤ b2
. . . . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + · · ·+ amnxn ≤ bm

x1 ≥ 0, . . . , xn ≥ 0

A linear programming
problem. (The primal
problem.)

∑n

j=1 cjxj

is called the objective
function. (x1, . . . , xn) is
admissible if it satisfies
all the m+n constraints.

15.2

min Z = b1λ1 + · · ·+ bmλm subject to

a11λ1 + · · ·+ am1λm ≥ c1

a12λ1 + · · ·+ am2λm ≥ c2
. . . . . . . . . . . . . . . . . . . . . . . . .
a1nλ1 + · · ·+ amnλm ≥ cn

λ1 ≥ 0, . . . , λm ≥ 0

The dual of (15.1).∑m

i=1 biλi is called the
objective function.
(λ1, . . . , λm) is admissi-
ble if it satisfies all the
n + m constraints.

15.3
max c′x subject to Ax ≤ b, x ≥ 0

min b′λ subject to A′λ ≥ c, λ ≥ 0

Matrix formulations of
(15.1) and (15.2).
A = (aij)m×n,
x = (xj)n×1,
λ = (λi)m×1,
c = (cj)n×1,
b = (bi)m×1.

15.4
If (x1, . . . , xn) and (λ1, . . . , λm) are admissible
in (15.1) and (15.2), respectively, then

b1λ1 + · · ·+ bmλm ≥ c1x1 + · · ·+ cnxn

The value of the objec-
tive function in the dual
is always greater than or
equal to the value of the
objective function in the
primal.
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15.5

Suppose (x∗
1, . . . , x

∗
n) and (λ∗

1, . . . , λ
∗
m) are ad-

missible in (15.1) and (15.2) respectively, and
that

c1x
∗
1 + · · ·+ cnx∗

n = b1λ
∗
1 + · · ·+ bmλ∗

m

Then (x∗
1, . . . , x

∗
n) and (λ∗

1, . . . , λ
∗
m) are optimal

in the respective problems.

An interesting result.

15.6

If either of the problems (15.1) and (15.2) has a
finite optimal solution, so has the other, and the
corresponding values of the objective functions
are equal. If either problem has an “unbounded
optimum”, then the other problem has no ad-
missible solutions.

The duality theorem of
linear programming.

15.7

Consider problem (15.1). If we change bi to
bi + ∆bi for i = 1, . . . , m, and if the associ-
ated dual problem still has the same optimal
solution, (λ∗

1, . . . , λ
∗
m), then the change in the

optimal value of the objective function of the
primal problem is

∆z∗ = λ∗
1∆b1 + · · ·+ λ∗

m∆bm

An important sensitiv-
ity result. (The dual
problem usually will
have the same solution
if |∆b1|, . . . , |∆bm| are
sufficiently small.)

15.8
The ith optimal dual variable λ∗

i is equal to
the change in objective function of the primal
problem (15.1) when bi is increased by one unit.

Interpretation of λ∗
i as a

“shadow price”. (A spe-
cial case of (15.7), with
the same qualifications.)

15.9

Suppose that the primal problem (15.1) has an
optimal solution (x∗

1, . . . , x
∗
n) and that the du-

al (15.2) has an optimal solution (λ∗
1, . . . , λ∗

m).
Then for i = 1, . . . , n, j = 1, . . . , m:

(1) x∗
j > 0 ⇒ a1jλ

∗
1 + · · ·+ amjλ

∗
m = cj

(2) λ∗
i > 0 ⇒ ai1x

∗
1 + · · ·+ ainx∗

n = bi

Complementary slack-
ness. ((1): If the opti-
mal variable j in the pri-
mal is positive, then re-
striction j in the dual is
an equality at the opti-
mum. (2) has a similar
interpretation.)

15.10

Let A be an m × n-matrix and b an n-vector.
Then there exists a vector y with Ay ≥ 0 and
b′y < 0 if and only if there is no x ≥ 0 such
that A′x = b.

Farkas’s lemma.

Nonlinear programming

15.11 max f(x, y) subject to g(x, y) ≤ b
A nonlinear program-
ming problem.
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15.12

Recipe for solving problem (15.11):
(1) Define the Lagrangian function L by

L(x, y, λ) = f(x, y)− λ
(
g(x, y)− b

)
where λ is a Lagrange multiplier associated
with the constraint g(x, y) ≤ b.

(2) Equate the partial derivatives of L(x, y, λ)
w.r.t. x and y to zero:
L′

1(x, y, λ) = f ′
1(x, y)− λg′

1(x, y) = 0
L′

2(x, y, λ) = f ′
2(x, y)− λg′

2(x, y) = 0
(3) Introduce the complementary slackness

condition
λ ≥ 0 (λ = 0 if g(x, y) < b)

(4) Require (x, y) to satisfy g(x, y) ≤ b.

Kuhn–Tucker necessary
conditions for solving
problem (15.11), made
more precise in (15.20).
If we find all the pairs
(x, y) (together with
suitable values of λ) that
satisfy all these condi-
tions, then we have all
the candidates for the
solution of problem. If
the Lagrangian is con-
cave in (x, y), then the
conditions are sufficient
for optimality.

15.13 max
x

f(x) subject to

⎧⎨⎩ g1(x) ≤ b1
. . . . . . . . . . .
gm(x) ≤ bm

A nonlinear program-
ming problem. A vector
x = (x1, . . . , xn) is ad-
missible if it satisfies all
the constraints.

15.14 L(x,λ) = f(x)−
m∑

j=1

λj(gj(x)− bj)

The Lagrangian function
associated with (15.13).
λ = (λ1, . . . , λm) are
Lagrange multipliers.

15.15

Consider problem (15.13) and assume that f
and g1, . . . , gm are C1. Suppose that there exist
a vector λ = (λ1, . . . , λm) and an admissible
vector x0 = (x0

1, . . . , x
0
n) such that

(a)
∂L(x0,λ)

∂xi
= 0, i = 1, . . . , n

(b) For all j = 1, . . . , m,
λj ≥ 0 (λj = 0 if gj(x0) < bj)

(c) The Lagrangian function L(x,λ) is a con-
cave function of x.

Then x0 solves problem (15.13).

Sufficient conditions.

15.16 (b’) λj ≥ 0 and λj(gj(x0)−bj) = 0, j = 1, . . . , m
Alternative formulation
of (b) in (15.15).

15.17

(15.15) is also valid if we replace (c) by the con-
dition
(c’) f(x) is concave and λjgj(x) is quasi-convex

for j = 1, . . . , m.

Alternative sufficient
conditions.
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15.18 Constraint j in (15.13) is called active at x0 if
gj(x0) = bj .

Definition of an active
(or binding) constraint.

15.19

The following condition is often imposed in pro-
blem (15.13): The gradients at x0 of those gj-
functions whose constraints are active at x0, are
linearly independent.

A constraint qualification
for problem (15.13).

15.20

Suppose that x0 = (x0
1, . . . , x

0
n) solves (15.13)

and that f and g1, . . . , gm are C1. Suppose
further that the constraint qualification (15.19)
is satisfied at x0. Then there exist unique num-
bers λ1, . . . , λm such that

(a)
∂L(x0,λ)

∂xi
= 0, i = 1, . . . , n

(b) λj≥0 (λj = 0 if gj(x0) < bj), j = 1, . . . , m

Kuhn–Tucker necessary
conditions for problem
(15.13). (Note that
all admissible points
where the constraint
qualification fails to
hold are candidates for
optimality.)

15.21

(x0,λ0) is a saddle point of the Lagrangian
L(x,λ) if
L(x,λ0) ≤ L(x0,λ0) ≤ L(x0,λ)

for all λ ≥ 0 and all x.

Definition of a saddle
point for problem
(15.13).

15.22 If L(x,λ) has a saddle point (x0,λ0), then
(x0,λ0) solves problem (15.13).

Sufficient conditions for
problem (15.13). (No
differentiability or con-
cavity conditions are
required.)

15.23
The following condition is often imposed in pro-
blem (15.13): For some vector x′ = (x′

1, . . . , x
′
n),

gj(x′) < bj for j = 1, . . . , m.

The Slater condition
(constraint qualification).

15.24

Consider problem (15.13), assuming f is con-
cave and g1, . . . , gm are convex. Assume that
the Slater condition (15.23) is satisfied. Then
a necessary and sufficient condition for x0 to
solve the problem is that there exist nonnega-
tive numbers λ0

1, . . . , λ0
m such that (x0,λ0) is

a saddle point of the Lagrangian L(x,λ).

A saddle point result for
concave programming.
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15.25

Consider problem (15.13) and assume that f
and g1, . . . , gm are C1. Suppose that there
exist numbers λ1, . . . , λm and a vector x0 such
that
• x0 satisfies (a) and (b) in (15.15).
• ∇f(x0) �= 0

• f(x) is quasi-concave and λjgj(x) is quasi-
convex for j = 1, . . . , m.

Then x0 solves problem (15.13).

Sufficient conditions for
quasi-concave program-
ming .

15.26 f∗(b)=max
{
f(x) : gj(x) ≤ bj , j = 1, . . . , m

} The value function
of (15.13), assuming
that the maximum
value exists, with b =
(b1, . . . , bm).

15.27

(1) f∗(b) is increasing in each variable.
(2) ∂f∗(b)/∂bj = λj(b), j = 1, . . . , m

(3) If f(x) is concave and g1(x), . . . , gm(x) are
convex, then f∗(b) is concave.

Properties of the value
function.

15.28 max
x

f(x, r) s.t. gj(x, r) ≤ 0, j = 1, . . . , m
A nonlinear program-
ming problem with
parameters, r ∈ R

k.

15.29 f∗(r) = max{f(x, r) : gj(x, r) ≤ 0, j = 1, . . . , m} The value function of
problem (15.28).

15.30
∂f∗(r∗)

∂ri
=
[
∂L(x, r,λ)

∂ri

]
x=x(r∗)
r=r∗

, i = 1, . . . , k

An envelope theorem
for problem (15.28).
L = f − ∑λjgj is
the Lagrangian. See
Sydsæter et al. (2005),
Section 3.8 and Clarke
(1983) for a precise
result.

Nonlinear programming with nonnegativity conditions

15.31 max
x

f(x) subject to

⎧⎨⎩ g1(x) ≤ b1
. . . . . . . . . . .
gm(x) ≤ bm

, x ≥ 0

If the nonnegativity con-
straints are written as
gm+i(x) = −xi ≤ 0
for i = 1, . . . , n, (15.31)
reduces to (15.13).
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15.32

Suppose in problem (15.31) that f and g1, . . . ,
gm are C1 functions, and that there exist num-
bers λ1, . . . , λm, and an admissible vector x0

such that:
(a) For all i = 1, . . . , n, x0

i ≥ 0 and
∂L(x0,λ)

∂xi
≤ 0, x0

i

∂L(x0,λ)
∂xi

= 0

(b) For all j = 1, . . . , m,
λj ≥ 0 (λj = 0 if gj(x0) < bj)

(c) The Lagrangian function L(x,λ) is a con-
cave function of x.

Then x0 solves problem (15.31).

Sufficient conditions
for problem (15.31).
λ = (λi)m×1. L(x0,λ) is
defined in (15.14).

15.33
In (15.32), (c) can be replaced by
(c’) f(x) is concave and λjgj(x) is quasi-convex

for j = 1, . . . , m.

Alternative sufficient
conditions.

15.34

Suppose that x0 = (x0
1, . . . , x

0
n) solves (15.31)

and that f and g1, . . . , gm are C1. Suppose
also that the gradients at x0 of those gj (in-
cluding the functions gm+1, . . . , gm+n defined
in the comment to (15.31)) that correspond to
constraints that are active at x0, are linearly
independent. Then there exist unique numbers
λ1, . . . , λm such that:
(a) For all i = 1, . . . , n, x0

i ≥ 0, and
∂L(x0,λ)

∂xi
≤ 0, x0

i

∂L(x0,λ)
∂xi

= 0

(b) λj ≥ 0 (λj =0 if gj(x0) < bj), j = 1, . . . , m

The Kuhn–Tucker neces-
sary conditions for prob-
lem (15.31). (Note that
all admissible points
where the constraint
qualification fails to
hold, are candidates for
optimality.)
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Chapter 16

Calculus of variations and
optimal control theory

Calculus of variations

16.1

The simplest problem in the calculus of varia-
tions (t0, t1, x0, and x1 are fixed numbers):

max
∫ t1

t0

F (t, x, ẋ) dt, x(t0) = x0, x(t1) = x1

F is a C2 function. The
unknown x = x(t) is
admissible if it is C1

and satisfies the two
boundary conditions.
To handle the minimiza-
tion problem, replace F
by −F .

16.2
∂F

∂x
− d

dt

(∂F

∂ẋ

)
= 0

The Euler equation. A
necessary condition for
the solution of (16.1).

16.3
∂2F

∂ẋ∂ẋ
· ẍ +

∂2F

∂x∂ẋ
· ẋ +

∂2F

∂t∂ẋ
− ∂F

∂x
= 0 An alternative form of

the Euler equation.

16.4 F ′′
ẋẋ(t, x(t), ẋ(t)) ≤ 0 for all t in [t0, t1]

The Legendre condition.
A necessary condition
for the solution of (16.1).

16.5
If F (t, x, ẋ) is concave in (x, ẋ), an admissible
function x = x(t) that satisfies the Euler equa-
tion, solves problem (16.1).

Sufficient conditions for
the solution of (16.1).

16.6 x(t1) free in (16.1) ⇒
[
∂F

∂ẋ

]
t=t1

= 0

Transversality condi-
tion. Adding condition
(16.5) gives sufficient
conditions.
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16.7
x(t1) ≥ x1 in (16.1) ⇒[

∂F

∂ẋ

]
t=t1

≤ 0 (= 0 if x(t1) > x1)

Transversality condi-
tion. Adding condition
(16.5) gives sufficient
conditions.

16.8 t1 free in (16.1) ⇒
[
F − ẋ

∂F

∂ẋ

]
t=t1

= 0 Transversality condition.

16.9
x(t1) = g(t1) in (16.1) ⇒[

F + (ġ − ẋ)
∂F

∂ẋ

]
t=t1

= 0

Transversality condition.
g is a given C1 function.

16.10 max
[∫ t1

t0

F (t, x, ẋ) dt + S(x(t1))
]
, x(t0) = x0

A variational problem
with a C1 scrap value
function, S.

16.11
[
∂F

∂ẋ

]
t=t1

+ S′(x(t1)) = 0

A solution to (16.10)
must satisfy (16.2) and
this transversality condi-
tion.

16.12

If F (t, x, ẋ) is concave in (x, ẋ) and S(x) is
concave, then an admissible function satisfying
the Euler equation and (16.11) solves problem
(16.10).

Sufficient conditions for
the solution to (16.10).

16.13 max
∫ t1

t0

F

(
t, x,

dx

dt
,
d2x

dt2
, . . . ,

dnx

dtn

)
dt

A variational problem
with higher order deriva-
tives. (Boundary condi-
tions are unspecified.)

16.14
∂F

∂x
− d

dt

(
∂F

∂ẋ

)
+ · · ·+ (−1)n dn

dtn

(
∂F

∂x(n)

)
= 0 The (generalized) Euler

equation for (16.13).

16.15 max
∫∫

R

F

(
t, s, x,

∂x

∂t
,
∂x

∂s

)
dt ds

A variational problem
in which the unknown
x(t, s) is a function of
two variables. (Bound-
ary conditions are un-
specified.)

16.16
∂F

∂x
− ∂

∂t

(
∂F

∂x′
t

)
− ∂

∂s

(
∂F

∂x′
s

)
= 0 The (generalized) Euler

equation for (16.15).
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Optimal control theory. One state and one control variable

16.17

The simplest case. Fixed time interval [t0, t1]
and free right hand side:

max
∫ t1

t0

f(t, x(t), u(t)) dt u(t) ∈ R,

ẋ(t) = g(t, x(t), u(t)), x(t0) = x0, x(t1) free

The pair (x(t), u(t)) is
admissible if it satisfies
the differential equation,
x(t0) = x0, and u(t) is
piecewise continuous. To
handle the minimization
problem, replace f by
−f .

16.18 H(t, x, u, p) = f(t, x, u) + pg(t, x, u) The Hamiltonian associ-
ated with (16.17).

16.19

Suppose (x∗(t), u∗(t)) solves problem (16.17).
Then there exists a continuous function p(t)
such that for each t in [t0, t1],
(1) H(t, x∗(t), u, p(t)) ≤ H(t, x∗(t), u∗(t), p(t))

for all u in R. In particular,
H ′

u(t, x∗(t), u∗(t), p(t)) = 0
(2) The function p(t) satisfies

ṗ(t) = −H ′
x(t, x∗(t), u∗(t), p(t)), p(t1) = 0

The maximum principle.
The differential equation
for p(t) is not necessarily
valid at the discontinu-
ity points of u∗(t). The
equation p(t1) = 0 is
called a transversality
condition.

16.20
If (x∗(t), u∗(t)) satisfies the conditions in
(16.19) and H(t, x, u, p(t)) is concave in (x, u),
then (x∗(t), u∗(t)) solves problem (16.17).

Mangasarian’s sufficient
conditions for problem
(16.17).

16.21

max
∫ t1

t0

f(t, x(t), u(t)) dt, u(t) ∈ U ⊂ R,

ẋ(t) = g(t, x(t), u(t)), x(t0) = x0

(a) x(t1) = x1 or (b) x(t1) ≥ x1

A control problem with
terminal conditions and
fixed time interval. U is
the control region. u(t)
is piecewise continuous.

16.22 H(t, x, u, p) = p0f(t, x, u) + pg(t, x, u) The Hamiltonian associ-
ated with (16.21).

16.23

Suppose (x∗(t), u∗(t)) solves problem (16.21).
Then there exist a continuous function p(t) and
a number p0 such that for all t in [t0, t1],
(1) p0 = 0 or 1 and (p0, p(t)) is never (0, 0).
(2) H(t, x∗(t), u, p(t)) ≤ H(t, x∗(t), u∗(t), p(t))

for all u in U .
(3) ṗ(t) = −H ′

x(t, x∗(t), u∗(t), p(t))
(4) (a’) No conditions on p(t1).

(b’) p(t1) ≥ 0 (p(t1) = 0 if x∗(t1) > x1)

The maximum principle.
The differential equation
for p(t) is not necessarily
valid at the discontinuity
points of u∗(t). (4)(b’)
is called a transversality
condition. (Except in
degenerate cases, one
can put p0 = 1 and then
ignore (1).)
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Several state and control variables

16.24

max
∫ t1

t0

f(t,x(t),u(t)) dt

ẋ(t) = g(t,x(t),u(t)), x(t0) = x0

u(t) = (u1(t), . . . , ur(t)) ∈ U ⊂ R
r

(a) xi(t1) = x1
i , i = 1, . . . , l

(b) xi(t1) ≥ x1
i , i = l + 1, . . . , q

(c) xi(t1) free, i = q + 1, . . . , n

A standard control
problem with fixed
time interval. U is
the control region,
x(t) = (x1(t), . . . , xn(t)),
g = (g1, . . . , gn). u(t) is
piecewise continuous.

16.25 H(t,x,u,p) = p0f(t,x,u) +
n∑

i=1

pigi(t,x,u) The Hamiltonian.

16.26

If (x∗(t),u∗(t)) solves problem (16.24), there
exist a constant p0 and a continuous function
p(t) = (p1(t), . . . , pn(t)), such that for all t in
[t0, t1],
(1) p0 = 0 or 1 and (p0,p(t)) is never (0,0).
(2) H(t,x∗(t),u,p(t)) ≤ H(t,x∗(t),u∗(t),p(t))

for all u in U .
(3) ṗi(t) = −∂H∗/∂xi, i = 1, . . . , n

(4) (a’) No condition on pi(t1), i = 1, . . . , l

(b’) pi(t1) ≥ 0 (= 0 if x∗
i (t1) > x1

i )
i = l + 1, . . . , q

(c’) pi(t1) = 0, i = q + 1, . . . , n

The maximum principle.
H∗ denotes evaluation
at (t,x∗(t),u∗(t),p(t)).
The differential equation
for pi(t) is not neces-
sarily valid at the dis-
continuity points of
u∗(t). (4) (b’) and (c’)
are transversality condi-
tions. (Except in degen-
erate cases, one can put
p0 = 1 and then ignore
(1).)

16.27

If (x∗(t),u∗(t)) satisfies all the conditions in
(16.26) for p0 = 1, and H(t,x,u,p(t)) is con-
cave in (x,u), then (x∗(t),u∗(t)) solves prob-
lem (16.24).

Mangasarian’s sufficient
conditions for problem
(16.24).

16.28

The condition in (16.27) that H(t,x,u,p(t)) is
concave in (x,u), can be replaced by the weaker
condition that the maximized Hamiltonian

Ĥ(t,x,p(t)) = maxu∈U H(t,x,u,p(t))
is concave in x.

Arrow’s sufficient
condition.

16.29 V (x0,x1, t0, t1) =
∫ t1

t0

f(t,x∗(t),u∗(t)) dt

The value function of
problem (16.24), assum-
ing that the solution is
(x∗(t),u∗(t)) and that
x1 = (x1

1, . . . , x
1
q).
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16.30

∂V

∂x0
i

= pi(t0), i = 1, . . . , n

∂V

∂x1
i

= −pi(t1), i = 1, . . . , q

∂V

∂t0
= −H∗(t0),

∂V

∂t1
= H∗(t1)

Properties of the value
function, assuming V
is differentiable. H∗(t)
= H(t,x∗(t),u∗(t),p(t)).
(For precise assump-
tions, see Seierstad
and Sydsæter (1987),
Sec. 3.5.)

16.31

If t1 is free in problem (16.24) and (x∗(t),u∗(t))
solves the corresponding problem on [t0, t∗1],
then all the conditions in (16.26) are satisfied
on [t0, t∗1], and in addition

H(t∗1,x
∗(t∗1),u

∗(t∗1),p(t∗1)) = 0

Necessary conditions
for a free terminal time
problem. (Concavity
of the Hamiltonian in
(x,u) is not sufficient
for optimality when t1
is free. See Seierstad
and Sydsæter (1987),
Sec. 2.9.)

16.32

Replace the terminal conditions (a), (b), and
(c) in problem (16.24) by

Rk(x(t1)) = 0, k = 1, 2, . . . , r′
1,

Rk(x(t1)) ≥ 0, k = r′
1 + 1, r′

1 + 2, . . . , r1,

where R1, . . . , Rr1 are C1 functions. If the pair
(x∗(t),u∗(t)) is optimal, then the conditions in
(16.26) are satisfied, except that (4) is replaced
by the condition that there exist numbers a1,
. . . , ar1 such that

pj(t1) =
r1∑

k=1

ak
∂Rk(x∗(t1))

∂xj
, j = 1, . . . , n

where ak ≥ 0 (ak = 0 if Rk(x∗(t1)) > 0) for
k = r′

1 + 1, . . . , r1, and (1) is replaced by
p0 = 0 or 1, (p0, a1, . . . , ar1) �= (0, 0, . . . , 0)

If Ĥ(t,x,p(t)) is concave in x for p0 = 1 and
the sum

∑r1
k=1 akRk(x) is quasi-concave in x,

then (x∗,u∗) is optimal.

More general terminal
conditions. Ĥ(t,x,p(t))
is defined in (16.28).

16.33

max
[∫ t1

t0

f(t,x(t),u(t))e−rt dt + S(t1,x(t1))e−rt1
]

ẋ(t) = g(t,x(t),u(t)), x(t0) = x0, u(t) ∈ U ⊂ R
r

(a) xi(t1) = x1
i , i = 1, . . . , l

(b) xi(t1) ≥ x1
i , i = l + 1, . . . , q

(c) xi(t1) free, i = q + 1, . . . , n

A control problem with
a scrap value function,
S. t0 and t1 are fixed.
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16.34 Hc(t,x,u,q) = q0f(t,x,u) +
n∑

j=1

qjgj(t,x,u)
The current value
Hamiltonian for prob-
lem (16.33).

16.35

If (x∗(t),u∗(t)) solves problem (16.33), there
exists a constant q0 and a continuous function
q(t) = (q1(t), . . . , qn(t)) such that for all t in
[t0, t1],
(1) q0 = 0 or 1 and (q0,q(t)) is never (0,0).
(2) Hc(t,x∗(t),u,q(t)) ≤ Hc(t,x∗(t),u∗(t),q(t))

for all u in U .

(3) q̇i − rqi = −∂Hc(t,x∗,u∗,q)
∂xi

, i = 1, . . . , n

(4)
(a’) No condition on qi(t1), i = 1, . . . , l

(b’) qi(t1) ≥ q0
∂S∗(t1,x∗(t1))

∂xi

(with = if x∗
i (t1) > x1

i ), i = l + 1, . . . , m

(c’) qi(t1) = q0
∂S∗(t1,x∗(t1))

∂xi
, i = m + 1, . . . , n

The maximum principle
for problem (16.33), cur-
rent value formulation.
The differential equa-
tion for qi = qi(t) is not
necessarily valid at the
discontinuity points of
u∗(t). (Except in degen-
erate cases, one can put
q0 = 1 and then ignore
(1).)

16.36

If (x∗(t),u∗(t)) satisfies the conditions in
(16.35) for q0 = 1, if Hc(t,x,u,q(t)) is con-
cave in (x,u), and if S(t,x) is concave in x,
then the pair (x∗(t),u∗(t)) solves the problem.

Sufficient conditions for
the solution of (16.33).
(Mangasarian.)

16.37

The condition in (16.36) that Hc(t,x,u,q(t)) is
concave in (x,u) can be replaced by the weaker
condition that the maximized current value
Hamiltonian

Ĥc(t,x,q(t)) = maxu∈U Hc(t,x,u,q(t))
is concave in x.

Arrow’s sufficient
condition.

16.38

If t1 is free in problem (16.33), and if (x∗,u∗)
solves the corresponding problem on [t0, t∗1],
then all the conditions in (16.35) are satisfied
on [t0, t∗1], and in addition

Hc(t∗1,x
∗(t∗1),u

∗(t∗1),q(t∗1)) =

q0rS(t∗1,x
∗(t∗1))− q0

∂S(t∗1,x
∗(t∗1))

∂t1

Necessary conditions for
problem (16.33) when
t1 is free. (Except in
degenerate cases, one
can put q0 = 1.)
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Linear quadratic problems

16.39

min
[ ∫ t1

t0

(x′Ax + u′Bu) dt + (x(t1))′Sx(t1)
]
,

ẋ = Fx + Gu, x(t0) = x0, u ∈ R
r.

The matrices A = A(t)n×n and Sn×n are sym-
metric and positive semidefinite, B = B(t)r×r

is symmetric and positive definite, F = F(t)n×n

and G = G(t)n×r.

A linear quadratic con-
trol problem. The en-
tries of A(t), B(t), F(t),
and G(t) are continuous
functions of t. x = x(t)
is n×1, u = u(t) is r×1.

16.40 Ṙ = −RF− F′R + RGB−1G′R−A The Riccati equation
associated with (16.39).

16.41

Suppose (x∗(t),u∗(t)) is admissible in problem
(16.39), and let u∗ = −(B(t))−1(G(t))′R(t)x∗,
with R = R(t) as a symmetric n × n-matrix
with C1 entries satisfying (16.40) with R(t1) =
S. Then (x∗(t),u∗(t)) solves problem (16.39).

The solution of (16.39).

Infinite horizon

16.42

max
∫ ∞

t0

f(t, x(t), u(t))e−rt dt,

ẋ(t) = g(t, x(t), u(t)), x(t0) = x0, u(t) ∈ U,

lim
t→∞ x(t) ≥ x1 (x1 is a fixed number).

A simple one-variable
infinite horizon problem,
assuming that the in-
tegral converges for all
admissible pairs.

16.43 Hc(t, x, u, q) = q0f(t, x, u) + qg(t, x, u)
The current value Ham-
iltonian for problem
(16.42).

16.44

Suppose that, with q0 = 1, an admissible pair
(x∗(t), u∗(t)) in problem (16.42) satisfies the
following conditions for all t ≥ t0:
(1) Hc(t, x∗(t), u, q(t)) ≤ Hc(t, x∗(t), u∗(t), q(t))

for all u in U .
(2) q̇(t)− rq = − ∂Hc(t, x∗(t), u∗(t), q(t))/∂x

(3) Hc(t, x, u, q(t)) is concave in (x, u).
(4) limt→∞[q(t)e−rt(x(t) − x∗(t))] ≥ 0 for all

admissible x(t).
Then (x∗(t), u∗(t)) is optimal.

Mangasarian’s sufficient
conditions. (Conditions
(1) and (2) are (essen-
tially) necessary for
problem (16.42), but
(4) is not. For a discus-
sion of necessary condi-
tions, see e.g. Seierstad
and Sydsæter (1987),
Sec. 3.7.)
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16.45

max
∫ ∞

t0

f(t,x(t),u(t))e−rt dt

ẋ(t) = g(t,x(t),u(t)), x(t0) = x0, u(t) ∈ U ⊂ R
r

(a) limt→∞ xi(t) = x1
i , i = 1, . . . , l

(b) limt→∞ xi(t) ≥ x1
i , i = l + 1, . . . , m

(c) xi(t) free as t →∞, i = m + 1, . . . , n

An infinite horizon prob-
lem with several state
and control variables.
For lim, see (12.42) and
(12.43).

16.46
D(t) =

∫ t

t0

(f∗ − f)e−rτ dτ, where

f∗ = f(τ,x∗(τ),u∗(τ)), f = f(τ,x(τ),u(τ))

Notation for (16.47).
(x∗(t),u∗(t)) is a candi-
date for optimality, and
(x(t),u(t)) is any admis-
sible pair.

16.47

The pair (x∗(t),u∗(t)) is
• sporadically catching up optimal (SCU-opti-

mal) if for every admissible pair (x(t),u(t)),
limt→∞ D(t) ≥ 0

i.e. for every ε > 0 and every T there is some
t ≥ T such that D(t) ≥ −ε;

• catching up optimal (CU-optimal) if for ev-
ery admissible pair (x(t),u(t)),

limt→∞ D(t) ≥ 0
i.e. for every ε > 0 there exists a T such that
D(t) ≥ −ε for all t ≥ T ;

• overtaking optimal (OT-optimal) if for ev-
ery admissible pair (x(t),u(t)), there exists
a number T such that D(t) ≥ 0 for all t ≥ T .

Different optimality cri-
teria for infinite hori-
zon problems. For lim
and lim, see (12.42)
and (12.43). (SCU-
optimality is also called
weak optimality , while
CU-optimality is then
called overtaking opti-
mality.)

16.48
OT-optimality ⇒ CU-optimality

⇒ SCU-optimality
Relationship between the
optimality criteria.

16.49

Suppose (x∗(t),u∗(t)) is SCU-, CU-, or OT-
optimal in problem (16.45). Then there exist a
constant q0 and a continuous function q(t) =
(q1(t), . . . , qn(t)) such that for all t ≥ t0,
(1) q0 = 0 or 1 and (q0,q(t)) is never (0,0).
(2) Hc(t,x∗(t),u,q(t)) ≤ Hc(t,x∗(t),u∗(t),q(t))

for all u in U .

(3) q̇i−rqi = −∂Hc(t,x∗,u∗,q)
∂xi

, i = 1, . . . , n

The maximum princi-
ple. Infinite horizon.
(No transversality con-
dition.) The differential
equation for qi(t) is not
necessarily valid at the
discontinuity points of
u∗(t).
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16.50

With regard to CU-optimality, conditions (2)
and (3) in (16.49) (with q0 = 1) are sufficient
for optimality if

(1) Hc(t,x,u,q(t)) is concave in (x,u)

(2) limt→∞ e−rtq(t) · (x(t)− x∗(t)) ≥ 0 for all
admissible x(t).

Sufficient conditions for
the infinite horizon case.

16.51

Condition (16.50) (2) is satisfied if the following
conditions are satisfied for all admissible x(t):

(1) lim
t→∞

e−rtqi(t)(x1
i−x∗

i (t)) ≥ 0, i = 1, . . . , m.

(2) There exists a constant M such that
|e−rtqi(t)| ≤M for all t ≥ t0, i = 1, . . . , m.

(3) Either there exists a number t′ ≥ t0 such
that qi(t) ≥ 0 for all t ≥ t′, or there exists a
number P such that |xi(t)| ≤ P for all t ≥
t0 and limt→∞ qi(t) ≥ 0, i = l + 1, . . . , m.

(4) There exists a number Q such that |xi(t)| <
Q for all t ≥ t0, and lim

t→∞ qi(t) = 0, i =
m + 1, . . . , n.

Sufficient conditions for
(16.50) (2) to hold. See
Seierstad and Sydsæter
(1987), Section 3.7,
Note 16.

Mixed constraints

16.52

max
∫ t1

t0

f(t,x(t),u(t)) dt

ẋ(t) = g(t,x(t),u(t)), x(t0) = x0, u(t) ∈ R
r

hk(t,x(t),u(t)) ≥ 0, k = 1, . . . , s

(a) xi(t1) = x1
i , i = 1, . . . , l

(b) xi(t1) ≥ x1
i , i = l + 1, . . . , q

(c) xi(t1) free, i = q + 1, . . . , n

A mixed constraints
problem. x(t) ∈ R

n.
h1,. . . , hs are given
functions. (All re-
strictions on u must
be included in the hk

constraints.)

16.53 L(t,x,u,p,q) = H(t,x,u,p) +
s∑

k=1

qkhk(t,x,u)

The Lagrangian asso-
ciated with (16.52).
H(t,x,u,p) is the usual
Hamiltonian.
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16.54

Suppose (x∗(t),u∗(t)) is an admissible pair in
problem (16.52). Suppose further that there ex-
ist functions p(t) = (p1(t), . . . , pn(t)) and
q(t) = (q1(t), . . . , qs(t)), where p(t) is continu-
ous and ṗ(t) and q(t) are piecewise continuous,
such that the following conditions are satisfied
with p0 = 1:

(1)
∂L∗

∂uj
= 0, j = 1, . . . , r

(2) qk(t) ≥ 0 (qk(t) = 0 if hk(t,x∗(t),u∗(t)) > 0),
k = 1, . . . , s

(3) ṗi(t) = −∂L∗

∂xi
, i = 1, . . . , n

(4)
(a’) No conditions on pi(t1), i = 1, . . . , l

(b’) pi(t1) ≥ 0 (pi(t1) = 0 if x∗
i (t1) > x1

i ),
i = l + 1, . . . , m

(c’) pi(t1) = 0, i = m + 1, . . . , n

(5) H(t,x,u,p(t)) is concave in (x,u)
(6) hk(t,x,u) is quasi-concave in (x,u),

k = 1, . . . , s

Then (x∗(t),u∗(t)) solves the problem.

Mangasarian’s suffi-
cient conditions for
problem (16.52). L∗

denotes evaluation at
(t,x∗(t),u∗(t),p(t),q(t)).
(The standard neces-
sary conditions for op-
timality involve a con-
straint qualification
that severely restricts
the type of functions
that can appear in the
hk-constraints. In par-
ticular, each constraint
active at the optimum
must contain at least
one of the control var-
iables as an argument.
For details, see the
references.)

Pure state constraints

16.55

max
∫ t1

t0

f(t,x(t),u(t)) dt

ẋ(t) = g(t,x(t),u(t)), x(t0) = x0

u(t) = (u1(t), . . . , ur(t)) ∈ U ⊂ R
r

hk(t,x(t)) ≥ 0, k = 1, . . . , s

(a) xi(t1) = x1
i , i = 1, . . . , l

(b) xi(t1) ≥ x1
i , i = l + 1, . . . , q

(c) xi(t1) free, i = q + 1, . . . , n

A pure state constraints
problem. U is the con-
trol region. h1, . . . , hs

are given functions.

16.56 L(t,x,u,p,q) = H(t,x,u,p) +
s∑

k=1

qkhk(t,x)

The Lagrangian asso-
ciated with (16.55).
H(t,x,u,p) is the usual
Hamiltonian.
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16.57

Suppose (x∗(t),u∗(t)) is admissible in problem
(16.55), and that there exist vector functions
p(t) and q(t), where p(t) is continuous and ṗ(t)
and q(t) are piecewise continuous in [t0, t1), and
numbers βk, k = 1, . . . , s, such that the follow-
ing conditions are satisfied with p0 = 1:

(1) u = u∗(t) maximizes H(t,x∗(t),u,p(t)) for
u in U .

(2) qk(t) ≥ 0 (qk(t) = 0 if hk(t,x∗(t)) > 0),
k = 1, . . . , s

(3) ṗi(t) = −∂L∗

∂xi
, i = 1, . . . , n

(4) At t1, pi(t) can have a jump discontinuity,
in which case

pi(t−1 )− pi(t1) =
s∑

k=1
βk

∂hk(t1,x∗(t1))
∂xi

,

i = 1, . . . , n

(5) βk ≥ 0 (βk = 0 if hk(t1,x∗(t1)) > 0),
k = 1, . . . , s

(6) (a’) No conditions on pi(t1), i = 1, . . . , l

(b’) pi(t1) ≥ 0 (pi(t1) = 0 if x∗
i (t1) > x1

i ),
i = l + 1, . . . , m

(c’) pi(t1) = 0, i = m + 1, . . . , n

(7) Ĥ(t,x,p(t)) = maxu∈U H(t,x,u,p(t)) is
concave in x.

(8) hk(t,x) is quasi-concave in x, k = 1, . . . , s

Then (x∗(t),u∗(t)) solves the problem.

Mangasarian’s sufficient
conditions for the pure
state constraints prob-
lem (16.55). p(t) =
(p1(t), . . . , pn(t)) and
q(t) = (q1(t), . . . , qs(t)).
L∗ denotes evaluation at
(t,x∗(t),u∗(t),p(t),q(t)).
(The conditions in the
theorem are somewhat
restrictive. In particu-
lar, sometimes one must
allow p(t) to have dis-
continuities at interior
points of [t0, t1]. For de-
tails, see the references.)

Mixed and pure state constraints

16.58

max
∫ t1

t0

f(t,x(t),u(t)) dt

ẋ(t) = g(t,x(t),u(t)), x(t0) = x0

u(t) = (u1(t), . . . , ur(t)) ∈ U ⊂ R
r

hk(t,x(t),u(t)) ≥ 0, k = 1, . . . , s′

hk(t,x(t),u(t)) = h̄k(t,x(t)) ≥ 0, k = s′ + 1, . . . , s

(a) xi(t1) = x1
i , i = 1, . . . , l

(b) xi(t1) ≥ x1
i , i = l + 1, . . . , q

(c) xi(t1) free, i = q + 1, . . . , n

A mixed and pure state
constraints problem.
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16.59

Let (x∗(t),u∗(t)) be admissible in problem
(16.58). Assume that there exist vector func-
tions p(t) and q(t), where p(t) is continuous
and ṗ(t) and q(t) are piecewise continuous, and
also numbers βk, k = 1, . . . , s, such that the fol-
lowing conditions are satisfied with p0 = 1:

(1)
(

∂L∗

∂u

)
· (u− u∗(t)) ≤ 0 for all u i U

(2) ṗi(t) = −∂L∗

∂xi
, i = 1, . . . , n

(3) pi(t1)−
s∑

k=1
βk

∂hk(t1,x∗(t1),u∗(t1))
∂xi

satisfies
(a’) no conditions, i = 1, . . . , l

(b’) ≥ 0 (= 0 if x∗
i (t1) > x1

i ),
i = l + 1, . . . , m

(c’) = 0, i = m + 1, . . . , n

(4) βk = 0, k = 1, . . . , s′

(5) βk ≥ 0 (βk = 0 if h̄k(t1,x∗(t1)) > 0),
k = s′ + 1, . . . , s

(6) qk(t) ≥ 0 (= 0 if hk(t,x∗(t),u∗(t)) > 0),
k = 1, . . . , s

(7) hk(t,x,u) is quasi-concave in (x,u),
k = 1, . . . , s

(8) H(t,x,u,p(t)) is concave in (x,u).

Then (x∗(t),u∗(t)) solves the problem.

Mangasarian’s sufficient
conditions for the mixed
and pure state con-
straints problem (with
p(t) continuous). L is
defined in (16.53), and
L∗ denotes evaluation at
(t,x∗(t),u∗(t),p(t),q(t)).
p(t) = (p1(t), . . . , pn(t)),
q(t) = (q1(t), . . . , qs(t)).
A constraint qualifica-
tion is not required,
but the conditions of-
ten fail to hold because
p(t) has discontinu-
ities, in particular at t1.
See e.g. Seierstad and
Sydsæter (1987), Theo-
rem 6.2 for a sufficiency
result allowing p(t) to
have discontinuities at
interior points of [t0, t1]
as well.
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Chapter 17

Discrete dynamic optimization

Dynamic programming

17.1

max
T∑

t=0

f(t,xt,ut)

xt+1 = g(t,xt,ut), t = 0, . . . , T − 1

x0 = x0, xt ∈ R
n, ut ∈ U ⊂ R

r, t = 0, . . . , T

A dynamic program-
ming problem. Here
g = (g1, . . . , gn), and x0

is a fixed vector in R
n.

U is the control region.

17.2
Js(x) = max

us,...,uT ∈U

T∑
t=s

f(t,xt,ut), where

xt+1 = g(t,xt,ut), t = s, . . . , T −1, xs = x

Definition of the value
function, Js(x), of prob-
lem (17.1).

17.3

JT (x) = max
u∈U

f(T,x,u)

Js(x) = max
u∈U

[
f(s,x,u) + Js+1(g(s,x,u))

]
for s = 0, 1, . . . , T − 1.

The fundamental equa-
tions in dynamic pro-
gramming. (Bellman’s
equations.)

17.4

A “control parameter free” formulation of the
dynamic programming problem:

max
T∑

t=0

F (t,xt,xt+1)

xt+1 ∈ Γt(xt), t = 0, . . . , T, x0 given

The set Γt(xt) is often
defined in terms of
vector inequalities,
G(t,xt) ≤ xt+1 ≤
H(t,xt), for given vector
functions G and H.

17.5
Js(x) = max

T∑
t=s

F (t,xt,xt+1), where the max-

imum is taken over all xt+1 in Γt(xt) for t =
s, . . . , T , with xs = x.

The value function,
Js(x), of problem (17.4).

17.6

JT (x) = max
y∈ΓT (x)

F (T,x,y)

Js(x) = max
y∈Γs(x)

[
F (s,x,y) + Js+1(y)

]
for s = 0, 1, . . . , T .

The fundamental equa-
tions for problem (17.4).
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17.7

If {x∗
0, . . . ,x

∗
T+1} is an optimal solution of prob-

lem (17.4) in which x∗
t+1 is an interior point of

Γt(x∗
t ) for all t, and if the correspondence x �→

�Γt(x) is upper hemicontinuous, then {x∗
0, . . . ,

x∗
T+1} satisfies the Euler vector difference equa-

tion
F ′

2(t + 1,xt+1,xt+2) + F ′
3(t,xt,xt+1) = 0

F is a function of
1 + n + n variables,
F ′

2 denotes the n-vector
of partial derivatives of
F w.r.t. variables no.
2, 3, . . . , n + 1, and
F ′

3 is the n-vector of
partial derivatives of F
w.r.t. variables no. n + 2,
n + 3, . . . , 2n + 1.

Infinite horizon

17.8

max
∞∑

t=0

αtf(xt,ut)

xt+1 = g(xt,ut), t = 0, 1, 2, . . .

x0 = x0, xt ∈ R
n, ut ∈ U ⊂ R

r, t = 0, 1, 2, . . .

An infinite horizon prob-
lem. α ∈ (0, 1) is a con-
stant discount factor.

17.9
The sequence {(xt,ut)} is called admissible if
ut ∈ U , x0 = x0, and the difference equation
in (17.8) is satisfied for all t = 0, 1, 2, . . . .

Definition of an admissi-
ble sequence.

17.10
(B) M ≤ f(x,u) ≤ N

(BB) f(x,u) ≥ M

(BA) f(x,u) ≤ N

Boundedness conditions.
M and N are given
numbers.

17.11

V (x,π, s,∞) =
∑∞

t=s αtf(xt,ut),
where π = (us,us+1, . . .), with us+k ∈ U for
k = 0, 1, . . . , and with xt+1 = g(xt,ut) for t =
s, s + 1, . . . , and with xs = x.

The total utility ob-
tained from period s
and onwards, given that
the state vector is x at
t = s.

17.12

Js(x) = supπ V (x,π, s,∞)
where the supremum is taken over all vectors
π = (us,us+1, . . .) with us+k ∈ U , with (xt,ut)
admissible for t ≥ s, and with xs = x.

The value function of
problem (17.8).

17.13
Js(x) = αsJ0(x), s = 1, 2, . . .

J0(x) = sup
u∈U

{f(x,u) + αJ0(g(x,u))}

Properties of the value
function, assuming
that at least one of the
boundedness conditions
in (17.10) is satisfied.
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Discrete optimal control theory

17.14 H = f(t,x,u) + p · g(t,x,u), t = 0, . . . , T

The Hamiltonian H =
H(t,x,u,p) associated
with (17.1), with p =
(p1, . . . , pn).

17.15

Suppose {(x∗
t ,u

∗
t )} is an optimal sequence for

problem (17.1). Then there exist vectors pt in
R

n such that for t = 0, . . . , T :
• H ′

u(t,x∗
t ,u

∗
t ,pt) · (u−u∗

t ) ≤ 0 for all u in U

• The vector pt = (p1
t , . . . , p

n
t ) is a solution of

pt−1 = H ′
x(t,x∗

t ,u
∗
t ,pt), t = 1, . . . , T

with pT = 0.

The maximum princi-
ple for (17.1). Necessary
conditions for optimal-
ity. U is convex. (The
Hamiltonian is not nec-
essarily maximized by
u∗

t .)

17.16
(a) xi

T = x̄i for i = 1, . . . , l

(b) xi
T ≥ x̄i for i = l + 1, . . . , m

(c) xi
T free for i = m + 1, . . . , n

Terminal conditions for
problem (17.1).

17.17 H =
{

q0f(t,x,u)+p·g(t,x,u), t = 0, . . . , T−1
f(T,x,u), t = T

The Hamiltonian H =
H(t,x,u,p) associated
with (17.1) with termi-
nal conditions (17.16).

17.18

Suppose {(x∗
t ,u

∗
t )} is an optimal sequence for

problem (17.1) with terminal conditions
(17.16). Then there exist vectors pt in R

n and
a number q0, with (q0,pT ) �= (0,0) and with
q0 = 0 or 1, such that for t = 0, . . . , T :
(1) H ′

u(t,x∗
t ,u

∗
t ,pt)·(u− u∗

t ) ≤ 0 for all u in U

(2) pt = (p1
t , . . . , p

n
t ) is a solution of

pi
t−1 = H ′

xi(t,x∗
t ,u

∗
t ,pt), t = 1, . . . , T − 1

(3) pi
T−1 = q0

∂f(T,x∗
T ,u∗

T )
∂xi

T

+ pi
T

where pi
T satisfies

(a’) no condition on pi
T , i = 1, . . . , l

(b’) pi
T ≥ 0 (= 0 if x∗i

T > x̄i), i = l + 1, . . . , m

(c’) pi
T = 0, i = m + 1, . . . , n

The maximum principle
for (17.1) with terminal
conditions (17.16).
Necessary conditions for
optimality. (a’), (b’), or
(c’) holds when (a), (b),
or (c) in (17.16) holds,
respectively. U is con-
vex. (Except in degen-
erate cases, one can put
q0 = 1.)

17.19

Suppose that the sequence {(x∗
t ,u

∗
t ,pt)} sat-

isfies all the conditions in (17.18) for q0 = 1,
and suppose further that H(t,x,u,pt) is con-
cave in (x,u) for every t ≥ 0. Then the se-
quence {(x∗

t ,u
∗
t ,pt)} is optimal.

Sufficient conditions for
optimality.
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Infinite horizon

17.20

max
∞∑

t=0

f(t,xt,ut)

xt+1 = g(t,xt,ut), t = 0, 1, 2, . . .

x0 = x0, xt ∈ R
n, ut ∈ U ⊂ R

r, t = 0, 1, 2, . . .

It is assumed that the
infinite sum converges
for every admissible pair.

17.21

The sequence {(xt
∗,ut

∗)} is catching up opti-
mal (CU-optimal) if for every admissible se-
quence {(xt,ut)},

lim
t→∞

D(t) ≥ 0

where D(t) =
t∑

τ=0
(f(τ,x∗

τ ,u∗
τ )− f(τ,xτ ,uτ )).

Definition of “catching
up optimality”. For lim
see (12.42) and (12.43).

17.22

Suppose that the sequence {(x∗
t ,u

∗
t ,pt)} satis-

fies the conditions (1) and (2) in (17.18) with
q0 = 1. Suppose further that the Hamiltonian
function H(t,x,u,pt) is concave in (x,u) for
every t. Then {(x∗

t ,u
∗
t }) is CU-optimal pro-

vided that the following limit condition is sat-
isfied: For all admissible sequences {(xt,ut)},

lim
t→∞

pt · (xt − x∗
t ) ≥ 0

Sufficient optimality con-
ditions for an infinite
horizon problem with no
terminal conditions.

References
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Chapter 18

Vectors in R
n. Abstract spaces

18.1 a1 =

⎛⎜⎜⎝
a11
a21
...

an1

⎞⎟⎟⎠, a2 =

⎛⎜⎜⎝
a12
a22
...

an2

⎞⎟⎟⎠, . . . , am =

⎛⎜⎜⎝
a1m

a2m
...

anm

⎞⎟⎟⎠ m (column) vectors in
R

n.

18.2
If x1, x2, . . . , xm are real numbers, then

x1a1 + x2a2 + · · ·+ xmam

is a linear combination of a1, a2, . . . , am.

Definition of a linear
combination of vectors.

18.3

The vectors a1, a2, . . . , am in R
n are

• linearly dependent if there exist numbers c1,
c2, . . . , cm, not all zero, such that

c1a1 + c2a2 + · · ·+ cmam = 0

• linearly independent if they are not linearly
dependent.

Definition of linear
dependence and inde-
pendence.

18.4
The vectors a1, a2, . . . , am in (18.1) are linearly
independent if and only if the matrix (aij)n×m

has rank m.

A characterization of
linear independence for
m vectors in R

n. (See
(19.23) for the definition
of rank.)

18.5

The vectors a1, a2, . . . , an in R
n are linearly

independent if and only if∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣ �= 0

A characterization of lin-
ear independence for n
vectors in R

n. (A special
case of (18.4).)

18.6
A non-empty subset V of vectors in R

n is a sub-
space of R

n if c1a1 + c2a2 ∈ V for all a1, a2 in
V and all numbers c1, c2.

Definition of a subspace.
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18.7 If V is a subset of R
n, then S[V ] is the set of

all linear combinations of vectors from V .
S[V ] is called the span
of V .

18.8

A collection of vectors a1, . . . ,am in a subspace
V of R

n is a basis for V if the following two
conditions are satisfied:
• a1, . . . ,am are linearly independent
• S[a1, . . . ,am ] = V

Definition of a basis for
a subspace.

18.9

The dimension dimV , of a subspace V of R
n

is the number of vectors in a basis for V . (Two
bases for V always have the same number of
vectors.)

Definition of the dimen-
sion of a subspace. In
particular, dim R

n = n.

18.10

Let V be an m-dimensional subspace of R
n.

• Any collection of m linearly independent vec-
tors in V is a basis for V .

• Any collection of m vectors in V that spans
V is a basis for V .

Important facts about
subspaces.

18.11
The inner product of a = (a1, . . . , am) and b =
(b1, . . . , bm) is the number

a · b = a1b1 + · · ·+ ambm =
∑m

j=1 aibi

Definition of the inner
product, also called
scalar product or dot
product .

18.12

a · b = b · a
a · (b + c) = a · b + a · c
(αa) · b = a · (αb) = α(a · b)
a · a > 0 ⇐⇒ a �= 0

Properties of the inner
product. α is a scalar
(i.e. a real number).

18.13 ‖a‖ =
√

a2
1 + a2

2 + · · ·+ a2
n =

√
a · a

Definition of the
(Euclidean) norm (or
length) of a vector.

18.14

(a) ‖a‖ > 0 for a �= 0 and ‖0‖ = 0
(b) ‖αa‖ = |α| ‖a‖
(c) ‖a + b‖ ≤ ‖a‖+ ‖b‖
(d) |a · b| ≤ ‖a‖ · ‖b‖

Properties of the norm.
a, b ∈ R

n, α is a scalar.
(d) is the Cauchy–
Schwarz inequality .
‖a − b‖ is the distance
between a and b.

18.15

The angle ϕ between two nonzero vectors a and
b is defined by

cos ϕ =
a · b

‖a‖ · ‖b‖ , 0 ≤ ϕ ≤ π

Definition of the angle
between two vectors in
R

n. The vectors a and b
are called orthogonal if
a · b = 0.
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Vector spaces

18.16

A vector space (or linear space) (over R) is a
set V of elements, often called vectors, with
two operations, “addition” (V × V → V ) and
“scalar multiplication” (R × V → V ), that for
all x, y, z in V , and all real numbers α and β
satisfy the following axioms:
(a) (x + y) + z = x + (y + z), x + y = y + x.
(b) There is an element 0 in V with x + 0 = x.
(c) For every x in V , the element (−1)x in V

has the property x + (−1)x = 0.
(d) (α + β)x = αx + βx, α(βx) = (αβ)x,

α(x + y) = αx + αy, 1x = x.

Definition of a vector
space. With obvious
modifications, definitions
(18.2), (18.3), (18.6),
and (18.7), of a linear
combination, of linearly
dependent and indepen-
dent sets of vectors, of
a subspace, and of the
span, carry over to vec-
tor spaces.

18.17
A set B of vectors in a vector space V is a basis
for V if the vectors in B are linearly indepen-
dent, and B spans V , S[B] = V .

Definition of a basis of a
vector space.

Metric spaces

18.18

A metric space is a set M equipped with a dis-
tance function d : M ×M → R, such that the
following axioms hold for all x, y, z in M :
(a) d(x, y) ≥ 0, and d(x, y) = 0 ⇔ x = y

(b) d(x, y) = d(y, x)
(c) d(x, y) ≤ d(x, z) + d(z, y)

Definition of a metric
space. The distance
function d is also called
a metric on M . (c) is
called the triangle in-
equality .

18.19

A sequence {xn} in a metric space is
• convergent with limit x, and we write

limn→∞ xn = x (or xn → x as n → ∞),
if d(xn, x) → 0 as n →∞;

• a Cauchy sequence if for every ε > 0 there
exists an integer N such that d(xn, xm) < ε
for all m, n ≥ N .

Important definitions.
A sequence that is not
convergent is called
divergent .

18.20
A subset S of a metric space M is dense in M
if each point in M is the limit of a sequence of
points in S.

Definition of a dense
subset.

18.21

A metric space M is
• complete if every Cauchy sequence in M is

convergent;
• separable if there exists a countable subset S

of M that is dense in M .

Definition of complete
and separable metric
spaces.
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Normed vector spaces. Banach spaces

18.22

A normed vector space (over R) is a vector space
V , together with a function ‖ · ‖ : V → R, such
that for all x, y in V and all real numbers α,
(a) ‖x‖ > 0 for x �= 0 and ‖0‖ = 0
(b) ‖αx‖ = |α| ‖x‖
(c) ‖x + y‖ ≤ ‖x‖+ ‖y‖

With the distance func-
tion d(x, y) = ‖x − y‖, V
becomes a metric space.
If this metric space is
complete, then V is
called a Banach space.

18.23

• lp(n): R
n, with ‖x‖ =

( n∑
i=1
|xi|p

)1/p

(p ≥ 1)

(For p = 2 this is the Euclidean norm.)
• l∞(n): R

n, with ‖x‖ = max
(|x1|, . . . , |xn|

)
• lp (p ≥ 1): the set of all infinite sequences

x = (x0, x1, . . .) of real numbers such that
∞∑

i=1
|xi|p converges. ‖x‖ =

( ∞∑
i=1
|xi|p

)1/p

.

For x = (x0, x1, . . . ) and y = (y0, y1, . . . ) in
lp, by definition, x+y = (x0+y0, x1+y1, . . .)
and αx = (αx0, αx1, . . .).

• l∞: the set of all bounded infinite sequences
x = (x0, x1, . . .) of real numbers, with ‖x‖ =
supi |xi|. (Vector operations defined as for
lp.)

• C(X): the set of all bounded, continuous
functions f : X → R, where X is a metric
space, and with ‖f‖ = supx∈X |f(x)|. If f
and g are in C(X) and α ∈ R, then f +g and
αf are defined by (f + g)(x) = f(x) + g(x)
and (αf)(x) = αf(x).

Some standard examples
of normed vector spaces,
that are also Banach
spaces.

18.24

Let X be compact metric space, and let F be a
subset of the Banach space C(X) (see (18.23)
that is
• uniformly bounded , i.e. there exists a number

M such that |f(x)| ≤ M for all f in F and
all x in X,

• equicontinuous, i.e. for each ε > 0 there ex-
ists a δ > 0 such that if ‖x − x′‖ < δ, then
|f(x)− f(x′)| < ε for all f in F .

Then the closure of F is compact.

Ascoli’s theorem. (To-
gether with Schauder’s
theorem (18.25), this
result is useful e.g. in
economic dynamics.
See Stokey, Lucas, and
Prescott (1989).)
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18.25

If K is a compact, convex set in a Banach space
X, then any continuous function f of K into
itself has a fixed point, i.e. there exists a point
x∗ in K such that f(x∗) = x∗.

Schauder’s fixed point
theorem.

18.26

Let T : X → X be a mapping of a complete
metric space X into itself, and suppose there
exists a number k in [0, 1) such that
(∗) d(Tx, Ty) ≤ kd(x, y) for all x, y in X

Then:
(a) T has a fixed point x∗, i.e. T (x∗) = x∗.
(b) d(Tnx0, x∗) ≤ knd(x0, x∗) for all x0 in X

and all n = 0, 1, 2, . . . .

The existence of a fixed
point for a contraction
mapping. k is called a
modulus of the contrac-
tion mapping. (See also
(6.23) and (6.25).) A
mapping that satisfies
(∗) for some k in [0, 1),
is called a contraction
mapping .

18.27

Let C(X) be the Banach space defined in
(18.23) and let T be a mapping of C(X) into
C(X) satisfying:
(a) (Monotonicity) If f, g ∈ C(X) and f(x) ≤

g(x) for all x in X, then (Tf)(x) ≤ (Tg)(x)
for all x ∈ X.

(b) (Discounting) There exists some α in (0, 1)
such that for all f in C(X), all a ≥ 0, and
all x in X,
[T (f + a)](x) ≤ (Tf)(x) + αa

Then T is a contraction mapping with modu-
lus α.

Blackwell’s sufficient
conditions for a contrac-
tion. Here (f + a)(x) is
defined as f(x) + a.

Inner product spaces. Hilbert spaces

18.28

An inner product space (over R) is a vector
space V , together with a function that to each
ordered pair of vectors (x, y) in V associates a
real number, 〈x, y〉, such that for all x, y, z in
V and all real numbers α,
(a) 〈x, y〉 = 〈y, x〉
(b) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
(c) α〈x, y〉 = 〈αx, y〉+ 〈x, αy〉
(d) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0

Definition of an inner
product space. If we de-
fine ‖x‖ =

√
〈x, x〉, then

V becomes a normed
vector space. If this
space is complete, V is
called a Hilbert space.
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18.29
• l2(n), with 〈x,y〉 =

n∑
i=1

xiyi

• l2, with 〈x,y〉 =
∞∑

i=1
xiyi

Examples of Hilbert
spaces.

18.30
(a) |〈x, y〉| ≤√〈x, x〉√〈y, y〉 for all x, y in V

(b) 〈x, y〉 = 1
4

(‖x + y‖2 − ‖x− y‖2)
(a) is the Cauchy–
Schwarz inequality.
(Equality holds if and
only if x and y are
linearly dependent.)
The equality in (b)
shows that the inner
product is expressible
in terms of the norm.

18.31

• Two vectors x and y in an inner product
space V are orthogonal if 〈x, y〉 = 0.

• A set S of vectors in V is called orthogonal
if 〈x, y〉 = 0 for all x �= y in S.

• A set S of vectors in V is called orthonormal
if it is orthogonal and ‖x‖ = 1 for all x in S.

• An orthonormal set S in V is called complete
if there exists no x in V that is orthogonal
to all vectors in S.

Important definitions.

18.32

Let U be an orthonormal set in an inner prod-
uct space V .
(a) If u1, . . . , un is any finite collection of dis-

tinct elements of U , then

(∗)
n∑

i=1
|(x, ui)|2 ≤ ‖x‖2 for all x in V

(b) If V is complete (a Hilbert space) and U is
a complete orthonormal subset of V , then
(∗∗) ∑

u∈U

|(x, u)|2 = ‖x‖2 for all x in V

(∗) is Bessel’s inequal-
ity , (∗∗) is Parseval’s
formula.

References

All the results on vectors in R
n are standard and can be found in any linear algebra

text, e.g. Fraleigh and Beauregard (1995) or Lang (1987). For abstract spaces, see
Kolmogorov and Fomin (1975), or Royden (1968). For contraction mappings and
their application in economic dynamics, see Stokey, Lucas, and Prescott (1989).



Chapter 19

Matrices

19.1 A =

⎛⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎞⎟⎟⎠ = (aij)m×n

Notation for a matrix ,
where aij is the element
in the ith row and the
jth column. The matrix
has order m × n. If m =
n, the matrix is square
of order n.

19.2 A =

⎛⎜⎜⎝
a11 a12 . . . a1n

0 a22 . . . a2n
...

...
. . .

...
0 0 . . . ann

⎞⎟⎟⎠
An upper triangular ma-
trix. (All elements be-
low the diagonal are 0.)
The transpose of A (see
(19.11)) is called lower
triangular .

19.3 diag(a1, a2, . . . , an) =

⎛⎜⎜⎝
a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

⎞⎟⎟⎠ A diagonal matrix .

19.4

⎛⎜⎜⎝
a 0 · · · 0
0 a · · · 0
...

...
. . .

...
0 0 · · · a

⎞⎟⎟⎠
n×n

A scalar matrix.

19.5 In =

⎛⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞⎟⎟⎠
n×n

The unit or identity
matrix.

19.6

If A = (aij)m×n, B = (bij)m×n, and α is a
scalar, we define

A + B = (aij + bij)m×n

αA = (αaij)m×n

A−B = A + (−1)B = (aij − bij)m×n

Matrix operations. (The
scalars are real or com-
plex numbers.)
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19.7

(A + B) + C = A + (B + C)
A + B = B + A

A + 0 = A

A + (−A) = 0

(a + b)A = aA + bA

a(A + B) = aA + aB

Properties of matrix op-
erations. 0 is the zero
(or null) matrix, all of
whose elements are zero.
a and b are scalars.

19.8

If A = (aij)m×n and B = (bij)n×p, we define
the product C = AB as the m× p matrix C =
(cij)m×p where

cij = ai1b1j + · · ·+ aikbkj + · · ·+ ainbnj

The definition of matrix
multiplication.

⎛⎜⎜⎜⎜⎝
a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain

...
...

...
am1 . . . amj . . . amn

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
b11 . . . b1k . . . b1p

...
...

...
bj1 . . . bjk . . . bjp

...
...

...
bn1 . . . bnk . . . bnp

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
c11 . . . c1k . . . c1p

...
...

...
ci1 . . . cik . . . cip

...
...

...
cm1 . . . cmk . . . cmp

⎞⎟⎟⎟⎟⎠

19.9
(AB)C = A(BC)

A(B + C) = AB + AC

(A + B)C = AC + BC

Properties of matrix
multiplication.

19.10
AB �= BA

AB = 0 �⇒ A = 0 or B = 0

AB = AC & A �= 0 �⇒ B = C

Important observations
about matrix multiplica-
tion. 0 is the zero ma-
trix. 
⇒ should be read:
“does not necessarily
imply”.

19.11 A′ =

⎛⎜⎜⎝
a11 a21 · · · am1
a12 a22 · · · am2
...

...
...

a1n a2n · · · amn

⎞⎟⎟⎠
A′, the transpose of
A = (aij)m×n, is the
n × m matrix obtained
by interchanging rows
and columns in A.

19.12

(A′)′ = A

(A + B)′ = A′ + B′

(αA)′ = αA′

(AB)′ = B′A′ (NOTE the order!)

Rules for transposes.

19.13 B = A−1 ⇐⇒ AB = In ⇐⇒ BA = In

The inverse of an n × n
matrix A. In is the
identity matrix.
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19.14 A−1 exists ⇐⇒ |A| �= 0

A necessary and suffici-
ent condition for a ma-
trix to have an inverse,
i.e. to be invertible. |A|
denotes the determinant
of the square matrix A.
(See Chapter 20.)

19.15 A =
(

a b
c d

)
=⇒ A−1 =

1
ad− bc

(
d −b
−c a

)
Valid if
|A| = ad − bc 
= 0.

19.16

If A = (aij)n×n is a square matrix and |A| �= 0,
the unique inverse of A is given by

A−1 =
1
|A| adj(A), where

adj(A) =

⎛⎜⎜⎝
A11 A21 · · · An1
A12 A22 · · · An2
...

...
. . .

...
A1n A2n · · · Ann

⎞⎟⎟⎠
Here the cofactor , Aij , of the element aij is
given by

Aij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain

...
...

...
an1 . . . anj . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣

The general formula for
the inverse of a square
matrix. NOTE the or-
der of the indices in the
adjoint matrix , adj(A).
The matrix (Aij)n×n is
called the cofactor ma-
trix , and thus the ad-
joint is the transpose
of the cofactor matrix.
In the formula for the
cofactor, Aij , the deter-
minant is obtained by
deleting the ith row and
the jth column in |A|.

19.17

(A−1)−1 = A

(AB)−1 = B−1A−1 (NOTE the order!)

(A′)−1 = (A−1)′

(cA)−1 = c−1A−1

Properties of the inverse.
(A and B are invertible
n × n matrices. c is a
scalar 
= 0.)

19.18 (Im + AB)−1 = Im −A(In + BA)−1B A is m × n, B is n × m,
|Im + AB| 
= 0.

19.19 R−1A′(AR−1A′+Q−1)−1 = (A′QA+R)−1A′Q
Matrix inversion pairs.
Valid if the inverses
exist.
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19.20

A square matrix A of order n is called
• symmetric if A = A′

• skew-symmetric if A = −A′

• idempotent if A2 = A

• involutive if A2 = In

• orthogonal if A′A = In

• singular if |A| = 0, nonsingular if |A| �= 0

Some important defi-
nitions. |A| denotes
the determinant of the
square matrix A. (See
Chapter 20.) For prop-
erties of idempotent and
orthogonal matrices, see
Chapter 22.

19.21 tr(A) =
n∑

i=1

aii

The trace of A =
(aij)n×n is the sum of
its diagonal elements.

19.22

tr(A + B) = tr(A) + tr(B)
tr(cA) = c tr(A) (c is a scalar)

tr(AB) = tr(BA) (if AB is a square matrix)
tr(A′) = tr(A)

Properties of the trace.

19.23

r(A) = maximum number of linearly indepen-
dent rows in A = maximum number of lin-
early independent columns in A = order of the
largest nonzero minor of A.

Equivalent definitions
of the rank of a matrix.
On minors, see (20.15).

19.24

(1) r(A) = r(A′) = r(A′A) = r(AA′)
(2) r(AB) ≤ min

(
r(A), r(B)

)
(3) r(AB) = r(B) if |A| �= 0
(4) r(CA) = r(C) if |A| �= 0
(5) r(PAQ) = r(A) if |P| �= 0, |Q| �= 0
(6) |r(A)− r(B)| ≤ r(A + B) ≤ r(A) + r(B)
(7) r(AB) ≥ r(A) + r(B)− n

(8) r(AB) + r(BC) ≤ r(B) + r(ABC)

Properties of the rank.
The orders of the ma-
trices are such that the
required operations are
defined. In result (7),
Sylvester’s inequality , A
is m × n and B is n × p.
(8) is called Frobenius’s
inequality .

19.25 Ax = 0 for some x �= 0 ⇐⇒ r(A) ≤ n− 1
A useful result on homo-
geneous equations. A is
m × n, x is n × 1.

19.26

A matrix norm is a function ‖ · ‖β that to each
square matrix A associates a real number ‖A‖β

such that:

• ‖A‖β > 0 for A �= 0 and ‖0‖β = 0
• ‖cA‖β = |c| ‖A‖β (c is a scalar)
• ‖A + B‖β ≤ ‖A‖β + ‖B‖β

• ‖AB‖β ≤ ‖A‖β ‖B‖β

Definition of a matrix
norm. (There are an
infinite number of such
norms, some of which
are given in (19.27).)
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19.27

• ‖A‖1 = max
j=1,...,n

n∑
i=1

|aij |

• ‖A‖∞ = max
i=1,...,n

n∑
j=1

|aij |

• ‖A‖2 =
√

λ, where λ is the largest eigenvalue
of A′A.

• ‖A‖M = n max
i,j=1,...,n

|aij |

• ‖A‖T =
( n∑

j=1

n∑
i=1

|aij |2
)1/2

Some matrix norms for
A = (aij)n×n. (For
eigenvalues, see Chap-
ter 21.)

19.28 λ eigenvalue of A = (aij)n×n ⇒ |λ| ≤ ‖A‖β

The modulus of any
eigenvalue of A is less
than or equal to any ma-
trix norm of A.

19.29 ‖A‖β < 1 ⇒ At → 0 as t →∞
Sufficient condition for
At → 0 as t → ∞. ‖A‖β

is any matrix norm of A.

19.30 eA =
∞∑

n=0

1
n!

An The exponential matrix
of a square matrix A.

19.31
eA+B = eAeB if AB = BA

(eA)−1 = e−A,
d

dx
(exA) = AexA

Properties of the expo-
nential matrix.

Linear transformations

19.32

A function T : R
n → R

m is called a linear
transformation (or function) if
(1) T (x + y) = T (x) + T (y)
(2) T (cx) = cT (x)
for all x and y in R

n and for all scalars c.

Definition of a linear
transformation.

19.33
If A is an m × n matrix, the function TA :
R

n → R
m defined by TA(x) = Ax is a linear

transformation.
An important fact.

19.34

Let T : R
n → R

m be a linear transformation
and let A be the m × n matrix whose jth col-
umn is T (ej), where ej is the jth standard unit
vector in R

n. Then T (x) = Ax for all x in R
n.

The matrix A is called
the standard matrix rep-
resentation of T .
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19.35

Let T : R
n → R

m and S : R
m → R

k be two lin-
ear transformations with standard matrix rep-
resentations A and B, respectively. Then the
composition S ◦T of the two transformations is
a linear transformation with standard matrix
representation BA.

A basic fact.

19.36

Let A be an invertible n× n matrix with asso-
ciated linear transformation T . The transfor-
mation T−1 associated with A−1 is the inverse
transformation (function) of T .

A basic fact.

Generalized inverses

19.37
An n×m matrix A− is called a generalized in-
verse of the m× n matrix A if

AA−A = A

Definition of a general-
ized inverse of a matrix.
(A− is not unique in
general.)

19.38

A necessary and sufficient condition for the ma-
trix equation Ax = b to have a solution is
that AA−b = b. The general solution is then
x = A−b+(I−A−A)q, where q is an arbitrary
vector of appropriate order.

An important appli-
cation of generalized
inverses.

19.39

If A− is a generalized inverse of A, then
• AA− and A−A are idempotent
• r(A) = r(A−A) = tr(A−A)
• (A−)′ is a generalized inverse of A′

• A is square and nonsingular ⇒ A− = A−1

Properties of generalized
inverses.

19.40

An n×m matrix A+ is called the Moore–Pen-
rose inverse of a real m× n matrix A if it sat-
isfies the following four conditions:
(i) AA+A = A (ii) A+AA+ = A+

(iii) (AA+)′ = AA+ (iv) (A+A)′ = A+A

Definition of the Moore–
Penrose inverse. (A+

exists and is unique.)

19.41

A necessary and sufficient condition for the ma-
trix equation Ax = b to have a solution is
that AA+b = b. The general solution is then
x = A+b+(I−A+A)q, where q is an arbitrary
vector of appropriate order.

An important appli-
cation of the Moore–
Penrose inverse.
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19.42

• A is square and nonsingular ⇒ A+ = A−1

• (A+)+ = A, (A′)+ = (A+)′

• A+ = A if A is symmetric and idempotent.
• A+A and AA+ are idempotent.
• A, A+, AA+, and A+A have the same rank.
• A′AA+ = A′ = A+AA′

• (AA+)+ = AA+

• (A′A)+ = A+(A+)′, (AA′)+ = (A+)′A+

• (A⊗B)+ = A+ ⊗B+

Properties of the Moore–
Penrose inverse. (⊗ is
the Kronecker product.
See Chapter 23.)

Partitioned matrices

19.43 P =
(

P11 P12
P21 P22

) A partitioned matrix of
order (p + q) × (r + s).
(P11 is p×r, P12 is p×s,
P21 is q×r, P22 is q×s.)

19.44

(
P11 P12
P21 P22

)(
Q11 Q12
Q21 Q22

)
=
(

P11Q11 + P12Q21 P11Q12 + P12Q22
P21Q11 + P22Q21 P21Q12 + P22Q22

)
Multiplication of parti-
tioned matrices. (We
assume that the multi-
plications involved are
defined.)

19.45
∣∣∣∣P11 P12
P21 P22

∣∣∣∣ = |P11| · |P22 −P21P−1
11 P12|

The determinant of a
partitioned n × n ma-
trix, assuming P−1

11
exists.

19.46
∣∣∣∣P11 P12
P21 P22

∣∣∣∣ = |P22| · |P11 −P12P−1
22 P21|

The determinant of a
partitioned n × n ma-
trix, assuming P−1

22
exists.

19.47
∣∣∣∣P11 P12

0 P22

∣∣∣∣ = |P11| · |P22| A special case.

19.48

(
P11 P12
P21 P22

)−1

=(
P−1

11 + P−1
11 P12∆−1P21P−1

11 −P−1
11 P12∆−1

−∆−1P21P−1
11 ∆−1

)

where ∆ = P22 −P21P−1
11 P12.

The inverse of a parti-
tioned matrix, assuming
P−1

11 exists.
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19.49

(
P11 P12
P21 P22

)−1

=(
∆−1

1 −∆−1
1 P12P−1

22

−P−1
22 P21∆−1

1 P−1
22 + P−1

22 P21∆−1
1 P12P−1

22

)

where ∆1 = P11 −P12P−1
22 P21.

The inverse of a parti-
tioned matrix, assuming
P−1

22 exists.

Matrices with complex elements

19.50

Let A = (aij) be a complex matrix (i.e. the
elements of A are complex numbers). Then:
• Ā = (āij) is called the conjugate of A. (āij

denotes the complex conjugate of aij .)
• A∗ = Ā′ = (āji) is called the conjugate

transpose of A.
• A is called Hermitian if A = A∗.
• A is called unitary if A∗ = A−1.

Useful definitions in con-
nection with complex
matrices.

19.51
• A is real ⇐⇒ A = Ā.
• If A is real, then

A is Hermitian ⇐⇒ A is symmetric.

Easy consequences of the
definitions.

19.52

Let A and B be complex matrices and c a com-
plex number. Then
(1) (A∗)∗ = A

(2) (A + B)∗ = A∗ + B∗

(3) (cA)∗ = c̄A∗

(4) (AB)∗ = B∗A∗

Properties of the conju-
gate transpose. (2) and
(4) are valid if the sum
and the product of the
matrices are defined.

References

Most of the formulas are standard and can be found in almost any linear algebra
text, e.g. Fraleigh and Beauregard (1995) or Lang (1987). See also Sydsæter and
Hammond (2005) and Sydsæter et al. (2005). For (19.26)–(19.29), see e.g. Faddeeva
(1959). For generalized inverses, see Magnus and Neudecker (1988). A standard
reference is Gantmacher (1959).



Chapter 20

Determinants

20.1
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12
Definition of a 2 × 2
determinant.

20.2

y

x
(a11, a12)

(a21, a22)

A

Geometric interpretation
of a 2 × 2 determinant.
The area A is the abso-
lute value of the deter-
minant∣∣∣∣ a11 a12

a21 a22

∣∣∣∣.

20.3

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
⎧⎪⎨⎪⎩

a11a22a33 − a11a23a32

+ a12a23a31 − a12a21a33

+ a13a21a32 − a13a22a31

Definition of a 3 × 3
determinant.

20.4

x

y

z

(a31, a32, a33)

(a11, a12, a13)

(a21, a22, a23)

Geometric interpretation
of a 3 × 3 determinant.
The volume of the “box”
spanned by the three
vectors is the absolute
value of the determinant∣∣∣∣∣ a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣.



142

20.5

If A = (aij)n×n is an n × n matrix, the deter-
minant of A is the number
|A| = ai1Ai1 + · · ·+ ainAin =

∑n
j=1 aijAij

where Aij , the cofactor of the element aij , is

Aij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain

...
...

...
an1 . . . anj . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣

The general definition of
a determinant of order
n, by cofactor expansion
along the ith row. The
value of the determinant
is independent of the
choice of i.

20.6

ai1Ai1 + ai2Ai2 + · · ·+ ainAin = |A|
ai1Ak1 + ai2Ak2 + · · ·+ ainAkn = 0 if k �= i

a1jA1j + a2jA2j + · · ·+ anjAnj = |A|
a1jA1k + a2jA2k + · · ·+ anjAnk = 0 if k �= j

Expanding a determi-
nant by a row or a col-
umn in terms of the co-
factors of the same row
or column, yields the de-
terminant. Expanding
by a row or a column in
terms of the cofactors
of a different row or col-
umn, yields 0.

20.7

• If all the elements in a row (or column) of A
are 0, then |A| = 0.

• If two rows (or two columns) of A are inter-
changed, the determinant changes sign but
the absolute value remains unchanged.

• If all the elements in a single row (or col-
umn) of A are multiplied by a number c, the
determinant is multiplied by c.

• If two of the rows (or columns) of A are pro-
portional, then |A| = 0.

• The value of |A| remains unchanged if a mul-
tiple of one row (or one column) is added to
another row (or column).

• |A′| = |A|, where A′ is the transpose of A.

Important properties of
determinants. A is a
square matrix.

20.8
|AB| = |A| · |B|
|A + B| �= |A|+ |B| (in general)

Properties of determi-
nants. A and B are
n × n matrices.

20.9

∣∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣∣ = (x2 − x1)(x3 − x1)(x3 − x2)
The Vandermonde deter-
minant for n = 3.
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20.10

∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

1 x3 x2
3 . . . xn−1

3
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤j<i≤n

(xi − xj)
The general Vander-
monde determinant.

20.11

∣∣∣∣∣∣∣∣
a1 1 . . . 1
1 a2 . . . 1
...

...
. . .

...
1 1 . . . an

∣∣∣∣∣∣∣∣
= (a1 − 1)(a2 − 1) · · · (an − 1)

[
1 +

n∑
i=1

1
ai − 1

]
A special determinant.
ai 
= 1 for i = 1, . . . , n.

20.12

∣∣∣∣∣∣∣∣
0 p1 . . . pn

q1 a11 . . . a1n
...

...
. . .

...
qn an1 . . . ann

∣∣∣∣∣∣∣∣ = −
n∑

i=1

n∑
j=1

piAjiqj

A useful determinant
(n ≥ 2). Aji is found in
(20.5).

20.13

∣∣∣∣∣∣∣∣
α p1 . . . pn

q1 a11 . . . a1n
...

...
. . .

...
qn an1 . . . ann

∣∣∣∣∣∣∣∣ = (α−P′A−1Q) |A|
Generalization of (20.12)
when A−1 exists.
P′ = (p1, . . . , pn),
Q′ = (q1, . . . , qn).

20.14 |AB + Im| = |BA + In| A useful result. A is
m × n, B is n × m.

20.15

• A minor of order k in A is the determinant
of a k×k matrix obtained by deleting all but
k rows and all but k columns of A.

• A principal minor of order k in A is a minor
obtained by deleting all but k rows and all
except the k columns with the same num-
bers.

• The leading principal minor of order k in
A is the principal minor obtained by delet-
ing all but the first k rows and the first k
columns.

Definitions of minors,
principal minors, and
leading principal minors
of a matrix.

20.16 Dk =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1k

a21 a22 . . . a2k
...

...
. . .

...
ak1 ak2 . . . akk

∣∣∣∣∣∣∣∣ , k = 1, 2, . . . , n
The leading principal
minors of A = (aij)n×n.
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20.17

If |A| = |(aij)n×n| �= 0, then the linear system
of n equations and n unknowns,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · ·+ annxn = bn

has the unique solution

xj =
|Aj |
|A| , j = 1, 2, . . . , n

where

|Aj | =

∣∣∣∣∣∣∣∣
a11 . . . a1j−1 b1 a1j+1 . . . a1n

a21 . . . a2j−1 b2 a2j+1 . . . a2n

...
...

...
...

...
an1 . . . anj−1 bn anj+1 . . . ann

∣∣∣∣∣∣∣∣

Cramer’s rule. Note
that |Aj | is obtained by
replacing the jth column
in |A| by the vector with
components b1, b2, . . . ,
bn.

References

Most of the formulas are standard and can be found in almost any linear algebra
text, e.g. Fraleigh and Beauregard (1995) or Lang (1987). See also Sydsæter and
Hammond (2005). A standard reference is Gantmacher (1959).



Chapter 21

Eigenvalues. Quadratic forms

21.1

A scalar λ is called an eigenvalue of an n × n
matrix A if there exists an n-vector c �= 0 such
that

Ac = λc

The vector c is called an eigenvector of A.

Eigenvalues and eigen-
vectors are also called
characteristic roots and
characteristic vectors. λ
and c may be complex
even if A is real.

21.2 |A− λI| =

∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
. . .

...
an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣
The eigenvalue poly-
nomial (the charac-
teristic polynomial) of
A = (aij)n×n. I is the
unit matrix of order n.

21.3 λ is an eigenvalue of A ⇔ p(λ) = |A−λI| = 0
A necessary and suffi-
cient condition for λ to
be an eigenvalue of A.

21.4
|A| = λ1 · λ2 · · ·λn−1 · λn

tr(A) = a11 + · · ·+ ann = λ1 + · · ·+ λn

λ1, . . . , λn are the eigen-
values of A.

21.5 Let f( ) be a polynomial. If λ is an eigenvalue
of A, then f(λ) is an eigenvalue of f(A).

Eigenvalues for matrix
polynomials.

21.6

A square matrix A has an inverse if and only if
0 is not an eigenvalue of A. If A has an inverse
and λ is an eigenvalue of A, then λ−1 is an
eigenvalue of A−1.

How to find the eigen-
values of the inverse of a
square matrix.

21.7 All eigenvalues of A have moduli (strictly) less
than 1 if and only if At→0 as t →∞.

An important result.

21.8 AB and BA have the same eigenvalues. A and B are n × n
matrices.

21.9 If A is symmetric and has only real elements,
then all eigenvalues of A are reals.
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21.10

If

p(λ) = |A− λI| =
(−λ)n + bn−1(−λ)n−1 + · · ·+ b1(−λ) + b0

is the eigenvalue polynomial of A, then bk is
the sum of all principal minors of A of order
n− k (there are

(
n
k

)
of them).

Characterization of the
coefficients of the eigen-
value polynomial of an
n × n matrix A. (For
principal minors, see
(20.15).) p(λ) = 0 is
called the eigenvalue
equation or character-
istic equation of A.

21.11

∣∣∣∣ a11 − λ a12
a21 a22 − λ

∣∣∣∣ = (−λ)2 + b1(−λ) + b0

where b1 = a11 + a22 = tr(A), b0 = |A|
(21.10) for n = 2. (tr(A)
is the trace of A.)

21.12

∣∣∣∣∣∣
a11 − λ a12 a13

a21 a22 − λ a23
a31 a32 a33 − λ

∣∣∣∣∣∣ =
(−λ)3 + b2(−λ)2 + b1(−λ) + b0

where

b2 = a11 + a22 + a33 = tr(A)

b1 =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣+ ∣∣∣∣ a11 a13
a31 a33

∣∣∣∣+ ∣∣∣∣ a22 a23
a32 a33

∣∣∣∣
b0 = |A|

(21.10) for n = 3.

21.13 A is diagonalizable ⇔

⎧⎪⎪⎨⎪⎪⎩
P−1AP = D for
some matrix P and
some diagonal ma-
trix D.

A definition.

21.14 A and P−1AP have the same eigenvalues.

21.15 If A = (aij)n×n has n distinct eigenvalues, then
A is diagonalizable.

Sufficient (but NOT nec-
essary) condition for A
to be diagonalizable.

21.16

A = (aij)n×n has n linearly independent eigen-
vectors, x1, . . . , xn, with corresponding eigen-
values λ1, . . . , λn, if and only if

P−1AP =

⎛⎜⎜⎝
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

⎞⎟⎟⎠
where P = (x1, . . . ,xn)n×n.

A characterization of
diagonalizable matrices.
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21.17

If A = (aij)n×n is symmetric, with eigenval-
ues λ1, λ2, . . . , λn, there exists an orthogonal
matrix U such that

U−1AU =

⎛⎜⎜⎝
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

⎞⎟⎟⎠
The spectral theorem for
symmetric matrices. For
orthogonal matrices, see
Chapter 22.

21.18

If A is an n×n matrix with eigenvalues λ1, . . . ,
λn (not necessarily distinct), then there exists
an invertible n× n matrix T such that

T−1AT =

⎛⎜⎜⎝
Jk1(λ1) 0 . . . 0

0 Jk2(λ2) . . . 0
...

...
. . .

...
0 0 . . . Jkr

(λr)

⎞⎟⎟⎠
where k1 +k2 + · · ·+kr = n and Jk is the k×k
matrix

Jk(λ) =

⎛⎜⎜⎜⎜⎝
λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . λ

⎞⎟⎟⎟⎟⎠ , J1(λ) = λ

The Jordan decomposi-
tion theorem.

21.19
Let A be a complex n× n matrix. Then there
exists a unitary matrix U such that U−1AU is
upper triangular.

Schur’s lemma. (For
unitary matrices, see
(19.50).)

21.20

Let A = (aij) be a Hermitian matrix. Then
there is a unitary matrix U such that U−1AU
is a diagonal matrix. All eigenvalues of A are
then real.

The spectral theorem
for Hermitian matrices.
(For Hermitian matrices,
see (19.50).)

21.21

Given any matrix A = (aij)n×n, there is for
every ε > 0 a matrix Bε = (bij)n×n, with n
distinct eigenvalues, such that

n∑
i,j=1

|aij − bij | < ε

By changing the ele-
ments of a matrix only
slightly one gets a
matrix with distinct
eigenvalues.

21.22

A square matrix A satisfies its own eigenvalue
equation:

p(A) = (−A)n + bn−1(−A)n−1

+ · · ·+ b1(−A) + b0I = 0

The Cayley–Hamilton
theorem. The polyno-
mial p( ) is defined in
(21.10).
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21.23 A =
(

a11 a12
a21 a22

)
⇒ A2 − tr (A)A + |A|I = 0

The Cayley–Hamilton
theorem for n = 2. (See
(21.11).)

21.24

Q =
n∑

i=1

n∑
j=1

aijxixj =

a11x
2
1 + a12x1x2 + · · ·+ a1nx1xn

+ a21x2x1 + a22x
2
2 + · · ·+ a2nx2xn

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ an1xnx1 + an2xnx2 + · · ·+ annx2
n

A quadratic form in n
variables x1, . . . , xn.
One can assume, with-
out loss of generality,
that aij = aji for all
i, j = 1, . . . , n.

21.25

Q =
n∑

i=1

n∑
j=1

aijxixj = x′Ax, where

x =

⎛⎝ x1
...

xn

⎞⎠ and A =

⎛⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎞⎟⎟⎠
A quadratic form in ma-
trix formulation. One
can assume, without loss
of generality, that A is
symmetric.

21.26

x′Ax is PD ⇔ x′Ax > 0 for all x �= 0

x′Ax is PSD ⇔ x′Ax ≥ 0 for all x

x′Ax is ND ⇔ x′Ax < 0 for all x �= 0

x′Ax is NSD ⇔ x′Ax ≤ 0 for all x

x′Ax is ID ⇔ x′Ax is neither PSD nor NSD

Definiteness types for
quadratic forms (x′Ax)
and symmetric matri-
ces (A). The five types
are: positive definite
(PD), positive semidef-
inite (PSD), negative
definite (ND), negative
semidefinite (NSD), and
indefinite (ID).

21.27

x′Ax is PD ⇒ aii > 0 for i = 1, . . . , n

x′Ax is PSD ⇒ aii ≥ 0 for i = 1, . . . , n

x′Ax is ND ⇒ aii < 0 for i = 1, . . . , n

x′Ax is NSD ⇒ aii ≤ 0 for i = 1, . . . , n

Let xi = 1 and xj = 0
for j 
= i in (21.24).

21.28

x′Ax is PD⇔ all eigenvalues of A are > 0
x′Ax is PSD⇔ all eigenvalues of A are ≥ 0
x′Ax is ND ⇔ all eigenvalues of A are < 0

x′Ax is NSD⇔ all eigenvalues of A are ≤ 0

A characterization
of definite quadratic
forms (matrices) in
terms of the signs of the
eigenvalues.

21.29 x′Ax is indefinite (ID) if and only if A has at
least one positive and one negative eigenvalue.

A characterization of in-
definite quadratic forms.
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21.30

x′Ax is PD ⇔ Dk > 0 for k = 1, . . . , n

x′Ax is ND ⇔ (−1)kDk > 0 for k = 1, . . . , n

where the leading principal minors Dk of A are

Dk =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1k

a21 a22 . . . a2k
...

...
. . .

...
ak1 ak2 . . . akk

∣∣∣∣∣∣∣∣ , k = 1, 2, . . . , n

A characterization of
definite quadratic forms
(matrices) in terms of
leading principal minors.
Note that replacing > by
≥ will NOT give criteria
for the semidefinite case.
Example: Q = 0x2

1 +
0x1x2 − x2

2.

21.31

x′Ax is PSD ⇔ ∆r ≥ 0 for r = 1, . . . , n

x′Ax is NSD ⇔ (−1)r∆r ≥ 0 for r = 1, . . . , n

For each r, ∆r runs through all principal minors
of A of order r.

Characterizations of
positive and negative
semidefinite quadratic
forms (matrices) in
terms of principal
minors. (For principal
minors, see (20.15).)

21.32
If A = (aij)n×n is positive definite and P is
n ×m with r(P) = m, then P′AP is positive
definite.

Results on positive defi-
nite matrices.

21.33 If P is n×m and r(P) = m, then P′P is positive
definite and has rank m.

21.34
If A is positive definite, there exists a non-
singular matrix P such that PAP′ = I and
P′P = A−1.

21.35

Let A be an m × n matrix with r(A) = k.
Then there exist a unitary m×m matrix U, a
unitary n × n matrix V, and a k × k diagonal
matrix D, with only strictly positive diagonal
elements, such that

A = USV∗, where S =
(

D 0
0 0

)
If k = m = n, then S = D. If A is real, U and
V can be chosen as real, orthogonal matrices.

The singular value de-
composition theorem.
The diagonal elements
of D are called singular
values for the matrix
A. Unitary matrices are
defined in (19.50), and
orthogonal matrices are
defined in (22.8).

21.36

Let A and B be symmetric n × n matrices.
Then there exists an orthogonal matrix Q such
that both Q′AQ and Q′BQ are diagonal ma-
trices, if and only if AB = BA.

Simultaneous diagonal-
ization.
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21.37

The quadratic form

(∗) Q =
n∑

i=1

n∑
j=1

aijxixj , (aij = aji)

is positive (negative) definite subject to the lin-
ear constraints

(∗∗)
b11x1 + · · ·+ b1nxn = 0
. . . . . . . . . . . . . . . . . . . . . . .

bm1x1 + · · ·+ bmnxn = 0
(m < n)

if Q > 0 (< 0) for all (x1, . . . , xn) �= (0, . . . , 0)
that satisfy (∗∗).

A definition of positive
(negative) definiteness
subject to linear con-
straints.

21.38 Dr =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 b11 · · · b1r
...

. . .
...

...
...

0 · · · 0 bm1 · · · bmr

b11 · · · bm1 a11 · · · a1r
...

...
...

. . .
...

b1r · · · bmr ar1 · · · arr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A bordered determinant
associated with (21.37),
r = 1, . . . , n.

21.39

Necessary and sufficient conditions for the qua-
dratic form (∗) in (21.37) to be positive definite
subject to the constraints (∗∗), assuming that
the first m columns of the matrix (bij)m×n are
linearly independent, is that

(−1)mDr > 0, r = m + 1, . . . , n

The corresponding conditions for (∗) to be neg-
ative definite subject to the constraints (∗∗) is
that

(−1)rDr > 0, r = m + 1, . . . , n

A test for definiteness
of quadratic forms sub-
ject to linear constraints.
(Assuming that the
rank of (bij)m×n is m
is not enough, as is
shown by the exam-
ple, Q(x1, x2, x3) =
x2

1 + x2
2 − x2

3 with the
constraint x3 = 0.)

21.40

The quadratic form ax2 +2bxy + cy2 is positive
for all (x, y) �= (0, 0) satisfying the constraint
px + qy = 0, if and only if∣∣∣∣∣∣

0 p q
p a b
q b c

∣∣∣∣∣∣ < 0

A special case of (21.39),
assuming (p, q) 
= (0, 0).

References

Most of the formulas can be found in almost any linear algebra text, e.g. Fraleigh and
Beauregard (1995) or Lang (1987). See also Horn and Johnson (1985) and Sydsæter
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Chapter 22

Special matrices. Leontief systems

Idempotent matrices

22.1 A = (aij)n×n is idempotent ⇐⇒ A2 = A Definition of an idem-
potent matrix.

22.2 A is idempotent ⇐⇒ I−A is idempotent. Properties of idempotent
matrices.

22.3 A is idempotent ⇒ 0 and 1 are the only possi-
ble eigenvalues, and A is positive semidefinite.

22.4
A is idempotent with k eigenvalues equal to 1
⇒ r(A) = tr(A) = k.

22.5 A is idempotent and C is orthogonal ⇒ C′AC
is idempotent.

An orthogonal matrix is
defined in (22.8).

22.6 A is idempotent ⇐⇒ its associated linear
transformation is a projection.

A linear transformation
P from R

n into R
n is a

projection if P (P (x)) =
P (x) for all x in R

n.

22.7 In −X(X′X)−1X′ is idempotent. X is n × m, |X′X| 
= 0.

Orthogonal matrices

22.8 P = (pij)n×n is orthogonal ⇐⇒ P′P = PP′ = In
Definition of an orthogo-
nal matrix.

22.9 P is orthogonal ⇐⇒ the column vectors of P
are mutually orthogonal unit vectors.

A property of orthogonal
matrices.
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22.10 P and Q are orthogonal ⇒ PQ is orthogonal. Properties of orthogonal
matrices.

22.11 P orthogonal ⇒ |P| = ±1, and 1 and −1 are
the only possible real eigenvalues.

22.12 P orthogonal ⇔ ‖Px‖ = ‖x‖ for all x in R
n.

Orthogonal transforma-
tions preserve lengths of
vectors.

22.13 If P is orthogonal, the angle between Px and
Py equals the angle between x and y.

Orthogonal transforma-
tions preserve angles.

Permutation matrices

22.14
P = (pij)n×n is a permutation matrix if in each
row and each column of P there is one element
equal to 1 and the rest of the elements are 0.

Definition of a permuta-
tion matrix.

22.15 P is a permutation matrix ⇒ P is nonsingular
and orthogonal.

Properties of permuta-
tion matrices.

Nonnegative matrices

22.16
A = (aij)m×n ≥ 0 ⇐⇒ aij ≥ 0 for all i, j

A = (aij)m×n > 0 ⇐⇒ aij > 0 for all i, j

Definitions of nonnega-
tive and positive matri-
ces.

22.17

If A = (aij)n×n ≥ 0, A has at least one non-
negative eigenvalue. The largest nonnegative
eigenvalue is called the Frobenius root of A and
it is denoted by λ(A). A has a nonnegative
eigenvector corresponding to λ(A).

Definition of the
Frobenius root (or domi-
nant root) of a nonnega-
tive matrix.

22.18

• µ is an eigenvalue of A ⇒ |µ| ≤ λ(A)
• 0 ≤ A1 ≤ A2 ⇒ λ(A1) ≤ λ(A2)
• ρ > λ(A) ⇔ (ρI−A)−1 exists and is ≥ 0

• min
1≤j≤n

n∑
i=1

aij ≤ λ(A) ≤ max
1≤j≤n

n∑
i=1

aij

Properties of nonnega-
tive matrices. λ(A) is
the Frobenius root of A.
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22.19

The matrix A = (aij)n×n is decomposable or re-
ducible if by interchanging some rows and the
corresponding columns it is possible to trans-
form the matrix A to(

A11 A12
0 A22

)
where A11 and A22 are square submatrices.

Definition of a decom-
posable square matrix.
A matrix that is not de-
composable (reducible)
is called indecomposable
(irreducible).

22.20

A = (aij)n×n is decomposable if and only if
there exists a permutation matrix P such that

P−1AP =
(

A11 A12
0 A22

)
where A11 and A22 are square submatrices.

A characterization of
decomposable matrices.

22.21

If A = (aij)n×n ≥ 0 is indecomposable, then
• the Frobenius root λ(A) is > 0, it is a simple

root in the eigenvalue equation, and there
exists an associated eigenvector x > 0.

• If Ax = µx for some µ ≥ 0 and x > 0, then
µ = λ(A).

Properties of indecom-
posable matrices.

22.22

A = (aij)n×n has a dominant diagonal (d.d.)
if there exist positive numbers d1, . . . , dn such
that

dj |ajj | >
∑
i�=j

di|aij | for j = 1, . . . , n

Definition of a dominant
diagonal matrix.

22.23

Suppose A has a dominant diagonal. Then:
• |A| �= 0.
• If the diagonal elements are all positive, then

all the eigenvalues of A have positive real
parts.

Properties of dominant
diagonal matrices.

Leontief systems

22.24
If A = (aij)n×n ≥ 0 and c ≥ 0, then

Ax + c = x

is called a Leontief system.

Definition of a Leontief
system. x and c are
n × 1-matrices.

22.25 If
n∑

i=1
aij < 1 for j = 1, . . . , n, then the Leontief

system has a solution x ≥ 0.

Sufficient condition for a
Leontief system to have
a nonnegative solution.
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22.26

The Leontief system Ax+ c = x has a solution
x ≥ 0 for every c ≥ 0, if and only if one (and
hence all) of the following equivalent conditions
is satisfied:
• The matrix (I−A)−1 exists, is nonnegative,

and is equal to I + A + A2 + · · · .
• Am → 0 as m →∞.
• Every eigenvalue of A has modulus < 1.

•

∣∣∣∣∣∣∣∣
1− a11 −a12 . . . −a1k

−a21 1− a22 . . . −a2k
...

...
. . .

...
−ak1 −ak2 . . . 1− akk

∣∣∣∣∣∣∣∣ > 0

for k = 1, . . . , n.

Necessary and sufficient
conditions for the Leon-
tief system to have a
nonnegative solution.
The last conditions are
the Hawkins–Simon con-
ditions.

22.27

If 0 ≤ aii < 1 for i = 1, . . . , n, and aij ≥ 0 for
all i �= j, then the system Ax+ c = x will have
a solution x ≥ 0 for every c ≥ 0 if and only if
I−A has a dominant diagonal.

A necessary and suffi-
cient condition for the
Leontief system to have
a nonnegative solution.

References
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Chapter 23

Kronecker products and the vec operator.
Differentiation of vectors and matrices

23.1 A⊗B =

⎛⎜⎜⎝
a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB

⎞⎟⎟⎠
The Kronecker prod-
uct of A = (aij)m×n

and B = (bij)p×q.
A ⊗ B is mp × nq. In
general, the Kronecker
product is not commuta-
tive, A ⊗ B 
= B ⊗ A.

23.2

(
a11 a12
a21 a22

)
⊗
(

b11 b12
b21 b22

)
=⎛⎜⎝

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

⎞⎟⎠ A special case of (23.1).

23.3 A⊗B⊗C = (A⊗B)⊗C = A⊗ (B⊗C) Valid in general.

23.4 (A + B)⊗ (C + D) =
A⊗C + A⊗D + B⊗C + B⊗D

Valid if A+B and C+D
are defined.

23.5 (A⊗B)(C⊗D) = AC⊗BD Valid if AC and BD are
defined.

23.6 (A⊗B)′ = A′ ⊗B′ Rule for transposing a
Kronecker product.

23.7 (A⊗B)−1 = A−1 ⊗B−1 Valid if A−1 and B−1

exist.

23.8 tr(A⊗B) = tr(A) tr(B)
A and B are square ma-
trices, not necessarily of
the same order.
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23.9 α⊗A = αA = Aα = A⊗ α α is a 1×1 scalar matrix.

23.10

If λ1, . . . , λn are the eigenvalues of A, and if
µ1, . . . , µp are the eigenvalues of B, then the
np eigenvalues of A⊗B are λiµj , i = 1, . . . , n,
j = 1, . . . , p.

The eigenvalues of
A ⊗ B, where A is n × n
and B is p × p.

23.11
If x is an eigenvector of A, and y is an eigen-
vector for B, then x ⊗ y is an eigenvector of
A⊗B.

NOTE: An eigenvector
of A ⊗ B is not necessar-
ily the Kronecker prod-
uct of an eigenvector of
A and an eigenvector
of B.

23.12 If A and B are positive (semi-)definite, then
A⊗B is positive (semi-)definite. Follows from (23.10).

23.13 |A⊗B| = |A|p · |B|n A is n × n, B is p × p.

23.14 r(A⊗B) = r(A) r(B) The rank of a Kronecker
product.

23.15

If A = (a1,a2, . . . ,an)m×n, then

vec(A) =

⎛⎜⎜⎝
a1
a2
...

an

⎞⎟⎟⎠
mn×1

vec(A) consists of the
columns of A placed be-
low each other.

23.16 vec
(

a11 a12
a21 a22

)
=

⎛⎜⎝
a11
a21
a12
a22

⎞⎟⎠ A special case of (23.15).

23.17 vec(A + B) = vec(A) + vec(B) Valid if A+B is defined.

23.18 vec(ABC) = (C′ ⊗A) vec(B) Valid if the product
ABC is defined.

23.19 tr(AB) = (vec(A′))′ vec(B) = (vec(B′))′ vec(A) Valid if the operations
are defined.
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Differentiation of vectors and matrices

23.20

If y = f(x1, . . . , xn) = f(x), then

∂y

∂x
=
(

∂y

∂x1
, . . . ,

∂y

∂xn

)
The gradient of y =
f(x). (The derivative of
a scalar function w.r.t. a
vector variable.) An al-
ternative notation for
the gradient is ∇f(x).
See (4.26).

23.21
y1 = f1(x1, . . . , xn)
. . . . . . . . . . . . . . . . . . .

ym = fm(x1, . . . , xn)
⇐⇒ y = f(x)

A transformation f from
R

n to R
m. We let x and

y be column vectors.

23.22
∂y
∂x

=

⎛⎜⎜⎜⎜⎜⎝
∂y1(x)
∂x1

· · · ∂y1(x)
∂xn

...
...

∂ym(x)
∂x1

· · · ∂ym(x)
∂xn

⎞⎟⎟⎟⎟⎟⎠
The Jacobian matrix of
the transformation in
(23.21). (The deriva-
tive of a vector function
w.r.t. a vector variable.)

23.23
∂2y

∂x∂x′ =
∂

∂x
vec

[(
∂y
∂x

)′]
For the vec operator, see
(23.15).

23.24
∂A(r)

∂r
=

∂

∂r
vec(A(r))

A general definition of
the derivative of a ma-
trix w.r.t. a vector.

23.25
∂2y

∂x∂x′ =

⎛⎜⎜⎜⎜⎜⎝
∂2y

∂x2
1

. . .
∂2y

∂xn∂x1
...

. . .
...

∂2y

∂x1∂xn
. . .

∂2y

∂x2
n

⎞⎟⎟⎟⎟⎟⎠
A special case of (23.23).
(∂2y/∂x∂x′ is the
Hessian matrix defined
in (13.24).)

23.26
∂

∂x
(a′ · x) = a′ a and x are n×1-vectors.

23.27

∂

∂x
(x′Ax) = x′(A + A′)

∂2

∂x∂x′ (x
′Ax) = A + A′

Differentiation of a
quadratic form. A is
n × n, x is n × 1.

23.28
∂

∂x
(Ax) = A A is m × n, x is n × 1.
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23.29
If y = A(r)x(r), then

∂y
∂r

= (x′ ⊗ Im)
∂A
∂r

+ A
∂x
∂r

A(r) is m × n, x(r) is
n × 1 and r is k × 1.

23.30

If y = f(A), then

∂y

∂A
=

⎛⎜⎜⎜⎜⎜⎝
∂y

∂a11
· · · ∂y

∂a1n
...

...
∂y

∂am1
· · · ∂y

∂amn

⎞⎟⎟⎟⎟⎟⎠
Definition of the deriva-
tive of a scalar function
of an m × n matrix
A = (aij).

23.31
∂|A|
∂A

= (Aij) = |A|(A′)−1

A is n × n. (Aij) is the
matrix of cofactors of
A. (See (19.16).) The
last equality holds if A
is invertible.

23.32
∂ tr(A)

∂A
= In,

∂ tr(A′A)
∂A

= 2A A is n × n. tr(A) is the
trace of A.

23.33
∂aij

∂ahk
= −aihakj ; i, j, h, k = 1, . . . , n

aij is the (i, j)th element
of A−1.

References

The definitions above are common in the economic literature, see Dhrymes (1978).
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Chapter 24

Comparative statics

24.1

E1(p,a) = S1(p,a)−D1(p,a)
E2(p,a) = S2(p,a)−D2(p,a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

En(p,a) = Sn(p,a)−Dn(p,a)

Si(p,a) is supply and
Di(p,a) is demand
for good i. Ei(p,a)
is excess supply. p =
(p1, . . . , pn) is the price
vector, a = (a1, . . . , ak)
is a vector of exogenous
variables.

24.2 E1(p,a) = 0, E2(p,a) = 0, . . . , En(p,a) = 0 Conditions for equilib-
rium.

24.3
E1(p1, p2, a1, . . . , ak) = 0
E2(p1, p2, a1, . . . , ak) = 0

Equilibrium conditions
for the two good case.

24.4

∂p1

∂aj
=

∂E1

∂p2

∂E2

∂aj
− ∂E2

∂p2

∂E1

∂aj

∂E1

∂p1

∂E2

∂p2
− ∂E1

∂p2

∂E2

∂p1

∂p2

∂aj
=

∂E2

∂p1

∂E1

∂aj
− ∂E1

∂p1

∂E2

∂aj

∂E1

∂p1

∂E2

∂p2
− ∂E1

∂p2

∂E2

∂p1

Comparative statics re-
sults for the two good
case, j = 1, . . . , k.

24.5

⎛⎜⎜⎜⎜⎜⎝
∂p1

∂aj

...
∂pn

∂aj

⎞⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎝
∂E1

∂p1
. . .

∂E1

∂pn
...

. . .
...

∂En

∂p1
. . .

∂En

∂pn

⎞⎟⎟⎟⎟⎟⎠
−1⎛⎜⎜⎜⎜⎜⎝

∂E1

∂aj

...
∂En

∂aj

⎞⎟⎟⎟⎟⎟⎠
Comparative statics
results for the n good
case, j = 1, . . . , k. See
(19.16) for the general
formula for the inverse of
a square matrix.
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24.6

Consider the problem
max f(x,a) subject to g(x,a) = 0

where f and g are C1 functions, and let L be the
associated Lagrangian function, with Lagrange
multiplier λ. If x∗

i = x∗
i (a), i = 1, . . . , n, solves

the problem, then for i, j = 1, . . . , m,
n∑

k=1

L′′
aixk

∂x∗
k

∂aj
+ g′

ai

∂λ

∂aj
=

n∑
k=1

L′′
ajxk

∂x∗
k

∂ai
+ g′

aj

∂λ

∂ai

Reciprocity relations.
x = (x1, . . . , xn) are
the decision variables,
a = (a1, . . . , am) are
the parameters. For a
systematic use of these
relations, see Silberberg
(1990).

Monotone comparative statics

24.7

A function F : Z → R, defined on a sublattice
Z of R

m, is called supermodular if
F (z) + F (z′) ≤ F (z ∧ z′) + F (z ∨ z′)

for all z and z′ in Z. If the inequality is strict
whenever z and z′ are not comparable under
the preordering ≤, then F is called strictly su-
permodular .

Definition of (strict)
supermodularity. See
(6.30) and (6.31) for the
definition of a sublattice
and the lattice opera-
tions ∧ and ∨.

24.8

Let S and P be sublattices of R
n and R

l, re-
spectively. A function f : S ×P → R is said to
satisfy increasing differences in (x,p) if

x ≥ x′ and p ≥ p′ ⇒
f(x,p)− f(x′,p) ≥ f(x,p′)− f(x′,p′)

for all pairs (x,p) and (x′,p′) in S × P . If the
inequality is strict whenever x > x′ and p >
p′, then f is said to satisfy strictly increasing
differences in (x,p).

Definition of (strictly)
increasing differences.
(The difference f(x,p) −
f(x′,p) between the val-
ues of f evaluated at the
larger “action” x and
the lesser “action” x′ is
a (strictly) increasing
function of the parame-
ter p.)

24.9

Let S and P be sublattices of R
n and R

l, re-
spectively. If f : S × P → R is supermodular
in (x,p), then
• f is supermodular in x for fixed p, i.e. for

every fixed p in P , and for all x and x′ in S,
f(x,p)+f(x′,p) ≤ f(x∧x′,p)+f(x∨x′,p);

• f satisfies increasing differences in (x,p).

Important facts. Note
that S ×P is a sublattice
of R

n × R
l = R

n+l.
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24.10

Let X be an open sublattice of R
m. A C2 func-

tion F : X → R is supermodular on X if and
only if for all x in X,

∂2F

∂xi∂xj
(x) ≥ 0, i, j = 1, . . . , m, i �= j

24.11

Suppose that the problem
max F (x, p) subject to x ∈ S ⊂ R

has at least one solution for each p ∈ P ⊂ R.
Suppose in addition that F satisfies strictly in-
creasing differences in (x, p). Then the optimal
action x∗(p) is increasing in the parameter p.

A special result that
cannot be extended to
the case S ⊂ R

n for
n ≥ 2.

24.12

Suppose in (24.11) that
F (x, p) = pf(x)− C(x)

with S compact and f and C continuous. Then
∂2F/∂x∂p = f ′(x), so according to (24.10), F
is supermodular if and only if f(x) is increasing.
Thus f(x) increasing is sufficient to ensure that
the optimal action x∗(p) is increasing in p.

An important conse-
quence of (24.10).

24.13

Suppose S is a compact sublattice of R
n and

P a sublattice of R
l and f : S × P → R is

a continuous function on S for each fixed p.
Suppose that f satisfies increasing differences
in (x,p), and is supermodular in x for each
fixed p. Let the correspondence Γ from P to S
be defined by

Γ(p) = argmax{f(x,p) : x ∈ S }
• For each p in P , Γ(p) is a nonempty compact

sublattice of R
n, and has a greatest element,

denoted by x∗(p).
• p1 > p2 ⇒ x∗(p1) ≥ x∗(p2)
• If f satisfies strictly increasing differences in

(x,p), then x1 ≥ x2 for all x1 in Γ(p1) and
all x2 in Γ(p2) whenever p1 > p2.

A main result.
For a given p,
argmax{f(x,p) : x ∈ S}
is the set of all points
x in S where f(x,p)
attains its maximum
value.

References

On comparative statics, see Varian (1992) or Silberberg (1990). On monotone com-
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Chapter 25

Properties of cost and profit functions

25.1 C(w, y) = min
x

n∑
i=1

wixi when f(x) = y

Cost minimization.
One output. f is the
production function,
w = (w1, . . . , wn) are
factor prices, y is output
and x = (x1, . . . , xn) are
factor inputs. C(w, y) is
the cost function.

25.2 C(w, y) =

⎧⎨⎩The minimum cost of producing
y units of a commodity when fac-
tor prices are w = (w1, . . . , wn).

The cost function.

25.3

• C(w, y) is increasing in each wi.
• C(w, y) is homogeneous of degree 1 in w.
• C(w, y) is concave in w.
• C(w, y) is continuous in w for w > 0.

Properties of the cost
function.

25.4 x∗
i (w, y) =

⎧⎪⎪⎨⎪⎪⎩
The cost minimizing choice of
the ith input factor as a func-
tion of the factor prices w and
the production level y.

Conditional factor
demand functions.
x∗(w, y) is the vector x∗

that solves the problem
in (25.1).

25.5
• x∗

i (w, y) is decreasing in wi.
• x∗

i (w, y) is homogeneous of degree 0 in w.

Properties of the con-
ditional factor demand
function.

25.6
∂C(w, y)

∂wi
= x∗

i (w, y), i = 1, . . . , n Shephard’s lemma.

25.7

(
∂2C(w, y)
∂wi∂wj

)
(n×n)

=
(

∂x∗
i (w, y)
∂wj

)
(n×n)

is symmetric and negative semidefinite.

Properties of the substi-
tution matrix .
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25.8 π(p,w) = max
x

(
pf(x)−

n∑
i=1

wixi

) The profit maximizing
problem of the firm.
p is the price of output.
π(p,w) is the profit
function.

25.9 π(p,w) =

⎧⎨⎩The maximum profit as a function
of the factor prices w and the out-
put price p.

The profit function.

25.10 π(p,w) ≡ max
y

(py − C(w, y))
The profit function in
terms of costs and reve-
nue.

25.11

• π(p,w) is increasing in p.
• π(p,w) is homogeneous of degree 1 in (p,w).
• π(p,w) is convex in (p,w).
• π(p,w) is continuous in (p,w) for w > 0,

p > 0.

Properties of the profit
function.

25.12 xi(p,w) =

⎧⎪⎪⎨⎪⎪⎩
The profit maximizing choice of
the ith input factor as a function
of the price of output p and the
factor prices w.

The factor demand func-
tions. x(p,w) is the
vector x that solves the
problem in (25.8).

25.13

• xi(p,w) is decreasing in wi.
• xi(p,w) is homogeneous of degree 0 in (p,w).

The cross-price effects are symmetric:
∂xi(p,w)

∂wj
=

∂xj(p,w)
∂wi

, i, j = 1, . . . , n

Properties of the factor
demand functions.

25.14 y(p,w) =

⎧⎨⎩The profit maximizing output as
a function of the price of output p
and the factor prices w.

The supply function
y(p,w) = f(x(p,w))
is the y that solves the
problem in (25.10).

25.15
• y(p,w) is increasing in p.
• y(p,w) is homogeneous of degree 0 in (p,w).

Properties of the supply
function.

25.16

∂π(p,w)
∂p

= y(p,w)

∂π(p,w)
∂wi

= −xi(p,w), i = 1, . . . , n

Hotelling’s lemma.
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25.17
∂xj(p,w)

∂wk
=

∂x∗
j (w, y)
∂wk

+

∂xj(p,w)
∂p

∂y(p,w)
∂wk

∂y(p,w)
∂p

Puu’s equation, j, k =
1, . . . , n, shows the sub-
stitution and scale ef-
fects of an increase in a
factor price.

Elasticities of substitution in production theory

25.18 σyx = ElRyx

(y

x

)
= −

∂ ln
(y

x

)
∂ ln
(

p2

p1

) , f(x, y) = c

The elasticity of substi-
tution between y and x,
assuming factor markets
are competitive. (See
also (5.20).)

25.19 σij = −
∂ ln

(
C ′

i(w, y)
C ′

j(w, y)

)

∂ ln
(

wi

wj

) , i �= j

y, C, and wk (for k �= i, j) are constants.

The shadow elasticity
of substitution between
factor i and factor j.

25.20 σij =
−

C ′′
ii

(C ′
i)2

+
2C ′′

ij

C ′
iC

′
j

− C ′′
jj

(C ′
j)2

1
wiC ′

i

+
1

wjC ′
j

, i �= j
An alternative form of
(25.19).

25.21 Aij(w, y) =
C(w, y)C ′′

ij(w, y)
C ′

i(w, y)C ′
j(w, y)

, i �= j
The Allen–Uzawa elas-
ticity of substitution.

25.22 Aij(w, y) =
εij(w, y)
Sj(w, y)

, i �= j

Here εij(w, y) is the
(constant-output) cross-
price elasticity of de-
mand, and Sj(w, y) =
pjCj(w, y)/C(w, y) is
the share of the jth in-
put in total cost.

25.23
Mij(w, y) =

wiC
′′
ij(w, y)

C ′
j(w, y)

− wiC
′′
ii(w, y)

C ′
i(w, y)

= εji(w, y)− εii(w, y), i �= j

The Morishima elasticity
of substitution.

25.24
If n > 2, then Mij(w, y) = Mji(w, y) for all
i �= j if and only if all the Mij(w, y) are equal
to one and the same constant.

Symmetry of the Mori-
shima elasticity of sub-
stitution.
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Special functional forms and their properties

The Cobb–Douglas function

25.25 y = xa1
1 xa2

2 · · ·xan
n

The Cobb–Douglas func-
tion, defined for xi > 0,
i = 1, . . . , n. a1, . . . , an

are positive constants.

25.26

The Cobb–Douglas function in (25.25) is:
(a) homogeneous of degree a1 + · · ·+ an,
(b) quasiconcave for all a1, . . . , an,
(c) concave if a1 + · · ·+ an ≤ 1,
(d) strictly concave if a1 + · · ·+ an < 1.

Properties of the Cobb–
Douglas function.
(a1, . . . , an are positive
constants.)

25.27 x∗
k(w, y) =

( ak

wk

)(w1

a1

) a1
s · · ·

(wn

an

) an
s

y
1
s

Conditional factor de-
mand functions with
s = a1 + · · · + an.

25.28 C(w, y) = s
(w1

a1

) a1
s · · ·

(wn

an

) an
s

y
1
s

The cost function with
s = a1 + · · · + an.

25.29
wkx∗

k

C(w, y)
=

ak

a1 + · · ·+ an

Factor shares in total
costs.

25.30 xk(p,w) =
ak

wk
(pA)

1
1−s

(w1

a1

) a1
s−1 · · ·

(wn

an

) an
s−1 Factor demand functions

with s = a1+· · ·+an < 1.

25.31 π(p,w) = (1− s)(p)
1

1−s

n∏
i=1

(wi

ai

)− ai
1−s

The profit function with
s = a1 + · · · + an < 1. (If
s = a1 + · · · + an ≥ 1,
there are increasing
returns to scale, and
the profit maximiza-
tion problem has no
solution.)

The CES (constant elasticity of substitution) function

25.32 y = (δ1x
−ρ
1 + δ2x

−ρ
2 + · · ·+ δnx−ρ

n )−µ/ρ

The CES function,
defined for xi > 0,
i = 1, . . . , n. µ and
δ1, . . . , δn are positive,
and ρ 
= 0.
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25.33

The CES function in (25.32) is:
(a) homogeneous of degree µ

(b) quasiconcave for ρ ≥ −1,
quasiconvex for ρ ≤ −1

(c) concave for µ ≤ 1, ρ ≥ −1
(d) convex for µ ≥ 1, ρ ≤ −1

Properties of the CES
function.

25.34 x∗
k(w, y) =

y
1
µ wr−1

k

ar
k

[(w1

a1

)r

+ · · ·+
(wn

an

)r
] 1

ρ

Conditional factor
demand functions with
r = ρ/(ρ + 1) and
ak = δ

−1/ρ
k .

25.35 C(w, y) = y
1
µ

[(w1

a1

)r

+ · · ·+
(wn

an

)r
] 1

r

The cost function.

25.36
wkx∗

k

C(w, y)
=

(wk

ak

)r

(w1

a1

)r

+ · · ·+
(wn

an

)r
Factor shares in total
costs.

Law of the minimum

25.37 y = min(a1 + b1x1, . . . , an + bnxn)

Law of the minimum.
When a1 = · · · = an = 0,
this is the Leontief or
fixed coefficient function.

25.38 x∗
k(w, y) =

y − ak

bk
, k = 1, . . . , n

Conditional factor de-
mand functions.

25.39 C(w, y) =
(y − a1

b1

)
w1 + · · ·+

(y − an

bn

)
wn The cost function.

The Diewert (generalized Leontief) cost function

25.40 C(w, y) = y
n∑

i,j=1

bij
√

wiwj with bij = bji
The Diewert cost
function.

25.41 x∗
k(w, y) = y

n∑
j=1

bkj

√
wk/wj

Conditional factor de-
mand functions.
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The translog cost function

25.42

lnC(w, y) = a0 + c1 ln y +
n∑

i=1

ai lnwi

+
1
2

n∑
i,j=1

aij lnwi lnwj +
n∑

i=1

bi lnwi ln y

Restrictions:
n∑

i=1
ai = 1,

n∑
i=1

bi = 0,

n∑
j=1

aij =
n∑

i=1
aij = 0, i, j = 1, . . . , n

The translog cost func-
tion. aij = aji for all i
and j. The restrictions
on the coefficients ensure
that C(w, y) is homoge-
neous of degree 1.

25.43
wkx∗

k

C(w, y)
= ak +

n∑
j=1

akj lnwj + bi ln y
Factor shares in total
costs.
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Chapter 26

Consumer theory

26.1

A preference relation � on a set X of commod-
ity vectors x = (x1, . . . , xn) is a complete, re-
flexive, and transitive binary relation on X with
the interpretation

x � y means: x is at least as good as y

Definition of a prefer-
ence relation. For binary
relations, see (1.16).

26.2
Relations derived from �:
• x ∼ y ⇐⇒ x � y and y � x

• x  y ⇐⇒ x � y but not y � x

x ∼ y is read “x is indif-
ferent to y”, and x � y
is read “x is (strictly)
preferred to y”.

26.3

• A function u : X → R is a utility function
representing the preference relation � if

x � y ⇐⇒ u(x) ≥ u(y)

• For any strictly increasing function f : R →
R, u∗(x) = f(u(x)) is a new utility function
representing the same preferences as u(·).

A property of utility
functions that is invari-
ant under every strictly
increasing transforma-
tion, is called ordinal .
Cardinal properties are
those not preserved un-
der strictly increasing
transformations.

26.4

Let � be a complete, reflexive, and transitive
preference relation that is also continuous in
the sense that the sets
{x : x � x0} and {x : x0 � x}

are both closed for all x0 in X. Then � can be
represented by a continuous utility function.

Existence of a continu-
ous utility function. For
properties of relations,
see (1.16).

26.5

Utility maximization subject to a budget con-
straint:

max
x

u(x) subject to p · x =
n∑

i=1
pixi = m

x = (x1, . . . , xn) is
a vector of (quanti-
ties of) commodities,
p = (p1, . . . , pn) is the
price vector, m is in-
come, and u is the util-
ity function.
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26.6 v(p, m) = max
x
{u(x) : p · x = m}

The indirect utility func-
tion, v(p, m), is the
maximum utility as a
function of the price vec-
tor p and the income m.

26.7

• v(p, m) is decreasing in p.
• v(p, m) is increasing in m.
• v(p, m) is homogeneous of degree 0 in (p, m).
• v(p, m) is quasi-convex in p.
• v(p, m) is continuous in (p, m), p > 0, m > 0.

Properties of the indirect
utility function.

26.8 ω =
u′

1(x)
p1

= · · · = u′
n(x)
pn

First-order conditions
for problem (26.5), with
ω as the associated
Lagrange multiplier.

26.9 ω =
∂v(p, m)

∂m
ω is called the marginal
utility of money.

26.10 xi(p, m) =

⎧⎨⎩ the optimal choice of the ith com-
modity as a function of the price
vector p and the income m.

The consumer demand
functions, or Marshall-
ian demand functions,
derived from problem
(26.5).

26.11 x(tp, tm) = x(p, m), t is a positive scalar.
The demand functions
are homogeneous of de-
gree 0.

26.12 xi(p, m) = −
∂v(p, m)

∂pi

∂v(p, m)
∂m

, i = 1, . . . , n Roy’s identity.

26.13 e(p, u) = min
x
{p · x : u(x) ≥ u}

The expenditure func-
tion, e(p, u), is the mini-
mum expenditure at
prices p for obtaining at
least the utility level u.

26.14

• e(p, u) is increasing in p.
• e(p, u) is homogeneous of degree 1 in p.
• e(p, u) is concave in p.
• e(p, u) is continuous in p for p > 0.

Properties of the expen-
diture function.
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26.15 h(p, u) =

⎧⎨⎩ the expenditure-minimizing bun-
dle necessary to achieve utility
level u at prices p.

The Hicksian (or com-
pensated) demand func-
tion. h(p, u) is the vec-
tor x that solves the
problem
min
x

{p · x : u(x) ≥ u}.

26.16
∂e(p, u)

∂pi
= hi(p, u) for i = 1, . . . , n

Relationship between the
expenditure function and
the Hicksian demand
function.

26.17
∂hi(p, u)

∂pj
=

∂hj(p, u)
∂pi

, i, j = 1, . . . , n

Symmetry of the Hicks-
ian cross partials. (The
Marshallian cross par-
tials need not be sym-
metric.)

26.18 The matrix S = (Sij)n×n =
(

∂hi(p, u)
∂pj

)
n×n

is negative semidefinite.

Follows from (26.16) and
the concavity of the ex-
penditure function.

26.19 e(p, v(p, m)) = m :

⎧⎨⎩ the minimum expenditure
needed to achieve utility
v(p, m) is m.

Useful identities that are
valid except in rather
special cases.

26.20 v(p, e(p, u)) = u :
{

the maximum utility from
income e(p, u) is u.

26.21
Marshallian demand at income m is Hicksian
demand at utility v(p, m):

xi(p, m) = hi(p, v(p, m))

26.22
Hicksian demand at utility u is the same as
Marshallian demand at income e(p, u):

hi(p, u) = xi(p, e(p, u))

26.23

• eij = Elpj xi =
pj

xi

∂xi

∂pj
(Cournot elasticities)

• Ei = Elm xi =
m

xi

∂xi

∂m
(Engel elasticities)

• Sij = Elpj
hi =

pj

xi

∂hi

∂pj
(Slutsky elasticities)

eij are the elasticities of
demand w.r.t. prices, Ei

are the elasticities of de-
mand w.r.t. income, and
Sij are the elasticities
of the Hicksian demand
w.r.t. prices.

26.24
• ∂xi(p, m)

∂pj
=

∂hi(p, u)
∂pj

− xj(p, m)
∂xi(p, m)

∂m

• Sij = eij + ajEi, aj = pjxj/m

Two equivalent forms of
the Slutsky equation.
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26.25

The following 1
2n(n + 1) + 1 restrictions on the

partial derivatives of the demand functions are
linearly independent:

(a)
n∑

i=1

pi
∂xi(p, m)

∂m
= 1

(b)
n∑

j=1

pj
∂xi

∂pj
+ m

∂xi

∂m
= 0, i = 1, . . . , n

(c)
∂xi

∂pj
+ xj

∂xi

∂m
=

∂xj

∂pi
+ xi

∂xj

∂m

for 1 ≤ i < j ≤ n

(a) is the budget con-
straint differentiated
with respect to m.
(b) is the Euler equa-
tion (for homogeneous
functions) applied to the
consumer demand func-
tion.
(c) is a consequence of
the Slutsky equation and
(26.17).

26.26

EV = e(p0, v(p1, m1))− e(p0, v(p0, m0))
EV is the difference between the amount of
money needed at the old (period 0) prices to
reach the new (period 1) utility level, and the
amount of money needed at the old prices to
reach the old utility level.

Equivalent variation.
p0, m0, and p1, m1,
are prices and income
in period 0 and pe-
riod 1, respectively.
(e(p0, v(p0, m0)) = m0.)

26.27

CV = e(p1, v(p1, m1))− e(p1, v(p0, m0))
CV is the difference between the amount of
money needed at the new (period 1) prices to
reach the new utility level, and the amount of
money needed at the new prices to reach the
old (period 0) utility level.

Compensating varia-
tion. p0, m0, and p1,
m1, are prices and in-
come in period 0 and
period 1, respectively.
(e(p1, v(p1, m1)) = m1.)

Special functional forms and their properties

Linear expenditure system (LES)

26.28 u(x) =
n∏

i=1

(xi − ci)βi , βi > 0
The Stone–Geary utility
function. If ci = 0 for all
i, u(x) is Cobb–Douglas.

26.29 xi(p, m) = ci +
1
pi

βi

β

(
m−

n∑
i=1

pici

) The demand functions.
β =

∑n

i=1 βi.

26.30 v(p, m) = β−β
(
m−

n∑
i=1

pici

)β n∏
i=1

(βi

pi

)βi The indirect utility
function.
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26.31 e(p, u) =
n∑

i=1

pici +
βu1/β[

n∏
i=1

(
βi

pi

)βi
]1/β

The expenditure
function.

Almost ideal demand system (AIDS)

26.32

ln(e(p, u)) = a(p) + ub(p), where

a(p) = α0 +
n∑

i=1

αi ln pi +
1
2

n∑
i,j=1

γ∗
ij ln pi ln pj

and b(p) = β0

n∏
i=1

pβi

i , with restrictions

n∑
i=1

αi = 1,
n∑

i=1
βi = 0, and

n∑
i=1

γ∗
ij =

n∑
j=1

γ∗
ij = 0.

Almost ideal demand
system, defined by the
logarithm of the expen-
diture function. The re-
strictions make e(p, u)
homogeneous of degree 1
in p.

26.33

xi(p, m) =
m

pi

(
αi +

n∑
j=1

γij ln pj + βi ln(
m

P
)
)
,

where the price index P is given by

lnP = α0 +
n∑

i=1

αi ln pi +
1
2

n∑
i,j=1

γij ln pi ln pj

with γij = 1
2 (γ∗

ij + γ∗
ji) = γji

The demand functions.

Translog indirect utility function

26.34

ln v(p, m) = α0 +
n∑

i=1

αi ln
(pi

m

)
+

1
2

n∑
i,j=1

β∗
ij ln
(pi

m

)
ln
(pj

m

) The translog indirect
utility function.

26.35
xi(p, m) =

m

pi

(
αi +

∑n
j=1 βij ln(pj/m)∑n

i=1 αi +
∑n

i,j=1 β∗
ij ln(pi/m)

)
where βij = 1

2 (β∗
ij + β∗

ji).

The demand functions.
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Price indices

26.36

Consider a “basket” of n commodities. Define
for i = 1, . . . , n,

q(i) = number of units of good i in the basket

p
(i)
0 = price per unit of good i in year 0

p
(i)
t = price per unit of good i in year t

A price index , P , for year t, with year 0 as the
base year, is defined as

P =
∑n

i=1 p
(i)
t q

(i)∑n
i=1 p

(i)
0 q

(i) · 100

The most common def-
inition of a price index.
P is 100 times the cost
of the basket in year t
divided by the cost of
the basket in year 0.
(More generally, a (con-
sumption) price index
can be defined as any
function P (p1, . . . , pn)
of all the prices, homo-
geneous of degree 1
and increasing in each
variable.)

26.37

• If the quantities q(i) in the formula for P are
levels of consumption in the base year 0, P is
called the Laspeyres price index .

• If the quantities q(i) are levels of consump-
tion in the year t, P is called the Paasche
price index .

Two important price
indices.

26.38 F =
√

(Laspeyres index) · (Paasche index) Fisher’s ideal index.
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Chapter 27

Topics from trade theory

27.1

Standard neoclassical trade model (2 × 2 fac-
tor model). Two factors of production, K and
L, that are mobile between two output produc-
ing sectors A and B. Production functions are
neoclassical (i.e. the production set is closed,
convex, contains zero, has free disposal, and its
intersection with the positive orthant is empty)
and exhibit constant returns to scale.

The economy has in-
complete specialization
when both goods are
produced.

27.2
Good B is more K intensive than good A if
KB/LB > KA/LA at all factor prices.

No factor intensity re-
versal (NFIR). KB de-
notes use of factor K in
producing good B, etc.

27.3

Stolper–Samuelson’s theorem:
In the 2× 2 factor model with no factor inten-
sity reversal and incomplete specialization, an
increase in the relative price of a good results
in an increase in the real return to the factor
used intensively in producing that good and a
fall in the real return to the other factor.

When B is more capital
intensive, an increase in
the price of B leads to
an increase in the real
return to K and a de-
crease in the real return
to L. With P as the
price of output, r the
return to K and w the
return to L, r/PA and
r/PB both rise while
w/PA and w/PB both
fall.

27.4

Rybczynski’s theorem:
In a 2 × 2 factor model with no factor inten-
sity reversal and incomplete specialization, if
the endowment of a factor increases, the out-
put of the good more intensive in that factor
will increase while the output of the other good
will fall.

Assumes that the en-
dowment of the other
factor does not change
and that prices of out-
puts do not change, e.g.
if K increases and B is
K intensive, then the
output of B will rise and
the output of A will fall.
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27.5

Heckscher–Ohlin–Samuelson model:
Two countries, two traded goods, two non-trad-
ed factors of production (K, L). The factors
are in fixed supply in the two countries. The
two countries have the same constant returns
to scale production function for making B and
A. Factor markets clear within each country
and trade between the two countries clears the
markets for the two goods. Each country has
a zero balance of payments. Consumers in the
two countries have identical homothetic prefer-
ences. There is perfect competition and there
are no barriers to trade, including tariffs, trans-
actions costs, or transport costs. Both coun-
tries’ technologies exhibit no factor intensity re-
versals.

The HOS model.

27.6

Heckscher–Ohlin’s theorem:
In the HOS model (27.5) with K/L > K∗/L∗

and with B being more K intensive at all factor
prices, the home country exports good B.

The quantity version
of the H–O model. A
∗ denotes foreign coun-
try values and the other
country is referred to as
the home country.

27.7

In the HOS model (27.5) with neither country
specialized in the production of just one good,
the price of K is the same in both countries and
the price of L is the same in both countries.

Factor price equalization.
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Chapter 28

Topics from finance and growth theory

28.1 St = St−1 + rSt−1 = (1+ r)St−1, t = 1, 2, . . .

In an account with in-
terest rate r, an amount
St−1 increases after one
period to St.

28.2

The compound amount St of a principal S0 at
the end of t periods at the interest rate r com-
pounded at the end of each period is

St = S0(1 + r)t

Compound interest.
(The solution to the
difference equation in
(28.1).)

28.3

The amount S0 that must be invested at the in-
terest rate r compounded at the end of each pe-
riod for t periods so that the compound amount
will be St, is given by

S0 = St(1 + r)−t

S0 is called the present
value of St.

28.4

When interest is compounded n times a year at
regular intervals at the rate of r/n per period,
then the effective annual interest is(

1 +
r

n

)n

− 1

Effective annual rate of
interest.

28.5
At =

R

(1 + r)1
+

R

(1 + r)2
+ · · ·+ R

(1 + r)t

= R
1− (1 + r)−t

r

The present value At

of an annuity of R per
period for t periods at
the interest rate of r per
period.

28.6

The present value A of an annuity of R per
period for an infinite number of periods at the
interest rate of r per period, is

A =
R

(1 + r)1
+

R

(1 + r)2
+ · · · = R

r

The present value of an
infinite annuity.
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28.7 T =
ln
(

R

R− rA

)
ln(1 + r)

The number T of peri-
ods needed to pay off a
loan of A with periodic
payment R and interest
rate r per period.

28.8 St = (1 + r)St−1 + (yt − xt), t = 1, 2, . . .

In an account with in-
terest rate r, an amount
St−1 increases after one
period to St, if yt are
the deposits and xt are
the withdrawals in pe-
riod t.

28.9 St = (1 + r)tS0 +
t∑

k=1
(1 + r)t−k(yk − xk) The solution of equation

(28.8)

28.10 St = (1 + rt)St−1 + (yt − xt), t = 1, 2, . . .
Generalization of (28.8)
to the case with a varia-
ble interest rate, rt.

28.11 Dk =
1∏k

s=1(1 + rs)

The discount factor
associated with (28.10).
(Discounted from period
k to period 0.)

28.12 Rk =
Dk

Dt
=

t∏
s=k+1

(1 + rs)
The interest factor asso-
ciated with (28.10).

28.13 St = R0S0 +
t∑

k=1

Rk(yk − xk)
The solution of (28.10).
Rk is defined in (28.12).
(Generalizes (28.9).)

28.14 a0 +
a1

1 + r
+

a2

(1 + r)2
+ · · ·+ an

(1 + r)n
= 0

r is the internal rate of
return of an investment
project. Negative at rep-
resents outlays, positive
at represents receipts at
time t.

28.15

If a0 < 0 and a1, . . . , an are all≥ 0, then (28.14)
has a unique solution 1 + r∗ > 0, i.e. a unique
internal rate of return r∗ > −1. The internal
rate of return is positive provided

∑n
i=0 ai > 0.

Consequence of
Descartes’s rule of signs
(2.12).

28.16 A0 = a0, A1 = a0 + a1, A2 = a0 + a1 + a2, . . . ,
An = a0 + a1 + · · ·+ an

The accumulated cash
flow associated with
(28.14).
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28.17
If An �= 0, and the sequence A0, A1, . . . , An

changes sign only once, then (28.14) has a
unique positive internal rate of return.

Norstrøm’s rule.

28.18

The amount in an account after t years if K
dollars earn continuous compound interest at
the rate r is

Kert

Continuous compound
interest.

28.19
The effective annual interest with continuous
compounding at the interest rate r is

er − 1

Effective rate of inter-
est , with continuous
compounding.

28.20 Ke−rt, r = p/100

The present value (with
continuous compound-
ing) of an amount K due
in t years, if the interest
is p % per year.

28.21

The discounted present value at time 0 of a con-
tinuous income stream at the rate K(t) dollars
per year over the time interval [0, T ], and with
continuous compounding at the rate of interest
r, is∫ T

0
K(t)e−rt dt

Discounted present
value, continuous com-
pounding.

28.22

The discounted present value at time s, of a
continuous income stream at the rate K(t) dol-
lars per year over the time interval [s, T ], and
with continuous compounding at the rate of in-
terest r, is∫ T

s

K(t)e−r(t−s) dt

Discounted present
value, continuous com-
pounding.

28.23

Solow’s growth model:
• X(t) = F (K(t), L(t))
• K̇(t) = sX(t)
• L(t) = L0e

λt

X(t) is national income,
K(t) is capital, and L(t)
is the labor force at time
t. F is a production
function. s (the savings
rate), λ, and L0 are pos-
itive constants.

28.24

If F is homogeneous of degree 1, k(t) = K(t)/L(t)
is capital per worker, and f(k) = F (k, 1), then
(28.23) reduces to

k̇ = sf(k)− λk, k(0) is given

A simplified version of
(28.23).
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28.25

If λ/s < f ′(0), f ′(k) → 0 as k → ∞, and
f ′′(k) ≤ 0 for all k ≥ 0, then the equation in
(28.24) has a unique solution on [0,∞). It has
a unique equilibrium k∗, defined by

sf(k∗) = λk∗

This equilibrium is asymptotically stable.

The existence and
uniqueness of a solution
on [0, ∞) follows from
(11.13).

28.26

k̇

k

k̇ = sf(k) − λk

k∗

Phase diagram for
(28.24), with the condi-
tions in (26.25) imposed.

28.27

Ramsey’s growth model:

max
∫ T

0
U(C(t))e−rt dt subject to

C(t) = f(K(t))− K̇(t),
K(0) = K0, K(T ) ≥ K1.

A standard problem in
growth theory. U is a
utility function, K(t)
is the capital stock at
time t, f(K) is the pro-
duction function, C(t)
is consumption, r is the
discount factor, and T is
the planning horizon.

28.28 K̈ − f ′(K)K̇ +
U ′(C)
U ′′(C)

(r − f ′(K)) = 0 The Euler equation for
problem (28.27).

28.29
Ċ

C
=

f ′(K)− r

−w̌

where w̌ = ElC U ′(C) = CU ′′(C)/U ′(C)

Necessary condition for
the solution of (28.27).
Since w̌ is usually neg-
ative, consumption in-
creases if and only if the
marginal productivity
of capital exceeds the
discount rate.
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Chapter 29

Risk and risk aversion theory

29.1 RA = −u′′(y)
u′(y)

, RR = yRA = −yu′′(y)
u′(y)

Absolute risk aversion
(RA) and relative risk
aversion (RR). u(y) is
a utility function, y is
income, or consumption.

29.2
• RA = λ ⇔ u(y) = A1 + A2e

−λy

• RR = k ⇔ u(y) =
{

A1 + A2 ln y if k = 1
A1 + A2y

1−k if k �= 1

A characterization of
utility functions with
constant absolute and
relative risk aversion,
respectively. A1 and A2

are constants, A2 
= 0.

29.3
• u(y) = y − 1

2by2 ⇒ RA =
b

1− by

• u(y) =
1

b− 1
(a + by)1− 1

b ⇒ RA =
1

a + by

Risk aversions for two
special utility functions.

29.4
E[u(y + z + π)] = E[u(y)]

π ≈ −u′′(y)
u′(y)

σ2

2
= RA

σ2

2

Arrow–Pratt risk premi-
um. π: risk premium.
z: mean zero risky pros-
pect. σ2 = var[z]: vari-
ance of z. E[ ] is expec-
tation. (Expectation and
variance are defined in
Chapter 33.)

29.5

If F and G are cumulative distribution func-
tions (CDF) of random incomes, then
F first-degree stochastically dominates G

⇐⇒ G(Z) ≥ F (Z) for all Z in I.

Definition of first-degree
stochastic dominance.
I is a closed interval
[Z1, Z2]. For Z ≤ Z1,
F (Z) = G(Z) = 0 and
for Z ≥ Z2, F (Z) =
G(Z) = 1.
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29.6 F FSD G ⇐⇒
{

EF [u(Z)] ≥ EG[u(Z)]
for all increasing u(Z).

An important result.
FSD means “first-degree
stochastically domi-
nates”. EF [u(Z)] is ex-
pected utility of income
Z when the cumulative
distribution function is
F (Z). EG[u(Z)] is de-
fined similarly.

29.7 T (Z) =
∫ Z

Z1

(G(z)− F (z)) dz
A definition used in
(29.8).

29.8
F second-degree stochastically dominates G

⇐⇒ T (Z) ≥ 0 for all Z in I.

Definition of second-
degree stochastic dom-
inance (SSD).
I = [Z1, Z2]. Note that
FSD ⇒ SSD.

29.9 F SSD G ⇐⇒
{

EF [u(Z)] ≥ EG[u(Z)] for all
increasing and concave u(Z).

Hadar–Russell’s theo-
rem. Every risk averter
prefers F to G if and
only if F SSD G.

29.10

Let F and G be distribution functions for X
and Y , respectively, let I = [Z1, Z2], and let
T (Z) be as defined in (29.7). Then the follow-
ing statements are equivalent:
• T (Z2) = 0 and T (Z) ≥ 0 for all Z in I.
• There exists a stochastic variable ε with

E[ε |X] = 0 for all X such that Y is dis-
tributed as X + ε.

• F and G have the same mean, and every risk
averter prefers F to G.

Rothschild–Stiglitz’s
theorem.

References

See Huang and Litzenberger (1988), Hadar and Russell (1969), and Rothschild and
Stiglitz (1970).



Chapter 30

Finance and stochastic calculus

30.1

Capital asset pricing model:

E[ri] = r + βi(E[rm]− r)

where βi =
corr(ri, rm)σi

σm
=

cov(ri, rm)
σ2

m

.

ri: rate of return on
asset i. E[rk]: the ex-
pected value of rk.
r: rate of return on a
safe asset. rm: market
rate of return. σi: stan-
dard deviation of ri.

30.2

Single consumption β asset pricing equation:

E(ri) = r +
βic

βmc
(E(rm)− r),

where βjc =
cov(rj , d lnC)

var(d lnC)
, j = i or m.

C: consumption.
rm: return on an arbi-
trary portfolio.
d ln C is the stochastic
logarithmic differential.
(See (30.13).)

30.3

The Black–Scholes option pricing model. (Eu-
ropean or American call option on a stock that
pays no dividend):

c = c(S, K, t, r, σ) = SN(x)−KN(x−σ
√

t )e−rt,

where x =
ln(S/K) + (r + 1

2σ2)t
σ
√

t
,

and N(y) = 1√
2π

∫ y

−∞ e−z2/2 dz is the cumula-
tive normal distribution function.

c: the value of the op-
tion on S at time t. S:
underlying stock price,
dS/S = α dt + σ dB,
where B is a (standard)
Brownian motion,
α: drift parameter.
σ: volatility (measures
the deviation from the
mean). t: time left until
expiration. r: interest
rate. K: strike price.

30.4

• ∂c/∂S = N(x) > 0
• ∂c/∂K = −N(x− σ

√
t )e−rt < 0

• ∂c/∂t =
σ

2
√

t
SN ′(x) + re−rtKN(x− σ

√
t ) > 0

• ∂c/∂r = tKN(x− σ
√

t )e−rt > 0
• ∂c/∂σ = SN ′(x)

√
t > 0

Useful sensitivity results
for the Black–Scholes
model. (The correspond-
ing results for the gen-
eralized Black–Scholes
model (30.5) are given
in Haug (1997), Appen-
dix B.)
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30.5

The generalized Black–Scholes model , which in-
cludes the cost-of-carry term b (used to price
European call options (c) and put options (p)
on assets paying a continuous dividend yield,
options on futures, and currency options):

c = SN(x)e(b−r)t −KN(x− σ
√

t ) e−rt,

p = KN(σ
√

t− x)e−rt − SN(−x)e(b−r)t,

where x =
ln(S/K) + (b + 1

2σ2)t
σ
√

t
.

b: cost-of-carry rate of
holding the underlying
security. b = r gives the
Black–Scholes model.
b = r − q gives the Mer-
ton stock option model
with continuous divi-
dend yield q. b = 0 gives
the Black futures option
model.

30.6 p = c− Se(b−r)t + Ke−rt
The put-call parity for
the generalized Black–
Scholes model.

30.7 P (S, K, t, r, b, σ) = C(K, S, t, r − b,−b, σ)

A transformation that
gives the formula for an
American put option,
P , in terms of the corre-
sponding call option, C.

30.8

The market value of an American perpetual put
option when the underlying asset pays no divi-
dend:

h(x) =

⎧⎨⎩
K

1 + γ

(x

c

)−γ

if x ≥ c,

K − x if x < c,

where c =
γK

1 + γ
, γ =

2r

σ2 .

x: current price.
c: trigger price.
r: interest rate.
K: exercise price.
σ: volatility.

30.9

Xt = X0 +
∫ t

0 u(s, ω) ds +
∫ t

0 v(s, ω) dBs,

where P [
∫ t

0 v(s, ω)2 ds < ∞ for all t ≥ 0] = 1,
and P [

∫ t

0 |u(s, ω)| ds < ∞ for all t ≥ 0] = 1.
Both u and v are adapted to the filtration {Ft},
where Bt is an Ft-Brownian motion.

Xt is by definition a one-
dimensional stochastic
integral .

30.10 dXt = u dt + v dBt
A differential form of
(30.9).

30.11
If dXt = u dt + v dBt and Yt = g(Xt), where g
is C2, then

dYt =
(
g′(Xt)u+ 1

2g′′(Xt)v2
)
dt+g′(Xt)v dBt

Itô’s formula (one-
dimensional).

30.12 dt ·dt = dt ·dBt = dBt ·dt = 0, dBt ·dBt = dt Useful relations.
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30.13
d lnXt =

(
u

Xt
− v2

2X2
t

)
dt +

v

Xt
dBt

deXt =
(

eXtu +
1
2
eXtv2

)
dt + eXtv dBt

Two special cases of
(30.11).

30.14

⎛⎝ dX1
...

dXn

⎞⎠ =

⎛⎝ u1
...

un

⎞⎠dt +

⎛⎝ v11 . . . v1m

...
...

vn1 . . . vnm

⎞⎠⎛⎝ dB1
...

dBm

⎞⎠
Vector version of (30.10),
where B1, . . . , Bm are
m independent one-
dimensional Brownian
motions.

30.15

If Y = (Y1, . . . , Yk) = g(t,X), where g =
(g1, . . . , gk) is C2, then for r = 1, . . . , k,

dYr =
∂gr(t,X)

∂t
dt +

n∑
i=1

∂gr(t,X)
∂xi

dXi

+
1
2

n∑
i,j=1

∂2gr(t,X)
∂xi∂xj

dXi dXj

where dt · dt = dt · dBi = 0 and dBi · dBj = dt
if i = j, 0 if i �= j.

An n-dimensional ver-
sion of Itô’s formula.

30.16

J(t, x) = maxu Et,x
[∫ T

t
e−rsW (s, Xs, us) ds

]
,

where T is fixed, us ∈ U , U is a fixed interval,
and

dXt = b(t, Xt, ut) dt + σ(t, Xt, ut) dBt.

A stochastic control
problem. J is the value
function, ut is the con-
trol. Et,x is expecta-
tion subject to the initial
condition Xt = x.

30.17
−J ′

t(t, x) = max
u∈U

[
W (t, x, u)

+ J ′
x(t, x)b(t, x, u) + 1

2J ′′
xx(t, x)(σ(t, x, u))2

]
The Hamilton–Jacobi–
Bellman equation. A
necessary condition for
optimality in (30.16).
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Chapter 31

Non-cooperative game theory

31.1

In an n-person game we assign to each player
i (i = 1, . . . , n) a strategy set Si and a pure
strategy payoff function ui that gives player i
utility ui(s) = ui(s1, . . . , sn) for each strategy
profile s = (s1, . . . , sn) ∈ S = S1 × · · · × Sn.

An n-person game in
strategic (or normal)
form. If all the strategy
sets Si have a finite
number of elements, the
game is called finite.

31.2

A strategy profile (s∗
1, . . . , s

∗
n) for an n-person

game is a pure strategy Nash equilibrium if for
all i = 1, . . . , n and all si in Si,

ui(s∗
1, . . . , s

∗
n) ≥ ui(s∗

1, . . . , s
∗
i−1, si, s

∗
i+1, . . . s

∗
n)

Definition of a pure
strategy Nash equilib-
rium for an n-person
game.

31.3

If for all i = 1, . . . , n, the strategy set Si is a
nonempty, compact, and convex subset of R

m,
and ui(s1, . . . , sn) is continuous in S = S1 ×
· · · × Sn and quasiconcave in its ith variable,
then the game has a pure strategy Nash equi-
librium.

Sufficient conditions for
the existence of a pure
strategy Nash equilib-
rium. (There will usu-
ally be several Nash
equilibria.)

31.4

Consider a finite n-person game where Si is
player i’s pure strategy set, and let S = S1 ×
· · ·×Sn. Let Ωi be a set of probability distribu-
tions over Si. An element σi of Ωi (σi is then a
function σi : Si → [0, 1]) is called a mixed strat-
egy for player i, with the interpretation that if
i plays σi, then i chooses the pure strategy si

with probability σi(si).
If the players choose the mixed strategy pro-

file σ = (σ1, . . . , σn) ∈ Ω1 × · · · × Ωn, the
probability that the pure strategy profile s =
(s1, . . . , sn) occurs is σ1(s1) · · ·σn(sn). The ex-
pected payoff to player i is then

ui(σ) =
∑

s∈S σ1(s1) · · ·σn(sn)ui(s)

Definition of a mixed
strategy for an n-person
game.
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31.5

A mixed strategy profile σ∗ = (σ∗
1 , . . . , σ∗

n) is a
Nash equilibrium if for all i and every σi,

ui(σ∗) ≥ ui(σ∗
1 , . . . , σ∗

i−1, σi, σ
∗
i+1, . . . , σ

∗
n)

Definition of a mixed
strategy Nash equilibrium
for an n-person game.

31.6

σ∗ is a Nash equilibrium if and only if the
following conditions hold for all i = 1, . . . , n:

σ∗
i (si) > 0 ⇒ ui(σ∗) = ui(si,σ

∗
−i) for all si

σ∗
i (s′

i) = 0⇒ ui(σ∗) ≥ ui(s′
i,σ

∗
−i) for all s′

i

where σ∗
−i = (σ∗

1 , . . . , σ∗
i−1, σ

∗
i+1, . . . , σ

∗
n) and

we consider si and s′
i as degenerate mixed strat-

egies.

An equivalent definition
of a (mixed strategy)
Nash equilibrium.

31.7 Every finite n-person game has a mixed strat-
egy Nash equilibrium. An important result.

31.8

The pure strategy si ∈ Si of player i is strictly
dominated if there exists a mixed strategy σi for
player i such that for all feasible combinations
of the other players’ pure strategies, i’s payoff
from playing strategy si is strictly less than i’s
payoff from playing σi:

ui(s1, . . . , si−1, si, si+1, . . . , sn) <

ui(s1, . . . , si−1, σi, si+1, . . . , sn)

for every (s1, . . . , si−1, si+1, . . . , sn) that can be
constructed from the other players’ strategy
sets S1, . . . , Si−1, Si+1, . . . , Sn.

Definition of strictly
dominated strategies.

31.9

In an n-person game, the following results hold:

• If iterated elimination of strictly dominated
strategies eliminates all but the strategies
(s∗

1, . . . , s
∗
n), then these strategies are the

unique Nash equilibrium of the game.

• If the mixed strategy profile (σ∗
1 , . . . , σ∗

n)is
a Nash equilibrium and, for some player i,
σ∗

i (si) > 0, then si survives iterated elimi-
nation of strictly dominated strategies.

Useful results.
Iterated elimination
of strictly dominated
strategies need not re-
sult in the elimination
of any strategy. (For a
discussion of iterated
elimination of strictly
dominated strategies, see
the literature.)
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31.10

A two-person game where the players 1 and 2
have m and n (pure) strategies, respectively,
can be represented by the two payoff matrices

A =

⎛⎜⎜⎝
a11 . . . a1n

a21 . . . a2n

...
...

am1 . . . amn

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
b11 . . . b1n

b21 . . . b2n

...
...

bm1 . . . bmn

⎞⎟⎟⎠

aij (bij) is the payoff to
player 1 (2) when the
players play their pure
strategies i and j, re-
spectively. If A = −B,
the game is a zero-sum
game. The game is sym-
metric if A = B′.

31.11

For the two-person game in (31.10) there exists
a Nash equilibrium (p∗,q∗) such that

• p ·Aq∗ ≤ p∗ ·Aq∗ for all p in ∆m,

• p∗ ·Bq ≤ p∗ ·Bq∗ for all q in ∆n.

The existence of a Nash
equilibrium for a two-
person game. ∆k de-
notes the simplex in R

k

consisting of all non-
negative vectors whose
components sum to one.

31.12

In a two-person zero-sum game (A = −B), the
condition for the existence of a Nash equilib-
rium is equivalent to the condition that p ·Aq
has a saddle point (p∗,q∗), i.e., for all p in ∆m

and all q in ∆n,

p ·Aq∗ ≤ p∗ ·Aq∗ ≤ p∗ ·Aq

The saddle point prop-
erty of the Nash equi-
librium for a two-person
zero-sum game.

31.13

The equilibrium payoff v = p∗ · Aq∗ is called
the value of the game, and

v = min
q∈∆n

max
p∈∆m

p ·Aq = max
p∈∆m

min
q∈∆n

p ·Aq

The classical minimax
theorem for two-person
zero-sum games.

31.14

Assume that (p∗,q∗) and (p∗∗,q∗∗) are Nash
equilibria in the game (31.10). Then (p∗,q∗∗)
and (p∗∗,q∗) are also equilibrium strategy pro-
files.

The rectangular or
exchangeability property.

Evolutionary game theory

31.15

In the symmetric two-person game of (31.10)
with A = B′, a strategy p∗ is called an evolu-
tionary stable strategy if for every q �= p∗ there
exists an ε̄ > 0 such that

q ·A(εq+(1−ε)p∗) < p∗ ·A(εq+(1−ε)p∗)

for all positive ε < ε̄.

The value of ε̄ may de-
pend on q. Biological
interpretation: All ani-
mals are programmed
to play p∗. Any muta-
tion that tries invasion
with q, has strictly lower
fitness.
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31.16

In the setting (31.15) the strategy p∗ is evolu-
tionary stable if and only if

q ·Ap∗ ≤ p∗ ·Ap∗ for all q.

If q �= p∗ and q ·Ap∗ = p∗ ·Ap∗, then

q ·Aq < p∗ ·Aq.

The first condition, (the
equilibrium condition), is
equivalent to the condi-
tion for a Nash equilib-
rium. The second condi-
tion is called a stability
condition.

Games of incomplete information

31.17

A game of incomplete information assigns to
each player i = 1, . . . , n private information
ϕi ∈ Φi, a strategy set Si of rules si(ϕi) and
an expected utility function

EΦ[ui(s1(ϕ1), . . . , sn(ϕn),ϕ)]
(The realization of ϕi is known only to agent i
while the distribution F (Φ) is common knowl-
edge, Φ = Φ1×· · ·×Φn. EΦ is the expectation
over ϕ = (ϕ1, . . . , ϕn).)

Informally, a game of in-
complete information is
one where some players
do not know the payoffs
to the others.)

31.18

A strategy profile s∗ is a dominant strategy equi-
librium if for all i = 1, . . . , n,

ui(s1(ϕ1), . . . , s∗
i (ϕi) . . . , sn(ϕn),ϕ)

≥ ui(s1(ϕ1), . . . , si(ϕi), . . . sn(ϕn),ϕ)

for all ϕ in Φ and all s = (s1, . . . , sn) in S =
S1 × · · · × Sn.

Two common solution
concepts are dominant
strategies and Bayesian
Nash equlibrium.

31.19

A strategy profile s∗ is a pure strategy Bayesian
Nash equilibrium if for all i = 1, . . . , n,

EΦ[u1(s∗
1(ϕ1), . . . , s∗

i (ϕi), . . . , s∗
n(ϕn),ϕ)]

≥ EΦ[u1(s∗
1(ϕ1), . . . , si(ϕi), . . . , s∗

n(ϕn),ϕ)]
for all si in Si.

Pure strategy Bayesian
Nash equilibrium.
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Chapter 32

Combinatorics

32.1
The number of ways that n objects can be ar-
ranged in order is n! = 1 · 2 · 3 · · · (n− 1) · n.

5 persons A, B, C, D,
and E can be lined up in
5! = 120 different ways.

32.2

The number of possible ordered subsets of k
objects from a set of n objects, is

n!
(n− k)!

= n(n− 1) · · · (n− k + 1)

If a lottery has n tickets
and k distinct prizes,

there are
n!

(n − k)!
possi-

ble lists of prizes.

32.3

Given a collection S1, S2, . . . , Sn of disjoint sets
containing k1, k2, . . . , kn objects, respectively,
there are k1k2 · · · kn ways of selecting one object
from each set.

If a restaurant has 3 dif-
ferent appetizers, 5 main
courses, and 4 desserts,
then the total number
of possible dinners is
3 · 5 · 4 = 60.

32.4 A set of n elements has
(

n

k

)
=

n!
k!(n− k)!

dif-

ferent subsets of k elements.

In a card game you re-
ceive 5 cards out of 52.
The number of differ-

ent hands are

(
52
5

)
=

52!
5!47!

= 2 598 960.

32.5

The number of ways of arranging n objects of
k different types where there are n1 objects of
type 1, n2 objects of type 2, . . . , and nk objects

of type k is
n!

n1! · n2! · · ·nk!
.

There are
12!

5! · 4! · 3!
=

27 720 different ways
that 12 persons can be
allocated to three taxis
with 5 in the first, 4 in
the second, and 3 in the
third.
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32.6

Let |X| denote the number of elements of a set
X. Then
• |A ∪B| = |A|+ |B| − |A ∩B|
• |A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| −

|A ∩ C| − |B ∩B|+ |A ∩B ∩ C|

The inclusion–exclusion
principle, special cases.

32.7

|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ |A2|+ · · ·+ |An|
− |A1 ∩A2| − |A1 ∩A3| − · · · − |An−1 ∩An|
+ · · ·+ (−1)n+1|A1 ∩A2 ∩ · · · ∩An|
=
∑

(−1)r+1|Aj1 ∩Aj2 ∩ · · · ∩Ajr
|.

The sum is taken over all nonempty subsets
{j1, j2, . . . , jr} of the index set {1, 2, . . . , n}.

The inclusion–exclusion
principle.

32.8

If more than k objects are distributed among k
boxes (pigeonholes), then some box must con-
tain at least 2 objects. More generally, if at
least nk + 1 objects are distributed among k
boxes (pigeonholes), then some box must con-
tain at least n + 1 objects.

The pigeonhole principle.
(If 16 = 5 · 3 + 1 socks
are distributed among 3
drawers, the at least one
drawer must contain at
least 6 socks.)

References
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Chapter 33

Probability and statistics

33.1

The probability P (A) of an event A ⊂ Ω satis-
fies the following axioms:
(a) 0 ≤ P (A) ≤ 1
(b) P (Ω) = 1
(c) If Ai ∩Aj = ∅ for i �= j, then

P (
∞⋃

i=1
Ai) =

∞∑
i=1

P (Ai)

Axioms for probability.
Ω is the sample space
consisting of all possible
outcomes. An event is a
subset of Ω.

A

B

Ω

A ∪ B

A or B occurs

A

B

Ω

A ∩ B

Both A and B
occur

A

B

Ω

A \ B

A occurs, but
B does not

A

Ω

Ac

A does not occur

A

B

Ω

A � B

A or B occurs,
but not both

33.2

• P (Ac) = 1− P (A)
• P (A ∪B) = P (A) + P (B)− P (A ∩B)
• P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C)
+ P (A ∩B ∩ C)

• P (A \B) = P (A)− P (A ∩B)
• P (A
B) = P (A) + P (B)− 2P (A ∩B)

Rules for calculating
probabilities.

33.3
P (A |B) =

P (A ∩B)
P (B)

is the conditional prob-

ability that event A will occur given that B has
occurred.

Definition of conditional
probability , P (B) > 0.

33.4

A and B are (stochastically) independent if
P (A ∩B) = P (A)P (B)

If P (B) > 0, this is equivalent to
P (A |B) = P (A)

Definition of (stochastic)
independence.
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33.5
P (A1 ∩A2 ∩ . . . ∩An) =
P (A1)P (A2 |A1) · · ·P (An |A1 ∩A2 ∩ · · · ∩An−1)

General multiplication
rule for probabilities.

33.6
P (A |B) =

P (B |A) · P (A)
P (B)

=
P (B |A)P (A)

P (B |A)P (A) + P (B |Ac)P (Ac)

Bayes’s rule.
(P (B) 
= 0.)

33.7 P (Ai |B)
P (B |Ai) · P (Ai)

n∑
j=1

P (B |Aj) · P (Aj)

Generalized Bayes’s
rule. A1, . . . , An are
disjoint,

∑n

i=1 P (Ai) =
P (Ω) = 1, where
Ω =

⋃n

i=1 Ai is the
sample space. B is an
arbitrary event.

One-dimensional random variables

33.8

• P (X ∈ A) =
∑

x∈A

f(x)

• P (X ∈ A) =
∫
A

f(x) dx

f(x) is a discrete/con-
tinuous probability den-
sity function. X is a
random (or stochastic)
variable.

33.9

• F (x) = P (X ≤ x) =
∑
t≤x

f(t)

• F (x) = P (X ≤ x) =
x∫

−∞
f(t) dt

F is the cumulative dis-
crete/continuous distri-
bution function. In the
continuous case,
P (X = x) = 0.

33.10

• E[X] =
∑
x

xf(x)

• E[X] =
∞∫

−∞
xf(x) dx

Expectation of a dis-
crete/continuous proba-
bility density function f .
µ = E[X] is called the
mean.

33.11

• E[g(X)] =
∑
x

g(x)f(x)

• E[g(X)] =
∞∫

−∞
g(x)f(x) dx

Expectation of a func-
tion g of a discrete/con-
tinuous probability den-
sity function f .

33.12 var[X] = E[(X − E[X])2]

The variance of a ran-
dom variable is, by defi-
nition, the expected
value of its squared devi-
ation from the mean.
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33.13 var[X] = E[X2]− (E[X])2 Another expression for
the variance.

33.14 σ =
√

var[X] The standard deviation
of X.

33.15 var[aX + b] = a2 var[X] a and b are real num-
bers.

33.16 µk = E[(X − µ)k]
The kth central moment
about the mean, µ =
E[X].

33.17 η3 =
µ3

σ3 , η4 =
µ4

σ4 − 3

The coefficient of skew-
ness, η3, and the coeffi-
cient of kurtosis, η4. σ is
the standard deviation.
For the normal distribu-
tion, η3 = η4 = 0.

33.18
• P (|X| ≥ λ) ≤ E[X2]/λ2

• P (|X − µ| ≥ λ) ≤ σ2/λ2, λ > 0
• P (|X − µ| ≥ kσ) ≤ 1/k2, k > 0

Different versions of
Chebyshev’s inequality .
σ is the standard devia-
tion of X, µ = E[X] is
the mean.

33.19

If f is convex on the interval I and X is a ran-
dom variable with finite expectation, then

f(E[X]) ≤ E[f(X)]
If f is strictly convex, the inequality is strict
unless X is a constant with probability 1.

Special case of Jensen’s
inequality.

33.20

• M(t) = E[etX ] =
∑
x

etxf(x)

• M(t) = E[etX ] =
∞∫

−∞
etxf(x) dx

Moment generating func-
tions. M(t) does not al-
ways exist, but if it does,
then

M(t) =
∞∑

k=0

E[Xk]
k!

tk.

33.21

If the moment generating function M(t) defined
in (33.20) exists in an open neighborhood of 0,
then M(t) uniquely determines the probability
distribution function.

An important result.

33.22

• C(t) = E[eitX ] =
∑
x

eitxf(x)

• C(t) = E[eitX ] =
∞∫

−∞
eitxf(x) dx

Characteristic functions.
C(t) always exists, and
if E[Xk] exists for all k,
then

C(t) =
∞∑

k=0

ikE[Xk]
k!

tk.
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33.23
The characteristic function C(t) defined in
(33.22) uniquely determines the probability dis-
tribution function f(x).

An important result.

Two-dimensional random variables

33.24

• P ((X, Y ) ∈ A)
∑

(x,y)∈A

f(x, y)

• P ((X, Y ) ∈ A) =
∫∫
A

f(x, y) dx dy

f(x, y) is a two-dimen-
sional discrete/continu-
ous simultaneous density
function. X and Y are
random variables.

33.25

F (x, y) = P (X ≤ x, Y ≤ y) =

• ∑
u≤x

∑
v≤y

f(u, v) (discrete case)

•
x∫

−∞

y∫
−∞

f(u, v) du dv (continuous case)

F is the simultaneous
cumulative discrete/
continuous distribution
function.

33.26

• E[g(X, Y )] =
∑
x

∑
y

g(x, y)f(x, y)

• E[g(X, Y )] =
∞∫

−∞

∞∫
−∞

g(x, y)f(x, y) dx dy

The expectation of
g(X,Y ), where X and
Y have the simultane-
ous discrete/continuous
density function f .

33.27 cov[X, Y ] = E
[
(X − E[X])(Y − E[Y ])

]
Definition of covariance.

33.28 cov[X, Y ] = E[XY ]− E[X] E[Y ] A useful fact.

33.29 If cov[X, Y ] = 0, X and Y are uncorrelated . A definition.

33.30 E[XY ] = E[X] E[Y ] if X and Y are uncorre-
lated.

Follows from (33.26) and
(33.27).

33.31 (E[XY ])2 ≤ E[X2] E[Y 2] Cauchy–Schwarz’s
inequality.

33.32
If X and Y are stochastically independent, then
cov[X, Y ] = 0. The converse is not true.

33.33 var[X ± Y ] = var[X] + var[Y ]± 2 cov[X, Y ]
The variance of a sum/
difference of two random
variables.

33.34 E[a1X1 + · · ·+ anXn + b] =
a1E[X1] + · · ·+ anE[Xn] + b

X1, . . . , Xn are random
variables and a1, . . . , an,
b are real numbers.
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33.35

var
[ n∑

i=1

aiXi

] n∑
i=1

n∑
j=1

aiaj cov[Xi, Xj ]

=
n∑

i=1

a2
i var[Xi] + 2

n−1∑
i=1

n∑
j=i+1

aiaj cov[Xi, Xj ]

The variance of a linear
combination of random
variables.

33.36 var
[ n∑

i=1

aiXi

] n∑
i=1

a2
i var[Xi]

Formula (33.33) when
X1, . . . , Xn are pairwise
uncorrelated.

33.37 corr[X, Y ]
cov[X, Y ]√
var[X] var[Y ]

∈ [−1, 1]
Definition of the corre-
lation coefficient as a
normalized covariance.

33.38

If f(x, y) is a simultaneous density distribution
function for X and Y , then
• fX(x) =

∑
y

f(x, y), fY (y) =
∑
x

f(x, y)

• fX(x) =
∞∫

−∞
f(x, y) dy, fY (y) =

∞∫
−∞

f(x, y) dx

are the marginal densities of X and Y , respec-
tively.

Definitions of marginal
densities for discrete and
continuous distributions.

33.39 f(x | y) =
f(x, y)
fY (y)

, f(y |x)
f(x, y)
fX(x)

Definitions of conditional
densities.

33.40
The random variables X and Y are stochas-
tically independent if f(x, y) = fX(x)fY (y). If
fY (y) > 0, this is equivalent to f(x | y) = fX(x).

Stochastic independence.

33.41

• E[X | y]
∑
x

xf(x | y)

• E[X | y] =
∞∫

−∞
xf(x | y) dx

• var[X | y]
∑
x

(
x− E[X | y]

)2
f(x | y)

• var[X | y]
∞∫

−∞
(x− E[X | y])2f(x | y) dx

Definitions of condi-
tional expectation and
conditional variance
for discrete and con-
tinuous distributions.
Note that E[X | y] de-
notes E[X | Y = y],
and var[X | y] denotes
var[X | Y = y].

33.42 E[Y ] = EX [E[Y |X]]
Law of iterated expecta-
tions. EX denotes ex-
pectation w.r.t. X.
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33.43 E[XY ] = EX [XE[Y |X]] = E[XµY |X ].

The expectation of XY
is equal to the expected
product of X and the
conditional expectation
of Y given X.

33.44
σ2

Y = var[Y ] = EX [var[Y |X]] + varX [E[Y |X]]

= E[σ2
Y |X ] + var[µY |X ]

The variance of Y is
equal to the expecta-
tion of its conditional
variances plus the vari-
ance of its conditional
expectations.

33.45

Let f(x, y) be the density function for a pair
(X, Y ) of stochastic variables. Suppose that

U = ϕ1(X, Y ), V = ϕ2(X, Y )
is a one-to-one C1 transformation of (X, Y ),
with the inverse transformation given by

X = ψ1(U, V ), Y = ψ2(U, V )
Then the density function g(u, v) for the pair
(U, V ) is given by

g(u, v) = f(ψ1(u, v), ψ2(u, v)) · |J(u, v)|
provided the Jacobian determinant

J(u, v) =

∣∣∣∣∣∣∣
∂ψ1(u, v)

∂u

∂ψ1(u, v)
∂v

∂ψ2(u, v)
∂u

∂ψ2(u, v)
∂v

∣∣∣∣∣∣∣ �= 0

How to find the density
function of a transfor-
mation of stochastic
variables. (The formula
generalizes in a straight-
forward manner to the
case with an arbitrary
number of stochastic
variables. The required
regularity conditions are
not fully spelled out. See
the references.)

Statistical inference

33.46 If E[θ̂] = θ for all θ ∈ Θ, then θ̂ is called an
unbiased estimator of θ.

Definition of an un-
biased estimator. Θ is
the parameter space.

33.47
If θ̂ is not unbiased,

b = E[θ̂]− θ

is called the bias of θ̂.

Definition of bias.

33.48 MSE(θ̂)E[θ̂ − θ]2 = var[θ̂] + b2 Definition of mean
square error , MSE.

33.49
plim θ̂T = θ means that for every ε > 0

lim
T→∞

P (|θ̂T − θ| < ε) = 1

Definition of a probabil-
ity limit. The estimator
θ̂T is a function of T
observations.
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33.50

If θT has mean µT and variance σ2
T such that

the ordinary limits of µT and σ2
T are θ and 0

respectively, then θT converges in mean square
to θ, and plim θ̂T = θ.

Convergence in quadra-
tic mean (mean square
convergence).

33.51
If f is continuous, then

plim g(θT ) = g(plim θT )
Slutsky’s theorem.

33.52

If θT and ωT are random variables with proba-
bility limits plim θT = θ and plimωT = ω, then
• plim(θT + ωT ) = θ + ω

• plim(θT ωT ) = θω

• plim(θT /ωT ) = θ/ω

Rules for probability
limits.

33.53

θT converges in distribution to a random vari-
able θ with cumulative distribution function F
if limT→∞ |FT (θ) − F (θ)| = 0 at all continuity
points of F (θ). This is written:

θT
d−→ θ

Limiting distribution.

33.54

If θT
d−→ θ and plim(ωT ) = ω, then

• θT ωT
d−→ θω

• If ωT has a limiting distribution and the limit
plim(θT − ωT ) = 0, then θT has the same
limiting distribution as ωT .

Rules for limiting distri-
butions.

33.55
θ̂ is a consistent estimator of θ if

plim θ̂T = θ for every θ ∈ Θ.
Definition of consistency.

33.56
θ̂ is asymptotically unbiased if

lim
T→∞

E[θ̂T ] = θ for every θ ∈ Θ.

Definition of an asymp-
totically unbiased esti-
mator.

33.57

H0 Null hypothesis (e.g. θ ≤ 0).
H1 Alternate hypothesis (e.g. θ > 0).
T Test statistic.
C Critical region.
θ An unknown parameter.

Definitions for statistical
testing .

33.58 A test: Reject H0 in favor of H1 if T ∈ C. A test.

33.59
The power function of a test is

π(θ) = P (reject H0 | θ), θ ∈ Θ.
Definition of the power
of a test.
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33.60

To reject H0 when H0 is true is called a type I
error.
Not to reject H0 when H1 is true is called a
type II error.

Type I and II errors.

33.61
α-level of significance: The least α such that
P (type I error) ≤ α for all θ satisfying H0.

The α-level of signifi-
cance of a test.

33.62
Significance probability (or P -value) is the least
level of significance that leads to rejection of
H0, given the data and the test.

An important concept.

Asymptotic results

33.63

Let {Xi} be a sequence of independent and
identically distributed random variables, with
finite mean E[Xi] = µ. Let Sn = X1+ · · ·+Xn.
Then:
(1) For every ε > 0,

P

{∣∣∣∣Sn

n
− µ

∣∣∣∣ < ε

}
→ 1 as n →∞.

(2) With probability 1,
Sn

n
→ µ as n →∞.

(1) is the weak law of
large numbers. Sn/n is a
consistent estimator for
µ. (2) is the strong law
of large numbers.

33.64

Let {Xi} be a sequence of independent and
identically distributed random variables with
finite mean E[Xi] = µ and finite variance
var[Xi] = σ2. Let Sn = X1+· · ·+Xn. Then the

distribution of
Sn − nµ

σ
√

n
tends to the standard

normal distribution as n →∞, i.e.

P

{
Sn − nµ

σ
√

n
≤ a

}
→ 1√

2π

∫ a

−∞
e−x2/2 dx

as n →∞.

The central limit
theorem.
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Chapter 34

Probability distributions

34.1

f(x) =

⎧⎨⎩ xp−1(1− x)q−1

B(p, q)
, x ∈ (0, 1),

0 otherwise,
p > 0, q > 0.

Mean: E[X] =
p

p + q
.

Variance: var[X] =
pq

(p + q)2(p + q + 1)
.

kth moment: E[Xk] =
B(p + k, q)

B(p, q)
.

Beta distribution. B is
the beta function defined
in (9.61).

34.2

f(x) =
(

n

x

)
px(1− p)n−x,

x = 0, 1, . . . , n; n = 1, 2, . . . ; p ∈ (0, 1).

Mean: E[X] = np.
Variance: var[X] = np(1− p).
Moment generating function: [pet + (1− p)]n.
Characteristic function: [peit + (1− p)]n.

Binomial distribution.
f(x) is the probability
for an event to occur
exactly x times in n in-
dependent observations,
when the probability of
the event is p at each
observation. For

(
n
x

)
, see

(8.30).

34.3

f(x, y) =
e−Q

2πστ
√

1− ρ2
, where

Q =

(
x−µ

σ

)2 − 2ρ (x−µ)(y−η)
στ +

(
y−η

τ

)2
2(1− ρ2)

,

x, y, µ, η ∈ (−∞,∞), σ > 0, τ > 0, |ρ| < 1.

Mean: E[X] = µ , E[Y ] = η.
Variance: var[X] = σ2 , var[Y ] = τ2.
Covariance: cov[X, Y ] = ρστ .

Binormal distribution.
(For moment generating
and characteristic func-
tions, see the more gen-
eral multivariate normal
distribution in (34.15).)
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34.4

f(x) =

⎧⎪⎨⎪⎩
x

1
2 ν−1e− 1

2 x

2
1
2 νΓ( 1

2ν)
, x > 0

0, x ≤ 0

; ν = 1, 2, . . .

Mean: E[X] = ν .
Variance: var[X] = 2ν.
Moment generating function: (1− 2t)− 1

2 ν , t < 1
2 .

Characteristic function: (1− 2it)− 1
2 ν .

Chi-square distribution
with ν degrees of free-
dom. Γ is the gamma
function defined in
(9.53).

34.5

f(x) =
{

λe−λx, x > 0
0, x ≤ 0

; λ > 0.

Mean: E[X] = 1/λ.
Variance: var[X] = 1/λ2.
Moment generating function: λ/(λ− t), t < λ.
Characteristic function: λ/(λ− it).

Exponential distribution.

34.6

f(x) =
1
β

e−ze−e−z

, z =
x− α

β
, x ∈ R, β > 0

Mean: E[X] = α− βΓ′(1).
Variance: var[X] = β2π2/6.
Moment gen. function: eαtΓ(1− βt), t < 1/β.
Characteristic function: eiαtΓ(1− iβt).

Extreme value (Gumbel)
distribution. Γ′(1) is
the derivative of the
gamma function at 1.
(See (9.53).) Γ′(1) = −γ,
where γ ≈ 0.5772 is Eu-
ler’s constant, see (8.48).

34.7

f(x) =

⎧⎪⎨⎪⎩
ν

1
2 ν1
1 ν

1
2 ν2
2 x

1
2 ν1−1

B( 1
2ν1,

1
2ν2)(ν2 + ν1x)

1
2 (ν1+ν2)

, x > 0

0, x ≤ 0
ν1, ν2 = 1, 2, . . .

Mean: E[X] = ν2/(ν2 − 2) for ν2 > 2
(does not exist for ν2 = 1, 2).

Variance: var[X] =
2ν2

2(ν1 + ν2 − 2)
ν1(ν2 − 2)2(ν2 − 4)

for ν2 > 4

(does not exist for ν2 ≤ 4).
kth moment:

E[Xk] =
Γ( 1

2ν1 + k)Γ( 1
2ν2 − k)

Γ( 1
2ν1)Γ( 1

2ν2)

(
ν2

ν1

)k

, 2k < ν2

F -distribution. B is the
beta function defined in
(9.61). ν1, ν2 are the de-
grees of freedom for the
numerator and denomi-
nator, respectively.

34.8

f(x) =

⎧⎨⎩
λnxn−1e−λx

Γ(n)
, x > 0

0, x ≤ 0
; n, λ > 0.

Mean: E[X] = n/λ.
Variance: var[X] = n/λ2.
Moment generating function: [λ/(λ− t)]n, t < λ.
Characteristic function: [λ/(λ− it)]n.

Gamma distribution.
Γ is the gamma function
defined in (9.53). For
n = 1 this is the expo-
nential distribution.
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34.9

f(x) = p(1− p)x; x = 0, 1, 2, . . . , p ∈ (0, 1).

Mean: E[X] = (1− p)/p.
Variance: var[X] = (1− p)/p2.
Moment generating function:

p/[1− (1− p)et], t < − ln(1− p).
Characteristic function: p/[1− (1− p)eit].

Geometric distribution.

34.10

f(x) =

(
M

x

)(
N −M

n− x

)
(

N

n

) ,

x = 0, 1, . . . , n; n = 1, 2, . . . , N .

Mean: E[X] = nM/N .
Variance: var[X] = np(1− p)(N − n)/(N − 1),

where p = M/N .

Hypergeometric distribu-
tion. Given a collection
of N objects, where M
objects have a certain
characteristic and N −M
do not have it. Pick n
objects at random from
the collection. f(x) is
then the probability that
x objects have the char-
acteristic and n − x do
not have it.

34.11

f(x) =
1
2β

e−|x−α|/β ; x ∈ R, β > 0

Mean: E[X] = α.
Variance: var[X] = 2β2.

Moment gen. function:
eαt

1− β2t2
, |t| < 1/β.

Characteristic function:
eiαt

1 + β2t2
.

Laplace distribution.

34.12

f(x) =
e−z

β(1 + e−z)2
, z =

x− α

β
, x ∈ R, β > 0

Mean: E[X] = α.
Variance: var[X] = π2β2/3.
Moment generating function:

eαtΓ(1− βt)Γ(1 + βt) = πβteαt/ sin(πβt).
Characteristic function: iπβteiαt/ sin(iπβt).

Logistic distribution.

34.13

f(x) =

⎧⎨⎩ e−(ln x−µ)2/2σ2

σx
√

2π
, x > 0

0, x ≤ 0
; σ > 0

Mean: E[X] = eµ+ 1
2 σ2

.
Variance: var[X] = e2µ(e2σ2 − eσ2

).
kth moment: E[Xk] = ekµ+ 1

2 k2σ2
.

Lognormal distribution.
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34.14

f(x) =
n!

x1! · · ·xk!
px1
1 · · · pxk

k

x1 + · · ·+ xk = n, p1 + · · ·+ pk = 1,
xj ∈ {0, 1, . . . , n}, pj ∈ (0, 1), j = 1, . . . , k.

Mean of Xj : E[Xj ] = npj .
Variance of Xj : var[Xj ] = npj(1− pj).
Covariance: cov[Xj , Xr] = −npjpr,

j, r = 1, . . . , n, j �= r.

Moment generating function:
[∑k

j=1 pje
tj

]n
.

Characteristic function:
[∑k

j=1 pje
itj

]n
.

Multinomial distribu-
tion. f(x) is the prob-
ability for k events
A1, . . . , Ak to occur
exactly x1, . . . , xk times
in n independent obser-
vations, when the proba-
bilities of the events are
p1, . . . , pk.

34.15

f(x) =
1

(2π)k/2
√|Σ| e− 1

2 (x−µ)′Σ−1(x−µ)

Σ = (σij) is symmetric and positive definite,
x = (x1, . . . , xk)′, µ = (µ1, . . . , µk)′.

Mean: E[Xi] = µi.
Variance: var[Xi] = σii.
Covariance: cov[Xi, Xj ] = σij .
Moment generating function: eµ′t+ 1

2 t′Σt.
Characteristic function: e− 1

2 t′Σteit′µ.

Multivariate normal
distribution. |Σ| de-
notes the determi-
nant of the variance-
covariance matrix Σ.
x = (x1, . . . , xk)′,
µ = (µ1, . . . , µk)′.

34.16

f(x) =
(

x− 1
r − 1

)
pr(1− p)x−r,

x = r, r + 1, . . . ; r = 1, 2, . . . ; p ∈ (0, 1).

Mean: E[X] = r/p.
Variance: var[X] = r(1− p)/p2.
Moment generating function: pr(1−(1−p)et)−r.
Characteristic function: pr(1− (1− p)eit)−r.

Negative binomial distri-
bution.

34.17

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x ∈ R, σ > 0.

Mean: E[X] = µ.
Variance: var[X] = σ2.
Moment generating function: eµt+ 1

2 σ2t2 .
Characteristic function: eiµt− 1

2 σ2t2 .

Normal distribution.
If µ = 0 and σ = 1, this
is the standard normal
distribution.

34.18

f(x) =

{ cac

xc+1 , x > a

0, x ≤ a
; a > 0, c > 0.

Mean: E[X] = ac/(c− 1), c > 1.
Variance: var[X] = a2c/(c−1)2(c−2), c > 2.
kth moment: E[Xk] = akc/c− k, c > k.

Pareto distribution.
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34.19

f(x) = e−λ λx

x!
; x = 0, 1, 2, . . . , λ > 0.

Mean: E[X] = λ.
Variance: var[X] = λ.
Moment generating function: eλ(et−1).
Characteristic function: eλ(eit−1).

Poisson distribution.

34.20

f(x) =
Γ( 1

2 (ν + 1))√
νπ Γ( 1

2ν)

(
1 +

x2

ν

)− 1
2 (ν+1)

,

x ∈ R, ν = 1, 2, . . .

Mean: E[X] = 0 for ν > 1
(does not exist for ν = 1).

Variance: var[X] =
ν

ν − 2
for ν > 2

(does not exist for ν = 1, 2).
kth moment (exists only for k < ν):

E[Xk] =

⎧⎨⎩
Γ( 1

2 (k +1))Γ(1
2 (ν−k))√

π Γ( 1
2ν)

ν
1
2 k, k even,

0, k odd.

Student’s t-distribution
with ν degrees of free-
dom.

34.21

f(x) =

{ 1
β − α

, α ≤ x ≤ β

0 otherwise
; α < β.

Mean: E[X] = 1
2 (α + β).

Variance: var[X] = 1
12 (β − α)2.

Moment generating function:
eβt − eαt

t(β − α)
.

Characteristic function:
eiβt − eiαt

it(β − α)
.

Uniform distribution.

34.22

f(x) =
{

βλβxβ−1e−(λx)β

, x > 0
0, x ≤ 0

; β, λ > 0.

Mean: E[X] =
1
λ

Γ
(
1 +

1
β

)
.

Variance: var[X] =
1
λ2

[
Γ
(
1 +

2
β

)− Γ
(
1 +

1
β

)2]
.

kth moment: E[Xk] =
1
λk

Γ(1 + k/β).

Weibull distribution. For
β = 1 we get the expo-
nential distribution.
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Chapter 35

Method of least squares

Ordinary least squares

35.1

The straight line y = a + bx that best fits n
data points (x1, y1), (x2, y2), . . . , (xn, yn), in
the sense that the sum of the squared vertical
deviations,

n∑
i=1

e2
i =

n∑
i=1

[
yi − (a + bxi)

]2,
is minimal, is given by the equation

y = a + bx ⇐⇒ y − ȳ = b(x− x̄),
where

b =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

, a = ȳ − bx̄.

Linear approximation
by the method of least
squares.

x̄ = 1
n

∑n

i=1 xi,

ȳ = 1
n

∑n

i=1 yi.

35.2

y

x

(xi, yi)
ei = yi − (axi + b)

y = ax + b

Illustration of the
method of least squares
with one explanatory
variable.

35.3

The vertical deviations in (35.1) are ei = yi −
y∗

i , where y∗
i = a + bxi, i = 1, . . . , n. Then∑n

i=1 ei = 0, and b = r(s2
y/s2

x), where r is the
correlation coefficient for (x1, y1), . . . , (xn, yn).
Hence, b = 0 ⇐⇒ r = 0.

s2
x = 1

n−1

∑n

i=1(xi − x̄)2,

s2
y = 1

n−1

∑n

i=1(yi − ȳ)2.

35.4

In (35.1), the total variation, explained varia-
tion, and residual variation in y are defined as
• Total: SST =

∑n
i=1(yi − ȳ)2

• Explained: SSE =
∑n

i=1(y
∗
i − ȳ∗)2

• Residual: SSR =
∑

i e2
i =

∑
i(yi − y∗

i )2

Then SST = SSE + SSR.

The total variation in
y is the sum of the ex-
plained and the residual
variations.
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35.5

The correlation coefficient r satisfies
r2 = SSE/SST,

and 100r2 is the percentage of explained varia-
tion in y.

r2 = 1 ⇔ ei = 0 for all i
⇔ yi = a + bxi (exactly)
for all i.

35.6

Suppose that the variables x and Y are related
by a relation of the form Y = α + βx, but that
observations of Y are subject to random varia-
tion. If we observe n pairs (xi, Yi) of values of
x and Y , i = 1, . . . , n, we can use the formulas
in (35.1) to determine least squares estimators
α̂ and β̂ of α and β. If we assume that the
residuals εi = yi − α − βxi are independently
and normally distributed with zero mean and
(unknown) variance σ2, and if the xi have zero
mean, i.e. x̄ = (

∑
i xi)/n = 0, then

• the estimators α̂ and β̂ are unbiased,

• var(α̂) =
σ2

n
, var(β̂) =

σ2∑
i x2

i

.

Linear regression with
one explanatory variable.

If the xi do not sum to
zero, one can estimate
the coefficients in the
equation
Y = α + β(x − x̄)
instead.

Multiple regression

35.7

Given n observations (xi1, . . . , xik), i = 1, . . . ,
n, of k quantities x1, . . . , xk, and n observations
y1, . . . , yn of another quantity y. Define

X =

⎛⎜⎜⎝
1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
...

...
1 xn1 xn2 . . . xnk

⎞⎟⎟⎠,

y =

⎛⎜⎜⎝
y1
y2
...

yn

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
b0
b1
...
bk

⎞⎟⎟⎠
The coefficient vector b = (b0, b1, . . . , bk)′ of
the hyperplane y = b0 + b1x1 + · · ·+ bkxk that
best fits the given observations in the sense of
minimizing the sum

(y −Xb)′(y −Xb)
of the squared deviations, is given by

b = (X′X)−1X′y.

The method of least
squares with k explana-
tory variables.

X is often called the
design matrix .
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35.8

In (35.7), let y∗
i = b0 + b1xi1 + · · · + bkxik.

The sum of the deviations ei = yi − y∗
i is then∑n

i=1 ei = 0.
Define SST, SSE and SSR as in (35.4). Then

SST = SSE + SSR and SSR = SST · (1 − R2),
where R2 = SSE/SST is the coefficient of de-
termination. R =

√
R2 is the multiple correla-

tion coefficient between y and the explanatory
variables x1, . . . , xk.

Definition of the coeffi-
cient of determination
and the multiple correla-
tion coefficient. 100R2 is
percentage of explained
variation in y.

35.9

Suppose that the variables x = (x1, . . . , xk)
and Y are related by an equation of the form
Y = β0 + β1x1 + · · · + βkxk = (1,x)β, but
that observations of Y are subject to random
variation. Given n observations (xi, Yi) of val-
ues of x and Y , i = 1, . . . , n, we can use the
formulas in (35.7) to determine a least squares
estimator β̂ = (X′X)−1X′Y of β. If the resid-
uals εi = yi − (1,xi)β are independently dis-
tributed with zero mean and (unknown) vari-
ance σ2, then
• the estimator β̂ is unbiased,
• cov(β̂) = σ2(X′X)−1,

• σ̂2 =
ε̂′ε̂

n− k − 1
=

∑
i ε̂2

i

n− k − 1
,

• ĉov(β̂) = σ̂2(X′X)−1.

Multiple regression.
β = (β0, β1, . . . , βk)′ is
the vector of regression
coefficients;
xi = (xi1, . . . , xik) is the
ith observation of x;
Y = (Y1, . . . , Yn)′ is the
vector of observations of
Y ;
ε̂ = (ε̂1, . . . , ε̂n)′ =
Y − Xβ̂;
cov(β̂) = (cov(βi, βj))ij

is the (n + 1) × (n + 1)
covariance matrix of the
vector β.

If the εi are normally
distributed, then σ̂2 is
an unbiased estimator
of σ2, and ĉov(β̂) is an
unbiased estimator of
cov(β̂).

References
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absolute convergence, 50
absolute risk aversion, 181
active constraint, 108
adjoint matrix, 135
Allen–Uzawa’s elasticity of substitution,
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almost ideal demand system (AIDS), 173
American options, 183, 184
angle (between vectors), 128
annuity, 177
arcus functions, 16, 17
argmax, 161
arithmetic mean, 47
arithmetic series, 49
Arrow–Pratt risk premium, 181
Arrow’s sufficient condition, 114, 116
Ascoli’s theorem, 130
asymptotes

for hyperbolas, 9
general definition, 11
finding, 12

asymptotically unbiased estimator, 199
augmented coefficient matrix, 44
autonomous differential equation, 71
autonomous system of differential equa-

tions, 77

backward solution of a difference equa-
tion, 63, 64

Banach space, 130
basis for a subspace

in R
n, 128

in a vector space, 129
Bayesian equilibrium, 190
Bayes’s rule, 194
Bellman’s equations, 123
Bernoulli’s differential equation, 70
Bernoulli’s inequality, 47
Bessel’s inequality, 132
beta distribution, 201
beta function, 60
bias (of an estimator), 198

bijective function, 5
binary relation, 3

antisymmetric, 3
asymmetric, 3
complete, 3
irreflexive, 3
reflexive, 3
symmetric, 3
transitive, 3

binding constraint, 108
binomial coefficients, 51, 52
binomial distribution, 201
binomial formula, 52
binormal distribution, 201
Black–Scholes’s model, 183

generalized, 184
Blackwell’s sufficient condition for a

contraction, 131
bordered Hessian, 95, 103
boundary point, 83
bounded set, 83
Brouwer’s fixed point theorem, 42, 43

capital asset pricing model, 183
Carathéodory’s theorem (for convex sets),

89
Cardano’s formulas, 7
cardinal properties of utility functions,

169
Cartesian product, 2
catching up optimality (CU-optimality)

continuous time, 118
discrete time, 126

Cauchy sequence
in metric space, 129
in R

n, 83
Cauchy–Schwarz’s inequality, 47, 48, 128,

132, 196
Cauchy’s convergence criterion, 84
Cauchy’s mean value theorem, 24
Cayley–Hamilton’s theorem, 147, 148
central limit theorem, 200
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central moments, 195
CES function, 166
chain rule

for derivatives, 22, 27, 28, 33
for elasticities, 36

change of variable(s) (in integrals)
one variable, 55, 58
several variables, 62

characteristic equation
for difference equations, 64
for differential equations, 74
for matrices, 146

characteristic function, 195
characteristic polynomial, 145
characteristic root (or eigenvalue), 145
characteristic vector (or eigenvector), 145
Chebyshev’s inequality

for sums, 47
in statistics, 195

chi-square distribution, 202
circle, 9
Ck-function, 27, 33
classification of stationary points, 100
closed graph (of a correspondence), 86
closed set, 83, 84
closure of a set, 83
Cobb–Douglas function, 166
coefficient matrix, 44
coefficient of determination, 209
cofactor, 135, 142
cofactor expansion of a determinant, 142
combinatorics, 191–192
compact set, 83, 84
comparative statics, 159, 160
comparison test for convergence

of integrals, 59
of series, 50

compensated demand functions, 171
compensating variation, 172
complement of a set, 2
complementary slackness

in LP, 106
in nonlinear programming, 107

completely inelastic function, 35
complete metric space, 129
complete orthonormal set, 132
complex exponential function, 19
complex number, 18

argument of, 18

conjugate, 18
imaginary part of, 18
imaginary unit, 18
modulus of, 18
nth roots of, 19
polar form of, 18
real part of, 18
trigonometric form of, 18

composition of two relations, 3
compound interest, 177, 179
concave function, 90
conditional convergence, 50
conditional density, 197
conditional expectation, 197
conditional factor demand functions, 163
conditional probability, 193
conditional variance, 197
cone, 29
conics, 8
consistent estimator, 199
constraint qualification, 108
consumer demand functions, 170
continuity of functions

one variable, 21
several variables, 84, 85
uniform, 22, 85

continuous compound interest, 179
contraction mapping

in metric space, 131
in function space, 42
in R

n, 42
control region, 113, 123
convergence

in mean square, 199
in quadratic mean, 199
of integrals, 58, 59
of sequences in metric space, 129
of sequences in R

n, 83, 84
of sequences of functions, 86
of series, 49
uniform, 86

convex combination, 89
convex function, 90
convex hull, 89
convex set, 89
correlation coefficient, 197
correspondence, 86
cosine function (cos), 14
cost function, 163
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cost minimization, 163
cotangent function (cot), 14, 15
countable set, 5
countably infinite set, 5
counting rule, 40
Cournot elasticities, 171
covariance, 196
covariance matrix, 207
Cramer’s rule, 144
cubic equation, 7
cumulative distribution function, 194, 196
current value Hamiltonian, 116, 117
cycle of difference equation, 67

decomposable matrix, 153
decreasing function, 10, 99
definite integral, 58
definiteness subject to linear constraints,

150
definiteness types (for quadratic forms

and matrices), 148
degrees of freedom for systems of equa-

tions, 40
demand functions, 170, 171
de Moivre’s formula, 19
De Morgan’s laws, 2
dense subset (metric space), 129
derivatives

of a matrix, 157–158
of a vector, 157–158
one variable, 22
partial, 27

Descartes’s rule of signs, 8
design matrix, 208
determinant, 141, 142
diagonal matrix, 133
diagonalizable matrix, 146
Diewert cost function, 167
difference equation

backward solution, 63, 64
first order, 63
forward solution, 63
linear, 63–67
nonlinear, 67–68
stable, 65–68

differential equation
autonomous, 71, 77
Bernoulli, 70
Euler’s, 73

exact, 70
existence and uniqueness, 70, 71, 77
first order, 69–72
higher order, 72–75
integrating factor, 70
linear, 69, 70, 72–75
logistic, 69
partial, 81–82
projective, 69
Riccati, 70, 117
separable, 69
stable, 71, 74, 75, 78–81
systems, 75-81

difference of sets, 2
differentiable function

one variable, 22
several variables, 28, 32

differential
one variable, 25
several variables, 28

differentiation of vectors and matrices,
157–158

differentiation under the integral sign, 59
dimension (of a subspace), 128
directional derivative, 31
directional elasticity, 36
discount factor, 178
discounted present value, 179
discrete optimal control theory, 125
distance

in metric space, 129
in normed vector space, 130
in R

2, 9
in R

n, 128
divergence

of integrals, 58, 59
of sequences in metric space, 129
of sequences in R

n, 83
of series, 49

domain (of a relation), 2
dominant diagonal (matrix), 153
dominant root (of a matrix), 152
dot product, 128
double integral, 61, 62
dual problem (LP), 105
duality theorem (in LP), 106
dynamic programming, 123

e ≈ 2.718 . . . , 13
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effective rate of interest, 177, 179
eigenvalue, 145
eigenvalue equation, 146
eigenvalue polynomial, 145
eigenvector, 145
elastic function, 35
elasticities, 35, 36
elasticity of substitution

Allen–Uzawa’s, 165
Morishima’s, 165
several variables, 37
two variables, 37, 38, 165

ellipse, 8, 9
endogenous variables, 39
Engel elasticities, 171
envelope theorems, 104, 109
equicontinuity, 130
equilibrium point

for a market, 159
for difference equations, 67
for differential equations, 77
hyperbolic, 80

equivalence relation, 3
equivalent variation, 172
Euclidean distance, 9
Euler’s constant (γ ≈ 0.5772), 53
Euler’s difference equation (dynamic

programming), 124
Euler’s differential equation, 73
Euler’s equation (in the calculus of

variations), 111
generalized, 112

Euler’s formulas (for sin z and cos z), 19
Euler’s theorem (on homogeneous

functions), 30
European options, 183, 184
even function, 10
evolutionary game theory, 189
evolutionary stable strategy, 189
exact differential equation, 70
exchangeability property (game theory),

189
existence and uniqueness theorems for

differential equations, 70, 71, 77
exogenous variables, 39
expectation, 194, 196, 197
expenditure function, 170
explained variation, 207, 209
exponential distribution, 202

exponential function (complex), 19
exponential matrix, 137
extreme point/value, 97
extreme point of a convex set, 89
extreme value (Gumbel) distribution, 202
extreme value theorem (or Weierstrass’s

theorem), 97

factor demand functions, 164
factor price equalization, 176
Farkas’s lemma, 106
F -distribution, 202
finite covering property, 84
finite set, 5
first degree stochastic dominance, 181,

182
first-derivative test, 99
first-order approximation, 50, 51
first-order conditions, 98
Fisher’s ideal price index, 174
fixed point theorems

Brouwer’s, 42, 43
for contraction mappings, 42, 131
Kakutani’s, 43
Schauder’s, 131
Tarski’s, 43

forward solution of a difference equation,
63

Frobenius root (of a matrix), 152
Frobenius’s inequality, 136
Frobenius’s theorem (partial differential

equations), 82
function, 5

bijective, 5
continuous, 21, 84, 85
decreasing, 10
differentiable, 22, 28, 32
even, 10, 11
image of, 5
increasing, 10
injective, 5
inverse, 5
inverse image of, 5
odd, 10, 11
one-to-one, 5
onto, 5
periodic, 10
strictly decreasing, 10, 11
strictly increasing, 10, 11
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surjective, 5
symmetric, 10, 11
uniformly continuous, 22, 85

functional dependence, 40, 41
fundamental equations (in dynamic pro-

gramming), 123
fundamental theorem of algebra, 8

Gale–Nikaido theorems, 41, 42
games of incomplete information, 190
gamma distribution, 202
gamma function, 60
generalized inverse, 138
generalized Leontief cost function, 167
geometric distribution, 203
geometric mean, 47
geometric series, 49
global asymptotic stability

for difference equations, 65
for differential equations, 74, 78

global inverse function theorem, 41
global maximum (minimum), 97
gradient, 31, 157
graph of a

correspondence, 86
function, 5
relation, 3

greatest element (for a preordering), 4
greatest lower bound, 87
Gumbel distribution, 202

Hadamard’s theorem, 41
Hadar–Russell’s theorem, 182
Hamiltonian

continuous control theory, 113, 114
current value, 116, 117
discrete control theory, 125

Hamilton–Jacobi–Bellman’s equation, 185
harmonic mean, 47
Hawkins–Simon conditions, 154
Heckscher–Ohlin–Samuelson model, 176
Heckscher–Ohlin’s theorem, 176
Heine–Borel’s theorem, 84
hemicontinuity, 86
Hermitian matrix, 140
Hessian matrix, 92, 157
Hicksian demand functions, 171
Hilbert space, 131
Hölder’s inequality, 47, 48

homogeneous
difference equation, 63
differential equation, 69, 72, 74

homogeneous function, 29
homogeneous linear system of equations,

44
homothetic function, 30
Hotelling’s lemma, 164
hyperbola, 8, 9
hyperbolic equlibrium point, 80
hyperbolic function, 17
hypergeometric distribution, 203

idempotent matrix, 136, 151
identity matrix, 133
image, 5
imaginary part of a complex number, 18
imaginary unit, 18
implicit function theorem, 29, 39
inclusion–exclusion principle, 192
incomplete specialization, 175
increasing differences, 160
increasing function, 10, 99
indecomposable matrix, 153
indefinite integral, 55
indefinite quadratic forms (matrices), 148
indifference relation, 169
indirect utility function, 170
induction, 6
inelastic function, 35
infimum (inf), 87
infinite horizon problems

continuous control theory, 117–119
discrete control theory, 126
dynamic programming, 124

inflection points (test for), 99
inhomogeneous difference equation,
initial value problem, 70
injective (one-to-one) function, 5
inner product, 128
inner product space, 131
integer zeros of a polynomial, 8
integral

comparison test for convergence, 59
convergent, 58–59
definite, 58
divergent, 58–59
double, 61–62
indefinite, 55
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multiple, 62
integral curve, 77
integral test (for series), 49
integrating factor, 70
integration by parts, 55, 58
integration by substitution

one variable, 55, 58
several variables, 62

interest factor, 178
interior point, 83
intermediate value theorem, 22
internal rate of return, 178
intersection of sets, 2
inverse function, 5

derivative of, 23
inverse function theorem

global version, 41
local version, 41

inverse hyperbolic functions, 17
inverse image, 5
inverse (of a matrix), 134, 135
inverse relation, 3
inverse trigonometric functions, 16–17
invertible matrix, 135
involutive matrix, 136
irreducible matrix, 153
iterated expectations, 198
Itô’s formula, 184, 185

Jacobian determinant, 41
Jacobian matrix, 39, 40, 157
Jensen’s inequality, 48, 195
join (of two vectors), 43
Jordan’s decomposition theorem, 147

Kakutani’s fixed point theorem, 43
Krein–Milman’s theorem, 90
Kronecker product, 155
Kuhn–Tucker’s necessary conditions, 107,

108, 110
kurtosis coefficient(η4), 195

Lagrange multipliers, 101, 102, 103, 107
Lagrange problem, 101, 102, 104

necessary conditions, 102
sufficient conditions, 102, 103

Lagrange’s error term, 50
Lagrange’s method, 101, 102
Lagrangian function

control theory, 119, 120
static optimization, 101, 102, 107

Laplace distribution, 203
Laspeyres’s price index, 174
law of large numbers, 200
law of the minimum, 167
leading principal minor, 143
least element (for a preordering), 4
least squares, 207, 208
least upper bound, 87
Legendre’s condition (in the calculus of

variations), 111
Leibniz’s formula, 60
length of a vector, 128
Leontief function, 167
Leontief system, 153, 154
level curves (and slopes), 29
level of significance, 200
L’Hôpital’s rule, 24
Liapunov function, 80
Liapunov theorems, 79, 80
lim inf and lim sup, 87, 88
limit, 21
limiting distribution, 199

rules for, 199
linear approximation, 50, 51
linear combination (of vectors), 127
linear difference equation, 63, 64
linear differential equation

first-order, 69
n-th order, 72–75

linear expenditure system (LES), 172
linear (in-)dependence

of functions, 72
of vectors, 127

linear ordering, 3
linear programming (LP), 105, 106
linear quadratic control problem, 117
linear regression, 207
linear space, 129
linear system of equations, 44
linear transformation, 137
local asymptotic stability

difference equations, 67
differential equations, 78

local extreme points, 98
local inverse function theorem, 41
local maximum (minimum), 98
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local saddle points (differential equa-
tions), 81

logarithm, 13, 14
logical operators, 1
logistic differential equation, 69
logistic distribution, 203
lognormal distribution, 203
Lotka–Volterra models, 81
lower bound, 4
lower hemicontinuity, 86
lower triangular matrix, 133
lp spaces, 130, 132

Maclaurin series, 50
Maclaurin’s formula, 50
Mangasarian’s sufficient conditions

current value formulation, 116
fixed time interval, 113, 114
infinite horizon, 117
mixed and pure state constraints, 122
mixed constraints, 120
pure state constraints, 121
with scrap value, 116

mapping, 5
marginal density, 197
marginal rate of product transformation

(MRPT), 37
marginal rate of substitution (MRS), 36,

37
marginal rate of technical substitution

(MRTS), 37
marginal utility of money, 170
Marshallian demand function, 170
Marshall’s rule (for calculating elastici-

ties), 35
mathematical induction, 6
matrix, 133

adjoint, 135
cofactor, 135, 142
complex elements, 140
conjugate, 140
conjugate transpose, 140
exponential, 137
decomposable, 153
diagonal, 133
diagonalizable, 146
dominant diagonal, 153
exponential, 137
generalized inverse, 138

Hermitian, 140
idempotent, 136, 151
identity, 133
indecomposable, 153
inverse, 134, 135
invertible, 135
involutive, 136
irreducible, 153
lower triangular, 133
Moore–Penrose inverse, 138
nonnegative, 152
nonsingular, 136
norms of, 136, 137
null, 134
order of, 133
orthogonal, 136, 151, 152
partitioned, 139
permutation, 152
positive, 152
positive quasidefinite, 42
rank of, 136
reducible, 153
scalar, 133
singular, 136
skew-symmetric, 136
square, 133
stable, 79
symmetric, 136
trace of a, 136
transpose of, 134
unit, 133
unitary, 140
upper triangular, 133
zero, 134

matrix inversion pairs, 135
matrix norms, 136, 137
maximal element (for a preordering), 4
maximized current value Hamiltonian,

116
maximized Hamiltonian, 114
maximum point/value of a function, 97

local, 98
maximum principle (continuous time)

current value formulation, 116
fixed time interval, 113, 114
free terminal time, 115, 116
general terminal conditions, 115
infinite horizon, 118
scrap value, 116
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maximum principle (discrete time), 125
mean (arithmetic, geometric, harmonic),

47
mean (expectation), 194
mean square convergence, 199
mean square error (MSE), 198
mean value theorem, 24
meet (of two vectors), 43
method of least squares (multiple regres-

sion), 207
metric, 129
metric space, 129
minimal element (for a preordering), 4
minimax theorem (game theory), 189
minimum point/value of a function, 97

local, 98
Minkowski’s inequality, 48
Minkowski’s separation theorem, 90
minor of a matrix, 143
mixed strategy (profile), 187
modulus of a complex number, 18
moment generating function, 195
monotone comparative statics, 160–161
Moore–Penrose inverse, 138
Morishima’s elasticity of substitution, 165
multinomial distribution, 204
multinomial formula, 52
multiple correlation coefficient, 209
multiple integrals, 61–62
multiple regression, 208
multivariate normal distribution, 204

Nash equilibrium, 187–190
natural logarithm, 13
n-ball, 83
necessary condition, 1
negative binomial distribution, 204
negative definite matrix, 148
negative definiteness subject to linear

constraints, 150
negative (semi-) definite quadratic forms

(matrices), 148
neighborhood, 83
Newton’s binomial formula, 52
Newton’s method (for solving equations),

12
convergence estimates, 12

n-integral, 62
no factor intensity reversal, 175

nonlinear programming, 106–110
Kuhn–Tucker necessary conditions,

107, 108, 110
sufficient conditions, 107, 110

nonnegative matrix, 152
nonsingular matrix, 136
norm

of a matrix, 136, 137
of a vector, 128

normal
to a curve, 13
to a (hyper)plane, 32

normal distribution, 204
normal system of differential equations,

75
normed vector space, 130
Norstrøm’s rule, 179
n-person game, 187–190
nth root (of a complex number), 19
null matrix, 134

odd function, 10, 11
Olech’s stability theorem, 80
one-to-one function, 5
open covering, 84
open n-ball, 83
open set, 83
optimal points/values, 97
orbit, 77
ordering

linear (total), 3
partial, 3
pre- (quasi-), 3
weak, 3

ordinal properties of utility functions, 169
ordinary least squares, 207
orthogonal matrix, 136, 151, 152
orthogonal (orthonormal) set, 132
orthogonal transformation, 152
orthogonal vectors

in inner product spaces, 132
in R

n, 128
overtaking optimality (OT-optimality),

118

Paasche’s price index, 174
parabola, 8, 9
Pareto distribution, 204
Parseval’s formula, 132
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partial derivatives, 27
partial differential equations, 81–82
partial elasticities, 36
partial ordering, 3
partitioned matrix, 139
passus equation, 36
payoff matrix (game theory), 189
periodic function, 10, 11
periodic solutions

of difference equations, 67
of differential equations, 78

permutation matrix, 152
pigeonhole principle, 192
Poincaré–Bendixson’s theorem, 79
pointwise convergence, 85
Poisson distribution, 205
polynomial, 8

integer zeros of, 8
positive definite matrix, 148
positive definiteness subject to linear

constraints, 150
positive matrix, 152
positive quasidefinite matrix, 42
positive (semi-) definite quadratic forms

(matrices), 148
power of a test, 199
powers, 13
preference relation, 4, 169
preordering, 3
present value, 177
price indices, 174
primal problem (LP), 105
principal minor, 143
principle of least upper and greatest

lower bound, 87
principle of mathematical induction, 6
probability (axioms), 193
probability density function, 194, 196
probability limits, 199

rules for, 199
profit function, 164
projection, 151
projective differential equation, 69
pseudoconcave function, 96
pseudoconvex function, 96
put-call parity, 184
Puu’s equation, 165
P -value (significance probability), 200

quadratic approximation, 50, 51
quadratic form, 148
quadratic equation, 7
quadratic mean convergence, 199
quasiconcave function, 93
quasiconcave programming, 109
quasiconvex function, 94
quasilinear partial differential equation,

81
quasiordering, 3

radians, 14
Ramsey’s growth model, 180
random variables

one-dimensional, 194
two-dimensional, 196

range (of a relation), 2
rank (of a matrix), 136
ratio test (for series), 49
real part of a complex number, 18
reciprocity relations (comparative

statics), 160
rectangular (exchangeability) property,

189
reducible matrix, 153
relation, 2

antisymmetric, 3
asymmetric, 3
binary, 3
complete, 3
composition of, 3
domain of, 2
equivalence, 3
graph of, 3
inverse, 3
irreflexive, 3
range of, 2
reflexive, 3
symmetric, 3
transitive, 3

relative maximum (minimum), 98
relative risk aversion, 181
relative topology concepts, 85
residual variation, 207, 209
resolvent (of a differential equation), 76
Riccati’s differential equation, 70, 117
risk aversion, 181
roots of an equation, 8
Rothschild–Stiglitz’s theorem, 182
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Routh–Hurwitz’s stability conditions, 75
Roy’s identity, 170
Rybczynski’s theorem, 175

saddle point
differential equations, 81
for f(x), 98
for the Lagrangian, 108

saddle point property (game theory), 189
scalar matrix, 133
scalar product, 128
Schauder’s fixed point theorem, 131
Schur’s lemma (for complex matrices),

147
Schur’s theorem, 65
Schwarz’s (or Young’s) theorem, 27
scrap value functions

in calculus of variations, 112
in control theory, 115

second degree stochastic dominance, 182
second-order approximation, 50, 51
second-order conditions (static optimi-

zation), 100, 102
separable differential equation, 69
separable metric space, 129
separating hyperplane, 90
separation theorems, 90
set difference, 2
shadow elasticity of substitution, 165
shadow prices

in LP, 106
in static optimization, 103

Shephard’s lemma, 163
shifting graphs, 10
significance probability (P -value), 200
Simpson’s formula, 61
simultaneous diagonalization (of matri-

ces), 149
sine function (sin), 14
single consumption β asset pricing equa-

tion, 183
singular matrix, 136
singular value decomposition (of matri-

ces), 149
singular values (of a matrix), 149
sink (equlibrium point), 79
skewness coefficient (η3), 195
skew-symmetric matrix, 136
Slater condition, 108

slope (of a level curve), 29
Slutsky elasticities, 171
Slutsky’s equation (consumer theory),

171
Slutsky’s theorem, 199
Solow’s growth model, 179
source (equlibrium point), 79
span (of a set of vectors), 128
spectral theorem (for matrices), 147
sporadically catching up optimality

(SCU-optimality), 118
stability

difference equations, 65–68
differential equations, 71, 74, 75, 78–80

standard deviation, 195
standard normal distribution, 204
stationary point, 97
statistical testing, 199
Stirling’s formula, 60
stochastic control problem, 185
stochastic dominance

first degree, 181, 182
second degree, 182

stochastic independence, 193, 197
stochastic integral, 184
stochastic variables

one-dimensional, 194
two-dimensional, 196

Stolper-Samuelson’s theorem, 175
Stone–Geary’s utility function, 172
strategy profile (game theory), 187
strategy set (game theory), 187
strict concavity/convexity of functions, 91
strictly decreasing/increasing functions,

10, 11
strictly dominated strategy, 188
strictly increasing differences, 160
strict quasiconcavity (convexity) of func-

tions, 94
strict supermodularity, 160
strong law of large numbers, 200
Student’s t-distribution, 205
subgradient, 32
sublattice, 43
subsequence, 84
subset, 1
subspace (of R

n), 127
substitution matrix, 163
sufficient condition, 1
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supergradient, 32
supermodular function, 160
supply function, 164
supremum (sup), 87
supremum distance, 42
surjective function, 5
Sylvester’s inequality, 136
symmetric difference of sets, 2
symmetric game, 189
symmetric matrix, 136
symmetry of graphs, 10

tangent function (tan), 14, 15
tangent (hyper)plane, 31, 32
tangent (to a curve), 13
Tarski’s fixed point theorem, 43
Taylor series, 51
Taylor’s formula, 50, 51
t-distribution (Student’s), 205
test statistics, 199
total ordering, 3
total variation, 207, 209
trace (of a matrix), 136
trajectory, 77
transformation, 41, 157
transformation of stochastic variables,

198
translog cost function, 168
translog indirect utility function, 173
transpose (of a matrix), 134
transversality conditions

in calculus of variations, 111, 112
in control theory, 113, 114

trapezoid formula, 61
triangle inequalities

in metric space, 129
in R (or C), 47

trigonometric formulas, 15–17
trigonometric functions, 14
truth tables (for logical operators), 1
2 × 2-factor model, 175
two-person game, 189
type I and type II errors, 200

unbiased estimator, 198

uncorrelated random variables, 196
uniform continuity, 22, 85
uniform convergence, 86
uniform distribution, 205
uniformly bounded set (in C(X)), 130
union of sets, 2
unitary elastic function, 35
unitary matrix, 140
unit matrix, 133
universal set, 2
unstable equlibrium point, 76, 78
upper bound, 4
upper hemicontinuity, 86
upper level (contour) set, 93
upper triangular matrix, 133
utility function 169

indirect, 170
utility maximization, 169

value (of a game), 189
value function

control theory, 114
discrete dynamic programming, 123,

124
static optimization, 103, 104, 109

Vandermonde’s determinant, 142, 143
variance, 194, 195, 197
variation of parameters, 73
vec-operator, 156
vectors, 127–132
vector space, 129
Viète’s rule, 7
volatility, 183

weak law of large numbers, 200
weak ordering, 3
Weibull distribution, 205
Weierstrass’s theorem, 97
weighted means, inequality, 47

Young’s (or Schwarz’s) theorem, 27

zeros (of a polynomial), 8
zero-sum game, 189
Zorn’s lemma, 4
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