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CHAPTER I
INTRODUCTION
I. FPUNDAMENTAL~CONCEPTS +

p mSu. In 3-space Euoclidean=geometry we find 3 basio—ocompanent modes of
thought integrated into 1 whole: the axiomatic, analytic, and percveptic, Let us call

these 3 basic components, respectively, the synthetio—oomponent, analytio-component, and
perceptio—-ocompament., Further, we abbreviate these x-components as: the S=component,
A=component, and P-component, We can form a triangle to represent these ocombined x-
ocomponents as a SAP-triangle of organization, At each comer of the triangle we have a
basio-ocomponent which we call, respectively, the S=, A=, and P-ocomponent. The SAP-
triangle vhen used gives us a great understanding of the science of geometry, The
strongest component of the SAP-triangle is the P-ocomponent, the balance, is such, that
an increase in any 1 ocomponent will increase the development of the other components—
the ideal-gituation occurs using all 3 x-components simultaneously, functionally, that
is, We shall call the P=-ocomponent of the SAP-triangle the 'synesthesio-unit', which,
wvhen developed along with the S- and A-units, gives us great insight and understanding
of geometrio-forms of thought,

In the 4-space geometries as developed to date, We have only 2 corners of the SAP=-
triangle extensively-developed, the axiomatic and analytic., An ultra=change occurs when
you put in the P=-unit; geometrio-integration ocours in a *'twinkling of an eye' with
wnusual-insights of 4-space geometries never before suspected to have existed, The SAP-
triangle 'gestalt' gives us a real-understanding of geometry per se, In my geometrical-
researches for finding a general-method to solve 4~space problems quickly, I becanme
fully-awvare that a 4-space 'graphic' would require for its development a SAP-triangle
approach, ian #udh-a-way, that the 4-space perceptics would be oonsistent with the S=- and

. A=components of the SAP-triangle, Assuming further, that these results would as-a-whole
give enormous power in geometrio-understanding and new—discoveries,

Much of the 4-space perceptics wvas developed with the aide of the 'inner-eye', In

‘ visualizing 4-space geometrio-figures one must foecus one’s attention on a new=level of
mental-avarenegss—somewhat like the 'psychics' do in seeing the human-aura, In going
from plane to0 solid-gemmetry we foocus our 'attention' on a seocond-level of geometrio-
avareness, then re-focusing again to a Ird-level for larger geometrio-gestalt-units of
integration for hypersolid geometrio-figures,

One must go slovly in using the myltiple=focusing=-process of the imer-eye to
visualize 4-space geometrio=figures, It takes time and patience, One must go over and
over again until the 'natural' geometrio-gestalt occurs,

We are but babes in the world of the 4th dimension, So again I say, time and patience
is required for a real-understanding of this fascinating new realm of hyperspace-

geometry, I predict that the psi-discoveries resulting from applications of the 4-space
geometry will be enormous—its a gateway to the stars,

THE CANONICAL-HYPERCUEE

2o GRAPHIC—CONSTRUCTIMN, COLOR=-DIMENSION, In creating a 4-space visual-graphic that
will emnable us to use the SAP=triangle principle, We must begin with the simplest
geometrio-figure possible that can be used as a standard-form or archetype-model,

The 4-spece geometrio-figure must have the intrinsio-properties that can inoorporate

directly the analytio- and synthetio-modes of 4-space geometry.

The org-theory I published in '63 gave me the oonoceptual-solution to this unsolved-
problem, The oombinatorial-integrator for the 'orgs' showed me that the simplest
struoture possible t0 form was made—-up of the units-partitions of the natural-rmmbers,

. Suppose wve oconsider the units-partitions of the natural-mmbers as independent-gubsets
of higher order gemerated from the universal-set (1,1,15000), then its independent-

Subsets we can Iepresant as; (1, 12, 13,...), vhich represent the natural-numbers in
partition=-form, The oombinatorial-groupings of these units—-partitions gives us the
combinations of higher order for the natural-pumbers, i.,e., the units-partition 14

via ocombinatorial=grouping gives us the 'partitions’ of the natural-mmber 4 as

e 212, 31, 22, and 43 it being understood that the partition-parts when summed

equal the natursl-pumber 4, the jpvariant-property of the partition=-grouping.

m




Farther, in group=theory, we find that the simplest existing group-structure
associated with the units-partitions is the product-group of 1,

If ve select the units~partitions of the natural-fjumber 4 and relate these 4 1%s to
our 4-space Euclidean-geometry, we shall then have the ‘master-key' that opens a door
into a new 'dimension!, In the combinatorial-analysis of 4{-space Buclidean-geometry we
associate the unit-parts of the units-partition of the naturel-mmber 4 with the 4-space
sutually perpendicular coordinate-axes, In 4-space we have a set of 4 mutually
perpendicular-lines that meet 8t a point called the origin, These 4 mutually
perpendiocular-lines are all 90 apart from one another, wvhich ean be grouped together
in different ways, like the partitions of the mummber 4, This amount of information gives
us the 'synthetio-mmber-partitions' 2hat relate our canonical-hypercube to analytio-
geometry and the calculus,

Further, we need a few bits more of information to graphically-oonstruct the 4-space
canonical-hypercube, This additional info we find in the fully developed 4-space
synthetio-geometry, from which, we make use of the important ooncepts of 'boundary' and
'interior' of a geometric-figure, One more step ocompletes the synesthesio-process for
visualizing the canonical-hypercube, Since we will be ‘'visualizing' in 4-space
perceptics, our 4{-space graphics will be much more involved than the ordinary 3-space
solid-geometry, Therefore, in the 4-space graphics another change is rewuired, We make
use of 2 colors to distinguish our oxdinary 3-space 'cell' from the other regions in
hyperspace, i.e, a black=cube for our ordinary-space and 7 red—cubes for the remaining
portions of our canonical-=hypercube in hyperspace,

In setting a graphioc mock=up of the canonical-=hypercube we have yet to oonsider
'double—oblique=projections' in the hyperspace-graphics, The x- and gz=axes lie in the
plane of the paper at true-right-angles to each other, The y- and w-axas are represented
a8 being at quasi-right-angles to each other in the plane of the paper, as well as, 1 of
each of these 2 with 1 of each of the former 2, The 2 quasi-perpendicular-axes have been
chosen, in such—-a~way, that in the plane of the paper, the graphio=form of the
canonical=hypercube will have 8 of its vertices in the interior of an octagon=—the 3
space analogue to this being the graphio-cube having 2 of its vertices lying in the
interior of a hexagon., The ‘octagon' is slightly doubly-distorted due to the double-
oblique-projection in the 4~space graphic of the canonical-hypercube, From graphio-
experimentation I have come across the graphio-design that makes the 4-space
visualization-process occur with ease without undue mental-stressj; in special-cases, the
standard-design of the grsphic=ooordinates can be modified to stress better piotorial-
relationships of a few of the 4-space geometry theorems,

At the end of this chapter on the last-page is the graphio-form for the canonical-
hypercube, On plate—=] near the lower-right-hand-corner is the standard-code for the
graphio-construction of the canonical=hypercube, To 'save time', the student should
make a duplicate=copy of the canonical-=hypercube on plate-]I, and then ocontimue with the
study of this chapter by referring to the duplicate—copy,

We shall now explain the standard-code as it relates to the graphio-construction of
the canonical-hypercube,

In the plane of the paper we have 2 half=lines OX and 0Z intersecting ia a right-angle
at the point O, On each of these #lines we establish a mmerical-scale of positive-
real-mumbers, The vertical #=line OZ is labelled the positive-portion of the z-axis, the
horizontal #=line OX is labelled the positive-portion of the x-axis. In the plane of the
paper the mumerical-scales chosen for the x- and z—axes are the same, The right-angle at
O of the 2 positive=portions of the x» and z-axes is a true-right-angle which can be
measured directly==the tem *true' is used in the sense that the right-angle at O of
XOZ can be measured directly in the gresphic, and is a true-right-angle having
O-distortion in the plane of the paper, that is, only in the graphio-viewpoint,

On the oblique #=line OY as construoted in the plane of the paper, we establish a
numerical-scale of positive-real-gumbers, The oblique #=line OY is labelled the positive
-portion of the y-axis, In the oblique-direction of the positive-portion of the y-axis,
we have a moderate-foreshortening of its length to adjust for the moderately-oblique
parallel-gveep of lines that 'appear' longer in length vhen nearly perpendicular to the
observer’s 'line of sight’,




3

Therefore the numerical-scale attached to the positive-portion of the y-axis is
foreshortened by '#=inch', In the plane of the paper we also make another adjustment
for the perpendicular #=line OY, in such~a-way, that the #=lines 0Z and OY intersect

at 0 in an obtus e, i.e, the obtuse-angle ZOY,
o On the 2nd oblique #=line OW as constructed in the plane of the paper, we establish

a numerical-scale of positive-real-mmmbers. The 2nd oblique #=line OW is labelled the
positive=portion of the w-axis, In the oblique-direction of the positive-portion of the
w-axis, wve have a smallexr-foreshortening of its length to adjust for the smaller-oblique
parallel-sveep of lines that 'appear' somevhat longer in length when less perpendicular
to the observer’s 'line of sight', Therefore the numerical-scale attached to the
positive-portion of the w-axis is foreshortened by '4{=inch', In the plane of the paper
we also make another adjustment for the perpendicular #~line OW, in such-a-way, that
the #=lines OZ and OW interseot at O in an acute-angle, i,e, the acute—angle 20V,

The student should be awvare that we have used only the positive-=portions of the 4-
space Cartesian-coordinate—-gystem in the graphio-construetion of the canonical=-
hypercube—extensions of the 4—-space Cartesian—-coordinates in the negative-~directions
of the positive-coordinates from the point O are easily made,

We shall call the 4-space graphio-projection of the canonical-hypercube, eyt
'double=oblique=projection’,

In oompleting the graphio—construction of the canonical-=hypercube for hidden-views,
the graphio-process is similar to the 3-space solid-geometry, but with some important
di fferences—the development of the 4-space geometrio-figures with hidden-views will be
taken up later in another portion of this chapter, and in the chapters that follow,

3¢ CONFORMABLE=ORIENTATION=SENSE, INVARIANCE, Given 4 mutually perpendicular-

hyperplanes of 'cubes' intersecting at the point O, such that any 2 hyperplanes of the
' cubes intersect in the plane of a square, that is, any 2 adjacent-cubes at the point O
will interseot in a common-face belonging to both of the adjacent-cubes,

Sinoce there are degrees of perpendicularity as well at the point O, we car 'define’
the dimension of a geometrio-form by associating it with the maximum-desree of
'perperdicularity' that it can ocontain at a given point—=the differential-geometry of
hypersurfaces would be an example of this for local-neighborhoods of hyperspace having
dimensional-invariance, The perpendicularity-principle is the root—assumption for all
our metrio-geometries—Pythagorean-theorem would be such an example,

We call the canonical-hypercube a, geometrio-form having perpendicularity of the 4th

! decree, thereby, giving us the 4-space Euclidean-geometry and its derivatives, such as
| the Non-Euclidean-geometries——the Fuclidean, we call statio-geometry, the Nan=Euclidean,
dynami o=-geometry,

Take the intersection of the hyperplane of the black—=cube with 1 of the 3 intersecting
hyperplanes of the red-cubes that intersect in the perpendicular-line of the segment 00°',
say the hyperplane of the red—cube OBHC=O'B'H'C', Then the hyperplane of the black-cube
intersects the hyperplane of the red=cube OBHC=O'B'H'C' in the plane of the black-square
OBHC. Now in the hyperplane of the black-cube the plane of the black-square OBHC lies
obliquely to our left, The side of the plane of the black-square OBEC that we see lies
towards the 3—-space interior of the black—-ocudbe, In the hyperplane of the red-=cube
OBHC=O'B'H'C', the side of the plane of the same black-square OBHC that ve see lies

tovards the ocutside of the red-hyperplane-cube OBHC=O'B'H'C', i.e, we still see the
smme-side of the plane of the black=square OEHC, In the hyperplane of the red-cube
: OBHC~O*B'H'C*' we must then have the plane of the red-square 00'C'C lie obliquely tovards
our right, For suppose the plane of the red-square O0'C'C were to lie obliquely towards
our left, i.,e, somevhat upwvards and passing by us on the left somevhat distant, Then we
‘ would see the other-sids of the plane of the black-square OBHC, with this other-side
pointing in the direction towards the interior of the red-cube OBHC=O'B'H'C', But this
2nd orientation-sense of the plane of the red-square 00°'C'C belonging to the hyperplane
of the red-cube OBHO=-0'B'H'C®’ would alter the orientation-sense of the hyperplane of
the black-cube, for now we would see the opposite—side of the plane of the black-square
OBHC slant-obliquely towaxrds us on our right, thus the front and backviews of
the hyperplane of the black—-cube; the front-view BHFE of the black-=cube would now become

the back~view OCCA, and the back-view OCGA would become the front-view BHFE,
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This ‘domino=effect' spreads to the hyperplanes of the other 2 red-cubes Ofm-O';‘G'A'
and OAEB=O'A'E'B', Since we are given that the hyperplane of the red-cube OCGA=O'C'G'A"
intersects the hyperplane of the red-cube OBHC=0O'B'H'C' in the plane of the red-square
00'C'C which contains the line of the segment 00', Then in the hyperplane of the red-gcube
OCGA=D'C'G'A?* ch also intersects the hyperplane of the black-cube in the plane of the
black-square OJGA, we would then have the plane of the red-square 00'C'C lie towards us
on our left, making the front- and back-views of the red-cube OCGA=O'C'G'A' interchange
positions, thus altering the orientation-sense of the hyperplane of this red-cube,
Similar results ocour as well with the hyperplane of the red=cube OAEB=0O'A'E'B'
intersecting the hyperplane of the red-cube OBHC=O'B'H'C' in the plane of the red-square
EB'0'0, Therefore the plane 0f the red-square 00'C'C pontnim.ng the positive-portion of
the w-axis lies towards us on our left,

The conformable—orientation—-sense of the hyperplane of 1 cube induces the same-

conformable-orisntation-sense for all the adjacent-hyperplanes of the cubes constructed
on the faces of the cubes lying in the different hyperplanes that have been made
conformable to the hyperplane of the original ocube, |

The invariance of the confomable~orientation-sense for a network of hyperplanes of
the cubes can be put into a theorem as followss

Given the oconformable-orientation-sense for the hyperplane of 1 cube induces a
confomable-orientation—-sense for all the other hyperplanes of the oubes constructed

about the hyperplane of the given cube,

The principle of the conformability of orientation-sense for hyperplanes of the cubes
makes it possible for us -to have hidden-views in the double-oblique-projection of the
canonical=hypercube as wvell as eliminating optical-=illusion effects,

Something like the conformable-=orientation-sense would occur if we were to 'transmit’
the decomposed ‘'electromagnetio-units' of the molecular-structure of 'matter', that is,
for a certain unknown-wave=band in the matter-spectrum; the stamped-letters on an
ash-tray would read-out backwards if ve disregarded the confomable=orientation-sense

of molecular-netwoxks,

Ia, 4~SPACE INSIGHTS

4, THE MATRIX=GRID OF POINTS, In oxder to view a ‘true' 4-space geometrio=figure
having the minimum of space=distortion we must be able to see from outside of the
J=spage hypersurface, which with our limited cuter-eye we can not do because its
structural-boundaries are 2=dimensional, But there is a partial-way out of this dilemma,
We can use our inner-=eye as a lens—-type of focusing-apparatus from which to view the
graphio-form of the canonical=hypercube, We can consider this possibility: suppose we
let the dimension of color represent the points in hyperspace ocutside of our 3-space
‘cell’ togther with the double—-oblique-projection grephio=-principle, Then, we can,
within ocur capabilities, see with the aide of the imner-eye through 2nd-level foousing,
a very close-approximation of the 'idsal-=hypercube', Let us see if our inner=logic
is valid”?

I1f our 'viewpoint' vas that of the flatlander, i,e, in 2-space, then we would have
insufficient-space to form a 2-space matrix-grid of points, In flatland we would have
a true-line on which to represent 1 of the edges of a square as a true—edge, wvhereas,
the oblique-line representation in the flatlander®s 2-space does RMst; the reason,
for this non-existence of an oblique=line in the flatlander’s {=1ine-graphic
representation is obviouss only 1 line can be drawn perpendicular to a given line
through a given point of the given line, but in the flatlander’s i=line-graphic we have
no perpendicular-lines that can lie on the same-line, However, the flatlander does have
a pnrtia.l-ny-ont of this 1-space comtn.tnt. He can represent 2-space ‘perceptiocs' on
his 1-line-graphic as degrees of foreshorteming of line-segments. In flatland then, we
have actually, on the 1=line-graphic, relations amongst sets of points classified into
various size segment-lengths that on the 1-line-graphic overlap; overlapping-points
‘ooded' in such-a~vay as to give the flatlander his 'illusion' of depth as seen on the
l=line—-graphio-—2 gides of the square will have 1 true- and 1 fonnhortmod—odge i.e,
the 3 points forming the segments wvhich represent 2 of the squares boundaries, and the

~#th point which represents a hidden-point of 1 comer of the square vill overlap on the
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i=line graphic and ooincide with 1 ef the points of the interior of the segment
representing the true-edge; we can oode this ovelapped-point {0 represent a hidden=point
as wvell as a visible—-point on the 1=line-graphic, Circles will ‘appear' to the flatlander
as alwvays having the same-length projections on the i=line-graphic, other geometrio=forms
oould be coded by possible color-shadings and ocolor-intensities using a complex—color-

schame,
In the 3-space graphio-representation of a cube we have 2 true-lines and 1 oblique-

line, The matrix-grid of points ‘appears' for the first-time in 3-space as wve view the
2-gpace matriz-grid of points ocutside of the plane of the paper, The remarkable feature
of the matrix—grid is that ve ocan represent hidden=-views in our grephio-forms of
gecmetrio~-figures as vell as the confomable-orientation-sense,

In viewing a geometrio-figure as—-a-vhole requires that we have a matrix-grid of peoints
that can be formed into ‘classes' of point points and represented graphically as geometrio-
figures made-up of combinations of these oclasses of points, in other words, different
geonetrio=-gestalt-fomations, by this we mean, different oxrders of geometrio-gestalt-
units integrated as—a~whole to form the 3-space geometrio-figures, Hidden-views in the
graphioc-forms ogn only occur if we have a matrix-grid of points, thus, allowing us to use
certain sets of free dummy-points ocoupying other portions of the Z2-space matrix-grid,

Our limitations in the 4{-space perceptios pertains to the 2-space matrix-grid of points
in the plane of the paper having certain space—=oonstraints, i{.8. we can graphically
represant at any point O on the plane of the paper, 2 lines that intersect in a right-
angle, being such, that any other line through the point O of this intersection must be
an oblique=line, These results follow from the intrinsio-geometry on the plane of the

paper, i.,e, that in the 2-space Euclidean-geometry only 1 line can be drawn perpendicular
to a given line at a given point of the given line—as on the flat-surface of this paper,

In the 4~space percveptics, the hyperspacelander will make use of a 3=space matrix-grid
of points, and viewed by him from cutside of the 3-space hypersurface, thus, enabling him
to use only i1 oblique-line and 3 true-lines in his graphioc-forms, In the 4-space
perceptics we make use of a 2-gpace matrix-grid of points, and viewed by us from
‘outside' of the 2-space surface, thus enadling us to use 2-odblique-lines and 2 true-
lines in our graphio-forms,

In the graphio-construction of the ideal—cube which 'approximates' well with the 3=
space perceptios of the observer, we then have the following situation: all 6 faces of
the cube are represented as 'parallelograms'! in the 3-space graphics, i.e, in the plane
of the paper 2 faces of the cube will be represented as having its boundaries as true-
squares and the remaining 4 faces of the cube will be represented as having ites
boundaries as parallelograms—this will then be our ideal-visunalization of 3-space
geonetrio=forms in real 3-spacej; further, we have that any geometrio-figure such as a
square or circle wvhen not perpendicular to the observer’s 'line of sight' will appear
as either a parallelogram for a square or an ellipse for a circle, the limit being that
both of these geometrio-figures vanish when the plane on which the geometrio-figures are
drawvn lies 'parallel’ to the 'lime of sight' of the observer at eye=level, that is, with
1 dinension vanishing, we shall then see the edge-views of squares, circles, and other
such edge-views of the 2-space geometrio-figures,

Now the hyperspaocelander has 1 advantage in his 4-space perceptics that we do not have,
He is able to form a 3-space matrix-grid of points malkdng it possible for him to have 3
true-lines in his 4-space graphio-representation of geometrio-figures upon a J—space
hypersurface, i.e, being outside of our 3-space cell he can actually see all-at-once the
5 §rue—perpendicular-lines intersecting at a point in his 3-space hy'perruxfaco on which
he makes a graphio-oonstruction of his ideal-hypercube as seen by him in his da-lpa.oe
exaot-perceptios, FPurther, the hyperspacelander being actually in 4-space with 4-space

- 'perceptors' makes it possidble for him to use but 1 oblique=line for 1 of his 4-space

axes, i,e, the y=axis being the oblique-line in his 4-space graphio-forms, further, this
oblique=line of the y-axis is actmally graphically-constructed on his 3-space
hypersurface,

We in 3-space can not do this amasing feat of the 4-space single—oblique-projection of
4~space geometrio-figures, The best that we oan do is vis-a-vis double-oblique-

projection of the 4-space graphio-forms of geometrioc~figures,
Let us ocompare the viewpoint differences between the hyperspacelander’s single—
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oblique=projection of the canonisal-hypercube and our double=oblique=projection of it,
We shall assume that the hyperspacelander’s oblique~line OY lying in his 3-gpace
hypersurface on which his 4-space graphio~drevings are made ocorresponds to our oblique=-
line OY lying in our 2-space surface on which emr 4-space grephio-drawings are made,
such as the canonical-hypercube given on plate=I, /

The hyperspacelamder would view the 2 red-cubes om-o'f'cw and BEHFE-B'H'F'E' as
true—cubes without any space—distortions wvhatsoever, vhereas, we have space-distortions
created by using the 1 oblique=line of the w-axis, The hyperspacelander’s 'perveptics’
of the 2 true=cubes as seen by him from his 4-space viewpoint cutside of thg 3-space
hypersurface, would be to us, as our perceptics are of the 2 true—squares and EHFE
&S seen by us from our 3-space viewpoint cutside of the 2-space surface, In the hyper-
spece Of the hyperspacelander, the 2 true—cudes of the idsal-hypercudbe will be seen by
him as having true-squares on all 6 of the faces for each of these true-cubes, whereas,
ve see the sjuares on 4 of the faces of either 1 of these true-cubes 'appearing' as
‘parallelograms' in our graphio-drawings, Further, 6 of the hyperspacelander’s 'cubes’
vill 'appear' somevhat—similar to our black-cube, NOT the same-as, but much like our
3-gpace black=cube appears to us in the single-=oblique=projection, Since the
hyperspacelander has 3 true-lines, or equivalently, 3 coordinate-axes as true-
perpendicular-axes representation, then with only a single oblique-axis, he will have 6
oubes similar-in-appearance to our black=cube as he views these 'cubes' from his
viewpoint in hypexspace cutside of the 3=space hypersurfacej he sees these 6 cubes having
the 'appearance' of parallelopipeds, We see something ‘'similar’, but also differents 6
of the cubes of the hypercube will be seen by us also as parallelopipeds as-we=view the
hypercube of our double=oblique=projection from ocutside of the 2-space surface of the
paper, We will see the appearance of the 2 red-cubes OCCGA=O'C'G'A' and BHFE-B'H'P'E' as
parallelopipeds somevhat-like the appearance of our black-cubej the 2 red-cubes OBHC-
O'B'H'C' and AEFG=-A'E'F'G' will have the appearance of parallelopipeds aonwhat-ﬁ-
distorted than the appearance of our black-cudbej the remaining 2 red-cubes OAEB-O'E'E'B!
and CGFE=C'G'F'L' will have the appearance of payallelopipeds also somevhat-more-
distorted due to the double—ocblique-iinee-ef: the double=ocblique=projection,

In sumnary then, our hyperspacelander has 1 oblique=line and 3 true-~lines in his
4~-space graphio—oonstruction ef the ideal-hypercube on his 3-space hypersurfacej; whereas,
ve have 2 oblique=lines and 2 true-lines in our grephio-construction of the quasi-ideal-
hypercube on our 2-space surface, such as, the plane of the paper,

This isidtill a very-close—approximation for us in using the double-oblique=projection

of the quasi-ideal-hypercube in studying 4-space geometrio-foms, though, with
sonevhat-distorted imer-space-=perception,

5¢ SCALE-DISTORTION-TAELES, Let us compare the scale-distortions between the ideal-
hypercube graphio-representation and our quasi-ideal-hypercube graphio-representation:

Socale=-Distortion Effects

Single=0Oblique=Line Double=0Oblique=Lines
2 true—cubes—each having 6 true-squaresg 4 partial-true—cubes—each having 2
true—squares;
6 3-space 'cudbes' represented as , 4 non-true=cubes with 0 true-squares
parallelopipeds and somevhat-gimilar to for each of the faces of these cubes
our black-cubesg ' s 4l represented as parallelopipeds;

hidden-views in the graphic—-fomm;
sectional-views can be showng

4 hidden—-views in the graphio-fom;
x sestiocnal-views can be showng

AL g
*v--i\. _"“
1 scale—-distortion=-factor, :&Q!’ﬁi'@\ﬁ 2 scale-distortion-factor,

On the next-page we give 2 distortion-tables and the resulting 4-space grephio-
distortion as relating to our gmasi-ideal-=-hypercube,

S
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Assign the nmerical-value of 1 t0 a coordinate-axis, if the 'line' on which the
coordinate-axis lies is & true-line, and assign the mumerical=value of O, if the 'line’
on wvhich the coordinate—axis lies is an oblique-line, It should be understood that these
mmerical-values are scale-values assigned to the graphio=cocordinates of the

canonical-=hypercube,

DOP SOP
xyez 101 2 xye 101 2
xyw 100 1 xyw 101 2
yzvw 010 1 yzw 011 2 J
ewx 101 2 zwx 111 3 L
Table-I Table=I1

The scale-~distortion=index is defined as the ratio between the sum of the 0's in
Table-] for the single=oblique=projection to the sum of the 0°s in Table=II for the
double=oblique-projection, i.e,

1 eed the sum of the 0's in Table=I
d of s - ion the sum of the 0's in Table=I1 e

In the scale-~distortions shown in Table-II, i,e, the 0’s present in this table,
shows us that in the 4-space geometrio-figures represented by the 3—-sgpace hypersurface-
graphics, we still have some scale-distortions, so we 'define' the scale-distortiaon-
factor for the hypersurface-graphics as the sum of these 0’8 divided by the same—sum
of 0’°s, which gives us the scale-distortion=factor of 1,

In the last-row of Table-II, we have no 0's, and the sum of the 1's is 3, so that
the scale-distortian=factor in this hyperplane of the cube will be O,

From the above comparison-tests for the scale=distortion 'effects', we saw that the
scale-distortion-factor was the principle item in our list that was essentially different
from the viewpoints of the hyperspacelander’s grephio-forms of geometrio-figures,
Therefore our original assumptions are valid,

The student of this treatise can supply many of his own variations of some of the
developments of the above hyperspace—-perceptics, i,e, letting 1 of the coordinate-axes
vanish, and then viewing the hyperplane of the remaining cube, and so fourth,

In the application of the hyperspace-perceptics to 4-space hypersolid-analytio-
geometry, allowances must be made for the scale—-distortions in the metric-geometry
vhen making graphio=forms of the double-=oblique-projection,

We shall abbreviate the 'single-=oblique=projection' as SOP, and the 'double=oblique-
projection' as DOP==this will save us a great deal of time in the repetition of these
phrases,

Before leaving this section, let us briefly discuss some of the additional geometrio-
properties between the SOP- and DOP-graphics as shown in the scale—=distortion-tables,
Close—observation between relationships in both of the above tables shows us that in
a true—cube the distortion-factor vanishes in real 4-space, i.,e, 1 and only 1 of the
hyperplanes of the cubes at the point O in the SOP=graphics will be in non=oblique-
projection without any space-distortion, this corresponds to the red—cube OCGA=O'C'G'A’
in the DOP-graphics, This is truely a remarkadble principle relating the space-
distortion of objects seen in the same-space of the observer, In the DOP- and SOP-tables
ve seem t0 have a scale-distortion-identity in the xyr=~hyperplane, i,e, the scale-
distortions are equal, but we know that in the 4-space SOP-graphics, that the cube
represented in this hyperplane will be perceived differently when viewed in the DOP-
graphics of the hypercube—similar, but not identical, as the oblique-direction of the
y-axis in the SEP-graphiocs will lie somevhat-differently due to the 3-space hypersurface
on vhich the 4-space graphio-forms of geometrio-figures are made, The 'narrative’ form
used for the remaining 2 sections of this chapter on further developments of the
hyperspace~perceptics should be of interest to the general reader of this treatise, The
last-seotion of this chapter should prove interesting to the 'neophyte-geometer'.,
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Jaa, THE FLATLANDER'S PROJECTION
INTO THE 3xd DIMENSION

6. OBLIQUB-SYMMETRY, HIDIEN-VIEWS, Suppose we in 3-space oonsidered the flatlander’'s
geometrio=interpretation of the black-square QAEB, We would rightly ‘infer' from the
flatlander’s viewpoint that the edges AE and EB of the black-square OAEB would .be
visible-=views, wvhereas, the edges OA and OB would be invisible-views; the points A and
B of the edges OA and OB of the same black-square would likewise be visible to the
flatlander, Hidden-views of the edges OA and OB of the same black=square he can not
represent on his 1=line-graphic due to the insufficiency of 'space-=points' in his
flatland, The flatlander knows from his 2-space experience that on his i1=line-graphic
representation of the black-square OAEB, the point O together with the interiors of the
segnents OA and OB are invisible-views, The black-square OAEB as seen from the
flatlander's viewpoint in flatland will be viewed by him in the following way: #—part
of the dlack-square OAEB B being #=visible and #=part of the same black-square being
#-invisible,

We shall call the 3-space 'oblique=projection' of a geometrio-figure having #=part
visible and #-part invisidle as being in standard-oblique-form, i.e, in the single-
oblique=projection as we view the black-=ocube from ocur position in 3-space, that is, like
we see the black—cube in the figure of the canonical-=hypercube given on plate-I, This
remarkable property of space=viewpoints extends to all the higher-spaces, We define the
space=viewpoint for standard-oblique-forms as oblique-symmetry, such that, #=part of the
boundaries of a geometrio=-figure are visible and the other #-part of the boundaries
are invisible,

Let us project our flatlander into the spacelander’s dimension giving him the latent-
powvers of depth—-perception together with a j-space energy-form enabling him to 'manifest!
in physical-form 3-space symbol-objee$s, and further, emabling him to generate mental-
forms of these symbol-objects in his 3-space graphics., Further, the transforwmed-
flatlander having the abilities of 3-space perceptics can ‘ecreate! on a flat-sheet of
paper his geometrio-representations of 3-space s0lids, We assume that the transformed-
flatlander’s synesthesio-reasoning abilities have been extended in oxrder to study and
develop the geometry of 3-space ideal-solids, He immediately relates many of his 2-sgpace
'‘experiences' as having parallels in the spacelander’s dimension—refinements of his

synesthesio—-sense will occur later as he develops his stereometrio-perception,

Suppose we let ocur transfomed-flatlander lie in the hyperplane of the black-cube and
at a little distance from above the point F—equivalently as being in our space-position
a8 wve viev the hyperplane of the black-=cube in the canonical-hypercube as shown on
plate-=I, A spectacular-change ocours in the transformed-flatlander’s new founded

synesthesio-sense, Our transformed-flatlander sees the point F as he did with a similar

point in the 2-space black-square OAEB, For nov he sees that what before was a mere point
E in the 2-space black-square OAEB, has now traced-out a line-segment EF in 3-gpace, The
edges EA and EB of the black-square OAEB now become part of the boundaries of the black-
squares FEAG and FEBH, Our transfomed-f{flatlander discovers another new remaxrkabdble
relationship: a 3rd plane parsllel to his 2-space plane of flatland passes through the
point F and intersecting the planes of the other 2 black-squares FEAC and FEBH in the
edges FC and FH, The 3 black-squares FEAG, FEBH, and FHCG are sutually-perpendicular and
intersect in the péaint F; the plane parallel to the plane of the black-square OAEB and
passing through the point F oontains the black-square FHCC, He sees for the first-tinme
his 2-space interior, i,e, vhat wvas the interior of his 2-space black-square OAEB now
becomes the H of & 'higher—-figure' in 3=-space called a 'solid', He nov sees for
the first-time both of the 2-space boundaries of the black-squares FEAC and FEBH as well
as their interiors. The 3rd plane of the black-square FHCC interseoting at the point F
the other 2 planes of the black-squares at this point, is also visidle to him as well as
the interior of the bdlack-square FHCG,

The transformed-flatlander discovers one of the most unique-properties of the 3-space
geometry, it is the oconocept of the matrix-grid of points to represent his J-space
graphics on a flat-sheet of paper, thus, making it possible for him for the first-time to
represent hidden-views in all his 3-gpace graphics; the 2-space matrix-grid of points
being such that sufficient-space-points exist for drawing lines that overlap at the

Riniwun within a given ‘patch’! of the 2-space draving on a {lat=gheet




4

- and L

9

of paper, i.e, in the black-square OCGA the overlapping line-segments are FG, FE, and
FH, it being understood that the geometric-gestalt of points of the black-square OCGA
as—a~whole is left intact vhen viewed by the ‘observer' using his imner-eye, The
trensformed-flatlander manifest the 3 J-space gecmetrio-forms in physical- and grephio-
form via the use of his inner- and outer-senses, or as we say, he uses his immer- and
outer-eye to bring into mental=focus the geometrio-gestalts of the geometrio-fomms,

The ‘iscmorphism' of geometrio-forms of 3-space then ocorrespond to0 the projected

t t-forms of immer-space 0f the transformed-flatlander,

Bov the remarkabdble property of hidden=views in the 3-space graphics ocours because of
the fundamental-principle that segments with points lying én different face-boundaries
of the black-cube as depicted in the graphio-form can be used to represent hidden-wviews;
the same principle holds true for the boundaries of the black-squares that didamg: ¢o
the black—=cube, but in this case, the 2 points of a segment must not lie in the plane
of a face of any 1 of the black-squares—like say, the segment OF representing 1 of the
diagonals of the black=cube, then all the interior-points of this principal-diagonal can
be represented as dashed-lines denoting that the ‘interior' of the segment OF lies
within the interior of the black=cube,

One more basio-propesty is required for ocur transformed-flatlander to view 3J=space
geometrio-forms, i,e, depth=-perception 'projected! within the 2-space graphio=-drawings
on a flat-sheet of paper depicting the 3-space geometrio-foms, Our transformed-
flatlander 'knows' from using his pew-synesthesio-sense that 3-space geometric-forms
have ?dgpth', this depth-pexrception ‘ability' he has developed with the aide of hlts
imer-eye to mentally-focus, in such-a~-way, that he psychologically-sees and forms the
depth=gestalts within his inner-self, which he then projects within the 2-space matrix-
grid of points those geometrio-graphio-forms lying on a flat-sheet of paper., The seeing
is NOT in the 2-space grsphio-representation, but lies instead within his so called 3
space inner-self, As we would say in spaceland: 'he imagines the depth in the 2-space
graphio-representation with his inner-eye', This inner-space-perveption of outer-space
s0lids is created by the inner-gelf to adjust for the camouflage or distortion inherent
in the limits of the suter-sense-orgahs of sight,

But as the transformed-flatlander sawv in his former 2-space 'experience' the boundary-
points A and B of the hidden—-edges QA and OB of the black-square OAEB, Then in 3-gpace
he sees for the first-time in each of the 3 #=visible black-squares about the point O,
that is, the visible-edges of the j black-squares that meet at the point O as depicted

in the 3-space graphic of the black=cube on plate=I, the following situation: in the

hidden-viewv of the face 0f the black-square OBHC he sees the 2 visible—edges CH and HB
bounding a portion of the face of this black-squarej in the hidden-view of the face of
the black-square OCGA he sees the 2 visible—edges CCCand GA bounding a portion of the
face of this black-squarej; in the hidden-view of the black-square OAEB he sees the
viaible—edges BE and EA bounding a portion of the face of this black-equare, 1If we
delete the 3 black-squares about the point P as well as their faces together with all
the interior-points of the blaek—cudbe, then our transformed-flatlander will see $he 3
former hidden-=views of the faces of the black—-squares about the point O as well as the
edges of these black-sqQuares about the point O, 1,6, all the £aces and boundaries of
the black-squares that meet at the point O will nov be visible, The positive-portions
of the ocoordinate-axes lying omn the eooxﬂ:l.nsto-phnu of the 3 black-squares about the
point O are now visibdble,

Just as the flatlander’s 2-space czpor:lmoo of the 2 invisible-portions of the
posi tive—-coordinate—-axes, i,e, the y- and x»-axes, 80 in 3-gpace too, the 3 positive-
portions of the x~, y-, and s—axes about the point O are hidden~views of the black=gcube,

As our transformed-flatlander explores this newv dimension he will discover many
remarkable new-relationships that have no-existence in his flatland-geometry; many
similarities will be found as well as the differences.

Without going into repetition again, we oconclude this section by stating that our
transformed-flatlander will discover the principle of the single-oblique-projection in
the 3—space perveptics, moting the differences and similarities to his 2-space
planimetry, He will find to his amsement that the scale-distortion-factor beocomes O
vhen vieving 1 of the 2-space squares, like the plane on vhich the black-square OCGA
lies, also including of ocourse the black-~square EHFE, and with the edligue-views of
the planes of the other remaining dlack-squares distorted in the 3-gpace gnﬁu and
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Jab, THE SPACELANDER'S PROJECTION N 10
INTO THE 4th DIMENSION il -

7. OBLIQUE=-SYMMETRY, HIDIEN=-VIEWS IN THE HYPERSPACE=GRAPHICS., As ve had projected our
flatlander into the spacelander’s 3-space, Let us now take the spacelander and project
him into the hyperspacelander’s 4{-space giving him the powers of double-depth-perception
, vhat we in spaceland would call ‘hyperstereometry’ of the 4-space geometry, Further,
ve assume that the transformed-spacelander has been endoved with a 4{-space 'energy-fom'
enabling him to actualize in 4-space the double=objects or su bol=objects, which
ve in spaceland call hypersolids., The transformed-spacelander using his new founded

multidimensional inner-eye can manipulate 4-space mental-images into geometric-forms and

project his 4-space ideas into graphic=forms using the 3=-space flat-hypersurface to
represent the ideal-hypersolids of the 4-space geometry, In the 4-space 'graphics', the
transformed-spacelander will use the single-oblique-projection graphio-representation,
We assume that the transformed-spacelander’s synesthesio-reasoning abilities have been
extended in order to study and develop the geometry of 4-space ideal-hypersolids, Using
his inner-eye on a 2nd-level of focusing, then what was to him formerly a single 3-space
viewpoint of a cube, semn as-a~whole, now becomes in 4-space 1 of the >=space boundaries
of a hypercube,

As a last point of consideration before we discuss the transformed-spacelander’s new
4-space 'experiences', we can consider that the transformed-spaselander has actualized
the single=oblique-projection of the hyperspace-graphics, whereas, we in 3-space using
the double-=oblique-projection of the hyperspace-graphiocs have quasi-actualized the
4-space 'perceptics'! with a high degree of certitude, The student should bear this in
mind when he oconsiders the SOP and DOP aspects of the 4-space graphics,

Using the figure of the canonical=hypercube as shown on plate=I, suppose our
transformed-spacelander were to lie in the hyperspace of the canonical-=hypercube and
‘obliquely' at a little distance from above the point F', that is, the oblique-symmetric
-viewpoint of the canonical=hypercube as shown on plate-=I, A subtle=change occurs in the
transformed-spacelander’s new found synesthesio-sense, He sees the point F' as he did
wvith a similar point F in the 3-space black=cube, for now he sees that whereas before
wvas the line—-segment EF, that the 2-space point E had trasced-out in moving through a
distance of 1-unit perpendicular to the flatlander’s plane QOAE, has now become the
‘red-square’ FF'E'E in the motion of the line-segment at FE to its position at F'E’',
that is, has moved perpendicular to the hyperplane of the black-cube through a distance
of 1=unit in hyperspace, The red-square FF'E'E has 1 black-edge of its boundary lying in
the hyperplane of the black=cube—=this red-square has all of its interior-points lying

outside of the hyperplane of the black-cube, and intersects the black=cube in the line-

segnent FE, The point F has moved to its position at F' in hyperspace, The red-edge FF'
of the red-square FF'E'E is perpendicular to the hyperplane of the black-cube at the
point P as well as being perpendicular to the black=cube at the point P, the point P is
the anly point of the line-segment FF' lying in the hyperplane of the black-ocube,

The 3 faces of the black-squares of the black—cube which meet at the point F, nov
beoome part of the boundary of the red—=cubes in the hyperplanes P'FEA, F'FEB, and P PGR,
that is, for the 3 red=cubes that meet at the point F', each will oontain a face of a
black=square, The transformed-spacelander nov discovers a remarkable relationship: a 4th
hyperplane parallel to the hyperplane of the black-cube and passing through the point F*
intersects the 3 hyperplanes of the red-=cubes at the point F' in the 3 red-faces of the
red-squares belonging to the red-cudbes that meet at the point P', At the point O°
oontaining the intersection of the parallel-=hyperplanes with the 3 hyperplanes of the
red-cubes that meet at this point, wvill intersect the hypcrplane of these 3 red-cubes in
the faces of the red-squares that meet at the point 0O', In the 4th hyperplane parallel
to the hyperplane of the black—cube, we will then have the 4th red—cube that meets the
other 3 red-cubes at the point F', i,e, {4 red-cubes that meet at the point F' only in
this single-point—=the 4th red-cube being O'C'G'A'=B'R'F'E’,

The transformed-spacelander sees for the first-time the 4 visible-cubes about the
point F', The transformed-spacelander sees for the first-time the 3-space interiors of

each of the 4 red-cudbes adbout the point F', i.,e. vhat was the ‘interior' of his 3}-space

black=cube now becomes the boundary of a higher-figure in 4-space, He sees the 3-space

boundaries of the 4 red-cubes about the point P', that is, all vertices, edges, faces,
and interiors of these 4 red-cudbes adbout the point P,
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He finds that the nev barrier that is impenetrable are the 3=space boundaries of the
hypercube, Our transformed-spacelander discovers the 3-space 'parallel'’ between his
spaceland-experience of 'seeing' and the new 4-space percepticm, He sees the 4 visible
red-cubes about the point P' and the 4 invisible—cubes about the point O in the SOP-
graphic of the canonical-hypercube, We have at the point O 4 invisible cubes that meet
in this 1 point, i.e, 3 invisible red-cubes and 1 invisible black-cube, By letting our
transformed-spacelander go around the real-hypercube to view the different viewpoints of
the oells of this hypercube, shows how valid his 'logic' was in the SOP-graphio-
representation of the ideal-hypercube, He ‘sees that the 4 invisible=cubes at the comer
of the hypercube at the point O, now become the new 4 visible-=cubes of the hypercube from
his new positiaon in hyperspace in viewing the real-hypercube, The transformed-
spacelander discovers that the principle of oblique-symmetry holds wvalid in the SOP-
graphics,

The transfomed-spacelander discovers another remarkable relationship that holds wvalid
in his newv 4-space experience, His 0ld 'definition'.that the interior-points of certain
segments can be used to represent hidden-=points in the interior of the hypercube, thus
making it possible to represent hidden-views for the interior-points of certain segments
s that is, in the 4-space SOP=graphics, Our transfomed-spacelander reasons that a
similar process oceurs in 4-space: take any 2 distinct points lying in the 3-space cells
of the hypercube, such that no 2 of these points will lie in the same cell, i,e, each of
the 2 points of a segment lying 1 in each of any 2 of the 8 cells of the hypercube, then
the resulting segment will have all of its interior-points lie within the hypercube;
likewise, any 2 distinct points of a segment whether at the vertices, edges, or faces of
the hypercube, will have all of its interior-points lie within the hypercube, providing
that these 2 distinct points do not all lie in 1 hyperplane,

Just as 'portions' of the boundaries of the invisible black-squares of the black=cube
at the point O can be visibly seen, that is, in the hyperplane of the black-cube, then
4 of the boundaries in each of the 3 invisible black=squares about the point O are
vigsible, as we had already seen from a study of this in a previous sectian., So in
hyperspace we should have a similar relationship,

Our transformed-spacelander will discover that of the 4 cubes at the point O that are
invisible in the grephio-drawing, 4 of the boundaries of each of the 4 cubes will be
visible, i,e, in the black—cube the 3 visible-boundaries are the faces of the black-
squares AEFG, BHFE, and CGFH together with the black—squares themselvesy in the red-cube
OBEA=O'B'E'A' the 3 visible-boundartes are the faces of the red-squares AEE'A', BB'E'E,
and O'A'E'B' together with the red-squares themselves—this includes of course the black
—odges that belong to these red-squaresi for the remaining other 2 red-cubes about the
point O the results are similar,

The transfommed-spacelander will disocover that if he deletes the 4 visible red-cubes
about the point F' as well as the interior-points of the hypercube, then he will see
all of the 4 cubes lying in the coordinate-hyperplanes about the point O, iye, the 4
invisible—cubes about the point O will now become visible, that is, not only their 2=
space boundaries but also all the interior-points in each of the 4 cubes about the point
O3 for example, in the black~cube we would see from our 4-space viewpoint all of its
interior-points as well as all of the 6 faces of this black—cube—we use 2nd-level inner-
eye foocusing here, something g like mmltiple lens-focusing in ‘optics', We ocould call this
inner-eye focusing-prooess 2F for 4-space perceptios and 1F for 3-space perceptics, We
oould also, somevhat crudely, call the inner-eye multiple-focusing-process, gestalt-
resolvents within the SOP- and DOPegraphiocs,

8ince our transformed-spacelander can now 'visualize' the hypercube with ease and with
his inner-senses 'feel’ as well its 3-space boundaries, he decides to cut-apart the
hypercube in various ways, then putting it together again to obtain new-knowvledge of this
strange nev 4{th-dimension, Later on,,his ultre~-technological-discoveries will astonish
him, for he nov is a growing-child hyperspacelander, He might even infer that all matter
=states lie within given energy-bands of electromagnetio-energy-fields, that is,
something like fields within 'fields' within "fields" within ,,, A matter-spectrun of
Btanits wvould ocorrespond to the different ensrgy-bands for the materializations of the
different density-levels of ‘matter’', Our transfomed-spacelander oould not infer the
above statements until he had ‘actually' created the possible theught-forms with the
aide of his inner-eye and immer-semses, then and only then, oould he create the supra-
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symbol=objeocts of hyperspace, thus making the 3-space symbol=objects a mere 'shadow-
world' of shadow=objects no longer considered as dbeing 'solid' from the higher-space

viewpoint, —

The student of this treatise could go on giving many illustrations of other
properties of the double=oblique-projection of the canonical=hypercube which are not
covered in this treatise, The general-method of the DOP=-graphics has applications in
other branches of mathematics, Those interested in the theory of 2 complex=-variables
and quadratic—hypersurfaces will find much to be developed with the aide of the DOP-
graphics of the canonical=hypercube, Those in the field of oombinatorial-analysis could
for the first-time represent the hypersolid-forms of the 4-space partitions, that is,
the 4-space graphs of the partitions of the natural-rumbers, Applications are almost
infinite,

In the chapters that follow we will develop the 4-space DOP=graphics, In this treatis
ve will make a few applications of the visual-hypersolid-geometry to the 4-space
hypersolid-analytic=-geometry, 3-space Non-Euclidean-geometry, and an illustration of
the methods of the calculus as applied to the DOP=-graphics,
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Plate-1
' CANONICAL-HYPERCUEE
Scale and Angle=Codes:
OA = 1075"
OC = 1075“
OB = 1,25"
00'= 1,50"

angle CO0' = 30°o
angle COB = 140




" "that we get if we take 4 points, not points of 1 plane, all points oollinear with any

CEAPTER II 13
I. EYPERPLANES IN HYPERSPACE
Lo DETEERMINATION OF A HYPERPLANE~-Definitions. A hyperplane oonsists of the points

2 of them, and all points oollinear with any 2 obtained by this process, Given 4 non-
ocoplanar points, A, B, C, and D, the HYPERPLANE ABCD is the hyperplans obtained when
ve take these points and carry out the prooess desoribed in the definition,

Theorem 1, If 2 points of a line lie in a given hyperplane, the line lies entirely
in the hyperplane; and if 3 non=collinear points of a plane lie in a given hyperplane,
the plane lies entirely in the hyperplane,

For the line or plane can be obtained freom these po:l.ni:a by the process used in

obtaining the hyperplane,
It follows that a plane having 2 points in a given hyperplane, but not lying entirely
in it, will intersect the hyperplane in the line which oontains these 2 points,

Theorem 2, From the points of the figure given in each of the following cases we can
obtain just the points of a hyperplane if we take all points oollinear with any 2 of
them and all points oollinear with any 2 obtained by this process:

(1) A plane and a point not in it, or a plane and a line that intersects it but does
not lie in itg
§2} 2 lines not in 1 planej

3) 3 lines through 1 point but not in 1 planeg
4) 2 planes intersecting in a line,

We can speak of a line or a plane as one of the things with which we start in the
process of obtaining a hyperplane,

It follows from (1) that a line or a plane which do not lie in a hyperplane do not
intersect at all, and from (4) that 2 planes which do not lie in a hyperplane cannot
have more than 1 point in ocommon, |

Given any 4 non—~coplanar points of a hyperplane we ¢hen have the following theorem,

Theorem 3, If A', B', C', and D' are 4 non=coplanar points of the hyperplane ABCD,
then the hyperplane A'B'C'D' is the same as the hyperplane ABCD,

In hyperpspace of the hypersolid-geometry, a given configuration may oontain portiomns
of many distinct hyperplanes, The 4 .oonditions listed above in Th, .2 can be used to

specify or detemine the distinet hyperplanes of such a hyperspace-oconfiguration,

To stress again the ixportance of theorem 2 we ocan now say that the hyperplane
obtained in each case is the only hyperplane that oontains the givem figures,

3 non=o0ollinear points can be points of 2 different hyperplanes, The intersection of
the hyperplanes will then be the plane of the 3 podnts (see Art. 4 Th, 2).

Actually we get all the points of ordinary-space by taking 4 non=ooplanar points, all
points oollinear with any 2 of them, and all points oollinear with any 2 obtained by
this process, The space of our experience will therefore be regarded as a hyperplane,

Although hyperplanes are unlimited in extent, we will represent them as

parallelopipeds,
I1, SPACE OF 4 DIMENSIONS

2o RESTRICTION TO 4 DIMENSINS, A SPACE OF 4 DIMENSIONS consists of the points that
ve get, if we take 5 points not points of 1 hyperplane, all points oollinear with any
2 of them, and all points oollinear with any 2 obtained by this process,

The preceding theorem can be put into a more precise-=form as followss

Theorem 4, Ve get all points if ve take any 5 points not points of 1 hyperplane, all
peints oollinear with any 2 of them, and all points oollinear with any 2 obtadnped by
this prooess,

In this treatise all geometrical-relationships are assumed to lie in 4-space,

3¢ PENTAHEDROIDS=-Interior. THE COLLINEAR-RELATION, INTERSECTION WITH A PLANE, A
PENTAHEDROID oonsists of 5 points not points of 1 hyperplane, and the edges, faces, and

interiors of the 5 tetrahedrons whose vertices axre these points taken 4 at—-a-time,
The 5 points are the VERTICES, the edges and faces of the tetrahedrons are EDGES and

S
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FACES of the pentahedroid, and the interiors of the tetrahedrons are its CELLS, Any 5
points, not points of 1 hyperplane, are the vertices of a pentahedroid,
oAt _times we shall speak of the vertices, edges, and faces of a cell, but it should be
understood that a cell of the pentahedroid is the interior of a tetrahedron and does
. not include the tetrahedron itself,
The INTERIOR of a PENTAHEDROID oconsists of the interiors of all segments whose points
are points of the pentahedroid, except of those segments whose interiors also lie in
" the Mt‘hﬁdm.ido
'- A point is said to be COLLINEAR with a pentahedroid when it i8 collinear with any 2
points of the pentahedroid, The collinear-relation holds true for all the interior-
points of the pentahedroid,

Z
C

3a, GRAPHIC=CONSTRUCTION of the PENTAHEDROID—Fig, 1, In the figure of the canonical-
hypercube given on plate-l, take in the hyperplane of the black-cube that portion made-
up of the 4 non=coplanar points O, A, B, and C, then form the coordinate-tetrahedron
OABC3y in the hyperplane of the red-cube OAEB=-O'A'E'B' take that portion made-up of the
4 non-ooplanar points O, A, B, and O', then form a 2nd coordinate-tetrahedron OABO',
these 2 coordinate-tetrahedrons will intersect in the commaon-base OAB§ now draw a line-
segment from the point O' to the point C,
In the unit-ocoordinate-pentahedroid as constructed, we have 4 red-tetrahedral-cells
and 1 black-tetrahedral-cell: the 4 red-cells being OACO', OBCO', OABO', and O'ABCj;
the single black-cell being OABC,
Assune, for a moment, that the positive-portion of the w-axis vanishes, Then we shall
have only the 3=-space ocoordinate-tetrahedron OABC, which in the graphio-form, has 3
hidden-faces and 1 visible=face ABC together with all of the hidden-points in the
interior of this tetrahedron. In OABC, the visible—edges are AB, BC, and CA belonging
= to the 3 hidden-faces OAB, OBC, OCA, respectively; these 3 visible edge-boundaries also
form a triangle ABC belonging to the visible-face ABC,
A similar result occurs also for the ocoordinate-pentahedroid as-a=-whole: 4 hidden-
. views of the cells OACO', OBCO', OABO', and OABC, with 1 visible-=view being in the
hyperplane of the tetrahedral-cell O'ABC, Likewise, in the pentahedroid, we have 4
visible-faces ABC, ABO', BCO', and CAO', with 1 of each of these belonging to 1 of each
of the 4 hidden—cells of the pentahedroid; in the hidden-views for each of the
tetrahedrons, excepting the dlack-tetrahedron OABC, we have in each, 3 hidden-faces and
1 hidden=cell—=the only visible—-ocell deing that of the tetrahedron O'ABC together with
its 4 visible=faces,
In the graphio=-forms, vhen we do not use a rectangular-coordinate-system, we shall
speak of the ocoordinate=tetrahedron OABC, in 1 of 3=ways, i.e. 'the tetrahedron OABC',




15
or 'a tetrahedron OCABC!, or ‘any tetrahedron QABC', depending on the sense it is used
in a given ocontexty similarly, the coordinate-pentahedroid O'OABC, will be spoken of in
1 of 3-ways, i.e, 'the pentahedroid O'0ABC, or '‘a pentahedroid O'OABC', or ‘a
. - . pentahedroid O'OABC',-depending upon the sense it is used in a given oontext,

Hereafter, all 4-space geometrio-figures as oonstructed, wvill be made-up from the
points of the ocoordinate~hyperplanes and the hyperplanes that are parallel to these
ooordinate-=hyperplanes, The extended geometrio-figures will be discussed in another
chapter,

5 = Nov, in the 4-space viewpoint, you must use your inner-eye, in such-a~way, that you
mentally see as-a~whole all of the interior-points of the tetrahedral-cell O'ABC, and
further, wvith your inner-eye imagine that all the interior-points of tetrahedral-cells
vith hidden-views are invisible-points, It will take a little while to get a real-mental-
feel of the inmner-sensing-processes used here to 'visualize' as-a=whole the 4-~gpace
geonetrio-gestalt=forms, Then as you develop the ability to express the geometrio-
relationships pictorially, the theorems and proofs of the 4-space geometry will beceme

intui tiveky-understood with extreme-clarity,

Theorem 1, The plane of 3 non=collinear points of a pentahedroid, if it does not
itself lie in the hyperplane of 1 of the cells, intersects the pentahedxroid in a
convex-polygon, (Fige. 2.)

We shall prove the theorem for the case when the plane of 3 non=collinear points of
the pentahedroid, intersects the pentahedroid in a triangle, For the case when the plane
of 3 non=collinear points of the pentahedroid, intersects the pentahedroid in a
quadrilateral, then use a proof similar to that given for the triangle,

Given: The pentahedroid OABCD, and any 3 non=collinear points L, M, and N of the
pentahedroid not in the hyperplane of 1 cell,

To Proves The plane of IMN intersects the pentahedroid in a triangle,

Proofs At any point R in the interior of the segment OD near the point O, construct a
plane passing through R and intersecting the red-tetrahedyon OABD in the triangle PQR,
. then take the vertex-point C with this triangle and form the pyramid #Z-PQR; CP, CQ, and
CR are the lateral-edges of this pyramid,
Take any point L in the face CPR, this face lies in the cell OACD, and the point L
- lies in the interior of this tetrahedron; take any point M in the face CPQ, this face
lies in the cell DABC, and the point M lies in the interior of this tetrahedron; take
any point N in the face CQR, this face lies in the ocell OBCD, and the point N lies in
the interior of this tetrahedron,
let the projeciions of the points L, M, and N from the point C meet in the edges of
the r.d—pym.‘ld PQR in the pointl L'. H', ". mp.otiv.ly’ 1.0. the poj.nt L' in D,
M' in PQ, and N' 4in QR,
Nov C is a vertex not in the plane of the given points L, M, and N, L being a point of
the tetrahedral-gell OACD, and being in the face of the triangle CPR vhich lies in the
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interior of this tetrahedron, then the #-line CL meets the hyperplane of the opposite-
oell OABD in the face OAD at the point L' which is the projectien of L from ¢, L' is a
point of the tetrahedron OAED (Th, 1, and Th, 2 of RSG-II)*, The projections of the other
2 $=1ihes (M and CN follows in the same manner as that given for L, it being undsrstood
from the oonstruotion givem in Fig, 2, Nov the projeotions of the 3 given points L, M,
and § from C are the points L', N', and N', These last 3 points are not oollinear; for,
if they were, the plane detemined by their common-line and C would be the plane
oontaining the 5 given pojinis and the vertex C, They are not all in the plane of any one
face of the tetrahedron $} for, 1f they were, L, M, and N wuld lie entirely in the
hyperplane determined by this face and C, and the given plane would_,lle entirely in this
hyperplane, Therefore the plane L'N'N' intersects the tetrahedyy in a triangle PQR
(Th. 3 of RSG=II), This triangle PQR is the base of a pyramid vith the vertex at C
vhiech lies entirely in the hyperplane CPQR, and is the intersection of the hyperplane
CPQR the pantahedroid (see Art, 7, Th, 1), The points L, M, and N are points of the
pyramid ‘&-PQB., and the plane IMN lies entirely in the hyperplane of this pyramid, The
intersection of the plane and the pentahedxoid is the same as the intersection of the
plane and this pyramid; it is a triangle (Th, 4 of RSG=1I), Therefore the plane IMN

intersects the pentahedroid in a triangle, (Q.E.D.)

The reader shoul te, for example, that the plane of IMN passing through the point M
of the red-pyramid ~PQR interseocts the face CPQ of this d in a line-gsegment, and
sinoe the triangle CPQ lies also in the tetrahedral-cell LABC, the plane of IMN
intersects this cell in the same line-segment,

Sinoe the pentahedroid has only 5 cells, the interseoction can only be a triangle, a

quadrilateral, or a pentagon,

Theorem 2, Any line intersecting a cell of a pentahedroid will intersect the
pentahedroid at least in a 2nd point, and any #-line drawn from a point O of the
interior of the pentahedroid will interseect the pentahedroid,

Theorem 5, Any plane intersecting a oell of a pentahedroid, if it does not itself
lie in the hyperplane of this cell, or any plane containing a point O of the interior
of the pentahedroid, will intersect the pentahedroid in a oconvex-polygon.

®*Note: The star-asterisk above refers to the review-section of solid-geometry given
at the begimming of this treatise, Whenever a theorem from the solid-geometry is used as

part of the proof for a theorem of the hypersolid-geometry, we will simply refer to the
review-gection listing the theorems needed from the solid-geametry. The review-listings

of the theorems needed will be grouped by ehapter-headings to facilitate easy reference,
4. INTERSECTION OP A PLANE AND A HYPERPLANE AND OF 2 HYPERPLANES,

Theorem 1, If a plane and a hyperplane have a point O in ocommon, they have in
oommon a line through O,

Proof: We oonstruct a pentahedroid with a oell lying in the given hyperplane and
oontaining the point O, The given plane intersects the pentahedroid in a convex~polygon
and the given hyperplane in the line vhich eontains one side of the polygen.

Theoxrem 2, If 2 hyperplanes have a point O in common, they have in common a plane
through O, _
Given. The 2 hyperplanes OABC and OBCO®' with the point O in oommon,

To Prove: The plane OBC through O is common to the 2 given hyperplanes,

Proofts Use the figure of the canonical-hypercude on plate-]1 for the grephio-
representation of this theorem, that is, a part of this figure,

Any plane QAC through O in the hyperplane OABC intersects the hyperplame OBCO' in the
line QAfthrough O by Th, 13 & 2nd plane OAB in the hyperplane OABC intersects the
hyperplane 0BCO' in the line OB through O by Th, 13 the 2 es OC and OB through 0 are
common to the 2 given hyperplanes, and these 2 lines dete e the plane OBC, Therefore

the hyperplanes intexseot in a plane (see Axrt, 1), (Q.E.D,)

3 hyperplanes having a point in common have in common at least 1 line, a line lying
in 1 hyperplane and in the plane of intersection of the other 2, 3 hyperplanes may also

have a plane in common,
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Theorem 3, 2 planes which do not lie in 1 hyperplane oontain a set of lines, 1 and
only 1 through eaxh point of either plane which is not a point of the other plane, and

any 2 6f these lines ‘ooplanar,

w Py~

Givens The planes FEA and F'H'C? whioh do not l:l.e in 1 &rperphno.

To Prove: Any 2 lines FGC and P'G' are ooplanar and that each line passes through a
point of 1 and only 1 of the given planes,

Proofs Use part of the figure of the canonical-=hypercube on plate-=I for the graphio-
representation of this theorem,

Jet G be a point of FEA which is not a point of F'H'C'y, and let G' be any point of
P'H'C' which 48 not a point of FEA, The hyperplane F'H'C'G? determined by F'H'C' and C
intersects FEA in the line FC, and the rplane FEAG' determined by FEA and G
intersects FP'H'C' in the line P'G' (Th, 1;. The lines FGC and P'G', each lying in both
hyperplanes lie in the plane F'FC which is the plane of intersection of the hyperplanes
FEAG' and F'H'C'G, Further, no 2 lines lying in 1 of the given planes and coplanar with
lines in the other can intersect in a point which is not common to the 2 given planes:
for, if they did, both of them and the entire plane in which they lie would lie in the
hyperplane determined by their point of intersection and the other given plane, Therefore
the lines FGC and F'G' are coplanar and each line passes through a point of 1 and only 1

of the 2 given planes. (Q.E.D.)

The planes FEA and F'H'C' are oovered with these lines, and can be oonsidered to be
made-up of these lines, We shall call them the LINEAR-ELEMENTS of the 2 planes, When
the 2 planes have a point in common, the linear-elements all pass through this point,
If any plane intersects the 2 planes in lines, these lines are linear-elements,

5¢ OPPOSITE~SIDES OF A HYPERPLANE, #-HYPERSPACES, In the figure of the canoniocal-
hypersbe on plate-=]1, suppose we take the hyperplane of the black-cube, We can then say
that a hyperplane divides the rest of hyperspace, just as a plane in a hyperplane divides
the rest of the hyperplane (see Th, 5 of BSG=II)., We can speak of the OFPOSITE=SIDES OF
A HYPERPLANE, and of a #-HYPERSPACE, We may have, for example, the #$=HYPERSPACE OABO=O'
lying on one-side of the hyperplane OABC, that is, on that side of the #=line at O of
00' produced, The other-side of the hyperplame OABC will be the #=hyperspace lying on
that side of the negative w=axis, The hyperplame QABC does not belong to either of the
&hyperspaces, it separates the opposite #=hyperspaces of this hyperplane,

I1f 2 hyperplanes intersect, the opposite #=hyperplanes of each wvhich have the plane
of intersection for a ocommon-face lie on opposite-sides of the other,

Given a pentahedroid, each of the 5 tetrahedrons detemmines the ocell of a #=hyperspace
wvhioh contains the opposite vertex and all points of the interiorj; and, oconversely, if
a point lies in all of these #&=hyperspaces it will lie in the interior of the
pentahedroid, Every point of hyperspace is a point of at least 1 of these #=hyperspaces,

We shall at times speak of a pentahedroid as a HYPERSURFACE (see Art,95), and of its
interior as a HYPERSOLID, A pentahedroid divides the rest of hyperspace into 2 portioms,
interior and exterior to the pentahedroid,

In hyperspace a hyperplane divides the hyperspace into 2 partsj vhereas, a plane
divides a hyperplane into 2 parts, but not hyperspacej whereas, a line divides a plane

into 2 parts, but not a hyperplane,
II1 . HYPERPYRAMIDS AND HYPERCONES

6, HYPERFYRAMID, INTERIOR OF A HYPERPYRAMID., Pigures in hyperspace which correspond
to the polyhedrons of geocmetry of 3 dimensions are called POLYHEDROIDS, We shall not
define this temm, except to say that a polyhedroid oconsists of VERTICES, EDGES, FACES,
and CELLS, The cells being the interiors of certain hyperplane-polyhedrons joined to one
another by their faces so as to enclose a portion of hyperspace, the INTERIOR OF THE
POLYHEDROID, We shall apply the temm 'polyhedroid' omly to certain simple-figures which
we shall define individually, Jhe pentahedroid is the simplest polyhedroid,

A HYPERPYRAMID consists of a hyperplane=polyhedron enclosing a portion of its
hyperplane, and a point not a point of this hyperplane, together with the interior of
the polyhedron and the interior of the segments formed by talkding the givem point with
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the points of the polyhedron. The point is the VERTEX, and the interior of the
polyhedron is the BASE, The meaning of other terms used in connection with the
hyperpyramid may be readily inferred from the definitions of Art, 3 and from the
definitions of pyramids used in the solid-geocmetry,

The INTERIOR OF A HYPERPYRAMID can be defined as consisting of the interiors of the
segpents formed by taking the vertex with the points of the base, but in the case of a
convex=hyperpyranid the interior of any segment whose points are poiass of the
hyperpyramid will lie entirely in the interior of the hyperpyramid unless it lies

entirely in the hyperpyramid itself, No line can intersect a convex-hyperpyramid in
more than 2 points unless it lies in the hyperplane of 1 of the cells, and any g=line

dravn from a point O of the interior will intersect the hyperpyramid in 1 and only 1
point,

In Fig, 1, we have a hyperplane-=tetrahedron OABC enclosing a portion of its hyperplane
together with the interior of this tetrahedron, Take the point 0', not a point of this
hyperplane, with the points of the tetrahedron OABC, The point O' is the vertex, and
the interior of the tetrahedron OABC is the base, The interior of this convex-
hyperpyramid is defined as consisting of the interiors of the segments fommed by taking
the vertex 0' with the points of the base OABC,

To make crystal-clear the way in which we visualize ‘segments with interior-points
lying in the interior of the hyperpyramid', and in the hyperpyramid, refer to Fig, 6b
of Art, 8, For example, the segment IP has all its interior-points lying in the interior

of the hyperpyramid D-OABCj§ whereas, the npcnt IR has all its interior-points lying
in the hyperplane of the cell DOAB, and therefore these 1nterioz-poi.ntl lie in the

hyperpyramid,
Take any point Q in the interior of the triangle CDR, this point lies in the interior
of the m-per;- yramid D-OABC (see Art, 2”3 take the #-line of DQ produced from the point Q
line

s then this will interseot the hyperpyramid in the point P lying in the hyperplane
of the cell OABC, and only in the point P of this celljy the point P lies in the

hyperpyramid-base, The segment CR lying in the hyperplane of the base QABC has all its
interior-points lying in this base, and therefore all the interior-points of this

segnent lie in the hyperpyramid,

Te HYPERPLANE=SECTIONS OF A HYPERPYRAMID, A hyperpyramid or any polyhedroid can be
cut by a hyperplane in a SECTION which divides the rest of the polyhedroid into 2 parts
lying on opposite-sides of the hyperplane (Axrt. 5).

The sections of a polyhedroid are polyhedrons whose faces are the seotions of the cells
of the polyhedroid made by the planes in which the hyperplane intersects the hyperplane
of the cells, The group of theorems given in this section for the hyperplane-sections of
& hyperpyramid or pentahedroid are proved by oonsidering the plane-sections of their
cells,

Theorem 1, A section of a convex=hyperpyramid made by a hyperplane oontaining the
vertex, is a convex-pyramid whose base is the oorresponding plane-section of the base of
the hyperpyramid, In the case of a pentahedroid this applies to any vertex, When 1 vertex
of a pentahedroid lies in a hyperplane and 2 vertices of the opposite-cell lie on easch
side of the hyperplane, the section will be a quadrilateral-pyramid, In all other cases
the section 0f a pentahedroid by a lnrpo:phne oontaining 1 vertex and not containing
& o¢ll will be a tetrahedron,

We shall give 2 graphio=forms for this theorem for the case when the convex~-
hyperpyramid is a pentahedroid. The student can make-up his owvn graphio-forms when the
base of a convex-hyperpyramid is a convex-pyrumid other than the tetrahedral-type=——
these will be very similar to the graphio-forms given in this text, We shall separate
the theorem into 2 parts as follows:

Theorem 1a, VWhen the vertex of a pentahedroid lies in a hyperplane and 2 vertoces of
the opposide—=cell lie on each side of the hyperplane, the section will be &

quadrilateral-pyramid, (Pig. 3a)
In the graphio-construction of Th, 1a, the hyperplane-section is the hyperplane of a

quadrilateral=pyramid D=-KIMN, The vertex D lies in this hyperplane, and the opposite-
oell to D &8s OABC, '.!h. 2 vcrtiou 0o nd L lie on mo-:lto-idu of tho l:rporplnne of
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quadrilateral-pyramid in the point N, and the point A lies on one-side of each of the

) faces of the quadrilateral=pyramid that meet at the point N, whereas, the point O lies
on the other-side of each of these 3 faces that meet at the point N, This can be readily
seen by ‘'observing' the 3 faces of the quadrilateral-pyramid that meet at the point N
. and which lie in different cells of the pentahedroid, the points O and A of the line-
segment OA will then lie on opposite-sides of each of these facesj and, the opposite=-
sides of a face can only be determined when we are given the hyperplane in which it lies,

C

B Fig. 3a.

Theorem lb, In all other cases the section of a pentahedroid by a hyperplane
containing 1 vertex an not containing a cell will be a tetrahedron. (Fig. 3b,)
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- In Fig., 3b, the hyper: '«rez=section is a hyperplane-tetrahedron DEFG.
The student should .- the resemblance to the corresponding theorem in the 3-space
so0l. d-geometry, th- ° o, in the hyperplane of the black-tetrahedron OABC—the

) correnp—disnce i- .- obvious, that we need not discuss it here, However, the student
snouid zompa.:. .-~ 4-epace visualization of the pentahedroid to the corresponding
visr-aiizatior - . the 3-space black-tetrahedron, that is, the visible-~ and hidden=views

of the boun'- .es and interiors of the 3- and 4-space graphic-forms of these respective
geometric-.- jures,

Theore .. A hyperplane passing between 1 vertex of a pentahedroid and the
opposit_ - cetrahedron will intersect the pentahedroid in a tetrahedron. (Fig. 4)

Let 4 h perplans pass between a vertex D and the opposite-tetrahedron OABC.
Then the .yperplane will intersect the pentahedroid OABCD & tetrahedyon EFGE
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B

Compare the result of this theorem with the corresponding theorem in the 3-space
solid-geometry, that is, for the individual tetrahedrons of the pentahedroid., For
example, in the tetrahedron OABD, the vertex D lics opposite to the face QAB of this
tetrahedron, and a plane passing between the vertex D and the opposite=face OAB will
intersect the tetrahedron in a triangle EFG,

A section of a figure in hyperspace is all that we can see in a hyperplane, For,
suppose we were in the hyperplane of the red-cell OABD, then we would, see, in our
graphic=form, only the hidden=view representation of the base EFG of the red-tetrahedron
EFGH; we would see the visible-edge FG, and the 2 vertices C and F, but the edges EF and
GE will be hidden-views as well as the vertex E, If we were in the hyperplane of the
red-tetrahedron EFGH, then we would see all of the graphic-representation of this
tetrahedron, i,e, the visible= and hidden-views,

If we were to take the limit of the sum of all the right=cross-sections of the
x-tetrahedrons cut out from hyperplanes passing through all the points of the line=-
segnent 0D, i,e, from the O=tetrahedron at D to the opposite=-tetrahedron at O, then the
limit of the sum of all these x-=tetrahedrons would form a pentahedroid-=this makes it
possible for us to use the calculus with the graphic-forms given here, this will be

shown in a later chapter,

Theorenr 3, If 2 vertices of a pentahedroid lie on one-=side of a hyperplane and } on
the opposite-side, the section will be a polyhedron in which their are 2 triangles
separated by 3 quadrilaterals, (Fig. 5)
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Given: A pentahedroid QABCD, C and D on one-side of a hyperplane E'A'B'P, with
O, A, and B on the opposite—side,

To Prove: A hyperplane E'A'B'P intersects the pentahedroid OABCD in a polyhedron
E'A'B'<E"A"B" in which the 2 triangles E'A'B' and E"A"B" are separated by the 3
quadrilatexrals E*E"A%A', E'B'B"E", B'B"A"A?Y,

Proof: The hyperplanes of the tetrahedrons OABC and OAED are cut by E'A'B'P in planes
vhich pass between the triangle OAB and the points C and D (Art, 5), and which therefore
cut these tetrahedrons in triangles, The hyperplanes of the other 3 tetrahedrons are cut
by E'A'B'P in planes which pass between their common-edge CD and the opposite-edges OA,
AB, and BO, and which therefore cut these tetrahedrons in quadrilaterals, Let the
triangles be E'A'B' and E"A%B", the quadrilaterals will be E'E"A"A', E'B'B"E", and
B'B"A"A', and the section of the pentahedroid will be E'A'B'=E“A"B",

If E'A'B'P intersects the line CD in a point P, the 3 lines E'E", A'A", and B'B* will
pass through P, and the section will be a truncated-tetrahedron, In any case the

section will be a figure of this type (see Art.70 ). (Q.E.D.)

8 DOUBLE-PYRAMIDS., A hyperpyramid whose base is the interior of a pyramid may be
reguarded in 2-ways as a hyperpyramid of this kind, the vertex of the base in one=case

being the vertex of the hyperpyramid in the other-case,

Thus there are 2 pyramids having themselves a common-base, and we can say that the
hyperpyramid is determined by a polygon and 2 points neither of which is in the
hyperplane containing the polygon and the other point., Perceived in=-this—way the
hyperpyramid is called a DOUBLE~-PYRAMID,

A double~pyramid consists of the following classes of points:

(1) the points of a convex-polygon, or of any plane-polygon which has an interior,
and the points of its interioryg

(2) 2 points not in a hyperplane with the polygon, the interior of the segment formed
of these 2 points, and the interiors of the segments formed by taking each of these
points with the points of the polygong

(3) the interiors of the triangles formed by taking each point of the polygon with
the 2 given points;

(4) the interiors of 2 pyramids each formed by taking the polygon-interior with 1 of
the 2 given points, _ ‘

The interior of the segment of the.2 given points is called the VERTEX-EDGE of the
double=-pyramid, and the interior of the polygon is the BASE., The interiors of the
triangles (3) are called ELEMENTS, and in particular, those elements whose planes contain
a vertex of the polygon are LATERAL=-FACE=ELEMENTS or LATERAL=-FACES of the double-pyramid,
The 2 pyramids (4) are called the END-PYRAMIDS,

The vertex—edge and the sides of the base are opposite—edges of a set of tetrahedrons,
These tetrahedrons are in a definite cyclical=order corresponding to the sides of the
polygon, and are joined each to the next, by the faces which are adjacent to the vertex-
edge, They are joined to the end-pyramids by the faces which are adjacent to the sides
of the base, The interiors of these tetrahedrons are the LATERAL=CELLS, and these and
the interiors of the end-pyramids are the CELLS of the double=pyramid, The pentahedroid
is the simplest doudble-pyramid,

In Fig, 1, we have the graphic=construction of a double-pyramid CO'=0AB, The interior
of the segnent of the 2 given points C and O' is called the vertex-edge of the double-
pyramid, and the interior of the polygon OAB is the base., The interiors of the triangles
formed by taking each point of the polygon OAB with the 2 given points C and O' are the
elements, The lateral-faces of the double-=pyramid are those plane-elements which consain
a vertex of the polygon, i.e., the faces CO'0O, CO'A, and CO'B are the lateral-faces
of the doudble=pyramid, The 2 end-pyramids are C=0AB and 0'=0AB,

The vertex—edge CO' and the sides OA, AB, and BO of the base OAB are opposite—edges
of a set of tetrahedrons, i.e., the tetrahedrons OACO', OBCO', and ABCO', These
tetrahedrons are in a definite cyclical-order corresponding to the sides of the polygon
OAB, and are joined each t0 the next by the faces wvhich are adjacent to the vertex—edgej;
for example, the 2 tetrahedrons OACO' and OBCO' are joined by the face 0OCO', These
tetrahedrons are joined to the end-pyramids by the faces which are adjacent to the sides
of the base OAB; for example, the face OAC is adjacent to the side of the base OAB, and
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the end-pyramid C=0OAB and tetrahedron OACO' are joined by this facej the face OAO!' is
also adjacent to the side of the base, and the end-pyramid OABO' is joined to the
tetrahedron QACO' by this facej like results follow for the other 2 tetrahedrons and

the 2 end-pyramids,
The latersl=cells are OACO', OBCO', and ABCO', and these and the interiors of the

end-pyramids are the ocells of the double-pyramid.

The intersection of double-=pyramids by planes and hyperplanes are given in the
B following theorems:

Theorem 1, A plane containing a point of the vertex-edge and intersecting the base
in the interior of a segment, or a plane containing the vertex—edge and a point of the
base, will intersect the double-pyramid in a triangle, (Fig., 6a., and Fig, 6b,)

In Fig, 6a, take a plane passing through a point K of the vertex-edze CD and
intersecting the base 0OA3B in the interior of a segment L}, then the plane KIM will

intersect the double=pyramid CD=-OAB in the triangle Kll1,
In Fig, 6b, take a plane containing the vertex—edge CD and a point R of the base OAB,

then the plane CDR will intersect the double=pyramid CD=OAB in the triangle CDR, In this
case, the 2 sides CR and DR of the triangle CDR are in the interiors of the end-
pyramids, i,e, CR in C=0OAB and DR in D=0AB, The interior of the triangle CDR lies
entirely in the interior of the double-pyramid——likewise for the triangle KIM in Fig, 6a.

Theorem 2, A hyperplane containing the base and a point of the vertex=edge will
intersect the double=pyramid in a pyramid. (Fig. 7)

P C
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In Mg, 7, take a hyperplane ocontaining the base OAB and & point F of the vertex-edge |
CD, then the hyperplane FOAB will intersect the double=pyramid CD=OAB in the pyramid
R-0AB, The interior of the pyramid P=0OAB lies entirely in the interior of the double-

pyranid CD=0DAB,
Theorem 3, A hyperplane ocontaining the vertex-edge and intersecting the base will
intersect the double-pyramid in a pyramid, (Fig. 8.)

In Fig. 8, take a hyperplane oontaining the vertex—edge CD and intersecting the base
OAB in the interior of a segment EF, then the hyperplgne CDEF will intersect the doudble-

pyranid CD=0AB in the tetrahedron CDEF, The 2 faoes and ZTEFof the tetrahedron CIEF
are seotions of the interiors of the end-pyramids C=OAB and D=OAB, respectively, The
intexrior of the tetrahedron CIEF lies entirely in the interior of the double-pyramid
CD=0AB,

The student will find it to his advantage to study thoroughly this section on the
hyperpyramids——ocompare the pictorial-relationships between the 3= and 4-space graphio-
forms, that is, between the single- and double-pyramids,

We shall take up one more important point of the 4-space graphics pertaining to the
visualization-process, In the graphio-forms of the hypersolid-geometry, you must see the
perceptio~differences when the hyperplane of a cell is vieved from outside of its

hyperplane,
For example, if we delete from the pentahedroid OABCD, the red-tetrahedral-cell D=ABC

and the interior of the pentahedroid, then we shall see 4 visible—cells in the cut-away-
view of the pentahedroid, i.e, the cells OACD, OBCD, OABC, and OABD3 the faces, edges,
and vertices of these 4 cells are also visible=views,

Suppose we were in the hyperplane of the black-tetrahedron, and deleted the face ABC
and the interior of the tetrahedron, then we would see 3 vigible=faces in the cut—away-
view of the tetrahedron, i.e, the faces OAC, OBC, and QABjy the edges and vertices of
these 3 faces are also visible-views,

9. HYPERCONICAlL-HYPERSURFACES==Undefined-Texrms, HYPERCONES=-Definitions,
HYPERSURFACE is the term applied to a figure in hyperspace which corresponds to the
surfaces of geometry of 3 dimensions, The term 'hypersurface'! is left undefined, We
SHall use the word only in connection with certain l:l.mple-figures which we shall define
individually, The hyperplane is the simplest hypersurface,

A HYPERCONICAL=-HYPERSURFACE consists of the lines determined by the points of a
hyperplane—=surface and a point not in the hyperplane of this surface, The point is the
VERTEX, the surface is the DIRECTING-SURFACE, and the lines are the ELEMENTS, The
hypereconical-hypersurface has 2 nappes,

The only hyperconical-hypersurfaces wvhich we shall oonsider at present are those in
vhich the directing-surface is a plane, a sphere, a circular-conical-gurface, or a part
or combination of parts of such surfaces, When the directing-surface is a plane, the
hypersurface is a hyperplane or a portion of a hyperplane.,

A HYPERCONE consists of a hyperplane-surface, or portions of hyperplane-=surfaces,
forming a closed-hyperplane=figure, and a point not a point of the hyperplane of this
figure, together with the interior of the latter and the interiors of the segments formed
by taking the given point with the points of the hyperplane-{igure, The point is the
VERTEX, the interiors of the segnents are MS, and the interior of the hyperplane-
figaure is the dase,

The hyperpyramid may be reguarded as a purticulu\-cuo of the hypercone, The only
other cases wvhich we shall oonsider at present are those in which the base is the
interior of a sphere or of a sircular-oone,

A plane oontaining the vertex of a hyperocone and intersecting the base in the interior
of a segnent, will intersect the hypercone in a triangle; and a hyperplane containing
the vertex and intersecting the base, will intersect the hypercone in a oone,

The INTERIOR OF A HYPERCONE oonsists of the interiors of the segments fomed by taking
the vertex with the points of the base, but in the case of a oonvex-hyperoone the
interior of any segment whose points are points of the hyperoone will lie entirely in
the interior of the hypercone unless it lies entirely in the hypercone itself, Mo line
can intersect a oconvex~hypercone in more than 2 points if it passes through a point of

the interior, and any half=line drawn from a point O of the interior will intersect the
hypercone in 1 and only 1 point,
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Hg. 9. F‘ig. 10.

In Fig., 9, we have the graphic=construction of a hypercone, We shall designate the
hypercone as P=-B(ABC)., The 3 capital-letters ABC enclosed in parentheses shall designate
a 'closed-plane-=curve', and a2 bar placed over the 3 capital=letters shall designate an
‘arc of a closed-plane-curve',

Take a closed-hyperplane-figure such as a cone E-(ABC) and a point F not in the
hyperplane of this cone, together with the interior of this cone and the interiors of all
segments formed by taking the point F with the points of the given hyperplane-cone, The
point F is called the vertex, the interiors of the segments FE, FA, FB, FC,.,.., are called
the elements of the hypercone F=E(ABC), and the interiors of the hyperplane-cone E~(ABC)
is the base,

The interior of the hypercone F-E(ABC) consists of the interiors of the segments formed
by taking the vertex F with the points of the base E~(ABC).

The visible- and hidden-views 0f the hypercone correspond to the ordinary=cone of the
3—-space solid-geometry,

In another chapter we shall take up the study of hyperspace-rotations, that is, a
rotation around a plane in hyperspace, and a rotation around a plane lying in a given
hyperplane—this information on hyperspace-rotations makes it possible for us to
represent visible- and hidden-views of curved-hypersurfaces, the visible- and hidden-
views of closed-curved-hypersurfaces will be taken up later,

In the hypercone F-L(ABC), we then have the following visible- and hidden-views:
s~hypersurface of the #=hypercone F\-E(E) will be a visible-=view in the graphic—drawing;
the other #=hypersurface of the hypercone F=E(ABC) will be the #=hypercone F-E(CDA)
vhich represents a hidden-view in the graphio=drawing, |

A hypercone, or the hypersolid which we call the interior of the hypercone, can be
somewhat described as cut {rom 1 nappe of a hyperconical-hypersurface by the hyperplane
of the directing-surface,

Theorem 1, A hyperplane containing the vertex and intersecting the base will
intersect the hypercone in a cone, Fig, 10,)

In Fig. 10, take a hyperplane containing the vertex F and intersecting the base E~(ABC)
in the plane of a closed=curve 20}1:[;, then the hyperplane FCHI will intersect the
hypercone F-E(ABC) in a cone F=(GHI

Theorem 2, A hyperplane passing between the vertex of a hypercone and the base will
intersect the hypercone in a cone, (Fig, 11,)

In Fig. 11, take a hyperplane PKIM passing between the vertex F of a hypercone F-E(ABC)
and the base E-(ABC), then the hyperplane PKIM will intersect the hypercone F-E(ARC)

in a cone P=(K1M),

9. DOUBLE=CONES==Definitions. A hyperoone whose base is the interior of a cone may
be reguarded in 2-ways as a hypercone of this kind, the vertex of the base in one-case
being the vertex of the hypercone in the othexr-case,

Thus their are 2 cones having themselves a common-base, and we can say that the

hypercone is determined by a closed-plane-curve and 2 points neither of which is in the
{ng ¢t ad the other point, Looked at in this way the hypercone

YPOXDLIANS OODL s1th ol
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Fig. 11. Fig. 12,

is called a DOUBLE~CONE,
A DOUBLE=CONE consists of the following classes of points:
513 the points of a closed-plane=curve and the points of its interior;

2) 2 points not in a hyperplane with the curve, the interior of the segment formed
of these 2 points, and the interiors of the segments formed by taking each of these
points with the points of the curve;

(3) the interiors of the triangles formed by taking each point of the curve with the
2 given pointsj
(4) the interiors of 2 cones each formed by taking the interior of the closed-plane-

curve with 1 of the 2 given points,
The interior of the segment of the 2 given points is the VERTEX=-EDCE of the double-

cone; and the interior of the curve is the BASE, The interiors of the triangles (3) are

the ELEMMENTS, and the 2 cones (4) are the END-CONES,
Certain cases of intersection of double=cones are given by the following theorems:

Theorem 1., A hyperplane containing the base and a point of the vertex—edge will
intersect the double=cone in a cone. (Fig. 12.)

In Fig, 12, take a hyperplane containing the base (ABC) and a poimt K of the vertex-
edge EF, then the hyperplane KABC will intersect the double-cone EF=-(iABC) in the

cone K-=(ABC).

Theorem 2, A hyperplane containing the vertex-edge and intersectings the base will
intersect the double-cone in a tetrahedron, (Fig. 9.)

In Pig, 9, take a hyperplane containing the vertex—-edge EF and intersecting the base
(ABC) in the interior of a segment BD, then the hyperplane EFBD will intersect the
double-cone EF=-(.\BC) in the tetrahedron EFBD. This tetrahedron will have 2 faces EBD and
FBD lying in the end-cones E~(ABC) and F=-(ABC), respectivelyj; the other 2 faces EFB
and EFD of this thetrahedron will lie in the hyperconical-hypersurface of the double=-
cone—the interior of this tetrahedron lies entirely in the interior of the double-cone,

Theorem 3, A plane containing a point of the vertex-edge and intersecting the base in
the interior of a segment, or a plane containing the vertex—-edge and a point of the base
o Will intersect the double-cone in a triangle, (Fig, 12.)

In Fig, 12, take a plane containing a point K of the vertex-edge EF and intersecting
the base (ABC) in the interior of a segment BED, then the plane KED will intersect the
double—cone EF-(ABC) in the triangle KBD§ and a plane containing the vertex-edge EF and
a point O of the base (ABC) will intersect the double-oone EF=(ABC) in the triangle EFO,
The interiors of the triangles KBED and EFO lie entirely in the interior of the
double-cone EF-(ABC).,

10, PLANO=-CONICAL=-HYPERSURFACES=——Definitions. A PLANO=CONICAlL-HYPERSURFACE
consists of the planes determined by the points of a plane=curve and a line not in the
hyperplane with the curve,




4

26

‘l‘lmlinoilthlm,thncum:llthemc-cm.lndthoplmumtho
FLEMENTS. Each element meets the plane of the directing-curve in only 1 point, the point
vhere it meets the directing-curve itself, Their are 2 nappes to the hypersurface,

l'orihopmont,nahdlmnderonlythamomvhiehth.dimﬂnﬂumila

circle,

"heorem., A hyperplane which contains the directing-curve of a plano—oconical-
hypersurface and a point of the vertexr-edge intersects the hypersurface in a

oonical=surface,

The line oontaining the vertex-edge of a doudble-cone, and the curve whose interior
in the base, are the vertex-edge and directing-curve of a plano=oconiecal-hypersurface,
(See Pig. 9, the hypersurface of a double—oone ER-(ABC) is a restricted-portion of a
plano=coni cal=hypersurface, )

A double-cone, or the hypersolid which we call the interior of a double-cone, can be
soneviat described as cut from 1 nappe of a plano—oonical-hypersurface by 2 hyperplmmes
each of wvhich ocontains the directing-curve and a point of the vertex-—edge,

(See Pig., 9, let the cutting-hyperplanes be that of the hyperplanes of the end-ocones

E-(ABC) and P-(ABC).
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CHAPTER III el
I. LINES PERPENDICULAR TO A HYPERPLANE
11, EXISTENCE OF PERPENDICULAR LINES AND HYPERPLANES.

Notations: The symbol for perpemdicular is / 3 for perpendiculars, _/s .

Theorem 1, The lines perpendicular to a line at a given point do not all lie in
1 plane,

Proof: Every point in hyperspace lies in a plane with the given line, and in every
plane which contains the line there is a _[ to the line at the given point, Now if
these _[B wvere all in 1 plane, that plane and the given line would determine a hyperplane
containing all the planes which contain the line (Art, 1, Th. 1), and so all points of

hyperspase, But the points of hyperspace do not all lie in 1 hyperplane,

Theorem 2, A line perpendicular at a point to each of 3 non=coplanar lines, is
perpendicular to every line through this point in the hyperplane which the 3 lines

determine, (Fig, 13.)
Given: A line m _1 at a poirt O to each of 3 non-coplanar lines a, b, and c,

To Prove: The line m 1is _[ to every line through O in the hyperplane which the 3
lines a, b, and ¢ determine,

Proof: Let d be any other line through O in the hyperplane determined by these 3 lines,
The plane of cd will intersect the plane of ab in a line h (RSG=III, Th., 1). The line m,
being ﬁ to a and b, is _[ to h lying in the plane of ab; and then, being _[ to ¢ and h,
it is to d lying in the plane of ch.* Therefore the line m is _[ to every line
through O in the hyperplane which the 3 lines a, b, and ¢ determine., (Q.E.D)

Hg. 13- : Fig. 14,

# A line m through a point O, _/ to each of 2 lines intersecting at 0, is _/ to every
line through O in the plane which the 2 lines determine, This is always true, for the
plane and the line m lie in 1 hyperplane,

( Theorem)B. All lines / to a given line at a given point lie in 1 hyperplane,
Hgo 140 '

Given: A line m and a point O of m,

To Prove: All lines _[ to the line m at a point O lie in 1 hyperplane,

Proofs 3 non-coplanar lines a, b, and ¢ _/ to m at O determine a hyperplane of abc
such that m is _/ to every line in the hyperplane of abc through O (Th, 2), Now let
- .. ATEW.X 3TN . $o Ang C b P 8 ¢ the \p vlane of abc in a

@ wel . 2
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line e (Art, 4, Th, 1), also _[ to m at O, In the plane of dm, then, we have a line m
and the 2 lines d and e{_[:to m at O, For this reason d must coincide with e and lie
in the hyperplane of abc, Therefore all lines _[ to the line m at a point O lie in

1 hyperplane, (Q.E.D)
A line intersecting a hyperplane at a point O is PERPENDICULAR TO THE HYPERPLANE when
it is perpendicular to all lines of the hyperplane which pass through O3 the hyperplane

is also said to be PERPENDICULAR TO THE LINE. The point O is called the FOOT of the
perpendicular,

12, 1 HYPERPLANE THROUGH ANY POINT PERPENDICULAR TO A GIVEN LINE, PLANES IN A
PERPENDICULAR-HYPERPLANE,

Theorem 1, At any point of a line there is 1 and only 1 hyperplane perpendicular
to the line,

This follows fyom the theorems of the preceding article,

Theorem 2, Through any point outside of a line passes 1 and only 1 hyperplane
perpendicular to the line,

Theorem 3, A line perpendicular to a hyperplane is perpendicular to every plane of
the hyperplane passing through the foot of the liney and every plane perpendicular to
a line at a point lies in the hyperplane perpendicular to the line at this point,

Theorem 4, If a line and a plane intersect, a line perpendicular to both at their
point of intersection is perpendicular to the hyperplane determined by themg or if 2
planes intersect in a line, a line perpendicular to both at any point of their
intersection is perpendicular to the hyperplane determined by them,

13, LINES PERPENDICULAR TO A GIVEN HYPERPLANE,

Theorem 1, At a given point in a hyperplane there is 1 and only 1 line perpendicular
to the hyperplane, (Fig. 15.)

Given: A hyperplane OABC and a point O in the hyperplane,

To Prove: A line m _/ to the hyperplane OABC at the point O, is the only line _/
to the hyperplane,
\

»%i«(i '-%z |
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Proof: Consider 3 non=coplanar lines a, b, and ¢ lying in the hyperplane and
passing through the point O, The 3 hyperplanes QABD, OBCD, and OCAD _[ to A, ¥, and ¢ at
the point O, respectively, have in common at least a line m (Art 4, Th. 2 and remark),
and any such line m must be _/ to the hyperplane OABC because _/ to the 3 lines a, b,
and c,

y If there were 2 lines m and m' _/ to the hyperplane OABC at the point O, they would
both be _[ to a line k in which their plane of mm' intersects the hyperplane QABC, We
should have in the plane of mm' 2 lines m and m' _/ to a 3rd line k at the same point

- Oy which is impossible, For this reason m' coincides with m. Therefore a line m / to

> - the hyperplane OABC at the point O, is the only line _[ to the hyperplane, (Q.E.D)

B

Fic. E-l?
Theorem 2., 2 lines perpendicular to a hyperplane lie in a plane., (Fig. W.)

é

Given: 2 lines a and b _[ to a hyperplane OABC at points E and F respectively,
To Prove: The 2 lines a and b lie in the plane of aF,

Proof: Construct a hyperplane containing the 2 lines a and b, Now any 2 lines lie in
a hyperplane (Art. 1, Th. 2 (2)), and a hyperplane containing the 2 lines a and b,
intersects the hyperplane OABC in a plane to which the lines a and b are both _[
(Art, 12, Th, 3). For this reason as proved in the solid-geometry, the lines a and b
lie in the plane aF. (Q.E.D)

Theoxrem 3, Throush any point outside of.2 hyperplane passes 1 and only 1 line
perpendicular to the hyperplane, (Fig., 1%%)

Given: Any point P outside of a hyperplane OABC,
To Prove: 1 and only 1 line passing through P can be _/ to the hyperplane OABC,

Proof: Construct a line a _[ to the hyperplane OABC, If a does not pass through P,
a and P determine a plane, the plane of aP intersects the hyperplane QABC in a line ¢
and in the plane of aP there is a line b through P _/ to ¢, intersecting c at a point Q.
Let b' be the line / to the hyperplane at Q. a and b' lie in a plane (Th., 2), which
is the plane of aQ containing a and the point Q. But the plane determined by a and P
passes through Q..Therefore b' lies in the plane determined by a and P, and in the plane
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of aP is _[ to ¢ at Q. But we then have, b' coinciding with b, and b must be _l to the

hyperplane QABC,
If there were 2 lines through P _[ to the hyperplane OABC, we should have 2 lines
through P _[ to the line which passes through their feet, and this is impossible,

Therefore 1 and only 1 line passing through P can be _l to the hyperplane QABC, (Q.E.D)

: 13APROJECTIONS—=Definitions, The orthogonal-PROJECTIN OF A POINT UPON A HYPERPLANE
is the foot of the perpendicular from the point to the hyperplane, The perpendicular

can also be called the projecting-line,

Theorem 1,% The distance from any point outside of a hyperplane to its projection
upon the hyperplane is less than the distance from the point to any other point of the

hyperplane, |
The DISTANCE BETWEEN A HYPERPLANE AND A POINT OUTSIDE OF THE HYPERPLANE is the

distance between the point and its projection upon the hyperplane,
Corollary., If the distance between 2 points is less than the distance of 1 of them
from a hyperplane, they lie on the same-side of the hyperplane in hyperspace,

Theorem 2, GCiven any point P outside of a hyperplane, and O its projection upon the
hyperplane, then any 2 points of the hyperplane equally-distant from P will be equally-
distant from 0O, and any 2 points equally-distant from O will be equally-distant from Pj;
and if 2 points of the hyperplane are unequally-distant from either P or O, that point

which is nearer to 1 of them will be nearer to the other. (Fig. 18.)

Given: Any point P outside of a hyperplane OABC, and O its projection upon the

hyperplane,

To Prove: Any 2 points A and B of the hyperplane OABC equally-distant from P will be
equally-distant from O, and conversely, any 2 points A and B equally-distant from O will
be equally-distant from F§; and if 2 points A and D of the hyperplane QABC are unequally-
distant from either P or O, that point which is nearer to 1 of them will be nearer to

the other,
. L

N

o)
X/

Fig. 18, | Fig. 19,

Proof: The _[ PO, and the lines through P and any 2 points A and B of the hypecrplane
OABC, lie in a 2nd hyperplane POAB which intersects the given hyperplane OABC in a plane
- OAB., The _[ PO is _[ to OAB, and the 3 lines \‘, PA, and PB intersect the plane OAB
lying in the hyperplane OABC in the points O, A, and B, respectively, The theorem is

therefore a theorem in the solid-geometry of the 2nd hyperplane POAB,
In the plane OAB lying in POAB, construct AP = BEP, then AO = BO, and conversely, if

AO = BO, then AP = EP, In the plane OAB lying in POAB, construct DO greater than A0,
then IP is greater than AP, and conversely, if DP is greater than AP, then DO is
greater than AO, Therefore the theorem i{s proved, (Q.E.D)

#The theorems of this article are true at least when the distances referred to are
'rostricted'.

B




14, PROJECTIQN OF A LINE UPON A HYPERPLANE, ANGLE OF A #-LINE AND HYPERPLANE. The
projection of any figure upon a hyperplane consists of the projections of its points,

Theorem 1, When a line and a hyperplane are not perpendicular, the ection of ¢
line upon the hyperplane is a line or a part of a line. (Fig. 1;.) prod ne

Corollary, When a #-line drawn from a point O of a hyperplane does not lie in the

hyperplane and is not perpendicular to it, its projection upon the hyperplane is a #=line
. drawn in the hyperplane from O, or the interior of a segment which has 0 for 1 of {ts

voints.
Given: A line = and a hyperplane OABC that are not _/,

To Prove: The projection of a line m upon the hyperplane OABC is a line c or a
paxt of c.

Proof: lLet a be the _1 projecting .egne point P;(:;on_ the hyperplane OABC in a point E,
Any other / b projecting a point Qlupon the hyperplane OABC in a point F, lies in a
plane with a (Art, 12 Th. 2), and this plane containing 2 points of m, is the plane of
ma determined by m and a, and the projection upon the hyperplane OABC is the same as its
projection upon a line ¢ in which the plane of ma intersects the hyperplane QABC, The
line o is then the line of EF, For this reason, the theorem is therefore a theorem in the
plane-geometry of the plane ma, Therefore the projection of a line m upon the hyperplane

OABC i8 a line c or a part of ¢. (Q.E.D)

yarsot & T
. When a #line drawn from a point O of a hyperplane does not lie in the

hyperplane and is not perpemdicular to it, the angle which it makes with the #-line
drawvn from O oontaining its projection, is less than the angle which it makes with any
other #=line drawn in the hyperplane from O,

When a #=line drawn from a point O of a hyperplane does not lie in the hyperplane and
is not perpendicular to it, the angle which it makes with its projection is called the

ANGLE OF THE #-LINE AND HYPERPLANE, A #-line drawn from a point O of a hyperplane
. perpendicular to the hyperplane is said to make a RIGHI'-ANGLE with the hyperplane,

I1 ABSOLUTELY-PERPENDICULAR PLANES
. 15, EXISTENCE OF ABSOLUTELY-PERPENDICULAR PLANES,

Notation: The symbol for absolutely-perpendicular is Y .

Theorem 1, A plane has more than 1 line perpendicular to it at a given point,
(see Pig, 18,)

Civen: A planme OAB and a point O of this plane.

To Prove: The plane OAB has more than 1 line / to it at a point O,

Proof: The plane OAB is the intersection of different hyperplanes. Let OABC and QARP
be 2 hyperplanes that intersect in the plane QAB, Now in a hyperplane, a plane has 1 and
only 1 line _[ to it at a given point, In the hyperplanes QABC and OABP, oonstruct the
lines Of and OP _/ to the plane OAB at the point O, respectively (see Art, 1). We have,
then, 2 lines O and OP _[ to the plane OAB at O, Therefore the plane OAB has more than

1 ldne / to it at the point O, (Q.E.D)

Theorem 2, 2 lines perpendicular to a plane at a given point detemmine a 2nd plane,
and the 2 planes are so related that every line of one through the point is perpendicular
to every line of the other through the point, (Fig. 20.)

Given: A plane & and 2 lines p and q _/ to & at a point O, with a planeol' determined
by the lines p and q, and an