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Prefce

Mathematicians, magicians, and puzzlists are masters of the unsolvable,
the unbelievable and the undoable. Their currency is paradox. They
reach enlightenment through bewilderment.

Members of these three communities meet every two or three years to
honor the man at the forefront and nexus of all three, Martin Gardner.
At this remarkable Gathering for Gardner (the four so far are dubbed
G4G1 through G4G4), participants share talks and performances; prob-
lems and puzzles; knowledge and ideas. We invite you to read this
compendium of contributions so that you too can be bewildered and
enlightened.

The Mathemagician and Pied Puzzler was published in 1999 as a
tribute to Martin Gardner based on contributions to G4G1l. Many of
the Gatherings’ participants and other fans of Martin Gardner expressed
the wish for a second volume. We were glad to have another opportunity
to share some of group’s favorite paradoxes, problems and puzzles. The
articles enthusiastically proffered by G4G participants honoring Gard-
ner have led to the creation of a website and the start of a third vol-
ume. Emily DeWitt Rodgers set up and maintains the dedicated website,
http://www.gdgd.com, which includes the full text of the first tribute
book and a maze of puzzles, illusions, and problems. Many contribu-
tions and materials are placed there with the permission of the authors
along with links to homepages of G4G participants.

All of the things that we said in the introduction to The Mathemagi-
cian and Pied Puzzler remain true and relevant for this book so we have
included words from its preface here:

Martin Gardner has had no formal education in mathematics, but
he has had an enormous influence on the subject. His writings exhibit
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an extraordinary ability to convey the essence of many mathematically
sophisticated topics to a very wide audience. In the words first ut-
tered by the mathematician John Conway, Gardner has brought “more
mathematics, to more millions, than anyone else.” It is a moving testi-
mony that many professional mathematicians feel that Martin Gardner
sparked and guided their early interest in mathematics.

In January 1957, Martin Gardner began writing a monthly column
called “Mathematical Games” in Scientific American. He soon became
the influential center of a large network of research mathematicians with
whom he corresponded frequently. On browsing through Gardner’s old
columns, one is struck by the large number of now-prominent names that
appear therein. Some of these people wrote Gardner to suggest topics
for future articles: others wrote to suggest novel twists on his previous
articles. Gardner personally answered all of their correspondence.

Gardner’s interests extend well beyond the traditional realm of math-
ematics. His writings have featured mechanical puzzles as well as mathe-
matical ones, Lewis Carroll, and Sherlock Holmes. He has had a life-long
interest in magic, including tricks based on mathematics, on sleight of
hand, and on ingenious props. He has played an important role in expos-
ing charlatans who have tried to use their skills not for entertainment
but to assert supernatural claims. Although he nominally retired as
a regular columnist at Scientific American in 1982, Gardner's prolific
output has continued.

Martin Gardner’s influence has been so broad that a large percentage
of his fans had only infrequent contacts with each other, until Tom
Rodgers conceived of the idea of hosting a weekend gathering in honor of
Gardner to bring some of these people together. The first “Gathering for
Gardner” (G4G1) was held in January 1993. Elwyn Berlekamp helped
publicize the idea to mathematicians. Mark Setteducati took the lead in
reaching the magicians. Tom Rodgers contacted the puzzle community.
Out of this first gathering grew a serious of events; a second gathering,
G4G2, was held in January 1994, G4G3 in January 1998, and G4G4 in
February 2000.

The success of these gatherings has depended on the generous do-
nations of time and talents of many people. The organizers, Elwyn
Berlekamp, Tom Rodgers, Mark Setteducati would like to acknowledge
the work of many people who have helped make the Gatherings for
Gardner successful, including Scott Kim, Jeremiah Farrell, Karen Far-
rell, Emily DeWitt Rodgers, David Singmaster, and many others.

Of course, this book could not exist without the efforts of a large
group of contributors. Scott Kim conceived of and assembled the first
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tribute volume, and created the graphically spectacular cover in this
second volume; Scott’s generous contribution will remain engraved in our
memories. Emily DeWitt Rodgers has done an excellent job of designing
and maintaining the gdg4.com website. In addition, we owe thanks as
well to a number of anonymous reviewers for reviewing articles outside
the realms of expertise of the editors. David Wolfe is indebted to his
wife, Susan Hirshberg, for her incredible support and writing expertise,
even while he negected wedding and honeymoon plans to work on this
book. As with any book, only the competence and professionalism of
our publisher, A K Peters, Ltd., has allowed this project to overcome
the difficult transition from an idea spoken of over wine to a real book
which is now in your hands.

All of us feel honored by this opportunity to join together in tribute
to the man in whose name we gathered, Martin Gardner.

David Wolfe Tom Rodgers
St. Peter, Minnesota Atlanta, Georgia
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In Memoriom

Even mathemagicians are mortal. This book is dedicated to the memory
of three participants in The Gathering for Gardner, Mel Stover, Harry
Eng, and David Klarner. Each was an admirer of Gardner and has
gathered into the folds of another dimension since last we met.

Mel Stover, a fifty-plus-year friend and correspondent of Martin
Gardner, lived magic and created his own deliciously pernicious magic-
puzzles. Both Martin Gardner and Max Maven wrote articles not only
honoring Mel, but also remembering many of Mel's illusions.

“The Impossible Just Takes Longer” was oft quoted by Harry Eng,
whose magic tricks, impossible objects, and memory feats pushed the
limits of man’s capabilities, as described in Mark Setteducati’s article.
The solution of Harry Eng’s Impossible Bottle with inserted coins larger
than the bottle mouth is explained in Gary Foshee’s article.

David Klarner, who is remembered in articles by Solomon Golomb,
C. J. Bouwkamp, and David Singmaster, helped develop the mathe-
matics of box-packing problems and created masterful box-packaging
puzzles.

We will miss them.

The Participants
G4G1, G4G2, G4G3, G4G4

xiii







A Greeting o Martin bordner
Sir Arthur Clarke GBE

I am very happy to send my greetings to Martin on the occasion of the
‘eathering’ in his honour.

In particular, I notice that the theme of the event is the “Fourth
Dimension”—something that has always fascinated me. I had almost
forgotten that is was featured in one of my earliest (1946!) stories Tech-
nical Error (now in Reach for Tomorrow). And my very first television
programme (BBC TV, 4 May 1950) was a thirty minutes talk on the
Fourth Dimension—live of course, because there was no video tape in
those days! After that ordeal, no camera has ever had any fears for me.

I am very grateful to Martin for creatively disrupting my life on
at least two occasions, thanks to his columns in Secientific American.
Thirty years ago he turned me on to Pentominos, with results you'll see
in Imperial Earth. However, even more important, he opened my eyes
to the infinite universe of the Mandelbrot Set, which I cleverly managed
to combine with S5 Titanic, in The Ghost from the Grand Banks. (Isn’t
the connection obvious?)

Finally, it was Martin's The Night is Large that inspired me to put to-
gether my own collection of non-fiction, Greetings, Carbon-Based Bipeds!

I would be hard put to think of anyone else to whom I owe so great
an intellectual debt, and I wish him many more years of happy puzzling!

oZ
6 December 1999

Colombo, Sri Lanka Sir Arthur Clarke
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Harrg Eng- A Tribute

Mark Setfeducati

Harry Eng was a teacher, inventor, minister, artist, magician, and musi-
cian whose life was about thinking and inspiring others to think. He was
born in California, but the details are vague because he was adopted.
For more than 30 years he lived in La Mesa with his wife Betty, raising
two children, Greg and Diana.

Harry’s house is filled with his creations and described by all who
visit as the most unique home they've been in. An extraordinarily inno-
vative school teacher in the San Diego area, in recent years he acted as
a consultant to schools giving special lectures to gifted students on cre-
ativity and thinking. Harry created many original teaching techniques
and devices such as using play money in class printed with his students’
pictures on it, and a dummy named Ziggy that had clear plastic lungs
attached to a vacuum cleaner. Harry would light up a cigarette for Ziggy
and turn on the vacuum to teach kids not to smoke. He used magic and
more recently his impossible bottles to inspire students to think.

Harry had a lifelong interest in magic. During the late 1970s he was
actively involved in the San Diego magic scene, including being presi-
dent of a local IBM ring. He never read books on magic and everything
Harry performed was original. He invented the “PK Factor,” a magnetic
principle that was marketed by magic dealers. His hands were chubby
and twisted, yet out of these would come incredible feats of magie, in-
ventions, and impossible bottles. Magicians would show him a trick and
Harry would often have an insight on a better way to do it—always in a
humble way. Harry never made anybody feel he was better or smarter.

Mark Setteducati is a magician and inventor of magic, games and puzzles. He

created Milton Bradley’s Magic Works® and is co-author of The Magic Show. This
article originally appeared in Genii in October, 1996.
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One of Harry’'s passions was his feats of memory which included
books he made that contained 10,000 numbers or thousands of words
that he had memorized. He would have you turn to any page and he
would recite the contents without looking. He created a cardboard name
computer that has over 1000 names programmed into a few cards. With
a few questions he could guess anybody’s name. He created his own
stacked deck and was constantly working on new and more impossible
card effects with it. He was a master at origami and would fold an
ordinary paper bag into a hat, a pair of shoes or a wallet. My favorite
routine that Harry performed was with a single piece of heavy duty
rope, sometimes with his trademark button knot tied at the bottom. He
would pass the rope behind his back while talking about a courtroom.
The first time a knot would appear in the center of the rope. Harry
would say, “Knot Guilty.” The second time Harry would amazingly
be able to snap the rope behind his back so it created a noose as he
would exclaim, “Guilty!... Hang 'em!” He would then go on to thread a
needle, shoot the rope as a bow and arrow, penetrate the rope through
a spectator’s thumbs, and arrange the rope between his fingers to create
a frog and then a dog. Each trick would be accompanied by silly patter
and clever puns, all executed with precision skill and a sense of humor
that exemplified Harry’s personality.

Figire 1. Harry Eng’s bottles. Harry explained that cutting the bottle is the
hard way to fit the items in for it’s nearly impossible to disguise the cut when
resealing. (See Color Plate II.)

And then there are the bottles. If Harry never made a single bottle
he would still be one of the most remarkable men I have known—but
it’s the bottles that certify him as a true genius. Impossible bottles
date back more than a hundred years, and Hoffman describes an arrow
through a bottle, as well as a bottle containing a dowel with a screw
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through it. And of course there is the classic ship in a bottle. But about
ten years ago Harry Eng put a deck of cards in a bottle and it went
on from there: ping pong balls, tennis balls, coins, sneakers, padlocks,
baseballs, light bulbs, scissors.... You name it and Harry has probably
put it in a bottle. He brought to his bottles a level of originality and
diversity that astonished and delighted top puzzle experts in the world.
The beauty of the way he would tie knots inside the bottles using the
same rope he would perform his tricks with and the clever puns he would
incorporate in many of the bottles (a deck of cards with a bullet through
it is titled a “loaded deck”) make them more than just puzzles—they
are works of art. When people look at the bottles Harry would say they
became Indians because they always say “How.” After giving one of his
standard humorous answers such as “trained cockroaches” he would tell
you his real secret which is: He “thinks his way into the bottle.”

Most people assume the bottles were cut, which, according to Harry,
would be the hard way to do it—there would be burn marks or evidence
on the bottles. Then, after a little thought, people would figure he put
the cards in one at a time or he took the lock apart and assembled
it inside the bottle and would be satisfied with their answer. But it's
exactly at this point, if you keep thinking about it, the more impossible
they become. How did he get the steel nut through the deck—there’s
no clearance to screw the bolt on. How did he lock the padlock through
the wooden plug capping the bottle—it doesn’t move. Harry put things
in bottles to challenge himself and to make people think.

After suffering a major heart attack more than 15 years ago, the
doctors gave Harry about a year to live. Thankfully he didn’t listen to
them then—but he did suffer health problems that made him face his
mortality every day, never letting it get in his way of living and enjoying
life to the fullest. Ironically it was in the middle of performing his rope
routine for a group of friends in Northern California on the afternoon of
July 29, 1996 at age 64, Harry felt a little faint, sat down and passed
away.

Harry truly loved people. He traveled extensively and had friends
all over the world—there isn’t a person who knew him who hasn’t been
influenced by his inspirational mind and personality. He was one of those
rare people who I never saw get angry and who would always look at
the positive side of things. Since his passing I think of him every day
and the image that keeps coming to me is not of his incredible mind
or creations, but of a happy man with a great sense of humor that was
reflected in everything he did—always telling silly jokes and laughing.
Harry loved to laugh.







The Eng Gom Vise

baryg Foshee

Of all the objects Harry Eng has placed inside of a bottle, a solid metal
coin is one of the most amazing. The effect is one of total impossibility.
I pondered over this for some time until Harry let me in on his secret: he
bent the coin, placed it in the bottle, then used a specially constructed
metal vise inside the bottle to flatten the coin. To accomplish this,
some of the vise pieces are fed into the bottle one at a time, and then
reassembled while inside the bottle. The remaining pieces of the vise are
assembled outside of the bottle and joined to the pieces inside. The bent
coin is now maneuvered into the vise inside the bottle, the vise closed,
and the coin pressed flat. The vise is now disassembled and removed
from the bottle. The real beauty of the vise is that the force applied to
flatten the coin is generated outside of the bottle.

The basic principles of Harry's vise are presented here. There is suf-
ficient detail to build a vise from this description, but it will prove quite
difficult. Proper high-strength steels must be used for certain compo-
nents to withstand the considerable force required to flatten the coin.
Consulting someone skilled at metalworking is highly recommended.

The vise consists of an inside piece, an outside piece, and a connecting
rod joining the inside and outside pieces. The inside piece is shown
unassembled in Figure 1 and assembled in Figure 2. The central hole in
the upper bar of Figure 1 is threaded to accept the connecting rod. The
two lower bars of Figure 2 slide freely on the two bolts.

The parts of the outside piece are shown in Figure 4. The block has
a vertical hole through the center. The hole is threaded at the top to
accept a bolt, and threaded at the bottom to accept the connecting rod.
A solid push rod fits inside of the connecting rod. The part to the right

Gary Foshee is a mechanical puzzle collector and designer living in Seattle,
‘Washington.
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Figure 3.

Flgure 4. Figure 5.
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Fgure 6. Figure 7.

of the block is a handle that threads into a hole in one side of the block.
The connecting rod is shown in Figure 3.

To assemble the vise, feed the parts of the inside piece into the bot-
tle, and join them as shown in Figure 2. This will require considerable
dexterity, patience, and many hours of practice. Join the inside and out-
side pieces with the connecting rod. Next, slip the push rod in through
the top of the block and push it all the way down into the inside piece.
Thread the bolt into the upper part of the block. Attach the handle.
The vise should now appear as in Figure 5.

Place the bent coin in the bottle and maneuver it into the vise as
shown in Figure 6. This is very difficult because the connecting rod keeps
getting in the way. Place a wrench on the bolt and tighten, gripping the
handle with your other hand. This force will be transmitted via the push
rod to the coin, and flatten it as shown in Figure 7. Several pressings are
needed to completely flatten the coin. When the pressing is complete,
disassemble and remove the vise, and your coin bottle is ready to amaze
all that view it.







David A. Klorner—A Memorial Tribite

Solomon . Golomb

I may have been the Prophet of Polyominoes, but David Klarner was
their most faithful Apostle.

It was Christmastime in 1959 (or thereabouts) when I received a
large oblong rectangular wooden box in the mail. The return address
was one D. A. Klarner from the far north of California. The box had a
sliding lid, which I opened carefully, and dumped the wooden contents
out on a tabletop. These turned out to be the 29 “pentacubes,” and
it took several hours to get them back in the box as neatly as they
had arrived. David’s enclosed letter revealed that he was a student
at Humboldt State College who had learned about polyominoes from
Martin Gardner’s columns in Scientific American.

Several years later, when I had gone from JPL to USC, I was in-
vited by Professor Leo Moser of the University of Alberta, in Edmonton,
Canada, to be the “outside reader” of the Ph.D. dissertation of one of
his students. The student was David Klarner, and the doctoral thesis
contained a proof that the number P(n) of n-ominoes lies between o™
and b", where a = 2 and b = 8 was an acceptable choice. It was a day
in mid-March in 1964 (or thereabouts) when I flew from Los Angeles
around noon (80°F), and with several intermediate stops arrived in Ed-
monton late at night (—40°F) and met David for the first time. It had
been a severe winter, and he had been ill with pneumonia much of the
time. The next day was his successful thesis defense.

David had an important article, “Packing a Rectangle with Congru-
ent N-ominoes,” published in Volume 7 of the Journal of Combinatorial
Theory, in 1969, where he introduced the concept of the order of a

Solomon W. Golomb is USC’s University Professor, renowned for his work in
shift register sequences, radar, number theory, fluency in numerous languages, and
many other things.

11
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polyomino, defined as the minimum number of congruent copies which
can be assembled to form a rectangle. (If the given polyomino does not
tile any rectangle, its order is undefined.) In the same article, he defined
the odd-order of a polyomino to be the smallest odd number (if any)
of congruent copies which can be assembled to form a rectangle. He
had several beautiful illustrative examples, and the subject has inspired
important research ever since.

‘When David was on the faculty at Stanford, he invited me to give a
seminar talk (on polyominoes, of course). The date of my talk should
be easy to establish, because the news item of the day was the death of
former president Lyndon B. Johnson.

After Stanford, David was at SUNY-Binghamton, and also spent
more than one sabbatical year visiting the Technical University of Eind-
hoven, in the Netherlands, where he interacted with N. G. de Bruijn
and L. E. J. Bouwkamp, among others. From Binghamton, his next
academic position was at the University of Nebraska, in Lincoln.

David had suffered since childhood from “type 17 diabetes (formerly
called “juvenile onset” diabetes), and had a lifelong battle with the many
complications of this ailment. Driving from New York to Nebraska,
around the time he arrived in Lincoln he had a near-fatal heart attack.
He was also the recipient of a kidney transplant.

It was in 1993 (or thereabouts) that I was invited (no doubt at
David’s suggestion) to be a member of a team of visiting experts to
evaluate the progress of the University of Nebraska in the several areas
of science and technology that the State Legislature had identified for
special funding. I spent most of the free time I had during that period
visiting with David Klarner—as it turned out, for the last time.

Ever since the first edition of Polyominoes appeared in 1965 (pub-
lished by Charles Seribner and Sons), I was compiling material for a
second edition, which finally appeared in 1994 (with Princeton Univer-
sity Press). I had considerable help from David in the preparation of
the final manuscript for the new edition.

David had been the editor of the Mathematical Gardner, to which
I contributed a chapter; and he was asked to edit the proceedings of
the first “Gathering for Gardner”, but by that time his health problems
seriously interfered.

In mid-March of 1999, I was visiting the University of Waterloo,
in Ontario, Canada, for several days. Douglas Stinson had been at
the University of Nebraska when I had visited there, but was now at
Waterloo. I asked him what he knew of David’s whereabouts. He told
me that David had retired, for health reasons, and had relocated, with
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his wife, back to Humboldt, California. I resolved to contact David
when I returned to Los Angeles, but I never got the chance. Shortly
after coming home, I learned the sad news of his demise.

David Klarner made an important and very distinctive contribution
to the literature of combinatorial mathematics in general, and to poly-
ominoes in particular. He will be long remembered by many mathemati-
cians who never actually met him for the quality of his work, and he will
be sorely missed by those of us who knew him.







David Klarmer's Pentacube Towers
0. 9. Bouvkamp

Dedicated to the memory of David A. Klarner

D[I‘."Td, the Inventor. He writes, in a letter to Solomon W. Golomb dated
November 27, 1959, “The box which this letter is attached to contains
the mathematical blocks that I invented and named pentacubes. They
are so named because they are all of the combinations of five cubes joined
face to face.” The total number of distinct pentacubes is known to be
29. The 12 planar pentacubes are also called solid pentominoes.

David, the Gonstructor: Ome of his many constructions with solid pen-
tominoes is, what I call, the pentacube tower. To my knowledge, David
never published or mentioned it to his friends before 1968. Among his
many drawings, I was fortunate enough to find two different towers which
are copied in Figure 1 (Type I). The reader, if in possession of a set of
pentacubes, will certainly feel rewarded to successfully construct either
tower.!

At the end of 1968, David came to Eindhoven University of Technol-
ogy for the first time; his third and last visit to Eindhoven University
was in 1991. He found colleagues and friends not only in Mathematics
but also in the Building and Architecture Departments, and lectured
about combinatorial problems.

C. J. Bouwkamp, from the Netherlands, is a long time reviewer for Mathe-
matical Reviews. He has had lectureships at institutions throughout the U.S. and
Europe.

1 Pentomino aficionados assign each block a letter name. David used the letters C
and 3 instead of Golomb’s U and Z, probably because U might be taken for V, and
similarly quarter-turned Z for N.
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(Type I) (Type II)

Figure 1. On the left are two distinct pentacube towers of Type I due to
Klarner. On the right, Klarner's first known pentacube tower of Type II
along with the same tower shown unfolded.

In September 1968, I became aware of the existence of yet another
pentacube tower, as depicted in Figure 1 (Type II). Type I and Type II
differ in the positions of the turrets, and both have an empty column at
the inside. The reconstruction of the Type II tower is not that easy, so
David added the fold-up diagram.

Once David was able to find one or two solutions to his own chal-
lenges, his interest quickly turned to other problems; finding all solutions
was left to the computer. Type I has 10 solutions and Type II has 27,
modulo reflection, as obtained by me on a “big” computer in October
1968. They are presented in plane diagrams in Figures 2 and 3, in terms
of pentominoes.

The indicates a J turned on its side with the vertical stem

pointing into the page. Similarly == is a | _ | turned on its side. How
to convert the diagrams to towers is a puzzle in itself! The method is
shown in Figure 4.

Figie 2. The 10 pentacube towers of Type I
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Fgwe 3. The complete set of 27 pentacube towers of Type IL.

5

:
38

Figure 4. The upper left is the first diagram of Type I from Figure 2. The
diagram is split into four parts, folded, and reassembled to form the pentacube
tower. T'wo views of the same tower are shown here.
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YK Tribute o Martin Gardner

I'd like to close with a creation of my own.

Figure 5 shows a tiling of a square with 2000 congruent Y-pentominoes.
The “Y” of Y2K refers both to the year and to the Y-pentomino. The
tiling is simple (not compound), in that no subset of Y-pentominoes tiles
a smaller rectangle. Moreover, it is rotationally symmetric, and does not
contain any of the patterns shown below, patterns which are commonly

used to aid in tilings:

Rotations and reflections of these patterns are also forbidden.
The reader is invited to find the Y-pentomino patterns hidden in the
tiling!

Figme 5. Y2K tiling.




some Reminiscences of David Klarner

David Singmaster

I first met David in 1970 or 1971, when he was visiting Reading Uni-
versity. We discussed box-packing and I found T had solved a problem
that he'd been considering. In two dimensions, if a brick packs a box
(larger than itself), then one can divide the box into two smaller boxes
such that each smaller box can be packed (indeed with its bricks all in
the same direction). The simplest illustration is filling a 6 x 5 box with
3 x 2 bricks, where the only packings exhibit this divisibility property.

David had wondered if this still held in three dimensions and I had
found that 25 1 x 3 x 4 bricks can pack into a 5 x 5 x 12 box but
could not pack 5x 5x e, for c = 1,...,11, nor 1 x 5 x 12 nor 2 x 5 x
12 in any way. This is the smallest example of this behavior. David
later mentioned this in his classic “Brick-packing puzzles” [Kla73], but
he cited an different example: 2 x 3 x 7 in 8 x 11 x 21, apparently having
forgotten the numbers in my example.

In 1978, Dean Hoffman proposed the following. Can one fit 27 bricks,
all @ x b x ¢, into a cube of side @ + b 4 ¢? The planar version is to use
4 bricks of size axb to fit into a square of side a + b. This is easy to do
and is a way of showing the arithmetic-geometric mean inequality

Vab < (a +b)/2

in the form
dab < (a +b)?.

The corresponding inequality for three variables gives us 27abe <
(a+ b+ ¢)? so that a solution of Hoffman’s problem gives a geometric
proof of the arithmetic-geometric mean inequality for three variables.

David Singmaster was the leading expositor of the mathematics of the Rubik’s
Cube and is presently the principal historian of recreational mathematics.
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Hoffman tried to do this using pencil and paper and found it too hard
to do, so he rang up David and asked if he could do it. David had
inherited a fine table saw from his father and used it to make up a set of
27 blocks. As he made each one, he stacked it in the corner and found
a solution as he went.

In the early 1980s, I visited David at Binghamton. Dean Hoffman
was present and David made me a set of 27 blocks from a lovely redwood.
He also made a three-cornered frame to hold them. This set is one of
the treasures of my collection.

It was on this visit that I saw the bedspread made by Kara Lynn
Klarner showing two orthogonal Latin squares of order 10. This is ba-
sically a 10 x 10 array of squares, using ten colors such that each color
occurs once in each row and column. Then each square has a circle on
it, using the same ten colors so that each color occurs once in each row
and column, and further, so that each pair of colors occurs just once as
a square-circle pair. They said the hardest part of making the spread
was finding ten sufficiently contrasting colors.

Bibliography
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oust for the Mel of Tt

Mox Maven

Let’s get this part out of the way: In late March, 1999, he became the
late Mel Stover. I'm not happy about that, and I'd guess that Mel wasn’t
particularly thrilled about it either.

When Houdini was hospitalized, he held out past the doctors’ pre-
dictions and managed to die on Halloween. If Mel had held out just a
few days longer, he’d have died on April Fool’s Day. Then again, when
Houdini was Mel's age he'd heen dead for 34 years.

My introduction to Mel Stover was via Martin Gardner’s seminal
Mathematics Magic and Mystery, which I encountered a few years after
its 1956 publication. There were several exceedingly clever contributions
from Mel, including some of his groundbreaking work on geometric van-
ishes. I was quite taken with his trick entitled “Gargantua’s Ten-Pile
Problem,” which required a deck of 10 billion cards. Mel’s suggestion as
to how such a pack could be most easily assembled: “Buy 200 million
decks of 52 cards each, then discard two cards from each deck.”

Clearly, this was no ordinary inventor.

Over the ensuing years, I came across Mel Stover’s name in the pages
of such learned journals as Scientific American, The New Phoeniz, and
Ibidem. And in the mid-1970s, I became friends with the Winnipeg wag
himself.

As indicated above, Mel was a prolific contributor to a range of
periodicals in the fields of puzzles, gaming, and magic. Most recently,
during the last three vears of the Larsen era, readers of this magazine
were treated to his monthly “Braintwisters” column. In books, not

Orson Welles wrote that Max Maven has “the most original mind in magic.”
Fortuitously, Mr. Welles died before he could revise his opinion. This article first
appeared in Genii in September, 1999. The text is copyright by Max Maven, and
used with permission.
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infrequently, his contributions were simply appropriated. That was all
the more unfortunate, given that Mel was a particularly generous fellow
who, in most cases, surely would have granted permission had it been
sought.

Despite this general largesse, there were certain creations Mel held
back from releasing to a wider audience, preferring to retain the option
of using them to bedevil friends and acquaintances.

Mel was especially fond of devious variants on old puzzles. The
scenario would usually run something like this:

MEL: “Say, y'ever seen this one?”

VICTIM: “Um, yeah, I used to know that, years ago. Let me see, I
think I sort of vaguely remember..."

And that was it. You were screwed. Because whatever you vaguely
remembered, what Mel had given you was different. OL, it looked the
same—at least, you thought it did—but it wasn't.

Of these mischievous pranks, Mel's proudest accomplishment was
clearly his take on the classic horse-and-rider puzzle. The origin is a
type of ambiguous novelty picture that dates back at least as far as the
17th century; examples have been found from Persia, China, and Japan.
The idea was transformed into a puzzle by the American inventor Sam
Loyd in 1858, when he was just 17 years old. Millions were distributed
by P. T. Barnum, and versions have shown up in countless books and
puzzle kits. It’s one of those things that most of us have encountered
at some point or other, but not recently—which was perfect grist for
the Mel.

Exactly when Mel's insidious variant was developed is not known. At
various times he had at least three versions printed up. One rendering,
believed to be his most recent, is shown in Figure 1.}
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Figure 1. Fgure 2.

Yes, of course, donkeys and jockeys are different from zebras and
clowns, but in this context that’s merely a cosmetic distinction. The
important difference is in the orientation of the quadrupeds. In the
Loyd composition, the donkey pieces have identical profiles; that, in
turn, enables the solution, as depicted in Figure 3.? The card is cut
into three pieces. The animals are positioned back-to-back, and then
the rider strip is placed crosswise on top to produce the solution.

3 Another graphic from the Slocum collection, this one used for restaurant promao-
tions circa 1890.
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Let’s give the Stover layout another perusal. See it now? If you
cut the card into three pieces, the zebras will be headed in opposite
directions, and Loyd’s crosswise solution won't work.

But Mel was, in truth, even sneakier than his victims imagined, for
this was a double whammy, hiding in plain sight.

The crafty Canadian would always magnanimously hand you two of
the cards, with the seemingly offhand comment “No need to cut the
second one.” And you, chomping promptly, interpreted that to mean
that the kindly old duffer was providing the two cards for separate pur-
poses: One to slice up and reorganize, the other to keep as an unmarred
souvenir.

And that’s where he nailed you the second time, because when you
reached the teeth-gnashing realization that the pieces of this modified
layout couldn’t be rearranged successfully, you assumed the sting was
over. But in fact, Mel’s puzzle could be solved, if you used all of the
materials he'd given you.

Go back and read the text on the zebra card. It’s deliberately terse;
there’s no determinate article in the challenge to “Straddle clowns on
two zebras.” It’s never specified which two zebras. So the real solution—
the existence of which Mel didn’t always bother to mention—is to cut
one of the cards along its dotted lines, place one of those zebras back-to-
back with its identical counterpart on the whole card, then set the clown
strip crosswise over those two zebras to create the desired outcome.

Yet another example of Stoverian stealth was his take on an item of
more recent vintage, the pyramid puzzle, which seems to go back less
than a century. Despite its relative youth, it has become accepted as one
of those venerable conundra that virtually everyone almost remembers.
The challenge involves a set of identical pieces that must be assembled to
form an equilateral tetrahedron (i.e., a three-dimensional pyramid with
four matching triangular sides).

In its best known format, there are two five-sided pieces, as shown in
Figure 4. Despite the simplicity of the apparatus, the solution is trickier
than one would expect. I won't spoil it by explaining it here; if you
want to make a set of pieces with which to experiment, you can use the
template in Figure 5 to fold your own.

The arrangement is not easy to remember, as it is rather counterin-
tuitive. Further impeding the task of cerebral retention is the fact that,
somewhere along the line, someone came up with the idea of bisecting
each piece, thus producing a version wherein four identical pieces have
to be tetrahedonally assembled.
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Fgure 1. Figure 5.

This is where Stover stepped in. He made use of the two-piece ver-
sion, in a common small plastic edition just under an inch and a half
wide. That's conveniently small enough to make it an easy endeavor to
fingerpalm a third piece. (Perhaps you see where this is going; Mel's
victims certainly didn’t.)

He'd begin by bringing out the three pieces, using two to form a
completed pyramid. As the pieces were so small, his hands hid the details
of what he was actually doing. He'd move his hands away, revealing the
assembled pyramid while keeping the extra piece concealed in his fingers
(Figures 6 and 7).

With his trademark tone of lethargic enthusiasm, he’d remark, “Say,
y'ever seen this one?” And, as you were acknowledging that you had,
while beginning to ponder the location of that long unvisited mental
cranny where the proper configuration was stored, Mel would casually
brush his hand against the pyramid, knocking it apart—and, in so doing,
he'd add the extra piece, as shown in Figure 8.

You can't get there from here. Welcome to Melville.

These intellectual Chinese Finger Traps had an almost mystical al-
lure; Mel's spells were irrisistible. A further enticement was the dis-
tant, ethereal possibility that one might just be able to beat him at his

Figure 6. Figure 7. Figure 8.
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Figure 9.

own game, by discovering a linguistic loophole or conceptual corner that
might afford an alternative solution.

It is with great fondness that I recall the first of the very few times
I managed to trump Mel. This momentous event took place in a coffee
shop, around 1977. Mel turned over his paper placemat, took out a ball-
point pen, and produced a scrawl much like the one shown in Figure 9.
This, he contended, was a row of oak trees. The riddle: What number
did this picture represent?

Warily, I decided to take the least embarrassing route, and plead
ignorance. This, of course, elicited a gleeful cackle from the Manitoba
mortifier, who revealed that the answer was nine. “See?” he exclaimed,
stabbing his finger onto each oak. “Tree, tree and tree—that makes
nine.”

Without pause, he drew a little smudge at the base of each tree as
he continued, “A dog comes along, and urinates on each tree. Now what
number does it represent?”

Inescapably, I knew that I was going to feel excruciating chagrin at
missing what would surely turn out to be a conspicuously obvious an-
swer, but opted to proclaim my continued ignorance. This provoked
another self-satisfied snicker as he declared that it was, quite plainly,
ninety-nine. He gestured again toward the erude illustration and eluci-
dated: “Dirty tree, dirty tree plus dirty tree.”

He furthered the story, enlarging the smudge at the hase of each oak
while describing the return of the dog, who this time took the additional
effort to defecate on the base of each tree. “Okay,” he taunted, “what
number is represented now?”

By this time, my dander had been roused from its normally benign
and prone posture, and I insisted that Mel wait at least a few moments
before charging ahead to announce the solution.
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Time stood still, and then, epiphany. “Aha.” I crowed. “I've got it!
It represents one hundred and eighty-nine.”

Irked, my now scowling tormentor said, “No. The answer is one
hundred: Dirty tree and a turd, dirty tree and a turd plus dirty tree and
a turd. Now, how the hell did you get a hundred and eighty-nine out of
this?”

I leaned back against the curved plastic seat—if memory serves, it
was a light orange color not found in nature—and produced my own
vainglorious smile, as I explained: “Shits de tree, shits de tree and shits
de tree.”

Life was good.

Mel's last few weeks were spent at the Cedars-Sinai Hospital in Los
Angeles. During one of our final meetings, as he lay festooned with tubes
and wires, he suddenly brightened, and began the actions of transferring
a small object back and forth from hand to hand. Then he stopped, and
extended both palm-up fists in front of him.

“Okay,” he said, “which hand has the Viagra pill?”

I paused to consider. Slowly, the middle finger of his left hand rose
to vertical position.

We all smiled.

Bibliography
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Mel Stover
Martin Gardner

I was greatly saddened to learn of the death in 1999 of my longtime
friend Mel Stover, of Winnipeg, Canada. He combined a great love
of magic with a sound knowledge of mathematics, chess, checkers, and
bridge, all combined with a wonderful sense of humor. One of his earli-
est contributions to recreational math was his variation of puzzlist Sam
Loyd’s famous “Get Off the Earth” paradox in which you made a Chi-
nese warrior disappear by rotating a disk. Stover's amusing variations
involved switching two parts of a picture to cause a man’s face seemingly
to change to a glass of beer. (You'll find a picture of the item in my
Mathematics, Magic and Mystery [Gar56].) Mel had a large collection
of such “geometrical vanishes,” as they have been called, from which
he drew for his article, “The Disappearing Man and Other Geometrical
Vanishes” in 1980 [Sto80]. (See Color Plate 1.)

A later creation by Mel was another take-off on a Sam Loyd advertis-
ing premium known as the “Trick Donkeys.” It consisted of three cards,
two bearing pictures of a donkey and one with a picture of two riders.
The problem was to arrange the cards so that each rider was astride a
donkey. Mel’s version, which he sold, was fiendishly clever. Each pur-
chaser got two sets of cards. Instead of donkeys, the pictures were of
two zebras and two clowns. You were told to cut out the three cards
from one set, and keep the other as a spare. The puzzle was ahsolutely
impossible to solve unless you realized that both sets of cards had to be
used!

Mel and I collected magic tricks and stunts that had a blue or off-color
angle. We frequently exchanged such material to keep our collections up

Martin Gardner is the author of some 70 books dealing with mathematics,
science, philosophy and literature.
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to date. For a brief period Mel contributed very funny items to a short-
lived periodical devoted to blue magic—a magazine he himself initiated.
I always looked forward to a letter from Mel because it usually con-
tained a new puzzle, often a puzzle that Mel had invented. Here are four
typical brainteasers that first came my way in a letter from Mel:

1.

In the equation
26 -63 =1

change the position of just one digit to make the equation correct.

Form the figure of a giraffe, as shown helow, with matches or

toothpicks.
A

Change the position of just one piece so as to leave the giraffe
exactly as it was before, except possibly for a rotation or reflection
of the original figure.

Tom's mother had four children. Three were girls. The girls’ first
names were Spring, Summer, and Autumn. What was the first
name of the fourth child?

A Frenchman who couldn’t speak English entered a hardware store.
He made sawing motions with his hand. The clerk guessed at once
that he wanted to buy a saw.

An hour later a deaf and dumb man came into the store. He
signaled his intention by poking a finger in his left ear, then made
circular motions around his other ear. The clerk correctly guessed
that he wanted a pencil sharpener.

The next customer was a blind man. How did he signhal to the
clerk that he wanted to buy a pair of scissors?

Mel caught me completely off guard with this one. He sent a series
of digits broken into parts like so:

XX XX XX XX

I was asked to determine the next pair of digits in the sequence. I
couldn’t solve it. You can imagine my chagrin when Mel informed me
that they were the first eight digits of my home telephone number!
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Mel was a personal friend of Howard Lyons, of Toronto, who edited
a magic periodical titled Ibidem. His artist wife, Pat Patterson, did Ibi-
dem’s hilarious silk-screen covers. One of them pictured the dome of the
Vatican. In the center of the ceiling a playing card was thumbtacked. A
visiting magician had performed the classic card on the ceiling trick. Pat
was also responsible for drawing the leprechauns in a popular marketed
version of a geometrical vanish.

On a summer cruise that Mel took with Howard and Pat, Mel won
first prize on the ship’s costume ball. His “costume” consisted of a huge
cardboard hat that Pat made to cover his entire head. On Mel’s bare
chest and abdomen Pat painted a face. Mel’s nipples were the eyes.
His navel was the nose, and under it Pat painted a wide red mouth.
I thought I still owned a great photograph of Mel in this outlandish
get-up, but I was unable to locate it for this article.

After Mel's wife Mary died, he attended almost every magic conven-
tion held in the United States, Canada, or abroad, even after an accident
confined him to a wheel chair. I never met anyone who didn't like Mel
and thoroughly enjoy his company. In his elderly years he contributed
a column called Brainteasers to Genii, a leading magic monthly. In the
September 1999 issue of this magazine, you'll find a splendid tribute to
Mel by his friend Max Maven, a well known magician specializing in
what the trade calls “mental magic” [Mav99]. The article includes a
cardboard insert picturing Mel’s clown and zebra puzzle.

Here are the answers to the four problems I gave:

1. 25 -63 = 1.
2.

N

3. Tom.

4. The blind man said, “I want to buy a pair of scissors.”
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The Stack of Quarters
Ronald A. Wohl

To Mel

This contribution is dedicated to Mel Stover. I had known Mel for
many years and attended more magic gatherings with him than I care
to enumerate. Mel truly was brilliant and Mel and I had many wonderful
conversations.

And who could ever forget, after witnessing it at G4G2, the electric
cart race between Mel and J. C. Doty, from the hotel up and down
Peachtree Street to the 191 Club. Truly, the Atlanta 2 were so much
more exciting than the Indianapolis 500!

We all miss Mel, both as person and as inspiration, and we all missed
Mel at G4G4. But perhaps, just perhaps, Mel had the last laugh. I
somehow cannot get rid of the feeling that Mel attended G4G4, albeit
in the 4*® dimension. While many of the participants made wonderful
attempts to explain, illustrate and cajole the 4" dimension, and to make
it appear very, very real, there may yet be some aspects of the 4P
dimension that we have not fully grasped yet, but that Mel now knows.

And Mel and I are looking forward to G4G5!

The Stack of Quarters

The following is a wonderful “bar stunt,” or puzzle for all occasions. It
is not mine, and I have been told that this presentation is by Mel Stover.

Ronald A. Wohl’s 50-year involvement in magic and mathematics is docu-
mented in his articles in magic magazines in Switzerland, Germany, England, and
the United States, and in Martin Gardner’s books.

33




34 Ronald A. Wohl

A stack of 10 quarters is placed on the table. Also placed on the
table, in a row, are all the standard American coins, in order from the
largest coin to the smallest coin: An Eisenhower (or similar) dollar, a
Kennedy (or similar) half-dollar, a Susan B. Anthony or the new golden
dollar coin, a quarter (any state will do), a nickel, a penny, and finally
a dime. (Yes, in case you did not know, the penny is larger than the
dime.)

All spectators are invited to guess which coin, when placed vertically
besides the stack of 10 quarters, will match its height perfectly. Each
spectator is asked in turn, in order to commit himself, by pushing the
coin he has selected in his mind forward an inch or so.

The majority of people will choose a coin that is way too large.
Very rarely will the correct coin be chosen, which is—suspense!—the
smallest coin, the dime, as can be easily demonstrated once all spectators
have made their selection.

A Few Tips for Presentation

It is nice to have all the necessary coins together in a special coin purse.
The illusion is heightened if the stack of quarters is not placed directly
onto the table, but onto a support such as a matchbox or a deck of cards.
Do not assemble the stack in your hands, but build it up slowly and
painfully, one by one, while counting loudly from one to ten.

Do not place the row of coins too close to the stack, but reasonably
far away. It seems best, if the row of coins extends to both sides of the
stack (when drawing a perpendicular line, etc.).

And finally, for magicians only: After everybody has digested this
puzzle, the perfect moment has come to perform a trick with a “stack”
of 10 quarters. You could not ask for better misdirection!
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(rostic in Honor of Martin Gordner

Julie Sussman

Instructions
When you have solved a crostic:

e the letters in the diagram (reading across) will spell out a quota-
tion:

e the first letters of the answer WORDs (reading down) will spell out
the author and title of the work from which the quotation comes.

Just write the answers to any CLUEs you know over the numbered
dashes next to the CLUEs, then transfer these answer letters to the
correspondingly-numbered diagram squares. For example, if the CLUE
and answer to WORD B were

B Crostic P U Z Z L E
4 13 2 21 19 48

you would place a P in square 4, a U in square 13, etc.

You can also work backwards from the diagram to the WORDSs, since
a letter in the corner of each square tells which answer WORD it comes
from. For example, if your diagram contains:

48 B|49 X|50 C|51 P
__ENNEY

Julie Sussman is the author of I Can Read That! A Traveler’s Guide to Chinese
Characters, and has coauthored and edited computer science textbooks for M.I.T.
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yvou might deduce that square 50 should contain an 8. This S should be
placed over dash 50 in WORD C.

Have fun! And be careful when reading the diagram—only black
squares (not the end of the line) separate words.

04 1|95 B|96 E|

109N]110T|111C[112F] 114H[115G

123R{124H|126N|126E[|127.J|128L 130B|131C|132Z

140X[141B] 144] 146G

156E]

173R

187B|188L|189T)

220U(2215 223T] 2265|2274

245V|246N[24T T[248F I 254X il I

CLUES WORDS

A Beverage featured in Bach — e —— e — —
cantata, BWV.211

B Martin Gardner’s edition of —_— e
Carrell work (2 wds preceded a5 201 15 21 130 141 172 56 T8 117

by "The'") 159 106 187 147

C Ancient Egyptian document —_—— —_— — — ——_— —_—— —
showing "Russian peasant 148 137 131 111 80 71 177 166 17 99

method" of multiplication 0 503
(2 wds)
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D Tibetan dog (2 wds) S —

E Magazine for which Martin —_— o —
Gardner started writing in

the 19505 (2 wds) 185 107 89 26 163 143 215 81
F 01d instrument for observing __ _ _ _ ——  —— —

positions of celestial
bodies

G Bestseller by word J (3 wds) — — — — — — — — — —

H "The Mass is ... an —_— e — — — — — — — —

." (Martin Luther)

I Author of humorous poetry —_ e — —

J Martin Gardner’s successor S
at word E (full name)

K Huge Australian bird —_—— —
(world’s second largest) 225 4L 230

L Gamow’s wisitor to -
Wonderland (full name)

M Portent

N Martin Gardner’s ceolumm in —_— e ———— — — — —
"Skeptical Inquirer" (3 wds

+ compound) 78 190 109 246 219 45 27 125 204

0 "The of Peers,  __ __ ___ ___ ___
throughout the war, did
nothing in particular, and
did it very well" (Gilbert
and Sullivan, "Iolanthe")

P Author of "Flatland" -
Q Advantage (2 wds) -

49 121 T2 182 62 67 93 164 256

R Largest two-digit prime —_—— — — — — — —_—— —
(compound) 116 205 149 123 180 30 74 173 236 244

S Disposable handkerchief —_— e — o — —
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Appropriately named street —_—— — — — — —_—— — —
Martin Gardner used to live
on (2 wds) 189 B0

Gold coin worth 16 pieces of ___ ___ __ ___ ___ __ ___ ___
eight

Late character in word B — e
(2 wds)

Homeric hero — o — — — — — —

"Powers of Ten" ceollaborator —— —/ —  __
(full name) 2

Kind of glass featured in —_—
word B 179

"The difference betweem - ___ __ . __ _ __ ___ ___ ___ ___

the first- and second-best 260 162 65 136 46 83 1 176 132 142

things in art absolutely

seems to escape verbal
" (William James)




A Clock Puzzle
Andy Latto

The Puzzle

I have a clock on which the hour hand and the minute hand are identical.
Usually this doesn’t bother me. If one hand points to 3, and the other
to 12, I know it is 3:00. It can’t be 12:15, because at 12:15, the hour
hand wouldn’t point exactly to 12; it would point a little bit past the 12.

Assume that I can always tell whether it is A.M. or P.M. Are there
times during the day when I cannot tell the time by looking at my clock?
How many times does this occur in a 12-hour period?

Soletion

Imagine two clocks, one normal, and running 12 times faster than the
first. The crucial property the clocks have is that if both started at
12:00, the hour hand of the second clock is always in the same position
as the minute hand of the first. If at time ¢, the minute hand of the
second clock happens to be in the same position as the hour hand of the
original clock, then I cannot tell which is the minute hand and which
is the hour hand at time ¢, because I do not know whether the current
time is the time on the first clock, or the time on the second clock. At
time t, the two hands are in the same two positions on the two clocks,
only interchanged. So the difficult question “How many times can I not
distinguish the hands on the first clock?” has been transformed into the
simple question “How often is the minute hand of the second clock in

Andy Latto has previously published in Inside Backgammon and The Intelli-
gent Gambler, and won the 1999 New England Poker Classic.

41




42 Andy Latto

the same position as the hour hand of the original clock?’ Over a 12
hour period, the hour hand of the original clock revolves once, while the
minute hand of the fast clock revolves 144 times, so they are in the same
location 143 times. So, 143 is the answer to the question “How often am
I unable to tell which hand of my clock is the hour hand?”

However, this is subtly different from the original question, “How
often am I unable to determine the correct time from my clock?” At
times when the two hands of my clock are at the same location, I cannot
tell which is the hour hand and which is the minute hand, but I can
nonetheless tell what time it is. Therefore, starting with the 143 times
that we cannot distinguish the hands of the clock, we must subtract the
11 times when we cannot distinguish the hands, but do not need to in
order to determine the time, to conclude that there are 132 times in a
day when my clock will not tell me the time.

It is interesting to note that this is essentially a topological result.
The above solution shows that even if my clock runs erratically (with
the hands not running steadily nor in sync), as long as

1. both hands move constantly forward throughout the day,
2. the hour hand never passes the minute hand, and

3. the minute hand revolves 12 times while the hour hand revolves
once, then

there will be exactly 132 times during the day when I cannot tell what
time it is.




Three Problems

Andy Lia and Bill Sends

Problem | What is the mazimum number of non-overlapping circles of
radius 1 which can simultaneously have exactly one point in common
with a square of side length 2¢

Problem 2 Let « and y be positive integers each with ezactly two kinds of
digits. For example, v = 1313 and y = 3344. Then x + y = 4657 has
four kinds of digits. However, this is far from optimal.

(a) What is the mazimum number of kinds of digits in z + y? Give
an example in which the optimal result is attained, using the min-
imum number of digits in x, y, and x + y combined, and give a
justification.

(b) Answer the same question for |x — y| instead of z + y.

Problem 3 Dissect the figure below into three pieces and reassemble them
into an equilateral triangle.

Andy Liu has won international and national awards for the promotion of math-

ematics. Bill Sands likes winters on the Canadian prairie, and was an editor of Cruz
Mathematicorum for ten years, but is otherwise relatively sane.
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Comments. Problem 1, proposed by Bill, has since appeared as Challenge
Problem C33 in the May 1998 issue of Mathematics and Informatics
Quarterly. Problem 2(a) was proposed by Bill and has since appeared as
Problem S-14 in the April 1998 issue of Math Horizons. The current ver-
sion was a modification by Andy, who also extended it to Problem 2(b),
appearing here for the first time. Problem 3 appeared as Problem 1806
in the January 1993 issue of Cruz Mathematicorum, of which Bill was
then editor. It was proposed by Andy, based on an idea of NOB Yoshi-
gahara.

Solutions

Problem | We can easily have six such circles. We now prove that we
cannot have seven. The following diagram shows the locus £ of a point
at a distance 1 from the given square S. It consists of four line segments
BC,DE, FG, and H A obtained by translating the edges of § outward,
together with four circular quadrants AB, CD, EF, and GH connecting
them.

B
A D
S L
E
G F

Suppose it is possible for seven non-overlapping unit circles to touch
S simultaneously. Then the centers of these circles determine a convex
heptagon T inscribed in £. Moreover, each side of T is of length at least
2, so that its perimeter is at least 14. If the length of £ is less than 14,
we will have a contradiction. However, it is 8 + 27 > 14. So we seek a
shorter curve £’ in which T is still inscribed.

Suppose no vertices of T lie on the quadrants AB and C'D. Then we
can replace these quadrants in £ with the segments AB and CD. The
new curve £ has length 8 4+ 2v/2 + m < 14. Hence at least three of the
quadrants in £ must contain a vertex of T'.

Suppose each quadrant has a vertex. Then there is a segment with-
out. However, we can move onto this segment a vertex on an adjacent
quadrant without causing any problem. Thus we may assume that the

vertices of T' lie on BC,CD,DE EF, F'G,GH and HA respectively.
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Take U on HA and V on C'B such that AU = BV and UV = 2. Then
either AU or BV does not contain a vertex of T'. We may assume that
AU does not. We can then replace the quadrant AB and the segment
UA in £ by the segment BU. The saving amounts to V214 g — V3.

Let P be the vertex of T' on the quadrant C'D. We can replace this
quadrant with the segments CP and DP. Now CP+DP < CM+ DM,
where M is the midpoint of the quadrant C'D. Then the saving amounts
to L — (CP+ DP)>Z —2V/2 2.

Let £’ be obtained from £ by replacing the quadrants AB and CD
as indicated above, and the quadrants EF" and GH in the same way as
for CD. Then its length is at most

3+2ﬂ—(\/§—1+%—\/§}—3(g—2v2 —V2) =946V2 - V2+V3-V2 < 14,

This is the desired contradiction.

Gomments. For completeness, we give a proof of the following result which
was used in the solution above.

lemme. If M is the midpoint of a circular arc CD, then CP 4+ DP <
CM + DM for any other point P on this arc.

Proof.  We may take P to be on the arc DM. Extend CM to N so
that DM = MN and extend CP to @ so that DP = P(. Since
LOCMD = LCPD, we have LCND = £CQD. Hence C, D, N and Q are
also concyclic, and the centre of this circle is M. Hence CM + DM =
CN =>CQ =CP+ DP. ]
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Andy Liu and Bill Sands

Problem 2

(a)

(b)

A solution with all 10 digits is 4949994494 4 222244 = 4950216738.
We now prove that 26 digits in all is minimum. Suppose to the
contrary there is a 25-digit solution. First assume that x + y has
exactly 10 digits. Then z has at least 9 digits. Suppose x has 9
digits, so that y has 6. Then the first 3 digits of x + y will be 100,
and it will not have 10 distinct digits. Suppose x has 10 digits,
so that y has 5. If the carrying does not reach the third digit of
x + y, then its first 3 digits are not distinct. If it does, then the
fourth and fifth digit of  + y are both 0. In either case, z + y
will not have 10 distinet digits. If  + y has more than 10 digits,
the situation is worse, and an analogous argument shows that it
cannot have all 10 kinds of digits.

A solution with all 10 digits is 4040004004 — 442222 = 4039561782,
and a similar argument shows that 26 digits in all is minimum.

Remark. There is a striking affinity between the solutions to the two
parts, with 4 appearing in = as well as y, and 2 in y.

Problem 3

Remirk.  Note that both the given shape and the equilateral triangle tile
the plane. Thus the dissection may be obtained by superimposing two
tessellations on each other. This is a standard method employed by
Harry Lindgren in [Lin72]. See also Greg Frederickson's [Fre97].

Comments.  Problem 1 was solved by Andy and Bill. Problem 2(a) was
solved by Andy, and Problem 2(b) by Nick Baxter of Hillshorough, Cal-
ifornia. Problem 3 was solved by P. Penning of Delft, The Netherlands.
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A Scrub Tile Puzzle

Tom Rodgers

Paste the following 3-letter words on ten one inch square tiles:
CAR CUB DIM HEN HUT MOB RED SAW SON WIT

Note that every letter occurs exactly twice and that any two letters
occur in at most one word. These are called scrub tiles and operate like
word dominoes in that two scrubs can abut only if they share a letter in
common. For this puzzle, you'll want to cut out the 10 Scrub tiles from
heavy cardboard, and construct a board with 10 squares:

HEN||([HUT||[WIT|||SAW “
SON CAR
RED||[DIM||[MOB|||CUB “

See if it is possible to place the 10 scrub tiles on the board. (As
drawn, they are almost placed legally, except that SON and RED abut
despite sharing no letters in common.)

Tom Rodgers organized the four Gatherings for Gardner and collects puzzles.
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Solution

Before reading on, verify for yourself that the following solves the puzzle:

DIM|||WIT||[HOT |]\/IOB

RED CUB

HEN|||SUN|{|[SAW|]||CAR

The astute reader will notice an error. Indeed, any two words which
abut share a letter. However, the scrub tiles aren’t identical to those
in the original puzzle! We've replaced SON and HUT by SUN and
HOT. In truth, the original problem has no solution.

Make a copy of all 12 scrubs and the board out of heavy cardboard.
Find a likely victim, and arrange your scrubs on the grid as shown in the
“solution,” palming the two scrubs, HUT and SON. Briefly show your
mark the arrangement and then drop the scrubs on the table. Be careful
to hold onto the HOT and SUN scrubs with your thumbs, letting HUT
and SON fall in their place. Your poor, befuddled victim will have no
chance at finding a loop.

Graphs (or diagrams) of each version of the puzzle are shown be-
low. Two words are connected by an edge if they share a letter. The
original puzzle forms the famous Petersen graph which is known to be
non-Hamiltonian: There is no cycle which includes each word exactly
once. The graph for the the augmented puzzle is shown on the right.
You'll find it easy to locate a Hamiltonian cycle.

The Petersen graph A Hamiltonian graph
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See Martin Gardner’s articles about Snarks for other interesting

properties of the Petersen Graph [Gar76]. For more information on
scrubs, see [CFR99).
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Al Tied up in Noughts
David Wolfe and Susan Hirshberg

It’s your turn to play in each of these 2-player Scrabble®positions. Find
the play which yields the best chance to win the game.!

The avid Scrabble®pla,yer should try the problems now before read-
ing on. Anyone else will surely want to read on for a hint or two; we
assure you the hints will not give away the problem.

Recall that there is a bonus of 50 points for placing all 7 tiles in one
turn (called a BINGO). Any tiles remaining in your rack at the end of
the game are subtracted from your score. If, however, one player ends
the game by using up all his/her tiles, that player adds double the total
value of tiles in the opponents rack to his/her score. A tile on the board
with a lowercase letter is a blank.

All words on each board are legal. In addition, the solver may also
need to know the following unusual words: AA, AY, ALDRINS, BA,
DARINGS, DURIANS, EN, ES, GRADINS, ILEXES, MU, NA, OS,
PED, QINDARS, REFT, RIBANDS, UN, YOND, YONI.

Hinf. Don't go for points on your first play! (Another hint is in the first
paragraph of the solution page.)

David Wolfe is best known for his work with Elwyn Berlekamp on mathematics
applied to the game of Go. Susan Hirshberg is conspicuously obscure.
1 These problems are based on the American lexicon in any edition of The Official

Scrabblé® Players Dictionary. (For Scrabblc@cnthusiasts.. use any lexicon you wish
from OSPD up through TWL98.)




David Wolfe and Susan Hirshberg

CENTEEE BTN
DWS TLS (:‘-‘}z E1 |_1 DWS
ows CJA|VIEJF] I]S]|H,
DLS DWS D, T, ows| H, DLS
DWS Jol O, DWS 1,1 D,
ns|OJR| [S| |AJVJE
DLS T,| A, |oLs P3 T,os| G,
T BlRIAl [E] [L
DLS B3 |_! |1 |\]1 DLS A1
TLS TLS |_i E‘ |\|1 81 42@7
oS 1 G 10) [ YJE
DLS DWS Mo E | A | T, ows| E, DLS
- PlaD.| D) I E|S,
DWS TLS LS 03 DWS
DLS . DLS
kalrluly)

Tiles Left: AAAEEEFIIIMNNNNOOOOORRRTTUUUWWX

Figre 1. The score is tied. What is your best plan to win?
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. DLS . DLS .
DWS TLS LS DWS
DWS DLS DLS DWS QIJI
DLS DWS DLs DWS XU,
Dws DWS B.| I,]0,
LS LS LS S| I,
DLS DLS V, Ja T1
[ws| ous clolcloln]ulT]s,
DLS DLS (_“-,2 A1 (32 H4 |1
TLS TLS ZU |1 T1 R
DWS ElT,ewsi FILIALY,
DLS DWS DLS Y, Al || M/|os
DWS DLS DLS |33 |1 A1
DwWSs LS TLS _SL |
DLS . DLS u

[lc[ulJufs] ]

Tiles Left: AAAAABDDDDEEEEEEEEEEEFGHIMN
NNNNOOOOOPRRRRRTTUUVWW

Figme . The score is tied. What is your best plan to win?




David Wolfe and Susan Hirshberg

. DLS DLS \M (:)1
ous| L| E| X,| E| S, ns AfH,
A1 E1 F4 DLS DLS D2 E1
DLS Y, [ows T, 1,]C, Y, O, N,|oLs
DWS A, DWS R,
HJO| VJE|L| [MJE s
DLS A1 os| E |OLs E, |oLs
el | [ [a [alrfrloln] | |
A1 DLS DLS T‘ A1 D2 DLS
R1 TLS LS R1 LS M |i Ni K5
L OIT,] IBJAJIIJZJE] PWIN |1,
Yy (U T, O, G U Tjos
D I|PJT, Fg |, V.l E, S,|ows| E,
DWS E, TLS LS

o
Lc_

c
w0
_|

ANRNEEN

There are 9 tiles remaining: BGLNOOQUW

Figme 3.  The score is tied. What is your best plan to win?
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Soltions

Surprisingly, the best play in each instance is to place the blank tile in
your rack next to the blank tile already on the board, scoring no points
for the turn. Before reading on, the puzzle solver may want to rework
the problems.

FTQUI‘E . For this problem, there are two high point plays that come to
mind: QUIeK/

SUAVE/PIT/BRAcE/BLINK (64 points) and QUIRKs/BLIMPs (57
points). Although playing the blank as an “s” below the “a” in PaD-
DIES scores no points this turn, it guarantees you a 111 point play next
turn of QUIRKY /asK. Notice that the opponent cannot have an S, P,
H or K for ASS, ASP, ASH and ASK, and has no way of blocking the
QUIRKY opening.

Figire 7. SKILLfuL/AIL (149 points) looks awfully good, but playing
the blank for xu (0 points) is superior. The board is then so blocked
up that the game can only last a few more turns. The next turn, you
plan to play ZITS/JOGS (25 points) which the opponent cannot block.
In the next one or two turns, you can exchange so as to guarantee your
rack has at worst three 4 point tiles and four 1 point tiles, which could
be 9 points worse than opponents rack. In the meanwhile, the best the
opponent can hope for is to play WON/JO (15). (If he tries playing
JO/ON alone, you can play ION.) Thus this 0 point play guarantees a
win by at least 25 — 15 — 9 = 1 point.

It’s important that the opponent can have no L's (for ZLOTE/LET),
Y’s (for ZYME/YET), or S’s (for lots of reasons), since these plays
threaten to prolong the game. Also, the Scrabble player well versed in
the American lexicon can verify there is no other way to thoroughly block
up the lower right corner and guarantee a quick ending to the game. For
example, gulb might be extended to MOguL, Sum to OMASum, and pulL
to AMpuL.

FTQ(H‘E 3. For this last problem, it is possible to bingo and play all 7 tiles
in any one of a number of ways. There is a chance, however, that the
opponent will bingo back with BLOWGUN /PEW or LONGBOW /PEG
(along the bottom) or LONGBOW/LEFT/OS (along the top), leaving
you behind, since you'll be stuck with the Q. How can you guarantee a
win?
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If you stall for a turn by passing, the opponent might play the
MU/UN (12 points), and you may still lose for the same reason as above.

Your only hope to guarantee a win is to play only one tile. But where?
If you were to pick up the Q, your only bingo is then QINDARS, and
the only opening is along the bottom (QINDARS/PEN). If the opponent
blocked it with LONGBOW or BLOWGUN, you could lose.

To create a second possible place to play QINDARS, play the blank
next to the other blank to form “ye” (0 points). This guarantees you
can bingo next turn no matter what your adversary does. (If, by the
way, the opponent passes, you bingo if you pick up the @, accumulating
enough points to win; you play OW/AWE if you pick up a W and bingo
next turn; and you can safely pass if you pick up any other tile, leaving
you with fewer points in your rack.) The following table shows how you
have two possible places to bingo no matter what single tile you draw;
hence the opponent cannot block both:

B RIBANDS |X| |X

G DARINGS X X The four bingo lanes are numbered:
GRADINS

X
L|ALDRINS |*| |X
X

1. Upper left (ILEXES or AA)
N|INNARDS | |X 2. Right side (YOND or YONI to MINKS)
INROADS [X|X 3. Lower side (PEA, PED, PEG, PER or PEW)
O|ORDAINS X 4. Upper side (DEFT, LEFT or REFT)
SADIRON
QIQINDARS [*| |X “X" means the bingo can be played in the lane.

U [DURIANS X |X “*7 means the bingo can be played after playing
W{INWARDS |*|X|X “ye”.

BLOWGUN
LONGBOW

A




Jumping Gards

Jaime Poniachik

Playing cards, with their numerical values, have long provided
recreational mathematicians with a paradise of possibilities.
—DMartin Gardner

Before describing my jumping card problems, a few words about Martin
Gardner are in order. Martin Gardner is the founding father of the
mathematical recreations world in Argentina. Through his columns and
books (the Canon) we got to know both the classics—like Sam Loyd and
H. E. Dudeney—and the contemporaries. It is because of Gardner that
we Argentinian mathemagicians even got to know one another. Here
is one such example: In my first letter to Martin I told him that math
puzzlers in Buenos Aires were few and isolated. In his answer he sent me
the name and address of a Federico Fink, a few blocks from my home.
Federico, who was a keen aficionado of Mac Mahon’s dominoes, soon
became a close friend of mine. Martin taught us the puzzles and also
the spirit and ethics of puzzling. We love him.

(lose Neighhors

For the first problem, begin with cards 1 to 8 in ascending order:

1 2 3 4 5 6 7 8

Jaime Poniachik is a well-known maker of games and puzzles. He leads Ar-
gentina's foremost publishing company of puzzle books and magazines.
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The object of the puzzle is to move the cards into descending order
through a sequence of legal moves:

8 7 6 5 4 3 2 1

A legal move consists of exchanging any two cards with one condition:
two neighboring cards may never have a difference strictly greater than
3. On a first move we could not exchange 1 and 4, because it would
leave a pair of neighbours, 1 and 5, with a difference exceeding 3:

il

1. How many moves do you need to do the task?

2. Try a similar puzzle with cards 1 to 9.

boing over Multiples

Let’s try a new rule. We begin again with cards 1 to 8 in ascending
order. This time it is convenient to hold the cards in your hand:

The ohject of the puzzle is to reverse the order:
Each move consists of moving any card to a new position, jumping over

one or more cards, under one condition: you may only jump over cards
which numbers add up to an even result.
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On a first move you could take card 7 over 6 + 5 + 4 + 3 (= 18)
and insert it between 2 and 3.

Ly

1. How many moves do you need to complete the task?

2. A more demanding puzzle: same, but you may now only jump over
cards which numbers add up to 5 or a multiple of 5 (5, 10, 15, 20,
25, ...).

Measured Jumps

Let us still try a new rule. We hold in hand cards 1-2-3, in ascending
order:

The object of the puzzle is to reverse the order. Each move consists in
taking card number N over precisely N other cards. The diagram shows
a solution in 4 moves:

SRISRTRTIRE

w9 n

. move
move “1” move “17 right 2 move “1"
right 1 place  right 1 place places right 1 place

Though the example shows cards moving to the right only, you may
make some moves toward the right and other moves toward the left at
your convenience. Try to solve the same puzzle with differing numbers
of cards. The following chart shows the best we could do.
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Starting | Ending |Moves

1 1 0
12 21 1
123 321 4
1234 4321 7

12345 54321 11
123456 | 654321 14
1234567 | 7654321 | 18
12345678 | 87654321 | 21
123456789|987654321| 25

Answers
Close Netghbors

1. 14 moves. These are the cards to exchange on each move: 13, 76,
24, 73, 15, 74, 84, 64, 23, 56, 12, 35, 31, 24. (Solver: Héctor San
Segundo)

2. 24 moves: 97, 68, 34, 37, 95, 65, 53, 54, 24, 56, 97, 32, &7, 31, 67,
53, 54, 87, 64, 56, 98, 75, 68, 97. (Solver: Diego Bracamonte)

boing over Multiples

1. 7 moves: b over 4321, 1 over 23467, 8 over 1764325, 6 over 4325, 2
over 347, 7 over 4356, 3 over 4.

2. 9 moves: 8 over 74+6+4+5+4+3, 6 over H+4+43+8, 7 over bh+4+3+8,
1 over 24647484344, 8 over 7T+642, 2 over 64+7+3+4, 6 over
7+3, 3 over 6+4, 5 over 142+3+4. (Solvers: Nina Poniachik,
Héctor San Segundo)

Meastred dumps  Cards move to the R(ight) or to the L(eft).

4 cards: 2R, 1R, 3R, 2L, 1R, 1R, 2R.

5 cards: 2R, 3R, 1R, 3L, 2L, 1R, 4R, 1R, 2R, 3R, 2R.

6 cards: 3R, 2R. 4R, 1R, 4L, 3L, 2L, 1R, 5R, 1R, 4R, 2R, 2R, 3R.

7 cards: 3R, 4R, 2R, 5R, 1R, 5L, 4L, 3L, 1R, 1R, 6R, 1R, 5R, 3R, 2R,
9R, 4R, 3R.
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8 cards: 4R, 3R, 5R, 2R, 6R, 1R, 7R, 4L, 5L, 6L, 2L, 1R, 1R, 1R, 6R,
3R, 5R, 4R, 2R, 2R, 2R. (Solver: Rubén Efron)

9 cards: 4R, 5R, 3R, 6R, 2R, 7R, 1R, 8R, 5L, 6L, 7L, 2R, 2R, 7R, 1R
(repeat six times), 6R, 4R, 5R, 3R, 3R. (Solver: Rubén Efron)

This puzzle may be solved even if you are obliged to mave every card
towards the right. In fact, if on each turn, you move the card of the
highest value allowable towards the right, the procedure will terminate
with the task complete.







S1x Off-beat Chess Problems

dohn Beasley

The chess problem is one of the most specialized forms of puzzle, and
it oceurs in Martin Gardner’s books only where there is some twist
requiring a leap of imagination rather than mere grandmasterly depth
of calculation. The six problems given here are all of this kind. In each
case, the stipulation is the apparently elementary

White to play and force mate
in two moves against any defense

but naturally there is a catch, and to get around the catch the solver
must first answer the question

|What was Black’s last move?|

Sometimes the catch will be found not to be a catch at all; sometimes
it is all too real, but if you cannot get in by the door then perhaps the
window will be open ...

John Beasley, the author of The Ins and Outs of Peg Solitaire, is a well-known
composer of chess problems and endgame studies.
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FT[]UTE . (F. Amelung, Duna Zeitung, 1897)
A mate in two appears quite impossible, but
what was Black’s last move? Not by Ph7,
which has never moved at all; not by K
from g6, because the two kings would have
been on adjacent squares; not K from g7, be-
cause it would have been in check to white
Pf6, and there is no square from which the
pawn could have come to give this check; not
by Pg5 from g6, because there it would have
been giving check to white K with Black
to move. So Black’s last move must have
been g7-gh, and White can capture it en pas-
sant: 1 h5xg6 (1 ... Khs 2 Rxh7 mate).
Amelung (1842-1909) was a famous Latvian
chess endgame analyst and problem com-
poser.
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Figure 2. (S. Loyd, Musical World, 1859)
1 Qal would threaten mate by 2 QhS, and
Black's only defense would be to castle. Can

/ i
> &

7 he do so? Well, Black’s last move cannot
% / have been with a pawn, since neither of his
7 // /A y pawns has moved, so it must have been with

the king or the rook. Hence he has lost his
right to castle, and 1 Qal does indeed force
mate in two. Sam Lovd (1841-1911) was
America’s most famous puzzlist, whose work
has been featured in Martin’s books right
from the start.

;,/_ {/’4: s

-

FTQ(II‘E 3. (Simplified from a problem by S.
Loyd, Missouri Democrat, 1859) Again, can
Black castle? If his last move was by the
rook on a8, he has lost the right to castle
long, and 1 Qg7 forces mate in two; if it was
by the rook on h8, he has lost the right to
castle short, and 1 QX7 works. (If his last
move was by the king, he has lost the right
to castle on either side, and either Qg7 or
QxcT7 will work.) So White always can force
mate in two from this position, but precisely
how he does it depends on Black’s last move.
Loyd thought this idea too slight to show in
simple two-move form, and buried it inside
a three-mover.

Figure 4. (W. Langstaff. Chess Amateur
1922) A combination of these two themes.
FEither Black’s last move was with his king
or rook, in which case he has lost the right
to castle and 1 Ke6 forces mate in two,
or it was with the pawn, in which case it
must have been Pg7-gb and the en pas-
sant capture 1 Ph5xg6 works (1 ... 0-0 2
h7). Again, White definitely can force mate
in two, though how he does it depends on
Black’s last move. Langstaff (1897-1974)
was a DBritish chess problem composer, and
this little classic has kept his name alive.
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Fgure 5. (T. R. Dawson, Falkirk Her-
ald, 1914) More of the same? Black’s last
move cannot have been with K (for exam-
ple, on d8 it would have been in an im-
possible double check from Ne6 and PeT7),
so it must have been Pd7-d5 or Pf7-f5 and
White takes en passant as appropriate. No!
White has made ten pawn captures (axh,
bxec twice, exd twice, dxe twice, fxe, gxf,
and hxg) and Black has lost only ten men
including the light-square bishop, so Black’s
d-pawn must have moved long ago to let this
bishop out to be captured. So Black’s last
move must have been Pf7-f5, and the solu-
tion is explicitly 1 Pg5 x f6. Dawson (1889-
1951) was Britain’s most famous chess prob-
lem composer and delighted in tricks of this
sort.

FIQUI‘E 6. (E. Dunsany, Fairy Chess Re-
view 1943) Again, more of the same? It can
be shown that Black Bbl is Black’s original
Bce8, so his move Pd7xc6 must have been
made long ago and his last move was ei-
ther with K or R (1 Ke6) or with Peb from
e7 (1 Pdbxe6 en passant). Again, NO! If
Black has played Pe7-e5, his pawn captures
must have been f7xe6xdbxcdxb3xa2 and
d7xc6, and White's six lost men include the
dark-square bishop. So Black’s last move
was with K or R, and the solution is explic-
itly 1 Ke6. “This took a host of scalps,”
wrote Dawson in 1943; mine duly followed
many years later. Dunsany (1878-1957) was
an Irish peer and a writer of highly evocative
short stories, as well as a composer of chess
problems,.




Four Squares for Squares

Mogens Esrom Larsen

When the pharaohs built their pyramids with one stone at the top, four
in the next layer, nine below them, ete., they stopped with 24 layers to
make the total number of stones a square, 702.

As pointed out in 1919 by Dr. Watson, besides 1 this is the only
square among these sums of squares.

Four Squares

Generalization to four dimensions leads to the question, if there are any
squares among the sums of the first cubes? Already in 1631 Faulhaber

knew the formula .
Zn: i — (n(n + 1))
k=1 2

Four Gubes

A cube divided in each direction in four equal pieces is then parted in
64 small cubes—a square.

We may consider this number as the number of cubes in the two
uttermost layers of the cube. Then we may ask the question, for which
numbers, n, will the number of cubes in the two uttermost layers be a
square, when the cube is divided in n?® equal small cubes? As an example
for n = 10 the number becomes 784 = 282.

What is the function leading from a pair (n,m) satisfying the relation

nd — (n—4)3 = m?

Mogens Esrom Larsen writes the puzzle page “Une page d'énigmes” for the
journal Science Illustrée.
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to the next pair of solutions? We know the value of (4, 8) to be (10, 28).

Four Tesseracts

In dimension four the start of dividing the generalized cube—the tesseract—
in four equal pieces in each direction, parting it into 4* = 256 small
tesseracts, gives the obvious solution 162. But are there any other solu-
tions to the equation

nt — (n —4)* = m??

Solutions

The map is
(n,m) — (271. + % —2,6n+2m — 12)

giving the solutions (32,104), (114, 388), ....
Consider p = n — 2 to write the number of cubes as

(p+2)%— (p—2)* = 12p* + 16.
Then we ask for a square
3p? +4 =12

As any odd square satisfies p? = 1(8) this equation cannot have odd
solutions. So we may write p = 2s and r = 2¢ to get

3s?24+1=1¢%

An equation known as Pell’s equation and solved by Fermat. The solu-
tion we already know is (s,t) = (1,2). Writing the equation as

(t+ V3s)(t — V3s) = 1,
We find all solutions as
(24 V3)* =t + /35
with the recursion
(t +3s)(2+ V3) = (2t + 3s) + V3(t + 2s).

The backtracking to (n,m) = (2s + 2, 4¢) gives the formula above.
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That the equation
n* — (n —4)* = m?

has no solutions with n > 4 was proved by Leibniz in 1678 in order to
prove that the area of a primitive right triangle with integral sides is not
a square.

Once upon a time I wrote to Martin Gardner asking if he ever used
Pell’s equation. His answer was “No!" This is my only two-way com-
munication with him.
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s All about Astonishment

Tyler Barrett

What happens when you perform a magic trick for a puzzle solver? He
tries to solve it! I discovered this when I began collecting puzzles. In the
past 10 years I have traveled the world to find puzzles for my collection,
and I have been fortunate to make many new friends with fellow puzzlers.
Each year we get together to swap puzzles at what is known as the
International Puzzle Party (IPP). These parties have been held annually
for 20 years. For the evening entertainment at these parties, we usually
have at least one magician perform. As an amateur magician for 35
years, I have been interested in my puzzle friends’ response to magic.
Almost universally they want to “solve” the tricks. This is unfortunate,
for there is a key distinction between magic tricks and puzzles.

I believe that it was Professor Hoffman (Angelo John Lewis), well
known to magicians and puzzlers alike, who tried to define the difference
between a magic trick and a puzzle. To paraphrase: in puzzles, all the
salient material is provided to the puzzler. In magic, some piece is
concealed or held back from the audience. A puzzle is designed to he
solved or figured out, while a magic trick is designed and presented with
the goal of amazement or astonishment.

Since puzzlers have a solving perspective or bent, they usually view
magic as a puzzle to be solved. The emotion that puzzlers are looking
for is the “aha” or “eureka” when they make the necessary breakthrough
to solve a puzzle. The emotion that magicians are shooting for through
magic is amazement. Magic is performed to create moments of aston-
ishment or amazement.

Tyler Barrett is president of Outside The Box Productions, a company that
provides organizations with creative problem solving training which utilizes puzzles
and magic.
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In the December 1996 issue of Genii, The International Conjurors” Mag-
azine, magician Paul Harris writes about this astonishment. He says that
when a magic trick works, when you are truly blown away with a trick,
there is a, “moment of ecstatic bliss where every thought (is) pulled
from (your) face leaving nothing more than empty space.” He likens
these moments to childlike feelings we used to have before we grew up
and “knew” so much. These moments are brief, and then our explana-
tion machine kicks in and new thoughts crowd out the astonishment. It
was only a trick. I know how he did that; it went up his sleeve. Her
head didn’t really come off her body; it was done with mirrors. All these
“explanations” rush in to annihilate the astonishment. Our ability to
categorize, pigeonhole and define cannot be put into abeyance for any
appreciable length of time.

In their wonderful book, Magic and Meaning, Eugene Burger and
Robert Neale explore the experience of mystery in magic. They point
out that when magic is performed successfully, mystery is created. This
mystery can be enjoyed in and of itself or it can be viewed as something
to be solved. Burger writes, “Some audience members seem compelled
to...ask themselves, their friends and even the magician how the trick
was accomplished. Yet to experience this desire for the how is already to
think of the mystery as a puzzle. Such people wish to solve the mystery,
and so they confront the magic as a puzzle to be solved, and not as a
mystery to be experienced.” He continues, “My view is that a person
in this...state isn’t having an experience of magic at all. That person
has stepped beyond the parameters of the magical experience...and has
moved on to quite a different sort of experience: the analytical experience
of attempting to figure something out.”

Then there is the problem of verifiability. Let’s say that you don’t
heed the advice above and are still compelled to “figure out” a trick. How
will you know that you are correct? You can’t ask a magician, because
he holds to the Magician’s Code that one never reveals a trick to a non-
magician. You can suggest to your friends how you think it was done,
but even if they agree, you still can’t be sure you are correct. If you then
hold to your explanation, you will have forever taken the astonishment,
mystery and amazement out of this trick. I have witnessed this happen
at a dinner table full of people, all convinced that they were in the know,
vet completely wrong as to how the magic was accomplished. They had
a solution, albeit a wrong one, and they had forever lost the magic.

So here’s a puzzle for my puzzle friends. How can you stop trying to
“solve” magic and just be astonished?
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Shooting Graps Today

Russell T. Barnhart

When it opened on Saturday, October 19, 1996, as many as 75,000
gamblers streamed into the new Mohegan Sun Casino north of New
London, Connecticut, and on the same day 50,000 streamed into its
nearby rival, Foxwoods Casino. Who can say that casino gambling isn’t
popular in America today?

The four most popular tables games are craps, blackjack, roulette,
and baccarat.

Though the history of crooked dice goes back to the cave man, let's
begin with the invention of door pops by a con man named Finley in
1899. Finley made secret use of a midget whom he’d hide inside a cabinet
in his hotel bathroom. Finley would then go downstairs to the hotel bar
and confide to a select group of victims that he could throw a pair of
dice any way they called them—and after the dice had left his hand!
For instance, when the dice were in the air, if they called 8 with 6-2 or
hardway with 4-4, that’s exactly how the dice would land.

Naturally all the men at the bar scoffed and challenged him to prove
it. So charging each of the scoffers ten dollars—a lot in 1899—Finley
would lead them up to his hotel room, stand outside the closed bathroom
door with a borrowed pair of dice in his hand, and as he threw the dice
over the open transom into his bathroom, cried out, “Call ’em!”

Finley would always choose a bedroom whose bathroom door opened
outward into his room. This way, when the suckers stampeded to open
the door to see if they’'d won their bets, they'd inevitably press him
against the door, and he'd have to shout, “For God’s sake, you guys,
will you step back a way so I can open this door?” This delay would
give the midget time to place the dice face up as 6-2, or whatever was

Russell T. Barnhart is a magician and mathematician who has authored sev-
eral books on casino gambling strategies.
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called, and climb back into the cabinet, locking its doors on the inside
so nobody could find him. Then Finley would dramatically open the
bathroom door, point to the dice on the floor, and declare, “See—=6-2!"

Naturally the suckers would clamor for him to demonstrate it a sec-
ond time—only once was probably just luck, a coincidence, they'd say.
But feigning fatigue, Finley would reply that, as the feat required a great
deal of concentration, he could perform it only once a night. So then
they’d press him, and he'd finally give in and say that, just to prevent
any unpleasantness, he’d be willing to accept another ten dollars from
anyone to demonstrate it a second time.

So again Finley would throw the dice over the transom, someone
would cry out a combination, the midget would position the dice for the
correct total, and climb back in the cabinet. But finally people got wise.
Rumor went round the downstairs bar that some sort of trickery was
involved, that people were being hoodwinked, and Finley was no longer
able to coax more suckers. Desperate, he figured he had to get rid of
the midget and invent some less complicated method.

So that’s why in 1899 Finley invented door pops—a pair of misspot-
ted dice that, when thrown over a transom, will show only 7 or 11.

But how can that be?

As we know, every die is a cube with six sides, and the sum of the
opposite sides of an honest die must always add up to 7. Thus the only
combinations for opposing sides are 6-1, 5-2, and 4-3. But with door
pops, one die has three 2's opposite three 6’s, while the other has only
5’s on all sides. Another combination is to put only 1’s and 5’s on one
die and 6’s on the other. Either way the dice can throw only 7 or 11.

So having fired his midget and moving his con game to an office
building, Finley bet gamblers there that, after office hours, he could beat
them on the comeout when, for fairness, he would throw a borrowed pair
of dice over the transom. Then, on the Hoor of the ill-lighted office on
the other side of the transom, he would point to the winning 7 or 11,
casually pick up his door pops, and while handing them back to the
sucker, switch them for the latter's honest dice and collect his bet.

How is it that such knowledge helps crap shooters today?

At any crap table a player can see at most three sides of a die. If at
any time a player sees any two faces adding to 7, the dice are misspotted,
so he should immediately get out of the game.

Are there any combinations that do the reverse, that don’t throw 7
at all? Why yes. A popular misspotted pair carries on facing sides of
one die only 3-4-5, and on the other only 1-5-6. This will through any
total from 4 to 11 exeept 7 and craps, that is, except 7, 2, 3, or 12. But
again whenever a crap player looks at this pair of dice, he'll see only two
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or three sides that add up to 7—so he should again get out of the game.
A player must train himself to look not just at the tops of the dice but
at the tops in combination with the sides too.

Having invented door pops, did Finley die a wealthy man? To the
contrary, he died broke, as is the fate of most dice and card hustlers.
While they're alive, hustlers love flashy clothes and cars and displaying
a roll of big bills. They don’t tell you that’s all they have. Here are a
couple stories about that.

A dice and card cheat meet on the sidewalk in a northeastern town.
The dice hustler is from out of town. They stand and trade experiences
of their recent triumphs. As they chat, a chauffeured limousine drives
slowly past their curb. From the back seat a man smiles and waves at
the card hustler. The car pulls away. “Who was that?” asks the dice
hustler. “That’s Raymond O. Smith. Enormously wealthy. Owns those
woolen mills on the edge of town. He loses at least two grand a week in
the poker game I run behind my pool room. He's a real sucker.” The two
hustlers trade more experiences. Another limousine drives past. From
its back seat a man waves. The limousine pulls away. “Who was that?”
asks the dice hustler. “That’s John C. Brown. Owns the big bank two
blocks down the street. He must lose at least a grand a week in the crap
game at my place. A real sucker.” Just then a bent, seedy, unshaven
man shuffles past and pauses over a nearby trash basket. Rummaging
in the basket until finding an abandoned hat filled with holes, he puts
it on and drifts away. “Who was that?” “That's Poker-Faced Joe. He
invented a way of dealing cards from the bottom of the deck invisibly.
Smartest guy in town.”

In the second story, years later the card and dice hustlers meet in
the latter’s home town. Again they trade anecdotes of their experiences.
“What are your new angles?” asks the card hustler. “I've got a terrific
new dice move. Been practicing it for twelve years—so naturally I've
got it down perfectly. How about you?” “I’ve figured out a new way of
marking cards. The marks are so tiny that even under a magnifying class
you couldn’t detect a thing. But what’s your new dice move?” Come
up to my room, and I'll show you.” The dice man’s room is nearby in
a cheap rooming house filled with dust and dilapidated furniture. He
points to a spot in the corner about a foot above the baseboards and
puts a pair of dice onto the floor in front of his right foot: “What do you
want? Name your number.” “Ten,” says the card hustler. “Five-five or
six-four?” “Five-five.” Taking careful aim, the dice hustler vigorously
kicks the dice. They hit the right wall above the baseboard, careen
into the left wall, and land on the floor: five-five. “Unbelievable!” cries
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the card man. “Name your number.” “Six.” “Hardway or four-two?”
“Hardway.” Again the dice hustler vigorously kicks the dice into the
corner baseboards. The two cubes careen off the right wall, bounce into
the left one, and land onto the floor: three-three. “That's the most
incredible work I've ever seen!” “Practiced twelve years,” repeats the
dice man boastfully. “But then why are you living in a dump like this?”
The dice man shrugged tragically: “Can’t find any suckers.”
So much for being a crook. Good luck in an honest casino!




The Transcendental Knot

Rag Hyman

Infroduction

For more than 30 years, one of my standard presentations that I give to
college campuses and groups throughout the world is entitled “Psychics”
and Scientists. The theme is how alleged psychics have fooled some first-
rate scientists. I demonstrate typical phenomena that were described by
these scientists. I then discuss the psychological reasons why such smart
persons went badly astray. Because of time limits, I usually focus on
one case as an example. This case is the one involving the German
astrophysicist, Johann Carl Friedrich Zéllner who used his seances with
the American spiritualist, Henry Slade, as evidence to support his theory
of the fourth dimension. It was Martin Gardner who first inspired me
to focus upon this case. The false knot routine that I describe here
is one that I devised specifically to illustrate Zéllner's theory. In my
routine, I follow carefully Zéllner’s own explanation of his theory in terms
of a perfectly flexible cord. Zéllner creates the analogy of a possible
two-dimensional world—a flatland—to illustrate what can occur when
another dimension becomes available. Zéllner’'s book was published six
vears before Abbott wrote his classic Flatland [Abb84].

Eftect

The performer tells the story of Professor Johann Zillner, a famous as-
tronomer at the University of Leipzig in the 1870°s. Zdllner developed

Ray Hyman is Professor Emeritus of Psychology at the University of Oregon
and specializes in how smart people go wrong.
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a theory of the fourth dimension, believing that many of the apparent
miracles produced by spiritualistic mediums could be explained by the
existence of a fourth spatial dimension. In his book, Transcendental
Physics [Zol81], Zollner tried to convey his concept of the fourth dimen-
sion in what he called “a theory of twisted cords.”

Because humans cannot think in four dimension terms, Zollner asked
his readers to imagine beings who lived in a two-dimensional world. The
performer displays a length of rope and asks the spectators to imagine
a plane between himself and them. This plane represents the world
inhabited by the two-dimensional beings. “Now, what would a knot
look like in a two-dimensional world?” The performer rotates one end
of the rope, always keeping it within the imaginary plane, in a clockwise
manner until it crosses the middle of the rope and makes a loop. “This
would be a knot in a two-dimensional world. The way to untie the knot in
that world is simply to reverse the process—to take this end and make
a counter-clockwise loop until the rope uncrosses itself. But, imagine
that one of the two-dimensional beings suddenly develops the ahility to
gain access to a third dimension. He could untie this ‘knot’ by flipping
the loop out of the plane and to the right so that the rope no longer
crosses itself.” The performer illustrates this. “To those individuals who
are confined to their two-dimensional world, this sudden untying of the
knot would appear to be a miracle.”

“Zollner then carried this analogy over to our three-dimensional
world where we tie a knot by making a loop and then inserting one
end of the rope through this loop.” The performer illustrates by tying
a simple overhand knot. “Now,” Zéllner emphasized, “as long as we
are confined to a three-dimensional world, there is no way to untie this
knot except by reversing the process and putting the end back through
the loop. As long as either end never goes through the loop, no matter
how much we twist the knot it will still be there when we pull the ends
apart.”

The performer illustrates by twisting the overhand knot into the
shape of a pretzel. Then he slowly pulls the ends apart and a knot
remains, which he unties the normal way by inserting one end back
through the loop.

“But,” reasoned Zollner, “what if some humans among us, such as
spiritualistic mediums, developed the ability to make contact with a
fourth spatial dimension? Then, they could use this fourth dimension to
untie the knot in a manner that would appear impossible to those of us
confined to a three-dimensional conception of our world.” The performer
illustrates his words by again tying an overhand knot, twisting the knot
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into a pretzel, and then slowly pulling the ends apart. The performer
stops at a point when it appears that the simple overhand knot still
remains in the center of the rope. He then shakes the rope gently and
the knot disappears!

Requirements

A nylon rope, approximately five feet long. My rope is 3/8 inches thick,
and I have wound thread around the ends to keep them from fraying. 1
have used the same piece of rope in over 200 performances since 1981
and it still remains in perfect condition.

Procedure

The two-dimensional “knot” is made by rotating one end in a clockwise
manner until it crosses the middle of the rope and makes a loop (Figures
1-2). If the loop is simply picked up and moved to the right the “knot”
will be “untied,”—that is, the rope will no longer cross itself. To make
the real three-dimensional knot follow the procedure illustrated in Fig-
ures 1-4. To illustrate how twisting the knot cannot untie it as long as
the ends remain outside the knot, start with the knot as in Figure 4 and
with the right hand grab the rope at the points marked “R” in Figure 4
while the left hand holds the rope at the points marked “L.” The posi-
tion should now appear as in Figure 5. While holding the rope in this
position, twist or rotate the top loops towards you for approximately
three full turns. In other words, you use your thumbs and forefingers to
twist the loop into a pretzel-like configuration. The use of a thick nylon
rope enables the knot to hold this twisted condition. Figure 6 shows
how this configuration will look to you after you regrip the ends of the
rope in your hands and allow the twisted knot configuration to fall for-
ward and hang between the ends in the middle of the rope. If you now
move your hands to the ends of the rope and let the rest hang down,
the resulting configuration should lock to you something like Figure 6.
Gradually pull the ends apart until the “pretzel” becomes untwisted
leaving the original overhand knot in the middle of the rope. To untie
such a knot in a three-dimensional world one must put the right hand
end of the rope through the loop and pull the ends apart to untie the
knot. Openly thread the right hand end through the loop and show that
the knot is untied.

Now, following the story line, apparently tie the overhand knot once
more. But, this time you follow Figure 1 with Figure 7. Once the first
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Figure 10. Figure 11.

loop is made, insert end “A” through the loop from the back to the front
(from your side towards the front). This looks like a simple overhand
knot, but is actually a simple loop that will vanish if the ends are pulled
apart. The situation is now as pictured in Figure 7, which looks very
much like a true overhand knot. You can even pull end “A” to tighten
the knot a little. Do not make the loop too small, because you want it
to be sufficiently large for the pretzel business. Follow the same moves
depicted in Figures 4-6 to make the twisted knot or pretzel. (Figures 7
and 8 correspond to Figures 4 and 5 which were made with the true
knot.) Now, slowly pull ends “L” and “R” apart to enable the pretzel
to gradually untwist. You will find that you can stop the process at two
or three stages. One stage is shown in Figure 9. It looks like a real
knot still is tied in the middle of the rope. After a few trials you should
find that you can actually stop at the stage depicted in Figure 10 which
looks much like a true overhand knot. (Figure 11.) It is at this stage
that you pause as you explain that, for us three-dimensional beings, a
knot still has to remain. But, if someone actually had access to a fourth
spatial dimension, he could simply flip the knot into that dimension, and
it would become undone. The performer suits his actions to the words
and gives the rope a slight shake and knot disappears.

All this may sound complicated, but if you get the right size nylon
rope and follow the instructions, you will see how effective this can be.
You will often not be sure yourself if the knot in the rope is real until
you shake it out.

Gomments and Gredits

I devised this effect as part of a longer routine that I do about Professor
Zollner. For more information about Zollner, as well as additional ideas
for effects built around the theme of the fourth dimension see my arti-
cle, “The Zsllner Phenomenon” [Hym85]. In addition to a routine for
producing knots in a closed loop or rope, an effect which the medium
Henry Slade used to convince Professor Zéllner that he had access to
the fourth dimension, I supply a bibliography of nine useful sources.
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I got the idea for this routine from Zollner’'s own book Transcenden-
tal Physics. Ron Friedland, after witnessing my first awkward version,
helped me devise the phase of the routine that begins with Figure 8.
At that time, however, we had no way to arrive at this position with-
out first arranging the rope into the configuration upon a table. A few
days later, while working with the rope, the obvious solution, the one
described here, came to me all of a sudden. That was on September 14,
1981, and I have been doing it the same way ever since.

In preparing this Parade, I recently did some cursory research in
my library to find predecessors for this version of a vanishing knot, I
found close versions of the false overhand knot as depicted in Figures 6
and 7 in Knot that is Not [Ric4l], The Phantom Knot [Tard4], Grant’s
Ghost Knot [Tar54], and The Illusive Knot [Jamte]. I was sure that
the twisting, pretzel aspect of the routine was entirely original with me.
But to my surprise, I found something similar in Joe Cossari’'s Naughty
Knot [Jam80].

This is a slightly edited version of my effect The Pretzel Knot which
first appeared, along with a number of other of my creations, in The
Linking Ring, October, 1986 [Hym86]. The Linking Ring is the official
publication of the International Brotherhood of Magicians. The draw-
ings were made by Marshall Philyaw.
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The Brazilian Knot Trick

Maria Elisa Sarraf Borelli and Louis H. Kauffman

Introduction

In this paper we introduce a significant variant on the famous Chefalo
knot trick [Ash44] that we dub the Brazilian knot trick. It happened
this way: The first author of this paper (a Brazilian of Italian descent),
whom we shall refer to as MEB was being shown the Chefalo knot by
second author, whom we shall refer to as LK. All this happened long
ago and far away in the year 1996 at an International Conference on
Mathematical Physics and Knot Tricks held at Cargese, on the island
of Corsica, in the midst of a startlingly blue sea. But we digress. LK,
having demonstrated the disappearing nature of the Chefalo knot, said
to MEB, “Now you do it!” MEB took up the rope and tied a knot that
we saw at once was not the Chefalo knot. But even though it was not,
it was in fact not a knot and this new knot that was not a knot became
the Brazilian knot—the subject and object of our paper.

Brazil Knots

We begin with Figure 1, a depiction of the original Brazilian knot as
tied by MEB on the lunch table in Corsica, under the noonday sun by
the deep blue sea. It surprised us a bit to see this knot appear. MEB
thought it quite natural at the time. LK was perturbed, but determined
to push on. And so he said, “Well maybe your Brazilian version can still
be threaded to make an unknot that will amaze us!”

Louis H. Kauffman is a leading knot theorist who has authored the two books
On Knots and Knots and Physics,” and edits the Series on Knots and Everything.
Maria Elisa Sarraf Borelli has just finished her Ph.D. in Physics.
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Pgure . Brazilian knot.

And so they looked. And it did make an unknot by a little further
threading just as shown in Figure 2.

Figie 2 Brazilian unknot.

But now, says LK, we have to add the ring, and find a threading
that will be unknotted and release the ring. “Must we?’ says MEB.
“We must,” says he. See Figure 3.

Fligure 3.  Brazil with a ring.
And eventually they did. It took some time. And the stars showed
over the deep blue sea. The ringed release knot is shown in Figure 4.
Try it and you will see.
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Figie ¥ The Brazilian unlinking ring.

A Few More Twists

There are infinitely many Brazilian knots and unlinking rings! In the
construction of the Brazilian knot we made two windings, each a full
turn, on the upper and lower portions of a bend in the rope. The second
winding can be done any number of times and it can also be done in
reverse. This means that there is a Brazilian knot and knot trick for each
integer number N where N denotes the number of times one performs
the second winding. The original Brazilian knot and unknot are the case
of N =1.

The reader who looks closely at our pictures of the various cases
will note that a winding labelled N full twists consists in 2N + 1 half
twists. Normally, 2V half twists make N full twists, but in the handling
of the rope one begins the winding on one side of a strand, and ends it
on the other side (imagining the rope laid nearly flat on a table). This
movement from side to side creates the extra half twist in the winding.

Figure 5 shows the case that we call N = —1, a Brazilian analogue
of the Granny knot. In this Figure we show both the knot and the
unknot for the case of N = —1. In Figure 6 the ring release is shown for
this case. It is interesting to note that the Granny knot version of the
original Chefalo trick does not in any obvious way lead to an unknot or
to a ring release. See the Appendix for a discussion of this point. In
Figure 7 we show the case of the ring release for N = 2 and indicate
the general case of arbitrary N. Figure 8 shows the Brazilian Unknot in
the case N = 2. In Figure 9 we show the setup for the ring release with
N = 2. We trust that these examples and a little ropework will convince
the interested reader that there is a Brazilian knot trick for every integer
(including zero)! A combination of N =1, N = —1 and N = 2 makes a
spectacular demonstration.
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Figwe 5. N = —1: The Brazilian Granny knot.

Figire 6. Ring release for N = —1.

S N Full Ewists

Figwe 7 General N and N = 2.

Figie 8.  The N = 2 Brazilian unknot.




The Brazilian Knot Trick 95

Fige 9. The ring release for N = 2.

A Note on Performance

The knots and unknots herein described can be performed by tying them
on a length of rope whose ends are then held fast by an assistant to the
magician or by the magician herself. An unknot is demonstrated to be
unknotted by pulling the ends of the rope until the “knot” in the middle
disappears. A ring is demonstrated to be unlinked with the rope by
pulling the ends, while an assistant helps the mass of rope in the middle
disentangle by a little gentle encouragement, until the ring drops off and
the rope is seen to be unknotted. Another method in all cases is to
tie the ends of the rope together securely. The unknot or ring-release
unknot can then be manipulated at will by the magician or spectator
until it reveals its secret!

Appendix on the Chefalo Knot Trick

The original Chefalo knot trick is performed by starting with a version
of the square knot as shown in Figure 10. The corresponding unknot
is also shown in Figure 10. In Figure 11 we show the Granny knot
as a starting position. There is no direct analogue of the unknot and
ring release known to us that starts from the traditional Granny. The
Brazilian Granny as shown in Figure 5 is our case N = —1 and works
fine. The Brazilian Granny does the trick.
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Figre 0. The Chefalo unknot.

Figire . The traditional Granny.
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Mental Mabch-up
Meir Yedid

This is an effect that I held in reserve for more than ten years. It is
an excellent and almost impromptu mental mystery. It uses only a few
simple props but involves three spectators in various tasks and plays
very big. I often uses it in platform or stage shows.

Because the routine will move along different lines depending upon
the outcome of actions undertaken by members of the audience, I will
not try to outline the effect in detail. Read through the presentation and
you will quickly grasp the underlying concept. Once this is understood,
I am sure you will want to give the routine a try. Once you try it, I am
sure you will perform it often.

Props and Preparation

You will need the following items: a standard ESP deck, a jumbo ESP
card (which you can either make or buy), a large Manila envelope (6
inches by 9 inches), a short magic marker or pen, and at least one
complete book of matches.

The symbol on the jumbo ESP card will be the card that is forced
from the ESP deck. Let’s assume it’s the circle. Arrange the ESP deck
so that the circle appears in the first five even positions from the top of
the face-down deck (i.e., positions 2, 4, 6, 8, 10). In addition, make sure
that the cards directly above and below each of the five force cards are
different from each other. A sample arrangement of the ESP deck might
be:

Meir Yedid is a magician and author who amazes audiences with
his fanciful fingers ... and lack thereof. This article was reprinted
from Meir Yedid's Magical Wishes, written by Stephen Hobbs, awailable at
http://www.mymagic.com/yedbooks.htm.

a7




98 Meir Yedid

star — circle — square — circle — wavy lines— circle —
cross — circle — square — circle — rest of the cards (in any
order)

504 ¢d4drc

Place the ESP deck in its case.

On the outside of the large Manila envelope write, “PREDICTION.”
Open the envelope, stick your hand inside (which is why it must be
large), and write the following prediction on the inside of the envelope:
“THERE ARE NINE MATCHES LEFT IN THE MATCHBOOK.” Place
the jumbo ESP card inside the envelope and seal it shut.

Finally, make sure that you have at least one complete book of
matches at hand.

Performance

I will describe this as I present it in a platform or stand-up show. The
small procedural changes required when performing in more intimate
environments should be obvious.

Give the prediction envelope to an audience member. Have her con-
firm that it is sealed shut and ask her to hold it in plain view until the
conclusion of the experiment.

Bring out the ESP deck. It is important that the audience be famil-
iarized with the ESP cards. I usually talk about Dr. Rhine’s research
into the paranormal and how simple symbols were used in the design of
the deck on the theory that they would be the easiest objects to trans-
mit telepathically. Make sure that the audience sees the various symbols,
but do not tell them that the deck consists of only five symbols repeated
five times. As you finish speaking, casually overhand shuffle the face-up
deck without disturbing the ten-card stock at the rear (top) of the deck.
Place the cards into their case and hand the case to another spectator
with the request that she hold it for a few moments.

Ask if anyone in the audience has a book of matches. I always bring
out my book of matches at this point. This visually confirms your re-
quest in case anyone is confused and thinks that you want a box of
matches or a lighter.
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Let’s assume for the moment that someone does have a book of
matches. You want to be well away from this person for the next few
minutes, so if he or she is in the front row move away from them as you
say, “Would you please open the matchbook and tell me whether it is
unused, or whether some matches are missing from it.”

If the spectator says that there are some matches missing you respond
as follows, “Great. There is no way that I can know how many matches
are left in the matchbook.”

If the spectator says that the matchbook is complete say, “Will you
please tear out some matches and throw them away.”

Now let’s jump back for a moment. If no one in the audience has any
matchbooks, then simply toss out your own book of matches. You know
this book is complete, so ask a spectator to tear out a few matches and
toss the matchbook to another spectator. Emphasize that you could not
possibly know the number of matches remaining in the book.

Regardless of the procedure followed, the spectator is now holding
a matchbook that contains between one and nineteen matches. Con-
tinue by saying, “Please count the matches remaining in the matchbook
silently to yourself and remember how many there are.”

When the spectator has counted the matches say, “So you are think-
ing of a number of matches. I assume it's a two-digit number?” This
question is asked casually, but the spectator’s response is critical.

If the spectator says that it is not a two-digit number, then you
will not be able to use the second prediction—on what is hidden inside
the envelope. Act surprised and say, “Well, okay. Would you please
tell everyone the number you are thinking of and which only you could
possibly know.”

If the spectator confirms that it is a two-digit number, then you
will be able to use the hidden prediction but must also go through an
additional bit of procedure. Say, “I want you to add the first and second
digits of the number together. So, if you have twenty-three matches
then you would add two and three together and get five. Okay?” The
example “twenty-three” is a throw-off as the spectator will never have
that many matches. When the spectator has completed the calculation
say, “Now tear out a number of matches from the book equaling this new
number and hold them tightly in your hand.” The spectator will tear
out a number of matches ranging from one to ten (you do not know how
many) and there will always be nine matches remaining in the book.

Recap what has taken place so far—prediction, ESP cards, random
number of matches—and then say, “For the first time, will you tell us
how many matches you are holding.” The spectator reveals the number.
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Turn to the spectator holding the ESP deck (vou may want to invite
her on stage) and ask her to remove the cards from their case. Have
her count the cards onto the table one at a time, stopping her when
she reaches the number named by the spectator. You now turn over
one of the force cards, which will either be the last card dealt or the
card remaining on top of the deck. Since you know that the force cards
occupy the even positions, this is a simply matter of keeping track of
the cards as they are dealt. “You stopped on the circle.” Turn over
the cards directly above and below the force card. “If you had gone one
card more or less you would have stopped on a or a 2
Here you name the two cards that are adjacent to the force card Whlch
thanks to the set-up, will always be different from the force card and
from each other.

Ask the spectator to open the prediction envelope, take out what
is inside, and display it. She removes the jumbo duplicate of the force
card. If the spectator had less than ten matches in the matchbook, then
this is the end of the routine so play it big.

If, however, the spectator had ten or more matches in the matchbook,
say, “An amazing coincidence? Perhaps, but perhaps not. But I made
a further prediction which is also inside the envelope. Would you please
take that prediction out.” The spectator looks inside the envelope but,
because she is expecting another card does not see anything. “No inside,
on the envelope itself. Rip it open.” She rips open the envelope. Have
her read the prediction out loud.

Turn to the spectator with the matchbook, “Please count the matches
remaining in the book out loud one at a time.” He does so, and the slow
progression towards nine serves as an ideal applause cue.

History and Tnspiration

Those familiar with the “nine principle” will recognize its use here, al-
though it is nicely disguised. The nine force works as follows: For any
number between 10 and 19, the sum of the two digits subtracted from
the number itself will always equal nine. Moreover, the sum of the digits
is always a number from one to ten. The nine principle is traditionally
used to force the number nine. I believe I am the first person to use
“both ends” of the principle—i.e., to also use the fact that the sum of
the digits is never more than ten.

It just so happens that most matchbooks contain exactly twenty
matches. (Make sure that the matchbook you use is not one of the larger
or smaller ones used as promotions.) This means that the nine force can
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always be used if at least one match is missing from the book. Also,
since the ESP deck contains five duplicates of each symbol, positioning
the force symbol in the first five even positions means that the last force
card is the tenth card from the top of the deck. If it were any further,
it could not be forced using the number derived from the nine principle.
The matchbook and ESP deck just happen to work well together.

Finally, it may seem as if the double ending will be achieved less than
half of the time. In practice, it is reached much more often. The kicker
ending will be achieved if their are ten or more matches in the book,
and the routine takes advantage of that fact in several ways. First, if
you are handed an incomplete matchbook, it usually has more than ten
matches in it. I've noticed that people tend to throw away a matchbook
if it has only a few matches remaining. Second, if the matchbook is full
and you ask the spectator to tear out some matches, the spectator—in
the interests of expediency—usually tears out only a few matches, again
leaving you with more than ten matches in the book.

The idea of using the nine principle with a matchbook was first pub-
lished by Fred DeMuth in The Jinz (August, 1935), although I didn't

know that when I constructed this routine.







A Labyrinth 1 a Labgrinth

Gordon Bean

Effect

As a spectator shuffles a deck of cards, the performer begins: “If one
were lost in a labyrinth, a deck of cards would be a handy thing to have.
You could leave a trail of cards behind you—Ilike bread crumbs—to help
you find your way out. Interestingly, a shuffled deck of cards is itself a
labyrinth. Every shuffled deck has a unique order. It is hard to make
your way from beginning to end of a randomly shuffled deck with no
false turns.”

The performer takes back the deck and openly peruses batches of
cards. “But if you step back and see the bhig picture, it's often sur-
prisingly easy to escape from anything—even a deck of cards.” The
performer proceeds to deal the cards face up on the table in a twisting
trail.

“Like many journeys, this one is determined by your first step. Please
point to one of the cards in this first section. We're then going to spell
the value of that card—say t-w-0. We will then spell the value of the
card we land on, and continue in that manner, going through the entire
trail, until we get to a card that doesn’t lead to another card. That will
be the end of the labyrinth.”

The spectator points to a card, the performer offers an opportunity
for the choice to be changed, then together they spell their way through
the deck as described above until they reach a card which does not

Gordon Bean lives in Los Angeles, where he is the librarian at the Magic Castle.
He also runs Bean's Magic, which markets his magical inventions. This article first
appeared in Labyrinth: A Journal of Close-Up Magic [Bea99]; the original text by
Stephen Hobbs has been altered here by Gordon Bean.
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spell to another card: the seven of spades. “That's it,” the performer
announces, “The end of the labyrinth. Of course, it’s easy for me to
say. I got to see the big picture.” The performer invites the spectator
to come around and see the view from the other side of the table. The,
labyrinthine trail of cards is seen to consist of a big “7" joined to a
big “S."

Performance

This is based on the Kruskal Principle. This is the tendency, discovered
by Dr. Martin D. Kruskal, for various chains in a shuffled deck to in-
tersect, making them likely to end on the same card. This performance
includes two new notions. First, the presentation gets away from both
mathematics and dealing through the deck. Second, the chance of suc-
cess is increased from a solid probability to an almost dead certainty.
See the Notes & Credits for more information in this regard.

To perform, take back the shuffled deck and begin spreading the cards
in batches from hand to hand. As you do so, casually shift the seven
of spades to the face of the deck. This is the only move in the routine.
(You can also shift the seven of clubs, changing the layout accordingly.)
The motivation for looking at the faces of the cards is your statement
that you are trying to see the big picture contained within the labyrinth
of the shuffled deck.

Begin to deal the cards, lengthwise, into the pattern depicted in
Figure 1. As you deal the cards, start silently spelling the values (and
only the values) of the cards, beginning with the third card. Thus, if
the third card were a four, you would start spelling “f-o-u-r". The “f”
would be the fourth card, the “o” the fifth card, and the “u” the sixth
card and the “r” the seventh. If the seventh card was a nine, you would
continue the spell with “n” on the eighth card, and so on.

Continue in this manner, silently spelling the values of the cards,
until you have five or fewer cards left in your hand. Flip the remaining
cards in your hand face up and deal the seven of spades as the last card
of your silent count. If you get really lucky, this might even be the last
card in the deck. Deal out the remaining cards, completing the pattern.

That'’s it—the effect is now performed as described above. The spec-
tator picks any card in the upper arm of the seven as a starting point.
Begin the spelling procedure, out loud, from that point. Things will go
more smoothly if you do the spelling, but make sure your actions are
fair and clean. Eventually, and usually fairly quickly, the out-loud spell
will mesh with your previous silent spell and you are home free. The
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Figure 1.

out-loud spell will end up on the seven of spades. You can’t spell any
further and have completed the maze. The spectator is then invited to
your side of the table to see the “big picture” contained in the labyrinth
itself.

Very occasionally, the verbal and silent chains won’t mesh and the
effect won't work. If this happens, simply have the spectator pick a new
starting card, saying: “Do you see how difficult it is to get out of a
maze? But if you step back and take a look at the big picture and then
pick a new opening card, you should have no trouble at all.”

Notes and Credits

The Kruskal Principle was originally described by Martin Gardner in
the June 1975 issue of The Pallbearers Review [Gar75], with additional
comments by Karl Fulves (this article was later reprinted in Martin
Gardner Presents [Gar93], sans Fulves' comments). See also Martin
Gardner’s February 1978 column in Secientific American [Gar78al.

The Kruskal Principle has traditionally been performed by count-
ing the values of the cards. By changing this to spelling the values of
the cards, this presentation radically improves the chance of reaching
a successful conclusion. When you count numerically, you are working
with thirteen unique values (although in the original, all face cards were
assigned a value of ten, which Fulves suggested be lowered to five). In




106 Gordon Bean

comparison, when you spell—although it appears that you are working
with thirteen possibilities—there are actually only three different possi-
bilities (three letters, four letters and five letters). This reduced field of
possibilities means that it is much more likely that different strings will
intersect.

The ever fertile mind of Martin Gardner has applied the Kruskal
Principle to spelling words in a paragraph of text [Gar98§].

Finally, the idea of having a design hidden in the layout—as opposed
to a design being progressively revealed—is one that I hadn’t encoun-
tered before. Max Maven, however, pointed out that a related idea by
Tony Koynini appeared in the Magic Wand [Koy53].
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Paradox Squores Force

Robin Robertson

Paradox Papers

Martin Gardner’s “Paradox Papers” was first published in the July 1971
issue of the magic magazine The Pallbearer’s Review. It presented a new
topological principle in magic using nothing more than a square sheet
of paper [Gar71]. Gardner added some additional ideas and variations
in [Gar83, pp. 71-73]. I'll summarize the principle in its most elementary
form, then present a way to force a number using this principle.

Start with a square piece of paper. A good size is to take a normal
8-1/2x11 inch sheet and cut it to an 8-1/2 inch square. Fold it in half
twice in each direction, forming 16 squares. Make all the folds several
times in each direction, so they fold easily along any crease.

Mark large X's and O’s in alternating squares like this:

O|x[O]X
X|OX|O
O|x[O]X
X[O[X]1O

Then turn the paper over—it doesn’t matter if you turn it over side-
ways, or end-over-end—and mark X's and O's on this side the same way.
You'll find that an X on this side is backed by an O on the other side,
and vice versa.

Robin Robertson is a psychologist, magician, mathematician, and writer who
has published ten books and over one hundred articles.
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Now fold the square along the lines IN ANY WAY vou like to make
a packet that is only one square high and wide. Just as one of many
possibilities, you might fold the left column over to the right, making a
figure 3 columns wide and 4 columns high. Then fold the top row down
under, and so on. Any way will do. When you're finished, take a pair
of scissors and cut all four edges. Make sure you cut away all folds, as
it’s easy to miss some if you're not careful.

If you examine the little squares of paper, you'll find that all the X's
are face-up and all the O’s face-down (or vice versa). That’s the basic
principle and Gardner explained several possibilities using the principle.
Here's another.

Paradox Squares Force

Assume that instead of X's and O’s, you're going to fill the 32 possible
squares (i.e, 16 on each side) with unique numbers from 1 to 32. Their
sum then will be (32 +1)-32/2 = 33-16 = 528. But, more importantly,
if you fill in the sides carefully, when folded and cut, either side will total
exactly half this, or 264.

In order to do that, simply make sure that if any number N goes
in an “X” square, 33 — N also goes in an “X" square, on either side.
Similarly, if M goes in an “O” square, 33 — M also goes in another “0”
square. Here's an example of a filled-in square:

SIDE A SIDE B
111311 8 |21 32(26] 6 |17
5 [27]18]20 12110 2 |23
1114} 4|28 31712224
9 125]16|13 19130(15(29

Presented as a magic trick, you write a prediction of “264” in ad-
vance, seal it in an envelope and ask someone to hold it. Then bring
out the square and allow another person to fold it any way they like,
then cut off the edges. Have someone read off the numbers on top of the
16 squares while another person adds them using a calculator. They’ll
come up with “264”. You then have the envelope opened and the pre-
diction read. Sure enough, you predicted “264"” even though you had no
way of knowing how the paper would be folded.
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A Face n the Shadows
Larry White

¢ )

A while ago my eves happened to fall upon a wonderful “profile turning”
my late Dad made me many years ago. This was a four-inch-high piece
of maple which he had turned on his wood lath. It looked like a small
solid vase or urn of some sort and it became an object of curiosity for
many future visitors to my home. They would pick it up, turn it all
around, study it—puzzled because it seemed to have no utilitarian use
whatsoever—and always had to ask what it was. “It has a secret,”
I would explain, “And once you know the secret you know what it is.”
Then I would show them the secret and, although no magic gimmick was
involved—the secret, of course, was the shadow—it always produced the

Larry White is the Magic Editor of M- U-M, the official magazine of the Society
of American Magicians, and the Science Editor for HOPSCOTCH and Boy's (Juest
magazines. In a slightly different form this article was published in the February
2000 issue of M-U-M, the official magazine of the Society of American Magicians.
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same ooohs and ahhs any good magic effect garners. It became Abraham
Lincoln!

If you see a profile of a well-known person you can immediately iden-
tify that person. But suppose the “profile” is visible from all sides,
360 degrees? Your brain no longer recognizes it as a profile. So, if a
craftsman cuts a template of a person’s profile and uses this template to
create a wood turning each detail will be scored completely around the
wood and this is called a “profile turning,” though the profile will not
be recognized without some help.

There are two ways to see a recognizable profile in a profile turning.
You can mask half of the turning with your hand and squint at the
remaining half. With practice you will see the profile if you lock only
at the edge. The far easier and more startling way is by holding the
turning before a bright light or in the sunshine and look at the shadow
it casts. The shadow, unlike the turning, is two-dimensional rather than
three. By holding your hand in the light you can cast a shadow to blot
out 1/2 of the shadow of the turning and any onlooker will instantly see
the profile.

The illustration shows this clearly. To retain a magic theme I chose
to use the profile of Houdini. If you are a skilled wood turner, or know
someone who is, you might make one showing your own profile. You will
not be the first magician to do so. Both Herrmann the Great and John
Mulholland, it is said, had profile turnings of their faces made. These
were mounted as the knobs on their walking sticks so they were ready
to present this bit of “shadow magic” any sunny day they went out for
a stroll.




A Gord Vemishing n a Nut
Bob Friedhofter

The accompanying routine is probably the first practical joke related to
a magic trick to be found in an English magic book. The book in which
it is found is the among first two or three books in the English language
to deal solely with magic.

There has always been a bit of conjecture on the name of the book.
It is commonly known as Hocus Pocus Junior to magicians, though the
title page makes it appear that Hocus Pocus Junior is the pen name of
the author, with the title being The Anatomy of Legerdemain or the Art
of Juggling.

The pages that follow are from the eighth edition printed in London,
which, according to Raymond Toole Stott, was printed circa 1671. The
only known copy of this edition was found in the New York Public
Library.

I've taken the liberty of changing the “f” to the modern “s”. Spelling,
grammar, and punctuation appear as in the original.

The reader should be aware that in the 1600s nuts were usually
opened by the masses by placing a nut in the mouth and cracking it
with the teeth.

How to make a card vanish, and find it again in a Nut.

Take what card you will, pill the printed paper from off
of it, and role it hard up, and make a hole in a Nut, and take
out the kernel, and then thrust in the Card, afterwards stop
the hole of the nut neatly with wax, this nut you must have

Bob Friedhoffer is a leading proponent in the use of magic as a tool to teach
creative thinking techniques and scientific principles to the public.
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in readiness about you, and when you are in your play, call
for such a Card as inclosed in your Nut, or else have on in
readiness, and say, You see Gentlemen here is such a card:
then wet it and pill off the printed side, role it up, and in
the usual manner convey it away: Then take your Nut out
of your pocket, and give it unto one, and say, crack that Nut
and tell me if you can find the Card there, which being found
will be found very strange.

Then have another such like Nut, but filled with Ink, and
stopped after the same manner that your other Nut was, and
give that unto another, and bid him crack it, and see what
he can find in that, and so soon as he hath cracked it, all the
ink will run about his mouth, which will move more mirth
and laughter then the former.




basey at the Fox

Ken Fletcher

Background

At the Gathering for Gardner two years ago, I was browsing through
some books authored by Martin Gardner and saw a book titled The
Annotated Casey at the Bat, and wondered how a book about my favorite
sport had mistakenly slipped into this group of books about magic and
mathemagic. Regardless, I knew I wanted it and picked it up. I can’t
begin to tell you how amazed I was when I saw the book was edited by
Martin Gardner! I read every ballad and every parody of the Mighty
Casey as Captain Ahab, a football player, a cricket player and even a
cosmonaut. I thought a magician, The Great Casey, would be a natural
(pardon the pun) to add to this team of parodies.

Over a quarter of a century ago I called Martin “out of the blue”
for help on a mental effect T had created and was planning to market.
Without even knowing me he invited me up and gave me some great tips.
In this very specialized field there are people that help and encourage
newcomers and ask for nothing in return. Martin Gardner is one of those
people and has helped so many at every level. Thank you for your help
and encouragement so many years ago and thanks for the hook that
inspired The Great Casey. It was phun.

Ken Fletcher is the founder and President of Magic Masters, Inc. and creator
of the famous Rocky Raccoon.
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Gasey at the Fox

The crowd was pretty hostile to the Vaudeville nine that day;

The M.C. blew every gag—they needed Max or Dan or Jay.

And when the opener had bombed and the second act had
failed,

A disappointed grumbling throughout the house prevailed.

A struggling few got up to go in deep despair.

The rest remained to see it through and said a silent prayer.

“Where's the Great Casey? He'd quell these angry hoards.

We know we'll get our money’s worth if Casey strides the
boards.”

But Mimi the Mime preceded Casey as did the Juggler Jake,

And the former was a yawner and the latter was a flake.

Every soul within the Fox thought their prayers had gone for
naught;

For there seemed but little chance they'd see Casey in the
spot.

But Mimi knocked 'em dead as she walked into the wind,

And Jake caught every ball and club and each face now wore
a grin.

And when the clapping ended and the curtain had come
down,

They knew they'd soon see Casey and his wonders world
renown.

Then from 500 throats and more a lusty cheer grew in the
Fox.

It rumbled in the balcony, in the loge and every box;

It knocked upon the rafters and recoiled from each footlight,

For Casey, The Great Casey, had entered from stage right.

There was ease in Casey’s manner as he strode into the light;.

There was pride in Casey’s bearing and his smile was shining
bright.

And when a flash appeared and a rose plucked from the glow,

No one in the crowd could doubt Casey would save the show.

Then with a haughty flourish both empty hands he showed
And held aloft a silk top hat and to center stage he strode.
But the rabbit had quit the act and left a souvenir impure,
And Casey’s hand went deep inside and spoiled his manicure.
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A few up front saw Casey scowl in this situation sticky.
I'll split that hare, thought Casey, and I'm not just being

picky.

But he smiled and set the hat aside...they’ll think I've yet
begun;

But in the wings they saw the goof and someone said, “That’s
one.”

Two silver rings are now displayed, one in each of Casey's
hands,

And from the darkened room there came a cheer from Casey's
fans.

Each one had seen the rings before—to them 'twas history,

But all still wondered at the feat and enjoyed the mystery.

Casey brings the silver bands together till they meet;

One ring inside the other—it is a wondrous feat.

Each mouth hung wide in silence as the rings just met and
clinked.

Five hundred minds within the Fox knew they should have

linked.

Now Casey uses all his skills to hold back profanity;

For he knows the rings he held were just a bit “off key.”

From a heckler in the darkness there came a scornful “BOO!”

And a voice backstage caught Casey’s ear and clearly said,
“That’s two.”

Once more a grumbling started building in the room.

The patrons and the players thought the show had met its
doom.

But with one stately gesture Casey stopped the growing
groarn,

When ke pulled apart the curtains to reveal a giant throne.

Then from the wings there walked a damsel so petite,

And Casey, The Great Casey, gently placed her on the seat.
Now Casey threw a scarlet cloth deftly in the air

And soft as a fog it settled down and covered girl and chair.

Then Casey struck a pompous pose and pulled the silk aside,

And a puzzled frown creased every face...the girl still sat
inside.

Casey’s just not the same—he’s lost everything they feared,

But Casey smirked, held up one hand...and then he disap-
peared!
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Oh, somewhere in this favored land they talk about a show;
There's delighted clapping somewhere, and you hear a loud

“Bravo!”

And somewhere “Encore—Encore!” resounds from every
nook;

But there is no joy in Vaudeville—The Great Casey got the
hook.

Trivia
e 1 Year after Casey at the Bat author E. L. Thayer dies (1940),
F. G. Thayer sells his magic business and home (1941) to William

Larsen Sr. (Father of Bill Larsen and Milt Larsen of Magic Castle
fame).

e 11 Years after Houdini, first president of SAM assembly #16 in
Worcester, Mass. dies (1926), Ken Fletcher is born in Worcester,
Massachusetts (1937). (Both miss SAM banquet that year.)

e 111 Years (to the day) after Casey at the Bat is first published
(1888), Casey at the Fox is first published (1999).

e 1111 Days ( 3 years, 2 weeks, 2 days) after this announcement
(March 4, 2003) James Randi will declare that the unusual nu-
merical progression of these events is just another coincidence.




Sleight of Hond with Playing Cards
prior to Scot's Discoverte

William Kalush

In 1584, Reginald Scot’s seminal Discoverie of Witcheraft! offered for the
first time in any language a full and detailed description of sleight of hand
feats with playing cards. A surprising number of earlier mentions exist.
From complete accounts with names, effects, and methods to merely a
line here or there, they all allow the historian to better understand the
state of the art prior to Reginald Scot. Techniques of both the card
cheat as well as the conjuror will be considered.

The recorded history of sleight of hand magic begins at least as early
as 2500 B.C.? Unfortunately, for our purposes here, playing cards don't
make their appearance in the West until the third quarter of the four-
teenth century. The first Western reference to playing cards seems to be
from Spain in 1371.% It’s likely that some clever but anonymous person
soon-thereafter decided to use them in new and deceitful ways. Per-
haps these deceits were an honest attempt to entertain and amuse, but
equally as likely they were used to lighten another’s purse. Less than
forty years later, we find the earliest reference to sleight of hand with
cards yet discovered.

William Kalush is a passionate researcher into the earliest conjuring history.

He is currently working on a bibliography of European books pertaining to conjuring
prior to 1701. The source materials for this article come from rare and valuable
documents. For the enthusiast, direct quotes from these sources are included at the
end of the article beginning on page 137.

1Scot, Reginald. The Discoverie of Witcheraft ... Imprinted at London by
William Brome. 1584.

2Dedi of desdinefru performing for King Cheops. Westcar papyrus, Berlin State
Museum.

3Parlett, David. A History of Card Games, Oxford, Oxford University Press,
1991. Page 35.
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The earliest discovered record of deception with playing cards dates
to 1408 France,* from a letter of remission preserved at the French Na-
tional Archives.® The letter notes that several cunning men were caught
using a less than honest stratagem (Quotation 1, page 137).

The ruse was basically a method by which Colin Charles and his
partners would get other men to bet on what seemed to be a game of
pure chance. The idea was that as cards were dealt around, the victim
was to pick a certain card. Apparently unknown to M. Charles and
his associates, the card the player was to find was subtly marked or
smudged on its normally white back. Of course, the “sucker” would
keep this “secret” to himself and surreptitiously win hand after hand.
Certainly thinking that he had stumbled upon some of the most naive
men in town who couldn’t even win their own game, he would gladly play
and increase his wagers. Eventually he would bet all he could manage;
the last hand would be dealt; and with confidence he would turn over
the card with the subtle little secret mark. To his great chagrin, it
would not be the card he was searching for. The pack had two such
cards marked identically. Although the method our pioneer card cheats
used to switch the cards is unknown, this certainly was the true point
of the game. Having been caught at this con the men were tortured to
confession and sentenced to the pillory. The letter of remission served
to reduce their sentences.

This is quite a clever scam, made all the more impressive when its
antiquity is considered. Notwithstanding, I am reminded of a point
made to me by fraudulent gaming expert and consultant Steve Forte,
regarding modern day card cheats. Upon my request to view some Las
Vegas surveillance footage of discovered sharpers, Mr. Forte bristled
and explained that only the poorest practitioners get caught; the best
are never discovered. One must leave to the imagination what the true
state of the art was in 1408. No memoirs of any card cheats from that
time have yet been discovered.

In his very successful, off-Broadway, one-man show, Ricky Jay and
His 52 Assistants, Ricky Jay has eloquently shown that some of Franois
Villon’s poetry® is a great source of information regarding late fifteenth
century French lowlife. Since he was a thief and a lowlife himself, any-
thing Villon has to say on the subject is greatly important. Villon’s “La

4 Allemagne, Henry Rene d’, Les cartes a jouer du XIV au XX siecle, Paris,
Librairie Hachette et cie, 1906. Also, Thierry Depaulis, “The Playing Card” Vol. X,
no. 4. This was quoted from Hjalmar, “Le Bonneteau”, published on the internet,
http://rafale.worldnet.net /" fderik/LeBonneteau/LeBonneteau. html.

5 JJ 162, ndeg361 (fdeg 264 Rdeg and Vdeg) citation from Hjalmar.

88pecifically “Tout aux tavernes et aux filles.”




Sleight of Hand with Playing Cards prior to Scott’s Discoverie 121

ballade des tireurs de cartes””® is a thirty- five-line song about cheating
at cards. Revealed are the concepts of hiding cards in a secret pocket
(jabot), conveying cards from this secret pocket to the hand, and the idea
of using marked cards (pictonnez). Similarly, though less significantly,
Eloy D’Amerval’s Le livre de deablerie,® Paris, 1508, mention is made of
deceits and frauds with cards, but the details are not given.

In Milan before the close of the fifteenth century, Luca Pacioli, a
Franciscan brother in the Catholic Church, with the help of a young
artist, wrote what I consider to be the first book devoted primarily
to conjuring. The young artist was Leonardo da Vinci who, it can he
conclusively shown, had an independent interest in conjuring methods,*®
but I must leave that topic for another time. Together the two wrote
De viribus quantitatis.'* This marvelous manuscript, of which only one
contemporary copy is known, contains a great number of descriptions of
conjuring effects and concepts closely allied. At the end of Item XXX, 12
which is a description of one of the many ways to divine a number or
numbers that are merely thought of by a spectator, is what may be the
earliest described method for a card effect. Pacioli is clear that this
method of number divination is intended to be performed for a group
of people, and that this group might request a repeat of the effect.
Knowing that repeating the same method often also exposes it, Fra
Luca explains an alternate method that would allow repetition without
fear of detection. He describes how the performer, prior to the event,

7Clirca 1480.

8Fanch Guillemin, “Francois Villon et la Bible des Tricheurs”, “Imagik”, Numero
Special Hors Serie No. 3.

9Le livre de la deablerie. L’imprimeur est Michel Le Noir, qui Paris a son
manoir. L’an mil cing cens ef huyt sans faulte. [1508]. Noted by Mr. Guillemin,
see footnote 8.

107t has been Mr. Vanni Bossi’s hunch for some time that Leonardo da Vinei had
some interest in conjuring. It should be mentioned that contained in the portion of
his notebooks that have been translated into English are several conjuring stunts. I
have also discovered that in the last century Gilberto Govi considered much of the
conjuring in De viribus to have been of Leonardo’s invention. Also see footnote 18
below.

HMS 250, University of Bologna. First brought to my attention by David Singmas-
ter. First to discover the conjuring connection was Vanni Bossi.

12 De viribus quantitatis has only been printed once. De viribus quantitatis / Luca
Pacioli; trascrizione di Maria Garlaschi Peirani dal codice n. 250 della Biblioteca
di Bologna; prefazione e direzione di Auguste Marinoni. Milano : Ente raccolta
vinciana, 1997. I am indebted to Vanni Bossi of Legnano, Italy for bringing this to
my attention and in assisting me in obtaining a copy. Translated from the Italian by
Jeremy Parzen.
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could teach a young boy a system that remains a secret between the
two. This system allows the performer to communicate information to
the boy using a variety of subtle methods. The performer might turn his
back and communicate through finger signals while his hands are behind
him, or, more subtly, he might resort to certain code words cloaked in
the guise of threats, such as “go back” or “go there.” These words would
intimate certain information to the boy without allowing the audience
to know anything covert had been relayed.

Then our groundbreaking author touches on the idea of applying this
code to other objects, including playing cards:

And you will teach the said lad, since he is closed up or far
away, to guess which card they have touched with out seeing
them when you have come with him for the numbers [trick];
yvou will do so by assigning numbers to the figures and cards
according to the tricks and according to the understanding
between you; and you will give great pleasure to the group,
for it will seem to whomever does not know the way, that
all of this things have been done by [the] magical art [of]
divination, etc. And thus for the points, the dice, and the
ring, and the 3 varied things, and with him you will do stu-
pendous things. But as I say, it is important that you do it
very well, carefully, so that you will not be shamed, because
these things are considered as secret as they are considered
good.

I consider the description above to be the earliest card magic ex-
planation vet discovered. As if this were not delightful enough, Pacioli
also relates that Giovanni de Jasonne of Ferrara used a similar method,
which Pacioli himself witnessed in Venice (Quotation 2, page 137).

Since the end of the eighteenth century, a similar method has been
used by magicians to perform what has become known as “second sight.”
Interestingly, it can now be said that this method was used at least as
early as the end of the fifteenth century. What can not be said is what
might have happened to the literature of conjuring had this wonderful
manuscript been printed, allowing generations of conjurors access to
material that would lay dormant for centuries waiting to be rediscovered.
Perhaps if it had been printed, it would have dramatically increased the
quantity and the quality of what was subsequently written in regard to
sleight of hand in the sixteenth century.
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The Liber vagatorum™ [Augsburg, Joh. Froschauer, ca. 1509], a Ger-
man booklet with a Latin title, is more or less a dictionary of slang nsed
by vagabonds, criminals, and cheats. The reference to cards is only in
passing, but in consideration of its age, it should be mentioned here.

“Item, beware of the Joners who cheat at cards, who
deal falsely and cut one for the other, cheat with Boglein
and Spies, pick one card from the ground, and another from
a cupboard...” !4

Later our anonymous author says he might say more but “for your
own good, I had better not explain.,” This line of reasoning is repeated
continuously throughout the literature of cheating, up to the present
century. Perhaps it was a real attempt to avoid luring the honest reader
into the depths of depravity, but more likely, I suspect the author knew
no more.

The above quote is the earliest mention of “dealing falsely” that I
have heen able to ascertain, but shortly thereafter buried in the famous
and popular Il cortegiano'® by Baldassarre Castiglione, there appears
another. This entertaining guide to court life, written between 1508
and 1516, contains what may be the first appearance of an oft repeated
practical joke. The gist of the conceit is that three men were playing
cards (primero perhaps) and quickly one of the men lost all his money.
Being a bit bored, the loser went to bed. The other two players decided
to have a big laugh at their friend’s expense and conspired to play a joke.
They waited until they were sure that he was asleep. Then they quietly
put out all the lights and curtained the window so no light at all could
be seen. They took their places at the table at which they had bheen
gambling and began arguing with each other so loudly as to deliberately
wake their victim. Once awoken, their victim would not be able to see
anything at all, but his mischievous friends would act as though they
could see normally. They of course would convince the third man that
the lights were lit and, if he could not see that, then the problem lay with
him. He, believing himself to have gone blind, would panic, thus creating

B3 Cited by Kurt Volkmann in “The Origin of the Shift,” The Sphinz, Vol. 51,
No. 1, and brought to my attention by *Prose and Cons”, a lecture by Ricky Jay,
in the Pforzheimer Lectures on Printing and the Book Arts, at the New York Public
Library, March 29, 1994.

14 The book of vagabonds and beggars; with a vocabvlary of their langvage and a
preface by Martin Luther; first translated into English by J. C. Hotten and now
edited anew by O. B. Thomas. London, The Pengvin press [1932].

1511 libro del cortegiano. Nelle case d’Aldo & d’Andrea d’'Asola: Venetia, 1528,
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the amusement his friends were looking for. One may wonder how has
this anything to do with cards. The two things that the two pranksters
said to each other to create the fight were “You've drawn the under
card” and “And you have wagered on four of a suit.”'® Admittedly, this
is a vague reference, and perhaps Castiglione had no direct knowledge
of such artifice. He simply could have assumed that to cheat, one must

deal from the bottom. Nonetheless it is worth mentioning here.

Hidden away in the British Library'? is a well-preserved pamphlet

of 4 leaves entitled Opera nuoua doue facilmente potrai imparare piu
givochi di mano et altri givochi piaceuolissimi & gentili come si potra
legge/njdo uedere et facilmente imparare. [G. S. di Carlo da Pavia: Flo-
rence, 15207]. Although the anonymous author was generous enough to
explain a dozen or so interesting feats of conjuring, he did not see fit
to include any card magic per se. What he did, however, was include
a warning to card players that others might use artifice to take the ad-
vantage, and therefore the money. Luckily enough for us, he described
specifically several maneuvers with cards in an entry ostensibly to pro-
tect the player from fraud. Here he described how a cheat might use
soap on desired cards to cause a subtle separation and thus find those
desired. Also we are informed that a cheat might deal the second in-
stead of the first card, and he might use a mirror to know what cards
the others hold.

Although, as we have seen, the general concept of dealing falsely
appears earlier in Liber vagatorum and the concept of bottom dealing
crops up in Italy about the same time, the above passage is a clear exposé
of what is still used and known today as a second deal. The reference
to soap also may be the first time this ever-repeated stratagem appears.
Soap allows the cheat to find desirable cards without having to resort to
searching. Used until recent times, the soap (later wax) was applied to
any desirable cards and would, upon slamming the deck down on a table
or floor, cause the pack to separate at the soaped cards. The idea of
using a mirror to see your opponent’s hand is also mentioned repeatedly
throughout the forthcoming literature, but this is the earliest mention I
have yet found.

Although, strictly speaking it is outside the scope of this paper, it
can be shown that mathematical “divination” stunts have existed in the
West from at least the eighth century and can even be found hidden in

L6Translated by Leonard Eckstein Opdycke. The Book of the Courtier by Count
Baldersar Castiglione, London, Duckworth & Ca., 1902.
L7British Library C.20.a.31.(8.).
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the personal manuscripts of Leonardo da Vinci.!® What is now familiar
to many as the “twenty-one card trick” does not seem to appear in print
before 1593,'% but the concept of mathematical card effects is mentioned
in print seemingly for the first time in 1534. Franois Rabelais, in the
first book of his important work Gargantua and Pantagruel®® gives us
our first glimpse. Unfortunately, he does not elaborate on what specific
effects could be done. He says only:

... This done, they brought in cards, not to play, but to
learn a thousand pretty tricks and new inventions, which
were all grounded upon arithmetic. By this means he fell in
love with that numerical science, and every day after dinner
and supper he passed his time in it as pleasantly as he was
wont to do at cards and dice; so that at last he understood
so well both the theory and practical part thereof, that Tun-
stall?! the Englishman, who had written very largely of that
purpose, confessed that verily in comparison of him he had
no skill at all. And not only in that, but in the other math-
ematical sciences, as geometry, astronomy, music, etc.2?

Another brief reference to cards appears further down in the same section
(Quotation 4, page 138).

Although the literature of the sixteenth century is littered with men-
tions and detailed explanations of arithmetical divinations, the above
passage is the earliest mention I have been able to find referring specifi-
cally to applications with cards. It is a pity we do not know which effects

18See “Arithmetical Divination From Charlemagne’s Court to Leonardo da Vinei.”
William Kalush, Atlanta 2000. Published for the Gathering for Gardner 4.

19Galasso, Horatio. Giochi di carte bellisimi di regola e di memoria. Venetia,
1593. This wonderful and extremely rare book has over 50 conjuring tricks, most of
which seem to be new.

20 The most horrific life of the great Gargantua father of Pantagruel composed in
days of old by M. Alcofribas abstractor of Quintessence book full of Pantegruelism.
On sale at Lyons, at Francois Juste's opposite our lady of comfort M.D. XLIIL.

' Tunstall Cuthbert 1474 1559.

22Translated by Sir Thomas Urquhart. The works of Francis Rabelais, Doctor In
Physick: Containing five books of the Lives, Heroick Deeds, and Sayings of Gargan-
tua, and his Sonne Pantagruel. Together With the Pantagrueline Prognostication,
the Oracle of the divine Bacbue, and response of the bottle. Hereunto are annered
the Navigations unto the sounding Isle, and the Isle of the Apedefts: as likewise the
Philesophical cream with a Lymosm/!] Epistle. All done by Mr. Francis Rabelais, in
the French Tongue, and now faithfully translated into English. London, Printed for
Richard Baddeley, within the middle Temple-gate. 1653.




126 William Kalush

Figre 1. Arentino by Titian.

were done. Perhaps the elusive details will be discovered sometime in
the future.

Famous Italian renaissance poet and author Pietro Aretino published
his Dialogo di Pietro Aretino nel quale si parla del gioco con moralita
piacevole®® for the first time in Venice in 1543. Considering that the
entire book is a dialogue between a man from Padua and a playing card,
I suspect careful study by those interested in the history of playing cards
wouldn’t be time wasted. I will refer to one passage only:

PAD[OVANO]: As for ribaldry at cards.

CARTE: Suffice it for you to understand that [there was]
a Spaniard [who| used to carry inside his left arm a loose
iron [rod]; as he would pick up [the card], it would come into
his palm lengthwise; and as he would put his elbow down,
it pushed out the card that came to him in the cut, pushing
away the bad card in the hidden device with ability [worthy]
of Spanish wool.?4

This passage wonderfully describes what is now known as a “hold-
out.” This device, of which a great many designs and implementations
are now extant, is a machine worn under one’s clothing that switches a

23In Venetia: Per Giouanni de Farri, & fratelli, 1543. Brought to my attention by
Gianni Pasqua of Torino, Italy.
2 Translated by Jeremy Parzen.
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card or cards secretly during a card game. Most commonly, as described
by Aretino, it is in the cheat’s sleeve. Through some innocuous action,
it mechanically pushes the desired cards (previously placed secretly in
the sleeve) into the palm. Then upon reversal of the procedure the dealt
cards are taken away. Until this passage was discovered, the holdout
was generally believed to be an invention of the late eighteenth or early
nineteenth century.

To the best of my knowledge specifics regarding cheating with cards
do not appear in English until briefly touched upon in 1545 and then a
bit more detail is lent to the subject about 1552, which is rehashed in
1577.

The first English reference considered here comes from a most un-
likely source. Latin teacher to Queen Elizabeth among others, Roger
Ascham published for the first time in 1545 Toxzophilus, the schole of
shootinge.?® The work, ostensibly a manual of archery, is divided into
two books; the first is what concerns us here. In a section derisive toward
gambling (his reasoning is that it takes time from archery), Ascham finds
place to briefly touch upon cheating with cards and dice. If what he says
of dice is vague, then his mention of artifice with cards is minimal to the
extreme. Unfortunately, he only sees fit to mention in passing the terms
“false dealing, crafty conveyance, and false forswearing”. Even though
Ascham lumps cards with dice, he gives us just the smallest of tastes.

Next we find an exciting pamphlet, A manifest detection of the
moste vyle and detestable use of diceplay, and other practises lyke the
same,. ..%% This anonymous pamphlet has been roughly dated to around
1552?" and dubiously attributed to Gilbert Walker (G. W.), of whom
nothing is known. Here we find somewhat more than we did in Toz-
ophilus, and it is quite a bit more interesting (Quotation 5, page 138).

Here again we are informed of marked cards and cards deformed in
such ways as to be found by the cheater using only the sense of touch.
“Bum” cards can be narrow, wide, or perhaps bent. G. W. also notes

25 Toxophilus, the schole of shootinge. Londini: in aedibus Edouardi VVhytchurch,
1545.

26Imprinted at London, in Paules church yards at the sygne of the Lamb, by
Abraham Vele.

2"Many scholars find it likely that the only extant edition is either not the first,
or earlier than the 1552 attribution. (There is rumor of both a 1532 edition and one
with a printed date of 1552. It's questionable whether either has ever existed, and
if so they both seem to be ghosts now.) From internal evidence it seems the book
was written during the battle of Bolougne which ended in September 1544. Ricky
Jay points out that upon a close reading it also sounds like Toxophilus is derivative
of Manifest detection which would imply an earlier publication date to Manifest
detection than formerly attributed.
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how cheats might gain information by signals or mirrors. He tells of cards
turned up (now known as a crimp or wave), and even more interestingly,
he mentions “prick.” Prick could be cards marked by using fine needles
to make bumps on the cards that the cheater could feel. It is also
possible that the author had another meaning for the word that is now
obscure. Interestingly, G. W., like Aretino before him, mentions “one
fine trick brought in [by] a Spaniard.” This topic will briefly be covered
later. John Northbrooke’s A treatise against dicing®® followed in 1577,
but was completely derivative of what had come before.

In stark contrast to the sparse English offerings from the mid six-
teenth century is: Le mespris & contennement de tous ieuz de sort com-
pose Olivier Gouyn de Poictiers.2? It is a beautiful book printed in Paris
in 1550, that gives marvelous details regarding cheating with cards. Al-
though I can say nothing of Olivier Gouyn, I can say that this book (I
believe the only one he wrote) is a wonderful contribution to the his-
tory of chicanery we are now examining. His third chapter is devoted
entirely to methods of cheating at one game or another. Entitled “Of
the subtleties, ruses, deceits, cheating and nasty things that are done
in games,” he devotes about a third of the twenty-four, 12deg pages of
the chapter to artifice with playing cards. He warns repeatedly that
you, the ordinary player, cannot hope to win against a professional who
cheats. If you attempt to protect yourself by requesting a new pack,
the cheater can mark the cards while playing. Or, he will send someone
he knows and is in confederacy with who will bring back a new looking
pack that has been gimmicked in several ways to allow the advantage to
go to your adversary. He also tells that if you buy the cards yourself, no
matter, the cheater can switch the pack at any moment. Perhaps you
will spit on the floor or blow your nose; when you look back, the cards
will have heen switched. The pack can he marked beforehand, or even
the size of the cards can be altered. Long, wide, short, or narrow cards
are all mentioned. This subterfuge would allow the cheat to gain control
over desirable cards, thus causing them to be dealt or avoided, as need
dictates. Gouyn also warns that these insidious players will also pair

28 Spiritus est vicarius Christi in terra. A treatise wherein dicing, dauncing, vaine
playes or enterluds with other wdle pastimes &c. commonly used on the Sabboth
day, are reproved by the authoritie of the word of God and auntient writers. Made
dialoguewise by John Northbrooke. London, H. Bynneman for Goerge Byshop, [ent.
1577].

29 isted by Manfred Zollinger in his Bibliographie der Spiclbiicher des 15. bis 18.
Jahrhunderts, Anton Hiersemann Verlag, Stuttgart 1996. This was brought to my
attention by Daniel Rhod of Paris.
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up and cheat using signals and even affix mirrors to their clothing to
allow secret reading of an opponents hand. Cheaters also have ways to
seemingly shuffle the cards but actually keep them in the same order, es-
pecially those underneath. “And after you have cut (if you don’t pay too
much attention), he will put underneath, that which should go on top.”
And when dealing, the cheater will deal from the bottom or the middle.
We are told that the marked cards can be held back by the dealer so
they do not go to his opponent and end up in the dealer's hand. Re-
garding the level of skill these men possess Gouyn says: “For never has
a juggler®® had more supple hands and fingers playing the cups,®! than
some cheaters have in handling cards and dice.” The remainder of the
chapter concerns cheating at dice and bowling, interesting topics that
we must not delve into now. This wonderful book breaks new ground
in exposing the existence of several deceptions that I believe heretofore
were usually considered much later inventions.

To the best of my knowledge, Girolamo Cardano’s De subtilitate®?
has the honor of containing the first printed description of a method for
a card effect (Quotation 6, page 139). (Bearing in mind that Fra Luca’s
manuscript was never published.) In his effect he explains two methods
to retain knowledge of where the card is. First by using the finger, a
topic later expanded by Scot, and now known as a “break”. The second
is by placing the selected card in close proximity to a known card. This
would allow the performer to shuffle to some extent and still be able to
find the selection.

Cardano was a Milanese physician who, fortunately for us, had two
pastimes. He gambled, and he wrote about it. Although there is more
magic revealed in his De rerum varietate®® than in any of his other
works, his famous De subtilitate and his contemporaneously unpublished
De ludo alea will concern us here.

Kurt Volkmann in “Magie” first noted that the beginning of Book
18 of De subtilitate contains a long description of the performance of
two magicians, Dalmagus and Francesco Soma (Quotation 7, page 139).
Since no card magic was attributed to Dalmagus, I will not deal with
him here. Francesco Soma of Naples, however, is a different matter.

30 Juggler and its variant spellings refer to what is know called a magician, and not
necessarily one who can keep several balls in the air at one time.

31 Referring to the classic cups and balls.

32 Hieronymi Cardani mediolanensis medict de subtilitate libri XXI, Norimbergae:
Petreium, 1550.

33 Hieronymi Cardani mediolanensis, medici, de rervm varietate libri X VII. Basel,
Henric Petri, 1557.
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The first edition of De subtilitate was published in Nuremberg in 1550,%*
and lacks any mention of Soma whatsoever. The anecdote first appears
in the edition of 1560, which is also the last edition published during
Cardano’s life. From this we can deduce that Cardano likely witnessed
this performance within this 10 year window.

According to Cardano, Soma could reveal a selected card even though
it hadn't been returned to the pack. Soma could also cause several par-
ticipants to select the same card. To explain this, Cardano considers the
possibility of a pack consisting solely of one value and suit of card. But
this theory he realizes is flawed and he rejects it. When Cardano in-
vites an Epicurean philosopher to scrutinize Soma, the man notices that
the conjuror is “murmuring” throughout his performance. This sug-
gests to me that perhaps Soma was able to successfully apply mnemonic
techniques to his conjuring methods. This conjecture might not be un-
founded considering the publication of such a concept as early as 1638.%°

Unpublished until Cardano’s complete works were printed in 1663,%5
De ludo alea also mentions Francesco Soma, but this time the spelling
is Sorna. I suspect this as an error in transcription of Cardano’s manu-
seripts, but I must admit that without checking I cannot say for certain.
As the title implies, this book is devoted to gambling games. In Section
17, Cardano briefly explains some of the then current methods used to
cheat at cards. In light of earlier material quoted above, it should suffice
to say that Cardano briefly covers the concept of marking the cards in
several ways and touches on the idea of mirrors and secret codes to gain
knowledge of an opponent’s cards. Notwithstanding this, there is one
curious comment. Near the end of this section, Cardano writes:

Since prestidigitators are capable of such admirable feats,
why is it that they are usually unlucky at cards? It would
seem reasonable that, just as they are able to deceive us
with balls, pots, and coins, they should also be able to do
it with cards and so invariably come out winners. But the
condemned Spaniard was ordered (in fact, the prohibition,
they say, was on pain of death) not to play, seeing that he
could at will produce four cards that make chorus either by

34This edition mentions a Spanish magician in the retinue of Charles V, but Dal-
magus’s name is not present. It appears at least by the 1554 edition.

358iviero da Cento, Benedetto (Il Carbonaro). Nova Ghirlanda di bellissimi giochi
di carte, e di mano. Con altri bellissimi gioch d’intertenimento. Data in luce da me
Benedetto Siuiero da Cento detto il carbonaro. Wenetia, Fiorenza, Bologna, Oruiero,
Padoa e Macerata, Perugia & in Roma, appresso Bernardino Tani, 1638.

36 Opera omnia: tam hactenvs ercvsa; Lvgdvni, Sumptibus Ioannis Antonii Hvgve-
tan, & Marci Antonii Ravavd, 1663.
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quickness of hand; for we must assign to either of these a
prodigious art of prestidigitation.?”

The inferences in the above passage are quite interesting. Cardano
implies that not only has he had much contact with prestidigitators,
but it's to the extent that he has played cards with a great enough
number to generalize on their relative luck. From personal experience
I can say that even a great amount of skill at performing card effects
relates very little to the same performer’s ability either to play cards well
or, for that matter, to cheat. Although it can be said without question
that many of the same sleights used to cheat at cards are also used
in performing conjuring feats, the similarity ends there. The moment
when the crucial sleight can be performed is almost always completely
different when used for cheating as opposed to entertaining. Also I
might point out his reference to a condemned Spaniard. I must confess
that I have been unable to find out who this Spaniard was, my only
guess heing that it could have been the same Dalmagus he mentions
in De subtilitate. I suspect a Spanish scholar might be better able to
locate more information regarding Dalmagus. I have been unable to find
anything further than what Cardano himself said.

An interesting aside to this chronicle is the use of playing cards to
relay secret messages. Anticipating by 400 years a card effect somewhat
popular in the twentieth century, Gianbattista della Porta of Naples
published an important work on secret writing in 1563.%% He included a
vast number of avant-garde techniques to communicate secretly, one ex-
ample using nothing more than a pack of cards. The two parties wishing
secure communication need only agree on a specific order of an ordinary
pack of cards, also agreeing on which, if any, of the cards would be face
up and which would be face down. Once the two parties each know
the secret order, the sender places his pack in this order then writes
his secret message on the edges of the pack. When the sender finishes
writing the message, the sender then shuffles the deck thoroughly and
randomly, turning some cards over and leaving some the way they were.
The shuffled pack is then transported to the party needing the secret in-
formation. The concept is simple and quite brilliant; if any interceptor
wants to read the message, the pack must be reassembled. The num-
ber of distinct orders that a single pack of playing cards can occupy is

3T Translation from Cardano, the gambling scholar. Qystein Ore, Princeton,
Princeton University Press, 1953.

38 De furtiuis literarum notis: wvulgo, De ziferis libri IIII / Ioan. Baptista Porta
Neapolitano autore. Imprint Neapoli: Apud loa. Mariam Scotum, 1563.
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absolutely staggering. With the aid of Professor David Singmaster of
London, I determined that an ordinary pack of 52 cards can be put in
52! distinct orders which is equivalent to 8.1 x 1067. If the wrinkle of face
up and face down is considered, this number rises to 3.6 x 1083, which
I believe to be about equal to the number of atoms in the universe! I
suspect this method of transfer of secret information may have failed to
catch on for two reasons: (1) The amount of information is limited, due
to lack of writing space and (2) the vulnerability of transferring the key.
This form of cipher apparently resurfaced in the twentieth century, to
be used in World War One. This lead to a challenge posed by Theodore
Annemann in The Jinz, No. 19, April 1936. “Somebody, somewhere,
may make use of this idea. During the war a code was intercepted which
used a deck of cards. They were in a certain order and the message was
written on the edge of the deck while it was gripped or tightly held.
Then the cards were shuffled. Only the person knowing the order could
put them together to make the message readable.” In response to this
challenge the concept was applied and has become the root of several
entertaining mysteries now used by modern card conjurors.

Girolamo Scotto®? was an Ttalian performing card magic in the fourth
quarter of the sixteenth century. Surprisingly, a great deal is known
about his most interesting life. Scotto was reputedly a Knight of Pi-
acenza and is the first card magician of which a representation of his
face is known. Scotto was attached to several European courts, not
the least of which were Ferdinand II's of Vienna and Rudolpho II's of
Prague. Credited to Scotto is the ability to take four cards from a pack
and make them change repeatedly to other cards. He would ask the first
spectator to name any four of a kind. The first spectator says kings, and
immediately the four cards become kings. The next spectator requests
queens, and the same four cards are shown to have become queens. The
third says aces, and the cards are aces. Finally the last person, being a
bit belligerent, says “nothing.” Scotto relents and shows that the cards
have now become blank.

Also credited to Scotto is the ability to cause a spectator to select
the same card over and over again. Perhaps his method might have been
similar to that used by Francesco Soma. A detailed first hand account
has survived (Quotation 8, page 140).%°

39First mentioned by Sidney Clarke in “The Annals of Conjuring”; see full citation
in footnote 46. Full articles followed by Ottokar Fischer, *Hieronymus Scotto, An
Unknown Conjurer of the Renaissance”, The Sphinz Vol. 36. Edgar Heyl, “New
Light on the Renaissance Master”, The Sphint’, Vol. 47.

40Reported contemporaneously by Archduke Ferdinand’s physician, Dr. Handsch.
Hirn, Josef, Erzherzog Ferdinand II. von Tirol; Geschichte seiner Regierung und

seiner Lander. Innsbruck, Wagner, 1885—-1888.
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Mgure 2 Medal of Scotto by Abondio.

Newly discovered by collector and historian Giovanni Pasqua of Torino,
Italy is a pamphlet entitled Secreti di natura maravigliosi del sig. Gieron-
imo Scotto Piasentino.*! This exciting find consists of a modest eight
pages and contains ten items, five of which are card effects. Without
date or printer, it is difficult to know when this booklet first appeared,
but I suspect it was contemporary with Scotto.

The tract explains,

[How to] make cards walk, dance, and how to pull out the
one you want from all the others.

[How to] make primero from four cards and [how to] make a
flush from primero and [how to] make four [no trumps?] out
of a flush.

[How to] make a card of spades turn into a [card] of diamonds
or [how to make] goblets into coins.

[How to] guess cards while blindfolded.

[How to] guess which card imagined by one or two [and] if
they are truly taken, you will [even be able to] guess the card

[held by all] three.

41 The only known copy is in Mr. Pasqua’s private library.
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SECRET]

DI NATVRA

MARAVIGLIOSI,
Del Sig.Gieronimo Scotto Piafentino ;

Con alcuni gr'aru:)fri dicarte ro/? norabili,
[fatteinnanzi a molui-Prencipi, ¢
Sugnori, (g%,

Nouamente polti in luce daM. Francelca
Travaglia .

InTorino, & Riltamparain Pauia, -

Conlicenza de’Superiori.

Considering that at least one of these items is precisely what has been
independently attributed to Scotto, and one of the others is very similar,
it is not reckless to speculate that Scotto may have done the other effects
described. Whether or not the methods are the same as Scotto’s is a
question we might never answer for certain. I can say, however, that all
of the methods for card effects described in the libretto have come down
to us and have been in use, in one form or another, up to and including
the present day.

Scotto’s contemporary, amateur conjuror Abramo Colorni,*? was a
clever engineer who is remembered mostly because he was both Jew-
ish and in high standing at several European courts, including that of
the Duke of Ferrara. At that point in European history, being of the
Jewish faith could be quite detrimental to one’s societal status. Colorni
stands out as an exception to that rule. We are interested here in his
conjuring abhilities with cards, of which, fortunately, a little bit is known.
Although he was mentioned by several contemporary authors, and some
of his personal letters survive, the most important accounts regarding
his magic were written by his friend Tomaso Garzoni. Garzoni’s most
famous and important book La piazza universale di tutte le professioni

2Kurt Volkmann, Magie 1942, and Robert Lund, “Colorini”, The Sphinz Vol. 52,
No. 1.
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del mondo*® contains a nice account of Colorni’s card conjuring (Quo-
tation 9, page 141). Colorni is credited with being able to have a person
select two cards, while still in the possession of the spectator one card
changes into the other and then the surface of this card is scraped off to
reveal some tiny writing which turns out to be the very thoughts of the
person holding it!

We are also told Colorni could place a pack in the center of a table.
Those around it could take whichever card they wished and the card
would be the one he said. Colorni was also mentioned again by Garzoni
in his much rarer and arcane Il serraglio de gli stupori del mondo, but the
passage is nearly identical to that of La piazza. It has been interpreted
by others, and I'm inclined to agree, that the passage “he makes any
card named ...come out of the pack” is a direct reference to what is
now popularly known as “the rising cards,” a classic of card magic.
The rising cards is most impressive when any card freely named by an
audience member spontaneously rises. Alternatively, the first card item
in Secreti di natura maravigliosi cited above is a method to get a card to
dance or come out of the pack. This is not the rising cards, and is closer
in spirit and method to what is now known as “the haunted pack.” It is
possible that the eyewitness accounts of Colorni were less than perfect
in reporting the minute details of the effect. Magicians have long relied
upon the audience mis-remembering what actually happens during a
performance. For this reason, accounts of effects by nonmagicians can
often be suspect.

The fact that Colorni was an engineer of great notoriety implies that
he may very well have invented his own methods for his effects. Unfor-
tunately, none of his secrets have yet been discovered. Like Gianbattista
della Porta, Colorni’s interests also included cryptography. He published
Scotographia,*® in Prague, 1593, and it was dedicated to Rudolph II, the
same who had hosted Scotto at one time.

43 La pinzza vniversale di tvtte le professioni del mondo, e nobili et ignobili / Nvo-
vamente formata, e posta in luce da Tomaso Garzoni da Bagnacauallo. In Venetia:
Appresso Gio. Battista Somascho, 1585.

4 Seotographia overo, Scienza di serivere oscvro, facilissima, et sicorissima, per
qual st uwoglia lingua; le cut diuerse inuention: diuisi wn tre libri, seruiranno in piu
modi, & per cifra, & per contracifra. Le gquali, se ben saranno commuvni a tutti,
potranno nondimeno usarfi da ogn’ uno senza pericolo d’essere inteso da altri, che
dal proprio corrispondente. Opera di Abram Colorni . ... In Praga presso Giouani
Sciuman. M.D.XCIIIL.
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Lastly, Francis Bacon, who was known as the most learned man in
Britain, included in his Sylva Sylvarum*® a detailed account of a conjuror
performing a card effect that doubtless would still be quite impressive
today (Quotation 10, page 141).

Bacon relates that while living in his father’s home (this would be
around 157546 he had the opportunity to see a juggler, who performed
a card effect. Later Bacon tells the story of this performance to a vain
man he calls a “Pretended Learned Man.” The effect was that one
spectator was asked to select a card and another onlooker was to name
any card that came to mind. The selected card and the thought card
were then discovered to be one and the same. Bacon’s interlocutor was
of the opinion that the juggler had forced his will upon the man who
had named his thought card. On this point I agree. In fact the juggler
must have forced his will on both participants, but by different means.
This concept of forcing is implied in the work of Francesco Soma as well
as Girolamo Scotto. Interestingly Reginald Scot explained how both
versions of this technique can be accomplished, leaving the juggler’s
effect exposed. Due to the countless redescriptions over the last 400
vears, this technique has never gone out of fashion. It consequently has
become one of the staples of all card conjuring to this day.

Without doubt the invention of sleight of hand maneuvers with cards
was concurrent with the invention of the cards themselves. I suspect that
there are countless mentions and descriptions of methods and perfor-
mances that have yet to be uncovered. It is not reasonable to think that
at anytime since the introduction of cards that conjurors’ or sharpers’
minds or hands have been idle. It is likely that the vast majority of the
repertoire of modern card conjurors was already being used prior to the
publication of Scot’s Discoverie of witcheraft.

I sincerely thank all of the researchers who have come before me,
upon whose shoulders I now stand. I also thank Marsha Casdorph for
her fine help in editing. Also a large thanks to: Vanni Bossi, Ricky Jay,
David Singmaster, Gianni Pasqua, Daniel Rhod, Ariel Frailich, Jeremy
Parzen, and Marianne Santo.

45 Sylva sylvarum, or, a naturall history in ten centuries / by the Right Hom-
ble. Francis Lo Verulam Viscount St. Alban; published after the authors death by
William Rawley London: Printed by J.H. for W. Lee ..., 1626.

463idney W. Clarke, “The Annals of Conjuring” published serially in The Magic
Wand, v. 13-17 (nos. 121-140), 1924-1928.
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Quotation 1 ( page 120, footnote ).

[...] Charles VI, King of France by the grace of God, makes it known, to all
who are in the present and in the future: we have received the humble plea
of Colin Charles, of Montdobleau, in the bishopric of Chartres, poor young
page, unmarried, helper to a mason, aged approximately 24 years, saying that
he, in the company of 6 other companions, went playing above the Pont Neuf
in Paris, about one year [ago|, encountered two merchants from the country
of Brittany. To one of which, one of the companions made it known, that he
had frans [Francs| on his and a big silver tournament that he wanted to sell
and asked him if wanted to buy them, saying that he would sell them and
they went to the Bonne tavern, and he showed them and would give Francs
for 16 solz parisis [currency]. And if said merchant were to pay, he would not
owe any more; and so much did he and his companions < ennorterent> said
merchant that he went with them and when they were in the tavern and had
drunk, one of said companions reached for a number of papers to play [playing
cards| and made said supplicant and his companions play said merchant who,
by their seduction, played at guessing which card one would touch. So much
so that, when he played for nothing, he won because he was shown*’ how the
card he had to pick was marked. But they had not showed him that there were
two cards marked in identical fashion, and suddenly, <par enviz er renvizs
at every card picked as he was told, and of each consent, said merchant lost
22 écus [coinage| for not having picked the one he was shown, with a painting
of roses on the front, but a similar one with the back marked as said. For
this deed said Colin and others of his company were soon after caught and
imprisoned in our Chastelet de Paris [small castle of Paris]. And for what
was found to be matters of abuse and deception, said supplicant was very
questioned in a hard manner, and, finally, his confession heard, was sentenced
to the pillory and was put there, and banned from our Kingdom forever, and
would never dare converse there without our grace [...].**

(uotation 2 (page 122, footnote 12).

With similar ways a certain Giovanni de Jasonne from Ferrara would perform.
He had a lad that he had instructed since the cradle in similar gentilities: by
means of numbers and by acts, signs and gestures of the hands, feet, and by
coughing and by velling, by beating knives on the table etc., he could make
him understand 2 or 3 words that he would secretly say; he would have him
guess by composing letters with space between words and stories, so that the
group would not understand. And at the same time, because it seemed that
the deed was not [just] his, he had ordered the lad to always keep his eyes on

47 Although the manuscript uses the French word for “shown,” I believe that for the
ruse to work it must be assumed that the detection of the markings was incumbent
upon the sucker.

48 Translation by Ariel Frailich.
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his hand, and thus he could compose words and syllables and numbers, etc.,
and with this he went often to Venice—and I was there—and he would do
similar effects in the home of some gentleman or gentlewoman in such a way
that they swore that the lad had a friendly spirit that revealed all of these
things, etc.; and with these he went away... Finally the boy died but he is
still here.* Similarly, you can use this ways and turns to teach one for the
pleasure of refined men, as he did, and when he did such things, he was careful
that there was no one that seemed to understand |[...]

Quotation 3 (page 124, footnote 17).

If you want to play at <chiamare> every time you will give the second card
and you will know the point that your partner is asking and that point [card]
put a little bit of soap on that card. Square the cards on the floor and the card
will come out and you will take another card and you will give them second
and to play at <susso:> or < premera3> & you will have a mirror between
your legs and you will know the card you are dealing.®”

Ouotation 4 (page 125, footnote 22).

After that they had given thanks, he set himself to sing vocally, and play
upon harmonious instruments, or otherwise passed his time at some pretty
sports, made with cards or dice, or in practising the feats of legerdemain with
cups and balls. There they stayed some nights in frolicking thus, and making
themselves merry till it was time to go to bed;

Ouotation 5 (page 127, footnote 26):

R. asks: Then am [ sufficiently lessoned for the purpose. But because at the
first our talk matched Dice and cards together, like a couple of friends that
draw both in a yoke, I pray you, is there as much craft at cards as ye have
rehearsed at the dice?

To which M. replies: Altogether, I would not give a point to choose; they
have such a sleight in sorting and shuffling of the Cards that play at what
game ye will, all is lost aforehand. If two be confederated to beguile the third,
the thing is compassed with the more ease than if one be but alone. Yet are
there many ways to deceive. Primero, now, as it hath most use in court, so is
there most deceit in it. Some play upon the prick, some pinch the cards privily
with their nails, some turn up the corners, some mark them with fine spots
of ink. One fine trick brought in a Spaniard; a finer than this invented an
[talian, and won much money with it by our doctors, and yet at the last they
were both overreached by new sleights devised here at home. At trump, sant,

49Pacioli’s meaning here is not clear.
50Translated by Gianni Pasqua, Vanni Bossi, and Jeremy Parzen.
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and such other like, cutting at the neck is a great vantage. So is cutting by a
bum card finely, under and over, stealing the stock of the discarded cards, if
their broad laws be forced aforehand. At decoy they draw easily twenty hands
together, and play all upon assurance when to win or lose. Other helps I have
heard of besides, as to set the cozen upon the bench with a great looking-glass
behind him on the wall, wherein the cheater might always see what cards were
in his hand. Sometimes they work by signs made by some of the lookers-on.
Wherefore, methinks this among the rest proceeded of a fine invention: a
gamester after he had been oftentimes bitten among the cheaters, and after
much loss, grew very suspicious in his play that he could not suffer any of
the sitters-by to be privy to his game. For this, the cheaters devised a new
shift. A woman should sit sewing beside him, and by the shift or slow drawing
her needle give a token to the cheater what was the cozen’s game. So that
a few examples instead of infinite that might be rehearsed, this one universal
conclusion may be gathered: that give you to play and yield yourself to loss.®!

Quotation 6 (page 129, footnote 32).

The manner of knowing the card that one has marked is as follows. Have
someone visualize it in his thoughts, then show the cards one at a time: when
he will indicate that it’s the one he [lit: hears; thinks of?], secretly you will
mark it with your finger and <incontinet’> you will shuffle the cards, when
you come across it, you will show it. Others put it in front of another (card)
that they know [ie, key cards|, and shuffle it with the others, and see it and
know it before it is separated from the others, then they remove it or have
it removed as their companion desires. Others find it by number, by often

dividing the cards [piles?].5?

(uotation 7 (page 130, footnote 3H).

“Recently I made the acquaintance of Francesco Soma of Naples, a young man
of high birth who by common account had scarcely reached his twenty-second
year, and who, in addition to such exceptional skill in music that he has no
equal in playing the lute, knows many incredible tricks of legerdemain. Among
others there is one which I often witnessed together with my friends, and for
which I have never been able to find a natural explanation.

He spread the cards on the table in such a way that the pack was not
separated, and then he asked us to take one card and conceal it. Then he

51Text taken from Rogues, Vagabonds€d Sturdy Beggars, edited by Arthur F. Kin-
ney, Barre, Massachusetts, Imprint Society, 1973.

52Translated from the French by Ariel Frailich. This passage has been translated
from the French edition of 1578, which had been translated from Latin by Richard Le
Blanc, Paris 1556. I must admit that it would have been preferable to have worked
with the original Latin, notwithstanding that even if Le Blanc changed something it
is still middle 16t century.
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took the pack, shuffled it, and guessed what card it was. This might perhaps
have been attributed to quickness of hand; but that is by no means the case
with what he did next. For when the card was put back in the pack and it
was laid on the table, he asked several of us to draw a card, and we realized
that the man who had drawn the card on the earlier occasion always drew the
same card now, as though Soma were compelling us to draw the same card,
or else were changing the face of the card.

When I brought a clever man, an Epicurean philosopher, to the spectacle,
he confessed that he could not discover how it was done, although he did
not for that reason think we ought to admit that there is any power in these
sublunary things beyond that which we see granted to them by nature. Thus
this man evaded all our watchful care and surpassed us in cleverness. While
he was doing the trick he kept murmuring something constantly, as though
he were calculating; yet it was certain that what he said did not consist of
any reckoning with numbers. But when that well-known friend of ours, after
taking a card, looked at it before putting it under a book, Soma said, “You
have confused everything and have spoiled my whole method; nevertheless,
the card is the same as the one you drew before, namely, the Two of Flowers
[clubs],” and we discovered that this was so.

And although he showed me certain more wonderful things, still indications
were that all of them were the work of a certain art of legerdemain rather than
of supernatural beings, or in other words, they were much less miraculous.
Nevertheless, the art was too wonderful to be understood by human cogitation.
And if he had not asked us at various times to draw different cards, I would
have suspected that he had substituted a pack consisting of cards of a single
kind, namely, the ‘Two of Flowers.” For with that device it would happen that
whoever drew a card would always seem to chance upon the same card. But, as
I have said, the diversity of the remaining cards precluded that explanation.®?

Quotation 8 (page 132, footnote 40).

I thought of a card, the eight of hearts, and he showed it to me. Each of the
ten people present was made to remember a card; Scotto had cards drawn
and, O miracle! Each one drew the card he was thinking of. Also he put four
cards, which one had seen, into one’s hand. Then he asked, ‘What do you
want? and whatever you wanted, that was it. [...]When he repeated this
experiment with the four cards, one of the gentlemen tried to embarrass him
by answering to the question whether it should be kings, queens, or jacks,
‘Nothing’. But at once all the cards were blank.

53Translation from Cardano, the Gambling Schelar. Oystein Ore, Princeton,
Princeton University Press, 1953.
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Quotation 9 (page 135, footnote 43).

Sometimes he will do the following experiment, viz., he makes someone take
two cards, and tells him to imagine that one of the two is changed into the
other, which punctually takes place! Again, stripping off the surface of a card,
he will show written beneath in minuscular writing the very thoughts of the
person who was holding it, or had it concealed in his bosom. At other times,
he makes any card named by one of the company at will come out of the pack.
He knows also a thousand other tricks of the sort, which by his kindness I
have seen with my own eyes, together with more than ten other friends, who
have all been equally amazed.

Quotation 10 (page 136, footnote 45)-

For Example; Irclated onctime to a Afas, that was Curious, and
| Vaineenoughinthefe Things 3 That 1 faw a Kinde of Lugler, ebat had 4
 Paire of Cards,sndwould tell s Man whar Card be thoughe, This Preren-
' ded Learned Man told me g It wasa Miftaking in Mc 5 For ( faid ber ) it
- wwuas mot the Knowledye of #ae Mans Thought, (for thas és Projer to God,)
but it was the [nforcing of « Thoughtwpon him, and Binding hss Imagi-
nation by a Stionger, #hat hecold Thinke no other Card. And thereup-
i on he asked me a Queftion, or two,which thoughthedid burcunning-
ly, knowing before what vied ro bethe Fears of the Jugler, Sir,(faid he,) |
 doe you remember whether be told the Card, the Man thought, Himfclfc, or
i bade Anotherto tell ir. Lanfwered (aswastrue; ) That be bade Another
tellis. Whereunto he {aids So 1 thonoht : For (faidbe) Himfelfe conld nes
| baue pueon [0 firong an Imagination ; Bus by selling the other the Card, (whe
beleewed thar the Tugler was feme Strange Man, and could doe Stranges
Things,) that other Man canght & ffrong Imagination, 1 harkened vato
him, thinking for a Vanity he fpoke prertily, Then he asked me another
Dueflion : Sath he; Doe you remember, wheiher be bade the Man thinke the
Card firfl, and afterwards told theother Man inbis Eare, what hee (Loslel
shinke, Or elfe that he did whifper firft inthe Maus Eave that ffouid tell she
Card, relling that fuch s Man [bould thinke fuch a Card,and afeer badesbe
| Man zhinkea Card? Ltold him, as was true; That be did firfl whifper the
| Maninthe Eare, that fuch 4 Man fbowld shinke fuch & Card : Vpon this the
| Learned Map did much Exult,and Pleafe himfclfe, fiying 5 Zoe, you may
| feethat my Opinion és right : For if ¢he Man had thaught firft,bis Thought
| bad beene Fixed 5 But the ather Imagining firfl,bownd his Thought, Which
i though irdid fomewhar fivke with mee, yer I madeic Lighter chan 1
 thought, and {a1d 5 1 thoughs it waus Conlfederacie, besweene the Iugler,
L and the swo Seruais : Thuugh (I deed) Ihad no R.eafon foro thinke :
' Forthey were borhmy Fathers Seruants; And he had nener plaid in the
{ Houfe before, The /agler 2l{o did caufe a Gurser to be held vp; And
{ tooke vpon him, to know, that fuch a Gue, (houo'd point in fucha Place,
of she Garier 5 As ic (hould he neare fo many Jachesto the Lomger End,
and fo many tothe Shorter 5 And Qtill hedid it, by Firft Telling the 2ms.
giner, and afcer Bidding the Ador Thinke,







(ubist Magic

oderemich Farrell

Color Plate IX shows a mystic 4x 4 colored array of letters labeled the
“Multidimensional Gardner” (or MG for short). The MG serves as a
backdrop for an interesting, easy to execute, mathematical magic trick
whose effect is as follows. Suppose we ask our friend Mark to secretly
choose a single letter from the word ASTEROID. Suppose also we allow
him the privilege of deciding (privately) either to be “convivial” and
always tell the truth, or to be “contrary” and always lie. This last choice
becomes his “quirk.” Then we ask him four questions, to be answered
according to his secret quirkiness.

RED question: “Is your letter in the word SEAT?”
BLUE question: “Is your letter in the word SOAR?”
YELLOW question: “Is your letter in the word RITA?”
GREEN question: “Is your letter in the word OTIS?”

After Mark’s replies we immediately name his letter—and his quirki-
ness—with a mere glance at the MG!

This trick, once learned, can be repeated as often as one likes. And
if the four questions are written on appropriately colored slips of paper,
a variation of the trick can be performed that may seem even more
dumbfounding. Let Mark silently separate the slips into two piles, one
pile for those slips for which his response would be yes and one for which
his response would be no. Even though we do not know which pile is
which, we can still use the MG to quickly identify his letter!

The mathemagician Jeremiah Farrell, ex-newspaperman, ex-engineer, ex-
planetarium director, and ex-professor, finally finds his true calling by heeding his
mentor Martin Gardner.
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Of course the colors are crucial in the performance of the trick, but
before we can explain the inner workings of the mysterious MG, we must
explore the underlying geometry of the situation.

Color Plate X contains diagrams of five multidimensional “cubes.”
The fifth “cube,” and the one we are most interested in, is the four-
dimensional tesseract consisting of 16 nodes labeled with red or blue
letters from the word ASTEROID.

Notice that all horizontal edges are RED; all vertical edges are BLUE;
all third dimensional edges are YELLOW; and all fourth dimensional
edges are GREEN. These four edge colors correspond exactly to the
colors of our four questions in the prediction tricks.

In fact, the tricks can be performed equally well on the tesseract as
on the MG. Here is how the original trick is accomplished on the 4-cube.
First we note which colors get ves answers from Mark. Then, starting
from the blue D node in the lower right, we traverse those same colored
edges (in any order) and arrive at a new node. The letter on the new
node will always be Mark's chosen letter. If it is red, Mark is contrary;
and, if it is blue, he is convivial.

For example, suppose Mark said yes to the RED, YELLOW, and
GREEN questions. From the blue D we mentally travel, say, YELLOW
to the red S, GREEN to the blue I and finally RED to the blue T. So
Mark convivially had chosen T. Any other order of the three colors would
also have ended on the blue T. The reader may check that choosing T and
telling the truth does indeed elicit yeses to the three colors mentioned.
Notice also that if Mark’s letter was T and he decided to lie, then the
only yes response would be to the BLUE question and we would thus
travel the BLUE edge from the blue D node and end on the red T as
required.

Since changing quirkiness on a given letter always gives complemen-
tary responses, we can effectively perform the second version of the trick
where Mark separates his yeses and noes into two piles without telling
us which is which. We simply follow either set of colors and will end on
Mark’s letter—but we cannot be sure of his quirkiness.

It is of some geometrical interest to note that we can discard the
GREEN question and revert to three dimensions, where the trick will
still work with the only proviso that Mark must now always tell the
truth. We ask him the three remaining color-questions and traverse
those colored edges on the ordinary cube (from the D as before) for
which he responded yes and end on his letter.

For two dimensions we ask Mark to choose one of the four words,
AS, ET. OR, or ID. He then answers, truthfully, the questions:
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RED question: “Are your letters in the word SEAT?”

BLUE question: “Are your letters in the word SOAR?”

Start now on the lower right ID and his yeses direct us to his chosen
word.

One dimension is trivial. Mark selects one of the words SEAT or
DIOR and we ask him the RED question and immediately know his
choice.

A zero-dimensional “question” is one that is never asked. We offer
the letters RADIO SET to Mark and simply inform him that his letters
transpose into ASTEROID.

The geometric content of each of these five multidimensional cubes is
completely contained in the arcane MG diagram. In fact the MG can be
imagined as a torus, or doughnut shape, by bending around the top and
bottom half-red edges to form a tube and then joining the half-blue ends
to complete the torus. Thus each one of the 16 nodes (i.e., letters) is
connected to four others via exactly one of the four colors. For example,
starting at the blue D we arrive at the blue E by crossing a red edge,
the red T by crossing a blue edge, the red S by crossing a yellow edge,
and the red A by crossing a green edge.

It is very baffling to display only the MG when doing the prediction
tricks. Most people will not be able to discern just how the tricks are
done by merely looking at the diagram. Suppose, for instance, Mark
says yes to the red, blue, and green questions. On the MG we start at
the blue D and cross the red, blue, and green edges (in any order) and
will arrive at the blue S. The reader may verify that these yeses could
only occur for Mark convivially choosing S.

Dropping the green question means that we ignore the red letters and
ignore the green edges. The MG is then used as before with the other
three colors to identify Mark’s choice. A careful study of the MG will
make clear how it can be used in each of the other dimensional cases.







“Tmpossible™ Foldings

Luc De Smet

My interest in folding paper and especially playing cards started when
I saw some “impossible” playing cards made by Angus Lavery. While
trying to find out how they were folded I found the following hasic
procedures:

First Tmpossible Folding

Starting from End result

(See Color Plate VIII for a full color plate of this illustration.)

Note how the square frame is folded down, but the leg (or spine) is
on the wrong side of the frame. One would expect the leg to be under
the frame rather than over it. I'll present two ways to accomplish this
feet:

Luc De Smet is a puzzle collector who is especially interested in impossible
objects.
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Luc De Smet

First fEGhDTQUB: Your goal is to turn the card inside-outside, passing the

outside frame of the card through the inside frame. Begin by
pushing the top of the outside frame through the inside (smaller)
frame from behind toward the front. (See picture above.) Continue
to draw the lower (uncut) part of the card through the inside frame
until the whole outside has passed through. For stiff playing cards,
vou'll probably have to crease the outer frame as you work the card.

Second 'f?EGhDT[{UE: This technique is more appealing for stiff material like

playing cards, because the smaller, inner frame is creased rather
than the outside frame. This time it's the inner frame that is
turned inside-out around the leg, and the outer frame is left alone.
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Sﬁcp |: Fold the four inner frame sides (left, right, upper, and lower
in any order) inwards and toward the front as in the figure
on the previous page. Note that the lower side tucks behind
the central leg which is attached to the rest of the card.

Stﬂ[] J: Continue to turn the inner fame inside out by passing the
folded left, right and top sides of the frame down and through
the middle of the frame. It’s important to keep the lower side
of the frame tucked behind the leg as you work. Unfold the
inner frame and then fold the three sides unattached to the

leg downwards onto the lower part of the card to complete
the impossible fold.

Second Tmpossible Folding

Starting from the same position, the end result is:

In this folding, the square frame is shifted downwards, and the leg ap-
pears mysteriously on the fop side of the frame. Again, we can ac-
complish this folding in one of two ways which closely parallel the first

folding.
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First techniqu& Push the top of the outside frame through the inside (smaller)
frame from the front to behind, and continue to draw the lower
part of the card through the inner frame until the whole of the
outside has passed through.

Second fEGhDT[{UE: For stiff material such as playing cards, I prefer:

Step I. Fold the four frame sides of the inner square, this time toward the
back of the card. The lower side should remain in front of the leg.

Sfep ). Continue to pass the inner frame through itself and unfold the
four sides of the frame. Note that the lower side comes under the
central leg.

The second folding is closely related to the first: If you do the first
folding with the back of the card facing you, then carefully move the
inner frame to the front of the card, you'll arrive at this folding.

Further Combinations

Once you've mastered the basic procedures you can try a lot of combi-
nations and variations:

e Change the shape of the frame to a rectangle, trapezium, etc....

e Don't cut a hole but keep one side of the inner part attached to
give the card a “window.”

e Put 2 cards one through the other.

e Make combinations of, say, 2 frames as below.
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(oincidences
A. Ross Eckler

What is a coincidence? The best definition I have seen was offered by

Frederick Mosteller and Persi Diaconis [MD8&9]:

A coincidence is a surprising concurrence of events per-
ceived as meaningfully related, with no apparent causal con-
nection.

The key words are “concurrence of events” which can mean many
different things, from actual meeting of people in unexpected places to
similarity of characteristics of two different individuals. Although most
coincidences seem to involve people, there can also be coincidences in-
volving abstract entities, such as the occurrence of an unusual word in
one’s reading at the same time as it is heard on radio or TV. Another
example is provided by Martin Gardner’s The Wreck of the Titanic Fore-
told? [Gar86b] which discusses various parallels between the real Titanic
and a fictional steamship Titan, described in the novel Futility written
fourteen years before the Titanic struck the iceberg.

Although the Mosteller—Diaconis definition of a coincidence is com-
prehensive it does not include all events which are often labeled as co-
incidences in popular writing. One example is the unexpectedly quick
conclusion to a search for some unknown fact or object. This is illus-
trated by an event which my daughter Lois experienced many years
ago. When visiting the National Cathedral in Washington, D.C., she
wanted to locate the chair given in memory of her great-grandmother.
Not knowing where it was, she picked an aisle at random—and found
the chair in that aisle! Surprising as this was, it was not a concurrence
of events in the Mosteller—Diaconis sense.

For the past 30 years A. Ross Eckler has edited Word Ways, the only journal
in the world devoted to wordplay.
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Coincidences resist classification. To show how protean coincidences
can be, consider the one that Martin Gardner himself has called “far and
away the most startling of literary coincidences” [Gar97]. Psalm 46 of
the King James Bible contains the word SHAKE as the 46" word from
the start, and SPEAR as the 46" word from the end, not counting the
cadential SELAH. (Recall that Shakespeare was 46 years old in 1610, the
year the King James version was issued.) The “explanation” for this?
It has been proposed that this was Shakespeare’s literary signature, to
prove that he was one of the committee of scholars revising the Bible.
Unfortunately, there is no historical evidence to support such a claim,
and in fact this curiosity appears in earlier versions of the Bible!

Coincidences exist to be disproved—and, therefore, to be eliminated
as coincidences. The rationalist adopts the premise that all coincidences
are explainable if only one knows enough about the attendant circum-
stances. To know enough, unfortunately, is not limited to an awareness
of the details of the event itself (for example, the travel habits of two
people that meet in a strange place) but requires one to assess the class
of all similar events that would have been called coincidences had they
been observed. Should one not consider the chance that any two per-
sons meet in an odd place, not just the two under scrutiny? This is, in
fact, akin to the well-known birthday problem, in which the chances are
about 50-50 that two people in a group of 23 will have a birthday the
same day of the year.

Unfortunately, most coincidences are harder to quantify than the
birthday one. Mosteller and Diaconis present various simple generaliza-
tions, such as more than two people with matching birthdays, or two
people with birthdays less than k days apart. An open-ended version
that they did not consider assesses the likelihood that two famous people
share the same day, month, and year birthday. The most noted example
of this is Abraham Lincoln and Charles Darwin, both born on February
12, 1809. Should we be surprised by this? Not if there is a 50-50 chance
that two people of similar fame share a birthday. Mosteller and Diaco-
nis suggest the approximation N = 1.2¢1/2 to yield a 50-50 chance that
two of N individuals will match one of ¢ different birth dates. What
value of ¢ should be chosen? Presumably one is interested in famous
people of any era, even as far back as the Roman empire, but usually
one does not know exact birth dates for ancient notables. Let us see how
the necessary number of people increases with the time-interval under
consideration:

100 years 229 people
500 years 512 people
1000 years 724 people
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During the past 500 years, are there 512 people as famous as Lincoln
and Darwin? Over a thousand-year period, are there 7247 The answer
is probably yes, even though one person’s most-notable list would differ
from another’s. In other words, the Lincoln-Darwin coincidence is to be
expected, and not to be regarded as one.

This coincidence immediately suggests another, the well-known fact
that Thomas Jefferson and John Adams, signers of the Declaration of
Independence, both died July 4, 1826, the fiftieth anniversary of that
event. How likely is this coincidence? Start with the assumption that
one would have been equally impressed if any two of the 56 signers had
died on the day in question, not just Jefferson and Adams. (The fact
that both enjoyed more famous careers than the others, ending up as
President, should not be factored in. In fact, it can be argued that their
fame might have contributed to a reduction in the surprisingness of the
event, as will be discussed later.) The name of each signer, together with
his year of birth and exact date of death, if known, is given in Table 1.

Table 1.

John Adams
Samuel Adams
Josiah Bartlett
Carter Braxton
Charles Carroll
Samuel Chase
Abraham Clark
George Clymer
William Ellery
William Floyd
Benjamin Franklin
Elbridge Gerry
Button Gwinnett
Lyman Hall

John Hancock
Benjamin Harrison
John Hart

Joseph Hewes

Thomas Heyward Jr.

William Hooper
Stephen Hopkins
Francis Hopkinson
Samuel Huntington
Thomas Jefferson

Francis Lightfoot Lee

Richard Henry Lee
Frances Lewis
Philip Livingston

1735-Jul 4 1826
1722-0ct 2 1803
1729-May 19 1795
1736-0ct 10 1797
1737-Nov 14 1832
1741-Jun 19 1811
1726-Feb 15 1794
1739-Jan 23 1813
1727-Feb 15 1820
1734-Aug 4 1821
1706-Spr 17 1790
1744-Nov 23 1814
1732-May 27 1777
1724-0ct 19 1790
1737-0ct 8 1793
1740-Apr 1791
17117-1780
1730-Nov 10 1779
1746-Mar 6 1809
1742-1790
1707-Jul 13 1785
1737-May T 1791
1731-Jan 5 1796
1743-Jul 4 1826
1734-Apr 3 1797
1732—Jun 19 1794
1713-Dec 30 1802
1716—-Jun 12 1788

[[Thomas Lynch Jr.
Thomas McKean
Arthur Middleton
Lewis Morris
Robert Morris
John Morton
Thomas Nelson Jr.
William Paca
Robert Treat Paine
John Penn

George Read
Caesar Rodney
George Ross
Benjamin Rush
Edward Rutledge
Roger Sherman
James Smith
Richard Stockton
Thomas Stone
George Taylor
Matthew Thornton
George Walton
William Whipple
William Williams
James Wilson
John Witherspoon
Oliver Wolcott

George Wythe

1749-end of 1779
1734-May 8 1806
1742—-Jan 1 1787
1726—Jan 22 1798
1734-May 8 1806
1724-Apr 1777
1738-Jan 4 1789
1740-1799
1731-May 11 1814
1741-Sep 1788
1733-Sep 21 1798
1728-Jun 29 1784
1730-Jul 1779
1745-Apr 19 1813
1749-Jan 23 1800
1721-Jul 23 1793
1720-Jul 11 1806
1730-Feb 28 1781
1743-0ct 5 1787
1716-Feb 23 1781
1714-Jun 24 1803
1740-Feb 2 1804
1730-Nov 28 1795
1731-Aug 2 1811
1742-Aug 21 1798
1723-Nov 15 1794
1726-Dec 1 1797
1726—Jun 8 1806

of death (if known).

Signers of the Declaration of Independence, year of birth, and date
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The probability that two signers died July 4, 1826 can be calculated
using life tables. Reliable life tables for the eighteenth century are not
available, so modern ones were used instead; however, life expectancies
of men 50 to 60 years of age (when many signed the Declaration) haven’t
changed a great deal since that time. The calculation is straightforward
but tedious. For example, for the two youngest signers, Edward Rutledge
and Thomas Lynch, both 27 in 1776:

Pr {dies Jul 4 1826} = Pr {lives from 1776 to Jan 1 1826} Pr {dies Jul 4}

27868 2735 1
= 00796 27858 365 0.000083

Similar probabilities can be calculated for the other 54 signers. The
probability that some pair of signers dies on July 4 is equal to the sum
of the products of these probabilities, taken over all 1540 possible pairs,
a total of 0.0000007. Surely one's surprise is well-founded?

But this anniversary is one of a set of similar anniversaries. Wouldn'’t
two signers dying on any July 4 be noteworthy? This could reduce the
probability by a factor of at least 50. More interestingly, what about
the possibility that people near death can, by an act of will, postpone
this event a short while, say a month or so? There would have been a
powerful motivation for Jefferson and Adams to survive until the 4th,
particularly since both were such famous men. (Adams at least was
aware of the significance, for he reportedly said on the 4th “Jefferson still
lives” although in fact Jefferson had died a few hours earlier.) If both
men could delay death up to a month, in effect selecting the date they
would die on, then the probability cited above is increased by a factor of
1000. Under the less-likely event that death could be postponed a full
vear, an additional multiplicative factor of 100 is created, leading to a
final probability of 0.07 for the July 4 event. Although this coincidence
cannot be disposed of as neatly as the Lincoln—-Darwin one, two partial
explanations have been given, and others may yet be discovered.

Paul Kammerer, a German biologist who committed suicide in 1926,
perhaps as the result of allegations that he had faked experimental data,
was perhaps the first person to make a systematic study of coincidences.
For some fifteen years he collected examples of coincidences, both from
newspapers and from personal experience. One hundred are briefly de-
scribed in his book Das Gesetz der Serie [Kam19]. Most of these con-
tain too few details to permit analysis of the likelihood of similar coinei-
dences. He also set up an elaborate but murky taxonomy of coincidence,
making distinctions more apparent to him than to the reader. A sample
conclusion:
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We thus arrive at the image of a world-mosaic or cos-
mic kaleidescope, which, in spite of constant shufflings and
rearrangements, also takes care of bringing like and like to-
gether.

One of Kammerer’s examples is cited because it exemplifies a com-
mon class of coincidences:

In the Kattowicz hospital in 1915 there lay two soldiers,
both 19 years old, both sick from pneumonia, both from
Silesia, both volunteers in the Transport Corps, and both
named Franz Richler. The one lay near death; when the
relatives of the other were mistakenly notified [of his incipient
demise], they found the physical similarity of the namesake
so great, that they could not regard the Richler lying there
in agony a stranger. . .

It seemed like an extraordinary coincidence to the families involved—
but it is possible that it is no more amazing than winning the lottery.
Such a coincidence may be nearly inevitable when one considers the
population of potentially-similar events: any two soldiers in a German
hospital at any time during the war, having the same name plus three or
four other characteristics in common. How many characteristics could
have been matched? It is likely that patient dossiers included many
facts besides age, branch of service and place of origin—paossibly date of
enlistment, date of admission to hospital, identification number, rank,
names of parents, and so on. In the absence of comprehensive statistics
on German hospital patients, it is impossible to quantify the correlations
that likely exist among different attributes. To begin with, it seems likely
that most of the soldiers in the hospital came from Silesia, for Kattowicz
was then on the Silesia—Russia frontier. Were patients sorted out, dis-
eased patients going to one hospital and wounded ones to another? How
common was the surname Richler in Silesia? Is it possible that soldiers
in the same outfit enlisted together from the same locality?

Mosteller and Diaconis proposed a simple approximation for such
comparisons. If there are k different characteristics with equally likely
alternatives numbering ¢y, cg, ..., &, the number of people N required
to have a 50-50 chance of a match in one characteristic is:

1
N =12
'\/_L+_1_+...+_1_

el g ke
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What is needed is a generalization of this formula giving the popu-
lation size needed for a 50-50 chance of matching any m out of a pop-
ulation of & different characteristics. With such a formula, one could
explore how the likelihood of coincidences like Kammerer’s vary as a
function of the ¢;, m, and k.

If & is much larger than m, it becomes ridiculously easy to find coinci-
dences, as exemplified by various frequently-cited Lincoln-Kennedy lists.
Mindful of this, the Spring 1992 issue of The Skeptical Inguirer [Ske ]
announced a “Spooky Presidential Contest.” The Winter 1993 issue re-
ported that one of the two cowinners discovered 16 parallels between
John Fitzgerald Kennedy and Mexican president Alvaro Obregon. The
other winner found at least six coincidences between 21 different pairs
of US presidents; for Thomas Jefferson and Andrew Jackson he found
thirteen.

If one cannot explain a coincidence, the temptation is to postulate
some otherwise-undetectable mechanism like C. G. Jung’s synchronic-
ity (see [Jun73]). In the more specialized field of genealogical research,
Henry Z. Jones recently authored two books [Jon93] and [Jon97], telling
how various researchers serendipitously found various clues concerning
their ancestry. Jones argues that such finds demonstrate the desire
of long-dead ancestors to get in touch with their descendants, a feat
accomplished by tapping into Jung's “collective unconscious.” Kam-
merer also sought general explanations, but he relied more on analogies
with physical principles such as gravity or magnetism than on para-
psychology.

As a corrective for the all-too-common tendency to look for a uni-
versal explanation, I propose a simple project: a personal diary of co-
incidences. This will demonstrate to you how frequently coincidences
occur; most coincidences we don’t even notice because we are not on
the lookout for them. You will see that coincidences run the gamut
from ho-hum to how-amazing, with all intermediate cases represented.
Confronted with a spectrum of coincidences, one is less likely to look
for supernatural explanations for the more surprising ones. Do not be
surprised if your coincidences, by and large, are far more mundane than
ones reported in newspapers; after all, the latter represent the most star-
tling coincidences experienced by a large population—hy those who, so
to speak, have won the coincidence lottery.

It is advisable to collect only coincidences which can be documented.
This eliminates such coincidences as dreams that apparently foretell
events, or coincidences involving a telephone call from a particular per-
son shortly after you had been thinking of him. Such coincidences,
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relying on the veracity of the teller, are prone to abuse by unscrupulous
individuals.

It goes without saying that you should record as much corollary
information as possible relating to the coincidence. Such information
may help in calculating probabilities, or at the very least may show that
a coincidence is much less surprising than it appeared at the outset.

As you collect coincidences, you may be tempted to classify them as
Kammerer did. My collection, numbering several dozen over a thirty-
year period, fall into the following categories, many of which have already
been alluded to. (You may, of course, devise others.)

e Strange Encounters: meeting a friend or acquaintance in a place
remote from your (or his) usual environs.

e Our Mutual Friend: two of your friends in different areas of your
life know each other, or share some unusual attribute.

e Doppelginger: another person shares several attributes with you.

e Twice-told Tales: you encounter an unusual word or name from
two independent sources in a short period of time.

The third and fourth are specifically modeled in the Mosteller-Diaconis
paper. The first two, although more commonly encountered in every-
day life, are extremely hard to represent with an idealized mathematical
model. Such a model will inevitably incorporate many parameters for
which the values (or even a probabilistic range of values) are unknown.
It may well be that, for some values of the parameters, the probability of
the event is fairly large (say, greater than the 0.05 or 0.01 level beloved
by statisticians). Should one as a result conclude that the event has
been “explained”? Should one continue to construct models until one is
found for which the probability is greater than 0.01 or 0.05, for most of
the “reasonable” parameter values?

There is a possible way out of this dilemma. The Central Limit
Theorem of statistics states that the sum of a large number of inde-
pendent random wvariables (for example, the total number of heads in
a large number of coin-tosses) can be closely approximated by a bell-
shaped curve known as the Gaussian (normal) probability distribution
function. Suppose that the “surprise” of each of many similar events can
be quantified—expressed by a real number. If this collection of numbers
can be fitted to the (right-hand) tail of a Gaussian probability distribu-
tion function, one can plausibly argue that these events are individually
created by the cumulation of a large number of sub-events. (In the case
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of Strange Encounters, these sub-events would be the many decisions of
each individual contributing to his arrival at the place in question at the
right time.) There is no attempt to separate surprises into two groups
according to whether or not they can be explained by the model being
used; the model says only that some events are more surprising than
others. The reason for different levels of surprise cannot be explained
except in general terms.
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The Bard and the Bible

Man Slaight

Some years ago, I acquired Martin Gardner’s 1985 Prometheus pub-
lication The Magic Numbers of Dr. Matriz, which contains Gardner’s
Scientific American columns on this incredible numerologist spanning a
period from 1960 to 1980. There I encountered the intelligence that in
the 46" Psalm in the King James version of the Bible, the 46" word is
SHAKE and the 46" word counting from the end is SPEAR. Dr. Ma-
trix espoused the incredible theory that William Shakespeare worked
secretly on part of the King James translation of the Bible. Matrix for-
tified his position by revealing that Shakespeare was 46 when the King
James version was completed in 1610, and that he was born on April 23
and died on April 23 and that twice 23 is 46. This information, coupled
with a careful reading of Shakespeare (1956) by F. E. Halliday, led to
the following unusual demonstration.

“Critics and scholars have argued for years over whether the Bible
or the work of Shakespeare contains the finest writing in the English
language. These comparisons are invariably made using the King James
version, a copy of which I have here. Let me put the debate to rest
by proving to you that William Shakespeare himself actually was the
anonymous author who translated and rewrote the King James version
of the Bible. Shakespeare hid a series of telling clues while preparing his
translation and I will attempt to reveal then through numerology.

“Naturally we will refer to the Book of Numbers, and we will make
a square of sixteen numbers. If we read in order from the Table of
Contents we have Genesis, Exodus, Leviticus, Numbers. As Numbers is
the fourth Book in the Bible, we will start our numbering with “47.

Allan Slaight was the co-editor, with the late Howard Lyons, of Stewart James
In Print (1989). He subsequently authored The James File (2000), a two-volume set
totaling some 1700 pages.
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“And I will have you choose four numbers freely. Please circle any
of the sixteen numbers, then draw a line through the other numbers in
that row and that column. Now circle any number which has not been
eliminated and draw a line through that row and column. Do this a
third time. There is one number left, so please circle it.”

anElo)
?@—Ir}'u
o=
ORIEXE.

In the above example, the spectator first circled “9” and then drew
lines through the other numbers in that row (8, 10 and 11) and the other
numbers in that column (5, 13 and 17). He then circled “14” and did the
same thing, then “7” and repeated the elimination of the other numbers
in that row and column (4, 5, 6 and 11, 15 and 19). Only “16” was left,
and that was the fourth number he circled.

The spectator is then instructed to total the four circled numbers.
The result is always 46, regardless of numbers chosen via this process.

“Your freely chosen number is 46, but you will soon realize that—in
numerology—mno choice is totally free and without consequence. Please
open the Bible to the first chapter of Numbers, and find the 46" verse.
Read it to us.”

“Even all they that were numbered were six hundred thousand and
three thousand and five hundred and fifty.”

“Let’s jot those numbers down and add up their digits.”

i 8

i’

H
& =]
He
&3

600, 000
3,000
550

603550 and 6 +0+34+5+5+0=19

“Isn’t it interesting that the last number in our square is ‘19’7 Now
please refer to the Table of Contents again, and name the Book in nine-
teenth position. Psalms? Please open the bible to Psalms and use your
freely selected number ... 46. Find the 46" Psalm and count to the 46"
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word. What is the word? SHAKE. Now count to the 46" word from
the end and call out that word. SPEAR. SHAKE-SPEAR.

“Through numerology, you have discovered one of the scores of clues
Shakespeare cunningly concealed when he was translating what became
the King James version. However, there are skeptics today who still
maintain that others wrote the plays attributed to Shakespeare. Bacon
or Marlowe, for example. There is one way of determining if this theory is
accurate or false, and that is by using the other numbers in our square
of sixteen. Please total the twelve mumbers you did not circle. Your
answer is 1387

“Please look at the 138" Psalm, but I won't ask you to count to the
138" word. Just total the three digits in 138: 1+ 3+ 8 = 12. Count to
the twelfth word in the 138" Psalm. What is the word? WILL! WILL
SHAKE-SPEAR. Proof positive.

“Should you wish for more evidence through numerology, let me
mention that William Shakespeare was born an April 23 and died on
April 23. April is the fourth month, just as Numbers is the fourth Book.
And the day of birth and death, both 23, total 46 which is the numerical
key vou discovered. And it should be mentioned that 23 is the number
of the best-known Psalm.

“In addition, the first of Shakespeare’s plays to be published with his
name credited was Love’s Labour Lost in 1598 and those digits total 23!
And the folio of all his plays was first issued in 1623! Of course, those
two 23s total 46. Another point: the King James version was completed
in 1610—when Shakespeare was 46 years old!

“And finally, if we assign numbers to the letters in ‘Shakespeare’ like
this:

1/2|3]4|5]6]7]8|9]0
S|H|AIK[E[S|P[EA]R
E

you will find they total...46: It is rather amazing that vou also chose the
number 46.”

Gomments and Gredits

My first objective was to uncover a technique to force the number “46”
in a manner compatible with the rest of the scenario. The matrix
concept to force “34” with numbers from 1 to 16 led rather easily to
the “46” outcome with numbers from 4 to 19. The principle seems to
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have first appeared in print in Maurice Kraitchik's Mathematical Recre-
ations [Krad2] although we should credit Walter Gibson with the semi-
nal idea in his Date Sense [Gib38]. Mel Stover, Stewart James, Martin
Gardner, Howard Lyonsand Sam Dalal have produced significant varia-
tions, and likely the finest presentation employing this principle is Phil
Goldstein’s Rainbow Matrix [Gol90].

I'll confess that unearthing the number “19” in the 46" verse of the
first chapter of Numbers to lead the spectator to the book of Psalms gen-
erated a momentary thrill, but that was small potatoes when compared
to the discovery that the eliminated numbers in the matrix always to-
talled 138 and logically produced the word “will”. Of course, Dr. Matrix
would have stated it was inevitable that assigning numbers, as described,
to the letters in “Shakespeare” would produce that particular total.
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Inversions: Lettering with «
Mathematical Twist

560t Kim

Graphic Palindromes

“Inversions” is my name for words written so they can be read in more
than one way. For instance, the word INVERSIONS below becomes my
name when you turn it upside down.

[vepion

As a child T was fond of mathematics, magic, music and wordplay.
I was aware of palindromes—words like “racecar” that are spelled the
same backwards and forwards—but only knew of a few words like NOON
that actually look the same right side up and upside down. It wasn't
till T took my first graphic design class in college that I created my first
inversion. Suddenly there was a whole new world to explore.

What began as a hobby has blossomed into a personal art form that
I continue to develop many years later. In 1981 I collected sixty of
my lettering designs into a book called Inversions [Kim81] Other peo-
ple who create inversions include cognitive scientist Douglas Hofstadter,
who coined the term ambigrams as the generic term for the art, John

Scott Kim (www.scottkim.com) is an independent puzzle designer. Work in-
cludes Inversions (book), Railroad Rush Hour (toy), Discover magazine “Boggler”
{monthly puzzle), and The Next Tetris (computer game).
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Langdon, who wrote his own book of symmetrical lettering designs called
Wordplay [Lan92], and calligrapher Lefty Fontenrose.

In honor of Martin Gardner, I would like to share some of my more
mathematically minded inversions. These designs are mathematical in
three senses: they use mathematical symmetries, the words and names
are drawn from the world of mathematics, and the process of creating
an inversion is akin to solving a mathematical problem. Elsewhere in
this book you will also find inversion tributes to mathematician David
Klarner, educator Harry Eng, and magician Mel Stover.

Martin Gardner

I first met Martin Gardner at his home in New York in 1976 when I
was flying around the country looking at graduate schools. I brought
with me a folder of inversions to show him. Never at a loss for an
interesting comeback, he responded by showing me that the value of
the mathematical constant pi written out to two decimal places says
something interesting in a mirror. Hold this page up to a mirror and see

what happens!
3.14

This inversion on MARTIN GARDNER appeared in Inversions.

in) Grecowr

After Inversions appeared, Peter Renz of W. H. Freeman and Com-
pany asked me to do chapter opening illustrations for Gardner’s book
Aha! Gotcha [Gar82]. This illustration opened the chapter on Numbers.
Every numeral appears at least once in the names of the numerals.

O 2EVO0 5 FINE
1 ONE G S1X

2 TWo ¢ SENEN
3 ThVEE 8 EI1GHART
4 00 O NINE

In 1993 puzzle aficionado Tom Rodgers started the Gathering for
Gardner. I decided to revisit my original MARTIN GARDNER inver-

sion, to see what else I could do. First I tried a different symmetry. Hold
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a mirror against the page in a horizontal line just below this word, and
you will be able to read both the first and last names.

OVE({U
Then I tried a different combination of words. This time MARTIN

GARDNER turns not into itself, but the name of his alter ego DOCTOR

MATRIX, who appeared many times in his Scientific American column.

Mg nes

Finally I paid tribute to his Scientific American column, noting that
the column and the person hoth had the same initials. Read the small
letters of the first word and the big letters of the second word to spell
the name of the column; read the bhig letters of the first word and the
small letters of the second word to spell the name of the person.

MARTIN. GARNES

Mathematics

Some of the first words I tried as inversions come from the world of
mathematics. MATHEMATICS is the same when rotated 180 degrees.
UPSIDE DOWN is also the same upside down. Notice that a six-letter

word becomes a four-letter word.

soiee  Muthagziss
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MIRROR is the same in a mirror, but not upside down. People often
try to turn this design upside down, confusing rotational and reflective

YOI

TRUE/FALSE is not symmetrical, but does express a duality. IN-
FINITY is not only infinite, it reads both clockwise and anti-clockwise.

symmetry.

Notice that FI becomes Y.

-

I u_S *.% 3

e

1
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Education

Although I am not a classroom teacher, I have a strong interest in edu-
cation. Here are three poster images I have created for teachers.

INVERSIONS NAMES (Dale Seymour Publications). Kids like to
see inversions of their own names or names of friends. In this poster
there are 26 first names, one for each letter of the alphabet. Each name
is exactly symmetrical. Different names have different symmetries. Each
lettering style appears twice, once as a boy’s name and once as a girl's
name. Names that start with letters at opposite ends of the alphabet—
e.g., A and Z, B and Y—appear on opposite sides of the design.
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ALPHABET SYMMETRY (Dale Seymour Publications). The entire
alphabet, in exact mirror symmetry; originally produced for the Museum
of Fun in 1985, an exhibit of illusionary art that toured Japan.

TEACH/LEARN. Originally designed for the Apple Multimedia Lab-
oratory’s pioneering interactive video disc The Visual Almanac. It ex-
presses the dual nature of teaching: when you teach you learn.
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Mathematicians

When I design an inversion I am always interested in expressing the
meaning of the word or name. PYTHAGORAS is full of triangles.
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MOEBIUS uses glide reflection symmetry, which allows it to connect
with itself seamlessly when written on a transparent Moebius strip.

smoehivsmoebivsmoehiosmnt

Every letter in JOHN CONWAY is an oscillator (a pattern that
eventually returns to its original state) from Conway’s game of Life.

R R L
o3
E- ]

I have drawn graph theorist Frank HARARY's name as a graph.

harary

Solomon GOLOMB invented pentominoes(r): the twelve shapes that
can be formed out of five unit squares.

el iofeaia]

GELOPB
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Art and Mathematics

M. C. ESCHER. Escher elegantly combined art and mathematics in his
work to express cosmic ideas. This pattern was inspired by Escher's
many periodic tessellation drawings. Escher occasionally dabbled in
visual wordplay, such as the beginning of the scroll Metamorphose.

3
3 e N

n__w m
W mCESC er
mCESC eru_nN
N J3NDS3Du
JBmDSBD MmN
uw™

uwmcescuner
mceschneru_n
U ﬁJBmDSBDw

JBmDm m
U
=

—

i E

CUBISM. Escher sometimes wrapped his tessellations around the surface
of a sphere. Here I have wrapped the word CUBISM around a cube. The
C becomes a U, and the B an M.

BERROCAL. The Italian sculptor Miguel Berrocal is best known for his
tabletop sculptures, produced in multiple editions, that come apart into
as many as 90 pieces. Although his sculptures make excellent puzzles,
his real motivation is to encourage people to experience sculptural forms
by handling them. I first learned about Berrocal when I visited Gardner.

ORIGAMI. The symmetry here mirrors the way origami paper is folded.
I created this design for mathematics teacher David Masunaga of the
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Iolani School, Honolulu, Hawaii, who caught the art/math bug at Arthur
Loeb’s Design Science program at Harvard University. It first appeared
in print in Origami A to Z by Peter Suber.

Or6oITo

Puzzle People

SLOCUM. Every few years I meet my puzzle-loving colleagues from
around the world at the International Puzzle Party, founded by puzzle
collector and historian Jerry Slocum of Beverly Hills, California. For a
man so identified with puzzles I wanted to find PUZZLES in his name.

EDWARD HORDERN. Edward Hordern of England was the second
pillar of the International Puzzle Party. His specialty is solving puzzles.
I often refer to his book of sliding block puzzles and their solutions. By
rotating and sliding the elements of his first name, you can make his last
name.

—dward

oy | S
im é-lu(o r@o
PUZZLES —ordem
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NOB YOSHIGAHARA. The third pillar of the International Puzzle
Party is NOB Yoshigahara of Tokyo, Japan, a prolific puzzle inven-
tor and author. I greatly admire his creations, such as the sliding block
puzzle Rush Hour and his more recent Lunar Lockout, both manufac-
tured by Binary Arts. NOB uses this profile as a symbol; here I found
a way to rotate pieces of his profile to make his given name. (The extra
lines in his head show the outlines of the letters, and are not part of his
signature profile. )

NOb

NOB was disappointed that I couldn’t do my standard rotationally
symmetric inversion on his name, so I kept trying, and almost 20 years
after my first attempt I found this solution.

DfolpikiSoshianhare

Magicians

The Gathering for Gardner attracts some of the world’s leading magi-
cians, reflecting Gardner’s interest in magic.

MAX MAVEN. When I first met mentalist Max Maven at the Magic
Castle in Hollywood, I did a conventional inversion on his name. But
that seemed too bland for such a sharp character. Using an old magic
principle, the design below is meant to be shown with your thumb cov-
ering the E. Move your thumb and reveal that what appears to be his
first name is really his last name.

MAX
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MEIR YEDID is best known for Finger Fantasy, an act in which he
makes fingers disappear from his hand. I was pleased to find a way to
work his first name, last name, and act into a single design.
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Al You Need s Gards
Brain Epstein

What follows is a peek into the lives of four lads during one of their most
creative periods. Several effects with cards are considered, peppered
with fantastic and fabulous references. All will be explained in due
course.

You Know My Suit (Look up the Number)

The boys were still grogey after a late night of recording when they
reassembled at noon for rehearsals. John was the last to arrive, greeting
his three friends with as enthusiastic a “Good morning, good morning,”
as he could muster. George was squatting on the floor, reading Quartet,
a collection of short stories by the paperback writer Somerset Maugham,
which Paul had given him. Nobody was in a hurry to get to work, and
there were no objections when George pulled out a pack of cards.

“John,” he began, throwing clubs aside. “Guess who has real magical
powers? It's not just his lucky rings! Yes, it’s our little Richard!”

“A-wop bhop a-loo bop a-lop bam boom! I thought that was me,”
Paul said, clearly a bit miffed.

“I'm so tired,” said John, trying to look interested. “I haven't slept
a wink. But hey, hey, hey, hey, I don’t want to spoil the party. So you're
on a roll, Ringo? Okay, give us your best trick then, for Pete's sake.”
John, Paul and George were now seated in a circle on the floor.

George handed John ten clubs in order, from Ace to Ten, as Ringo
and Paul ambled off for a quick cup of tea. “Ringo!” George called after
them, “Don’t be long; I need you.” He turned back to John. “Mix these

Brain Epstein learnt everything he knows about card tricks and the best ale
from Mullah McCoy (a tome tempt card fetish man), Spelman College, Atlanta.
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up as much as you want while Ringo is gone; then give them back to
me.”

“Hey bulldog!” said John, as he looked through the cards, “We've
certainly played our share of clubs over the years!” When he had thor-
oughly jumbled the cards he handed them back to George, who looked
through them briefly, and dealt them out face up, in the order in which
John had handed them to him. He then silently turned four of them
face down.

“Mr. H performs his tricks without a sound,” observed John. “Mr. H
will demonstrate,” George chimed in with a grin, “Four Somersets he’ll
undertake on solid ground.” He picked up his book again and studied it
intently until Paul and Ringo returned.

The cards were lined up in this order: a face-down card, followed
by the 10, 5, 6, 8, another face-down, the 2, two face-down cards, and
the 4. “You know what to do,” said George. Ringo surveyed the cards
silently, his lips moving noticeably as he tried to concentrate.

“I know what they are!” said John excitedly. The others looked
up. “Number 9, Number 9, Number 9, Number 9...” he said slowly,
in a monotonous voice. Everybody groaned. Then Ringo finally spoke:
“Boys, the hidden cards are the Ace, 9, 7 and 3, in that order.”

“What did I tell you? I was right about one of them!” shouted John,
leaping up with a laugh. He turned over the four cards, gasping when
he saw that Ringo had got them all right. “By jingo, Ringo, it seems
that you have the touch, all right,” he said, obviously quite impressed.

“With a little luck...” said Paul under his breath. “Wait—can you
do it again?’ John interjected. “Not a second time. Happiness is a
warm pack. I bet he can’t do to it any time at all.”

Paul mixed up the first ten hearts from the pack while Ringo went
off to get more sugar for his tea. “Sugar daddy’s lovely hearts/clubs
banned,” mocked Paul, as he handed the cards to George, who glanced
through them, as before, and dealt them out without changing the order.
However, this time he turned five of them face down with a sly grin.
When Ringo returned he saw a face-down card followed by the 7, three
face-down cards, the 3, Ace, another face-down card, and then the 5 and
6. “That’s five you expect me to get right,” he said indignantly. George
smiled sweetly. “Considering how much sugar you put in your tea, I
have every confidence in you.”

It wasn’t long before Ringo announced that the hidden cards were
the 8, 4, 9, 10 and 2, in that order; once again, he was absolutely correct.
John and Paul were flabbergasted, but no matter how much they begged
George or Ringo, neither would utter a word of explanation.
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“Ain’t he sweet?” said John to the others. “Ringo, how do you do
it? I want you to tell me why you did five that time, and not four.”

“TI've got a feeling—a feeling deep inside,” said Paul. “We can work
it out...what you're doing.”

“It won't be long,” John agreed.

“Think for yourself,” was all George would say, over and over. The
cards were put away, and Ringo sat magisterially behind his drum kit
while the others tuned their guitars, so that they could have another
go at Paul’s ‘Air Dish’ number, which they were having a lot of trouble
agreeing omn.

Two days later, after an especially fruitful studio session, the lads
celebrated by going out for a late night meal at an Indian restaurant
called The Inner Light that George recommended. As soon as the plates
were cleared away, John produced a pack of cards.

“Have you heard the word?” he began, with that telltale twinkle in
his eye. “This boy”—indicating Paul—“has been doing a lot of yogurt
lately, and as a result his mental powers are razor-sharp right now. You
should have seen him last night: he was really flying.” George looked
sceptical.

“All T've got to do is get Ringo to help me,” John said, handing the
pack to the drummer. “Give me back any five cards—any five at all.”
A suspicious Ringo fanned through the pack, and picked out five cards,
which he gave John. George watched intently from across the table.
“Now, I'm going to show Paul four of these cards, but hide this one,”
said John.

He slid one of the cards over towards Ringo, who was about to pick
it up when Paul admonished him. “Let it be,” he said, putting the
card under Ringo’s packet of cigarettes. He held up the other four cards
above his head for all to see. They were the Ace of Spades, Four of
Hearts, Nine of Spades and Four of Diamonds.

“Help!” said John with a gigele, looking at Paul. “I need somebody—
not just anybody. I do appreciate you being around; won’t you please
help me? What is the card beside Ringo?” The atmosphere was thick
as everybody watched Paul, who screwed up his face in concentration.
“Don’t let me down,” said John nervously. “Please please me, and get
it right.”

At last, Paul spoke: “Is it the Two of Spades?” Ringo pushed his
matchbox and cigarettes aside, and turned the card over. “Yes it is, it's
true,” the other three concurred in perfect harmony.

George and Ringo were baffled. How had Paul named that card? It
could have been anything! “Do you want to know a secret?” asked Paul.
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“Here’s another clue for you all, the adder is Paul,” offered John.

“One and one is two,” Paul teased, but the others were none the
wiser.

A repeat performance was demanded, and Paul and John were happy
to oblige. George chose five cards and handed them to John. As before,
John looked at them carefully before putting one aside. He held the
Queen of Clubs, King of Diamonds, Nine of Diamonds, and Five of
Diamonds high above his head. Floozy in the sky with diamonds, he
thought to himself.

“This one is harder,” said Paul, “But it’s on the tip of my tongue.”
After a pause, he inquired, “The Five of Clubs?” He was, of course,
correct.

“It’s all too much,” commented a thoroughly confused George.

“Ask me why I held up the cards the way I did,” said John. Ringo was
looking at the sugar bowl longingly, so George took the bait. “Because” —
John paused enigmatically—*“Baby’s in black, and I'm feeling blue.”
Everybody looked at the black queen. “Very helpful,” said George sar-
castically, “As if I needed someone to tell me that!”

“That means a lot,” John insisted, “Would you rather I gave you no
reply at all? I should have known better than to try to give you a hint.”

“Ewvery little thing is important,” said Paul, trying to smooth the
waves. “She’s a woman.” He pointed at the black Queen, and then at
the other cards, adding, “Here, there and everywhere.” George stared
ahead blankly.

“There’s a place, not far from here George,” Paul confided, “Where
John and I sat down yesterday, just the two of us, and worked out that
one together. It’s as good as the trick I remember you and Ringo doing
for us the night before.”

“I'm off,” said a clearly exhausted Ringo, standing up and taking a
pair of gloves off the table. “It’'s been a hard day’s night.”

“Leave my mittens alone,” snapped John.

“Sorry,” said Ringo, dropping them hastily. They walked outside.

“Misery,” said John, buttoning up his coat. It was a dark and stormy
night. “If the rain comes, run and hide your heads.”

“Johnny, you can drive my car,” offered Paul. “In spite of all the
danger, George and I are going to walk.”

“Though the taxman would probably like to tax my feet,” George
said, looking down. “These old brown shoes have seen hetter days.”

“Run for your life,” advised John, as the heavens opened.

“Now it’s time to say good night,” said Ringo. “Sleep tight. See you
all tomorrow.”
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“Tomorrow never knows,” said John cryptically.

“You won’t see me,” Paul said. “I'm meeting Dr. Robert, then I'm
spending the afternoon with another girl. She says it’s her birthday.”

Weeks passed before the lads met again. They had been on separate
holidays, but it was time to get back to work. They met for lunch on a
dull grey day, eager to talk about some new material they had come up
with.

“What goes on?” asked Ringo, as John and Paul came together. “I
feel fine,” said a particularly chipper-sounding John. “I'm down. I'm
really down,” moped Paul, letting his face grow long for a second before
dissolving into laughter. “Would anybody like to see a card trick?” he
asked a few minutes later, as soon as George had joined them. “Nobody
I know,” said John, who was keen to talk about several songs he had
recently written. “Don't bother me,” said George, who had songs of
his own he wanted the others to consider. “Having been some days in
preparation, a splendid time is guaranteed for Paul,” joked Ringo, but
nobody seemed to notice.

“Maybe we should do our new trick for no one,” Paul said to Ringo,
raising his eyebrows dramatically and riffling the cards noisily. “Roll up,
step right this way; and that’s an invitation. The magical mystery tour
is waiting to take you away.” John and George gave in and agreed to
watch.

“With a little help from my friend,” began Ringo, “I'd like to perform
a new trick for you all. This one requires two people who are totally in
tune to each others’ every feeling, like a married couple. Paul, will you
be my awfully wedded wife?”

“T will,” replied Paul solemnly. He then grabbed Ringo’s hand and
added, “I want to hold your hand. Oh! Darling. Besame mucho.”

“Honey, don’t,” Ringo said in mock consternation, backing off. “I
wanna be your man.” John and George laughed hysterically. “John,
give Paul any four cards from this pack,” said Ringo, as soon as he had
regained his composure. Paul took the cards John offered him, glanced
at them, and handed one back, saying, “From me to you.” John grinned.
Paul then placed the three remaining cards in a row on the table, but
this time, only the middle one was face up.

“Tell me what you see,” he asked Ringo. “The Ace of Hearts, in
between two face-down cards,” Ringo replied.

“What's this?” John asked, sliding the fourth card over next to the
others. “The one after 9097"

After a short pause Ringo said, “I think it's the Three of Hearts.”

“This happened once before,” said John. “But you only had three
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cards to go by this time, not four like Paul and I did, and you can’t
even see two of them!” He threw the Three of Hearts on the table
incredulously. “You can’t do that,” he said, shaking his head in disbelief,
“Not every time. You really got a hold on me with this one.”

“Within you, without you...is it a yin/yang thing?” asked George.

“I'd be an ass if I fell for that,” John continued, ignoring him. “I de-
tect a Spaniard in the forks.” His incisive wit and fondness for spooner-
isms were never far away. He turned over the two-face down cards—the
King of Spades and the Eight of Clubs—and stared at them. Euvery-
body’s got something to hide except me and my donkey, he thought to
himself.

“You've got to admit he’s getting better,” said Paul, who was clearly
proud of Ringo’s performance. “Getting better all the time.”

“Couldn’t get much worse,” muttered John. “I'm just a jealous guy.”

“Something in the way he grooves,” George chipped in, “Attracts me
like no other mother.”

Of course they repeated the trick. George picked four cards and gave
them to Paul, who handed one back to him, saying, “It’s for you.” Paul
then placed the three remaining cards in a row on the table. This time,
the first one was face down, followed by the Queen of Diamonds and the
Ten of Hearts. “I've just seen a face,” said Paul, pointing at the Queen.
“Can’t forget the time or place. ..she’s just the girl for me.” The others
langhed.

“Oh, dear, what can I do?” asked Ringo, who seemed at a bit of a
loss.

“Act naturally,” advised Paul, tongue in cheek.

“Slow down,” John suggested. “You're moving way too fast.”

“What would you do if I guessed the wrong card? Would you stand
up and walk out on me?” Ringo hoped he could carry that weight this
time. In his nervousness, he edged closer to George and the hidden card.

“Get back,” said Paul good-naturedly. Ringo retreated sheepishly.

“Come on. What card does George have?” asked John impatiently.

“T call your name.” Ringo began, indicating the card with a flour-
ish. “And you are—the Four of Spades!” He was relieved when George
flipped the card over and proved him right yet again. “We hope you
have enjoyed the show. All together now,” said Paul, leading a brief
burst of clapping.

“Y¥ou're a legend in your own lunchtime!” beamed John.

It was starting to brighten up outside. “Here comes the sun; a cloud-
burst doesn’t last all day,” said George. “Good day, sunshine,” Paul
added with gusto. “Ah, Mr. Sun King,” said John approvingly. “No
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more getting a tan standing in the English rain.” They all felt good, in
a special way.

“It took me so long to find out,” Ringo mused. “But I found out!”

“When I get home I'll get it,” said John. “I bet some of our earlier
ideas come together in the end. I'll be back with the answer, I'll get
you!”

“Remember the things we said today,” said Paul. “Maybe I'm amazed
at the way it fooled vou, John. Another day, I'll explain it all to you.”

“Love you to,” George said. “Isn’t it a pity it’s so long, long, long?”

“It don’t come easy,” observed Ringo, looking at his hands. “After
all that tricky card handling, I've got blisters on my fingers!”

“Imagine there’s no card tricks,” John shuddered. “No clubs, hearts,
spades or diamonds; above us, only pi. Goo goo g'joob!”

“They’ve been going in and out of style, but they're guaranteed to
raise a smile,” Paul assured everybody.

“Across the universe, people have a real love of card tricks,” said
John, who always wanted to have the last word.

“All you need is cards,” everybody chorused.

Gome and Gef Tt

We now set off on the long and winding road which leads to full ex-
planations of the above. Each trick involves communication between
two people using only mathematical principles; there is no physical or
verbal signalling. One person assumes the role of performer, chosing
and displaying cards carefully, while the other is a confederate, survey-
ing the scene later and doing some mental calculations, hefore correctly
identifying a hidden card or cards.

First frick. Here is a verse to ponder.

In each list of ten there is bound,

To be four that do rise; is that sound?
In a paper with Erdds,

By Gyorgy Szekeres,

A counterexample is found.

This refers to an application—due to Erddés and Szekeres [AZ98,
page 124]—of the Pigeon Hole Principle.! Martin Gardner explained it

L1f n pigeons fly over a piece of land which is broken up into k fields, where k < n,
and each single pigeon does what pigeons do best, i.e., leaves a deposit, then at
least one field will receive two or more deposits. The same holds for blackbirds or
bluebirds. It is this principle which that cold water on the whole “Eight Days A
Week” idea.
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in Riddles of the Sphinz in terms of “a row of 10 soldiers, no two of the
same height...no matter what the order, there will always be at least
four among the ten, not necessarily standing next to each other, who
will be in ascending or in descending order” [Gar87, page 5.

Hence, if we first fix an ordering on a set of ten distinct cards, and are
given these cards mixed up, then there will either be four in ascending or
four in descending order. To perform the trick, you and your confederate
first decide on an ordering, e.g., you could use numerical ordering from
1 to 10. The cards are jumbled. If you see four in ascending order,
deal all ten cards out from left to right and then turn over these four.
Your confederate can tell which four cards are turned over by observing
which six are visible, and since the order of the other four is known,
each can be identified correctly. If there is no ascending subsequence of
length four, then there is a descending one instead. The trick can be
performed as above, simply dealing out the cards in reverse order; there
are many ways to to this without arousing suspicion if you haven’t shown
anybody the cards in advance. Often one gets lucky, and finds runs of
length five or six, that’s what happened the second performance of this
trick. Of course, the usual ordering from 1 to 10 is rather obvious. The
ordering George and Ringo used was alphabetical—Ace, Eight, Five,
Four, Nine, Seven, Six, Ten, Three and Two. (A version of this trick
using “Erd6s numbers” (but not the same old suit) may be found in
Colm Muleahy's online AMS article “Mathematical Card Tricks,” at

http:/ /www.ams.org/new-in-math/cover /mulcahyl.html.)

Second frick.  The trick John and Paul performed for George and Ringo
is often credited to mathematician William Fitch Cheney Jr. Martin
Gardner has alluded to its 1950 appearance in a book by W. Wallace
Lee [Lee60] (see Mathematics Magic and Mystery [Gar56, page 32| and
The Unezpected Hanging and Other Mathematical Diversions [Gar69,
page 158]).

A volunteer selects five cards from a standard 52-card pack, and
hands them to you so that nobody else can see them. You glance at
them briefly, and hand one card back, which is set aside. You quickly
display the remaining four card faces, in a row from left to right. Your
confederate merely glances at the visible card faces, and promptly names
the hidden card.

In each of John and Paul’s performances, note that the first of the
four cards displayed was the same suit as the hidden card. Indeed, the
Pigeon Hole Principle guarantees that in any set of five cards there will
be at least one suit match. If there are two Spades, let’s agree to use
the first position of the cards held up for the retained Spade—thereby
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revealing the suit of the hidden card. Since there are 3! = 6 ways to
arrange the other three cards, we can communicate one of six things.
The trick is to do this independently of the particular cards held. Even
then, there is another issue to address if we hope to pull it off every
time.

To get the permutations idea to work with any three cards, just note
that they are distinct! Thus, with respect to a fixed ordering of the entire
pack, one of them is low, one is medium, and one is high. This suggests
an easy way to communicate a number between 1 and 6. For instance,
try this CHaSeD ordering: Ad,..., K&, AU, ..., KU, AM...., K,
A, .., KO, Mentally label the three cards L (low), M (medium), and
H (high) with respect to this ordering. Next, rank the six permutations
of {L M, H} as follows: 1 = LMH, 2 = LHM, 3 = MLH, 4 = MHL, 5 =
HLM and 6 = HML. Now, order the cards from left to right according
to this scheme to communicate the integer desired. Try this out to see
out what integers John conveyed to Paul each time they did the trick.
Are you certain that it happens all the time? After all, the hidden card
could be any one of twelve Spades—try fixing a hole where the Ace gets
in!

The last crucial observation we need is this: you must be careful as
to exactly which Spade you hand back. Considering the 13 possible card
values, 1 (Ace), 23,...,10, J, Q, K, as being arranged clockwise on a
circle, we can see that our two Spades are at most 6 values apart, i.e.,
counting clockwise one of them lies at most 6 vertices past the other.
Give this “higher” valued Spade back to the victim, who hides it. You'll
use the “lower” Spade and the other three cards to communicate the
identity of this hidden card. The first time the trick was done, the first
card was the Ace of Spades, the integer communicated was 1, and as
Paul pointed out to the others, 1 + 1 = 2: The hidden card was the
Two of Spades. The second time, the first card was the Queen of Spades
(with a numerical value of 12), the communicated integer was 6, and
12+ 6 is equivalent to 5 (modulo 13). Sure enough, the hidden card was
the Five of Spades.

One weakness in our method—especially if the trick is to be repeated—
is the invariant use of the first position as the “suit-giver.” Here is one
way to overcome this: since both you and your confederate get to see
four cards, add their values and reduce modulo 4 (using 4 if you get 0),
letting the answer determine the position of the suit-giving card. Thus,
a Jack, 8, 2 and 7 would result in 11 + 8 + 2+ 7 = 0 (mod 4), so the
fourth position would determine the suit-giver, and the other three cards
communicate the permutation. Our method appears watertight, in that
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it does not seem to extend to packs with more than 52 cards. However,
David and Hal Kierstead, Elwyn Berlekamp and others have noted that
the trick generalizes to packs of size 124 cards [KK00]. Try it for an
ordinary pack supplemented with one Lennonesque joker.?

Third and Fourth fricks.  The last trick performed by Paul and Ringo
is a kind of extension of the second one. Before attacking, we suggest
relabelling this as the fourth trick, and first trying the following, simpler,
“third” trick. You are given any five cards, one of which you hand back
before placing the remaining four in a row on the table, some face up,
some face down. Your confederate succeeds in identifying the fifth card.
Hint: George made an insightful comment here, if only somebody would
listen.

The Pigeon Hole Principle again guarantees that (at least) two of
the five cards are of the same suit, let’s suppose it’s Spades. You hand
one back, and use the remaining four to tell your confederate the iden-
tity of the fifth card. Use one particular position (e.g., the first) of
the four available for the retained Spade—which determines the suit of
the fifth card—and the other three positions for the remaining cards.
The difference here is that you communicate using some kind of binary
code—George did suggest a yin/yang principle—rather than permuta-
tions. Unlike in the earlier trick, the actual identities of any face up
cards play no role! You can communicate any one of 2® = 8 integers in
this way. Is this enough?

As before, save the “lower” Spade and communicate the identity
of the “higher” one. Use a particular position (e.g., the first) for the
retained Spade. Rather than indicating actual binary representations
with the up/down arrangements, let’s agree on this convention: UDD,
DUD, DDU (only 1st, 2nd or 3rd position is Up), and DUU, UDU,
UUD (only 1st, 2nd or 3rd position is Down), respectively, reveal to
your confederate which of 1,2,3 or 4,5, 6 they should add to the lower
Spade value.

Finally, consider the last trick that Paul and Ringo did for the others.
Note that there may not be any suit matches among four cards! Start
by repartitioning the pack into three new Suits of 17 cards, leaving one
card (say A{) aside. The new Suits are the standard suits &, <, #,
each supplemented with four {’s: Suit A is Ak, 2&,..., K&, 20, 3,
43, 5O Suit B is AD, 20...., KO, 68, 7¢, 8O, 9¢; and Suit C is A,
28,..., K&, 10, IO, Q&, KO, If one of the four cards is A, play the
others face down, and watch the audience reaction as your confederate

2Don’t you think the joker laughs at you?
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demonstrates some real magic powers! Otherwise (at least) two of the
cards are from the same new Suit. Let’s assume it’s Suit A.

Retain the “lower” card and hide the “higher” one, whose numerical
value is & past the retained card, where k is between 1 and 8 this time.
As before, the displays UDD, DUD, DDU, DUU, UDU, UUD can
communicate k if it’s between 1 and 6. Since at least one card will be
face up, we can use such a card—or the first such if there are two—
to reveal the suit at the same time! However, we also need a way to
communicate 7 or 8, and for this we use the UUU option. Let's agree
that one particular U (say, the middle one) gives the suit. Then with
respect to some ordering of the pack—such as lining up Suits A, B, C—
there are two ways to play the other two: Low-High (to convey k = 7)
or High-Low (for k& = 8). You should now verify that Paul was indeed
able to communicate the hidden card to Ringo in the last trick they did
together.

Michael Trick at Carnegie Mellon kindly put together a website
which illustrates this—er—irick in action, see: http://mat.gsia.cmu.
edu/CARD/. It uses a slightly different suit convention: the three ba-
sic suits are Clubs, Diamonds and Hearts, each supplemented with four
Spades.

This concludes our look at four fab four four-card tricks.?
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Galendrical Gonundrams

dohn H. Gonweay and Fred Kochman

The familiar, humble secular calendar has actually had a rich and tur-
bulent history, with interesting episodes dating long before the Grego-
rian reforms of the Renaissance. The reader can scarcely be unaware
that the astronomical year does not equal an integral number of lunar
months, nor is either an integral number of days; yet these inconvenient
incommensurabilities must be reconciled for religious, administrative,
and agricultural reasons. We would like to give a gentle account of cal-
endrical history and calendrical lore by posing sets of questions, some
only a little tricky, which we answer in turn.

To begin with, the calendar ultimately derives its name from the Ro-
man “Kalends”; what were they? And when were the Greek Kalends?
Julius Caesar died on March 15, which was known to the Romans (and
readers of Plutarch or Shakespeare!) as the Ides of March. What would
the 10" of March be called under that system? In what month was he
born? And what else does Julius Caesar have to do with the calendar?

In ancient Rome, the Kalends were simply the first day of each
month, one of the feast days from which dates were counted backwards.
In Greece, the Kalends were... never! The Greeks used an altogether dif-
ferent system. So a Roman would say, ironically, that something would
happen “at the Greek Kalends” to mean that it never would occur. As
for the 10*® of March, this would have been “the 6 day before the Ides
of March.” Each month contained three feast days, namely the Kalends
(the 15%), the Ides (i.e., the 15" of March, May, July, or October, and the
130 in other months), and the Nones, from which all other dates were

Fred Kochman is a mathematician at IDA’s Center for Communications Re-
search in Princeton, N.J. John H. Conway was not knighted by the Queen for his
numerous contributions to mathematics and science. We are grateful to Steve Sigur
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counted backwards, inclusively. Thus the 10" of March would be the
6t day before the Ides (not the 5''!) and the last day of March would
be known as “the 2" day before the Kalends of April.” The Nones of
a month is the ninth day before the Ides of that month, counted in this
inclusive manner.

Julius Caesar was born, conveniently, in the month named after him,
July. Actually this was no coincidence; the month of his birth, formerly
known as Quinctilis, was renamed in his honor by the Roman senate
in 45 B.C. Thus the exact date, recorded by later chroniclers as July
3rd, would then have been known as “the 5*® day before the Nones of
Quinctilis.” As we will see, substantial calendar reform was enacted
during Caesar’s tenure in the year 46 B.C. The resulting system, named
the Julian Calendar in his honor, remained in use throughout Europe
until the Gregorian reforms of 1582, and is, of course, still the basis of
the calendar we use today.

There once was a year 445 days long; how did this come about? How
did the year come to start on January 15%, rather than on some other
date as in ancient times? What do the names of the months signify, and
how did each month get its length? What do the names of the weekdays
mean, and what is the significance of their order?

The 445-day “Year of Confusion,” 46 B.C., was the last year be-
fore the Julian reforms were instituted. By that time the calendar had
drifted far out of phase with the seasons because the officials in charge of
administering leap years were both incompetent and corrupt, occasion-
ally misusing their power to grant political favors, such as delaying the
occurrence of the calendar date when some contractual obligation would
come due! Julius Caesar instituted a reformed system, and to repair the
cumulative damage he ordered the duplication of three months of that
yvear. Not surprisingly, very few people that year ever had any idea of
what the official date actually was; hence the name.

As in other ancient calendrical systems the start of the Roman new
vear was originally in the month containing the vernal equinox, in this
case March. But in 152 B.C. the Roman Republic instituted a system of
appointing two new proconsuls each January 1, an occasion marked by
a substantial procession. Since these were powerful officials, important
pending business often had to wait upon the start of the new appoint-
ments. As a result, the date came to be seen as the start of the Roman
civil year, and was eventually adopted as the official New Year’s Day.

What do the month names signify? Obviously “September,” “Oc-
tober,” “November,” and “December,” have something to do with the
numbers “7.” “8" “9” and “10,” and the correspondence originally ex-
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tended to the earlier names of the two previous months, “Quinctilis” and
“Sextilis.” In fact the tradition is that before the time of the Decemvirs
in the fourth century B.C., there were only 10 named months in the
calendar, and the months named above were in fact the fifth through
the tenth. The remaining time before the new year in March was sim-
ply a nameless fallow period, which eventually became two new months,
January and February.

January was named after Janus, the two-faced Roman god of en-
trances and exits, whose likeness was placed above doors, one face look-
ing in and the other looking out. This is quite appropriate for a month
that could be regarded as both the end of the old year and nearly the
start of the new. February is named after the feast of Purification,
which occurred during that month. The name is etymologically related
to “fever.” The months March, April, May, and June have been said to
derive from the names of the gods and goddesses Mars, Aphrodite, Maia,
and Juno. However it seems more likely that the name April is etymo-
logically related to “opening” (as in “aperture”), because it names the
month when buds open. Also, June is probably named after the ancient
Roman clan of Junius. July and August will be discussed shortly.

We now turn to the lengths of the months. The traditional story is
that Sosigenes, the Alexandrian astronomer who was an invited consul-
tant, recommended to Caesar that the start of the new year revert back
to March, and that the lengths of the months should alternate between
31 and 30 days, starting with 31 days for March, except that the last
month, February, should have its full length of 30 only every fourth year,
and 29 days in others. Thus the lengths would be, starting with March:

MAMJ QS SONDJF
3130313031 30 313031 30 31 30,29

(Sosigenes was well aware that the fractional part of the year length
was not quite one fourth of a day, and that a one day error would
accumulate in about 130 years. But he probably did not expect that his
system would remain in effect for that long.) Several things happened,
however, to disturb this elegant scheme. In the first place, January and
February had long been firmly established in their places at the head
of the vear, so willy nilly they stayed there. Also, around this time the
Senate enacted their patriotic resolution renaming Quinctilis, the month
of Caesar’s birth, after Caesar. Thus the lengths became, starting with
January,
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But then came the Ides of March in 44 B.C., with Caesar eventually
replaced by Octavian, who renamed himself Augustus. The Senate found
it expedient to pass another patriotic resolution renaming Sextilis after
Augustus. But since it clearly would not do for the new emperor’s month
to be a short one, they reversed the alternation starting with August,
changing the sequence of lengths for the last five months from 30, 31,
30, 31, 30 to 31, 30, 31, 30, 31. To compensate for the extra day so
added to these five months, one day was excised from February on the
usual principle that “from he that hath not, thou shalt take away even
that that he hath.”

While the foregoing is indeed the traditional story, modern historians
have cast considerable doubt on it. But we like it, so we have told it!

The naming of the seven weekdays can be quickly explained: the
Romans named them after the sun, the moon, and the five “planets”
or heavenly bodies which move against the background of the stars.
These five were in turn named after the principal deities of the Roman
pantheon, namely, Saturn, Jupiter, Mars, Venus, and Mercury, though in
a rather peculiar order. The entire correspondence is best seen through
a mixture of English and French names, namely,

SATURday, SUNday, MONday, MARdi, MERCREdi, JEUdi, and
VENDREdi.

The English names Tuesday through Friday derive from the Norse
names of the corresponding gods:

TUESday = TIW’s day
WEDNESday = WODEN'’s day
THURSday = THOR'’s day
FRIday =FREYA's day.

(The length of the week, seven days, explained in the Bible as the
length of creation, is of course a much older tradition that was not
tampered with by any calendrical authority except during the French
Revolution. That particular reform was soon abandoned.)

But what about the order of the days? Here the traditional story
is more credible. It is that each hour of the day was ruled by one of
the heavenly bodies, in a never-ending cycle of length seven, ordered
according to the time that body takes to traverse the sky:

Saturn 30 years
Jupiter 11 years
Mars 2 years
The Sun 1 year
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Venus 280 days
Mercury 88 days
The Moon 30 days.

This is also the traditional hierarchy in Greco-Roman mythology:
Saturn is equivalent to the Greek god Chronos (time), who was father
of Zeus = Jupiter, in turn the father of Mars, etc.

Now since 24 = 21 + 3, in one day we go around this cycle three
full times and make three additional steps. So the first hour of each
successive day is assigned its name according to the order of traversing
the star in Figure 1, which is in fact the usual order.

Saturn
Saturday

. Jupiter
Jeudi

Mercury s ," Mars
Mercredi |\ fﬁ' Mardi
Venus The Sun
Verdredi Sunday
Flgure 1.

To give the reader a sporting chance at answering the next set of
questions, we would like to describe a simple system for determining
the day of the week of an arbitrary date, relative to the Julian Calen-
dar. We first observe that despite the staggered alternation of month
lengths, each of the pairs April-May, June-July, August—September,
and October—November consists of a 30-day month and a 31-day month
together, making 61 days in all. It then follows that in any given year
the dates

4/4, 6/6, 8/8, 10/10, and 12/12,

being at intervals of 61 + 2 = 63 days, must all fall on the same day
of the week, which for fun we call the “Doomsday” for that year. Not
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only that but “March 0,” the last day of February, which is obviously 5
weeks before “March 35”7 = April 4, also falls on that weekday, as does
Jan 31 in a non-leap year.

Such considerations lead to the “Doomsday Rule”: In any given year
the dates in the following list

Jan 31(32) = Feb 0(1), Feb 28(29) = Mar 0

4/4  6/6  8/8 10/10  12/12
5/9 9/5  T/11 11/7

all fall on the doomsday for that year, where the parenthesized dates
apply during a leap year and where we have taken one or two self-
explanatory liberties in assigning names of dates.

From this list a little arithmetic readily vields other doomsdays. For
example July 4 = July 11 — 7 is a doomsday, as is December 26 =
December 12+ 14. Hence Christmas is always the day before doomsday!
As we will see, such calculations are made a little easier by use of the
following mnemonic to remember how much to add:

NUNday, ONEday, TWOday, TREBLESday, FOURSday, FIVEday,
SIXAday, SE'ENday.

How do we determine the doomsday for a given year?

The passage of an ordinary year advances the doomsday by one, since
365 days equals 52 weeks plus one day, while a leap year advances it by
one day extra. This has the nice effect that for calendrical purposes
“a dozen years is but a day” in the Julian calendar, since exactly three
must be leap years, and 12 + 3 days = 2 weeks and a day. So we can
now use “dozen year boots” to work out the doomsday for any year in
a century once we know it for the leading year.

‘We do this by adding to the doomsday of the century year the number
of dozens (of years thereafter), the remaining years, and the number of
leap years among those (which is the number of 4’s in the remaining
years).

For instance, we will verify shortly that in the century year “A.D.
0,7 doomsday was, appropriately, a “NUNday”, i.e., Sunday. So since 58
vears = 4 dozen years plus 10 extra, of which two are leap, the doomsday
for AD. 58 was NUNday + 4 + 10 + 2 = 2 = TWOSday = Tuesday!
So Christmas day for that year must have been a Monday.
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The doomsdays for the century years in the Julian system are:

SUN SAT FRITHU WED TUE MON
0 100 200 300 400 500 600
700 800 900 1000 1100 1200 1300
1400 1500 1600 1700 1800 1900 2000

which are easily remembered since the multiples of 700 are SE'ENdays;
and in this system 100 years takes us back one day because 25 of them
are leap years and 125 days = 18 weeks — 1 day.

We are now ready for another batch of questions:

How did it come about that William the Conqueror was crowned King
of England on the second Christmas day of 10667 Why did 1572 have
two Faster days? How could Archbishop John Whitgift have died on
February 29, 16037 How was it already spring when Queen Elizabeth
died on New Year’s eve in 16027

The answers to all these questions depend on the fact that the New
Year still did not universally begin on January 1 in Christian countries,
the most popular other contenders being March 25 and December 25,
the notional dates of Jesus’ conception and birth. The English were us-
ing December 25 before the Normans imposed their own starting date of
January 1 after the conquest. So 1066, the last year to begin on Christ-
mas day, was now lengthened by a week to acquire a second Christmas
day, and William the Conqueror chose this second Christmas day for his
coronation.

A few centuries later, Lady Day, March 25, came to be regarded
as New Year’s day in England, but this was followed by a gradual re-
version back to January 1 during the seventeenth century. During this
transitional period, people used a “double dating” convention for the
“ambiguous days” from January 1 through March 24. Under this con-
vention the death date of Archbishop John Whitgift, chairman of the
commission that produced the Authorized Version of the English bible,
is written February 29, 1603 /4. This is because February 29, 1604 (New
Style) was still 1603 in the Old Style. The fact that Queen Elizabeth
died on March 24, 1602/3, the last day of Old Style 1602, made that
date feel like a natural terminating time, and was responsible for a minor
patriotic revival of Old Style dating in England. (In Scotland it had just
been abolished in 1600.)

To answer the next question, one must know that in the Julian system
Easter day is defined as the first Sunday strictly later than the Paschal
full moon (PFM). The rule for determining the date of the Paschal full
moon for a given year Y A.D. in the Julian system is tantamount to the
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fi 1
orma April 19(= March 50) — ((11G + 3) mod 30)
where (¢ is the “Golden Number” G = Y 04 10 + 1.

Thus for the year 1573 = 15 (mod 19) we find G = 16, so

PFM = March 50 — (179 mod 30)
= March 50 — 29

= March 21, a doomsday,

which is therefore Saturday + 6 + 1 + 0 = Saturday. So Easter day in
the New Style 1573 was the next day, March 22. This, however, was still
in the Old Style 1572, which you can check had already had its Easter
Sunday on the preceding April 6.

The history of Easter is this. The Gospels say that the relevant sacred
events occurred on the last day of preparation for Passover, which would
therefore put Easter Sunday as the first Sunday after the 14" day of the
Jewish month of Nissan. In the early church there were two parties—
the “Quartodecimans” who wanted to celebrate Easter on the 14" of
Nissan itself, whatever weekday it was, and those who preferred the next
Sunday. At the Council of Nicea in 325 A.D. Easter was simply defined
as the first Sunday strictly after the Paschal full moon, regardless of the
date of the events being commemorated, and the Quartodecimans were
formally stigmatized. The Paschal full moon was itself defined to be the
first full moon on or after the vernal equinox.

Nonetheless, the dependence of the date on astronomical observa-
tions, the precise moment of whose occurrence could be uncertain and
even vary from locale to locale, still gave rise to many disputes. This
was solved at the Synod of Whitby in 664 A.D. by defining the vernal
equinox to be March 21, which was a good approximation. Then the
date of Paschal full moon was retrieved from a certain table of values
with a 19 year period, which is equivalent to our Julian Easter formula
given above.

William Shakespeare died on April 23, 1616, as did Miguel de Cer-
vantes. Who died first? How could someone be 8 years old on his or
her first birthday? Where was it possible to be more than 8 years old on
one’s first birthday? Just how much short of 40 years old was the Greek
poet George Seferis on his tenth birthday in 19407

The answers to these questions depend on the calendrical reforms
instituted by Pope Gregory IV in the 16" century. By that time time the
calendrical sun and moon—the imaginary objects whose movements the
calendar was tracking exactly—differed by 10 and 4 days, respectively,
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from their genuine astronomical counterparts. On the advice of the
Jesuit astronomer Clavius, who was succeeded by Lilius, Pope Gregory
“reset” the calendrical sun by omitting the 10 dates between October 4
and October 15. He also made arrangements to control future calendrical
drift by metemptosis of the sun, that is, omitting leap days in three
century years out of four.

To answer the questions, the first of the two famous writers to die was
Cervantes. He lived in Spain, which had adopted the Gregorian reforms
as soon as they were introduced in 1582. England, however, only did so
in 1752, by omitting the 11 dates between September 2 and September
14. (It was 11 instead of 10 in view of the metemptosis of 1700!) In the
Julian calendar, the date of Cervantes’ death was April 12.

Someone could be eight years old on his or her first birthday by
being born on the last leapday before a metemptosis—for example, on
February 29, 1896. In Sweden, another late adopter of the Gregorian
reforms, plans were made to convert gradually, by omitting all leap days
from 1700 to 1740 inclusive. Had this been done, then someone born on
February 29, 1696 would have been nearly 48 years old on his or her first
birthday in 1744. Astonishingly, however, the authorities forgot to make
one of the omissions after the first few, and then decided for political
reasons to revert to the Julian system. This they did by giving February
30 days in 1712. So someone born in Sweden on the last day of February
of 1712 would never have a first birthday!

Finally, George Seferis was 13 days short of being 40 years old on his
10" birthday, February 29, 1940. He was born on February 29, 1900,
a date which existed because his native land, Greece, only adopted the
Gregorian calendar in 1929.

What is the Gregorian rule for Easter?

As in the Julian rule, Easter day is the first Sunday strictly later
than the Paschal full moon, but the latter is now given by a modified
formula. With two exceptions which we shall discuss shortly the new
formula is

P.F.M. = [April 19 (= March 50)] — ((11G + €') mod 30).

In this formula, the “century constant” C'is

C =< =5 for 17 & 18 hundreds

{ —4  for 15 & 16 hundreds
—6 for 19, 20, & 21 hundreds.

The general rule for C' is that in the “H-hundreds”,
C=—H+[H/A]+ [8(H +11)/25].
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The two exceptions alluded to above are that if the formula gives a date
of April 19, we should replace it by April 18; and if the formula gives
April 18 when GG > 11, we replace it by April 17.

How did this general rule come about, and what is the reason for the
two exceptions?

As well as resetting the calendrical sun, Pope Gregory also “reset the
moon against the sun,” but did so by postponing the calendrical moon
against the Julian calendar by seven days rather than by 10—4 = 6. This
was partly so as not to disrupt the sequence of weekdays and sabbath
observance, and partly to prevent Easter day from ever coinciding with
the first day of Passover, which had been known to cause riots.

To correct for future drift, he instituted a proemptosis of the moon to
take place in eight century years out of every 25, analogous to metemp-
tosis of the sun. To be precise, the date of the calendrical moon is
advanced by one day in those century years with H =18, 21, 24, 27, 30,
33, 36, 39, 43, 46, 49, ... and so on, with a 25 century period. However,
this proemptosis of the moon is also “against the sun” rather than be-
ing completely Gregorian. In other words, the advance takes place with
reference to the old Julian calendar rather than in the Gregorian one
they were introducing. This has the curious effect that our ', which is
the complete Gregorian correction, is the difference of the two quantities
[8(H + 11)/25], the proemptosis term, and H — [H /4], the metemptosis
term.

As for the exceptions, during the time of the Julian calendar two
popes had made arithmetical remarks about the Easter rule, the first
saying that the Paschal full moon always fell in the interval March 21
to April 18 inclusive, and the other saying that it happened on nineteen
different dates in every nineteen year cycle. Papal infallibility required
that these statements be kept true! The first alteration pulls back to
April 18 a full moon that might otherwise have occurred on April 19,
thus preserving the first statement. However April 18 might be the full
moon for another year in the same nineteen year cycle. This can only
happen if G > 11, and if so, the second alteration preserves the second
statement by pulling back this date as well.

Why do the Fastern and Western churches celebrate Faster on dif-
ferent dates?

Here the answer is that the Orthodox churches still compute Easter
by the Julian rule. For example, for the year 2000 = 5 (mod 19) we
have G = 6, so that the Julian rule gives a full moon date of

April 19 — ((11G + 3) mod 30) = April 19 — 9 = April 10 (Julian),
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which is
April 10 + 13 = April 23

in the Gregorian system. This is a Sunday since April 25 is a doomsday
(TWOSday in 2000). So the Eastern Easter is the next strictly later
Sunday, April 30. But the Western churches use the full moon date,
April 19 — ((11G — 6) mod 30) = April 19, altered to April 18, which is
a doomsday and therefore a Tuesday in 2000. So the Western Easter is
five days later, on April 23.

With what period do the dates of Easter recur? What was the error
in Gauss’s calculation of Easter? How will the century constant C vary
in the long term?

For the Julian calendar the recurrence period for Easter dates is
28 x 19 = 532 years, the least common multiple of the 28- and 19-
year periods with which weekdays and Golden numbers recur. For the
Gregorian calendar the answer is more interesting, and we shall returm
to it shortly.

Gauss misunderstood the Gregorian Easter rule, thinking that proemp-
tosis would occur in every third century rather than in 8 out of 25, As
we will see, the first year for which this makes a difference is 4200. Here
is a little table showing the century years in which metemptosis and
proemptosis actually occur:

H 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30---
- mpm m —pm m m P m mpm - M pm---
¢ -4 -5 -5 -6 -6 -6 -7 -8 -7 -8 -9 -9 -9 —-10 =10 ---

We have included the corresponding value of €', which decreases by 1
for each m and increases by 1 for each p, and so is fixed when p and m
occur together.

If Gauss’s rule were correct, there would be blocks of centuries of size
2,3,4,3,2,3,4,3,2,3,4,3,... with €' constant over the 2 and 3 century
blocks, and alternating between two values in the 4 century ones, as
indeed it does before 4200. Here is a table made according to Gauss’s
rule:

block size: 2 3 4 3 2 3 4 3 2 3 4
e o — ——
H 17 19 22 23 26 29 31 34 35 38 41 43 46 47 ---
18 20 24 25 27 30 32 36 37 39 42 44 48 49 ...
21 28 33 40 45 e

C -5 —-6-7 -8 -9 -10 —-11 —-12 —-13 —14 —15 —16 —17 —18 - -+
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The effect of the difference between Gauss’s rule and the true rule is
that every seventh block is replaced by a four centuries longer “Sunday”
hyperblock according to the scheme

2 — 222
3 — 313
4 — 44

starting with the first column of the table above. So we have

2 2 2.---3 1 3 - 4 4 -+ 3 1 3
—— —
13 15 17 --- 38 42 --- 62 63 66 67 --- 87 91
14 16 18 --- 39 41 43 --- 64 65 68 69 --- 88 90 92 ...
.40 44 .. ... 89 a3 ...
-3 -4-5----14 -15 16 --- =24 —-25 —-26 —27 --- —35 —36 —37 - --

where we have included the hyperblock that started in 1300, before the
new system was adopted. In this table, unlike that of Gauss, H = 42
occurs with C' = —16. The changes in C recur with period 10 000 years,
over which period C' decreases by 43. This is because 10 000 is the
least common multiple of the metemptosis and proemptosis periods of
400 and 2500 years. Each such period has 28 blocks and hyperblocks,
forming the 10 000 year “Easter month” shown in Figure 2.

Finally, the recurrence period for Easter dates is 190 000 years, the
least common multiple of this 10 000 year period and the 19 year Golden
number period.

Friday

Thursday Saturday

Wednesday | ~ Sunday

Tuesday M-onday

Figure 2.
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What is the period of weekdays in the Julian calendar system? How
does this affect the weekdays on which the 13" days of months occur?

In the Julian system, any two years that are 28 years apart always
have the same calendar. This is the least common multiple of 7 and
4, the lengths of the weekday and leap year cycles. But this 28 year
repetition is upset in the Gregorian system, each time a metemptosis
year intervenes. So, in three centuries out of four, doomsday is retarded
by 2 days rather than 1. In each 4 century period, it is retarded by
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242+ 2+ 1 =T days, or, effectively, not at all. Hence the Gregorian
calendar repeats every 400 years.

Since those 400 years contain 4800 months, which is not a multiple
of 7, the 13" days of those months cannot be equidistributed over the
7 possible weekdays. The nearest multiple of 7 is 4802 = 2 x 74, so we
expect about 2 x 7* = 686 of them on any given weekday. In fact, a
detailed calculation reveals that exactly 686 never happens.

Figure 3 shows what actually occurs and enables us to conclude our
paper with B. H. Brown’s elegant assertion:

The 13" day of a month is more likely to be a Friday
than any other day of the week!




Two Poems

derry Andras and Tim Rowett

From Here o Infinity

It is neither bound by
The gravity of the Earth
Nor the speed of Light,
And the reaches of its domain
Go from here to infinity.

That mind is indeed
Inside the body of man,
But it can see outside,
And move the wonder of its search
From here to infinity.

Jerry Andrus

Jerry Andrus is a illusionist, skeptic and magician who constructs impossible

3-dimensional objects.
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Tim Rowett

Tim Rowett collects toys, novelties, gadgets, and puzzles—over 7,000 pieces in
30 years. Some appear on the popular web site http://www.grand-illusions.com.




Part V
Wild Game (and Puzzles)







What Makes the Puzzler Tick?
Rick Irby

Puzzles intrigue, challenge, amuse, and quite often even aggravate. His-
torically, almost every culture has developed puzzles of some kind, often
making them serve as locks or intelligence tests. While the difficulty of
these puzzles can vary greatly, each requires ingennity and patience to
discover its secret.

Puzzles range from simple dexterity puzzles that require a steady
hand to highly sophisticated puzzles where one or many parts must be
moved many times in many directions to achieve a goal.

Figue 1. A wide variety of puzzles are available to the collector! (See Color
Plate XL.)

Rick Irby is the world’s premier designer and craftsman of wire puzzles.
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In dexterity puzzles the object is usually to either balance objects in
seemingly impossible ways or to position little balls into various holes
within enclosed spaces by tilting and rolling. Some types like put-
together or take-apart puzzles will require finding ways to either put
a number of pieces together to form specific objects or shapes, or to
take them apart. Still others, such as disentanglement puzzles, require
manipulating wire or other material shapes through a series of sequen-
tial moves to get them apart, and then return them to their original
configuration.

There are puzzle vessels that require one to fill, pour, or drink ligquids
from a wvessel filled with holes without spilling a drop. With vanishing
puzzles, it is necessary to explain why or how an image can vanish or
change after it is manipulated. Some impossible object puzzles defy one
to discover how they were made or how objects were put through or
inside other objects. Folding puzzles challenge the would-be solver to
perform a specific goal or shape through folding. Other types include
jigsaws, crosswords, logic, and mathematical puzzles to stimulate and
challenge your puzzle solving needs. Whatever your taste or preference,
there will be a puzzle to arouse your interest and tickle your fancy, as
well as serve a variety of other cognitive and physical functions.

Many executives collect puzzles as desk toys and some even use them
to assist in solving work-related problems. By directing one’s attention
towards finding the solution to a puzzle, the answer to other problems
that may have seemed insurmountable can frequently be sorted out by
the subeconscious mind. Deep-sea divers, who often spend hours in de-
compression chambers, find puzzles do wonders to relieve the boredom
associated with such isolated circumstances. Stroke victims and those
recovering from injury have found puzzles very helpful in regaining use
of a paralyzed or injured limb while at the same time regaining or de-
veloping dexterity. Handicapped people can gain self confidence and
improve motor control skills with puzzles. Since mechanical puzzles re-
quire physical manipulations they are useful in providing a fun way to
develop hand—eye coordination and manual dexterity.

In teaching certain abstract concepts, such as higher mathematics,
puzzles can be especially useful. To find many puzzle solutions, one must
learn to think “outside the box.” Improvement in three-dimensional
thinking, abstract reasoning, concentration span, the understanding of
spatial relations, and the discovery of sequential patterns are just a few
of the benefits of solving puzzles. In addition, abstract concepts can
sometimes be demonstrated quite simply through puzzles. Getting a
puzzle apart is only half the fun and half the solution. The majority of
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mechanical puzzle solvers find it far more difficult to return a puzzle to
its original starting position than it was to get it apart in the first place;
careful analysis and a good memory are necessary as random moves
seldom suffice.

Finally, many of us seem to have an inborn desire for mental chal-
lenges. Whether trying to solve a good murder mystery, mathematical
problem, the secrets of the universe or an intriguing puzzle, the search
for answers goes on. The rewards for finding a unique solution are the
feelings of self-satisfaction and pride in the accomplishment. Watching
someone struggle to find the solution to a particularly difficult puzzle, es-
pecially if it is one that you have already solved, can be most rewarding.
Some things are better when shared.

Properly designed puzzles must be constructed with precision. Metal,
glass, string, wood, or paper are combined with verbal and numerical
perplexities to make the countless and wonderful variety of puzzles we
enjoy. Puzzle designs that require strength or force to solve only tend
to encourage would-be puzzle solvers to cheat and develop bad puzzle
solving habits. A good puzzle solution should test mental rather than
physical prowess.

Since puzzles do more than simply stimulate the visual or aural
senses, they can be among the most interesting of objects to collec-
tors. If you are new to puzzle solving and collecting, these sugges-
tions may enhance your enjoyment. Begin with puzzles that have sim-
ple solutions. Once you have mastered some of the easier puzzles and
concepts, both your comprehension and patience will greatly improve.
Very difficult puzzles can be so frustrating and discouraging to beginners
that some will turn against puzzle solving altogether. This is not to
say that one cannot enjoy a highly challenging puzzle that may require
hours or weeks to solve, but it usually is best for beginners to start
easy.

If you already have an interest in, or if this article has possibly
sparked an interest in puzzle collecting, you will need to know what
is available and where to find them. Deciding what to collect is a mat-
ter of personal preference and experimenting with a few different types
can narrow your search. There are a great variety of puzzle types just
waiting to intrigue and entertain you. Every collector has his favorites
and most are usually better at solving one type over others. Many col-
lectors will purchase more than one of an example of a puzzle in order
to have some to trade with other collectors. Puzzle collectors usually
prefer to purchase or barter rather than sell. After all, the purpose of
collecting is to attain more puzzles.
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In the past, puzzle collectors have had relatively few objects to choose
from; though, happily for most of us, this trend seems to be changing
rapidly. Help in finding out what is available and deciding what types
of puzzles to collect and where to get them can be found in books,
puzzle stores and especially on the World Wide Web. Chat rooms and
web sites (such as John Rausch’s www.PuzzleWorld.com) devoted to
puzzles abound, complementing the puzzlers’ gatherings which can now
be found in almost every major city. Additional sources Slocum and
Botermans’ book Puzzles Old and New [SB86] and books by Martin
Gardner which cover virtually every type of puzzle known as well as
magic and mathematics.

Every major city will have at least one or two puzzle stores. Flea mar-
kets, garage or vard sales, antique stores, hobby and game stores, side-
walk artists, and even fine art shows are also good places to look. Most
puzzle makers and puzzle sellers have web sites, catalogs, or brochures
available to potential customers.

HAPPY PUZZLING!
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Diabolical Puzzles from Japan

NOB Yoshigahara, Mineguki Oyematsu, Minora Abe

NOB's L-shaped Tatami Mat Puzzles

Usually in Japan, the shape of a tatami mat is a 1x2 domino.! But in

the country of Erehwon, they use a E—shaped tromino as a unit. Like
in Japan, they traditionally avoid using a 2x 3 rectangular combination

such as

Problem | What is the smallest rectangular room that can be tatami car-
peted in Erehwon? How many mats are needed for the room?

Problem 2 Arrange the siz L-shaped pieces in @ 5x5 square. You aren’t
permitted to turn the pieces aver.

L

NOB Yoshigahara Pz.D. (Doctor of Puzzlology) is renowned for his contri-
butions to puzzles, recreational mathematics, and magic. Minoru Abe is one of
the world’s foremost sliding-block puzzle designers. Mineyuki Uyematsu teaches
junior high school mathematics and is a member of the Academy of Recreational
Mathematics, Japan. These are just a small sample of the Diabolical Puzzles. Refer
to the web site http://www.gdgd.com for more puzzles and solutions.

1For more on tatami tiling, see Kotani’s article on page 413.
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Problem 3 Pack twelve Ls in a 68 square. (Note one piece is flipped.)

[LILLLLL
BRI

Problem % In the country of Ecalpon, some big rooms used twelve L-
shaped mats. Put all twelve into the 7x 7 square:

L
LLLLLL

Problem 5 Osho from Kyoto expanded NOB'’s idea into a smart checker-
board puzzle. Put 14 L-shapes into the 8 x 8 checkerboard:

L]
LELLLE

Have a good night’s sleep!

Mine's Similar Division

There are obviously infinitely many ways of dividing a square into two
congruent pieces. But how many possible ways are there to divide a
square into two similar (but not congruent) pieces? This also has infi-
nitely many solutions when fractal division is permitted as shown below.
In these examples, the ratio of similarity is 1:2, but any 1:n division is
possible!
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In the following division problems your goal is to divide a shape into

n similar pieces, where
e fractal solutions are not permitted,

e some pieces may be congruent if you wish,

e and flipping a piece over is permitted.

Here are a few examples that have multiple solutions.

G G
CEIE]

In some problems, the goal is to divide the figure into three or four

similar shapes such as these.

R IA il

To the best of our knowledge, the problems that follow have essen-
tially unique solutions; that is, multiple solutions are related by symme-

tries.

Problem 6 Divide each of the following shapes into two similar pieces.

A AL

Problem T Divide each of the following shapes into three similar pieces.

NN NP
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Problem & Divide each of the following shapes into four similar pieces.
The darkened arcas in the last one are considered outside the shapes.

M
o]

Minoru's Sliding Block Puzzles

In Edward Hordern’s Sliding Piece Puzzles, Edward wrote, “Mr. Abe
lives in the northernmost part of Japanese mainland where he runs a
place called Coffee Shop Now. If he gives his puzzles, which are ex-
tremely difficult, to his customers, he must sell coffee by the liter!”

I introduced Abe Minoru to Edward about twenty years ago, and Ed-
ward has since become the biggest solver of Minoru’s puzzles.? Although
Minoru is the greatest creator in this field, he’s a surprisingly poor puz-
zle solver. The solutions in Edward’s book, which astonished Minoru
with their beauty, were all solved by its author manually. Nowadays,
minimum solutions are easily verified by computers. Junk Kato, the
moderator of NOBNET, used Taniguchi’s and Jim Leonard’s program
to solve Minoru's conundrums.

Here is a taste of Minoru's selection. For minimum solutions, visit
the G4G4 web site, http://www.gdgd.com. You can play many of Abe
Minoru's creations at the web page of John Rausch and Nick Baxter.
http://www . johnrausch.com. If you visit their web site, you'll find the
puzzles are very attractive as well as addictive.

2While Minoru, NOB and Mine designed the puzzles, NOB wrote the text of this
article.
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Problem 9 NEO 1 2 3: On the left is the starting configuration and on
the right is your goal. This one is the easiest of the lot.

Problem 1) NEO BLACK & WHITE: The black blocks are immouvable.

Eﬂﬂgﬁ Eﬂﬂgﬁ

| |
(BJL[a]c]K] (wEL 1] T]E]

Problem 11 SLIDING-8: A typical first move is shown in the small di-
agram underneath the puzzle.
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Problem 12 BLOCK-10: Your goal is to move the large block to the top.

ol [
In!

Solutions

NOB's L-shaped Tatami Mat Puzzles

Eight: [ I_ {Hﬁ ﬁ
] | e [
(1) (2) (3) (4) (5)

Mine's Similar Division

Solutions marked with a ¥¢ have multiple closely related solutions which
can be obtained by rotating or reversing part of the given solution.

2 DB T
w B sL T Q)
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Minoru's Sliding Block Puzzles
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When reading these solutions, unless otherwise noted, move a tile as far
as possible in one direction only. NEO 1 2 3, the number 4 refers to
the star block. Superscripts refer to the four directions Right, Left, Up,
and Down. In NEO BLACK & WHITE, hold letters refer to blocks
which move around a corner.
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How o Outwit the Parity

Serhiy Grabarchuk

Everyone who has ever tried to solve Loyd’s “14-15" puzzle very soon felt
an invisible force that prevents a solution. And this force is so stubborn,
so strong, that one might continue attempts to eternity without success.
The name of this force is the Parity. Many mathematicians and puzzlers
know this “Invisible Thing” as a very dangerous, but at the same time
very useful, force which sometimes helps to solve very difficult problems
(often with ease). Other times it suggests the most unusual and puzzling
challenges, as in Sam Loyd’s “14-15" puzzle that led the whole world
to incredible puzzle madness. A parity principle is often the key to
solving sliding block puzzles. For many such “tricky” puzzles, once the
solver has changed the parity of the pieces from odd to even, the puzzle
becomes trivial.

Many puzzle inventors employ tricky ideas for how to change parity,
and then mask these ideas from the solver in order to make these puzzles
appear unsolvable. Most of such designs have a pair of identical inter-
changeable pieces. So when you change these pieces in the final position
you, in fact, change the parity of the puzzle, and reach the solution.
Other designs have pieces with special depictions, and when you rotate
the whole puzzle 180°, some signs are changed. This way you may in-
terchange one pair (or any odd number of pairs) of pieces, and therefore
“change” the parity without really changing it. Ah! So illusive.

Trickier still are designs which require that you rotate the whole
puzzle 90°. In this way you rotate cycles with an even numbers of
pieces, and again this can change the parity of the puzzle. Generally
speaking, every such tricky puzzle requires some kind of optical illusion,

Serhiy Grabarchuk is a Ukrainian puzzle creator, designer, solver, writer,
craftsman and webmaster at http://www. puzzles.com. Some of the puzzles in this
article appeared in Cubism For Fun (CFF) in 1996 and 1998.
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because you have to move pieces into certain positions for which another
piece would normally reside.

Nevertheless there is a method to outwitting the Parity in a straight-
forward way, which doesn't require you to rotate the whole puzzle, nor
to interchange identical pieces, nor to use any special tricky pictures.

I'd like to show some sliding block puzzles with this principle. Each
of them uses pieces with some special adjustments to their shapes. For
all the puzzles, only the usual rules are allowed: You may move pieces
within a tray with no turning, rotating or lifting. For each puzzle its
starting position is shown always on the left, final one on the right, and
an arrow is placed between the positions.

Puzzles

™ S o S

Figure 1. Sliding Weave. You have the eight rectangular pieces (each is
4 x 6) with numbers from 1 to 8. The object is to exchange pieces 5 and 7 to
change the left figure into the figure on the right.

Figure 2. The Fan Puzzle. You have eight identically shaped pieces with
one corner (1/8 of the full square’s area) cut. The object is to reverse the
whole fan.
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Fige 3.  The Beetle Puzzle. You have the eight pieces as following: two
square pieces, four pieces without one corner (1/9 of the full square’s area)
and two pieces without two corners (2/9 of the full square’s area). The object
is to exchange the two colored squares on Beetle’s back.

S =

G (four pieces)
m (four pieces)

Figure §. The Flexible Frame Puzzle—A. You have eight two-layered
pieces. Four are identical and are each made by pasting two identical triomi-
noes together. The four others are also identical and are made by pasting a
half square atop a square. The object is to exchange the position of the two
pieces, restoring a square picture frame.
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Solutions

Serhiy Grabarchuk

For each solution, the starting configuration is shown on the left, and
the ending one is shown on the right. For the Fan puzzle intermediate
positions are shown too.

A few notes on the notation used to describe the solutions are in

order.

o A single digit or letter means that the indicated piece slides to the
vacant cell by moving a distance of a size of a single piece.

o A single digit or letter followed by a combination of letters (R, L,

U, D) and numbers (1, 2, 3, ..., or even 0.5, 1.

5
2, ..

.} shows a single

move of the indicated piece. The letters R, L, U, D mean right,
left, up, and down respectively. The numbers show either some
part of the size of a single piece (for the Flexible Frame puzzle—
A), or the number of small unit squares on the bottom of a puzzle
tray (for the Sliding Weave puzzle and the Beetle puzzle).

Figure 5.

6U4, 5D1R4, 8L1D5, 1D5, 2L5,
3L5U1, 4U5, 7D1, 6R6, 1R5U2,
8U4, 5U4, 7L10, 5R2D4R4, 7R4,
8D4, 1D2L5, 6L6, 5UL, 4D5,
3D1R5, 2R5, 1U5, 8USRI, TLAUL,

6D4

7,6.5.4,3, 7,68 1,6 4,

Sliding Weave solution (26 moves).

5,8 4,5, 3,7,

2, 6,1, 4, 5. Now make a complex move shown
below by the arrow moving pieces {8,3,7,2,1,5}

simultaneously.
4/:’_'_/_1_ h6 42 7.6,2,4,1,7,8
5} 2 5.7,8,6,3,5,6
7] N 4,2,3,4

Figure 6.

The Fan Puzzle solution (46 moves; or 41 if the complex move is
considered as one move).
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Fgure 7.

Figure 8.

2R1.5, 1R1.5, 3, 5, R, Y, 1, 2, 4,
6,Y,1,2.3,5 R, 1,2, R, 5 3, R,
5R2D1, 3, R, 6L1U1L1U1L1UL, 4
6, R, 3, 5U1L2, 4, 6, R, 4, 2, 1, 5,
2,1,Y.6,R,4,1,2,3, 1,2 R, 4

2R1.5. IR1.5 o
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Solution for the Flexible Frame Puzzle—A (61 moves).

The Beetle solution (53 moves). Solution by Bernhard Wiezorke.







Inflaeted Pentominoes
Rodolfo Kurchan

In October of 1994, in the first issue of my magazine, Puzzle Fun, 1
presented the “Inflated Pentominoes.” I believe this is a very rich topie,
still open to investigation.?

A complete set of 12 pentominoes has a total area of 60 squares and
it is possible to make 4 different rectangles, the 3x20, 4x15, 5x12 and
6 10. For example, here is a 6 x 10 rectangle with the 12 pentominoes.

If some of the pentominoes are inflated, more rectangles are possible.
In each of these problems, your goal is to use each of the 12 pentominoes
exactly once. (You are free to rotate the pentominoes or flip them over.)

In a double inflated pentomino, each square of the pentomino be-
comes a 2x 2 square. For a triple, each square becomes a 3 x 3 square
and so on.

1. (ne Double With one double pentomino and 11 single pentominoes we
have an area of 75 squares and we can make some 5x15 rectangles.
Here is one example found by Brian Barwell.

Ll

See if you can find others.

Rodolfo Kurchan is the author of Mesmerizing Math Puzzles, Sterling Pub-
lishing (2001).
1The reader will find a large collection of polyomino and other puzzles in issues
of my magazine published on-line [Kur].
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Rodolfo Kurchan

. More Doubles Maarten Bos found by computer all the different possi-

ble solutions for rectangles using single and double pentominoes.

There is only one solution using 2 double and 10 single pentominoes
in a 5x 18 rectangle. See if you can find it. (See solution on
page 228.) Hint: You must use these two double pentominoes.

h and ‘

STDQIE md TI‘TD]B It is also possible to find solutions using only single
and triple pentominoes. See if you can find one. (A 10x10 solution
using one triple pentomino is found on page 228.)

Double cnd TI‘H]IE It is not easy to find solutions using only double and
triple pentominoes. See if you can find a 15x 21 rectangle using
the three triples below. (Solution page 229.)

and and

. STDQIE, Double and TI‘TI]IE See if you can find a rectangle using single,

double and triple pentominoes. (Two 10x13 rectangles, one 15x15
and one 15x 30 rectangle are shown on page 229)

Ditferent Sizes The goal here is to make a rectangle using the 12
pentominoes using as many different scaled factors as possible.

Michael Reid found a 4-level solution using 1 single, 2 doubles, 8
triples and 1 order 6. I was able to modify his solution to make a
5 level solution using 1 single, 2 doubles, 3 triples, 5 order 6 and 1
order 12. It’s an open question whether one can do better. (These
two solutions are found on page 230.)

Solutions

The 5 x 18 rectangle due to Maarten Bos.

B
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A 10x10 rectangle using one triple pentomino due to Jaime Poniachik.

S
E&‘l

Here is a solution using 9 doubles and 3 triples in a 15x21 rectangle
by Federico Di Francesco.

A 10x13 rectangle using 9 singles, 2 doubles and 1 triple pentomino.

— P
|"I_.|I|.|

Another solution due to Pieter Trobijn.

Here is a 15 x 15 rectangle using 6 singles, 3 doubles and 3 triples.

[ M|
e,
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This solution using 1 single, 2 doubles, and 9 triples pentominoes in
a 15 x 30 rectangle was found by Michael Reid.

Michael Reid found a rectangle using four sizes of pentominoes, 1
single, 2 doubles, 8 triples and 1 order 6.

I modified Reid’s solution to obtain five sizes of pentominoes, 1 single,
2 doubles, 3 triples, 5 order 6 and 1 order 12.
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Pixel Polgominoes
Kate dones

Martin Gardner's articles on Solomon Golomb’s work with pentominoes
led directly to my involvement with this form of mathematical recre-
ation. Over 18 years, my company has evolved a product line of over
80 game and puzzle sets primarily of the polyform and combinatorial
variety. It will come as no surprise that a large percentage of them deal
in one way or another with polyominoes.

In the course of marketing such playthings, I find it interesting that
so few people out there had ever heard of or seen such puzzles but al-
ways and immediately find them fascinating. (That’s what keeps us in
business.) A great many more people, on the other hand, have or use
computers, and until recently I was not among them. In designing our
company’s web-catalog, I've had to learn to use HTML to mark up text
for web pages. I have depended upon my background as a graphic artist
to help visualize the finished look, and my 18 years of strenuous puz-
zle solving carried over to the logic of fitting pieces of totally confusing
code together. Among the tasks was the creation of graphics-drawings
of puzzle tilings with precise geometric proportions and installed color
regions.

It was my good fortune to have the use of a Paint Shop Pro program
for this purpose, and one of its means for precise work was an enlarge-
ment tool that could get a really good close up, and closer, and closer,
and closer ...it could take the worker right into the center of its Uni-
verse, down to the fundamental building block of all its imagery ... the
unit element of visual illusion ...the mighty pixel. There they were, in
the neat rows and columns of a square lattice. And some cells were filled,

Kate Jones is president of Kadon Enterprises, Inc., award-winning publishers
since 1980 of over 80 original combinatorial games and puzzles, including two games
by Martin Gardner: The Game of Solomon and Lewis Carroll’s Chess Wordgame.
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and some cells were empty, and from a very great distance the whole
composition could be a picture or a letter or even just a line. The diag-
onal lines were especially intriguing, since pixels are squares and so look
like stairs. And there, among the seemingly random groupings of black
pixels and empty spaces, it became as clear as only so gigantic a mag-
nifying glass could reveal: pixels in reality form itsy bitsy polyominoes,
and polyominoes are just tiny clusters of giant pixels.

To color in the illustrations of the puzzle sets for our Web pages, 1
used Paint Shop Pro’s neat paint can system of “pouring” paint onto a
region to be colored. The catch is, the region must be totally enclosed,
or the paint will run out all over the place. The trick, then, was to patch
any holes or crevices with strategically placed pixels. Just touching at
tips of corners is enough to close a gap, so I made a game of trying to see
how many different shapes of the pentominoes and hexominoes I could
hide in the strewn-about patches of little square black spots. This was
purely a fancy of mine, since no one would ever see them at regular size.
And this drawing is now on the World Wide Web, at the Kadon site
named simply gamepuzzles. Everyone on the planet who visits our site
and views the pictures will be looking and not seeing the detail of the
polyominoes hiding among the pixels. But here is a close-up of what
some of the pieces spell in honor of the man whose writings decades ago
trigeered a series of events that shaped my life.

Trads
you

B RT UL
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Pythagorean Puzzle

Harrg Nelson

Background

Although the statement of the Pythagorean theorem appeared on a
Babylonian tablet at least a millennium before the Greek mathematician
Pythagoras was born, Pythagoras (fifth century B.C.) is credited with
the proof of the assertion that for all triangles the following relationship
was true:

A square, whose edge was the length of the longest triangle
side, had an area which was exactly equal to the sum of the
areas of the two squares, whose edges were the lengths of the
other two triangle sides, if and only if the triangle was a right
triangle.

Figme .  The Pythagorean Theorem: The areas of the small squares add up
to the area of the large square.

Harry Nelson, former editor of the Journal of Recreational Mathematics, is
now a full-time game and puzzle designer and entrepreneur.
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A familiar translation of his statement is, “The square on the hy-
potenuse of a right triangle is equal to the sum of the squares on the
other two sides.”

As an example, one can partially fill up the large square space below

with materials consisting of four right triangular tiles in the two different
ways shown.

Since the outer squares are both squares of the same area, the inner
square area in the left picture must equal the sum of the square areas
on the right, providing a geometric proof of the Pythagorean Theorem.

The Puzzle

The puzzle is based on this idea.! Construct a 15x 15 frame, one 8 x &
square block, one 3x3 square block, and four right triangles with legs of
length 3 and 8. Start from the center diagram shown below and move
the blocks provided into the form of the other diagram at right. You are
only allowed to slide the blocks, without lifting or turning them over, and
yvou must always stay within the confines of the outer box. In the right
diagram, you'll find that the square does not fit snugly, since the square
area surrounded by the four triangles, by the Pythagorean theorem is
the sum of the area of both the two square pieces.

Several increasingly challenging versions of the puzzle are suggested.
First, slide within the entire 15 x 15 box space. Second, using the 1x 15
strip provided, block off one edge, leaving only a 14 x 15 working space.
Third, inserting the other 1x14 strip, shut off more of the edge, leaving
only a 13 x 15 working space, or block off two edges leaving a 14 x 14
working space. To solve each of these versions in turn requires the
discovery of an increasingly sophisticated set of moves.

LA handmade wood version of this puzzle is available from the author for $30. He
can be contacted at hlnel@flash.net.
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Classic Six-Piece Burr Puzzle
Robert 0. Lang

1: Begin with the white
side up. Fold and unfold
along the diagonals.

3: Fold the bottom corner
up along a line that con-
nects the two pinch marks.

This model was inspired by the burr puzzles of Allan Boardman and Bill
Cutler.

2: Fold the top edges in
to the center line, making
a sharp pinch along the
lower edges. Unfold.

4: Fold the side corners

in so their edges line up
with the edges of the bot-
tom corner and unfold.

Robert J. Lang is a physicist and engineer but prefers to fold paper. He has
written six books on origami.
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Robert J. Lang

5: Fold angle bisectors
from each corner that stop

on the vertical creases.

7: Mountain-fold the
tip of the corner be-
hind so that the edge
lines up with the side
corners.

10: Fold the sides in to
the center and unfold.

8: Fold the top corner
down.

11: Fold the top
corners down along
creases that connect
the midpoints of the
sides.

6: Fold the sides in again
on the existing creases.

hd hd B

9: Mountain-fold the
tip of the corner under-
neath.

12: Fold the bot-
tom corners up along
creases that connect
the midpoints of the
sides.

13: Turn the model

over from side to side.

14: Fold the corners to
the center on existing
creases, crease firmly,

and unfold.

15: Turn the model
back over.




Classic Six-Piece Burr Puzzle

¥ 3K

17: Unfold the top and
bottom flaps.

16: Unfold the four

flaps.

20: Form a pleat in
the upper left corner.
The mountain fold al-
ready exists; bring it
to the vertical crease.
The model will not lie
flat.

19:
over.

Turn the paper

23: Repeat steps 20—

22: Unfold to step 20. 22 in three places.

241

18: Fold four edges in.

21: Mountain-fold the
edge behind, forming
new creases through
the pleat.

O
‘

24: Turn the paper
over again.




242

Robert J. Lang

25: Fold the top cor-
ner down.

28: Bring one layer to
the front.

31: Repeat steps 25—
30 on the bottom.

26: Reverse-fold the
corners on existing
creases.

29: Mountain-fold the
edge and the pleat
underneath, using the
creases made in step
21.

32: The model will
be three dimensional.
Make all the indicated
mountain folds sharp
and push the sides to-
gether.

27: Pleat the corner,
using the creases you
made in step 20. The
model will not lie flat.

30: Repeat steps 27—
29 on the right.

B

33: DMake six such
pieces. The puzzle is
to assemble them into
the 12-pointed geomet-
ric solid shown (see
Figure 1).




Classic Six-Piece Burr Puzzle

Frgure 1.

12-pointed geometric solid.
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A Classticetion of Burrs
Bill Gutler

(See Color Plate XII.)

The term burr is used to describe an interlocking 3-dimensional puzzle
composed of notched rods of wood. When I was 11 years old, I saw
a 6G-piece burr in a drugstore window near my school bus stop. I was
intrigned by the puzzle, and wanted to learn more about it.

J-Axis Rectilinear Burrs

The most common types of burrs are those which have rods going in
three orthogonal directions, and the assembled burr and pieces can be
modeled completely by using a 3-dimensional grid of cubes. The rods

Bill Cutler is a puzzle designer and computer programmer who frequently com-
bines these activities.
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6- Piece Burr
(a)
Off-center

Wausau'83
Off-center %

(b)

12-Piece Centered
(c)

Centered

( d) 12-Piece Altekruse
Altekruse

Star Burr
(e)
45-degree

Hectiz OXO
4-axis O

Fige . Some examples of burrs. Each burr’s classification is shown in bold.
The 4-axis burr (f) is tetrahedral; only one face of its four faces is shown in
its pattern diagram.
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can be of different dimensions, but in many cases, they have a 2 x2
cross-section. However, even for rectilinear burrs which use 2x2 square
rods, there are several distinct types.

Off-Genter Burrs

The 6-piece burr is the simplest version of what I call the off-center
burrs. In these burrs, all pairs of intersecting rods intersect in one-half
the width of a rod. The volume of intersection consists of 4 cubes, each
1/2 the rod width in size. Either rod can be notched around the other
rod, so that the notched rod remains connected, and the un-notched
rod can slide back and forth freely. Alternatively, one can arrange the
assignment of the 4 cubes in the intersection area to both of the pieces,
or to empty space, and so a variety of restrictions on the movements of
the rods can be implemented. Therefore, this type of intersection allows
for great flexibility in the design of the burr.

Puzzle hooks contain examples of many different shapes for burrs
which fall into the off-center category. Two common examples are: (1)
the 18-piece burr, which has 6 rods in a 2x3 cluster going in each of the
3 directions; and (2) the 24-piece burr, which features 8 parallel rods
in 4 pairs going in each direction, resulting in a construction that has 8
6-piece burrs at the corners of a cube.

Patterns

I visualize 3-axis rectilinear burrs by looking at the arrangements of
the rods going in each direction. I draw cross-sections of the 3 sets of
parallel rods on the sides of a cube, and call these the patterns of the
burr. Figure 1(a) shows the patterns for the 6-piece burr.

The patterns for the 6-piece burr are the same in all 3 directions
and have 4-fold symmetry about the center. This results in the 6-piece
burr having 24 symmetries: 12 rotational symmetries and 12 reflective
symmetries. This is true of many other off-center burrs.

Figure 1(b) shows an example of an off-center burr which has less
symmetry then the 6-piece burr. The 3 patterns are all different, al-
though they do have 4-fold symmetry about their centers. The resulting
burr has only 8 symmetries.
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Gentered Burrs

Some rectilinear burrs which use 2 x 2 rods include intersections which
are not 1/2 the rod width, but rather are the full width of the rod. Such
intersections are more restrictive to include in a burr desigh—mneither rod
can be notched around the other without being cut in two. The only
option is to notch both rods, in which case the rods cannot slide along
their long axis, but must first move away from each other. Figure 1(c)
is an example of a centered burr.

The centered burrs are a class of 3-axis rectilinear square rod burrs
in which:

1. all rod intersections are the full width of the rods, and

2. in at least one case (frequently at the center of the burr), rods
from all 3 directions intersect at the same place.

The movements are so restrictive in these burrs that in many of them
the first move of the puzzle is to twist one or more of the rods, which have
had part of a square cross-section trimmed to a circular cross-section.

Mfekrase Burrs

The final class of 3-axis square-rod rectilinear burrs is the Altekruse
burrs, such as in Figure 1(d). In this class,

1. all rod intersections are the full width of the rods, and

2. there are no cases in which rods from all 3 directions intersect at
the same place.

The fascinating feature about the Altekruse burrs is the way in which
they can be disassembled: The first move involves moving about half of
the pieces in one direction, and the other pieces in the opposite direction.
After this initial move has taken place, and the pieces are separated
enough so that some of the notches no longer fully interlock, then some
pieces can be removed in different directions. In many examples of the
Altekruse burrs, all of the pieces are notched exactly the same.

Other 3-Axis Burrs

There are also examples of 3-axis square-rod rectilinear burrs which do
fall into any of these categories—some of the notches may be full width,
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and some 1/2 width. These burrs would be placed into a mized or other
category within the larger class of rectilinear square-rod burrs.

There is a type of burr puzzle which uses square rods running in
3 orthogonal directions, but does not follow the rectilinear structure
outlined previously. In these puzzles, which I call 45-degree square rod
puzzles, each rod is rotated 45 degrees around its long axis. The most
basic burr in this category is called the Star Burr, and has 6 pieces
(Figure 1(e)). In many models of this burr, the ends are cut off at an
angle, resulting in a shape which has more external symmetry then the
underlying burr, and thus hides the true nature of the puzzle. The Star
Burr is curious in that the six pieces can be notched identically, each
with 2 notches, and it seems at first glance that they cannot be put
together because there is no key piece.

H-Axis Hectix Burrs

The burr types we have seen so far all have rods going in 3 orthogonal
directions. These are the directions perpendicular to the sides of a cube.
Are there different sets of axes which could be used to create other burr
shapes? What if we use one of the other regular polyhedra? The regular
tetrahedron has 4 sides, and the perpendiculars to these are 4 axes.
These axes are the same as the directions perpendicular to the sides of
a regular octahedra, and are also the same as the 4 main diagonals of a
cube. What kind of burr shape can be produced using them? Looking
down one of these axes, the other 3 axes cross the viewing plane making
60-degree angles with each other. This points towards using triangular
or hexagonal rods. I envisioned using 3 hexagonal rods as in the pattern
shown in Figure 1(f). This pattern can be used consistently on all 8 sides
of the octahedron. When arranged in this way, the rods which intersect
will do so in 1/2 of their rod width. The resulting burr consists of 12
hexagonal rods and was discovered independently in the mid-1960s by
myself and Stewart Coffin, who was awarded a patent for this design.
The center of the burr is a hollow shape bounded by 12 rhombuses—
the rhombic dodecahedron—and Stewart thought up Hectix by building
outward from this shape. I find it fascinating that we used radically
different approaches to arrive at the same natural burr shape—Stewart
from the inside-out, and myself from the outside-in.

There is a very curious thing to notice about the pieces in Hectix.
Pick any of the 12 pieces. This piece intersects 4 other pieces in the
puzzle, each of which intersects it halfway through its width. 2 of these
pieces run in one direction, and the other 2 pieces are in different direc-
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tions. Imagine that the first piece is notched to allow for each of the 4
intersecting rods to pass through it uninterrupted. What is left of the
rod? Surprisingly, the ends are not detached, but are connected by a
fragile helical structure.

6-Axis and 10-Axis

(a) Square-Rod Dodecaplex. (b) Spider’s Web.
Figure 2.

But why stop at 4 axes? There are still 2 Platonic solids left.
Take the regular dodecahedron, which has six axes perpendicular to
the sides. Looking down each axis, the other 5 axes spread out in an
evenly arranged pattern. The natural-shaped rod cross-section would
be a pentagon. My 6-axis burr creation, Square-Rod Dodecaplex shown
in Figure 2(a), uses square rods rather then pentagonal rods as they are
easier to make. The final Platonic solid is the icosahedron (20 sides).
The number of axes perpendicular to the sides is 10. The burr I designed
of this type called Spider's Web (Figure 2(b)) looks very similar to the
Square-Rod Dodecaplex.

Mixture of Axis Types

Having burrs with a mixture of some of these types is possible. The
Hybrid in Figure 3 interlaces a 3-axis rectilinear burr with a 4-axis burr.
The 3-axis burr is an 18-piece burr with rods separated just enough
so that they do not intersect each other; and the 4-axis burr is a 12-
piece Hectix with rods similarly separated. The result is an interesting
mixture of square and hexagonal rods in which the rods intersect only
with their opposite kind.
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Fgure 3. Hybrid.

Burr Classification

I. 3-Axis (Orthogonal) e
A. Rectilinear 2x2 Square- IE 4-Axis

6-Axis
fod IV. 10-Axis
1) Centered . )
9) Altekr V. Mixture of Axis Types
) ekruse VI Other

3) Off-Center

4) Mixed
B. Rectilinear Other
C. 45-Degree Square-Rod
D. Other
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Paving Mazes

Adriem Fisher

We've been using clay paving bricks in landscape mazes since 1975.
England’s unique geology provides a remarkable range of different clays,
with over 40 different natural clay colors. However, the small range of
regular stock shapes significantly limit the possible shapes for a maze.

We found that it was possible to make beautiful and wonderfully
detailed images and shapes using a surprisingly irregular paving tile in
combination with a square one. Before delving into the advantages of
this new and unusual paving system, let’s explore the limitations of older
paving systems.

Early Paving Projects

Three of our first mazes are shown in Color Plates XIII-XV. While
making the Lion Rampant Maze, the noise and dust from cutting bricks
with diamond-tipped wheels was unpopular with the local shopkeepers.
The street was closed for several weeks while the concrete foundation
was cast, and the painstaking bricklaying work carried out.

We tried using the flexible method, laying bricks close-butted without
mortar on a compact sand base. It is a proven method, much quicker to
install, but still places limitation on decorative designs.

During these early maze construction projects, we discovered that
while paving bricks could be used to make some intricate designs, we
were forced to either stick to patterns with mostly right angles, or

Adrian Fisher of Adrian Fisher Maze Design in England is the leading de-
signer of full-size landscape mazes worldwide. His remarkably varied designs include
hedge mages, tile mazes, maize mazes, and water mazes. The company web site is
http://www.mazemaker.com.
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to embark on time consuming, labor intensive cutting and bricklaying
processes.

In the hopes of overcoming the limitations of off-the-shelf rectangular
bricks, we began experimenting with other shapes. Regular hexagonal
bricks are available, but they are also too regimented, and therefore lack
design vitality.

We tried a pattern using 7-sided and 5-sided shapes, where the
smaller piece was a regular pentagon, and all sides were of equal length.
We thought this was a marked improvement over rectangular tiles. How-
ever in two respects, we were not entirely satisfied; the initial tessellation
did not lend itself to achieving straight edges, and it also had a “grain” in
one direction (although you hardly notice it in the Oran Utang design).

A New Paving System

We developed a second regular polygonal tessellation, this time with

7-sided and 4-sided pieces, with 5-sided edging shapes, shown in the

left image in Color Plate XVI.! We've already used this new paving

system in half a dozen mazes throughout the world, including The Mall

of Georgia in Atlanta shown in the right image in Color Plate XVTI.
The new paver system has the following attributes:

1. Design Vitality—the opportunity to create seamless patterns, curves
and spirals of any radius, including expanding and contracting spi-
rals, on a close-up human scale (a few meters/several feet across).
Square and hexagonal tessellations do not fully achieve this at-
tribute, except on a very large scale.

2. Design “Grit”—the tessellation has an inherent “vibrancy” about
it, to encourage the eye to perceive a possible meaning in every side
of every piece. These first two objectives allow the artistic “added
value” that helps customers justify paying a somewhat premium
price.

3. Minimizes the number of different stock items to form a tessella-
tion. Just three shapes are needed.

4. Avoids acute angles, since these chip off in use.

5. Straight sides to all pieces throughout.

I'This has been patented internationally as the Fisher Paver.
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Figre .. The Fisher Pavers. (Top row) The 5-sided brick is made by cutting
the 7-sided brick in half. The third paving brick is square. (Bottom row)
Bringing the pavers to market required a few minor adjustments to the shapes.
It was advantageous to devise a geometric approximation, with small integer
coordinates, that is easy for landscape designers to use on computer.

6. Has no “fault lines” through the tessellation in any direction, which
would weaken the stability of the pavement, and have less artistic
appeal.

7. Achieves straight edges at the perimeter of the paved area, simply
and elegantly, right off the pallet with no cutting,.

8. Achieves relatively consistent “path widths” and “barrier widths”
when being used to create mazes and other linear patterns just
one paver wide. The lengths of the various sides of each paver are
not too great or small in proportion to one another.

9. Integrates seamlessly—without cutting—with the modules of other
paving systems, in particular (a) the regular 8x<4 inch (200x100mm)
paving brick, often laid in a herringbone pattern, (b) the various
concrete slab systems, based on multiples of 6 inches (150mm), and
(c) the Small Square unit (3.2x3.2 inch / 80x80mm) of the Fisher
Paver system (thus producing small 5x5 chequerboards within the
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10.

11.

Adrian Fisher

design). This has benefits both when adjoining the other systems,
and also so that the system can actively incorporate these other
materials Fisher Paver areas as an artistic design choice.

Is cost-effective to manufacture, thus bringing it to the market at a
price which is affordable, and comparable (per square foot / square
metre) to other paving products. The 7-sided unit has orthogonal
faces in 5 of its 6 directions (3 of the sides are at right angles to
each other, plus the underneath and top surfaces), thus allowing
it to be handled mechanically and fully-automatically in various
axes, which is how clay paver manufacturing plants manipulate
the extruded clay prior to firing.

In practice is not labor-intensive to lay, thus controlling total in-
stallation costs. The Fisher Paver is laid straight off the pallet,
with no cutting.




Early dapanese Export Puzzles.
1860s to 1960s

derry Slocum ad Rik van brol

Infroduction

Japanese export puzzles have introduced millions of people to trick open-
ing boxes, banks and interlocking puzzles. Trick boxes, beautifully ve-
neered with a wood mosaic called “yoseki,” require sliding panels to be
moved in sequence until the top or bottom lid can slide open. Some
boxes require over fifty moves to open. Japanese interlocking puzzles
are mostly charming figural shapes, such as a barrel, dog or elephant,
that consist of ten to twelve interlocking wooden pieces. Representa-
tive samples of mostly old puzzles will be described in this article. This
means that, unfortunately, the wonderful modern puzzles designed and
made by NOB Yoshigahara (Rush Hour, etc.), Akio Kamei (secret open-
ing puzzles) and other current generation Japanese puzzle designers and
makers will not be included. The latter group of puzzles is, however,
more easily available to the average puzzle collector than the old and
rare Japanese puzzles.

This article was originally presented by Jerry Slocum as an invited
lecture at the 18th International Puzzle Party in Tokyo, Japan, in Au-
gust 1998. Rik van Grol and Jerry adapted the lecture for an article in
the October 1999 Cubism For Fun 50, published by the Dutch Cubists
Club (NKC).

Jerry Slocum is the author of seven books about mechanical puzzles and is
also known for his large collection of puzzles and puzzle books. Rik van Grol is a
Dutch puzzle collector, analyzer, and designer, and is also an editor and publisher of
the newsletter Cubtsm for Fun.
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Fgure 1. The oldest “Japanese Puzzle” in the Slocum collection is dated
1872, but it was not designed or made in Japan. (See Color Plate IV.)

an

“dapanese Puzzles

During my research on the history of Japanese export puzzles, I found
that numerous so-called “Japanese Puzzles” are not from Japan. For
example, the oldest titled “Japanese Puzzle” in my collection is the
beautiful puzzle shown in Figure 1.

Although the puzzle in Figure 1 is named “The Japanese Puzzle,” the
design was described in a French book, Les Amusemens, in 1749 and it
was manufactured by E. A. Howland in Worcester, Massachusetts. Why
was it called “The Japanese Puzzle”? Probably the title was selected
because Japan was closed to the outside world from the mid-seventeenth
century until the mid-nineteenth century and there was enormous inter-
est in things from exotic and unknown Japan. So the title helped sell
the puzzle.

Puzzles from other countries were dubbed “Japanese” in Mr. Bland’s
Hlustrated Catalogue of Extraordinary and Superior Conjuring Tricks,
ete., published in 1889; Mysto’s Magic, Tricks, Jokes, Puzzles Etec. cat-
alogue of 1911; C.J. Felsman's Catalogue of 1915; and the Scientific
Novelty Co. Catalogue of 1930.

Japan is not the only country’s name to be used incorrectly in puzzle
titles. We know of “Chinese Puzzles” not from China and “American
Puzzles” that have nothing to do with America as well.
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Dating Old Jdapanese Puzzles

Dating Japanese puzzles can sometimes be helped by markings on the
puzzle. The McKinley Tariff Act of 1891 required the country of origin
to be marked on items imported to the USA. From March 1891 until
September 1921, Japanese goods were supposed to be marked with the
country of origin. For some reason the Japanese chose to use the word
“Nippon” for their marking.

The Act was strengthened in 1921 so that products were supposed
to be marked “Japan” or “Made in Japan.” From 1945 until 1952 the
required marking was “Made in occupied Japan.”

After 1952 “Made in Japan” was supposed to be marked on goods
exported to the U.S. Much more accurate dating of puzzles can be done
by the use of novelty, puzzle and magic catalogues.

The Jeep shown in Figure 2 was made during the 1945-1952 post-war
occupation period. The solution sheet is marked but the puzzle itself is
not marked.

MADE IN 0CCUPIED tapan

Figure 2. Jeep, “Made in Occupied Japan” (1945-1952).
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Fge 3. Catel's catalogue of 1785 included 6- and 24-piece burrs.

Interlocking Puzzles

The earliest examples of interlocking puzzles that I have found were
made in Europe.

The 6-piece burr, shown in Figure 3, was called The Small Devil’s
Hoof and the 24-piece burr was called The Large Devil's Hoof in Catel's
catalogue of 1785. Recently David Singmaster, a British historian of
mathematical recreations, has found an example of a 6-piece burr in a
1733 Spanish book by Pablo Minguet E. Irol.

The Puzzle Apple and The Puzzle Pear, made in Germany, were
shown in the British Conjuring catalogue of Milliken & Lawleys in 1873
(Figure 4).

Figie . Three German interlocking puzzles: an apple, a barrel and a pear.
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Japanese wooden interlocking puzzles are called “kumiki.” Some
sources indicate that they may have begun to be made in Japan in the
mid-eighteenth century, about the same time that we know burrs were
being made in Europe.

Kumiki originated from the carpenters that designed and made an-
cient wooden shrines and temples in Japan. It was based on the wooden
structural locking joints that did not use nails or glue and were designed
to allow wooden buildings to withstand earthquakes. According to books
on Japanese toys, the development of a “reformed wood plane,” the end
of internal wars, and the “spirit of pleasure” in the middle of the Edo
period (c.1750) led to the first kumiki.

In Japanese Games and Toys, writer Ann Grinham says kumiki came
from models that were made to teach woodworker’s apprentices how to
make and fit wood joints without using nails. The book also says that
during the Edo period (1616 to 1866) a 6-piece “plate” puzzle was used
for teaching in Japanese schools.

Admiral Perry helped to open Japan to worldwide trade in 1854,
after the country had been isolated from the rest of the world for almost
200 years.

One of the first Japanese kumiki designers and makers that we know
of was Tsunetaro Yamanaka (1874-1954). Two of his first puzzles, the
five-story pagoda and the stork puzzle shown in Figure 5, were made in
the 1890s.

Fgure 5.  Two nineteenth century “kumiki” designed by Tsunetaro Yamanaka.
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The second generation of the Yamanaka family, Kazuich, designed
and made vehicles. Animals were developed by Hirokichi Yamanaka in
the family’s third generation. Currently Shigeo Yamanaka is the family’s
kumiki designer.

Now let us look at some Japanese wooden interlocking puzzles in-
cluded in novelty and magic catalogues in the U. S. The earliest Japanese
puzzles all came disassembled in boxes.

The Mikado Block Puzzle

The Mikado Block Puzzle (a 6-piece burr, shown on the left in Figure 6),
was in the 1915 C. J. Felsman Catalogue. “Mikado” was the title used
by foreigners for the Emperor of Japan. The Mikado was also the name
of a British comic operetta by Gilbert & Sullivan that opened in 1885
to instant success. It was so well known and popular in the U.S. that it
made everything Japanese popular.

Is the puzzle really Japanese or was the name “Mikado” used to help
sell the puzzle? The actual Mikado puzzle from my collection (Figure 6)
does not fully answer the question. The box and the words used on it
such as, “The puzzle of puzzles,” are typical of Japanese boxed puzzles.
But it also says “Made by U.N. Co. N.Y.”.

The Yomato Block Puzzle

Another Japanese 6-piece burr was titled The Yamato Block Puzzle.
The advertisement, shown also in Figure 6, was in the 1920 catalogue
of the Magic Shop, Philadelphia. “Made in Japan” is stated on the label

Figure 6. The Mikado Block Puzzle (left) and The Yamato Block Puzzle
(right).
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Figme 7 Puzzles from the Magnotrix catalogue (1936).

of the puzzle. The other writing is exactly the same as on the Mikado
puzzle. Therefore it seems likely that The Mikado Puzzle was made in
Japan, in spite of the writing on the box saying “Made in N.Y.”

From 1926 to 1936 most of the wooden puzzles being sold in the
U.S. were made in Germany. The Johnson Smith novelty catalogue
included 21 German wood puzzles. In 1924 the Heaney Magic Co. cat-
alogue included 16 German puzzles. In 1926 the Western Puzzle Works
provided a choice of 20 German puzzles.

Some Japanese puzzles, however, continued to be sold during the
1920s and early 1930s. For example, the boxed versions of the Aeroplane
and Miyako puzzles were included in the 1931 Lyle Douglas catalogue.

In 1936 the Magnotrix catalogue included Japanese versions of seven
standard wooden puzzles that were previously only made in Germany
(Figure 7). In addition it included three Japanese figural puzzles, the
Battleship, Baby Tank and Locomotive. All but two were sold assem-
bled, a very important change for Japanese exporters trying to sell to
the American market.

In 1936 the Japanese succeeded in breaking into the U.S. market
with a broad range of wooden interlocking puzzles at very attractive
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Flgre 8.  Early Japanese vehicle puzzles.

prices, 1/3 to 1/6 of the German prices. The Japanese also added more
unassembled figural puzzles in boxes such as those in Figure 8.

In 1937 the Japanese captured the entire U. S. wooden puzzle mar-
ket. Figures 9 and 10 show the actual puzzles from the 1937 Johnson
Smith catalogue. Johnson Smith must have bought huge quantities of
these puzzles because in 1944 (during World War IT) 25 of these puzzles
were still being sold, and even in 1948, 13 Japanese puzzles were still
included in their catalogue. Japanese puzzles sold in the U.S. included a
wide variety of beautifully detailed cars, trains, trolleys, weapons, ships,
aeroplanes, rockets, gates, towers, pagodas, and buildings. A sense for
the beautiful variety can be gleaned from Figures 13 and 15.

Fige 9. Japanese puzzles in the 1937 Johnson Smith catalogue.
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Figure 10.  Japanese puzzles in the 1937 Johnson Smith catalogue.

P‘Ig{n*e 1L Japanese puzzle weapons.

Figwe 2. Japanese puzzle aeroplanes.
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Fige 1. Japanese puzzle rockets.

Figire . Japanese puzzle gates, towers, pagodas and buildings.
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Rgue 1. Japanese puzzle animals.

B. Shackman was a large New York novelty company that special-
ized in importing novelties and puzzles. Several years after World War
IT ended, Dan Shackman Jacoby, the grandson of the founder, Bertha
Shackman, went to Hakone, Japan and contracted with a co-operative
of six small puzzle makers to make copyrighted designs of new puzzles
exclusively for Shackman. The B. Shackman catalogue of 1961 included
these new Japanese puzzles. Some of the puzzles sold by Shackman are
shown in Figures 16 and 17.

Figure 18 shows the Cash Register bank. It has “Nippon” stamped
on the bottom and it was made between 1891 and 1921.

I have saved the best Japanese interlocking puzzle for last. It is The
Tower, shown in Figure 19, by master craftsman Ninomia. Ninomia lives
in Hakone and was, and is, Kamei’s teacher. Japanese teachers are for
life. The Tower has five floors and consists of 106 pieces. It is made
of cherry with a walnut base and the doors all open and close. It is

Figure 16. Some charming and colorful Shackman animals and people. (See
Color Plate V.)
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Figie . Shackman’s Baseball Bat and Ball and Yo-Yo.

Figie 8.  Cash Register bank with “Nippon” stamped on the bottom
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Pgure 19.  The Tower made by Master craftsman Ninomia.

twenty-two inches tall and its grace and beauty are unmatched. Only
10 of these magnificent puzzles were made.

dapanese Puzzle Boxes and Banks

Catel’s catalogue of 1785 included a secret opening puzzle box. It is the
first known reference to a puzzle box, although some must have existed
before 1785.

Within about a decade after Japan began to trade with other coun-
tries the Japanese Jewel-Box was sold in the 1867 Adams & Co. of
Boston Catalogue. It stated, “Genuine Japanese manufacture”.
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Figure 20. The Japanese Trick, Match and Figwe 2I. A five-book Puzzle
Tobacco Box. Money Boz.

The Japanese Trick, Match and Tobacco Box shown in Figure 20, was
included in the A. Burdette Catalogue from 1877 to 1886. The Smith’s
Novelty Catalogue also sold it. It appears to be the same puzzle as the
Psycho Match-box puzzle in Professor Hoffmann’s 1893 book, Puzzles
Old and New [Hof93].

A few years later, in 1896, The Martinka & Co. Catalogue showed the
Japanese “Inlaid” Puzzle Box (not shown). This box has a drawer which
slides out from four different directions. The Johnson Smith catalogues
included various money box puzzles from 1926 to 1951, including three
sizes of book trick boxes such as the one in Figure 21.

Notes on Japanese puzzle boxes and banks

e Pre-World War II puzzle boxes are made of dark colored wood,
are smaller, and frequently have exceptionally fine workman-
ship.

e Post-World War II puzzle boxes use lighter colored wood and
are larger.

e About 100 different designs of Japanese trick boxes and banks
are known. They utilize perhaps a dozen types of tricks.

e Some trick banks have concealed coin slots.

e Solutions of puzzle boxes vary from simple—which only require
rotating the bottom 90 degrees and removing it—to very tricky
and clever solutions requiring numerous steps.
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Figre 2. Typical Japanese puzzle boxes from the 1930s to the 1990s. (See
Color Plate VL)

Figure 23. A boat puzzle bank (left) and a water mill puzzle bank (right).
(See Color Plate VIL.)

Figure 22 shows some typical Japanese puzzle boxes from the 1930s
to the 1990s. There are some fine examples of other puzzle boxes in the
form of houses, banks, boats and even a water mill, such as those shown
in Figures 22 and 23.

Summary

From the variety of early Japanese wooden interlocking puzzles, trick
boxes, and trick banks that we have seen, it is clear that the Japanese
have made an enormous contribution to the design of interlocking and
take apart puzzles.
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As far as we know the Japanese began their interlocking puzzle de-
signs about the same time as the European burrs appeared, in the middle
of the eighteenth century. More research needs to be done to determine
the complete origin and history of interlocking puzzles, but the Japanese
figural puzzle designs are original and unique. The Japanese trick banks
and trick boxes are also unique. The Japanese introduced many inge-
nious and very attractive puzzle boxes and puzzle banks to the world.

An even more important Japanese contribution to both interlocking
puzzles and trick boxes is the low cost manufacturing methods that they
developed. This dramatically reduced the cost of the puzzles, made
them affordable, and introduced mechanical puzzles to perhaps millions
of households world-wide. Japanese puzzles are still popular all over the
world.

On behalf of the community of puzzle collectors, I would like to thank
the Japanese for their enormous contribution to the design, and to their
innovation in low cost manufacturing, of wonderful mechanical puzzles.
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Plfe I (See page 29.) Mel Stover's “geometrical vanishes.”

Plofe . (See page 4.) Harry Eng's bottles.

Plafe .  Harry Eng and Mel Stover.

{Copyright and marketing rights of the geometric vanishes are retained by the Stover
estate; these reproductions are for your personal use only. Photographs are courtesy
of and copyright Carey Lauder.)
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Plate IV.  (See page 258.) The oldest “Japanese Puzzle” in the Slocum collec-
tion is dated 1872, but it was not designed or made in Japan.

Plate V. (See page 267.) Some charming and colorful Shackman animals and
people.




Plote I (See page 271.) Typical Japanese puzzle boxes from the 1930s to
the 1990s.

Plote .  (See page 271.) A boat puzzle bank (left) and a water mill puzzle
bank (right).




Starting from End result

Plate V. (See page 147.) Note how the square frame is folded down, but the
leg (or spine) is on the wrong side of the frame. One would expect the leg to
be under the frame rather than over it.

Plate T (see page 143.) The Multidimensional Gardner (MG). This mystic
figure encodes the 4-dimensional hypercube in Plate X. Traversing, say, a RED
line in Plate X corresponds to crossing a RED band in the MG.




Plote X.  (See page 144.) The first five n-dimensional hypercubes: 0-D hyper-
cube or point (RADIO SET), the 1-D hypercube (SEAT-DIOR) line segment,
2-D square (AS-OR-ET-ID), 3-D cube (8-O-D-E-T-1-R-A), and the 4-D tesser-
act at the bottom.




Plate XI.  (See page 209.) A wide variety of puzzles are available to the collector!

Plate XI.  (See page 245.) Interlocking burr puzzles.




Plate XI.  (See page 253.) The Lion Rampant Maze.

Plote XIV. (See page 253.) The maze at the New Milton Junior School in

Hampshire, England, was installed using no mortar.




Plate XV.  (See page 253.) The Oran Utang Pavement Maze at the Edinburgh

4

Plate XVI.  (See page 254.) Mall of Georgia (Atlanta, GA, USA).




Interlocking Spirals

M. Oskar ven Deventer

Three Tnterlocking Spirals

As part of my never ending search for puzzle mechanisms, I have been
looking for ways of putting three disks through each other. I first tried
to fit three flat spirals through each other. After quite some calculation,
I concluded that the biggest linear spirals that would fit together were
5/12 (41.66%) spiral and 7/12 (58.33%) air. Figure 1 shows how the
three interlocking spirals fit together.

Fige 1. Three interlocking spirals.

M. Oskar van Deventer is the creator of hundreds of innovative mechanical
puzzle designs, several of which are commercially available.
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The three spirals have the intriguing property that you can all ro-
tate them simultaneously. The whole constellation does not have much
symmetry. It only has a threefold symmetry around one of the principal
diagonals of the cube. The three-spiral object turned out not to be very
stable, because the spirals touch each other at only a few points. In fact,
there is only one way that you can put it down so that it is stable on a
flat surface. In any other position, the spirals will move by gravity and
the object gets distorted.

To make the object into a puzzle, I have made the spirals 50% spiral
and 50% air, and squeezed the spirals into an oval shape. The way in
which all three spirals become bent makes them more difficult to put
together as a puzzle. However, the structure is still unstable. A more
successful puzzle uses three identical linear spirals with 50% spiral and
50% air, with some carefully placed notches in the edges of the spirals.
When bringing the spirals into their final position (quite a puzzle!), the
notches click together and finally, the puzzle remains stable together.

Four Tnterlocking Spirals

Continuing my search with the spirals, I tried putting more of them
together. To my surprise, I discovered that four spirals can be put
together with tetrahedral symmetry. My surprise was even greater when
I found that the spirals could be 50% spiral and 50% air and that the
spirals touch each other at every critical point! Figure 2 shows how the
four interlocking spirals fit together.

Figire 2. Four interlocking spirals.
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The four spirals also have the curious property that you can rotate all
of them simultaneously. When checking the symmetries of the constel-
lation of four spirals, I found that it has the isometry of a tetrahedron.
It can actually be easily proven that this is the only possible constel-
lation of spirals that is isometric! The proof is related to the fact that
the tetrahedron is the only isometric object that has a corner pointing
upward when it lies on the floor. You may try to complete the proof
yourself.

The four interlocking spirals form a nice mechanical puzzle. It can
be taken apart by pushing it flat. A puzzle made of thick, stiff material
may resist. When it is flat, the puzzle can be disassembled by rotating
all spirals simultaneously and unscrewing them. If you think that that
is difficult, then try to put them together!

You can make this puzzle from cardboard. You will discover that
the puzzle is quite material efficient, as you can make two spirals from
one piece of cardboard (Figure 3). I had some samples made for me
by water-jet cutting polystyrene. This material is flexible and rugged,
80 it is quite suited for the puzzle. The result is a very colorful red-
yellow-blue-green combination, which I have put on a black tetrahedral
pedestal.
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Pgure 3. A template to cut out your own spirals.







The Partridge Puzzles

Robert Wainwright

Infroduction

As a lifelong participant in mathematical recreations and games, I am
delighted to contribute to this publication honoring Martin Gardner.
Over the years, I have submitted material to his “Mathematical Games”
column regarding various topics including square tiling. One of my prob-
lems, The Partridge Puzzle, has gone through some fascinating develop-
ments during the last two decades. We begin with the basic problem.

Packing a Parridge in « Square Tree

It’s well known that the sum of the first ¢ cubes must be a perfect square.
In particular,

1-1242-2243.32 4. 4i-2=(1+24+34---4+14)? = N2,

where N = i(i + 1)/2. This suggests a tiling problem of efficiently
packing square tiles from the set (1,2,2,3,3,3,...,i,...,i) into a large
square of side length N. Observe that regardless of the value of i, the
combined area of the tile set exactly equals the total area of the large
square. Further, the total number of tiles equals the side length of the
large square. Overlapping of tiles with themselves or the border of the
large square is not allowed.

Robert Wainwright is best known for establishing Lifeline, a quarterly
newsletter about John Conway’s Game of Life.
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Figure 1. For i = 2, 3, 4, and 5, perfect packings are not possible; one or
two tiles must be left out. When i = 12, a perfect packing is possible—“A
Partridge in a Square Tree.”

Our problem concerns covering the maximum area of the larger
square using the smaller square tiles. For cases when 7 is small (ex-
cluding the trivial case for i = 1), it’s impossible to cover the entire
N x N square. Figure 1 shows the best possible packing arrangements
for i = 2, 3, 4, and 5 as well as the resulting leftover or residual area.
As i increases further, this residual area seems to decrease, while the
number of packing arrangements to be investigated grows dramatically.
In particular, a solution for any odd i (e.g., 7 or 9) can be at least as
good as one for ¢ — 1 (e.g., 6 or 8) since ¢ squares of size i can always
be placed (wrapped) around two adjacent sides of an (N — i) x (N — )
square to form an N x N square.

Figure 1 also shows a perfect solution for i = 12, a complete packing
with no leftover area. An analogy with the verse from the popular twelve
days of Christmas song later led to the title of this problem.

These, and larger, solutions were described in my original letter to
Gardner. At that time, Gardner informed me he was not aware of any
previous work in this area and the problem seemed interesting. He wrote
Ronald Graham, an expert on square packing problems, who confirmed
that the problem appeared original.

When Gardner was preparing material about packing squares for
Chapter 20 of his book, Fractal Music, Hypercards and More, he decided
to include this problem as a related task. He also gave my solution for
i = 12, but emphasized the lack of proof for impossibility of any of the
smaller results.
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In June 1993, Charles H. Jepsen of Grinnell College and Stephen
Ahearn, a student, reported some interesting new results, including a
perfect solution for ¢ = 11. Further, they reported no solutions are
possible for ¢ = 6 by systematic exhaustion of all possible cases for the
size 21 square. At that time, the problem still remained unsolved for
i=17,8 9, and 10. In addition, they also found a perfect solution for
i = 16 containing many blocks of smaller squares which in turn yielded
solutions for ¢ = 17 through i = 33.

In January 1996 at the second Gathering for Gardner I presented
The Partridge Puzzle along with Jepsen's discoveries.

Packing a Partridge  the Smallest Square Tree

A few weeks after presenting the above results, I received a letter from
Bill Cutler indicating he had modified his “BOX” software program to
search for smaller solutions to this problem. Through exhaustive search,
Cutler indicated that no solution was possible for i = 7. Further, he
reported a specific solution, the minimum size possible, for i = 8 (which
leads to a solution for ¢ = 9), and later for ¢ = 10 and 11. With these
discoveries, Cutler put to rest the basic questions regarding low order
solutions.!

Later that same year, I received correspondence from other individ-
uals who independently discovered minimal solutions. These included
William Marshall, Michael Reid, and Nob Yoshigahara. Marshall also
found separate solutions for ¢ = 9 and 10, the later leading to solutions
for ¢ = 11 through 21 due to existence of separate blocks of smaller
tiles. I presented these discoveries at the third Gathering for Gardner
in January 1998.

Packing a Partridge i a Non-Square Tree

Several variations to this basic problem have been examined. Originally
I explored other geometric shapes based on the concept of the sum of
cubes being equal to the square of their sum. For example covering N
by rN rectangles with tiles of sizes up to ¢ by ri tiles. When r = 2
a perfect solution exists for i = 8 This non-trivial solution, shown
in Figure 2(a), was presented to the gathering in Atlanta and inspired

11 invite the reader to try to pack one 1x 1 square, two 2x2 squares, three 3x 3
squares, ..., and eight 8 x8 squares perfectly in a 36 %36 square. For the solutions of
this puzzle and others, visit the book’s web site at www.gdgd.com.
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Cutler to search for perfect solutions with smaller tile sets. Again, using
his BOX computer program, he discovered smaller non-trivial solutions
including for i = 7 with r = 2, and i = 6 with » = 3.

Solutions for different geometric shapes have been investigated by
others as well. For example, Marshall reported the perfect solution
shown in Figure 2(b) for i = 9 using equilateral triangle tiles packed into
a larger equilateral triangle shape. He believes this to be the minimal
perfect solution. In another case, Reid discovered the perfect solution
shown in Figure 2(c) for ¢ = 4 using trapezoidal tiles packed into a
similar large shape.

Two correspondents, Colin Singleton and Don Knuth took minor
issue with my interpretation of the “Twelve Days of Christmas” theme.
They pointed out that, although the song is repetitive, it is the unit-
item which is mentioned twelve times, and the twelve item only once.

o (04]
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Frgure 2. Solutions to three variants on the partridge problem: (a) A non-
trivial rectangular tiling, (b) Marshall’s surprise, (¢) Reid’s surprise, and (d)
Singleton’s suggested sequence.
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Rather than the original equation it was suggested that the following be
considered using j rather than ¢ to denote the order:

GG -1)-22 (-2 8+ 4152 =50+ 1% +2)/12

This is interesting except that all values of j do not result in perfect
square sums. Singleton pointed out that such sums do exist for orders
j =6, 25,96, 361, etc. and offered the solution, albeit trivial, for j = 6
shown in Figure 2(d). Recently Robert Reid submitted a less trivial
solution for j = 25 made up of 325 tiles.

Another variation to the partridge problem involves arranging a given
set of square tiles into a rectangular rather than square shape. Marshall
submitted two such examples using the minimum solution i = 8 tile set.
Rectangles with dimensions 2454 and 27x48 can each be created using
this same set of tiles.

Most of these extensions were presented at the fourth Gathering for
Gardner in February 2000 in a paper titled “Packing a Partridge in a
Non-Square Tree.”
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Fermat's Last Theorem
and the Fourth Dimension

James Propp

What's the Problem?

Fermat’s Last Theorem has got to be one of the most popular problems
in the history of mathematics—millions of people have toyed with it, and
thousands have worked up a real mental sweat trying to solve it. The
problem, posed by the French mathematician Pierre de Fermat back in
the seventeenth century, is usually stated in terms of the famous equation

In+yn:z’

where z,y, z, and n represent unspecified whole numbers. When n =1
the equation has too many solutions to be interesting, and when n = 2
there are still infinitely many (3% + 42 = 52 is the most famous). The
problem Fermat bequeathed to us is to show that when n becomes bigger
than 2, the situation changes dramatically: there are no solutions at all.
That is: when n is a whole number bigger than 2, no number that is the
nth power of a whole number can be written as the sum of two smaller
nth powers.

It stands to reason that a proposition so tantalizingly simple would
have a simple proof or a simple disproof. Yet for over three centuries the

James Propp is a professor of mathematics. He is writing a book on Fer-
mat’s Last Theorem for the mathematically interested public. The illustrations were
prepared by David Feldman.
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problem resisted the efforts of the sharpest minds that tackled it—and
we still don’t have a simple proof.

Fermat’s Last Theorem came to light after Fermat’s death, when his
son Clement-Samuel was cleaning up the old man’s library. An especially
cherished work in the elder Fermat's collection had been a seventeenth-
century Latin edition of a millennium-old Greek treatise on numbers by
the mathematician Diophantus of Alexandria. On one page, Diophantus
discussed the problem of writing a given square as a sum of two squares;
writing in the margin of that page, Fermat made his no-go claim about
higher powers and famously said he’d found a wonderful proof of this
result but couldn’t include it because the margin was too small.

Fermat as Publicist

The claim is not found elsewhere in Fermat’s known writings, but on
several occasions he did state that a third power can’t be the sum of
two smaller third powers, or a fourth power the sum of two fourth pow-
ers. However, in the combative fashion of the times, Fermat would often
announce his results indirectly, by proposing challenges for other math-
ematicians to test their wits on. He thought that these challenges would
give others a greater appreciation of the hidden depths surrounding his
problems about numbers and lure them into doing active research on
the topic, but sometimes the tactic backfired on him.

For instance, in one of his letters he challenged the English mathe-
matician John Wallis to solve two problems:

1. given a cube, to write that cube as a sum of two cubes; and

2. given a sum of two cubes, to write that number as a sum of two
cubes in a different way.

The first problem has no solution; in fact, this is just the case n = 3
of Fermat’s Last Theorem. The second problem has many solutions; for
instance, (3/2)% + (5/3)% can also be written as (2)* + (1/6)* (Fermat
was concerned here with fractions as well as whole numbers). What
Fermat seems to have wanted was for Wallis to demonstrate that the
first problem had no solutions and then to give a systematic approach to
solving the second problem. That is the real two-part challenge Fermat
had in mind.

But from the way Fermat wrote the challenge, the first part seems
to be asking Wallis to do something that is in fact impossible, and that
Wallis probably suspected was impossible (perhaps after hours of fruit-
less work). It’s understandable that Wallis resented this sneaky way of
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disguising the nature of the challenge, and later missed few opportunities
to disparage Fermat's work on numbers.

Although Fermat’s efforts to interest his contemporaries in problems
about numbers were unsuccessful, he did find followers posthumously,
starting in the century after his death. It was up to these disciples to
fill in the blanks in Fermat’s work, since Fermat himself had been loath
to write down details. By the middle of the nineteenth century, all of
Fermat's many claims had been proved (or, in a case or two, disproved),
with the exception of the famous marginal note. This “Great Theorem
of Fermat” also acquired the name “Fermat’s Last Theorem” to mark
its recalcitrance. Nowadays many people call it “FLT” for short.

What i .7

Ironically, everyone knew how the proof of FLT should begin: “Suppose
there did exist non-zero whole numbers x, y, z satisfying =™ + y"™ = z™,
with n > 2. Then ....” In mathematics, to prove that something doesn’t
exist, it's frequently helpful to assume for argument’s sake that the thing
does exist, and then show that the thing, merely by existing, would
have to possess mutually incompatible properties, thus demonstrating
that it couldn’t exist in the first place. This is the method of proof by
contradiction, or reductio ad absurdum, and it’s the method of choice
for a problem like this.

So, people knew what the seed of the proof should be, but there has
to be some sort of soil into which a seed can be planted. Fermat himself,
back in the seventeenth century, seems to have tried planting the seed in
the obvious place: the study of the properties of ordinary whole numbers.
This study nowadays is called elementary number theory (to distinguish
it from the more abstract developments that came later). Leonhard
Euler, who as the first of Fermat's posthumous disciples revived the
study of numbers in the eighteenth century, was able to construct proofs
of FLT for the cases n = 3 and n = 4 (proofs conceivably found earlier by
Fermat), using elementary methods. But going beyond n = 3 and n = 4
was hard. Euler’s successors, and their successors up till the middle of
the nineteenth century, were able to settle a few more cases, but this
approach petered out and couldn’t even be made to handle a value of n
as small as 11. It seems that the ground of elementary number theory
just doesn’t have the right sort of nutrients for the seed of the proof of
FLT—the kernel of contradiction—to sprout and grow into a full and
rigorous argument.




288 James Propp

In the middle of the nineteenth century, mathematicians like Ernst
Eduard Kummer found a different plot of land to plant the seed in: a
new sub-discipline within number theory called algebraic number theory,
and a sub-sub-discipline called the theory of cyclotomic number rings.
Cyclotomic number rings are extensions of the ordinary arithmetic of
whole numbers, in which other sorts of numbers, including imaginary
numbers like the square root of minus one, are brought into the game.

With the new methods, it became possible to prove FLT for many
more exponents. Kummer more or less settled FLT for all exponents
under 100 (he made a few mistakes on the hard ones). When Kummer’s
mistakes were corrected and his methods were extended and married
with the power of twentieth-century computers, it became possible to
prove FLT for all exponents up into the low millions. But, for all math-
ematicians knew, these corroborations were a fluke; FLT might have
been false not just for one exponent, but for infinitely many exponents—
perhaps even for all prime exponents with more than a million digits,
say.

Someday mathematicians might know enough about cyclotomic num-
ber rings to be able to construct a proof along the lines that Kummer
envisioned; but it seems that the soil of algebraic number theory, in its
current state, doesn’t have the right nutrients either.

FIT's Last Gentury

Over the course of much of the twentieth century, professional interest in
Fermat’s Last Theorem as a hot research topic dwindled. The problem
was still part of the lore of mathematics, and part of the field’s long-term
agenda, but mathematicians found it hard to come up with new plans
of attack that hadn't already been tried. No one had an idea how to
proceed with FLT, and some experts even began to suspect that Fermat
might have guessed wrong.

But outside the academies, more people were working on the problem
than ever before. Amateurs were attracted to the problem for a number
of reasons. First, FLT is a simple and catchy question. Second, the fact
that Fermat claimed to have found a proof raised people’s hopes that a
proof, indeed a simple proof, could be found. Third, there are certain
people who are attracted to a problem precisely because it's hard, and
here was a problem that a whole community of experts, the world’s
mathematicians, had despaired of solving with existing tools. Fourth,
there was a cash prize for the person who solved the problem. And fifth,
it’s easy to almost prove Fermat’s Last Theorem, in a certain sense.




Fermat’s Last Theorem and the Fourth Dimension 289

Remember the basic strategy for proving FLT: you assume that it’s
false and derive a contradiction. Well, it’s very easy to arrive at con-
tradictions in mathematics—just make one mistake and, unless you in-
advertently make another mistake that cancels out the first one, you're
likely to hit on two assertions that don't square with each other. Even
if you find your mistake, or it’s pointed out to you, and you realize that
your attempted proof by contradiction isn’t valid, it’s easy to convince
yourself that, since you found a proof of FLT with only one mistake in
it, you might be close to finding a proof with none. This psychological
effect made Fermat’s challenge a very addictive problem to work on. But
despite the serious efforts of very many people, with various degrees of
persistence, no one could find a proof.

Finally, in the last decade of the twentieth century, mathematician
Andrew Wiles, aided by his former student Richard Taylor, gave a proof
of Fermat’s Last Theorem. The proper soil for the seed, or at least
one proper soil for it, had been found: an area called the theory of
elliptic curves, whose borders Fermat himself had rambled across but
whose true shape didn't emerge until the nineteenth century, and whose
central inner jungle, still untamed today, is being explored by number-
theorists with the aid of powerful ideas from all across the spectrum of
mathematics.

And here we face a paradox: Ewven though Fermat’s problem itself
is the epitome of popular mathematics—easy to state, ponder, and play
with—the eventual solution has the opposite character: it’s as esoteric
as can be, and it uses ideas from areas of mathematics that didn’t even
exist in Fermat’s day.

It’s nonetheless possible to say some things about the proof that are
accessible at a popular level. For instance, one key feature of the new
approach to Fermat’s Last Theorem, and some would say the reason for
its success, is the way in which it brings geometry into the story. Not
just any old geometry, but the right kind of geometry.

The Geometry of the Torus

Picture an ordinary rectangular sheet of paper. If you were to roll up
such a piece of paper as shown in the left panel of Figure 1, joining the
left edge to the right edge, you would get a cylinder with a vertical axis
of rotational symmetry. On the other hand, if you had rolled up the
piece of paper as shown in the right panel of the figure, joining the top
edge to the bottom edge, you would have gotten a different cylinder,
with a horizontal axis of rotational symmetry.
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Fgire .  Two ways of bending a piece of paper to form a cylinder.

Could vou have it both ways, joining left to right and top to bottom
and creating two axes of rotational symmetry? The answer is No, if
you limit yourself to three-dimensional space: no matter how you try to
bend the two ends of a cylinder together, you can only create a new axis
of symmetry by destroying the one that was there before.

But suppose that, after turning the two-dimensional rectangle into a
cylinder that bends around in the third dimension, you could somehow
bend that cylinder around through the fourth dimension. Then it turns
out you can get a shape with two axes of full rotational symmetry.
Mathematicians have known about shapes like this for over a century.
But the real surprise was that Fermat’s Last Theorem can be understood
as making covert reference to the properties of certain shapes like this.

How can we get a handle on such a shape if we can’t build it? If
yvou're comfortable with the idea that a point in four dimensions can
be specified by four numbers, or in some sense “is” just a quadruple of
numbers, then the shape we're after can be described as the set of all
quadruples of numbers (s, t, 1, v) satisfying the two equations s* +#% = 1
and u? + v? = 1. The first equation describes a circle, and no part of
a circle looks any different from any other part. The second equation
also describes a circle. Combine the two circles in a four-dimensional
way and you get a circle-of-circles in which every part looks the same as
every other.

A more geometric way to understand this mysterious symmetrical
shape is to consider distorted versions of it in ordinary three-dimensional
space. If we drop the constraint that there be two axes of rotational
symmetry, and brutally join the two ends of a cylinder in the third
dimension rather than the fourth, we get a shape like the surface of a
doughnut, as shown in Figure 2. (You can’t do this with a cylinder made
of paper, but a stretchable surface would work.) With its one axis of
rotational symmetry, this doughnut is only an inadequate shadow of the
more symmetrical shape that lives in four-dimensional space.
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Fige 2. A torus.

There's a different way to try to understand the symmetrical surface,
by ignoring the space that it sits inside and imagining instead what
it would be like to be confined to it. Picture an ant on the original
rectangle. If the left and right edges of the rectangle are joined, forming
a cylinder, the ant’s point of view is that when it crosses the join, it’s
transported from the left edge of the rectangle to the right edge, or vice
versa. Now suppose we had a kind of magic paper which, without the
need for any bending, would miraculously transport the ant from the left
edge to the right edge and vice versa. To us, this scenario would look
very different from the non-magic scenario, in which ordinary paper is
rolled up into a eylinder; but from the ant’s point of view, the two are
the same.

Now suppose we had a fancier brand of magiec paper which, without
any bending, would miraculously transport the ant from the left edge
to the right edge and vice versa, and from the bottom edge to the top
edge and vice versa. From the ant’s point of view, there’s no difference
between the rectangular universe of magic paper that it inhabits and the
symmetrical surface in four dimensions that we're trying to understand.

Magic paper doesn't exist, but computers that can simulate it do.
There’s even money to be made from creating such simulations, as was
discovered twenty years ago by the inventors of the popular video ar-
cade game Asteroids. Nowadays, thanks to the World Wide Web, you
don’t even need a stack of quarters to experience what it would be like
to live on such a surface; you can play Mike Hall’s web-version [Hall.
Other games situated in the magic-paper universe can be found at the
TorusGames site [Key]. With the help of such programs, this magical,
un-makable surface, this creature whose natural habitat is the fourth
dimension, can be made amenable to (virtual) exploration. (For other
four-dimensional fun, try Rich Schwartz's game Lucy and Lily [Sch].)
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Elliptic Gurves

As the name of the second website might lead you to guess, a surface of
this kind is also known as a torus. There's another name for tori: they're
often called elliptic curves. This nomenclature is unfortunate, since the
uninitiated are apt to think that the term “elliptic curve” refers to the
kind of curve that’s called an ellipse (shown in Figure 3.) Elliptic curves
are totally different from ellipses. But there are good historical reasons
for this confusing terminology.

Let’s go back and talk about the ellipse a bit. An ellipse is what you
get when you view a circle from a slant. The ancient Greeks studied the
ellipse, but the shape didn't come into its own until the seventeenth-
century astronomer Johannes Kepler discovered that the orbits of the
planets are better approximated by ellipses than by circles.

Mathematicians of the seventeenth century, developing ideas that
would later become the calculus, tried to find a formula for the cir-
cumference of an ellipse, and failed. It turned out that new kinds of
mathematical functions had to be invented, just as the ancient Greeks
had had to invent the sine and cosine functions in order to solve their
problems about triangles.

These new functions turned out to be useful for lots of real-world
problems: for instance, studying the behavior of swinging pendulums
or buckling beams. But because the functions rose to prominence from
their use in measuring the circumference of ellipses, they became known
as elliptic functions.

Now, if you studied trigonometry, you probably did it twice: the first
time trig was about properties of triangles, and the second time it was
about properties of the circle of radius 1. In fact, trig functions like sine
and cosine are sometimes called “circular functions” to honor the way
they relate to properties of the circle. Something analogous happens
with elliptic functions: curves like the one shown in Figure 4 give you a

Fgure 3.  An ellipse.
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Figure % The curve z° + y3 =1.

good way of thinking about elliptic functions. So curves like this became
known as elliptic curves.

Just as the circle is given by the equation 2% +y? = 1, this particular
curve is given by the equation z® + y® = 1. Figure 5 shows another
elliptic curve, with the equation y? = —(z2 — 1)(z® — 9). Algebraists
call the locus one curve, even though it has two components, hecause
it's given by a single equation.

So this is what mathematicians call an elliptic curve (and why)—
but how do we get from here to doughnut-shaped surfaces in four-
dimensional space?

The answer is: instead of looking at pairs of real numbers z, y that
satisfy the algebraic relation y* = —(z? — 1)(z® — 9), look at pairs of
compler numbers that satisfy that relation, such as the pair x = 0 and
y =90

(N | N
N

Figure 5. The curve 3 = —(z* — 1)(z* — 9).
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Figire 6.  Some complex numbers plotted in the plane.

Gomplex Numbers

Every complex number can be written as @ + bi, where i is the square
root of minus one and where a and b are ordinary real numbers, called
the real and imaginary parts of that complex number. So we can plot
a complex number in two dimensions, by plotting the point (a,b), as
shown in Figure 6. (For instance, v/—9 = 0 + 3i would be represented
by the point (0,3) on the vertical axis.) But to plot a pair of complex
numbers, or to draw the graph of an equation inveolving two complex
variables, you need two plus two dimensions—that is, you need to draw
a surface in a four-dimensional space.

To get a peek at the four-dimensional surface that’s latent in our two-
dimensional picture Figure 5, let’s step halfway into the fourth dimension
by stopping at the third. We're going to keep z a real number, but we're
going to let y be a real number or an imaginary number, according to
whether —(z2 — 1)(2? — 9) is positive or negative. To plot the value of
y when it's imaginary, we’'ll use a third dimension, as in Figure 7.

Notice that where before we had just two closed components of the
curve, we now have three: an extra component appears in the middle,
touching the first two, protruding into the third dimension. Our new
picture of the elliptic curve has two other components as well, one on
the right and one on the left. They go off to infinity, but the nineteenth-
century mathematicians who invented projective geometry advised us
that in contexts like this, it’s appropriate to add in extra points at
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Figiee 7. The plot of y? = —(z* — 1)(z? — 9) with = real and y arbitrary.

infinity. If you take their advice, you'll view these two unbounded com-
ponents of the curve as actually meeting at a point at infinity.

So, schematically, what we get are four closed curves forming a kind
of necklace, with each curve touching two of the others. But this is
exactly what we have when we draw four circles on the surface of a
doughnut, as shown in Figure 2!

So far, we've required z to be a real number. When you let z and
y be any old complex numbers satisfying y? = —(2? — 1)(22 — 9), the
three-dimensional backdrop of Figure 7 becomes the spine of a larger
four-dimensional backdrop, and the four closed curves become a kind
of skeleton that the rest of the elliptic curve hangs on. I won’t show
you the details, but at least I hope you can see that the doughnut shape
doesn’t come out of nowhere. Moreover, it turns out that when you take
this complexified four-dimensional picture and bend it in the right way,
the curves of Figure 7 becomes four perfect circles. Likewise, when the
curve % + y* = 1 shown in Figure 5 is complexified and suitably bent,
then the original curve, lying inside the surface that arose from it, forms
a perfect circle.

This discussion barely scratches the surface of elliptic curves and
their symmetries. For instance, consider the seemingly unrelated, recre-
ational problem of placing 12 dots in the plane so that every line that
goes through two of them goes through exactly one other point. How
big could the number of such lines be? The answer is 19, and if you
want to draw such a picture with 12 points and 19 lines, the prettiest
way is to choose all sixteen points to lie on the curve given by the alge-
braic relation (x — 1)({z + 2)2 — 3y?) = 8. This is an elliptic curve with
threefold symmetry, but its four-dimensional unfolding has even more
symmetry; in fact, if you lift the curve up into the fourth dimension, so
that it becomes a circle on a torus, then the twelve points are evenly
spaced! (See the article “Planting Trees” by Stefan Burr [Bur81].)
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Back fo Fermat

How did these symmetrical surfaces, these visitors from the fourth di-
mension, get involved with Fermat’s Last Theorem?

This part of the story can be traced back to the second half of Fer-
mat’s challenge to Wallis: if you've got some non-zero number ¢ that can
be written as a® 4+ b? in one way (with a and b rational numbers—that is
to say, whole numbers or fractions), then, leaving aside the case where
a@a="bora=0orb=0, Fermat said that there must be another way to
write ¢ as a’® 4+ b with o’ and b’ two other rational numbers. That is,
in addition to the point (a,b) and its twin (b, a), there must be another
“rational point” (a’,b") on the curve z° 4+ 3* = ¢, where a point (z,y) is
called rational if both of its coordinates x, y are rational numbers.

The general notion of an elliptic curve didn’t exist in Fermat’s day,
but the curves of the form x% 4 y* = ¢, along with other specific curves
studied by Fermat, are in fact examples of elliptic curves. Fermat had
some tricks for finding rational points on his elliptic curves, and these
were developed further by later mathematicians, notably Isaac Newton.
At the end of the nineteenth century a beautiful picture emerged in
the work of mathematician Henri Poincaré, which combined Fermat’s
interest in finding rational solutions to algebraic equations with the new
four-dimensional view of elliptic curves: in the four-dimensional picture,
the rational points are perfectly evenly spaced.

For instance, the rational points on the curve z°+y* = 1 are the point
(1,0), the point (0, 1), and an extra honorary point at infinity. But when
you carry the picture up to the symmetrical torus in four-dimensional
space, these three points become the vertices of an equilateral triangle.

Similarly, the rational points on other elliptic curves will give you
squares, or regular pentagons, or regular hexagons, or pairs of regular
pentagons, or various other things. And sometimes you get infinitely
many rational points on the elliptic curve, and they're smeared out to
appear to fill up a circle or a pair of circles.

The mathematician Louis Mordell, in the first half of this century,
enlarged on Poincaré’s vision. In this, he drew inspiration from Fermat's
ideas, including the method that Fermat used in proving FLT for the
case n = 4.

As mathematicians continued to study elliptic curves, a dichotomy
emerged. Every elliptic curve either had infinitely many rational points
or else had sixteen or fewer (counting the point at infinity as an honorary
rational point). But no one had a proof of this.
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In 1969, mathematician Yves Hellegouarch realized that if you could
get an elliptic curve whose rational points, when lifted up to the sym-
metrical four-dimensional picture of the curve, formed a regular p-sided
polygon (“p-gon”), with p a large prime number, you'd be well on your
way to getting a counterexample to FLT for exponent p. Turning that
around: if you knew that FLT was true for the exponent p, you'd know
that you couldn’t have p rational points on an elliptic curve arranged in
a regular p-gon.

Two other mathematicians working in the 1970s and early 1980s,
Vadim Demjanenko and Gerhard Frey, partly independently but with
some mutual influence, studied the problem and came to similar con-
clusions about the connection between elliptic curves and Fermat’s Last
Theorem. But for these researchers, the link was initially seen as bad
news. Elliptic curves were what they wanted to understand; reducing
their question to a notoriously difficult problem didn’t seem like progress.
As Frey wryly put it, “To try to solve a question and to come to Fermat’s
problem is not encouraging.”

But at least there was a link! And in fact Hellegouarch had done some
work back in the 1970s, suggesting that the link went both ways—that
is, if you could prove the claim about elliptic curves, you might be able to
use that information to get a proof (or partial proof) of FLT. Somewhat
later, but independently, Frey noticed the same thing: if A™ 4+ B™ = C"
is a counterexample to FLT, then the elliptic curve y* = z(z — A)(z + B)
has properties that look very fishy to someone conversant with modern
number theory. Maybe (Hellegouarch and Frey thought), using known
facts about elliptic curves, one could prove that this elliptic curve had
self-contradictory properties. Then one would know that no such triple
(A, B, () existed. That is, one could use facts about elliptic curves as a
way of tackling FLT.

In the mid-1970s, Barry Mazur found a proof of the result about
elliptic curves that Hellegouarch, Demjanenko, and Frey had tried and
failed to prove. When Frey heard the news, he was electrified. Maybe
Mazur’s result, or Mazur's methods, could be applied to prove FLT!

The Road fo Wiles™ Attic

Frey began to look for more ways to relate FLT to what was known
about elliptic curves, as well as what wasn’t known but was strongly
believed. Like Hellegouarch, Frey studied the properties of an elliptic
curve y? = z(x — A)(x + B) derived from a putative counterexample
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to FLT. He worked at the problem for several years, studying it from
various angles. Finally, he found the angle that seemed most promising.
In 1984 he startled the mathematical community by announcing strong
reasons for thinking that such an elliptic curve couldn’t be modular.

I haven't told you what it means for an elliptic curve to be “mod-
ular,” and I'll only explain it here in the vaguest of terms: it means
that there’s an entirely different way to think about that specific el-
liptic curve using a different, even weirder geometry, called hyperbolic
geometry. By the 1980s most number-theorists believed that all elliptic
curves—to be precise, all rational elliptic curves (elliptic curves given
by equations involving only rational numbers as coefficients, and hav-
ing at least one rational solution)—were modular. This proposition had
become known as the Shimura—Tanivama—Weil Conjecture, in honor of
Yutaka Taniyvama, who had first proposed a preliminary version of it,
and Goro Shimura and André Weil, who had made the claim more spe-
cific and more testable. Subsequent researchers had obtained abundant
evidence in favor of the proposition. So for Frey to announce that he’d
found a way to construct an elliptic curve that seemed to be non-modular
was quite dramatic—even if his construction hinged on FLT being false.

This announcement gave Frey’s work an impact that the work of
Hellegouarch had lacked. The seemingly non-modular elliptic curves of
Hellegouarch and Frey were dubbed “Frey curves,” and number-theorists
began to study them with the hope of proving that they were as non-
modular as they seemed to be (assuming that they existed at all).

Frey’s work wasn’t a theorem, but more of a sketch, with some key
ideas missing. In 1986 Kenneth Ribet, building on work of Jean-Pierre
Serre, showed that Frey was right: if there were a counterexample to
FLT, then the associated Frey curve would have to be a non-modular
elliptic curve.

And this convinced many experts, who'd hitherto been agnostic
about FLT, that FLT must be was true—because there was so much
evidence that every rational elliptic curve was modular.

At this point Andrew Wiles, energized by Ribet’s result, decided to
try to prove that all rational elliptic curves were modular, or at least all
elliptic curves in a broad class that included the Frey curves. This result
would give the needed contradiction. That’s because Ribet’s work had
shown that the Frey curve, constructed from a putative counterexample
to FLT, wasn’t modular. If Wiles could show that Frey's curve was
modular, this contradiction would show that no such curve could exist.
That is, no such counterexample A, B, C' could exist, and Fermat’s Last
Theorem would be established!
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The Net, Gracked

So we can say (at last!) that the theory of elliptic curves was the soil
in which Wiles wanted to plant the seed of the proof. But the soil
wasn't exactly easy to till. Many people badly wanted to know whether
all rational elliptic curves were modular, as seemed to be the case, but
the experts were convinced that a proof was a long way off. Wiles, in
attempting to prove some version of the modularity conjecture (as the
linchpin of a proof of FLT), took an odd sort of consolation from the
notorious difficulty of the modularity conjecture: at least he wouldn’t
have to worry that a lot of people were trying the same thing he was
working on. The smart money said that it was too soon to try to prove
Shimura—Taniyama—Weil.

It turned out that the smart money was, in a way, right: the tools
that Wiles needed didn’t all exist in the 1980s. But during the period
when Wiles was doing his work, other researchers created some of the
tools he needed, not realizing the use to which they could be put. Wiles’
timing, with hindsight, can be judged to have been nearly perfect: the
new tools gave him the leverage he needed just when he needed it. After
seven years of hard work, plus an eighth excruciating year of announce-
ment, retraction, collaboration, and revision, Wiles finally proved in
1994 that the (with hindsight, fictitious) Frey curve was modular. In
combination with Ribet’s work, this proved Fermat’s Last Theorem at
last.

I want to stress that the twentieth-century proof of Fermat’s Last
Theorem uses not just algebra and calculus and elliptic curves but all
kinds of modern math. So you shouldn’t get the idea that the fourth
dimension is the magic key to the problem; it's one of dozens of magic
keys, all of which played erucial roles.

It might seem unjust that such a huge amount of machinery, whose
scope I have barely hinted at, should be required for the solution of as
simple-sounding a problem as Fermat's Last Theorem. But we all know
the principle of leverage that makes a nutcracker work, and it makes a
kind of sense that when one is trying to crack as eminently tough a nut
as FLT, it might be necessary to apply force at a point far removed from
where the nut itself is, or seems to be.

The image of the nutcracker, with its suggestions of strength ju-
diciously applied, is meant to convey a sense of both the effort and
the elegance behind Wiles’ accomplishment, but the analogy leaves out
something important that I tried to convey earlier with a different agri-
cultural metaphor. We shouldn’t forget that a nut in the end is just
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another kind of seed. Perhaps when Fermat’s problem is planted in the
soil of some still-unknown mathematical country, it will open in the way
seeds are designed to open, from the inside out. Then we may have a
more accessible answer to this most delightfully accessible and wonder-
fully difficult of mathematical riddles.
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bames People Don’t Play
Peter Winkler

Not all games are to play; some of the most amusing are designed just
to think about. Is the game fair? What’s the best strategy? The games
we describe below were collected from various sources by word of mouth,
but thanks to readers of an earlier version we have written sources for
some of them. An odd (actually, even) feature of the games in this article
is that each has two versions, with entertaining contrasts between the
two. There are four pairs of games: the first involving numbers, the
second hats, the third cards, and the fourth gladiators. We present all
the games first, then their solutions.

The Games
Larger or Smaller (Standard Version)

We begin with a classic game which makes a great example in a class
on randomized algorithms. Paula (the perpetrator) takes two slips of
paper and writes an integer on each. There are no restrictions on the
two numbers except that they must be different. She then conceals one
slip in each hand.

Victor (the vietim) chooses one of Paula’s hands, which Paula then
opens, allowing Victor to see the number on that slip. Victor must now
guess whether that number is the larger or the smaller of Paula’s two
numbers; if he guesses right he wins $1, otherwise he loses $1.

Clearly, Victor can achieve equity in this game merely by flipping a
coin to decide whether to guess “larger” or “smaller.” The question is:

Peter Winkler is Director of Fundamental Mathematics Research at Bell Labs,
Lucent Technologies.
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not knowing anything about Paula’s psychology, is there any way he can
do better than break even?

Larger or Smaller (Random Version)

Now let’s make things much easier for Victor: instead of being chosen by
Paula, the numbers are chosen independently at random from the uni-
form distribution on [0,1] (two outputs from a standard random number
generator will do fine).

To compensate Paula, we allow her to examine the two random num-
bers and to decide which one Victor will see. Again, Victor must decide
whether the number he sees is the larger or smaller of the two, with $1
at stake. Can he do better than break even? What are his and Paula’s
best (i.e., “equilibrium”) strategies?

Golored Hats (Simultaneous Version)

Each member of a team of n players is to be fitted with a red or blue hat;
each player will be able to see the colors of the hats of his teammates,
but not the color of his own hat. No communication will be permitted.
At a signal each player will simultaneously guess the color of his own
hat; all the players who guess wrong are subsequently executed.

Knowing that the game will be played, the team has a chance to
collaborate on a strategy (that is, a set of schemes—mnot necessarily the
same for each player—telling each player which color to guess, based
on what he sees). The object of their planning is to guarantee as many
survivors as possible, assuming worst-case hat distribution.

In other words, we may assume the hat-distributing enemy knows
the team's strategy and will do his best to foil it. How many players can
be saved?

Golored Hats (Sequential Versfon)

Again, each of a team of n players will be fitted with a red or blue hat;
but this time the players are to be arranged in a line, so that each player
can see only the colors of the hats in front of him. Again each player
must guess the color of his own hat, and is executed if he is wrong; but
this time the guesses are made sequentially, from the back of the line
toward the front. Thus, for example, the ith player in line sees the hat-
colors of players 1,2, ...,i—1 and hears the guesses of players i+1,...,n
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(but he isn’t told which of those guesses were correct—the executions
take place later).

As before, the team has a chance to collaborate beforehand on a
strategy, with the object of guaranteeing as many survivors as possible.
How many players can be saved in the worst case?

Next Gard Red

Paula shuffles a deck of cards thoroughly, then plays cards face up one
at a time, from the top of the deck. At any time Victor can interrupt
Paula and bet $1 that the next card will be red. (If he never interrupts,
he’s automatically betting on the last card.)

T

What's Victor’s best strategy? How much better than even can he
do? (Assume there are 26 red and 26 black cards in the deck.)

Next Card Golor Betting

Again Paula shuffles a deck thoroughly and plays cards face up one at
a time. Victor begins with a bankroll of $1, and can bet any fraction
of his current worth, prior to each revelation, on the color of the next
card. He gets even odds regardless of the current composition of the
deck. Thus, for example, he can decline to bet until the last card, whose
color he of course knows, then bet everything and be assured of going
home with $2.

Is there any way Victor can guarantee to finish with more than $27
If s0, what’s the maximum amount he can assure himself of winning?

Gladiators, with Gontidence-Building

Paula and Victor each manage a team of gladiators. Paula’s gladia-
tors have strengths py, ps,...,pm and Victor’s, vy,...,v,. Gladiators
fight one-on-one to the death, and when a gladiator of strength = meets
a gladiator of strength y, the former wins with probability z/(z + y)
and the latter with probability y/(z + y). Moreover, if the gladiator
of strength & wins he gains in confidence and inherits his opponent’s
strength, so that his own strength improves to x + y; similarly, if the
other gladiator wins, his strength improves from y to « + y.

After each match, Paula puts forward a gladiator (from those on
her team who are still alive), and Victor must choose one of his to face
Paula’s. The winning team is the one which remains with at least one
live player.
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What'’s Victor’s best strategy? In particular, if Paula begins with
her best gladiator, should Victor respond from strength or weakness?

bladiators, with Gonstant Strength

Again Paula and Victor must face off in the Coliseum, but this time
confidence is not a factor and when a gladiator wins he keeps the same
strength he had before.

As before, prior to each match, Paula chooses her entry first. What
is Victor’s best strategy? Whom should he play if Paula opens with her
best man?

Solutions and GComments
Larger or Smaller (Standard Version)

As far as we know, this problem originated with Tom Cover in 1986 and
appears as a l-page “chapter” in his book [Cov87]. Amazingly, there is
a strategy which guarantees Victor a better than 50% chance to win.

Before playing, Victor selects a probability distribution on the inte-
gers which assigns positive probability to each integer. (For example, he
plans to flip a coin until a “head” appears. If he sees an even number 2k
of tails, he will select the integer k; if he sees 2k — 1 tails, he will select
the integer —k.)

If Victor is smart he will conceal this distribution from Paula, but
as you will see Victor gets his guarantee even if Paula finds out.

After Paula picks her numbers, Victor selects an integer from his
probability distribution and adds 1/2 to it; that becomes his “threshold”
t. For example, using the distribution above, if he flips 5 tails before
his first head, his random integer will be —3 and his threshold ¢ will be
-21.

When Paula offers her two hands, Victor flips a fair coin to decide
which hand to choose, then looks at the number in that hand. If it
exceeds t, he guesses that it is the larger of Paula’s numbers; if it is
smaller than ¢, he guesses that it is the smaller of Paula’s numbers.

So why does this work? Well, suppose that ¢ turns out to be larger
than either of Paula’s numbers; then Victor will guess “smaller” regard-
less of which number he gets, and thus will be right with probability
exactly 1/2. If ¢t undercuts both of Paula’'s numbers, Victor will in-
evitably guess “larger” and will again be right with probability 1/2.
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But, with positive probability, Victor's threshold ¢ will fall between
Paula’s two numbers; and then Victor wins regardless of which hand he
picks. This possibility, then, gives Victor the edge which enables him to
beat 50%.

(Gomment. Neither this nor any other strategy enables Victor to guarantee,
for some fixed £, a probability of winning greater than 50% + . A smart
Paula can choose randomly two consecutive multi-digit integers, and
thereby reduce Victor's edge to a smidgeon.

Larger o Smaller (Random Version)

It looks like the ability to choose which number Victor sees is paltry
compensation to Paula for not getting to pick the numbers, but in fact
this version of the game is strictly fair: Paula can prevent Victor from
getting any advantage at all.

Her strategy is simple: look at the two random real numbers, then
feed Victor the one which is closer to 1/2.

To see that this reduces Victor to a pure guess, suppose that the
number x revealed to him is between 0 and 1/2. Then the unseen number
is uniformly distributed in the set [0,2] U [1 — x,1] and is therefore
equally likely to be smaller or greater than . If z > 1/2 then the set is
[0,1 - z]U [z, 1] and the argument is the same.

Of course Victor can guarantee probability 1/2 against any strategy

by ignoring his number and flipping a coin, so the game is completely
fair.
Gommept. This amusing game was brought to my attention only a year
ago, at a restaurant in Atlanta. Lots of smart people were stymied, so
if you failed to spot this nice strategy of Paula’s, you're in good
company.

Golored Hets (Stmultaneous Version)

It is not immediately obvious that any players can be saved. Often the
first strategy considered is “guessing the majority color”; e.g., if n = 10,
each player guesses the color he sees on 5 or more of his 9 teammates.
But this results in 10 executions if the colors are distributed 5-and-5,
and the most obvious modifications to this scheme also result in total
carnage in the worst case.

However, it is easy to save |n/2| players by the following device.
Have the players pair up (say, husband and wife); each husband chooses
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the color of his wife's hat, and each wife chooses the color she doesn’t
see on her hushand’s hat. Clearly, if a couple have the same color hats,
the husband will survive; if different, the wife will survive.

To see that this is best possible, imagine that the colors are assigned
uniformly at random (e.g., by fair coin-flips), instead of by an adversary.
Regardless of strategy, the probability that any particular player survives
is exactly 1/2; therefore the expected number of survivors is exactly n/2.
It follows that the minimum number of survivors cannot exceed |n/2].

Golored Hats (Sequential Version)

This version of the hats game was passed to me by Girija Narlikar of
Bell Labs, who heard it at a party (the previous version was my own
response to Girija’s problem, but has no doubt been considered many
times before). For the sequential version it is easy to see that |[n/2| can
be saved; for example, players n, n—2, n—4 etec. can each guess the color
of the player immediately ahead, so that players n—1, n—3 etc. can echo
the most recent guess and save themselves.

It seems like some probabilistic argument such as provided for the
simultaneous version should also work here, to show that |[n/2] is the
most that can be saved. Not so: in fact, all the players except the last
can be saved!

The last player (poor fellow) merely calls “red” if he sees an odd
number of red hats in front of him, and “blue” otherwise. Player n—1
will now know the color of his own hat; for example, if he hears player
n guess “red” and sees an even number of red hats ahead, he knows his
own hat is red.

Similar reasoning applies to each player going up the line. Player i
sums the number of red hats he sees and red guesses he hears; if the
number is odd he guesses “red,” if even he guesses “blue,” and he's right
(unless someone screwed up).

Of course the last player can never be saved, so n—1 is best possible.

Next Gard Red

It looks as if Victor can gain a small advantage in this game by waiting
for the first moment when the red cards in the remaining deck outnumber
the black, then making his bet. Of course, this may never happen and
if it doesn’t, Victor will lose; does this compensate for the much greater
likelihood of obtaining a small edge?
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In fact it’s a fair game. Not only has Victor no way to earn an
advantage, he has no way to lose one either: all strategies are equally
effective and equally harmless.

This fact is a consequence of the martingale stopping time theorem,
and can also be established without much difficulty by induction (hy
two’s) on the number of cards in the deck. But there is another proof,
which I will describe below, and which must surely be in “the book™!.

Suppose Victor has elected a strategy S, and let us apply S to a
slightly modified version of “Next Card Red.” In the new version, Victor
interrupts Paula as before, but this time he is betting not on the next
card in the deck, but instead on the last card of the deck.

Of course, in any given position the last card has precisely the same
probability of being red as the next card. Thus the strategy S has the
same expected value in the new game as it did before.

But, of course, the astute reader will already have observed that the
new version of “Next Card Red” is a pretty uninteresting game; Victor
wins if the last card is red, regardless of his strategy.

There is a discussion of “Next Card Red” in Tom Cover's book [CT91,
p- 132-133] on information theory, based on an unpublished result in
[CovT4].

Gomment. The modified version of “Next Card Red” reminds me of a
game which was described—for satiric purposes—in the Harvard Lam-
poon® many years ago. Called “The Great Game of Absolution and
Redemption,” it required that the players move via dice rolls around a
Monopoly-like board, until everyone has landed on the square marked
“DEATH.” So how do you win?

Well, at the beginning of the game you were dealt a card face down
from the Predestination Deck. At the conclusion you turn your card
face up, and if it says “damned,” you lose.

Next Card Golor Betting

Finally, we have a really good game for Victor. But can he do better
than doubling his money, regardless of how the cards are distributed?

1 As many readers will know, the late, great mathematician Paul Erdés often spoke
of a book owned by God in which is written the best proof of each theorem. I imagine
Erdés is reading the book now with great enjoyment, but the rest of us will have to
wait.

2 Harvard Lampoon Vol. CLVII No. 1, March 30, 1967, pp. 14-15. The issue is
dubbed “Games People Play Number” and the particular game in question appears
to have been composed by D.C. Kenney and D.C.K. McClelland.
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It is useful first to consider which of Victor’s strategies are optimal
in the sense of “expectation.” It is easy to see that as soon as the deck
comes down to all cards of one color, Victor should bet everything at
every turn for the rest of the game; we will dub any strategy which does
this “reasonable.” Clearly, every optimal strategy is reasonable.

Surprisingly, the converse is also true: no matter what Viector’s
strategy is, as long as he comes to his senses when the deck becomes
monotone, his expectation is the same! To see this, consider first the
following pure strategy: Victor imagines some fixed specific distribu-
tion of red and black in the deck, and bets everything he has on that
distribution at every turn.

Of course, Victor will nearly always go broke with this strategy,
but if he wins he can buy the earth—his take-home is then 252 x §1,
around 50 quadrillion dollars. Since there are (;i) ways the colors can
be distributed in the deck, Victor's mathematical expected return is
$j—2) — $9.0813.

G

Of course, this strategy is not realistic but it is “reasonable” by our
definition, and most importantly, every reasonable strategy is a combi-
nation of pure strategies of this type. To see this, imagine that Victor
had Gé) people working for him, each playing a different one of the pure
strategies.

We claim that every reasonable strategy of Victor's amounts to dis-
tributing his original $1 stake among these assistants, in some way. If
at any time his collective assistants bet $z on “red” and $y on black,
that amounts to Victor himself betting $(x — y) on “red” (when z > y)
or $(y — x) on black (when y > z).

Each reasonable strategy yields a distribution, as follows. Say Victor
wants to bet $.08 that the first card is red; this means that the assistants
who are guessing “red” first get a total of $.54 while the others get only
$.46. If, on winning, Victor plans next to bet $.04 on black, he allots
$.04 more of the $.54 total to the “red-black” assistants than to the “red-
red” assistants. Proceeding in this manner, eventually each individual
assistant has his assigned stake.

Now, any (“convex”) combination of strategies with the same ex-
pectation shares that expectation, hence every reasonable strategy for
Victor has the same expected return of $9.08 (yielding an expected profit
of $8.08). In particular all reasonable strategies are optimal.

But one of these strategies guarantees $9.08; namely, the one in which
the $1 stake is divided equally among the assistants. Since we can
never guarantee more than the expected value, this is the best possi-
ble guarantee.
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Fgire 1. Optimal strategy in the discrete 100 cent Next Card Color game.

Gomment. This strategy is actually quite easy to implement (assuming as
we do that U.S. currency is infinitely divisible). If there are b black
cards and r red cards remaining in the deck, where b = r, Victor bets a
fraction (b — r)/(b+ r) of his current worth on black; if » > b, he bets
(r —b)/(r + b) of his worth on red.

If the original $1 stake is not fungible, but is composed of 100 in-
divisible cents, things become more complicated and it turns out that
Victor does about a dollar worse. A dynamic program (written by Ioana
Dumitriu of M.I.T.) shows that optimal play by Victor and Paula results
in Vietor ending with $8.08; Figure 1 shows the size of Victor’s bankroll
at each stage of a well-played game. For example, if the game reaches a
point when there are 12 black and 10 red cards remaining, Victor should
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have $1.08. By comparing the entries above and to the right we see that
he should bet either $.11 (in which case Paula will let him win) or $.12
(in which case he will lose) that the next card is black.

Note that Victor tends to bet slightly more conservatively in the “100
cents” game than in the continuous version. If instead he chooses to bet
always the nearest number of cents to the fraction (b —r)/(b+ r) of his
current worth, Paula will knock him down to $0 before half the deck is
gone!

I heard this problem from Russ Lyons, of Indiana University, who
heard it from Yuval Peres, who heard it from Sergiu Hart; Sergiu doesn’t
remember where he heard it but suspects that Martin Gardner may have
written about it decades ago!

bladiators, wiith Confidence-building

As in “Next Card Red,” all strategies for Victor are equally good.

To see this, imagine that strength is money. Paula begins with P =
P1 ... pm dollars and Victor with V' = v ... v, dollars. When a gladiator
of strength = beats a gladiator of strength y, the former’s team gains $y
while the latter’s loses $y; the total amount of money always remains
the same. Eventually, either Paula will finish with $P 4 $V and Victor
with zero, or the other way 'round.

The key observation is that every match is a fair game. If Victor puts
up a gladiator of strength = against one of strength ¢, then his expected
financial gain is

gy + (~$z) = $0.

r+y T+y
Thus the whole tournament is a fair game, and it follows that Victor’s
expected worth at the conclusion is the same as his starting stake, $P.
Thus
q(8P + 8V) + (1 — q)(%0) = $P

where ¢ is the probability that Victor wins. Thus ¢ = P/(P + V),
independent of anyone’s strategy in the tournament.

Gomment. Here’s another, more combinatorial, proof, pointed out by one
of my favorite collaborators, Graham Brightwell of the London School of
Economics. Using approximation by rationals and clearing of denomina-
tors, we may assume that all the strengths are integers. Each gladiator
is assigned z balls if his initial strength is z, and all the balls are put
into a uniformly random vertical order. When two gladiators battle the
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one with the higher topmost ball wins (this happens with the required
z/(x + y) probability) and the loser’s balls accrue to the winner.

The surviving gladiator's new set of balls is again uniformly distrib-
uted in the vertical order, just as if he had started with the full set;
hence the outcome of each match is independent of previous events, as
required. But regardless of strategy, Victor will win if and only if the
top ball in the whole order is one of his; this happens with probability

P/(P+V).

Gladiators, with Gonstant Strength

Obviously, the change in rules makes strategy considerations in this game
completely different from the previous one—or does it?7 No, again the
strategy makes no difference!

For this game we take away each gladiator’s money (and balls), and
turn him into a lightbulb.

The mathematician’s ideal lightbulb has the following property: its
burnout time is completely memoryless. That means that knowing how
long the bulb has been burning tells us absolutely nothing about how
long it will continue to burn.

The unique probability distribution with this property is the expo-
nential; if the expected (average) lifetime of the bulb is z, then the
probability that it is still burning at time ¢ is e /%,

Given two bulbs of expected lifetimes x and vy, respectively, the prob-
ability that the first outlasts the second is—you guessed it—az/(x + y).
We imagine that the matching of two gladiators corresponds to turning
on the corresponding lightbulbs until one (the loser) burns out, then
turning off the winner until its next match; since the distribution is
memoryless, the winner’s strength in its next match is unchanged.

During the tournament Paula and Victor each have exactly one light-
bulb lit at any given time; the winner is the one whose total lighting time
(of all the bulbs/gladiators on her/his team) is the larger. Since this has
nothing to do with the order in which the bulbs are lit, the probability
that Victor wins is independent of strategy. (Note: that probability is
a more complex function of the gladiator strengths than in the previous
game).

Gomment. The constant-strength game appears in [KLN84]. I have a theory
that the other game came about in the following way: someone enjoyed
the problem and remembered the answer (all strategies equally good)
but not the conditions. When he or she tried to reconstruct the rules of
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the game, it was natural to introduce the inherited-strength condition
in order to make a martingale.

Mterword

It seems only right that I conclude with a game whose solution is left to
the reader. Described by Todd Ebert in his 1998 U.C. Santa Barbara
Ph.D. thesis,? it can be thought of as another version of the (simultane-
ous) colored hats game. In this version the colors really are chosen by
independent fair coin-flips; each of 15 players will get to see the colors
of all the other players’ hats, and has the option of guessing the color
of his own hat. There is to be no communication between the players;
in particular, no player can tell what color a teammate has guessed or
even whether he has guessed at all.

The players conspire beforehand and must come up with a strategy
which maximizes the probability that every guess is correct, subject to
the condition that it must guarantee that at least one player guesses.

As usual, there is an elegant solution and proof of optimality. Hint:
the players can attain a 50% chance of all-correct by appointing one
player to guess and the rest to pass. It’s hard to believe, on first sight,
that they can do any better; but in fact they can beat 90%!

heknowledgement

I am obviously indebted to the (mostly) unknown inventors of the games
described above, not to mention the many other wonderful mathematical
brainteasers that have come my way over the vears. If you are the
originator, or know the originator, of any of them, I will be most grateful
for a communication.
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Mathematical Chats
Between Two Physicists

Aviezri S. Fraenkel

To Martin Gardner—The Master of recreational mathematics

The Luncheon Ghat

Joyce is a physicist doing statistical mechanics, and Gill a nuclear physi-
cist specializing in particle interactions. While relaxing with their cups of
coffee after a tasty enjoyable light lunch at the TEX (TasteEnjoyrelay)—
the Sciences Club of the University—they began to chat about some
common aspects of their specialties.

Gill: The interaction between elements such as particles, nucleons,
spins, etc., that are “close” to one another is common to our two dis-
ciplines. I wonder whether a lesson can be learned by viewing these
phenomena in a unified manner.

Joyce: Hmm...a nice idea. I think that to do this we need some
abstract model that reflects the basic common properties of these inter-
actions, and that is amenable to mathematical analysis, such as working
with two elements 1 and 0, that form a field called by those pompous
mathematicians the Galois field of two elements, GF(2).

G: Yes, GF(2) has the advantage that 1 = —1, so therule 1 +1 =10
in this field is the same as the annihilation rule of particles and spins:
1—-1=0 Wehave of comrse 0 +1 =1+0=1and 040 = 0,

Aviezri S. Fraenkel is a scholar and computicianeer—computer scientist,
mathematician and engineer, who worked on the design of one of the earliest digital
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as well as 1 +1 = 0. These addition rules are also known as Nim
sum or Xor— exclusive or. Furthermore, to model interactions that
are not necessarily neighboring vertices on a grid, it seems best to have
a directed graph G = (V, E)—that mathematicians, always tending to
succinctness, call digraph for short—on whose vertices V' the “particles”
0 and 1 are initially distributed. Selecting a particle on a vertex wu, it
is complemented as well as all its neighbors along edges directed away
from .

J: What you describe is a system called cellular automata by those
inflated logicians, mathematicians, and computer scientists, a manifesta-
tion of which is the Merlin Magic Square game manufactured by Parker
Brothers (but Arthur-Merlin games are something else again). Quite
a bit is known about such solitaire games. Anyway, a huge literature
has bheen accumulating on cellular automata. A small example, inter-
secting with solitaire games, is [Gol91], [Pel87], [Sto89], [Sut88], [Sut8Y],
[Sut90], [Sut95]. Incidentally, related but different solitaires are chip
firing games, see, e.g., [BL92], [Lép97], [Big99].

‘What seems more attractive and new is to transform these solitaire
games into two-player games, where the player first achieving 0s on all
the non-leaf vertices wins and the opponent loses. If there is no last
move, the outcome is a draw. Moreover, this version will appeal to
many of my colleagues who have turned their attention to biology, such
as protein folding, where the main aim is to tinker with nature, in order
to achieve some doubtful benefits such as designing specialized medicines
and genetic engineering (alias tinkering). . .For want of a better name, we
might call them Cellata games, since it reminds me both of the Italian
cuisine that I just enjoyed, and of cellular automata.

G (taking a paper napkin and beginning to draw on it): I like your
idea, and I share your belief that it appears to be new and interesting. In
most of the solitaire games you have mentioned, any order of the moves
produces the same result. To promote your suggestion of tinkering, I
think it's then best to permit the players to select only an occupied
vertex, i.e., a vertex occupied by a 1. So a move in the game consists of
selecting an occupied vertex and firing it, i.e., complementing it together
with all its directed neighbors. The player making the last move wins.
If there is no last move, the outcome is a draw. . .the order of the moves
is then definitely important, unlike in those solitaires. ...Here now is
a suggested game on two components with an initial 0, 1-distribution,
where 1s are indicated by *s (Figure 1) and vertices occupied by 0s
remain unlabeled. As a gentleman, I'm used to “Ladies First” etiquette,
so [ graciously offer you to move first.
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Fgure I A two-player game G + G2 on cellular automata. A move consists
of selecting a vertex v marked with a % and “firing” it. Once fired, the % is
removed, and *s are placed on every vertex v points to. If two %s appear at a
vertex, both are annihilated. T'wo players play by taking turns firing a vertex.
The first player unable to move loses, and the opponent wins. If there is no
last mowve, the outcome is a draw. The result of firing vertex 4 in G; is shown
in G of Figure 2.

Fgme 2. Game G1 + G2 from Figure 1 after one move.
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Flgm 3. Adding two more components, Gz and Gy.

J (pulling a PalmCrash from her handbag and hammering away fu-
riously on its buttons): You propose to play a sum of games, ie., a
move consists of selecting a component and firing an occupied vertex
on it. The player making the last move in the entire digraph wins, and
her opponent loses. . .it seems to me that your gentlemanly gesture is all
but gallant. It is indeed patronizing, since whatever I'll do from this
position, you can win. I'll therefore add to your two components two
simplified versions, namely deleting vertices 5 and 6 on the two com-
ponents, with *s as indicated (Figure 3). Under these circumstances I
accept your offer to make the first move in the sum consisting of all the
4 components.

G (blushing): Well. . .I really hadn’t expected you to find out so
soon. . .I see that on the game consisting of the four components you can
win by making an appropriate move... . Since it seems that both of
us understand the win/lose positions of this game, I suggest to play the
same game with the small change of adjoining a % on vertex 0 of ;.

J (consulting her PalmCrash once more and then rising): All right,
the initial position is now a draw. Since we seem to have mastered
also the draw positions, it's time to head back to our offices and do
some serious physics. . .such as deciding the computational complexity
of Cellata games.

A Gonversation in dogee's Office

The next day, Professor Gill Andrin strolled over to Professor Joyce
Prato’s office.
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Gill: Good morning Joyce, I was wondering how you found me out
so quickly yesterday when I offered you to play first on Figure 1.

Joyce: Hi Gill, I'm already used to your tricks. When [ saw that you
proposed to play on two components of a game that obviously has cy-
cles, I assumed that you had computed the generalized Sprague—Grundy
function « for the game [Smi66], [Con76, Ch. 11], [FY86]; otherwise you
would hardly be able to beat a sharp opponent and be so smug about it.
(Walking over to the whiteboard.) I suspected that v is additive (also
called linear) on the digraph G = (V, E), induced by the given ground-
graph G = (V, E), where V is the collection of all subsets of vertices
from V = (z1,...,2,). That is, y(u) & v(v) = y(u® v) whenever either
¥(u) < oo or ¥(v) < oo. The & denotes Nim sum, and every w € V
is an n-dimensional binary vector with 1s precisely in locations ¢ where
z; 18 an occupied vertex in . I proved linearity with the aid of my
PalmCrash. This enabled me to compute ~ very easily.

G: Congratulations. But how could you possibly prove linearity with
the aid of a computer?

J: T took lots of examples, and it always confirmed linearity. There
was no counterexample at all.

G: Hmm.. Is this a standard method of proof in statistical mechan-
ics?

J: Well, I don’t need the formal proofs of those highbrow mathemati-
cians. I perceive truth when I meet it.

G: It appears that you have been a little hard on mathematicians,
especially yesterday. Many phenomena are counterintuitive. I concur
with the mathematicians that proofs of claims are necessary, though
the precise notion of “proof” might be debatable. Of course one might
formulate a conjecture, and base further results on it.

To come back to our Cellata game, (), when finite, is the smallest
nonnegative integer not appearing among the options (direct followers)
of vertex u ...instead of using n-dimensional vectors to denote vertices
of V, it will now be more convenient to denote them by n; ...ny, where
Znys-- -, 2n, are the occupied vertices of V. Thus you presumably noticed
that on G, y(4) = 0, since it has the as yet unlabeled option 23, that
has the option @, the configuration with no *s, for which obviously
¥(®) = 0. Similarly, v(02) = v(13) = 0. Using linearity, we then get

Vo = {®,4,02,13,024,134, 0123, 01234},

where V; is the subset of V on which ~ assumes the value i (i < co). In
fact, v is a homomorphism from V/ (the linear subspace of the vector
space V on which v is finite) onto GF(2)f for some nonnegative integer
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t with kernel Vy and quotient space V//V = {V; : 0 < i < 2!}, and
dim(V/) = t + dim(V,). We have V* = V \ V| where V™ is the
subset on which v = oo. For Gy, ¥(23) = 1, since its only options are
{®,02} C V. Also 4(56) = 2. We thus get the cosets

V., = 23@ V, = {23,234,03, 12,034,124, 01,014},

Vo =56 Vy, V3 =0356® Vy, dimVy=3,dimV/ =5 t=2

For G5 we get
Vi = {®,1,02,34,012,134, 0234, 01234},

Vi1 =230V, Vo =566V, Vi = 03566V, dim Vi = 3, dim vi= 9,
=2

It follows that the vy-value on G, is (56) @ (124) = 2@ 1 = 3, and
also on G2 we have a ~-value of 3. Their Nim sum is thus 0, which
means that whoever moves from this position loses. Is this how you
figured things out?

J: Precisely. For G5 and (G4 that I adjoined to the game, we have Vy,
V, as for G, and G respectively, but dimVy = 3, dimV/ = 4, t = 1.
Therefore on G'3, 7(01234) = 0 and on Gy, 4(013) = v((23)®(012)) = 1.
Thus firing vertex 0 on Gy, results in 34, with v(34) = 0. This is a
winning move, since v now vanishes on the entire digraph.

G: Yes. By adjoining a * at vertex 0 in G, we get v(012456) = oc,
so the sum of the four components has also vy-value infinity, and the
outcome is now a draw, as you said. I better leave now, as I got to teach
my Graduate Mesoscopic Physics course.

J: Enjoy—hye.

The Truncated Chat in the Faculty Room

Joyce and Gill met again next day in the Faculty room where dough-
nuts, cookies, coffee, and tea were served in anticipation of an important
gathering,

Joyce (moving to the whiteboard): 1 thought it would be interesting
to change the rules, a particular case of which would be to fire the
selected vertex u and complement precisely any twe of its options in
the groundgraph if d,,(u) > 2; and complement all the options of u if
dout(1) < 2. (I'm now using the terminology “firing” in a new sense:
complementing the selected vertex and some subset of its options.) I
conjecture that additivity holds also for this game. The digraph G(s)?
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Fige .  Playing on a parametrized digraph.

on which I would like to play this game depends on a parameter s € Z ™.

It has vertex set {z1,...,Zs,91,...,Ys}, and edges:
Flz;) = wi fori=1,...,s,
Fly,) = {wil<i<k}u{zpl<j<sandj#k} fork=1,...,s.

As an example, I'm drawing G(4) = G(4)? on the board (Figure 4).
Suppose we play on G(7), and place 1s precisely on the 8 vertices
L7, Y1, - - -, y7- Can you figure out the nature of this position?

Gill: (fingering the knobs of the WallComp next to the whiteboard):
Before doing that, why didn’t you consider the G version, i.e., firing
an occupied vertex (in your new sense of “firing”), and complementing
precisely one of its options?

J: Well, this would be a pure particle physics game without much
appeal to statistical mechanics, and it was you who had suggested to
consider a unified approach. Besides, this special case was solved in
[Fra74], [FY76], [FY82], where a polynomial strategy was formulated.
The misére version was analyzed in [Fer84].

G: I expected you to say this, but it gave me time to think about
the question you asked me...I concur with your conjecture about ad-
ditivity. It seems that though the groundgraph G(s) has no leaf, the
game-graph G(s) has no y-value oc. It also appears that any collection
of z; is in V. The value of the y; seem to be more tricky...I think
that y(y;) =the ith odious number, where the odious numbers are those
positive integers whose binary representations have an odd number of
1-bits. Incidentally, odious numbers arise in the analysis of other games,
such as Grundy's game, Kayles, Mock Turtles, Turnips. See [BCG82].
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They arose earlier in a certain two-way splitting of the nonnegative in-
tegers [LM59] (but without this odious terminology...). More informa-
tion about this and over 54,000 other integer sequences is available on-
line from http://www.research.att.com/ njas/sequences/ Thanks
to the mathematician Neil Sloane, who probably contributed more to a
larger number of mathematicians than any other mathematician!

For the position concocted by you, y(z7y;...y7) =001 @20 4D
T@® 8P 11§13 = 14. Thus the player to move can win: either by firing
y7 and complementing y;, y2, or by firing ys and complementing y;, ya,
or by firing y5; and complementing ¥y, and y5.

J: Very nice. . .suppose we take an identical clone of G(s)?, and begin
with precisely the same initial configuration, but change the rule for the
clone: complement the selected vertex u together with any three of its
options if dout(u) > 3; and all the options of u if dowe(u) < 3. We better
call this new clone G(s)?, to distinguish it from G(s)?. Can the first
player win also here?

G (moving to within reach of both the whiteboard and the WallComp):
Let’s see...on the clone, all collections of an even number of x; are in
Vo and V7 consists precisely of all collections of an even number of
ls...we seem to have «(z;y;) = smallest nonnegative integer not the
Nim sum of at most three v(z;y;) for i < j. Thus v(z7y;...y7) =
0B 1B2R4APB8E15B 16032 = 48. So firing y7 and complementing g and
any two of the x; (i < 7) is a winning move. .. Incidentally, the sequence
{1,2,4,8,15,16, 32,51, ...} appears also in Neil's Encyclopadia, and has
been used in [BCG82] for a special case of the game “Turning Turtles.”

J: How about playing the sum of G(s)? and G(s)* with the same
given initial position on both clones?

G: That’s easy. The value of the sum is simply the Nim sum of their
v-values which is 14@48. To win we have to move in G(s)? to a position
with ~-value 14. There is a unique winning move of changing the -
value 32 to 30. This is affected by firing y7 and complementing ys, ys
and y; .. .I hear in the corridor the President talking with the Cabinet
Minister of Science approaching...we better adjourn before we’ll have
to explain to the minister that we are playing a game.

J (moving to the WallComp): Not before we briefly summarize where
we stand.. . We still should address the question of the computational
complexity of Cellata games. . .and yes, I concede that it would be nice
to prove additivity formally for the family of all Cellata games...In
these games, is every draw position necessarily such that every move
from it leads to another draw? This is the case for all the games we
considered, but it would be nice to provide a case where this doesn’t
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hold. . . We played impartial games. How about playing a sort of par-
tizan game on, say, G(s)? and G(s)? simultaneously, i.e., one player
follows the G(s)? rules and her opponent the G(s)? rules?...I think I
can see some interesting applications in fields other than physics. In-
cidentally, the case of G(s)*, where a vertex on G, is fired and any
four of its options are complemented, seems to give rise to the sequence
1,2,4,8,16,31,32,64,103,... . It is the sequence v(z;y;) defined as the
smallest nonnegative integer not the Nim sum of at most four earlier
terms. This sequence was not in the Encyclopasedia of integers, so I just
sent a message, via the WallComp, to your latest mathematics hero Neil
Sloane, together with the fact that it appears in Table 3, Chapter 14 of
[BCG82]. Note that the strategy of our Cellata games on just Figure 4
alone subsumes and unifies that of a battery of games there...I just
noted that Sloane has added the new sequence into his Encyclopadia.

If it wouldn’t be for our own University President who seeks to elicit
more money from this narrow-minded minister, I'd proudly tell the latter
that we are playing a game, followed by a quote from the founder of our
“Sciences Club”:

“...A4 third purpose of this book is to have fun. Indeed, pleasure has
probably been the main goal all along. But I hesitate to admit it, because
computer scientists want to maintain their image as hard-working in-
dividuals who deserve high salaries. Sooner or later society will realize
that certain kinds of hard work are in fact admirable even though they
are more fun than just about anything else.” ([Knu93b, p. iii], see also
[Knu77].)
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How Flies Flg. The Gurvature and
Torsion of Space Gurves

Rudy Rucker

Thanks for evergthing, Martin. You're the best ever.

It’s interesting to watch flies buzz around. They trace out curves in
space that are marvelously three-dimensional. Birds fly along space
curves too, but their airy swoops are not nearly so bent and twisted as
are the paths of flies.

Is there a mathematical language for talking about the shapes of
curves in space? Sure there is. Math is the science of form, and mathe-
maticians are always studying nature for new forms to talk about.

Historically, space curves were first discussed by the mathematician
Alexis-Claude Clairaut in a paper called “Recherche sur les Courbes a
Double Courbure,” published in 1731 when Clairaut was eighteen [Kli72,
p- 557]. Clairaut is said to have been an attractive, engaging man; he
was a popular figure in eighteenth-century Paris society.

In speaking of “double curvature,” Clairaut meant that a path through
three-dimensional space can warp itself in two independent ways; he
thought of a curve in terms of its shadow projections onto, say, the floor
and a wall. In discussing the bending of the planar, “shadow” curves,
Clairaut drew on then recent work by the incomparable Isaac Newton.

Newton’s mathematical curvature measures a curve’s tendency to
bend away from being a straight line. The more the curve bends, the
greater is the absolute value of its curvature. From the viewpoint of a
point moving along the curve, the curvature is said to be positive when
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0.5 0

-2
Figire 1.  Curvature along circular arcs in the plane.

the curve bends to the left, and negative when the curve bends to the
right. The size of the curvature is determined by the principle that a
circle of radius R is defined to have a curvature of 1/R. The smaller
the radius, the greater the curvature. Figure 1 shows some examples of
circular ares, with their curvatures indicated.

We often represent a curve in the plane by an equation involving =
and y coordinates. Most calculus students remember a brief, nasty en-
counter with Newton’s formula for the curvature of a curve; the formula
uses fractional powers and the first and second derivatives of y with re-
spect to . Fortunately, there is no necessity for us to trundle out this
cruel, ancient idol. Instead we think of curvature as a primitive notion
and express the curve in a more natural way.

The idea is that instead of talking about positions relative to an
arbitrary z-axis and y-axis, we think of a curve as being a bent number-
line by itself. The curve is marked off in units of “arclength.” where
arclength is the distance measured along the curve, just as if the curve
were a piece of rope that you could stretch out next to a ruler. We'll use
the variable s to stand for arclength and the infinitesimal ds to stand
for a very small bit of arclength.

If we think of a curve in z and y coordinates, we can define ds as
the square root of dr squared plus dy squared, and we can then use
integration to add up the ds quantities to get a value for s. But in this
essay, we'll instead think of s and ds as primitive quantities. If we think
of the arclength s as primitive, the most natural way to describe a plane
curve is by an equation that gives the curvature directly as a function of
arclength, an equation of the form & = f(s), where  is the commonly
used symbol for curvature. Figure 2 shows two famous plane curves
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Figre 2. The catenary and the logarithmic spiral expressed by natural equa-
tions, with curvature x a function of arclength s. Arclength is marked as units
along the curves.

which happen to have simple expressions for curvature as a function
of arclength. The catenary curve is the shape assumed by a chain (or
bridge cable) suspended from two points, while the logarithmic spiral is
a form very popular among our friends the mollusks.

Note that for the spiral, the center is where s approaches —1. And
if you jump over the anomalous central point and push down into larger
negative values of s, you produce a mirror-image of the spiral.

It would be nice to also think of space curves in a natural, coordinate-
free way—surely this is the way a fly buzzing around in the center of an
empty room must think. Profound mathematical insights come hard,
and it was a hundred and twenty years after Clairaut before the cor-
rect way to represent a space curve by intrinsic natural equations was
finally discovered—by the French mathematicians Joseph Alfred Serret
and Frederic-Jean Frenet.

The idea is that at each point of a space curve one can define two
numerical quantities called curvature and torsion. The curvature of a
space curve is essentially the same as the curvature of a plane curve:
it measures how rapidly the curve is bending to one side. The torsion
measures a curve’s tendency to twist out of a plane. But what exactly is
meant by “bend to one side,” and “twist out of a plane”? Which plane?

The idea is that at each point P of a space curve you can define
three mutually perpendicular unit-length vectors: the tangent T, the
normal N, and the binormal B. T shows the direction the curve is
moving in, N lies along the direction which the curve is currently bending
in, and B is a vector perpendicular to 7" and N. (In terms of the vector
cross product, T'x N is B, Nx Bis T, and Bx T is N.) For space curves
we ordinarily work only with positive values of curvature, and have N
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B

Fgure 3. The moving trihedron of a space curve: T' the tangent, N the
normal, and B the binormal.

point in the direction in which the curve is actually bending. (In certain
of the analytical curves we'll look at later we relax this condition and
allow negative curvature of space curves.)

Taken together, T, N, and B make up the so-called “moving trihe-
dron of a space curve.” In Figure 3 we show part of a space curve with
two instances of the moving trihedron. So that it’s easier to see the
three-dimensionality of the image, we draw the curve as a ribbon like a
twisted ladder. The curve runs along one edge of the ladder, and the
rungs of the ladder correspond to the directions of successive normals to
the curve.

To understand exactly how the normal is defined, it helps to think of
the notion of the “osculating” (kissing) plane. At each point of a space
curve there is some plane that best fits the curve at that point. The
tangent vector T lies in this plane, and the direction perpendicular to T’
in this plane holds the normal N. The binormal is a vector perpendicular
to the osculating plane.

With the idea of the moving trihedron in mind, we can now say that
the curvature measures the rate at which the tangent turns, and the
torsion measures the rate at which the binormal turns.

Note that T, N, and B are always selected so as to form a right-
handed coordinate system. This means that if you hold out the thumb,
index finger and middle finger of your right hand, these directions cor-
respond to the tangent, the normal, and the binormal.

Just as the circle is the plane curve characterized by having constant
curvature, the helix is the space curve characterized by having constant
curvature and constant torsion. Figure 5 shows how the signs of the
curvature and torsion affect the shapes of plane and space curves.
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Mgure . A right-hand as a trihedron.

T T
N N
plane curve with x > 0 plane curve with £ < 0
)
T
T,
N =
N
space curve with 7 > 0 space curve with 7 < 0
Figure 5. How the signs of the curvature and torsion affect the motion of a

curve.
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Now let’s look for some space formulae analogous to the plane for-
mula stating that the curvature of a cirele of radius R is 1/R. Think of
a helix as wrapping around a cylinder—like a vine growing up a post.
Let R be the radius of the cylinder, and let H represent the turn-height:
the vertical distance it takes the helix to make one complete turn (and
to make the formulae nicer, we measure turn-height in units 27 as large
as the units we measure R in.)

The sizes of the curvature and torsion on a helix with radius R and
turn-height A are given by two nice equations. We write “r” for torsion
and, as before, “&” for curvature:

k£ = R/(R*+ H?), and
7 = HJ(R®+H?).

It's an interesting exercise in algebra to try and turn these two equa-
tions around and solve for R and H in terms of £ and 7. (Hint: Start
by computing k2 + 72. When you're done, your new equations will look
a lot like the original equations.)

Some initial things to notice are that if H is much smaller than R,
you get a curvature roughly equal to 1/R, just like for a circle, and a 7
very close to zero. If, on the other hand, R is very close to zero, then
the torsion is roughly 1/H while the curvature is close to zero. A fly
which does a barrel-roll while moving through a nearly straight distance
of H has a torsion of 1/H. The faster it can roll, the greater its torsion.

A less obvious fact is that if we look down on a plane showing all
possible positive combinations R and H, the lines of constant curvature
lie on semi-circles with their two endpoints on the R-axis; while the
points representing constant torsion lie on semi-circles with their two
endpoints on the H-axis. The curvature and torsion combinations gotten
by stretching a given Slinky lie along a quarter circle centered on the
origin. Apparently the two families of semi-circles are perpendicular to
each other.

Suppose I have a helix like a steel Slinky spring. What happens to
the curvature and the torsion as I stretch a single turn of it without
untwisting? Suppose that the initial radius of the helix is A. Given
the physical fact that the length of one twist of the Slinky keeps the
same length, you can show that as you stretch it, R? + H? will stay
constant at a value of A%, which corresponds to a circle of radius A
around the origin of the R—H plane. As you stretch a Slinky loop with
the particular starting radius of 2, its R and H wvalues will move along
the dashed line shown in Figure 6. Figure 7 shows what a few of the
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Fige 6.  Lines of constant curvature and torsion for combinations of R (helix
radius) and H (helix turn height).

intermediate positions will look like. Curvature is being traded off for
torsion.

Here’s a little algebra problem: Given the formulae for x and 7 in
terms of R and H, and given that R% + H? = A%, what can you say
about the sum k2 4+ 72? The answer tells you more about the nature of
a Slinky’s trade-off between curvature and torsion.

One fact that seems odd at first is that the curvature and torsion
of a helix are dependent on the size of the helix. If you make both R
and H five times as big, you make the torsion and curvature 1/10 as
big. If you make R and H N times as big, you make the curvature and
torsion 1/(2 = N) as big.

_ = 3

High w Medium s Low &

Low 7 Medium r High 7

Figme 7. Stretching a Slinky turns curvature into torsion.
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High &
High 7

Fgmre 8.  Changing curvature and torsion.

But this makes sense if you think of a fly that switches from a small
helix to a big helix; the fly is indeed changing the way that it’s flying,
so it makes sense that the s and the t should change.

This observation suggests a simple way to express the difference be-
tween flies and birds—~Hies fly with much higher curvature and torsion
than do the birds. Gnats, for that matter, fly even more tightly knotted
paths, and have very large values of curvature and torsion.

Just as in the plane, a space curve can be specified in terms of nat-
ural equations that give the curvature and torsion as functions of the
arclength. These equations have the form & = f(s) and 7 = g(s). The
shape and size of the space curve is uniquely determined by the curva-
ture and the torsion functions. Figures 9 and 10 show two intriguing
space curves given by simple curvature and torsion functions. Note that
the phone cord is a space curve where we do allow ourselves to put in
negative values for the curvature.

There is not a large literature on these “k7” curves, so ['ve given my
own names to these two: the rocker, and the phone cord.
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Figme 9.  The rocker, with natural equations « = 1 and T = sin(arclength).

“l The phone COI‘d, with natural equations k = 10sin arclength
P gt
and T = 3.

At one time I thought that the rocker was a correct way to represent the
seam on a tennis ball or the stitching on a baseball, but an email from
the mathematician John Horton Conway convinced me I was wrong.
Conway makes the anthropological conjecture that every time a math-
ematician discovers a curve that he or she thinks might be the true
baseball curve, the curve is a different one!
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An analysis of the real-world baseball stitch curve can be found in
Richard Thompson’s “Designing a Baseball Cover” [Tho98]. It turns out
the baseball stitch curve is based on something so prosaic as a patented
1860s pen and ink drawing of a plane shape used to cut out the leather
for a half of a baseball, a shape arrived at by trial and error. Thompson
finds a fairly gnarly closed-form approximation of this shape.

Not only does my rocker fail to match the baseball stitch curve, it
can be proved that the rocker curve does not in fact lie on the surface
of a sphere. It fails to satisfy the following necessary condition for lying
on the surface of the sphere, where s stands for arclength (see [Won72]).

d d
= am-am] +ram -0
(For k = 1 and 7 = sin(s), the left-hand side of this is sin(s), which isn’t
identically 0.)

Numerical estimates indicate that the arclength of the rocker has
exactly twice the length of a circle of the same radius. This suggests
an easy way to make a rocker. Cut out two identical annuli (thick
circles) from some fairly stiff paper (manila file folders are good), cut
radial slits in the annuli, tape two of the slit-edges together, bend the
annuli in two different ways (one like a clockwise helix and one like
a counterclockwise helix) and tape the other two slit-edges together,
forming a continuous band of double length. Because an annulus cannot
bend along its osculating plane, the curvature of the shape is fixed along
the arclength. Because half the band is like a clockwise helix and half
is like a counterclockwise helix, when the shape relaxes, the torsion
presumably varies with the arclength like a sine wave function that goes
between plus one and minus one. The torsion seems to be zero at the two
places where the slits are taped together. Note that I have not proved
that my empirical paper rocker is the same as my mathematical rocker,
this is simply my conjecture.

e To make the rocker, make a (larger) copy of Figure 11 on stiff
paper.

Cut along all lines.

Tape edge A to edge B* with the letters on the same side.

e Bend the two rings in the opposite sense.

Tape edge A* to edge B with the letters on the same side.
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Fige 1.  Make your own rocker.

How were the images in Figures 9 and 10 generated? They use an
algorithm based on the 1851 formulae of Serret and Frenet (see, for in-
stance, [Str61]). Let’s state the formulae in “differential” form. The
question the formulae address is this: when we do a small displace-
ment ds along a space curve, what is the displacement dT, dN, and dB
of the vectors in the moving trihedron?

T = | kN )-ds
dN = (—kT +7B)-ds
dB = ( o\ )-ds

The first and third equations correspond, respectively, to the def-
initions of curvature and torsion. The second equation describes the
“back-reaction” of the T" and B motions on N.

A good aid to remembering the Frenet formulae is to note that if we
think of the ds multipliers on the righthand sides of the three equations
as linear combinations of T, N, and B, then the coefficients in these
combinations make a three-by-three antisymmetric matrix, that is, a
matrix in which the ij-entry is the negative of the ij-entry.

Since we are lucky enough to live in three-dimensional space, it is
possible for us to experiment with our bodies and to perceive directly
why the Serret—Frenet formulae are true. To experience the equations,
you should, if possible, stick out your right hand’s thumb, index finger,
and middle finger as shown in Figure 4. Now start trying to “fly” your
trihedron around according to these rules: (1) The index finger always
points in the direction your hand is moving. (2) You are allowed to turn
the index finger towards or away from direction of the middle finger by
a motion corresponding to rotating around the axis of your thumb. (3)
You are allowed to turn the thumb towards or away from the middle
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finger by a motion corresponding to rotating around the axis of your
forefinger.

To get clear on what's meant by motion (2), grab your thumb with
vour left hand and make as if you were trying to unscrew it from your
hand. This is a kind of “yawing” motion, and it corresponds to the first
of the three Serret—Frenet formulae: the change in the tangent is equal
to the curvature times normal. Motion (3) corresponds to grabbing your
index finger with your left hand and trying to unscrew that finger. This
is a kind of “rolling” motion, and it corresponds to the third of the
Serret—Frenet formulae: the change in the binormal is the negative of
the torsion times the normal.

In thinking of flying along a space curve you should explicitly resist
thinking about boats and airplanes which have a built-in visual trihedron
which generally does not correspond to the moving trihedron of the space
curve. If you do want to think about a machine, imagine a rocket which
never slows down and never speeds up, which can turn left or right—
relative to you the passenger—and which can roll. Or better yet, think
about being a cybernetic house-fly.

An exciting thing about the Serret—Frenet formulae is that they lend
themselves quite directly to creating a numerical computer simulation
to create KT space curves with arbitrary curvature and torsion. To write
the code in readable form, we can “overload” the arithmetic operators
to do the expected things to our vector objects. A scalar times a vec-
tor changes the length of the vector, while a vector times a vector in-
vokes the vector cross product. In addition we add a vector function
called Normalize such that if a vector A invokes the method by calling
A.Normalize(), then A becomes a unit vector. Here is the heart of an
algorithm for updating the position P of a point on an arbitrary st
curve.

ds * T;

ds;

(kappa(s) #* ds) * N;
(-tau(s) * ds) * N;
.Normalize();

.Normalize();

= (B *T);

I
= w o
+ 4+ 4+ +

Z2wWHLmEa0n g
|
=]

As far as I know, very little mathematical work has been done with
kT curves because in the past nobody could visualize them. I first im-
plemented the algorithm as a Mathematica notebook for the Macintosh
and for Windows machines, and then I wrote a stand-alone Windows
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Figire 12. A k7 curve with curvature varying as a random walk.

program called Kaptau. You can download either of the Mathematica
notebooks or the stand-alone Windows program from my web-site [Ruc].
So how do I think flies fly? I think that they generally move along
at a constant speed like a space curve parameterized by its arclength,
and that they manage to loiter here and speed away from there by
varying their curvature and torsion between low and high values. As
mathematicians like to say (even when they're wrong): “It’s obvious!”
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oome Tricks and Paradoxes

Ragmond Smullyam

Some Mischievous Tricks

I was planning to play a particularly mischievous trick on my dear friend,
Martin Gardner, at the banquet of the 1998 Gardner gathering, but
unfortunately Martin couldn’t attend due to a temporary indisposition
of his lovely wife Charlotte. And so, I played almost the same trick (the
same except for the ending) on someone else at the banquet. First, I
will tell you the trick I did play, and then the trick I would have played,
had Martin attended.

What I did was this: [ showed the audience two envelopes and ex-
plained that one of them contained a dollar bill and the other one was
empty. To make it possible to deduce which envelope contained the bill,
I had a sentence written on the outside of each envelope. I then said
that if anybody could correctly deduce which envelope contained the
dollar bill, then he or she could have the bill. However, for the privilege
of being allowed to do this, I would charge 25 cents. Is anyone game?

Here are the two sentences:

(1) (2)
The sentences on the two The dollar bill is in the
envelopes are both false. other envelope.

Raymond Smullyan is a mathematical logician, magician, musician, essayist,
and author of numerous books that introduce deep mathematical topics through
recreational logic puzzles.
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Can the reader figure out which envelope contains the dollar? Well,
one gentleman took me up, and so he then owed me a quarter. I asked
which envelope contained the bill. He said it was Envelope #1. I asked
his reason. He explained: “If Sentence 1 were true, then both sentences
would be false (as Sentence 1 says), which is clearly absurd. Therefore,
Sentence 1 cannot be true; it must be false. Since it is false, then what
it says is not the case—it is not the case that both sentences are false,
so at least one must be true, and since it is not Sentence 1, it must be
Sentence 2. Since Sentence 2 is true, then the bill must be in Envelope
1, as the sentence says.”

“Very good,” I said (giving myself an imaginary mysterious wink).
“Now, please open the envelopes.” He opened Envelope 1, and found it
empty. Then, sure enough, a dollar bill was found in Envelope 2!

“Well, well! T said. “The reasoning sure sounded good, yet clearly
something must be wrong somewhere. What?”

Problem | What was wrong with the reasoning?*

At this point the gentleman owed me 25 cents. “I'll tell you what,” T
said. “Today I'm in a generous mood, and so I'll give you back your quar-
ter if you agree to answer a yes/no question truthfully. Fair enough?”
He agreed. I then framed a question such that the only way he could
answer truthfully is by his paying me a million dollars!

Problem 7 What question would work?

“Well, well, well!” I said to him, after he owed a million dollars. “I
really feel sorry for you, and quite guilty at having swindled you out of
a million dollars, so here is what I'm going to do: T'll give you a chance
to win your million dollars back again, but for this privilege I charge a
nickel extra. Agreed?” Of course, he agreed, and so he then owed me a
million dollars, plus a nickel.

I then said: “In fact, I'm in such a generous mood, that I'll give you
back the entire million dollars, and even the nickel, providing that you
answer a yes/no question—now, don’t get alarmed!—a yes,/no question,
but this time you don’t have to answer truthfully; you may lie or be
truthful; your answer can be either true or false, as you choose. Under
these circumstances, there is certainly no way I can con you, is there?”
It appeared not, and so he agreed. Yet, I framed the question such that
he had no option but to pay me a billion dollars!?

1Solutions to problems are given at the end of the article.
2This is one of my best puzzles and belongs to the field of coercive logic, as
explained in my book, The Riddle of Scheherazade [Smu98].
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Problem 3 What question would work?

They say, “All's well that ends well,” and so after he owed me a
billion dollars, I said: “I'll tell you what. I think I'll give you back
the billion dollars as a gift and claim a tax deduction.” This ended my
presentation.

Well, a few days after the conference, I phoned Martin to find out
how Charlotte was doing, and told Martin what I would have done, had
he been present. I would have done the above to Martin up to the point
where he would have owned me a billion dollars, but instead of offering
to give it back to him as a gift and claiming a tax deduction, I was
planning to say: “I'll tell you what, Martin. I'll trade you the entire
billion dollars for one kiss from Charlotte!”

Pretty mischievous, eh? Perhaps, even more mischievous were my
escapades during my student days. Upon meeting any attractive girl, I
would say, “I'll bet you I can kiss you without touching you.” Now, this
works particularly well if the girl is highly intelligent and analytical and
asks me for precise definitions of kissing and touching. After I had given
them, she would usually say that it was obviously impossible. We would
then make the bet, after explaining that there was no money involved;
it was simply a bet of honor. I would then ask her to close her eyes, and
when she did so, I would kiss her and say: “I lose!”

Pretty mischievous, huh? Actually, my most mischievous trick to
date led to a particularly happy conclusion. About 40 years ago, I met
a charming lady musician in New York City. On our first date, I asked
her if she would agree to the following: I would make a statement, and
if the statement were true, she was to give me her autograph. She said,
“I don’t see why not.” I then added, “But if the statement were false,
you must promise not to give me your autograph!” She agreed. I then
made a statement such that to keep her word, she had to give me, not
her autograph, but a kiss!

Problem % What statement would work?

Well, instead of collecting the kisses, she agreed to play for double or
nothing; and so she soon owed me 2 kisses, then 4, then 8, then 16, and
s0 we kept doubling and doubling and things escalated and escalated,
the end result of which was that we were soon married!?

3Last year, Blanche and I celebrated our 40th anniversary,
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Some Paradoxes

Do any of you know the L. A. A. computing company? Do you know
what “L. A. A.” stands for? It stands for: “Lacking an acronym.”

I didn’t invent this. I heard it and soon after realized that it is
actually no paradox; it is simply false! However, I thought of a way of
modifying it so that it becomes a paradox. Consider the L. A. C. A.
company where “L. A. C. A.” stands for “lacking a correct acronym.”
Is this acronym correct or not? It is certainly an acronym, but is it
correct? Assuming that the company has no other acronym, then if it is
correct, what it says is really the case, which means that the company
has no correct acronym, contrary to the assumption that the acronym is
correct. Thus, it is contradictory to assume that the acronym is correct.
On the other hand, suppose that the acronym is not correct. Then, since
the company has no other acronym, it lacks a correct acronym, which is
just what the acronym says, and hence, the acronym is correct after all,
which is again a contradiction, and thus the acronym is neither correct
nor incorrect, but paradoxical.

I am fond of the businessman’s paradox due to Lisa Collier: The
president of a certain company offered a reward of $100 to any employee
who could offer a suggestion which would save the company money. One
employee suggested: “Eliminate the reward.”

For years I have been searching for what might be termed a meta-
paradox, i.e., something that is paradoxical if and only if it isn't! Well,
I think I have found one:

Either this sentence is false, or (this sentence is paradox-
ical if and only if it isn’t).

I leave the proof to the reader.

Nevicomb's Paradox Without « Predictor.  To those who don’t know Newcomb's
paradox, I present it in the following diabolical manner: Suppose you
are in front of a chest containing two drawers and either each drawer
contains a hundred dollars, or each one contains a thousand dollars. You
have the choice of either taking the money in both drawers, or just the
money in the bottom drawer. Which would you choose? Which choice
would yield you the most money? Of course, everyone would opt for
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both drawers. I then ask whether there is any further information I
could give that would make you change your mind and believe that you
would find more money if you open just the bottom drawer than if you
open both drawers? This sounds impossible, doesn't it? Surely, many of
you would be willing to bet that ne added information could make you
change your mind on that! But, ah! What I didn’t tell you is that there
exists and omniscient being—either a human, a computer, or a god—
who is a perfect predictor and at any time knows the entire future of
the universe. This perfect predictor knew in advance how you would
choose, and was in complete control of how much money was to go
into the drawers. If the being predicted that you would choose both
drawers, then $100 was to be put into each drawer, but if it was deter-
mined that you would choose just the bottom drawer, then $1000 was
to be put in each drawer.? Would this added information change your
mind?

Well, people are divided into two camps on this: Some say, “Of
course, this would change my mind! According to this added informa-
tion, if I choose both drawers, I will get only $200, whereas if I choose
just the bottom drawer, then I will get $1000, and so I should certainly
choose just the bottom drawer.” But others say, “This would not change
my mind in the least! The plain simple fact is that the money is already
there, and there is twice as much money in both drawers as there is in
just the bottom drawer, hence if I choose both drawers, I will get twice
as much than if I choose just the bottom drawer.”

Well, dear reader, how do you feel about this? I once discussed this
with Martin Gardner and told him that I was definitely in the first camp.
Martin (perhaps playing Devil’s advocate) then told me that I shouldn’t
dismiss the other argument so easily! To make the point more dramatic,
he said, “Suppose that the back of the chest was made of glass and
that friends of yours could see how much money was in each drawer and
were hoping that you would choose both drawers. What then?” I don’t
recall what I answered, but what I should have answered, and am now
answering is, this: “Assuming that my friends believed the predictor,
then they would know how I would choose. If they saw $100 in each
drawer, then they would know that I would choose both drawers, and
if they saw $1000 in each drawer, then the only way they could hope
that I would choose both drawers is by hoping that the predictor was

4 Actually, I changed the dollar amounts from the original version to make it more
tempting to choose both drawers.
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wrong, because if I chose both drawers, the predictor would have been
wrong!”?

‘We have now seen two arguments—one that you should choose both
drawers and one that you should choose just the bottom drawer. Some
writers have proposed that this paradox proves that a perfect predictor
cannot exist! For interesting discussions of this, see Martin Gardner's
discussion in [Gar86a, pp. 155-175].

I totally disagree with this! Indeed, my purpose in writing this is to
show that the essential idea behind the paradox can be reformulated in
such a manner that the predictor is left out entirely! And so, here is my
version:

Again, you are to choose the contents of either both drawers or just
the bottom drawer of a chest of two drawers. Now, consider the following
proposition:

Pmposiﬁnn | Either you will choose both drawers and there will be $100 in
each drawer, or you will choose just the bottom drawer and there will be
$1000 in each drawer.

Please note that the above proposition makes no reference to any pre-
dictor! Newcomb's version with the predictor implies the above proposi-
tion, the proposition itself is far more general. The predictor, of course,
gives plausibility to the above proposition, but the proposition can be
stated without reference to any predictor.

Now, to those of you who believe in choosing both drawers, I wish to
address the following key question: If you believed the above proposition,
would you still choose both drawers? I can’t see how you could! Of
course, | can understand that you would simply have no reason to believe
that proposition, but once you believe it, I cannot understand how you
would than choose both drawers! As we are at it, is the proposition
even consistent? Those of you who take the position that it is logically
impossible for there to be a perfect predictor (as the paradox suggests)
should also believe that the above proposition is inconsistent. And so,
is the proposition consistent or not? Well, modeling the two arguments,
I will first prove that the proposition is inconsistent, and then I will
prove that it is consistent! That's pretty paradoxical, isn’t it?7 And I
will forget the predictor entirely!

5Incidentally, in some versions of Newcomb’s paradox, the predictor is not always
correct, but only correct with high probability. This is a totally different problem
that I don’t want to get into. To know what to do in this version, I would have to
know the exact probability that the predictor was right. And so, I will continue to
assume that the predictor is always right.
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Proof that the propostion is consistent: Regardless of whether or not there
is $100 in each drawer or $1000 in each drawer, there is twice as much
money in both drawers as there is in just the bottom drawer. Therefore,
you will get more money by choosing both drawers than by choosing
just the bottom drawer.

On the other hand, the above proposition clearly implies that if you
choose both drawers, you will get $200, whereas if you choose just the
bottom drawer, you will get $1000. Since $1000 is obviously more than
$200, you will get more by choosing just the bottom drawer. We have
now reached a clear contradiction, hence the proposition is inconsistent.

Proof that the proposition s consistent: To prove that a proposition is con-
sistent, it suffices to show that there is a possibility in which it can be
true (since an inconsistent proposition can never be true). Well, it is
certainly possible that you choose both drawers and find $100 in each,
which would validate the proposition. (Alternately, it is equally possible
that you choose just the bottom drawer and that there be $1000 in each
drawer.) Thus, the proposition is consistent.

Now obviously, a proposition cannot be both consistent and incon-
sistent, hence one of the above arguments must be fallacious. Which
one?

Problem b5 Which argument is wrong, and precisely where is the fallacy?

Solutions

Ansveer 1 (Problem 1 on page 342) To begin with, some of the most ex-
perienced logicians have fallen for this fiendish trick of mine! People
naturally assume that any given sentence must be either true or false,
and this is simply not so! If Sentence 1 were true, we would obviously
have a logical contradiction, so it can’t be true. It also isn’t false, for if
it were, the dollar would have to be in Envelope 1, which it isn’t. Thus,
Sentence 1 is neither true nor false, and the whole error of the argument
was the tacit assumption that it was. (Incidentally, Sentence 2 is either
true or false—it is well-defined and happens to be false.)

The whole purpose of this game was to dramatically illustrate Tarski's
discovery that in a language like English, truth within the language is
not definable within the language.

Answeer 7 (Problem 2 on page 342) The question I used was, “Will you
either answer no to this question, or pay me a million dollars?” He
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couldn’t correctly answer no; he had to answer yes, and the only way
that this answer could be correct is by paying me a million dollars.

Answer 3 (Problem 3 on page 343) The idea is to frame a question such
that unless he paid me a hillion dollars, neither his yes or neo answer could
be either true or false, but would have to be paradoxicall Remember, I
never said that he could answer yes or ne at random; his answer had to
be either true or false! And so, the question must be such that the only
way he could avoid answering paradoxically is by paying me a billion
dollars. A question that works is: “Is yes the correct answer to this
question if and only if you pay me a billion dollars?” If he didn’t pay
me a hillion dollars, the question would then be equivalent to: “Is yes
not the correct answer to his question?” and neither yes nor ne could
be either a true or a false answer to that question.

Answer & (Problem 4 on page 343) What I said was: “You will give me
neither your autograph nor a kiss.” If the statement were true, she
would have to give me her autograph, as agreed, but her doing so would
falsify the statement (it would be false that she gave me neither her
autograph, nor a kiss), hence that statement cannot be true; it must be
false. Since it is false that she will give me neither, she must give me
either—she must give me either her autograph or a kiss. But she agreed
not to give me her antograph for a false statement, hence she owed me
a kiss! (Sneaky, eh?)

Answer b (Problem 5 on page 347) I would say that the first argument is
wrong. It is obvious that the proposition is consistent, so where is the
fallacy in the first argument? The fallacy is this: It is indeed true that
however vou choose, there will be twice as much money in both drawers
as in just the bottom drawer, but from this it simply does not follow
that you will get twice as much money by choosing both drawers than
by choosing just the bottom drawer. You obviously won't, because the
amount in the drawers is tied up with how you choose!
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How Recreational Mothematics
Gan Save the World

Keith Devlin

Recreational mathematics is generally presented—and is always pursued
—for recreational purposes. Just as the name suggests. But is it really
possible to draw a line between mathematics pursued for fun and mathe-
matics pursued with applications in mind? Could a piece of recreational
mathematics lead to important applications? To take the most extreme
case, could recreational math save the world? Could Martin Gardner,
the undisputed king of recreational mathematicians, lay claim to have
played a role in saving humanity?

Certainly, useful applications of recreational mathematics abound.
The role played in modern cryptography by factoring large numbers into
primes is the example that perhaps comes most obviously to mind—an
example in which Martin's Scientific American column “Mathematical
Games” played a major catalytic role.

Whether public key cryptography could be said to have the potential
for saving the world, however, is another matter. For that accolade,
you'd have to find an application along the lines of helping to eliminate
widespread famine in a world facing a massive population growth.

Fanciful? Perhaps. But let’s just see how we can do. I'll start with
one of the best known pieces of recreational mathematics there is, and
an old favorite of Martin: the Fibonacci sequence.

Keith Devlin is the author of 24 books, most recently The Math Gene: How
Mathematical Thinking Evolved and Why Numbers Are Like Gossip.
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Once upon « Time There Were Tvro Rabbits

The story begins in the early 13th century, when the great Italian math-
ematician Fibonacci (Leonardo of Pisa) posed the following simple prob-
lem. A man puts a pair of baby rabbits into an enclosed garden. As-
suming that each pair of rabbits in the garden bears a new pair every
month, which from the second month on itself becomes productive, how
many pairs of rabbits will there be in the garden after one year? Like
most mathematics problems, you are supposed to ignore such realistic
happenings as death, escape, impotence, or whatever. Given those as-
sumptions, it is not hard to see that the number of pairs of rabbits in
the garden in each month is given by the numbers in the sequence 1,
1, 2, 3, 5, 8, 13, etc. This sequence of numbers is called the Fibonacci
sequence. The general rule that produces it is that each number after
the second one is equal to the sum of the two previous numbers. (So
1+1=2,14+2=3,2+3 =05, etc.) This corresponds to the fact that
each month, the new rabbit births consists of one pair to each of the
newly adult pairs plus one pair for each of the earlier adult pairs. Once
vou have the sequence, you can simply read off that after one year there
will be 377 pairs.

As Martin and others have observed on many occasions, the Fi-
bonacci numbers have some curious mathematical properties. Perhaps
the most amazing is that, as you proceed along the sequence, the ra-
tios of the successive terms gets closer and closer to the famous golden
ratio number 1.61803..., the “perfect width-to-height” ratio beloved by
the ancient Greeks and incorporated into much of their architecture.
(For example, the front of the Parthenon building in Athens has the
proportions of the golden ratio.)

To digress briefly, I have to say that I never found the golden rectan-
gle the particularly pleasing shape many texthooks claim it to be, and
I know I am not alone in that view. A few years ago, I performed an
experiment: I presented a class of college students with a sheet of paper
on which I had drawn a number of rectangles of various aspect ratios,
among them a golden rectangle, and asked them to choose the one they
found the most attractive. Hardly anyone picked the golden rectangle.
Instead, they plumped for the one I thought they would: the one having
the shape of a modern television screen.

My reason for suspecting this outcome was that, since birth, those
students had been regularly exposed to this particular shape. Indeed,
it had framed much of their experience of the world. Not surprisingly,
therefore, their minds found it highly pleasing.
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By the same reasoning, I have no difficulty in believing that ancient
Greeks really did find the golden ratio the most pleasing aspect ratio
of a rectangle. Because the ancient Greeks deliberately incorporated
the golden rectangle in much of their architecture, the children of that
television-free society were bombarded with golden rectangles. I suspect
it’s a matter not of some inbuilt propensity of the human brain, but of
regular exposure to the environment. When the proposed wide-screen
televisions eventually take over from the existing design, I suspect the
“most pleasing rectangle” will have the aspect ratio of the new screens.
Since that particular ratio happens to be very close to the golden rec-
tangle, that will make all those textbook remarks true once again.

From Rabbits to Flowers to Feeding the World

To return to my main theme, most popular expositions of mathematics
observe that the Fibonacci numbers arise frequently in nature. For ex-
ample, if you count the number of petals in various flowers you will find
that the answer is often a Fibonacci number (much more frequently than
you would get by chance). For instance, an iris has 3 petals, a primrose
5, a delphinium 8, ragwort 13, an aster 21, a daisy 34, and Michaelmas
daisies 55 or 89 petals—all Fibonacci numbers.

For another example from the botanical world, if you look at a sun-
flower yvou will see a beautiful pattern of two spirals, one running clock-
wise, the other counterclockwise. Count those spirals and you will find
that there are 21 running clockwise and 34 counterclockwise—both Fi-
bonacei numbers. Similarly, pine cones have 5 clockwise spirals and 8
counterclockwise spirals; and the pineapple has 8 clockwise spirals and
13 going counterclockwise.

These are not numerological coincidences. Rather they are conse-
quences of the way plants grow. Since the nineteenth century, mathe-
maticians speculated that it was the connection with the golden ratio
that gave rise to the appearance of the Fibonacci numbers in the botan-
ical world. In 1993, two French mathematicians, Stephane Douady and
Yves Couder, finally proved that this was the case. They showed that
the most efficient way to pack petals or seeds next to one another in a
growing plant is to stagger them according to the golden ratio. Since
the numbers of petals or seeds has to be a whole number, this can
only be done approximately, of course. Because the Fibonacei numbers
are the whole numbers in a growth pattern that come closest to being
“staggered” by the golden ratio, those are the numbers the ever-efficient
Mother Nature uses.
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Another appearance of the Fibonacci numbers in the natural world
arises in the way the leaves are located on the stems of trees and plants.
If you take a look, you will see that, in many cases, as you progress up
along a stem, the leaves are located on a spiral path that winds around
the stem. The spiral pattern is sufficiently regular that it leads to a
numerical parameter characteristic for the species, called its divergence.
Start at one leaf and let p be the number of complete turns of the spiral
before you find a second leaf directly above the first, and let ¢ be the
number of leaves you encounter going from that first one to the last
in the process (excluding the first one itself). The quotient p/q is the
divergence of the plant.

If you calculate the divergence for different species of plants, you
find that both the numerator and the denominator tend to be Fibonacci
numbers. In particular, 1/2, 1/3, 2/5, 3/8, 5/13, and 8,21 are all com-
mon divergence ratios. For instance, common grasses have a divergence
of 1/2, sedges have 1/3, many fruit trees (including the apple) have a
divergence of 2/5, plantains have 3/8, and leeks come in at 5/13.

Once again, this is not a coincidence. The leaves on a plant stem
should be situated so that each has a maximum opportunity of receiving
sunlight, without being obscured by other leaves. The optimal way to
do this is for the angle between successive leaves to be the golden ratio.

And now we have our (potential) link between recreational mathe-
matics and feeding a growing population. There is no doubt that it was
the observations of recreational mathematicians of the ubiquitous ap-
pearance of the Fibonacei numbers of plants and flowers that led math-
ematicians and botanists to figure out why this was the case. Thus,
recreational mathematics played a significant role in developing our un-
derstanding of plant growth.

Of course, not all research into plant growth has been motivated by
mathematical considerations. But some has, and in the long run it's the
total understanding achieved that counts. And without doubt, increased
understanding of plant growth processes have led plant scientists to de-
velop new strains of plant that are more disease resistant, can grow in
different climates, and can give greater yields.

This can’t happen fast enough. According to data in a report issued
by the Club of Rome in 1972 (D. H. Meadows, D. L. Meadows, J. Ran-
ders, and W. Behrens III, The Limits of Growth), with the then existing
crop strains and farming methods, the total area of agriculturally-viable
land on the earth’s surface would cease to be sufficient to feed the world’s
population in the year 2,000. Though distribution problems mean that
we still see famine in several parts of the world, there is currently no over-
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all food shortage. The development of new crop strains and improved
farming methods has prevented that 1972 prediction from being realized.
But with a world population still undergoing exponential growth with a
ratio close to 2, it will take further advances to ensure that the world has
sufficient food to survive the coming half century, after which the world
population is—according to the latest population models—predicted to
enter a period of decline.

Thus, it is not at all unreasonable to claim that recreational math-
ematics could lead to—and might in fact have already played a part
in—feeding a growing world population.

Breeding Rabbits i a Chancy World

Of course, growing systems don’t always exactly follow mathematically
precise patterns such as the Fibonacci sequence. The real world is full of
random events and unpredictable changes. Genuine rabbit populations
tend to grow somewhat erratically, and if you go around counting petals
and leaves of flowers and plants you won’t always find Fibonacci num-
bers. (In fact, many flowers have six petals, but that's because of the
biological efficiency of six-fold symmetry, so recreational mathematics
still plays a role.)

Can mathematicians say anything about Fibonacci-like growth se-
quences that are subjected to a random effect? Surprisingly perhaps,
the answer is yes, under certain circumstances.

As I mentioned earlier, as you proceed along the Fibonacci sequence,
the ratios of the successive terms get closer and closer to the golden
ratio, 1.61803... Another way to express the same result is that the
N*h Fibonacci number is approximately equal to a constant times the
NI power of the golden ratio. This gives a way to calculate the NP
Fibonacci number without generating the entire sequence of preceding
Fibonacci numbers: Take the golden ratio, raise it to the power N,
divide by the square root of 5, and round off the result to the nearest
whole number. The answer you get will be the N*® Fibonacci number.

Faced with such a result, most numerically minded citizens will nod
appreciatively and move on to something else. But mathematicians—
both professional and recreational—ask “What if?” questions. For ex-
ample, suppose that, when you generate the Fibonacci sequence, you
flip a coin at each stage. If it comes up heads, you add the last number
to the one before it to give the next number, just as Fibonacci did. But
if it comes up tails, you subtract. Now you have a Fibonacci-like process
in which chance plays a role.
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For example, one possible sequence you could get in this way is:
1,1, 2 (H), 3 (H), -1 (T), 4T), =5 (T), —1 (H), ...
Another is:
1,1,0(T), 1 (H), -1 (T),2(T), 1 (H), 1 (T), ...

The random sign changes can lead to sequences that suddenly switch
from large positive to large negative, such as:

1,1,2,3,5, 8 13,21, -8, 13, —21, ...

as well as to sequences that cycle endlessly through a particular pattern,
such as:
1,1,0,1,1,0,1,1,0,1, 1,0, ...

or
1,1,0,1,-1,0, -1, 1,0, 1, -1, ...

If you are like the character Rosenkrantz in Tom Stoppard’s play
Rosenkrantz and Guildenstern Are Dead and your coin keeps coming up
heads every time, you can even get the original Fibonacci sequence

1,1, 2, 3,5, 8, 13, 21, 34, 55, 89, ...

With such a variety of behavior, it’s not obvious that such sequences
follow the nice kind of growth pattern of the Fibonacci sequence.

But they do. In 1998, a young mathematician called Divakar Viswanath
showed that the absolute value of the N** number in any random Fi-
bonacci sequence generated as described is approximately equal to the
N power of the number 1.13198824 . ..

Actually, that’s not quite accurate. Because the sequences are gener-
ated randomly, there are infinitely many possibilities. Some of them will
not have the 1.13198824 property. For example, the sequence that cycles
endlessly through 1, 1, 0 does not have the property, nor does the orig-
inal Fibonacci sequence. But those are special cases. What Viswanath
showed is that if you actually start to generate such a sequence, then
with probability 1 the sequence you get will have the 1.13198824 prop-
erty. In other words, you can safely bet your life on the fact that for
your sequence, the bigger N is, the closer the absolute value of the Nt
number gets to the N*® power of 1.13198824 . ..

To give some idea of what this result says, the way the random-
ized Fibonacci sequence is generated is a bit like the daily weather at a
particular location. Today’s weather can be assumed to depend on the
weather the previous two days, but there is a large element of chance.
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The analog of the number 1.13198824 ... for the weather would give a
quantitative measure of the unpredictability of weather. It measures the
rate at which small disturbances explode exponentially in time. It would
tell you for exactly how many days high-speed computers can forecast
weather reliably. Unfortunately, nobody knows this number for global
weather, and probably never will.

Viswanath’s result brought to an end a puzzle that had its origins
in 1960. In that year, Hillel] Furstenberg (now at the Hebrew Univer-
sity) and Harry Kesten (at Cornell University) showed that for a general
class of random-sequence generating processes that includes the random
Fibonacci sequence, the absolute value of the N*® member of the se-
quence will, with probability 1, get closer to the N** power of some
fixed number. (The exact formulation of their result is in terms of ran-
dom matrix products, and is definitely not recreational mathematics.
See Viswanath’s paper (published in the journal Mathematics of Com-
putation) for an exact statement, or read the whole story in the book
Random Products of Matrices With Applications to Infinite-Dimensional
Schrédinger Operators, by P. Bougerol and J. Lacroix, published by
Birkhéduser, Basel, in 1984.)

Since Furstenberg and Kesten’s deep result applied to the random-
ized Fibonacci process, it followed that, with probability 1, the absolute
value of the N** number in any random Fibonacci sequence will get
closer and closer to the N** power of some fixed number K. But no
one knew the value of the number K, or even how to calculate it. What
Viswanath did was find a way to compute K. At least, he computed the
first eight decimal places. Almost certainly, K is irrational, so cannot
be computed exactly.

Since there is no known algorithm to compute K, Viswanath had
to adopt a circuitous route, showing that K equals ef, where P lies
somewhere between 0.1239755980 and 0.1239755995 (and, as usual, e is
the base for natural logarithms). Since those two numbers are equal in
their first eight decimal places, that meant he could calculate K to eight
decimal places.

The process involved large doses of mathematics and some heavy
duty computing. Since his computation made use of floating point
arithmetic—which is not exact—Viswanath had to carry out a detailed
mathematical analysis to obtain an upper bound on any possible errors
in the computation.

He described the key to his new result this way: “The problem was
that fractals were coming in the way of an exact analysis. What [ did
was to guess the fractal and use it to find K. To do this, [ made use
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of some devilishly clever work carried out by Furstenberg in the early
1960s.”

And with that computation, mathematics had a new constant, a
direct descendent of a pair of rabbits in thirteenth-century Italy.

From Rabbits to How We Gan See through Glass

Does Viswanath’s new result have any applications? Probably not—
unless you count the fact that an easily understood, cute, counter-
intuitive result about elementary integer arithmetic can motivate a great
many individuals (your present reporter included) to take a look at an
area of advanced mathematics full of deep and fascinating results that
has perhaps not hitherto had the attention it deserves. Indeed, in that
respect, the randomized Fibonacci sequence problem resembles Fermat’s
Last Theorem, finally solved by Andrew Wiles in 1994. It too was easy
to state and to understand, and yet it was only a hairsbreadth away from
some of the deepest and most profound mathematics of all time. Over
the years, Fermat’s Last Theorem attracted many people—both profes-
sional and amateur—to learn about analytic number theory (including
Wiles himself). When we talk about “applications,” we often overlook
the very important application of attracting people to mathematics in
the first place.

If it’s “real” applications you want, however—perhaps with a chance
of saving the world—then you don’t have to go any further than the
work of Furstenberg and Kesten that lays behind Viswanath’s result.
Applications of that work have led to advances in lasers, new industrial
uses of glass, and to development of the copper spirals used in birth
control devices. The research which led to those advances earned the
1977 Nobel Prize in physics for the three individuals involved: Philip
Anderson of Bell Laboratories, Sir Neville Mott of Cambridge University
in England, and John van Vleck of Harvard.

The citation that accompanied the Nobel Prize to the three re-
searchers declared it to be “for their fundamental theoretical investi-
gations of the electronic structure of magnetic and disordered systems.”

“Disordered systems” exists within noncrystallic materials that have
irregular atomic structures, making it difficult to theorize about them.
The key starting point for their work was to realize the importance of
electron correlation—the interaction between the motions of the elec-
trons.

Anderson’s main contribution was the discovery a phenomenon known
as Anderson localization, and this is where the random matrix multipli-
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cation came in. Imagine you have a material, say a semiconductor, with
some impurities. If you pass a current through it, you might expect it
to get dispersed and diffracted in a random fashion by the impurities.
But in fact, at certain energies, it stays localized. The first rigorous
explanation of this used Furstenberg and Kesten's work.

A similar explanation shows why you can see through glass. The
irregular molecular structure of glass—technically it’s a liquid—should
surely cause some of the incident light rays to bounce around in a seem-
ingly random fashion, resulting in a blurred emergent image. But as
we all know, that’s not what happens. Somehow, the repeated random
movements lead to orderly behavior. Furstenberg and Kesten’s work
on random matrix multiplication provides the mathematical machinery
required to explain how this happens.

Of course, with the Furstenberg and Kesten work, we are no longer
talking about recreational mathematics. But it does provide another
excellent illustration of how a piece of “curiosity driven, pure mathe-
matical research” can, years later, lead to extremely useful applications.
And is so doing it reminds us that the pursuit of mathematics purely
for fun—something Martin encouraged millions of people to do for many
years—can sometimes have important consequences that affect us all.
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Varietions on a Transcendental Theme

Roger Penrose

The simple ideas that I am describing here represent the minutest token
of the appreciation and respect that I have for Martin Gardner. His
influence has been immeasurable, certainly on me personally when I was
an aspiring young mathematician, but similarly on a great many others
in developing their interest and excitement for mathematical ideas.

From some time in the 1970s, I have used the following unending
sequence of numbers

..,7.9,12,7,24, 36,56, 90, . ..

as an example of a deceptively simple-looking puzzle, which hides a
certain subtlety. The puzzle is to supply the missing number, denoted
by 7. Of course, one could simply use a sixth degree polynomial to yield
the numbers that are explicitly given, and this provides the answer

582
?T= ~ 16.629
35

(easily obtained by taking differences repeatedly). But this is not the
intended answer, which is numerically only slightly larger

7?7 =24log2 = 16.636

(all logarithms, in this article, being natural logarithms).

Why is this second suggestion actually the “correct answer”? The
idea is that there should be a simple formula to represent all the terms

Roger Penrose was knighted in 1994 for his numerous contributions to math-
ematics and science.
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of the infinite sequence, where the zeroth term is that given by “?”. In
this case the formula for the n'" term is
24(2" — 1)

n

and we easily check that the values for n = -3, -2, —1, +1, 42, 43, +4
come out correctly. The value for n = 0 appears to be the indeterminate
“0/0", but we obtain the required answer by taking the limit n — 0,
(using I'Hopital’s rule and 2™ = ¢™1982),

The thing that is striking about this is that, except for n = 0, the
formula always yields a rational number for each integer value of n. Yet
for n = 0 the formula actually provides a transcendental value. (I came
to this example whilst worrying about a problem of relevance to physics
having this kind of character.) In this example, I have disguised the fact
that the general value is merely rational, rather than being integral, by
choosing a multiplying factor (here 24) that eliminates all the visible
denominators. Including, a few further terms perhaps slightly spoils the
effect:

...,5%.7,9,12,7,24,36,56,90,148% ,252,4352 , 765, .. !

It is not hard to construct other examples with the same property,
but the numbers often get unreasonably large. We can take our (2™ —
1)/n the “other way up”, the general term now being 105n/(1 —27™),
where we find

...,28,45,70,105,7, 210, 280, 360, 448, . ..

for which the answer is ? = 105/log2 ~ 151.48. For another example,
we find the symmetrical

..,85,56,40,32,7,32,40, 56,85, . ..
where the general term is 64(2™ — 27")/3n and
7= 2957

A little more exotic are examples for which a fair case can be made that
“?” should most naturally taken to be a complex number. For example,

..., 16,-12.9 -8.6,-12,7,12,6,8,9,12,16, . ..
is given by the expression 12F, /n, where F), is the n'® Fibonacci number:

|
b

ﬂ-‘...|-—4|-—3‘—-2|—-1I[]|1|2‘3‘4
F, ...|-3| 2‘-1| 1|[]|1|1‘2‘3

5
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satisfying
Fﬂ. =Fﬂ.—l '+‘Fn—2-

Fibonacci numbers can be defined analytically by use of the formula

Fo=¢" — (=¢)"

S

where ¢ is the golden mean

Using the same procedure as above for obtaining the value of our ex-
pression 12F, /n at n = 0, and making use of

q}n _ (___G-))—n — an log ¢ __ c—nlog{—¢)
and
log(—¢) = iw + log ¢

so that 1'Hopital’s rule gives us

lim w =log ¢ + im + log ¢
n—0 T :
we find P o los bt i
lim In _ 21089 T
n—0 n 5

so we obtain the complex transcendental answer

24 12ri
= —log$+ —= =~ 5.165 + i16.86.

V5 NG
Of course, there are conventional matters involved in the choice of
the logarithm of a complex number, and we could alternatively have
come up with ? = (24log¢ — 127i)/y/5. (There is no algebraic way of
distinguishing +i from —i, for example.) Some people might prefer the

?

average of these two answers, which drops the imaginary part altogether,
giving simply ? = 24 log ¢/ V5. My own opinion is that it is more natural
to choose the complex-value ? = (24 log ¢+ 127i) /v/5, as above—or even
any of the other values ? = (24log ¢ 4 12mi + 24Nwi)/+/5, where N is
some integer—than it is to adopt ? = 24 log ¢/ V5. (My reasons perhaps
come from an interest in quantum field theory, where things of this
nature are indeed often appropriate.)
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In view of such ambiguities, it is perhaps more appropriate to phrase
such puzzles in the form “find a mathematical justification for the choice
7= (24logo+ 12:'1'2'-)/\/3 in the sequence ..., 16,-12,9, —8,6,—12,7,12,
6,8,9,12,16,...” In this spirit, we can address other examples of this
nature. One of the simplest is just the “upside-down” version of the
example just considered, for which we need to justify

B 24y/5(2log ¢ — i)
~ 4(log ¢)? + n2

Vd

~ 11.549 4 15.228

in the sequence
.,9,-12,16, 18,24, —12,7,12,24,18,16,12,9, .. ..

For three more somewhat similar sequences, consider
. ...—246,153, 104,72, 96, 7, 96,72,104,153,246,...

...5,-8,8,-32, 7, 64,32,64,80,...
=2, 7, 12,6,28,69,132,266,. ..

where one has to justify, respectively,

192 .
T = T(Zlog?—km)
64
? = }—(logQ-—iTr)
3
12 3
7T = —|log=-—im].
E (og;2 H‘I’)

Perhaps some reader will come up with an original further class of
examples.
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Magtc “Squares™ Indeed!

Arthur T. Benjamin and Kan Yasuda

Introduction
Behold the remarkable property of the magic square:
6 1 8
75 3
2 9 4
6182 4 7532 + 294> = 816% 4 3577 4 492? (rows)
672% + 1592 + 8347 = 276% + 9512 4 438”7 (columns)
654% + 1327 + 8797 = 456% + 2317 + 9787 (diagonals)
6397 + 1747 + 8527 = 0367 + 471% + 2587 (counter-diagonals)
6542 + 7987 4+ 2132 =  456% + 897% + 3122 (diagonals)
693% + 7142 + 2582 = 3962 4 4172 4 8527 (counter-diagonals).

This property was discovered by Dr. Irving Joshua Matrix [Gar89],
first published in [Hol70] and more recently in [Bar97]. We prove that
this property holds for every 3-by-3 magic square, where the rows,
columns, diagonals, and counter-diagonals can be read as 3-digit num-
bers in any base. We also describe n-by-n matrices that satisfy this

Mathemagician Arthur T. Benjamin teaches mathematics at Harvey Mudd
College in Claremont, California and performs lightning calculations at the Magic
Castle in Hollywood. Kan Yasuda is a graduate student studying mathematics at
the University of Tokyo. This article was reprinted from the American Mathematical
Monthly with permission from the MAA and the authors.
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condition, among them all circulant matrices and all symmetrical magic
squares. For example, the 5-by-5 magic square in (1) also satisfies the
square-palindromic property for every base.

|' 17 24 1 8 15 '|
23 5 T 14 16
4 6 13 20 22 (1)
10 12 19 21 3
11 18 25 2 9
We must be careful when we read these numbers. The base 10 num-
ber represented by the first row of (1) is 17-10% +24-10% + 1-10% + 8-
10 4 15 = 194195. The base 10 number based on the first row’s reversal
is 158357,

Sufficient Gonditions

We say that a real matrix is square-palindromic if, for every base b, the
sum of the squares of its rows, columns, and four sets of diagonals (as
in the previous examples) are unchanged when the numbers are read
“backwards” in base b. We can express this condition using matrix
notation. Let M be an n-by-n matrix. Then the n numbers (in base b)
represented by the rows of M are the entries of the vector Mb, where
b= (b""1,b"2,...,b,1)7, and T denotes the transpose operation. The
sum of the squares of these numbers is

(Mb)T(Mb) = bT(MTM)b.

Next, the n numbers represented by the rows when read “backwards”
are the entries of M Rb where the n-by-n reversal matriz R = [r;;] has
rij = lifi4+j = n+1, and r;; = 0 otherwise. Note that RT =R '=R.
The sum of the squares of these numbers is

(MRb)T(MRb) = b (R(MTM)R)b.

Hence a sufficient condition for the rows of M to satisfy the square-
palindromic property is simply R(MTM)R = MT M. Matrices A that
satisfy RAR = A are called centro-symmetric, [Wea85]: a;=
Gpt1—in+1—j- Matrices A that satisfy RAR = AT are called persym-
metric, [GL83]: a;; =@n41—jnt1-4- It is easy to see that symmetric
matrices that are centro-symmetric must also be persymmetric. Since
MT M is necessarily symmetric, our sufficient condition says that M7T M
is centro-symmetric, or equivalently, that

MT M is persymmetric.
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The square-palindromic condition for the columns of M is the square-
palindromic condition for the rows of M7, Hence it suffices to require
that

MM? is persymmetric.

For the first set of diagonals, we create a matrix M with the property
that each column of M represents a diagonal starting from the first row
of M. To do this, we introduce two other special square matrices. Let
Py, = [pi;] denote the n-by-n projection matriz whose only non-zero entry
is pgr = 1. Notice that PT = P, and P M preserves the k—th row of M
but turns all other rows to zeros. Let S = [s;;] denote the n-by-n shift
operator where s;; = 1if i — j =1 (mod n), s;; = 0 otherwise.

The following properties of S are easily verified: ™ = I,,, S~! =
ST = RSR, and MS* shifts the columns of M over “k steps to the
left”. Now define .

M=) PMS
i=1
Hence the i-th diagonal of M, starting from the first row becomes the
i-th column of M. By the column condition, these diagonals satisfy
the square-palindromiec property if the (i, j) entry of MM?T equals its
(n+1—j,n+1—1) entry
We have

MMT

Il

S o PMSTH(Y PMsTHT
i=1 g=1

Il

Zn: Zn: PMS—IMTP;.

i=1 j=1

It follows that MM has the same (i, j) entry as M S~ M7T and the
same (n 41— j,n+ 1 —i) entry as well; if MS* M7 is persymmetric,
then these entries are equal. Consequently, these diagonals obey the
square-palindromic property if

MSEMT s persymmetric for k =1,... n. (2)

Conveniently, (2) also ensures that the counter-diagonals starting from
the first row satisfy the square-palindromic property. This can be seen
by mimicking the preceding explanation with M = o PM S—i=1),
whereby MMT has the same (i,j) and (n 4+ 1 — j,n + 1 — i) entry
as MS7—iMT. For the other diagonal and counterdiagonal, we obtain
similar results [Yas97], which we summarize in the following theorem:
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Theorem | A square matriz M has the square-palindromic property if the
following matrices are all persymmetric:

1. MTM,
2. MMT,

3. MS*MT, fork=1,...,n, and

1}-.

MTSEM, fork=1,....n.

Square-Palindromic Matrices

Next we explore classes of matrices that are square-palindromic. We say
that a square matrix A is centro-skew-symmetric if RAR = — A, that is,
@i+ Qni1—iny1—5 = 0.

1 2 3 4 a b .
56 7 8 PR
8 76 5 S .
4 3 2 1
Centro-Symmetric Centro-Skew-Symmetric

Theorem 2 Every centro-symmetric or centro-skew-symmetric matric is
square-palindromic.

Proof. If M is centro-symmetric or centro-skew-symmetric, then the re-
lations RM = + MR and R(S*)R = S~* ensure that M satisfies the
conditions of Theorem 1. O

The theorem is not at all surprising since the collection of rows,
columns and diagonals of M read the same backwards and forwards.
The next class of matrices, however, satisfies the conditions in a non-
obvious way.

We say that A is circulant if every entry of each “diagonal” is the
same, i.e., a;; = agg if i — j = k — £ mod n, or simply SAS™! = A We
say that A is (-1)-circulant if SAS = A.
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|4
1 2 3 4 1 2 3 4 5
2 3 4 5 1
4 1 2 3

3 4 5 1 2

3 4 1 2 .
5 3 4 1 4 5 1 2 3
) 512 3 4
Circulant (-1)-Circulant

Notice that the circulant and (—1)-circulant property is preserved
under transposing. It is easy to show that the product of two circulant
matrices or two (—1)-circulant matrices is circulant, while the product
of a circulant and (—1)-circulant matrix is (—1)-circulant. Note that S
is circulant, R is (~1)-circulant, and that all circulant matrices are per-
symmetric since a;; and @y,41_jn+1—; lie on the same diagonal. Conse-
quently, if M is circulant or (~1)-circulant, the matrices M Tar, MM7T,
MS MY and MTS*M are all circulant, and thus persymmetric. From
Theorem 1, it follows that

Theorem 3 Bvery  circulant or (-1 )-circulant matriz  is  square-
palindromic.

Notice that four of the six square-palindromic identities are not ob-
vious, but two of the diagonal sums are completely trivial

Magic and Semi-Magic Squares

A semi-magic square with magic constant ¢ is a square matrix A in
which every row and column adds to ¢. Using matrix notation, this says
that AJ = eJ = JA, where J is the matrix of all ones. If the main
diagonal and main counter-diagonal also add to ¢, then the matrix is
called a magic square. Circulant and (-1)-circulant matrices are always
semi-magic, but are not necessarily magic.

A magic square A is symmetrical [BJ76] if the sum of each pair of
two entries that are opposite with respect to the center is 2¢/n, that is
Qij + Qnalins1—j = 2¢/n. Notice that a semi-magic square with this
property is magic.

Like the example below, magic and semi-magic squares do not nec-
essarily satisfy the square-palindromic property.

1
1
1

= o
N T

Semi-Magic but not square-palindromic
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However,

Theorem % Every symmetrical magic square is square-palindromic.

Proof. The trick is to notice that if M is a symmetrical magic square with
magic constant ¢, then M = My + ¢J/n, where My is a symmetrical
magic square with magic constant 0. But this implies that M} is centro-
skew-symmetric. Therefore Mj is square-palindromic and satisfies the
conditions of Theorem 1. Thus, since Mr{?ﬂif@ and J are persymmetric,
it follows that MTM = (Mg + cJ/n)T(My + eJfn) = MI My + 2 J/n
is also persymmetric. Hence M satisfies condition 1 of Theorem 1. To
verify condition 3 (the other cases are similar), notice that

MS*MT = (Mo + - D)SH (Mo + =)
kT L C
= MyS*M; + ;J
is persymmetric for £ = 1,...,n, since M, satisfies condition 3 of The-

orem 1.

Although not all magic squares are square-palindromic, it is easy to
see that all 3-by-3 magic squares are symmetrical. Consequently, we
have

Theorem 5 All 3-by-3 magic squares are square-palindromic.
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The Beer Bottles Problem
N. 6. de Braijn

In order to have a party on the top of a cliff, two people, P, and P,, want
to transport a large number of beer bottles from the ground level to the
top. There are two paths, both with several ups and downs. The bottles
are all placed on a rigid board of sufficient length, and the idea is that P;
takes the first path, P, the second one. But since the board is slippery,
it should be kept absolutely horizontal all the time, for otherwise the
bottles will slide down. Can this always be prevented?

C D

Figwe 1.  The two paths.

The situation is shown in Figure 1. A point P, has to move on the
first path, Py on the second one. P; and P, start on the ground level
AB and have to finish at the top level C'D in such a way that they had
the same altitude at each moment in-between. This is indeed possible,
at least if we assume that the paths lie entirely between AB and CD,
and that they do not have infinitely many maxima and minima. Let us
just suppose that they are composed of a finite number of straight line
segments, as in Figure 1.

This note will show that the problem is solvable indeed, and it will use
old-fashioned descriptive geometry. The notation is shown in Figure 2.

N. G. de Bruijn has published papers since 1937 on a wide variety of subjects
in mathematics and related areas, and maintains a keen interest in mathematical
entertainment.

373




374 N. G. de Bruijn

Fige 2. Three projections folded into a single plane.

We have three mutually orthogonal lines OX, OY, and OZ in three-
dimensional space. Let us imagine the plane OXY to be horizontal, and
the axis OZ to be vertical. We think of the plane OY Z as being in front
of us, and OX Z to our left.

A point P in space leads to points Py, P, Ps, obtained by projection
in the directions of OX, OY, OZ onto the planes OY Z, OZX, OY Z,
respectively.

The projections are shown in one and the same plane by folding the
plane O X Z down, folding along the line OX, and, similarly, folding the
plane OY Z down along OY. As long as we have points in the first
octant (i.e., in front of OY Z, to the right of 0ZX, and above OXY),
the projections do not overlap.

Now we put the first path of Figure 1 on the plane OY Z. It will act
as the orthogonal projection of a factory roof. That roof is formed by
taking, through each point of the path, a straight line parallel to OX.
Similarly we put the second path on the plane OX Z, and taking lines
parallel to OY, we get a second roof.

The intersection of the two roofs is significant. If a point P lies on
the intersection, then its projection P; lies on the first path, and P; on
the second one. Moreover, these projections P, and P, have the same
altitude, simply the altitude of P above the horizontal plane. In other
words, P represents an acceptable situation of the two people P, and
P, acceptable in the sense that the bottles do not begin to slide.
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The solution of the problem of the beer bottles can now be obtained
by the construction of the intersection of the roofs by means of the
methods of descriptive geometry. What we have to construct is the
projection of the intersection on the horizontal plane, and what we have
to show is that this intersection contains a continuous connection from
the upper left corner O (representing the beginning of the paths) to the
lower right corner E (corresponding to the upper end of the paths). And
this connectivity can be studied just by looking at the projection on the
horizontal plane OXVY.

We shall not go into the details of the construction, but just display
the result in the example of Figure 3. One arbitrary position of the
point P is indicated by its projections Py, P, P;. In the lower right
corner, between the lines OX and QY we have a graph drawn in heavy
lines. Indeed it is possible to walk through this graph from point O in
the upper left corner to point F in the lower right. This means that the
beer gets to the party all right.

Let us now argue why there is always such a connection. It follows
from a simple theorem by Euler. It says that if in a finite (undirected)
graph where each vertex has an even degree (the degree is the number
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Figre 3.  (Bottom) The intersection of the roofs. (Top) The two paths.
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of connections to other vertices), then the set of edges can be split into a
number of disjoint cycles. As a corollary we mention that if all vertices
have even degree apart from the vertices O and E whose degree is odd,
then there is a connection from O to E through the graph. In order
to reduce it to Euler’s theorem, we just add a single edge from O to
E, getting a graph where all degrees are even, next split the graph into
cycles, then take the cycle containing OF. Removing OF from that
cycle, we have a path from O to E.

In our case of the graph obtained as horizontal projection of the
intersection of two roofs, each vertex has degree 0, 2, or 4, except for
the points O and E, which have just 1. This proves that O and E are
connected through the graph.

This descriptive geometry method is not just a proof of the existence
of a solution: it also provides a quick survey of all possibilities to walk
from O to E.

Figure 3 was produced by a computer program (in PostScript) that
gets the data of the two paths as input.

A personal note: In a mathematical formulation the problem went
around in the fifties. At that time I gave a talk about it in a students
club, and there I invented the story of the party with the beer bottles. A
few years later, in 1963, I mentioned it to Hans Heilbronn in Bristol, but
to my great surprise he told me that he had been the one who invented
the problem, and that the beer bottles and the party on the cliff had
been his own formulation. As an abstract mathematical problem it had
traveled from mouth to mouth, but the beer bottles must have arrived
in my mind by some kind of Extra Sensory Perception.




The Fractal Soctety
Olifford Pickover

“If the cosmos were suddenly frozen, and all movement ceased. a
survey of its structure would not reveal a random distribution of
parts. Simple geometrical patterns, for example, would be found
in profusion—{from the spirals of galaxies to the hexagonal shapes
of snow crystals. Set the clockwork going, and its parts move
rhythmically to laws that often can be expressed by equation of
surprising simplicity. And there is no logical or a priori reason
why these things should be so.”

—Martin Gardner, Order and Surprise

Imagine a group of mathematicians who meet each month in a se-
cret club. Status in their “Fractal Society” is based on the prowess
with which an individual plays mathematical games and proves math-
ematical theorems. The center of such activity is a building called the
Imaginarium, which is shaped like a Mandelbrot set. There are various
pleasurable rewards bestowed upon club members in proportion to the
novelty of theorems they solve. A favorite society game is called Fractal
Fantasies.

The playing board for the Fractal Fantasies game is a fractal nest-
ing of interconnected rectangles (Figure 1). The Fractal Society is so
enthralled with this game that they have cut the design into the roofing
slabs of their homes and in the surfaces of their kitchen tables. The
board for Fractal Fantasies contains rectangles within rectangles inter-
connected with gray lines as shown in Figure 1. There are always two
rectangles within the rectangles that encompass them. The degree of

Clifford Pickover is a leading popular science writer whose latest book is
Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning. See
http://www.pickover.com.
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nesting can be varied. Beginners play with only a few nested rectangles,
while grand masters play with many recursively positioned rectangles.
Tournaments last for days, with breaks only for eating and sleeping.

The playing board illustrated in Figure 1 is called a “degree 2” hoard,
because it has two different sizes of rectangles within the large bounding
rectangle. The “degree 3" board is shown in Figure 2. Beginners usually
start with a degree 1 board, and grand masters have been known to use
a degree 20 board. One player uses white playing pieces (like stones),
the other uses black. Each player starts with a number of pieces equal to
half the number of vertices (small circles) on the board minus two. For
the board here, each player gets 19 stones. With alternate moves, the
players begin by placing a stone at points on the circles which are empty.
As they place stones, each player attempts to form a row of three stones
along any one of the horizontal sides of any rectangle. This three-in-a-
row assembly of stones is called a Googol. When all the stones have been
placed, players take turns moving a piece to a neighboring vacant space
along one of the dashed or straight connecting lines. When a player
succeeds in forming a Googol (either during the alternate placement of
pieces at the beginning of the game, or during alternate moves along
lines to adjacent empty points) then the player captures any one of the
opponent’s pieces on the board and removes it from the board. These
removed stones may be kept in ¢ -shaped receptacles on opposing sides
of the board in Figure 1. (In some versions of the game, an opposing
stone cannot be taken from an opposing Googol.) A player loses when
he or she no longer has any pieces or cannot make a move.

Mathematicians and philosophers will no doubt spend many years
pondering a range of questions, particularly for boards with higher nest-
ing. Computer programmers will design programs allowing the board
to be magnified in different areas permitting the convenient playing at
different size scales. They’ll all wish they had fractal consciousnesses
allowing the contemplation of all levels of the game simultaneously.

Many of obsessed friends have spent years of their lives pondering
the following questions relating to Fractal Fantasies. No one has suc-
ceeded in answering these questions for games with degree higher than
2. Various centers have been established and funded in order to answer
the following research questions:

1. What is the maximum number of pieces that can be on the board
without any forming a row?

2. Is there a best opening move?
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Figire 2. The degree 3 game.
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3. If the large bounding square has a side one foot in length, and each
successive generation of square has a length 1/6 of the previous,
what is the total length of lines on the board?

4. If a spider were to start anywhere on the board and walk to cover
all the lines, what would be the shortest possible route on the
board?

5. How many positions are possible after one move by each player?

6. How large would a degree 100 board have to be in order for the
smallest squares to be seen? How many playing pieces would be
used? What length of time would be required to play such a bizarre
game?

I have received numerous mail from readers who experimented with
the Fractal Fantasies game. For example, Martin Stone from Temple
University suggests a distributed version of the game played over the
Internet. He writes, “Imagine a multi-user recursive game server dedi-
cated to the fostering of a greater intuitive understanding of recursive
structures and permutations.” David Kaplan from New York University
points out that the game rules for Fractal Fantasies are similar to a me-
dieval game called Nine Man Morris played on a different playing board.
Paul Miller notes that the Fractal Fantasies game was discussed at the
Boston Chapter of MENSA. He asks, “Can pieces of a Googol move out
and back (thus forming and reforming the Googol)?” He suggests that
the Googol pieces be allowed to move only if there is no other legal move.
Alternatively, if a player moves a piece out of a Googol, he should not be
allowed to move it back into the same place on the next turn. Michael
Currin from the University of Natal in South Africa suggests that the
game be adapted to allow more than two players. Finally, Brian Osman,
a 15-year-old from Massachusetts, writes:

I greatly enjoyed your description of the Fractal Fan-
tasies. However, I point out that some of what you said
is almost impossible! I've calculated the number of rectan-
gles and “spots” for every size board, using the formula:
(2N 4 1) — 1, where N is the degree of the board. From
this, one can find the number of spots by simply multiplying
by 6. Once you have this number, divide by two and subtract
two to find the number of stones for each player. You have
stated that grand masters have been known to use boards of
degree 20. I've checked my calculations repeatedly, and this
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would require each player start with 6,291,451 stones! As-
suming each opening move (only those to place your pieces)
took 2 seconds, the players wouldn’t be able to move until
291.2708797 days after they started the game. Am I missing
something, or are your numbers as ludicrous as they seem
to me? Please don't take offense at this. I still found the
concept very enjoyable.
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Four bames for Gardner

Elvegn Berlekamp

Scientific American readers first became aware of the game of Domineer-
ing in [Gar74]. In the same article, Martin Gardner also presented an-
other game called Quadraphag, which combined some features of chess
with some features of Go. The present paper extends both of those
themes (and others).

A 19 x 19 Go board may also be regarded as an 18 x 18 array of
squares. If we cover over the middle two rows and the middle two
columns, we then have four 8 x 8 arrays of squares. One of them is
treated as a 9 x 9 Go board; the others are treated as 8 x 8 boards on
which we will play Chess, Checkers, and Domineering, respectively. In
Domineering, White (also known as Right) has legal moves consisting
of placing a 2 x 1 domino onto any pair of horizontally adjacent empty
squares of the board. His opponent is Black (also known as Left). Her
legal moves consist of placing a 1 x 2 domino onto any pair of vertically
adjacent empty squares. Empty squares are shown in white.

We assume the reader has some acquaintance with Checkers, Chess,
and Go.

The problem to which this paper is devoted appears appears in Fig-
ure 1.

To start, the reader might wish to warm up by considering the four
boards as four isolated, independent problems, one in each of the four
games. However, our primary interest is in playing all four games at
once. At each turn, the player may play any legal move on whichever
board he chooses. A player who has no legal move must resign, and that
ends the game.

Elwyn Berlekamp is an academic and entrepreneur, a theoretician and engi-
neer, and has worked and played with games for over 50 years.
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Figure 1. Initial position (in the Domineering board, the shaded areas are out
of play).

This last-move-wins rule is standard in Checkers and in Domineer-
ing. It is also the governing criteria in the chess problem shown,
because the kings and pawns shown within the circle in the mid-
dle of the board are deadlocked in a configuration that chess players
call mutual zugzwang. So, for our purposes, we may treat only the
simplified “mortal” chess problem, in which the encircled kings and
pawns are removed from the board, the concept of stalemate is erad-
icated, and the goal (as in checkers) is to get the last legal move.
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Although Go players are accustomed to passing and then counting
score, the American Go Association rules require that a player must
pay a one-point fee for each pass. This fee is conventionally paid by
returning one of your opponent’s stones that you have captured to the
pot. After both players have made such passes, they might very well
elect to count score by alternately filling in their territories to see who
runs out of moves first. Thus, playing Go with the last-move-wins rule
has no significant effect on the players’ strategies. It is basically the
same game, except for a minor procedural difference in how the score-
counting is conducted. This difference often has no affect on the game’s
outcome.

A “move” in Go or Domineering corresponds to what is called a “ply”
in chess or checkers. We use the Go terminology: One player plays only
even-numbered moves; the other player plays only odd-numbered moves.

Rules buffs will no doubt wish to consider many subtleties, including
the following:

1. North American and New Zealand Go have a “superko” rule, which
bans any move that leads to any position that has already appeared
earlier in the same game. Chinese Go also has a superko rule that
bans some (but not all) such moves. The Japanese ko rule bans
only moves that lead immediately back to the prior position in
a 2-move loop. Japanese Go has no superko rule to ban 4-move
loops, 6-move loops, etc. Professional games affected by these
discrepancies are very rare. Since draws by repetition through
cycles of 4 or more positions are fundamental to the strategy of
checkers, we follow the Japanese ko rule, which legitimizes the
possibility that the game might hang in a long loop (one with
more than 2 moves). Since there is no possibility of a 2-move (i.e.,
2-ply) loop in chess or in checkers, both games are compatible with
the ko rule in Go.

2. What is the geographical scope of the ko-ban rule, which prohibits
the immediate recapture of ko? A global interpretation allows
recapture after an intermediate play on another board; a local in-
terpretation leaves the ko-ban in force until there has heen another
play on the Go board.

3. What is the geographical scope of the “compulsory jump” rule
in checkers? This rule states that if any jump move is possible,
then nonjump checker moves are forbidden. According to a local
interpretation, only nonjump checker moves are forbidden, and a




386 Elwyn Berlekamp

player might elect to play on another board even if a checkers’
jump is possible. According to a global interpretation, a checkers’
jump must take precedence over all other moves, on all boards.

Although the different variations of the rules entail major philosoph-
ical differences, it turns out that the vast majority of game positions are
susceptible to analyses that do not depend on the details of the rules.

‘When the four problems are considered in isolation, we claim that
White should draw Checkers, and win at each of Go, Chess, and Dom-
ineering. When all four boards are treated as a single game played
together, we claim that White can win, no matter how one chooses to
interpret rules 1, 2, and 3.

Details of these solutions will appear in [Now01].

heknowledgements

I am indebted to Bill Spight and Gin Hor Chan for help in composing
and debugging these problems, and to Silvio Levy for assistance in the
preparation of this paper.

Bihliography

[BCG82] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning
Ways for Your Mathematical Plays, two volumes. Academic
Press, London, 1982. Translated into German: Gewinnen,
Strategien fiir Mathematische Spiele by G. Seiffert, Foreword
by K. Jacobs, M. Reményi and Seiffert, Friedr. Vieweg & Sohn,
Braunschweig, four volumes, 1985. Second edition, Natick,
Mass.: A K Peters, 2000-2002, four volumes.

[Gar74] Martin Gardner. Mathematical games: Cram, crosscram and
quadraphage: new games having elusive winning strategies.
Seientific American, 230(2):106-108, February 1974.

[Now96] Richard Nowakowski, editor. Games of No Chance: Combi-
natorial Games at MSRI, 1994. MSRI Publications, 29, Cam-
bridge University Press, 1996.

[Now01] Richard Nowakowski, editor. More Games of No Chance.
MSRI Publications, Cambridge University Press, 2001. Sequel
to [Now96], to appear.




The Sol LeWitt Puzzle.
A Problem n 16 Squares

barry Gipra

The contemporary conceptual artist Sol LeWitt often works with geo-
metric designs. One of his etchings, Straight Lines in Four Directions
and All Their Possible Combinations (1973), suggests a mathematical
problem. Notice that some of the dark lines in the figure above (adapted
from LeWitt's design) continue from one square to the next, but oth-
ers don't. Is it possible to rearrange the 16 squares, keeping them in a
4 x4 grid and not rotating any of them, so that all the lines go all the
way from one edge of the grid to the other? If so, how many different
solutions are possible? And if not, why not?

This question was first posed by the author in [Cip99, p. 113]. The
puzzle can indeed be solved. There are three “geometrically distinct”
solutions shown in Figure 1.

Barry Cipra is a freelance mathematics writer based in Northfield, Minnesota.
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Fgure 1. The three geometrically distinct solutions to the Sol LeWitt Puzzle.

/

We need to clarify what “geometrically distinct” means. There are
several symmetries at work in the Sol LeWitt puzzle. Two of them are
obvious, one is not. The obvious symmetries are rotation through 90
degrees and reflection: Take any solution, do either of these operations
(or any combination of them) to it, and you've still got a solution. The
non-obvious symmetry is what we’ll call the “toroidal” property: Take
the topmost row, or the leftmost column, and move it all the way to the
bottom, or to the right, and you've still got a solution. In particular,
when a diagonal “leaves” one edge of the 4 x4 grid, it “re-enters” at the
corresponding point on the opposite edge. In other words, each solution
could be drawn on the surface of a torus.

It's easy to see that the three solutions in Figure 1 have this toroidal
property. But it’s not at all obvious there aren’t other, non-toroidal
solutions (or, for that matter, other toroidal solutions). We’ll present
a somewhat unsatisfactory proof below (unsatisfactory in that we’d like
to encourage people to look for a simpler, more conceptual proof—ours
is partly a brute-force process of elimination). But first, we need to in-
troduce another, non-geometric symmetry that’s hidden in the problem,
which we'll call ezistential [Sar56] symmetry.

Notice that in each square, there either is a horizontal line or there
isn't, and likewise for the vertical and two diagonals. What if we switch
these? A little thought reveals that if you take a solution and erase all
the horizontal lines that are in it and simultaneously draw horizontal
lines in the squares where they weren’t, then you've still got a solution!
The same, of course, holds for the vertical and two diagonals.

If you like, there are three symmetry groups lurking within the Le-
Witt puzzle: the rotation/reflection group of order 8, a toroidal group
of order 16, and an “existential” group of order 16. The first group is
the most obvious. The third, once you see it, is also obvious. Only the
second still requires proof.
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Fgure 2.

So here’s a proof that all solutions must have the toroidal property.

To begin with, the only thing at stake is the “toroidality” of the
diagonals. But by reflection, it suffices to show this only for the “down”
diagonals: If there were a solution with non-toroidal “up” diagonals,
then by reflection through, say a vertical line, there’d be a solution with
non-toroidal “down” diagonals. Finally, by the existential symmetries,
we may assume the “full” square—the one with all four lines drawn in
it—is in the upper left-hand corner. (Once we've proven toroidality,
we've got a geometric way of moving the full square wherever we like,
but for now all we've got is existentialism!) If we start by drawing
the continuations of the lines in the full square, the picture looks like
Figure 2.

Now where can the other four down diagonals be drawn? Up to
reflection across the main diagonal (joining upper left to lower right),
there are only four possibilities (Figure 3).

Note that the first two are toroidal. It suffices, therefore, to show
why the other two cannot occur. Let’s take them one at a time.

In Figure 3(c), the horizontal line in the top row goes through three
squares with down diagonals. That means that the other horizontal line
must be in the third row, since the other two rows each have two squares
with down diagonals in them. A similar argument shows that the other
vertical line must be drawn in the third column, since only it has two
squares with down diagonals in it. The result is as in Figure 4(a).

But this has three squares (the shaded ones) with the combination
of vertical, horizontal, and down diagonal, and that can't be.

Similarly, in Figure 3(d), the second horizontal and vertical lines are
forced to be in the fourth row and column, respectively, resulting in the
same contradiction (Figure 4(b)).

From this we conclude that the down diagonals must have the toroidal
property, and that concludes the proof.

Now why are there only three geometrically distinct solutions? (It
may not be immediately obvious that the three solutions in Figure 1
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Fgure 6.

really are geometrically distinct, but we leave it to the reader to convince
himself they are.) Our proof relies on toroidality.

We begin with a little lemma: The four squares with both horizontal
and vertical lines drawn in cannot be positioned at the corners of a
square of any size. We leave it to the reader to convince himself that it’s
impossible to draw the up and down diagonals in such an arrangement
without duplicating one of the combinations (and omitting another).

The upshot of this is that the two lines in one direction, say the
verticals, must be toroidally adjacent, and the other two toroidally non-
adjacent. Using either toroidal or existential symmetry, we can assume
the full square is in the upper left-hand corner, so the picture starts out
like Figure 5.

Note that we’ve shaded in one of the two candidates for the blank
square. This is because the two are actually equivalent under our geo-
metric symmetries: To interchange them, do a reflection across a hor-
izontal line, and then move the row with the full square back to the
top. Consequently, we may assume the shaded square is the one to leave
empty. This leaves only two possibilities for the other up diagonal, as
shown in Figure 6.

In both, we have two squares with just a horizontal line, so we need
to put the final down diagonal through one of them. But in Figure 6(a),
it can't go through the shaded square (because that’s the one we’ve
chosen to leave empty), so there’s only one choice, which produces the
solution in Figure 1(a).

In Figure 6(b}, on the other hand, either choice is OK. Hence we get
the other two solutions in Figure 1(b,c).

Because of toroidality, each of our three solution can be used to tile
the plane (Figures 7(a,b,c)).

(Note: Figures 7(a) and 7(b) look a lot alike—they may appear to be
related by a reflection—but they really are geometrically distinet. We'll
see below two reasons why they appear so similar.)
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Figure 7.

Finally, if we let H, V', U, and D represent the existential symme-
tries for the horizontal and vertical lines and the up and down diagonals,
respectively, it’s easy to show that, applying these to our three geomet-
rically distinct solutions of Figure 1(a—c), we have H(a) = H(b), but all
other actions are trivial. (The equality must be interpreted as allowing
for rearrangement by the geometric symmetries.) In particular, even if
you allow for all possible symmetries to act, there are still two essentially
different solutions: the pair (a)/(b) and the singleton (c). This helps ex-
plain why Figures 7(a) and7(b) look so similar: moving the horizontal
lines of one turns it into (a mirror image of) the other.

The three geometrically distinct solutions were first identified by
John Conway of Princeton University. (The proof given here that there
are no others is, in effect, a streamlined version of Conway’s argument.)
Jonathan Needleman, a student at Oberlin College, has pointed out one
additional peculiar property of the three solutions: If you move just one
vertical line, say from the second to the fourth column (which keeps the
vertical lines toroidally adjacent), Figure 1(a) again becomes 1(b), while
Figure 1(c) again remains fixed. This gives another explanation for the
deceptive similarity of the tilings in Figures 7(a) and 7(b).

A priori, it’s not clear that Needleman’s operation (moving one line)
should produce a solution at all. It would be nice to have a direct,
conceptual proof of this, along with the one mentioned earlier, for the
toroidal property.

We close by posing two addition problems similar to the LeWitt
puzzle. The first was dreamt up by the author. The second was posed by
Loren Larson, a mathematician and problems expert at St. Olaf College
in Northfield, Minnesota.

Figure 8(a) consists of the 16 combinations of quarter circles either
drawn or not drawn at the four corners of a square. Is it possible to
rearrange the 16 squares, again without rotating any of them, to pro-
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VARN

Figme 8. Two more puzzles, the second proposed by Loren Larson.

duce a pattern of complete circles and semi-circles—preferably with the
toroidal property, so that each semi-circle on one edge matches up with
one on the opposite edge?

In Figure 8(b), the pattern in each of the 16 squares consists of
two straight lines emanating from the center of the square to two of
eight points on the sides (the four corners and the four midpoints). The
patterns in the top row are invariant under rotation by 180 degrees. The
other patterns are not. The problem here is to rearrange the squares,
allowing for 180-degree rotations (but not rotations of 90 degrees), to
produce one continuous, non-self-intersecting dark line, with turns only
at the centers and the corners of the squares.
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SUm-Free Games

Frank Hararg

Dedicated €o my games mentor, Martin Gardner,
on his 65w hirthdag.

A sum-free set of positive numbers never has two distinct numbers which
add up to a third in the set. So, {1,3,5,7,...} is sum-free (since adding
two odd numbers always yields an even number), while {1, 3,5, 6} is not
sum-free (since 1 + 5 = 6).

In these games, two players, Alice and Bob, alternately place num-
bers in numeric order from {1,2,3...,8} into one of two columns,
or 5. They try to maintain the sum-free status by keeping the three
number combinations from occurring in one column. In this game, a
player loses if, after moving, two numbers add to a third in one column.

The Achievement Game

In this game, Alice moves first by placing number 1 in one of the two
columns '} or 5. This move has absolutely no effect on the outcome
of the game, as the names of the two columns do not matter, making
it what I call (in jest) a “shrewd move,” We'll assume Alice placed 1 in
column .

Now, Bob can place 2 in whichever column he pleases. If he is wise,
he will choose to place 2 also in C, for this moves leads to victory. The

Frank Harary applied graph theory to anthropology, chemistry, and computing,
and discovered that some theorems can be played as two-player Achievement and
Avoidance games.
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rule of the game is that no move is permitted that would destroy
the sum-free status of either column.

Hence, with both 1 and 2 in C;, Alice must place 3 in column Cs.
This forced move is denoted 3*.

In the Achievement Game, the last player who can move wins. In
the Avoidance Game, the last player who can move loses.

We'll prove that Bob can win the Achievement Game no matter what
moves Alice makes. Let’s see the possibilities. We'll show in table form
the opening moves described so far:

C1 G
1 3
2

Were Bob to place 4 in column ', he’ll lose on move 8 (try it out!) But
a wise Bob will place 4 in column €', and afterward Alice can place 5
in either column. In either case, Bob should put 6 in the other column:
In the first case, his move is forced (since 1 + 5 = 6 he can’t place 6 in
the first column), in the other case, it merely shows forethought:

I 3 1 3
2 4 2 4
5 67 6 5

In either case, Alice cannot place 7, so Bob wins the Achievement Game.

The Avoidance Game

This time, the player who makes the last move loses!

We shall prove that Alice can always win no matter what move Bob
makes. The proof is a bit more complex that that for the Achievement
game. If Alice starts in C, Bob can play his response in either column.

‘We'll consider first, C',. Then Alice must put 3* in C,, and Bob now
has two choices for 4. If he places 4 in €', 5* and 6* are forced, and
Alice should play 7 in column 2 forcing Bob to play the last move in
column 1:
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1 3
2
4 6"
8 7

If, on the other hand, Bob played 4 in the second column, Alice put
5 in ('}, forcing Bob’s 67 C3. As Alice cannot move, she wins:

1 3
2 4
5 67

So, if Bob plays his second move in €}, Alice can guarantee a win.
Suppose Bob plays his second move in C5. Then Alice wins more simply.
Alice puts 3 in ;. Bob is forced to move 4* in /3. Then Alice puts 5
in Cs and Bob must write 6* in C5:

1 2
3 4
6 5

And since Alice cannot place 7 in either column, she wins.

Variations

There are several variations to the Achievement and Avoidance Games.
Naturally, these variations can be combined to make more variations
than appear here.

V1 (Variation 1) Start with another set of consecutive integers, in place
of {1,2,...,8}. For instance, {1,2,...,10} or {3,4,...12}.

V2 We could remove the word “distinet” in the definition of sum-free.
Under the old definition, the set {1, 2} is sum free, but under this
new one it is not, since 1 + 1 = 2.

V3 The number ¢ of columns can be 3 or 4 or even more. {More than
3 columns apparently give games that are too long to remain in-
teresting,. )
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V4 These can be played with 3 players. It seems that games with more
players would be exceedingly boring.

V5 In choice games, the players can choose any remaining number to
play, and need not play the numbers in order. So the first move
might be to place 4 in the first column. The next player can place
any number except 4.

Onsolved Problems

¢ Who wins under variations of the Avoidance and Achievement
games under variations under different choices of variations V1
and V37 By a result from game theory, there is always a winner.
For games with three players, when can one player force a win?
When is one player forced to lose?

e For each game, what is the corresponding Ramsey-type number?
How large a starting set do vou need before it is guaranteed that
a non-sum-free situation will occur (no matter how unskillful the
players).
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Shadows ad Plugs
byeen Roberts

Martin Gardner has powerfully influenced my teaching of high school
mathematics. Perhaps the most important is in the joy I see as students
learn math using puzzles and games inspired by him. May the joy Martin
experienced as a self-described “amateur” Mathematician continue to
filter down to generations of students who have trouble learning by the
textbook alone.

My interest in mathematics began in 1958 at Tulsa Central High
School in Oklahoma when I studied Plane and Solid Geometry. I was
excited to imagine how infinite space can be made up of points, entities
with no dimension. Amazing!

By doing constructions in three-space, students were really learning
about mathematical rigor and the nature of mathematical proof.

This paid off later when we tried to visualize the three-dimensional
solid resulting from revolving a line or semicircle about the z-axis which
we used for integration in Calculus. Though we had memorized vol-
ume formulas for cylinders, cones, and spheres, we had no idea why the
fractions 1/3 or 4/3 were involved until we learned about integration.

I married and raised three sons, and for the following thirty years
my main connection to mathematics was Martin Gardner’s (a former
Tulsan!) column in Seientific American. 1 played Sprouts. 1 enjoyed
Conway’s Game of Life. The Mathematical Games column was my in-
troduction to M. C. Escher. Marjorie Rice (an amateur, like me, who
worked with tessellations) became one of my heroes. Martin Gardner
connected me to a world of puzzles, games, mathematics, art, magic,
and science. He was my link to a world of exciting ideas.

Gwen Roberts is a high school math teacher. She creates puzzles with Robin
Lamkie.
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In 1988, I began a teaching career. Sadly, I found that Solid Geom-
etry was no longer part of the high school curriculum. I attempted to
make up for this absence by using manipulatives to help students grasp
abstract concepts. A kinesthetic learning takes place when students play
with physical representations. Public school budgets are limited and
commercially available models are expensive, so I found that I needed
to make manipulatives for my students. In addition, some concepts had
no ready-made physical models.

My calculus students struggled with visualizing disks, washers, and
cylindrical shells. They struggled because they had not had the advan-
tage and experience of visualizing loci. I made my Plugs and Shadows
puzzles to help them:

I show them the three holes, and ask the students to visualize an object
that snugly fits through all three.

I made many dissection puzzles to help students in my geometry
classes see that a linear change (say in the side of a polygon) causes the
area to change in a dramatic but predictable way. The first (and most
popular) physical model I made was suggested by Martin Gardner’s
discussion of Dudeney’s four piece dissection of equilateral triangle to
square [Gar61, Ch. 3]:

A 7Y

This puzzle has many applications. A good problem is, “Given a square
and equilateral triangle with equal area, how do the length of the sides
of each figure relate?”
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For years I've taught a course called Transformational Geometry.
Students must be able to see in their mind’s eye the changes involved
in reflections, rotations, and size transformations. Once these images
are clear in a student’s mind, concepts from group theory seem to come
more easily. The Project Mathematics Video series by Tom Apostol and
Jim Blinn uses animation to bring these changes to life. One of my
students became fascinated with the Hinge Proof of the Pythagorean
theorem from the videos. We assembled a physical model using duct
tape for the hinges. I've used this puzzle for years as an example of a
compelling visual proof (as opposed to the two-column proofs given in
most high school geometry texts):

F e w

Another student’s observation of a triangle dissection involving a
surprising conclusion involving the 1:7 ratio was added to my growing
collection of demonstration puzzles:

WA
A A ARALA AN

A basic task in Caleculus is calculating the volume of a solid of rev-
olution obtained by rotating any function f(z) about the z-axis. The
function could describe a triangle, a rectangle, a semicircle, a cross, a
letter of the alphabet, or even the profile of a face. To calculate the vol-
umes, students must be able to visualize stacking narrow discs to build
the solids.

In the “triangle, circles, and square puzzle” shown below, the stu-
dents discover a surprising property of the relationships of the related
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volumes of revolution. The volumes of the cone, sphere, and cylinder
are related in the ratioof 1:2: 3.

- T —————
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A Neglected Trigonometric Gem
Eli Maor

In memory of don Froemke (1941-1998),
colleague, puzzlist, and trusted friend.

In his very numerous memoirs, and especially in his great work,
Introductio in analysin infinitorum (1748), Euler displayed the
most wonderful skill in obtaining a rich harvest of results of great
interest. . . —E. W. Hobson, “Sguaring the Circle”: A History
of the Problem (1913)

Among the numerous infinite series to come out of Euler’s creative
mind, there is the following little-known identity:

i_cotz=3ZtanZ+ ftanZ 4+ ttan ... (1)

To prove it, we begin with the double-angle formula for the cotangent,

1—tan?x cotz —tanz

t2 —_— —_—
cober 2tanx 2

Starting with an arbitrary z # nw/2 and applying the formula repeat-
edly, we get

cotz = %(cotZ —tani)
= i(cotf—tan%)— ftani
-k z zy - 1 z 1 z
= Z(cotf—tan¥)— itanZ — Ztank
o . . L . ) .
= F(cot;T—-tan;T)-Frtanw‘_ — - —ztan 3

Eli Maor teaches mathematics and the history of mathematics at Loyola Uni-
versity in Chicago.
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Asn — oo, % cot 5% tends to 1/z, so we get

o

cotx =1 — E < tan &

an an
n=1
from which Equation 1 follows.
If Equation 1 is not particularly remarkable, an immediate conse-
quence of it certainly is: If we substitute = = I, we get

4 = 1 = L s 1 I
=~ — 1= stan ¥ + stan & + 5 tan 55 +

Replacing the 1 on the left side with tan I, moving all the tangent terms
to the right side and dividing the equation by 4, we get

1 1 s 1 = 1 s
T=z2tanT 4 Stan S + Ltan T 4 - (2)

Equation 2 must surely rank among the most beautiful in all of math-
ematies, yet it does not appear in trigonometry or calculus textbooks;
nor is it listed in L. B. W. Jolley’s Summation of Series [Jol61], a compi-
lation of over a thousand arithmetic, algebraic, and trigonometric series.
What is more, the series on the right side converges extremely rapidly
(note that the coefficients and the angles decrease by a factor of 2 with
each term), so we can use Equation 2 as an efficient means to compute
m: it takes just twelve terms to obtain 7 correct to six decimal places,
that is, to one millionth; four more terms will increase the accuracy to
one billionth.!

If we remultiply Equation 2 by 4 and introduce p = /4, we get the
even simpler-looking equation

1—tan- ltan2 + ftan 2 3
b p+stant 4 stan 4 --- (3)

Equation 3 is reminiscent of the famous Runner’s Paradox, proposed
by the philosopher Zeno of Elea in the third century B.C.: A runner
attempts to cover a given distance (in this case, of length 2) by first
covering one half this distance, then half of what remains, and so on
ad infinitum. The total distance covered is the sum of these partial
segments, that is, the sum of the infinite progression 1+ £ 4+ 1+ £+ ---.
The Greeks knew that the sum of this progression is 2, but they could
not explain why an infinite sum can have a finite value. Zeno’s paradoxes
were meant to point out the inability of his contemporaries to deal with
infinite processes.

!One may raise the objection that Equation 2 expresses 7 in terms of itself.
However, since the trigonometric functions are immune to the choice of angular
units, we can use degrees instead of radians and write Equation 2 in the form
L= Ltand5° + L tand5/2° + L tand5/4° + -

T
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Fige 1. A geometric interpretation similar to the Runner’s Paradox.

We can give Equation 3 a geometric interpretation similar to the
Runner’s Paradox (Figure 1): The runner starts at point Py, goes a
distance of one unit to the right and one unit up, arriving at P;. The
vertical distance covered is 1 = tanp. From point P;, the runner goes
a distance ; to the right followed by % tan £ up, arriving at point Ps.
Continuing in this manner, we get a staircase route with the horizon-
tal steps and angles shown decreasing geometrically by a factor of 2
with each step. Eventually, the runner will arrive at a limiting point
P, whose height above the starting point is the sum of the series of
Equation 3.

We might ask, what is the straight-line direction from the initial
point to the final point? Denoting the angle hetween the horizontal line
and the line segment Fy P, by .., we have

tanp+ ztans + ftan £ 4 ---

tan o = 14 L4 4.. ’ ®
2 4

80 we can interpret tan a., as a weighted average of the tangents appear-
ing in the numerator. These tangents are the slopes of the line segments
Py P; (not shown in the figure). In view of Equation 3, we can replace

the numerator by %, getting
A,

or o = 32.48°.
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Kotant's Ant Problem
Dick Hess

A recent posteard from a friend, Nob Yoshigahara in Tokyo, asked me
to imagine an ant crawling on the walls, floor and ceiling of a 1 x1x2
rectangular room as shown in Figure 1. An ant is positioned at A and
can travel to any other point on the surface of the room. I was asked to
find the farthest point from A and was told it is not the point B! This
problem is the creation of Yoshiyuki Kotani, a mathematics professor in
Saitama, Japan, and he discovered that the farthest point is not at B
but at a specific place on the far face.

Recreational mathematics problems involving geodesics on the walls
of rectangular rooms have been around for nearly 100 years and are well
documented by Singmaster [Sin93]. They are often referred to as spider

and fly problems.
@ b

A
\1\ ;

Figme 1. A 1x1x2 room.

Dick Hess is a long-time enthusiast of recreational mathematics and mechanical
puzzles.
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As a warmup, let’s work out the following problem:

Problem 1 In the 1x1x2 rectangular room, what is the shortest path
between diagonally opposite corners A and B Y

This problem can be analyzed conveniently by unfolding the room
along edges in various ways as shown in Figure 2. Geodesic paths in the
room are seen simply as straight lines on the unfolded room walls. Care
is required, however, to consider all possible ways to unfold the room to
determine the true shortest path between two points. For example, in
Figure 2(a) the path between A and B has a length of v/22 4 22 = 2.8284
while in Figure 2(b) it has length v'12 + 32 = 3.1623. In the case of the
second path, the ant hasn’t taken the shortest geodesic route.

A
i ~
~ A
A = = —
~ o
B B
Figure 2(a) Figure 2(b)
Fgue 2. Two ways an ant can get from corner A to corner B.

Figure 3 shows how to consider all possible paths from A to B.
It unfolds the room holding B at the origin and indicates the infinite
number of possible images for the 1x1 face containing A. In this diagram
the 1x 2 sides are not all shown but can easily be imagined in place to
plot paths from A to B. The immensely distant images of A correspond
to paths from B that spiral around many 1 x2 faces. From the Figure
it’s clear that the path in Figure 2(a) is the minimum; the distance NG
from B to the images A;, Ay, and A7 is smaller than the distance to
any other image of A.

This same approach can now be applied to Kotani’s original problem:

Problem 7 Where on the 1x1x2 room is the farthest from corner A and
what is the distance between it and A? (Answer on page 411.)
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Figure 3. The infinite number of ways to get from B to A along the walls,
floor and ceiling of a 1 x1x2 room.

Related problems of interest on the 1x1x2 room are:

Problem 3 What point is farthest from the center point of a 1x1 face and
how far away is it? (Answer on page 411.)

Problem % What point is farthest from the center point of a 1x2 face and
how far away is it? (Answer on page 411.)

Poles of Inaccessibility and Center of Accessihility

It is interesting to define two types of special points for the room. First,
there is a pair of points in the room that are more distant from each
other than any other pair of points. These points are called poles of
inaccessibility and the distance between them is called the radius of
inaccessibility. If the ant and his girlfriend are located at the poles of
inaccessibility they are as far apart as possible in the room. Second,
there are points on the room’s surface having the smallest distance to
their farthest points. These points are the centers of accessibility. If the
ant is at a center of accessibility his girlfriend can be placed no farther
from him than the radius of accessibility.
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Problem 5 Where are the poles of inaccessibility and what is the radius
of inaccessibility for the 1 x1x2 room? (The radius of inaccessibility
exceeds 3.01.) (Answer on page 411.)

Problem 6 Where are the centers of accessibility and what is the radius
of accessibility for the 1x1x2 room? (Answer on page 411.)

The 1< a X b Room

The natural generalizations to Kotani’s original problem are,

Problem 1 Where is the farthest point from a vertex of the 1xaxb room
and how far is it from the vertex? (Solution in on-line paper)

Naturally, any rectangular room can be scaled so that the shortest
side length is 1, and the other two sides of lengths a and b with b > a > 1.

Problem 8§ For each face. what point is the farthest from the center point
of the face and how far away is it? (Solution in on-line paper)

Problem 9 For which rooms is the farthest point from a face center the
center point of the opposite face? (Solution in on-line paper)

Problem 10 For which room is the farthest point from a face center nearest
to an edge? (Solution in on-line paper)

(fther Problems fo Gonsider

Problem 1l Where are the poles of inaccessibility and what is the radius
of inaccessibility for a 1xaxb room?

The answer to this problem is known subject to the following un-
proven conjecture (Solution in on-line paper):

G[}DjECﬁ!I‘E | The two points of a pole pair always reside on opposite 1xa
faces and are mirror points of each other.

A computer program written to search numerically for pole pairs was
run for a large variety of rooms and produced results always obeying this
conjecture. No mathematical proof of this conjecture is available, but its
truth isn’t too surprising; a proof or counterexample would be greatly
appreciated.
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Problem 12 For which rooms are the diagonally opposite corners poles of
inaccessibility? (The answer is known only if one assumes the conjec-
ture.)

Problem 13 Where are the centers of accessibility and what is the radius
of accessibility for a 1xaxb room? (This is an open question.)

Soltions

These terse answers are provided so you can check them against your
own answers. For complete solutions, refer to the on-line site for the
book: http://www.gdgd.com

Answeer 1 (Problem 1 on page 408) The solution is given in the text fol-
lowing the problem.

hnsvier 2 (Problem 2 on page 408) v/130/4

Answer 3 (Problem 3 on page 409) The farthest point is at the center of
the far face, 3 units away.

hnsvier %t (Problem 4 on page 409) The farthest point is at z = 1/6,
y = 1/2 on the far face, at a distance of 13/6.

Aoswer 5 (Problem 5 on page 410) Assuming the poles are mirror points
(not proved in general, but no counterexample is known), the radius of

inaccessibility is 2 - /4 — /3.

Answier 6 (Problem 6 on page 410) The centers of accessibility are the
center points of the four 1x2 faces. The radius of accessibility is 13/6.
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YK Problem of
Dominoes and Tatami Garpeting

Yoshiguki Kotani

Domino tiling is a little fun for those of us who love mathematics and
puzzles, but perhaps it is also meaningful for Japanese people in their
daily life because of the shape of tatami carpeting. The usual goal
in Domino tiling problems is to fill a figure with dominoes, i.e., 1 x2
rectangles. Combinatorists will often ask, “How many ways can the
shape be tiled?” Here, we reverse the question and say, “Find shapes
which have exactly 2000 tiling solutions.”

The Problem

The goal is to tile any figure which consists of unit squares with 1x2 rec-
tangles without overlapping or overhanging. When counting solutions,
we do not unify equivalent solutions under symmetries. For example,
the 2x 3 rectangle has three solutions:

Yoshiyuki Kotani is a member of ARMJ (Academy of Recreational Mathemat-
ics, Japan) and CSA (Computer Shogi Association), and is Professor of Computer
Science.
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22X, 9 X 0, and m X n Rectangular Tiling

It is well known that the number of ways to tile a 2xn rectangle with
dominoes forms the familiar Fibonacei sequence:

2x] | 2x2 1 2x3 | 2x4 | 2xD5 | 2x6 | 2x7 | 2x8 | 2x9

1 2 3 ) 8 13 21 34 %]

To see why, let F'(n) be the number of such tilings. If a vertical tile covers
the two leftmost squares, a 2x(n—1) rectangle remains to be tiled. If two
horizontal tiles cover the leftmost squares, a 2 xn—2 rectangle remains
untiled. This leads us to the recursive formula:

F(n)=F(n—-1)+ F(n-2)

The number of tilings, call it f(n), of 3 x n rectangles can also be
analyzed. Let g(n) count the number of ways to tile a the shape formed
by removing a single corner square from a 3 xn rectangle. Focusing on
how the top two squares at the leftmost end of a 3xn rectangle is covered
(marked @ and b below), we obtained the geometrical recurrences:

a
b = + +
a
b = +
| I
which translated into the recurrence formulae:
f(n) = gn-1)+f(n—2)+gn—-1)
gn) = f(n—1)+g(n—2)

Removing g(n), we get the recursion:

fn)—4f(n—2)+ f(n—4)=0

with initial conditions (for even n) of f(0) = 1 and f(2) = 3. We can
then obtain:

Ix2|3x4|3x6|3x8

3 11 41 153
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(Naturally, when n is odd, the rectangle cannot be tiled.) This method
can also be applied to obtain recurrences for 4 xn rectangles, 5xn, and
so forth. But the analysis quickly gets quite complicated. But there is
a great general formula which gives the number of m xn domino tilings
which seems to have been known in physics since 1961 [Hos86].

Mgorithms for Gounting

We can define a simple function which counts how many ways there are
to tile any figure f. The algorithm is based on recursive calls which
calculate count two subshapes made by removing the vertical and hor-
izontal dominoes that cover the upper-leftmost square, and adds these
two counts.

Although the combinatorial explosion makes this algorithm extremely
inefficient, the computer science technique of memoizing, helps to bring
the combinatorial explosion down a bit. The idea is to record calculated
values in a table so that they need not be recalculated when a shape
reappears during another recursive call. A hash table is a good storage
mechanism for these values. Note here, that it’s perfectly all right if a
hash table entry is overwritten by another; it simply means that if the
first entry is needed again, it must get recalculated. Similarly, the same
hash table can be used without reinitializing it. The entries may even
come in handy when calculating similar shapes.

V2K Problem

I posted this problem at a puzzle party as a competitive quiz event. The
number 2000 is not so meaningful mathematically, but was certainly
timely. The problem is:
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The problem was discussed in JARM (Journal of the Academy of Recre-
ational Mathematics, Japan) and in NOBNET (puzzlers’ mailing list).
Many 18-domino solutions were reported, two examples of which are
shown below.

The one on the left was a solution which fits in a small rectangle, found
by M. Odawara by hand. The second is a symmetric one found by
W. H. Huang, who thought of using snake-like zigzags to generate various
numbers. B. Harris showed a heuristic shape construction of a specific
number of patterns by generating the Fibonacci sequence backward from
the number keeping close to the golden ratio between adjacent pairs.

I know of two 17-domino solutions shown below.

The one on the left is mine, obtained by programming a brute-force
search of shapes which are made by removing six unit squares from a
5 x 8 rectangle. T. Arimatsu reported the second, cross-like shape. 1
think he found it by varying the lengths of the four arms.

Figures for Ang Nember of Tilings

Does there exist a figure for any number, N, of domino tilings? If so,
how few dominoes are necessary to make it? B. Harris answered the
first question by providing the sequence in Figure 1, where each shape
consisting of N dominoes has exactly N ways to tile it. To see this, if
the pair of unit squares marked “x” is covered by a single domino, the
remaining have N — 1 tiling patterns. If by a pair of dominoes, the rest
can only be tiled in one way.
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X

X X
N=2 XX X X

N=3 N=4 XX X
N=5 N=6 XX
N=T

Figure 1. A sequence of patterns with exactly N domino tilings due to
B. Harris.

Little is known about the second question. Figure 2 shows small shapes
for N € {2,...27}.

N=2 N=3 N=4 N=5 N=6 N=T7 N=8 N=9Y

N=10 N=11 N=12 N=13 N=14 N=15
N=16 N=17 N=18 N=19 N=20 N=21
N=22 N=23 N=24 N=25 N=26 N=27

Figre 2. Figures close to the minimum number of squares which have exactly

N domino tilings.
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Tbamt Tiling

Japanese traditional rooms are carpeted by tatamis. It is a thick carpet
which is about 3x6 feet (90x 180 cm), just enough for one person to lie
on. Therefore, tatami carpets have a domino shape and domino tiling
is a practical daily problem in Japan. (OK, I admit the argument is a
little far-fetched....)

Although usual domino tilings are possible, there is an additional
custom in smaller rooms to avoid criss-cross lines made by the edges of
tatamis when four corners meet at a point. The reason for this custom is
not well known, but we can observe it everywhere. Perhaps such corners
can lead to mishaps when the corners twist or come apart. Let’s try to
count the number of Tatami tilings of various rooms.

Let T'(n) be the number of ways to tatami tile a 2xn rectangle. If the
two leftmost squares are covered with a vertical domino, the rest will be
a 2x(n—1) rectangle which can be tatami tiled in any way. If, however,
the leftmost squares are covered by a pair of horizontal dominos, the next
domino must he vertical to avoid a four-corner intersection. Pictorially,

= - F

where the domino marked ‘F" is forced to be vertical to avoid four tatami
mats meeting at a corner. This leads to the recurrence,

T(n)=T(n-1)+T(n-3)

Using the initial conditions, T(1) = 1, T(2) = 2, T(3) = 3, we get

2x1 12x2 | 2x3 | 2x4 | 2x5 | 2x6 | 2x7 | 2x8

1 2 3 4 6 9 13 19

The number of 3 xn tatami tilings is quite surprising. Pictorially,

ia
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The domino marked F' was forced by the tatami constraint. Although
not yet placed, dominos will also be forced at the places marked F*. Let
t(n) count the number of tatami tilings of a 3 xn rectangle. Let w(n)
count the number of tilings of a 3 xn rectangle with one corner square
removed. The above pictures give the recurrences,

t(n)

uln) = %-t(n-—-l)-{-—%-t(n-—i})

2u(n — 1)

I

The %’s come from the forced tiles F'* halving the number of ways to
tile the remaining rectangle. Plugging the second equation in for » in
the first equation yields,

t(n) =t(n —2)+t(n —4)

and the Fibonacei recurrence emerges again! Using the initial conditions
t(2) = 2, t(4) = 4, and the exceptional 3x2 rectangle which can be tiled
with three horizontal dominoes, we get:

Ix2 | 3x4|3x6|3x8|3x10|3x12|3x14|3x16

3 4 6 10 16 26 42 68

This is interesting from another point of view. The figures below
show the real tatami carpeting preferred by Japanese people:

I

(4) (B)
The 3 xn rectangle tiling is just an arbitrary sequence of 3-tatami room
tilings (A) and 6-tatami room tilings (B). They play the role of vertical
dominoes and horizontal domino pairs in 2 x n rectangle construction.
For example, placing A, A, B, and A in order, The 3 x2n

is constructed as the 2xn

This means that, once mirror images are included, the number of 3x2n
tatami tilings is twice the number of 2 x n domino tilings.
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Open Problems
I leave you with two open problems:
1. Find a Y2K tatami tiling.

2. Give a formula for the number of tatami tilings for an arbitrary
ary 1m X n room.
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