

AFCEA MILSATCOM Symposium

The Space Based Group / Space Local Area Network

Maj David Borgeson SMC/XR

An Ever Changing & Challenging Space Domain

A Complex Space Environment

Object Size

Use of Space Payload Comparison 1500

Debris

Evolving Threat Capabilities

Countries worldwide are utilitzing satellites as small as 2.5 lb.

Changing Security and Global Environment Necessitates a Shift in How We "Think About" & "Build" our "Space Enterprise"

SpLAN Introduction

- Communication satellites designed for high bandwidth
 - Physical crowding leveraged for potential network node opportunities
 - Spectral crowding solved by network dynamic freq allocation
- GEO orbit highly valued and assets extremely difficult to protect
 - Lack of ability to detect threats
 - Unable to reconstitute assets quickly following failure
- Internet robust due to distributed network of nodes ad users
- Enable robust, diverse user network like cell phones & blackberries
- Objective: Provide a Space Local Area Network (SpLAN) to enable a common use infrastructure

SpLAN Architecture

- Utilize Internet Protocol (IP) routing and network standards to provide netcentric connectivity to mission spacecraft (S/C)
- Enables multiple missions Payload selection becomes insignificant in demotradespace
- Maximize integration with Commercial Satellites to eliminate architecture issues and need for large communication infrastructure

SpLAN Concept

 Protection as a function of Reliability, Responsiveness, Flexibility, Augmentation, and Autonomy

SpLAN Key Factors

- Standardize parameters to establish interoperability
- Design antenna's for broad coverage but ensure link closes

Wi-MAX standard provides functionality in data rate, range, frequency, and assured access.

Enabling Mission Capability

- Decreased S/C complexity decreases
 - Individual S/C cost
 - Schedule
 - Probability of failure
- Complex S/C replaced by multiple less complex S/C
 - More mass on orbit = more cost
 - Complexity may be in mission P/L and not subject to significant decrease
- Network enables additional robustness in
 - Protection
 - Enhances C2 Mobility Support
 - Eliminates spectrum allocation need
 - Decreased dependence on government ground sites
 - Supports Autonomy, Reliability, Availability and Responsiveness

Based on NASA "Faster, Better, Cheaper" (FBC) approach to missions 2000 study by Aerospace

Near-term SBG value likely in Robustness vs. Cost

SpLAN Architecture Goals

- SpLAN has the potential to positively impact our future space business and space enterprise
- Make communications a commodity.... plug & play
 Space based LAN tied to terrestrial networks
 - Wireless LAN gateway
 - Simple, lightweight client hardware, standard interfaces
 - Consolidates common mission communication requirements for survivable, tactical and civilian downlinks
- Enables a new paradigm for orbital operations
- Enable new missions with minimal incremental infrastructure – R&D, initial ops
- Enable responsive space operations